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ABSTRACT 

Adam David Pfefferle: Genetically engineered mouse models of breast carcinoma: a 

translational resource for highlighting human breast subtype etiology and developing 

personalized therapeutic approaches 

(Under the direction of Charles M. Perou) 

 

Approximately one in eight women will be diagnosed with breast cancer during their 

lifetime. While increased public awareness has led to earlier detection of this common disease, 

a greater understanding of tumor biology has led to the development of many promising 

therapeutics. A difficult frontier, however, has been identifying the appropriate target 

population for new drugs as not all breast cancer patients will respond to a particular 

therapeutic. Currently, approximately five percent of oncology drugs that enter clinical testing 

are ultimately approved by the US Food and Drug Administration for use. This low success 

rate reflects not only the difficulty of developing anticancer therapeutics, but also flaws in 

preclinical testing methodology for selecting the most appropriate cancer patient subset for 

early clinical testing. With so many patients either not responding or relapsing with the current 

standard of care, improved personalized therapeutic approaches are greatly needed. 

Breast cancer is a heterogeneous disease consisting of multiple intrinsic subtypes. Even 

though clear clinical and genetic distinctions between the subtypes have been described, the 

driving mechanisms underlying the initiation, growth and metastasis of breast tumors are 

under intense investigation to more fully characterize these phenotypes since targeted 

treatment against specific aberrations promises to be more effective with less systemic side 

effects. Genetically engineered mouse models are a useful resource for studying mammary 
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cancers in vivo under genetically controlled and immune competent conditions. Identifying 

murine models with conserved human tumor features will not only facilitate etiology 

determinations for the intrinsic subtypes, but also serve as a useful preclinical resource for 

testing the efficacy of new therapeutic approaches. These mice promise to be better predictors 

of clinical trial success because they resemble tumor biology more closely than other 

approaches. The work presented here focuses on determining the degree to which current 

mouse models of breast carcinoma resemble the human disease state and identifies mouse 

model counterparts for each of the human intrinsic subtypes. If these credentialed mouse 

models are used for preclinical testing, we anticipate a higher success rate for the development 

of targeted therapeutics. 
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CHAPTER 1: INTRODUCTION 

 

About three quarters of a million American women were diagnosed with new cases of 

cancer last year [1]. With breast cancer accounting for about thirty percent of these incidences, 

one in eight women will be affected by this common disease in their lifetime [1]. Increased 

public awareness and a greater understanding of tumor biology has led to better patient survival 

rates since the early 1990s, yet this disease is still the second leading cause of cancer related 

deaths in American women [1]. With so many patients either not responding or relapsing with 

the current standard of care, the molecular mechanisms underlying breast cancer are under 

intense investigation to identify new, personalized drug targets that should improve patient 

outcomes [2, 3]. 

 

A greater understanding of breast cancer biology will identify novel therapeutic targets 

Breast cancer is a heterogeneous disease consisting of multiple disease subtypes that are 

referred to as the intrinsic subtypes: luminal A, luminal B, HER2-enriched, basal-like, claudin-

low [4-8]. Tumor subtyping can be performed using two complementary gene expression based 

tests: the PAM50 intrinsic subtyping assay [9] and the claudin-low predictor [6]. Clinically, these 

subtypes are prognostic [5, 7, 9] and predict sensitivity to specific therapeutics [5, 10]. Luminal 

A tumors have the best overall survival, while the other subtypes have similar, poor outcomes if 

untreated [7]. Generally, the luminal A/B subtypes are estrogen receptor positive (ER
+
) and/or 

progesterone receptor positive (PR
+
) tumors [7]. These subtypes also tend to lack the human 
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epidermal growth factor receptor 2 (HER2
-
). Luminal B tumors are distinguishable from the 

luminal A subtype by their faster, more aggressive proliferation rates. HER2-enriched tumors, on 

the other hand, are typically ER
-
, PR

-
, and HER2

+
, with similar high proliferation and low 

survival rates as luminal B tumors when untreated [7]. The remaining two subtypes, basal-like 

and claudin-low, are broadly considered triple negative breast cancer (TNBC) (ER
-
, PR

-
 and 

HER2
-
) [7]. Basal-like breast cancers have the highest proliferation rates and are the most 

genetically unstable of all the subtypes [11, 12]. Claudin-low tumors are characterized by low 

levels of cell adhesion molecules and high levels of inflammatory cells [6]. While targeted 

therapeutics exist for ER
+
 [13] (luminal A/B [14]) and HER2

+
 [15] (HER2-enriched [14]) breast 

cancer, targeted treatments for TNBC (basal-like and claudin-low [14]) remain an important 

unmet clinical need [16]. To address this need, a research emphasis has been placed on 

determining the molecular drivers of basal-like and claudin-low tumors to identify novel drug 

targets for these subtypes, which was an important aspect of my thesis work. 

Even though clear distinctions between the intrinsic subtypes have been defined, the 

molecular mechanisms that give rise to breast tumors in general, and the individual intrinsic 

subtypes, are not fully known. For instance, it is unknown why some tumors of the same subtype 

respond differently to the same therapeutic treatment [3, 17]. A greater knowledge of the 

molecular aberrations underlying breast tumors will identify these differences in genetic drivers, 

which we believe to be the key first step towards personalized drug therapies [3]. Segregating 

genetic drivers from passenger mutations is difficult due to the inherent heterogeneity of breast 

tumors and the large number of genetic aberrations seen within a given tumor. Several 

hypotheses have been described to explain breast cancer heterogeneity. 1) Breast tumors can 

arise from a number of different mature and/or stem cell types, which may form the basis for the 
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intrinsic subtypes [18-21]. 2) Similarly, tumors develop through clonal expansion of evolving 

clones, resulting in intra-tumor pockets of cell colonies containing their own set of aberrations 

[22]. 3) The tumor microenvironment can interact with progressing cancer cells to affect the 

overall tumor phenotype [23, 24]. 4) External factors (e.g. environmental, lifestyle, and 

comorbidity) influence tumor development [25]. All of these factors probably have some role in 

determining the ultimate phenotype of a progressing breast tumor, but more research is needed to 

validate the relative contributions of each. 

Over the last fifteen years, genomics [12, 26] and transcriptomics [4] have fueled a 

greater understanding of breast tumor biology [8]. The cancer genome is broadly characterized as 

unstable. The inability to properly respond to and fix DNA damage leads to the accumulation of 

small scale mutations [26] (e.g. insertions, deletions) and large scale chromosomal 

rearrangements [12] (e.g. translocations, aneuploidy). Microarray and sequencing techniques 

have been developed to identify genomic aberrations that can lead to decreased tumor suppressor 

function, increased oncogene signaling, or both. Transcriptomics (gene expression analysis) is a 

popular approach for characterizing tumors because it is easy to measure, provides a rough 

estimate of corresponding protein levels, and identifies overarching tumor phenotypes. Given the 

large number of transcriptomic studies, the Broad Institute has created the molecular signatures 

database (MSigDB), which compiles gene sets/modules from the literature into one place [27]. 

This database improves on the gene-gene comparison by allowing for the comparison of gene 

groups. While each of these approaches has improved our knowledge of cancer biology by 

themselves, studies integrating multiple 'omic approaches have an even greater power of 

identifying important tumor phenotypes and novel drug targets, with examples being the cancer 

genome atlas’s (TCGA) analysis of glioblastoma and ovarian cancers [28, 29]. 
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Personalized drug regimens are the future of cancer treatment  

Developing clinical tests that predict drug response (i.e. companion diagnostics) is an 

important focus of cancer research. Two clinical trials have brought the use of molecular testing 

to the forefront of breast cancer research. In these trials, the Oncotype DX
TM

 (TAILORx trial) 

[30] and MammaPrint
TM

 (MINDACT trial) [31] assays are being used to determine which 

patients should receive chemotherapy. A recent comparison of Oncotype DX
TM

 with the PAM50 

intrinsic subtyping assay identified that the PAM50 risk of recurrence (ROR) as superior to the 

Oncotype DX
TM

 recurrence score (RS) in endocrine-treated patients with ER-positive, node-

negative disease [32]. While the use of molecular testing in the clinic has been groundbreaking, 

these assays do not identify which drug regimens to prescribe. Clinical assays that determine 

personalized drug regimens are greatly needed to improve patient survival. 

Before personalized drug testing can begin in the clinic, the target population for 

molecularly targeted drugs needs to be identified. This is a difficult task, but is critical for 

developing the best predictors of response. Targeted cancer drugs are designed to inhibit specific 

genetic aberrations, typically kinases or hormone receptors, but not all tumors with the aberration 

respond to treatment [17]. Additional factors (e.g. coexisting aberrations, cell of origin, 

microenvironment) are hypothesized to confer sensitivity or resistance to drug treatment [33-36]. 

Even though studies have defined predictive signatures of response [37-41], most are not 

reproducible [42, 43]. Many of these predictive signatures were derived under very specific 

conditions (e.g. using one cell line), so while they might work in a specific limited setting, they 

typically fail when applied to a broad population of patients [44]. Clinical tumors are highly 

heterogeneous; therefore, predictive signatures should be tested under heterogeneous conditions 

and across multiple models. This thesis was in part focused on characterizing the wealth of 
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mouse models of human breast cancer such that this heterogeneous set of models could be better 

linked to human breast tumors, which we predict would then help drug testing and development. 

 

Murine models are excellent for translating biological discovery into clinical care  

Currently, only ~5% of oncology drugs that enter clinical testing are approved by the 

FDA for use [45]. This dismal success rate not only reflects the difficulty of developing 

anticancer therapeutics, but also flaws in preclinical methodology for selecting the most 

promising drugs to use in clinical trials [43, 46]. Historically, preclinical drug testing has 

primarily involved a mix of in vitro cell line and in vivo cell line xenograft experiments. While 

these studies are a good first step, they do not represent true tumor biology [47]. For instance, the 

few cell lines available for use have limited biological diversity when compared to primary 

tumors, and they represent a subset of the original clones with the best growth advantages. These 

cell line based approaches are unable to accurately represent clinical heterogeneity or an intact 

microenvironment, and as a result, many of the drugs that pass cell line based preclinical testing 

fail during later stages.  

Even though they have existed for decades, genetically engineered mouse models 

(GEMMs) have only recently become a more popular system for preclinical drug testing [47]. 

While cross-species complications do exist, these mice promise to be better predictors of clinical 

trial success because they resemble tumor biology more closely than xenografts. This is most 

evident from treatment experiments showing that tumors within a murine model vary in their 

drug response [48]. This response spectrum resembles the results from human trials more than 

the typical uni-modal response of cell line-based xenograft studies. These early observations 

indicate a strong need for murine models in preclinical testing. 
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Comparative studies between human and murine tumors provide an attractive approach 

for narrowing the genetic driver candidate list by highlighting conserved features between 

species [49] and thus focusing attention on the most likely driver genes. While dozens of murine 

models have been created to study the molecular mechanisms of breast cancer [50-56], the 

degree to which many of these models recapitulate the human subtypes is largely unknown. 

Before proper therapeutic comparative studies can be performed, it is essential that human-to-

murine tumor counterparts are identified to ensure that the chosen model accurately replicates 

the genetic alterations and overall phenotypes observed in human tumors [49]. This is especially 

important for heterogeneous human diseases, such as breast cancer. 

Given the advantages of murine models for studying tumorigenesis [47], the following 

four chapters utilize genetically engineered mouse model of breast carcinoma to simultaneously 

investigate human tumor etiology and as a tool for preclinical drug testing. Chapter 1, which was 

published in Genome Biology in 2013 [49], analyzes the transcriptomic profiles of 27 murine 

models to highlight the subset of GEMMs that mimic the human disease state. Chapter 2, which 

was published in Breast Cancer Research and Treatment in 2015 [57], analyzes the 

transcriptomic profiles of normal mammary cell types to highlight conserved cell features 

between human-murine subtype counterparts. In addition, this study identifies several gene 

signatures that predict tumor pathologic complete response sensitivity to neoadjuvant 

chemotherapy even after controlling for intrinsic subtype, proliferation, and clinical variables. 

Chapter 3 analyzes the secondary genetic aberrations of p53null mammary transplant murine 

tumors, highlighting MET as a genetic driver of murine basal-like tumors. Chapter 4 investigates 

the phenotypic and clinical differences between the MMTV-Wnt1 tumor subtypes, highlighting 

EGFR as a potential drug target in breast tumors with aberrant Wnt signaling.  



7 
 

REFERENCES 

1. AmericanCancerSociety: Cancer Facts and Figures. 2015. 

 

2. Curigliano G, Goldhirsch A: The triple-negative subtype: new ideas for the poorest 

prognosis breast cancer. J Natl Cancer Inst Monogr 2011, 2011:108-110. 

 

3. Curigliano G: New drugs for breast cancer subtypes: Targeting driver pathways to 

overcome resistance. Cancer Treat Rev 2011, 38:303-310. 

 

4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross 

DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. 

Nature 2000, 406:747-752. 

 

5. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van 

de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas 

distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 

2001, 98:10869-10874. 

 

6. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM: 

Phenotypic and molecular characterization of the claudin-low intrinsic subtype of 

breast cancer. Breast Cancer Res 2010, 12:R68. 

 

7. Prat A, Perou CM: Deconstructing the molecular portraits of breast cancer. Mol 

Oncol 2010. 

 

8. CancerGenomeAtlasNetwork: Comprehensive molecular portraits of human breast 

tumours. Nature 2012, 490:61-70. 

 

9. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, 

He X, Hu Z, et al: Supervised risk predictor of breast cancer based on intrinsic 

subtypes. J Clin Oncol 2009, 27:1160-1167. 

 

10. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, 

Graham ML, Perou CM: The triple negative paradox: primary tumor 

chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007, 13:2329-2334. 

 

11. Rakha EA, Reis-Filho JS, Ellis IO: Basal-like breast cancer: a critical review. J Clin 

Oncol 2008, 26:2568-2581. 

 

12. Weigman VJ, Chao HH, Shabalin AA, He X, Parker JS, Nordgard SH, Grushko T, Huo 

D, Nwachukwu C, Nobel A, et al: Basal-like Breast cancer DNA copy number losses 

identify genes involved in genomic instability, response to therapy, and patient 

survival. Breast Cancer Res Treat 2011. 

 



8 
 

13. Jordan VC: Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 

2003, 2:205-213. 

 

14. Prat A, Perou CM: Deconstructing the molecular portraits of breast cancer. Mol 

Oncol 2011, 5:5-23. 

 

15. Hynes NE, Lane HA: ERBB receptors and cancer: the complexity of targeted 

inhibitors. Nat Rev Cancer 2005, 5:341-354. 

 

16. Carey L, Winer E, Viale G, Cameron D, Gianni L: Triple-negative breast cancer: 

disease entity or title of convenience? Nat Rev Clin Oncol 2010, 7:683-692. 

 

17. Bates M, Sperinde J, Kostler WJ, Ali SM, Leitzel K, Fuchs EM, Paquet A, Lie Y, 

Sherwood T, Horvat R, et al: Identification of a subpopulation of metastatic breast 

cancer patients with very high HER2 expression levels and possible resistance to 

trastuzumab. Ann Oncol 2010, 22:2014-2020. 

 

18. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, 

Ward T, Partanen A, et al: Aberrant luminal progenitors as the candidate target 

population for basal tumor development in BRCA1 mutation carriers. Nat Med 

2009, 15:907-913. 

 

19. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney 

S, Emerman J, et al: Transcriptome analysis of the normal human mammary cell 

commitment and differentiation process. Cell Stem Cell 2008, 3:109-118. 

 

20. Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM: A mammary stem cell 

population identified and characterized in late embryogenesis reveals similarities to 

human breast cancer. Cell Stem Cell 2012, 10:183-197. 

 

21. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ: 

Purification and unique properties of mammary epithelial stem cells. Nature 2006, 

439:993-997. 

 

22. Siegmund KD, Marjoram P, Woo YJ, Tavare S, Shibata D: Inferring clonal expansion 

and cancer stem cell dynamics from DNA methylation patterns in colorectal 

cancers. Proc Natl Acad Sci U S A 2009, 106:4828-4833. 

 

23. Hatiboglu MA, Kong LY, Wei J, Wang Y, McEnery KA, Fuller GN, Qiao W, Davies 

MA, Priebe W, Heimberger AB: The tumor microenvironment expression of p-

STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine 

melanoma models. Int J Cancer 2012, 131:8-17. 

 

24. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW: The organizing principle: 

microenvironmental influences in the normal and malignant breast. Differentiation 

2002, 70:537-546. 



9 
 

 

25. Hurria A: Embracing the complexity of comorbidity. J Clin Oncol 2011, 29:4217-

4218. 

 

26. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, 

Ptak J, Silliman N, et al: The consensus coding sequences of human breast and 

colorectal cancers. Science 2006, 314:268-274. 

 

27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich 

A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a 

knowledge-based approach for interpreting genome-wide expression profiles. Proc 

Natl Acad Sci U S A 2005, 102:15545-15550. 

 

28. Consortium TCGA: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 

474:609-615. 

 

29. Consortium TCGA: Comprehensive genomic characterization defines human 

glioblastoma genes and core pathways. Nature 2008, 455:1061-1068. 

 

30. Zujewski JA, Kamin L: Trial assessing individualized options for treatment for 

breast cancer: the TAILORx trial. Future Oncol 2008, 4:603-610. 

 

31. Cardoso F, Van't Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ: Clinical 

application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008, 26:729-

735. 

 

32. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, Ferree S, 

Storhoff J, Schaper C, Cuzick J: Comparison of PAM50 risk of recurrence score with 

oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine 

therapy. J Clin Oncol 2013, 31:2783-2790. 

 

33. Chaft JE, Arcila ME, Paik PK, Lau C, Riely GJ, Pietanza MC, Zakowski MF, Rusch V, 

Sima CS, Ladanyi M, Kris MG: Coexistence of PIK3CA and other oncogene 

mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. 
Mol Cancer Ther 2011, 11:485-491. 

 

34. Yuan TL, Cantley LC: PI3K pathway alterations in cancer: variations on a theme. 

Oncogene 2008, 27:5497-5510. 

 

35. Kuo YW, Wu SG, Ho CC, Shih JY: Good response to gefitinib in lung 

adenocarcinoma harboring coexisting EML4-ALK fusion gene and EGFR mutation. 
J Thorac Oncol 2010, 5:2039-2040. 

 

36. Britton KM, Eyre R, Harvey IJ, Stemke-Hale K, Browell D, Lennard TW, Meeson AP: 

Breast Cancer, Side Population cells and ABCG2 expression. Cancer Lett 2012. 

 



10 
 

37. Augustine CK, Jung SH, Sohn I, Yoo JS, Yoshimoto Y, Olson JA, Jr., Friedman HS, Ali-

Osman F, Tyler DS: Gene expression signatures as a guide to treatment strategies for 

in-transit metastatic melanoma. Mol Cancer Ther 2010, 9:779-790. 

 

38. Bild AH, Parker JS, Gustafson AM, Acharya CR, Hoadley KA, Anders C, Marcom PK, 

Carey LA, Potti A, Nevins JR, Perou CM: An integration of complementary strategies 

for gene-expression analysis to reveal novel therapeutic opportunities for breast 

cancer. Breast Cancer Res 2009, 11:R55. 

 

39. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster 

JM, Berchuck A, et al: Oncogenic pathway signatures in human cancers as a guide to 

targeted therapies. Nature 2006, 439:353-357. 

 

40. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, Ward L, Koo JH, Gopalakrishnan V, 

Zhu Y, et al: Oncogenic pathway combinations predict clinical prognosis in gastric 

cancer. PLoS Genet 2009, 5:e1000676. 

 

41. Wu CJ, Cai T, Rikova K, Merberg D, Kasif S, Steffen M: A predictive phosphorylation 

signature of lung cancer. PLoS One 2009, 4:e7994. 

 

42. Borst P, Wessels L: Do predictive signatures really predict response to cancer 

chemotherapy? Cell Cycle 2010, 9. 

 

43. Begley CG, Ellis LM: Drug development: Raise standards for preclinical cancer 

research. Nature 2012, 483:531-533. 

 

44. Weigelt B, Pusztai L, Ashworth A, Reis-Filho JS: Challenges translating breast cancer 

gene signatures into the clinic. Nat Rev Clin Oncol 2011, 9:58-64. 

 

45. Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates? Nat Rev 

Drug Discov 2004, 3:711-715. 

 

46. Hutchinson L, Kirk R: High drug attrition rates--where are we going wrong? Nat Rev 

Clin Oncol 2011, 8:189-190. 

 

47. Sharpless NE, Depinho RA: The mighty mouse: genetically engineered mouse models 

in cancer drug development. Nat Rev Drug Discov 2006, 5:741-754. 

 

48. Usary J, Zhao W, Darr D, Roberts PJ, Liu M, Balletta L, Karginova O, Jordan J, Combest 

A, Bridges A, et al: Predicting drug responsiveness in human cancers using 

genetically engineered mice. Clin Cancer Res 2013, 19:4889-4899. 

 

49. Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR, Torres-

Arzayus MI, Brown M, Egan SE, Wahl GM, et al: Transcriptomic classification of 

genetically engineered mouse models of breast cancer identifies human subtype 

counterparts. Genome Biol 2013, 14:R125. 



11 
 

 

50. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, 

Jones LP, Assefnia S, Chandrasekharan S, et al: Identification of conserved gene 

expression features between murine mammary carcinoma models and human 

breast tumors. Genome Biol 2007, 8:R76. 

 

51. Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, Lonardi S, Arthur C, Young 

LJ, Levy DE, et al: STAT1-deficient mice spontaneously develop estrogen receptor 

alpha-positive luminal mammary carcinomas. Breast Cancer Res 2012, 14:R16. 

 

52. Guy CT, Cardiff RD, Muller WJ: Activated neu induces rapid tumor progression. J 

Biol Chem 1996, 271:7673-7678. 

 

53. Husler MR, Kotopoulis KA, Sundberg JP, Tennent BJ, Kunig SV, Knowles BB: 

Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to 

mammary carcinoma. Transgenic Res 1998, 7:253-263. 

 

54. Pond AC, Herschkowitz JI, Schwertfeger KL, Welm B, Zhang Y, York B, Cardiff RD, 

Hilsenbeck S, Perou CM, Creighton CJ, et al: Fibroblast growth factor receptor 

signaling dramatically accelerates tumorigenesis and enhances oncoprotein 

translation in the mouse mammary tumor virus-Wnt-1 mouse model of breast 

cancer. Cancer Res 2010, 70:4868-4879. 

 

55. Zhang X, Podsypanina K, Huang S, Mohsin SK, Chamness GC, Hatsell S, Cowin P, 

Schiff R, Li Y: Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic 

mice is influenced by collaborating oncogenic mutations. Oncogene 2005, 24:4220-

4231. 

 

56. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D, Knezevic J, 

Greene SB, Darr D, Troester MA, et al: Comparative oncogenomics identifies breast 

tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci U S A 2011, 

109:2778-2783. 

 

57. Pfefferle AD, Spike BT, Wahl GM, Perou CM: Luminal progenitor and fetal 

mammary stem cell expression features predict breast tumor response to 

neoadjuvant chemotherapy. Breast Cancer Res Treat 2015, 149:425-437. 

 



1
This chapter previously appeared as an article in Genome Biology. The original citation is as 

follows: Pfefferle AD et al, “Transcriptomic classification of genetically engineered mouse 

models of breast cancer identifies human subtype counterparts”, Genome Biology 2013 

 

12 

CHAPTER 2: TRANSCRIPTOMIC CLASSIFICATION OF GENETICALLY 

ENGINEERED MOUSE MODELS OF BREAST CANCER IDENTIFIES HUMAN 

SUBTYPE COUNTERPARTS
1 

 

OVERVIEW 

Background 

Human breast cancer is a heterogeneous disease consisting of multiple molecular 

subtypes. Genetically engineered mouse models are a useful resource for studying mammary 

cancers in vivo under genetically controlled and immune competent conditions. Identifying 

murine models with conserved human tumor features will facilitate etiology determinations, 

highlight the effects of mutations on pathway activation, and should improve preclinical drug 

testing. 

