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ABSTRACT 
 

Waylin Yu: SEX-SPECIFIC REGULATION OF PAIN: A NOVEL ROLE FOR DOPAMINE AND 
CORTICOTROPIN-RELEASING FACTOR SIGNALING IN THE MIDBRAIN AND EXTENDED 

AMYGDALA 
(Under the direction of Thomas L. Kash) 

 
 

Chronic pain is the leading cause of disability and health care access in the United 

States. Sex differences in perception, response, and pathological susceptibility are common 

features of pain, with women being disproportionately affected and inadequately treated for pain 

across the lifespan. The neural mechanisms that contribute to these outcomes remain poorly 

understood, as female subjects have historically been underrepresented in pain research. The 

overarching goal of this dissertation is to identify the neurocircuit mechanisms of pain, with 

special emphasis on two regions of sex-specific pain modulation: the ventrolateral 

periaqueductal gray/dorsal raphe (vlPAG/DR) and the bed nucleus of stria terminalis (BNST). 

We first demonstrate a role for vlPAG/DR dopamine (DA) neurons in adaptive responses to 

pain, where activation of vlPAG/DRDA+ projections to the BNST reduces nociceptive sensitivity in 

male mice and increases locomotion in female mice. Deletion of the DA rate-limiting enzyme 

tyrosine hydroxylase (Th) in vlPAG/DR mitigates these behaviors, with vlPAG/DRDA+-BNST 

physiology supporting a key role for DA transmission in sex-specific function. We next 

characterize the contributions of corticotropin-releasing factor (CRF) in the BNST, as DA and 

CRF interactions in the BNST have been posited to impact pain. Robust in vivo recruitment of 

BNSTCRF+ neurons was observed during exposure to a nociceptive stimulus, with male and 

female mice exhibiting distinct magnitude and synchronization in neuronal responses. We then 

show that genetic deletion of Crf in the BNST reduces nociceptive sensitivity for both sexes and 

increases paw attending responses in female mice. Finally, we discuss the implications of these 
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novel pain mechanisms on drug use, citing results that illustrate the consequences of local Th 

and Crf deletion on morphine and alcohol treatment. Collectively, these findings establish a role 

for vlPAG/DRDA+ and BNSTCRF+ neurons in the sex-specific expression of pain, highlighting 

promising new targets to achieve pain relief and counteract maladaptive drug use with precision 

medicine approaches.  
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PREFACE 

Overview 

Pain is a complex sensory experience that enables the detection of tissue damage and 

generates unpleasant emotional states to signal danger. Inherent in this experience is the need 

for behavioral change, as appropriate responses to pain are necessary to counteract the 

possibility of irrevocable harm or fatal injury. This process of sensing threats and meeting 

environmental challenges is informed by a combination of innate sensation and experiential 

learning, demonstrating the interplay of biological mechanisms needed to experience and 

alleviate pain. In this introduction, we will discuss the multifaceted networks that orchestrate the 

pain system to ensure survival, as well as the challenges of managing this system when 

confronted with pathology. 

 

i. Pain as a System of Adaptation 

Nearly all vertebrate animals are predisposed to detect noxious stimuli using peripheral 

sensory cells called nociceptors (Millan, 1999; Julius & Basbaum, 2001). These cells contain 

temperature-, pressure-, and chemical-sensitive receptors that generate activity in response to 

tissue damage (Sherrington, 1907; Basbaum et al., 2009). Incoming signals from nociceptors 

may be processed locally in the spinal cord via reflexive pathways or supraspinally in the brain 

via transmission to second and third order neurons (Loeser & Melzack, 1999; Millan, 1999). The 

connections that relay nociceptive information throughout the brain are canonically regarded as 

ascending tracts (e.g. spinal transmission to the thalamus [spinothalamic], cerebellum 

[spinocerebellar], reticular formation [spinoreticular], parabrachial [spinoparabrachial], among 

other regions) or descending tracts (e.g. transmission to the spinal cord from the cortex 
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[corticospinal], reticular formation [reticulospinal], and hindbrain [descending autonomic], among 

other regions), where nociceptive information is processed and modulated respectively 

(Basbaum et al., 2009). The objective of this neuroanatomical organization is to rapidly 

recognize environmental threats, allowing organisms ample time to engage in “fight-or-flight” 

behaviors and neutralize any potential for harm (Bandler et al., 2000). Generally, these pain 

responses are expressed as escape behaviors to increase distance from the source of injury, 

communicative behaviors to request aid or warn others of the experience, and passive 

behaviors to conserve energy and prevent further injury. The most advantageous course of 

action is likely to change depending on the context of pain (Wiech & Tracey, 2013). By 

consequence, dynamic integration of real-time sensory information and behavior are essential 

features for the neurobiological basis of pain, possibly explaining why nociceptors in the 

peripheral nervous system exhibit such diverse circuit engagement in the spinal cord and brain. 

Understanding the adaptive mechanisms that drive these pain responsive circuits are thus 

critical for promoting self-preservation and well-being.  

 

ii. Chronic Pain is Maladaptive and Affects Quality of Life 

Under standard conditions, pain is an adaptive system of threat detection, response, and 

safety. In pathological forms, however, pain can be maladaptive. Sensory disorders such as 

neuropathy and sensitization are commonly reported with physical injury, inflammation, and 

disease (Millan, 1999; Woller et al., 2017). These etiological factors drive normally innocuous 

stimuli to become painful, resulting in sustained reductions in pain thresholds and constitutive 

activation of pain responsive circuits that is disproportionate to the presence of noxious stimuli. 

The perpetual nature of pathological pain has dire consequences, producing marked effects on 

the biological, psychological, and social aspects of daily living (Lumley et al., 2011). By 

impairing work productivity, sleep, interpersonal relationships, and other important contributors 

to quality of life, chronic pain has become the leading cause of disability and health care access 
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in the United States (Lumley et al., 2011; GBD 2016 Disease and Injury Incidence and 

Prevalence Collaborators, 2017), with the annual societal cost of pain (an estimated $560 to 

$636 billion) being greater than that of heart disease ($309 billion), cancer ($243 billion), and 

diabetes ($188 billion) (Gaskin & Richard, 2012). These statistics indicate that the ability to 

counteract maladaptive sensory conditions such as chronic pain are essential for maintaining 

well-being at both the individual and societal level. 

 

iii. The Intersectional Challenges of Pain Treatment 

The high prevalence of chronic pain is likely due to the challenging nature of pain 

management. Effective and accessible pharmacological interventions such as opioids and 

alcohol promote temporary pain relief while encouraging habitual use, thus increasing the 

susceptibility for pain exacerbation and other negative consequences of drug dependence 

(Ballantyne & LaForge, 2007; Hojsted & Sjogren, 2007; Egli et al., 2012). Additional treatment 

challenges come from reports that there are sex differences in the efficacy of pain intervention. 

Women are more likely to receive inadequate pain diagnoses and treatment than men, and, by 

consequence, disproportionately experience severe pain across the lifespan (Paller et al., 2009; 

Ruau et al., 2012; Bartley & Fillingim, 2013). The need for improved pain treatments that are 

efficacious for both sexes has been recognized at the federal level, as the National Institute of 

Health (NIH) has embraced initiatives like Sex as a Biological Variable (SABV) and the Pain 

Consortium’s Helping to End Addiction Long-Term (HEAL) to highlight the importance of these 

intersectional challenges. These initiatives declare that more research with equal representation 

of male and female subjects is required to understand, manage, and adequately treat pain, 

while preventing drug misuse and addiction (Arnegard et al., 2020). The nationwide objective to 

elucidate novel targets for pain treatment without the negative consequences of addiction is 

aimed at the emerging public health crisis surrounding opioid use, and more generally, 

expresses societal demands for safer and more effective pain management. 
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iv. The Midbrain as a Candidate Region for Sex-Specific Pain Modulation 

Evidence for the sex-dependent expression of pain has revealed that divergent 

neurobiological mechanisms can drive distinct pain responses in male and female subjects 

(Bodnar & Kest, 2010; Mogil et al., 2020). The periaqueductal gray (PAG) and dorsal raphe 

(DR), two midbrain structures surrounding the cerebral aqueduct, have been highly implicated in 

adaptive responses to pain and the reinforcing effects of drug use (Basbaum & Fields, 1979; 

Van Der Kooy, 1982; Carrive et al., 1993; Bandler & Shipley, 1994; Wang & Nakai, 1994; 

Bandler et al., 2000; Flores et al., 2006). In humans, viewing images of physical pain and 

negative affect activated the midbrain structures (Mobbs et al., 2007; Buhle et al., 2013), while 

electrical stimulation produced endogenous opioid release and sustained analgesia (Hosobuchi, 

1977, 1983, 1986; Levy et al., 1987; Roizen et al., 1985; Behbehani, 1995; Sims-Williams et al., 

2017). In rodents, the PAG/DR can similarly drive pain relief (Reynolds, 1969; Fields et al., 

1976; Basbaum & Fields, 1984) and additionally contribute to locomotor, vocalization, and 

autonomic functions based on environmental demands (Carrive et al., 1993; Bandler & Shipley, 

1994; Bandler et al., 2000), suggesting that these structures are responsible for a range of 

adaptive behaviors when responding to situations of distress. Notably, the PAG/DR exhibits 

reciprocal connections between brain regions in the ascending and descending nociceptive 

tracts (Figure 1), providing these midbrain structures optimal anatomical positioning to integrate 

nociceptive information with adaptive responses and alter the impact of pain. Sex-specific 

mechanisms of drug-induced analgesia have been observed in the midbrain (Bobeck et al., 

2009; Loyd & Murphy, 2014, Doyle et al., 2017; Schoo et al., 2018), making it likely that these 

same PAG/DR connections exert significant influence over pain outcomes. Here, we will discuss 

how PAG/DR and the associated molecular diversity of inputs and outputs can regulate 

neuronal contributions to pain-related behaviors, with special consideration for potential 

mechanisms of sex differences in pain.  
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Preclinical Models of Pain  

In order to study the neurobiological mechanisms of pain in animals, it is essential that 

behavioral models reflect pain phenotypes in humans. Self-report has been regarded as the 

primary basis of clinical pain evaluation, where patients are given the opportunity to indicate 

subjective feelings of unpleasantness through rating scales or questionnaires that reflect the 

extent of pain being suffered (Ong & Seymour, 2004; Fillingim et al., 2016). Since pain is a 

personal experience that can manifest in ways that are not proportional to nociceptive 

engagement, and internal distress may not be visible to an observing physician, self-report has 

remained the standard for contemporary approaches to pain determination in a medical context 

(Fillingim et al., 2016). Functional measures such as nociceptive sensitivity, aversive learning, 

and impaired quality of life can additionally inform diagnosis, however, as such measures are 

commonly used for quantitative assessments of pain in laboratory settings (Staahl & Drewes, 

2004; Arendt-Nielsen et al., 2007; Breivik et al., 2008; Taylor et al., 2016). Using behavior as a 

proximal measure of pain has been strategically applied to standardize pain readouts in patients 

and enhance the translational relevance of preclinical studies, since pain testing in model 

organisms entirely relies on non-verbal indications rather than self-report (Brievik et al., 2008; 

Gregory et al., 2013). The acceptance of functional outcomes as proximal measures for pain in 

both human and non-human subjects is reflected in a recently updated definition of pain by the 

International Association for the Study of Pain, which states that the inability to verbally describe 

pain does not preclude an organism from experiencing it (IASP, 2020). These behavioral 

indicators have thus served as a necessary link between human and non-human subjects in the 

study of pain. 

To measure pain in a non-verbal manner, preclinical researchers quantify adaptive 

responses to a noxious stimulus that reflect the aversive nature of the experience and promote 

self-preservation (Mogil et al., 2009; Gregory et al., 2013). The view that animals can 

experience pain and express it through functional measures is corroborated in a review by 
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Walters & Williams (2019), where earlier definitions from Manfred Zimmerman and others are 

cited to state that pain is “induced by noxious stimulation during injury or imminent injury [and] 

has a presumed protective function involving overt defensive behavior, internal physiological 

alterations, and an aversive motivational state that can promote avoidance learning.” The 

definition outlines three broad categories of functional measures that signify pain in both human 

and non-human subjects: an increase in (1) nociceptive sensitivity, (2) defensive behaviors, and 

(3) avoidance learning. To illustrate the implementation and purpose of these pain-related 

behaviors in preclinical models, we will use examples in the rodent literature to describe how 

these tests are typically performed and what facets of the human pain experience these models 

capture. 

 

i. Measuring Nociceptive Sensitivity in Rodents 

Nociception, defined as the transduction process from tissue damage to nociceptor 

activity, is a primary component of pain that is measured by exposing an organism to a noxious 

stimulus and assessing nociceptive responses (Chapman et al., 1985; Mogil et al., 2009; Zhang 

et al., 2011; Gregory et al., 2013). Withdrawal of the exposed limb from the source of injury or 

increased attending of the treated limb are prototypical behaviors associated with nociception, 

as they indicate an instinctive attempt to mitigate the ongoing tissue damage. Tests to 

determine nociceptive sensitivity have traditionally used thermal, mechanical, electrical, or 

chemical stimuli to evoke reflexive or spontaneous behaviors, with unidimensional objective 

pain assays like the Hargreaves, Von Frey, tail immersion, hot plate, capsaicin, and formalin 

tests being standard for measuring sensitivity in rodents. These tests have been successfully 

adapted for use in a variety of animal models and humans (Turk & Melzack, 2011; Gregory et 

al., 2013), with the recognition that localized and stereotyped motor reflexes in response to pain 

are well-conserved across species (Sneddon et al., 2014; Mogil, 2019; Walters & Williams, 

2019). 
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ii. Measuring Defensive Behaviors and Avoidance Learning in Rodents 

Defensive behaviors are generally expressed as coping mechanisms to diminish the 

aversive impact of nociceptive engagement (Carrive et al., 1993). These behaviors permit 

escape from the source of injury, freezing in anticipation of injury, or protective actions that 

reduce the impact of injury, depending on the demands of the environment (Bandler & Shipley, 

1994; Bandler et al., 2000). To evoke these behaviors in the context of pain, rodent models use 

avoidance paradigms, where subjects can freely explore an environment that is segregated by 

nociceptive and non-nociceptive compartments. Exposure to the nociceptive side is expected to 

promote preferential movement towards the compartment that does not drive nociception (for 

examples, see the thermal escape test, place escape avoidance paradigm, and shuttle box 

[LaBuda & Fuchs, 2000; Johansen et al., 2001; Moqrich et al., 2005]). Alternatively, subjects 

may be exposed to tonic-acting irritants such as capsaicin, formalin, or acetic acid in a neutral 

compartment, eliciting spontaneous behaviors that are motivated by protecting the treated limb. 

Repeated exposure to these substances results in learned avoidance of the neutral space, 

where an association between the aversive aspects of nociceptive treatment and the pain-

paired compartment is developed through Pavlovian conditioning. By contrast, the promotion of 

preference learning can be achieved for cues associated with access to analgesia based on the 

hedonic value of diminished pain (for examples, see conditioned place preference/aversion, 

real-time place preference, and operant conditioning with analgesic drugs [Navratilova et al., 

2013]). Collectively, these tests of defensive behavior and avoidance learning are important 

metrics for the affective-motivational components of pain. In humans, learned behaviors 

associated with pain are likely to influence future actions, as the negative emotional aspects of 

these experiences may be generalized towards impairing daily activities, so the ability to 

account for pain-related aversion in non-human subjects significantly supports the translational 

relevance of preclinical models (Li et al., 2008; Turk & Melzack, 2011; Gregory et al., 2013).  
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To summarize, the behavioral criteria of increased (1) nociceptive sensitivity, (2) 

defensive behaviors, and (3) avoidance learning have been effective guidelines for establishing 

pain in preclinical models. Although we primarily focus on rodent applications of testing, these 

criteria have been used to establish pain in insects, mollusks, crustaceans, fish, birds, cats, 

primates, and humans (Sneddon et al., 2014; Walters & Williams, 2019), indicating that adaptive 

responses to pain are evolutionarily conserved, both as innate reflexes to nociceptive threats 

and learned actions that influence future behaviors. 

 

iii. Modeling Chronic Pain in Rodents 

Several preclinical models of chronic pain have been developed to simulate the 

pathological conditions observed in human patients. The induction of prolonged sensory 

dysfunction by neuropathy, inflammation, and abdomen constriction are common manipulations 

in rodents, as these models closely mimic the biopsychosocial consequences of chronic pain 

observed in humans (Berge, 2011; Lumley et al., 2011; Burma et al.., 2017). Furthermore, these 

models have proven to be useful for the assessment of analgesic efficacy in pathological 

conditions, as preclinical determinations of therapeutic potential are an essential part of drug 

discovery and have historically informed the development of novel pain interventions in humans 

(Burma et al., 2017). Precise applications of these models are thus needed to accurately 

characterize the pathological and therapeutic mechanisms behind chronic pain states. 

Models of neuropathic pain are generated by traumatic injury to the somatosensory 

system, resulting in constitutive activation of nociceptive circuits and the development of pain 

sensitization (Treede et al., 2008). The most common models of neuropathic pain are performed 

by physically damaging peripheral nerves in the rodent hindlimb (e.g. sciatic nerve injury, 

chronic constriction injury, and ligation-based methods), with alternative approaches like spinal 

cord injury, cortical/thalamic excitotoxicity, and systemic neuropathies (via cancer treatment, 

diabetes, and alcoholism) similarly relying on lesions to key nociceptive circuits. Modeling 
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neuropathic pain in rodents produces robust phenotypes related to aberrant sensation, as 

increases in allodynia (i.e. enhanced pain from a non-nociceptive stimulus), hyperalgesia (i.e. 

enhanced pain from a nociceptive stimulus), and paw guarding are consistent features of the 

pathological condition (Barrett et al., 2007). Although human patients that suffer from 

neuropathic pain exhibit similar patterns of pain response, clinical reports of abnormalities in 

non-painful sensations (e.g. numbness, tingling) and greater distress following episodes of 

spontaneous pain (i.e. random nociceptive activation, not necessarily caused by a noxious 

stimulus) have yet to be validated in non-human models (Yarnitsky, 1997; Gregory et al., 2013). 

Furthermore, the ability to translate treatment outcomes from rodent models to humans has 

been under scrutiny, with previous studies exhibiting low internal validity for the application of 

analgesic drugs (Sert & Rice, 2014). Associated impairments in cognitive function, sleep, 

mobility, and social interaction do not appear to be affected by translational gaps, however, as 

these phenotypes are consistent across species (Jaggi et al., 2011; Hoke et al., 2012; Jensen et 

al., 2014; Rice et al., 2018; Sewell, 2018). Overall, models of neuropathic pain are well-suited to 

drive sensory dysfunction and impair quality of life, but further research is needed to account for 

how all aspects of the sensory experience in humans translates to rodents.  

In contrast to neuropathic models that simulate permanent nerve damage, models of 

inflammatory pain are generated by immune responses to chemical irritants, resulting in 

redness, heat, swelling, loss of function, and pain at the site of infection (Muley et al., 2015). 

Notably, the intensity and duration of these chemical irritants can significantly differ depending 

on the substance, with short-acting irritants like capsaicin and formalin lasting on the order of 

minutes, and long-acting irritants like carrageenan and Complete Freund’s Adjuvant (CFA) 

lasting on the order of days (Ren & Dubner, 1999; Wilson et al., 2006). Of these substances, 

CFA, an antigen emulsion consisting of heat killed Mycobacterium tuberculosis in non-

metabolizable oils, produces the most extensive inflammatory response (Ren & Dubner, 1999; 

Wilson et al., 2006). CFA treatment in the hind paw of rodents has been shown to drive 
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hyperalgesia and enhanced spontaneous pain for up to two weeks, replicating the conditions of 

persistent inflammatory ailments like rheumatoid arthritis and tendonitis (Stein et al., 1988; Ren 

& Dubner, 1999; Fehrenbacher et al., 2012). Importantly, these heightened pain effects can be 

attenuated with non-steroidal anti-inflammatory drugs and opioids in humans and rodents alike 

(Walker et al., 1999; Wilson et al., 2006), indicating that shared mechanisms may contribute to 

the pathophysiology of inflammatory pain in both species.  

Chronic pain can additionally be modeled through internal nociceptors, as discomfort in 

the peritoneum results in visceral nociception. Obstruction, distention, and compression of the 

abdomen and colon causes debilitating internal pain that lacks sufficient treatment options for 

humans (Sikandar & Dickenson, 2012), necessitating the demand for more preclinical research 

on visceral nociception. In rodents, a common way to stimulate the nociceptors that line the 

abdomen and abdominal organs is by injecting acetic acid into the intraperitoneal zone (Ness & 

Gebhart, 1990). Treatment with acetic acid generates writhing behaviors, a type of spontaneous 

pain that is expressed by stretching and retracting of the abdomen to indicate discomfort (Muley 

et al., 2015). Visceromotor nociceptive responses like writhing have been shown to impair home 

cage behaviors such as nesting and grooming for rodents, with acetic acid driving these 

behaviors on the order of minutes (Negus et al., 2015). Pain relieving drugs such as opioids can 

reverse these enhancements in writhing and impairments in home cage behavior, suggesting 

that acetic acid treatment can simulate the negative impact of pain on quality of life (Negus et 

al., 2015; Bagdas et al., 2016). Chronic models of visceral nociception have shown similar 

consequences, where physical mechanisms of colorectal distention are placed in rodents to 

constrict the abdominal muscles on command (Ness & Gebhart, 1988), leading to spontaneous 

pain in the viscera and sensitization of other nociceptive modalities. These manipulations of 

abdominal and colorectal nociception have previously been validated in human subjects (Ness 

et al., 1990), indicating that the incapacitating effects of sustained abdominal pain and irritable 

bowel syndrome can be accurately modeled in rodents. 
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Over the past century, preclinical research has observed great advances in how pain is 

studied in model organisms. The general acceptance of non-verbal, functional indications of 

pain has broadened the definition to include protective functions motivated by the aversive 

experience of nociceptive engagement. These pain-related behaviors are adaptive, susceptible 

to alteration by pathological conditions, and well-conserved across human and non-human 

models, indicating high construct validity and translational potential in humans. The assessment 

of pain through functional outcomes has thus enabled important discoveries to be made based 

on extensively characterized and validated preclinical models. 

 

Sex Differences in Pain 

For over three decades, the NIH has instituted policies to account for sex as a biological 

variable, with the recognition that disease and treatment outcomes can manifest differently in 

men and women (Bale & Epperson, 2017; Arnegard et al., 2020). The first major policy, 

announced in 1990, required the inclusion of women in all NIH-funded clinical investigations. 

This was followed up in 2014 by a more general policy to factor in sex when designing studies in 

animal and human subjects, with a new requirement that researchers must justify the exclusion 

of any sex in grant applications (Clayton & Collins, 2014). Implementation of these policies were 

a direct response to the unequal representation of male and female subjects. Although nearly 

identical representation has been established for both sexes in recent studies with human 

subjects, an investigation by Beery and Zuker (2011) shows that the exclusive use of male 

subjects was prevalent in at least 80% of animal studies for the fields of general biology, 

immunology, physiology, pharmacology, endocrinology, and neuroscience. Of a random 

sampling of 100 neuroscience papers published in top tier journals, 45% lacked information 

about sex (Berkley et al., 1992). As a result of these practices, the pipeline for identifying 

important biological mechanisms has remained incomplete, with inadequate female 

representation potentially leading to an overgeneralization of male findings or missed 
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mechanistic insight. Examinations of sex as a biological variable are thus critical for the rigorous 

and transparent conduct of research and will have major implications for the future of 

personalized health care. 

Pain research has been cited as a particularly important area of investigation for sex 

differences (Hardy & DuBois, 1940; Berkley et al., 1992; Greenspan et al., 2007; Mogil, 2012; 

Melchior et al., 2016). Women are disproportionately affected by chronic pain, with female 

patients showing greater prevalence for headache, migraine, low back pain, neck pain, knee 

pain, chronic fatigue syndrome, fibromyalgia, interstitial cystitis, temporomandibular disorder, 

and irritable bowel syndrome than their male counterparts (Gerdle et al., 2008; Fillingim et al., 

2009; Mogil et al., 2012; Steingrimsdottir et al., 2017). Both clinical (Fillingim et al., 2003; 

Barnabe et al., 2012; Tang et al., 2012) and experimental (Fillingim & Maixner, 1995; Unruh, 

1996; France & Suckowiecki, 1999; Fillingim et al., 2009; Popescu et al., 2010) evaluations of 

pain additionally demonstrate greater nociceptive sensitivity in women. Although there are 

examples of comparable pain prevalence and sensitivity by sex (Robinson et al., 1998; Turk & 

Okifuji, 1999; Racine et al., 2012), the epidemiological consensus is that women have greater 

susceptibility to pain than men. It remains possible, however, that insufficient accommodation 

for pain modalities, pain severity, environmental conditions, social expectations, health care 

access, sample diversity, quantitative methodology, and statistical power confound these 

conclusions, as such shortcomings are acknowledged in meta-analyses for investigations of 

clinical pain (Wiesenfeld-Hallin et al., 2005; Fillingim et al., 2009; Hashmi & Davis, 2014; 

Steingrimsdottir et al., 2017).  

Preclinical studies have reinforced this notion that sex is an important determinant of the 

pain experience. Animal models have corroborated conclusions from human studies of pain, 

with 85.4% of papers finding that female rodents are more sensitive to pain than males (Mogil et 

al., 2020). Since biological sex is defined by a spectrum of characteristics, including complex 

interactions between genetics, anatomical development, and hormones, rather than a binary 



 

xx 

difference in a single trait, it has been speculated that multiple biological mechanisms contribute 

to the differential regulation of pain in males and females. Past investigations into these 

mechanisms validate that several systems are involved, spanning the peripheral nervous 

system, immune system, and central nervous system (Mogil et al., 2020). At the genetic level, 

sex-specific transcriptome changes in immune response and neuronal plasticity have been 

reported in neuropathic pain patients (North et al., 2019; Ray et al., 2019), while rodent models 

of neuropathy show a 10% increase in sex-dependent gene modulation compared to uninjured 

subjects (Stephens et al., 2019). At the protein level, ubiquitous molecular systems such as γ-

aminobutyric acid (GABA), dopamine (DA), serotonin (5-HT), calcitonin gene-related peptide, 

phosphokinases, and toll-like receptors have been implicated in sex-specific contributions to 

pain (Joseph et al., 2003; Joseph & Levine, 2003; Sorge et al., 2011; Hagiwara et al., 2013; 

Sorge et al., 2015; Nasir et al., 2016; Tonsfeldt et al., 2016; Araldi et al., 2017; Liu et al., 2017; 

Megat et al., 2018; Avona et al., 2019; George et al., 2019; Luo et al., 2019; see Mogil et al. 

[2020] for comprehensive review), with the best known example being the modulatory role of 

sex hormones on microglia and T-cells in the spinal cord (Sorge et al., 2011; Sorge et al., 2015; 

Dance, 2019). Additional cases of sex-specific mechanistic drivers are likely to exist, as female 

subjects are still significantly underrepresented in preclinical pain research. For papers 

published between 1996 and 2005, 79% of non-human animal experiments exclusively studied 

male rodents (Mogil, 2012). Although these percentages have marginally improved since 2005 

(Mogil, 2020), the exclusion of female subjects in preclinical pain studies persists to this day, 

thus increasing the likelihood for unexamined mechanisms of pain.  

