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ABSTRACT 

CAROLINE MARTZ LEE: Type 2B von Hippel-Lindau Disease: Molecular 
Biology, Tumor Growth, and Development 

(Under the direction of W. Kimryn Rathmell) 
 

Von Hippel-Lindau (VHL) disease is caused by germline mutations in the VHL 

tumor suppressor gene, with Type 2B missense VHL mutations predisposing to 

renal cell carcinoma, hemangioblastoma, and pheochromocytoma. Type 2B 

mutant pVHL is predicted to be defective in hypoxia inducible factor (HIF)-α 

regulation.  Interaction analysis in VHL –transgenic murine embryonic stem (ES) 

and renal cell carcionoma-derived cell lines supported previous observations that 

VHL Type 2B mutations disrupt the interaction between pVHL and Elongin C but 

maintain partial regulation of HIF-α, most likely via a remnant complex containing 

ROC1 and Cullin-2 and reduced or absent Elongin C.  Murine embryonic stem 

(ES) cells in which the endogenous wild-type Vhl gene was replaced with the 

representative Type 2B VHL hotspot mutation R167Q (Vhl2B/2B) likewise 

displayed preserved physiologic regulation of both HIF factors with slightly more 

normoxic dysregulation of HIF-2α.  Differentiated Vhl2B/2B-derived teratomas over-

expressed the joint HIF targets Vegf and EglN3 but not the HIF-1α-specific target 

Pfk1 and displayed a growth advantage over Vhl-/--derived teratomas, suggestive 

of a tight connection between perturbations in the degree and ratio of HIF-1α and



iv 
 

HIF-2α stabilization and cell growth.  Vhl2B/2B mice displayed mid-gestational 

embryonic lethality, while adult Vhl2B/+ mice exhibited susceptibility to carcinogen-

promoted renal neoplasia compared with wild-type littermates at twelve months.  

Our experiments support a model in which the representative Type 2B R167Q 

mutant pVhl retains intermediate HIF-α suppression via formation of a remnant 

ubiquitin ligase complex, thereby producing a unique profile of HIF-α 

dysregulation with tissue-specific effects on cell growth, development, and tumor 

predisposition. 
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CHAPTER ONE 

Introduction 

 

Framing the clinical problem: renal cell carcinoma 

 An estimated 54,390 new cases of renal cell carcinoma (RCC) were 

diagnosed in the United States in 2008(1).  Alarmingly, the incidence of RCC in 

the United States has been rising by approximately two percent per year since 

1975(2).  While the five-year survival for individuals with localized disease at 

diagnosis approaches 90%, 20-30% of patients present with distant metastases 

and face a five-year survival of <10%.  In 2008, and estimated 13,010 people 

died from RCC in the United States.  RCC is two times more common in men 

than in women.  Other known risk factors for RCC include smoking, overweight 

and obesity, hypertension, kidney transplant and dialysis, and occupational 

exposure to organic solvents such as trichloroethylene(1, 3, 4).   

 RCC is a heterogeneous disease.  According to the Heidelberg 

classification system, RCC can be divided into the following histological 

subtypes: clear cell (cc) RCC (75%), papillary Type I and Type II (15%), 

chromophobe (4%), and oncocytoma (benign, 4%) (5, 6)(Figure 1.1).  Clear cell 

RCC tumors are highly vascular and glycolytic and contain cells with abundant
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clear lipid and glycogen-containing cytoplasm.  The vast majority of sporadic 

ccRCC at all tumor stages feature mutation or silencing of the von Hippel-Lindau 

(VHL) tumor suppressor gene, loss of the short arm of chromosome 3, or LOH 

(LOH) at the VHL locus, implicating loss of wild-type VHL as an early or initiating 

event in ccRCC(8).  Broadly, the architecture of papillary RCC consists of finger-

like projections called papillae.  The papillae of Type 1 papillary RCC tumors are 

composed of small, pale cells with small nuclei, while the papillae of Type 2 

papillary RCC tumors are composed of large eosinophilc cells with large nuclei, 

distinct nucleoli, and a pseudostratified appearance.  Sporadic Type 1 papillary 

RCC is strongly associated trisomy 7 and 17 and loss of the Y chromosome in 

men (9)and more rarely with activating mutations in the MET proto-oncogene 

(7q31-34)(10-12).  Chromophobe RCC features sheets of cells with abundant 

clear, reticulated cytoplasm, irregular nuclei with perinuclear halo, and prominent 

cell membranes.  Sporadic chromophobe RCC tumors tend to have multiple 

chromosomal losses, typically of chromosomes 1, 2, 6, 10, and 17(13-15).  Other 

types of adult kidney cancer, histologically and/or` mechanistically distinct from 

renal cell carcinoma, include collecting duct carcinoma, TFE3 translocation 

carcinoma, medullary carcinoma, and urothelial carcinoma.  The most common 

pediatric kidney cancer is Wilm’s tumor.  This dissertation will focus on ccRCC, 

the histological subtype responsible for the greatest burden of kidney cancer 

morbidity and mortality in the adult population.     

 Surgical treatment is the standard-of-care for both local and metastatic 

RCC (16).  RCC is highly resistant to standard chemotherapeutic agents, and 
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only a handful of drugs have been approved by the Food and Drug 

Administration (FDA) for the treatment of advanced RCC: the immunomodulatory 

drug interleukin (IL)-2 (high-dose), the mammalian target of rapamycin (mTOR) 

inhibitors temsirolimus and everolimus, and the small molecule receptor tyrosine 

kinase (RTK) inhibitors sorafenib and sunitinib.  Sorafenib and sunitinib target 

multiple RTKs, including vascular endothelial growth factor (VEGF)-receptor and 

platelet-derived growth factor (PDGF)-receptor families, thought to be expressed 

on the tumor-supporting cells rather than the tumor cells themselves.  Both 

mTOR inhibitors(17, 18) and RTK inhibitors (19, 20) roughly double progression-

free survival (PFS) in highly selected populations but tend to stabilize disease 

rather than induce remissions and thereby fail to impact overall survival.  The 

relative paucity of effective adjuvant therapies for RCC reflects a need for greater 

understanding of the molecular mechanisms underlying the initiation and 

progression of renal tumorigenesis. 

The VHL tumor suppressor gene and VHL Disease 

 The VHL tumor suppressor gene (3p25) was isolated in 1993 by positional 

cloning (21).  VHL contains three exons and encodes a 24-30 kDa protein 

pVHL30.  An internal transcriptional start site in the VHL gene also yields pVHL19, 

a shorter 19 kDa isoform with overlapping or identical function (22, 23).  

Hereafter, “pVHL” will be used when both isoforms are indicated.  The VHL 

protein is ubiquitously expressed in human fetal and adult tissues (24-26).  

 Germline mutations in VHL result in VHL Disease.  VHL Disease has an 

incidence of approximately 1:36,000 live births and is 90% penetrant by age 65 
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(27, 28).  Approximately 20% of VHL Disease kindreds arise from new mutations 

(29).  VHL Disease predisposes to benign and malignant tumors in several, but 

not all, pVHL-expressing tissues: hemangioblastomas of the retina, brainstem, 

cerebellum, and spinal cord; tumors of the endolymphatic sac; adrenal gland 

pheochromocytomas and extra-adrenal paraganglinomas; renal cysts and 

ccRCC; pancreatic cysts, neuroendocrine tumors and cystadenomas; and 

cystadenomas of the epididymis (in males) and broad ligament (in females).  

Retinal and CNS hemangioblastomas, pheochromocytomas, and RCC are 

responsible for the majority of VHL Disease-associated morbidity and mortality 

(reviewed in (30)).   

 Hemangioblastomas are the most common VHL Disease-associated 

lesion, occurring in 60-80% of VHL Disease patients (31, 32).  The mean age at 

diagnosis is 25 years for retinal (33) and 33 years for craniospinal lesions (32).  

Hemangioblastomas most commonly develop in the cerebellum and the spinal 

cord (34).  Hemangioblastomas consist of a VHL-deficient neoplastic stromal 

mass associated with an abnormal, dense vascular network (35).  Though 

histologically benign, CNS hemangioblastomas and associated peritumoral 

edema and cysts cause substantial neurological morbidity by mass effect.  

Cerebellar hemangioblastomas, for example, may cause gait ataxia, dysmetria, 

headache, diplopia, and nausea and vomiting, while spinal hemangioblastomas 

may be associated with segmental hypaesthesia, weakness, and pain, hyper-

reflexia, gait ataxia, and incontinence (32).  Retinal hemangioblastomas may 

cause visual disability or blindness.  Hemangioblastomas also carry the risk of 
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bleeding or hemorrhage.  Treatment of hemangioblastomas typically consists of 

surgical excision of the solid component with collapse of any associated cysts 

and resolution of edema following naturally (36).  Clinical trials are underway, 

however, studying the use of targeted anti-angiogenesis therapy in the 

neoadjuvant or preventative setting in VHL Disease patients.  Longitudinal 

radiographic studies of natural history suggest that most VHL Disease-

associated hemangioblastomas grow in a salutatory manner, with quiescent 

periods interspersed between intervals of rapid growth (32, 34).  Given that VHL 

Disease patients often develop multiple asynchronous lesions over the course of 

a lifetime, the decision to treat surgically must balance radiographic evidence of 

progression and clinical evidence of morbidity against the morbidity associated 

with multiple surgical procedures.  

 Pheochromocytomas occur in 10-20% of all VHL Disease patients, with 

greater penetrance in selected groups (described below), and are malignant in 

5% of cases.  The median age of onset for pheochromocytoma is 30 years of 

age (range 5-58 years) (37).  Pheochromocytomas arise from chromaffin cells in 

the adrenal medulla and may secrete epinephrine and/or norepinephrine in a 

continuous or episodic fashion.  Though 1/3rd of VHL Disease patients with 

pheochromocytoma are asymptomatic, the remaining 2/3rd show signs and 

symptoms of catecholamine secretion such as palpitations, diaphoresis, and 

hypertension (37).  VHL Disease patients may also present with extra-adrenal 

pheochromocytomas or paragangliomas, for example in the jugular glomus,  

carotid body, or periaortic ganglia.  Pheochromocytomas are usually treated by 
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adrenalectomy or enucleation with the goal of preserving adrenal cortical function 

(38, 39).  In the case of disseminated or metastatic pheochromocytoma when 

surgical excision is not possible, α-adrenergic blocking drugs are used to prevent 

hypertensive crisis associated with secretion of norepinephrine and/or 

epinephrine.  VHL loss is not commonly observed in sporadic 

pheochromocytomas (40).   

 Finally, renal cysts and/or ccRCC occur in 60% of VHL Disease 

individuals (41, 42) and contribute to the bulk of VHL Disease-associated 

mortality.  Renal cysts are thought to be the precursor lesion for most or all 

ccRCC tumors associated with VHL Disease.  Histological examination of grossly 

normal VHL Disease kidney tissue reveals hundreds of renal cysts and small 

tumors (43) as well as VHL inactivation in morphologically single cells (44).  

Statistically, the chance of a single cyst or small tumor out of hundreds 

progressing to a malignancy is substantial (45).  RCC associated with VHL 

Disease displays clear cell histology and tends to be small and low-grade at the 

time of diagnosis (43).  Surgical management of VHL Disease-associated RCC 

tends towards nephron-sparing partial nephrectomy in an effort to preserve renal 

function (46). 

 Endolymphatic sac tumors are less common (10% of VHL Disease 

patients) than hemangioblastoms, pheochromocytomas, and ccRCC, but are 

associated with substantial morbidity (47).  Endolymphatic sac tumors uniformly 

present with partial or complete hearing loss and may additionally be associated 

with tinnitus and vertigo.  Resection of endolymphatic sac tumors is curative and 
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usually maintains pre-operative hearing capacity but carries a risk of auditory or 

facial nerve damage. 

 VHL Disease patients adhere to a strict schedule of radiographic and 

clinical examinations and laboratory tests in order to identify new and monitor 

progression of established lesions and to minimize morbidity and mortality (30).  

Retinal hemangioblastomas and pheochromocytomas have been discovered in 

children with VHL Disease, so retinal exams are encouraged yearly beginning in 

infancy and yearly plasma or 24-hour urine catecholamine and metanephrine 

levels are suggested beginning at age two or with onset of hypertension.  

Screening for CNS hemangioblastomas begins at age eleven with magnetic 

resonance imaging (MRI) scan of the craniospinal axis.  Finally, radiographic 

screening for visceral lesions such as pheochromocytoma, renal cysts and RCC, 

and pancreatic cysts and tumors, begins at age eight with yearly abdominal 

ultrasounds and at age eighteen with yearly abdominal computed tomography 

(CT) scans.  MRI and CT scans of the auditory canal and audiometric testing are 

reserved until signs or symptoms of an endolymphatic sac tumor, such as 

vertigo, tinnitus, or hearing loss, arise.  Lesions displaying radiographic evidence 

of progression and/or associated with clinical signs or symptoms of morbidity 

prompt more frequent examination. 

 VHL mutations fall into distinct classes with unique spectrums of clinical 

disease (48, 49).  Type 1 patients (deletion/truncation mutations) have high 

ccRCC and low pheochromocytoma incidence (50).  Type 2 patients (missense 

mutations) all have high risk of pheochromocytoma, either alone (2C) or in 
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addition to hemangioblastoma and low (2A) or high (2B) risk of ccRCC (51).  

Homozygosity for the VHL R200W mutation results in Chuvash Polycythemia, 

associated with polycythemia and elevated risk for thrombotic events but no 

increased cancer risk(52-54).   This dissertation focuses on the VHL 2B subtype. 

VHL protein structure and function 

 Structure of pVHL and VBC complex.  The VHL protein acts as the 

recognition component of a complex with ubiquitin ligase activity.  pVHL consists 

of an α domain and a β domain.  The pVHL α domain consists of three α helices 

(H1-3, residues 155-192) which coordinate with a fourth α helix from Elongin C to 

generate an intermolecular four-helix bundle (55).  The H1 α helix overlaps with 

the Elongin C binding domain (residues 157-171) determined empirically in 

earlier biochemical studies (56, 57).  The pVHL α domain interacts directly with 

Elongin C, which in turn recruits the co-adaptor Elongin B, the scaffolding protein 

cullin-2 (CUL2) (58, 59), and the RING domain protein RBX1/ROC1(60).   The 

pVHL β domain consists of a seven-strand β sandwich (residues 63-154) and an 

N-terminal α helix (H4, residues 193-204) (55).  The complex of pVHL with 

Elongins B and C is referred to as the VBC complex.   

 The VBC complex with CUL2 shares similarities with the yeast 

Skp1/Cul1/F-box (SCF) complex: Elongin C and CUL2 share sequence identity 

with Skp1 and Cul1, respectively, and the pVHL α domain shows a similar 

hydrophobicity profile and structural similarity with F-box protein (55).  Analogous 

to F-box function in yeast SCF, the pVHL β domain targets specific proteins to 

VBC ubiquitin ligase activity (61, 62).  Known and putative targets of pVHL 
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ubiquitin ligase activity include the hypoxia-inducible factors (HIF)-1α and -2α 

(63-66), atypical protein kinase C (aPKC) isotypes (67), VHL-interacting 

deubiquitinating enzymes (VDU)-1 and -2 (68), and two subunits of RNA 

polymerase II Rpb7(69) and Rpb1(70). 

  HIF-1α and HIF-2α are the most well-described substrates for pVHL 

ubiquitin ligase activity.  HIF-1α and HIF-2α are basic helix-loop-helix (bHLH) – 

Per Arnt Sims (PAS) transcription factors.  Briefly, under normal oxygen 

conditions, specific prolyl residues in the oxygen-dependent degradation domain 

(ODDD) of hypoxia-inducible factor (HIF)-1α and -2α are hydroxylated.  The 

pVHL β domain binds and targets prolyl hydroxylated HIF-α for ubiquitination and 

degradation by the 26S proteasome.  Under hypoxic conditions, the ODDD is not 

hydroxylated, precluding targeting by pVHL (71-75).  Stabilized HIF-α then 

accumulates, translocates to the nucleus, and heterodimerizes with aryl 

hydrocarbon receptor nuclear transferase (ARNT)/HIF-1β (76), and binds and 

activates transcription at consensus hypoxia-responsive elements (HRE, CGTG) 

(77, 78).  HIF-1α and HIF-2α target gene repertoires are overlapping but distinct 

(79).  Joint HIF-1α/HIF-2α targets include VEGF, GLUT-1, EGLN3, and ADM (80-

83).  The highly evolutionarily conserved HIF-1α uniquely activates such genes 

as those encoding the glycolytic pathway(83), pyruvate dehydrogenase kinase 

(PDK) 1 (84), and BNIP-3 (85).  Finally, HIF-2α regulates a diverse set of genes, 

including OCT-4 (86), cyclin D1 (87), TWIST (88), TGFα (89), and EPO (90). 

 Non-ubiquitin ligase activities.  Known non-ubiquitin ligase activities of 

pVHL include promotion of cellular senescence (91), assembly and maintenance 
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of cytoskeletal components (92, 93) and proper deposition of extracellular matrix 

proteins (94, 95).  Acute inactivation of Vhl in mouse embryonic fibroblasts (MEF) 

results in persistant growth arrest and features of senescence, including flattened 

morphology, expression of senescence-associated β galactosidase (SABG), and 

formation of heterochromatic foci.  Surprisingly, senescence in Vhl-deficient 

MEFs is independent of HIF and p53 and but dependent on activated 

(hypophosphorylated) Rb.  Vhl loss in MEFs results in post-transcriptional 

reduction in the chromatin remodeling factor p400, directly or indirectly promoting 

post-transcriptional reduction in Skp2, the ubiquitin ligase for the cyclin-

dependent kinase inhibitor p27Kip1.  Stabilized p27Kip1 then activates Rb.  

Activated Rb is both necessary and sufficient for senescence in Vhl-deficient 

MEFs.  Acute somatic inactivation of Vhl in the mouse is also associated with 

SABG-positivity and p27 stabilization in the kidney, providing a possible 

mechanistic explanation for the refractoriness of the murine kidney to renal 

tumorigenesis.  Relevance of this function of VHL in human disease is uncertain, 

as VHL loss in human cell lines reduces proliferation but does not cause 

senescence or stabilize p27 (91), and p400-mediated senescence in human cells 

is p53-dependent and Rb-independent (96). 

   The VHL protein regulates the deposition of extra-cellular matrix via 

direct interactions with fibronectin(95), an integrin-binding protein, and collegen 

IV(97, 98).  The direct interaction of pVHL with fibronectin requires conjugation of 

NEDD8 to K159 (95), a modification that simultaneously hinders pVHL 

association with CUL2 (99).  pVHL-FN associates with the membrane fraction, 
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most likely with the endoplasmic reticulum (ER) and Golgi.  The VHL-fibronectin 

interaction is required for the secretion and deposition of fibronectin in 

extracellular fibrillar arrays (95).  The VHL protein also directly interacts with a 

component of collegen IV, specifically hydroxylated collagen IVa2(97, 98).  

Hydroxylated collagen IVa2 binds the pVHL β domain via one of its HIF-α 

hydroxylprolyl binding pockets in a presumably mutually exclusive interaction 

(98).  VHL protein is required for deposition of a collagen IV matrix in the 

basement membrane both in vitro in cell culture and in xenografts.  All Type 1, 

2A, 2B, and 2C VHL mutants tested thus far are defective for fibronectin 

deposition (51, 95, 100), while the Type 2C but not 1, 2A, or 2B VHL mutants 

tested retain a small degree of collagen IVa2 capture (97). 

 Finally, pVHL binds cytoplasmic microtubules and, in a tightly related 

function, contributes to the maintenance of the primary cilium.  VHL30 but not 

VHL19 binds directly to microtubules, partitioning to the cytoplasm at the 

microtubule organizing center (MTOC) and at the cell periphery.  VHL protects 

microtubules from depolymerization by nocodozole(93) and additionally appears 

to control or assist in proper microtubule orientation.  In VHL wild-type cells, 

microtubules orient towards the cell periphery, while microtubule orientation is 

haphazard in VHL-deficient cells(101).   

 The primary cilium is a single organelle extending from the apical cell 

membrane (reviewed in (102, 103)).  The structure of the primary cilium consists 

of microtubules in a 9 + 0 arrangement arising from the centriole, variously 

known as the basal body or as the MTOC during mitosis.  The general function of 
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the primary cilium is to interpret sensory information such as air or fluid flow and 

to transduce extracellular signals.  The VHL protein is dispensible for the initial 

formation of the primary cilium but contributes, along with GSK3β, to its 

maintenance(104).  In conditions under which GSK3β is active, GSK3β 

phosphorylates pVHL on a specific serine residue, rendering pVHL capable of 

binding but not stabilizing microtubules(105), and independently maintains the 

integrity of the primary cilium (104).  When GSK3β is inactive or deficient, for 

example due to growth factor signaling, primary cilium maintenance falls to 

pVHL.  VHL mutants that fail to bind cytoplasmic microtubules are likewise 

deficient in primary cilium maintenance (104).  The role of the primary cilium in 

renal cyst formation will be discussed in more detail below.  

In Vitro Models of VHL Disease 

 The distinct genotype-phenotype correlations of VHL disease suggest that 

disruption of wild-type or introduction of novel pVHL functions contribute to VHL 

Disease tissue specificity.  In vitro transgenic models of VHL Disease in both 

RCC-derived and murine embryonic stem (ES) cell lines show disconnection 

between Elongin C and HIF-α binding and RCC predisposition.  VHL-null RCC 

and ES cells cannot target HIF-α for degradation, resulting in abnormal normoxic 

accumulation of HIF-α and its target gene products.  Complementation with wild-

type VHL restores HIF-α regulation in these models.  Complementation of RCC 

cells with 2A and 2B VHL mutants results in impaired HIF-α binding, while 2B 

VHL mutants additionally fail to recruit Elongin C (51, 106).  In xenograft assays 

using RCC cells, VHL-null cells enhance tumor growth, while wild-type VHL and 
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all mutants except 2A suppress tumor growth.  In ES cell teratoma assays, 

however, Vhl-null cells display suppressed growth compared to wild-type VHL-

expressing cells.  While type 2B VHL expression restores wild-type growth, 2A 

mutants retain the growth-suppressive phenotype (106, 107).  Combined with 

recent evidence that HIF-2α can act as a tumor suppressor (108), the teratoma 

data weakens the assumption of a direct relationship between HIF dysregulation 

and RCC predisposition.  Pheochromocytoma predisposition also appears to be 

HIF-independent, instead related to impaired c-Jun-dependent developmental 

culling of sympathetic neuronal precursors in response to nerve growth factor 

(NGF) withdrawal (109).   

In Vivo Models of VHL Disease 

 Genetically engineered mouse models of human cancer are useful for 

understanding cancer biology and preclinical development and testing of 

therapeutic drugs.  The majority of models of human VHL Disease currently in 

existence utilize null and conditional Vhl alleles, often in combination with tissue-

specific promoter-driven and inducible cre recombinase activity.  Though such 

conditional models of Vhl loss circumvent the mid-gestational lethality associated 

with germline nullizygosity for Vhl (110, 111), they assume a specific cell type of 

origin and/or temporal window of susceptibility to tumor initiation.  Use of a null or 

conditional null allele of Vhl also fails to capture and take advantage of the strict 

genotype-phenotype correlations observed in VHL Disease and ideal for 

separating and defining Vhl functions.  To that end, an endogenous gene 

replacement model of Chuvash Polycythemia has been generated recently which 
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recapitulates the human disease(112).  The developmental and tumor 

predisposition phenotypes of germline and mosaic knock-out models of Vhl and 

pertinent HIF axis members will be discussed first, followed by tissue-specific Vhl 

models with or without HIF rescue (summarized in Table 1.1).  

 Germline and mosaic loss of murine Vhl.  Three independent mouse 

lines utilizing null or conditional null alleles of Vhl have been developed and 

characterized.  In 1997, Gnarra et al. published the first mouse model of VHL 

Disease(110).  Mice heterozygous for a null Vhl allele (Vhl+/-) were generated in a 

mixed C57BL/6 genetic background.  Vhl+/- mice were aged to 15 months and did 

not display evidence of neoplasia.  Inter-heterozygous matings revealed a 2:1 

ratio of Vhl+/- to Vhl+/+ mice and an absence of live-born Vhl-/- progeny, and timed 

mating analysis pinpointed the window of embryonic demise to embryonic day 

(E) 10.5-12.5.  Because mouse embryos transfer dependency from the yolk sac 

to the placenta around E9.5-10.5 and Vhl-/- embryos were grossly and 

morphologically normal until E10.5, the time point of Vhl-/- embryonic demise was 

suggestive of placental failure.     