 

Results 

Transcriptomic profiles of 27 murine models of mammary carcinoma and normal 

mammary tissue were determined using gene expression microarrays. Hierarchical clustering 

analysis identified 17 distinct murine subtypes. Cross-species analyses using three 

independent human breast cancer datasets identified eight murine classes that resemble 

specific human breast cancer subtypes. Multiple models were associated with human basal-

like tumors including TgC3(1)-Tag, TgWAP-Myc and Trp53
−/−

. Interestingly, the 
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TgWAPCre-Etv6 model mimicked the HER2-enriched subtype, a group of human tumors 

without a murine counterpart in previous comparative studies. Gene signature analysis 

identified hundreds of commonly expressed pathway signatures between linked mouse and 

human subtypes, highlighting potentially common genetic drivers of tumorigenesis. 

 

Conclusions 

This study of murine models of breast carcinoma encompasses the largest 

comprehensive genomic dataset to date to identify human-to-mouse disease subtype 

counterparts. Our approach illustrates the value of comparisons between species to identify 

murine models that faithfully mimic the human condition and indicates that multiple mouse 

models are needed to represent the diversity of human breast cancers. The reported trans-

species associations should guide model selection during preclinical study design to ensure 

appropriate representatives of human disease subtypes are used. 

 

BACKGROUND 

Breast cancer is the second leading cause of cancer related deaths in American 

women [1]. While increased public awareness has led to earlier detection, a greater 

understanding of tumor biology has led to the development of many promising therapeutics 

[2, 3]. A difficult frontier, however, has been identifying the appropriate target population for 

new drug(s) as not all breast cancer patients will respond to a particular therapeutic. 

Currently, only approximately five percent of oncology drugs that enter clinical testing are 

ultimately approved by the US Food and Drug Administration for use [4]. This low success 

rate reflects not only the difficulty of developing anticancer therapeutics, but also identifies 
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flaws in preclinical testing methodology for selecting the most appropriate cancer patient 

subset for early clinical testing [5, 6]. 

Numerous murine models of breast cancer have been created to mimic the genetic 

aberrations found in human tumors [7-30]. Historically, each model has been analyzed 

independent of other models, which complicates effective comparisons with human tumors. 

However, when multiple models are consolidated into a single dataset, there is increased 

sensitivity to detect features that are conserved with the human disease state [31, 32]. 

Identifying murine models that faithfully mimic specific human breast cancer subtypes [33-

35] is an important need for the proper interpretation of mouse model results, and thus, for 

translating preclinical findings into effective human clinical trials [36]. To address this need, 

we used a transcriptomic approach to profile tumors from 27 different genetically engineered 

mouse models (GEMMs). We define and characterize 17 distinct murine subtypes of 

mammary carcinoma (referred to as classes herein to distinguish them from the human 

subtypes), which we compare to three human breast tumor datasets comprising over 1700 

patients to determine which GEMM classes resemble specific human breast cancer subtypes. 

 

RESULTS 

Expression classes of genetically engineered mouse models 

As the genetic aberrations of human breast cancers have been elucidated, murine 

models have been created to investigate the specific role that these genes/proteins have on 

tumor phenotype. Since our initial comparative genomics study of 14 mouse models and 

normal mammary tissue [31], the number of breast cancer GEMMs in our database has 

roughly doubled to 27 (Table 1). To compare the transcriptomic diversity of these GEMMs,  
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Table 1: Summary of murine models studied  

A complete list of all GEMMs used. The bottom 15 models/normal mammary were studied 

by Herschkowitz et al. 2007. C3(1), 5' flanking region of the C3(1) component of the rat 

prostate steroid binding protein. MMTV, mouse mammary tumor virus. WAP, whey acidic 

protein. 
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Figure 1: Flowchart of murine expression data analysis  

Agilent microarrays from three different platforms were normalized and combined together 

to create a single murine expression dataset. Next, an unsupervised cluster analysis using 

variably expressed genes was performed to define a murine ‘intrinsic gene list’. Third, this 

intrinsic list was used as part of a supervised cluster analysis to objectively define murine 

subtypes/classes. Fourth, class based supervised analyses were used to define murine class 

specific lists (genes and pathways). Finally, supervised comparative analysis between human 

subtypes and mouse classes was used to identify and characterize human-mouse counterparts. 

Key: NF – normalization factor 
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global gene expression measurements from 356 unique murine tumors and 16 normal murine 

mammary samples were analyzed using Agilent microarrays (see Table 1A, Figure 1). Using 

this larger and more diverse murine dataset, a new mouse ‘intrinsic gene list’ was derived to 

identify genes associated with all 27 models. As expected, many of the genes from the 

previous intrinsic gene list were also present in the updated list. After filtering for genes 

found in both datasets, 76.5% (500/654) of the intrinsic probes from Herschkowitz et al 2007 

were again included within the new intrinsic list of 1855 probes, which represents 1841 

genes. 

To determine if new murine subtypes/classes exist in this expanded dataset, SigClust 

analysis [37] was performed using supervised hierarchical clustering of the 385 murine 

microarrays and the intrinsic 1855 probe list (Figure 2). Murine ‘classes’ were defined as 

having at least five tumors with a SigClust p-value ≤ 0.01. Using these criteria, 17 murine 

classes were identified with 94% (363/385) of tumors being included within one of these 

classes (Figure 2B and Figure 3). The name for each class was determined based upon the 

major model contributor (e.g. Myc
Ex

), the major biological feature (e.g. Squamous-like
Ex

), or 

both (e.g. p53null-Basal
Ex

), with the ‘
Ex

’ designation used to denote that this is an expression-

based class. As previously observed [31], the Brca1
+/-

 Trp53
+/-

 irradiated, TgC3(1)-Tag, 

TgMMTV-Neu, TgWAP-Int3, TgWAP-Myc, and TgWAP-Tag murine models have 

‘homogeneous’ gene expression patterns in this dataset; here, a model was considered 

‘homogenous’ if ≥ 80% of tumors from that GEMM were found within a single expression-

defined class (Table 1B and Figure 4). Many of the newest models also showed 

homogeneous gene expression patterns including Stat1
-/-

, TgMMTV-Myc, TgMMTV-

Wnt1/iFGFR2, and TgWAPCre-Etv6. 
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Figure 2: Murine intrinsic class analysis  

A. Supervised cluster using the newly derived murine intrinsic gene list and all murine arrays 

in the dataset. Roman numerals next to the gray bars correspond to the enlarged regions in 

parts i-v. B. Dendrogram of the cluster from part A with the murine classes identified by 

SigClust highlighted. Classes with colored boxes have been determined to be human 

expression-based subtype counterparts. C. Breast cancer genes and individual cell lineage 

marker expression profiles. i. Claudin-low gene cluster ii. Luminal gene cluster iii. Basal 

gene cluster iv. Proliferation gene cluster v. Lactating gene cluster. 
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Figure 3:  Murine intrinsic tumor dendrogram by sample. 

Clustering location of all murine tumors from Figure 2B. 
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Figure 4: Murine intrinsic tumor dendrogram by mouse model. 
Clustering location of all tumors from Figure 2B as displayed by their mouse model. 
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Other models showed a ‘semi-homogeneous’ gene expression pattern, defined as ≥ 

80% of tumors from a single GEMM being found within two classes. These included Pik3ca- 

H1047R, TgMMTV-Atx, TgMMTV-Fgf3, TgMMTV-Hras, TgWap-T121, and TgMMTV-

Wnt1. Interestingly while maintaining the TgMMTV-Wnt1 mouse colony, it was observed 

that there might be two types of tumors based on latency, namely early and late arising 

tumors. This observation was also reflected in the two TgMMTV-Wnt1 expression classes 

that also differed by median tumor latency: Wnt1-Early
Ex

 (8.8 weeks) and Wnt1-Late
Ex

 (22.2 

weeks) (Wilcoxon Rank Sum p-value < 0.001). Lastly, about 40% of MMTV provirus driven 

Wnt1 tumors have cooperative activation of FGF signaling [38], a phenotype that is known 

to decrease tumor latency [16], and consistent with this, 88% (7/8) of TgMMTV-Wnt1/iFgfr2 

tumors in our dataset were also classified as Wnt1-Early
Ex

. 

The remaining models had ‘heterogeneous’ gene expression patterns, which were 

defined as no two classes containing at least 80% of the tumors analyzed: Brg1
+/-

 (five 

classes), DMBA-induced (five), p18
-/-

 (three), Rb1
-/-

 (five), TgMMTV-Aib1 (four), 

TgMMTV-Cre Brca
Co/Co

 Trp53
+/-

 (three), TgMMTV-Lpa (four), Trp53
-/-

 (seven), and  

Trp53
+/-

 irradiated (four). Similar to recent reports [32], the Trp53
-/-

 model (which is distinct 

from the Trp53
+/-

 irradiated model) was primarily defined by three murine classes in this 

analysis: p53null-luminal
Ex

 (27/58), p53null-basal
Ex

 (15/58), and Claudin-low
Ex

 (7/58). 

To begin investigating the defining features of these classes, a comparison of selected 

cell lineage markers was performed (Figure 2C). Several mouse classes highly expressed 

luminal cell markers (e.g. Erbb2, Esr1, Krt18, and/or Krt19), including Erbb2-like
Ex

, 

PyMT
Ex

, Neu
Ex

, Myc
Ex

, and Stat1
Ex

. Other classes expressed basal cell cytokeratins (e.g. 

Krt5, Krt14 and/or Krt17) including Wnt1-Late
Ex

, Wnt1-Early
Ex

, p53null-Basal
Ex

,   
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 Figure 5: Murine intrinsic cluster signatures according to tumor subtype 

Standardized, average expression values for the dominant individual gene clusters from 

Figure 2i-v are shown according to the murine classes (left panels) and the human subtypes 

(right panels) using the human UNC308 human breast cancer dataset. A. Murine claudin-low 

subtype defining gene set. B. Murine luminal subtype gene set. C. Murine basal-like subtype 

gene set. D. Murine proliferation-associated gene set. E. Murine lactation associated gene 

set.  
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Squamous-like
Ex

, Class14
Ex

, and C3Tag
Ex

. As identified previously [31], a murine Claudin-

low
Ex

 class was observed to be characterized by low expression of multiple cell adhesion 

genes (Cldn3, Cldn4, and Cldn7) and high expression of epithelial-to-mesenchymal transition 

(EMT) genes (Snai1 and Zeb2), similar to the human claudin-low subtype [34]. 

 

Comparison of murine class defining gene sets versus human tumor subtypes 

To specifically compare murine classes to human breast cancer subtype features, each 

murine class defining signature (Figure 2i-v) was tested for differential expression across the 

human subtypes using the UNC308 dataset (Figure 5A-E) [34]. For example, the high 

expression signature that defines the murine Claudin-low
Ex

 class (Figure 2i, including Hic1, 

Il6st, Klf2, Maf, Pdgfra, Prrx1, Snai1) was also the most highly expressed in human claudin-

low tumors (Figure 5A).  

Figure 2ii shows genes that are highly expressed in the newly identified Stat1
Ex

 and 

Class14
Ex

 murine classes, which show luminal characteristics (e.g. Foxa1, Esrrb) and are the 

most highly expressed in human luminal A tumors (Figure 5B). While most of the GEMMs 

in this dataset are considered estrogen receptor (ER) negative, murine models comprising 

these two classes (Stat1
-/-

 and Pik3ca-H1047R, respectively) were often ERα
+
 [9, 11], and 

these data suggest that they overall have a ‘luminal’ expression profile. Interestingly, these 

classes cluster independent from the previously defined murine luminal models, TgMMTV-

Neu and TgMMTV-PyMT. Consistent with the individual cell lineage marker analysis, the 

Wnt1-Late
Ex

, Wnt1-Early
Ex

, p53null-Basal
Ex

, Squamous-like
Ex

, and Class14
Ex

 murine classes 

express a basal-like gene signature (Figure 2iii). As in human tumors, a proliferation 

signature (Figure 2iv) further distinguishes these murine classes, with highest expression in   
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Table 2: Gene set analysis of murine classes 

Displayed are the p-values for the gene set analysis comparison of each murine class versus 

each murine class described in Herschkowitz et al 2007. Empty boxes are trending 

associations, while filled boxes are significant associations (p<0.05, FDR<0.1). 
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murine C3Tag
Ex

 and human basal-like tumors, and lowest expression in normal tissues from 

both species. This finding is likely due to the loss of RB1 function in both human basal-like 

[39, 40] and TgC3(1)-Tag murine tumors (due to T-antigen expression). Lastly, Figure 2v 

highlights a gene cluster that is highly expressed in several murine classes including Erbb2-

like
Ex

, PyMT
Ex

, and Neu
Ex

; this signature was lower in normal mammary tissue, but highly 

expressed in the two lactating mammary samples (Figure 5E). Consistent with this 

observation, many of the genes in this signature are involved in alveolar function (e.g. Abcg2, 

Folr1, and Lalba). 

 For the dual purpose of validating our new classification system and for investigating 

the degree of diversity in our expanded dataset, the murine classes defined here were 

compared to those from Herschkowitz et al 2007 [31] using gene set analysis (GSA) (Table 

2). The majority of the Herschkowitz et al 2007 classes had one-to-one matching 

counterparts to those described here; however, two previous groups (IX-WapTag and X-

C3Tag) were combined into a single class in our dataset (C3Tag
Ex

). Importantly, several of 

the 17 murine classes defined here were not present within the ten classes of Herschkowitz et 

al 2007 (Erbb2-like
Ex

, Class3
Ex

, Class8
Ex

, and Stat1
Ex

), almost all of which were populated 

by GEMMs that were new to this study. 

 Given the discovery of novel murine classes, it was of great interest to determine the 

degree to which this expanded murine dataset might better encompass the molecular diversity 

of the human subtypes. To directly compare tumors across species, this mouse and the 

previously published UNC308 human datasets were normalized into a single expression 

dataset and hierarchical clustered using a combined mouse and human [41] intrinsic gene list 

(Figure 6). While technical differences between the two datasets (e.g. different microarray   
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Figure 6: Human and murine intrinsic co-cluster 

A. Supervised cluster using a combined human and mouse intrinsic gene list and all murine 

and UNC308 human arrays. Broad tumor clusters are highlighted with names corresponding 

to the major human subtype(s) found within each. B. Clustering location of all tumors as 

displayed by their human subtype or mouse class. C. Basal gene cluster. D. Proliferation 

gene cluster. E. Normal breast gene cluster F. Claudin-low subtype high expression gene 

cluster G. Luminal gene cluster. 
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Table 3: Gene set analysis of murine classes and human subtypes 

Displayed are the p-values for the gene set analysis comparison of each murine class versus 

each human subtype. Empty boxes are trending associations, while filled boxes are 

significant associations (p<0.05, FDR<0.1). 
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platforms, different common references) may limit interspecies clustering, several across 

species dendrogram nodes were observed (Figure 6A). Interestingly, all major nodes 

contained a combination of human and mouse subtypes (Figure 6B), indicating a degree of 

similarity not only between specific corresponding tumor subtypes, but also globally across 

species. Most of the major intrinsic gene sets driving the nodes are highlighted below the 

dendrogram, including the basal (2.4C), proliferation (2.4D), normal breast (2.4E), claudin-

low subtype high expression (2.4F), and luminal (2.4G) signatures. These clusters highlight 

the broad conserved intrinsic features between mouse and human tumors. For instance, most 

C3Tag
Ex 

tumors cluster with the basal-like subtype, an association that is driven in part by the 

high expression of the proliferation gene set [31], which is known to contain many E2F-

regulated genes. 

 To more objectively validate the trans-species associations observed in Figure 6, 

similarity between specific human and mouse subtypes was measured GSA (Table 3) [42]. 

Using this approach, a murine class was judged to be a strong human subtype counterpart if 

the human-to-mouse comparison was statistically significant (p ≤ 0.05) in at least two of the 

three human datasets analyzed (UNC308 [34], Combined855 [43], and TCGA547 [39]). 

As previously observed [31], the murine Normal-like
Ex

, C3Tag
Ex

, and Claudin-low
Ex

 

classes associate with the human normal-like, basal-like, and claudin-low subtypes, 

respectively. The new murine class, Erbb2-like
Ex

, was associated with the human HER2-

enriched subtype across all three human data sets; this human breast cancer subtype did not 

associate with any previously characterized murine class [31], indicating an increased ability 

for the current dataset to encompass more of the major human intrinsic subtypes. With this 

larger sample size, a link was also identified between the Myc
Ex

 class and human basal-like 
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breast cancer, which is consistent with multiple human studies linking basal-like breast 

cancers with cMYC amplification and expression signatures [39, 44]. Interestingly, a 

connection between the Myc
Ex

 class and human luminal B tumors was also identified, 

highlighting Myc activation as a potentially important etiological mechanism that is shared 

between these two aggressive human subtypes. 

Previously defined as a ‘luminal’ model [31], the Neu
Ex

 murine class associated with 

the human luminal A subtype in this newest analysis; this correlation was somewhat 

surprising given the lack of ERα and ERα-regulated gene expression in the murine Neu
Ex

 

class, but does suggest that human Luminal A tumors have many ERα independent features. 

Although the murine p53null-Basal
Ex

 versus human comparisons were not significant after 

controlling for multiple comparisons, an almost consistent significant association was seen 

with human basal-like tumors (p=0.04, 0.05, and 0.06) in all three human datasets. Lastly, 

Class14
Ex

 tumors were identified as a counterpart for normal-like human tumors, and of the 

13 murine tumors comprising this class, 38% (5/13) are from the Pik3ca-H1047R model. 

This class clusters independent of normal mammary tissue samples (which are all classified 

as Normal-like
Ex

), indicating that this association is possibly not driven by contamination of 

normal tissue in the tumor biopsies. 

 

Conserved tumorigenic pathway signatures identified between human-mouse 

counterparts 

Many researchers have hypothesized that gene expression signatures may be a more 

robust means of utilizing gene expression data for discovery and pathway-based 

classification as they are composed of tens to hundreds of coordinately expressed genes. To 
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take advantage of this approach, the median expression values for 963 publicly available 

pathway gene-signatures were calculated separately for the mouse and human datasets, and a 

two-class (Class X versus all others) Significance Analysis of Microarrays (SAM) was used 

to identify pathways that were highly expressed by each class/subtype with a false discovery 

rate (FDR) of 0%. To visualize pathway similarities across species, gene signatures highly 

expressed within each mouse class were first grouped into ‘pathway meta-signatures’, similar 

to the way coordinately expressed genes can be grouped into ‘gene signatures’. The average 

value of these ‘pathway meta-signatures’ was then calculated for each human tumor and 

displayed as standardized boxplots based on their human breast cancer subtype for the eight 

mouse classes with human counterparts (Figure 7). These boxplots allow for broad trends to 

be observed between the pathways highly expressed within each mouse class relative to 

human tumors, and in all instances, identified tens of pathway signatures that were 

commonly expressed across species. For instance, the average expression of the 135 pathway 

signatures highly expressed in C3-Tag
Ex

 tumors were also very highly expressed in human 

basal-like tumors (Figure 7, top left panel), consistent with the gene level analysis. While 

these trends are informative, it was of most importance to identify the specific pathways that 

were highly expressed in both mouse and their human counterparts; it is likely that these 

shared pathways provide etiological insight and highlight potentially important cancer 

driving pathways. A subset of the pathways identified as highly expressed in both human and 

mouse counterparts are displayed below each graph. 

Three murine classes overlapped with human basal-like tumors (Figure 7). One 

common feature between these human and mouse tumors included Trp53 loss/mutation, 

which in human basal-like tumors occurs in >85% of the samples [39]. This trait was most  



31 
 

 

Figure 7: Conserved signaling pathways between human-mouse counterparts 

A two-class SAM (Class X versus all others) was used to identify pathways highly expressed 

in each murine class. Pathways highly expressed with a FDR of 0% were grouped together to 

define a ‘pathway meta-signature’ for each murine class (with the total number of pathway 

signatures included shown on the left axis). The standardized, average expression values of 

each ‘pathway meta-signature’ were calculated in the UNC308, Combined855, and 

TCGA547 human datasets, which are displayed as boxplots according to their intrinsic 

human subtype. A subset of the pathways independently identified to be highly expressed in 

both human-mouse counterparts (as indicated by the ‘*’) for all three human datasets is 

displayed below each plot. 
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apparent in C3-Tag
Ex

 and p53null-Basal
Ex

 murine tumors on both a genetic and expression 

level. The second cardinal feature of human basal-like tumors is high proliferation, primarily 

resulting from RB loss [39, 40]. Consistent with this finding, all three basal-like mouse 

classes highly expressed cell cycle and/or RB-pathway related signatures. In addition, 

C3Tag
Ex

 tumors were enriched for KRAS amplicon genes, b-MYB activation, mutant 

PIK3CA, and FAS signaling. Murine Myc
Ex

 tumors were also enriched for b-MYB activation 

and mutant PIK3CA signaling, in addition to a HER1-pathway signature and E2F signaling. 

Lastly, the p53null-Basal
Ex

 class was enriched for a SRC activation signature, a HER1-

pathway signature, and the KRAS amplicon. These findings are relevant since it has been 

shown that human basal-like tumors also highly express the b-MYB signature [45], are often 

KRAS [46] and cMYC amplified [39], and show a PIK3CA-activation signature [39, 47]. 

Thus for human and murine basal-like cancers, both the underlying molecular genetics and 

their expression profiles are very similar across species. 

Human and mouse claudin-low tumors also share many features, including high 

expression of immune cell associated genes/signatures (e.g. BCR, PD1, and TCR signaling), 

which is likely due to consistently infiltrating immune cells. Both human HER2-enriched and 

murine Erbb2-like
Ex

 tumors highly expressed the EIF2 pathway, GATA3 induced genes, and 

p53 independent DNA damage response genes. Human Luminal A and murine Neu
Ex

 tumors 

exhibited high expression levels of several tyrosine kinase associated pathway signatures 

including EGF, HER2, PDGF, TGFα, and PIK3CA signaling. In support of this EGF/HER2 

pathway finding, it was recently shown that TgMMTV-Neu tumors therapeutically respond 

to lapatinib (a dual EGFR and HER2 inhibitor) treatment [48], as would be predicted by the 

nature of this transgene. In addition to mimicking human basal-like tumors, the murine 
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Myc
Ex

 class was also a counterpart for the luminal B subtype. Interestingly, many of the 

same pathways that were common with basal-like tumors are also shared with luminal B 

tumors, highlighting potentially important etiological events that are shared between these 

two aggressive intrinsic subtypes; these features include proliferation/RB related pathways, 

increased chromosome instability, and altered DNA damage repair mechanisms. 

 

DISCUSSION 

 Human breast cancer is a genetically complex disease consisting of well characterized 

molecular subtypes [33, 35]. Mouse models can provide an excellent resource to study 

human disease, but it is essential to ensure the chosen models accurately replicate genetic 

alterations and overall phenotypes observed in human tumors. Thus, a number of 

considerations must be kept in mind when designing and/or selecting GEMMs to mimic the 

human disease state; these features should include intramodel tumor diversity, the degree of 

genetic similarity, the degree of transcriptomic similarity, and histological similarity (a topic 

not addressed here). By consolidating mouse models of breast carcinoma into a single 

dataset, this study was able to investigate the first three of these issues, in which we 

identified murine models for all of the major human expression subtypes. 

 To address intramodel tumor diversity, three types of models were identified based on 

hierarchical clustering analysis: ‘homogenous’, ‘semi-homogeneous’, and ‘heterogeneous’. 