The brain is an important source of sex-specific pain processing and modulation (Cahill, 

2006). Although pain has traditionally been thought of as the peripheral engagement of 

nociceptors, central mediation also plays an important role in the functional expression of 

nocifensive responses and aversion (Feine et al., 1991; Riley et al., 2001; Sarlani et al., 2004; 

Kuba et al., 2005; Labus et al., 2008; Kano et al., 2013). Divergence in these pain-related 
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behaviors have been demonstrated by sex, with the use of passive coping strategies (e.g. 

quiescence, hyporeactivity) being more common in males and active coping strategies (e.g. 

escape, paw attending) being more common in females (Archer et al., 1975; Aloisi et al. 1994; 

Gruene et al., 2015; Keiser et al., 2017; Pellman et al., 2017; Shansky et al., 2018). Much of 

what we know about the neural mechanisms underlying these discrete pain-related behaviors 

come from opioid studies, as release of endogenous opioids like enkephalin or treatment with 

drugs like morphine can induce similar divergences in pain responses (van Ree & de Wied, 

1980). In rodents, treatment with µ opioid agonists results in more potent analgesia and 

sedation in males, and greater reinforcement and locomotor stimulation in females (Klein et al., 

1997; Craft, 2008; Bodnar & Kest, 2010; Bobzean et al., 2014; Mavrikaki et al., 2017; for further 

consideration [e.g. responses to other types of opioids], see Bartok & Craft [1997] and Giles & 

Walker [2000]). In humans, however, there is greater anti-nociceptive potency in women and 

more prevalent use in males, with much less known about the sedative and locomotor 

stimulation side-effects of opioids (Giles & Walker, 2000; Sarton et al., 2000; Chia et al., 2002; 

Niesters et al., 2010; Jones, 2017; Marsh et al., 2018; for alternative interpretations of clinical 

data, see Loyd & Murphy, 2014). Although the mechanisms behind these variances between 

species have yet to be addressed, similar regions of modulation are likely to explain such 

differences, as robust expression of opioid receptors have been confirmed for the spinal cord, 

hindbrain, and midbrain – major areas of pain processing and modulation – in both species 

(Mansour et al., 1995; Moy et al., 2020).  

 

Central Mechanisms of Pain Modulation  

Preclinical models have highlighted the contributions of the mesolimbic DA system and 

the descending pain pathways as key circuits for pain response through endogenous and drug-

induced activation of the opioid system (Reichling et al., 1988; Vaughan & Christie, 1997; 

Kalyuzhny & Wessendorf, 1998; Chiou & Huang, 1999; Becker & Chartoff, 2019; Mogil, 2020). 
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These midbrain circuits have long been implicated in nociceptive processes, with more recent 

evidence linking these neural substrates to sex-dependent function. 

 

i. Canonical Pathways of Pain and Pain-Related Drug Use: The Mesolimbic DA System 

In the mesolimbic system, activation of presynaptic µ opioid receptors on GABA neurons 

of the ventral tegmental area (VTA) disinhibits DA release into downstream targets like the 

nucleus accumbens (NAc), bed nucleus of the stria terminalis (BNST), and prefrontal cortex 

(Owstrowski et al., 1982; Matthews & German, 1984; Seutin et al., 1990; Leone et al., 1991; 

Gardner, 2011). DA projections from the VTA to the NAc form the canonical reward pathway, 

which has been shown to mediate the motivational (Phillips & LePiane, 1980; van Ree & de 

Wied, 1980; Bozarth & Wise, 1981a; 1981b; Van der Kooy et al., 1982; Jenck et al., 1987; Di 

Chiara & Imperato, 1988; Welzl et al., 1989; Koob, 1992; Spanagel et al., 1992; Tanda et al., 

1997; Pierce & Kumaresan, 2006) and locomotor sensitization (Joyce et al., 1979; van Ree & de 

Wied, 1980; Kalivas et al., 1983; Vezina et al., 1987) effects of opioids and other drugs of 

abuse. These functions may be important for interactions between pain and drug use, as 

activation of presynaptic µ and δ opioid receptors on GABA neurons of the VTA opposingly 

regulates alcohol consumption in mice (Job et al., 2007; Margolis et al., 2008). Furthermore, 

inflammatory pain desensitizes µ opioid receptors in the VTA and DA release in the NAc to 

promote increased opioid and alcohol consumption in rats (Hipolito et al., 2015; Campos-Jurado 

et al., 2019). Sex differences in DA signaling additionally show that opioid and alcohol exposure 

results in greater DA release in the NAc of females (Castner et al., 1993; Blanchard & Glick, 

2002; Laasko et al., 2002; Volkow et al., 2004; Walker et al., 2006; Job et al., 2007; Kritzer & 

Creutz, 2008; Johnson et al., 2010; Bobzean et al., 2014; for evidence to the contrary, see 

Munro et al., 2006) that correspond to fluctuations in estrogen levels (Shimizu et al., 1993; Xiao 

& Becker, 1994; Kritzer & Creutz, 2008; Johnson et al., 2010). These mechanisms are 

suggested to drive sex-specific impairments in sociability, similar to the isolating effects of 
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chronic pain (Duenas et al., 2006; Trainor, 2011; Campi et al., 2014; Borsook et al., 2016). The 

mesolimbic DA system may therefore be important for the pursuit and expression of pain relief, 

providing a possible mechanistic explanation for the sex-specific motivational outcomes 

observed with drugs of abuse (Taylor et al., 2016; Serafini et al., 2020). 

 

ii. Canonical Pathways of Pain and Pain-Related Drug Use: The Descending Pain Pathways 

In contrast to the mesolimbic DA system, more canonical and direct contributions to pain 

have been established for the descending pain pathways, which integrates signaling from the 

periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM) and spinal cord (Fields et 

al., 1976; Fields et al., 1977; Anderson et al., 1977; Fields et al., 1983; Basbaum & Fields, 

1978a; 1978b; 1979; 1984; Abols & Basbaum, 1981; Glazer & Basbaum, 1981; Basbaum, 1981; 

Sankuhler & Gebhart, 1984; Chang et al., 1986; Fang et al., 1989; Heinricher et al., 1989; 

Jensen & Yaksh, 1989; Potrebic et al., 1995; Ossipov et al., 2010; Lau & Vaughan, 2014; 

Tobaldini et al., 2018; Bannister & Dickenson, 2020). Seminal work by Howard Fields, Allen 

Basbaum, and colleagues have established a direct contribution of these structures to pain 

modulation, where µ and κ opioid agonists disinhibit glutamatergic PAG projections to drive 

activation of RVM off-cells, resulting in the obstruction of incoming nociceptive information to 

second order neurons in the spinal cord (Fields et al., 1983; Chang et al., 1986; Fang et al., 

1989; Heinricher et al., 1989; Jensen & Yaksh, 1989). Activation of the pathway produces 

analgesia and has been shown to regulate pain through both endogenous (e.g. stress) and 

exogenous (e.g. drug use) processes (Butler & Finn, 2009; Ossipov et al., 2010).  

Sex differences have been reported for analgesic processes related to the descending 

pain pathways (Lipa & Kavaliers, 1990; Ge et al., 2004; Bryant et al., 2006; Liu et al., 2007; Juni 

et al., 2008; Liu & Gintzler, 2013), but a direct evaluation of these circuits has only been 

performed for the PAG-RVM pathway (Tershner et al., 2000; Loyd et al., 2007; 2008; Loyd & 

Murphy, 2006; 2009; Bobeck et al., 2009; Doyle et al., 2017). Previous studies have shown that 
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morphine (µ/δ opioid agonist) produces greater PAG-RVM activation and tolerance in male rats 

(Krzanowska & Bodnar, 1999; Loyd et al., 2007; 2008), while inflammatory pain preferentially 

activates the PAG-RVM circuit in males to produce comparable nociceptive sensitivity by sex, 

suggesting different mechanisms may be driving endogenous pain modulation in females (Loyd 

& Murphy, 2006). Support for this theory from Anne Murphy and colleagues revealed that 

morphine interactions with toll-like-receptor 4 on PAG microglia prevents anti-nociception in 

females (Doyle et al., 2017). These investigations implicate opioid signaling in the PAG as a 

mechanism for sex-specific expression of pain. Knowing that the structure is important for “fight-

or-flight” behaviors, it is also possible that these mechanisms contribute to defensive behaviors 

and avoidance learning (Di Scala et al., 1987; Vaccarino & Corrigall, 1987; Fanselow, 1991; 

1994; Bandler & Shipley, 1994; Bandler et al., 2000; Morgan & Carrive, 2001; Miranda-Paiva et 

al., 2003; Chieng et al., 2005; Sukikara et al., 2006; Butler et al., 2011; Koutsikou et al., 2014; 

Twardowschy et al., 2015; Walker et al, 2019), but this has yet to be determined, as midbrain 

contributions to the functional outcomes of pain have not been extensively studied in both males 

and females.  

 

iii. Therapeutic Implications of Pain-Related Drug Use by Sex: The Need for Novel Targets 

Establishing a more complete understanding of sex-specific mechanisms in pain will 

have major implications for pain management. Opioids, alcohol, and other accessible drugs of 

abuse remain a common source of intervention for chronic pain patients. Approximately 25% of 

pain suffering patients consume alcohol for symptom relief, with men more frequently self-

medicating with than women (Riley & King, 2009; Wilsnack et al., 2009; Brennan et al., 2011). 

By contrast, female patients experience greater severity and poorer outcomes following 

repeated use of morphine or alcohol than their male counterparts (Rubonis et al., 1994; 

Brennan et al., 2005; Egli et al., 2012; Kennedy et al., 2013; Hitschfeld et al., 2015; 

Boissoneault et al., 2019). Women specifically develop compulsivity at a more rapid pace 
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(Westermeyer & Boedicker, 2000; Greenfield et al., 2010) and suffer greater negative affect in 

withdrawal than men (Becker & Koob, 2016). These clinical findings show that men are more 

likely to consume drugs for analgesia, while women are more likely to experience worse 

outcomes with repeated drug use.   

Sex-specific outcomes of pain treatments have been reported for opioids (Craft, 2003; 

2008; Bartley & Fillingim, 2013), alcohol (Egli et al., 2012; Boissoneault et al., 2019), 

Cerebrolysin (Morales-Medina et al., 2019), fluoxetine (Zammataro et al., 2017), and marijuana 

(Cooper & Haney, 2016), with the directionality of anti-nociceptive bias varying by drug. This 

suggests that several mechanisms may contribute to differences in pain susceptibility between 

men and women. For example, discrete treatment outcomes are posited to promote drug 

relapse in women, as female patients undergoing pain management experience short-lived 

improvements compared to male patients (Keogh et al., 2005; Pieh et al., 2012). These 

therapeutic shortcomings are especially problematic since pathological pain not only shares co-

morbidity with drug dependence, but depression and anxiety disorders as well (Bair et al., 2003; 

Ballantyne et al., 2007; Egli et al., 2012; Zale et al., 2015). Drug withdrawal and associated 

negative emotional states have been shown to worsen pain (Gatch & Lal, 1999; Rhudy & 

Meagher, 2000; Angst et al., 2003; Ballantyne et al., 2007; Lumley et al., 2011; Egli et al., 2012; 

Zale et al., 2015), as the interplay between pain and drug use may bidirectionally drive 

pathology through impairments in mood (Lumley et al., 2011; Egli et al., 2012). More 

mechanistic evaluations on how these co-morbidities develop are necessary, especially in the 

context of sex-dependent treatment outcomes, as knowledge on how to target these 

interactions will be informative for personalized approaches to pain management.  

 

The PAG/DR is a Dynamic Integrator of Pain Circuitry  

The midbrain, a phylogenetically conserved portion of the brainstem, consists of a 

central gray area surrounding the cerebral aqueduct that is comprised of the PAG and dorsal 
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raphe (DR). These structures exhibit great anatomical and molecular diversity that work in 

synchrony to control “fight-or-flight” behaviors and is regarded as an essential facilitator of 

behavioral adaption. The PAG/DR drives alterations in pain modulation, motivated behaviors, 

and autonomic function in response to the environment. By integrating sensory and emotional 

information in real-time, these structures can rapidly prepare an organism for physical 

engagement of threats, which is necessary for mitigating the impact of various contextual 

challenges. The PAG has been extensively studied for its roles in anti-nociception, escape, 

freezing, vocalization, heart rate, and vasodilation/vasoconstriction (Bandler & Shipley, 1994; 

Bandler et al., 2000). These functions are generally segregated by columnar organization within 

the structure, as active coping strategies are elicited by the dorsolateral PAG (dlPAG; which 

enables confrontational defensive behaviors, hypertension, tachycardia, extracranial 

vasodilation, hindlimb and renal vasoconstriction, and non-opioid analgesia) and lateral PAG 

(lPAG; which enables flight, hypertension, tachycardia, hindlimb vasodilation, extracranial and 

renal vasoconstriction, and non-opioid analgesia), and passive coping strategies are evoked by 

the ventrolateral PAG (vlPAG; which enables quiescence, hyporeactivity, hypotension, 

bradycardia, and opioid analgesia; see Carrive [1993], Bandler & Shipley [1994], and Bandler et 

al. [2000] for comprehensive reviews). In compliment to the nociceptive and locomotor survival 

functions of the PAG, the DR exhibits important contributions to affective-motivational 

behaviors, with roles in pain (Qing-Ping & Nakai, 1994), mood (Cools et al., 2008), reward 

(Cohen et al., 2015; Li et al., 2016), aversion (Hayashi et al., 2015), social interaction (Dolen et 

al., 2013; Niederkofler et al., 2016), motor activity (Jacobs & Fornal, 1997), and arousal (Monti, 

2010). These multifaceted functions have all been implicated in threat response and are likely to 

be important contributors to pain outcomes, as a wide range of modulation is necessary for an 

organism to adapt to the challenges of any given environment.  

The dynamic functions of the PAG/DR are enabled by diverse neurochemical 

compositions and connectivity (Figures 1-2). PAG neurons produce glutamate (Glu) and GABA, 
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with marked co-expression of DA (Hokfelt et al., 1984; Trulson et al., 1985; Descarries et al., 

1986; Arsenault et al., 1988; Stratford & Wirtshafter, 1990; Charara & Parent, 1998; Flores et 

al., 2004; Flores et al., 2006; Lu et al., 2006), neurotensin (NT) (Beitz et al., 1983; Shipley et al., 

1987; Zhong et al., 2019), and vasoactive intestinal polypeptide (VIP) (Loren et al., 1979; Moss 

& Basbaum, 1983; Smith et al., 1994; Paspalas et al., 2000; Dougalis & Matthews et al., 2012). 

Other pain-related peptides, including enkephalin, dynorphin, substance P, and 5-HT, have 

been reported in the PAG as well (Moss et al., 1983; Moss & Basbaum, 1983; Li et al., 1990; 

Charara & Parent, 1998). Extensive characterization of DR cell types has revealed 30-50% of 

neurons express 5-HT, with notable presence of Glu, GABA, DA, and neuropeptides (e.g. 

dynorphin, cholecystokinin) in the region as well (Fu et al., 2010; Okaty et al., 2015; Huang et 

al., 2019; Ren et al., 2018; 2019). These molecular markers have been shown to anatomically 

overlap between the PAG and DR, as neurons that co-express Glu with DA or 5-HT transect 

both structures (Charara & Parent, 1998; Li et al., 2016; Matthews et al., 2016; Taylor et al., 

2019; Wang et al., 2019). Whether there is functional divergence between molecularly similar 

cell types in each structure is unclear, however, and remains to be determined.  

The connectivity of PAG and DR exhibits many analogous circuits. The PAG/DR 

generally integrate sensory input from the spinal cord (Mantyh & Peschanski, 1982; Carrive, 

1993; Bandler & Shipley, 1994; Bandler et al., 2000) and exhibit projections to the hindbrain 

(medulla [Basbaum & Fields, 1984; Ren et al., 2018], locus coeruleus [Ennis et al., 1991], 

laterodorsal tegmentum [Lu et al., 2006]), limbic system (BNST [Li et al., 2016; Matthews et al., 

2016; Ren et al., 2018; Lin et al., 2020], central nucleus of the amygdala [CeA] [Waselus et al., 

2012; Li et al., 2016; Matthews et al., 2016; Groessl et al., 2018; Ren et al., 2018; Lin et al., 

2020], thalamus [Krout et al., 2000], hypothalamus [Li et al., 2014; Ren et al., 2018]), and cortex 

(basal forebrain [Lu et al., 2006], prefrontal cortex [Waselus et al., 2012; Ren et al., 2018]) to 

shape behavior (Figures 1-2). Previous studies have established that divergent functional 

organization can be segregated by projection targets, with Glu neurons in the vlPAG selectively 
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contributing to freezing (but not anti-nociceptive) behaviors through projections to the 

magnocellular nucleus in the medulla (Tovote et al., 2016), and 5-HT neurons in the DR 

separating contributions to reward/aversive states based on cortical and subcortical projections 

(Ren et al., 2018). Such delineations suggest that the extensive behavioral repertoire of 

PAG/DR is facilitated through a combination of cell type and circuit interactions. Additional 

research to clarify these distinctions is necessary to understand how these structures work as a 

system. In summary, the PAG/DR may encompass a heterogeneous collection of cell type- and 

projection-specific functions that contribute to the dynamic nature of pain responses. The 

behavioral consequences of this circuit-level diversity, however, has yet to be fully 

characterized.  

 

Rationale for Dissertation 

In the present dissertation, we will focus on cell type- and projection-specific interactions 

between the vlPAG/DR and BNST to evaluate whether these non-canonical systems of pain 

modulation contribute to sex-dependent outcomes. This is informed by promising evidence in 

the literature that suggests a role for DA neurons in the vlPAG/DR and downstream interactions 

with corticotropin releasing factor (CRF) neurons in the BNST in the regulation of pain and pain-

related drug use. We predict that vlPAG/DR and BNST will exhibit sex-specific modulation of 

pain through these DA and CRF signaling systems, with the rationale for this hypothesis 

supported by the following lines of evidence: 

 

i. Midbrain DA Exhibits Robust Inputs to the Extended Amygdala 

DA neurons in the vlPAG/DR were first characterized in a series of neuroanatomical 

studies, where they were reported to be a dorso-causal extension of the VTA (Hokfelt et al., 

1984; Trulson et al., 1985; Descarries et al., 1986; Arsenault et al., 1988; Stratford & 

Wirtshafter, 1990; Charara & Parent, 1998; Flores et al., 2004; Flores et al., 2006; Lu et al., 
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2006). Similar to DA neurons in the VTA, this vlPAG/DR subpopulation is disinhibited by µ 

opioid agonists and exhibits multifaceted roles for pain, arousal states, and value representation 

(Flores et al., 2004; Flores et al., 2006; Lu et al., 2006; Li et al., 2016; Matthews et al., 2016; 

Cho et al., 2017; Groessl et al., 2018; Taylor et al., 2019; Porter-Stransky et al., 2019; Cho et 

al., 2020; Lin et al., 2020). Notably, the vlPAG/DR and VTA have robust outputs to the extended 

amygdala, where co-release of DA and Glu activate the BNST and CeA, suggesting that these 

extended amygdala structures may be important loci of DA signaling for pain modulation.  

 

ii. vlPAG/DR and BNST Form Reciprocal Pathways that are Functionally Uncharacterized 

A notable feature of the PAG/DR is that these structures share many downstream 

targets but only receive reciprocal innervation from a subsection of these targets (Figures 1A-

1B). This includes the extended amygdala, where the vlPAG/DR sends excitatory outputs to the 

BNST and CeA and receives reciprocal inhibitory projections back. Previous studies looking at 

the function of reciprocal circuits between the vlPAG/DR and CeA have established a critical 

role for these structures in pain and aversive learning (Rizvi et al., 1991; Avegno et al., 2018; 

Groessl et al., 2018; Li & Sheets, 2018). However, similar circuit-level investigations have yet to 

be performed for the vlPAG/DR and BNST. These connections between the midbrain and 

extended amygdala indicate an exciting prospect for reciprocal inhibition to enhance 

representations of salient experiences such as pain, since the midbrain has been proposed to 

incorporate similar motifs of inhibition to hierarchically select incoming information on 

environmental stimuli (Friesen, 1994; Mysore & Knudsen, 2012). Other reciprocal targets of the 

PAG/DR, such as the hypothalamus and prefrontal cortex, may also interact with the extended 

amygdala for an additional layer of modulation (Amat et al., 2005; Marcinkiewcz & Mazonne et 

al., 2016; Hao et al., 2019; Hwa et al., 2020). 
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iii. Sex-Specific Mechanisms of Pain: A Possible Role for DA Signaling in vlPAG/DR and BNST 

In humans, the functional connectivity of PAG/DR and downstream limbic structures 

have been reported to differ between men and women when exposed to pain (Linnman et al., 

2012), but the mechanisms behind these differences are unclear. Only a few molecular drivers 

of sex differences have been identified for pain (Mogil et al., 2020), with multiple cases 

demonstrating a role for DA signaling in the vlPAG/DR and BNST. Systemic knockout of the DA 

receptor D3 (D3R) generally results in more robust hypoalgesia in female mice, with the 

greatest sex differences observed with late-phase formalin responses (Liu et al., 2017). A 

similar reduction of DA receptor D5 (D5R) diminishes acute pain and hyperalgesia in mice, with 

males exhibiting greater dependence on spinal D5R than females for intact pain sensitivity 

(Megat et al. 2018). More specific manipulations of BNST show that local antagonism of DA 

receptor D1 (D1R) results in more frequent formalin responses for female rats (Hagiwara et al., 

2013). These data suggest that inactivation of D1-like receptors worsens pain, while inactivation 

of D2-like receptors increases pain tolerance in a more pronounced manner for female subjects. 

DA signaling in the brain is thus an important contributor to sex differences in pain.  

In the midbrain, greater involvement of the vlPAG-RVM circuit has been observed with 

morphine anti-nociception and tolerance in male rats (Loyd et al., 2009), while the same 

outcomes appear to be prevented by morphine-microglia interactions in females (Doyle et al., 

2017). Furthermore, persistent inflammatory pain increases presynaptic GABA release but 

decreases high affinity tonic GABAA currents exclusively in vlPAG neurons of female rats, 

resulting in sex-specific morphine anti-nociception (Tonsfeldt et al., 2016). These data suggest 

that opioids and persistent inflammation can alter GABA signaling in the vlPAG and influence 

pain sensitivity differently for males and females. Considering that the GABA neurons that gate 

PAG-RVM are likely to gate activation of DA neurons in the vlPAG/DR as well (Li et al., 2016; 

Lin et al., 2020), it is possible that vlPAGDA+-BNST circuits contribute to sex-specific pain in a 

similar manner. Previous work from our lab and others have shown that vlPAG/DRDA+ activation 
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reduces pain and sends robust projections to the BNST (Li et al., 2016; Taylor et al., 2019), but 

these evaluations were limited to male mice and did not take into account the functional role of 

downstream circuits. Further investigations into the contributions of this DA subpopulation are 

warranted for both sexes, as the literature has strongly implicated DA signaling in the vlPAG/DR 

and BNST in a modulatory role for sex-specific expressions of pain.  

 

iv. Evidence for a vlPAG/DRDA+-BNST Circuit 

Similar to the vlPAG/DR, the BNST is a center of integration for value representation, 

motivated behaviors, threat response, and drug use (Kash et al., 2015; Avery et al., 2016; 

Lebow & Chen, 2016). Although the BNST is not well characterized for pain, the structure has 

recently been implicated to drive the sensory and affective-motivational components of pain 

through CRF signaling (Deyama et al., 2009; Tran et al., 2012; Ide et al., 2013; Tran et al., 

2014; Minami, 2019; Takahashi et al., 2019; Hara et al., 2020). Evidence for DA-CRF 

interactions reveal that DA enhancement of Glu in the BNST is gated by CRF receptor 1 

(CRFR1) (Kash et al., 2008). Although the source of DA for this modulation has been assumed to 

be the VTA, the vlPAG/DR remains an intriguing possibility (Silberman et al., 2013). Since 

vlPAG/DRDA+ neurons co-express VIP (Dougalis et al., 2012) and VIP neurons in the vlPAG/DR 

terminate onto BNSTCRF+ neurons, vlPAG/DRDA+ neurons may directly influence CRF signaling 

by innervating BNSTCRF+ neurons (Eiden et al., 1985; Petit et al., 1995; Kozicz et al., 1997; 

Kozicz et al., 1998; Silberman et al., 2013). A more direct indication by Meloni et al. (2006) 

shows that the majority of DA neurons innervating BNSTCRF+ neurons comes from the 

vlPAG/DR. Therefore, vlPAG/DRDA+ neurons may be interacting with CRF signaling through 

direct transmission to BNSTCRF+ neurons. Sex-specific contributions through this system may be 

possible, since the BNST exhibits male and female differences in anatomy (Allen et al., 1990), 

parenting behaviors (de Vries, 2008), CRF distribution (Uchida et al., 2019), and DA modulation 

of pain (Hagiwara et al.., 2013). 



 

xxxii 

To summarize, a critical evaluation of the literature indicates that (i) activation of 

vlPAG/DRDA+ reduces pain (Flores et al., 2004; Li et al., 2016; Taylor et al., 2019), (ii) 

vlPAG/DRDA+ neurons project to the BNST (Li et al., 2016; Matthews et al., 2016; Groessl et al., 

2018; Lin et al., 2020), (iii) DA signaling in the BNST drives sex-specific effects on pain 

(Hagiwara et al., 2013), (iv) DA signaling from vlPAG/DR is likely to interact with BNSTCRF+ 

neurons (Meloni et al., 2006; Dougalis et al., 2012), and (v) inhibition of CRF signaling in the 

BNST reduces pain (Tran et al., 2014; Ide et al., 2016). Based on these converging lines of 

evidence, we hypothesize that vlPAG/DRDA+ and BNSTCRF+ neurons make mutual and 

complementary contributions to sex differences in pain.  

 

Chapter Aims 

The overall goal of the work described in this dissertation is to examine the neural 

mechanisms underlying sex-dependent expressions of pain. We specifically designed a series 

of experiments that characterize the effects of vlPAG/DRDA+ and BNSTCRF+ neurons on pain-

related behaviors in male and female mice, with the intention of identifying molecular targets 

that may explain the discrete therapeutic outcomes reported for men and women in the clinic.  

In Chapter 1, we assessed the function of vlPAG/DRDA+ neurons in male and female 

mice. Using a combination of chemogenetic, optogenetic, and CRISPR/Cas9 approaches, we 

examined how activation of vlPAG/DRDA+ neurons and vlPAG/DRDA+ terminals in the BNST 

regulated the expression of pain-related behaviors. The hypothesis for this initial set of 

experiments was that vlPAG/DRDA+ neurons would make sex-specific contributions to 

nociceptive sensitivity and locomotion that were dependent on DA signaling to the BNST. This 

was based on previous evaluations of the vlPAG/DR showing that activation of local excitatory 

neurons can reduce supraspinal pain (Li et al., 2016; Taylor et al., 2019), as well as more 

general observations for sex-specific locomotor strategies in threatening contexts (Krzanowska 

& Bodnar, 2000; Shansky, 2018). Few studies to date have functionally characterized 
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vlPAG/DRDA+ neurons (Flores et al., 2004; Flores et al., 2006; Lu et al., 2006; Li et al., 2016; 

Matthews et al., 2016; Cho et al., 2017; Groessl et al., 2018; Taylor et al., 2019; Porter-Stransky 

et al., 2019; Cho et al., 2020; Lin et al., 2020), while no studies have investigated the behavioral 

consequences of activating vlPAG/DRDA+ terminals in the BNST or compared the function of this 

DA subpopulation in both sexes. Therefore, in this first chapter, we provide a novel assessment 

of vlPAG/DRDA+ function in the context of pain for male and female subjects, with the intention of 

obtaining more knowledge on how DA signaling contributes to sex differences in pain. 

In Chapter 2, we looked downstream to BNSTCRF+ neurons and examined the role of 

local CRF expression in pain processing and modulation. We first used in vivo calcium imaging 

to observe single-cell resolution encoding of noxious stimuli by BNSTCRF+ neurons of male and 

female mice. These experiments were then followed up by genetic deletion of Crf in the BNST 

to evaluate the necessity of peptide expression for intact pain responses. Although CRF 

signaling in the BNST has previously been shown to alter the sensory and affective-motivational 

components of pain, these effects were observed for differing modalities of distress and did not 

investigate the source of CRF driving these behaviors (Deyama et al., 2009; Tran et al., 2012; 

Ide et al., 2013; Tran et al., 2014; Minami, 2019; Takahashi et al., 2019; Hara et al., 2020). 

External sources of CRF from the CeA (among other inputs, like the basolateral amygdala and 

parabrachial nucleus [Crestani et al., 2013; Miles & Maren, 2019]) have been shown to drive 

aversive states through the BNST (Asok et al., 2018; de Guglielmo et al., 2019; Pomrenze et al., 

2019), but the role of local CRF has been explored to a lesser extent (Walker et al., 2009). 

