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ABSTRACT 

 

GUOCHEN SONG: Enrollment and Stopping Rules for Managing Toxicity 

in Phase II Oncology Trials with Delayed Outcome 

(Under the direction of Dr. Anastasia Ivanova) 
 

Stopping rules for toxicity are routinely used in phase II oncology trials. If the 

follow-up for toxicity is long, it is desirable to have a stopping rule that uses all toxicity 

information available, not only information from patients with full follow-up. Further, to 

prevent excessive toxicity in such trials, an enrollment rule is needed. The enrollment 

rule informs an investigator about the maximum number of patients that can be enrolled 

depending on the current enrollment and all available information about toxicity. We give 

recommendations on how to construct Bayesian and frequentist stopping and enrollment 

rules to monitor toxicity continuously in phase II oncology trials with a long follow-up.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

In a phase I oncology trial the maximum tolerated dose is estimated. The 

maximum tolerated dose is usually defined as the dose with the probability of dose 

limiting toxicity equal to the maximum tolerated level (often 0.2 or 0.25). We will refer 

to dose limiting toxicity as simply toxicity in the remainder of this document.  

Under most study protocols, a patient that experiences a dose limiting toxicity will be 

discontinued from the study; therefore, we assume that any one patient can only 

experience one toxicity (i.e., toxicity is a binary variable where 0 = no toxicity and 1 = 

toxicity). The efficacy of the estimated maximum tolerated dose is investigated in a phase 

II trial, usually a single arm study.  Since phase I trials use a small sample size, the 

estimate of the maximum tolerated dose is imprecise and may result in a dose chosen for 

the phase II trial with a probability of toxicity much higher than the maximum tolerated 

level. For example, in a phase II study that uses Teniposide (VM26) to treat small cell 

lung cancer, 32 patients were enrolled and 30 were eligible for evaluation. The study 

reported 9 early deaths, 5 of which were caused by septicaemia and were attributed to 

study treatment (Cerny et al., 1988). The high rate of early death seen in this study was 

unexpected. In another phase II study where vinorelbine plus doxorubicin was used to 

treat relapsed small cell lung cancer, a total of 34 patients were planned (Johnson et al., 
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2004). The study applied a Simon-two stage design (Simon, 1989) where the study would 

only continue if 1 out of the first 14 patients responded to treatment, and the study would 

conclude that the treatment does not worth further investigation if fewer than 4 

responders at the end of the trial. The trial had 4 responses after 21 patients were 

registered and 15 patients were evaluable, but accrual was terminated because there were 

too many toxicities observed in these 15 patients: 11 grade IV neutropenia were reported 

(73%) and additional 2 patients experienced grade III neutropenia. If a stopping rule was 

in place, these trials would have stopped early and fewer patients would have been 

exposed to the toxic treatment.  

 A stopping rule alone does not prevent a trial from possibly observing too many 

toxicities. An enrollment rule should be used together with a stopping rule to prevent an 

excessive number of toxicities in phase II trials. In this research, we propose such 

strategies to improve the current practice of phase II oncology trials. 

The document is organized as follows: in Chapter 1, we present literature review. In 

Chapter 2, we review continuous monitoring rules currently used in phase II designs and 

give recommendations on which ones are preferred. In Chapter 3, we develop the 

enrollment strategies and stopping rules using a frequentist method, and in Chapter 4, we 

propose a Bayesian enrollment strategy and stopping rule.  

 

1.2 Frequentist stopping boundaries  

Let θ  be the probability of experiencing toxicity during the follow-up period of 

the study for a patient at the dose chosen for the study and let 0θ  be the probability of 

toxicity that considered being acceptable. One way to set up a stopping rule for toxicity is 
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to specify the shape of the stopping boundary and the probability of stopping the trial for 

a given value of θ . Ivanova, Qaqish and Schell (2005) examined two types of boundaries 

widely used in sequential analysis, the Pocock (1977) boundary and the O’Brian-Fleming 

(1979) boundary, and concluded that the Pocock boundary is the most suitable boundary 

to monitor toxicity in a phase II oncology trial as it allows stopping early with high 

probability and, therefore, reduces the expected number of toxicities in the trial. 

Let K be the sample size planned for a phase II study. The Pocock boundary can 

be defined through a point-wise probability 0α , such that the trial is stopped if, at each 

interim analysis, the null hypothesis 0θ θ=  is rejected at level 0α  in favor of the one-

sided alternative 0θ θ> . The value of 0α
 
is chosen so that the overall probability of 

stopping the trial, φ , is equal to a specified value, usually 0.05φ =  if the probability of 

toxicity  is equal to the acceptable rate 0θ . We refer to the boundary that allows stopping 

the study at any point as a continuous boundary, because monitoring for toxicity is done 

throughout the trial on a continuous basis. Such a boundary can be described through the 

sequence of integers (b1, b2, …, bK), which can be computed using step-wise significance 

level 0α . The constants bk, k = 1,…,K, are equal to the smallest integer such that 

[ ] 0kP Y b α≥ ≤ , where Y denotes a binomial random variable with parameters k and 0θ . If 

the number of toxicities in the first k patients is equal to or higher than bk, the trial is 

stopped. Another way of implementing this boundary is to compute a one-sided p-value 

to test the null hypothesis 0θ θ=  versus a one-sided alternative 0θ θ>  after each patient 

is enrolled and their outcome is observed. The trial is stopped if the p-value is less than 

0α . It is sufficient to apply the boundary only when a patient has toxicity. The value of 
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0α and the corresponding boundary can be calculated at 

http://cancer.unc.edu/biostatistics/program/ivanova/. 

The Pocock boundary is a boundary that is constant in the standardized test 

statistic Z. The O’Brien-Fleming boundary is constant in the B-value defined as 

/Z k K , where k is the number of patients enrolled at the time of the analysis. If the test 

statistic is a random variable with normal distribution, the step-wise significance level for 

O’Brien-Fleming boundary at each stage can be calculated as k
α =

/ )K k , where ( , )
B

C K φ  is tabulated value that can be found in Jennison and Turnbull 

(2000). As ( , )
B

C K φ  is a positive number, clearly k
α

 
increases in k. For discrete cases, 

the O’Brien-Fleming boundary can be computed through trial and error, using ( , )
B

C K φ  

obtained from the normal approximation as the initial value.  

The performance of the boundary is characterized by the probability of stopping 

the trial for a given probability of toxicity, the expected number of toxicities and the 

expected number of patients enrolled. For a binomial outcome, the exact calculation can 

be done as in Schultz et al. (1973), where the probability of stopping was calculated using 

a recursive formula by observing that to stop at stage k, the kth patient has to experience 

toxicity and there has to be exactly bk-1 toxicities before stage k. Given the probability of 

stopping at each stage, k
φ  for k=1,2,…K, the expected enrollment can be calculated as 

( )
1

(1 ),
K

kk
E KN kφ φ

=
× + −=∑  and the expected number of toxicities is calculated as 

E(Y)=E(N) θ× . 

In general, for each given ,K  φ  and 0θ , a trial using the O’Brien-Fleming 

boundary stops with a higher probability, but later in the trial compared to a trial that uses 

( ( , )
B

P Z C K φ>



5 
 

the Pocock boundary. The Pocock boundary results in fewer expected toxicities on 

average compared to the O’Brien-Fleming boundary and, therefore, is preferred for 

monitoring toxicity or adverse events.    

The practice of establishing stopping boundaries to stop experiments can be 

traced back to the 1940s in Wald’s work of sequential probability ratio test (SPRT) 

(Wald, 1945). Assume the likelihood function under the null hypothesis is P0(xk) where 

xk is data observed at stage k and the likelihood function under the alternative hypothesis 

is P1(xk), the log likelihood ratio test is  

 . 

The stopping boundary can be expressed as ( 0 1,γ γ ): if log( )
k

Λ < 0γ , the experiment 

stops and accepts the null hypothesis as correct, or if log( )
k

Λ > 1γ , the experiment stops 

and accepts the alternative hypothesis as correct. Otherwise, the experiment keeps going 

until either 0γ  or 1γ  is crossed. Denote the type I error rate of the SPRT procedure as 

,α  that is, the probability of the procedure accepting P1 when P0 is true and β  as the 

type II error, the probability of the procedure accepting P0 when P1 is true. The 

procedure yields power of 1 .β−  Note that the SPRT contains two one-sided tests at 

each stage, and the type I and type II errors of the whole procedure are gained through 

summarizing the whole sampling space. It is an open ended test with no sample size pre-

specified. The values ( 0 1,γ γ ) can be computed for any given type I error rate and power. 

As the SPRT is an open ended test, it cannot be directly applied to clinical trials. 

Armitage (1957) proposed methods to restrict the sequential procedures to a pre-

specified sample size while retaining the type I error and power. Because the SPRT 

( )1 0

1

log( ) log ( ) log ( )
k

k i i

i

P x P x
=

Λ = −∑
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boundaries are for both lower and upper boundaries, that is, to stop if the toxicity rate is 

too low or too high, it cannot be applied to toxicity monitoring as the trial would not 

stop if the current data deems the toxicity is acceptably low. Goldman (1987) proposed 

using the upper bound of SPRT to stop for adverse events in trials where an adverse 

event is a binary outcome. Let A
θ  be the probability of toxicity that is not acceptable. 

Given a current sample size k, the expression for the upper boundary for stopping is  

0

0 0

ln(1 ) ln [ln(1 ) ln(1 )]

(ln ln ) [ln(1 ) ln(1 )]

A

A A

k
e

β α θ θ

θ θ θ θ

− − − − − −
=

− − − − −
. 

The parameters α and β  are nominal parameters for the two one-sided, open ended 

SPRT. When used with the fixed maximum sample size and only using the upper 

boundary, α  and β  might have to be adjusted, through trial and error, to yield desired 

probabilities. For example, one might want the true type I error rate of the procedure to 

be 0.05.φ =   

As efficacy endpoint is usually the primary endpoint of phase II oncology trials, 

in multi-stage designs, the trial usually stops when there is evidence that the treatment is 

inactive. Bryant and Day (1995) proposed to monitor response and safety jointly in two-

stage or multiple-stage designs. Let π  be the probability of response of the experimental 

treatment. In this strategy, the null hypothesis is that the treatment is not safe or effective, 

specifically, the probability of toxicity is *

0
θ  or higher OR the probability of response is 

0π  or lower. The alternative hypothesis is that the probability of toxicity is *

A
θ  and the 

probability of response is A
π , where * *

0A
θ θ<  and 0A

π π> . Note that the null hypothesis 

will be rejected if the treatment is safe and effective, hence *

0
θ

 
is different from the 
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tolerated probability of toxicity, 
0
,θ  in toxicity monitoring strategies described above. 

The study result variables were represented by X
11 12 21 22

( , , , )X X X X=  as defined below: 

Toxicity No Toxicity  

Response 11X  12X  r
X  

No Response 21X  22X  r
X  

t
X  t

X  

 

The corresponding probability is denoted as (p11, p12, p21, p22).  As toxicity and response 

are bivariate binomial variables, an association variable is needed to fully specify the 

distribution. The odds ratio between response and toxicity 11 22 21 12/ ( )p p p pϕ = was used. 

The stopping boundary is a pair of numbers (cr, ct) at stage k, and the trial stops if either 

more than ct toxicities or less than cr responses observed out of the number of patients at 

stage k. As this rule was usually applied for two stage or three stage designs, it is not a 

continuous monitoring rule and hence the number of patients at stage k is larger than k. 

The stopping rule was gained through enumerating all possible pairs of (xr, xt)  and the 

pair (xr, xt) that satisfies the following situations can be set as the boundary:  the 

probability of recommending an ineffective but safe treatment, 

*

0
[ , | , , )

r r t t A
P X x X x π π θ θ ϕ≥ ≤ ≤ =  is smaller than ,

R
α  the probability of 

recommending an effective but toxic drug, i.e., *

0
[ , | , )

r r t t A
P X x X x π π θ θ≥ ≤ = ≥  is 

smaller than  ,
T

α and the power, *[ , | , )
r r t t A A

P X x X x π π θ θ≥ ≤ = =  is at least1 β− . The 

expected maximum sample size when the treatment is either toxic or ineffective can be 
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calculated for the given ,
R T

α α , 1 β−  by maximizing over ϕ , and the boundary that 

gives the smallest such sample size is chosen as optimal. 

Conaway and Petroni (1995) developed a similar method, but instead of 

controlling R
α

 
and ,

T
α they proposed to control both the type I error rate over the whole 

null hypothesis region and the type I error rate at the point null hypothesis.  Tournoux et 

al. (2007) compared the two methods and recommended to use Bryant and Day because it 

is more flexible. Jin (2007) proposed a method to control the type I error of toxicity and 

type I error of response separately. 