 The murine placenta consists of three layers: the labyrinth, 

spongiotrophoblast, and maternal decidua (reviewed in (113, 114)).  The 

labrythine layer consists of highly branched embryonic-origin allantoic vessels 

surrounded by sheets of chorionic trophectoderm-origin syncitiotrophoblasts and 

bathed in maternal blood.  The labyrinthine layer provides a vital transport 

function, providing oxygen and nutrients across the thin syncitiotrophoblast layer
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to and fetal waste away from the fetal circulation.  The labyrinth is supported by 

spongiotrophoblast cells, derived from the trophectoderm of the ectoplacental 

cone, and is separated from the maternal decidual uterine tissue by a layer of 

polyploid trophoblast giant cells.  The murine placenta derives from the 

trophectoderm layer of the inner cell mass and the extra-embryonic mesoderm 

(allantois).  At E8.5, the embryonic allantois fuses with the chorionic plate in a 

process called chorioallantoic attachment.   After attachment, from E8.5-10.5, the 

chorionic plate folds into villi as the allantoic vessels migrate into the inter-villous 

spaces.  In a mutual induction process, the allantoic vessels and chorionic plate 

villi undergo branching morphogenesis to form the maze-like labyrinth, and the 

chorionic trophoblasts adjacent to fetal blood vessels differentiate into 

syncitiotrophoblasts.  The murine placental labyrinth is analogous in structure 

and function to human chorionic villi. 

 Vhl-/- placentas developed normally until E9.5, exhibiting proper 

chorioallantoic fusion and morphologically normal chorionic trophoblasts.  At 

E10.5, however, no allantoic vessels had penetrated the chorionic plate, 

maintaining complete separation of maternal and fetal circulation.  Between 11.5-

12.5, Vhl-/- placental labyrinths became hemorrhagic and embryos became 

necrotic.  Immunohistochemical studies demonstrated that wild-type placentas 

expressed pVhl in both extra-embryonic (labyrinthine trophoblasts and allantoic 

mesoderm) and embryonic (endothelial) tissues. 

 Several years later, the Gnarra Vhl+/- mouse line was used by another 

research group in mutagenesis studies(115).  Vhl+/- and control Vhl+/+ mice 
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received intraperitoneal (i.p.) injection of the renal mutagen streptozotocin (50, 

100, 150, or 200 mg/kg) at 8 weeks of age.  Streptozotocin induced renal cyst 

formation equally well in Vhl+/- and Vhl+/+ mutagenized mice at 14-15 months.  

Interestingly, approximately 20% of untreated Vhl+/- mice aged 14-17 months 

developed hepatic angiomas, vascular liver tumors uncommon in human VHL 

Disease and not observed in the original study of this mouse line.  Streptozotocin 

significantly enhanced hepatic angioma formation in Vhl+/- mice relative to 

untreated Vhl+/- mice and mutagenized Vhl+/+ controls, increasing penetrance 

from ~20% to 33% at 150 mg/kg and 46% at 200 mg/kg at 14-15 months.    

 In 2001, Haase et al. published a second mouse model of VHL Disease 

utilizing a Vhl allele flanked by loxP sites (floxed, f) and the corresponding 

recombined Vhl-deleted (d) allele in a mixed Balb/c background(111).  Vhld/d 

embryos died at E9-11 with a placental phenotype identical to that observed in 

the Gnarra et al. Vhl-/- model.  In a significant departure from the original Gnarra 

et al. Vhl+/- model, Vhld/+ mice developed hepatic angiomas in an age-dependent 

fashion.  Approximately 50% of Vhld/+ mice aged to 3-11 months and more than 

90% of Vhld/+ mice aged 12-17 months developed large hepatic vascular cavities 

associated with steatosis and small vessel proliferation.  Only 1/30 Vhld/+ mice 

developed a renal microcyst (3%), the presumptive precursor lesion to RCC, and 

none developed pheochromocytoma. 

 Ma et al. independently derived a third VHL Disease mouse model utilizing 

floxed or deleted Vhl on a C57BL/6 background alone or in combination with 

mosaic promoter-driven cre recombinase (116) and with tamoxifen-inducible cre 
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recombinase (117).  In an effort to circumvent embryonic lethality and mimic 

stochastic loss of heterozygosity (LOH) in VHL Disease patients, Ma et al. first 

characterized the floxed Vhl allele using a human β-actin- cre transgenic mouse 

line(116).  The particular β-actin-cre mouse line used was chosen for its 

stochastic expression in early embryonic development, resulting in mosaic Vhl 

LOH in adult tissues, and minimal expression in placental tissues.  β-actin-

cre;Vhlf/d mice were viable and developed hepatic angiomas with complete 

penetrance at time points ranging from 4-12 months.  β-actin-cre;Vhlf/d mice also 

developed renal, pancreatic, and hepatic angiectasis (enlarged blood vessels) 

and male infertility due to defective spermatogenesis.  In light of the large 

variation in hepatic angioma penetrance between the Gnarra et al. Vhl+/- 

(C57BL/6, 0-20% at 15 months) mouse line and the Haase et al. Vhld/+ (Balb/c, 

>90% at 12-17 months), Ma et al. also back-crossed the Vhl-deleted allele to two 

additional genetic backgrounds.  Vhlf/d mice on the original mixed C57BL/6 

background displayed 18% penetrance of hepatic angiomas at 12 months, while 

hepatic angiomas were 88% penetrant in Vhld/+ mice on Balb/c and 67% 

penetrant in Vhld/+ mice on A/J at 18 months.      

 Hong et al. used a tamoxifen-inducible cre recombinase-oestrogen 

receptor fusion receptor fusion transgene (CreERTM) system as a second 

approach to circumvent embryonic lethality in the Ma Vhl model (117).  CreER is 

sequestered and inactive in the absence of estrogens.  Ingestion of tamoxifen 

(TAM) by mature animals with subsequent binding of TAM to CreER results in 

nuclear translocation and functional activation of cre recombinase to mediate 
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recombination between loxP sites in affected cells.  CreERTM;Vhld/+ mice were 

crossed to Vhlf/f mice, and pregnant dams were injected with 2-4 mg TAM at 

E10.5.  Acute Vhl loss at E10.5 delayed embryonic lethality until E13.5-15.5.  

CreERTM;Vhld/f + TAM embryos during this window displayed gross dorsolateral 

hemorrhage and body necrosis, associated with dilated, leaky vessels and focal 

liver necrosis on histological examination.  The CreERTM;Vhld/f + TAM placentas 

were morphologically normal at E14.5 but displayed a mild decrease in 

labyrinthine layer thickness with dilated blood vessels and mislocalized 

spongiotrophoblast cells at E16.5, suggestive of a greatly reduced or delayed 

placental phenotype.   

 Altogether, Vhl null and mosaic null mouse models exhibit a requirement 

for murine placental and embryonic development in mid-gestation and a 

predisposition to hepatic angioma but not renal cysts or RCC.   

 Germline loss of hypoxia-inducible factor and related genes.  In 1998, 

Iyer et al. published a mouse model utilizing a null allele for Hif1a (118).  

Nullizygosity for Hif1a conferred embryonic lethality at E10-11 on both C57BL/6 

and 129 genetic backgrounds.  Hif1a-/- lethality was preceded by developmental 

arrest (reduced somite number) at E8 and morphological changes at E9.  E9 

Hif1a-/- embryos displayed neural tube defects associated with replacement of 

cephalic mesenchyme by dilated vessels; abnormal vasculature including the 

branchial arch, dorsal aorta, and intersomitic vessels; and myocardial 

hyperplasia with pericardial effusion. 
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 Three independent models of Hif2a loss were developed with drastically 

different phenotypes (81, 119, 120).  The Hif2a knock-out model developed by 

Tian et al. exhibited embryonic lethality at E12.5-16.5 (120).  Hif2a-/- embryos did 

not display vascular defects and possessed a histologically normal placenta, 

suggestive of a physiological cause of lethality.  Hif2a-/- mice were determined to 

have bradycardia and low norepinephrine levels, postulated to result from a 

requirement for Hif2a in catecholamine biosynthesis in adrenal chromaffin cells.  

Embryonic lethality was partially rescued by treating pregnant dams with D,L-

threo-3,4-dihydroxyphenylserine (DOPS), which could be directly converted to 

norepinephrine by decarboxylase activity in utero.  Surviving Hif2a-/- mice died 

within 24 hours.      

 Hif2a-/- mice developed by Peng et al. displayed vascular defects with 

variable penetrance(119).  One third of Hif2a-/- mice on an outbred 129Sv/ICR 

background were viable for several weeks, while the remaining two thirds 

displayed embryonic lethality at E9.5-13.5.  Death in utero was associated with 

subtle defects in vascular remodeling especially apparent in the yolk sac and 

only rarely observed in the embryo and variably associated with embryonic 

hemorrhage.  Hif2a-/- embryonic lethality was partially rescued by DOPS 

treatment, with rescued animals surviving for less than 24 hours, suggesting that 

reduced catecholamine biosynthesis featured in embryonic demise.  Hif2a-/- mice 

on a congenic 129Sv background uniformly displayed embryonic lethality at 

E9.5-12.5, associated with defective vascular remodeling in both the yolk sac 

and the embryo proper. 
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 In a third model by Compernolle et al., 50% of Hif2a-/- mice on a mixed 

129Sv/Swiss genetic background died at E13.5 due to cardiac failure, while the 

remaining 50% died two-three hours post-natally (81).  Post-natal death was due 

to respiratory distress syndrome (RDS) due to a maturation defect in the 

surfactant-producing Type II pneumocytes.  The lungs of surviving Hif2a-/- 

neonates also subtle vascular defects.  Neither embryonic nor post-natal lethality 

was rescued by DOPS treatment in utero. 

 Two independent models of Arnt loss have also been developed and 

characterized (121-124).  Arnt is the heterodimerization partner for HIF-α 

subunits and is required for HIF-α transcriptional activity.  Arnt-/- mice on a mixed 

129SvJ/C57BL/6 background display embryonic lethality at E9.5-10.5 (124).  At 

E9.5-10.5, Arnt-/- yolk sacs were essentially avascular but embryonic 

vasculaturization was normal except for a mild defect in capillary formation in 

solid organs(124).  Preceding embryonic lethality at E8.5, the Arnt-/- placenta 

contained all the proper cell lineages, including 4311-positive spongiotrophoblast 

cells and placental lactogen (PL)-1-positive trophoblast giant cells and an 

unidentified population of double-positive cells, but were slightly smaller than 

wild-type and Arnt+/- placentas.  The E9.5 Arnt-/- placenta displayed an absence 

of fetal vessels in the labyrinth and evidence of shallow invasion of the maternal 

myometrium.  Histologically, E9.5 Arnt-/- placentas contained very few 4311-

positive spongiotrophoblasts and an expanded population of PL-1-positive 

trophoblast giant cells (121).  
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  In order to determine whether the observed placental defect was 

embryonic or trophoblastic in origin, diploid Arnt-/- ES cells were aggregated with 

tetraploid wild-type morulas in a technique referred to as tetraploid 

aggregation(121).  Tetraploid cell contribution is limited to the extra-embryonic 

lineages, resulting in an Arnt-/- embryo with a wild-type placenta (excluding the 

contribution of Arnt-/- embryonic-origin allantoic vessels to the labyrinth).  

Tetraploid aggregation slightly delayed embryonic lethality until E10.6 and 

rescued the placental defects, demonstrating that the defects in labyrinthine 

vascularization and altered trophoblast differentiation resulted from Arnt 

deficiency in the trophoblast lineage.  Rescued embryos at E10.6 displayed 

severe cardiac hypoplasia, possibly the causative lesion for the absence of yolk 

sac vascularization(121). 

 In order to determine the relative contributions of Hif1a and Hif2a loss of 

function in Arnt models, Cowden et al. compared Arnt-/- development to Hif1a and 

Hif2a placental development singly and in combination(122).  In their hands, 30% 

of E9.5 Hif1a-/- placentas failed chorio-allantoic attachment, while the remaining 

70% fused properly but allantoic vessels failed to migrate into the chorionic plate.  

E9.5 Hif1a-/- labyrinths showed a 50% reduction in Tpbp-positive 

spongiotrophoblast cells but a normal number of PL-1-positive trophoblast giant 

cells.  Hif2a-/- placentas at E9.5 displayed normal chorioallantoic fusions, allantoic 

vascularization of the chorionic plate, and spongiotrophoblast and giant cell 

populations.  Double Hif1a-/-;Hif2a-/- mutant placentas at E9.5 were identical to 

Arnt-/- placentas at E9.5, displaying complete failure of chorioallantoic 
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attachment, no vascular invasion of the chorion, an absence of 

spongiotrophoblast cells, and an expanded population of trophoblast giant cells.  

Indicating that HIF dosage is critical in placental development, Hif1a-/- in 

conjunction with heterozygosity for Hif2a loss resulted in a placental phenotype 

nearly as severe as the Arnt-/- phenotype. 

 Kozak et al. published a second independent mouse model of Arnt 

deficiency using a similar targeting strategy (replacement of the sequence 

encoding the Arnt bHLH domain) and a nominally similar genetic background 

(mixed 129SvJ/C57BL/6) to the mice derived by Maltepe et al. but with a more 

severe embryonic and less severe placental phenotypic outcome.  Nullizygosity 

for Arnt conferred embryonic lethality at E9.5-10.5 (123).  E9.5 Arnt-/- embryos 

were slightly growth-retarded.  E10.5 Arnt-/- embryos were clearly 

developmentally delayed as evidenced by reduced somite number and were 

afflicted with neural tube defects and forebrain hypoplasia.  E10.5 Arnt-/- embryos 

were associated with normal yolk sacs.  The corresponding E10.5 Arnt-/- 

placentas were hemorrhagic and displayed reduced labyrinthine vascularization 

but uniformly succeeded in chorioallantoic fusion. 

 The preceding mouse models of Hif1a, Hif2a, and Arnt deficiency 

demonstrate a broad requirement for HIF-α activity in the murine placental 

trophoblast lineage as well as in development of the embryonic cardiovascular, 

nervous, and respiratory systems.  The lack of embryonic models of constitutively 

stabilized Hif1a and Hif2a prevents direct analysis of the impact of over- or mis-

expression of HIF-α on murine development.  Takeda et al., however, developed 
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mouse models of proly hydroxlase domain (Phd) 1, 2, and 3 deficiency (125).  

Phd proteins hydroxylate specific prolyl residues on the HIF-α ODD (71, 72, 74, 

126-130), thereby targeting HIF-α to the pVhl β domain for ubiquitylation and 

proteasome mediated degradation (73, 75).  Given that the embryo and placenta 

are hypoxic environments during development and that Phd activity is limited to 

normal oxygen conditions in vitro (127, 131), the impact of Phd deficiency, if any, 

on HIF stability and/or development was difficult to predict.   

 Indeed, Phd1-/- and Phd3-/- mice were viable and displayed no embryonic 

or placental defects.  Phd2-/- mice died in utero between E12.5-14.5 due to 

cardiac failure(125).  Phd2-/- yolk sacs and embryos displayed no gross defects in 

vessel patterning, but Phd2-/- embryos did display defective ventricular 

maturation by E11.5.  Phd2-/- placentas appeared normal at E9.5 but showed 

reduced chorionic villus folding and with an equivalent reduction in fetal blood 

vessel content in the presumptive labyrinth at E12.5, suggestive of defective 

trophoblastic branching morphogenesis.  E12.5 Phd2-/- placentas also contained 

an abnormal distribution of trophoblast giant cells and spongiotrophoblast cells.  

Phd2-/- embryos and placentas both demonstrated HIF-1α and HIF-2α 

stabilization relative to wild-type and Phd2+/-, confirming that Phd2 does have 

activity towards HIF-α in these tissues but neither proving HIF-dependent nor 

ruling out HIF-independent components of the Phd2-null phenotype.   

 Tissue-specific and combinatorial mouse models of VHL Disease.  As 

discussed above, Vhl-null germline and mosaic models are characterized by 

defects in placental vascularization, age- and genetic background-dependent 
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hepatic angiomas, and a lack of renal cysts and RCC.  Tissue-specific promoter-

driven cre recombinase systems have been used variously to determine cell type 

of origin, dependence on HIF-α, and to enhance or reveal VHL Disease-

associated phenotypes. 

 Cell-of-origin for Vhl-dependent placental labyrinth phenotype.   The 

requirement for Vhl in the embryonic vasculature was investigated using a Tie2-

cre transgenic mouse line directing recombination in endothelial cells(132).  Tie2-

cre;Vhlf/f and Tie2-cre;Vhlf/f;Hif1af/f died in utero at E12.5-13.5, slightly later than 

germline Vhl-null mice but with an identical defect in labyrinthine vascularization.  

Use of a Mox2-cre transgenic mouse line, in which recombination is completely 

excluded from extra-embryonic and trophoblast lineages, recapitulated the Tie2-

cre results, indicating that the requirement for Vhl in labyrinthine vascularization 

resides in the embryonic allantoic endothelium rather than the trophoblast 

compartment.  In addition to placental defects, Tie2-cre;Vhlf/f and Tie2-

cre;Vhlf/f;Hif1af/f embryos were associated with several other vascular defects, 

including gross embryonic hemorrhage, collapse of endocardial vessels, and 

dilation and decreased branching and network complexity in the yolk sac and 

cephalic and dorsal regions of the embryo. 

 Cell-of-origin and HIF-dependence of Vhl hepatic angiomas.  Given that 

VHL Disease-associated hemangioblastomas arise secondary to VHL LOH in the 

stromal compartment (35), Vhl-associated hepatic angiomas were postulated to 

originate from hepatocytes.   Two groups analyzed the repercussions of Vhl loss 

in the hepatocyte compartment using an albumin-cre transgenic mouse line in 
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which directs high-efficiency (60-80%), hepatocyte-specific recombination(111, 

133).  Both groups observed that Albumin-cre;Vhlf/f mice were runted and died at 

6-12 weeks with gross hepatomegaly and severe hepatic steatosis, angiectasis 

or microscopic angiomas, and endothelial cell proliferation(111, 133).  Albumin-

cre;Vhlf/f;Hif1af/f mice developed an identical phenotype, but the livers of Albumin-

cre;Vhlf/f;Arntf/f mice were grossly and microscopically normal(133). 

 In a complementary approach, Rankin et al. utilized a PEPCK-cre 

transgenic mouse line activity in the kidney and periportal hepatocytes (20-30% 

efficiency)(134).  In contrast to Albumin-cre;Vhlf/f mice, PEPCK-cre;Vhlf/f mice 

survived past 15 months and developed high penetrance macroscopic or 

cavernous hemangiomas (35%) and microscopic heptic angiectasis, steatosis, 

and endothelial cell proliferation (80%) at age six months or older.  PEPCK-

cre;Vhlf/f;Hif1af/f mice developed identical macroscopic and microscopic hepatic 

vascular lesions with similar penetrance(133, 134).  Furthermore, both Arnt (133) 

and Hif2a (134) knock-out rescued the hepatocytic Vhl-dependent hepatic 

angioma phenotype, confirming that the hepatic angioma phenotype observed in 

germline and mosaic Vhl-null animals arises from Vhl loss in the hepatocyte 

compartment and is dependent on HIF-2α. 

 A third approach solidified the connection between hepatocytic HIF-2α 

stabilization and hepatic angioma formation.  Kim et al. studied the effects of 

stabilized HIF-1α and/or HIF-2α in hepatocytes using Albumin-cre and 

conditional loxP-stop-loxP (lsl) HIF-α double proline alanine (dPA) mutants 

alleles knocked-in to the ubiquitously-expressed Rosa26 locus (135).  Cre 
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recombinase activity results in recombination between loxP sites, excising the 

stop cassette and permitting expression of the HIF-α dPA genes.  HIF-1α dPA 

and HIF-2α lack the prolyl residues required for recognition by pVhl and are 

therefore consitutively stable.  Similarly to Albumin-cre;Vhlf/f mice, Albumin-

cre;lsl-Hif1a-dPA;lsl-Hif2a-dPA died at 6-8 weeks with hepatomegaly and 

microscopic hepatic angiomas and steatosis.  Albumin-cre;lsl-Hif2a-dPA mice 

likewise died at 6-8 weeks with hepatomegaly and recapitulated the hepatic 

vascular phenotype.  The livers of Albumin-cre;lsl-Hif1a-dPA mice were grossly 

normal and displayed minimal microscopic evidence of hepatic steatosis and no 

vascular lesions.  These experiments show that hepatocytic HIF-2α stabilization 

is both necessary and sufficient for the formation of hepatic angiomas in mice. 

 Enhancement and HIF-dependence of Vhl renal cyst formation.  Though 

approximately 60% of VHL Disease individuals develop renal cysts, germline 

Vhl+/- mice only rarely develop renal cysts (~3%)(111).  The cell type of origin for 

VHL Disease-associated cysts is unknown, but evidence supporting both the 

proximal and distal tubule epithelium exists.  Rankin et al. investigated the loss of 

Vhl in the proximal renal tubule using the same PEPCK-cre system discussed 

above (136).  PEPCK-cre recombinase displays activity in the renal cortex and 

outer medulla, specifically in the proximal tubule epithelium, and in periportal 

hepatocytes.  The kidneys of PEPCK-cre;Vhlf/f mice aged to <12 months were 

microscopically normal, but the kidneys of 12-25 month old PEPCK-cre;Vhlf/f mice 

contained macroscopic (18%) and microscopic tubular (25%) and glomerular 

(35%) renal cysts.  Glomerular renal cysts are not a feature of human VHL 
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Disease.  Using immunohistochemical analysis, the epithelial cells lining the 

tubular microcysts were discovered to express markers of the distal tubule (55% 

of cysts) and de-differentiation (vimentin, 35% of cysts) but not of the proximal 

tubule (<5% of cysts).  These marker studies suggest that PEPCK-cre has 

undetectable or rare activity in the distal tubule or that proximal tubule-derived 

cystic epithelial cells undergo de- or trans-differentiation.  PEPCK-

cre;Vhlf/f;Hif1af/f mice developed renal macrocysts and microcysts with similar 

appearance and penetrance.  PEPCK-cre;Vhlf/f;Arntf/f mice did not develop renal 

cysts, suggesting a dependence on HIF-2α.  

 Though a dramatic improvement over germline Vhl+/- mice, the modest 

penetrance and delayed age-of-onset for renal cysts in the PEPCK-cre;Vhlf/f 

model suggests that additional genetic events are required to make a Vhl-

initiated renal cyst.  Given that human ccRCC tumors display reduced expression 

or loss of Pten or activation of PI3K or AKT(137-139), Frew et al. studied the 

combination of Vhl and Pten loss using the distal tubule-specific Ksp1.3-cre 

recombinase system(140).  Ksp1.3-cre;Vhlf/f mice developed fully penetrant 

hydronephrosis, and Ksp1.3-cre;Ptenf/f mice developed uroepithelial hyperplasia 

and hypertrophy in the renal pelvis, ureters, and bladder.  In addition to 

hydronephrosis and enhanced uroepitheial hyperplasia, 100% of double Ksp1.3-

cre;Vhlf/f;Ptenf/f mice aged 6 weeks – 6 months (n=14) developed renal cysts.  

Microscopically, the renal cysts displayed clear cell histology and predominantly 

simple epithelium.  Atypical papillary changes were observed in 8% of cysts.  

Immunohistochemical analysis showed that the renal cyst epithelium expressed 
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markers of the distal tubule and collecting duct but not the proximal tubule.  

Ksp1.3-Vhlf/f;Ptenf/f renal cysts also displayed activating phosphorylation of Akt 

and Erk enhanced relative to Ksp1.3-Vhlf/f mice based on both 

immunohistochemical analysis and immunoblot analysis from whole-kidney 

lysates.  These studies provide evidence that Vhl-initiated renal cysts arise from 

the distal tubular epithelium, are HIF-2α-dependent, and require additional 

genetic events. 

 A gene replacement model of Chuvash Polycythemia.  Taking advantage 

of the genotype-phenotype correlations in VHL Disease, Hickey et al. recently 

published a gene replacement mouse model of human Chuvash Polycythemia 

(112).  Humans homozygous for the R200W VHL mutation develop Chuvash 

Polycythemia, a benign polycythemia characterized by elevated hematocrit and 

hemoglobin levels, elevated serum Vegf and Epo, and thrombotic events(52-54).  