‘Homogeneous’ GEMMs were associated with a single murine expression class and were 

generally created through the expression of oncogenes, possibly relying less on secondary or 

tertiary mutations that arise during tumor progression. These GEMMs make good 

experimental models because the phenotypes of individual tumors are consistent and similar. 
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‘Semi-homogeneous’ models, such as TgMMTV-Wnt1, were associated with two murine 

classes. We hypothesize that unknown secondary events after the initial transgene lesion 

determine the class fate of these developing tumors. These varying combinations of 

secondary lesions may cooperate with aberrant Wnt1 signaling to target different mammary 

cell populations, contributing to model complexity. The last type of model comprises tumors 

with ‘heterogeneous’ gene expression patterns (i.e. models showing three or more distinct 

phenotypes). In contrast to ‘homogeneous’ models, the majority of the ‘heterogeneous’ 

models were based on disrupting the function of tumor suppressor genes. Again, we 

hypothesize that secondary events after the initial transgene lesion are involved in the class 

fate determination of these tumors. For example, the Trp53
-/-

 model shows specific DNA 

copy number changes associated with each expression class [32]. From an experimental 

perspective, special considerations (i.e. phenotyping each individual tumor) must be made to 

account for this heterogeneity, especially when these models will be utilized for therapeutic 

efficacy testing. 

 Despite the diversity of the models tested here, we found that these mouse models 

collapse into distinct murine classes which recapitulate specific human subtypes on a gene 

expression-based level. These results are important as they allow for the identification of 

shared characteristics/lesions between murine and human tumors, and they direct researchers 

toward appropriate in vivo models of specific human subtypes for future experimental 

testing. Basal-like breast tumors are one the most aggressive subtypes of breast cancer. 

Herein, we find that three murine classes recapitulated human basal-like breast cancers: 

C3Tag
Ex

, Myc
Ex

, and p53null-Basal
Ex

. The human basal-like subtype is characterized by high 

proliferation [49], genomic instability [46], and expression of a c-MYC signature [39, 44]. 
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These murine classes share these hallmarks as evident by high expression of the proliferation 

gene cluster, cell cycle pathways, and chromosome instability gene-signatures; thus there are 

clear GEMMs of human basal-like tumors that share both common genetic drivers and 

expression features. 

Murine Claudin-low
Ex

 tumors were identified that significantly mimic the human 

claudin-low subtype; however, no homogeneous murine model was specific to this 

class/subtype. Instead, rare tumors from multiple heterogeneous models coalesced into the 

murine claudin-low group. As an experimental solution to this heterogeneous GEMM 

complication, the T11 orthotopic, transplantable syngeneic model was derived from a 

Claudin-low
Ex

 BALB/c Trp53
-/-

 tumor (753R), which maintains its claudin-low expression 

features even after multiple transplant passages [32].  This transplantable model has been 

used for extensive therapeutic testing [48], thus suggesting that one method of ‘capturing’ a 

heterogeneous model in a single state can be accomplished via the serial transplantation of a 

phenotypically characterized individual tumor. As in the human claudin-low subtype, Trp53 

mutation/loss was a common genetic event in mouse Claudin-low
Ex

 tumors. Similarly, both 

species highly express EMT related genes, inflammatory gene-signatures, and have low 

expression of many epithelial cell adhesion genes including E-cadherin [34]. 

 Discovered here was the Erbb2-like
Ex

 murine class, which associated with human 

HER2-enriched tumors even without highly expressing the Erbb2 gene; no mouse model 

from our previous studies mimicked this aggressive human tumor subtype. One 

homogeneous model was found within this class, namely WapCre-Etv6. This model 

expresses the Etv6-Ntrk3 fusion gene product, a protein that has been associated with 
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secretory breast cancers [50]. Consistent with this, we observed that murine Erbb2-like
Ex

 

tumors highly express a gene signature in common with lactating normal mammary tissue. 

For the human luminal breast cancer subtypes, our previous study identified that the 

TgMMTV-Neu model represents the luminal subtypes more than it resembles HER2-

enriched tumors [31]. We provide further evidence here that the murine Neu
Ex

 class 

specifically associates with human luminal A tumors. Conserved with humans, murine Neu
Ex

 

tumors highly express several tyrosine kinase pathway related gene-signatures, namely 

EGFR and HER2, which would be expected based upon the nature of the Neu/ERBB2 

transgene. It has been shown that TgMMTV-Neu tumors regress with lapatinib treatment 

[48], giving credence to our approach for identifying drug targetable driver/maintenance 

pathways in these tumors using a computational pathway-based approach. Interestingly, only 

the murine Myc
Ex

 class was shown to consistently associate with luminal B tumors. Since the 

Myc
Ex

 class was also identified as a basal-like model, aberrant Myc activation may be a 

common hallmark of these two aggressive subtypes. 

While our main focus was to identify human-to-mouse disease counterparts, about 

half of the mouse classes did not statistically associate with specific human subtypes by our 

broad analysis. Several of these mouse specific classes, however, had clear basal-like tumor 

expression features including WapINT3
Ex

, Wnt1-Late
Ex

, Wnt1-Early
Ex

, and Squamous-like
Ex

. 

Unlike the other three, the Squamous-like
Ex

 class consisted of a variety models (e.g. Pik3ca-

H1047R, Brg1
+/-

, and DMBA-induced) and trended toward an association with human 

claudin-low tumors. Similarly, several classes had luminal expression features, highlighted 

by PyMT
Ex

 and Stat1
Ex

. Although the PyMT
Ex

 class had a relatively small number of 

samples, these tumors trended toward an association with the luminal B subtype. The Stat1
Ex
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class also had several strong luminal features, consistent with prior characterization of this 

model [11]. Given the expression of ERα in these STAT1-defecient tumors [11], the lack of 

an association with either the luminal A or luminal B human subtypes was unexpected. 

An unanswered question concerning these human-to-mouse associations is the 

finding that murine classes like Erbb2-like
Ex

, and Neu
Ex

, associate with specific human 

subtypes despite the fact that they apparently do not show expression of one of these human 

subtype defining genes (HER2/ERBB2 in the case of Erbb2-like
Ex

 and ESR1 in the case of 

Neu
Ex

). Three hypotheses that could explain this finding are: 1) the cell type of origin of the 

tumor (but not a genetic driver) is the same across species and this is the major linking 

phenotype, 2) additional unknown genetic driver(s) are responsible for the common 

phenotype across species, or 3) some combination of hypothesis 1 and 2. We favor the 

common cell type of origin hypothesis, but additional experiments like lineage tracing will be 

required to unequivocally determine this.  

Related to this, there are at least two confounding features within our dataset that 

should also be considered when interpreting these results. First, most of the oncogene-driven 

mouse models analyzed here used either the MMTV or WAP promoter in their design. If the 

activity of these promoters varies as a function of specific mammary cell types, such as 

luminal versus myoepithelial cells, then only those cells that naturally use these promoters 

would ever give rise to a tumor in these models; we note that most of the MMTV or WAP 

driven tumors were luminal. Second, similar complications potentially exist with regards to 

mouse strain. Varying the background genetics in which a model is designed can influence 

tumor phenotype, and thus classification. Unfortunately, our dataset is underpowered to 
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adequately address these two confounding features, but future experiments/models could be 

designed to address these questions. 

While some of the mouse classes were identified as good counterparts for specific 

human subtypes, many were not. There are several possibilities to explain this lack of 

association. The first is that these classes are specific to murine mammary carcinomas and do 

not have a matching counterpart in humans. The second might be that these murine classes 

model rare phenotypes that exist in only a small subset of human breast cancer patients, and 

that these rare human subtypes were not present in the datasets used here. Similarly, more 

mouse tumors for classes with small numbers may be required to increase statistical power to 

detect an association; for example, we hypothesize this to be the case for the PyMT
Ex

 class. 

The third possibility is that these novel murine classes share phenotypes with multiple human 

subtypes, and thus may never be classified as being similar to a single human subtype. Some 

murine tumor features were shared across multiple human subtypes (e.g. Myc
Ex

 with human 

basal-like and luminal B), which our presented analysis is more 

 likely to undervalue. 

While this study provides a framework for identifying GEMMs that could be useful 

for preclinical drug testing, the simultaneous analysis of 27 mouse models restricted our 

trans-species comparisons to only expression based analyses. The scope of our future work 

will focus on using models selected based upon these data for preclinical therapeutic testing 

to better determine the translational utility of these GEMMs. These experiments are already 

underway and producing promising results using the TgMMTV-Neu, TgC3(1)-Tag, and the 

claudin-low T11 models [48, 51-53]. For example in Roberts et al. [51], we showed that the 

CyclinD1 dependent TgMMTV-Neu tumors are sensitive to a CDK4/6 inhibitor, while the 
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basal-like TgC3(1)-Tag tumor were not; these studies are consistent with findings coming 

from human clinical trials of luminal/ER+ breast cancers, which were generally noted to be 

sensitive to a CDK4/6 inhibitor [54]. Similarly, a trans-species genetic screen by Bennett et 

al. [53] identified two ribonucleotide reductase genes (RRM1 and RRM2) and a checkpoint 

kinase (CHK1) as potential targets for triple-negative breast cancer patients, which they 

validated in both species with drug treatment experiments using TgC3(1)-Tag and human 

xenograft tumors. 

 

CONCLUSION 

In summary, we consolidate 27 murine models of breast carcinoma into the largest 

comprehensive genomic dataset to date, and we provide a detailed characterization of each to 

better understand how these GEMMs recapitulate phenotypes of the human subtypes. The 

data presented here provide insight into the molecular pathways involved in specific breast 

cancer subtypes and should serve as a useful resource when designing preclinical studies and 

interpreting their results. 

 

MATERIALS AND METHODS 

Gene expression microarrays 

A murine tumor dataset of 385 deoxyribonucleic acid (DNA) gene expression 

microarrays from 27 GEMMs of mammary carcinoma was compiled (Table 1A). 275 of 

these samples were obtained from multiple previous publications (Gene Expression Omnibus 

accession numbers: GSE3165, GSE8516, GSE9343, GSE14457, GSE15263, GSE17916, and 

GSE27101). The other 110 microarray samples (GSE42640) represent newly obtained tumor 
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samples from multiple participating investigators using methods approved by international 

animal husbandry guidelines. Total ribonucleic acid (RNA) was purified from 20-30mg of 

mouse mammary tumor using Qiagen's RNeasy Mini Kit following manufacture protocols. 

RNA quantity and quality were determined using the Nanodrop spectrophotometer and 

Agilent Bioanalyzer, respectively. Total RNA was reverse transcribed and labeled with 

cyanine-5 (Cy5) dye for experimental samples and cyanine-3 (Cy3) dye for mouse reference 

samples [31] using the Agilent Low RNA Input Fluorescent Linear Amplification Kit. Equal 

quantities of labeled mouse reference RNA and tumor RNA were co-hybridized overnight to 

Agilent microarrays, washed, scanned and signal intensities were determined. 

 All tumor samples were co-hybridized to one of three Agilent Technology gene 

expression microarray types: 22K, 4X44K, or 4X180K (Figure 1). Two ‘homogeneous 

expression’ murine models [31], namely TgMMTV-Neu and TgC3(I)-Tag, were analyzed on 

all three array types. Therefore, we used both of these models to normalize expression 

between microarray types [32]. Ten microarrays (five TgMMTV-Neu and five TgC3(I)-Tag) 

from each array type were used for normalization (30 microarrays total).  All microarray data 

was independently extracted from the UNC Microarray Database for each array type as log2 

Cy5/Cy3 ratios, filtering for probes with Lowess normalized intensity values greater than ten 

in both channels and for probes with data on greater than 70% of the microarrays [31, 34]. 

Before normalization, each data set was imputed (via the ten-nearest neighbor gene values) 

and then reduced to the probes that were present on all three array type datasets (11690 

probes, 11167 genes). Using the ten normalization arrays per three array platforms, the 

median expression value was calculated for each probe, on each array type, and a 

normalization factor was applied independently to each probe so the median was the same for 
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each array type. Probe expression values were ‘median centered’ to obtain the final 

normalized dataset. A principle component analysis (PCA) was performed to verify the 

normalization. 

 

Murine intrinsic genes and subtypes 

 After removing technical replicates, the dataset was filtered to probes with at least 

three observations with an absolute log2 expression value greater than three using Gene 

Cluster 3.0 [56], which included 908 probes (899 genes). Hierarchical clustering was 

performed with this unsupervised probe list using centroid linkage and was viewed with Java 

Treeview v1.1.5r2 [57]. Potential ‘intrinsic groups’ of murine samples were defined as any 

set of samples/arrays within this hierarchical cluster that had a Pearson correlation value of 

0.65 or greater [31]. Using these defined groups (42 total), an ‘intrinsic gene list’ of 1855 

probes (1841 genes) was identified with Intrinsic Gene Identifier v1.0 (Max Diehn/Stanford 

University) by using a cutoff of one standard deviation below the mean intrinsic gene value 

[31]. 

 To identify significant murine ‘intrinsic subtypes’, the 385 sample dataset was 

clustered again using the 1855 intrinsic probe list and SigClust [37] was used to identify 

groups of samples with a significant association to one another (p<0.01) [32]. GEMM classes 

were defined as having at least five tumors and a SigClust p-value ≤ 0.01, yielding 17 

classes. Class specific probes/genes were determined using a two class (class X versus all 

other samples) SAM analysis (v3.11) [34, 58]. 
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Human and mouse intrinsic gene cocluster 

 Prior to combining the two datasets, probes corresponding to orthologous gene IDs 

(as determined by the Mouse Genome Informatics of the Jackson Laboratory) were averaged 

for both the mouse and UNC308 human datasets. Using only orthologous genes found in 

both datasets (8034 genes), each tumor and gene was standardized to have an average 

expression of zero and a standard deviation of one (N(0,1)) separately for each species. Then, 

the datasets were merged and each gene was median centered to obtain the final, normalized 

combined dataset. A merged intrinsic gene list was created by combining the 1841 mouse 

intrinsic genes defined here and the 1918 human intrinsic genes from Parker et al [41] (3310 

unique genes in the combined gene set). An intrinsic gene set hierarchical co-cluster was 

performed using centroid linkage in Gene Cluster 3.0. 

 

Comparison of murine and human expression subtypes 

 To identify possible commonalities between mouse classes and the human intrinsic 

subtypes of breast cancer [34, 41], we used the gene set analysis (GSA) R package v1.03 [42] 

and R v2.12.2. Human subtype specific gene lists were derived for each subtype with a two 

class (subtype X versus all other samples) SAM analysis independently for all of the unique 

primary tumor samples from Prat et al 2010 (referred to as the UNC308 dataset) [34], from 

Harrell et al 2011 (Combined855 dataset) [43], and from TCGA 2012 (TCGA547 dataset) 

[39]. Human subtype-specific genes were classified as being highly expressed in the subtype 

of interest and having a SAM FDR of 0%. Murine classes were then analyzed for significant 

overlap with each dataset’s human subtype-specific gene sets using GSA. Significant overlap 

was defined as having p ≤ 0.05 and FDR ≤ 0.1 to control for multiple comparisons [42]. 
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These same methods were used to identify significant overlap between our 17 newly derived 

murine classes and the 10 previously defined GEMM classes from Herschkowitz et al 2007 

[31], noting that all 122 arrays used for the Herschkowitz et al study were also present within 

the 385 sample dataset used here. 

 

Conserved pathway gene signatures 

 Only genes that were found in both the human and murine datasets were considered 

for gene-signature analysis in order to eliminate the influence of genes found in only one 

dataset. Prior to calculating gene-signature values, the human and murine datasets were 

separately collapsed by averaging rows corresponding to the same gene symbol. Median 

expression values were calculated for 963 publically available pathway-based gene 

signatures using methods described in Fan et al 2011 [59, 60]. A two class SAM (class or 

subtype X versus all other samples) was used to identify pathway-signatures enriched in 

murine and human classes/subtypes, which were defined as being upregulated with a FDR of 

0%. 
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CHAPTER 3: LUMINAL PROGENITOR AND FETAL MAMMARY STEM CELL 

EXPRESSION FEATURES PREDICT BREAST TUMOR RESPONSE TO 

NEOADJUVANT CHEMOTHERAPY
1
 

 

OVERVIEW 

Background 

Mammary gland morphology and physiology are supported by an underlying cellular 

differentiation hierarchy. Molecular features associated with particular cell types along this 

hierarchy may contribute to the biological and clinical heterogeneity observed in human 

breast carcinomas. Investigating the normal cellular developmental phenotypes in breast 

tumors may provide new prognostic paradigms, identify new targetable pathways, and 

explain breast cancer subtype etiology. 

 

Methods 

We used transcriptomic profiles coming from fluorescence-activated cell sorted 

(FACS) normal mammary epithelial cell types from several independent human and murine 

studies. Using a meta-analysis approach, we derived consensus gene signatures for both 

species and used these to relate tumors to normal mammary epithelial cell phenotypes. We 

then compiled a dataset of breast cancer patients treated with neoadjuvant anthracycline and 
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taxane chemotherapy regimens to determine if normal cellular traits predict the likelihood of 

a pathological complete response (pCR) in a multivariate logistic regression analysis with 

clinical markers and genomic features such as cell proliferation. 

 

Results 

Most human and murine tumor subtypes shared some, but not all, features with a 

specific FACS purified normal cell type; thus for most tumors a potential distinct cell type of 

‘origin’ could be assigned. We found that both human luminal progenitor and mouse fetal 

mammary stem cell features predicted pCR sensitivity across all breast cancer patients even 

after controlling for intrinsic subtype, proliferation, and clinical variables. 

 

Conclusions 

This work identifies new clinically relevant gene signatures and highlights the value 

of a developmental biology perspective for uncovering relationships between tumor subtypes 

and their potential normal cellular counterparts. 

 

BACKGROUND 

The mammalian breast is a dynamic organ, with major morphological changes 

occurring during organogenesis, puberty, pregnancy, lactation and involution [1]. Underlying 

these mammary gland changes is a complex cell hierarchy that supports these processes [2-

4]. The simplest model places the multi-potent mammary stem cell (MaSC) at the base of this 

hierarchy, having extensive, self-regenerative potential [5]. During mammary development, 

the MaSC has been proposed to divide asymmetrically to produce basal/myoepithelial cells 
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as well as luminal progenitors (LumProg), which have more restricted proliferative and 

differentiation capabilities [5]. LumProg cells are capable of further differentiation into 

mature luminal (MatureLum) cells, such as Estrogen Receptor (ER)-positive ductal 

epithelium, which have an even more limited proliferative potential and some of which are 

terminally differentiated [5]. 

Breast tumors may originate from several, if not all, of the cell types within this 

complex mammary hierarchy. These various cellular foundations for tumor initiation may 

help explain the heterogeneous nature of human breast tumors [6], which consist of multiple 

histological and genomic subtypes; these genomic groups, which are defined by their gene 

expression profiles, have become known as the intrinsic subtypes of breast cancer and are 

referred to as basal-like, claudin-low, HER2-enriched, luminal A, and luminal B [7-10]. A 

simple etiological explanation for these different subtypes involves a one-to-one relationship 

between each intrinsic subtype and a distinct cell-type-of-origin that largely maintains its 

phenotypic identity after oncogenic transformation; however, both normal and neoplastic 

non-stem cells can acquire stem-like properties, suggesting that the normal cell hierarchy 

model could also include an element of reversibility [11]. This also raises the possibility that 

molecular features defining tumor subtypes, may be acquired during tumorigenesis [12]. 

Genetically engineered mouse models (GEMMs) of breast carcinoma develop 

heterogeneous tumors [13, 14], but the extent to which they represent human disease is an 

area of active investigation. We previously showed that murine mammary tumors comprise 

at least 17 distinct intrinsic subtypes/classes, with eight classes being identified as strong 

human subtype counterparts by gene expression similarity [14]. As with human breast 

cancer, the degree to which murine models reflect normal mammary epithelial 



53 
 

subpopulations requires further analysis. Characterization of the cellular features of these 

murine classes is also needed to better determine their preclinical utility, to shed light on 

trans-species associations [14], and to help interpret preclinical study observations [15-18]. 

 Several studies have independently profiled fluorescence-activated cell sorted 

(FACS) purified normal mammary cell types from both human [19-21] and murine [22, 23] 

mammary tissues. Here, we use a meta-analysis approach to compare the transcriptomic 

profiles from FACS-enriched mammary cell populations to each other and to primary 

tumors. These data not only identify a number of clinically relevant biomarkers that may be 

useful for predicting chemotherapy benefit, but also suggest a cell type of origin for many 

tumor subtypes. 

 

RESULTS 

Comparison of human mammary subpopulation transcriptomic datasets 

  Several groups have independently obtained transcriptomic profiles of normal human 

breast cells and compared the genomic biology of these different cell types with human 

tumors [19-21]. In these studies, normal mammary tissues obtained from female donors were 

FAC sorted using cell surface markers to enrich for specific mammary subpopulations before 

microarray analysis (Table 4 and Figure 8). While these initial studies were important, the 

datasets themselves were relatively small (n=12 for Lim et al. 2009, n=72 for Shehata et al. 

2012, n=18 for Prat et al. 2013), and few if any comparisons across studies were performed. 

Importantly, FACS-based cell fractionation can only enrich for specific subpopulations. 

Therefore, transcriptomic profiles reflect features of other contaminating cell types to varying 

degrees. As such, study specific biases may be present in any single dataset; therefore, we  
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 Table 4: Human FACS enriched normal mammary cell subpopulation studies 
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Figure 8: Flowchart of analysis 

Normal mammary tissue biopsies were taken from female patients (a) and FACS enriched 

into distinct mammary cell subpopulations (b). Transcriptome profiling was performed on 

each subpopulation using gene expression microarrays by three different studies (c). Within 

each study, genes highly expressed within each subpopulation were determined using a two-

class SAM (d). Genes commonly and specifically enriched within each subpopulation across 

studies were determined to identify ‘enriched’ gene signatures (e). Each ‘enriched’ signature 

was refined by supervised hierarchical clustering to identify gene ‘features’ highly correlated 

across a diverse set of human breast tumors (f). These gene signatures were then used for 

clinical testing (g). 
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Figure 9: Comparison of mammary subpopulations across studies 

a. Unsupervised hierarchical clustering was performed with the normal human mammary 

subpopulation dataset using any gene that had a log2 absolute expression value greater than 

three in at least four samples. b. Pearson correlations were determined between the average 

expression of each study’s subpopulations using all genes. c. The first three principle 

components were determined across the human mammary subpopulation dataset. 
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used consensus information from all three FACS-enriched human transcriptomic datasets to 

reduce technical and study-specific biases. 

Following DWD normalization [24], an unsupervised cluster of the most variably 

expressed genes was performed using Gene Cluster v3.0 by selecting all genes with an 

absolute log2 expression value greater than three in at least four samples (212 genes) (Figure 

9a). In general, the four major array dendrogram nodes correspond to the four FACS-

enriched mammary subpopulations, indicating that the most highly and variably expressed 

genes are similarly expressed across the different studies. Even when using all genes in the 

dataset, there is a high Pearson correlation within a given subpopulation across studies and 

low correlations to other subpopulations (Figure 9b). 

On a per-sample basis, the first principle component separated the stroma and adult 

mammary stem cell (aMaSC) samples from the luminal progenitor and mature luminal 

samples (Figure 9c). The second principle component separated the stroma and aMaSC 

samples into distinct groups, while the third principle component separated the luminal 

progenitor and mature luminal samples into distinct groups. The aMaSC subpopulation 

displayed the highest level of variation, which is likely attributable to varying degrees of 

contamination by other cell types. 

 

Human mammary cell subpopulation enriched gene signatures 

 As shown in Figure 9, there is a natural degree of variation between samples of a 

given subpopulation. We therefore developed gene signatures for each human mammary 

subpopulation by integrating consensus information across all three datasets (Table 4) to  
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Figure 10: Homo sapiens enriched gene signatures 
a. HsEnriched gene signatures were identified for each mammary subpopulation. First, the 

overlap of genes highly expressed within each subpopulation across studies was determined. 