Ray and Rai (2011, 2013) examined to apply the continuous monitoring Pocock 

boundary (Ivanova et al., 2005) with the Simon’s two-stage (Simon, 1989) design. As the 

correlation between toxicity and response was ignored at the design stage, the authors 

found from simulation studies that the procedure was unexpectedly conservative, i.e., 

trials were stopped more often than desired, when the correlation between toxicity and 

response is high. 

 

1.3 Bayesian stopping boundaries  

Geller et al. (2005) proposed a Bayesian stopping rule for continuous monitoring 

of toxicity. Let Y denote the number of toxicity events with ~ ( , )Y binomial n θ , where θ  

is the probability of toxicity and n  is the number of evaluable patients. Instead of treating 

θ  as a fixed parameter that needs to be estimated, the Bayesian approach assumes that θ  

follows a Beta distribution. Before the trial, the prior distribution is defined as 

~ ( , )Beta a bθ . The parameters a  and b  reflect prior information about θ . It is roughly 
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equivalent to data from a b+  patients with mean toxicity a/(a+b), that is, if a  prior 

patients had toxicity and b  prior patients completed the trial without toxicity. Note that 

neither  a  nor  b  has to be an integer. The posterior distribution of θ  follows a Beta 

distribution  where  is the number of patients in the current trial 

with toxicity and  is the number of patients who have completed the current trial 

without toxicity.  The posterior mean of the toxicity rate is  

  

From the posterior distribution, the probability of the θ  exceeding a critical value 
0θ  can 

be computed as follows: 

   

The stopping rule is constructed such that if this posterior probability is larger than a cut-

off, the trial stops. Note that the quantity on the right hand side of the formula increases 

as x increases. For any given n, one can find the smallest x that satisfies the above 

equation for a pre-specified cutoff value (e.g, 95%). The sequence of such values of x 

forms the monitoring boundary. In a peripheral blood stem cell trial where 28 patients 

were planned (Geller et al., 2005), the rate of transplant related mortality (TRM) was 

monitored using this rule. They set 0 0.2θ =  and the cutoff for posterior probability as 0.9, 

i.e., the trial stops if the posterior probability that the TRM rate is above 0.2 is greater 

than 90%. The prior was chosen to worth 6 patients with the mean TRM rate as 0.2, i.e., 

the Beta (1.2, 4.8) prior was used. 

( , ),Beta a x b K x+ + − x

K x−

( )
( )

( )
E .

a x

a b K
θ

+
=

+ +

( )
0

1

0| { | , } .P Data Beta a x b K x d
θ

θ θ θ θ> = + + −∫
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The operational characteristics of the stopping rule can also be calculated based 

on Schultz et al. (1973). For example, the probability of stopping is 15.5% and the 

expected toxicity is 5.17 when the true toxicity rate is 0.2 using this boundary. This 

Bayesian approach generates a boundary very similar to the Pocock boundary when a 

non-informative or weakly informative prior is used and the type I error rate is controlled 

at the similar level. 

Etzioni and Pepe (1994) developed a stopping rule to monitor two specific 

adverse outcomes at the same time and defined excessive toxicity as either type of 

adverse outcome exceeds a predefined level. In their example of a marrow transplant 

study, the dose limiting toxicity was defined as either non-engraftment or relapse. 

Tolerable probability of non-engraftment, 1θ , was set at a1 = 30% and the probability of 

relapse, 2θ , at a2 = 50%. The adverse outcomes were assumed to be independent and 

each follows a binomial distribution, given the probability of toxicity 1θ  and 2θ . A 

piecewise uniform prior were placed on probability of toxicity 1θ  and 2θ : the prior 

density is 1/(2a1a2) if 1 1aθ ≤  and 2 2aθ ≤ , and 1/(1/2(1-a1a2)) otherwise. The joint 

posterior distribution is a product of Beta densities and hence traceable. The posterior 

probability of excessive toxicity can be used to monitor excessive toxicities for any given 

number of patients, the boundary thus is a continuous monitoring boundary. 

Instead of controlling the probability of stopping when the probability of toxicity 

is tolerable, Yu et al. (2012) proposed to stop the trial when there is evidence that the 

probability of toxicity is at a certain pre-specified high level 1θ . They argued that 

methods based on rigorous hypothesis testing setting, such as Pocock or O’Brian-Fleming 
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boundary, are not suitable. They proposed a group sequential strategy to control the 

incidence rate of toxicity in the study at a certain level. The frequentist boundary at stage 

k is the largest k
s  that satisfies ( )1 | ,k kP X N sθ θ ξ> − > where N is the total number of 

patients in the trial, ξ  is a predetermined constant (suggested to be 0.5 by the authors), 

k i
s n≤  is a non-negative integer and ni is the number of patients in stage i, k

X ~Bin(

1

k

ii
N n

=
−∑ , θ ) is a binomial random variable. In the case previous information is 

available, they proposed a Bayesian variation of this method by putting a Beta prior on .θ  

Because existing information is used, the Bayesian version on average enrolls much less 

patients if the true toxicity rate is high, hence is more effective. The advantage of the 

proposed boundary are not clear. For example, we compared a boundary from Yu et al. 

(2012) with 1θ  = 0.3, with the Pocock boundary constructed as described in Ivanova et 

al. (2005). The Pocock boundary yields better operational characteristics than the 

boundary in Yu et al. (2012). 

For normally distributed outcomes, Freedman and Spiegelhalter (1989) 

considered trials with up to 5 stages and showed that a Bayesian stopping boundary can 

have a shape similar to the O’Brien-Fleming or Pocock boundaries depending on the 

prior, with Pocock boundaries arising from non-informative or slightly informative 

priors. 

 

1.4 Stopping boundary in trials with delayed outcomes  

In many clinical trials in oncology, the outcome is defined as a binary variable 

that takes a value of 1 if an event is observed during an observation period (0, t
*
), and 0 
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otherwise, where t
*
 is the follow-up time for toxicity. When t

*
 is long, it is desirable to 

make intermediate decisions in the trial based on all the data, including data from patients 

still under follow-up. Such methods have been developed for phase I oncology trials with 

long follow-up (Cheung and Chappell, 2000; Ivanova et al., 2007; Bekele et al., 2008). 

For example, Cheung and Chappell (2000) developed the time-to-event continual 

reassessment method (TITE-CRM) in phase I dose finding studies to prevent patients 

from being assigned to a dose with an unexpected high toxicity.  Let θ be the probability 

of experiencing toxicity by the end of time t
*
, and u be the time of follow-up for a patient 

under observation, u < t
*
. The contribution of information to likelihood function from 

this patient can be expressed as a truncated probability, w(u,T)θ, where w(u,T) is a weight 

function. An obvious choice of such weight function is w = u / t
*

.  Other parameters 

besides u and t
*
 can be added to the weight function, for example, the level of dose and 

dose response curve in a dose finding study. An adaptive weight function may utilize the 

current number and time of toxicities observed in the study. A similar approach is to use 

the Kaplan-Meier estimator to define the weight function, which is discussed by Yin 

(2012). 

Bekele et al. (2008) extended the TITE-CRM by calculating the predictive 

probability of negligible toxicity and excessive toxicity for the current dose. They 

assumed a latent variable and the probability that the toxicity rate exceeds or is lower 

than a certain level was calculated through Markov Chain Monte Carlo (MCMC). Using 

their rule, a trial may stop, escalate to a higher dose level, de-escalate to a lower dose 

level or simply wait until more information is available. 
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Following Antonick (1974) and Blum and Sursala (1977), Follmann and Albert 

(1999) used all information available in interim analysis using a Dirichlet-multinomial 

model. They divided the interval (0, t
*
) into M intervals and tabulated information about 

adverse events in each of the intervals, with patients completed the trial falls to the 

interval M+1. To make the interim decision, they enumerate all possible outcomes for 

each interval and compute their probabilities. With a ( )Dir α  prior, the posterior 

distribution given the observed enrollment profile will be a mixture of Dirichlet 

distributions for all possible trial results and the probability of the realization for each 

possible result can be calculated as weight for this distribution. From the mixture of 

Dirichlet distributions, the posterior distribution of θ  can be expressed as a mixture of 

Beta distributions by summarizing the first M elements of the mixture of the Dirichlet 

distribution. The posterior probability that θ  exceeds 0θ  can be calculated from this 

posterior distribution.  When the number of patients in follow-up gets large, this 

calculation requires large computing resources and Follmann et al. (1999) proposed a 

data augmentation method to resolve this problem based on Tanner (1992).  

Under the Dirichlet-multinomial framework, Rosner (2005) applied Gibbs sampling 

for monitoring clinical trials comparing two survival curves.   

 

1.5 Enrollment rules 

If many patients are enrolled at once, a stopping rule alone will not prevent from 

treating too many patients with a regimen that may not be safe. Often, many patients are 

enrolled at the very beginning of the trial which might lead to excessive toxicities. An 

enrollment rule informs investigators about how many patients may be enrolled at the 



14 
 

beginning of the trial and guides further accrual based on the information about toxicity 

in the trial.  

Enrollment strategies are often used in phase I dose finding studies to avoid 

exposing too many patients to potentially toxic compound. For example, in the traditional 

or the 3 + 3 design, at most 3 patients are enrolled at a time. 

In the context of sequential planning of experiments, Schmegner and Baron 

(2004) defined a risk function that consists of three components: a loss function, a cost 

from each individual and a fixed cost for each batch. They defined an optimal sequential 

plan as a plan that minimizes the expected risk. For a trial that enrolls patients in K 

batches, if the trial enrolls kn  patients at a time, and the cost for enrolling each patient is 

ic  but there is a fixed cost bc  for each batch, the risk function is: 

1
( ( ,{ }) ( ),

K

k i k bk
R E L b c n cθ

=
= + +∑  

where ( ,{ })kL bθ  is the loss function determined by the true toxicity rate and the stopping 

rule. A pure sequential plan is a plan in which only one patient is allowed at each batch. 

Clearly, given the true toxicity rate and the stopping rule, the pure sequential plan yields 

the smallest loss, ( ,{ })kL bθ , comparing to any other plans that allow more than one 

patients at a time. However, a plan that yields the same loss with less expected risk is 

possible. Schmegner and Baron (2004) called such plans conservative plans. Take a trial 

where a total of 6 patients can be enrolled as an example, with a simple stopping rule that 

the trial will be stopped if 3 or more toxicities are observed. Instead of enrolling patients 

one by one, this trial can enroll 3 patients at once in the beginning, and if there is no 

toxicity observed after the first 3 patients, the trial can enroll another 3 patients; if there is 
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1 toxicity observed after the first 3 patients, the trial can enroll 2 more patients. This 

enrollment strategy will not result in an increase in the maximum number of toxicities 

observed in the trial compared to a pure sequential trial and hence is conservative. The 

goal of the method of Schemegner and Baron (2004) was to reduce sampling costs 

without significantly sacrificing the accuracy of statistical results. Similar ideas can be 

used to construct enrollment rules in trials with possible high rate of toxicity to reduce the 

time of the trial without significantly sacrificing the safety of patients. 

 

 



 
 

CHAPTER 2 

SHOULD PHASE II TRIALS ROUTINELY REQUIRE  

STOPPING RULES FOR TOXICITY? 

2.1 Overview 

Phase I trials routinely assess safety of new agents. However, given the relatively 

small number of patients that is usually accrued in phase I trials, the maximum tolerated 

dose (MTD) of the treatment regimen can be imprecisely defined. This may lead to 

recommendations for testing new agents in phase II trials at doses that could lead to 

excessive toxicity. Rigorous stopping rules for toxicity are not currently a standard 

feature of phase II trials. We propose that phase II trials should systematically assess 

toxicity in addition to their inherent role to provide preliminary evaluation of efficacy for 

new agents. We review various toxicity monitoring rules used in phase II oncology trials 

to stop the trial earlier if the dose limiting toxicity rate is higher than expected from the 

phase I assessment. We also provide recommendations on which rules we favor to use. 

We propose that toxicity should be monitored on a continuous basis, that is, after 

outcome of each new patient is observed, as opposed to a priori defined multi-staged 

rules. Continuous monitoring allows early stopping of trial if toxicity is high, and reduces 

the expected number of toxicities observed in the trial. In particular, we recommend the 
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frequentist Pocock stopping rule and the Bayesian rule, both of which allow stopping the 

trial early if toxicity rate is high.  