Mice homozygous for the Chuvash Polycythemia mutation (VhlR/R) are viable.  

VhlR/R mice gradually developed signs of polycythemia, including an age-

dependent increase in hematocrit (to 55% by 26 weeks) accompanied by 

elevated red and white blood cell counts and hemoglobin levels.  The 

erythrocytosis present in VhlR/R mice was associated with elevated Epo levels in 

the serum and kidney but not the liver.  VhlR/R bone marrow was histologically 

normal, but the spleen showed evidence of extra-medullary erythropoiesis, 

including expansion of the red pulp with erythroid precursors, and an increased 

megakaryocyte population.  VhlR/R mice displayed no evidence of tumor 

predisposition.   
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VHL and the Primary Cilium Hypothesis 

 Structure and function of the primary cilium.  The primary cilium is a single 

apical extension of the cell membrane (reviewed in (102, 103)).  The non-motile 

primary cilum acts like an antenna, tranducing molecular and sensory signals 

from the extracellular space.  The primary cilium consists of microtubules in a 

9+0 arrangement arising from the basal body or centriole.  Most quiescent (G0) 

cells have a primary cilum.  Upon entry into the cell cycle, the primary cilium is 

resorbed and the basal body acts as the microtubule organizing center (MTOC) 

for mitosis.  Because the primary cilium does not contain ribosomes, all proteins 

required for structure and function must be transported from the cytoplasm by 

intra-flagellar transport (IFT) with molecular motors.  Anterograde IFT proceeds 

by the action of the molecular motor kinesin-2, while retrograde IFT utilizes 

dynein-1b.The primary cilia of renal tubular epithelial cells extend into the tubular 

lumen and function as mechanosensors of urinary flow. 

 The Ciliary Hypothesis.  According to the ciliary hypothesis, mutation or 

loss of genes required for primary cilium structure or function predisposes to 

renal cyst formation (141).  Several inherited diseases featuring renal cyst 

formation have been linked to the primary cilium , including both autosomal 

dominant (142) and recessive (143) forms of Polycystic Kidney Disease and 

Bardet-Biedl Syndrome (144-146).   

 VHL and the Primary Cilium.  VHL-deficient RCC-derived cells are only 

sparsely ciliated in culture, but transgenic rescue with wild-type VHL restores 

primary cilium prevalence(147).  In primary cells such as MEFs, Vhl loss is 
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insufficient to lose cilia, indicating that Vhl  is dispensible for primary cilium 

formation.  Vhl-deficient MEFs lose their cilia, however, in the context of 

physiological (ie, by growth factor or serum stimulation) or pharmacological 

GSK3β inhibition or deficiency, confirming a role for pVHL in primary cilium 

maintenance(104).  Phosphorylation of serine 72, likely by casein kinase (CK)-1, 

primes VHL30 for phosphorylation on serine 68 by GSK3β.  Phosphorylated 

VHL30 retains the capacity to bind microtubule but cannot stabilize cytoplasmic 

microtubules or maintain the primary cilium (105).  pVHL mutants defective for 

cytoplasmic microtubule binding cannot maintain the primary cilium, suggesting 

that the two functions are intimately linked (104).  These in vitro studies support a 

model in which GSK3β has both VHL-dependent and VHL-independent functions 

in maintaining the primary cilium.  Active GSK3β independently maintains the 

primary cilium and inactivates the microtubule stabilizing function of VHL30 via 

S68 phosphorylation.  In conditions when GSK3β is inactive or deficient, 

however, unphosphorylated VHL30 takes over responsibility for primary cilium 

maintenance(104).  VHL deficiency or loss, then, would be predicted to sensitize 

cells to loss of the primary cilium.   

 Supporting the idea that VHL loss alone is insufficient for renal cyst 

formation, VHL Disease-associated renal cysts (n=33) display a three-fold 

reduction in ciliation and are associated with VHL deficiency (approximated by 

expression of the HIF target gene CA9) and inactive (phospho-) GSK3β, but only 

46 out of 303 VHL-deficient single cells were concomitantly positive for displayed 

inactivated GSK3β (104).  Sporadic ccRCC tumors (n=20) also display drastically 
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reduced ciliation (7.5%) relative to normal renal tubular epithelium (83.7%), and a 

subset (5/20) additionally display positivity for phospho-Ser9 GSK3β (148). 

 Deficiency in PTEN activity would be predicted to increase signaling 

through AKT, which in turn phosphorylates and inactivates GSK3β (149).  

Combination of VHL loss and PTEN loss, then, would be predicted to confer 

predisposition to renal cysts.  In fact, distal tubule inactivation of both Vhl and 

Pten, but neither singly, results in a fully-penetrant renal cyst phenotype (140).  

While wild-type, single Vhl- or Pten-deficient, and morphologically normal double 

Vhl- and Pten-deficient distal tubules were 80-90% ciliated, cystic double Vhl- 

and Pten-deficient distal tubules were only 30% ciliated.  In vitro MEF cultures 

derived from single and double Vhl- and Pten-deficient mice indicated that 

primary cilium loss in double mutants was mTOR-independent but both AKT- and 

ERK/MEK-dependent, the activation of the latter pathways most likely due to 

autocrine or paracrine growth factor stimulation resulting from HIF-α stabilization.   

 Indeed, while Vhl single kidneys displayed mild activation of AKT and 

ERK1/2 and inactivation of GSK3β, the addition of Pten loss markedly enhanced 

both AKT and ERK activation and GSK3β inactivation.  Also, in addition to 

uniform inactivation of GSK3β, 25/33 human VHL Disease renal cysts 

additionally displayed ERK1/2 activation(140).  Altogether, current data suggests 

that VHL Disease- and sporadic ccRCC-associated renal cysts result from 

primary cilium loss due to the combined loss of VHL function and signaling 

through AKT and ERK/MEK.    
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HIF and Renal Tumorigenesis 

 Regulation of HIF-α translation.  HIF-1α and HIF-2α are constitutively and 

ubiquitously transcribed but are highly regulated at the level of translation, 

stability, and transcriptional activity.  Normoxic translation of HIF-1α and HIF-2α 

mRNA is enhanced by activation of mammalian target of rapamycin (mTOR) 

kinase activity.   

The mTOR pathway ties protein translation to nutrient availability and 

growth factor signaling (reviewed in (150, 151)).  The serine/threonine kinase 

mTOR assembles into two distinct complexes, mTORC1 and mTORC2, with 

distinct targets.  mTORC1 contains mTOR, raptor (152), mLST8, and PRAS40 

and directs phosphorylation of the substrates p70S6K and 4EBP1 (153).  

mTORC1 phosphorylation activates p70S6K (154), resulting in the 

phosphorylation of the 40S ribosomal subunit S6 and thereby promoting 

translation of ribosomal and other pyrimidine tract-containing RNAs (155).  

mTORC1-phosphorylated 4EBP1 results dissociates from eIF4E, localized at the 

5’ end of select mRNAs.  Released from 4EBP1, eIF4E is free to promote 

translational initiation of genes involved in cell proliferation including HIF-α, cyclin 

D1, c-myc, and VEGF(156, 157).  mTORC2 consists of mTOR, rictor, protor, and 

sin1 and phosphorylates AKT on Ser473, contributing to AKT activation.  

 mTORC1 activity is activated by Rheb (158), a small G protein, the activity 

of which is in turn inhibited by the GTPase activity of TSC2 in complex with 

TSC1(159-161).  TSC1/2 integrates nutrient and growth factor signaling to direct 

appropriate mTOR activity.  Conditions of energy deficiency (decreased 
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ATP:AMP ratio) activate AMP kinase (AMPK) (162).  Activated AMPK 

phosphorylates and activates TSC2, resulting in inhibition of mTORC1 activity 

and repression of translation(159-161).  In contrast, growth factor signaling via 

receptor tyrosine kinases activates PI3K, responsible for phosphorylating PIP2 to 

generate PIP3 in a reaction antagonized by PTEN activity.  The resulting PIP3 

activates PDK phosphorylation and activation of AKT(163), and activated AKT 

directs inhibitory phosphorylation of TSC2(164, 165), effectively relieving 

mTORC1 inhibition.  mTORC2 may be negatively regulated by Rheb, which 

would tend to shut down the feedback inhibition generated by mTORC2-

mediated activating phosphorylation of AKT(166). 

 Regulation of HIF-α stability.  HIF-α stability is primarily oxygen-

dependent.  In the presence of oxygen, the HIF prolyl hydroxylases (PHD) 1, 2, 

and 3 (74, 126, 127, 129), target two specific prolyl residues in the HIF-1α 

(residues 402 and 564) and HIF-2α (residues 405 and 531) oxygen-dependent 

degradation domains (ODDD) for hydroxylation(71, 72, 128, 130).  The PHD 

enzymes, together with the co-factors Fe++ and ascorbate, utilizes the substrates 

molecular oxygen (O2) and 2-oxoglutarate (2-OG) to convert prolyl residues to 

hydroxyprolyl residues, generating CO2 and succinate as by-products(167).  HIF-

α hydroxyprolyl residues are recognized and bound by the pVHL β domain, 

resulting in HIF-α ubiquitylation by the VBC ubiquitin ligase complex and 

degradation by the 26S proteasome(73, 75).  The Michaelis constant (KM) of the 

PHD enzymes for O2 is approximately 100 µM(168, 169), whereas most tissues 

achieve at most 10-30 µM O2.  As a result, PHD enzymatic activity is exquisitely 
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sensitive to changes in O2 tension.  Under anoxic conditions, PHD is inactive and 

HIF-α prolyl residues escape hydroxylation and recognition by pVHL.  PHD2 is 

thought to be the primary HIF-α hydroxylase(170-172).  HIF-α is also stabilized in 

an oxygen-independent manner by its association with the chaperone protein 

HSP90(173, 174). 

 Regulation of HIF-α transcriptional activity.  The C-terminal activation 

domain (CTAD) directs HIF-1α and HIF-2α transcriptional activation.  The CTAD 

is regulated in an oxygen-dependent manner analogous to the regulation of the 

HIF-α ODDD.  Factor inhibiting HIF (FIH), an Fe(II)- and 2-OG-dependent 

dioxygenase related to the PHD enzymes, catalyzes the hydroxylation of a single 

asparaginyl residue in the HIF-α CTAD (residue 803 in HIF-1α and 851 in HIF-

2α)(175-177).  The asparaginyl hydroxylation reaction requires Fe++ and 

ascorbate as co-factors, utilizes O2 and 2-OG as substrates, and generates CO2 

and succinate as by-products.  Similar to PHD, the KM of FIH for O2 (~90 µM) far 

exceeds physiological oxygen levels(178), making FIH likewise very sensitive to 

slight changes in oxygen tension.  Asparaginyl hydroxylation prevents the direct 

association of HIF-α CTAD with the transcriptional co-activators CBP and p300 

(176) and the recruitment of additional co-activators(179).  As a result of ODDD 

and CTAD hydroxylation, HIF-α subunits are both highly unstable (t1/2 ~5 

minutes(180)) and transcriptionally inactive under normal oxygen conditions. 

Pseudohypoxia in renal tumorigenesis syndromes.  In order to determine 

whether HIF-α stabilization is a common early molecular event in renal 

tumorigenesis, small renal cortical tumors (<2.0 cm in greatest diameter) from 



 

39 
 

patients with the inherited renal tumor predisposition syndromes Birt-Hogg-Dube 

(BHD), Hereditary Papillary Renal Cancer (HPRC), and VHL Disease (n=12 for 

each) were analyzed for HIF-1α and HIF-2α (181).  As expected, VHL ccRCC 

tumors uniformly expressed HIF-2α and 10/12 additionally expressed HIF-1α.  

BHD chromophobe and hybrid chromophobe/oncocytic RCC tumors also strongly 

and uniformly expressed HIF-2α, with 6/12 additionally and more weakly 

expressing HIF-1α.  Fifty percent of HPRC Type II papillary RCC tumors 

expressed HIF-2α, half of which expressed HIF-1α as well.  Given the small size 

of these tumors, HIF-1α and HIF-2α stabilization in BHD and HPRC tumors is 

unlikely to reflect physiological hypoxia.  Indeed, increasing evidence, discussed 

below, suggests that the genetic events predisposing to renal tumorigenesis 

have molecular links to the translation and post-translational stability of HIF-α.  

The renal and extra-renal manifestations of each syndrome are summarized in 

Table 1.2.  

 Tuberous Sclerosis.  Tuberous sclerosis is an autosomal dominant 

disease caused by germline mutations in TSC2 (encoding tuberin) and TSC1 

(15-30% of families, encoding hamartin) with an incidence of 1:6000 live births 

(reviewed in (182)).  TSC1-associated tuberous sclerosis tends to have a milder 

clinical course than TSC2-associated tuberous sclerosis(183-186).  The defining 

manifestation of tuberous sclerosis is the development of benign tumors 

(hamartomas or tubers) in multiple tissues.  Tuberous sclerosis patients are also 

afflicted with renal angiomyolipomas (80%)(187), cysts (53%), and rarely ccRCC 

(2-3%)(188, 189). 
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 The Eker rat model of renal adenoma features a spontaneous retroviral 

insertion in the rat TSC2 gene(190, 191).  Eker rats develop renal cysts, papillary 

cystadenomas, and solid adenomas with high penetrance.  Tsc2+/- mice also 

develop high-penetrance papillary cystadenoma (>95% at 14 weeks – 6 

months)(192).  Two different murine Tsc1 models displayed drastically different, 

partly genetic background-dependent, phenotypes.  The renal phenotype of 

Tsc1+/- mice ranged from altered tubules at 9-12 months on a mixed 

129SvJ/C57BL/6 background (193) to fully penetrant microscopic cysts, 

cystadenomas, and frank carcinoma with lung metastases on a Balb/c 

background by 15-18 months (194).  Like Vhl+/- mice, both Tsc1+/- and Tsc2+/- 

mice develop hepatic angiomas (20-80% at 15-18 months)(192-194).   

Tuberous sclerosis has a clear link to HIF-α – as described in detail, TSC1 

and TSC2 participate in the inhibition of mTOR.  Loss of function in either TSC1 

or TSC2, then, would be predicted to release mTOR from inhibition and enhance 

translation of HIF-α transcripts.  Eker-derived renal tumor cell lines (Tsc2-/-) and 

renal tumors over-express HIF-2α but not HIF-1α and over-express the joint HIF 

target gene VEGF.  Over-expression of HIF-1α and VEGF in Tsc2-/- murine 

embryonic fibroblasts (MEF) was rescued by rapamycin, indicating mTOR-

dependence(195).  

 Birt-Hogg-Dube Syndrome.  Birt-Hogg-Dube Syndrome (BHDS) is an 

autosomal dominant disease associated with germline mutations in the BHD 

tumor suppressor gene located at 17p11.2(196).  BHD mutations are almost 

exclusively frameshift and nonsense mutations predicted to result in C-terminal 
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truncation of the encoded protein, folliculin (FLCN)(196, 197).  The defining 

clinical feature of BHDS is fibrofolliculoma (95%) and other cutaneous lesions.  

BHDS patients also develop lung cysts (84%) with spontaneous pneumothorax 

(38%) and kidney tumors (34%).  While no specific genotype-phenotype 

correlations have been proven, RCC is present in 57% of BHDS individuals with 

family histories and only 23% of BHDS individuals without a family history of 

RCC(197).  The diverse histologies of BHDS-associated renal tumors include 

hybrid oncocytic/chromophobe RCC (50%), chromophobe RCC (34%), ccRCC 

(9%), oncocytoma (5%), and papillary RCC (2%)(198). 

 The Nihon rat model of spontaneous RCC features a frameshift mutation 

in the rat BHD gene.  Nihon rats develop ccRCC with complete penetrance by six 

months (199).  In a germline mouse model, 45% and 8% of Bhd+/- mice had 

developed oncocytic renal cysts and oncocytoma or chromophobe RCC, 

respectively (200).  In two independent models, loss of Bhd in the distal tubule 

(Ksp1.3-cre) resulted in death at three weeks from kidney failure, associated with 

gross bilateral polycystic kidneys and microscopic tubular dilatation (201, 202), 

hyperplasia, and cystic RCC(202) but no solid RCC. 

   Death due to renal failure was delayed in distal tubule Bhd-deficient mice 

by treatment with rapamycin (201, 202), and cystic Bhdd/d kidneys displayed 

enhanced phosphorylated, activated Akt, mTOR, and S6 levels relative to control 

kidneys.  Furthermore, human BHD-associated (201) and sporadic (203) 

chromophobe and hybrid oncocytic/chromophobe RCC tumors display a mild 

increase in mTOR phosphorylation and activation relative to adjacent normal 
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tissue.  BHD deficiency is clearly associated with mTOR with AKT/mTOR 

pathway activity, but the mechanism of such influence is still unclear.  FLCN has 

been shown to interact with folliculin-interacting proteins (FNIP)1 (204) and/or 

FNIP2 (205, 206) directly via its C-terminus, and FNIP1/2 in turn binds to 

phosphorylated AMPK (204-206).  As the majority of human BHDS mutations 

result in C-terminal truncations of FLCN which would be predicted to disrupt this 

interaction(197) and because both FNIP1/2 and FLCN are phosphorylated in an 

AMPK- and mTOR-dependent manner, the FLCN-FNIP1/2-AMPK interaction is 

likely to biologically significant.  The influence of BHD status on mTOR activity, 

however, is highly context-dependent.  Genetic knock-down of BHD, FNIP1, or 

FNIP2 by siRNA in HeLa cells, for example, resulted in decreased 

phosphorylation and activation of mTOR (206).  In contrast, inhibition of mTOR 

signaling by exogenous AMPK stimulation or rapamycin treatment or activation of 

mTOR by serum stimulation were unaffected by BHD status, while inhibition of 

mTOR activity by serum starvation was impaired and by amino acid deprivation 

was enhanced in a BHD-null ccRCC cell line relative to its BHD-rescued 

counterpart (204).  Over-expression of HIF-α in BHDS renal tumors, then, may 

result from FLCN function upstream or downstream of mTOR, depending on the 

tumor’s genetic history and microenviroment. 

 Hereditary Papillary Renal Carcinoma.  Hereditary Papillary Renal 

Carcinoma (HPRC) is an autosomal dominant disorder with incomplete 

penetrance resulting from germline activating mutations in the MET proto-

oncogene (7q)(207, 208).  MET is the receptor tyrosine kinase (RTK) for 
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hepatocyte growth factor/scatter factor (HGF/SF)(209) and transduces signals for 

cell growth and motility via several signaling cascades, including MAPK/ERK and 

PI3K/AKT(210).  HPRC MET mutations are typically missense mutations in the 

MET TK domain conferring constitutive phosphorylation and activation (10, 11, 

207).  HPRC individuals are at risk for multiple, bilateral Type I papillary RCC 

tumors but are not predisposed to any other benign or malignant neoplasms 

(211).    Both HPRC-associated (10) and sporadic (12, 212) papillary RCC 

tumors commonly feature trisomy of chromosome 7, with selective duplication of 

the chromosome carrying the mutant MET allele.   

   A panel of mice expressing gene replacement alleles representative of 

several human HPRC MET missense mutations developed sarcomas, 

lymphomas, and rare carcinomas with genotype-specific associations (213).  

None of the Met mutant mice developed renal carcinoma.  Cytogenetic analysis 

of mutant Met tumors, however, indicated that 97% contained cells with trisomy 

and 30% contained cells with tetrasomy for Chromosome 6 (the locus for murine 

Met).  Less than 2% of cells in normal tissues displayed Chromosome 6 trisomy.  

Fifty percent of mutant Met tumors also contained cells with specific amplification 

of the Met locus, though such events were less frequent than whole-chromosome 

duplication.  Despite being unable to recapitulate the tissue-specificity of human 

mutant MET activity, the mouse model validates MET amplification as a critical 

event in tumorigenesis. 

 No studies have directly addressed the mechanism by which oncogenic 

MET might directly increase HIF-α expression.  Constitutively active MET may 
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signal through PI3K, resulting in AKT activation, TSC1/2 inhibition, and mTOR 

activation with an outcome of increased HIF-α translation.  The possibility 

remains that HIF-α stabilization may be an independent event in the history of 

HPRC-associated and sporadic papillary RCC tumors.  Interestingly, evidence 

exists linking VHL loss to MET activity (214).  VHL-null RCC cell lines over-

express phosphorylated, activated MET relative to normal renal proximal tubule 

epithelial cells (RPTEC).  Suppression of MET signaling required both wild-type 

VHL and cell-cell contact. 

 Hereditary Leiomyomatosis and Renal Cell Cancer and Hereditary 

Paraganglioma.  Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is 

associated with germline mutations in the fumarate hydratase (FH) gene (215, 

216).  Fumarate hydratase catalyzes the conversion of fumarate to malate in the 

Krebs Cycle.  Fibroblast cell lines derived from the cutaneous leiomyomas of 

HLRCC patients (FHm/m) display a near-complete reduction in fumarate 

hydratase enzymatic activity (217).   Cutaneous leimoyomas (100%) and uterine 

leiomyomas (98% of females), or fibroids, are highly penetrant features of 

HLRCC(216).  Approximately 1/3rd of HLRCC individuals develop unilateral, 

solitary Type 2 papillary RCC or collecting duct carcinoma (CDC), often with an 

aggressive clinical course(218).  HLRCC-associated Type 2 papillary RCC 

tumors display HIF-α over-expression (HIF-1α > HIF-2α) (217, 219).   

 Distal tubule-specific (Ksp1.3-Cre) deletion of fumarate hydratase 1 (Fh1) 

in mice confers death from renal failure with complete penetrance at 8-15 

months(220).  Renal failure in Ksp1.3-Cre;Fh1f/f mice is associated with 
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development of bilateral renal macrocysts and over-expression of both HIF-1α 

and HIF-2α in the cyst epithelial lining (in 50% and 25% of nuclei, respectively). 

 Germline mutations in succinate dehydrogenase (SDH) subunits B, C, and 

D, are associated with Hereditary Paraganglioma (HPGL) syndrome (221-223).  

The HPGL syndromes were originally described as predisposing to head and 

neck paragangliomas and adrenal and extra-adrenal pheochromocytomas.  

Somatic mutations in SDH are also common in sporadic pheochromocytomas 

and paragangliomas (224).  Recently, however, several families with germline 

SDHB mutations have been reported to develop early-onset RCC with (225, 226) 

or without (227) a family or personal history of paraganglioma or 

pheochromocytoma.  Succinate dehydrogenase functions in the Krebs cycle, 

converting succinate to fumarate, the substrate of fumarate dehydrogenase. 

 FH and SDHB mutations contribute to HIF-α stabilization by a novel 

mechanism: direct competitive inhibition of PHD activity.  As described above, 

hydroxylation of specific prolyl residues in the HIF-α ODDD utilizes prolyl, O2, 

and 2-OG as substrates to generate hydroxyprolyl, CO2, and succinate (167).  

SDH deficiency would be predicted to increase intracellular succinate levels, and 

FH deficiency would be predicted to increase both fumarate and, because the 

SDH reaction is reversible, succinate.  Metabolomic analysis of human disease 

tissues indicates that HLRCC-derived fibroids do indeed have elevated 

intracellular levels of both succinate and fumarate, while HPGL (SHDB)-derived 

paragangliomas have elevated intracellular levels of succinate alone (217).  

Suggesting that the association between the genetic lesion and metabolic profile 
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is a causative relationship, knock-down of FH (219) or SDHB (228, 229) in vitro 

results in intracellular fumarate or succinate accumulation, respectively,  and 

HIF-α stabilization (HIF-1α > HIF-2α).  Isaacs et al. confirmed that both succinate 

and fumarate are direct competitive inhibitors of 2-OG for PHD2 activity, resulting 

in reduced HIF-α ODDD prolyl hydroxylation and recognition by VHL.  

Interestingly, fumarate (Km = 2.6 µM) was shown to be a better inhibitor of PHD2 

activity than succinate (Km = 9 µM), possibly because the chemical structure of 

fumarate is similar to but more rigid than succinate (219).  As proof of concept, 

exogenous 2-OG treatment rescues PHD activity in cells with artificially elevated 

succinate (230) or fumarate (219) levels.  Though the HIF-α asparaginyl 

hydroxylation reaction catalyzed by FIH proceeds by a mechanism analogous to 

PHD-mediated prolyl hydroxylation, neither succinate nor fumarate were 

determined to inhibit FIH activity at physiologically-achievable intracellular 

concentrations (178). 