Based on the expected results of local CRF receptor engagement, we hypothesized that 

BNSTCRF+ neurons would exhibit robust recruitment of activity in response to noxious stimuli and 

that CRF deletion in the BNST would alter the expression of pain responses in a modality-

dependent manner. Considering that CRF signaling has exhibited stark differences in the 

context of stress for multiple brain regions, with divergences in receptor expression, distribution, 

trafficking, and signaling leading to increased stress sensitivity in females (Bangasser & 
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Wiersielis, 2018), we additionally predict that CRF manipulations in the BNST will have greater 

effects on female subjects. The overall goal of this second chapter is to determine the 

contributions of CRF in the BNST to pain-related behaviors in male and female subjects, as this 

well-known but understudied source of CRF has yet to be evaluated in the context of pain. 

In Chapter 3, we examine the role of these DA and CRF neurons in pain-induced drug 

use. Combining a preclinical model of persistent inflammatory pain (CFA) with a voluntary 

consumption paradigm for alcohol (2-bottle choice), we assessed how male and female mice 

engage in self-medicating behaviors following injury. This experiment enabled us to develop a 

novel model for pain-drug interactions and compare outcomes to those reported in clinical 

investigations. We then validated this model by studying the impact of Crf deletion in the BNST 

on pain-induced drinking and compared how similar methodological approaches with DA in the 

vlPAG/DR influenced the anti-nociceptive and locomotor effects of morphine. The main 

hypotheses tested in this chapter was whether (i) inflammatory pain would drive sex-specific 

increases in alcohol consumption and (ii) local impairments in CRF and DA expression could 

prevent maladaptive drug use. Considering that vlPAG/DRDA+ and BNSTCRF+ neurons are 

sensitive to morphine and alcohol (Carboni et al., 2000; Veinante et al. 2003; Flores et al., 2004; 

Flores et al., 2006; Shalev et al., 2006; Jaferi et al., 2009; Silberman & Winder, 2013; Li et al., 

2013; Pliel et al., 2015; Li et al., 2016; Lin et al., 2020) and may directly drive drug use (Flores 

et al., 2004; Flores et al., 2006; Pliel et al., 2015; Rinker et al., 2017; Lin et al., 2020), our 

genetic deletion approaches were predicted to attenuate any observed interactions of pain and 

drug use. The proposed involvement of these DA and CRF mechanisms in sex differences is 

additionally expected to influence these pain-drug outcomes.  

In summary, the experiments in this dissertation were designed to elucidate the role of 

vlPAG/DRDA+ and BNSTCRF+ neurons in the sex-specific expression of pain. Using a combination 

of cutting-edge techniques, we were able to highlight the functional contributions of these DA 

and CRF signaling systems to pain and pain-related drug use. These investigations on 
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vlPAG/DRDA+ and BNSTCRF+ uncovered critical insight that may explain how pain can manifest in 

divergent ways for males and females. We believe that the distinct circuit mechanisms 

described in this dissertation will have a significant impact on our collective understanding of 

pain modulation by sex.   
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CHAPTER 1. DOPAMINERGIC PROJECTIONS FROM THE PERIAQUEDUCTAL 
GRAY/DORSAL RAPHE TO THE BED NUCLEUS OF THE STRIA TERMINALIS 

CONTRIBUTE TO SEX DIFFERENCES IN PAIN-RELATED BEHAVIORS 
 

Introduction 

Pain is a complex sensory experience that signals vulnerability to harm and motivates 

actions for self-preservation. Evidence suggests that men and women respond to pain 

differently, as variable strategies for coping contribute to the risk and severity of chronic pain 

(Bartley & Fillingim, 2013). The midbrain plays a well-established role in pain responses, with 

structures like the periaqueductal gray (PAG) and dorsal raphe (DR) having optimal anatomical 

positioning to integrate relevant contextual information with fight-or-flight behaviors (Wang & 

Nakai, 1994; Behbehani, 1995). The ventrolateral column of the PAG (vlPAG) and the 

neighboring DR are known generators of potent analgesia and enhanced opioid-induced anti-

nociception (Hosobuchi et al., 1977; Mayer & Liebeskind, 1974; Fardin et al., 1984; Morgan et 

al., 1991; Li et al., 1993; Cai et al., 2014; McDevitt et al., 2014; Tovote et al., 2016). Activation of 

these structures additionally elicits active and passive coping responses to the environment, 

enabling the use of adaptive anti-nociceptive or locomotor strategies to minimize the impact of 

pain (Bandler & Shipley, 1994; Maier et al., 1995). Subpopulations of vlPAG/DR have been 

identified as segregated drivers of these functions, with glutamate (Glu) neurons producing pain 

relief and escape behaviors in opposition to γ-aminobutyric acid (GABA) neurons (McDevitt et 

al., 2014; Tovote et al., 2016; Samineni et al., 2017; He et al., 2019; Seo et al., 2019; Vaaga et 

al., 2020). Notably, these cell types have been implicated in the sex-dependent modulation of 

pain through opioid signaling, as morphine inhibition of GABA neurons and disinhibition of Glu 

neurons drives analgesia to a greater extent in male rodents than females (Loyd et al., 2007; 
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Doyle et al., 2017). Considering that pain disproportionately affects women across the lifespan 

(Vetvik & MacGregor, 2017), with effective pain management limited by our knowledge on 

mechanistic drivers of pain in female subjects (Mogil, 2012; Bartley & Fillingim, 2013; Melchior 

et al., 2016; Gupta et al., 2017; Sorge & Totsch, 2017; Mogil, 2020), more insight on vlPAG/DR 

cell types and how they regulate the expression of pain in male and female subjects is needed. 

Recent studies have implicated vlPAG/DR dopamine (DA) neurons in the modulation of 

pain sensitivity (Flores et al., 2004; Li et al., 2016). As a subset of local excitatory neurons, 

vlPAG/DRDA+ neurons co-express Glu and play a similar role in anti-nociception (Flores et al., 

2004; Li et al., 2016; Tovote et al., 2016; Taylor et al., 2019). Work from our lab and others have 

shown that vlPAG/DRDA+ neurons are disinhibited by µ and κ opioid receptor agonists (Flores et 

al., 2004; Meyer et al., 2009; Li et al., 2016; Li & Kash, 2019; Lin et al., 2020) and activated by 

other analgesic drugs (Li et al., 2013) to reduce thermal and mechanical nociceptive sensitivity 

(Flores et al., 2004; Meyer et al., 2009; Li et al. 2016; Schoo et al., 2018; Taylor et al., 2019). 

These neurons exhibit additional contributions to arousal, fear learning, memory, reward, and 

locomotion (Flores et al., 2006; Lu et al., 2006; Cohen et al., 2015; Matthews et al., 2016; Cho 

et al., 2017; Groessl et al., 2018; Porter-Stransky et al., 2019; Vaaga et al., 2020; Lin et al., 

2020), with an overarching effect on incentivized responses to environmental salience (Cho et 

al., 2017; Lin et al., 2020). Although it remains unclear how vlPAG/DRDA+ regulation of these 

functions come together to influence behavior, there is evidence for functional specificity of 

vlPAG/DR neurons based on downstream target regions (Tovote et al., 2016; Groessl et al. 

2018), suggesting that vlPAG/DRDA+ may concurrently recruit circuits to elicit a diverse set of 

behaviors in response to pain. 

Previous characterizations of vlPAG/DRDA+ and pain were performed exclusively in male 

subjects, leaving the function of these neurons undetermined in females. To address this 

disparity, the present study examines the role of vlPAG/DRDA+ neurons in regulating pain 

responses for male and female mice. We specifically focus on the contributions of vlPAG/DRDA+ 
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projections to the bed nucleus of the stria terminalis (BNST), since multiple studies have 

reported robust innervation without any functional characterization of the pathway (Li et al., 

2016; Matthews et al., 2016; Lin et al., 2020). The BNST is a critical region for allocating 

emotional value to sensory information and likely plays an important role in pain (Hagiwara et 

al., 2013; Ide et al., 2013). Data from our lab has shown that the BNST can modulate the 

nociceptive and aversive aspects of pain differently in male and female mice (Yu et al., 2020), 

making the vlPAG/DRDA+-BNST pathway a promising candidate for sex-specific regulation of 

pain-related behaviors. To test this hypothesis, we used a combination of technical approaches, 

including chemogenetics, optogenetics, slice physiology, and CRSIPR/Cas9-mediated 

knockout, to assess how vlPAG/DRDA+ neurons and vlPAG/DRDA+ projections to BNST impact 

nociceptive sensitivity and related incentive behaviors. We found that vlPAG/DR neurons drive 

adaptive anti-nociceptive and locomotor behaviors differently in male and female mice via DA 

transmission to the BNST, with the context of neuronal activation being a key determinant of 

behavioral outcomes. These findings establish a critical role for vlPAG/DRDA+ neurons in the 

sex-specific expression of pain-related behaviors and may be informative for the future 

development of precision medicine approaches to mitigate maladaptive responses to pain.  

 

Materials and Methods 

Animals 

All animals were bred inhouse and maintained on a 12-h light/dark cycle (light on at 

7:00, light off at 19:00) with rodent chow and water available ad libitum. Male and female TH-

Cre mice (aged 6-12 weeks, C57BL/6J background) were group-housed with same-sex 

littermates until surgery or CFA treatment. All procedures were performed in accordance with 

the NIH Guide for the Care and Use of Laboratory Animals and were approved by the 

Institutional Animal Care and Use Committee at UNC Chapel Hill.  
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TH-Cre Details 

The mouse strain used for this research project, STOCK Tg(Th-cre)FI172Gsat/Mmucd, 

RRID:MMRRC_029177-UCD, was obtained from the Mutant Mouse Resource and Research 

Center (MMRRC) at University of California at Davis, an NIH-funded strain repository, and was 

donated to the MMRRC by Nathaniel Heintz, Ph.D., The Rockefeller University, GENSAT and 

Charles Gerfen, Ph.D., National Institutes of Health, National Institute of Mental Health. 

 

Number of Animals per Experiment 

-Figures 3-4: TH-Cre mice (Male mCherry control [n = 7], Male hM3Dq [n = 7], Female mCherry 

control [n = 7], Female hM3Dq [n = 7]). 

-Figure 5: TH-Cre mice (Female mCherry control in Estrus [n = 7], Female mCherry control in 

Non-Estrus [n = 7], Female hM3Dq in Estrus [n = 7], Female hM3Dq in Non-Estrus [n = 7]). 

-Figure 6: IHC Cohort #1 (S3A) used C57BL/6J mice from TH-Cre breeders (Males [n = 7], 

Females [n = 7]); IHC Cohort #2 (S3B-S3D) used DBH-eGFP mice (Males [n = 4], Females [n = 

4]); ISH Cohort (S3E-S3G) used DBH-eGFP mice (Males [n = 4], Females [n = 2]). 

-Figures 7-8: TH-Cre mice (Male eYFP [n = 7], Male ChR2 [n = 6-8], Female eYFP [n = 9-10], 

Female ChR2 [n = 8]). 

-Figure 9: TH-Cre mice (Male eYFP [n = 5], Male ChR2 [n = 5], Female eYFP [n = 5], Female 

ChR2 [n = 6]). 

-Figure 10: RTPP/RTPA (S5A-S5C) used TH-Cre mice (Male eYFP [n = 4], Male ChR2 [n = 5], 

Female eYFP [n = 5], Female ChR2 [n = 6]); Sociability test with same sex conspecifics (S5D-

S5H) used TH-Cre mice (Male eYFP [n = 7], Male ChR2 [n = 8], Female eYFP [n = 5], Female 

ChR2 [n = 6]); Sociability test with opposite sex conspecifics (S5I-S5M) used TH-Cre mice 

(Male eYFP [n = 7], Male ChR2 [n = 8], Female eYFP [n = 8], Female ChR2 [n = 8]); Post-

isolation sociability test with same sex conspecifics (S5N-S5R) used TH-Cre mice (Male eYFP 

[n = 4], Male ChR2 [n = 5], Female eYFP [n = 5], Female ChR2 [n = 6]). 
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-Figures 11 and 13: TH-Cre mice used for E/I transmission experiments (Male ChR2 [n = 5-6], 

Female ChR2 [n = 3-4]; number of cells per mouse in Figure Captions). 

-Figures 12 and 13: TH-Cre mice used for DA transmission experiments (Male ChR2 [n = 4], 

Female ChR2 [n = 5-6]; number of cells per mouse in Figure Captions). 

-Figures 14 and 15: TH-Cre mice (Male hM3Dq + sghTH control [n = 7], Male hM3Dq + TH 

CRISPR [n = 7], Female hM3Dq + sghTH control [n = 7], Female hM3Dq + TH CRISPR [n = 7]). 

 

Stereotaxic Surgery 

Adult mice (> 6 weeks of age) were anesthetized with isoflurane (1-3%) in oxygen (1-2 

l/min) and aligned on a stereotaxic frame (Kopf Instruments, Tujunga, CA). All surgeries were 

conducted using aseptic techniques in a sterile environment. Microinjections were performed 

with a 1 µl Neuros Hamilton syringe (Hamilton, Reno, NV) and a micro-infusion pump (KD 

Scientific, Holliston, MA) that infused virus at 100 nl/min. Viruses were administered unilaterally 

at an angle of 20º in the middle-posterior region of vlPAG/DR (450 nl for all experiments 

[exception: 500 nl for Figures 7-10 experiments]; relative to bregma: ML 0.00 mm, AP -4.50 mm, 

DV -3.63 mm). For experiments that required in vivo photostimulation, optical fibers were 

implanted bilaterally at -10º approximately 200 µm over the dorsal BNST (relative to bregma: 

ML ±0.90 mm, AP 0.23 mm, DV -4.15 mm) and secured with a dental cement headcap. After 

surgery, mice were given Tylenol water and allowed to recover for 3 weeks or longer before 

starting experiments.  

 

Behavioral Testing 

Chemogenetics 

Behavioral testing was initiated 3 weeks after viral injection of Gq-coupled designer 

receptors exclusively activated by designer drugs (Gq DREADD: a modified human M3 

muscarinic receptor [hM3Dq]) or the control fluorophore. 3 mg/kg CNO or vehicle was 
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administered with an intraperitoneal (i.p.) injection 30 minutes prior to testing to ensure 

activation of Gq signaling in vlPAG/DRDA+ neurons during the behavioral assay. CNO and 

vehicle administration were counterbalanced by day to account for the order of drug and test 

exposure, with at least one day between each test session. 

 

Optogenetics 

Behavioral testing was initiated 6-8 weeks after viral injection of ChR2 or the control 

fluorophore. Subjects were acclimated to fiber-optic patch cord (Doric Lenses Inc, Quebec, 

Canada) tethering three days prior to testing. During behavioral testing, mice with optical fibers 

implanted over the BNST received 473 nm photostimulation with 5-ms pulses at 20 Hz and 10-

15 mW power for varying lengths depending on the assay.  

 

Laser Protocol by Assay: 

-Hargreaves: Every two trials alternate by Laser OFF and ON sessions (i.e. OFF: T1-T2,T5-T6, 

ON: T3-T4,T7-T8). For each “ON” trial, the laser is turned on for one minute prior to heat 

exposure and remains on until the hind paw withdraws from the heat source. Due to sustained 

anti-nociceptive effects following the initial Laser ON sessions (T3-T4), analysis was restricted 

T1-T4. 

-Von Frey: The first day serves as a Laser OFF session, where subjects are tethered to the 

patch cable without any input from the laser. The second day is a Laser ON session, where the 

laser is on for the duration of the test. 

-Acetic Acid + Nesting: The laser is turned on for two 15-minute epochs of a 60-minute test. The 

first and fourth epochs are Laser OFF sessions, while the second and third epochs are Laser 

ON sessions. 

-Real-Time Place Preference/Aversion: The laser switches on whenever the subject is on the 

designated stimulation side. Conditional activation of the laser based on subject location is valid 
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for the duration of the test. 

-Tail Immersion: A baseline measure is taken in the Laser OFF session. This is then followed by 

the Laser ON session an hour later, where the laser is on for the duration of the test. 

-Sociability Test: Laser OFF and ON sessions are separated between two test days, where the 

assignment of laser status is counterbalanced for each day. The laser is on for the duration of 

the test during Laser ON sessions. 

 

CRISPR/Cas9 

Behavioral testing was initiated 3 weeks after viral injection of a 1:3 mix of Cre-inducible 

hM3Dq and TH CRISPR or CTRL. Viruses associated with TH deletion were provided by Dr. 

Larry Zweifel, with previous validation experiments detailed in Hunker et al. (2020). The same 

drug administration and counterbalancing parameters were maintained throughout all 

chemogenetic experiments (see Chemogenetics section).  

 

Inflammatory Pain Model 

To model inflammatory pain, subjects were given a 50 nl subcutaneous injection of 

Complete Freund’s Adjuvant (CFA; Sigma, St. Louis, MO), an antigen consisting of heat-killed 

Mycobacterium tuberculosum, in the plantar surface of a single hind paw. Behavioral testing 

was initiated three days after paw injections, around the time that CFA exhibits maximum 

inflammatory hyperalgesia.  

 

Hargreaves 

The Hargreaves test was used to measure thermal nociceptive sensitivity (Hargreaves et 

al., 1988). Subjects were placed in Plexiglas boxes on an elevated glass surface and habituated 

to the behavioral apparatus for a minimum of 30 minutes. The mid-plantar surface of each hind 

paw was then exposed to a series of heat trials with 10-minute inter-trial intervals. Trials were 
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conducted with radiant heat exposures sequentially alternating between left and right paws. Six 

trials were conducted for all experiments except those using optogenetics, which required eight 

trials to balance light exposure sessions. Beam intensity was set to 25 on the IITC Plantar 

Analgesia Meter (IITC Life Science, Woodland Hills, CA), producing basal paw withdrawal 

latencies of approximately 4-6 seconds. A cutoff time of 20 seconds was set to prevent 

excessive tissue damage. 

 

Von Frey 

The Von Frey test was used to measure mechanical nociceptive sensitivity. Subjects 

were confined to Plexiglas boxes on a custom-made elevated metal wire surface (90 × 20 × 30 

cm) and habituated to the behavioral apparatus for a minimum of 30 minutes. Nylon 

monofilaments of forces ranging from 0.008 to 2 grams (g) were applied to the hind paw using 

the simplified up-down method (SUDO) described in Bonin et al. (2014). Starting with a mid-

range force (0.16 g), the filament was applied to the mid plantar surface of the hind paw for ten 

trials, then repeated with ascending or descending forces depending on the number of paw 

withdrawals. Withdrawal thresholds were defined as the minimum force (g) filament that elicits a 

withdrawal reflex for ≥50% of the trials. 

 

Tail Immersion 

The tail immersion test was used to measure the tail flick response following exposure to 

a water-based thermal nociceptive stimulus. Subjects were restrained in Wypall fold wipers 

(Kimberly-Clark, Irving, TX) and tails were exposed to 50º C water in the test apparatus 

(Isotemp 110 Water Bath; Fisher Scientific, Hampton, NH). The tail flick latency was measured 

in two consecutive trials, where readings were taken 1 cm apart on the tail and averaged 

together. A cutoff time of 10 seconds was set to minimize tissue damage. 
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Open Field  

Subjects were placed into a white Plexiglas open field (50 × 50 × 25 cm) and allowed to 

freely explore the arena for 10 minutes. The center of the open field was defined as the central 

25% of the arena, where light levels were approximately at 30 lux. Tracking of subject location 

and activity was achieved with EthoVision (Noldus Information Technologies, Wageningen, 

Netherlands). 

 

Acetic Acid + Nesting 

Nesting procedures were adapted from Negus et al. (2015). The home cages of singly 

housed mice were transferred from the colony room to a sound attenuated testing room, where 

subjects habituated for 30 minutes. To model pain-related functional impairments, 10 mg/ml 

injections (i.p) of ddH2O (Day #1) or 1% acetic acid (AA; Day #2) were administered prior to 

testing. Nestlets were then divided into six equally sized pieces and distributed into individual 

zones within the home cage. After 60 minutes, nesting activity was measured by the number of 

zones cleared. Following treatment with AA, visceral nociceptive sensitivity was determined by 

hand-scoring writhing behavior (i.e. abdomen contraction with hind limb extension [Bagdas et al. 

2016]). Locomotor activity was tracked during ddH2O and AA sessions using EthoVision. 

 

Real-Time Place Preference/Aversion 

Subjects were placed in a custom-made black Plexiglas apparatus (52 × 26 × 26 cm) 

where counterbalanced sides of the arena were assigned for laser stimulation and non-

stimulation. Exploration of the stimulation side resulted in 20-Hz laser stimulation, indicative of 

the rewarding or aversive properties driven by light-sensitive neuronal populations. Mice were 

able to freely explore the apparatus for 20 minutes, with activity tracking and laser status 

conducted through EthoVision. 
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Sociability Test 

The three-chamber sociability test was used to compare preferences for interaction with 

a social target versus an object (Moy et al., 2004). The apparatus consisted of a rectangular 

Plexiglas box (62 × 37 × 22 cm) containing a central compartment and two end compartments. 

A 10” diameter wire cup was positioned in the top corner of each end compartment. Subjects 

were placed in the central compartment and allowed to habituate to the apparatus for 10 

minutes. In a subsequent session, a conspecific adult mouse (~6-8 weeks of age) and object 

(colored labelling tape [Fisher Scientific, Hampton, NH]) were placed in the wire cups to form a 

social chamber on one end, and a non-social chamber on the other. Subjects were then left to 

explore the apparatus for 10 minutes. Chamber designations were randomly assigned and 

counterbalanced. All trials were recorded and tracked with EthoVision to determine the time 

spent in the social and non-social chambers, as well as the time spent exploring the conspecific 

mouse versus the object. The ratio of interaction time with each stimulus was then used as a 

measure of sociability. Subjects were first tested with male conspecific mice, then female 

conspecific mice, allowing for sociability and locomotion to be measured and categorized for 

same and opposite sex conspecific mice. After 24 hours of single housing (i.e. social isolation 

[Matthews et al., 2016]), subjects were tested again with male conspecific mice.  

 

Locomotion 

Subjects were tested in a locomotor activity chamber (Accuscan Instruments, Columbus, 

OH). Following a 30-minute habituation, mice were treated with an i.p. injection of saline or 

CNO, then returned to the apparatus, where they freely explored the chamber for an additional 

90 minutes. Locomotor measures including distance traveled, velocity, and % mobility were 

tracked with EthoVision. 
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Physiology 

Brain Slice Preparation 

Brains were collected 6-12 weeks after infusion of AAV5-EF1α-DIO-ChR2-eYFP in the 

vlPAG/DR of male and female TH-Cre mice. Subjects were deeply anesthetized with isoflurane 

for rapid decapitation and tissue retrieval. Brains were immediately sectioned on a Leica 1200S 

vibratome (Leica Microsystems, Wetzlar, Germany), where coronal slices of the BNST (300 µm) 

were collected and transferred to a 30 ± 1°C Isotemp 110 Water Bath (Fisher Scientific, 

Hampton, NH) containing chambers submerged in oxygenated artificial cerebral spinal fluid 

(ACSF; in mM:124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 MgSO4, 1 NaH2PO4, 10.0 glucose, and 26.0 

NaHCO3). Following an hour of incubation, slices were placed in a recording chamber (Warner 

Instruments) containing oxygenated ACSF (30°C) that flowed through at rate of 2 ml/min. 

vlPAG/DRDA+ terminals and BNST neurons were visualized using infrared differential 

interference contrast (DIC) video-enhanced microscopy (Olympus) and a 470 nm fluorescent 

LED illumination system (CoolLED, Andover, NH).  

 

Slice Whole-Cell Electrophysiology 

In TH-Cre mice, fluorescently labeled terminals expressing ChR2 in the BNST were 

visualized and stimulated with a 470 nm LED. The following stimulation protocols were used to 

assess optically-evoked excitatory and inhibitory transmission between vlPAG/DR and BNST 

neurons: 

Voltage clamp: (i) Single 1-ms Pulse at -55 mV, (ii) Single 1-ms Pulse at +10 mV, (iii) Paired-

Pulse Ratio at -55 mV with inter-sweep intervals (ISI) of 50, 100, 150, 200, and 250 ms, (iv) 

Paired-Pulse Ratio at +10 mV with ISI of 50, 100, 150, 200, and 250 ms. All experiments were 

conducted with slices in ACSF. A cesium-methanesulfonate-based internal solution (in mM: 135 

cesium methanesulfonate, 10 KCl, 1 MgCl2, 0.2 EGTA, 2 QX-314, 4 MgATP, 0.3 GTP, 20 

phosphocreatine, pH 7.3, 285–290 mOsmol) was used for all voltage clamp experiments. In a 
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subset of these experiments, tetrodotoxin (TTX, 10 µM) and 4-aminopyridine (4-AP) was bath 

applied for 10 minutes to isolate monosynaptic currents. 

Current clamp: 20 Hz (5-ms pulse width, 20 pulses). All experiments were conducted with slices 

in ACSF, then ACSF + 3 mM Kynurenic Acid + 25 µM Picrotoxin, then ACSF + 3 mM Kynurenic 

Acid + 25 µM Picrotoxin + 2 µM SCH23390 and/or 2 µM Sulpiride, with a ≥10-minute wash-on 

period allotted prior to repeating the protocol in a new external solution. A potassium gluconate-

based internal solution (in mM: 135 K+ gluconate, 5 NaCl, 2 MgCl2, 10 HEPES, 0.6 EGTA, 4 

Na2ATP, 0.4 Na2GTP, pH 7.3, 285–290 mOsmol) was used for all current clamp experiments. 

Recordings acquired with a Multiclamp 700B amplifier were digitized at 10 kHz, filtered at 3 kHz, 

and analyzed with Clampfit 10.7 (Molecular Devices, Sunnyvale, CA, USA). Borosilicate glass 

capillaries were pulled using a Flaming-Brown micropipette puller (Sutter Instruments, Novato, 

CA) to obtain pipette resistances ranging from 2 to 5 MΩ. Input and access resistance were 

monitored throughout experiments, with ≥20% changes in access resistance excluded for data 

analysis. 

 

Fast-Scan Cyclic Voltammetry 

DA detection was achieved by positioning a carbon fiber microelectrodes (CFME; made 

in-house) in the dorsal BNST, applying a potential of -0.4 V (vs Ag/AgCl), then rapidly ramping 

up to 1.3 V (at 400 V/sec) at a rate of 10 Hz (Tarheel CV, Labview; National Instruments, Austin, 

TX). Fluorescently labeled terminals expressing ChR2 in the BNST were then stimulated with 

light pulses from a 437 nm LED. Stimulation protocols varied by pulse (1 pulse, 20 Hz with 5, 

10, 20, and 40 pulses [5-ms pulse width, 1 mW]) and frequency (2, 5, 10, 20, and 30 Hz with 20 

pulses [5-ms pulse width, 1 mW]). Background subtracted cyclic voltammograms (CVs) were 

then analyzed using HDCV (UNC Chapel Hill). In a subset of these experiments, 2 µM sulpiride 

was bath applied for 10 minutes to assess the effects of D2R antagonism on DA release. 
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Histology  

Immunohistochemistry 

Mice were anesthetized with an injection of Avertin (1 ml, i.p.) and transcardially 

perfused with chilled 0.01 M phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA) 

in PBS. Brains were extracted and post-fixed in 4% PFA for 24 hours, then placed in PBS for 

long-term storage at 4° C. Coronal sections (45 µm thick) of vlPAG/DR, BNST, and other 

structures of interest were collected using a Leica VT1000S vibratome (Leica Microsystems, 

Nussloch, Germany) and stored in a 50% glycerol, 50% PBS solution at  4° C until 

immunohistochemistry was performed. Slices were repeatedly washed for 5-minute cycles in 

PBS, then permeabilized in a 0.5% Triton X-100/PBS solution for 30 minutes. After a 10-minute 

PBS wash and 1-hour immersion in blocking solution (0.1% Triton X-100/10% Normal Donkey 

Serum in PBS), the tissue was incubated overnight in primary antibody diluted in the blocking 

solution (anti-TH [1:1000]; anti-RFP [1:500]) at 4° C. On the following day, slices went through 

three 10-minute washes in PBS before being incubated for 2 hours in secondary antibodies 

diluted in PBS (Alexa Fluor 488 Donkey anti-Mouse [1:200]; Alexa Fluor Cy3 Donkey anti-

Rabbit [1:200]). The tissue was then washed in PBS for four 10-minute cycles. Processed slices 

were mounted on slides and coverslipped using Vecta-Shield Mounting Medium with DAPI 

(Vector Laboratories, Burlingame, CA) in preparation for imaging. 