This overlapping gene set was further filtered to remove genes also identified as enriched in 

another subpopulation to limit the signature to genes specific to an individual subpopulation. 

The remaining genes comprised the HsEnriched gene signature for that subpopulation, as 

indicated by the shaded box. b. The standardized average expression of the four HsEnriched 

gene signatures was calculated across three human datasets and displayed by intrinsic tumor 

subtype. c. A nearest centroid predictor using the HsEnriched gene signatures was used to 

determine which epithelial features each tumor most represented. To reduce spurious 

findings, any tumor with a negative silhouette width was considered to have a weak 

association and was labeled as ‘unclassified’. 
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identify the highest confidence subpopulation specific genes. First, genes highly expressed 

(FDR < 5%) within each mammary subpopulation were found using a two-class 

(subpopulation X versus all others) SAM analysis [25] within each dataset [19-21]. Second, 

the overlap of genes highly expressed within a particular subpopulation across studies was 

determined. Lastly, as it is possible in the above analysis to have the same gene in the 

signature of more than one subpopulation, genes that were identified to be significantly 

associated with more than one subpopulation were also removed. This resulted in a single, 

consensus Homo sapiens enriched (HsEnriched) signature per subpopulation (Figure 10a). 

The average Euclidean distance was determined using a 10-fold cross validation for each 

normal mammary subpopulation sample to centroids created using either the HsEnriched 

derived gene signatures or to centroids created using the gene signatures derived separately 

from each human study. The HsEnriched centroids had a significantly reduced Euclidean 

distance (~70%) to each mammary subpopulation (t-test p<0.0001), indicating greater 

specificity for the consensus HsEnriched signatures when compared to any individual 

dataset’s subpopulation signature. 

  We next evaluated the utility of these signatures for distinguishing human tumor 

subtypes. Figure 10b displays the standardized average expression of each HsEnriched 

signature across the human intrinsic breast tumor subtypes [7, 9] using over 3000 tumors [9, 

26, 27]. The aStr-HsEnriched signature was highest in claudin-low and normal-like tumors. 

Interestingly, claudin-low tumors also highly express the aMaSC-HsEnriched signature. High 

expression of the aMaSC-HsEnriched signature in claudin-low tumors is unlikely an artifact 

of stromal cells in these tumors since the Pearson correlation between the aStr-HsEnriched 

and aMaSC-HsEnriched signatures was -0.19 across the normal human mammary samples.  
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Table 5: Murine FACS enriched normal mammary cell subpopulation studies 
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The LumProg and MatureLum -HsEnriched signatures were most highly expressed in 

basal-like and luminal subtype tumors, respectively (Figure 10b). 

We noted a considerable degree of signature variation within a subtype, indicating 

that it is not necessarily the case that all tumors of a given subtype share features with the 

same normal cell type. A nearest centroid predictor with a 10-fold cross validation error rate 

of 4.8% was created to individually determine which normal mammary epithelial 

subpopulation is most similar to each tumor. Samples with positive silhouette widths [28] 

were considered to have a strong association to their particular subpopulation, with all other 

tumors being categorized as ‘unclassified’ [29] (Figure 10c). Specifically, 94% of basal-like 

tumors had LumProg expression profiles. The claudin-low subtype had the highest 

percentage of tumors classified as aMaSC (18%), although most claudin-low tumors were 

classified as having LumProg features (59%). The HER2-enriched subtype was 

predominantly classified as having LumProg expression features. The luminal A and B 

subtypes were most similar to the MatureLum subpopulation. 

 

Murine mammary cell subpopulation enriched gene signatures 

 Several groups have also profiled normal murine mammary cell type expression 

features using FACS [22, 23] (Table 5). In addition to highlighting conserved expression 

features across species [22], murine studies are uniquely positioned to enable comparisons 

with  developmental states not easily accessed in humans, including early fetal development 

[23]. We were particularly interested in fetal mammary stem cells (fMaSC) [23], which is a 

distinct cell population not captured in any human study performed thus far (Table 6). Using 

the same approach that we used to derive the HsEnriched signatures, we created Mus  
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Table 6: Gene set analysis of human and murine cell subpopulations 

A comparative analysis of each human subpopulation versus each murine subpopulation was 

performed using GSA. The FDR is displayed for all comparisons with a positive association. 

Statistically significant associations (FDR<0.05) are highlighted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

Figure 11: Mus musculus enriched gene signatures 

a. MmEnriched gene signatures were identified for each mammary subpopulation. First, the 

overlap of genes highly expressed within each subpopulation across studies was determined. 

This overlapping gene set was further filtered to remove genes also identified as enriched in 

another subpopulation to limit the signature to genes specific to an individual subpopulation. 

The remaining genes comprised the MmEnriched gene signature for that subpopulation, as 

indicated by the shaded box. b. The standardized average expression of the five MmEnriched 

gene signatures was calculated across a murine dataset and displayed by intrinsic tumor class. 

c. A nearest centroid predictor using the MmEnriched gene signatures was used to determine 

which epithelial features each tumor most represented. To reduce spurious findings, any 

tumor with a negative silhouette width was considered to have a weak association and was 

labeled as ‘unclassified’. 
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musculus enriched (MmEnriched) signatures for each murine mammary subpopulation 

(Figure 11a) [22, 23]. 

We calculated the standardized average expression of each MmEnriched signature 

across the murine intrinsic subtypes/classes (Figure 11b) [14]. As in human tumors, the Str-

MmEnriched signature was most highly expressed in Normal-like
Ex

 and Claudin-low
Ex

; this 

common feature was anticipated given the high similarity of these two classes to their human 

subtype counterparts and their known enrichment for stroma associated genes [14, 23]. The 

aMaSC-MmEnriched signature was most highly expressed in Class14
Ex

 and to a slightly 

lesser extent in Wnt1-Late
Ex

, Wnt1-Early
Ex

, p53null-Basal
Ex

, and Squamous-like
Ex

. The 

fMaSC-MmEnriched signature was most highly expressed in WapINT3
Ex

, which is 

consistent with the finding that Int3 (Notch4) inhibits mammary cell differentiation [30, 31]. 

The LumProg-MmEnriched signature was highest in PyMT
Ex

 and Neu
Ex

. This finding was 

unexpected given that these two mouse classes have been shown to resemble luminal human 

tumors [13, 14]. Lastly, the MatureLum-MmEnriched signature was most highly expressed in 

Stat1
Ex

 and Class14
Ex

. Both the Stat1
-/-

 and Pik3ca-H1047R mouse models, which define 

these two classes respectively, are often ER positive [32, 33], and these data suggest that they 

have mature luminal features. Class14
Ex

 also exhibited significant expression of the aMaSC-

MmEnriched signature, indicating that these tumors contain a mixture or share features of 

multiple cell types. 

Consistent with Figure 11b, 91% of WapINT3
Ex

 tumors were classified as having 

fMaSC features in a nearest centroid predictor analysis. Mouse luminal classes of breast 

carcinoma (Erbb2-like
Ex

, Myc
Ex

, PyMT
Ex

, and Neu
Ex

) were most similar to luminal 

progenitor cells, which again were unexpected but consistent with previous findings [22, 34]. 
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Wnt1-Early
Ex

, p53null-Basal
Ex

 and Squamous-like
Ex

 tumors had primarily aMaSC features. 

Interestingly, Claudin-low
Ex

 and to a lesser extent C3-Tag
Ex

 tumors also had aMaSC features. 

All Stat1
Ex

 tumors had mature luminal features, consistent with being ER positive [32]. 

 

LumProg and fMaSC features predict neoadjuvant chemotherapy response 

Breast tumors respond heterogeneously to neoadjuvant chemotherapy treatment [15]. 

We hypothesized that cellular features of normal mammary subpopulations may identify 

tumors most likely to respond to neoadjuvant chemotherapy. To test this, we compiled a 

dataset of 702 neoadjuvant anthracycline and taxane chemotherapy treated patients (Table 7). 

Although genes within each ‘enriched signature’ are highly correlated within their 

respective normal cell population, it does not necessarily follow that all genes within a given 

normal cell signature would be as coordinately regulated in tumors. Therefore, we subdivided 

each signature into smaller features (feature1, feature2, etc) that are coordinately expressed in 

tumors, reasoning that such refined ‘features’ may be more clinically robust. All ‘enriched’ 

and refined ‘features’ were tested for their ability to predict pCR to neoadjuvant 

chemotherapy in a UVA (Table 8). UVA significant signatures (p<0.05) were then 

considered in a MVA with Age, ER status, PR status, HER2 status, tumor stage, PAM50 

subtype [35], and PAM50 proliferation score [35] to determine if any mammary 

subpopulation ‘features’ added novel information for predicting pCR (Table 9). 

Six normal mammary gene signatures were UVA and MVA significant (Tables 3.5 

and 3.6), with the 95% UVA odds ratio of these six signatures and all other ‘enriched 

signatures’ displayed in Figure 12a. Interestingly, the LumProg-HsEnriched and LumProg-

HsEnriched-feature1 signatures, both of which were highly correlated (Figure 12b), were  
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Table 7: Clinical characteristics of the neoadjuvant chemotherapy treated dataset 
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Table 8: Univariate logistic regression analysis predicting pathological complete 

response in breast cancer patients treated with neoadjuvant anthracycline and taxane 

chemotherapy regimens 
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Table 9: Multivariate logistic regression analysis predicting pathological complete 

response in breast cancer patients treated with neoadjuvant anthracycline and taxane 

chemotherapy regimens 
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Figure 12: fMaSC enriched gene signatures 

a. The univariate logistic regression odds ratio predicting pathologic complete response to 

neoadjuvant anthracycline and taxane chemotherapy was determined using a 702 patient 

dataset, with the 95% confidence interval shown as a forest plot. A single ‘*’ indicates the 

signature was univariate significant, while ‘***’ indicates the signature was both univariate 

and multivariate significant (p<0.05). b. Pearson correlations of multivariate significant gene 

signatures and proliferation were determined. c. The standardized average expression of the 

fMaSC-MmEnriched signature and its two refined signatures was calculated across three 

human datasets and displayed by intrinsic tumor subtype. d. Genes in the fMaSC-

MmEnriched-refined1 signature. E. Genes in the fMaSC-MmEnriched-refined2 signature. 
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highly significant in the UVA and MVA analyses, indicating that tumors with luminal 

progenitor features are more likely to respond to neoadjuvant treatment. Importantly, this 

response was independent of proliferation, as highlighted by their low correlation to the 

PAM50-Proliferation gene signature (Figure 12b). 

Interestingly, the fMaSC-MmEnriched signature refined into two distinctly opposite, 

highly significant signatures in both the UVA and MVA (Table 8, 3.6; Figure 12b, 3.5c). 

While the fMaSC-MmEnriched signature was highest in basal-like tumors, the refined-

signatures varied, with fMaSC-MmEnriched-feature1 (Figure 12d) being highest in basal-like 

tumors and fMaSC-MmEnriched-feature2 (Figure 12e) expressed in luminal tumors. Tumors 

with fMaSC-MmEnriched-feature1 expression were more likely to respond to neoadjuvant 

chemotherapy, while those tumors with fMaSC-MmEnriched-feature2 were more resistant. 

The fMaSC-MmEnriched-feature1 signature was very highly correlated with the LumProg-

HsEnriched signatures (Figure 12b), sharing four genes in common (Figure 12d). These 

results support the hypothesis that subsets of genes within the larger ‘enriched signature’ are 

likely regulated by different biological mechanisms. 

 

DISCUSSION 

 Normal mammary gland physiology is supported by an underlying, complex cell 

hierarchy [2-5]. The simplest model treats differentiation from mammary stem cells to 

progenitor cells to mature cells as unidirectional, but recent observations indicate that 

bidirectional processes are also possible for normal and neoplastic cells [11]. This 

differentiation plasticity may allow tumors to acquire cell features foreign to the initial cell-
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of-origin or to lose native features through the accumulation of specific genetic aberrations 

[36]. 

Regardless of how different cellular traits are acquired, it is critical to identify the 

‘current’ normal cellular features within a tumor, and therefore, we first analyzed the 

expression profiles of normal human and mouse mammary epithelial cell subpopulations [19-

23]. We chose to use nomenclature that maintains continuity with the literature. However, 

these terms should be considered provisional as the complete biological profiles of these 

FACS fractions are investigated  [4].  Recent work by Prater et al [37] found that mouse 

‘luminal progenitor’ cells (CD49f+, EpCAM+) have complete mammary gland repopulating 

potential, indicating that ‘luminal progenitor’ may be a misnomer. Importantly, even if our 

understanding and naming of these cell subpopulations change, only the retrospective 

interpretation of the data presented here will be affected, not the data themselves. 

Using a meta-analysis approach, FACS purified mammary epithelial cell 

subpopulation ‘enriched’ gene signatures were derived and a nearest centroid predictor was 

developed to identify which normal mammary subpopulation each human and mouse tumor 

most represented using over three thousand human patients and 27 mouse models of 

mammary carcinoma [14]. While these analyses imply a cell-of-origin for a given tumor, 

additional experiments (e.g. lineage tracing) will be required to unequivocally determine this. 

Nevertheless, these associations at the very least identify which normal mammary 

subpopulation a given tumor most represents in its current state.  

With this in mind, several associations between both the human and mouse intrinsic 

subtypes and specific normal cell subpopulations were observed. First, human basal-like 

tumors have been referred to as ‘undifferentiated’, which is consistent with their exhibiting 
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luminal progenitor [19] and fetal MaSC features [23]. Three mouse classes have been 

identified to be human basal-like counterparts: Myc
Ex

, p53null-Basal
Ex

, and C3-Tag
Ex

 [14]. 

Myc
Ex

 tumors were the most similar to the luminal progenitor cell profile. By contrast, both 

p53null-Basal
Ex 

and C3-Tag
Ex

 tumors had adult MaSC features. These results indicate that 

Myc
Ex

 tumors share similar cell features as their human basal-like counterpart, making it an 

attractive mouse model for studying basal-like tumors with aberrant Myc signaling [10, 38]. 

Interestingly, neither p53null-Basal
Ex 

nor C3-Tag
Ex

 tumors had strong luminal progenitor 

features, indicating that their association to human basal-like tumors is more likely driven by 

their underlying genetics [10]. 

 Human claudin-low tumors had heterogeneous normal cell features. While most were 

similar to luminal progenitors, the claudin-low subtype also had the largest percentage of 

tumors classified as adult MaSC. Given that claudin-low tumors are enriched with epithelial-

to-mesenchymal transition features [9, 39, 40], our results suggest that these tumors may 

originate from the luminal progenitor population prior to acquiring adult MaSC and/or 

mesenchymal features. Similarly, mouse Claudin-low
Ex

 tumors were also strongly associated 

with the adult MaSC population, indicating that such tumors may be the closest analogs of 

the subset of human claudin-low tumors with adult MaSC features. 

Human HER2-enriched tumors were the most similar to the luminal progenitor 

subpopulation. This is a novel finding and may explain why both human basal-like and 

HER2-enriched subtype tumors show high TP53 mutation frequencies (>70%) and 

widespread chromosomal instability [10]. These data could suggest that the normal luminal 

progenitor cell is somehow extremely dependent upon TP53 function. The murine Erbb2-
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like
Ex

 class has been identified as a mouse counterpart for human HER2-enriched tumors 

[14] and was shown here to also have luminal progenitor features.  

When analyzing the human luminal A and B subtypes, a clear association with 

normal mature luminal cells was observed. The murine Neu
Ex

 class is a proposed counterpart 

for human luminal A tumors [14], yet these mouse tumors were most similar to normal 

mouse luminal progenitor cells. The Myc
Ex

 class was also identified to resemble human 

luminal B tumors [14]. As discussed, Myc
Ex

 tumors have luminal progenitor features; 

therefore, most mouse luminal A/B tumor models do not share the same normal cell features 

as their human tumor counterparts. These differences may reflect limitations of model system 

design, as tumors within these mouse classes are primarily driven by either the WAP or 

MMTV promoter. These differences in cell features, however, indicate that the trans-species 

associations observed previously [14] are possibly driven by the genetics of each mouse 

model. Nevertheless, broad molecular features are conserved between these human-murine 

counterparts [14]. Therefore, we propose that these mouse models retain significant 

preclinical utility provided that shared versus distinct molecular features are taken into 

account. 

Neoadjuvant chemotherapy is a common approach for treating breast tumors, but only 

a relatively low percentage of patients have a pCR (~20% overall). We tested the clinical 

significance of normal cellular features for predicting pCR using a combination of univariate 

and multivariate logistic regression analyses. Human LumProg and mouse fetal MaSC 

expression features were identified as predictive of pCR sensitivity across all breast cancer 

patients. More specifically, LumProg-HsEnriched-feature1 and fMaSC-MmEnriched-

feature1 expression was highest in basal-like tumors. This is consistent with the clinical 
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observation that basal-like tumors have better neoadjuvant chemotherapy response rates since 

higher expression of these normal cell signatures was associated with a higher likelihood of 

pCR. Distinct from these signatures, tumors with high expression of fMaSC-MmEnriched-

feature2 were more resistant to neoadjuvant chemotherapy. Not surprisingly, this signature 

was most highly expressed in luminal A and B tumors, consistent with the clinical 

observation that these subtypes have lower chemotherapy response rates. Importantly, these 

signatures remained significant even after controlling for intrinsic subtype, proliferation, and 

clinical variables in the multivariate analysis; thus these normal cell signatures add 

information even when tumor subtype and clinical features are known. It is presently 

unknown whether tumors with these features arise from a LumProg or fetal MaSC cell-of-

origin or acquire these features during tumorigenesis. Whether these features are acquired or 

inherent, the ‘current’ cellular traits of a tumor are likely most important as these appear to 

be a major determinant of chemotherapy sensitivity. The biological explanation for why 

LumProg and fetal MaSC expression features predict tumor responsiveness to neoadjuvant 

chemotherapy will need to be explored further, but it is likely linked to the common genetic 

features of TP53 loss [41], RB-pathway loss [42], and high proliferation status [43], as well 

as other inherent characteristics of these cellular states. This work highlights the efficacy of 

studying the normal mammary gland cell hierarchy and development in providing insights 

for human tumor therapy responsiveness. 
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MATERIALS AND METHODS 

Mammary cell subpopulation gene signatures 

 Gene expression measurements from fluorescence-activated cell sorting (FACS) 

enriched mammary cell subpopulations were obtained from three human and two murine 

published studies: GSE16997 [19], GSE19446 [22], GSE27027 [23], GSE35399 [20], and 

GSE50470 [21]. The human and murine datasets were separately combined using distance 

weighted discrimination (DWD) normalization to adjust for systemic microarray data biases 

between studies [24]. FACS subpopulation gene signatures were then derived within the 

human and murine dataset separately using a common approach.  First, genes highly 

expressed within each FACS subpopulation were identified using a two-class (subpopulation 

X versus all others) Significance Analysis of Microarrays (SAM) analysis [9, 25], with genes 

highly expressed and with a false discovery rate (FDR) of <5% being considered significant. 

Next, the intersection of each study’s subpopulation gene signature was identified (e.g. 

aMaSC-Lim09 ∩ aMaSC-Shehata ∩ aMaSC-Prat).  The intersecting gene set for each cell 

type was then further limited to genes uniquely found in the subpopulation of interest by 

removing genes found in any other subpopulation’s gene set (e.g. removing members of aStr-

Lim09 ∪ aStr-Shehata ∪ aStr-Prat ∪ LumProg-Lim09 ∪ LumProg-Shehata ∪ LumProg-Prat 

∪ MatureLum-Lim09 ∪ MatureLum-Shehata ∪ MatureLum-Prat from the aMaSC 

intersecting gene set) and by removing genes associated with the myoepithelial 

subpopulation using a published myoepithelial gene signature produced using the same 

approach as those derived here [44]. Through this process, a consensus gene signature was 

produced for each mammary cell FACS subpopulation, for each species, which we 

designated as ‘enriched’ (e.g. aMaSC-HsEnriched). 
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 Each FACS ‘enriched’ signature was further refined by supervised clustering using 

the human UNC308 breast tumor dataset to identify subpopulation ‘features’ [9]. The 

purpose of this process was to identify clusters of genes highly correlated across a diverse 

human tumor dataset, as these gene features are more likely regulated by similar factors and 

therefore, may by more clinically useful than the entire enriched signature. These refined 

features (e.g. fMaSC-feature1 for example) were defined as having at least ten genes with a 

Pearson correlation greater than 0.5 across all tumors in the UNC308 dataset [45]. 

Expression scores for both the ‘enriched’ and ‘feature’ gene signatures were determined by 

calculating the mean expression of the signature within each tumor. Signatures were 

separately standardized to have an average expression value of zero and a standard deviation 

of one (N(0,1)) to allow for across signature comparisons. 

 

Comparison of human and murine normal mammary populations 

 To identify possible commonalities between human and mouse normal mammary 

FACS populations, we used the gene set analysis (GSA) R package v1.03 [46] and R v2.12.2. 

Murine populations were analyzed for significant overlap with each HsEnriched gene 

signature. Significant overlap was defined as having p ≤ 0.05 and FDR ≤ 0.1 to control for 

multiple comparisons [46]. 

 

Mammary cell subpopulation centroids 

Human mammary cell subpopulation centroids were created using the union of the 

‘enriched’ epithelial gene signatures (aMaSC-HsEnriched ∪ LumProg-HsEnriched ∪ 

MatureLum-HsEnriched). The DWD single sample predictor (SSP) function [24] was used to 
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calculate the shortest Euclidean distance between each tumor and each epithelial cell 

enriched centroid using three human datasets comprising over 3000 patients: UNC308 [9], 

Combined855 [26], and Metabric2136 [27]. To gauge the strength of each mammary 

subpopulation association, the silhouette width was calculated for each sample using R 

v3.0.1 and the ‘cluster’ package. Samples with a positive silhouette width were considered to 

have strong association. Similarly, this process was repeated using the murine cell 

subpopulation dataset to calculate Euclidean distances for a murine expression dataset 

comprising 27 models of mammary carcinoma and normal mammary tissue [14]. 

 

Chemotherapy response 

 Logistic regression analysis was used to determine if gene signatures derived from 

normal cell populations were capable of predicting pathological complete response (pCR) in 

breast cancer patients treated with neoadjuvant anthracycline and taxane chemotherapy 

regimens. For this purpose, a combined breast cancer gene expression dataset was created 

from three public datasets (GSE25066 [47], GSE32646 [48], and GSE41998 [49]). Only 

neoadjuvant anthracycline and taxane treated patients with complete clinical data (Age, ER 

status, PR status, HER2 status, tumor stage and pCR) were considered in the analysis, 

resulting in a dataset of 702 patients. The three datasets were combined using DWD 

normalization to adjust for systemic microarray data biases between studies [24], with the 

clinical characteristics found in Table 7. The significance of each mammary subpopulation 

gene signature and several published predictors of pCR was determined using a series of 

stepwise tests. First, the ability for each signature to predict pCR was determined with a 

univariate analysis (UVA) using R v3.0.1 (Table 8). Those signatures that were significant 
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(p<0.05) were then considered in a multivariate analysis (MVA) with several clinical 

variables (Age, ER status, PR status, HER2 status, tumor stage, PAM50 subtype [35], and 

PAM50 proliferation score [35]) to determine if each mammary subpopulation gene 

signature added new information for predicting pCR (Table 9). 
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CHAPTER 4: SECONDARY GENETIC ABERRATION PROFILING OF P53NULL 

MAMMARY TUMORS HIGHLIGHTS MET DNA AMPLIFICATION AS A GENETIC 

DRIVER OF MURINE BASAL-LIKE TUMORIGENESIS 

 

OVERVIEW 

Background 

Breast cancer is the second leading cause of cancer related deaths in American women. 