2.2 Introduction 

Over the last 30 years a significant number of novel methodologies have been 

developed to diversify the classical, single-arm, frequentist, single-stage design of the 

phase II clinical study, namely to gain preliminary insights in the clinical activity of an 

agent or treatment combination and to ‘weed out’ ineffective drugs from further, usually 

more costly clinical development. Despite the development of novel multi-arm 

(Rubinstein et al., 2009) or combined phase I-II trial designs (Hoering  LeBlanc and 

Crowley, 2011), most contemporary phase II trials remain single-arm in design and rely 

on information from phase I studies (El-Maraghi and Eisenhauer, 2008). Novel designs 

for such single-arm phase II trials include various types of stopping rules for lack of 

efficacy, ranging from multi-stage enrollments using traditional frequentist approaches 

(Simon, 1989, Ensign et al., 1994) to Bayesian methodologies that take into account 

accumulated information from prior experience (prior) as well as data collected 

(likelihood function) to update and/or adapt the design (Berry, 2012). Such designs have 

traditionally maintained a single primary outcome, efficacy, whereas further definition of 

toxicity, which was roughly defined in a relevant previous phase I trial, had been a 

secondary endpoint. Since efficacy of a particular treatment regimen can be positively 

associated with toxicity, it may be equally important within the context of a phase II 

clinical trial not only to adopt stopping rules that address lack of efficacy but also 

consider stopping rules that penalize excessive toxicity.  
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To date, ‘unacceptable’ toxicity occasionally seen in phase II trials is commonly 

managed by frequent (>50%) dose reduction or refusal for further treatment. This 

approach raises the question whether sufficient statistical power remains to assess if a 

given dose of the investigational agent for which the trial was specifically designed is 

actually effective or whether any lack of efficacy is secondary to frequent dose reductions 

due to toxicity (Maki et al., 2009, Alberts et al., 2012, D'Adamo et al., 2005, Wyman et 

al., 2006). Frequentist and Bayesian methods have been developed to evaluate both 

toxicity and efficacy as bivariate (efficacy, safety) variable. Most of the methods are two-

stage and range from equal weighing of response and toxicity to designs with variable 

trade-offs between these two outcomes (Jin 2007, Thall and Cheng, 1999, Conaway and 

Petroni, 1995, Bryant and Day, 1995, Tournoux et al., 2007). Detecting excessive toxicity 

early is paramount; evaluating toxicity formally only once during the trial is not 

sufficient.  

On some occasions serious adverse events (grade ≥4) occur (Dawson et al., 2008, 

Gibson et al., 2010). An interesting example of grade 5 toxicity (e.g. death) that was 

observed in a high risk patient population is a phase II study conducted through the 

Eastern Cooperative Oncology Group (E2205) of preoperative administration of systemic 

anticancer therapy that consisted of oxaliplatin, infusional 5-fluorouracil, and cetuximab 

concurrent with external beam irradiation prior to definitive esophagectomy in patients 

with operable esophageal adenocarcinoma (Gibson et al., 2010). Standard multimodality 

therapy (the regimen without cetuximab) is associated with a known significant adverse 

event profile. A Simon two-stage design (Simon, 1989)
 
with near doubling the rate of 

complete pathologic response was the primary efficacy endpoint. Although toxicity was 
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an important secondary endpoint and was monitored closely in real-time, no particular 

stopping rules for toxicity were incorporated into the study design. Six treatment-related 

deaths were observed in the initial cohort of 22 patients and therefore the trial was 

stopped after stage 1. Even in the face of a known high-risk patient population and 

treatment regimen, it became clear that the trial exhibited an excessive adverse event rate, 

even though there also appeared to be an emerging strong efficacy signal and pathologic 

complete response were seen among multiple patients in the initial cohort, including 

among patients who later developed grade 5 events. In this trial, a formal stopping rule 

for adverse event might have assisted the study team in weighing the risk/benefit of the 

therapy.  

A formal rule should be in place to allow stopping the trial at any point during the 

trial conduct should toxicity rate be unacceptably high. Does observing 3 treatment-

related deaths in the first 5 patients warrant stopping the trial? A question like this might 

be raised by the data and safety monitoring committee for the study if a formal stopping 

rule is not pre-specified within the protocol. If such a rule is continuous, i.e. monitored 

throughout the study, it will specify the minimum number of toxicities that warrant 

stopping the study out of the total number of patients who have already been enrolled and 

have mature toxicity data, also known as the stopping boundary. For example, if the 

investigators anticipate to ‘reasonably’ observe approximately 5% of deaths within the 

study (e.g. allogeneic bone marrow transplantation with high probability of life-

threatening graft-versus-host disease), a potential formal stopping rule (Pocock, 1977)
 
 

would recommend trial suspension if 2 grade 5 events are observed in the first 2-4 

patients, 3 events observed in 5-12 patients, 4 events in 13-21 patients, 5 events in 22-31 
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patients, and if 6 events or more are observed in more than 31 patients. Stopping rules 

can also be incorporated into more novel phase II designs, such as the phase IB portion of 

the combined phase I-II trials to monitor extended cohort of patients assigned to the 

estimated MTD, in which case the stopping rule does not have to be as conservative as 

the ones applied for a phase II study.  

Unfortunately, a rigorous stopping rule for toxicity is not a standard feature of 

most current phase II study designs. In support of this notion, we performed a Medline 

search to identify articles that focus on phase II oncology trials. We limited our search to 

articles published in the following five journals: American Journal of Clinical Oncology, 

Annals of Oncology, British Journal of Cancer, European Journal of Cancer, and Journal 

of Clinical Oncology. We also focused our search on articles published in 2005 and in 

2010 to assess if recently developed dual statistical designs for both efficacy and toxicity 

were being incorporated in the more recently reported (2010) as opposed to more 

remotely reported (2005) clinical trials. A total of 255 phase II trials published in 2005 

and 204 trials published in 2010 were reviewed. While all publications either summarized 

toxicities by type (e.g., neurologic, immunogenic-related adverse events) or listed most 

common toxicities by number and percent of patients, none of the articles described a 

pre-specified formal stopping rule for toxicity. In this article, we review toxicity stopping 

rules we found in phase II trial protocols. We group these rules in two categories: rules 

that are effective in protecting from excessive toxicity by stopping the trial early and 

rules that fail to detect excessive toxicity early during the trial, and therefore should not 

be used.  
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2.3 Bayesian stopping rule  

Consider an example of a phase II trial with a total of K = 20 patients. This can be 

a single-stage trial or a two-stage trial where, for example, Simon’s two-stage design 

(Simon, 1989) is used to test the efficacy endpoint. To set up a stopping rule for 

excessive dose-limiting toxicity (DLT), one needs to specify an acceptable DLT rate, θ0. 

Usually, the acceptable DLT rate θ0 is the rate of toxicities seen at the MTD in the 

corresponding phase I trial assuming that each patient can develop only a single DLT and 

that each patient has completed the study, i.e. complete follow-up exists. For example, 

the rate at the dose chosen by the 3 + 3 design
 
(Storer, 1989) is 0.20 or 0.25 (Reiner, 

Paoletti and O’Quigley, 1999).  

We describe stopping rules based on both the traditional frequentist and the 

Bayesian statistics. Frequentists use fixed parameters to describe the unknown state of 

truth. For example, we can use θ to describe the true DLT rate, and assume that there is a 

true value for θ, e.g., 0.2 or 0.5. Bayesians, on the other hand, describe the unknowns 

with a certain degree of uncertainty. For example, before data from the phase II trial are 

available, one may rely on data from a previous phase I trial and assume that the mean 

DLT rate is near 0.2 and there is a 46% probability that the DLT rate is larger than 0.2. 

Such assumption is called the ‘prior distribution’, which in this example can be expressed 

as Beta(4, 16), where Beta is a statistical distribution defined on (0, 1). Beta(4, 16) can be 

viewed as reflecting the prior information from 20 patients that were, enrolled in a prior 

phase I trial, 4 of whom experienced DLTs and 16 patients did not. As data are being 

collected from the ongoing phase II trial, the ‘posterior distribution’ is computed, which 

combines the prior (phase I) and new (ongoing phase II) data. For example, if 5 DLTs are 



22 
 

observed and 25 patients have completed the trial without DLT, the posterior distribution 

of the DLT rate is Beta(4 + 5, 16 + 25) with corresponding mean DLT rate of 0.18. The 

probability that the DLT rate is larger than 0.2 is now 33%. On the other hand, if 10 

DLTs are observed among these 30 patients, the posterior distribution of the DLT rate is 

Beta(4 + 10, 16 + 20). Therefore the probability that the DLT rate is larger than 0.2 is 90% 

and the DLT rate is estimated as 0.28. 

Geller et al. (2005) proposed a Bayesian stopping rule for continuous monitoring 

of toxicity. The trial is stopped if the posterior probability of the DLT rate exceeding  0θ  

is equal to or higher than a pre-specified value τ. The value of τ is often chosen based on 

tradition, e.g., 0.95 or 0.98 is commonly seen. 

Lines 1 and 2 of Table 2.1 provide two Bayesian stopping boundaries for a trial of 

20 patients and τ = 0.98 for 0θ  = 0.2. A stopping boundary is described by a set of 

integers b1,…, bK  such that the trial is stopped if there are bk or more DLTs observed out 

of first k patients. The prior distribution, the value of tolerable DLT rate θ0 and the value 

of τ uniquely define the set of integers b1,…, bK that can be computed before the trial. To 

use the Bayesian boundary there is no need to compute the probability that the DLT rate 

is larger than 0θ  = 0.2 given current data, instead one can just check if the number of 

observed DLTs  in the first k patients is equal to or exceeds bk. 

The boundary in line 1 uses prior Beta(0.6, 2.4) reflecting information from the 

total of 0.6 + 2.4 = 3 patients. The prior might reflect information from a 3-patient dose 

cohort of phase I trial. Here limited prior information is probably used because the phase 

I population is different from the phase II population, or the length of follow-up for 

toxicity in the phase II trial is different from phase I. In this example, the overall 



23 
 

probability of stopping the trial when the DLT rate is equal to the acceptable rate of 0.2 is 

0.038. The boundary in line 2 of Table 2.1 uses the prior Beta(4, 16), which reflects 

information from 20 patients with observed DLT rate of 4/20 = 0.20. Since we have 

strong prior information that the DLT rate is close to 0.20, stronger evidence is needed in 

the phase II trial that the DLT rate is high to stop the trial compared to the first boundary. 

This also is reflected in the overall probability of stopping the trial when the DLT rate is 

equal to the acceptable rate of 0.2, and this probability is very small and is equal to 0.004.  

Another way to set-up a Bayesian boundary is, instead of specifying τ, to specify 

the overall probability of stopping when the toxicity rate is acceptable, which is the 

frequentist type I error rate. Line 3 of Table 2.1 shows a boundary with prior Beta(4, 16) 

where the overall probability of stopping is fixed at 0.05 when the true toxicity rate is 0.2. 

This probability of stopping is achieved when τ = 0.911 is used. The value of τ is 

computed by trial and error for a given overall probability of stopping. Defining the 

boundary based on the overall probability of stopping when the toxicity rate is acceptable, 

the type I error rate, is not a Bayesian approach but rather a frequentist concept. 

Nonetheless, this approach is often used because preserving the type I error rate is usually 

important whether the approach used is Bayesian or frequentist.  
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Table 2.1. Stopping boundaries for a trial with 20 patients in a trial with acceptable DLT 

rate of 0θ  = 0.2.  The trial is stopped after k patients if the number of observed DLTs in 

equal to a higher than the corresponding value of the boundary.  

 

Line Number of 

patients, k 

1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20  

1 Bayesian 

Boundary with 

prior 

Beta(0.6,2.4),          

τ = 0.98 -   -  3  4  4  5  5  5  6    6   6   7   7   7   7   8   8   8   9   9 

2 Bayesian 

Boundary with 

prior Beta(4,16),              

τ = 0.98 -   -   -   -  -  6  7  7  7    7   8   8   8   9   9   9   9 10 10 10 

3 Bayesian 

Boundary with 

prior Beta(4,16),              

τ = 0.91 -   -   -  4  5  5  5  5  6    6   6   6   7   7   7   7   8   8   8   8 

4 Pocock 

Boundary,       

type I error rate is 

0.05 -   -  3  4  4  4  5  5  5    6   6   6   7   7   7   8   8   8   9   9 

5 O’Brien-Fleming 

Boundary,                    

type I error rate is 

0.05 -   -   -   -  -  6  6  6  6    6   6   7   7   7   7   7   7   8   8   8 

 

 

2.4  The Pocock versus O’Brien Fleming stopping boundaries 

Over the years several frequentist sequential boundaries have been developed to 

use in group-sequential trails to stop early for efficacy. The two most frequently used 

boundaries are the O’Brien-Fleming (1979) and the Pocock (1977) boundaries (Table 

2.1). The O’Brien-Fleming boundary achieves the higher power compared to the Pocock 
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boundary for a given sample size and type I error rate. That is, when used for sequential 

monitoring of efficacy, the O’Brien-Fleming boundary yields higher probability of 

declaring the treatment is efficacious when the treatment is indeed effective compared to 

the Pocock boundary, which is the reason it is used more often. Similarly, when 

occasionally used to monitor toxicity, the O’Brien-Fleming boundary yields the higher 

overall probability of stopping the trial compared to the Pocock boundary when the true 

DLT rate is higher than tolerable. However, the Pocock boundary allows stopping much 

earlier than the O’Brien-Fleming boundary and therefore it is usually used to stop the trial 

for adverse events or toxicity. For example, as shown in Table 1, if the Pocock boundary 

is used, the trial will be stopped if 3 DLTs are observed in the first 3 patients. In 

comparison, if the O’Brien and Fleming boundary is used, the earliest stopping point 

requires the first 6 patients all experience DLT. 