 

In Situ Hybridization 

Following isoflurane anesthetization and rapid decapitation, the brains of C57BL/6J mice 

(6-8 weeks; Jackson Laboratory, Bar Harbor, ME) were collected and placed on aluminum foil, 

where they were immediately frozen on dry ice and stored in a -80° C freezer. Using a Leica 

CM3050 S cryostat (Leica Microsystems, Wetzlar, Germany), coronal sections of BNST (12 µM 

thickness) were obtained and directly mounted onto Superfrost Plus slides (Fisher Scientific, 

Hampton, NH), then kept at -80° C. In order to fluorescently label Drd1a and Drd2 mRNA in the 
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BNST, slices were preprocessed with 4% PFA and protease reagent, incubated with target 

probes for mouse Drd1a and Drd2, then fluorescently labeled with probes targeting the 

corresponding channels of each receptor (Drd1a in 550, Drd2 in 647; Advanced Cell 

Diagnostics, Newark, CA). The processed slides were then covered using Vecta-Shield 

Mounting Medium with DAPI in preparation for imaging. 

 

Confocal Microscopy 

All fluorescent images were acquired with the Zeiss 800 Upright confocal microscope 

and ZenBlue software (Carl Zeiss AG, Oberkochen, Germany), with equipment access granted 

through the Hooker Imaging Core at UNC Chapel Hill. Validation of virus expression/injection 

site, optical fiber placement, and immunoreactivity were accomplished with tiled and serial z-

stack images obtained through a 20x objective (2 μm optical slice thickness). Images were 

processed in FIJI (Schindelin et al., 2012) for manual counting and ZenBlue (Carl Zeiss AG, 

Oberkochen, Germany) for automated counting. 

 

Quantification and Statistical Analysis 

Single-variable comparisons were made using paired and unpaired t-tests. Group 

comparisons were made using one-way ANOVA, two-way ANOVA, or two-way mixed-model 

ANOVA depending on the number of independent and within-subjects variables in a data set. 

Following significant interactions or main effects, post-hoc pairwise t-tests were performed and 

corrected using Sidak’s or Tukey’s post-hoc tests to control for multiple comparisons. Results of 

statistical testing are reported in figure legends with significance indicated through markers on 

figures. Data are expressed as mean ± standard error of the mean (SEM), with significance 

for p values below 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). All data were 

analyzed and visualized with standard statistical software packages from GraphPad Prism 8 

(GraphPad Software, San Deigo, CA). 
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Results 

vlPAG/DRDA+ Neurons Produce Sex-Specific Reductions in Pain Sensitivity 

Activation of vlPAG/DRDA+ neurons has been shown to reduce pain in male mice (Li et 

al., 2016; Taylor et al., 2019), but whether these anti-nociceptive effects apply to their female 

counterparts has yet to be determined. In order to probe vlPAG/DRDA+ regulation of pain-related 

behaviors in both sexes, we first injected an adeno-associated virus carrying Cre-inducible 

hM3Dq (AAV8-hSyn-DIO-hM3Dq-mCherry; an excitatory designer receptor exclusively activated 

by designer drugs [DREADD]) or a control virus (AAV8-hSyn-DIO-mCherry) in the vlPAG/DR of 

adult male and female tyrosine hydroxylase (TH)-Cre mice (Figure 3A). This DREADD 

approach enabled systemic administration of clozapine-N-oxide (CNO; 3 mg/kg, intraperitoneal 

[i.p.] injection) to promote hM3Dq signaling in vlPAG/DR neurons that express TH, a rate-

limiting enzyme for DA biosynthesis (Figure 3B). Chemogenetic activation of these putative 

vlPAG/DRDA+ neurons was employed during the measurement of pain sensitivity (Figure 3B), 

where the Hargreaves (heat exposure to the hind paw [6 replicates; Hargreaves et al., 1988; Yu 

et al., 2018]) and Von Frey (nylon monofilament exposure to the hind paw [SUDO method; 

Bonin et al., 2014]) tests were used to determine thermal and mechanical nociceptive sensitivity 

respectively. CNO treatment in hM3Dq mice reduced sensitivity to thermal (Figure 3C) and 

mechanical (Figure 3E) nociception compared to mCherry controls for males, while comparable 

sensitivity was observed in mCherry and hM3Dq mice for females (Figures 3D and 3F). 

Importantly, CNO-treated mCherry mice exhibited pain thresholds that were analogous to their 

saline-treated counterparts, suggesting that back-metabolism of CNO is an unlikely contributor 

to the observed effects in hM3Dq mice (Gomez et al., 2017). Together, these data show that 

chemogenetic activation of vlPAG/DRDA+ neurons contribute to pain sensitivity in a sex-

dependent manner, as the anti-nociceptive effects of the dopaminergic subpopulation were 

limited to male mice.  
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We next investigated the possibility of vlPAG/DRDA+ intervention in pathological pain. 

Measurements of nociceptive sensitivity were repeated in the same cohort of TH-Cre mice 

following hind paw exposure to Complete Freund’s Adjuvant (CFA; 50 µl, intraplantar [i.pl.] 

injection), a model of persistent inflammation, in order to determine the impact of vlPAG/DRDA+ 

activation on heightened pain sensitivity. Similar to the effects observed in the naïve condition, 

CNO treatment in hM3Dq mice attenuated CFA-induced hyperalgesia for thermal and 

mechanical nociception in males (Figures 3G and 3I) but not females (Figures 3H and 3J). 

vlPAG/DRDA+ anti-nociception was primarily active in the CFA-injected paw, with CNO treatment 

in male hM3Dq mice rescuing pain thresholds for the ipsilateral paw and having no effect on the 

contralateral paw (Figures 4A-4D). Predictably, engagement of these neurons did not alter tail 

flick or avoidance behaviors in either sex (Figures 4E-4P), echoing the results of previous 

studies that have established a specific role for vlPAG/DRDA+ neurons in supraspinal pain (Li et 

al., 2016; Taylor et al., 2019). Consistent with this idea, our results demonstrate that 

chemogenetic activation of TH neurons in the vlPAG/DR exclusively produces anti-nociception 

in male mice during naïve and persistent inflammatory pain states, thus highlighting 

vlPAG/DRDA+ as an effective promoter of sex-specific pain relief.  

Although chemogenetic activation of vlPAG/DRDA+ neurons in female subjects did not 

produce statistically significant changes in pain sensitivity, a variable range of 

mechanosensitivity thresholds trending towards anti-nociception was observed in the Von Frey 

test (Figure 3F). It has been posited that high variations in pain threshold can reflect differences 

in hormonal status, as fluctuations in testosterone and estrogen levels have been shown to alter 

DA availability and pain sensitivity (Di Paolo, 1994; Bradshaw et al., 2000; Purves-Tyson et al., 

2012; Sorge et al., 2011; 2015). Therefore, it is possible that the functional contributions of 

vlPAG/DRDA+ neurons were overshadowed in female mice by hormonal influences in our initial 

testing of pain sensitivity. To address this, we tested a separate cohort of female TH-Cre mice 

(n = 7-8) by tracking the impact of vlPAG/DRDA+ activation on nociceptive sensitivity during 
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different phases of the estrous cycle (Figure 5A). CNO treatment in hM3Dq mice resulted in 

comparable thermal and mechanical nociceptive sensitivity to mCherry controls regardless of 

hormonal status, suggesting that vlPAG/DRDA+ function is not altered by estrous cycle (Figures 

5B-5C). Chemogenetic activation of vlPAG/DRDA+ did appear to produce a trend for higher 

mechanosensitivity thresholds in the Von Frey test, however, where the mean of variable 

nociceptive responses was suggestive of an anti-nociceptive effect (Figure 5C; trend for main 

effect of Virus: p = 0.0504). This outcome is reminiscent of the observations from our initial 

testing of pain sensitivity, indicating that vlPAG/DRDA+ activation in female mice reliably results 

in variable anti-nociception and that this variability cannot be explained by phase changes in the 

estrous cycle.  

Since hM3Dq expression in TH-positive vlPAG/DR neurons served as a proximal 

method of targeting vlPAG/DRDA+ neurons in our experiments, we next evaluated the 

histological composition of TH in vlPAG/DR of mice as a means to verify the accuracy of our 

genetic manipulations to DA neurons. We specifically used immunohistochemistry (IHC) and in 

situ hybridization (ISH) to quantify levels of TH protein and Th mRNA in the vlPAG/DR, and 

found that TH in vlPAG/DR was generally situated in coronal sections ranging from A/P -3.94 

mm to A/P -4.84 mm, with peak expression around A/P -4.39 mm in both sexes (Figures 6B, 

6E, and 6H). Comparisons by sex revealed that expression of TH and Th mRNA in vlPAG/DR 

neurons did not differ across the anterior/posterior (A/P) axis (Figures 6A-6B, 6E, and 6H). 

Since TH is a precursor to both DA and norepinephrine (NE), we additionally quantified 

dopamine beta-hydroxylase (DBH) as a marker for NE in the same tissue using a DBH-eGFP 

reporter (n = 4) for IHC experiments or Dbh mRNA probes in C57BL/6J mice (n = 2-4) for ISH 

experiments. Contrary to observations in the vlPAG/DR of rats (Suckow et al., 2013), we 

observed no discernible overlap in TH and DBH expression to suggest the presence of 

noradrenergic neurons in the vlPAG/DR of mice (Figures 6B-6G). These results demonstrate 
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that TH expression in vlPAG/DR is a reliable marker of DA in mice, and that our behavioral data 

accurately reflect the effects of vlPAG/DRDA+ activation on nociceptive sensitivity.  

 

vlPAG/DRDA+-BNST Drives Discrete Pain-Related Behaviors in Male and Female Mice  

 Previously, we demonstrated that vlPAG/DRDA+ neurons exhibit robust projections to the 

BNST (Li et al., 2016). The function of this pathway, however, has yet to be investigated in the 

context of behavior. Considering the emerging role of BNST DA signaling in pain regulation 

(Carboni et al., 2000; Kash et al., 2008; Hagiwara et al., 2013; Yu et al., 2020), we sought to 

test whether vlPAG/DRDA+ projections to the BNST can alter pain-related behaviors by 

selectively expressing channelrhodopsin-2 (AAV5-EF1α-DIO-ChR2-eYFP) or a control 

fluorophore (AAV5-EF1α-DIO-eYFP) in the vlPAG/DR of adult male and female TH-Cre mice. 

Optical fibers were bilaterally implanted over the BNST, enabling 473 nm blue light stimulation 

of vlPAG/DRDA+ terminals in the BNST during behavioral testing (Figures 7A-7B). 

Photostimulation of vlPAG/DRDA+-BNST at 20 Hz in ChR2 mice caused a sustained reduction in 

thermal nociceptive sensitivity compared to eYFP controls for males but not females (Figures 

7C-7D and 8A-8B). This anti-nociceptive effect attenuated CFA-induced hyperalgesia as well, 

with sensitivity changes primarily exhibited in the ipsilateral paws of males (Figures 7G-7H and 

8C-8H). Activation of vlPAG/DRDA+-BNST resulted in similar sex-specific reductions in 

mechanical nociceptive sensitivity (Figures 7E-7F and 7I-7J) but did not affect tail flick 

responses (Figure 8I-8J). These results suggest that the BNST is an important downstream 

target of vlPAG/DRDA+ neurons for pain modulation, as the sex-specific anti-nociceptive effects 

of vlPAG/DRDA+ neurons were able to be reproduced by activating vlPAG/DRDA+ terminals in the 

BNST. 

In addition to the regulation of nociceptive sensitivity, vlPAG/DRDA+ neurons have been 

implicated in a number of other functions, including (but not limited to) locomotion (Flores et al., 

2006; Groessl et al., 2018), motivation (Flores et al., 2006; Matthews et al., 2016; Groessl et al., 
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2018; Lin et al., 2020), and salience (Lu et al., 2006; Cho et al., 2017; Porter-Stransky et al., 

2019). We thus tested the same cohort of eYFP/ChR2 mice in a battery of assays to determine 

whether vlPAG/DRDA+ projections to BNST can modify performance in a variety of behavioral 

contexts. First, we evaluated the contributions of vlPAG/DRDA+-BNST to pain-related functional 

impairment by introducing acute visceral nociception (via treatment with 1% acetic acid, i.p. 

injection) during nesting, an innate behavior in mice that is temporarily impaired by pain and 

attenuated by analgesic drugs (Figure 9A; Negus et al., 2015). By activating vlPAG/DRDA+ 

terminals in BNST during this assay, we were able to measure the projection’s contributions to 

visceral nociceptive (i.e. writhing, as defined by abdominal constriction / hind limb extension), 

affective-motivational (i.e. attenuation of impaired nesting), and locomotor behaviors related to 

pain. Although photostimulation of vlPAG/DRDA+-BNST did not attenuate impaired nesting 

behavior (Figures 9B-9C), marked increases in writhing behavior (Figures 9D-9G) and 

locomotor activity were observed for females but not males (Figures 9H-9K). These data 

suggest that activation of vlPAG/DRDA+-BNST can promote visceral nociception and locomotion, 

without any discernible nesting changes, in a sex-specific manner. Given that the expression of 

writhing relies on bodily movement, however, it was possible that the observed effects on 

visceral nociception were confounded by increases in locomotion. 

To differentiate vlPAG/DRDA+-BNST effects on locomotion from visceral nociception, we 

performed a series of follow-up assays to measure how pathway contributions to movement-

dependent incentive behaviors compare to pain-related phenotypes. Using real-time place 

preference/aversion (RTPP/RTPA) and sociability with conspecific mice of the same and 

opposite sex, we were able to measure the rewarding, aversive, and locomotor contributions of 

the vlPAG/DRDA+-BNST pathway in a variety of contexts (Figure 10). Generally, photoactivation 

of vlPAG/DRDA+-BNST did not produce side or social preferences for males or females in the 

RTPP (Figures 10A-10B), sociability test with same sex conspecifics (Figures 10D-10F), 

sociability test with opposite sex conspecifics (Figures 10I-10K), or post-isolation sociability test 
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with same sex conspecifics (Figures 10N-10P). However, vlPAG/DRDA+-BNST stimulation did 

increase locomotion for female subjects in a context-dependent manner, with prototypically 

salient stimuli like environmental novelty and opposite-sex conspecific mice leading to greater 

increases in movement compared to more neutral stimuli (Figures 10C, 10G-10H, 10L-10M, 

and 10Q-10R). These data suggest that vlPAG/DRDA+ neurons exclusively drive locomotor 

responses to environmental salience through the BNST of female mice. Collectively, our results 

reveal that vlPAG/DRDA+ projections to the BNST function in a sex-dependent manner, 

promoting adaptive behavioral responses to environmental salience by driving anti-nociception 

in males and context-dependent locomotion in females.  

 

Sex Differences in vlPAG/DRDA+-BNST Transmission and Connectivity  

 Given the stark differences in behavioral outcomes observed for vlPAG/DRDA+-BNST 

activation in male and female mice, we next examined the pathway’s functional properties using 

slice physiology. Recording from light-responsive BNST neurons positioned downstream of 

ChR2-expressing TH neurons in the vlPAG/DR (Figure 11A), we were able to capture two 

distinct types of physiological responses: (i) optically-evoked excitatory postsynaptic currents 

(oEPSCs) and (ii) optically-evoked inhibitory postsynaptic currents (oIPSCs) (Figure 11B). 

oEPSCs were characterized by faster onset latencies (Figures 11D and 11H), larger 

amplitudes (Figures 11E and 11I), and the ability to persist in the presence of tetrodotoxin 

(TTX) and 4-aminopyridine (4-AP) compared to oIPSCs (Figure 13A), suggesting that 

vlPAG/DRDA+ neurons form excitatory monosynaptic and inhibitory polysynaptic connections 

with BNST neurons. When vlPAG/DRDA+ terminals in the BNST were exposed to a single 1 ms 

pulse of blue light, measures of excitation/inhibition (E/I) ratio (Figure 11C), o(E/I)PSCs onset 

latency (Figures 11D and 11H), and o(E/I)PSCs amplitude did not differ by sex (Figures 11E 

and 11I). By contrast, measures of paired-pulse ratio (PPR) revealed that females exhibited 

lower PPR for oIPSCs than males (Figure 11J), with no difference in oEPSC PPR (Figure 
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11F), indicating a higher initial release probability for inhibitory polysynaptic connections in the 

BNST of female mice. Overall, there was a lower percentage of light-responsive BNST neurons 

for oIPSCs in female subjects (Figure 11K), but no difference in oEPSC responsivity (Figure 

11G), when compared to males. Female mice thus possess less functional connectivity for 

polysynaptic inhibitory connections between vlPAG/DRDA+ terminals and BNST neurons than 

their male counterparts.  

 While sex differences in oEPSCs were not observed, it is possible that the fast 

transmission dynamics of Glu and/or GABA masked more subtle differences in volume 

transmission by DA, as the timing and strorage mechanisms of co-release have been shown to 

differ for Glu and DA (Hnasko & Edwards, 2012; Silm et al., 2019). To more directly measure 

DA signaling in vlPAG/DRDA+-BNST, we first combined optogenetics with fast-scan cyclic 

voltammetry (Figure 12A), an approach that enabled the ex vivo measurement of DA release 

from ChR2-expressing vlPAG/DRDA+ terminals in the BNST. Changes in DA release were 

observed in a pulse- and frequency-dependent manner. Light stimulation at 20 Hz produced 

progressive increases of DA following the introduction of more pulses (starting at 1 pulse and 

ending at 40 pulses), while frequencies ranging from 2 Hz to 30 Hz resulted in parabolic 

increases of DA, with 10 Hz stimulation yielding the greatest amount of DA release (Figure 

12B). Comparisons by sex, however, revealed no differences in DA release, regardless of light 

stimulation parameters (Figures 12B). Antagonism of dopamine receptor D2 (D2R) similarly 

showed percentages of optically-evoked DA release in the BNST that were comparable to drug-

free conditions for both male and female subjects, despite a trend for D2R-gated DA release in 

females (Figure 12C). vlPAG/DR neurons thus exhibit similar mechanisms of DA release in the 

BNST of male and female mice. 

Next, we measured the effects of DA transmission from vlPAG/DR to the BNST by 

repeating our optically-evoked slice physiology experiments with bath application of 3 mM 

kynurenic acid and 25 µM picrotoxin. This setup allowed us to block Glu and GABA activity and 
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isolate the effects of DA on downstream BNST neurons (Figure 12D). Following light 

stimulation at 20 Hz, DA transmission produced three distinct types of physiological responses: 

depolarization, hyperpolarization, or a mix of the two responses (Figure 12E). In some cases, 

changes in membrane potential were sustained and able to drive repeated action potentials 

lasting on the order of minutes (Figure 13C). When responses to DA transmission were 

quantified, sex differences for depolarization, but not hyperpolarization, were observed, with 

greater excitatory shifts in membrane potential appearing in male mice (Figures 12F and 12H). 

DA transmission from vlPAG/DR to the BNST was gated by DA receptors, with depolarization 

being sensitive to dopamine receptor D1 (D1R) antagonism and hyperpolarization being 

sensitive to D2R antagonism (Figures 12G and 12I). Despite sex-specific mRNA expression of 

Drd2 but not Drd1 in the BNST (Figure 13B), D1R antagonism was greater in male mice 

(Figures 12G), while D2R receptor antagonism did not differ in males and females (Figures 

12I). Overall, the percentage of depolarizing, hyperpolarizing, and non-responsive cells did not 

vary by sex (Figure 12J). Taken together, these results indicate that sexual dimorphism in DA 

transmission is a notable feature of the vlPAG/DRDA+-BNST pathway, with male mice showing 

greater D1R-gated depolarization than females. Such discrepancies in physiology would 

suggest that selective targeting of DA transmission significantly impacts the function of 

vlPAG/DRDA+ neurons.  

 

vlPAG/DRDA+ Anti-Nociception and Locomotion is Dopamine-Dependent  

 To determine the necessity of DA for vlPAG/DRDA+ function, we combined 

chemogenetics with CRSIPR/Cas9-mediated genome editing by co-injecting AAV-hSyn-DIO-

hM3Dq-mCherry with either a TH CRISPR (AAV-DIO-saCas9-U6-sgTH) or control (AAV-DIO-

saCas9-U6-sghTH) virus in the vlPAG/DR of adult male and female TH-Cre mice (Figure 14A). 

This approach enabled us to functionally characterize vlPAG/DRDA+ neurons following 

conditional genetic knockout of the DA rate-limiting enzyme TH (Hunker et al., 2020). Validation 
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of the TH CRISPR virus revealed a 36%-46% reduction of TH expression in the vlPAG/DR of 

male and female subjects (Figure 14A). Using the Hargreaves and Von Frey tests, we were 

able to reproduce the anti-nociceptive effects of vlPAG/DRDA+ activation, where CNO treatment 

reduced thermal and mechanical nociceptive sensitivity in hM3Dq+CTRL mice for males but not 

females (Figures 14C-14F). This effect was attenuated in hM3Dq+TH CRISPR mice, as 

reductions in TH mitigated the anti-nociceptive effects in males without baseline sensitivity 

changes in either sex (Figures 14C-14F). These data indicate that the presence of TH in 

vlPAG/DR is necessary for the sex-specific anti-nociceptive effects of vlPAG/DRDA+ activation. 

 Considering our earlier findings that vlPAG/DRDA+ activation in the presence of salient 

contextual features selectively drives locomotion in females, we next assessed the effect of TH 

knockout on locomotor activity in a novel environment. We tested the same cohort of 

hM3Dq+CTRL and hM3Dq+TH CRISPR mice in an open field, where subjects were free to 

explore the apparatus for an initial 30-minute habituation phase. Subjects were then treated with 

saline or CNO (3 mg/kg, i.p. injection) before being returned to the apparatus for an additional 

90-minute test phase. TH knockout reduced locomotion in a sex-independent manner during the 

initial 30-minute habituation phase (Figures 14G-14H and 14K). However, no locomotor 

changes were observed in subsequent habituation (Figures 14I-14J and 14M) or test phases 

(Figures 14G-14J, 14L, and 14N) following treatment with saline or CNO. These data provide 

evidence that TH is necessary for vlPAG/DR neurons to promote novelty-induced locomotion. 

Taken together, the ability of vlPAG/DRDA+ neurons to meet environmental demands such as 

pain and contextual novelty is evidently dependent on the presence of TH, suggesting that DA 

in vlPAG/DR is necessary for the sex-specific expression of anti-nociceptive and locomotor 

behaviors. 

 Potent analgesic drugs such as morphine can recruit vlPAG/DR mechanisms of pain 

modulation in a sex-dependent manner (Doyle et al., 2017), making it possible that 

vlPAG/DRDA+ neurons contribute to variable drug effects in males and females. Previous studies 
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have reported that morphine disinhibits vlPAG/DRDA+, with local reductions in DA mitigating the 

anti-nociceptive, rewarding, and aversive effects of drug use (Flores et al., 2004; Flores et al., 

2006; Li et al., 2016; Lin et al., 2020). To test whether TH knockout in vlPAG/DR can similarly 

prevent the anti-nociceptive and locomotor effects of systemic morphine administration (3 mg/kg 

[s.c.]), we repeated behavioral testing in hM3Dq+CTRL and hM3Dq+TH CRISPR mice with 

pharmacological recruitment of vlPAG/DRDA+ and other µ opioid-sensitive circuits as the driver 

for behavior (Figure 15A). Predictably, morphine produced anti-nociceptive effects for thermal 

and mechanical nociceptive sensitivity compared to saline treatment for males and females 

(Figures 15B-15E). In contrast to the specific effects of chemogenetic vlPAG/DRDA+ activation, 

however, the analgesic effect of morphine was unaltered by TH deletion in the vlPAG/DR, 

suggesting that morphine anti-nociception is not solely dependent on DA in the vlPAG/DR 

(Figures 15B-15E). Similar results were observed for locomotion, as sex-dependent changes in 

behavior were not evident for the habituation (Figures 15F-15G, 15J, and 15L) or test phases 

(Figures 15H-15I, 15K, and 15M) following treatment with saline or morphine. These results 

collectively suggest that intact DA signaling is necessary for the sex-specific anti-nociceptive 

and locomotor effects of vlPAG/DR activation, while systemic morphine recruits extra-

vlPAG/DRDA+ mechanisms for the expression of these adaptive behaviors.  

 

Discussion 

 The vlPAG/DR has been implicated in a variety of important pain-related behaviors, 

including anti-nociception, escape, and other functions necessary for survival (Hosobuchi et al., 

1977; Mayer & Liebeskind, 1974; Fardin et al., 1984; Morgan et al., 1991; Li et al., 1993; 

Bandler & Shipley, 1994; Maier et al., 1995; Loyd & Murphy, 2006; Linnman et al., 2012; Cai et 

al., 2014; Seo et al., 2019; Wright & McDannald, 2019). Although it is widely accepted that the 

expression and experience of pain can vary by sex, little is known about the neural mechanisms 

that contribute to these behaviors (Aloisi et al., 2007; Sorge et al., 2011; Mogil, 2012; Posillico et 
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al., 2015; Mapplebeck et al., 2016; Doyle et al., 2017; Dance et al., 2019; Inyang et al., 2019). In 

the present study, we define a midbrain-to-extended amygdala circuit responsible for the 

generation of divergent pain-related behaviors in male and female mice. Expanding on our 

findings from Li et al. (2016), we report that activation of vlPAG/DRDA+ neurons or projections to 

BNST reduces thermal and mechanical nociceptive sensitivity in male mice. This effect persists 

after CFA treatment, as activation of this population can additionally attenuate the sensitivity 

increases associated with long-term inflammation. Surprisingly, vlPAG/DRDA+-BNST activation 

did not result in anti-nociceptive effects for female mice, instead producing robust locomotor 

behaviors in a context-dependent manner. Reductions in local TH attenuated the sex-specific 

behavioral effects of vlPAG/DRDA+ activation, possibly reflecting variable DA transmission and 

polysynaptic inhibition in the BNST. Collectively, these findings provide significant new insight 

into the functional role of vlPAG/DRDA+ neurons and how projections to the BNST contribute to 

sex differences in pain. 

Highlighting the importance of DA transmission in the modulation of pain-related 

behaviors, we show that activation of vlPAG/DRDA+-BNST reduces pain sensitivity, with TH-

dependent anti-nociception occurring exclusively in male mice. In supporting earlier evidence 

that vlPAG/DRDA+ anti-nociception depends on both D1R and D2R (Meyer et al., 2009; Groessl 

et al., 2018; Taylor et al., 2019), we found that DA transmission to the BNST generates a mix of 

depolarizing and hyperpolarizing responses that are gated by D1R and D2R respectively. 

However, more robust D1R-gated depolarization and D1R antagonism were observed in male 

mice, suggesting that D1R signaling contributes to sex differences in pain sensitivity (Flores et 

al., 2004; Megat et al., 2018). D1R antagonism in the BNST has previously been shown to 

exacerbate formalin-induced nociception in a sex-specific manner (Hagiwara et al., 2013). This 

earlier work, however, reported stronger effects in female rats, contradictory of the DA-

dependent anti-nociception we observed in male mice. Considering that our results were limited 

to DA signaling from a specific input, it is possible that the direction of sex-specific anti-
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nociception depends on the source of DA (Glangetas & Georges, 2016). How DA in the BNST 

influences phasic/escapable (e.g. heat, pressure) and tonic/inescapable (e.g. acetic acid) pain 

may also differ by sex, as similar biases have been described for other DA and Glu inputs to the 

BNST (Morgan & Franklin, 1990; Altier & Stewart, 1999; Taylor et al., 2016). Regardless of 

these distinctions, activation of vlPAG/DRDA+ projections to BNST appears to be sufficient to 

reduce acute and persistent inflammatory pain, providing further evidence that DA can enhance 

anti-nociception to counteract severe pain (Burrill et al., 1944; Goetzl et al., 1944; Ivy et al., 

1944; Dennis and Melzack, 1983; Chudler & Dong, 1995; Altier & Stewert, 1999; Magnusson & 

Fisher, 2000; Wood et al., 2007; Hagiwara et al., 2013; Megat et al., 2018). 