 The mechanisms by which each renal tumor predisposition syndrome 

affects HIF-α expression or stability is summarized in Figure 1.2. 

Treatment of Renal Cell Carcinoma 

Modified with permission from: Rathmell WK, Martz CA, and Rini B.  Renal cell 

carcinoma.  Current Opinion in Oncology 19(3): 234-40 (231). 

 Gene expression analysis of RCC.  The development of rational treatment 

strategies for renal tumors necessitates a nuanced understanding of the shared  
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and unique features of each RCC subtype.  In addition to studying the shared 

molecular biology of renal tumors, as discussed above, the study of mixed RCC 

tumors by gene expression profiling has yielded remarkable insight into the 

biologies of individual RCC subtypes.  Yang et al. found that histopathological 

review alone could not fully and accurately describe a chromophobe-oncocytoma 

hybrid and a high-grade clear cell tumor with an oncocytomatous component, but 

adding gene expression array analyses aided identification of these mixed 

tumors (232).  Jones et al. studied the genetic histories of RCC tumors with both 

clear cell and sarcomatoid components.  Clear cell and sarcomatoid components 

displayed identical X-inactivation patterns but different patterns of tumor 

suppressor loss, pointing towards origin from a common cell with subsequent 

genetic divergence (233).  Finally, Skubitz et al. found clinically-relevant 

molecular and metabolic heterogeneity even within a group of morphologically 

homogeneous clear cell RCC tumors(234).   

 Even tumors with similar morphologies exhibit molecular heterogeneity.  In 

a small study of sixteen RCC tumors classified as clear cell in histology, gene 

expression array analysis separated the ccRCC tumors into ccRCC-A and –B 

groups with different clinical and molecular profiles(234).  Type B tumors tended 

to display higher nuclear grade and higher clinical stage, supporting a more 

clinically aggressive phenotype, in comparison to Type A tumors.  Tumors with 

sarcomatoid features, historically associated with poor prognosis, grouped in the 

Type B cluster, and previously identified gene sets predictive of clinical outcome 

sorted the tumors into similar groups.  The gene expression array analysis also 
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provided insight into underlying differences in tumor biology between Type A and 

Type B ccRCC.  Type B tumors over-expressed extra-cellular matrix genes, 

including fibronectin and collagens, and adhesion genes, including NCAM and 

CD44, while Type B ccRCC tumors over-expressed genes in the glycolytic 

pathway.   

 DNA microarray analysis of a much larger set of 177 ccRCC tumor 

samples separated ccRCC tumors into five distinct subgroups (235) with 

prognostic significance.  Subgroups one and two were very molecularly similar, 

differing mainly in the transcriptional regulator profiles, and displayed the best 

long-term survival after radical nephrectomy.  Subgroup three tumors displayed 

relatively higher expression of proliferation-associated and collagen genes but 

not hypoxia-regulated genes and were associated with the worst long-term 

survival after surgery.  Subgroup four tumors, featuring granular cytoplasm, were 

associated with over-expression of characteristic chromophobe RCC and 

oncocytic genes including c-KIT and mitochondrial genes.  Finally, subgroup five 

tumors displayed decreased expression of membrane transporters and a subset 

over-expressed collagen genes.  Tumor subgroup predicted long-term survival 

independently of grade, stage, or performance status, indicating that the 

subgroups reflect clinically-relevant and fundamental differences in tumor 

biology.  These studies validate searches for shared RCC initiation pathways but 

simultaneously urge further study of the molecular changes responsible for 

specifying RCC subtype and determining clinical behavior and response to 

treatment.  
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 Targeted Therapy.  Recent years have witnessed a significant expansion 

of therapeutic options in metastatic RCC through the application of therapy 

targeted at specific proteins and cellular receptors, most notably directed against 

various components of the VEGF pathway. Data regarding several of these 

approaches has been updated recently (summarized in Table 1.3). A randomized 

phase II trial of bevacizumab monotherapy versus bevacizumab plus erlotinib 

was conducted to determine the value of the combination regimen, and the 

results provide further insight into the benefit of this agent in metastatic RCC. 

One hundred three patients with metastatic RCC and no prior systemic therapy 

were randomized. Bevacizumab monotherapy had a 13% objective response 

rate and an 8.5 month progression-free survival (PFS) (236).  Of note, this trial 

failed to confirm a response rate or PFS advantage for combination 

bevacizumab/erlotinib therapy over bevacizumab monotherapy. This important 

data substantiates the benefit of bevacizumab in untreated RCC. The results also 

underscore the importance of randomized comparisons to determine the additive 

value of combinations over monotherapy.   

 Sunitinib is an oral inhibitor of VEGF and related receptors that was Food 

and Drug Administration (FDA) approved in January 2006 for the treatment of 

advanced RCC. The second of two phase II trials was published recently and 

contains a pooled analysis of patients on both phase II trials (237, 238).  These 

trials were conducted in cytokine-refractory, metastatic RCC patients and 

demonstrated a RECIST-defined overall response rate (investigator-assessed) of 

42%. The combined PFS was 8.2 months, and the median PFS of patients 
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Table 1.3. Summary of select phase II /III trials using targeted therapy in 
metastatic RCC*   

Agent  Trial design Results: PFS, ORR, OS Major toxicities 
 
Bevacizumab 

 
Phase II   
Randomized double-blind 
Cytokine-refractory 
Low or high dose 
bevacizumab vs. placebo 
n=116 
 
Phase II  
Randomized 
Previously untreated 
Bevacizumab/erlotinib vs. 
bevacizumab/placebo  
n=104 
 

 
PFS:4.8 months with high 
dose  
(vs. 2.5 months with 
placebo); p=0.0001 
 
 
 
PFS: 8.5 months with 
bevacizumab 
monotherapy (vs. 9.9 
months with combination; 
p=n.s.) 
ORR: 13% (vs.14% with 
bevacizumab + erlotinib) 
 

 
Hypertension, 
proteinuria 
 
 
 
 
 
Hypertension, 
rash, diarrhea, 
bleeding 
 
 

 

Sunitinib Phase II 
Two single arm trials 
n=63 and 106 
 
Phase III  
Randomized trial 
Previously untreated 
Sunitinib vs. IFN 
n=750 
 

PFS: 8.2 months,  
ORR:42% 
 
 
PFS:11 months (vs.5 
months with IFN); 
p<0.000001 
ORR: 31% (vs.6% with 
IFN) 
p<0.000001 
 

Fatigue, hand foot 
syndrome, 
diarrhea, 
cytopenia, 
mucocitis 
 
 

 

Temsirolimus Phase II 
Random assignment to 25, 
75 or 250 mg temsirolimus 
IV weekly 
n=111 
 
 
 
Phase III 
Randomized three arm: 
temsirolimus + IFN vs. IFN 
alone vs. temsirolimus 
alone 
n=626 
 

PFS: 5.8 months  
ORR: 7% 
 
 
 
 
 
 
PFS: 3.7 months for 
monotherapy arm (vs.1.9 
months for IFN α) 
OS: 10.9 months (vs. 7.3 
months for IFN); p=0.0069 
 

Rash, mucositis, 
asthenia, nausea 
hyperglycemia, 
hypo-
phosphatemia, 
anemia, hyper-
triglyceridemia 
 
Asthenia, anemia, 
dyspnea 

 

Everolimus 
 

Phase III 
Randomized double-blind 
RTK refractory 
Everolimus (10 mg oral qd, 
n=272) vs. placebo 
(n=138) 

PFS: 4 months (vs. 1.9 
months for placebo), 
p<0.0001 
ORR: 1% (vs. 0% for 
placebo) 

Stomatitis, rash, 
asthenia, diarrhea 

*Modified from Rathmell WK et al. 2007 (231) 
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achieving a PR was 14.8 months versus 7.9 months for patients with a best 

response of SD.  Toxicity in the combined analysis of these trials included 

fatigue/asthenia (all grades 28%; grade 3: 11%), hypertension (16%, 6%), 

diarrhea (20%, 3%), stomatitis (13%, 5%) and hand-foot syndrome (15%, 7%).  

Neutropenia was observed in 42% (grade 3 or 4 in 16%) but there were no cases 

of neutropenic fever or sepsis.  Five patients experienced a decline in cardiac 

ejection fraction as assessed by MUGA of 20% or more and to below the lower 

limit of normal, but no patient developed signs or symptoms of congestive heart 

failure. Baseline patient characteristics associated with response to sunitinib 

included a normal hemoglobin and ECOG performance status 0.  Additional data 

regarding the association of tumor response/shrinkage and clinical outcome as 

well as discovery of factors predictive of response to sunitinib and similar agents 

is needed. A subsequent randomized phase III trial in untreated, metastatic RCC 

patients (n=750) of sunitinib versus interferon alpha was also recently reported 

(20).  Sunitinib-treated patients demonstrated a significant advantage in objective 

response rate (31% versus 6%; p<000001) and PFS (11 months versus 5 

months; p<0.000001).  Data is not presently mature to permit assessment of 

possible overall survival benefit. 

 Temsirolimus is an inhibitor of mTOR, a molecule implicated in multiple 

tumor-promoting intracellular signaling pathways.  Regulation of mTOR pathway 

activation is mediated through a series of complex signaling interactions linking 

growth factor receptor signaling, PI3Kinase activation, and activation of the 

Akt/PKB pathway which dictates changes in cellular metabolism, coordinated 
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with alterations in cell growth, mitogenesis and susceptibility to apoptosis.  Akt 

causes mTOR activation via negative signals which disrupt the tonic inhibition of 

Rheb provided by the TSC1/TSC2 complex.  This signaling pathway was recently 

comprehensively reviewed by Plas and Thompson (239).  Mutations in either 

TSC1 or TSC2 cause constitutive activation of mTOR and subsequent enhanced 

translation of HIF-1α and increased susceptibility to the development of renal cell 

carcinoma (Figure 1.2).  

 Temisrolimus was initially tested in treatment-refractory, metastatic RCC 

randomized 111 patients to one of multiple dose levels (25 mg, 75 mg or 250 mg 

IV weekly). The overall response rate was 7%, with additional patients 

demonstrating minor responses. Retrospective assignment of risk criteria to 

patients in this study identified a poor-prognosis group (n=49). Temsirolimus-

treated patients in this poor-prognosis group had a median overall survival (OS) 

of 8.2 months compared to 4.9 months for historical control IFNA treated patients 

(240).  Additionally, a phase I trial investigated the safety of combination therapy 

with temsirolimus and IFNA and established the MTD to be temsirolimus 15 mg 

IV weekly and IFN 6 MU 3x/week, a dose which produced an objective partial 

response in 13% of patients (241). 

 A subsequent randomized phase III trial was conducted in patients with 

metastatic RCC and 3 or more adverse risk features as defined by existing 

prognostic schema (240, 242).  Patients were randomized equally to receive 

IFNA 18 MU 3x/week, temsirolimus 25 mg IV weekly or temsirolimus 15 mg IV 

weekly + IFNA 6 MU 3x/week. The primary study endpoint was OS and the study 
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was powered to compare each of the temsirolimus arms to the IFNA arm. 

Patients treated with temsirolimus had a statistically longer overall survival than 

IFNA monotherapy patients (10.9 months vs. 7.3 months, p=.0069) (17).   

 A second related mTOR inhibitor, everolimus (RAD001), was tested in a 

double-blind randomized Phase III trial in patients with metastatic RCC with a 

clear cell component who had progressed on the VEGF RTK inhibitors sunitinib 

and/or sorafenib(18).  Patients were randomized 2:1 to receive 10 mg oral 

everolimus daily plus best supportive care or placebo plus best supportive care.  

Treatment was administered in 28-day cycles until progression, death, 

unacceptable toxicity, or discontinuation.   Patients who developed documented 

progression on placebo therapy were unblinded and permitted to cross-over to 

the everolimus arm.  The primary endpoint for the study was progression-free 

survival (time from randomization to disease progression or any-cause death) as 

measured by RECIST criteria by blinded central review.  Secondary endpoints 

included OS and OR.  The trial was halted after the second interim analysis 

because its criterion of clinical significance, a 33% reduction in risk, had been 

reached.   

 Everolimus significantly prolonged PFS compared to placebo (HR 0.30, 

95% CI 0.22-0.44, p<0.0001).  The median PFS for patients randomized to 

receive everolimus was 4.0 months (95% CI 3.7-5.5), while the median PFS for 

patients randomized to receive placebo was 1.9 months (95% CI 1.8-1.9).  One 

percent (three patients, all PR) achieved objective response on everolimus 

treatment and none in the placebo group, indicating that the prolonged PFS 
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observed in patients randomized to receive everolimus therapy was due to 

disease stabilization rather than disease regression.  OS was not significantly 

different between patients randomized to receive everolimus and those 

randomized to receive placebo (median not reached versus 8.8 months, 

respectively).  Any difference in OS was likely blunted by the conjunction of 

intention-to-treat analysis and heavy cross-over from the placebo to the 

everolimus arms.  Based on these results, the FDA recently approved everolimus 

for the treatment of patients with advanced RCC who have failed on sunitinib or 

sorafenib.  Additional trials studying everolimus in the neoadjuvant setting and in 

combination therapy are currently underway.  The outcomes of the temsirolimus 

and everolimus clinical trials validate mTOR as a relevant therapeutic target in 

RCC, at least in a subset of patients with multiple adverse risk features.  

 It has become clear through further experience with targeted agents that 

the traditional methods to assess response and progression of disease 

employing CT scans and RECIST criteria may be inadequate. Some responding 

lesions may not change or even increase in size, but have a necrotic appearance 

to the center of the lesion consistent with an anti-tumor effect. Similarly, the 30% 

threshold of tumor burden shrinkage required for a RECIST-defined objective 

response is arbitrary and may not carry substantial weight in the evaluation of 

these agents. More precisely, lesser degrees of tumor shrinkage (1-29%) have 

been commonly observed with targeting agents and likely account for some of 

the PFS benefits observed in randomized trials. A recent publication adds to the 

literature regarding functional imaging of tumors for more precise evaluation of 
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drug effect (243).  Twenty-four patients with RCC underwent a dynamic contrast-

enhanced helical CT of the kidney prior to radical nephrectomy. Radiographic 

parameters of tumor enhancement were then compared to the histologic 

parameters of grade and microvessel density (MVD). Radiographic enhancement 

parameters were significantly correlated with MVD but not grade in this small 

series. This data supports that radiographic enhancement of RCC tumors is a 

reflection of the vascularity of RCC tumors and that this vascularity can 

potentially be quantified. The next step would then be to use these techniques to 

assess tumor vascularity pre- and post-VEGF targeted therapy to determine if 

these parameters can add value to standard radiographic assessments of tumor 

size. Further research in to functional imaging in RCC is sorely needed. 

 Combinations of targeted agents with each other or with cytokines are a 

recent area of investigation in metastatic RCC. Sorafenib and interferon have 

been combined in two separate single-arm phase II trials (19, 244).  These trials 

demonstrated objective response rates of 18% and 35%, perhaps owing to 

differences in enrollment criteria between these two studies, as the first study 

was limited to cancers with a clear cell component. Toxicity observed was typical 

of that observed with each single agent with a notable reduction in hand foot 

syndrome compared to historical sorafenib monotherapy data. The 

benefit/toxicity ratio of this combination regimen awaits further investigation. 

 Cytokine Therapy.  Cytokine therapy with IL-2 or IFN-α is of modest 

benefit in unselected populations. It would be unwise, however, to completely 

abandon this therapy given that metastatic RCC is still a fatal disease for the vast 
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majority of patients. Two strategies emerge for harnessing the benefit of 

cytokines in an era of active targeted therapy: patient selection and combination 

therapy. 

 An example of the potential value of using a molecular marker to select 

patients and also an example of combination therapy is a phase II trial of IFNA in 

combination with the cyclooxygenase-2 (COX-2) inhibitor celecoxib in patients 

with maximal COX-2 expression. A previous trial in unselected metastatic RCC 

patients demonstrated an enhanced response rate in the subgroup of patients 

with maximal COX-2 expression as assessed by immunohistochemical staining 

of primary RCC tumors (245).  This trial generated a hypothesis that COX-2 

inhibition in tumors with maximal COX-2 expression overcomes inherent 

immunosuppression and may enhance the clinical value of cytokines. A 

prospective trial of IFNA and celecoxib is thus ongoing in RCC patients with 

maximal COX-2 expression. In addition, two completed large phase III trials of 

interferon plus bevacizumab versus interferon alone are awaited and will define 

the activity of this combination regimen. 

 VHL and Clear Cell Renal Cell Carcinoma.  Both VHL Disease-associated 

and sporadic ccRCC progresses from renal cysts and dysplasia to local and 

invasive disease.  Mutation and LOH of VHL are evident in every stage of 

sporadic ccRCC, and VHL Disease kidneys display HIF target gene activation in 

morphologically single cells as well as cysts, dysplastic foci, and RCC(44), 

indicating that VHL loss is an early or initiating event in renal tumorigenesis(8).  

VHL patients develop many renal cysts with increasing age (44).  The average 
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age of diagnosis of ccRCC in VHL disease patients, however, is in the 4th to 5th 

decade of life (41), suggesting that genetic events in addition to VHL LOH are 

required for progression to RCC.  Evidence from mouse models suggests that 

signaling through the AKT and MEK/ERK pathways are required in the transition 

from VHL–initiated single cell to renal cyst(140), but the genetic and epigenetic 

events required for progression of VHL-initiated cysts to invasive RCC are poorly 

understood.  Renal tumors often display PTEN down-regulation(137, 139), 

resulting in increased AKT pathway activity(138).  Metastatic tumors can 

additionally harbor mutations in RB and TP53 and display increased myc and 

EGFR expression.  Unlike many smoking-associated tumors, however, RAS 

mutation is not a common feature of RCC(246). 

 The HIF axis is central to renal tumorigenesis: the gene products 

associated with renal tumor predisposition syndromes such as VHL Disease, 

Birt-Hogg-Dube Syndrome, Hereditary Papillary Renal Cancer, Hereditary 

Leiomyomatosis and Renal Cell Carcinoma, and Tuberous Sclerosis all impinge 

upon HIF-α translation or post-translational stability.  The VHL tumor suppressor 

gene is mutated or lost in both inherited clear cell RCC as part of VHL Disease 

and in sporadic ccRCC.  Though pVHL has a well-described role in the normoxic 

suppression of HIF-α, its contribution to primary cilium maintenance may also 

feature in renal tumorigenesis via the putative RCC precursor lesion, the renal 

cyst.  Mouse models of human VHL Disease suggest that one or more genetic or 

epigenetic lesions are required for progression of a VHL-initiated cell to a renal 

cyst and an unknown number of additional lesions are required to progress a 



 

60 
 

VHL-initiated renal cyst to renal adenocarcinoma, if the renal cyst is a precursor 

lesion at all.  In my dissertation work, I have taken advantage of the genotype-

phenotype correlations observed in human VHL Disease to study mutant pVHL 

ubiquitin ligase structure and function using molecular biology techniques and to 

model the in vitro and in vivo functions of a representative Type 2B VHL Disease 

mutant using a gene replacement mouse model. 



 

 
 

CHAPTER TWO 

VHL Type 2B mutations retain VBC complex form and function 

Modified from Hacker KE et al. 2008 (247). 

Abstract 

 Von Hippel-Lindau disease is characterized by a spectrum of 

hypervascular tumors, including renal cell carcinoma, hemangioblastoma, and 

pheochromocytoma, which occur with VHL genotype-specific differences in 

penetrance.  VHL loss causes a failure to regulate the hypoxia inducible factors 

(HIF-1α and HIF-2α), resulting in accumulation of both factors to high levels.  

Although HIF dysregulation is critical to VHL disease-associated renal 

tumorigenesis, increasing evidence points toward gradations of HIF 

dysregulation contributing to the degree of predisposition to renal cell carcinoma 

and other manifestations of the disease.  This investigation examined the ability 

of disease-specific VHL missense mutations to support the assembly of the VBC 

complex and to promote the ubiquitylation of HIF.  Our interaction analysis 

supported previous observations that VHL Type 2B mutations disrupt the 

interaction between pVHL and Elongin C but maintain partial regulation of HIF.  

We additionally demonstrated that Type 2B mutant pVHL forms a remnant VBC 

complex containing the active members ROC1 and Cullin-2 which retains the 

ability to ubiquitylate HIF-1α.
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Our results suggest that subtypes of VHL mutations support an intermediate level 

of HIF regulation via a remnant VBC complex.  These findings provide a 

mechanism for the graded HIF dysregulation and genetic predisposition for 

cancer development in VHL disease. 

Introduction 

 von Hippel-Lindau (VHL) disease is an autosomal dominant familial 

cancer syndrome caused by germline mutation or loss of the VHL tumor 

suppressor gene that affects approximately 1 in 36,000 individuals (248).  

Individuals with VHL disease develop an array of tumors, including clear cell 

renal cell carcinomas (ccRCC), cerebellar and retinal hemangioblastomas, and 

pheochromocytomas (248).  VHL disease is divided by genotype into subtypes 

which predict the spectrum of risk for development of VHL-associated lesions  

(48, 49, 249).  Type 1 VHL disease predisposes to the development of ccRCC 

and hemangioblastoma.  All patients with Type 2 VHL disease are at risk for 

pheochromocytoma.   Type 2A VHL disease is further characterized by high risk 

for hemangioblastoma, and Type 2B VHL disease is associated with high risk for 

both hemangioblastoma and RCC.  Type 2C VHL disease individuals exclusively 

develop pheochromocytoma (250).  Patients homozygous for the Arg200Trp 

(R200W) VHL mutation, located in the extreme C-terminal domain of the 213 

amino acid VHL protein (pVHL), develop Chuvash Polycythemia (52, 53).  

Biallelic inactivation of pVHL has also been reported in upwards of 90% of 

individuals with sporadic ccRCC (251).  Thus, a thorough understanding of wild-
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type and disease-associated mutant pVHL activities has potential to impact a 

broad spectrum of affected patients (248, 252, 253)  

 The VHL protein acts as the substrate recognition subunit of an E3 

ubiquitin ligase complex analogous in structure to the SCF complex.  The SCF 

and SCF-like complexes typically contain four subunits, including a RING finger 

protein (ROC1/Rbx1), a cullin protein (CUL/Cul), and two adaptor proteins linking 

the cullin to the substrate binding protein (254).  In the pVHL E3 complex (VBC),  

pVHL acts as the substrate binding protein and is responsible for the specificity 

of the complex-target interaction (255).  Human pVHL directly interacts with 

Elongin C, while Elongin B links pVHL-Elongin C to cullin 2 (CUL2)-ROC1 (55, 

58, 60).  The VBC complex serves as a platform through which the E2 ubiquitin-

conjugating enzyme, bound by CUL2-ROC1, and the pVHL-bound substrate are 

brought into proper positioning for ubiquitin transfer (254).  In the VBC complex, 

ROC1 functions to recruit the E2 enzyme and also promotes internal complex 

stability (60, 255).   

 The primary targets of the VBC complex are the hypoxia inducible factors, 

HIF-1α and HIF-2α.  The HIF factors direct the transcriptional response to 

hypoxia by activating the expression of genes involved in angiogenesis, cell 

proliferation, erythropoiesis, energy metabolism, and apoptosis (51, 63-65, 256, 

257).   

 Loss of the pVHL tumor suppressor, as occurs with Type 1 VHL 

mutations, is believed to promote renal tumorigenesis primarily through loss of 
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pVHL-mediated HIF regulation (258).  Correspondingly, Type 2C VHL missense 

mutations display fully intact regulation of HIF factors, consistent with the lack of 

conveyed risk for RCC development (100).  In the case of Type 2A and Type 2B 

VHL missense mutations, titrated degrees of HIF regulation appear to correlate 

with the subtype-specific risk of ccRCC (257, 259).  While the differing 

capabilities of VHL disease-associated mutants to regulate HIF have been 

explored (51, 100, 107, 257, 259), the mechanism of retained HIF regulation and 

the link between differing levels of HIF regulation and the clinical spectrum 

observed in VHL disease is not yet fully understood.  In this study, we re-

examined the effect of VHL missense mutations to disrupt the formation of the 

VBC complex, and demonstrate that characteristic Type 2B VHL mutations form 

a low-abundance VBC complex which retains the ability to ubiquitylate HIF-1α.   