The Pocock stopping rule can be alternatively described as repeated testing of 

toxicity rate after each patient completes toxicity follow-up with the null hypothesis that 

the DLT rate is equal to 0θ  = 0.2  and type I error rate 'α . This is also equivalent to 

using a confidence interval approach. The trial is stopped after k patients if the lower 

bound of the 1 – 2 'α  level two-sided confidence interval (Clopper and Pearson, 1934) 

for DLT rate computed when k patients completed the trial is above 0θ  = 0.2. Here 'α  is 

a point-wise α -level. In the Pocock stopping boundary in Table 2.1, 'α = 0.0196. For 

example, if 4 out of 5 DLTs are observed, the 1 – 2 '  1 –  2 0.0196α = ×  exact confidence 

interval for DLT rate is (0.266, 0.996). The lower bound of the interval, 0.266, is higher 

than 0θ  = 0.2, or, in other words the confidence interval does not include 0.2, and 

therefore the null hypothesis that the toxicity rate is equal to 0θ  = 0.2 is rejected and the 
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trial is stopped. The point-wise α -level, 'α , can be computed from a given type I error 

rate α. Ivanova, Qaqish and Schell (2005) gave a table of values 'α  for various sample 

sizes and tolerable DLT rates 0θ .
    Free software to generate the Pocock stopping 

boundary is available at http://cancer.unc.edu/biostatistics/program/ivanova/. For given 

K, 0θ  and α, the software computes the stopping boundary and important quantities that 

describe the boundary’s performance. For several values of the true DLT rates the 

program computes the probability of stopping the trial and declaring that the drug is too 

toxic, the average number of DLTs and the average number of patients in the trial (Table 

2.2). For example, when the DLT rate is 0.4 about half of the trials will be stopped 

(probability of stopping is 0.55). The software also gives an example write-up that can be 

used in clinical trial protocols. 

 

Table 2.2 Operating characteristics of the Pocock boundary with 20 patients, tolerable 

DLT rate of 0θ  = 0.2 and the type I error rate of 0.05 

 

 

True DLT 

rate 

The probability of  

early stopping 

          Expected number  

of DLTs 

Expected the number 

 of enrolled patients 

0.2 0.05 3.9 19.5 

0.4 0.55 5.8 14.6 

0.5 0.83 5.4 10.8 

0.6 0.97 4.7 7.8 

0.8 1.00 3.6 4.5 
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2.5 Comparison of the stopping boundaries  

As seen from Table 2.1, the Bayesian boundary with Beta(0.6, 2.4) prior and τ = 

0.98 is almost indistinguishable from the Pocock boundary. This is true in general: less 

informative priors, or lower values of a + b, yield Bayesian boundary similar to the 

Pocock boundary as long as the two boundaries yield similar overall probability of 

stopping. As the value of a + b increases, that is, the prior becomes more informative, 

more DLTs are required to occur within the ongoing phase II trial to recommend trial 

interruption. We need to observe more DLTs to stop the trial because we need to 

‘override’ the prior information that toxicity rate is tolerable. In the example in Table 2.1, 

under the Bayesian rule with informative prior with the probability of stopping of 0.05 

(τ = 0.911), we stop later than under the Pocock boundary, but stop earlier than under the 

O’Brien-Fleming boundary. Another method for stopping due to toxicity we saw in phase 

II protocols is stopping based on the sequential probability ratio test (SPRT) (Wald, 1945, 

Armitage, 1957, Goldman, 1987). This method leads to a boundary very similar to the 

Pocock boundary for given sample size and given actual type I error rate.  

If minimal prior information is available, either the Pocock boundary or the 

Bayesian boundary can be used. Even though they are described by a different statistical 

language, they are almost identical given the total sample size and the probability of 

stopping the trial when DLT rate is tolerable. If prior toxicity rate information is available, 

we recommend using the Bayesian boundary as this prior information can be reflected in 

the prior distribution for toxicity rate. 

Since the Bayesian boundary with slightly informative prior is very similar to the 

Pocock boundary if the two boundaries have the same probability of stopping the trial 
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when θ = 0θ , frequentist software at http://cancer.unc.edu/biostatistics/program/ivanova/ 

can be used to construct the Bayesian boundary. The value τ in the Bayesian boundary 

can be set to equal to 1 minus step-wise significance level 'α  corresponding for the 

common probability of stopping, α , under acceptable DLT rate 0θ θ= . Software to 

construct the Bayesian boundary with the type I error restriction for different type of 

priors is available from the authors upon request. 

 

2.6 Stopping rules we do not recommend using 

In this section we review several stopping rules we have seen in phase II clinical 

trial protocols that we do not recommend using. 

2.6.1 Rule when the trial is stopped as soon as n DLTs are observed 

According to this rule the trial is stopped as soon as n DLTs are observed. Despite 

its simplicity, this rule does not take into account the denominator, that is, the number of 

patients enrolled in the study at the time of analysis. For example, for a trial with 20 

patients and tolerable DLT rate of 0.20, the two rules with the type I error rate closest to 

0.05 are ‘stop the trial when 8 DLTs are observed’ with the type I error rate of 0.032 and 

‘stop the trial when 7 DLTs are observed’ with the type I error rate of 0.087. Obviously, 

irrespective of DLT rate, at least 7 or 8 DLTs are to be observed before the trial is 

stopped. In comparison, the maximum expected number of DLTs under the Pocock 

boundary is 5.8 when the true DLT rate is 0.4 and less for higher DLT rates.  

This constant boundary is often used when the acceptable DLT rate is low, e.g., 

0.05. According to the Pocock boundary with a maximum of 20 patients, 0θ θ=  and α = 
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0.05, the trial is stopped if 2 DLTs are observed in the first 2-5 patients, or 3 DLTs are 

observed in first 6-14 patients, or 4 DLTs are observed in more than 14 patients. This 

boundary yields less expected DLTs than a constant boundary where the trial is stopped 

as soon as 3 DLTs are observed. Therefore we recommend using the Pocock or the 

Bayesian boundary and not the constant boundary.  

 

2.6.2 Stopping rule based on the upper bound of a confidence interval 

As mentioned in Section 2.4, stopping according to the Pocock boundary is 

equivalent to stopping the trial when the lower bound of a confidence interval is above 

the acceptable DLT rate. In the example in Section 2.4 we compared the lower bound of 

the confidence interval (0.266, 0.996), 0.266, with 0θ . As the purpose of the stopping 

rule is to stop the trial if the true DLT rate is high, it might seem reasonable to construct a 

stopping rule using the upper bound of the confidence interval instead. The trial is 

stopped if a pre-specified unacceptably high DLT rate, say, 0.5 is included in the interval, 

that is, if the upper bound of the interval, 0.966, exceeds 0.5. With this approach, the null 

hypothesis is that the DLT rate is unacceptably high (0.5 in this example) and the trial 

continues while the null hypothesis is being rejected, i.e., the confidence interval for the 

DLT rate does not contain 0.5. If the upper bound of the confidence interval exceeds 0.5, 

the null hypothesis is accepted and the trial is stopped. One problem with this rule is that 

it is very easy for the upper bound to exceed a given higher DLT rate, e.g. 0.5, in the 

beginning of the trial because the confidence interval is rather wide when little 

information is available. For example, if the first patient experiences DLT, the upper limit 
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of the confidence interval is 1 no matter what significance level is used. With 1-2 'α  = 

0.9, for example, if the true DLT rate is 0.2, the trial has the probability of stopping of 0.2 

after the first patient  and the overall probability of stopping of 0.82 for a trial with 20 

patients. 

 

2.7 Conclusions 

We reviewed several stopping rules for toxicity we have infrequently seen in 

phase II trial protocols. We propose to keep the probability of stopping the trial when the 

DLT rate is equal to the acceptable DLT rate at 0.05 or lower. In such cases, one needs to 

have rather strong evidence that the DLT rate is high to stop the trial early for toxicity. 

The goal is to stop the trial as early as possible if there is ‘strong’ evidence of high DLT 

rate. The term ‘strong’ implies that stopping rules for toxicity should by no means be 

extremely conservative to the point that they overshadow the main purpose of the phase 

II study, namely the efficacy assessment. Under this concept we anticipate that stopping 

rules for toxicity would be activated before efficacy rules infrequently. In addition, we 

argue that continuous stopping rule for toxicity should be used, that is, the rule that 

allows stopping the trial at any point. Between the two stopping boundaries most 

commonly used in clinical trials, the O’Brien-Fleming boundary and the Pocock 

boundary, we recommend the Pocock boundary as it allows stopping for toxicity as early 

as possible.  

If the investigator does not wish to use prior information about toxicity rate in 

phase II for various reasons (e.g. the phase I study population is significantly different 

from the phase II population or, alternatively, very few patients were studied under the 
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given dose in phase I and therefore the information derived from phase I trial is not very 

relevant), the Pocock or the Bayesian boundary with non-informative prior can be used, 

as they are virtually identical in this case. If there is reliable prior information about 

toxicity rate to use in the stopping rule, we recommend using the Bayesian boundary as it 

is the only boundary that can formally account for prior information about toxicity. On 

the other hand, prior information has to be used with caution as various factors including 

the change in patient population might affect the DLT rate of the investigational 

treatment. Boundaries mentioned in Section 2.6, are not recommended.  

 All of the boundaries we investigated use patients with complete-mature follow-

up DLT data. These methods, therefore, might not be appropriate for trials that require 

long-term follow-up to observe DLT or when patients are still under study and/or early in 

their treatment in which case insufficient information is available. Several methods have 

been developed for trials with long follow-up for toxicity (Follmann and Albert, 1999, 

Rosner, 2005) For trials with an unrestricted accrual rate a significant number of patients 

could be enrolled within a short period of time, which might result in seeing a significant 

number of DLTs. In that case a stopping rule alone might not prevent from observing 

excessive toxicity. For clinical trials in oncology where toxicity can be both devastating 

and take time to develop (e.g. investigational agent plus radiation therapy for patients 

with brain metastases), we recommend considering both stopping and enrollment rules. 

An enrollment rule guides the accrual rate of patients not allowing enrolling many 

patients at once when not much is known about the DLT rate in the trial or when there is 

evidence that the DLT rate can be high.   



 

CHAPTER 3 

FREQUENTIST ENROLLMENT AND STOPPING RULES FOR 

MANAGING TOXICITY REQUIRING LONG FOLLOW-UP IN 

PHASE II ONCOLOGY TRIALS 

3.1 Overview 

Monitoring of toxicity is often done in phase II trials in oncology to avoid an 

excessive number of toxicities if the wrong dose is chosen for phase II. Existing stopping 

rules for toxicity use information from patients who have already completed follow-up. 

We describe a stopping rule that uses all available data to determine whether to stop for 

toxicity or not when follow-up for toxicity is long. We propose an enrollment rule that 

prescribes the maximum number of patients that may be enrolled at any given point in the 

trial.  

3.2 Introduction 

Many oncology phase II trials implement a stopping rule for toxicity. This is 

because the toxicity profile of a drug or a drug combination used in a phase II trial might 

not be well understood by the time the phase II trial commences. A number of stopping 

rules for toxicity have been proposed for use in a single-arm trial. Ivanova, Qaqish and 

Schell (2005) argued for the use of the Pocock type (Pocock, 1977) stopping boundary; 

Geller et al. (2005) proposed a Bayesian stopping rule. Both argued that a continuous 
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stopping rule, a rule that allows stopping the study at any point in the enrollment process, 

provides the best protection against observing an excessive number of toxicities and 

therefore is preferable to two or three-stage stopping rules. The number of stages in a 

continuous stopping rule is the same as the number of patients in the trial. The continuous 

Pocock boundary is routinely used in phase II oncology trials conducted by the 

Lineberger Comprehensive Cancer Center (LCCC). In some oncology trials the follow-

up for toxicity is long compared to the accrual rate. This was the case in a phase II study 

of a novel B-Raf inhibitor administered together with a monoclonal antibody in patients 

with active melanoma brain metastases (Moschos, 2013). The observation period for dose 

limiting toxicity (DLT) was 12 weeks. The Pocock boundary was in place to monitor the 

DLT rate. To use the Pocock boundary one needs to have full follow-up data on all 

already enrolled patients. If investigators in this study wait for all patients to be fully 

followed before the next patient is enrolled, the length of the trial with 30 patients will be 

over 7 years. Is it possible to make the trial shorter without increasing the number of 

patients potentially exposed to unsafe treatment? The problem can be solved 1) by 

developing a stopping boundary that uses all data available including data from patients 

still in follow-up, and 2) by guiding the accrual rate to the trial to avoid the situation 

where all patients are enrolled at once. A problem of conducting studies with long 

follow-up arises in phase I oncology trials as well (Cheung and Chappell, 2000, Bekele et 

al., 2008). As far as utilizing partial data in a phase I dose-finding trial, Cheung and 

Chappell (2000) proposed to make an assumption about the distribution of time to 

toxicity in (0, t
*
) given toxicity occurs in (0, t

*
), where t

*
 is the length of follow-up for 

toxicity. The best dose for the next patient is then selected based on all available data. 
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Bekele et al. (2008) suggested halting enrollment to a phase I trial when there is not 

enough data to select a safe dose for the next patient. The problem is different in a phase 

II context as it is a single arm trial and dose reduction in the middle of the trial will make 

it difficult, if not impossible, to estimate the efficacy and toxicity of the experimental 

compound at a certain dose level. The main challenge in a phase II trial with long follow-

up for toxicity is to maintain the pre-specified probability of stopping the trial under 

various true toxicity rates, the type I error rate and power, when partial data are used. 