Although activation of vlPAG/DRDA+ neurons and its projections to BNST exhibited no 

effect on nociceptive sensitivity in female mice, the assessment of visceral nociception and 

valence-specific behaviors revealed an additional role for the projection in sex- and context-

dependent locomotion. Consistent with previous reports that vlPAG/DRDA+ increases locomotion 

in a neutral environment depending on the parameters of activation (Correia et al., 2017; 

Groessl et al., 2018; Taylor et al., 2019), we found that TH in vlPAG/DR is necessary to drive 

locomotion during the first habituation phase of an open field test for both males and females, 

despite showing no effects with CNO administration. In the presence of visceral nociception, 

however, optogenetic activation of vlPAG/DRDA+-BNST selectively increases locomotion in 

females. A similar phenotype is exhibited in the sociability test, with pathway activation driving 

locomotor increases in the presence of opposite, but not same, sex mice. Considering that 

vlPAG/DRDA+ activity is modulated by salience (Cho et al., 2017; Porter-Stransky et al., 2019; 

Cho et al., 2020), it is possible that this sex-specific locomotor phenotype is driven by the 

synergistic effects of pathway activation and context (Liu & Dan, 2019; Cazettes et al., 2020). 

Interestingly, the allocation of salience in a novel environment is thought to be modulated by DA 

signaling in the BNST, with D2R antagonism reducing discriminative learning for safety- and 

threat-related stimuli (De Bundel et al., 2016). Thus, it remains an intriguing possibility for D2R 



 

27 

in the BNST to regulate salience, as the receptor may act as a mechanism to alter how context 

impacts vlPAG/DRDA+ locomotion in males and females. Here, we report that the BNST exhibits 

a trend for D2R-gated DA release, with less Drd2 mRNA and fewer polysynaptic inhibitory 

connections with vlPAG/DR observed in female mice, suggesting a discrepancy in the filtering of 

incoming excitatory transmission. Evidence for sex-specific modulation of anti-nociceptive 

(Hagiwara et al., 2013) and locomotor behaviors (Monleon et al., 1998; Schindler & Carmona, 

2002) by DA receptor antagonism in the BNST supports this possibility, but a greater 

understanding of BNST cytoarchitecture in relation to DA signaling is needed to determine how 

vlPAG/DRDA+ inputs contribute to sex-specific responses to pain.  

vlPAG/DRDA+ neurons likely generate discrete pain responses through distinct third-order 

neurons, targeting BNST neurons with outputs to structures responsible for locomotion or both 

anti-nociception and locomotion (e.g. central nucleus of the amygdala [CeA], ventral tegmental 

area, parabrachial nucleus; Dong et al. ,2001; Lebow & Chen, 2016). Shifts in the strength of 

these functionally distinct BNST circuits are anticipated as environmental demands differentially 

modulate the recruitment of vlPAG/DRDA+ neurons in males and females. Although a molecular 

identity for vlPAG/DRDA+-connected BNST neurons has yet to be determined, several markers in 

the BNST (e.g. GABA, corticotrophin-releasing factor [CRF], protein kinase C delta [PCK-δ]) 

have exhibited roles in sex-specific responses to stressors and other environmental demands 

(Janitzky et al., 2014; Klampfl et al., 2016; Smithers et al., 2019) that may be regulated by local 

DA interactions (Kash et al., 2008; De Bundel et al., 2016). Of particular interest are PCK-δ and 

somatostatin (SOM) neurons, two segregated subpopulations in the BNST that receive input 

from nociceptive structures (Ye & Veinante, 2019), respond to peripheral inflammation (Wang et 

al., 2019), and diverge in colocalization with D2R to modulate salience (De Bundel et al., 2016). 

vlPAG/DRDA+ inputs activate both PCK-δ and SOM neurons in the CeA, which share reciprocal 

connections with PCK-δ and SOM neurons in the BNST (Ye & Veinante, 2019), suggesting that 
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these downstream structures may exhibit mutual regulation through specific subsets of cells. 

Collectively, these sex differences in BNST outputs and cell type are promising candidates to 

explain the functional divergences observed in this pathway. Similar motifs for a single cell type 

driving behavior based on outputs have been described in the vlPAG/DR, where activation of 

Glu neurons produces anti-nociceptive or freezing behaviors based on outputs to the rostral 

ventromedial medulla or magnocellular nucleus (Liebeskind et al., 1973; Basbaum & Fields, 

1984; Tovote et al., 2016). Effects on arousal states also diverge in Glu neurons, as co-

expression with DA promotes states of wakefulness such as contextual salience, while co-

expression with neurotensin (NTS) paradoxically drives non-REM sleep (Lu et al., 2006; Cho et 

al., 2017; Porter-Stransky et al., 2019; Zhong et al., 2019). Whether downstream BNST neurons 

similarly exhibit a specific composition of efferents or molecular identities to determine how 

vlPAG/DRDA+ inputs generate sex-specific anti-nociceptive and locomotor behaviors requires 

further investigation. 

The discovery of sex-specific mechanisms for pain responses has major implications for 

human health. Considering that pain disproportionately affects women across the lifespan, the 

identification of a novel mechanism for sex-specific responses to pain may not only explain why 

disparities in susceptibility exist, but how analgesia can be improved by sex. Having 

demonstrated that vlPAG/DRDA+ neurons are inconsistent drivers of anti-nociception for female 

mice, with no detectable contributions of the estrous cycle, we posit that vlPAG/DR inputs to the 

BNST can promote analgesia in females. However, mechanistic differences in DA transmission 

and polysynaptic inhibitory connections may predispose these neurons to drive more robust 

locomotor behaviors. This interpretation of vlPAG/DRDA+ function is complicated by the fact that 

increases in locomotion can falsely diminish reflexive response times, resulting in confounded 

readouts of nociceptive thresholds. It is thus possible that vlPAG/DRDA+ neurons concurrently 

recruit anti-nociceptive and locomotor effects, as increased locomotion would neutralize any 

measurable changes in pain sensitivity that are happening at the same time. Additional 



 

29 

considerations for these multifaceted mechanisms behind vlPAG/DRDA+ function may be of 

interest for the development of therapeutic interventions, as the ability to selectively tap into 

anti-nociception and locomotion would be advantageous for reducing the impact of pain in a 

variety of modalities and contexts. 

Current treatment for severe pain requires opioids, but these drugs exhibit sex biases in 

their efficacy (Kest et al., 2000; Fillingim & Gear, 2004; Bernal et al., 2007; Loyd et al., 2007; 

Loyd et al., 2008; Craft, 2008; Posillico et al., 2015). Since vlPAG/DRDA+ neurons are 

endogenously recruited by morphine (Flores et al., 2006; Li et al., 2016; Lin et al., 2020) and 

drive sex-specific responses to pain, vlPAG/DRDA+ neurons may be a promising candidate for 

opioid modulation of pain-related behaviors. In the present study, we report that reducing TH 

expression by 36%-46% in the vlPAG/DR mitigates the anti-nociceptive and locomotor effects of 

vlPAG/DRDA+ activation, but not systemic morphine, in male and female mice. Since morphine 

also disinhibits Glu neurons in the vlPAG/DR to produce anti-nociceptive and freezing 

behaviors, it is possible that these extra-DA mechanisms of µ opioid receptor activation 

overshadowed the impact of our modest TH knockout in the vlPAG/DR. Previous studies have 

shown that an approximate 62% loss of local DA neurons was required to attenuate morphine 

anti-nociception (Flores et al., 2004), while an estimated 50% reduction in TH was needed to 

block morphine-induced conditioned place preference/aversion (Lin et al., 2020). These data 

indicate that graded amounts of DA impairment in vlPAG/DRDA+ neurons may be necessary to 

alter the expression of nociceptive and affective-motivational behaviors associated with opioid 

exposure, since the TH deletion we observed was only able to prevent the sex-specific effects 

of vlPAG/DRDA+ activation and not the more broad effects of morphine. This distinction suggests 

that selective targeting of vlPAG/DRDA+ activation could be a less variable means of impacting 

the effects of opioid exposure, as opposed to altering DA signaling to prevent these effects.  

With these findings in mind, it remains a possibility that vlPAG/DRDA+ projections to 

BNST contribute to opioid modulation of pain responses. Supporting this notion, morphine 
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increases DA in the BNST (Carboni et al., 2000), with converging DA and Glu release activating 

pERK via D1R (Valjent et al., 2005). Consistent with these data, we found that activation of 

vlPAG/DR inputs to BNST produces anti-nociceptive effects in males but not females, a sex-

specific effect that may be explained by D1-gated depolarization in the BNST. Notably, the 

analgesic effects of vlPAG/DRDA+ were achieved without promoting reward/aversion (McDevitt 

et al., 2014). Systemic increases in DA have been shown to reduce the amount of opioids 

needed for anti-nociception while reducing side effects like sedation, loss of alertness, and 

cognitive deficits in humans (Forrest et al., 1977; Bruera et al. 1992; Dalal & Melzack, 1998), so 

vlPAG/DRDA+ projections to BNST may be a unique contributor to this effect of DA signaling and 

opioid anti-nociception in males. Considering that women experience μ‐opioid analgesia at the 

expense of more extreme side effects (Dahan et al., 1998; Sarton et al., 2000; Zacny , 2001; 

Cepeda & Carr, 2003; Miller & Ernst, 2004), we believe that learning more about the 

vlPAG/DRDA+-BNST pathway and parallel circuits in the midbrain will help generate novel 

approaches to achieving comparable analgesia in females and minimize the access gap for 

effective pain management. 

 

 

 

 

 

 

 

 



 

31 

 

 

CHAPTER 2. CORTICOTROPIN-RELEASING FACTOR NEURONS IN THE BED NUCLEUS 
OF THE STRIA TERMINALIS DIFFERENTIALLY INFLUENCE PAIN PROCESSING AND 

MODULATION IN MALE AND FEMALE MICE 
 

Introduction 

 Pain is a pervasive and well-conserved source of stress that disrupts homeostasis by 

driving negative sensory and emotional states (Abdallah & Geha, 2017). Corticotropin-releasing 

factor (CRF), a peptide known for regulating stress-related behaviors, has been hypothesized to 

play an impactful, albeit understudied, role in pain modulation (Wei et al., 1986; Lariviere & 

Melzack, 2000; Sinniger et al., 2004), and the bed nucleus of the stria terminalis (BNST) has 

emerged as a CRF-enriched structure that can significantly influence the affective-motivational 

components of pain (Rouwette et al., 2011; Minami & Ide, 2015, Minami, 2019). Bilateral lesions 

of the BNST suppress the aversive aspects of electrical, visceral, and somatic pain in rats 

(Crown et al., 2000; Deyama et al., 2007; 2008; 2009). Furthermore, CRF release is increased 

in the BNST following intraplanar injection of formalin, a tonic-acting inflammatory agent that 

exacerbates pain sensitivity (Ide et al., 2013), and intra-BNST administration of CRF results in 

conditioned place aversion in a CRF receptor 1 and 2 (CRFR1/2)-dependent manner (Ide et al., 

2013). Notably, these studies reported no effect on formalin-induced nociceptive behaviors (Ide 

et al., 2013; Kaneko et al., 2016). By contrast, intra-BNST antagonism of CRF2R reduces 

mechanical and colonic nociception, and CRFR1 antagonism attenuates stress-induced 

hyperalgesia (Tran et al., 2012; 2014). Considering the discrepancies on CRF contributions to 

pain sensitivity reported in these findings, further investigation is required to understand the 

conditions by which CRF signaling in the BNST can alter the sensory and affective components 

of pain.
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In the present study, we sought to establish the BNST as a possible source of CRF for 

these CRFR1/2-dependent pain-related behaviors. Given the high levels of CRF peptide and 

receptor expression in the BNST, it is possible that local production of CRF plays an important 

role in the regulation of pain (Cummings et al., 1983; Sakanaka et al., 1986; Ju et al., 1989; 

Moga et al., 1989; Morin et al., 1999; Dabrowska et al., 2013; Daniel & Rainnie, 2016). To test 

this hypothesis, we characterized the contributions of CRF to pain processing and modulation 

by using genetically targeted manipulations of the peptide in the BNST. First, we used in vivo 

calcium imaging to examine how BNSTCRF+ neurons encode for acute exposures to noxious 

heat. We then assessed pain-related behaviors following genetic deletion of CRF in the BNST, 

allowing us to discern peptide-specific contributions to both acute and sustained nociceptive 

exposures. In tracking endogenous BNSTCRF+ activity and manipulating peptide expression, the 

present study highlights a crucial function of the BNST as a locus of CRF signaling and pain 

regulation.  

 

Materials and Methods 

Animals 

 Male and female CRF-Cre (Martin et al., 2010) and Floxed-CRF (Zhang et al., 2017) 

mice (N = 103 total, aged 6-12 weeks, C57BL/6J background) were bred in-house, group-

housed with same-sex littermates, and maintained on a 12-h light/dark cycle (light on at 7:00, 

light off at 19:00) with rodent chow and water available ad libitum. Subjects were singly housed 

for imaging experiments to ensure recovery and prevent post-surgical complications. All 

procedures were approved by the Institutional Animal Care and Use Committee at UNC Chapel 

Hill and performed in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals. 
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Surgeries 

 Subjects were anesthetized with isoflurane (1-3%) in oxygen (1-2 l/min) and aligned on a 

stereotaxic frame (Kopf Instruments, Tujunga, CA). All surgeries were conducted using aseptic 

techniques in a sterile environment. Microinjections were performed with a 1 µl Neuros Hamilton 

syringe (Hamilton, Reno, NV) and a micro-infusion pump (KD Scientific, Holliston, MA) that 

infused virus at 100 nl/min. Viruses were administered bilaterally in the dorsal region of BNST 

(250 nl for all experiments; relative to bregma: ML ±0.90 mm, AP +0.23 mm, DV -4.35 mm). For 

experiments that required in vivo calcium imaging, Gradient-index (GRIN) lenses were 

implanted unilaterally in the right hemisphere approximately 200 µm over the dorsal BNST 

(relative to bregma: ML ±0.90 mm, AP 0.23 mm, DV -4.15 mm) and secured with a dental 

cement headcap. Baseplates were later added to stabilize the attachment of the miniature 

microscope (see “Ca2+ imaging with miniature microscope” section for details). After surgery, 

mice were given ad libitum Tylenol water or daily injections of meloxicam (5 mg/kg, 

subcutaneous [s.c.]) for four consecutive days, then allowed to recover for three weeks or 

longer before starting experiments.  

 

Behavioral Assays 

Hargreaves 

 Subjects were placed in Plexiglas boxes on an elevated glass surface and habituated to 

the behavioral apparatus for 30-60 minutes to reduce novelty-induced locomotion and other 

factors that may confound nociceptive sensitivity measures. The mid-plantar surface of each 

hind paw was exposed to a series of noxious heat trials that sequentially alternated between left 

and right paws. After each heat exposure, a 10-minute inter-trial interval was provided before 

the next trial. Six trials of heat exposure were conducted for all experiments except those using 

in vivo calcium imaging, which we restricted to 4 trials to prevent photobleaching. For Figures 

16-17 (BNSTCRF+ imaging experiments), beam intensity was set to 15 on the IITC Plantar 
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Analgesia Meter (IITC Life Science, Woodland Hills, CA), producing average basal paw 

withdrawal latencies of approximately 10 seconds in CRF-Cre mice. For Figures 18-20 (Crf 

deletion experiments), beam intensity was set to 25 on the IITC Plantar Analgesia Meter, 

producing average basal paw withdrawal latencies of approximately 6 seconds in Floxed-CRF 

mice. Cutoff times of 20 seconds were set for each trial to prevent excessive tissue damage.  

 

Von Frey 

 Subjects were held in Plexiglas boxes on a custom-made elevated metal wire surface 

(90 × 20 × 30 cm) and habituated to the behavioral apparatus for 30-60 minutes to ensure 

stable readouts of nociceptive sensitivity. Nylon monofilaments of forces ranging from 0.008 to 2 

grams (g) were applied to the hind paw using the simplified up-down method (SUDO) described 

in Bonin et al. (2014). Starting with a mid-range force (0.16 g), the filament was applied to the 

mid-plantar surface of the hind paw for ten trials, then repeated with ascending or descending 

forces depending on the number of paw withdrawals. Withdrawal thresholds were defined as the 

minimum force filament that elicits a withdrawal reflex for ≥50% of the trials. 

 

Tail Immersion 

 Following a 30-minute habituation to the behavioral room, subjects were restrained in 

Wypall fold wipers (Kimberly-Clark, Irving, TX) and tails were exposed to 50º C water in the test 

apparatus (Isotemp 110 Water Bath; Fisher Scientific, Hampton, NH). The tail flick latency was 

measured in two consecutive trials, where readings were taken 1 cm apart on the tail. The two 

latencies were then averaged together to indicate the reflexive nociceptive threshold of each 

subject. A cutoff time of 10 seconds was set to minimize tissue damage.  

 

Hot Plate 

 Subjects were positioned in a custom-made cylindrical Plexiglas container on an IITC 
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Hot Plate Analgesia Meter (IITC Life Science, Woodland Hills, CA). To elicit sensory-

discriminative and affective-motivational behaviors associated with pain, subjects were exposed 

to a 55º C black anodized aluminum plate (11” x 10.5” x ¾”) for 45 seconds. This sustained 

version of the hot plate test extends the traditional cutoff time of 20 seconds to 45 seconds to 

improve readout for behaviors beyond latency to the first paw withdrawal. Behaviors like paw 

withdrawal (rapid flicking of the limb), paw attending (licking of the limb), paw guarding 

(intentional lifting of the limb for protection), and escape jumping (propelling into the air in an 

attempt to leave the apparatus) reflect the extent to which subjects will engage in reflexive 

responses versus motivated behaviors to reduce the aversive aspects of pain (Corder et al., 

2017). Computer-integrated video cameras were used to record each session, allowing for 

blinded manual scoring of pain-related behaviors elicited by hot plate exposure. The behavioral 

apparatus was generously provided by the UNC Mouse Behavioral Phenotyping Laboratory. 

 

Open Field 

 Subjects were given 30 minutes to habituate to the behavioral room before being placed 

into a white Plexiglas open field (50 × 50 × 25 cm), where they could freely explore the arena for 

10 minutes. The center of the open field was defined as the central 25% of the arena, where 

light levels were approximately 30 lux. Tracking of subject location and activity was collected 

with EthoVision (Noldus Information Technologies, Wageningen, Netherlands).  

 

Elevated Plus Maze 

 Following a 30-minute habituation period in the behavioral room, subjects were placed 

into the center of an elevated plus maze (EPM) and allowed to freely explore the arena for 10 

minutes. During testing, subjects were able to explore two open arms (75 × 7 cm) and two 

closed arms (75 × 7 × 25 cm) that were bounded by a central area (7 × 7 × 25 cm). Light levels 

were set to approximately 15 lux to promote avoidance behaviors, which were determined by 
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tracking subject location and activity with EthoVision (Noldus Information Technologies, 

Wageningen, Netherlands) and measuring time spent in the open and closed arms.  

 

 For all experiments, researchers were blinded to genotype/virus treatment conditions of 

each mouse. 

 

Ca2+ Imaging with Miniature Microscope 

Surgery 

 In CRF-Cre mice, a custom-prepared AAVDJ-EF1a-DIO-GCaMP6s virus (UNC Vector 

Core) was administered unilaterally in the dorsal region of BNST (250 nl in right hemisphere; 

relative to bregma: ML ±0.90 mm, AP +0.23 mm, DV -4.35 mm). GRIN lenses (0.6 mm 

diameter/7.3 mm length; Inscopix, Palo Alto, CA) were implanted approximately 200 µm over 

the virus injection site (relative to bregma: ML ±0.90 mm, AP 0.23 mm, DV -4.15 mm) and 

secured with a dental cement headcap. To promote a stable recovery following this extensive 

surgical procedure, subjects were given daily injections of meloxicam (5 mg/kg, s.c.) for four 

consecutive days. Approximately four weeks after the initial surgery and recovery, baseplates 

(V2; Inscopix, Palo Alto, CA) were placed above the GRIN lens to stabilize the attachment of the 

miniature microscope. The baseplate attachment was performed in a visually guided manner, 

where the miniature microscope was incrementally lowered towards the implanted GRIN lens to 

identify the optimal distance needed to achieve a field-of-view (FOV) with the maximum number 

of fluorescent cells. The baseplate was then incorporated into the existing headcap with 

additional dental cement. Finally, baseplate covers were secured to the top of the headcap in 

order to protect the miniature microscope attachment site from environmental contaminants that 

may obscure the imaging FOV.  
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Behavior 

 Subjects were tested in the Hargreaves assay 6-8 weeks after the initial surgical 

procedure and 2-4 weeks after the baseplate procedure. Prior to testing, each subject was 

anesthetized with isoflurane (1-3%) in oxygen (1-2 l/min) in order to attach the miniature 

microscope to the baseplate. After two consecutive days of habituation to the miniature 

microscope, subjects were given a 15-minute tethering session in their respective home cages 

and a 30-minute tethering session in the Hargreaves apparatus. At the end of the tethering 

session, a 5-minute imaging session for baseline calcium transients was recorded.  

During testing, the mid-plantar surface of each hind paw was exposed to a series of 

noxious heat trials with 10-minute inter-trial intervals. Each subject was exposed to 4 trials of 

heat (I15 on the IITC Plantar Analgesia Meter [IITC Life Science, Woodland Hills, CA] 

respectively), with radiant heat exposures sequentially alternating between left (contralateral) 

and right (ipsilateral) paws. For each trial, calcium transients were recorded with a minute 

window prior to onset and following the offset of heat. Specific paw withdrawal latencies for 

each subject were used instead of a fixed duration to accurately capture individual nociceptive 

thresholds. Cutoff times of 20 seconds were set to prevent excessive tissue damage. 

All recordings of behavior in the Hargreaves assay were performed with Media Recorder 

and a computer-integrated video camera (#PC212XP, Miniature CCD Camera Series). 

Simultaneous recordings of BNSTCRF+ calcium transients were acquired using the nVista data 

acquisition software (Inscopix, Palo Alto, CA) at 20 fps (Exp Time: 50 ms, Gain: 4-7, Ex. LED 

Power: 1). 

 

Preprocessing 

 Using the Inscopix Data Processing Software (IDPS; Inscopix, Palo Alto, CA), recordings 

were cropped, temporally downsampled to 5 fps, and motion corrected. ΔF/F was then acquired 

to normalize each pixel value in the recording to a baseline value (as determined by mean 



 

38 

frame). To identify temporally and spatially unique ROIs, we used PCA/ICA to detect putative 

cell bodies in the imaging FOV. After manually removing ROIs that did not correspond to cells, 

traces and events were exported as CSV files. Preprocessed ΔF/F recordings were further 

transported into maximum intensity projection images and movie files for representative 

depictions of the data. 

 

Data Analysis 

 Programmatic analysis was applied to extracted traces from IDPS using custom-written 

code in Python. Briefly, we transformed ΔF/F of baseline and test traces into z-scores for each 

subject using the formula: Z = x - µ / 𝛿𝛿, where the number of standard deviations (𝛿𝛿) that raw 

values (x) diverge from baseline values (µ) is determined. We then separated traces by epoch 

(Before, Heat Start, Heat End, After) for each subject and trail to determine averages by sex. 

Epoch timing was determined by dividing the duration of heat exposure into halves, so that each 

time block represented an equal amount of time for specific trials and subjects. Analysis was 

then performed for various combinations of data dimensionality based on these times.  

We specifically compared the activity of individual male and female BNSTCRF+ neurons 

for the following metrics: 

-Average Z-Score Across Trials by Epoch: Mean z-score of epochs averaged across trials. 

-Average Z-Score by Trial and Epoch: Mean z-score of epochs for each trial. 

-Average Neuronal Coactivity by Epoch: Mean proportion of synchronized cell responses for 

each epoch. Fractions of responsive cells were calculated at every time frame for individual 

subjects. The average fraction of responses was then sorted by epoch for comparison. 

-Cumulative Distribution Function Across Trials by Epoch: Determine the distribution of z-scores 

averaged across trials by binning the frequency of activity within each epoch. 

-Percent Responsiveness Across Trials: Determine the proportion of cells that exhibit a 

statistically significant change in average z-scores during heat exposure by using a Wilcoxon 
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rank-sum test for each neuron. Two notable events define comparisons of heat responsive 

neurons with the activity in surrounding epochs: “Heat Onset” (i.e. Heat On [Heat Start + Heat 

End] vs. Before) and “Paw Withdrawal” (i.e. Heat On vs. After). Positive differences in z-score 

correspond to activation in response to noxious heat exposure relative to surrounding epochs, 

while negative differences indicate a relative reduction in activity. Percentage of responsive cells 

was calculated by factoring in every neuron for each trial. Separate analyses restricted 

proportions of responsive cells by individual subjects. 

-Percent Responsiveness by Trials: Determine the change between average z-scores of Heat 

On (i.e. Heat Start and Heat End) and surrounding epochs for each trial, with positive 

differences corresponding to activation in response to noxious heat exposure, and negative 

differences corresponding to inactivation. Percentage of responsive cells was calculated by 

taking the proportion of neurons exhibiting statistically different Heat On activity compared to 

Before and After in individual subjects and averaging these values by subject within each trial. 

-Spike Magnitude by Trials: Identify size of maximum value in Heat On (i.e. Heat Start and Heat 

End) epoch for each trial. 

-Spike Latency by Trials: Identify time stamps for maximum value in Heat On (i.e. Heat Start 

and Heat End) epoch for each trial. 

More information on the Python scripts used for analysis can be requested by contacting 

thomas_kash@med.unc.edu. 

 

Histology 

In Situ Hybridization 

 Following isoflurane anesthetization and rapid decapitation, the brains of Floxed-CRF 

mice were collected and placed on aluminum foil, where they were immediately frozen on dry 

ice and stored in a -80° C freezer. Using a Leica CM3050 S cryostat (Leica Microsystems, 

Wetzlar, Germany), coronal sections of BNST (12 µm thickness) were obtained and directly 
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mounted onto Superfrost Plus slides (Fisher Scientific, Hampton, NH), then kept at -80° C. In 

order to fluorescently label Crf mRNA in the BNST, slices were preprocessed with 4% PFA and 

protease reagent, incubated with target probes for mouse Crf (#316091, RNAscope Probe – 

Mm-Crh; Advanced Cell Diagnostics, Newark, CA), then fluorescently labeled with a probe 

targeting the corresponding channel for the peptide (Crf in 550; Advanced Cell Diagnostics, 

Newark, CA). The processed slides were then covered using Vecta-Shield Mounting Medium 

with DAPI in preparation for imaging. 

 

Confocal Microscopy 

 All fluorescent images were acquired with the Zeiss 800 Upright confocal microscope 

and ZenBlue software (Carl Zeiss AG, Oberkochen, Germany), with equipment access granted 

through the Hooker Imaging Core at UNC Chapel Hill. Validation of virus expression/injection 

site, GRIN lens placement, and immunoreactivity were accomplished with tiled and serial z-

stack images obtained through a 20x objective (3 x 3 tile, 2 μm optical slice thickness, 12 µm 

total thickness). Images were processed in FIJI (Schindelin et al., 2012) for manual counting 

and ZenBlue (Carl Zeiss AG, Oberkochen, Germany) for area measurements in each ROI. 

 

Statistical Analysis 

 Single-variable comparisons were made using unpaired t-tests. Group comparisons 

were made using two-way ANOVA, two-way repeated measures ANOVA, or two-way mixed-

model ANOVA depending on the number of independent and within-subjects variables in a data 

set. Following significant interactions or main effects, post-hoc pairwise t-tests were performed 

and corrected using Sidak’s or Tukey’s post-hoc tests to control for multiple comparisons. 

Results of statistical testing are reported in figure legends with significance indicated through 

markers on figures. Data are expressed as mean ± standard error of the mean (SEM), with 

significance for p values below 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). All 
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data were analyzed and visualized with standard statistical software packages from GraphPad 

Prism 8 (GraphPad Software, San Diego, CA) and SciPy (Virtanen et al., 2020). 