Results 

Type 2B mutant pVHL proteins promote incomplete normoxic HIF-2α 

stabilization.  We have previously shown that human VHL mutations 

representative of Types 2A and 2B VHL disease impart an intermediate degree 

of HIF-2α regulation in a Vhl-null murine ES cell expression system (107).  In 

order to evaluate this trend in human RCC cells, 786-0 RCC-derived cells, known 

to lack pVHL expression and over-express HIF-2α, were reconstituted with 

expression vectors encoding wild-type or VHL disease-specific mutant VHL 

cDNA.   Individual clones expressing mutant pVHL comparable to wild-type 

levels were selected for subsequent experiments.  Figure 2.1A depicts a 

representative immunoblot for the expression of wild-type as well as RCC-  
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Figure 2.1. VHL disease-associated mutations demonstrate a graded amount of 
HIF Regulation.  A. Anti-HA immunoblot for expression of HA-tagged human 
pVHL in transgenic 786-0 clones.  Whole-cell protein extracts were prepared 
from 786-0 clones deficient for VHL expression (Vector) or modestly expressing 
wild-type (WT) or missense (Y112H, R167Q) mutant HA-tagged human pVHL.  
B. Anti-HIF-2α immunoblot for HIF stabilization in 786-0 clones.  Whole-cell 
protein extracts were prepared from VHL-deficient 786-0 cells or WT or mutant 
HA-pVHL-rescued 786-0 cells incubated in the presence or absence of the 
hypoxia mimetic CoCl2 for 24 hours.  Ku80 immunoblot was used as a control for 
equal loading.    
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associated Type 2A (Y112H) and 2B (R167Q) mutant HA-tagged pVHL in 786-0 

RCC clones.   

 To study the ability of RCC-associated mutant pVHL to regulate HIF in 

786-0 cells, the hypoxia mimetic cobalt chloride (CoCl2) was used to simulate 

hypoxic conditions.  Cells were placed in either standard growth media or media 

supplemented with 100mM CoCl2for 24 hours followed by analysis of HIF-2α 

protein levels by immunoblot (Figure 2.1B).  VHL-null vector-only transfected 

cells (vector) failed to suppress HIF-2α under standard conditions and lacked 

further induction under simulated hypoxic conditions.  Introduction of wild-type 

HA-pVHL restored normoxic suppression and CoCl2 induction of HIF-2α.  Type 

2A VHL mutant Y112H cells failed to completely suppress HIF-2α levels, as 

expected due to the predicted disruption of the HIF interaction domain (55).  

Type 2B VHL mutant R167Q cells displayed partial suppression of HIF-2α while 

retaining HIF-2α stabilization in response to CoCl2.  These observations were 

confirmed in multiple independently-derived 786-0 clones (data not shown).  

Type 2B mutant protein participates in a VBC complex containing Cullin2.  

To determine the correspondence between the observed partial retention of HIF-

2α regulation and formation of a competent VBC complex, we analyzed the 

interaction of wild-type and disease-specific mutant HA-pVHL with known 

components of the VBC complex by co-IP and reverse co-IP studies in 

transgenic human 786-0 and murine ES cells.  Based on prevailing models, Type 

2B mutant pVHL proteins, including R167Q, are predicted to disrupt VBC 

complex formation by eliminating Elongin C binding to pVHL (57-59, 260, 261).  
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We have previously observed the inability of R167Q HA-pVHL to bind Elongin C 

in a transgenic murine ES cell system (107).   

 VBC complex formation was assessed by co-IP analysis of proteins 

interacting with HA-pVHL in Vhl-null murine ES cells expressing wild-type pVHL 

(WT), mutants Y112H, R167Q, L188V, and R200W, or no transgene (-/-).  HA-

pVHL pull-down was confirmed in each IP by anti-HA immunoblot (HA, Figure 

2.2A).  Each HA-pVHL-containing complex was then individually tested for 

interaction with known members of the VBC complex through protein-specific co-

IP immunoblot (Figure 2.2A).  As expected based on both previous reports and 

the localization of the respective mutations (51, 107), the R167Q HA-pVHL failed 

to substantially co-immunoprecipitate Elongin C, whereas wild-type HA-pVHL 

and mutant HA-pVHL representing Y112H, L188V, and R200W retained this 

interaction.  Furthermore, wild-type HA-pVHL and mutant HA-pVHL representing 

Y112H, L188V, and R200W demonstrated interaction with complete VBC 

complex detecting the presence of murine Elongin B, Cul2, and Rbx1.  Elongin B, 

Cul2, and Rbx1 also clearly associated with the R167Q HA-pVHL, suggesting 

that the VBC complex is at least partially intact in cells expressing this 

representative Type 2B VHL mutation.   

 In order to discern if the observed remnant VBC complex in R167Q HA-

pVHL-expressing murine ES cells was an artifact of human-mouse interactions, 

we examined the same panel of VHL mutations for VBC complex formation in 

stably-transfected human 786-0 RCC cells.  A second representative Type 2B 

VHL mutation D121G was included in this analysis to determine whether the  
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Figure 2.2. Co-immunoprecipitation of VBC complex proteins with type 2B 
mutant pVHL.  A. Anti-HA immunoprecipitation of HA-pVHL and associated VBC 
complex members in transgenic ES cell clones.  Anti-HA IP products were 
probed for successful pull-down of WT or mutant HA-pVHL and for co-IP of the 
indicated VBC complex members in stably-transfected Vhl-/- murine ES cells.  B. 
and C. Anti-HA immunoprecipitation of HA-pVHL from transgenic 786-0 clones.  
Anti-HA IP products were probed for successful pull-down of WT or mutant HA-
pVHL by anti-pVHL (B) or anti-HA (C) immunoblot and for co-IP of the indicated 
VBC complex members in stably-transfected 786-0 cells. 
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formation of a remnant complex is limited to the specific Type 2B mutant R167Q 

HA-pVHL or is more broadly relevant to Type 2B VHL disease.  Again, pVHL-

associated proteins were co-immunoprecipitated, and pull-down of HA-pVHL was 

confirmed for each IP by anti-VHL (Figure 2.2B) or anti-HA (Figure 2.2C) 

immunoblot, followed by detection of known VBC complex members by protein-

specific co-IP immunoblot (Figures 2.2B and 2.2C).  Both R167Q and D121G 

mutant HA-pVHL failed to demonstrate a strong interaction with Elongin C, 

although robust association was detected for wild-type and the other mutant HA-

pVHL proteins.  The remaining VBC complex members were again associated 

with wild-type and all of the HA-pVHL mutants tested, including the Type 2B 

mutants R167Q and D121G.  This experiment suggests that both of the Type 2B 

mutant HA-pVHL proteins studied may retain at least partial interaction with 

Elongin C and recruit a complex containing the essential human VBC E3 

ubiquitin ligase components CUL2 and ROC1. 

 To confirm the observed interaction between R167Q HA-pVHL and CUL2, 

a myc-tagged CUL2 protein was transiently expressed in stable 786-0 cell lines 

expressing wild-type or RCC-associated mutant HA-pVHL for reverse co-IP 

studies (Figure 2.3).  Cell extracts were subjected to anti-myc-agarose IP, and 

pull-down of myc-CUL2 was confirmed by anti-CUL2 immunoblot.  Anti-HA co-IP 

immunoblot verified the results depicted in Figure 2B-C, displaying myc-CUL2 

interaction with wild-type, Y112H, and R167Q HA-pVHL.   

Type 2B mutant pVHL retains HIF-1α-ubiquitylating activity.  To determine 

if the remnant R167Q HA-pVHL – CUL2 complex retained E3 ubiquitin ligase  
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Figure 2.3. Reverse co-immunoprecipitation confirms CUL2-pVHL protein 
interaction in R167Q mutation.  Anti-myc immunoprecipitation of myc-CUL2 and 
associated HA-pVHL in 786-0 clones.  Stable 786-0 clones expressing vector-
only (ST) or WT or mutant HA-pVHL were transiently transfected with wild-type 
myc-tagged CUL2 and subjected to myc-IP.  Upper panel, IP of Myc-tagged Cul2 
detected by anti-CUL2 immunoblot.  Lower panel, co-IP of WT and mutant HA-
pVHL detected by anti-HA immunoblot. 

 

 

Figure 2.4. pVHL-dependent HIF-1α ubiquitylation in 786-0 cell lines.  Anti-myc 
immunoblot to visualize migration shift of myc-tagged HIF-1α in vitro.  Cell 
extracts from 786-0 clones expressing vector alone or WT or mutant HA-pVHL 
were incubated in the presence or absence of ubiquitylation reaction solution and 
TNT HIF-1α-myc and subjected to anti-myc immunoblot.  A band representing 
unmodified TNT HIF-1α-myc, as depicted in the TNT lane, runs just below the 
ladder marker at 113.9 kDa.  Upward shift of myc-HIF-1α, as seen in complete 
reaction lanes for WT and R167Q, indicates poly-ubiquitylation. The TNT HIF-1α-
myc migration pattern for each complete reaction lane is graphically summarized 
to the right of the immunoblot.   
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activity, wild-type and mutant HA-pVHL were analyzed for competence to 

ubiquitinate HIF-1α using a modified version of the in vitro assay developed by 

Cockman et al. (63).  Exogenous HIF-1α was used as the ubiquitylation target in 

this experiment as the 786-0 parental cell line lacks confounding endogenous 

HIF-1α expression.   The R167Q and a second Type 2B mutation (Q195X)  have 

been shown to retain interaction with HIF-1α (51).  Retention of E3 ligase activity 

by the remnant R167Q mutant pVHL-CUL2 VBC complex, therefore, should 

correspond to preserved HIF-1α ubiquitylation in vitro.   

 In vitro-transcribed (TNT) myc-tagged full-length wild type human HIF-1α 

(HIF-1α-myc) was subjected to a modified in vitro ubiquitylation assay, using anti-

myc immunoblot to visualize ubiquitylation of the HIF-1α-myc substrate (Figure 

2.4, components of each analysis indicated above lane).  The HIF-1α-myc 

protein migration for each cell line is summarized by a shaded line to the right of 

the immunoblot. TNT HIF-1α-myc substrate in the absence of reaction solution or 

cell extract served as a negative control for the unmodified electrophoretic 

mobility of the HIF-1α-myc protein. For each cell line in our assay, further 

controls were provided by excluding cell extract (first reaction) or TNT HIF-1α-

myc substrate (second reaction).  The third reaction for each cell line contained 

all three necessary components for the ubiquitylation reaction.  An upward shift in 

HIF1α-myc mobility, as exemplified by the wild-type (WT) complete reaction, 

indicates HIF-1α-myc poly-ubiquitylation.  The HIF-1α-myc protein was shifted 

only slightly upwards in the reaction utilizing extract from control vector-only 786-

0 cells, demonstrating the basal pVHL-independent HIF-1α ubiquitylation present 
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in this system.  Type 2A Y112H mutant HA-pVHL failed to promote HIF-1α-myc 

mobility shift beyond basal levels, confirming previous work by Cockman et al. 

(63).  Notably, Type 2B R167Q mutant HA-pVHL promoted HIF-1α-myc mobility 

shift similar to WT HA-pVHL, demonstrating that the remnant R167Q HA-pVHL – 

Cullin-2 complex retains E3 ligase activity towards HIF-1α in vitro.   

Discussion 

 In addition to the strong association of sporadic ccRCC with biallelic VHL 

inactivation and of VHL disease-associated ccRCC with subtype-specific 

germline VHL mutations, evidence from xenograft models of tumor growth 

strongly supports the requirement for pVHL-mediated HIF regulation in 

suppression of renal tumorigenesis.  However, several lines of evidence suggest 

that dose-dependent effects on basal HIF levels influence VHL-associated tumor 

development and behavior.  Our prior investigation in eupoloid primary ES cell 

lines, utilized as a strategy to avoid interference from transforming cancer cell 

events, demonstrated a bias toward HIF-2α dysregulation for VHL Type 2B 

mutation, and a graduated degree of HIF dysregulation across the disease 

subtypes (107).  In vitro studies of RCC-predisposing Type 2A and Type 2B VHL 

missense mutations have revealed a correlation between the degree of mutant 

pVHL-mediated HIF-α dysregulation and risk of ccRCC (259).  In a recent study 

performed in both 786-0 and a second RCC-derived cell line, RCC4, 

representative Type 2A and Type 2B VHL mutations demonstrated intermediate 

levels of HIF stabilization (257).  Taken together, these results suggest that Type 

2A and Type 2B mutant pVHL proteins retain an intermediate degree of HIF 
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regulation, rather than an “all-or-none” pattern of regulation, likely contributing to 

the distinct phenotypes observed in these VHL disease subtypes.  

 In this study, we observed intermediate HIF regulatory activity by Type 2A 

Y112H and Type 2B R167Q mutant HA-pVHL, which could underlie the distinct 

genotype-phenotype correlations and may provide insight into the biology of 

sporadic RCC as well.  In previous reports of VBC complex formation, the ability 

of disease-specific mutant pVHL to bind Elongin C was used as a proxy for ability 

to recruit the remainder of the VBC complex.  The absence of 2B mutant HA-

pVHL interaction with Elongin C in co-IP studies led to conclusions that α-domain 

mutations in pVHL abolish VBC complex formation (57-59, 260, 261).  We report 

here, however, that both R167Q and D121G Type 2B mutant HA-pVHL 

participate in a complex with CUL2, ROC1, and Elongin B, as well as potentially 

with Elongin C either transiently or with greatly reduced abundance.   

 The co-immunoprecipitation of VBC complex members with R167Q and 

D121G mutant HA-pVHL could be due to reduced or transient formation of a 

wild-type VBC complex and/or formation of an alternate pVHL-Cullin-2 complex 

with ubiquitin ligase activity.  The low abundance of Elongins C and B in 

association with both representative Type 2B mutant pVHL proteins may 

represent a limited quantity of stable complete VBC complex.  Existing crystal 

structures depict the pVHL α-domain interacting with the VBC complex only 

through Elongin C (55). However, the relatively abundant CUL2 and ROC1 in the 

mutant 2B VBC complex could point to a direct interaction between mutant HA-

pVHL and CUL2 or the replacement of Elongins C and B with alternate adaptors 
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linking the mutant HA-pVHL to CUL2 – ROC1.  Silver stain and proteomic 

analysis of our Type 2B mutant HA-pVHL immunoprecipitates failed to detect 

additional bands that could function as replacement adaptors in an alternate HA-

pVHL – CUL2 complex (data not shown). 

 The Type 2B mutation R167Q has been shown to permit interaction 

between pVHL and HIF-α (51).  Therefore, if able to recruit an active complete or 

alternate VBC complex, Type 2B pVHL should be able to direct HIF-α 

ubiquitylation.  Indeed, we observed that R167Q mutant HA-pVHL existed in 

complex with CUL 2 and ROC1 and mediated wild-type levels of HIF-1α poly-

ubiquitylation in vitro.  Though the presence of ROC1 has been shown to 

stabilize the VBC complex (255), our results cannot discern whether endogenous 

levels of Type 2B mutant pVHL expression support formation of a stable or 

transient complex with CUL2.  R167Q mutant pVHL has been shown to be 

relatively unstable in vitro (259), and subtype-specific clinical manifestations of 

VHL disease may derive from a combination of mutant pVHL stability and the 

stability and activity of the mutant VBC complex.  

 In summary, we have demonstrated that disease-associated mutant pVHL 

proteins retain endogenous HIF-2α regulation.  Two representative Type 2B 

mutant pVHL proteins partially preserved interaction with VBC complex members 

despite reduced binding to Elongin C, and the Type 2B mutant R167Q pVHL 

retained wild-type levels of ubiquitin ligase activity towards its target HIF-1α in 

vitro.  Taken together, our results show that at least a subset of Type 2B VHL 

missense mutations result in a partial or unstable but active VBC complex which 
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retains the ability to regulate HIF-α levels. Furthermore, our results support 

observations that VHL missense mutations generally confer lower levels of HIF-α 

stabilization than null or truncating Type 1 VHL mutations (107, 257) and provide 

mechanistic insight into this retained ubiquitin ligase activity.   

Materials and methods 

 Cell Lines.  Vhl-null embryonic stem (ES) cells or VHL-deficient 786-0 

RCC cells were transfected with vectors specifying human wild-type VHL or 

representative VHL mutants Y112H (Type 2A), R167Q (Type 2B), L188V (Type 

2C), or R200W (Chuvash polycythemia) using vectors and techniques as 

previously described (107).  786-0 cells expressing the VHL mutant D121G 

(Type 2B), generated as previously described (262), were generously provided 

by Dr. William Kim, Chapel Hill, NC.  Vhl-null murine ES cells and transfected 

derivatives were maintained in culture media comprised of Dulbecco’s Modified 

Eagle Medium (DMEM, various manufacturers), supplemented with 10% ES cell-

certified fetal bovine serum (Invitrogen, Carlsbad, CA), non-essential amino 

acids, L-glutamine, 2-mercaptoethanol, and leukemia inhibitory factor, and were 

grown on gelatin-coated plates in the absence of feeder cells.  Renal cell 

carcinoma 786-0 cells were acquired from the American Type Culture Collection 

(Manassas, VA).  786-0 cells and transfected derivatives were maintained in 

DMEM, supplemented with 10% FBS, non-essential amino acids, L-glutamine, 

and 2-mercaptoethanol.  All cultures were maintained at 37ºC in 5% CO2.  For 

hypoxia mimetic experiments, cells in log-phase growth were placed in media 
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supplemented with 100mM cobalt chloride (Sigma, St. Louis, MO) or fresh 

unsupplemented media.   

 Immunoblot analysis.  Cells were lysed in Mammalian Protein Extraction 

Reagent (M-PER; Pierce Biotechnology, Rockford, IL) supplemented with 

Complete Mini Protease Inhibitor Cocktail (Roche, Basel, Switzerland).  The 

Bradford Quantification Method (Amresco, Solon, OH) was used to determine 

protein concentration.  Cell lysates were resolved by SDS-PAGE and 

subsequently transferred to Hybond ECL nitrocellulose membrane (GE 

Healthcare, United Kingdom).  Immediately following transfer, membranes were 

stained with Ponceau S to confirm even transfer, blocked in 5% nonfat dry milk 

diluted in phosphate-buffered saline containing 0.1% Tween-20 (PBS-T), and 

then probed with the following primary antibodies:  rabbit polyclonal anti-HA tag 

(Abcam, Cambridge, MA: ab9110, 1:1000), mouse monoclonal anti-pVHL 

(Abcam, ab11189, 1:2000), rabbit polyclonal anti-cullin-2 (Abcam: ab1870, 

1:1000), rabbit polyclonal anti-ROC1 (Abcam: ab2977, 1:500), goat polyclonal 

anti-Elongin C (Santa Cruz, Santa Cruz, CA: sc-1559, 1:200), rabbit polyclonal 

anti-Elongin B (Santa Cruz: sc-11447, 1:200), mouse monoclonal anti-Myc tag 

(Cell Signaling, Danvers, MA: 9B11, 1:1000), mouse monoclonal anti-HIF-2α 

(GeneTex, San Antonio, TX: GTX30123, 1:1000), and rabbit polyclonal anti-Ku80 

(GeneTex: GTX70485, 1:2000).  Secondary antibodies used were anti-mouse, 

anti-rabbit, and anti-goat IgG conjugated to horseradish peroxidase (various 

manufacturers) and detected with the ECL Plus Western Blotting System (GE 

Healthcare) using exposure to BlueLite autoradiography film (ISC BioExpress, 
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Kaysville, UT) and processing via a Kodak RP X-OMAT Processor (Rochester, 

NY).   

 Immunoprecipitation analysis.  M-PER cell lysates were subjected to 

immunoprecipitation (IP) using either the Profound Mammalian HA Tag IP/Co IP 

Kit or the Profound Mammalian Myc Tag IP/Co IP Kit, as per manufacturer’s 

specifications (Pierce Biotechnology).  For the reverse co-IP analysis, stably-

transfected 786-0 cell lines were transiently transfected with a plasmid encoding 

myc-tagged cullin-2, a generous gift from Dr. Y. Xiong, Chapel Hill, NC, using 

Solution V of the Amaxa Tranfection System (Amaxa, Gaithersberg, MD).  

Twenty hours post-transfection, transfected cells were incubated in media 

supplemented with 5 μM MG-132 (Calbiochem, Gibbstown, NJ) proteasome 

inhibitor or fresh unsupplemented media for four hours, followed by protein 

extraction with M-PER and IP analysis as above.   

 In vitro HIF-1α ubiquitylation assay.  An in vitro ubiquitylation assay was 

adapted from the protocol developed by Cockman et al. (63).  786-0 cell lines 

incubated for four hours in 5μM MG-132 were washed and collected in PBS.  The 

cells were then washed twice in Ub Extraction Buffer (20 mM Tris, pH 7.5, 5 mM 

Kcl, 1.5 mM MgCl2, 1 mM DTT) and disrupted using a dounce homogenizer.  The 

cell lysates were centrifuged at 10,000xg for 10 minutes at 4°C.  Each reaction 

was set up in a total volume of 40 μL, containing 23 μL cell extract, 5 μL HIF1α-

myc substrate, and 12 μL reaction solution.  The “reaction solution” was 

composed of ATP Regenerating System (20mM Tris, pH 7.5, 10mM ATP (GE 
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Healthcare)), 10mM magnesium acetate (Promega Corporation, Madison, WI), 

300 mM creatine phosphate, 0.5 mg/mL creatine phosphokinase (MP 

Biomedicals, LLC, Irvine, California), 20 μg ubiquitin, and 150 uM ubiquitin 

aldehyde (Biomol International, Plymouth Meeting, PA). When reactions 

excluded a specific component, nuclease-free dH2O was substituted to maintain 

the total reaction volume.  Reactions were incubated at 30°C for 270 minutes and 

then subjected to immunoblot analysis.  HIF1α-myc substrate was produced 

through TNT® coupled Wheat Germ Extract Systems (Promega, Madison, WI) 

from a plasmid encoding full-length functional human HIF1α-myc protein, a 

generous gift from Dr. M. C. Simon, Philadelphia, PA.   
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CHAPTER THREE 

VHL Type 2B gene models HIF-2α dysregulation in vitro and in vivo 

Modified from Lee CM et al. 2009 (263). 

Abstract 

 Von Hippel-Lindau (VHL) disease is caused by germline mutations in the 

VHL tumor suppressor gene, with Type 2B missense VHL mutations 

predisposing to renal cell carcinoma, hemangioblastoma, and 

pheochromocytoma. Type 2B mutant pVHL is predicted to be defective in 

hypoxia inducible factor (HIF)-α regulation.  Murine embryonic stem (ES) cells in 

which the endogenous wild-type Vhl gene was replaced with the representative 

Type 2B VHL hotspot mutation R167Q (Vhl2B/2B) displayed preserved physiologic 

regulation of both HIF factors with slightly more normoxic dysregulation of HIF-

2α.  Differentiated Vhl2B/2B-derived teratomas over-expressed the joint HIF targets 

Vegf and EglN3 but not the HIF-1α-specific target Pfk1 and displayed a growth 

advantage over Vhl-/--derived teratomas, suggestive of a tight connection 

between perturbations in the degree and ratio of HIF-1α and HIF-2α stabilization 

and cell growth.  Vhl2B/2B mice displayed mid-gestational embryonic lethality, 

while adult Vhl2B/+ mice exhibited susceptibility to carcinogen-promoted renal 

neoplasia compared with wild-type littermates at twelve months.  Our 

experiments support a model in which the representative Type 2B R167Q mutant 
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pVhl produces a unique profile of HIF dysregulation, thereby promoting tissue-

specific effects on cell growth, development, and tumor predisposition. 

Introduction 

 Von Hippel-Lindau (VHL) disease is an autosomal dominant inherited 

cancer susceptibility syndrome resulting from germline mutation of the VHL 

tumor suppressor gene which affects 1 in 36,000 live births in the US (27, 28).  

Specific classes of VHL mutations predispose to different spectrums of morbidity- 

and mortality-causing clinical phenotypes of VHL disease: retinal and central 

nervous system (CNS) hemangioblastoma, pheochromocytoma/paraganglioma, 

and renal cell carcinoma with clear cell histology (ccRCC) (48, 49).  Type 1 VHL 

mutations predispose to ccRCC and hemangioblastoma (50).  Type 2 missense 

VHL mutations predispose to pheochromocytoma, either alone (Type 2C) or in 

combination with hemangioblastoma and a high (Type 2B) or low (Type 2A) risk 

of ccRCC (51).  Finally, individuals with homozygosity for the germline R200W 

VHL mutation develop Chuvash Polycythemia (CP), a rare benign congenital 

erythrocytosis with no associated cancer risk (52, 53). 