Methods for phase I trials with long follow-up for toxicity do not apply in phase II 

context. However, we use the same assumption as in Cheung and Chappell (2000) to 

utilize partial data. In this paper in Section 3.3 we describe a stopping rule for toxicity 

based on partial data. Enrollment strategies are discussed in Section 3.4, the simulation 

study is presented in Section 3.5, example in Section 3.6 and discussion in Section 3.7.  

 

3.3  Stopping for toxicity based on partial data  

In a phase II study each patient is followed for toxicity for a fixed period time of 

t
*
. Let n be the number of patients enrolled in the study so far. Let Ui be the random 

variable denoting the time to toxicity for the ith patient and let θ  = P(Ui ≤ t
*
) be the 

probability of toxicity. Denote Yi,n the indicator that the ith patient has experienced 

toxicity by the time just prior to the entry of the (n+1)th patient, i = 1,…,n, then 

,1

n

n i ni
X Y

=
=∑  is the random variable denoting the total number of toxicities observed at 

that time. 

In a trial where all patients are fully followed for toxicity when the next patient is 

assigned, 
,i n

Y  does not depend on n and follows a Bernoulli(θ ) distribution and Xn ~ 
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binomial(n,θ ). Ivanova et al. (2005) considered such trials and argued that the Pocock 

boundary is the most suitable boundary for monitoring toxicity in a phase II oncology 

trial as it allows stopping early with high probability and therefore reduces the expected 

number of toxicities. Let K be the sample size planned for a phase II study and let 0θ  be 

the acceptable probability of toxicity. The Pocock boundary can be defined through a 

point-wise probability α , such that the trial is stopped if, at each interim analysis, the 

null hypothesis 0θ θ=  is rejected at level α  in favor of the one-sided alternative 0θ θ> . 

The value of α
 
is chosen so that the overall probability of stopping the trial, ,φ  is equal 

to a specified value, usually 0.05φ = , if the toxicity rate is 0θ . We refer to the boundary 

that allows stopping the study at any point as a continuous boundary, because monitoring 

for toxicity is done throughout the trial on a continuous basis. Let the constants bk, k = 

1,…,K, be the smallest integer such that [ ]k k
P X b α≥ ≤ , then such a boundary can be 

described through (b1, b2, …, bK). If the number of toxicities in the first k patients is equal 

to or higher than bk, the trial is stopped. Another way of implementing this boundary is to 

compute a one-sided p-value to test the null hypothesis 0θ θ=  versus one-sided 

alternative 0θ θ>  after each patient’s outcome is observed. The trial is stopped if the p-

value is less than α . In fact, it is sufficient to apply the boundary only when a patient has 

toxicity. We now explain how to use data from partially followed patients to implement a 

sequential boundary. We will compute the p-value to test the null hypothesis 0θ θ=  

versus the one-sided alternative 0θ θ>  based on all information available using 

assumption on the distribution of time to toxicity in (0, t
*
). 
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  Now consider the case when not all n patients are fully followed for toxicity at the 

time just prior to the entry of the (n+1)th patient. Let ti,n be time elapsed from the start of 

treatment for the ith patient at the time just prior to the entry of the (n+1)th patient. 

Following Cheung and Chappell (2000), for ti,n < t
*
, we have 

,* *

,

*

,*, ,   ( ) ( | ) ( ) ( | ) .
i n

i i n i i n i i i in i ni

t
P U t P U t U t P U t P U t U t w

t
θ θ θ≤ = ≤ ≤ ≤ == < =≤  

In other words, a weight wi,n = P(Ui < ti,n | Ui ≤ t
*
) is assigned to the ith patient and the 

probability that the ith patient experiences toxicity when treated for a length of ti,n  is wi,nθ. 

This is equivalent to assuming that the time to toxicity given that toxicity occurs in (0, t
*
) 

follows a uniform distribution on the interval (0, t
*
). This and other weighting options 

were described in Cheung and Chappell (2000) and Yin (2012). The weight ,i n
w

 
is set to 

1 for patients who have already experienced toxicity and patients who have completed 

follow-up. At the time just prior to the entry of the (n+1)th patient, the number of patients 

who completed the trial without toxicity is ,1
( 1)

n

n i n ni
S I w X

=
= = −∑  and the number of 

patients still under follow-up is ,1
(0 1)

n

n i ni
R I w

=
= < <∑ , n n n

X S R n+ + = . Let x, s and r 

denote the observed Xn, Sn and Rn respectively. The one-sided p-value for testing the null 

hypothesis 0θ θ=  versus 0θ θ>  is the probability of .
n

X x≥  
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Table 3.1. The Pocock stopping boundary { }
k

b  for K = 30, 0 0.2θ =  and 0.05φ =  

yielding  0.0164,α =  and the Pocock enrollment boundary { }
k

b′  with  0.0030α ′ =   

 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

k
b  -- -- 3 4 4 4 5 5 6 6 6 7 7 7 8 

k
b′  -- -- -- 4 5 5 6 6 7 7 7 8 8 8 9 

 

k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

k
b  8 8 8 9 9 9 10 10 10 11 11 11 11 12 12 

k
b′  

 

9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 

 

 

 

 For example, if n = 3, x = 2, 1s =  and 0r = , then all weights are equal to 1 and 

the p-value is calculated as [ ]3
P X x≥  [ ]3

2P X= ≥  = 0.104, where X3 is a binomial 

random variable with parameters 3 and 0θ  = 0.2, X3 ~ binomial(3,0.2) . In another 

example, the counts right before enrolling the fourth patient are n = 3, 2x = , 0s =  and 

1r =  with the first two patients fully followed and time 
*

3,3
/ 2t t=  and hence 3,3

/ 21w =  

for the patient still in follow-up, then 3 1,3 2,3 3,3
X Y Y Y= + + , where ,3 0

~ Bernoulli( )
i

Y θ  for 

i =1,2 and 3,3 0
~ Bernoulli( / 2)Y θ . Therefore  

[ ]3 1,3 2,3 3,3 1,3 2,3 3,32 1, 1 1, 0 0.072.P X P Y Y Y P Y Y Y   ≥ = + ≥ = + = = = =     
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Table 3.2. Comparing the new stopping rule that uses all available data when time to 

toxicity is uniformly distributed in (0, t
*
) (Uniform) and exponentially distributed with 

mean -t
*
/ln(1- 0θ ) (Expon) with the rule that uses fully followed patients only (Full data) 

for a trial that K = 30, 0θ  = 0.2, and t
*
 = 12 weeks with one patient being enrolled every 

week. For comparison we show results for a trial with instantaneous response (t
*
 = 0). We 

display the probability of stopping the trial early, the expected number of patients, and 

the expected number of toxicities 

 

True toxicity  0.2 0.4 0.6 0.9 

Probability of stopping t
*
 = 0 0.05 0.70 1 1 

 Uniform 0.03 0.68 1 1 

 Expon 0.03 0.69 1 1 

 Full data 0.03 0.61 0.99 1 

Expected number of patients t
*
 = 0 29.1 19.0 8.3 4.6 

 Uniform 29.6 23.8 15.2 10.0 

 Expon 29.6 23.0 13.6 7.1 

 Full data 29.8 27.1 21.0 15.8 

Expected number of toxicities t
*
 = 0 5.8 7.6 5.0 3.6 

 Uniform 5.9 8.4 6.2 4.6 

 Expon 5.9 8.1 5.7 3.9 

 Full data 5.9 9.8 9.4 9.3 

 

We illustrate the ability of this rule to stop the trial via simulations. Consider an 

example of a phase II trial with K = 30. To yield the overall probability of stopping of 

0.05 when 0 0.2θ = , we need to use 0.0164α =
 
at each step. The continuous Pocock 

boundary (Pocock, 1977) for this trial is shown in Table 3.1. In our simulations study t
*
 = 

12 weeks and a new patient is enrolled every week. Table 3.2 contains results for the 

proposed stopping rule under uniform and exponential distribution of time to toxicity. For 

comparison, we present data for a trial with instantaneous toxicity outcome, t
*
 = 0, and a 

trial with t
*
 = 12 weeks where only data from patients who were fully followed (i.e., full 

follow up time t
*
 passed from the initiation of treatment for all patients irrespective of 

their outcome) is used in a stopping rule. As seen from Table 3.2, our rule allows us to 

stop the trial earlier and to observe less toxicity on average, especially when toxicity rate 
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is high. We repeated the simulations for various patterns of patient enrollment and the 

results were very similar to those in Table 3.2. 

 

3.4 Enrollment rule to prevent an excessive number of toxicities  

If many patients are enrolled at once, the stopping rule described in the previous 

section will not prevent treating too many patients on a regimen that may not be safe. 

Often, many patients are enrolled at the very beginning of the trial which might lead to 

excessive toxicities. An enrollment rule informs investigators about how many patients 

may be enrolled at the beginning of the trial and guides further accrual based on the 

information about toxicity in the trial. 

Consider the boundary in Table 3.1. Initially we may enroll 3 patients as it is not 

possible to stop the trial before 3 patients complete follow-up. If none of these patients 

experience toxicity in (0, t
*
), one may enroll as many as 5 more patients, since there is a 

possibility to cross the boundary by observing 5 toxicities out of 8 patients, and it is not 

possible to cross the boundary if less than 5 additional patients are enrolled. More 

formally, the trial can enroll m new patients such that r + x + m ≤ bn+m, r + x + m – 1 < 

bn+m-1 and  n + m ≤ K. Here we assume the worst case scenario that toxicity rate is θ = 1 

and therefore every patient in the follow-up will experience toxicity. This approach was 

referred to as the conservative plan in Schmegner and Baron (2004) who considered it in 

the context of sequential planning of experiments. This is the most conservative 

enrollment rule and the number of toxicities we observe will be very similar compared to 

the trial with instantaneous toxicity response. On the other hand, this rule can lead to a 
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rather long trial if t
*
 is long. We considered three ways to relax this rule resulting in three 

different enrollment strategies. 

The first enrollment strategy is described as follows. Let M be the design 

parameter fixed in advance. One can think of M as the number of extra toxicities we are 

willing to allow to make the trial shorter. The maximum number of new patients to 

enroll, m, is determined by r + x + m ≤ 
n m

b M+ + , r + x + m - 1<
1n m

b M+ − +  and n + m ≤ 

K. That is, at any time the maximum number of patients experiencing toxicity cannot 

exceed the number allowed by the Pocock boundary plus M. As before we assume the 

worst case scenario that all patients will experience toxicity and allow M extra toxicities 

beyond what is allowed by the Pocock boundary. When M = 0, the rule is equivalent to 

the conservative enrollment plan. The maximum number of patients to enroll in the trial 

initially is b
*
 + M, where b

*
 is the minimum number k such that k ≥ bk. In the example in 

Table 3.1, we can enroll at most 3 + M patients initially. If M is as large as M ≥ K – b
*
, all 

patients can be enrolled in the beginning of the study.  

The second enrollment strategy we consider is to use a separate Pocock boundary 

for enrollment, the boundary that yields the overall probability of stopping the trial of φ′ , 

φ φ′ ≤ , or step-wise probability α′
 
in place of α , α α′ ≤ , when 

0
θ θ= . Let { }

k
b′  be the 

set of constants corresponding to the second Pocock boundary. The number of patients 

we are allowed to enroll, m, is such that r + x + m ≤ n m
b +
′ , r + x + m – 1 < 

1n m
b + −
′  and n + 

m ≤ K. An example of an enrollment boundary { }
k

b′  with 0.003α′ =  is shown in Table 

3.1. The trial can start with as many as 4 patients. If, for example, in the middle of the 

trial there are 2 patients who have completed the trial without toxicity, 3 patients 

experienced toxicity with 2 patients still in the follow-up, n = 3 + 2 + 2 = 7; x + r = 3 + 2 
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= 5, 7b′
 
= 8b′ = 6, we get m = 1 and therefore we may enroll one more patient. If φ φ′ = , 

the rule is equivalent to the conservative enrollment plan. 