Patient care is complicated by inherent tumor heterogeneity that can be classified into at least six 

intrinsic subtypes. While targeted treatments are standard of care for most subtypes, there 

remains a clinical need for targeted therapies against basal-like tumors that are typically ‘triple 

negative breast cancers’. As such, the molecular mechanisms underlying basal-like tumors are 

under intense investigation to identify genetic drivers and possible drug targets of this subtype. 

 

Methods 

Somatic p53 mutations are one of the most common genetic events in basal-like breast 

tumors. This genetic foundation primes cells for secondary genetic aberration accumulation, a 

subset of which are predicted to promote tumorigenesis. To identify additional potential drivers 

of basal-like tumors, a comparative study between human and murine tumors was performed 

utilizing a p53null mammary transplant murine model. Microarray and sequencing technologies 

were used to interrogate the secondary genetic aberrations of these murine tumors to then be 

compared to human basal-like tumors to highlight conserved features. 
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Results 

The p53null mammary murine model produced a genomically diverse set of tumors, a 

subset of which we showed resemble the human basal-like subtype. Of the ‘omic datasets 

analyzed, DNA copy number variation produced the largest number of conserved candidate 

driver genes. Similar to human basal-like tumors, DNA amplification of Met was common to 

murine p53null basal-like tumors. Inhibition of Met using Crizotinib caused these tumors to 

regress, confirming that this genetic event is a driver of murine basal-like tumorigenesis. 

 

Conclusions 

This study identifies Met as a driver of basal-like murine tumors, and thus as a potential 

driver of human basal-like breast cancer. This work also highlights the importance of 

comparative genomic studies for discovering novel drug targets and for determining which 

patient populations are most likely to respond to selective targeted treatments. 

 

BACKGROUND 

 Breast cancer is a heterogeneous disease that can be segregated into at least six distinct 

intrinsic subtypes based on gene expression profiles: basal-like, claudin-low, HER2-enriched, 

luminal A, luminal B, and normal-like [1-3]. While targeted therapeutics exist for estrogen 

receptor positive [4] (luminal A/B [5]) and human epidermal growth factor receptor 2 positive 

[6] (HER2-enriched [5]) tumors, targeted treatments for triple negative breast cancer (TNBC) 

(basal-like and claudin-low [5]) remain an important unmet clinical need [7]. To address this, a 

research emphasis has been placed on identifying the molecular drivers of basal-like and claudin-

low tumors to therefore be exploited as novel drug targets for these subtypes. 
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 Somatic p53 mutations are one of the most frequent genetic events in breast cancer, 

occurring in about 80% of TNBC [3]. While there is a growing appreciation for the 

consequences that p53 gain-of-function mutations impose on cell signaling [8], the majority of 

these mutations are predicted to lead to p53 loss-of-function [9]. This genetic foundation primes 

tumors for secondary genetic aberration accumulation by decreasing the cell’s ability to maintain 

normal cell physiology. Identifying the subset of genetic events that promote breast cancer is 

important for informing tumor biology and for guiding personalized treatment regimens. 

However, segregating genetic drivers of tumorigenesis from passengers is inherently difficult 

due to the diversity of breast tumors and the large number of candidate aberrations identified in 

genome-wide profiling studies [3, 10]. 

 Comparative studies between human and murine tumors provide an attractive approach 

for narrowing the genetic driver candidate list by highlighting conserved features between 

species [11]. The p53null mammary transplant model [12] is a particularly powerful resource for 

identifying the genetic drivers of TNBC. From a genetics perspective, the p53null transplant 

model mimics the loss-of-function seen in human tumors through the expression of a truncated 

version of p53 [13]. In addition, tumors from this model resemble multiple human intrinsic 

subtypes of breast cancer, including both basal-like and claudin-low [11, 14]. Identifying the 

genetic mechanisms that explain this intramodel tumor heterogeneity may help inform the 

etiology of specific human subtypes. From an experimental perspective, the transplantability of 

these tumors allows for a single tumor to be expanded and exhaustively studied to verify that the 

conserved candidates are drivers of tumorigenesis and/or to rigorously test therapeutics [15-18]. 

For these reasons, this study used the p53null mammary transplant model to identify genetic 

drivers, and thus novel drug targets, of basal-like breast tumors. 
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RESULTS 

p53null transplant tumors are counterparts for human basal-like and claudin-low subtypes 

 The p53null transplant model produces phenotypically and genomically diverse tumors 

that can be classified into three major subtypes/classes based on gene expression profiles: 

p53null-Basal
Ex

, Claudin-low
Ex

, and p53null-Luminal
Ex

 [11]. A critical component of breast 

cancer comparative studies is to properly identify corresponding human-to-murine subtype 

counterparts. Once counterparts are determined, conserved features can be identified to highlight 

the candidate genetic drivers that are specific to those subtypes. For this purpose, we used 

several approaches to determine which human subtype each of these three p53null transplant 

genomic classes best represent. 

 First, a transcriptomic comparison between the two species was performed. To do this, 

we created gene signatures for each of our three previously identified p53null transplant classes 

using a two-class (class X versus all others) Significance Analysis of Microarrays (SAM) 

analysis across a 385 sample microarray dataset with 27 murine models of mammary carcinoma 

and normal mammary tissue [11]. Each signature was defined as all genes highly expressed in 

the class of interest with a false discovery rate (FDR) of 0%. The average of these signatures was 

calculated within each sample of the UNC308 [2], Combined855 [19], and Metabric [10] human 

breast cancer datasets to identify which human tumors also highly expressed these same set of 

genes. Interestingly, both the p53null-Basal
Ex

 and p53null-Luminal
Ex

 signatures were highly 

expressed in basal-like human tumors, while the Claudin-low
Ex

 signature was most specific to 

the human claudin-low subtype (Figure 13A). Similar results were observed when we compared 

molecular pathway based signatures (Figure 14A) [11]. 
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Figure 13: Human counterparts of p53null transplant tumors 

A. Genes highly expressed within each p53null transplant class were identified using a 2-class 

(class X vs all others) SAM analysis (FDR 0%) across our 385 murine microarray dataset. The 

standardized average of these gene signatures was calculated across more than three thousand 

human tumors and displayed by intrinsic subtype. B. A representative tumor from each p53null 

transplant class was FAC sorted using antibodies against Epcam and Cd49f. C. 

Immunohistochemistry was performed using antibodies against Krt5 (a marker of basal cells) 

and Krt18 (a marker of luminal cells). 
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Figure 14: Molecular pathway signatures and differentiation score 

A. Median expression values were calculated for 963 publically available pathway-based gene 

signatures across our murine and human expression datasets [11]. Molecular pathway signatures 

were identified using a 2-class (class X vs all others) SAM analysis (FDR 0%) across our 385 

murine microarray dataset. The standardized average of these gene signatures was calculated 

across more than three thousand human tumors and displayed by intrinsic subtype. B. Tumor 

‘differentiation scores’ [2] were calculated for all 385 murine samples and displayed by intrinsic 

class. The ‘differentiation scores’ of the three p53null transplant classes were compared using a 

t-test. 
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 One explanation for the transcriptomic associations observed in Figure 13A is that both 

the human and murine subtypes arise from similar cell types within the mammary gland [20]. To 

address this possibility, a representative tumor from each p53null transplant subtype was selected 

and fluorescence-activated cell sorted (FACS) into its mammary subpopulations using Cd49f and 

Epcam markers [21-23] (Figure 13B). The 2224L (p53null-Basal
Ex

) tumor contained a mixture 

of epithelial cell subpopulations, with 35% of cells being Cd49f
pos

/Epcam
pos

 and 40% of cells 

being Cd49f
double pos

/Epcam
pos

 (Figure 13B). The T11 (p53null-Claudinlow
Ex

) and 2250L 

(p53null-Luminal
Ex

) tumors, however, dissociated into single epithelial subpopulations. 

Specifically, 80% of T11 (p53null-Claudinlow
Ex

) epithelial cells were distinctly 

Cd49f
pos

/Epcam
neg

. Expression profiles of normal human mammary CD49f
pos

/EpCAM
neg

 

subpopulations are enriched within the human claudin-low subtype, indicating that human and 

mouse claudin-low tumors share similar FACS-based cellular features [24]. Greater than 90% of 

2250L (p53null-Luminal
Ex

) epithelial cells were Cd49f
pos

/Epcam
pos

. Human basal-like tumors 

similarly share features of CD49f
pos

/EpCAM
pos

 epithelial cells [23, 24], but tend to show a more 

mixed cellular population as was seen in the murine 2224L (p53null-Basal
Ex

) tumor. 

While these FACS profiles are informative, only a subset of our p53null transplant 

tumors have been properly processed for passaging experiments. As such, we were restricted 

from broadly expanding this approach to all of the tumors in our dataset. To circumvent this 

limitation, a ‘differentiation score’ (D-Score) was calculated for all tumors in the murine 

microarray dataset (Figure 14B) [2]. Low scores indicate a tumor similarity to adult mammary 

stem cells (aMaSC), intermediate scores a similarity to luminal progenitor (LumProg) cells, and 

high scores a similarity to mature luminal (MatureLum) cells [2]. Similar to the individual tumor 

FACS profiles, the D-Score varied across the three p53null subtypes, with the p53null-
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Claudinlow
Ex

 subtype being the lowest, the p53null-Basal
Ex

 being intermediate, and the p53null-

Luminal
Ex

 being the highest (p<0.05) (Figure 14B). Even though the p53null-Luminal
Ex

 subtype 

had the highest D-Score among the three p53null subtypes, its score is still relatively 

intermediate when compared across our diverse murine tumor dataset. This indicates that while 

the p53null-Luminal
Ex

 class is the most ‘luminal’ of the three p53null classes, these tumors do 

not have as strong an association to MatureLum cells as do human luminal A and luminal B 

tumors [24] and murine MMTV-Neu tumors. 

 To supplement these findings, a histological characterization of the cellular features of 

p53null transplant mammary tumors was also performed. Specifically, we stained tumors with 

Krt5 (a marker of basal cells) and Krt18 (a marker of luminal cells). Consistent with the FACS 

profile (Figure 13B), 91% of p53null-Basal
Ex

 tumors were Krt5
pos

/Krt18
pos

, indicating that these 

tumors contain features of both basal and luminal cell types. On the contrary, 66% of p53null-

Claudinlow
Ex

 tumors were Krt5
neg

/Krt18
low

. Consistent with their nomenclature, p53null-

Luminal
Ex

 tumors primarily contained luminal cell type features, with 70% of tumors being 

Krt5
neg

/Krt18
pos

. Taken together (Figure 13), these results indicate that the p53null transplant 

model produces tumors that are best considered murine counterparts for human basal-like and 

claudin-low tumors. 

 

Secondary genetic aberration profiling highlights DNA copy number changes as drivers of 

tumorigenesis 

In broad terms, disruption of normal p53 signaling leads to an unstable genome due to a 

decreased ability to properly respond to the presence of genetic aberrations [25]. This phenotype 

leads to the accumulation of both small scale mutations (e.g. insertions, deletions) and large scale 
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chromosomal rearrangements (e.g. translocations, copy number variations) throughout the 

genome. Specific genetic aberrations are predicted to be responsible for determining a cell’s 

subtype fate during tumorigenesis, but identifying these specific drivers has been challenging. 

Here, we leveraged the power of multiple ‘omic technologies to interrogate the secondary 

genetic aberrations underlying 43 different and independently arisen p53null transplant tumors. 

Specifically, microarray and sequencing technologies were used to produce five datasets of 

varying sizes: DNA exome analysis (EXO) (n=37), DNA copy number (n=43), chromosome 

structural variation (n=37), expression microarrays (n=43), and RNAseq (n=6) (Figure 15). 

 Given our hypothesis that the accumulation of specific secondary genetic events during 

tumorigenesis drives the development of specific tumor subtypes, we designed our statistically 

analyses to identify those genetic events that are enriched within specific p53null transplant 

classes as compared to the other two. Using this approach with our DNA EXO dataset, there 

were no identifiable genes that were somatically mutated and enriched within any of the three 

p53null transplant classes using a 2-class (class X versus all others) fisher’s exact test (Figure 

16). While this was initially a somewhat surprising result, it is consistent with The Cancer 

Genome Atlas’s (TCGA) profiling of human breast tumors in which there was only one gene 

with a mutation frequency greater than ten percent within the basal-like subtype (TP53) [3]. 

 Given the mutation results, we decided to focus on large scale chromosomal 

rearrangements, amplifications, and/or deletions as possible drivers of the p53null transplant 

subtypes. An analysis of chromosome structural variants identified several rearrangements that 

were enriched within each of the three p53null transplant classes using a 2-class (class X versus 

all others) fisher’s exact test (Figure 17). For instance, Mad2l1 was enriched for structural 

rearrangements in p53null-Basal
Ex

 tumors. Mad2l1 plays an important role during metaphase by 
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Figure 15: Murine p53null tumor datasets 

Microarray and sequencing technologies were used to produce five p53null tumor datasets of 

varying sizes: i. DNA SNP (n=37), ii. DNA copy number (n=43), iii. Chromosome structural 

variation (n=37), iv. Expression microarrays (n=43), v. and RNAseq (n=6). The intrinsic class of 

each sample is displayed on the dendrogram, with colored boxes being previously identified 

human subtype counterparts [11]. The hierarchical clustering location of each p53null tumor 

within the datasets is displayed as a vertical black strip.  
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Figure 16: Somatic non-silent mutation analysis 

A. The total number of somatic non-silent mutations was determined for each sample and plotted 

by p53null transplant class. Error bars represent one standard deviation. B. All somatic non-silent 

mutations with a mutational frequency greater than or equal to 8% across all p53null tumors are 

displayed by p53null class. Each row represents an individual tumor, with boxes corresponding 

to a mutation within the gene on that column. 
 

  



95 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Chromosome structural variation analysis 

Displayed are circos plots of the structural variants enriched within A. p53null-Basal, B. p53null-

Claudinlow, and C. p53null-Luminal tumors as determined by 2-class (class X versus all others) 

Fisher’s Exact Tests.  
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preventing progression into anaphase until all chromosomes are properly aligned [26]. 

Overexpression of Mad2l1, as is the case in p53null-Basal
Ex

 tumors (FDR 0%), may further 

promote tumor development by decreasing chromosome stability [27]. While these p53null 

transplant class enriched structural variants are intriguing, it is inherently difficult to perform 

follow-up experiments on these genetic events to gauge their effect on the tumor phenotype. 

Thus, we are unable to definitively call any of these structural variants drivers of these classes. 

 The mechanism by which DNA copy number variation leads to changes in the tumor 

phenotype, however, is more intuitive and more easily tested; therefore, we decided to focus our 

attention on these amplifications and/or deletions as secondary genetic drivers. We were 

primarily interested in identifying genes in which their DNA copy number variation was highly 

correlated with their gene expression, as this observation is consistent with causality. First, we 

identified DNA copy number changes enriched within each of our three p53null transplant 

classes using a 2-class (class X versus all others) SAM analysis (Figure 18). Interesting, both the 

p53null-Basal
Ex

 (Figure 18A) and p53null-Luminal
Ex

 (Figure 18C) classes had distinct genomic 

regions of DNA gains and losses, while the p53null-Claudinlow
Ex

 (Figure 18B) class was more 

copy number neutral, having no genomic regions enriched with gains or losses. These results are 

consistent with human studies which have highlighted several DNA copy number events specific 

to basal-like tumors but few, if any, events in claudin-low tumors [28]. Specifically, p53null-

Basal
Ex

 tumors were defined by both gains and losses on chromosome 8 and almost a complete 

loss of chromosome 12 (Figure 18A), while p53null-Luminal
Ex

 tumors were defined by a DNA 

amplification on chromosome 6 (Figure 18C). 

 To narrow the list of potential genetic drivers within these subtype-specific regions of 

gains and losses, the Pearson correlation between DNA copy number and gene expression was   
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Figure 18: DNA copy number analysis 

Displayed in genomic order are the median class DNA copy number levels for A. p53null-Basal, 

B. p53null-Claudinlow, and C. p53null-Luminal tumors. DNA copy number changes enriched 

within each of the three p53null transplant classes were identified using a 2-class (class X versus 

all others) SAM analysis. Genomic regions of significant gain are labeled in red and regions of 

significant loss are labeled in green. D. Pearson correlations between DNA copy number and 

gene expression were determined for all genes within the significant regions of gain and loss 

from parts A-C. Genes with a correlation greater than or equal to 0.5 are displayed in genomic 

order. The heatmap corresponds to DNA copy number abundance. 
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calculated to highlight the genes that are the most sensitive to DNA gains and losses. In this case, 

genes with Pearson correlations greater than 0.5 were considered to have a strong association 

(Figure 18D). A number of interesting genes fell into this classification. For instance, Inpp4b, a 

regulator of PI3K/AKT signaling [29], was lost in p53null-Basal
Ex

 tumors on chromosome 12, 

similar to human basal-like tumors [28]. Cul4a, which is located on the p53null-Basal
Ex

 

chromosome 8 amplicon, had a very high correlation with its gene expression (Pearson=0.86) 

(Figure 18D and Figure 19A). CUL4A is a scaffolding protein for E3 ubiquitin ligase that helps 

to regulate the cellular concentration of key protein substrates, including CHK1, E2F1, ER-α, 

and pol η to name a few [30]. Given the wide variety of cellular phenotypes that these protein 

substrates influence, such as proliferation and DNA repair [30], CUL4A has been proposed to be 

an attractive cancer drug target [31]. CUL4A amplification and overexpression has been 

observed in the human basal-like breast cancer subtype and has been demonstrated to be a driver 

of tumorigenesis both in-vitro and in-vivo [32-34]. p53null-Luminal
Ex

 tumors had a distinct 

amplification of chromosome 6 (Figure 18C). Within this region, six genes had high correlation 

with their gene expression (Figure 18D), including Met (Pearson=0.92) (Figure 19B). MET is a 

receptor tyrosine kinase for hepatocyte growth factor that regulates a variety of downstream 

signal transduction pathways, including MAPK and PI3K/AKT [35]. 

 Given that both p53null-Basal
Ex

 and p53null-Luminal
Ex

 tumors are counterparts for 

human basal-like tumors (Figure 13), we investigated the TCGA DNA copy number dataset to 

see if these genetic events also frequently occur in human breast tumors. Both MET and CUL4A 

were amplified in ~20% of human basal-like tumors (Table 10). Interestingly, these genetic 

events generally did not co-occur within the same tumor, similar to our p53null mouse model. 

Given that Met DNA amplification is a conserved feature of human and mouse basal-like 
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Figure 19: MET DNA amplification is a driver of 2250L (p53null-Luminal
Ex

) tumors 

A. Pearson correlation between Cul4a DNA copy number and gene expression B. Pearson 

correlation between Met DNA copy number and gene expression C. p53null mammary 

transplant tumor response to Crizotinib treatment 
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Table 10: DNA amplification status of CUL4A and MET across the TCGA breast cancer 

dataset 
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2250L (p53null-Luminal
Ex

) tumors completely regress with Crizotinib treatment 

Similar to Cul4a, Met DNA copy number had a very high correlation with its gene 

expression (Figure 19B). To determine if Met is a driver in Met amplified tumors, noting that 

this gene was not somatically mutated, we treated three p53null transplant tumor lines with 

Crizotinib, a US Food and Drug Administration (FDA) approved therapy for non-small-cell lung 

cancer [36] that inhibits Met and ALK [37]. While neither 2224L (p53null-Basal
Ex

) nor T11 

(p53null-Claudinlow
Ex

) tumors responded to treatment (noting that both of these lines were not 

MET amplified), all of the 2250L (p53null-Luminal
Ex

) tumors had complete regression at the 

end of the 14 day treatment period (Figure 19C). Since Alk is not differentially expressed across 

the three p53null transplant classes, we propose that this dynamic response is due to differences 

in Met signaling, and thus, Met amplification is a driver of tumorigenesis in this mouse model of 

basal-like breast cancer. 

 

DISCUSSION 

Even though increased public awareness and a greater understanding of tumor biology 

have led to improved patient survival rates, breast cancer is still the second leading cause of 

cancer related deaths in American women. With so many patients either not responding or 

relapsing with the current standard of care, the molecular mechanisms underlying breast cancer 

are under intense investigation to identify new, personalized drug targets [38, 39]. This is 

especially true for triple negative breast cancer (TNBC) (basal-like and claudin-low) for which 

targeted treatment options remain an important unmet clinical need. Murine models provide an 

excellent resource for identifying genetic drug targets by highlighting conserved features 

between species [11]. Given that somatic p53 mutations are one of the most common genetic 
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events in TNBC [3], the p53null mammary transplant mouse model is particularly useful for 

studying the molecular mechanisms of TNBCs. 

 The p53null transplant model produces heterogeneous tumors that can be classified into 

three major subtypes/classes based on gene expression profiles: p53null-Basal
Ex

, Claudin-low
Ex

, 

and p53null-Luminal
Ex

 [11]. Using a combination of gene expression comparisons, FACS 

analysis, and immunohistochemistry, we show that p53null-Basal
Ex

 and p53null-Luminal
Ex

 

tumors are counterparts for the human basal-like subtype, while p53null-claudinlow
Ex

 tumors are 

counterparts for the human claudin-low subtype. Even though p53null-Luminal
Ex

 tumors were 

the most ‘luminal’ of the p53null classes, these tumors were found to more closely resemble 

luminal progenitor cells than mature luminal cells. Specifically, FACS analysis of the 2250L 

(p53null-Luminal
Ex

) line indicated that this tumor is Cd49f
pos

/Epcam
pos

, the same FACS profile 

as luminal progenitor cells [23]. In addition, p53null-Luminal
Ex 

tumors have intermediate 

‘differentiation scores’, similar to luminal progenitor cells [2]. The original nomenclature for this 

class was derived by an observed association to the luminal subtypes based on a few luminal 

markers [14], but recent work has shown that mature luminal and luminal progenitor cells share 

many of the same features [24, 40]. For instance, both FACS populations are EpCAM
pos

 and 

Krt18
pos

 [23, 40], indicating that broader analyses are required to distinguish between these cell 

types within tumors. These findings help explain why p53null-Luminal tumors were found to be 

counterparts for the basal-like subtype and not the luminal A/B subtypes, as basal-like tumors 

also share features of luminal progenitor cells [23, 24]. 

Once these human-murine subtype counterparts were defined, secondary genetic 

aberration profiling was performed to identify conserved events between species to highlight 

candidate drivers of tumorigenesis. Of the ‘omic datasets analyzed, DNA copy number variation 
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produced the largest number of candidate genes. We were particularly interested in genes that 

had high correlation between their copy number and gene expression because for these cases, we 

propose that the copy number change is the mechanism that directly influences the expression of 

the genes within those genomic regions. 

The murine p53null-Luminal
Ex

 class showed a reproducible amplification of MET 

(without mutation), thus suggesting that this could be a driving event for this murine subtype. 

Crizotinib treatment resulted in complete tumor regression (not palpable) at the end of the 14 day 

treatment period in our 2250L (p53null-Luminal
Ex

) tumor line. MET is an important receptor 

tyrosine kinase that can activate a variety of signal transduction pathways, including MAPK and 

PI3K/AKT. These results suggest that MET is a driving oncogene in this subtype, and that 

Crizotinib may perform very well as a single agent against breast tumors with aberrant MET 

signaling. These experimental results are particularly relevant given that about 20% of human 

basal-like tumors have amplification of MET. Since not all basal-like patients have these 

aberrations, companion diagnostic tests will be required to determine which patients should 

receive treatment which, in this case, could be based upon the presence or absence of MET 

amplification. Proper clinical studies will be required to determine if that is the case. 