 The VHL gene encodes a 30 kDa protein, pVHL (21, 264). Wild-type pVHL 

has been reported to play roles in diverse biological processes including acting 

as the recognition domain for an E3 ubiquitin ligase complex (61, 62) composed 

of Elongins B and C (56, 57), cullin-2 (58), ROC1 (Rbx1) (60), and an E2 

conjugating enzyme (61, 256).  pVHL E3 ligase activity targets hypoxia inducible 

factor (HIF)-α subunits (63-66), a family of transcription factor subunits including 

HIF-1α and HIF-2α. 
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 HIF-1α and HIF-2α coordinate cellular and whole-organism responses to 

hypoxia and are controlled at the level of stability and activity by oxygen-

dependent hydroxylation.  In normoxic conditions, a family of prolyl hydroxylases 

(74, 126, 127, 129) mediates the hydroxylation of HIF-α prolyl residues (71, 72, 

128, 130), targeting HIF-α to pVHL for degradation (73, 75).  In hypoxic 

conditions, the prolyl hydroxylases are inactive (127, 130, 265), resulting in 

stabilized, transcriptionally active HIF-α.  Stabilized HIF-α heterodimerizes with 

ARNT/HIF-1β (76) to activate the transcription of target genes (77, 78).    HIF-1α 

and HIF-2α target gene sets overlap in a highly context-dependent manner (79), 

but HIF-1α uniquely activates glycolytic enzymes (83).   

 Several lines of evidence implicate the VHL/HIF axis in the initiation of 

renal tumorigenesis.  First, biallelic inactivation of VHL and over-expression of 

HIF targets is observed in both VHL disease-associated renal lesions and also 

70-90% of sporadic ccRCC tumors (252, 266-268).  Second, over-expression of 

HIF targets accounts for many histological and clinical features of ccRCC tumors, 

including their highly vascular natures and paraneoplastic erythrocytosis (269).  

Third, Vhl loss in primary cells directly results in upregulation of both HIF-1α and 

HIF-2α and recapitulates many features of RCC (106).  Finally, emerging 

evidence points to the degree of HIF dysregulation impacting renal 

tumorigenesis.  In vitro studies of cDNA expressed Type 2A and Type 2B mutant 

pVHL models revealed graded dysregulation of HIF-1α and HIF-2α (51, 63), 

correlating with the degree of risk for ccRCC (Type 1≥ Type 2B > Type 2A) (257, 

259).  Additionally, while Type 2B mutations are predicted to disrupt 



 

82 
 

pVHL:Elongin C interactions, preservation of HIF ubiquitylation activity has been 

observed, which would provide a permissive environment for HIF regulation 

(Hacker et al, 2008).  The profile of HIF dysregulation may also have 

ramifications for tumor predisposition, as selective HIF-2α stabilization has been 

observed in murine embryonic stem (ES) cells transgenic for a Type 2B mutant 

VHL gene (107).  These systems in addition to demonstrating mutation specificity 

are sensitive to pVHL levels. 

 Existing mouse models of VHL disease utilize null (110) or conditional null 

(111, 116) Vhl alleles, display homozygous embryonic lethality, and show a high 

penetrance of hepatic angiomas, uncommon in the human disease.  A Vhl gene 

replacement model of Chuvash Polycythemia, however, was viable and 

conferred erythrocytosis in a milieu of very mild HIF-2α stabilization (112). To 

examine the activities of mutant pVHL relevant to human cancer, particularly with 

respect to missense mutation-specific effects on HIF regulation, we undertook a 

gene replacement approach to study Type 2B VHL disease in a mouse model.  

This model provides the first opportunity to examine the effect of a VHL disease-

causing missense mutations in its pre-malignant context and under endogenous 

transcriptional, translational, and post-translational regulation.  Murine ES cells 

homozygous for a representative mutant 2B Vhl allele displayed mild HIF-2α 

stabilization but functionally preserved HIF-1α suppression.  In vivo, while 

homozygosity for the mutant 2B Vhl allele conferred mid-gestational embryonic 

lethality, heterozygous Vhl2B/+ mice were viable and susceptible to carcinogen-

promoted renal adenocarcinoma.  Our genetic knock-in mouse model thus 
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provides a species-congruent cellular system and in vivo model in which to 

further examine the contributions of Type 2B VHL missense mutation to VHL 

disease-associated cancers. 

Results 

 Generation and characterization of Type 2B Vhl ES cell lines.  The 

Arginine 167  Glutamine (R167Q) missense mutation is a hotspot in the human 

VHL gene with a tight genotype-phenotype correlation to Type 2B disease (27, 

49).  Localized to the pVHL α helical domain (Figure 3.1A), R167 is predicted to 

stabilize the α/β domain interface and interaction with Elongin C (55, 261).  In the 

murine Vhl allele, this mutation corresponds to a guanine to alanine transition at 

position 518 (G518A).     

 To study the effect of 2B mutant pVhl on regulation of HIF-α and HIF 

targets, we targeted the endogenous murine Vhl locus with an R167Q mutant Vhl 

construct (Figure 3.1B) to generate Vhl2B/+ and Vhl2B/2B ES cell lines.  The 

targeting construct introduced a HindIII site, enabling verification of 

recombination by Southern analysis (Figure 3.1C), and the G518A mutation 

introduced a novel HpyIV restriction site for restriction-based PCR genotyping 

(Figure 3.1D).  Quantitative RT-PCR analysis in Vhl2B/2B ES cells confirmed that 

2B mutant Vhl was transcribed at wild-type levels (Figure 3.2A).  Vhl2B/+ cells 

expressed wild-type levels of pVhl, but Vhl2B/2B cells expressed greatly reduced 

levels of the 2B mutant pVhl (Figure 3.2B).  A similar reduction in detectable 2B  
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Figure 3.1.  Type 2B Vhl mutation knock-in strategy and genotyping.  A.  
Human:Mouse pVHL protein alignment.  The R167Q pVHL substitution 
representing human Type 2B VHL disease is embedded in a highly homologous 
region.  B.  Type 2B mutant murine Vhl containing the G518A (R167Q) 
representative missense mutation (star) was prepared with site-directed 
mutagenesis and then cloned into the targeting vector as shown.  Following 
electroporation of the targeting vector into J1 ES cells, neomycin and gancyclovir  
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mutant pVhl was also observed by immunoblot with an antibody raised against 

an alternate epitope suggesting that reduced detection of 2B mutant pVhl was 

not due to epitope-masking alone.  Rescue with MG-132 treatment was not 

observed, consistent with the reduced protein expression and incomplete MG-

132 rescue observed in the Chuvash Polycythemia Vhl gene replacement model 

(112). 

 Analysis of HIF and HIF target expression in Type 2B Vhl ES cells.  The 

R167Q human pVHL mutation is predicted to destabilize the pVhl protein (259) 

and to disrupt pVhl recruitment of Elongin C (55), resulting in HIF factor 

dysregulation.  ES cells in the presence or absence of the chemical hypoxia 

mimetic cobalt chloride (CoCl2) were examined for HIF-1α (Figure 3.2C) and HIF-

2α (Figure 3.2D) protein levels by immunoblot.  Wild-type and Vhl2B/+ ES cells 

displayed low basal levels of HIF-1α and HIF-2α and responded to CoCl2 

exposure with induction of both factors.  Vhl-/- ES cells displayed maximal 

stabilization of both HIF-1α and HIF-2α without further induction.  In contrast, 

Vhl2B/2B ES cells retained physiologic induction of both HIF-α factors with CoCl2.   

 

Figure 3.1. continued.  resistance was used to select clones with homologous 
recombination at the endogenous murine locus (Neo-in).  Cre recombinase 
exposure in vitro or in vivo resulted in excision of the floxed NeoR cassette (Neo-
out).  C. Southern blot genotyping distinguished between wild-type and targeted 
Vhl alleles based on the introduction of new HindIII restriction sites.  HindIII-
digested murine Vhl was detected with a probe recognizing the Vhl 3’ 
untranslated region (UTR, bar).  D. Restriction PCR was used as an alternative 
genotyping strategy.  Primers (arrows) flanking the targeted mutation generated 
a 300-bp PCR product.  The novel restriction site introduced by the G518A 
mutation rendered the targeted Vhl-origin PCR product susceptible to HpyIV 
digestion. 
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While normoxic HIF-1α levels in Vhl2B/2B cells were similar to wild-type cells in 

independently-derived clones (Figure 3.2C), normoxic HIF-2α levels tended to be 

modestly elevated (Figure 3.2D).  Qualitative comparisons were confirmed by 

densitometry analysis (Figure 3.3).   

 HIF-2α is transcriptionally inactive in ES cells (270).  To determine 

whether Vhl2B/2B ES cells activate transcription of HIF target genes, we performed 

quantitative (q) RT-PCR for four known HIF target mRNAs (Figure 3.2E): the joint 

HIF-1α and HIF-2α targets vascular endothelial growth factor (Vegf), glucose 

transporter 1 (Glut1), and prolyl hydroxylase three (EglN3) and the HIF-1α-

specific glycolytic enzyme phosphofructokinase (Pfk1).  Vhl-/- ES cells displayed 

transcription of all four HIF target mRNAs relative to wild-type J1 cells (p<0.05): 

Vegf (4.26-fold), Glut1 (2.66-fold), EglN3 (11.80-fold), and Pfk1 (2.32-fold).    Two 

independently-derived Vhl2B/2B clones, in contrast, failed to significantly over-

transcribe any of the four HIF targets, consistent with the observation that 

Vhl2B/2B ES cells exhibit wild-type HIF-1α expression.  Mirroring the qRT-PCR 

results, Vhl-/- ES cells secreted robust levels of Vegf protein (4.4-fold) compared 

to wild-type (p<0.01), while Vhl2B/2B ES cells did not secrete measurable Vegf 

(Figure 3.2F). 

 Type 2B Vhl promotes teratoma growth and vascularization.  To observe 

the functional effects of Type 2B Vhl mutation, we differentiated our panel of ES 

cells in a teratoma assay.  As expected from previous studies (107), Vhl-/--derived 

teratomas displayed a growth disadvantage.  In contrast, the presence of one or 

two Type 2B Vhl alleles conferred a persistent growth advantage, such that
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Figure 3.2.  The Type 2B Vhl missense mutation results in a post-transcriptional 
reduction in mutant pVHL levels and slight normoxic HIF dysregulation but 
normal normoxic suppression of HIF target gene transcription in ES cells.  A. 
Quantitative RT-PCR analysis for Vhl cDNA levels in ES cells relative to 
expression of the wild-type allele.  Quantitation was normalized to an internal 
18S ribosomal RNA standard.  Error bars indicate standard error of the mean 
(SEM).  B.-D. Immunoblots for pVhl (B.), HIF-1α (C.), and HIF-2α (D.) expression 
in ES cells treated with or without the hypoxia mimetic CoCl2 (Co) for four hours.  
E.  Quantitative RT-PCR for normoxic transcriptional activation of HIF targets 
Vegf, Glut1, EglN3, and Pfk1 in ES cells relative to J1.  Cycle thresholds were 
corrected with 18S ribosomal RNA.  Error bars indicate SEM.  *p<0.05 in paired 
comparison to J1.  ELISA for secreted Vegf protein in ES cells relative to J1.  
*p<0.01 in paired comparison to J1. 
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Vhl2B/2B-derived teratomas grew faster than Vhl2B/+-derived teratomas, which in 

turn grew faster than wild-type teratomas (Figure 3.4A).  At harvest, J1, Vhl-/-, 

and Vhl2B/+ teratomas were well-encapsulated, while Vhl2B/2B teratomas adhered 

to the overlying skin (not shown).  Vhl2B/2B teratomas (Figure 3.4B, left) were also 

grossly hemorrhagic compared to Vhl2B/+ (Figure 3. 4B, right) teratomas.  

Histologically, Vhl-/- teratomas were characterized by hemangioma (*) formation 

(Figure 3.4E), which was markedly enhanced in Vhl2B/2B teratomas (Figure 3.4F).   

 To determine whether Type 2B mutant pVhl preserves HIF regulation in 

vivo, teratomas were analyzed for HIF-1α and HIF-2α protein expression by 

immunoblot, confirming low levels of both HIF factors (Figure 3.5).  To evaluate 

the effect on target gene expression, we performed quantitative RT-PCR for the 

panel of HIF target genes described above in three independent sets of 

teratomas.  In one representative set (Figure 3.4G), the Vhl-/- teratoma displayed 

highly significant (p<0.001) over-expression of three of the four HIF targets 

relative to the J1 teratoma: Vegf (1.99-fold), EglN3 (3.15-fold), and Pfk1 (2.12-

fold).  In contrast to ES cells, the Vhl2B/2B-derived teratoma exhibited significant 

over-expression of both EglN3 (1.46-fold, p<0.05) and Vegf (1.87-fold, p<0.001) 

but failed to over-express the HIF-1α-specific target Pfk1.  Glut1 expression was 

not elevated for either Vhl mutant in this differentiated system. 

 Because Vegf expression alone was unlikely to account for the dramatic 

difference in vascularity between Vhl-/- and Vhl2B/2B teratomas, we performed a 

screen for candidate genes contributing to the vascular phenotype.  The same 
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Figure 3.3.  Densitometry analysis for ES cell HIF-1α and HIF-2α immunoblots.  
Experimental band intensity for each sample was determined relative to the 
corresponding loading control band using the ImageJ gel analysis tool. Co, 
treatment with Cobalt Chloride.    

 

Figure 3.4 (next page). Homozygous Type 2B Vhl teratomas display growth 
advantage, enhanced hemangioma formation, and transcriptional dysregulation 
of HIF target genes.  A. Growth curve for ES cell-derived teratomas (n=6 per 
genotype).    Error bars indicate SEM.  B. Gross appearance of representative 
Vhl2B/2B (left) and Vhl2B/+ teratomas.  C.-F. Histological analysis of representative 
J1 (C.), Vhl-/- (D.), Vhl2B/+ (E.), and Vhl2B/2B (F.) teratoma morphology by H&E at 
20X magnification.  Note enhanced hemangioma (*) formation and hemorrhage 
in Vhl2B/2B relative to Vhl-/- teratoma.  Scale bars indicate 100µm.  G. Quantitative 
RT-PCR for transcriptional activation of HIF targets Vegf, Glut1, EglN3, and Pfk1 
in representative set of teratomas relative to J1.  Cycle thresholds were corrected 
with 18S ribosomal RNA.  Error bars indicate standard deviation.  *p<0.05.  
**p<0.001.  
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Figure 3.5.  Homozygous Type 2B teratomas display sub-maximal HIF 
stabilization compared to null.  Immunoblots for HIF-1α (A), and HIF-2α (B), and 
eEF2 and actin (loading controls, respectively) on extracts prepared from fresh 
teratoma tissue harvested at six weeks post-injection.     
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three independent sets of teratomas described above were assayed for 

expression of 84 angiogenesis-related genes using the commercial qRT-PCR 

RT2 Profiler system.  Genes selected for further assessment were significantly or 

near-significantly (p<0.06) over-expressed (>2.0-fold) or under-expressed (<0.3-

fold) in one Vhl-/- and/or Vhl2B/2B teratoma relative to the average expression of 

three independent J1 teratomas.   

 Four novel angiogenesis-related candidate genes, in addition to Vegfa, 

were uncovered in the candidate screen and validated by qRT-PCR with 

independent primers : vascular endothelial (VE)-cadherin (Cdh5), the TgfβR 

endothelial co-receptor endoglin (Eng), Vegf receptor 2 (Kdr), and the Vegfr2 co-

receptor neuropilin-1 (Nrp1).  All four are considered direct HIF targets (271-274).  

While both the Vhl-/- and Vhl2B/2B teratomas significantly over-expressed Cdh5, 

Eng, and Kdr relative to the J1 teratoma, the Vhl2B/2B teratoma additionally 

significantly (p<0.001) over-expressed Nrp1 relative to both J1 and Vhl-/- (Figure 

3.6A).    

 To further explore the differences in vascular proclivity between Vhl-/- and 

Vhl2B/2B teratomas, we examined the ability of embryoid bodies derived from ES 

cells of each genotype to differentiate into primitive vascular structures in vitro.  

As visualized by PECAM immunofluorescence, J1-derived embyroid bodies 

developed a vascular plexus consisting of long, well-formed primitive vessels 

with branching at regular intervals (Figure 3.6B).  Vhl-/--derived embryoid bodies  
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Figure 3.6. Exploration of hyper-angiogenic phenotype of homozygous Type 2B 
Vhl teratomas.  A. Quantitative RT-PCR for transcriptional activation of 
angiogenesis-related genes Cdh5, Eng, Kdr, Nrp1, and Vegfc in a representative 
set of teratomas relative to J1.  Cycle thresholds were corrected with 18S 
ribosomal RNA.  Error bars indicate standard deviation.   *p<0.05.  **p<0.001. B.-
D. PECAM immunofluorescent visualization of vascular structures generated 
from in vitro differentiation of embryoid bodies derived from J1 (B.), Vhl-/- (C.), 
and Vhl2B/2B (D.) ES cells.  
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differentiated into large, diffuse clumps of PECAM-positive cells but failed to 

sprout primary vessels (Figure 3.6C).  Finally, Vhl2B/2B-derived embyroid bodies 

differentiated into a disorganized vascular plexus characterized by relatively short 

primitive vessels with haphazard, excessive sprouting and a background of 

unincorporated PECAM-positive cells (Figure 3.6D).  Altogether, these results 

suggest that the Vhl2B/2B genotype engenders conditions more permissive for 

angiogenesis and cell growth than the Vhl-/- genotype.   

 Homozygosity for Type 2B Vhl confers embryonic lethality.  To examine 

2B mutant pVhl function in murine development in vivo, we derived Vhl2B/+ knock-

in mice from our targeted murine ES cells.  Inter-heterozygous matings resulted 

in a 2:1 ratio of Vhl2B/+ to wild-type pups and a complete absence of Vhl2B/2B pups 

(Table 3.1).  To pinpoint the window of Vhl2B/2B intrauterine demise, we 

genotyped embryos resulting from timed matings at embryonic day (E) 9.5 and 

E10.5.  While Vhl2B/2B embryos were present at near-expected levels at E9.5, 

only one Vhl2B/2B embryo (3%) survived at E10.5.  Because reliance switches 

from yolk sac to placenta around E9.5 (275), Vhl2B/2B embryonic lethality 

observed at E9.5-E10.5 implicates placental failure.   

Table 3.1. Vhl genotype analysis of inter-heterozygous matings at birth and 
embryonic time points.   
 

Vhl E9.5 E10.5 Birth 
+/+ 14 (32%) 13 (45%) 60 (36%) 

2B/+ 20 (49%) 15 (52%) 107 (64%) 
2B/2B 8 (19%) 1 (3%) 0 (0%) 
Total 42 29 167 
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 Vhl-/- embryos display embryonic lethality at E9.5-E12.5 due to an 

embryonic-origin defect in placental labyrinth vascularization.  While the 

presumptive Vhl-/- labyrinth is normal in histological appearance at E9.5, Vhl-/- 

allantoic vessels fail to invade the chorionic plate, preventing induction of 

chorionic plate trophoblast cell differentiation into syncitiotrophoblast cells and 

later manifesting as an absence of fetal blood spaces in the labyrinth at E10.5 

(110).  To visualize whether the 2B mutant Vhl allele acts similarly to the null 

allele in the placenta, we compared wild-type (not shown), Vhl2B/+, and Vhl2B/2B 

placentas by H&E for morphology and IHC for pVhl and the HIF target Vegfa.  By 

H&E, representative E9.5 Vhl2B/+ (Figure 3.7A) and Vhl2B/2B (Figure 3.7D) 

placentas displayed comparable chorionic villous fold formation and maternal red 

blood cell content in the spongiotrophoblast layer, but allantoic vessels, 

demarcated by the presence of nucleated fetal red blood cells (*), invaded the 

chorionic villi to a lesser extent in the Vhl2B/2B placenta.  Despite the reduced 

Type 2B pVhl levels observed by immunoblot in Vhl2B/2B ES cells, 

spongiotrophoblast and giant cell pVhl expression was comparable between 

representative Vhl2B/2B (Figure 3.7E) and Vhl2B/+ (Figure 3.7B) placentas by IHC.  

Finally, consistent with findings in Vhl-/- placentas at E10.5 (110), Vhl2B/2B 

placenta (Figure 3.7F) displayed absent or greatly reduced spongiotrophoblast 

and giant cell Vegf expression relative to Vhl2B/+ (Figure 3.7C) by IHC.  While 

perhaps counter-intuitive, evidence supports decreased Vegf expression as a 

marker of placental failure rather than an indicator of HIF dysregulation in the 

murine placenta (276). 
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Figure 3.7.    Homozygous Type 2B Vhl placentas display subtle vascular 
defects consistent with a Vhl-null phenotype, and corresponding embryos display 
HIF target dysregulation despite normal morphology.  A.-F.  Histological analysis 
of Vhl2B/+ (A.-C.) and Vhl2B/2B (D.-F.) murine placentas, with H&E stain for 
morphology (A., C.) and immunohistochemistry for pVhl (B., E.) and for the HIF 
target Vegfa (C., F.) at 10X magnification.  Arcs demarcate the maternal decidua 
(above) and placental (below) tissues.  Note the lack of nucleated fetal RBCs (*) 
in the chorionic villi in Vhl2B/2B (D.) versus Vhl2B/+ (A.) placentas. G. Quantitative 
RT-PCR for transcriptional activation of HIF targets Vegf, Glut1, EglN3, and Pfk1 
in E9.5 Vhl2B/2B embryos relative to representative Vhl2B/+ littermate.  Cycle 
thresholds were corrected with 18S ribosomal RNA.  Error bars indicate SEM.  
*p<0.05.  **p<0.001. 
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 Because E9.5 embryos were the only Vhl2B/2B animal tissues available for 

molecular study, we used these tissues to analyze the competence of Type 2B 

pVhl to regulate HIF target genes in vivo.  Though Vhl2B/2B embryos are grossly 

and histologically normal at E9.5, we hypothesized that they might still 

demonstrate subtle HIF target gene dysregulation. Quantitative RT-PCR on three 

Vhl2B/2B E9.5 embryos showed significant (p<0.05) over-expression of the four 

HIF target genes studied relative to a Vhl2B/+ E9.5 embryo, paralleling the effect 

of Vhl mutation on HIF-regulated signaling observed in the differentiated 

teratoma model system (Figure 5G): Vegf (average 1.54–fold), Glut1 (average 

2.60–fold), EglN3 (average 3.53–fold), and Pfk1 (average 1.88–fold).  In notable 

contrast to ES cells and teratomas and in keeping with the reported highly tissue- 

and context-specific transcriptional effects of HIF stabilization, homozygosity for 

the 2B Vhl allele produced sufficient HIF-1α dysregulation to permit over-

expression of the HIF-1α-specific target Pfk1 in the E9.5 embryo, with potential 

contribution by physiologic embryonic hypoxia.   

 Heterozygous Type 2B Vhl mice develop renal cysts.  As Type 2B VHL 

disease predisposes to pheochromocytoma, hemangioblastoma, and ccRCC in 

humans, Vhl2B/+ mice (n=105) were aged to three, six, nine, twelve, and eighteen 

months and observed for tumor susceptibility. Representative H&E images of 

Vhl2B/+ tissues at twelve months are presented in Figure 3.8 (A-C).  Similar to 

prior models, Vhl2B/+ mice displayed frequent enlarged vessels (angiectasis) in 

the kidney and adrenal gland (Figure 3.8B, *) (110, 111, 116) and renal cortical 

microcysts (3%, Figure 3.8A, Cy) (111).  Renal cortical cysts were not observed 
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Figure 3.8.  Adult Type 2B Vhl heterozygous mice develop mild vascular lesions 
and rare renal cortical microcysts, while transplacental ENU mutagenesis reveals 
renal tumor predisposition.  A. – D. Histological analysis of representative adult 
Type Vhl2B/+ mouse tissues, including kidney (A.), adrenal gland (B.), and liver 
(C.) by H&E stain at 20X magnification.  Vhl2B/+ mice frequently developed renal 
(not shown) and adrenal (B., *) angiectasis and occasionally developed simple 
renal cortical microcysts (A., Cy).  E. – F. Histological analysis of ENU-
mutagenized Vhl2B/+ mice by H&E stain at 20X magnification.  While ENU 
mutagenesis promoted benign simple and papillary microcysts formation in both 
Vhl2B/+ (not shown) and wild-type littermates (D.), borderline 
adenoma/adenocarcinoma (E.) and adenocarcinoma (F.) were selectively 
observed in mutagenized Vhl2B/+ mice at twelve months.  Scale bars indicate 
100µm. 
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in wild-type littermates.  In contrast to prior studies, Vhl2B/+ liver histology was 

uniformly normal (Figure 3.8C).   