 

Details on the statistical tests used: 

Unpaired t-test used for Figures 16B, 17G-H. 

Wilcoxon rank-sum test used for Figures 16D, 17E. 

Kolmogorov–Smirnov test used for Figure 16H. 

Area under the curve used for Figures 19D-E. 

Two-way ANOVA with Tukey’s post hoc used for Figures 16E, 18C-G, 19B-C, 20A-D. 

Two-way mixed-model ANOVA with Tukey’s post hoc used for Figures 16G. 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 16B, 16H, 17F-H. 

Two-way repeated measures ANOVA with Sidak’s post hoc used for Figures 17C-D. 

 

Results 

BNSTCRF+ Neurons are Endogenously Recruited by Noxious Thermal Stimuli  

 To assess how BNSTCRF+ neurons are modulated by pain, we used a head-mounted 

miniature microscope to track in vivo somatic calcium activity of individual Crf+ neurons in the 

BNST following hind paw exposure to a thermal nociceptive stimulus (Figure 16). By implanting 

a GRIN lens and injecting an adeno-associated virus carrying Cre-inducible GCaMP6s (AAVDJ-

EF1a-DIO-GCaMP6s) in the right hemisphere BNST of adult male and female CRF-Cre mice 

(Figure 16A), we were able to continuously monitor BNSTCRF+ activity during repeated trials of 

noxious heat exposure. Since the length of exposure varied by trial, we analyzed activity across 

epochs relative to heat exposure: Before, Heat Start, Heat End, and After (Figures 16C and 

16E). Although paw withdrawal latencies did not differ in male (n = 3) and female (n = 5) mice 

(Figure 16B), comparisons of BNSTCRF+ activity averaged across four trials of heat exposure 

revealed sex-specific recruitment by epoch, with higher fold calcium changes observed for Heat 
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Start and Heat End in males (n = 49 cells; 7-30 cells per mouse) and Heat End in females (n = 

68 cells; 8-19 cells per mouse) (Figures 16G-1H; main effect of Epoch: F2.153, 247.7 = 26.31, p < 

0.0001). Average z-scores of Before and Heat Start epochs differed by sex, with males showing 

a larger magnitude of BNSTCRF+ activity in the earlier phases of stimulus exposure than females 

(Figure 16G; main effect of Sex: F1, 115 = 13.20, p = 0.0004). Coactivation of neuronal activity, 

as defined by the average fraction of responsive cells for each frame of an epoch, also differed 

in the earlier phases of stimulus exposure, with females exhibiting increased BNSTCRF+ 

synchrony between the transition from Before to Heat Start (Figure 16I; main effect of Epoch: 

F1.840, 11.04 = 4.163, p = 0.0475). Notably, while there were sex differences in the magnitude and 

synchrony of responses when examining average z-scores, the proportion of cells exhibiting 

time-locked changes to heat exposure did not differ between male and female subjects (Figure 

16C). These results indicate that BNSTCRF+ neurons are recruited by thermal nociception in a 

manner where the magnitude of activation appears greater in males, while synchronous 

activation is more prominent in females.  

We next evaluated BNSTCRF+ activity on a trial-by-trial basis to determine how neuronal 

responses to noxious heat are impacted by repeated exposure (Figures 17A-17B). Higher z-

scores were generally observed in the first two trials of Heat Start and Heat End epochs 

(Figures 17C-17D). Although male mice exhibited averaged BNSTCRF+ responses with a greater 

magnitude of activation than females (Figures 17G; t115 = 3.70, p = 0.0003), maximum heat 

responses were reduced throughout the progression of trials for males (Figure 17G; main effect 

of Sex: F1, 115 = 13.69, p = 0.0003). By contrast, the latency of maximum response became more 

delayed with additional trials for female mice (Figure 17H; Trial x Sex interaction: F3, 345 = 16.90, 

p < 0.0001), resulting in a trend for later peak times following heat exposure (Figure 17H; t115 = 

1.789, p = 0.0763). Tracking the percentage of heat responsive BNSTCRF+ neurons across trials, 

we observed a combination of positive and negative changes in activity that varied in distribution 

with repeated exposures (Figure 17E). However, when restricted to cell proportions by subject, 
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the percentage of heat responsive BNSTCRF+ neurons for each trial did not significantly differ by 

trial progression or sex (Figure 17F). These data suggest that multiple exposures to acute 

thermal nociception can drive distinct changes in the magnitude and timing of cell responses, 

but not the total proportion of responsive cells among individual subjects, for male and female 

mice. Together, our in vivo imaging results indicate that BNSTCRF+ neurons are activated by 

noxious heat in male and female mice. 

 

Genetic Deletion of Crf from BNST Reduces Pain Sensitivity 

 Given the heterogenous nature of peptide expression in the BNST and a fundamental 

lack of understanding as to what conditions drive CRF release, it was unclear whether the 

observed BNSTCRF+ responses to noxious heat in our imaging experiments would translate to a 

functional role for CRF in the modulation of pain-related behaviors. To address this issue, we 

genetically deleted CRF in the BNST by bilaterally injecting an adeno-associated virus carrying 

Cre (AAV5-CaMKIIa-Cre-GFP) or a control virus (AAV5-CaMKIIa-GFP) in the BNST of adult 

male and female Floxed-CRF mice (Figure 18A). This approach resulted in an approximate 50-

60% reduction in Crf mRNA-positive neurons in the BNST (Figures 18B-18D; Crf mRNA: main 

effect of Virus: F1, 98 = 66.74, p < 0.0001; Fold Crf mRNA: main effect of Virus: F1, 98 = 60.23, p < 

0.0001). Using the Hargreaves and Von Frey tests, we found that CRF deletion reduced 

nociceptive sensitivity compared to control mice (Figures 18E-18F; Hargreaves: main effect of 

Virus: F1, 99 = 5.677, p = 0.0191; Von Frey: main effect of Virus: F1, 99 = 10.05, p = 0.0020). 

Notably, the extent of reduction for Crf mRNA expression and pain sensitivity did not differ 

between male and female subjects (Figures 18C-18F). By contrast, reflexive responses in the 

tail immersion test revealed lower nociceptive thresholds in males, but no anti-nociceptive effect 

following CRF deletion (Figure 18G; Tail Immersion: main effect of Sex: F1, 99 = 4.631, p = 

0.0338). These results show that a deficiency of CRF in the BNST increases supraspinal pain 
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thresholds, suggesting that the presence of CRF may be necessary to preserve the sensory 

components of pain for both male and female mice.   

 

Genetic Deletion of Crf from BNST Differentially Impacts the Sensory and Affective 

Components of Pain  

 Considering that CRF signaling in the BNST plays an important role in multiple 

components of the pain experience, we tested the same CRF deletion and control mice in an 

extended hot plate test (Corder et al., 2017). Differing from a standard hot plate protocol that 

terminates after the first paw withdrawal or a relatively brief predetermined cut-off time, this 

prolonged form of the test lasts 45 seconds to promote the expression of both sensory-

discriminative (e.g. paw withdrawal [rapid flicking of the limb]) and affective-motivational (e.g. 

paw attending [licking of the limb], paw guarding [intentional lifting of the limb for protection], and 

escape jumping [propelling into the air in an attempt to leave the apparatus]) behaviors (Figure 

19A). Although genetic deletion of CRF in the BNST did not alter sensory-discriminative 

responses to the hot plate, as measured by paw withdrawal latency (Figure 19B) and 

cumulative paw withdrawal behaviors (Figure 19C), or affective-motivational responses such as 

paw guarding and escape jumping (Figure 19C), there was a marked increase in paw attending 

for Cre-treated female mice (Figures 19C-19E; main effect of Virus: F1, 61 = 4.695, p = 0.0342). 

This sex-specific change in paw attending suggests a divergent role for CRF in the BNST and 

the sensory-discriminative/affective-motivational components of a prolonged, inescapable 

thermal nociceptive stimulus. Remarkably, reducing CRF expression in the BNST did not impact 

other pain-independent affective-motivational behaviors such as avoidance (Figures 20A and 

20C) and locomotor (Figures 20B and 20D) behaviors in the open field (Figures 20A-20B) and 

elevated plus maze (Figures 20C-20D), indicating that the aversive contributions of CRF in the 

BNST are specific to pain-related contexts like the hot plate. 
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Discussion 

 Pain is a multi-faceted experience that can impact negative emotional behaviors, as well 

as adaptive coping strategies to mitigate harm. In the present study, we identified a 

subpopulation of BNST neurons that can respond to and modulate these pain-related behaviors 

through local expression of CRF. Utilizing genetically targeted manipulations of CRF-containing 

neurons and Crf itself in the BNST, we were able to demonstrate the dynamic recruitment of 

BNSTCRF+ activity by noxious heat, as well as the modulatory role of CRF on pain in male and 

female mice. Our results support and expand upon earlier work on intra-BNST CRF signaling 

and pain (Tran et al., 2014; Minami, 2019) by uncovering previously unknown sex-specific 

contributions of local CRF. Together, these data enhance our collective knowledge on 

nociceptive microcircuits in the BNST. 

 

BNSTCRF+ Neurons Dynamically Respond to Noxious Heat Across Trials in a Sex-Specific 

Manner  

 Our imaging experiments determined that BNSTCRF+ neurons generate greater somatic 

Ca2+ activity in the presence of noxious heat. Since the greatest increases in activity were 

observed at the Heat Start and Heat End epochs for males and the Heat End epoch for females, 

we can conclude that BNSTCRF+ neurons are activated by noxious heat in both sexes. Sex 

differences at the Before and Heat Start epochs, where the initial detection of the stimulus 

elicited greater neuronal responses in males, additionally suggest that neuronal representations 

of pain differ by sex in the early phases of heat exposure. This difference in early phase 

processing may indicate a higher probability of detecting the nociceptive stimulus, since males 

exhibited trends for BNSTCRF+ neurons with faster maximum heat response times and greater 

magnitudes of activation. By contrast, females exhibited greater BNSTCRF+ coactivity changes in 

the early phases of heat exposure, with the most prominent increases in synchrony happening 

between the transition from Before to Heat Start. We posit that these disparities in early phase 
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activity reflect sex-specific mechanisms of nociceptive processing. Considering that salience is 

an important predictor of pain sensitivity and analgesic efficacy (Borsook et al., 2013), it is 

possible that alterations in the timing and synchrony of BNSTCRF+ responses will change 

nociceptive detection and contribute to pain sensitivity in a sex-specific manner. This is an 

intriguing possibility given that BNST neurons expressing Crf or the prepronociceptin gene have 

been reported to be exhibit in vivo responses to motivationally salient and aversive stimuli such 

as predator odor (Giardino et al., 2018; Rodriguez-Romaguera et al., 2020). These observations 

support prior conclusions that the BNST encodes for salient threats that may cause physical or 

emotional harm (Grupe et al., 2013; Avery et al., 2016; Minami, 2019).  

Since salience can either enhance or diminish the importance of a nociceptive signal 

with experience (Borsook et al., 2013), we evaluated whether BNSTCRF+ responses to heat 

changed with repeated exposure. Comparisons by sex revealed increasingly lower magnitudes 

of activity for males and slower maximum heat response times for females as trials advanced. 

Although these subtle reductions in BNSTCRF+ activity may reflect the diminished salience of 

pain as stimulus exposures accumulate, it was not reflected in behavior, as thermal nociceptive 

sensitivity was comparable between male and female mice across trials. This suggests that the 

observed discrepancies in BNSTCRF+ encoding between males and females are indicative of a 

sex-specific means to process pain rather than a mechanism to drive behavioral variation. 

Quantitative comparisons of pain have shown that female subjects are more sensitive than 

males in 85.4% of rodent studies (Mogil et al., 2020), so our recordings offer unique insight on 

how comparable nociceptive sensitivity can be processed in a sex-specific manner. In related 

structures like the basolateral amygdala (but not the central nucleus of the amygdala [CeA]), 

somatic Ca2+ activity and extracellular single-unit recordings positively scale with increasing pain 

intensity and repeated nociception (Ji et al., 2010; Grewe et al., 2017; Corder & Ahanonu et al., 

2019; Hua et al., 2020), suggesting that BNST responses to pain are distinctly desensitized with 

experience. 
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Notably, we did observe variability in BNSTCRF+ responding on a single cell level for both 

sexes, where responses to heat were comprised of both increasing and decreasing z-scores 

compared to activity in the Before and After epochs. Previous data from our group has 

suggested that multiple populations of CRF neurons in the BNST differentially contribute to the 

regulation of affective behaviors (Marcinkiewcz and Mazzone et al., 2016), with BNSTCRF+ 

neurons that form local inhibitory synapses playing a greater role in aversive states. Assuming 

that the magnitude of response is a reliable metric of activation, these data suggest a model 

where heightened BNSTCRF+ activation is accompanied by increased inhibitory tone. 

Suppression of local GABAergic projection neurons has been shown to inhibit dopamine 

neurons in the ventral tegmental area (Marcinkiewcz and Mazzone et al., 2016, Minami et al., 

2019), so it is possible that the rapid decreases in BNSTCRF+ activity observed prior to paw 

withdrawal are providing a motivational signal to move away from the noxious stimulus. 

Although BNSTCRF+ neurons exhibit local inhibitory connections, it should be noted that they also 

project to other regions involved in motivated behavior, such as the lateral hypothalamus, where 

activation of BNSTCRF+ projections can induce conditioned place aversion (Dabrowska et al., 

2016; Giardino et al., 2018). In future experiments, researchers should more rigorously examine 

the functional contributions of these varied BNSTCRF+ responses to pain-related behaviors, with 

special consideration for how the proportion of pain responsive neurons and magnitude of 

activity interact to inform function.  

 

CRF in the BNST Modulates the Expression of Sensory and Affective Components of Pain  

 While previous studies have found that pharmacological manipulation of CRF signaling 

in the BNST can modulate multiple aspects of pain-related behavior (Ide et al., 2013; Tran et al., 

2012; 2014; Kaneko et al., 2016), the source of this CRF is unclear, as the BNST contains 

locally produced CRF and receives CRF input from the CeA (Sakanaka et al., 1986; Dong et al., 

2001). In examining how local production of CRF can impact these pain-related behaviors, our 
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work has found that both thermal and mechanical nociceptive sensitivity are impacted by CRF 

deletion in the BNST. These results are reminiscent of previously published effects showing that 

CRFR2 antagonism reduces mechanical and colonic nociception in stress-free conditions (Tran 

et al., 2014). However, similar pharmacological manipulations failed to alter nociceptive 

behaviors associated with formalin and only blocked conditioned place aversion (Ide et al., 

2013; Kaneko et al., 2016). In the context of our results, these studies suggest that CRF 

signaling in the BNST selectively contributes to the sensory and affective components of pain 

based on the specific nociceptive stimulus and the context of its presentation. As others have 

hypothesized, the duration of a nociceptive stimulus and the capacity of an animal to prevent 

further harm by the stimulus (i.e. escapability) may be important factors in pain processing 

(Ryan et al., 1985; Bandler et al., 2000; Gandhi et al., 2017). If we categorize these known 

effects of CRF signaling in the BNST by phasic-acting/escapable nociceptive exposures like the 

Hargreaves and Von Frey tests versus tonic-acting/inescapable nociceptive exposures like 

formalin, we can posit that CRF is more likely to alter the sensory components of pain with 

shorter-acting stimuli and the affective components with longer-acting stimuli.  

Contrary to the anti-nociceptive effects for acute nociceptive exposures in the 

Hargreaves and Von Frey tests, we found that CRF deletion in the BNST did not alter the 

sensory components of pain in the hot plate when measured by initial latency and cumulative 

number of paw withdrawals. Of the measures for affective behaviors, only paw attending was 

altered by CRF deletion, as females exhibited more licks to the site of injury in Cre-treated mice 

than controls. Unlike the Hargreaves and Von Frey tests, where exposure to the nociceptive 

stimulus terminates after a paw withdrawal or a fixed number of rapid prodding, the extended 

hot plate exposes subjects to heat for a duration where the thermal nociceptive stimulus is tonic-

acting/inescapable compared to the standard version of the test. This change in the context of 

nociceptive stimulus presentation may explain why CRF deletion can generate seemingly 

contradictory phenotypes like sex-independent pain relief and sex-dependent exacerbation of 
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an adaptive coping behavior. These divergent results possibly indicate a functional distinction in 

how CRF signaling in the BNST interacts with specific nociceptive stimuli as short- or long-

acting stressors. A potential explanation for this discrepancy is that peptide interactions with 

local CRF receptors differ for males and females, as sex differences in peptide distribution, 

receptor expression, and stress response are a broad feature of CRF signaling throughout the 

brain (Bangasser & Wiersielis, 2018; Uchida et al., 2019). Since previous evaluations of CRF 

signaling in the BNST and pain were performed exclusively in male subjects (Deyama et al., 

2007; Tran et al., 2012; 2014; Ide et al., 2013; Kaneko et al., 2016), it remains to be determined 

if females will exhibit similar trends in coping behavior for other types of nociceptive stressors.  

Although there were female-specific changes in the affective-motivational components of 

pain, no differences in avoidance or locomotors behaviors were observed with CRF deletion in 

the BNST. Previous studies have shown that CRF infusion in the BNST is anxiogenic and 

produces conditioned place aversion, while pharmacological inhibition of CRFR1 but not CRFR2 

in the BNST is anxiolytic (Sahuque et al., 2006). Furthermore, work from our lab has shown that 

chemogenetic inhibition of BNSTCRF+ neurons reduces avoidance behavior in the open field 

(Pleil et al., 2015). Our results demonstrate that genetic targeting of CRF production does not 

reduce avoidance behaviors, similar to the null effects observed in a previous study with CRF 

overexpression in the BNST (Sink et al., 2013), suggesting that there may be other factors in 

BNSTCRF+ neurons driving these changes. Although there has yet to be a comprehensive 

investigation on BNSTCRF+ co-expression and its relative contributions to avoidance behaviors, 

distinct anxiogenic roles have been identified for GABA, CRF, and other modulatory factors in 

the CeA (Pomrenze et al., 2019). It remains possible, however, that CRF plays a prominent role 

in avoidance behaviors, and that a greater reduction in Crf mRNA beyond 50%-60% is 

necessary to produce anxiolytic effects. Alternatively, it is feasible that anxiety-like states are 

more robustly regulated by external CRF contributions than local contributions within the BNST.  
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Taken together, our work raises important questions on the relationship between the 

dynamic activity of BNSTCRF+ neurons and CRF release. Unlike classical neurotransmitters such 

as GABA, the kinetics of release and activity of neuropeptides can be much longer. Elegant 

work from the Minami group has demonstrated that CRF can be released in the BNST over the 

course of an hour following formalin injection (Ide et al., 2013), so it is possible that some of the 

changes we observed over time in our in vivo imaging studies were due to local release of CRF. 

This is a particularly interesting possibility in the context of chronic pain, since long-term injury 

has been reported to drive functional upregulations of CRF signaling and putative CRF activity in 

the BNST (Ide et al., 2013; Takahashi et al., 2019; Hara et al., 2020). Interestingly, treating adult 

male human subjects with CRF has been shown to relieve pain during persistent inflammatory 

states such as post-operative pain but lack analgesic properties for healthy individuals 

(Hargreaves et al., 1987; Lautenbacher et al., 1999), suggesting that lasting pain conditions can 

change how CRF modulates pain. Future studies examining the relationship between chronic 

pain and in vivo dynamics of BNSTCRF+ activity in response to noxious stimuli will therefore be 

essential for a comprehensive understanding of peptide function in pain processing and 

modulation. 

To summarize, our findings have established a previously uncharacterized sex-specific 

role for CRF in the BNST and pain-related behaviors that will provide important insight into the 

aversive microcircuitry of the extended amygdala. 
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CHAPTER 3. IMPLICATIONS FOR DRUG USE 
 

Introduction 

 Alcohol provides an accessible means of self-medication for pain suffering populations, 

with approximately 25% of chronic pain patients consuming alcohol for symptom relief (Riley 

and King, 2009). Although alcohol can act as a transient pharmacological intervention for pain, 

excessive drinking can lead to increased risk for addiction and related heath complications 

(Koob and Volkow, 2010). Chronic exposure to alcohol is especially detrimental for pain, with 

marked increases in sensitivity after drug cessation (Boissoneault et al., 2018; Dhir et al., 2005; 

Dina et al., 2000, 2007; Dodds et al., 1945; Edwards et al., 2012; Fu et al., 2015; Gatch and Lal, 

1999; Jochum et al., 2010; Malec et al., 1987; Riley and King, 2009; Roltsch et al., 2017; 

Shumilla et al., 2005; Smith et al., 2015; Wolff et al., 1942). Clinical observations have 

suggested important differences in how men and women consume alcohol and experience the 

detrimental consequences of alcohol abuse when suffering from pathological pain. Among 

chronic pain patients, alcohol use is more prevalent in males (Brennan et al., 2011; Egli et al., 

2012; Riley and King, 2009; Wilsnack et al., 2009). Females that habitually consume alcohol, 

however, are more susceptible to pathological pain (Boissoneault et al., 2018). To date, 

preclinical investigations have failed to model similar sex-specific patterns in drinking and pain, 

thus providing a major hurdle to studying the mechanisms of pain-related alcohol consumption 

(Smith et al., 2015; Yezierski and Hansson, 2018). 

To address this deficit in preclinical models, the present study examines alcohol 

consumption in male and female C57BL/6J and Floxed-CRF mice treated with Complete
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Freund’s Adjuvant (CFA), an antigen emulsion containing heat-dried Mycobacterium 

tuberculosis. CFA was selected to model chronic inflammatory pain, since it closely mimics the 

time course of persistent injury (Hargreaves et al., 1988; Larson et al., 1986; Ren and Dubner, 

1999). Furthermore, postoperative pain, arthritis, and related inflammatory states have exhibited 

a close relationship with alcohol abuse (King et al., 2012). Therefore, we hypothesized that 

CFA-treated mice would show increased alcohol consumption compared to uninjured mice. To 

test this, we exposed saline- and CFA-treated mice of both sexes to a voluntary drinking 

paradigm (i.e. CA2BC with 20% ethanol [EtOH] for C57BL6/J, CA2BC and IA2BC with 20% 

EtOH for Floxed-CRF) and measured alcohol consumption across a three-week timespan. 

Thermal nociceptive thresholds were assessed to ensure that CFA treatment altered pain 

sensitivity. Blood EtOH concentration (BEC) and plasma corticosterone (CORT) levels were 

analyzed to assess pharmacologically relevant drinking and alcohol-related stress signaling, two 

possible contributors to sex differences in alcohol and pain interactions (Edwards et al., 2012; 

Egli et al., 2012; Fu and Neugebauer, 2008; Heilig and Koob, 2007; Koob, 2013). Taken 

together, these experiments aim to successfully model sex differences in pain-related alcohol 

drinking for mice, with the hope that this preclinical model can be applied towards mechanistic 

investigations of pain and alcohol interactions in the future. 

 

Materials and Methods 

Experiment 1: CFA Treatment and Continuous Access 2-Bottle Choice in C57BL6/J Mice 

Animals  

 A total of 32 male and female C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME) 

arrived at 6-weeks of age and were group-housed for one week to habituate to vivarium 

conditions. Following habituation, mice were individually housed in ventilated Plexiglas cages 

and given three days of acclimation in a 12-hr reverse light/dark cycle (12am-12pm) prior to the 

start of the experiment. Subjects were provided ad libitum access to water and Isopro RMH 
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3000 chow (Prolab, St. Louis, MO) for the duration of the experiment. All procedures were 

approved by the University of North Carolina at Chapel Hill Institutional Animal Care and Use 

Committee and were in accordance with the NIH Guide for Care and Use of Laboratory 

Animals. 

 

Continuous Access 2-Bottle Choice  

 Male (N = 16) and female (N = 16) mice were given continuous access to 20% EtOH 

(w/v) and tap water for three weeks. EtOH solutions were prepared with tap water and 95% 

EtOH (Pharmaco-AAPER, Brookfield, CT), and delivered via sipper tubes made from 50 mL 

plastic tubes (Nalgene), rubber stoppers (Fisher Scientific, Agawam, MA), and sipper tubes 

(Ancare Corp., Bellmore, NY). Prior to EtOH exposure, subjects were given three days to adapt 

to drinking with sipper tubes. Individually housed mice were then given access to two sipper 

tubes per cage: one containing 20% EtOH and the other containing tap water. For the span of 

three weeks, EtOH and water bottles were weighed daily three hours into the dark cycle. Bottle 

placement (left vs. right) was alternated weekly to control for an inherent or developed side 

preference. To control for non-consumption-related fluid loss, a dummy cage containing 

identical sipper tubes was used to subtract weekly dripped fluid values from subject fluid 

consumption.  

 

Chronic Inflammatory Pain 

 Prior to EtOH exposure, subjects were given a 50 μl subcutaneous injection of saline or 

Complete Freund’s Adjuvant (CFA; Sigma, St. Louis, MO) in the plantar surface of the right hind 

paw (n = 8). Drinking experiments started three days after paw injections, around the time that 

CFA exhibits maximum inflammatory hyperalgesia (Pitzer et al., 2016). To verify that changes in 

drinking behavior resulted from differences in pain sensitivity, thermal nociceptive thresholds of 

saline- and CFA-treated mice were assessed one day after the last 24-hr EtOH exposure using 
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the Hargreaves test. Mice were placed in a plexiglas chamber elevated on a glass plate (IITC 

Life Science Inc., Woodland Hills, CA) and habituated to the behavioral apparatus for a 

minimum of 30 minutes. The mid-plantar surface of saline/CFA-treated and untreated hind paws 

was then exposed to three heat trials each and assessed for paw withdrawal latencies (PWL). 

The beam intensity was set to produce basal PWLs of approximately 4-6 seconds, with a 

maximal value of 20 seconds to prevent excessive tissue damage. All testing was conducted 

with investigators blinded to the experimental conditions. 

 

Blood Ethanol and Corticosterone Concentrations 

 Following pain sensitivity testing, mice were given four days to recover and re-establish 

CA2BC drinking behavior in preparation for blood EtOH and corticosterone measurements. On 

the final drinking day, mice were sacrificed 2 hours into the dark cycle, with trunk blood 

immediately collected in centrifuge tubes following decapitation. Blood samples were 

centrifuged at 4°C for 10 min at 3000 RPM, and the plasma was separated for storage at -80°C 

until analysis. To measure blood EtOH concentration (BEC; mg/dl), 5 μl plasma samples were 

administered through a Model AM1 Alcohol Analyser (Analox Instruments Ltd., Lunenburg, MA). 

To measure plasma corticosterone (CORT; ng/ml), 5 μl plasma samples were processed with a 

commercially available colorimetric ELISA kit (Arbor Assays; Ann Arbor, MI), according to the 

manufacturer’s instructions, with all samples run in duplicate. 

 

Statistical Analysis 

 All statistical analyses were performed using Prism 6 (GraphPad Software Inc., La Jolla, 

CA). Analysis of drinking across sessions for saline- and CFA-treated mice (i.e. Treatment x 

Session for EtOH Intake, EtOH Preference Ratio, Water Intake, and Total Fluid Intake) was 

performed with a repeated measures analyses of variance (RM-ANOVA). Drinking values for 

each mouse were averaged across the three-week drinking period to compare Treatment x Sex 
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with additional two-way ANOVAs. Differences in PWL were determined with a two-way ANOVA 

comparing Treatment x Paw. Post-hoc analyses with Sidak or Tukey adjustment were 

performed following significant main group effects. Data are reported as mean plus or minus the 

standard error of the mean (M ± SEM). Correlational analyses were conducted using linear 

regressions to assess the predictive relationship of EtOH intake and thermal nociceptive 

sensitivity, BEC, and CORT levels, with slopes and intercepts assessed for deviation from zero 

to determine statistical significance. See Figure 21 for Experimental Timeline. 