 In summary, we identified a number of class specific copy number events in our p53null 

mouse model, which mimicked similar events in human basal-like tumors. Using a comparative 

genomics approach, this study identified MET as a driver of one of these mouse classes and 

highlights the potential link of MET to human basal-like breast cancer [35]. In addition to this 

clinically important finding, it also highlights the importance of comparative genomic studies as 

a preclinical tool for discovering novel drug targets and for determining which patient 

populations are most likely to respond to treatment. Currently, only ~5% of oncology drugs that 
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enter clinical testing are ultimately approved by the US FDA for use [41]. From a financial 

perspective, this low success rate means that it cost more than $1,000,000,000 of research and 

development spending to develop a single oncology drug [42]. Needless to say, improved 

methods are needed to streamline the drug development process and to lower healthcare costs. 

As supported by the results of this study, we propose that mouse models should be an integral 

part of early phase drug development to highlight those drug/drug combinations most likely to 

succeed in clinical trials. 

 

MATERIALS AND METHODS 

Gene expression 

 Microarray gene expression data from 27 murine models of mammary carcinoma and 

normal mammary tissue were downloaded from the following gene expression omnibus (GEO) 

entries: GSE3165, GSE8516, GSE9343, GSE14457, GSE15263, GSE17916, GSE27101, and 

GSE42640 [11]. The 385 sample dataset was normalized to correct for microarray platform bias 

as previously described [11]. 

 Tumor differentiation scores were calculated across the microarray dataset as previously 

described [2]. Gene expression signatures were created for the three murine classes enriched with 

the p53null transplant model (p53null-Basal
Ex

, Claudin-low
Ex

, and p53null-Luminal
Ex

) by 

performing a two-class (class X versus all others) Significance Analysis of Microarrays (SAM) 

analysis on the microarray dataset [43]. Signatures were defined as all genes highly expressed in 

the class of interest with a false discovery rate (FDR) of 0%. Similarly, pathway signatures were 

created as previously described [11]. Expression scores for each gene and pathway signature 
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were determined by calculating the mean expression of the signature within each sample in the 

UNC308 [2], Combined855 [19], and Metabric [10] human breast cancer datasets.  

  

Flow cytometry 

p53null transplant tumors were dissociated into a single cell suspension using the 

following steps. First, each tumor was manually cut into small pieces with a razor blade in 1X 

collagenase/hyaluronidase (StemCell #07919) EpiCult media (StemCell #05601) before being 

placed in a rotator for two hours at 37
o
C. Following lysis of red blood cells using ammonia 

chloride (StemCell #07850), the tumors were incubated in 1X trypsin-EDTA (Sigma #T4049) 

for five minutes at 37
o
C and then in a 1X Dispase (StemCell #07923) DNase I solution 

(StemCell #07900) for five min at 37
o
C to reduce cell clumping. Cells were filtered through a 

40µm nylon cell strainer (Fisher Scientific #08-771-1) in HBSS media (StemCell #37150) with 

10% FBS (Sigma #F2442) to obtain the final single cell suspension. To remove non-epithelial 

cells, the single cell suspension was taking through a mouse epithelial cell enrichment kit 

(StemCell #19758) following the manufacturer’s protocol. Cells were labeled with the following 

antibodies for 30 minutes at 4
o
C: FITC anti-mouse Epcam (eBioscience #11-5791-82) and APC 

anti-mouse Cd49f (eBioscience #17-0495-82). Fluorescence-activated cell sorting (FACS) was 

performed using a Beckman-Coulter CyAn ADP instrument and analyzed using the FlowJo v10 

software program. 

 

DNA single nucleotide polymorphisms 

Mutation data was collapsed to a gene level so that all non-silent somatic mutations 

affecting the same gene were treated equally regardless of the actual mutation. A two-class (class 
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X versus all others) fisher’s exact test (FET) was performed to identify genes preferentially 

mutated within each p53null class (p-value<0.05). 

 

DNA structural variants 

Genomic structural variants (SV) were collapsed to a gene level so that all SV affecting 

the same gene were treated equally regardless of the actual SV. Genes were defined as being 

affected by the structural variant if the start or end of the SV occurred within the RefSeq gene 

region. A two-class (class X versus all others) FET was performed to identify genes 

preferentially affected by SV within each p53null class (p-value<0.05). Because all of the 

p53null Claudin-low
Ex

 tumors were analyzed using whole genome sequencing, a second two-

class FET was performed on these tumors in which only the 13 whole genome profiled tumors 

were included in the analysis to reduce the likelihood of the p53null Claudin-low
Ex 

enriched SV 

being an artifact of methodology. 

 

DNA copy number 

 DNA array comparative genomic hybridization (aCGH) data was downloaded for the 

p53null transplant tumors classified as p53null-Basal
Ex

, Claudin-low
Ex

, or p53null-Luminal
Ex 

by 

gene expression profiling from GEO entry GSE27101 [14]. In addition, genomic DNA was 

extracted from five p53null transplant tumors using a DNeasy blood and tissue kit (Qiagen 

#69504), labeled with a Sure Tag DNA kit (Agilent #5190-4240), and hybridized to 244K CGH 

microarrays (Agilent #G4415A) as previously described [14]. 

The 43 sample aCGH dataset was extracted from the UNC Microarray Database as log2 

Cy5/Cy3 ratios, filtering for probes with Lowess normalized intensity values greater than ten in 
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the control channel and for probes with data on greater than 70% of the microarrays [14]. The 

probes that passed these filters where then oriented in genomic order and a ten probe average 

was calculated on consecutive groups of ten probes across each chromosome, resulting in a final 

dataset of 23,181 features. A two-class (class X versus all others) SAM analysis was performed 

to identify genomic regions of amplification or deletion unique to each class (FDR of 0%). 

 Level 3 DNA segmentation data was downloaded from The Cancer Genome Atlas 

(TCGA) data portal for 715 breast cancer samples. Genomic regions of amplification were 

defined as having a log2 segmentation value greater than 0.3. 

 

Crizotinib treatment 

 All mouse work was performed under protocols approved by the UNC Institutional 

Animal Care and Use Committee (IACUC). One million p53null transplant cells were suspended 

in matrigel and injected subcutaneously into the mammary pad of BALB/c wild-type female 

mice. Upon tumor formation, mice were randomized to either the Crizotinib (ChemShuttle 

#877399-52-5) or untreated group. Crizotinib chow was synthesized by OpenSource Diets to a 

final concentration of 50 mg/kg/day and was given continuously over the 14 day treatment 

period to monitor tumor growth. Tumor volume was calculated from two-dimensional 

measurements (Volume = [(width)
2
 x length]/2). The percent change in volume at 14 days was 

used to quantify response. 
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CHAPTER 5: THE MMTV-WNT1 MURINE MODEL PRODUCES TWO 

PHENOTYPICALLY DISTINCT SUBTYPES OF MAMMARY TUMORS WITH 

UNIQUE CLINICAL OUTCOMES TO EGFR INHIBITORS 

 

OVERVIEW 

Background  

The Wnt gene family is an evolutionarily conserved group of proteins that regulate cell 

growth, differentiation, and stem cell self-renewal. Aberrant Wnt signaling in human breast 

tumors has been proposed to be an attractive drug target, especially in the basal-like subtype 

where canonical Wnt signaling is both enriched and predictive of poor clinical outcomes. The 

development of effective Wnt based therapeutics, however, has been slowed in part by a limited 

understanding of the context dependent nature with which these aberrations influence breast 

tumorigenesis. 

 

Methods  

MMTV-Wnt1 mice are an established model for studying Wnt signaling in breast tumors. 

We recently reported that this model develops two subtypes of tumors by gene expression 

classification: Wnt1-Early
Ex

 and Wnt1-Late
Ex

. Here, we validate this initial observation using a 

combination of histology, fluorescence-activated cell sorting (FACS), limiting dilution assays, 

mutation analysis, gene expression profiling, and drug treatments to compare the phenotypes of 

these two Wnt1 tumor subtypes. 
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Results  

Wnt1-Early
Ex

 tumors have high expression of canonical Wnt, non-canonical Wnt, and 

EGFR signaling pathway signatures. Therapeutically, Wnt1-Early
Ex

 tumors had a dynamic 

reduction in tumor volume when treated with EGFR inhibitors. Wnt1-Early
Ex

 tumors had 

primarily Cd49f
+
/Epcam

-
 FACS profiles, but were unable to be serially transplanted into wild-

type FVB female mice. Wnt1-Late
Ex

 tumors, conversely, had a bloody gross pathology, which is 

highlighted by the presence of ‘blood lakes’ by H&E staining. These tumors had primarily 

Cd49f
+
/Epcam

+
 FACS profiles, but also contained a secondary Cd49f

+
/Epcam

-
 subpopulation. 

Both Wnt1-Late
Ex

 FACS subpopulations contained activating Hras1 mutations and were capable 

of individually reproducing tumors when serially transplanted into wild-type FVB female mice.  

 

Conclusions 

This study definitely shows that the MMTV-Wnt1 mouse model produces two 

phenotypically distinct subtypes of mammary tumors. Importantly, these subtypes differ in their 

therapeutic response to EGFR inhibitors, suggesting that a subset of human tumors with aberrant 

Wnt signaling may also respond to these drugs. 

 

BACKGROUND 

 The mammalian breast is a unique organ capable of dynamic morphologic and 

physiologic change during organogenesis, puberty, pregnancy, lactation, and involution [1]. 

These processes are supported by a breast morphology that can be subdivided into four primary 

compartments: the stroma, the basement membrane, the basal layer, and the luminal layer [2, 3]. 

Within each of these compartments reside specific cell types that together form a mammary cell 
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hierarchy [4-6]. Specifically, the stroma consists primarily of fibroblasts, adipocytes, and 

immune cells [3, 7]. The basal layer is enriched for myoepithelial cells and mammary stem cells 

(MaSC) [8] and the luminal layer contains a combination of estrogen receptor (ER) positive and 

ER negative mature luminal cells [3]. 

 Each cell within this hierarchy has developed specialized functions to support the 

necessary changes that will occur over a woman’s lifetime. These processes include important 

elements of paracrine signaling to transmit signals across the different mammary compartments 

to specific recipients [9]. The Wnt family is an evolutionarily conserved group of proteins that 

promote paracrine signal transduction through at least five different pathways [2]. The canonical 

Wnt pathway signals through Frizzled (Fzd) and LDL-receptor-related (Lrp) co-receptors (Lrp5 

and Lrp6) to activate Beta-catenin transcriptional regulation of key genes [2], such as c-Myc 

[10], c-Jun [11], and Vegf [12]. The other Wnt-regulated pathways are collectively referred to as 

non-canonical Wnt signaling. These include calcium and planar cell polarity signaling through 

Fzd receptors, Jnk signaling through the Ror2 receptor and Src signaling through the Ryk 

receptor [2]. While these pathways are commonly described from a cell autonomous perspective, 

complex signaling patterns emerge when paracrine signaling is considered [9]. In addition, there 

are 19 Wnt ligands and 10 Fzd receptors. When taking into account co-receptors and cell type 

specific expression patterns [13, 14], a large number of combinations are possible. Given the 

importance of Wnt signaling for controlling cell growth, differentiation, and stem cell self-

renewal [15], a research emphases has been placed on better understanding these Wnt signaling 

pathways.  

 One area of particular focus has been determining how aberrant Wnt signaling influences 

breast tumor formation and progression. Breast cancer is a heterogeneous disease that can be 
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segregated into at least six distinct intrinsic subtypes based on gene expression profiles: basal-

like, claudin-low, HER2-enriched, luminal A, luminal B, and normal-like [16-18]. Interestingly, 

canonical Wnt signaling is enriched in basal-like breast tumors [19]. These patients also tend to 

have a poor clinical outcome [19], suggesting Wnt signaling as a potential therapeutic target 

[15]. Unlike colorectal cancer where inappropriate Wnt pathway activation is associated with 

gene mutations [20], mutations affecting Wnt associated genes are uncommon in breast tumors 

[18]. Instead, activation in breast tumors is proposed to occur through the downregulation of 

negative Wnt pathway regulators, such as secreted frizzle-related proteins [21, 22]. Even though 

these pathways have been highly examined, more research is needed to fully untangle the 

complex behavior of these signaling molecules. For instance, the molecular mechanisms that 

explain how paracrine Wnt signaling can induce growth of some tumors and inhibit it in others 

have remained elusive [23]. 

 Genetically engineered mouse models are a useful resource for studying mammary 

tumors in vivo under genetically controlled and immune competent conditions [24]. MMTV-

Wnt1 mice are particularly useful for modeling Wnt signaling in breast tumors [25, 26]. These 

tumors are comprised of mixed-lineage subclonal populations, having features of both luminal 

and basal epithelial cells [27]. In a subset of MMTV-Wnt1 tumors, cooperation between both 

subclonal populations is required for tumor propagation [27], highlighting this model as a tool 

for studying Wnt paracrine signaling and intratumoral heterogeneity [28]. We recently reported 

that MMTV-Wnt1 mice develop two subtypes/classes of tumors based on gene expression 

profiling [29], a finding that is surprisingly underrepresented in the vast literature on this model. 

Here, we investigate the significance of our prior observation and show that that these two 

classes of tumors have distinct phenotypes. Importantly, drug treatment experiments confirmed 
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that these subtypes had substantial response differences, thus shedding additional light on the 

significance of the Wnt pathway. 

 

RESULTS 

Even though the Wnt family has been highly studied from both developmental and 

oncology perspectives, the complexity of this pathway has hindered a complete understanding of 

the molecular mechanisms that regulate cell growth, differentiation, and stem cell self-renewal 

[15]. The MMTV-Wnt1 murine model is attractive for studying aberrant Wnt signaling in breast 

carcinoma [25, 26]. Interestingly, we find that these mice have a broad distribution of tumor 

latencies, developing as early as 5 weeks of age and as late as 58 weeks of age (Figure 20A). A 

histogram of 172 tumor latencies produces a bimodal distribution, with an ‘early’ local 

maximum around 7.5 weeks and a ‘late’ local maximum around 21.5 weeks. Even though no 

differences were observed on a DNA copy number level (Figure 21), gene expression profiling 

found that these Wnt-Early
Ex

 and Wnt1-Late
Ex

 tumors have distinct biological features [29], 

indicating that this tumor latency distribution is more than just a stochastic event (Figure 20B). 

Given these findings, we performed an in depth comparison of these two Wnt1 tumor classes to 

further our understanding of the clinical significance of Wnt signaling in breast carcinoma. 

 

Wnt1-Early
Ex

 and Wnt1-Late
Ex

 tumors have distinct gross pathology and histology traits 

 In addition to being classified into different molecular expression subtypes/classes, 

Wnt1-Early
Ex

 and Wnt1-Late
Ex

 tumors were also found to have distinct gross pathological 

features. Specifically, Wnt1-Early
Ex 

tumors tended to show a dense cellular morphology and be 
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Figure 20: The MMTV-Wnt1 model produce two classes of mammary tumors with distinct 

latencies, gross pathology and histology features  

A. MMTV-Wnt1 tumor latency histogram by week B. Dendrogram of a hierarchical cluster of all 

murine tumors in our dataset using a previously defined intrinsic gene list [29]. Boxes 

correspond to previously defined murine intrinsic subtypes/classes [29]. C. Gross pathology of 

representative Wnt1-Early
Ex

 and Wnt1-Late
Ex

 tumors. D. H&E staining of representative Wnt1-

Early
Ex

 and Wnt1-Late
Ex

 tumors. E. Standardized expression of a hypoxia gene signature [30] 

across mouse class. F. Krt5 and Krt8/18 staining of representative Wnt1-Early
Ex

 and Wnt1-

Late
Ex

 tumors. G. Krt5 and Krt8/18 staining of representative Wnt1-Early
Ex

 tumors. H. Relative 

tumor fraction of Krt5 positive and Krt8/18 positive cells. 
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Figure 21: Wnt1-Early
Ex

 and Wnt1-Late
Ex

 have similar DNA copy number landscapes 

Displayed in genomic order are the median class DNA copy number levels for A. Wnt1-Early
Ex

 

and B. Wnt1-Late
Ex

 tumors. 
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more resistant to incision, while Wnt1-Late
Ex 

tumors appeared to be more necrotic and often 

filled with pockets of blood (Figure 20C). Importantly, these characteristics were found to be 

irrespective of tumor size at the time of collection, indicating that these observations were not a 

technical artifact but inherent to the tumors themselves. These gross pathological differences 

were recapitulated with hematoxylin and eosin (H&E) staining in which Wnt1-Late
Ex

 tumors had 

characteristic ‘blood lake’ regions as highlighted by black arrows in Figure 20D. These different 

vascular traits led us to hypothesize that Wnt1-Early
Ex

 tumors should be more hypoxic than 

Wnt1-Late
Ex

 tumors. In support of this, a VEGF/Hypoxia gene signature [30] is highly expressed 

in Wnt1-Early
Ex

 tumors and lower expressed in Wnt1-Late
Ex

 tumors. 

 It is well documented that MMTV-Wnt1 tumors are comprised of mixed-lineage 

subclonal populations, having features of both luminal and basal cells [27]. To investigate the 

relative fraction of these subclonal populations, immunofluorescence staining was performed 

using antibodies against Krt5 (a marker of basal cells) and Krt8/18 (a marker of luminal cells). 

Consistent with the literature, both Wnt1-Early
Ex

 and Wnt1-Late
Ex

 tumors stained positive for 

both cell populations (Figure 20F). Unlike Wnt1-Late
Ex

, Wnt1-Early
Ex

 tumors had distinct 

regions that did not stain positive for either Krt5 or Krt8/18 (Figure 20G). These areas did stain 

positive for DAPI, indicating that there are cells within these regions. When measuring the 

relative tumor fractions of these populations, it is observed that Wnt1-Late
Ex

 tumors contained a 

higher fraction of Krt5 positive cells (p=0.02) and Krt8/18 positive cells (p=0.001) than Wnt1-

Early
Ex

 tumors (Figure 20H). Combined, these two cell fractions comprised about 100% of 

Wnt1-Late
Ex

 tumors. For Wnt1-Early
Ex 

tumors, these two fractions only accounted for only about 

65% of the tumor, with the remaining 35% consisting of regions that did not stain positive for 

either Krt5 or Krt8/18. Further experiments, such as laser capture microdissection (LCM), will 
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be needed to determine the biological significance of these heterogeneously staining (or not 

staining) tumor regions. 

 

Wnt1-Early
Ex

 tumors are enriched for canonical and non-canonical Wnt pathway 

signatures 

 Wnt signal transduction can occur through several different molecular pathways, 

including canonical Wnt, Jnk, and Src [2]. To investigate these pathways in our mouse tumors, 

expression based pathway gene signatures were used to estimate pathway activity [29, 31]. As a 

good positive control, the canonical KEGG WNT signaling pathway was the most highly 

expressed in both Wnt1-Early
Ex

 and Wnt1-Late
Ex

 classes (Figure 22A). Interestingly, this 

pathway signature is higher expressed in Wnt1-Early
Ex

 compared to Wnt1-Late
Ex

 tumors 

(p=0.02). This observation does not appear to be a result of variation in Wnt1 transgene 

expression, as there was no statistical difference between the Wnt1-Early
Ex

 and Wnt1-Late
Ex

 

classes for the single Wnt1 probe (exon 4) in our combined murine dataset (Figure 22B). A 

closer investigation into the individual genes within the canonical KEGG WNT signaling 

pathway identified several differentially expressed genes between Wnt1-Early
Ex

 and Wnt1-

Late
Ex

 tumors (Figure 22B). Canonical Wnt signaling occurs through Frizzled (Fzd) and LDL-

receptor-related (Lrp) co-receptors [2]. Fzd receptors Fzd1, Fzd2, Fzd9, and Fzd10 are higher 

expressed in Wnt1-Early
Ex

 tumors, while Fzd5 is higher in Wnt1-Late
Ex

 tumors (FDR 0%). In 

addition, the Lef1 transcription factor and its target, c-Jun [11], are also higher expressed in 

Wnt1-Early
Ex

 tumors (FDR 0%). These results are consistent with higher canonical Wnt pathway 

activity in Wnt1-Early
Ex

 tumors. 
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Figure 22: Wnt-Early
Ex

 tumors have expression of Wnt associated pathway signatures  

A. Standardized expression of the KEGG Wnt signaling pathway signature across mouse class. 

B. Schematic of the KEGG Wnt signaling pathway. C. Standardized expression of the ST JNK 

MAPK signaling pathway signature across mouse class. D. Standardized expression of the 

Biocarta SRC signaling pathway signature across mouse class. 
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 In addition to higher expression of the canonical KEGG WNT signaling pathway 

signature, Wnt1-Early
Ex

 tumors also have higher expression of non-canonical Wnt signaling 

pathway signatures: ST JNK MAPK Signaling Pathway (p=1.0e
-4

) (Figure 22C) and Biocarta 

SRC Signaling Pathway (p=1.0e
-4

) (Figure 22D). These results are intriguing because they 

suggest that Wnt1-Early
Ex

 tumors signal through both canonical and non-canonical Wnt 

pathways to a greater extent than Wnt1-Late
Ex

 tumors. 

 

Wnt1-Early
Ex

 tumors respond to epidermal growth factor receptor inhibitors 

 In addition to canonical and non-canonical signaling, Wnt associated genes can also 

crosstalk with a variety of other signal transduction pathways [32-34], including epidermal 

growth factor receptor (EGFR) signaling [35]. Specifically, NKD2 is capable of binding and 

shuttling TGFA to the plasma membrane, which serves as an activating ligand of EGFR (Figure 

23A). Interestingly, both Nkd2 and Tgfa are higher expressed in Wnt1-Early
Ex

 tumors (FDR 0%). 

Given this observation, we hypothesized that Wnt1-Early
Ex

 tumors might have a greater degree 

of EGFR signaling than Wnt1-Late
Ex

 tumors. Consistent with this, the KEGG EGFR signaling 

pathway signature is higher expressed in Wnt1-Early
Ex

 as compared to Wnt1-Late
Ex

 tumors 

(p=0.001) (Figure 23B). To determine the clinical importance of these findings, Wnt1-Early
Ex

 

and Wnt1-Late
Ex

 tumors were randomized into one of three treatment groups: untreated, erlotinib 

(an EGFR inhibitor), or lapatinib (a duel EGFR and HER2 inhibitor). As hypothesized, Wnt1-

Early
Ex

 tumors had a median tumor regression of 90% when treated with erlotinib and a median 

tumor regression of 85% when treated with lapatinib at the end of the two week treatment period 

(Figure 23C). Wnt1-Late
Ex

 tumors, however, continued to progress with erlotinib treatment with 

a median tumor growth of 109%. When treated with lapatinib, Wnt1-Late
Ex

 tumors had a  
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Figure 23: Wnt-Early
Ex

 tumors respond to EGFR inhibitors  

A. Schematic of WNT and EGFR pathway crosstalk B. Standardized expression of the KEGG 

EGFR signaling pathway signature across mouse class. C. 14 day tumor response to Erlotinib 

and Lapatinib treatment. 
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bimodal response with about half of tumors regressing with treatment and half progressing. 

These results indicate that Wnt1-Early
Ex

 tumors were therapeutically more responsive to EGFR 

inhibitors than Wnt1-Late
Ex

 tumors. 

 

Wnt1-Early
Ex

 and Wnt1-Late
Ex

 tumors have distinct mammary subpopulation FACS 

profiles 

 Normal mammary gland physiology is supported by an underlying, complex cell 

hierarchy [4-6]. A simplistic model places the multi-potent mammary stem cell (MaSC) at the 

base of this hierarchy, having extensive, self-regenerative potential [3]. During mammary 

development, the MaSC has been proposed to divide asymmetrically to produce 

basal/myoepithelial cells as well as luminal progenitors (LumProg), which have more restricted 

proliferative and differentiation capabilities [3]. LumProg cells are capable of further 

differentiation into mature luminal (MatureLum) cells, such as Estrogen Receptor (ER)-positive 

ductal epithelium, which have an even more limited proliferative potential and some of which 

are terminally differentiated [3]. 