In the third enrollment strategy a patient completed t / t
*
 of the total follow-up 

contributes 1 /t− t
*
 toxicity to the total toxicity count we will use to calculate allowable 

enrollment. The total toxicity count, ξ, just prior to the entry of the (n+1)th patient is x 

plus the sum of *

,1 /i nt t− , where the sum is over all the patients still in the follow-up. 

Similarly to how it was done in Section 3.3, one can compute the p-value to test 0θ θ=  

given mξ +  toxicities out of n + m patients. The maximum number of patients one may 

enroll is the maximum m such that m K n≤ −  and  

[ ]0
| ~ binomial( , )P X m X n mξ θ α≥ + + ≤ . 

In the beginning of the trial, this enrollment rule is the same as the conservative 

enrollment plan since ξ = 0 and n = 0. In the example in Table 3.1, say, if there are 2 

toxicities observed, 1 patient completed the trial without toxicity and 3 patients are right 

in the middle of the follow-up, then ξ = 2 + 3 × 0.5 = 3.5 and  n = 2 + 1 + 3 = 6. 

Calculating the probability [ ]3.5 | ~ (0.2,6 )P X m X Binomial m≥ + +  for various m and 

comparing it with  0.0164α =  shows that the maximum number we may enroll is m = 0. 

Since ξ decreases as patients are followed for longer times and given no new toxicity is 

observed, the number of patients we may enroll, m, increases. Given current data one can 

compute when additional patients can be enrolled in case no new toxicities are observed. 

In the description above we took the most conservative approach and used the toxicity 

rate 1θ = . One can use smaller θ  to compute toxicity count ξ. 
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We examined all three strategies. All three strategies allow flexibility as one can 

vary parameters M, α′  and θ  correspondingly. In the trial in Table 3.1, choosing M = 1, 

for example, has very similar results to the second strategy with 0.0030α′ = , and 

choosing M = 3 has very similar results to the second strategy with 0.0003.α′ =  

Choosing M = 2 in the first strategy is similar to the third strategy with 1θ = . The third 

strategy utilizes the partial data in the trial better than other strategies but it is 

substantially more complex to implement as it requires real time calculations. The first 

two strategies do not require complex real time calculations and can be easily 

implemented during the trial according to specifications in a clinical trial protocol. Also 

the first strategy has a clear interpretation as allowing at most M additional toxicities over 

the stopping rule. As the performance of the three strategies is similar, we recommend the 

first enrollment strategy because of its simplicity. We will refer to this strategy as +M 

enrollment rule in the remainder of the paper.  

  As mentioned earlier, using just the stopping or just the enrollment rule will not 

prevent the trial from possibly seeing excessive toxicity. The algorithm below describes 

how to apply both the stopping rule from Section 3.3 and the +M enrollment rule 

described in this Section in a clinical trial.  

(i) Initial enrollment is b
*
 + M. For example, in Table 3.1, b

*
 = 3. 

(ii) When toxicity is observed, calculate the p-value as described in Section 3.3. If 

p-value is less than α , stop the trial. 

(iii) When there is a toxicity or a patient reached the end of follow-up t
*
 without 

toxicity, if ,
x s r

x r b M+ ++ ≥ +  no new patients may be enrolled. If 

x s r
x r b M+ ++ < +  and the enrollment limit has not been reached, find smallest 
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integer m�  that satisfies ( )x s r mm b M x r+ + += + − +
�

� . If m x r s> + +�  then enroll 

( )K x r s− + +  patients, otherwise, enroll m�  patients.  

 

3.5 Simulation results and discussion of design parameters 

In this section we present a simulation study investigating the performance of the 

+M enrollment rule for various values of M in conjunction with the stopping rule 

described in Section 3.3. We used the example from Section 3.3 with K = 30 and 0 0.2θ =

. Figures 3.1-3.3 show the expected number of toxicities, expected number of patients 

enrolled and expected length of trial (in units of t
*
) for some values of M across the range 

of true toxicity rate. When 0M =  the probability of stopping the trial is almost the same 

as φ . As M increases, assuming that patients are always available to enroll in the trial, the 

probability of stopping the trial decreases slightly. At the same time, the expected number 

of toxicities is increasing mostly because many more patients are enrolled before the trial 

is stopped and not because the probability of stopping gets slightly lower than with 

0M = . On the other hand, as M increases the trial gets shorter. Note that when M = 27 all 

patients may be enrolled at the beginning of the trial. 
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Figure 3.1.  Expected number of toxicities plotted versus true toxicity rate for different 

values of M in a trial with K = 30,  and ϕ = 0.05. 

 

0 0.2θ =



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.2. Expected number of patients enrolled in the trial versus true toxicity rate for 

different values of M  in a trial with K = 30,  and ϕ = 0.05. 0 0.2θ =
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Figure 3.3. Expected length of study versus true toxicity rates for values of M in a trial 

with K = 30, 0 0.2θ =  and ϕ = 0.05. 
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To choose an appropriate M for a trial, we notice that for a given M, the expected 

number of toxicities rises as the true toxicity rate increases. If toxicity rate 1θ = , the 

increase in expected toxicity compared to a sequential trial with instantaneous response is 

M. For 1θ <  the expected increase will never exceed .Mθ  Furthermore, because a 

stopping rule is in place, the expected increase is smaller than Mθ . One can estimate the 

expected increase in toxicity for each stopping and enrollment rule combination and t
*
 by 

simulations. Consider the example in Table 3.1 and assume that the true toxicity rate 

cannot be higher than 0.6θ = . Simulations show that if we chose 5M =  in the +M 

enrollment rule, we will see at most one extra expected toxicity when 0.6θ ≤ . Therefore 

5M =  is a good choice of parameter value in the +M enrollment rule if we are willing to 

allow at most one extra toxicity.  

 

3.6 Example 

The proposed methodology is used in ongoing LCCC pharmacokinetic study of 

patients with high risk myelodysplasia and acute leukemia. Dose limiting toxicity 

outcomes (yes or no) were defined as non-relapse mortality or one of the following 

toxicities observed during the first 8 weeks from the start of treatment: grade 3 non-

hematologic toxicity lasting greater than 7 days, grade 4 non-hematologic toxicity with 

the exception of drug-related fever, or grade 3/4 hematologic toxicity lasting greater than 

42 days. The total number of patients in the study was 22. The probability of stopping the 

trial was set to 0.05 when the true toxicity rate is equal to the tolerable rate of 0.2. The 
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investigators preferred the most conservative approach to enrollment and therefore the 

+M enrollment rule with M = 0 was used in this study.  

 

3.7 Conclusions 

We propose a frequentist sequential stopping rule for toxicity that utilizes all 

available data in the trial. To control the number of toxicities in the study, we recommend 

using the stopping rule with enrollment strategy. The parameter to use in enrollment 

strategy can be chosen based on the maximum number of extra toxicities or to yield a 

desired trade-off between the length of the trial and an increase in expected number of 

toxicities. The continuous sequential boundary (Ivanova et al., 2005) can be generated by 

using software available at http://cancer.unc.edu/biostatistics/program/ivanova/.  

 



 
 

CHAPTER 4 

BAYESIAN ENROLLMENT AND STOPPING RULES FOR MANAGING 

TOXICITY REQUIRING LONG FOLLOW-UP IN PHASE II ONCOLOGY 

TRIALS 

 

4.1  Overview  

Stopping rules for toxicity are routinely used in phase II oncology trials. If the 

follow-up for toxicity is long, it is desirable to have a stopping rule that uses all toxicity 

information available, not only information from patients with full follow-up. Further, to 

prevent excessive toxicity in such trials, we propose an enrollment rule that informs an 

investigator about the maximum number of patients that can be enrolled depending on 

current enrollment and all available information about toxicity. We give 

recommendations on how to construct Bayesian stopping and enrollment rules to monitor 

toxicity continuously in phase II oncology trials with a long follow-up.  

 

4.2  Introduction 

The goal of a phase I oncology trial is to estimate the maximum tolerated dose 

(MTD). The MTD is defined as the dose with the probability of dose limiting toxicity 

(DLT) equal to the maximum tolerated level (often 0.2 or 0.25). The efficacy of the 

estimated maximum tolerated dose is investigated in a phase II trial, usually a single arm 
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study. Since phase I trials use a small sample size, the estimate of the maximum tolerated 

dose is imprecise and may result in a dose chosen for the phase II trial with a DLT rate 

that is much higher than the maximum tolerated level. Therefore stopping rules for DLT 

are routinely used in phase II trials. If the trial is stopped for excessive DLT, the 

experimental therapy investigated in the phase II trial is concluded to be unsafe. Though 

not every toxicity is dose limiting, in the remainder of the paper we will use DLT and 

toxicity interchangeably. Both Bayesian and frequentist boundaries for DLT monitoring 

in phase II oncology trials have been proposed. Most trials are monitored on a continuous 

basis, that is, with the possibility of stopping at any point, rather than with a multi-stage 

rule with only a few stages. Geller et al. (2003) described a Bayesian stopping rule for 

continuous monitoring of toxicity in phase II oncology trials. Ivanova, Qaqish, and Schell 

(2005) investigated continuous stopping rules for toxicity and gave a table with critical 

values for the Pocock boundary (Pocock, 1977) with probability of stopping the trial for 

excessive toxicity of 0.05 when the toxicity rate is tolerable. Ivanova et al. (2005) also 

gave estimators of toxicity and response rates that are less biased than the maximum 

likelihood estimates (MLE).  

In some trials the accrual is rapid and the follow-up for toxicity is long. This was 

the case in a Lineberger Comprehensive Cancer Center (LCCC) trial investigating 

allogeneic hematopoietic cell transplantation in patients with hematologic disorders. 

Treatment related mortality (TRM) during the first six months was monitored. A TRM 

rate of 0.2 was considered acceptable. The total sample size was set to 30. Continuous 

Pocock stopping boundary yields a probability of stopping of 0.05 when a six-month 

TRM rate of 0.2 was used. According to this rule the trial should be stopped if 3 TRM 
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events are observed in the first 3 patients, 4 TRMs in the first 5 etc. Simulations show 

that if all the patients were fully followed before a new patient was enrolled, the 

maximum expected number of TRMs, 7.65, occurs when the TRM rate is 0.3. For a 

higher TRM rate the trial is stopped early and the average number of TRMs is less than 

7.65. Accrual was very rapid in the beginning of the trial with 10 patients accrued during 

the first several weeks. Accrual of several patients at the same time might lead to 

observing more toxicities than in a trial where all patients are fully followed before a new 

patient is accrued (we will refer to such a trial as a fully sequential trial). With a TRM 

rate close to 1, if 10 patients were accrued in the beginning of the trial, as many as 10 

TRMs could have been observed if all 10 patients get enough exposure to treatment to 

develop TRM before the trial is stopped. The local data and safety monitoring committee 

pointed out that the investigator should not allow rapid accrual to this trial as the TRM 

rate of the treatment is unknown. At that time the investigators did not know how to 

guide the enrollment to prevent excessive level of adverse events without slowing the 

trial considerably. There is a need for a rule that not only stipulates when to stop for 

excessive toxicity but also prescribes the maximum number of patients that can be 

enrolled in the trial given current information.  

In many clinical trials in oncology the safety outcome is defined as a binary 

variable that takes a value of 1 if an event is observed during an observation period (0, 

t
*
), and 0 otherwise, where t

*
 is the follow-up time for toxicity. When t

*
 is long, it is 

desirable to make intermediate decisions in the trial based on all the data, including data 

from patients still under follow-up. One can estimate toxicity rate by assuming that time 

to toxicity is uniform in (0, t
*
) given toxicity occurs before t

*
 (Cheung and Chappell, 



52 
 

2000). It is a simple approach but might not work well if this assumption is not true. 

Follmann and Albert (1999) and Rosner (2005) proposed a Bayesian method for 

monitoring clinical trials with a failure-time endpoint, where interval (0, t
*
) is divided 

into several intervals and toxicity rate in each interval is estimated.  