 

Experiment 2: CRF Deletion in the BNST with CFA Treatment and Continuous/Intermittent 

Access 2-Bottle Choice in Floxed-CRF Mice 

Animals  

 A total of male and female Floxed-CRF mice (N = 64 total, aged 6-12 weeks, C57BL/6J 

background) were bred in-house, initially group-housed with same-sex littermates, and 

maintained on a 12-h light/dark cycle (light on at 7:00, light off at 19:00) with rodent chow and 

water available ad libitum. Following surgical procedures for the genetic deletion of Crf in BNST 

and a battery of nociceptive sensitivity tests (described in Chapter 2), the mice were transferred 

to individual housing in new ventilated Plexiglas cages, where they were provided ad libitum 

access to water and Isopro RMH 3000 chow (Prolab, St. Louis, MO). Prior to starting the 

drinking experiment, subjects were given three days to acclimate to the new home cage and 

holding room, where a 12-h reverse light/dark cycle (12am-12pm) was implemented to match 

the conditions of the CA2BC model in Experiment 1. All procedures were approved by the 

University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee and 

were in accordance with the NIH Guide for Care and Use of Laboratory Animals. 

 

Continuous Access 2-Bottle Choice and Intermittent Access 2-Bottle Choice  

 Male (N = 33) and female (N = 31) mice were treated with a 50 μl subcutaneous injection 
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of saline or CFA (Sigma, St. Louis, MO) in the plantar surface of the right hind paw. Three days 

after paw injections, subjects were given continuous access to 20% EtOH (w/v) and tap water 

for three weeks, then switched to intermittent access to EtOH for five weeks. The drinking setup 

was prepared with the same methods as Experiment 1, where tap water and 95% EtOH 

(Pharmaco-AAPER, Brookfield, CT) were delivered via sipper tubes made from 50 mL plastic 

tubes (Nalgene), rubber stoppers (Fisher Scientific, Agawam, MA), and sipper tubes (Ancare 

Corp., Bellmore, NY). Individually housed mice were exposed to two sipper tubes per cage: one 

containing 20% EtOH and the other containing tap water. Subjects were given continuous 

access to both tubes for the first three weeks, then moved to an intermittent access 2-bottle 

choice (IA2BC) paradigm to promote escalations in alcohol consumption (as detailed in Hwa et 

al., 2011) for the next five weeks, where EtOH bottles were available every other day and 

weighed accordingly. Bottle placement was alternated weekly to control for an inherent or 

developed side preference and a dummy cage containing identical sipper tubes was used to 

control for non-consumption-related fluid loss. 

 

Sucrose Drinking   

 Following CA2BC and IA2BC to 20% EtOH (w/v), subjects were given CA2BC to 1% 

sucrose (w/v) and tap water for 3 days to assess the hedonic properties of drinking (Pothion et 

al., 2004). Sucrose solutions were prepared with tap water and 1% D-Sucrose (Fisher Scientific, 

Hampton, NH). Bottle placement was kept consistent throughout the test given the limited span 

of the experiment, but a dummy cage was kept as a control for non-consumption-related fluid 

loss. 

 

Hargreaves 

 Two days after paw treatment with saline or CFA, subjects were placed in Plexiglas 

boxes on an elevated glass surface and habituated to the behavioral apparatus for 30-60 
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minutes. The mid-plantar surface of each hind paw was exposed to a series of 6 noxious heat 

trials that sequentially alternated between left and right paws. After each heat exposure, a 10-

minute inter-trial interval was provided before the next trial. Beam intensity was set to 25 on the 

IITC Plantar Analgesia Meter, producing average basal paw withdrawal latencies of 

approximately 6 seconds in Floxed-CRF mice. Cutoff times of 20 seconds were set for each trial 

to prevent excessive tissue damage.  

 

Plasma Corticosterone  

 Mice were sacrificed approximately a week after sucrose testing, with trunk blood 

immediately collected in centrifuge tubes following decapitation. Blood samples were 

centrifuged at 4°C for 10 min at 3000 RPM, and the plasma was separated for storage at -80°C 

until analysis. Measurements of plasma corticosterone (CORT; ng/ml) were taken by processing 

5 μl plasma samples with a commercially available colorimetric ELISA kit (Arbor Assays; Ann 

Arbor, MI), according to the manufacturer’s instructions, with all samples run in duplicate. 

 

Histology 

 The procedures described in Chapter 2 were applied to the same tissue samples from 

Floxed-CRF mice following CA2BC/IA2BC and saline/CFA treatments (see Materials and 

Methods in Chapter 2: In Situ Hybridization and Confocal Microscopy sections). 

 

Statistical Analysis 

 All data were analyzed and visualized with standard statistical software packages from 

GraphPad Prism 8 (GraphPad Software, San Diego, CA). Single-variable comparisons for 

cumulative EtOH intake were made using area under the curve analysis. Group comparisons 

were made using two-way ANOVA, two-way repeated measures ANOVA, or two-way mixed-

model ANOVA depending on the number of independent and within-subjects variables in a data 
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set. Following significant interactions or main effects, post-hoc pairwise t-tests were performed 

and corrected using Sidak’s or Tukey’s post-hoc tests to control for multiple comparisons. Data 

are expressed as mean ± standard error of the mean (SEM), with significance for p values 

below 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).  

 

Results 

Experiment 3.1 

CFA-Treated C57BL6/J Mice Exhibit Greater Alcohol Drinking in a Sex-Dependent Manner 

EtOH Intake 

 Male mice treated with CFA consumed a significantly greater amount of 20% EtOH (w/v) 

per day (g/kg/24hr) than saline-treated controls, while females did not exhibit any consumption 

differences across treatments (Figure 22). A RM-ANOVA (Treatment x Session) revealed a 

main effect for Treatment [F(1, 14) = 4.768, p = 0.0465] and Session [F(19, 266) = 1.656, p = 0.0437] 

in males (Figure 22A), and a main effect for Session [F(19, 266) = 9.470, p < 0.0001] in females 

(Figure 22B), but no significant interaction for either sex. Sidak post-hoc analysis revealed no 

significant difference in EtOH intake between saline- and CFA-treated mice during individual 

drinking sessions of males or females. Mean drinking values for individual subjects were 

averaged across three weeks in their respective treatment and sex groupings. A two-way 

ANOVA (Treatment x Sex) revealed a main effect for Sex [F(1, 28) = 24.34, p < 0.0001], where 

female mice exhibit greater EtOH intake than males, regardless of paw treatment (Figure 22C). 

No main effect for Treatment [F(1, 28) = 3.524, p = 0.0709] or interaction between Treatment and 

Sex [F(1, 28) = 2.229, p = 0.1466] were observed. Tukey post-hoc analysis revealed no significant 

difference in EtOH intake between saline- and CFA-treated mice for males or females (Figure 

22C). Area under the curve analysis for cumulative EtOH intake similarly shows that CFA-

treated males had greater cumulative alcohol consumption than saline-treated controls, while 

females consumed more alcohol regardless of pain state (Figures 22D-22E). A two-way 
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ANOVA (Treatment x Sex) revealed a main effect for Sex [F(1, 28) = 13.82, p = 0.0009], where 

female mice exhibit greater EtOH intake than males (Figures 22D-22F). No main effect for 

Treatment [F(1, 28) = 2.209, p = 0.1484] or interaction between Treatment and Sex [F(1, 28) = 

3.054, p =0.0915] were observed. Tukey post-hoc analysis revealed a significant difference in 

EtOH intake between saline- and CFA-treated mice, with saline-treated males exhibiting levels 

of alcohol consumption that were lower than all other experimental groups (Figure 22F).  

 

EtOH Preference Ratio 

 Preference for EtOH exhibited similar results, with CFA-treated male mice showing a 

significantly greater EtOH preference ratio than their saline-treated counterparts, while females 

did not exhibit a preference difference across treatments (Figure 23). A RM-ANOVA (Treatment 

x Session) revealed a main effect for Treatment [F(1, 14) = 6.777, p = 0.0208] in males (Figure 

23A) and Session [F(19, 266) = 5.297, p < 0.0001] in females (Figure 23B), but no significant 

interaction for either sex. Sidak post-hoc analysis showed no significant difference in EtOH 

preference ratio between saline- and CFA-treated mice during individual drinking sessions of 

males or females. A two-way ANOVA (Treatment x Sex) revealed a main effect for Sex [F(1, 28) = 

14.18, p = 0.0008] but not Treatment [F(1, 28) = 3.362, p = 0.0774], and a significant interaction 

between Treatment and Sex [F(1, 28) = 5.140, p = 0.0313], where EtOH preference ratio was 

greater in females than males for both treatments (Figure 23C). Tukey post-hoc analysis 

showed no significant difference in EtOH preference ratio between saline- and CFA-treated 

mice for males or females (Figure 23C).  

 

Water Intake 

 CFA-treated mice exhibited water intake that was comparable to saline-treated controls 

for both sexes (Figure 24). A RM-ANOVA (Treatment x Session) revealed a main effect for 

Session [F(19, 266) = 5.661, p = < 0.0001] in males (Figure 24A), no main effect for Treatment or 



 

60 

Session in females (Figure 24B), and no significant interaction for either sex. Sidak post-hoc 

analysis showed no significant difference in water intake between saline- and CFA-treated mice 

during individual drinking sessions of males or females. A two-way ANOVA (Treatment x Sex) 

revealed no main effect for Sex [F(1, 28) = 2.903, p = 0.0995] or Treatment [F(1, 28) = 0.06344, p = 

0.8030], or a significant interaction between Treatment and Sex [F(1, 28) = 2.117, p = 0.1568] 

(Figure 24C). Tukey post-hoc analysis showed no significant difference in water intake between 

saline- and CFA-treated mice for males or females (Figure 24C). 

 

Total Fluid Intake 

 CFA-treated mice exhibited total fluid intake that was comparable to saline-treated 

controls for both sexes (Figure 25). A RM-ANOVA (Treatment x Session) revealed a main 

effect for Session in males [F(19, 266) = 13.35, p < 0.0001] (Figure 25A) and females [F(19, 266) = 

4.514, p < 0.0001] (Figure 25B), but no significant interaction for either sex. Sidak post-hoc 

analysis demonstrated no significant difference in total fluid intake between saline- and CFA-

treated mice during individual drinking sessions of males or females. A two-way ANOVA 

(Treatment x Sex) revealed a main effect for Treatment [F(1, 28) = 1.653, p = 0.2091], but no main 

effect for Sex [F(1, 28) = 0.2754, p = 0.6039] or significant interaction between Treatment and Sex 

[F(1, 28) = 0.02455, p = 0.8766] (Figure 25C). Tukey post-hoc analysis showed no significant 

difference in total fluid intake between saline- and CFA-treated mice for males or females 

(Figure 25C).  

 

CFA-Treated Mice Exhibit Higher Sensitivity to Thermal Nociception in Both Sexes 

 Male and female C57BL6/J mice treated with CFA exhibit higher sensitivity to thermal 

nociception, as indicated by lower PWLs, when compared to saline-treated mice (Figure 26). A 

RM-ANOVA (Treatment x Paw) exhibited a main effect for Treatment [F(1, 14) = 7.010, p = 

0.0191] and Paw [F(1, 14) = 8.155, p = 0.0127], and a significant Treatment x Paw interaction [F(1, 
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14) = 27.46, p = 0.0001] in males (Figure 26A), whereas a RM-ANOVA (Treatment x Paw) 

exhibited a main effect for Paw [F(1, 14) = 11.00, p = 0.0051], but not Treatment [F(1, 14) = 3.276, p 

= 0.0918], and a significant Treatment x Paw interaction [F(1, 14) = 10.15, p = 0.0066] in females 

(Figure 26B). Sidak post-hoc analysis revealed a significant difference in PWLs between saline- 

and CFA-treated mice for treated paws, but not untreated paws, of both males (Figure 26A) 

and females (Figure 26B). To assess the relationship between pain and drinking, a linear 

regression was conducted for thermal nociceptive sensitivity of the treated paw as a predictor of 

EtOH intake. For males, saline-treated mice exhibited a non-significant regression equation of 

[F(1, 6) = 0.0855, p = 0.7798] with R2 of 0.0140 (Figure 26C), whereas CFA-treated mice 

exhibited a non-significant regression equation of [F(1, 6) = 0.1691, p = 0.6952] with R2 of 0.0274 

(Figure 26C). For females, saline-treated mice exhibited a non-significant regression equation 

of [F(1, 6) = 0.0018, p = 0.9674] with R2 of 0.0003 (Figure 26D), whereas CFA-treated mice 

exhibited a significant regression equation of [F(1, 6) = 8.254, p = 0.0283] with R2 of 0.5791 

(Figure 26D). 

 

CFA Does Not Alter Blood Ethanol Concentration and Plasma Corticosterone  

 Female mice given 2-hr access to EtOH exhibit greater alcohol and total fluid 

consumption than males (Figure 27). A two-way ANOVA (Treatment x Sex) for 2-hr EtOH 

intake revealed a main effect for Sex [F(1, 28) = 83.19, p < 0.0001], but not Treatment [F(1, 28) = 

0.1574, p = 0.6945], and no significant Treatment x Sex interaction [F(1, 28) = 0.6611, p = 0.4230] 

(Figure 27A). Tukey post-hoc analysis showed greater 2-hr EtOH intake in female mice, but no 

significant difference in drinking between saline- and CFA-treated mice (Figure 27A). A two-

way ANOVA (Treatment x Sex) for 2-hr EtOH preference ratio revealed no main effect for 

Treatment [F(1, 28) = 0.2239, p = 0.6397] or Sex [F(1, 28) = 1.673, p = 0.2064], and a significant 

Treatment x Sex interaction [F(1, 28) = 5.599, p = 0.0251] (Figure 27B). Tukey post-hoc analysis 

showed no significant difference in EtOH preference ratio between treatments or sex (Figure 
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27B). A two-way ANOVA (Treatment x Sex) for 2-hr water intake revealed no main effect for 

Treatment [F(1, 28) = 0.0328, p = 0.8574] or Sex [F(1, 28) = 0.2640, p = 0.6114], and no significant 

Treatment x Sex interaction [F(1, 28) = 3.800, p = 0.0613] (Figure 27C). Tukey post-hoc analysis 

showed no significant difference in EtOH preference ratio between treatments or sex (Figure 

27C). A two-way ANOVA (Treatment x Sex) for 2-hr total fluid intake revealed a main effect for 

Sex [F(1, 28) = 8.726, p = 0.0063], but not Treatment [F(1, 28) = 0.4069, p = 0.5288], and no 

significant Treatment x Sex interaction [F(1, 28) = 1.341, p = 0.2566] (Figure 27D). Tukey post-

hoc analysis showed higher 2-hr total fluid intake in female mice, but no significant difference in 

drinking between saline- and CFA-treated mice (Figure 27D).  

Following 2-hr access to EtOH, plasma samples were collected to measure BEC and 

CORT levels. For BEC, a two-way ANOVA (Treatment x Sex) revealed no main effect for 

Treatment [F(1, 28) = 0.1365, p = 0.7146] and Sex [F(1, 28) = 0.8967, p = 0.3518], and no Treatment 

x Sex interaction [F(1, 28) = 1.890, p = 0.1801] (Figure 28A). Tukey post-hoc analysis revealed no 

significant difference in BEC between treatments or sex (Figure 28A). To assess the 

relationship between drinking and BEC amongst paw treatment groups, a linear regression was 

conducted for 2-hr EtOH intake as a predictor of BEC. For males, saline-treated mice exhibited 

a non-significant regression equation of [F(1, 6) = 0.0104, p = 0.9220] with R2 of 0.0017 (Figure 

28B), whereas CFA-treated mice exhibited a non-significant regression equation of [F(1, 6) = 

2.334, p = 0.1774] with R2 of 0.2801 (Figure 28B). For females, saline-treated mice exhibited a 

non-significant regression equation of [F(1, 6) = 0.5927, p = 0.4706] with R2 of 0.0899 (Figure 

28C), whereas CFA-treated mice exhibited a non-significant regression equation of [F(1, 6) = 

0.6417, p = 0.4536] with R2 of 0.0966 (Figure 28C).  

For CORT, a two-way ANOVA (Treatment x Sex) revealed a main effect for Sex [F(1, 28) = 

7.298, p = 0.0116], but not Treatment [F(1, 28) = 0.1243, p = 0.7270], and no Treatment x Sex 

interaction [F(1, 28) = 0.3202, p = 0.5760] (Figure 29A). Tukey post-hoc analysis revealed greater 

CORT levels in female mice, but no significant difference between saline- and CFA-treated mice 
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(Figure 29A). To assess the relationship between drinking and CORT amongst paw treatment 

groups, a linear regression was conducted for 2-hr EtOH intake as a predictor of CORT. For 

males, saline-treated mice exhibited a non-significant regression equation of [F(1, 6) = 0.3674, p = 

0.5666] with R2 of 0.0577 (Figure 29B), whereas CFA-treated mice exhibited a non-significant 

regression equation of [F(1, 6) = 0.0396, p = 0.8487] with R2 of 0.0065 (Figure 29B). For females, 

saline-treated mice exhibited a non-significant regression equation of [F(1, 6) = 0.0016, p = 

0.9691] with R2 of 0.0002 (Figure 29C), whereas CFA-treated mice exhibited a non-significant 

regression equation of [F(1, 6) = 0.2297, p = 0.6487] with R2 of 0.0387 (Figure 29C). Taken 

together, these findings suggest a weak relationship between 2-hr EtOH intake and BEC/CORT.   

 

Experiment 3.2 

Genetic Deletion of Crf from BNST Influences Pain Interactions with Alcohol Use 

 CRF relieves pain in peripheral tissues undergoing inflammation, but whether similar 

conditions impact central mechanisms of pain modulation like CRF in the BNST requires further 

investigation (Schafer et al., 1997).  Here, we hypothesized that genetic deletion of CRF in the 

BNST would attenuate worsened pain-related behaviors driven by a model of persistent 

inflammation, since similar reductions in CRF signaling in the BNST have been shown to reduce 

pain (Figure 18; Ide et al., 2013) and alcohol use (Pleil et al., 2015; Rinker et al., 2017). To test 

this, we first exposed the same CRF deletion and control mice from Chapter 2 to intraplanar 

treatment of CFA and assessed thermal nociceptive sensitivity. As expected, CFA treatment 

increased nociceptive sensitivity in the ipsilateral (but not contralateral) paw for all subjects 

(Figure 32). Contrary to our results in naïve mice, however, CRF deletion did not reduce basal 

sensitivity for saline-treated mice or attenuate inflammatory pain for CFA-treated mice (Figures 

18 and 32).  

Considering earlier observations that CFA treatment increases alcohol consumption for 

males but not females (Figures 22-23), and that CRF may contribute to pain sensitivity in both a 
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sex-dependent and sex-independent manner for naïve mice, but not intraplanar treated mice 

(Figure 18), we next investigated how genetic deletion of Crf in the BNST affects interactions 

between pain and alcohol use. Using an eight-week two-bottle choice paradigm, saline- and 

CFA-treated mice with intact or reduced CRF expression in the BNST were given the choice to 

voluntarily consume 20% EtOH (w/v) or water (H2O) (Figure 30A). Subjects had continuous 

access (CA2BC) to EtOH and H2O for three weeks, then were switched to an intermittent 

access (IA2BC) schedule where the availability of EtOH and H2O was limited to Monday, 

Wednesday, and Friday to promote escalating alcohol use for five weeks (Hwa et al., 2011). 

Comparisons of average alcohol intake and preference ratio for CA2BC and IA2BC 

revealed that female subjects increase alcohol use across paradigms regardless of pain status 

and CRF manipulation (Figures 30B and 30C). By contrast, male subjects did not exhibit any 

increase in alcohol use across paradigms (Figures 30B and 30C). Contrary to our initial 

predictions where CRF deletion attenuates alcohol use by reducing pain, CRF deletion in the 

BNST impacted CFA-treated subjects by increasing cumulative alcohol intake compared to 

CRF-intact (mCherry) control mice (Figures 30D-30E). Although this trend was apparent for 

both sexes, the greatest increases in cumulative alcohol use were observed for CFA-treated 

female mice with Crf deletion in the BNST (Figures 30D-30E). It is important to note that 

averaged cumulative alcohol intake only reached significance with area under the curve 

analysis and not a grouped average by subjects (Figures 30D-30E, 31A-31B), signifying a 

weak interaction between CRF deletion and pain to drive increases in alcohol use.  

Notably, there were no changes in sucrose consumption with CRF deletion or CFA 

treatment, indicating that the observed effects in drinking were specific to alcohol (Figures 31C-

31D). Given the link between CRF signaling and its modulation of pain through stress, we 

additionally measured plasma corticosterone levels and found no changes with CRF deletion or 

CFA treatment following the eight-week drinking paradigm (Figures 31E-31F). This suggests 

CA2BC/IA2BC drinking behaviors were neither modulated nor driven by sex differences in 
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stress hormones, as was initially hypothesized in Experiment 3.1. Finally, using the genetic 

deletion validation detailed in Chapter 2 (Figures 18C-18D), we quantified Crf mRNA 

expression in the BNST by pain status and found no differences between saline-treated and 

CFA-treated mice, revealing no effect of persistent inflammation on CRF expression in the 

BNST following CA2BC/IA2BC (Figures 32C-32D). Taken together, our results show that 

deletion of Crf in the BNST is not sufficient to reduce inflammatory pain but can work with 

inflammation to drive increased alcohol use in a sex-independent manner. 

 

Discussion 

CFA + CA2BC as a Novel Preclinical Model of Pain-Induced Alcohol Drinking 

 In Experiment 3.1, we describe sex differences in alcohol drinking following the induction 

of inflammatory pain. Male CFA-treated mice consumed more alcohol and exhibited higher 

preference for the drug than saline-treated controls, whereas female CFA-treated mice showed 

similar alcohol and water intake as controls. Characteristic of C57BL/6J mice with continuous 

access to high concentrations of alcohol (Jury et al., 2017; Middaugh et al., 1999; Smith et al., 

2015), drinking levels differed between sexes, with female mice exhibiting greater EtOH 

consumption and preference than male mice, regardless of saline or CFA treatment. These 

findings suggest that chronic inflammatory pain increases alcohol drinking in males, despite 

higher overall drinking in females. Similar clinical observations have been made in chronic pain 

patients, with men more commonly self-medicating with alcohol than women (Riley and King, 

2009). This pain-related alcohol consumption is greater in males throughout the lifetime, with its 

peak at early adulthood (Brennan et al., 2011; Riley and King, 2009; Wilsnack et al., 2009). By 

pairing CFA treatment and CA2BC drinking, our model was able to replicate these human 

patterns of voluntary drinking in injured young adult male mice, providing evidence that chronic 

inflammatory pain can potentiate alcohol drinking in a sex-specific manner for rodents.  
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Although this finding is reflective of clinical reports, it is notably inconsistent with another 

study on CFA-treated mice that found no effect on pain-related alcohol consumption (Smith et 

al., 2015). The discrepancy between findings may be due to differences in experimental design. 

For example, escalating concentrations of alcohol were utilized in Smith et al. (2015), while fixed 

concentrations were used in the present study. Mice given escalating concentrations had CFA 

administered while being exposed to a lower percentage of alcohol (10%), so consumption may 

not have produced comparable analgesia to that of a fixed high concentration of alcohol (20%). 

Theoretically, this would result in a higher dynamic range of alcohol consumption for the fixed 

concentration paradigm, which could explain why there are more pronounced effects of pain-

induced drinking in the present study. Alternatively, the use of differently aged mice (i.e. 30-33 

weeks old in Smith et al. [2015] versus 7-10 weeks old in the present study) could have altered 

alcohol consumption as well, since younger rodents drink more than fully developed adults 

(Holstein et al., 2011; Schramm-Sapyta et al., 2014; Vetter-O’Hagen et al., 2009). Divergences 

in pain severity following CFA treatment could also explain the inconsistency in findings. Male 

mice treated with a high volume of CFA (i.e. 50 μl in the present study) exhibited increased 

alcohol consumption relative to saline-treated controls, while low volume (i.e. 10 μl in Smith et 

al. [2015]) exposure did not alter consumption relative to pre-CFA levels. This suggests that 

high and low volumes of CFA treatment result in different severities of pain, which can then 

determine the extent of changes observed with alcohol drinking. If pain severity were to 

contribute to these consumption differences, a comparison of nociceptive sensitivity should 

reveal higher pain sensitivity in CFA-treated mice from the present study compared to those in 

Smith et al. (2015). The use of different behavioral assays at non-parallel time points and a lack 

of parallel control groups (i.e. Pre-CFA mice in Smith et al. [2015] versus saline-treated mice in 

the present study), however, makes it difficult to make a direct comparison. Future studies 

should examine how the severity of chronic inflammatory pain contributes to sex-specific 

patterns of drinking with more uniform measures of thermal and mechanical nociception and 
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control groups. Determining the extent that alcohol concentration and age can alter pain-related 

drinking may further clarify any remaining drinking differences between the two studies.  

We additionally showed that female C57BL/6J mice exhibit greater alcohol consumption 

than males, an observation that is common among female rodents exposed to voluntary 

drinking paradigms (Blanchard and Glick, 2002; Cailhol and Mormède, 2001; Chester et al., 

2006; Doremus et al., 2005; Jury et al., 2017; Lancaster et al., 1996; Lê et al., 2001; Middaugh 

et al., 1999; Smith et al., 2015; Truxell et al., 2007). Moreover, our female drinking data matches 

the maximal average consumption values previously reported in C57BL/6J mice undergoing 

continuous access to ≥ 10% alcohol (Jury et al., 2017; Middaugh et al., 1999; Smith et al., 

2015). With such high baseline alcohol consumption, it is possible that saline-treated females 

have already reached maximal drinking in our study, so the addition of pain would not increase 

drinking in females. Although this ceiling effect is possible, it is unlikely, considering that daily 

EtOH intake in females was around 10-12 g/kg during the first four sessions and escalated to 

20-25 g/kg by the last session. If pain were able to drive alcohol drinking in females, early 

session EtOH intake should have increased up to two times in CFA-treated mice, but that is not 

the case. Therefore, sex differences in basal alcohol consumption were not likely to prevent 

pain-related drinking increases for females.  

Differences in inflammatory response and alcohol analgesia may provide a better 

explanation for these sex-specific patterns in drinking. CFA and related inflammatory agents 

cause female rodents to develop hyperalgesia more rapidly than males, with females being less 

prone to attenuation of inflammation by alcohol and other analgesic drugs (Alfonso-Loeches et 

al., 2013; Coleman and Crews, 2018; Cook and Nickerson, 2005; Pascual et al., 2017). Thus, it 

is possible that CFA-treated females are less susceptible to escalated alcohol consumption 

relative to saline-treated controls because the drug provides inadequate analgesia to promote 

further drinking. Although not measured in the present study, ongoing investigations with this 
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model should assess the potential impact of sex differences in alcohol analgesia and its effects 

on pain-related drinking.  

Three weeks after paw treatment, pain testing revealed that CFA-treated mice had 

higher thermal nociceptive sensitivity than saline-treated controls for both males and females. 

Considering the timing of the test, it is unclear whether this difference in sensitivity reflects the 

contributions of pain to drinking or drinking to pain. This is an important distinction, as cessation 

of alcohol intake following repeated drug exposure can exacerbate pain sensitivity. This 

phenomenon, commonly referred to as EtOH withdrawal-induced hyperalgesia (EIH), has been 

reported in mice (Dhir et al., 2005; Smith et al., 2016), as well as rats (Dina et al., 2000, 2007; 

Edwards et al., 2012; Fu et al., 2015; Gatch and Lal, 1999; Malec et al., 1987; Roltsch et al., 

2017; Shumilla et al., 2005) and humans (Boissoneault et al., 2018; Dodds et al., 1945; Jochum 

et al., 2010; Riley and King, 2009; Wolff et al., 1942), using a variety of alcohol exposure 

models. In our CA2BC paradigm, it is unclear whether there were pathological shifts in 

sensitivity following three weeks of alcohol exposure. The lack of sensitivity differences following 

increased drinking in CFA-treated males, along with the non-significant regression of Drinking x 

Pain suggests that the extent of alcohol consumption had little effect on predicting pain 

sensitivity (and vice versa) in all groups. This result is similar to that of other continuous access 

experiments in mice, which also failed to produce EIH (Smith et al., 2015). The exception to this 

finding is CFA-treated females: despite comparable drinking patterns to saline-treated controls, 

CFA-treated females exhibited a significant negative correlation for Drinking x Pain, where 

injured females that drink more alcohol experience higher pain sensitivity. This result is 

reminiscent of clinical data showing that there is higher EIH severity and prevalence in females, 

with women being more likely to report significant recurrent pain and concurrent chronic pain 

conditions (Boissoneault et al., 2018). Despite our findings closely following predicted results 

from the literature, not having nociceptive sensitivity measures prior to EtOH exposure makes it 

impossible to conclude whether or not these data indicate a causal null effect of alcohol 
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consumption on pain. Although a limitation in the study, it does not change our interpretation 

that male-specific increases in alcohol consumption follow the induction of chronic inflammatory 

pain. However, future experiments should be mindful of establishing baseline nociceptive 

sensitivity prior to the start of alcohol exposure when studying pain-related alcohol use.  