MMTV-Wnt1 tumors may originate from several, if not all, of the cell types within this 

mammary hierarchy. To determine if Wnt1-Early
Ex

 and Wnt1-Late
Ex

 tumors share features with 

any of these cell populations, four primary tumors from each class were fluorescence-activated 

cell sorted (FACS) using antibodies against Cd49f and Epcam [27, 36]. FACS profiles of Wnt1-

Early
Ex

 tumors consisted of two populations (Figure 24A). The major (~75%) epithelial cell 

population was Cd49f
+
/Epcam

-
, while the minor (~10%) population was Cd49f

+
/Epcam

+ 
(Figure 

24B). Normal human MaSCs are defined as having CD49f
+
/EpCAM

-
 FACS profiles [3], 

indicating that the majority of Wnt1-Early
Ex

 tumor cells share similar features as normal MaSCs.  
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Figure 24: Wnt-Early
Ex

 and Wnt1-Late
Ex

 tumors share features with different normal 

mammary cell types  

A. Cd49f, Epcam FACS profile of a representative Wnt1-Early
Ex

 tumor B. FACS population 

frequencies of Wnt1-Early
Ex

 tumors C. Cd49f, Epcam FACS profile of a representative Wnt1-

Late
Ex

 tumor D. FACS population frequencies of Wnt1-Late
Ex

 tumors E. First two principle 

components of FACS sorted Wnt1 tumors.  
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Although Wnt1-Late
Ex

 tumor FACS profiles also had two FACS populations, the frequencies 

were distinct from Wnt1-Early
Ex

 tumors (Figure 24C). Specifically, the major (~60%) epithelial 

cell population was Cd49f
+
/Epcam

+
, while the minor population (~25%) was Cd49f

+
/Epcam

-
 

(Figure 24D). Normal human LumProg cells are defined as having CD49f
+
/EpCAM

+
 FACS 

profiles [3], indicating that the majority of Wnt1-Late
Ex

 tumor cells share similar features as 

normal LumProg cells. 

It is possible that the MMTV-Wnt1 model produces semi-homogeneous tumors [29] 

simply because of intratumor variation in the frequencies of these two FACS populations and not 

because of differences between corresponding FACS populations across the two classes 

themselves. For example, this hypothesis would propose that the Wnt1-Early
Ex

 Cd49f
+
/Epcam

-
 

population should be phenotypically the same as the Wnt1-Late
Ex

 Cd49f
+
/Epam

-
 population. To 

address this, three tumors from each Wnt1 class were FACS into their corresponding populations 

and microarray analyzed. A global transcriptomic comparison of these FACS populations using a 

principle component (PC) analysis highlights that the first PC separates the Cd49f
+
/Epcam

- 

population from the Cd49f
+
/Epcam

+
 population, irrespective of which Wnt1 tumor class they 

were derived from (Figure 24E). This observation is consistent with the proposed hypothesis that 

these FACS populations are phenotypically similar across classes, but the first PC only explains 

44% of the variation. The second PC, which explains 19% of the variation, separates Wnt1-

Early
Ex

 from Wnt1-Late
Ex

 tumors. Taken together, these results indicate that while the 

corresponding FACS populations are highly similar across Wnt1-Early
Ex

 and Wnt1-Late
Ex

 

tumors, they also have class specific features. 
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Both Wnt1-Late
Ex

 tumor FACS subpopulations have tumor initiating potential 

 Given that Wnt1-Early
Ex

 tumors share features of normal MaSCs and Wnt1-Late
Ex

 

tumors share features of normal LumProg cells, we hypothesized that these two Wnt1 classes 

may have different tumor initiating potential. To test this, Wnt1 tumors were FACS sorted into 

their subpopulations and a limiting dilution assay was performed in which each subpopulation 

was injected into the mammary pad of female FVB wild-type mice. In addition, a subset of 

MMTV-Wnt1 tumors requires both FACS populations for tumor growth [27]; therefore, a third 

cohort consisting of an equal mixture of each FACS subpopulation was also performed to 

investigate this possibility in our two classes. Interestingly, Wnt1-Early
Ex

 tumor cells were 

unable to be serially transplanted into wild-type mice, giving rise to no tumors after injection 

with 50,000 cells (Figure 25). Conversely, all combinations of Wnt1-Late
Ex

 tumor cells gave rise 

to tumors. These results were unexpected, but indicate that both Wnt1-Late
Ex

 FACS 

subpopulations have tumor initiating potential. 

 Tumors that arose from the individual Wnt1-Late
Ex

 FACS populations were then re-

FACS analyzed to investigate their tumor profiles. Similar to the parental tumor, the FACS 

profile of Wnt1-Late
Ex

 Cd49f
+
/Epcam

-
 injected cells contained two populations (Figure 25B) of 

about equal frequency (Figure 25C). A similar observation was observed for Wnt1-Late
Ex

 

Cd49f
+
/Epcam

+
 injected cells (Figure 25D and 5E). These results show that both Wnt1-Late

Ex
 

populations are capable of reproducing the other population when injected into the mammary 

pad after FACS purification. 
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Figure 25: Both Wnt1-Late
Ex

 tumor subpopulations have tumor initiating potential  

A. Limiting dilution cell transplantation assay B. Cd49f, Epcam FACS profile of a representative 

Wnt1-Late
Ex

 CD49f
+
, Epcam

-
 passaged tumor. C. FACS population frequencies of Wnt1-Late

Ex
 

CD49f
+
, Epcam

-
 passaged tumors D. Cd49f, Epcam FACS profile of a representative Wnt1-

Late
Ex

 CD49f
+
, Epcam

+
 passaged tumor. E. FACS population frequencies of Wnt1-Late

Ex
 

CD49f
+
, Epcam

+
 passaged tumors.   
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Both Wnt1-Late
Ex

 tumor FACS subpopulations have activating Hras1 mutations 

 To highlight the possible genetic drivers which explain this difference in tumor initiating 

potential, five Wnt1-Early
Ex

 and five Wnt1-Late
Ex

 tumors were RNA sequenced (i.e. mRNA-

seq) to profile mutations in MMTV-Wnt1 tumors. It is known that a subset of MMTV-Wnt1 

tumors harbor activating Hras1 mutations [27]. Interestingly, all of the Wnt1-Late
Ex

 tumors 

profiled contained exon 3 activating Hras1 mutations, while none of the Wnt1-Early
Ex

 tumors 

were mutated (Figure 26A). Even though the specific mutations varied, all of the Wnt1-Late
Ex

 

Hras1 mutations resulted in an amino acid substitution at position 61, and the majority of 

samples had a mutation allele frequency of ~25% (Figure 26B). 

In colorectal cancer, APC loss of function mutations synergize with KRAS activating 

mutations to activate cancer stem cells [37]. If similar synergy occurs in Wnt1-Late
Ex

 tumors, 

these activating Hras1 mutations may explain why these tumors have tumor initiating potential. 

This hypothesis would predict that both Wnt1-Late
Ex

 FACS populations should contain Hras1 

mutations since both were capable of producing tumors when injected individually. To test this, 

DNA was extracted from each FACS population and Sanger sequenced. In support of this 

hypothesis, both Wnt1-Late
Ex

 populations contained Hras1 mutations, while both of the Wnt1-

Early
Ex

 populations were wild-type. The initial Hras1 mutations were identified from RNAseq 

data; therefore, it is possible that Wnt1-Early
Ex

 tumors could contain DNA Hras1 mutations but 

are transcriptionally repressing that allele. The Sanger sequencing data indicates that Wnt1-

Early
Ex

 tumors do not contain DNA Hras1 mutations. 
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Figure 26: Wnt-Late
Ex

 tumors have activating Hras mutations 

A. Hras1 RNAseq reads. Gray read depth corresponds to wild-type sequence. B. Hras1 exon 3 

mutations in Wnt1-Late
Ex

 tumors. 
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DISCUSSION 

 Breast cancer is the second leading cause of cancer related deaths in American women 

[38]. Patient care is particularly complicated by breast tumor heterogeneity, which is defined by 

multiple intrinsic subtypes [16-18]. While a greater understanding of tumor biology has led to 

targeted treatment options for most of these subtypes [39, 40], personalized drug targets for 

basal-like tumors remain an important unmet clinical need [41]. Given that Wnt signaling is both 

enriched in basal-like tumors and predictive of poor clinical outcomes [19], Wnt signaling has 

been proposed to be an attractive drug target for these patients [15]. The development of 

effective Wnt based therapeutics against breast tumors, however, has been slowed in part by the 

complexity of Wnt signaling [2, 15]. In addition to canonical and several non-canonical 

pathways, Wnt signaling is also known to crosstalk with a variety of other signal transduction 

pathways [32-35]. It is this context dependent nature that likely accounts for the finding that 

paracrine Wnt signaling can induce growth of some tumors and inhibit it in others [23]. Given 

the importance of Wnt signaling for regulating cell growth differentiation, and stem cell self-

renewal [15], a better understanding of these signaling pathways is needed. 

 MMTV-Wnt1 mice are an attractive model for studying the context dependent nature 

with which these aberrations influence breast tumorigenesis [27]. We recently reported that this 

model develops two subtypes of tumors by gene expression classification [29]. Given that this 

finding is underrepresented in the literature, we sought to validate our initial observation with a 

more thorough examination of these two Wnt1 subtypes. Here we definitely show that these two 

tumor subtypes are indeed phenotypically and clinically distinct, furthering our understanding of 

Wnt signaling in breast cancer. 
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 Wnt1-Early
Ex

 mice were initially characterized by their early tumor latency, accounting 

for ~60% of the MMTV-Wnt1 tumors profiled in this study. In addition to having a cellular 

dense gross pathology, these tumors were also enriched for a hypoxia gene signature. While 

these tumors contained features of both basal and luminal mammary cell types, they also have 

distinct regions that do not stain positive for either cell marker. Although the results presented 

here are unable to address the biological impact of these regions, we propose that they are likely 

to be significant given that they account for ~35% of the tumor. On a pathway level, Wnt1-

Early
Ex

 tumors have higher expression of both canonical and non-canonical signaling. On a gene 

level, Nkd2 and Tgfa were particularly highly expressed in these tumors and were capable of 

crosstalk with EGFR signaling [35]. We validated the clinical significance of this observation by 

treating MMTV-Wnt1 tumors with Erlotinib and Lapatinib. As predicted, Wnt1-Early
Ex

 tumors 

have a dynamic reduction in tumor volume after only 14 days of treatment. The FACS profile of 

these tumors highlights that they are ~75% Cd49f
+
/Epcam

-
. Although this profile is similar to 

adult mammary stem cells (MaSCs) [3], these tumors are unable to be serially transplanted into 

wild-type FVB female mice. 

 Wnt1-Late
Ex

 mice were initially identified by their longer tumor latency, accounting for 

~40% of the MMTV-Wnt1 tumors profiled in this study. These tumors have a bloody gross 

pathology, which is highlighted by the presence of ‘blood lakes’ by H&E staining. They also 

have cell features of both basal and luminal mammary cell types, which account for ~100% of 

the tumor. On a pathway level, Wnt1-Late
Ex

 tumors have high expression of canonical Wnt 

signaling compared to other mouse tumors, but lower expression in comparison to Wnt1-Early
Ex

 

tumors. Although these tumors have a FACS profile that is ~60% Cd49f
+
/Epcam

+
, they also 

contain a secondary Cd49f
+
/Epcam

- 
population that accounts for ~25% of epithelial cells. 
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Interestingly, both of these cell populations are able to reproduce tumors when serially 

transplanted into wild-type FVB female mice. Similar to the parental tumor, the FACS profile of 

these serially transplanted cells contains two populations, indicating that both Wnt1-Late
Ex

 

populations are capable to reproducing the other. This tumor initiating property may be linked to 

the presence of Hras1 mutations in Wnt1-Late
Ex

 tumors. This hypothesis is supported by the 

finding that KRAS mutations synergize with aberrant Wnt signaling in colorectal cancer to 

activate cancer stem cells [37]. In a previous publication on MMTV-Wnt1 tumors, Hras1 

mutations were shown to be specific to the Cd49f
+
/Epcam

-
 population [27], but in the tumors we 

sequenced, Hras1 mutations were identified in both the Cd49f
+
/Epcam

-
 and the Cd49f

+
/Epcam

+
 

FACS populations. This finding is also consistent with our hypothesis since we would predict 

that only cell populations with Hras1 mutations are capable of being serially passaged. Further 

testing should be aimed at addressing this possibility by introducing Hras mutations into Wnt1-

Early
Ex

 tumors and retesting their tumor initiating potential. 

 The FACS profiles imply that Wnt1-Early
Ex

 tumors arise from MaSCs and that Wnt1-

Late
Ex

 tumors arise primarily from luminal progenitor cells. Although additional experiments 

(e.g. lineage tracing) will be required to unequivocally determine this, these associations at the 

very least identify which normal mammary subpopulation a given tumor most represents in its 

current state. If the inappropriate expansion of these cell populations was truly a stochastic event, 

we would not expect to observe such a stark contrast in tumor latency between the two Wnt1 

subtypes. This latency difference suggests that these are not random, but regulated events. Of the 

tumors profiled in this study, we did not find a single case of subtype switching (where an ‘early’ 

latency tumor was classified as a ‘Wnt1-Late
Ex

’ or vice versa), indicating that these regulating 

mechanisms are rather strong. Broadly, we hypothesize that the mechanisms governing Wnt1-
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Early
Ex

 tumor development are likely related to puberty, which occurs around this time [6]. 

Wnt1-Late
Ex

 tumor susceptibility is likely influenced by age related changes that increase the 

risk of developing Hras1 activating mutations, as is the case for KRAS mutations in colorectal 

cancer [42]. 

 

MATERIALS AND METHODS 

Mouse husbandry 

All animal work was done in UNC DLAM facilities in compliance with IACUC 

approved protocols. FVB/n mice carrying the MMTV-Wnt1 transgene were bred and housed 

until the onset of a mammary tumor. The following PCR primers were used for genotyping: 5’-

GGACTTGCTTCTCTTCTCATAGCC-3’ and 5’-CCACACAGGCATAGAGTGTCTGC-3’. 

 

Gene expression 

 Microarray gene expression data from 27 murine models of mammary carcinoma and 

normal mammary tissue were downloaded from the following gene expression omnibus (GEO) 

entries: GSE3165, GSE8516, GSE9343, GSE14457, GSE15263, GSE17916, GSE27101, and 

GSE42640 [29]. An additional 35 MMTV-Wnt1 tumors were microarray profiled as previously 

described [29]. The 420 sample dataset was normalized to correct for microarray platform bias as 

previously described [29]. 

RNAseq libraries were prepared from 26 MMTV-Wnt1 tumors using a TruSeq RNA kit 

(Illumina #RS-122-2001) before being submitted to the Lineberger Comprehensive Cancer 

Center Genomics Core to be run on the Illumina HiSeq 2000. 
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 Tumor differentiation scores were calculated across the microarray dataset as previously 

described [17]. Gene expression signatures were created for Wnt1-Early
Ex

 and Wnt1-Late
Ex

 

tumors by performing a two-class (class X versus all others or Wnt1-Early
Ex

 vs Wnt1-Late
Ex

) 

Significance Analysis of Microarrays (SAM) analysis on the microarray dataset [43]. Signatures 

were defined as all genes highly expressed in the class of interest with a false discovery rate 

(FDR) of 0%. Similarly, pathway signatures were created as previously described [29]. 

Expression scores for each gene and pathway signature were determined by calculating the 

standardized mean expression of the signature within each sample. 

  

DNA copy number 

 Genomic DNA was extracted from 11 Wnt1-Early
Ex

 and 10 Wnt1-Late
Ex

 tumors using a 

DNeasy blood and tissue kit (Qiagen #69504), labeled with a Sure Tag DNA kit (Agilent #5190-

4240), and hybridized to 244K CGH microarrays (Agilent #G4415A) as previously described 

[44]. 

The 21 sample aCGH dataset was extracted from the UNC Microarray Database as log2 

Cy5/Cy3 ratios, filtering for probes with Lowess normalized intensity values greater than ten in 

the control channel and for probes with data on greater than 70% of the microarrays [44]. The 

probes that passed these filters where then oriented in genomic order and a ten probe average 

was calculated on consecutive groups of ten probes across each chromosome, resulting in a final 

dataset of 23,204 features. A two-class (Wnt1-Early
Ex

 vs Wnt1-Late
Ex

) SAM analysis was 

performed to identify genomic regions of amplification or deletion unique to each class (FDR of 

0%). 
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Immunofluorescence 

Tissue samples were fixed in 10% neutral buffered formalin (Sigma-Aldrich 

Cat#HT5012) overnight before being submitted to the UNC Lineberger Animal Histopathology 

core facility to be paraffin embedded and sectioned. Slides were heated for 30 minutes at 55°C 

and then washed with Xylene (Fisher Scientific Cat#X3P) and ethanol (Decon Laboratories, Inc 

Cat#2716) to deparaffin the samples. To increase antigen exposure, slides were boiled for 15 

minutes in Antigen Retrieval Citra Plus Solution (BioGenex Cat#HK080-9K). Samples were 

blocked for 1 hour at room temperature in TBS (BioRad Cat#170-6435)/0.05% Tween 20 

(BioRad Cat#161-0781) plus 5% normal goat serum (Sigma- Aldrich Cat#G9023). Proteins were 

labeled with murine Krt5 (Covance Cat#PRB-160P) and murine Krt8/18 (Fitzgerald Cat#20R-

CP004) primary antibodies at 4
o
C overnight before being labeled with an anti-rabbit secondary 

antibody (Molecular Probes Cat#A11034) and anti-guinea pig (Molecular Probes Cat#A11076) 

at room temperature for one hour. Slides were mounted with DAPI (Vector Laboratories Cat#H-

1500). Slides images were taken using a Nikon Eclipse E600 microscope and processed using 

the ImageJ software. 

 

Drug Treatment 

The Wnt1-Early
Ex 

tumor with the longest latency was 13.5 weeks and the Wnt1-Late
Ex

 

tumor with the shortest latency was 16 weeks. From these observations, a 15 week cutoff was 

used to define Wnt1-Early and Wnt1-Late tumors for drug treatment analysis. MMTV-Wnt1 

tumors were randomized into treatment groups and tumor growth was monitored using two-

dimensional caliper measurements (Volume = [(width)
2
 x length]/2) [45]. Drug compounds were 

obtained from commercial sources (erlotinib from Genentech, Inc and lapatinib from 
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GlaxoSmithKline) before being synthesized into chow by OpenSource Diets to a final 

concentration of 25 mg/kg for erlotinib and 220 mg/kg for lapatinib [45]. Biological inhibitors 

were dosed continuously for two weeks. The percent change in tumor volume at the end of the 

14 day treatment period was used to quantify response. 

 

Flow cytometry 

MMTV-Wnt1 tumors were dissociated into a single cell suspension using the following 

steps. First, each tumor was manually cut into small pieces with a razor blade in 1X 

collagenase/hyaluronidase (StemCell #07919) EpiCult media (StemCell #05601) before being 

placed in a rotator for two hours at 37
o
C. Following lysis of red blood cells using ammonia 

chloride (StemCell #07850), the tumors were incubated in 1X trypsin-EDTA (Sigma #T4049) 

for five minutes at 37
o
C and then in a 1X Dispase (StemCell #07923) DNase I solution 

(StemCell #07900) for five min at 37
o
C to reduce cell clumping. Cells were filtered through a 

40µm nylon cell strainer (Fisher Scientific #08-771-1) in HBSS media (StemCell #37150) with 

10% FBS (Sigma #F2442) to obtain the final single cell suspension. To remove non-epithelial 

cells, the single cell suspension was taking through a mouse epithelial cell enrichment kit 

(StemCell #19758) following the manufacturer’s protocol. Cells were labeled with the following 

antibodies for 30 minutes at 4
o
C: FITC anti-mouse Epcam (eBioscience #11-5791-82) and APC 

anti-mouse Cd49f (eBioscience #17-0495-82). Fluorescence-activated cell sorting (FACS) was 

performed using a Beckman-Coulter CyAn ADP instrument and analyzed using the FlowJo v10 

software program. 
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Sanger Sequencing 

 Genomic DNA was extracted from the six FACS purified fractions using a DNeasy blood 

and tissue kit (Qiagen #69504) and a portion of Hras1 was PCR amplified using a Taq PCR kit 

(Qiagen Cat #201223) with the following primers: 5’-ATGGGGTATGATCCATCAGG-3’ and 

5’-CACACGGAACCTTCCTCAC-3’ (Sigma-Aldrich). PCR products were enriched with a PCR 

purification Kit (Qiagen Cat#28104) before being submitted to the UNC Genome Analysis 

Facility for Sanger sequencing. Results were analyzed using the Sequencher software. 
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CHAPTER 6: DISCUSSION
 

 

In 2014, over 230,000 women were diagnosed with new cases of breast cancer in the 

United States [1]. Given the prevalence of this disease, it is estimated that about 1 in 8 

women will develop breast cancer at some point in their life [1]. Unfortunately, these 

pessimistic statistics routinely overshadow the optimistic fact that breast cancer related 

deaths have been on the decline since the early 1990s [1]! Decreasing death rates are thought 

to be due to a combination of factors. First, there has been an increase in public awareness 

due to organizations such as Susan G. Komen which spends more than 40% of their annual 

budget on health education. This strong advocacy effort has lead to increased screening, 

which has in turn resulted in more breast tumors being caught at early stages in the 

progression process. Second, there has been an increase in breast cancer research. Between 

1930 and 1990, the death rate per 100,000 females was a little more than 30 [1]. Today, that 

rate is a little more than 20 per 100,000 females [1], about a 30% drop in 25 years! This is 

highlighted by the fact that there are about 3,000,000 breast cancer survivors living in the 

United States today [1]. 

 Improved treatment of breast cancer patients is in large part due to our increased 

understanding that breast cancer is not a single disease, but a group of diseases [2]. 

Specifically, breast cancer is defined by several therapeutic subtypes (ER
+
/HER2

-
, HER2

+
, 

and triple negative), and several related genomic subtypes called the intrinsic subtypes [2]. 

The large drop in death rate over the last 25 years [1] is due to the development of targeted 



144 
 

therapeutics against estrogen receptor positive [3] (luminal A/B [4]) and human epidermal 

growth factor receptor 2 positive [5] (HER2-enriched [4]) tumors, common subtypes of 

breast cancer. While this is great news, there are still about 40,000 breast cancer related 

deaths each year [1]. More research is therefore needed to develop therapeutics for those 

patients that do not respond to current standard-of-care. This is especially true for individuals 

with triple negative breast cancer (TNBC) (basal-like and claudin-low [4]), for whom 

targeted treatments are not a current option. 

 To develop improved therapies for TNBC, a research emphasis has been placed on 

determining the molecular drivers of basal-like and claudin-low tumors and to identify novel 

drugs that target these two subtypes. Although the genomic era promised to quickly identify 

these drug targets, it has also produced a large number of false positives. As a result of this 

and other factors, only about 5% of oncology drugs that enter clinical testing are ultimately 

approved by the FDA for use [6]. From a financial perspective, this low success rate means 

that it cost more than $1,000,000,000 of research and development spending to develop a 

single oncology drug [7]. Needless to say, improved methods are needed to streamline the 

drug development process and to lower healthcare costs. In addition, there is a great 

biological need to target TNBC given its paucity of targeted therapeutic options. 

 Genetically engineered mouse models are a biologically relevant resource for 

studying mammary cancers in vivo under genetically controlled and immune competent 

conditions and may be able to bridge this gap between bench and bedside [8]. For this to 

happen, however, the strengths and limitations of each model need to be determined so that 

the models that most faithfully represent the human condition are used preclinically. This is 

an important first step that is unfortunately overlooked by many studies. Assuming that a 
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mouse model is reflective of a given human disease state is likely to lead to mistakes when 

interpreting experimental results. For example, it should be taking into account that the 

MMTV-Neu model was identified to model luminal A tumors and not HER2-Enriched 

tumors as would easily be assumed by the nature of the model [9]. 