 Transplacental mutagenesis promotes renal tumorigenesis in Type 2B Vhl 

mice.  We hypothesized that accelerating somatic mutations via mutagenesis 

might reveal predisposition to cancer development in Vhl2B/+ mice.  ENU 

mutagenesis has traditionally been used as a tool to screen for dominant and 

recessive mutations in the mouse germline but has also been used in mouse 

adults and embryos.  ENU is a DNA alkylating agent which primarily generates 

A-T T-A transversions and A-T G-C transitions, most often resulting in 

missense mutations and splicing errors(277).  ENU is an ideal chemical for 

transplacental (in utero) renal mutagenesis: ENU does not require metabolic 

activation, the DNA repair enzymes responsible for repairing ENU lesions display 

low activity in the fetal kidney, and the fetal kidney is susceptible to mutagenesis 

in a wide range of embryonic days and ENU dosages (278).  Transplacental ENU 

mutagenesis has been utilized successfully in mouse models of another HIF-

related autosomal dominant tumor predisposition syndrome called Tuberous 

Sclerosis.  In mice heterozygous for a null allele of Tsc2 or Tsc1, transplacental 

ENU mutagenesis accelerates onset of renal cysts and hepatic angiomas (192, 

193).  Wild-type and Vhl2B/+ embryos from timed inter-heterozygous matings were 

treated with ENU at E14.5 and allowed to age to four (n=12) and twelve months 

(n=24) in a pilot study.  At sacrifice, grossly abnormal organs and organs of 

interest were harvested.  Renal lesions observed in mutagenized mice are 

summarized in Table 3.2 below. 
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Table 3.2. Summary of renal lesions observed in ENU-mutagenized Vhl2B/+ and 
wild-type littermates. 
 
 4 months 12 months 

Vhl +/+ 
(n=4) 

Vhl 2B/+ 
(n=8) 

Vhl +/+ 
(n=14) 

Vhl 2B/+ 
(n=10) 

Renal Microcyst(s)  3 6 11 7 
  -Papillary  3 1 2 1 
Pre-neoplasia  0 1 0 0 
Neoplasia  0 0 0 2 
 

 At four months, both wild-type (2/4) and Vhl2B/+ (6/8) mutagenized mice 

displayed macroscopic subpleural lung nodules, indicating successful ENU 

mutagenesis (279).  Both wild-type and Vhl2B/+ mutagenized mice displayed 

simple and papillary cortical renal microcysts on H&E-stained sections, 

suggesting that ENU mutagenesis effectively promotes benign renal cyst 

formation in this C57BL/6 genetic background.  While all three papillary renal 

cysts observed in mutagenized wild-type mice displayed benign histology, the 

papillary cyst in observed in a mutagenized Vhl2B/+ mouse displayed pre-

neoplastic changes (not shown).   

 At twelve months, histological findings in wild-type mutagenized mice were 

limited to benign papillary cysts (Figure 3.8D).  However, Vhl2B/+ mutagenized 

mice (2/10) developed pathological findings typical of VHL disease.  One Vhl2B/+ 

mouse developed a borderline clear-cell adenoma/adenocarcinoma (Figure 3.8E) 

featuring a large nest of cells (alveolus) with clear-cell histology, vascular stroma, 

and absent tubular architecture as well as several clear-cell alveoli invading into 

the underlying renal cortex.  A second affected Vhl2B/+ mouse developed 
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adenocarcinoma (Figure 3.8F) featuring nests of clear cells, central necrosis, 

absent tubular architecture, vascular stroma, and a poorly defined border.  

Statistical analysis suggested that Vhl mutation correlated with or trended toward 

development of neoplasia at 12 months (Pearson’s χ2 p=0.037, Fisher’s exact 

test p=0.101).   

Discussion 

 Germline Type 2B missense mutations in VHL predispose to ccRCC, CNS 

and retinal hemangioblastoma, and pheochromocytoma and paraganglioma.  In 

our murine gene replacement system, which models one VHL type 2B disease 

mutation, R167Q, generated a unique pattern of HIF-1α and HIF-2α 

dysregulation, differing from Vhl-null both in degree and ratio of HIF stabilization 

as well as in functional outcome in in vitro and in vivo studies.   

 Our gene replacement system takes advantage of the euploid genetic 

background of murine ES cells and avoids the potential mouse-human 

interactions and over- and mis-expression artifacts inherent to transgenic 

models.  We observed reduced levels of 2B mutant pVhl protein in homozygous 

ES cells, supporting the hypothesis that ccRCC-predisposing VHL missense 

mutations produce less stable proteins, as posited on the basis of structure 

analysis (55, 259).  In contrast to Vhl-/- ES cells, Vhl2B/2B knock-in ES cells 

expressed low basal levels of HIF-1α and HIF-2α and induced both subunits 

physiologically in response to the hypoxia mimetic CoCl2.  Consistent with this 

finding, Vhl2B/2B ES cells displayed wild-type levels of four HIF target genes 

studied,  suggesting that HIF-1α levels in Vhl2B/2B cells failed to surpass a 



 

102 
 

threshold required for transcriptional activation at target promoters in this cell 

type. 

 The differentiated teratoma system allowed observation of 2B mutant pVhl 

function in a setting permissive for both HIF-1α and HIF-2α transcriptional 

activity.  Previous work in Vhl-/- teratomas has demonstrated that maximal 

activation of both HIF-1α and HIF-2α promotes angiogenesis but retards three-

dimensional tumor growth (106).  Genetic knock-out of HIF-1α (280) or 

replacement of HIF-1α with HIF-2α (281) in teratomas enhances tumor growth 

and implicates HIF-1α as the growth-suppressive factor in this assay.   In our 

studies, Vhl-/- teratomas likewise displayed a growth disadvantage relative to 

wild-type and additionally featured over-expression of the joint HIF targets Vegfa 

and EglN3 and the HIF-1α-specific target Pfk1, all indicating HIF-1α and HIF-2α 

stabilization.  Vhl2B/2B teratomas, in contrast, displayed a marked growth 

advantage relative to wild-type, and over-expression of Vegfa and EglN3, but not 

Pfk1, suggestive of sub-threshold HIF-1α but sufficient HIF-2α stabilization to 

promote transcriptional activity.   

 The placental failure and lethality observed in Vhl2B/2B embryos at E9.5-

E10.5 was consistent with severely hypomorphic mutant pVhl function in the 

embryonic allantoic endothelium.  Reduced pVhl stability alone is unlikely to be 

the cause of Vhl2B/2B embryonic lethality.  First, 2B mutant pVhl levels in the E9.5 

Vhl2B/2B placenta were similar to pVhl levels observed in the E9.5 Vhl2B/+ placenta 

by IHC.  Second, VhlCP/CP mice are viable despite the measurable instability of 

R200W (CP) pVhl both in vitro and in murine tissues (112).  Finally, there is 
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evidence of more severe HIF dysregulation in this in vivo system, with evidence 

of induction of the HIF-1α-specific target Pfk1, indicating both HIF-1α and HIF-2α 

stabilization.  Thus, while it remains possible that the degree of pVhl reduction 

has a threshold effect on early developmental events, the reduced levels in these 

models serves to unmask added levels of regulation of the HIF transcriptional 

network. 

 Vhl2B/+ mice developed renal cysts with frequency similar to that observed 

in Vhl+/- mice (~3%) and likewise failed to develop dysplasia or renal 

adenocarcinoma, indicating that Vhl mutation alone is insufficient for invasive 

renal tumor formation in the murine kidney.  To accelerate the accumulation of 

somatic mutations in this mouse model and reveal tumor predisposition, we 

mutagenized Vhl-initiated and wild-type littermate mice with transplacental ENU.  

At twelve months post-ENU, renal adenocarcinoma was observed in 

mutagenized Vhl2B/+ mice, representing the first demonstration of this tumor in a 

genetically-predisposed mouse model and validating Vhl mutation as a tumor-

initiating event in the development of RCC.   

 Our gene replacement model of the representative Type 2B R167Q Vhl 

mutation bolsters emerging evidence that relative HIF-1α and HIF-2α protein 

abundance modulates the VHL Disease clinical phenotype and provides 

motivation for identifying the relevant genetic events involved in progressing Vhl-

initiated tumors to invasive disease.  More broadly, our Vhl gene replacement 

model provides a comprehensive species-congruent system for future 
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investigations of mutant pVhl HIF and non-HIF functions underpinning human 

VHL Disease both in vitro and in vivo.  

Materials and methods  

Generation of Vhl Type 2B ES cell lines and heterozygous mice.  Vhl 

exons 2 and 3 (E2 and E3) were cloned into targeting and mutagenesis vectors, 

respectively, from a BAC clone as previously described (112, 281).  PCR-based 

site-directed mutagenesis of G A at position 518 was performed using forward 

primer 5’-AGAGCCTGGTCAAGCCTGAGAACTA-3’ and reverse primer 5’-

GCACAACCTGAAGGCACCGCTCTTT-3’.  The G518A mutant E3 fragment was 

then cloned into pLNT-E2 adjacent to the neoR cassette (pLNT-E2-E3) and 

reconfirmed with bidirectional sequencing.   

The pLNT-E2-E3 targeting construct (Figure 3.1B) was electroporated into 

Vhl wild-type J1 strain Sv/129 ES cells for gene replacement at the endogenous 

murine Vhl locus.  Homologous recombinants heterozygous for the Vhl2B neo-in 

allele were selected by gancyclovir and neomycin resistance, and positive clones 

confirmed by Southern blot analysis.  Conversion of the second Vhl allele was 

achieved by selection with increasing amounts of neomycin to yield ES cells 

homozygous for the Vhl2B neo-in allele.  Vhl2B neo-in/+ and Vhl2B neo-in/2B neo-in ES cells 

were transiently transfected with a cre-expressing vector to remove the floxed 

neoR cassette.  The ES cells were screened at each stage by Southern blot for in 

vitro and in vivo studies of Type 2B mutant pVhl function. 
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Animal Models Core (University of Pennsylvania) staff injected karyotyped 

Vhl2B neo-in/+ ES cells into C57BL/6 blastocysts.  The chimeric blastocysts were 

then implanted in pseudopregnant C57BL/6 females.  Highly chimeric mice (F0) 

were selected by Agouti coat color for crossing to C57BL/6 females.  Germline 

transmission of the targeted allele to Agouti offspring (F1) was confirmed by 

Southern blot.  A Vhl2B neo-in/+ line was crossed to a cre deleter mouse strain (EIIa-

cre) (282) for multiple generations, with excision of the floxed neoR cassette 

verified by Southern blot, and then backcrossed to C57BL/6 to make a Vhl2B/+ 

founder line.  All subsequent generations were genotyped by restriction PCR 

utilizing PCR primers flanking a novel HpyIV restriction site introduced by the 

G518A Vhl mutation (Figure 3.1D).   

All mouse procedures were approved by the University of Pennsylvania 

and University of North Carolina Institutional Animal Care and Use Committees.   

Cell Culture Studies.  Cell culture studies were performed at 37ºC, 5% 

CO2. ES cell lines were maintained in ES media consisting of high glucose 

Dulbecco’s Modified Eagle Medium (Gibco, Carlsbad, CA, USA) supplemented 

with 5% fetal bovine serum, L-glutamine, β-mercaptoethanol, non-essential 

amino acids, and leukemia inhibitory factor (LIF), and grown on gelatin-coated 

tissue culture-grade plates (Corning, Corning, NY, USA).  For chemical hypoxia 

mimetic experiments, cells were grown in the presence or absence of CoCl2 (100 

µM) for four hours.  For proteasome inhibition experiments, cells were treated 

with vehicle (DMSO) or MG-132 (5 µM, Calbiochem, San Diego, CA, USA) for 

four hours. 
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In vitro differentiation studies were performed as previously described 

(283).  Briefly, overgrown undifferentiated ES cells were re-plated in 

differentiation media (ES media without LIF) on non-tissue culture-treated plates 

and allowed to differentiate in suspended culture into embryoid bodies over a 

three-day period.  Embryoid bodies were then transferred at low density to tissue 

culture-grade plates, permitting attachment, and allowed to differentiate for an 

additional eight days.  Both suspended and attached cultures were fed with 

differentiation media every two days.  Fully-differentiated attached cultures were 

briefly fixed in ice-cold methanol/acetone (1:1) and subjected to staining with 

primary rat anti-mouse PECAM (MEC 13.3, BD Pharmingen, San Diego, CA, 

USA) and secondary TRITC-conjugated donkey anti-rat IgG (Jackson 

Immunoresearch, West Grove, PA, USA) for immunofluorescent visualization of 

endothelial cells and primitive vascular morphology. 

For in vivo teratoma studies, undifferentiated ES cells of each genotype (5 

x 106) were injected subcutaneously into the flanks of nu/nu mice (Taconic Labs, 

Hudson, NY, USA) and allowed to grow for six weeks with weekly caliper 

measurements of tumor size.  Harvested tumors were bisected and either flash-

frozen in liquid nitrogen for molecular analysis or formalin-fixed and paraffin-

embedded for histological analysis. 

Molecular analysis of Vhl, HIF, and HIF targets.  Whole-cell protein 

extracts or fresh extracts from teratomas harvested six weeks post-injection were 

prepared for immunoblot in NET lysis buffer (20mM Tris, 100mM NaCl, 1mM 

EDTA, 1% NP-40) and quantitated by Bradford assay.  Immunoblot primary 
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antibodies used were: pVhl (M20 and FL181, Santa Cruz Biotechnology, Santa 

Cruz, CA, USA), HIF-1α (10006421, Cayman Chemical, Ann Arbor, MI, USA and 

(284)), HIF-2α (NB100-122, Novus Biologicals, Littleton, CO, USA), and eEF2 

(Cell Signaling Technology, Danvers, MA, USA).  Murine Vegf ELISA was 

performed on conditioned medium from cultured ES cells (R & D Systems, 

Minneapolis, MN, USA). 

RNA isolation from ES cells, teratomas, and E9.5 embryos was performed 

using the RNeasy Mini system according to manufacturer’s instructions (Qiagen, 

Germantown, MD, USA) and quantified by UV spectroscopy.  cDNA was 

prepared from 0.5µg of RNA using Superscript reverse transcription reagents 

(Stratagene, Cedar Creek, TX, USA).  Quantitative RT-PCR was performed in 

triplicate using stock commercial primer-probe sets for Vhl, Vegfa, Glut1, EglN3, 

Pfk1, and 18S ribosomal subunit according to manufacturer’s instructions 

(Applied Biosystems, Foster City, CA, USA).  A candidate screen for teratoma 

hemangioma-associated genes was performed in triplicate on the RT2 Profiler 

Mouse Angiogenesis Array using cycle parameters according to manufacturer’s 

instructions (SABiosciences, Frederick, MD, USA).  Genes identified for further 

validation were analyzed by quantitative RT-PCR in triplicate using stock 

commercial primer-probe sets for Cdh5, Eng, Kdr, Nrp1, Vegfc, and 18S 

ribosomal subunit and cycle parameters according to manufacturer’s instructions 

(Applied Biosystems).   All quantitative RT-PCR output raw cycle thresholds were 

normalized to the internal 18S ribosomal RNA standard. 
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Densitometric analysis of HIF immunoblots.  HIF-1α and HIF-2α 

experimental immunoblots, along with corresponding actin and eEF2 loading 

control immunoblots, were obtained on whole-cell protein extracts from untreated 

or cobalt chloride-treated ES cells as described in primary Materials and Methods 

section.  Densitometry was performed on scanned immunoblot images using the 

ImageJ gel analysis tool (285).  The gel analysis tool was used to obtain the 

absolute intensity (AI) for each experimental HIF band and corresponding control 

band.  Relative intensity (RI) for each experimental band was calculated by 

normalizing the experimental AI to the corresponding control AI.   

Embryonic lethality and transplacental ethyl nitrosourea (ENU) 

mutagenesis studies.  Vhl2B/+ mice were set up for timed inter-heterozygous 

mating.  Embyronic day (E) 0.5 was defined as noon on the day the vaginal plug 

was observed, and embryos and placentas were harvested at E9.5 and E10.5.  

For placental studies, embryos were examined for gross defects and genotyped 

by restriction PCR, and placentas were processed for histological examination.  

For embryonic studies, E9.5 embryos were used for both RNA extraction and 

genotyping by restriction PCR.   

For transplacental mutagenesis studies, intraperitoneal (i.p.) injection of 

50 mg/kg ENU (Sigma, St. Louis, MO, USA) dissolved in ethanol was 

administered to the pregnant dam at E14.5 (192).  Mutagenized Vhl2B/+ and wild-

type littermates were aged in four- and twelve-month cohorts and sacrificed for 

gross and histological examination.   
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Histological analysis of murine tissues.  Harvested tissues were fixed in 

10% buffered formalin.  Paraffin-embedded tissues were sectioned and stained 

with hematoxylin and eosin (H&E) or for pVhl (FL181) or Vegfa (VG-1, Santa 

Cruz).  

Statistical analysis.  A two-tailed Student’s t test was used to make paired 

comparisons for quantitative RT-PCR and Vegf ELISA data.  A value of p≤0.05 

was used as the threshold for statistical significance.  Pearson’s χ2 test and 

Fisher’s exact test were used to compare development of neoplasia in wild-type 

versus Vhl-mutant mutagenized mice. 
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Chapter Four 

Summary, Discussion, Future Directions, and Conclusion 

Summary 

R167Q HA-VHL assembles into a ubiquitin ligase complex with activity 

towards HIF-α.  Biallelic loss of the von Hippel-Lindau (VHL) tumor suppressor 

gene is a nearly universal feature of sporadic clear cell renal cell carcinoma 

(ccRCC).  Germline mutations in VHL likewise predispose to development of 

tumors including retinal and CNS hemangioblastoma, pheochromocytoma, and 

ccRCC in a genotype-specific manner.  I have chosen to focus my dissertation 

work on the representative hotspot Type 2B VHL mutation R167Q which confers 

risk for all three VHL Disease-associated tumors.   

We have previously shown that over-expression of HA-tagged human 

R167Q VHL protein (pVHL) rescues HIF-1α but not HIF-2α normoxic 

suppression in Vhl-/- murine embryonic stem (ES) cells(107), despite structural 

predictions that the R167Q mutation disrupts pVHL recruitment of Elongin C and 

thereby recruitment of the remaining VBC ubiquitin ligase complex members 

Elongin B, CUL2, and ROC1 (Rbx1)(56-59).   In an effort to elucidate the 

mechanism behind the observed partial retention of HIF-α regulation, we studied 

the structure and function of the VBC complex in Vhl-/- J1 murine ES cells and 

VHL-/- 786-0 human RCC cells complemented with wild-type human HA-tagged 
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VHL or mutant HA-tagged VHL representing each subtype of human VHL 

Disease(247).    

We first examined wild-type and mutant VBC structure by co-

immunoprecipitation immunoblot analysis of HA-VHL with known complex 

members.  We were unable to detect co-immunoprecipitation (IP) of Elongin C 

with R167Q HA-VHL in transgenic murine ES cells as predicted and previously 

shown(107) but, surprisingly, found that R167Q HA-VHL retained binding with 

Cul2 and Rbx1.  In order to rule out potential artifacts of mouse-human 

interaction, we confirmed our results in the equivalent complemented 786-0 cell 

line.  We showed that 786-0 + R167Q HA-VHL cells retained partial normoxic 

suppression of HIF-2α.  We also again found that R167Q HA-VHL failed to 

interact with Elongin C but retained interaction with CUL2 and ROC1.  We were 

able to replicate this result by co-IP of CUL2 with a second representative Type 

2B mutant HA-VHL, D121G, and by reverse co-IP of R167Q HA-VHL with myc-

tagged CUL2.  We next assessed the function of R167Q VBC with an in vitro 

ubiquitylation assay (modified from (63)).  786-0 cell extracts (vector only or wild-

type or mutant HA-VHL) were incubated with in vitro-transcribed HIF-1α and a 

defined reaction solution and then subjected to HIF-1α immunoblot in order to 

detect an upward shift in HIF-1α molecular weight indicative of ubiquitination.  

We found that R167Q HA-VHL permitted wild-type ubiquitylation of HIF-1α in 

vitro.   

In summary, we have shown that R167Q HA-pVHL assembles into a VBC 

ubiquitin ligase complex with activity towards HIF-α.  We postulate that R167Q 
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HA-VHL retains a transient association with Elongin C and/or maintains contact 

with CUL2 via a novel interaction with an alternate Cullin/adaptor pair. 

A mouse-specific gene replacement model of Type 2B VHL Disease.  

Having shown that Type 2B mutant R167Q pVHL is capable of directing HIF-α 

ubiquitylation when over-expressed in a VHL-deficient RCC-derived cell line, we 

endeavored to address the function of R167Q pVHL expressed under 

endogenous control using a comprehensive gene replacement (knock-in) mouse 

model of Type 2B VHL Disease(263).  The R167Q missense mutation (G518A) 

was targeted to the endogenous wild-type Vhl locus in J1 murine ES cells, 

generating Vhl2B/+ and Vhl2B/2B ES cells for comparison to Vhl-/- and parental Vhl+/+ 

J1 ES cells.  The panel of ES cells was used directly for studies of pVhl, HIF, and 

HIF target gene expression and in an in vivo teratoma assay for tumor growth.  

Vhl2B/+ ES cells were used to generate knock-in mice for timed mating studies of 

murine development and aging studies of tumor predisposition. 

We first analyzed the pVhl/HIF axis in the panel of 2B ES cells.  While the 

2B Vhl allele was expressed at wild-type levels by quantitative RT-PCR, the 2B 

mutant pVhl was present at greatly reduced levels relative to wild-type pVhl.  

Despite hypomorphic expression of 2B pVhl, Vhl2B/2B ES cells retained near-

normal normoxic suppression of HIF-α (HIF-1α > HIF-2α) and normal hypoxia 

mimetic-induced HIF-α stabilization.  Vhl2B/2B ES cells, furthermore, appropriately 

suppressed a panel of HIF target genes including the joint HIF targets Vegfa, 

EglN3, and Glut1 and the HIF-1α-specific target Pfk1 under normoxic conditions 

by quantitative RT-PCR.  Vhl-/- ES cells, in contrast, over-expressed all four HIF 
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target genes.  Because HIF-2α is expressed but not transcriptionally active in J1 

ES cells, the lack of normoxic HIF target gene expression in Vhl2B/2B ES cells 

indicates insufficient HIF-1α levels. 

We next examined 2B mutant pVhl function in an in vivo teratoma assay.  

Teratomas were generated from ES cells of each genotype injected into the 

flanks of nude mice and followed over the course of six weeks.  Vhl-/- ES cell-

derived teratomas displayed a growth disadvantage relative to J1-derived 

teratomas, confirming earlier work in the lab(107).  Surprisingly, however, Vhl2B/2B 

teratomas displayed a growth advantage relative to J1.  By gross examination, 

Vhl2B/2B teratomas were markedly hemorrhagic and by histological examination 

displayed enhanced hemangioma formation relative to Vhl-/-.  As both HIF-1α and 

HIF-2α are expressed and transcriptionally active in teratomas, we next 

examined HIF target gene expression by quantitative RT-PCR.  Vhl-/- teratomas 

over-expressed Vegfa, EglN3, and Pfk1 relative to J1.  Vhl2B/2B teratomas over-

expressed Vegfa and EglN3 but not Pfk1, suggestive of sufficient HIF-2α but 

insufficient HIF-1α stabilization to direct target gene expression.  As HIF-1α has 

been shown to be growth-suppressive and HIF-2α has been shown to be growth-

promoting, we postulate that enhanced Vhl2B/2B teratoma growth results from 2B 

mutant pVhl-associated maximal HIF-2α and sub-maximal HIF-1α stabilization.  