In this paper we show that the probability of stopping the trial based on partial 

data depends not only on the distribution of time to event and true toxicity rate in (0, t
*
), 

but also on the rate of accrual. Therefore we propose to use an enrollment rule that guides 

the rate of accrual in conjunction with a stopping rule to ensure correct probability of 

stopping and to reduce the occurrence of excessive toxicity. In Section 4.3, we describe 

how to set up a Bayesian stopping boundary that yields a given probability of stopping 

for trials with immediate response. In Section 4.4, we describe stopping based on all 

available data when the follow-up is long. In Section 4.5, we introduce an enrollment rule 

to use in conjunction with the stopping rule. Simulation results are presented in Section 

4.6. Section 4.7 contains concluding remarks.  

 

4.3  Bayesian stopping boundary for a trial with immediate response 

Let N be the number of patients planned for a study. Let tx  be the observed 

number of patients who experienced toxicity, and ts  be the observed number of patients 

who completed the trial without toxicity. Let tr  be the number of patients who are 

enrolled in the study and still under observation, i.e., those patients who have neither 

completed the trial nor experienced toxicity. In the case when toxicity outcome is 

immediately available 0.
t

r =  For a fully sequential trial, a trial where a patient cannot be 
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enrolled until toxicity outcomes of all previous patients are observed, tr  is at most 1. Let 

nt = xt + rt+ st be the number of patients accrued to the study at time t. For simplicity, we 

always assume t is time elapsed from the beginning of study and drop it from the 

subscript in the following discussion. Let p  be the probability that a patient experiences 

toxicity during time (0, t
*
). We assume a 1 2( , )Beta α α  prior on p, hence the posterior 

distribution of p is 1 2| ,  ~ ( , )p x s Beta x sα α+ + .  

For an M-stage trial, with M – 1 interim analyses and one final analysis, the 

stopping rule can be defined as follows:      

 ( )  
Stop the trial if  | Data for 1,  2, , .

j
P p c j Mθ> > = …

 
  

Here θ  is the pre-defined tolerable toxicity rate, and cj are constants selected according to 

a desirable shape of the stopping boundary and such that the probability of stopping the 

trial given θ  is equal to a pre-specified probability η , usually 0.05. For monitoring 

toxicity or adverse events, the Pocock boundary is well accepted as it minimizes the 

expected number of toxicities in the trial (see for example, Ivanova et al., 2005). We will 

show later that setting 1 ...
K

c c c= = =
 
gives enough flexibility to generate Pocock-shape 

boundaries by choosing an appropriate prior distribution. We therefore consider stopping 

rules of the form     

 ( )  Stop the trial if  | for 1, 2,  , .P p Data c j Mθ> > = …  (1) 

Because of the discreteness of the binomial distribution, the probability of stopping is not 

exactly η . We take a conservative approach and choose  c  to make the probability of 

stopping just above η . That is, any reduction in the probability of stopping caused by 
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changing c  will lead to the probability of stopping being smaller than η . Note that 

because of discreteness, the value c  is not unique. 

Table 4.1. Stopping boundaries that yield probability of stopping of 0.05 when toxicity 

rate is θ = 0.2 and N = 20. Bayesian stopping boundaries are defined by the prior

( , (1 ))Beta m mθ θ−  
 

Stopping Boundary 

Number of Patients Enrolled 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Beta(0.6,2.4)     3 4 4 5 5 5 6 6 6 7 7 7 7 8 

Beta(2.4,9.6)     4 5 5 5 6 6 6 6 7 7 7 7 8 

Beta(10,40)      6 6 6 6 7 7 7 7 8 8 8 

Pocock     3 4 4 4 5 5 6 6 6 7 7 7 8 8 

O’Brien-Fleming           6 7 7 7 7 7 7 8 8 8 8 

 

Stopping Boundary 

Number of Patients Enrolled 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Beta(0.6,2.4) 8 8 9 9 9 10 10 10 10 11 11 11 11 12 

Beta(2.4,9.6) 8 8 8 9 9 9 10 10 10 10 11 11 11 11 

Beta(10,40) 8 8 9 5 9 9 9 10 10 10 10 11 11 11 

Pocock 8 8 9 9 9 10 10 10 10 11 11 11 12 12 

O’Brien-Fleming 8 8 9 9 9 9 9 10 10 10 10 10 11 11 

 

 For normally distributed outcomes, Freedman and Spiegelhalter (1989) 

considered trials with up to 5 stages and showed that a Bayesian stopping boundary can 

have a shape similar to the O’Brien-Fleming (O’Brien and Fleming, 1979) or Pocock 

boundaries depending on the prior, with Pocock type boundaries arising from non-

informative or slightly informative priors. We investigated a continuous boundary, a 

boundary with as many stages as there are patients, and observed that the same is true for 

binary outcomes. A non-informative or slightly informative prior creates a boundary of a 

shape similar to the Pocock boundary, even though a perfect match may not always be 

found. In Table 4.1 we show boundaries that yield the probability of stopping of 0.05 
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when toxicity rate is θ = 0.2. For each boundary we give a set of constants bn, n = 1,…,N, 

such that the trial is stopped if the number of toxicities in n patients with full follow-up is 

equal to or exceeds bn. The boundary with the prior Beta(0.6,2.4) is similar to the Pocock 

boundary. In general, we suggest a slightly informative prior in the form of 

( , (1 ))Beta m mθ θ− , where m is small. This prior reflects the belief that the DLT rate is θ  

with m being an effective sample size. When N ≤ 60, 0.3θ ≤ , choosing 3m =  yields 

boundaries very similar in shape to the Pocock boundary. 

For a given prior we need to find the constant c  in (1) to yield the desired 

probability of stopping for a given toxicity rate. For example, the probability of stopping 

of 0.05 when toxicity rate is equal to tolerable rate θ. Given θ, prior and c, one can 

calculate the stopping boundary b1,…,bN directly from the posterior, where the condition 

X ≥ nb  is equivalent to ( | )P p data cθ> > , with X being the random variable 

representing the number of toxicities.  This probability can be computed using a recursive 

formula proposed by Schultz et al. (1973), by observing that to stop after n patients have 

been enrolled, the nth patient has to experience toxicity and there has to be exactly bn-1 

toxicities prior to enrollment of the nth patient: 

 ( )

1

1

1

11
,

11

1 .
nn

n

n j

n jjn

N
n bb

n

n

n jn
W W

b bb

Wη θ θ

−

=

−

=

− −−   
= −    − −−   

′ = × × −

∑

∑
  

Here η′  is the unconditional probability of stopping given {b1,…,bN}, and Wn,  n = 2,…, 

N, are computed recursively with W1 = 1. Constant c and corresponding bn can be found 

by trial and error to yield the required probability of stopping (R code is available from 

the authors). Table 4.1 lists c for various tolerable toxicity rates and total sample sizes N 
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for a Beta prior with m = 3, and m = 12 with mean θ. As expected, values 1 - c for the 

Bayesian boundary with Beta(3θ, 3(1-θ)) prior are similar to those for the frequentist 

boundary given in Table 3 of Ivanova et al. (2005). Note that the value of c decreases as 

the prior gets more informative. This is because such priors put more weight on the belief 

that p =  θ and hence one needs a lower c to keep the probably of stopping at desired 

value η . 

 

4.4 Stopping boundary for trials with delayed outcome 

For a trial with a long follow-up for toxicity, we would like to utilize all the data 

available to decide whether to stop the trial or not, not only data from patients with full 

follow-up. For the fixed time sequence 
*

0 1 2 0 Kt t t t t= < < <…< = , let iT  denote interval 

( )1
, 

i i
t t− , and ( )1 12, , ,, K KT T T T +≡ …T

 
be the set of the K + 1 intervals with ( )1 ,KKT t+ = +∞ . 

Let random variable ( )kY T  for k K≤ denote the indicator of toxicity occurring in kT , 

with ( ) 1kY T =
 
indicates a DLT occurs in kT , and 0 otherwise. The random variable 

1( )KY T +  is equal to 1, if a patient does not have a DLT in t
*
, and 0 otherwise. Assume that 

( ) | ,Y T p  ( ) ( )( )1 1( )  , , 
K

Y T Y T +≡ …Y T , follows a multinomial distribution with parameter 

(1,  p ), where 
1 1 ( ,..., )

K
p p +=p , [ ]( ) ,

k k
p Y TE=  1p  + … + 1Kp + = 1. Then 1p p=  + … + 

Kp  is the probability that a patient experiences toxicity during time (0, t
*
).  

We assume that p  has a conjugate Dirichlet prior with parameter α , ( )Dir α . 

The posterior distribution of p  after observing all data follows a Dirichlet distribution,
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| ( )~ ( )Dir +p y T   y α , where 
1 2( ) ( ( , ( ,.) .,) .y T y T≡y T 1( ))ky T +  are observed ( )Y T . To 

apply a stopping rule we enumerate all possible outcomes for each interval and compute 

their probabilities. Let kI  denote the number of patients who already experienced toxicity 

at time interval k and let  kJ denote the number of patients who will experience toxicity at 

time interval k among patients currently enrolled. We have 0kI ≥  and 1 ... , KI I x+ + =  

0kJ ≥  and 1 ...0 KJ rJ + +≤ ≤ . Following Antonick (1974), Blum and Sursala (1977) and 

Follmann et al. (1999), with a ( )Dir α  prior, the posterior distribution given the observed 

enrollment profile will be a mixture of Dirichlet distributions ( )Dir + +α I J , where 

+ + =α I J ( )1 1 1 1 1 1
,..., ,

K K K K K K
I J I J I Jα α α + + ++ + + + + +

 
for all possible trial results 

ϑ  (i.e., all different possible J ). The probability of the realization for each J  is 

proportional to ( ),A J where ( )A J  is determined by  +I J  as follows: 

( )
( ) ( )

1

1

Γ

Γ 1 Γ
( ) .

1

k k k

k
k k k

K I J

J I
A

α

α

+

=
=

+

+

+ × −

+
∏J    

Note that formula for ( )A J  given in Follmann et al. (1999) is not correct. The derivation 

of the above formula is below. 

 

Proof: Given x + s were observed and r patients are still in follow-up, the likelihood 

function can be written as 

1 2 1 1 2 1

1 2 1 1 2 1

1 2 1 1 2 1

K KI I I J J J

K K

J K K

x s r
p p p p p p

I I I J J J
+ +

+ +

∈ϑ + +

+   
… …   

… …   
∑ . 

With the prior  
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1 2 11 1

11

1

2 1 ,
( )

( )

K

k

K

k

K
p p p

α α αα

α

+− −
++

=

Γ
…

Γ∏
 

the posterior becomes  

1 1 1 2 2 2 1 1 1

1 2 1

1 2 1 1 2 1

1

1

( )

( )

.K K K K K KI J I

K

k

J I J I J

K K

J K K
k

x s r
p p p p

I I I J J J

α α α αα

α

+ + ++ + + + + + + +

+

∈ϑ + +

+

=

+  Γ
…  

… …  Γ∏
∑  

After some algebra, the posterior becomes 

( )
( ) ( )

1

1

Γ

Γ 1 Γ
( ),

k k k

k k k

J k k

K

k
k

I J
I J

J I
PDir

α
α

αϑ

+

∈
=

+ +
+ +

+ +×
∏∑  

where PDir refers to the density function of Dirichlet. □ 

We give a heuristic interpretation here as well. When kα  is a natural number, we 

have 

 

( )
( ) ( )

1Γ
 ,

Γ 1 Γ

k k kk k k

kk k k

I JI J

JJ I

αα

α

+ + − + + 
=

+


+ ×      

 (2) 

or the number of all possible ways of choosing kJ  from 1k k kI Jα + + − . For time 

interval k, one can regard kα  as the number of patients from a prior study and kI  as the 

number of patients who have experienced toxicity in the current study. The expression (2) 

is equivalent to the number of ways of adding kJ  un-ordered objects to 1k k kI Jα − + +  

positions, or put the kJ
 
exchangeable patients experiencing toxicity during the remainder 

of the trial into 1k k kI Jα − + +
 
pre-determined positions. For a given realization, kJ  is 

fixed for each interval, hence the total number of possible combinations for each 

realization is the product of (2) over K+1 intervals. Note that within each time interval, 
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only the relative order in which toxicity events occur is used in the calculation. The actual 

times are not used. 

In the following discussion define ( )
1

K

i

K

i
α α

=
=∑  and similarly 

( )K
I  and 

( )K
J . 