For these reasons, we sought in Chapter 1 to highlight those murine models that most 

faithfully mimic the human disease state on a transcriptome level, as these models are likely 

to be useful for preclinical studies [9]. To ensure our analysis included as many models as 

possible, we consolidated 27 murine models of breast carcinoma into the largest 

comprehensive genomic dataset at the time of publication [9]. It should be noted that this 

study was only able to include so many of the most widely used breast cancer models 

because of collaboration and generous donations from other researchers. From our results, we 

were able to identify eight human-to-murine counterparts and provide insight into the 

molecular pathways involved in specific human breast cancer subtypes. As expected by the 

large degree of heterogeneity of human tumors, this study shows that multiple GEMMs are 

needed to represent the diversity of human breast cancers. Importantly, there was at least one 

murine class/model for each of the six intrinsic human subtypes analyzed [9]. These reported 

trans-species associations should guide model selection during preclinical study design to 

ensure appropriate representatives of human disease subtypes are used. Lastly, this study also 

highlights a methodology to improve preclinical study designs using mouse models for any 

disease, which we suggest will increase the predictive nature of preclinical studies in mice 

[9]. 

The human-to-murine subtype associations observed in Chapter 1 could be the result 

of two interrelated possibilities. The first possibility is that both the human and murine 
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subtypes share many of the same genetic drivers. Those drivers could be influencing the 

expression of the same set of downstream genes and as a result, an association is observed 

across the two species. The second possibility is that the human and murine subtypes have 

different genetic drivers, but both drivers independently produce an expansion of the same 

mammary cell type, thus possibly reflecting transformation of a common developmental 

stage. Although tumorigenesis will influence the expression of a subset of genes within a 

cell, the majority of genes that define a given cell type are likely to remain unchanged. As a 

result, the ‘passenger’ genes that define a given cell type are driving the observed association 

across the two species. This second possibility is particularly troublesome when you consider 

that most of the oncogene-driven mouse models analyzed use either the MMTV or WAP 

promoter in their design. If the activity of these promoters varies as a function of specific 

mammary cell types, such as luminal versus myoepithelial cells, then only those cells that 

naturally use these promoters would ever give rise to a tumor in these models. This is a major 

potential caveat that unfortunately our dataset was not powered to address. 

In Chapter 2, we sought to begin addressing some of these difficult to answer 

questions concerning potential differences in developmental states. Specifically, we used 

transcriptomic profiles coming from fluorescence-activated cell sorted (FACS) normal 

mammary epithelial cell types from several independent human and murine studies to 

determine if the human-murine counterparts identified in Chapter 1 share similar normal 

epithelial cell features [10]. Using a meta-analysis approach, we derived consensus gene 

signatures for both species from normal epithelial cell types (luminal, etc) and used these to 

relate tumors to normal mammary epithelial cell phenotypes.  Through this process, we 

showed that a subset of the human-murine subtype counterparts share similar normal cell 
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features. We proposed that molecular features associated with particular cell types along the 

mammary gland cell hierarchy may contribute to the clinical heterogeneity observed in 

human breast carcinomas. To test this, we compiled a dataset of 702 neoadjuvant 

anthracycline and taxane chemotherapy treated patients to determine if these cell type 

specific gene signatures were predictive of chemotherapy response [10]. We found that both 

human luminal progenitor, as well as mouse fetal mammary stem cell features, predicted 

pathologic complete response sensitivity across all breast cancer patients treated with 

neoadjuvant chemotherapy even after controlling for intrinsic subtype, proliferation, and 

clinical variables.  

Even though targeted treatment options are improving for patients, chemotherapy still 

remains an important tool for clinicians. Chemotherapy is a devastating approach to fighting 

cancer, causing memory problems, depression, weight loss, and nausea to name a few. Being 

fully informed on the likely outcome of chemotherapy treatment is incredibly important for 

both the physician and the patient, as this information is critical when determining the next 

best treatment steps. Currently, physicians are forced to inform their patients that only about 

15-20% of breast cancer patients will completely respond to chemotherapy treatment [11]. 

While this is great news for those that completely respond, the majority of patients have 

residual disease and are left to suffer the emotional and physical side effects caused by 

chemotherapy treatment. 

The development of a robust laboratory test that can determine which tumors are 

most likely to respond to chemotherapy is greatly needed in part because it will empower 

patients to make more informed treatment decisions with their physicians. If it is determined 

that a patient has a lower chance to respond, they may not be willing to take on the side 
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effects of chemotherapy treatment for such a small chance of it working. This is particularly 

true for senior citizens who may not be as well prepared to recover from chemotherapy 

treatment as younger patients. Although more validation is required, our results identify 

several sets of good candidate genes from which to start developing this type of 

chemotherapy predictive test.  

 Even if the subset of patients that will respond to chemotherapy can be identified 

using our gene signatures, targeted treatment options promise to have fewer side effects. 

Targeted treatment options for patients with basal-like tumors remain an important unmet 

clinical need; therefore, we sought to identify novel genetic drivers of these tumors using a 

p53null mammary transplant model in Chapter 3. This model is particularly relevant because 

somatic p53 mutations are one of the most common genetic events in basal-like tumors [2]. 

Using a combination of microarray and sequencing technologies, we identified several 

candidate drivers of tumorigenesis in this mouse model of basal-like breast cancer. To 

narrow the list of candidates, a comparative analysis with human basal-like tumors was 

performed, and MET was found to be one of the most promising candidates. First, MET had 

a high Pearson correlation between its DNA copy number abundance and its gene expression 

in our mouse p53null basal-like mouse tumors only, suggesting a causal relationship. Second, 

MET is amplified in about 20% of human basal-like tumors, a conserved genetic feature 

across species. Third and possibly the most important, there is already a FDA approved drug 

that inhibits MET. Specifically, Crizotinib is approved for use in for non-small-cell lung 

cancer [12]. Only the MET amplified tumor responded to treatment, completely regressing at 

the end of the treatment period. This result suggests that Crizotinib may be effective as a 

single agent in human basal-like tumors with MET amplification. Since not all basal-like 
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patients have these aberrations, companion diagnostic tests will be required to determine 

which patients should receive treatment. The DNA amplification status of MET may serve as 

an excellent guide for treatment decisions, but proper clinical studies will be required to 

determine if that is the case. This study identifies MET as a potential driver of human basal-

like breast cancer and highlights the importance of comparative genomic studies for 

discovering novel drug targets and for determining which patient populations are most likely 

to respond to treatment. 

 In addition to MET, Wnt signaling has also been proposed to be an attractive drug 

target for the basal-like subtype given the finding that canonical Wnt signaling is both 

enriched and predictive of poor clinical outcome in these tumors [13]. The development of 

effective Wnt based therapeutics, however, has been slowed in part by a limited 

understanding of the context dependent nature with which these aberrations influence breast 

tumorigenesis. In Chapter 4, we investigated our finding from Chapter 1 that MMTV-Wnt1 

mice develop two classes of tumors that differ in tumor latency: Wnt1-Early
Ex

 and Wnt1-

Late
Ex

 [9]. To investigate the phenotypic differences between these two subtypes we used a 

combination of histology, fluorescence-activated cell sorting (FACS), limiting dilution 

assays, mutation analysis, gene expression profiling, and drug treatments. This study 

definitely shows that the MMTV-Wnt1 mouse model produces two phenotypically distinct 

subtypes of mammary tumors. Importantly, only the Wnt1-Early
Ex

 tumors responded to 

Erlotinib and Lapatinib, two EGFR inhibitors. Our results suggest that this response might be 

related to crosstalk between canonical Wnt and EGFR signaling pathways [14]. This is 

important because if similar mechanisms occur in human tumors, a subset of basal-like 

tumors may also be sensitive to these targeted drugs. 
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 In conclusion, the work presented here highlights several genetically engineered 

mouse models that are counterparts for specific human subtypes [9]. In addition to helping 

determine the molecular etiology of human breast tumors, these experiments also highlight 

several genes and pathways that may serve as attractive drug targets. These potential targets 

that were conserved between murine and human basal-like and claudin-low tumor 

counterparts are particularly interesting and important given the clinical need for targeted 

agents for these two intrinsic subtypes. Now that these human-to-murine counterparts have 

been properly identified, we hypothesize that these models should be better predictors of 

clinical trial success. As such, we propose that two types of preclinical studies using these 

mouse models should be performed simultaneously to expedite the development of improved 

therapeutic approaches. First, for drugs that are currently in clinical trials, murine studies 

should be designed to mirror these human trials. This design setup should directly inform 

their human trial counterparts. Second and possibly more important, novel drug regimens 

should also be tested using these models. This is important because while it is impractical to 

test an endless combination of drugs in proper clinical trials, a wide variety of drug 

combinations can be relatively easily tested in mice. Given that tumors are able to evade 

single-agent drug treatments through kinase reprogramming [15], these novel drug 

combinations are likely to be essential for targeting hard to treat breast tumors. If effective 

drug combinations against these murine models are discovered, proper clinical trials should 

then be performed to test the effectiveness of these treatments against human breast tumors. 
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Oncogenic PI3K mutations lead to NF-kB-dependent cytokine expression following growth 

factor deprivation 

 

Hutti JE, Pfefferle AD, Russell SC, Sircar M, Perou CM, Baldwin AS. 

 

 

Abstract: The phosphoinositide 3-kinase (PI3K) pathway is one of the most commonly 

misregulated signaling pathways in human cancers, but its impact on the tumor 

microenvironment has not been considered as deeply as its autonomous impact on tumor cells. In 

this study, we show that NF-κB is activated by the two most common PI3K mutations, PIK3CA 

E545K and H1047R. We found that markers of NF-κB are most strongly upregulated under 

conditions of growth factor deprivation. Gene expression analysis conducted on cells deprived of 

growth factors identified the repertoire of genes altered by oncogenic PI3K mutations following 

growth factor deprivation. This gene set most closely correlated with gene signatures from 

claudin-low and basal-like breast tumors, subtypes frequently exhibiting constitutive PI3K/Akt 

activity. An NF-κB-dependent subset of genes driven by oncogenic PI3K mutations was also 

identified that encoded primarily secreted proteins, suggesting a paracrine role for this gene set. 

Interestingly, while NF-κB activated by oncogenes such as Ras and EGF receptor leads to cell-

autonomous effects, abrogating NF-κB in PI3K-transformed cells did not decrease proliferation 

or induce apoptosis. However, conditioned media from PI3K mutant-expressing cells led to 

increased STAT3 activation in recipient THP-1 monocytes or normal epithelial cells in a NF-κB 

and interleukin-6-dependent manner. Together, our findings describe a PI3K-driven, NF-κB-

dependent transcriptional profile that may play a critical role in promoting a microenvironment 

amenable to tumor progression. These data also indicate that NF-κB plays diverse roles 

downstream from different oncogenic signaling pathways. 
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Cancer Cell. 2012 Jun 12;21(6):751-64. 

 

 

LKB1/STK11 inactivation leads to expansion of a pro-metastatic tumor sub-population in 

melanoma 

 

Liu W, Monahan KB, Pfefferle AD, Shimamura T, Sorrentino J, Chan K, Roadcap DW, Ollila 

DW, Nancy NE, Castrillon DH, Miller CR, Perou CM, Wong KK, Bear JE, Sharpless NE. 

 

 

Abstract: Germline mutations in LKB1 (STK11) are associated with the Peutz-Jeghers 

syndrome (PJS), which includes aberrant mucocutaneous pigmentation, and somatic LKB1 

mutations occur in 10% of cutaneous melanoma. By somatically inactivating Lkb1 with K-Ras 

activation (±p53 loss) in murine melanocytes, we observed variably pigmented and highly 

metastatic melanoma with 100% penetrance. LKB1 deficiency resulted in increased 

phosphorylation of the SRC family kinase (SFK) YES, increased expression of WNT target 

genes, and expansion of a CD24(+) cell population, which showed increased metastatic behavior 

in vitro and in vivo relative to isogenic CD24(-) cells. These results suggest that LKB1 

inactivation in the context of RAS activation facilitates metastasis by inducing an SFK-

dependent expansion of a prometastatic, CD24(+) tumor subpopulation. 
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Genetics. 2012 Oct;192(2):385-96. 

 

 

Comparative oncogenomics implicates the Neurofibromin 1 gene (NF1) as a breast cancer driver 

 

Wallace MD, Pfefferle AD
*
, Shen L

*
, McNairn AJ, Cerami EG, Fallon BL, Rinaldi VD, 

Southard TL, Perou CM, Schimenti JC. 

 

  

Abstract: Identifying genomic alterations driving breast cancer is complicated by tumor 

diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this 

problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of 

genomic instability leading to mammary tumors that have tumor gene expression profiles closely 

resembling mature human mammary luminal cell signatures. We genomically characterized 

mammary adenocarcinomas from these mice to identify cancer-causing genomic events that 

overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy 

number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in 

nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 

27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and 

increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 

loss can drive breast cancer. This should be informative for treatment of the significant fraction 

of patients whose tumors bear NF1 mutations. 
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Combined PI3K/mTOR and MEK inhibition provides broad anti-tumor activity in faithful 

murine cancer models 

 

Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, Johnson SM, Combest AJ, Jin J, 

Zamboni WC, Perou CM, Sharpless NE. 

 

 

Abstract: Anticancer drug development is inefficient, but genetically engineered murine models 

(GEMM) and orthotopic, syngeneic transplants (OST) of cancer may offer advantages to in vitro 

and xenograft systems. We assessed the activity of 16 treatment regimens in a RAS-driven, 

Ink4a/Arf-deficient melanoma GEMM. In addition, we tested a subset of treatment regimens in 

three breast cancer models representing distinct breast cancer subtypes: claudin-low (T11 OST), 

basal-like (C3-TAg GEMM), and luminal B (MMTV-Neu GEMM). Like human RAS-mutant 

melanoma, the melanoma GEMM was refractory to chemotherapy and single-agent small 

molecule therapies. Combined treatment with AZD6244 [mitogen-activated protein-extracellular 

signal-regulated kinase kinase (MEK) inhibitor] and BEZ235 [dual phosphoinositide-3 kinase 

(PI3K)/mammalian target of rapamycin (mTOR) inhibitor] was the only treatment regimen to 

exhibit significant antitumor activity, showed by marked tumor regression and improved 

survival. Given the surprising activity of the "AZD/BEZ" combination in the melanoma GEMM, 

we next tested this regimen in the "claudin-low" breast cancer model that shares gene expression 

features with melanoma. The AZD/BEZ regimen also exhibited significant activity in this model, 

leading us to testing in even more diverse GEMMs of basal-like and luminal breast cancer. The 

AZD/BEZ combination was highly active in these distinct breast cancer models, showing equal 

or greater efficacy compared with any other regimen tested in studies of over 700 tumor-bearing 

mice. This regimen even exhibited activity in lapatinib-resistant HER2(+) tumors. These results 

show the use of credentialed murine models for large-scale efficacy testing of diverse anticancer 

regimens and predict that combinations of PI3K/mTOR and MEK inhibitors will show antitumor 

activity in a wide range of human malignancies. 
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Cancer Res. 2013 Jul 1;73(13):4075-85. 

 

 

Conditional loss of ErbB3 delays mammary gland hyperplasia induced by mutant PIK3CA 

without affecting mammary tumor latency, gene expression or signaling 

 

Young CD, Pfefferle AD, Owens P, Kuba MG, Rexer BN, Balko JM, Sanchez V, Cheng H, 

Perou CM, Zhao JJ, Cook RS, Arteaga CL. 

 

 

Abstract: Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of 

phosphoinositide 3-kinase (PI3K), have been shown to transform mammary epithelial cells 

(MEC). Studies suggest this transforming activity requires binding of mutant p110α via p85 to 

phosphorylated YXXM motifs in activated receptor tyrosine kinases (RTK) or adaptors. Using 

transgenic mice, we examined if ErbB3, a potent activator of PI3K, is required for mutant 

PIK3CA-mediated transformation of MECs. Conditional loss of ErbB3 in mammary epithelium 

resulted in a delay of PIK3CA(H1047R)-dependent mammary gland hyperplasia, but tumor 

latency, gene expression, and PI3K signaling were unaffected. In ErbB3-deficient tumors, 

mutant PI3K remained associated with several tyrosyl phosphoproteins, potentially explaining 

the dispensability of ErbB3 for tumorigenicity and PI3K activity. Similarly, inhibition of ErbB 

RTKs with lapatinib did not affect PI3K signaling in PIK3CA(H1047R)-expressing tumors. 

However, the p110α-specific inhibitor BYL719 in combination with lapatinib impaired 

mammary tumor growth and PI3K signaling more potently than BYL719 alone. Furthermore, 

coinhibition of p110α and ErbB3 potently suppressed proliferation and PI3K signaling in human 

breast cancer cells harboring PIK3CA(H1047R). These data suggest that PIK3CA(H1047R)-

driven tumor growth and PI3K signaling can occur independently of ErbB RTKs. However, 

simultaneous blockade of p110α and ErbB RTKs results in superior inhibition of PI3K and 

mammary tumor growth, suggesting a rational therapeutic combination against breast cancers 

harboring PIK3CA activating mutations. 
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Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14372-7. 

 

 

Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to 

combinations of anti-HER2 therapies 

 

Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sanchez V, SuttonCR, Cheng H, 

Perou CM, Zhao JJ, Cook RS, Arteaga CL. 

 

 

Abstract: Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and 

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations 

often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) 

pathway has been shown to correlate with a diminished response to HER2-directed therapies. We 

generated a mouse model of HER2-overexpressing (HER2(+)), PIK3CA(H1047R)-mutant breast 

cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium 

developed tumors with shorter latencies compared with mice expressing either oncogene alone. 

HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, 

HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors 

were associated with claudin-low breast cancers. PIK3CA and HER2(+)/PIK3CA tumors 

expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and 

stem cells. Cells from HER2(+)/PIK3CA tumors more efficiently formed mammospheres and 

lung metastases. Finally, HER2(+)/PIK3CA tumors were resistant to trastuzumab alone and in 

combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere 

formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CA(H1047R) 

accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the 

intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved 

combinations of anti-HER2 therapies. 
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Clin Exp Metastasis. 2014 Jan;31(1):33-45. 

 

 

Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular 

permeability and metastasis 

 

Harrell JC, Pfefferle AD, Zalles N, Prat A, Fan C, Khramtsov A, Olopade OI, Troester MA, 

Dudley AC, Perou CM. 

 

 

Abstract: The vasculature serves as the main conduit for breast tumor metastases and is a target 

of therapeutics in many tumor types. In this study, we aimed to determine if tumor-associated 

vascular properties could help to explain the differences observed in metastagenicity across the 

intrinsic subtypes of human breast tumors. Analysis of gene expression signatures from more 

than 3,000 human breast tumors found that genomic programs that measured vascular quantity, 

vascular proliferation, and a VEGF/Hypoxia-signature were the most highly expressed in 

claudin-low and basal-like tumors. The majority of the vascular gene signatures added 

metastasis-predictive information to immunohistochemistry-defined microvessel density scores 

and genomically defined-intrinsic subtype classification. Interestingly, pure claudin-low cell 

lines, and subsets of claudin-low-like cells within established basal-like cancer cell lines, 

exhibited endothelial/tube-like morphology when cultured on Matrigel. In vivo xenografts found 

that claudin-low tumors, but not luminal tumors, extensively perfused injected contrast agent 

through paracellular spaces and non-vascular tumor-lined channels. Taken together, the 

endothelial-like characteristics of the cancer cells, combined with both the amount and the 

physiologic state of the vasculature contribute to breast cancer metastatic progression. We 

hypothesize that the genetic signatures we have identified highlight patients that should respond 

most favorably to anti-vascular agents. 
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Oncogene. 2014 Jul 24;33(30):3992-4002. 

 

 

c-Myc and Her2 cooperate to drive stem-like phenotype with poor prognosis in breast cancer 

 

Nair R, Roden DL, Teo WS, McFarland A, Junankar S, Ye S, Nguyen A, Yang J, Nikolic I, Hui 

M, Morey A, Shah J, Pfefferle AD, Usary J, Selinger C, Baker LA, Armstrong N, Cowley MJ, 

Naylor MJ, Ormandy CJ, Lakhani SR, Herschkowitz JI, Perou CM, Kaplan W, O’Toole SA, 

Swarbrick A. 

 

 

Abstract: The HER2 (ERBB2) and MYC genes are commonly amplified in breast cancer, yet 

little is known about their molecular and clinical interaction. Using a novel chimeric mammary 

transgenic approach and in vitro models, we demonstrate markedly increased self-renewal and 

tumour-propagating capability of cells transformed with Her2 and c-Myc. Coexpression of both 

oncoproteins in cultured cells led to the activation of a c-Myc transcriptional signature and 

acquisition of a self-renewing phenotype independent of an epithelial-mesenchymal transition 

programme or regulation of conventional cancer stem cell markers. Instead, Her2 and c-Myc 

cooperated to induce the expression of lipoprotein lipase, which was required for proliferation 

and self-renewal in vitro. HER2 and MYC were frequently coamplified in breast cancer, 

associated with aggressive clinical behaviour and poor outcome. Lastly, we show that in 

HER2(+) breast cancer patients receiving adjuvant chemotherapy (but not targeted anti-Her2 

therapy), MYC amplification is associated with a poor outcome. These findings demonstrate the 

importance of molecular and cellular context in oncogenic transformation and acquisition of a 

malignant stem-like phenotype and have diagnostic and therapeutic consequences for the clinical 

management of HER2(+) breast cancer. 
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Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances 

chemosensitivity and reduces metastatic potential 

 

Knezevic J, Pfefferle AD, Petrovic I, Greene S, Perou CM, Rosen JM. 

 

 

Abstract: Claudin-low tumors are a highly aggressive breast cancer subtype with no targeted 

treatments and a clinically documented resistance to chemotherapy. They are significantly 

enriched in cancer stem cells (CSCs), which makes claudin-low tumor models particularly 

attractive for studying CSC behavior and developing novel approaches to minimize CSC therapy 

resistance. One proposed mechanism by which CSCs arise is via an epithelial-mesenchymal 

transition (EMT), and reversal of this process may provide a potential therapeutic approach for 

increasing tumor chemosensitivity. Therefore, we investigated the role of known EMT 

regulators, miR-200 family of microRNAs in controlling the epithelial state, stem-like properties 

and therapeutic response in an in vivo primary, syngeneic p53
null

 claudin-low tumor model that is 

normally deficient in miR-200 expression. Using an inducible lentiviral approach, we expressed 

the miR-200c cluster in this model and found that it changed the epithelial state, and 

consequently, impeded CSC behavior in these mesenchymal tumors. Moreover, these state 

changes were accompanied by a decrease in proliferation and an increase in the differentiation 

status. miR-200c expression also forced a significant reorganization of tumor architecture, 

affecting important cellular processes involved in cell-cell contact, cell adhesion and motility. 

Accordingly, induced miR200c expression significantly enhanced the chemosensitivity and 

decreased the metastatic potential of this p53
null

 claudin-low tumor model. Collectively, our data 

suggest that miR-200c expression in claudin-low tumors offers a potential therapeutic 

application to disrupt the EMT program on multiple fronts in this mesenchymal tumor subtype, 

by altering tumor growth, chemosensitivity and metastatic potential in vivo. 
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JNK2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting 

p53/NOTCH1 and BRCA1 expression 

 

Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. 

 

 

Abstract: Breast cancer is a heterogeneous disease with several subtypes carrying unique 

prognoses. Patients with differentiated luminal tumors experience better outcomes, while 

effective treatments are unavailable for poorly differentiated tumors, including the basal-like 

subtype. Mechanisms governing mammary tumor subtype generation could prove critical to 

developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary 

tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell 

lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in 

normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary 

development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, 

JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor 

model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 

knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing 

Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits 

estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while 

stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer 

may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis. 
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