Because differences in Vegfa expression alone could not account for the 

dramatically enhanced hemangioma formation observed in Vhl2B/2B teratomas 

relative to Vhl-/-, we used an RT2 Profiler quantitative RT-PCR array to query 84 

angiogenesis-related genes for association with the hemangioma phenotype in 
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teratomas.  Six angiogenesis-related genes, including Vegfa, screened positive 

as significantly over-expressed in Vhl-/- and/or Vhl2B/2B relative to J1 teratomas.  

The five novel genes were validated using independent primers.  Briefly, Vhl-/- 

and Vhl2B/2B teratomas were confirmed to over-express Cdh5 (VE-cadherin), Kdr 

(VegfR2), and Eng (endoglin).  In addition, Vhl2B/2B teratomas uniquely over-

expressed Nrp1 (neuropilin-1).   

We next compared Vhl-/- and Vhl2B/2B to J1 ES cells in an in vitro vascular 

differentiation assay.  Briefly, ES cells were allowed to differentiate into spherical 

tri-laminar embryoid bodies in suspended culture for three days.  Embryoid 

bodies were then grown in attached culture conditions to encourage vascular 

differentiation, as visualized by PECAM immunofluorescent stain.  J1-derived 

embryoid bodies sprouted a network of well-formed primitive vessels with 

branching at regular intervals, while Vhl-/- embryoid bodies differentiated into 

PECAM+ cells but failed to sprout primary vessels.  Vhl2B/2B embryoid bodies 

displayed an intermediate phenotype, differentiating into a disorganized network 

defined by haphazard sprouting.  These results suggest that the enhanced 

hemangioma formation observed in Vhl2B/2B teratomas relative to Vhl-/- may derive 

from an imbalance in Vegfa signaling in association with an exuberant, if 

aberrant, vascular potential.  

Finally, we examined Type 2B mutant pVhl function in murine 

development and tumor predisposition using Vhl2B/+ knock-in mice derived from 

Vhl2B/+ murine ES cells.  Timed inter-heterozygous matings revealed the 2B Vhl 

allele to be homozygous lethal at E9.5-10.5.  Coupled with the grossly normal 
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embryo at E9.5 and the fact that Vhl-/- embryos die at approximately E10.5 from 

defective placental labyrinthine vascularization, we examined the histology of 

Vhl2B/2B placentas.  While wild-type and Vhl2B/+ placentas at E9.5 showed allantoic 

vascular invasion of the chorionic plate in the presumptive labyrinth, allantoic 

vessels failed to invade the chorionic plate in Vhl2B/2B placentas, pointing to a 

severely hypomorphic role for the 2B Vhl allele in murine development.  

Quantitative RT-PCR for our panel of HIF target genes failed to reveal any 

differences between Vhl2B/+ and Vhl2B/2B E9.5 placentas due to the relatively large 

contribution of maternal decidua to the placenta at that time-point.  We did find, 

however, that Vhl2B/2B E9.5 embryos over-expressed all four HIF target genes 

compared to Vhl2B/+ littermates.  The stabilization of HIF-1α +/- HIF-2α in Vhl2B/2B 

E9.5 embryos could be due to mutant 2B pVhl activity and/or pathophysiological 

hypoxia due to the failing placenta.   

We next used Vhl2B/+ mice for aging studies of tumor predisposition.  

Similar to mice heterozygous for a Vhl-null allele, Vhl2B/+ mice developed rare 

renal microcysts (3%), no renal adenocarcinoma, and frequent adrenal and renal 

angiectasis.  In dramatic contrast to Vhl-null models, however, Vhl2B/+ mice did 

not develop hepatic angiomas, pointing to a missense mutation-specific alteration 

in the spectrum of susceptible tissues. 

In order to determine whether Vhl initiation could predispose mice to 

development of renal tumors, I modeled the accumulation of somatic mutations 

using in utero mutagenesis with ENU (50 mg/kg IP to pregnant dam at E14.5).  In 
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a small pilot study, mutagenized Vhl2B/+ and mutagenized wild-type littermates 

were aged to four and twelve months and assessed for tumor predisposition. 

Both Vhl2B/+ and wild-type mutagenized mice had developed simple and 

papillary renal cysts at four and twelve months.  At twelve months, however, 2/10 

mutagenized Vhl2B/+ mice developed renal adenocarcinoma, representing the first 

demonstration of this tumor in a genetically predisposed mouse model.  Step 

serial sections of kidneys from wild-type mutagenized mice failed to reveal any 

neoplastic changes.  In summary, we have shown that the representative R167Q 

2B mutant pVhl generates a unique profile of HIF-1α and HIF-2α stabilization 

with dramatic effects on three dimensional tumor growth and tissue susceptibility 

to tumorigenesis. 

Discussion 

HIF-α accumulation is a central feature of renal tumorigenesis. Inactivating 

mutations in the tumor suppressors BHD, TSC1, or TSC2 and activating 

mutations in the proto-oncogene MET contribute to HIF-α accumulation by 

enhancing translation through the mTOR pathway, while inactivating mutations in 

VHL, FH, and SDHB promote HIF-α stabilization by permitting HIF-α to evade 

oxygen-dependent regulation.  Renal tumors arising in patients with germline 

mutations in these genes display accumulation of both HIF-1α and HIF-2α, 

though HIF-2α predominates in VHL-, BHD-, and MET/HPRC-associated RCC 

and HIF-1α predominates in FH/HLRCC-associated RCC.  The penetrance, 

histology, and clinical course associated with RCC predisposition in each of 

these inherited syndromes likely derives from the dosage or relative ratio of HIF-
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1α and HIF-2α accumulation as well as HIF-independent factors specific to each 

genetic lesion. 

HIF-α stabilization is not an all-or-nothing phenomenon.  The 

representative Type 2B VHL mutant R167Q produces a unique profile of HIF-α 

stabilization in comparison to both wild-type, null, and other VHL Disease-

associated mutant VHL proteins.  Wild-type J1 murine ES cells suppress while 

Vhl-null murine ES cells maximally stabilize both HIF-1α and HIF-2α under 

normoxic conditions.  Vhl-null ES cells complemented with the representative 

Type 2A VHL mutant Y112H display wild-type normoxic suppression of HIF-1α 

but dose-dependent suppression of HIF-2α.  Finally, Vhl-null ES cells 

complemented with the representative Type 2B VHL mutant R167Q display wild-

type normoxic suppression of HIF-1α but impaired normoxic suppression of HIF-

2α (Ref Rathmell 2004).  ES cells homozygous for a gene replacement allele for 

R167Q likewise displayed normal normoxic suppression of HIF-1α but 

stabilization, though sub-maximal, of HIF-2α.   

We have elucidated one potential mechanism for the intermediate HIF-α 

stabilization profile associated with Type 2B VHL mutants: the assembly of a 

remnant VBC complex.  Despite an absent or drastically reduced capability to 

bind Elongin C, both R167Q and a second representative Type 2B VHL mutant 

D121G retain interaction with VBC complex members CUL2 and ROC1 in 

complemented VHL-null 786-0 RCC cells.  Furthermore, cell extract from R167Q 

HA-VHL-expressing cells retains the ability to direct ubiquitylation of HIF-α in an 

in vitro assay.  These results suggest that R167Q pVHL assembles into a 
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remnant VBC complex, either containing Elongin C in reduced amounts or 

bypassing the requirement for Elongins C and B entirely by directly interacting 

with CUL2 or interacting with CUL2 via a second cullin-adaptor pair.   

In a structural homology threading model of the VBC complex based on 

the solved crystal structure of the related yeast SCF complex, we have shown 

that VHL is indeed likely to bind directly with CUL2, though the small interface 

between the two is unlikely to be a stabilizing factor in the absence of Elongins C 

and B (data not shown, Brian Kuhlman, UNC).  In addressing the latter 

possibility, we have thus far been unable to detect an interaction between R167Q 

mutant pVHL and CUL1-SCF1 or CUL4-DDB1, though interaction with CUL3 and 

any number of BTB-domain adaptors remains a possibility.   

The stability of the mutant pVHL likely influences both its ubiquitin ligase-

dependent and –independent functions.  In the HA-VHL-complemented ES cell 

and 786-0 cell systems used in the above studies, clones expressing near wild-

type levels of R167Q HA-VHL were used in experiments of VBC structure and 

function.  In murine ES cells, however, the Type 2B mutant R167Q pVhl is 

expressed at greatly reduced levels compared to wild-type pVhl.  

Imbalances in HIF-α family members contribute to differences in disease 

biology.  Sporadic ccRCC tumors expressing both HIF-1α and HIF-2α (H1H2) 

differ significantly from those expressing HIF-2α alone (H2)(286).  In a recent 

study, 57 independent sporadic ccRCC tumors were classified as VHL WT 

(neither HIF-1α nor HIF-2α detected, 12%), H1H2 (61%), or H2 (27%) by HIF 
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immunostaining.  VHL inactivation by mutation, deletion, or promoter methylation 

was confirmed in 49/50 H1H2 and H2 ccRCC tumors.  Consistent with earlier 

studies suggesting that HIF-2α enhances and HIF-1α tends to oppose c-Myc 

activity, H2 tumors displayed enhanced c-Myc activation and  proliferation (55% 

increase in Ki67 positivity) and reduced genomic copy number changes (40% 

decrease) in comparison to VHL WT and H1H2 tumors.  In contrast, VHL WT 

and H1H2 tumors uniquely displayed activation of the AKT/mTORC1 (phospho-

S6) and MAPK/ERK (phospho-ERK) pathways.  Intriguingly, both in vivo studies 

on ccRCC tumors and in vitro studies utilizing HIF-1α and HIF-2α knock-down in 

RCC cell lines suggested that H2 tumors stimulate DNA repair by enhancing 

expression of homologous recombination effectors, thereby limiting G1/S 

checkpoint activation.  Overall, these studies suggest that ccRCC tumors 

characterized by HIF-2α stabilization correlates with c-Myc activation and 

efficient transit through S phase, while ccRCC tumors characterized by 

stabilization of both HIF-1α and HIF-2α correlate with growth factor signaling 

through AKT/mTORC1 and MAPK/ERK. 

Studies of the VHL/HIF pathway in teratoma models suggest that the 

profile of HIF-α stabilization directly influences tumor growth and angiogenesis.  

Teratomas generated from HIF-1α-/- murine ES cells display poor vascularization, 

reduced hemangioma formation, and similar early growth (through week three) 

but enhanced delayed growth (weeks four through seven) in comparison to 

transgenic HIF-1α-rescued ES cells(280).  The growth phenotype transition at 

three weeks, together with the observation of three-fold more hypoxic zones in 
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comparison to HIF-1α-rescued, suggests that physiological hypoxic stabilization 

of HIF-2α played a role.  Teratomas derived from ES cells in which a HIF-2α 

allele replaces endogenous HIF-1α (HIF-2αKI/KI, also functionally HIF-1α-/-) 

display more rapid growth, greater hemorrhage and mass, increased vessel 

density, and increased hemangioma formation relative to wild-type 

teratomas(281).  Altogether, these studies suggest that HIF-2α stabilization is 

tumor growth-promoting and that HIF-1α is growth-suppressive.  As evidenced by 

the HIF-2αKI/KI model, teratoma hemangioma formation appears to depend not 

upon HIF-1α expression specifically but more generally on HIF-1α locus-specific 

control, perhaps directing a specific temporal and/or spatial context for HIF-α 

expression. 

Teratomas derived from Vhl-/- ES cells, predicted to maximally stabilize 

both HIF-1α and HIF-2α, display reduced growth but enhanced hemangioma 

formation relative to wild-type teratomas(106, 107).  Teratoma growth and 

hemangioma suppression were completely rescued by wild-type HA-VHL, while 

the representative Type 2B VHL mutant R167Q HA-VHL rescued teratoma 

growth but not hemangioma suppression(107).  Surprisingly, Vhl2B/2B teratomas 

grow more rapidly than both Vhl-/- and J1 and display enhanced hemangioma 

formation relative to Vhl-/-.  We suspect the differences in tumor growth and 

hemangiogenesis in teratomas derived from Vhl-/- + R167Q HA-VHL and those 

derived from Vhl2B/2B ES cells arise from hypomorphic expression of 2B mutant 

pVhl from the endogenous locus and a resulting shift in the HIF-α profile.  In 

addition to a growth profile consistent with enhanced HIF-2α stabilization, Vhl2B/2B 
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teratomas fail to stabilize sufficient HIF-1α to activate transcription of the HIF-1α-

specific target Pfk1.  The severity of the 2B Vhl allele in this three-dimensional 

tumor model suggests that a HIF balance shifted towards HIF-2α may promote 

better tumor growth than maximal stabilization of both HIF-1α and HIF-2α. 

R167Q pVhl is associated with a unique pattern of angiogenesis-related 

gene expression.  Vhl2B/2B teratomas display greatly enhanced hemangioma 

formation relative to Vhl-/- teratomas despite over-expressing an equivalent 

amount of Vegfa.  In an effort to generate hypotheses about the genes involved 

in the hemangioma phenotype, we compared the expression of 84 angiogenesis-

related genes in Vhl2B/2B and Vhl-/- relative to J1 wild-type teratomas.  We found 

that both Vhl2B/2B and Vhl-/- teratomas over-expressed Vegfa, Kdr, Cdh5, and 

Eng, but Vhl2B/2B teratomas uniquely over-expressed Nrp1 as well.  Kdr and Nrp1 

are both involved in Vegfa signaling, encoding, respectively, the Vegfa receptor 

VegfR2 and its co-receptor neuropilin-1.  Neuropilin-1 has been shown to 

enhance isoform-specific Vegfa signaling through VegfR2(287).  

In an independent approach, we tested the in vitro vascular differentiation 

potential of Vhl2B/2B and Vhl-/- relative to J1 wild-type ES cells in an embryoid 

body assay.  We found that J1-derived embryoid bodies sprouted a well-formed 

vascular plexus of PECAM+ cells, Vhl-/--derived embryoid bodies appeared to 

proliferate but did not sprout vessels, and Vhl2B/2B-derived embryoid bodies 

developed an intermediate phenotype of a robust but disorganized vascular 

network.  Studies of the Vegfa signaling pathway in this in vitro embryoid body 

vascular differentiation system indicate that the balance of endothelial 
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proliferation versus generation of vessels is exquisitely sensitive to the absolute 

and relative dosages of critical individual pathway components such as VegfR2, 

VegfR1, and Vegfa(288-290).  The importance of dosage in Vegfa signaling is 

underscored in vivo by the haplo-insufficient embryonic lethality observed in 

Vegfa+/- mice(291, 292).  The results of the in vitro vascular differentiation assay 

and the hemangioma-related gene signature of Vhl2B/2B versus Vhl+/- teratomas 

suggest that the 2B mutant pVhl does indeed promote tumor hemangioma 

formation, perhaps via HIF-dependent or mutant pVhl-dependent effects on 

Vegfa signaling.  

The discovery of a mutant 2B pVhl-specific hemangioma-associated gene 

profile warrants further study for its implications in renal tumor biology and in 

human VHL Disease.  In order to address the former, we are currently 

developing a primary renal tubule epithelial cell culture system designed to 

permit dissection of HIF- and mutant pVhl-dependent effects on tumorigenic 

potential, three-dimensional tumor growth and vascularity, and gene expression.  

This system is described in detail below.  In order to address the latter, we are 

collaborating with a rare-disease tissue bank in order to obtain ccRCC and 

adjacent normal tissue from VHL Disease patients with Type 1, Type 2A, and 

Type 2B VHL mutations.  These tissues will be used to define missense 

mutation-specific gene expression profiles for correlation with clinical history and 

histopathological features. 

A gene replacement model of Type 2B VHL phenocopies the null allele in 

embryonic development but changes target tissue spectrum.  Vhl2B/2B embryos 
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die at E9.5-10.5 with a placental phenotype consistent with the phenotype 

reported for Vhl-null.  At E10.5, Vhl-/- placental labyrinths display reduced fetal 

vessel content and, as a consequence, separation of the maternal and fetal 

circulations (110).  At E9.5, the latest time-point we could examine histologically, 

Vhl2B/2B placentas display reduced fetal vessel invasion into the chorionic plate, a 

defect which would presumably manifest as reduced fetal vascularization of the 

labyrinth 1-2 days later if the embryos had survived.  The Vhl-/- labyrinthine defect 

has been localized to Vhl deficiency in the embryonic endothelial 

compartment(132).  Though we observed over-expression of both joint HIF 

targets and the HIF-1α specific target Pfk1 in whole Vhl2B/2B embryos relative to 

Vhl2B/+ embryos at E9.5, this HIF target gene expression most likely reflects 

physiological hypoxia near associated with embryonic death and is unlikely to 

capture the absolute dosage and relative stabilization of HIF-α factors due to 

genetic loss of Vhl in the relevant endothelial compartment.    

Though Vhl heterozygous-null mice develop hepatic angiomas with 

moderate to dramatic, age- and genetic background-dependent penetrance, 

Vhl2B/+ mice never developed hepatic angiomas.  Though genetic background 

may have conferred a degree of resistance to hepatic angioma formation in our 

mouse model – the penetrance of hepatic angioma in Vhl+/- mice on the C57BL/6 

is a modest 18% at 12 months – we suspect that the lack of hepatic angiomas 

derives from a 2B missense mutation-specific effect on HIF-α stabilization.  

Addressing the former, our lab has independently shown that Vhlf/f injected with 

Adenoviral-cre recombinase develop hepatic angiomas with high penetrance, 
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while Adeno-cre-injected Vhl2B/f mice do not develop hepatic angiomas (Shufen 

Chen).  Addressing the latter, hepatocytic HIF-2α stabilization has been shown to 

be both necessary in the context of Vhl loss (134) and independently sufficient 

(135) to generate hepatic angiomas.  Thus, the lack of hepatic angioma 

formation observed in Vhl2B/+ mice is likely to result primarily from insufficient 

HIF-2α stabilization in hepatocytes. 

Our mouse model of Type 2B VHL Disease emphasizes the tissue- and/or 

context-dependent effect of R167Q mutant pVhl on HIF-α stabilization.  First, the 

2B Vhl allele confers greater HIF-2α than HIF-1α stabilization in association with 

enhanced tumor growth and hemangioma formation in a three-dimensional tumor 

growth model.  Second, the 2B Vhl allele appears to phenocopy the Vhl null 

allele in contribution of the embryonic endothelium to the placental labyrinth in 

development.  Finally, the 2B Vhl allele confers a reduction in hepatic angioma 

formation in the adult mouse likely attributable to sub-threshold HIF-2α 

stabilization. 

Vhl mutation predisposes to renal tumorigenesis subsequent to 

mutagenesis.  Though rats develop both spontaneous and inherited renal 

adenocarcinomas, thus far genetic targeting of loci associated with human renal 

tumor predisposition syndromes has failed to recapitulate RCC in the mouse.  

PEPCK-cre;Vhlf/f mice develop renal cysts with modest penetrance and long 

latency(136).  Addition of a second genetic event, Pten loss, results in a highly 

penetrant renal cyst phenotype with short latency in Ksp1.3-cre;Vhlf/f mice, but 

the associated progressive renal failure prevented assessment of tumor 
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predisposition after 3-6 months(140).  These mouse models suggest that the 

generation of renal cysts in Vhl-initiated mice requires at least one additional 

genetic event but do not indicate whether Vhl initiation of renal cysts is a requisite 

step in the progression to renal adenocarcinoma or whether Vhl initiation of renal 

adenocarcinoma occurs via an independent or bifurcated path. 

In an effort to determine whether Vhl-initated mice could be pushed to 

develop renal adenocarcinoma, we modeled the accumulation of somatic 

mutations in Vhl2B/+ mice using transplacental ENU mutagenesis.  ENU was 

equally renal cystogenic in Vhl2B/+ and wild-type littermate controls at four and 

twelve months.  At twelve months, however, 2/10 mutagenized Vhl2B/+ mice and 

0/14 mutagenized wild-type mice developed renal adenocarcinoma with clear 

cells and vascular stroma reminiscent of human ccRCC.  We believe this is the 

first demonstration of renal adenocarcinoma in a genetically predisposed mouse. 

Future Directions 

Type 2B VHL mutations predispose to the full spectrum of VHL disease-

associated tumors and are additionally postulated to foster more aggressive 

renal tumors than Type 1 and Type 2A VHL mutations.  Our lab has undertaken 

both in vitro and in vivo approaches to examine the tumor-promoting activities of 

a representative hotspot Type 2B VHL mutation, R167Q.  We have demonstrated 

that xenografts expressing human Type 2B VHL cDNA (107) and teratomas 

homozygous for the equivalent murine Type 2B Vhl mutation (263) grow more 

rapidly than the corresponding Type 1 tumors.  Our gene replacement mouse 

model of Type 2B VHL disease, furthermore, is the first Vhl model to 
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demonstrate a predisposition for renal adenocarcinoma (263).  Together with our 

in vitro findings that Type 2B VHL retains intermediate ubiquitin ligase activity 

towards hypoxia inducible factor (HIF)-α (247), our in vivo studies suggest that 

the maximal HIF stabilization conferred by Type 1 VHL mutations is detrimental 

to tumor growth.   

We propose to study the interplay of Vhl Type 2B mutation or loss and 

HIF-α stabilization by generating renal epithelial and dermal fibroblast primary 

cell cultures from our existing Type 2B Vhl mouse strain, a conditional Vhl 

deletion strain, and conditional transgenic strains encoding stable HIF-1α and 

HIF-2α.  We hypothesize that Type 2B VHL mutation generates a profile of 

relative and absolute HIF-1α and HIF-2α levels that activates a unique subset of 

the total HIF target gene repertoire.  Our proposed primary cell culture-based 

system models Vhl mutation, Vhl loss, and HIF stabilization in a euploid epithelial 

setting similar to the native kidney in early renal tumorigenesis and is highly 

tractable for functional and molecular studies of VHL Disease-associated 

phenotypes.  

First, cell culture and allograft growth of Vhl 2B/flox cells will be compared 

with Vhl flox/flox cells and cells with Vhl-independent HIF stabilization.   A panel of 

primary cell cultures will be developed from newborn kidneys and skin from Type 

2B, conditional Vhl-null, and conditionally stabilized HIF mice and exposed to 

viral cre in culture.  Tumorigenic potential in vitro will be assessed by cellular 

doubling time, duration of continuous culture, growth in soft agar, and formation 

of primary cilia.  Tumorigenic potential in vivo will be assessed by implanting cells 
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subcutaneously or orthotopically in nude mice to study tumor growth, histology, 

and invasiveness.  

Secondly, the above primary cell cultures and derivative allografts will be 

probed for pVhl and HIF pathway function in order to define the HIF target gene 

repertoire associated with Type 2B Vhl expression compared with wild-type or 

null Vhl alleles.  Primary cell cultures will be used to compare basal and hypoxia-

stimulated levels of HIF-1α and HIF-2α and examine basal and hypoxia-

stimulated HIF transcriptional effects on both conventional and putative Type 2B 

Vhl-associated HIF targets genes.  We will then attempt to define a Type 2B Vhl 

gene expression profile using comparative gene expression profile analysis on 

both primary cell cultures and derivative allografts. 

Our investigations of the representative VHL hotspot mutation R167Q 

suggest that missense Type 2B VHL mutations can confer a more severe 

phenotype than VHL loss.   Coupled with the use of conditional alleles, our 

primary cell culture system will allow us to directly compare the tumor-promoting 

characteristics of the Type 2B Vhl mutation to Vhl loss and Vhl-independent HIF 

stabilization at the molecular level.  

Conclusion 

Altogether, this dissertation work suggests that maximal stabilization of 

both HIF-1α and HIF-2α may create an environment detrimental to some aspects 

of tumor growth.  Instead, a molecular scenario in which HIF-2α is intermediately 

stabilized or stabilized to a greater degree than HIF-1α may be most conducive 
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to tumorigenesis.  VHL mutations that generate such a profile of HIF-α 

stabilization, we propose, may cause a more severe clinical course in sporadic 

ccRCC.  Understanding how the levels of HIF-α direct RCC tumor biology will be 

important for determining an individual’s prognosis or likelihood to respond to 

targeted therapy as well as for generating new rational targeting strategies.  

Though targeted therapies against HIF-α are currently under development, our 

work indicates that such therapies may be ineffective or even counter-productive 

if they fail to completely inhibit HIF-α stabilization or activity or if they have 

greater efficacy towards one HIF-α subunit or the other.  Finally and most 

importantly, this dissertation work both encourages ongoing attempts to develop 

genetically engineered mouse models of renal adenocarcinoma and urges further 

study of VHL Disease-associated mutations for insight into the molecular biology 

of both the sporadic and inherited renal cell carcinoma.     
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