Under the Dirichlet-Multinomial setting, 1 |
K

p p p= +…+ αααα  is a random variable 

following 
( )

1( , )
K

KBeta α α +  distribution and the conditional distribution of the number of 

patients experiencing toxicity is | ,  ~  ( , ),X n p binomial n p  where n is the number of 

enrolled patients. Furthermore, the posterior distribution of p is a mixture of 

( ) ( ) ( )
( ,

K K K
Beta I Jα + +  

( ) ( )
1  )

K

K

K
n I Jα + + − +  with probability proportional to ( )A J , 

where the Beta distribution arises from summarizing the first K  dimensions of the 

Dirichlet random variables in the previous paragraph. Hence, the stopping criterion is 

calculated as 

 ( )
( )

( )
( ) ( ) ( ) ( ) ( )

1

1| ( | , ) ,
K K K K K

K

A
P p Data p I J n I J dp

A
θ

θ β α α +> = + + + − −∑∫ ∑
J

J
 (3) 

where ( )pβ  is the density function of the Beta distribution, and we can choose 

( )K
mα θ=  and 1 (1 )K mα θ+ = −  as in Section 4.4. Let ( )i k  be the indicator that patient i  

is currently in the kth interval. There are 1 ( )K i k+ −  possible results by the end of trial 

for patient i , i.e., experiences toxicity at k, k + 1, …, K or completes trial at interval 

1K + . For all r  patients under observation, there are ( )( )
1

1
R

i
Q K i k

=
= + −∏  possible 

trial results. Note that there is another error in Follmann et al. (1999) where they 

mentioned Q summands will be needed in (3) as there are Q possible Js. Because patients 

are exchangeable and the order of patients does not play any role in (3) except for 

calculating ( )A J , one needs to subtract the number of possible repeated scenarios from 
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the number of summands (e.g., if there was one patient experienced toxicity in the whole 

trial, we do not need to distinguish whether it was patient A or patient B). To obtain this 

number one can obtain all enumeration of possible results for each patient and then 

combine repeated scenarios. As r  gets large, the calculation of this formula becomes 

intractable, therefore Follmann et al. (1999) proposed to use a data augmentation method 

which we adopt when Q
 
is larger than 1000. Recall that we used the prior 

( , (1 ))Beta m mθ θ−  in Section 4.3 when K = 2. If all K time intervals are of equal length, 

a reasonable prior for K > 2 is a Dirichlet prior ( / , / ,..., / , (1 )).Dir m K m K m K mθ θ θ θ−  

  

4.5 Enrollment rule for trials with long follow-up  

It is reasonable to assume that in trials with a long follow-up, one will check 

whether to stop the trial or not for excessive toxicity after a toxicity is observed or before 

a new patient is enrolled. When the decision whether to stop the study is based on partial 

data, the probability of stopping the trial will depend on the accrual rate as well as on the 

true toxicity rate. This is because there are fewer opportunities to look at the data in a fast 

accruing trial. If all patients are fully followed before the next patient is enrolled a trial 

can be stopped if the first 3 patients have toxicities. This is not the case if all N patients 

are enrolled in the trial at once. The stopping rule will be applied using bN and it is not 

possible to stop the trial if 3 toxicities are observed in three patients while the rest of the 

patients are still being followed. For example, in a trial with N = 30, and a stopping rule 

with Beta(0.6,2.4) prior, the probability of stopping a trial where all patients are fully 

followed before new patients are enrolled is 0.05 when  p = 0.2, and 0.31 when p = 0.3. 
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At the same time, a fast enrolling trial with the same boundary yields the probability of 

stopping of 0.01 when p = 0.2, and 0.17 when p = 0.3.   

As the rate of accrual is hard to predict, it is hard to control the probability of 

stopping by modifying the stopping rule, for example, by changing c in (3). We propose 

to use an enrollment rule to maintain a desirable probability of stopping the trial. An 

enrollment rule will also prevent the possibility of observing excessive toxicity in trials 

with fast accrual. The most conservative enrollment rule is not to enroll more patients 

than those allowed by the stopping rule. For example, in the Bayesian stopping rule with 

prior Beta(0.6, 2.4) (Table 4.1), the earliest the trial can be stopped is when 3 patients are 

accrued and 3 toxicities are observed. Therefore up to 3 patients can be enrolled at the 

beginning of the study. Further, the maximum number of enrolled patients is such that the 

number of patients with toxicities plus the number of patients currently under follow-up, 

r + x, does not exceed nb . That is, the maximum number of patients to enroll, v, is the 

largest integer that meets the following criteria:   

 ( )
1

( )

1| ,  .K

Kp r x v s dp c

θ

β α α ++ + + + ≤∫  (4) 

The number of toxicities observed in a trial with long follow-up that uses this enrollment 

rule will be exactly the same as in a trial with immediate response. However, this rule 

will result in a very long trial. To shorten the trial, we propose to use a different prior in 

enrollment rule (4) compared to the stopping rule (3). For example, use 
( ) ,K mα θ=

 

1 (1 )K mα θ+ = −
 
with m = 3 in (3) and m = 12 in (4). This enrollment rule yields cautious 

enrollment in the beginning of the trial, then, enrollment is guided by the data as the data 

from the trial overwhelm the prior.    



62 
 

 

Table 4.2. Values c  to generate the stopping boundary with priors Beta(3θ, 3(1-θ)) and 

Beta(12θ, 12(1-θ)) , θ  = 0.1, 0.2, 0.3 for various values of the total sample size N 

 

 θ = 0.1  θ = 0.2  θ = 0.3 

Beta prior (0.3,2.7) (1.2,10.8) (0.6,2.4) (2.4,9.6) (0.9,2.1) (3.6,8.4) 

N       

15 0.962 0.930 0.965 0.922 0.971 0.924 

16 0.962 0.930 0.969 0.927 0.973 0.931 

17 0.967 0.934 0.969 0.934 0.975 0.932 

18 0.970 0.941 0.973 0.933 0.974 0.938 

19 0.970 0.945 0.977 0.936 0.974 0.944 

20 0.970 0.946 0.977 0.945 0.976 0.944 

21-22 0.971 0.947 0.978 0.945 0.976 0.944 

23 0.974 0.947 0.978 0.947 0.980 0.948 

24-26 0.973 0.949 0.978 0.947 0.981 0.951 

27-29 0.974 0.954 0.978 0.953 0.982 0.955 

30-32 0.975 0.958 0.981 0.955 0.984 0.957 

33-35 0.977 0.960 0.981 0.961 0.984 0.960 

36-39 0.978 0.965 0.982 0.962 0.985 0.965 

40-43 0.977 0.965 0.982 0.963 0.985 0.966 

44-49 0.980 0.969 0.984 0.967 0.986 0.970 

50-51 0.981 0.970 0.986 0.971 0.987 0.972 

52-60 0.983 0.972 0.985 0.972 0.987 0.972 

 

 

4.6 Simulation results and example 

Our simulation study illustrates the performance of the enrollment rule and the 

ability to stop the trial using partial data. We simulate a phase II trial with tolerable 

toxicity rate 0.2θ =  and sample size N = 30. The constant c = 0.981 yields the 

probability of stopping of 0.05 when θ = 0.2 in a trial with immediate response (Table 

4.2). In the simulation study we assume that an unlimited number of patients are available 

for enrollment at any time. Time to toxicity, given that toxicity has occurred in (0, t
*
), 
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follows a uniform distribution on (0, t
*
). Simulation results are based on averaging over 

10,000 runs.  

Table 4.3 presents the relationship between toxicity rate, study length and average 

observed toxicity for selected values of m. These relationships are also illustrated 

graphically in Figures 4.1 and 4.2. As m defining 
( )Kα  and 1Kα +  in (4) gets larger, the 

trial length gets shorter, and at the same time the probability of stopping the trial for a 

given true toxicity rate decreases and the expected number of observed toxicities 

increases. When m = 3, the trial is long, but the maximum expected number of toxicities 

in the trial is minimized and the probability of stopping the trial when the true toxicity 

rate is 0.2 is controlled at 0.05. When m = 713, all 30 patients may be enrolled at once at 

the beginning of the study, that is, enrollment is not controlled. The trial time is short and 

the probability of stopping the trial for excessive toxicity is only 0.01 when the true 

toxicity rate is 0.2, the same as with no enrollment rule. We propose setting parameter m 

in the enrollment rule to a value that yields an increase in the maximum expected number 

of toxicities of no more than a certain desired percentage, e.g. 10% or 20%. For example, 

when m = 12 in the enrollment rule there is a 9.7% increase in the maximum expected 

number of toxicities compared to m = 3, the increase is 18.9% when m = 15, and 25.0% 

when m = 30. Therefore, if we allow at most a 10% increase in the maximum number of 

expected toxicities, the enrollment rule with m = 12 should be used.   
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Table 4.3.  Probability of stopping (η′ ), expected number of patients enrolled (E(n)), 

expected number of toxicities (E(X)), expected duration in days (E(L)) and expected 

patient days (E(NT)) under the enrollment rule with various m for N = 30, c = 0.981, K = 

4, t
*
 = 28 days and the probability of stopping of 0.05η =  when θ = 0.2 

 

 True Toxicity Rate p 0 0.2 0.3 0.4 0.5 0.6 

m=3 η 0 0.050 0.313 0.712 0.951 0.997 

E(n)  30 29.20 25.61 19.17 12.52 8.52 

E(X) 0 5.84 7.67 7.63 6.30 5.14 

E(L) 140 182 199 175 124 86 

E(NT) 840 742 622 448 286 193 

m=12 η 0 0.043 0.293 0.706 0.943 0.996 

E(n)  30 29.38 26.22 19.90 13.61 9.64 

E(X) 0 5.87 7.85 7.89 6.71 5.64 

E(L) 112 144 151 126 89 61 

E(NT) 840 747 636 464 308 215 

m=15 η 0 0.040 0.297 0.691 0.944 0.995 

E(n)  30 29.46 26.36 20.65 14.60 10.83 

E(X) 0 5.92 7.95 8.10 7.06 6.11 

E(L) 112 136 141 116 80 55 

E(NT) 840 749 638 481 329 238 

m=30 η 0 0.035 0.283 0.693 0.941 0.996 

E(n)  30 29.567 26.81 21.29 15.58 11.54 

E(X) 0 5.92 7.95 8.30 7.38 6.42 

E(L) 84 118 116 93 65 44 

E(NT) 840 751 650 494 350 252 

m≥713 

 
η 0 0.012 0.175 0.565 0.903 0.988 

E(n)  30 30 30 30 30 30 

E(X) 0 6.01 8.97 11.32 12.83 13.52 

E(L) 28 28 28 26 23 20 

E(NT) 840 762 722 685 645 607 
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Figure 4.1. Expected number of toxicities E(X) vs. true toxicity rate in a trial with N = 30 

patients, for different values of m defining a and b in enrollment rule (4). When m = 3, 

the trial is the same as a fully sequential trial and when m = 713, enrollment rule allows 

to enroll all the patients at once. 
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Figure 4.2. Expected length in terms of follow-up time for toxicity T E(L)/ t
*
 vs. true 

toxicity rate in a trial with N = 30 patients for different values of m in enrollment rule (4). 

When m = 3, the trial is the same as a fully sequential trial and when m = 713, enrollment 

rule allows to enroll all the patients at once. 
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Example. The proposed methodology was used for enrollment in the LCCC 

clinical trial addressing the safety of a single dose of a new MEK inhibitor in patients 

with distinct molecular metastatic melanoma subtypes. In this trial, N = 60, θ = 0.2 and c

= 0.987. The follow-up time for toxicity was 8 weeks and therefore it was convenient to 

set 8K = . The enrollment rule with m = 15 was used yielding the maximum toxicity 

increase compared to a fully sequential trial of about 10%. The maximum occurs when 

the true toxicity rate is 0.5. Under this enrollment rule the probability of stopping the trial 

using the Bayesian stopping rule based on partial data is 0.045 when p = 0.2. When p = 

0.2 and assuming that patients are always available to enroll, the expected duration of the 

trial is 61.3 weeks. When p = 0.3, the time increases to 64.4 weeks. When p = 0.5, the 

expected duration is only 24.9 weeks because most trials stop early for excessive toxicity. 

For comparison, the trial with conservative enrollment with m = 3 yields an average 

length of 86 weeks when p = 0.3 and 37.2 weeks when p = 0.5, much longer duration 

than a trial with m = 15. 

 

4.7  Discussion 

Using a stopping rule for toxicity based on partial data alone may not prevent 

occurrence of excessive toxicity in a phase II oncology trial with a long follow-up for 

toxicity. If accrual is fast compared to follow-up length, the probability of stopping might 

be lower than in a slow accruing trial. An enrollment rule used in conjunction with a 

stopping rule keeps the probability of stopping close to the required level and guides the 

rate of enrollment. With the enrollment rule excessive toxicity can be controlled without 

substantial lengthening of the duration of the trial. A similar enrollment strategy can be 
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used in a two-arm phase II oncology trial where observing toxicity higher than tolerable 

level is a concern. We provide design parameters for practical implementation of a 

Bayesian stopping rule for toxicity. R programs are available upon request. Since 1 - c, 

where c is the design parameter in the stopping rule (1), is very close to the design 

parameter in the Pocock boundary (Ivanova et al., 2005), one can obtain a good 

approximation of 1 – c by using software for the Pocock stopping boundary available at 

http://cancer.unc.edu/biostatistics/program/ivanova/.  
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