Following 2-hour CA2BC, females consumed more alcohol than males. Contrary to the 

increased drinking phenotype seen in CFA-treated males during 24-hr alcohol access, no 

treatment effects were observed. These results suggest that the terminal drinking session did 

not last long enough to capture peak alcohol consumption (i.e. 4+ hours into the dark cycle) 

(Smith et al., 2015). Although increases for alcohol drinking in the 2-hr CA2BC were specific to 

females, no sex effects were found for BEC. By contrast, a previous evaluation of BEC showed 

no sex differences for alcohol consumption after 30-minute access to 12% EtOH, but higher 

BECs in females (Middaugh et al., 1999). Although a common result for humans when both 

sexes are allowed an equal dosing of orally administered EtOH (Ammon et al., 1996; Sutker et 

al., 1983), such results are less common in rodents (Ho et al., 1989). This difference may be 

due to feeding manipulations coinciding with BEC measurements after drinking, as suggested in 

Middaugh et al. (1999). Although caloric mediation of alcohol consumption is well established in 

the literature (Rodgers et al., 1963; Rodgers, 1966; Thiele et al., 2012), sex differences in 

prandial metabolism and alcohol consumption are thought to be negligible, as thirst is more 

strongly motivating for alcohol drinking than caloric need in both sexes (Middaugh et al., 1999). 

Paradoxically, higher BECs in females are accompanied by enhancements in alcohol 

metabolism (Baraona et al., 2001; Collins et al., 1975; Mumenthaler et al., 1999), and may 

explain why female mice that consume a greater amount of alcohol do not produce higher BECs 

than males.  

Similar to alcohol consumption patterns in the 2-hr CA2BC paradigm, CORT was not 

affected by CFA, but differed by sex. Specifically, female CORT levels were found to be higher 

than that of males. Higher CORT release following alcohol exposure has previously been 
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observed in female rodents, with deletion of circulating sex steroids attenuating the difference 

(Rivier, 1993). However, increased levels of CORT in female mice may not be the result of the 

drug, as alcohol drinking does not produce differences in CORT relative to consumption of 

water in males or females (Finn et al., 2004). Although CFA-treated males did not drink more in 

the 2-hr terminal drinking session, the literature would predict that an increase in drinking after 

24-hr access would still not potentiate CORT release in the males, despite showing pain-related 

increases in alcohol consumption. This suggests that CORT is basally higher in females, and 

not susceptible to changes following CFA treatment in both sexes. Previous work has found that 

inflammatory pain increases CORT, but this phenotype has only been observed in male rats 

and has yet to be investigated in combination with drinking (Butkevich et al., 2013; Harper et al., 

2001; Pitcher et al., 2018), suggesting that our findings for CORT are specific to CFA/CA2BC-

exposed C57BL/6J mice.  

Without pre-treatment CORT levels, it is difficult to determine whether these female-

specific elevations in stress are entirely due to sex differences in basal CORT. It is important to 

consider the alternate possibility that these changes are driven by differences in stress 

reactivity. It is well-established that maladaptive responses to stress promote alcohol drinking 

and relapse behavior (Becker et al., 2011; Keyes et al., 2012; Koob, 2001; Koob and Kreek, 

2007). Previous studies have linked these behaviors to the sex-dependent expression of stress 

markers, with females exhibiting higher glucocorticoid levels and alcohol consumption following 

exposure to various stressors (Cozzoli et al., 2014; Haleem et al., 1988; Heinsbroek et al., 1991; 

Kudielka and Kirschbaum, 2005; Yoshimura et al., 2003). Considering that female mice exhibit a 

more sensitive and sustained stress response compared to males (Blanchard and Glick, 2002; 

Brown and Grunberg, 1995; Hermes et al., 2006; Palanza et al., 2001), it is possible that early 

experimental stressors such as isolated housing and paw injections increased CORT levels and 

alcohol consumption for female mice in the present study (Hermes et al., 2006; Lopez et al., 

2011; Moriya et al., 2015). This would be contingent on early experimental stressors 
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upregulating CORT responses for over three weeks in female mice, an improbable but untested 

concept. Future studies using CFA/CA2BC should more closely investigate this relationship 

between sex differences in stress reactivity and alcohol drinking.  

In conclusion, male and female mice exhibit distinct alcohol drinking behavior when 

undergoing pain. Compared to saline-treated controls, CFA-treated males show greater alcohol 

consumption, while CFA-treated females show a closer relationship between alcohol 

consumption and pain sensitivity. Regardless of pain state, females exhibited higher levels of 

total alcohol drinking and corticosterone compared to males. These findings reflect sex-specific 

trends in alcohol use reported by chronic pain populations and may speak to the validity of our 

CFA/CA2BC model in mice. Mechanistic contributions to sex differences in pain-related alcohol 

drinking will be required in future applications of the model, with special attention reserved for 

the role of stress signaling in pain and alcohol interactions.  

 

The Role of DA and CRF Signaling in Pain-Related Drug Use 

 In Experiment 3.2, we tested the same Floxed-CRF mice from Chapter 2 in a modified 

version of the CFA/CA2BC paradigm described in Experiment 3.1. Earlier, we reported that 

CRF deletion in the BNST was able to reduce nociceptive sensitivity for phasic-acting pain 

exposures in both sexes and selectively increase protective behaviors for tonic-

acting/inescapable pain exposures in female mice, suggesting that the impact of impaired CRF 

expression depends on the duration and context of pain. Based on these functional outcomes, 

we hypothesized that two opposing results were possible: 1) CRF deletion would counteract the 

hyperalgesic state elicited by CFA treatment and attenuate the pain-induced escalations in 

drinking observed for male mice in Experiment 3.1 or 2) CFA treatment, being a sustained driver 

of heightened sensitivity, would exacerbate the impact of CRF deletion on pain sensitivity and 

alcohol drinking in female mice, similar to the effect of the prolonged hot plate. Surprisingly, the 
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results indicate a trend for both CRF deletion and CFA treatment in increased alcohol 

consumption, with CRF deletion mice generally exhibiting greater alcohol use than control mice 

and CRF deletion mice with CFA treatment demonstrating the greatest cumulative consumption 

for male and female subjects. Measurement of sucrose consumption confirmed that these 

observed outcomes were specific to alcohol rather than a general response to hedonic stimuli.  

These results contradict the expected role of CRF in the BNST, as previous studies have 

shown that chemogenetic inhibition of BNSTCRF+ neurons reduces binge drinking in mice (Pliel 

et al., 2015; Rinker et al., 2017). BNSTCRF+ have specifically been shown to regulate these 

changes in alcohol use through projections to the VTA (Rinker et al., 2017), while similar circuit 

mechanisms have been proposed to be involved with pathological pain states. A recent study 

from the Minami lab showed that neuropathic pain upregulates CRF and CRFR1 in the BNST 

and inhibits VTA-projecting BNST neurons to tonically suppress the mesolimbic DA system in 

rats (Takahashi et al., 2019). Chronic pain or stress particularly amplifies the contributions of 

CRFR1 to pain-related behaviors, with CRFR1 antagonism being more effective at relieving pain 

in situations that are aversive rather than neutral (Tran et al., 2012; Tran et al., 2014; Takahashi 

et al., 2019). These convergent circuits for pain and alcohol use suggest that pathological pain 

can exacerbate tonic suppression of DA signaling in the VTA to increase alcohol use 

(Takahashi et al., 2019). Although we did not report similar increases in local Crf mRNA 

following CFA treatment or local Crf deletion, it is interesting that an absence of CRF produced 

alcohol use in the same presumed direction as enhanced CRF signaling. It is thus possible that 

Crf mRNA levels do not reflect greater functional changes in CRF signaling, and that 

inflammatory pain is enhancing suppression of VTA via functional changes such as BNSTCRF+ 

excitability or enhanced CRFR1 activity. Alternatively, inflammatory pain may be augmenting 

CRF signaling through external sources like the CeA, which have been shown to be sensitive to 

CFA treatment (Li & Sheets, 2018). While these possibilities were not assessed in the present 

study, these factors should be accounted for in future investigations.  
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Although interactions with pathological pain were essential to the observed drinking 

phenotypes, Crf deletion appeared to have a more robust effect on alcohol use than CFA 

treatment, as the inflammatory state merely supplemented increases in drinking that were 

already present with Crf deletion alone. We specifically found that CRE-SAL and CRE-CFA 

mice exhibited the highest alcohol use for both males and females, and that the transition from 

CA2BC to IA2BC produced greater escalations in alcohol intake and preference exclusively for 

CRE-CFA females. Overall, CFA-treated females with Crf deletion exhibited the greatest 

consumption increases of all experimental groups. This enhancement of drinking behaviors with 

CFA treatment in Crf deletion mice is reminiscent of the evoked increases in paw attending 

behaviors for females in the prolonged hot plate. Both outcomes may be explained by 

interactions between the intensity of pain and Crf deletion, where extreme conditions of aversion 

(i.e. tonic-acting/inescapable nociceptive stimuli [e.g. prolonged hot plate, CFA treatment]) more 

robustly promote increases in active coping and drinking behaviors for female subjects. These 

effects are contrary to the sex-independent anti-nociceptive effects seen with acute pain 

exposures, supporting the theory that lasting pain experiences are a good predictor of female-

specific coping behaviors when Crf expression in the BNST is impaired. More work is needed, 

however, to determine how CRF interactions with CFA treatment work in regard to pain and 

drug use, as uncharacterized roles for CRF signaling and stimulus intensity could possibly 

explain the paradoxical effects observed in our data. 

Evidence for female-specific escalations in alcohol consumption from CA2BC to IA2BC 

refutes earlier speculation that CFA treatment could be driving ceiling effects in alcohol drinking 

for female C57BL6/J mice in the CA2BC paradigm. Given this dynamic range of alcohol 

consumption, it is interesting that our CA2BC paradigm in CFA-treated Floxed-CRF mice failed 

to reproduce the male-specific increases in drinking seen in Experiment 3.1 or escalate 

consumption in females. The inability to replicate our initial findings in males and females may 

be explained by strain or cohort differences, as the average alcohol consumption in Floxed-CRF 
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mice appeared to be lower than C57BL6/J mice (Yoneyama et al., 2008). Measures of plasma 

CORT levels support this notion, as C57BL6/J mice exhibit sex-specific baseline levels of 

stress, while these levels are comparable for male and female Floxed-CRF mice. In Experiment 

3.1, we specifically show that female C57BL6/J mice, regardless of pain status, have higher 

levels of CORT than males following a 2-hour terminal drinking session, with averages ranging 

from 44.02-55.54 ng/mL in males and 82.32-85.00 ng/mL in females. By contrast, Experiment 

3.2 shows comparable CORT levels in both sexes of Floxed-CRF mice following approximately 

10 days of abstinence from alcohol, with averages ranging from 52.07-95.27 ng/mL in males 

and 41.56-63.47 ng/mL in females. When directly comparing C57BL/6 mice with Floxed-CRF 

control mice, only saline-treated males (55.54 ng/mL vs. 56.58 ng/mL) exhibited similar levels of 

CORT across strains, while CFA-treated males (44.02 ng/mL vs. 95.27 ng/mL), saline-treated 

females (82.32 ng/mL vs. 63.47 ng/mL), and CFA-treated females (85.00 ng/mL vs. 41.56 

ng/mL) showed strain differences. Although the varying circumstances prior to sample collection 

make interpretation of this comparison difficult, it is an interesting possibility for strain 

differences in basal and evoked levels of stress hormones to preclude the expression of sex 

differences in pain-induced drinking. Hyperactive CRF signaling in females have been posited to 

drive sex differences in stress and alcohol use, so it is possible that small alterations in the Crf 

gene of the Floxed-CRF mouse strain inherently modifies basal drinking and CORT compared 

to C57BL6/J mice (Pleil & Skelly, 2018). As with all novel preclinical models, further 

investigation is required to determine the validity and reproducibility of these early results.   

Similar to our approach with Crf in the BNST, we showed in Chapter 1 that 

CRSIPR/Cas9-mediated deletion of Th in the vlPAG/DR mitigated the sex-specific effects of 

vlPAG/DRDA+ activation, but failed to do so for systemic morphine administration. These data 

suggest that greater mechanistic complexity underlies sex differences in pain and drug use 

beyond the DA and CRF signaling mechanisms we have tested. The vlPAG/DR and BNST are 

both heterogeneous structures in their molecular composition, connectivity, and function (Figure 
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1). vlPAG/DRDA+ and BNSTCRF+ neurons exhibit co-expression with various neurotransmitters, 

neuromodulators, and peptides (e.g. Glu, GABA, VIP, NT, oxytocin; Dabrowska et al., 2013), 

and these factors likely contribute to the interactions between pain and drug use in conjunction 

with DA and CRF (Figure 2). A possible shortcoming of our experiments is that the techniques 

we used do not properly control for the contributions of other co-expressed factors. Mutant 

knockout and CRISPR/Cas9 approaches can promote loss of function in targeted genes but 

changes in other RNA or protein can compensate for this deficiency (El-Brolosy & Stainier, 

2017; Stasyshyn et al., 2019). Transcriptional adaption through damage or mutation to DNA 

have been reported and may increase expression of off-target genes within the same neuron 

(Stasyshyn et al., 2019). Evaluations of transcriptional changes following deletion of Th from 

vlPAG/DR or Crf from BNST were not performed, so it is possible that other molecular drivers of 

pain and/or drug use that are co-expressed with DA and CRF may confound the current 

outcomes and interpretation of these data. It is also important to note that parallel circuits in the 

vlPAG/DR and BNST are likely to provide redundant support for the effects of systemic drug 

administration, since morphine and alcohol recruit various regions containing µ opioid and 

GABA receptors to reduce pain and promote drug use (Mansour et al., 1995; Davies, 2003; Moy 

et al., 2020). This widespread engagement may explain why deletion of Th and Crf in a single 

brain region is not sufficient to prevent the effects of drug use. These genetic deletion studies 

thus signify the need for greater mechanistic insight on the relative contributions of co-

expressing factors and projections associated with DA and CRF to understand how these 

signaling systems work together to modulate pain.    
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CHAPTER 4: DISCUSSION 
 

Summary 

 In this dissertation, we aimed to expand the limited knowledge on DA and CRF systems 

in the vlPAG/DR and BNST and their contributions to sex differences in pain. Using a series of 

experiments to evaluate the impact of cell type- and projection-specificity in these systems, we 

determined that vlPAG/DRDA+ and BNSTCRF+ neurons can modulate pain responses based on 

interactions between sex and behavioral context. This work has enabled us to characterize a 

novel sex-specific ascending circuit where vlPAG/DRDA+ projections to BNST link these DA and 

CRF systems and how they influence the pain experience. The major findings from each 

chapter are as follows:   

 Chapter 1: First, we demonstrated that vlPAG/DRDA+ neurons produce discrete pain-

related behaviors in male and female mice through DA signaling to the BNST. We specifically 

showed that vlPAG/DRDA+-BNST activation reduces nociceptive sensitivity in males, while 

increasing locomotion in females, and that these sex-dependent behaviors can be selectively 

evoked in different contexts using similar stimulation parameters. Genetic deletion of Th in 

vlPAG/DR was able to block these behaviors, while DA transmission and downstream inhibitory 

connectivity between vlPAG/DR and BNST differed in male and female mice, suggesting that 

DA interactions with local BNST circuitry plays a critical role in pain.  

 Chapter 2: We next revealed that BNSTCRF+ neurons, which have been implicated in DA 

signaling interactions (Meloni et al., 2006; Kash et al., 2008; Dougalis et al., 2012), exhibit 

dynamic in vivo recruitment by noxious heat. Sex-specific activation of BNSTCRF+ neurons was 

observed with larger and faster magnitudes in males and higher synchrony in females. Genetic 
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deletion of Crf in the BNST produced reductions in nociceptive sensitivity for acute exposures to 

pain in both sexes, while increasing protective behaviors for prolonged exposures exclusively in 

females. These results indicate that CRF in the BNST may modulate pain-related behaviors 

based on the duration and context of exposure.  

 Chapter 3: Finally, we developed and tested CFA/CA2BC, a novel preclinical model of 

pain-induced alcohol drinking in C57BL6/J mice, where persistent inflammation produced 

increases in alcohol consumption for males but not females. We then used a modified version of 

this model to show that Crf deletion in the BNST enhances pain-induced alcohol drinking in both 

sexes, while greater escalations between CA2BC and IA2BC were observed in female mice. 

More generally, we discuss the consequences of impairing local DA and CRF expression on 

measures of pain-related drug use.  

 Collectively, these chapters illustrate the many contributions of DA and CRF signaling to 

pain, revealing novel targets for the regulation of pain processing and modulation that exhibit 

divergent function in male and female mice.  

 

Classifying Novel Sex-Specific Mechanisms of Pain 

 The rapid emergence of SABV research has revealed disparate descriptions of 

mechanistic differences between male and female expressions of pain, but few studies have 

illustrated how these molecular drivers may work together. Here, we propose a singular model 

of vlPAG/DRDA+ and BNSTCRF+ contributions to pain by first considering how the endpoints of 

pain-related behaviors relate in male and female subjects. Three broad categories of sex-

specific function have been described by McCarthy et al. (2012), where model organisms can 

exhibit 1) sexual dimorphism (forms of the endpoint are distinct in males and females), 2) sex 

differences (an endpoint is expressed on a continuum but the averages differ in males and 

females), or 3) sex convergence and divergence (similar endpoints are driven by dissimilar 

mechanisms or evoked by a challenge such as injury or stress in males and females). In our 
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own findings, we report that vlPAG/DRDA+ projections to BNST exhibit a combination of sexual 

dimorphism and sex divergence in anti-nociceptive and locomotor responses, as 20 Hz 

stimulation of this pathway elicited different outcomes based on sex and contextual salience of 

the environment. This suggests that vlPAG/DRDA+ activation exclusively drives changes in 

nociceptive sensitivity in males and locomotion in females. Remember, however, that 

vlPAG/DRDA+ activation was able to produce trends for reduced sensitivity to mechanical 

nociception in two cohorts of female mice, while Th deletion in the vlPAG/DR suppressed 

novelty-induced locomotor activity in the open field for males and females. These findings 

indicate that vlPAG/DRDA+ contributions to anti-nociceptive and locomotor functions exist in both 

sexes and manifest differently according to the parameters and context in which neuronal 

activation is taking place. So rather than sexual dimorphism, the function of DA in the vlPAG/DR 

is more likely to constitute a sex difference.  

In contrast to this DA population, BNSTCRF+ neurons exhibited convergences in 

nociceptive encoding, as the magnitude and timing of neuronal activity differed in males and 

females without any variation in nociceptive sensitivity. Genetic deletion of Crf in the BNST, 

however, resulted in a conditional sex difference, as the manipulation produced comparable 

reductions in nociceptive sensitivity for males and females, but increased protective behaviors 

exclusively in females. Such provisional terms for pain outcomes may reflect an element of sex 

divergence, since the prolonged hot plate, a longer acting and less escapable noxious stimulus, 

was required to evoke female-specific indications of spontaneous pain. Reconciling these 

findings, we propose that convergences in pain processing and divergences in pain modulation 

translate to differences in the functional significance of BNSTCRF+ activity size and timing in male 

and females. How these mechanisms change with sustained pain and modulate function are 

likely to differ by sex, as repeated trials of nociceptive exposure resulted in progressive 

decreases in the magnitude of activation and increases in the spike latency for male and female 

subjects respectively. The ability of temporal correlations to transmit information in accordance 
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with the magnitude of neuronal ensemble activity has recently been characterized (Frost et al., 

2020), so it remains an intriguing possibility for BNSTCRF+ magnitude/synchrony to drive 

modulation of responses to sustained pain. Such a mechanism could explain the female-specific 

protective behaviors observed with Crf deletion.  

When applied to pain-induced drug use in C57BL6/J mice, CFA treatment produced 

escalations in alcohol consumption for males and higher overall drinking and plasma CORT 

levels in females, suggesting that these pain-drug interactions are susceptible to sex 

differences. However, these effects were strain-dependent, as Floxed-CRF mice did not exhibit 

the same trends for CFA-induced escalations or CORT. Instead, genetic deletion of Crf in the 

BNST interacted with CFA treatment to increase alcohol consumption in both males and 

females. Discrepancies in alcohol use between male and female subjects were restricted to 

CA2BC-IA2BC escalations for CFA-treated females with Crf deletion. Since this phenotype 

relied on a tonic-acting/inescapable nociceptive stimulus (i.e. CFA) to evoke distinct iterations 

by sex, we classified it as a sex difference and divergence, similar to the conditionality 

described with female-specific protective behaviors in the prolonged hot plate. 

Taken together, vlPAG/DRDA+ and BNSTCRF+ neurons appear to promote sex differences 

or convergences in acute pain and sex divergences in prolonged pain. These outcomes show 

that both DA and CRF subpopulations can modulate reflexive, spontaneous, and locomotor 

responses to pain based on the context of the noxious treatment and environment, with female-

specific behaviors being driven to a greater extent when these populations were manipulated in 

the presence of tonic-acting/inescapable nociceptive stimuli (e.g. locomotion with visceral 

nociception, protective behaviors with prolonged hot plate, CA2BC to IA2BC escalations with 

CFA) or contextual salience (e.g. locomotion with opposite sex conspecifics and environmental 

novelty). Our interpretation asserts that the repertoire of pain responses following manipulation 

of vlPAG/DRDA+ and BNSTCRF+ neurons has the potential to be elicited in both sexes, but the 
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context in which these behaviors are evoked can drive discrete functional outcomes for male 

and female mice. 

This delineation of mechanistic similarities and differences is necessary for precision 

approaches to combating the pathophysiology of pain, but it is important to note that observed 

differences by sex do not inherently signify that one sex is better suited for survival or more 

deserving of care than the other. Careful interpretation is required to obtain biological insight 

that is not biased towards societal attitudes on male and female behavior. In reference to our 

findings, we observed that vlPAG/DRDA+-BNST anti-nociception could be advantageous in male 

mice when confronted with acute exposures to noxious stimuli. By contrast, vlPAG/DRDA+-BNST 

locomotion in female mice may be beneficial for pain sources with fixed locations or sustained 

durations, enabling active coping strategies in response to discomfort. The anti-nociceptive and 

locomotor responses elicited by this pathway are not inherently adaptive or maladaptive without 

knowing the specific context in which these behaviors are engaged. Interestingly, we report that 

pathway activation did not indiscriminately drive sex-specific behaviors: the anti-nociceptive 

effects in males were not preserved in environments where females exhibited locomotion (e.g. 

visceral nociception), nor were locomotor behaviors in females present in environments where 

males exhibited anti-nociception (e.g. Hargreaves, Von Frey). The mechanisms of sex-specific 

pain responses may thus selectively contribute to function based on environmental context to 

highlight the respective strengths of male and female coping strategies. Similar selectivity with 

Crf deletion in the BNST has been established based on temporal characteristics of nociceptive 

stimuli. We conclude that vlPAG/DRDA+ and BNSTCRF+ neurons are important for the regulation 

of sex-specific responses to pain in relation to the environment. 

 

The Role of Salience in Pain Modulation 

 Our unifying theory for the functional role of vlPAG/DRDA+ and BNSTCRF+ neurons 

contends that salience may be encoded by and influencing these neurons to orchestrate 
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adaptive responses to pain. The concept of salience “refers to the physical distinctiveness or 

conspicuity of a stimulus, a relative property that depends on its relationship to the other 

surrounding stimuli” (Legrain et al., 2011). Hierarchies of environmental stimuli are ordered in 

the brain by their potential for reward or harm, as these cues provide the greatest value in 

physical and emotional payoff. Pain, being an event that is defined by its potential for harm, is 

thus a uniquely salient sensory experience that demands immediate attention for informed 

responses to the environment (Borsook et al., 2013). By contrast, the assignment of salience to 

non-nociceptive tactile stimuli requires voluntary attention or behavioral relevance to motivate 

action (Downar et al., 2003). In humans, neuroimaging has been used to parse out this 

distinction between nociceptive and non-nociceptive stimuli and identify structures related to 

pain. Several studies have made the link between nociception and salience as essential 

components of the pain experience (Legrain et al., 2011; Mouraux et al., 2011; Linnman et al., 

2012a; Borsook et al., 2013), showing that the intensity and unpleasantness of noxious stimuli 

scale with activity in responsive regions.  

This network of brain regions showing correlated activity with nociceptive exposure, 

referred to as the “pain matrix,” has revealed important contributions from the PAG in the 

intersection of pain and salience (Peyron et al., 2000; Apkarian et al., 2006; Linnman et al., 

2012a). By integrating information from peripheral afferents and higher centers of the brain, the 

PAG is well-situated to gate stimulus representations, organize relevant information in the 

environment, and modify behaviors based on contextual salience (Linnman et al., 2012a). 

Recent preclinical findings have established a role for vlPAG/DRDA+ neurons in the functional 

modulation of salience. In one of the first behavioral characterizations of these DA neurons, 

Clifford Saper and colleagues demonstrated that vlPAG/DRDA+ neurons are necessary for 

wakefulness in rats (Lu et al., 2006). This seminal study found that approximately 50% of TH 

cells in vlPAG/DR were activated during natural wakefulness or environmental stimulation, while 

chemical lesion of DA neurons in vlPAG/DR resulted in a 20% increase in sleep (Lu et al., 
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2006). As established by the Weinshenker lab, noradrenergic signaling from the locus coeruleus 

regulates these vlPAG/DRDA+ contributions to wakefulness through astrocytes (Porter-Stransky 

et al., 2019). Elegant work from the Gradinaru lab further expanded on these wake/sleep 

findings by showing that in vivo vlPAG/DRDA+ activity increases with wakefulness and other 

prototypically salient experiences such as pain (footshock), social contact (unfamiliar mouse of 

the opposite sex), and novelty (unfamiliar object) in mice (Cho et al., 2017). Since wakefulness 

and related salient experiences all constitute heightened arousal states, these findings are 

compelling indications that vlPAG/DRDA+ neurons contribute to and are modulated by 

experiences that necessitate attention.  

As discussed in Chapter 1, several of our findings support a role for vlPAG/DRDA+ in 

salience. This was particularly evident in experiments with optogenetic activation of 

vlPAG/DRDA+ terminals in the BNST, as the intensity and unpleasantness of nociceptive stimuli 

appeared to modulate pathway function. With a phasic-acting/escapable nociceptive exposure, 

pathway activation produced anti-nociception in male mice. With a tonic-acting/inescapable 

nociceptive exposure, however, the same manipulation resulted in increased writhing and 

locomotor behaviors in female mice. These data suggest that changing contextual salience with 

nociceptive stimuli of varying duration/escapability may prime the vlPAG/DRDA+-BNST pathway 

to function in a sex-specific manner. Supporting this role for salience, we showed that 

vlPAG/DRDA+-BNST activation in the presence of significant non-painful experiences (e.g. 

socializing with an opposite sex conspecific, environmental novelty) was able to drive female-

specific locomotor increases as well. This indicates that contextual salience can modulate 

vlPAG/DRDA+-BNST contributions to adaptive behaviors in the absence of nociceptive stimuli. 

Clinical evidence shows that multimodal response networks associated with pain (i.e. regions 

that respond to nociceptive stimuli, as well as non-nociceptive/tactile, auditory, and visual 

stimuli) are scaled with perceived salience and novelty of the presented stimulus (Mouraux & 

Plaghki, 2007; Iannetti et al., 2008; Lee et al., 2009; Legrain et al., 2011; Mouraux et al., 2011). 
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This functional modulation by salience is reminiscent of the data we describe, implying that 

some mechanistic contributions to pain reflect broader stimulus gating processes that can 

happen in the presence or absence of tissue damage. Together, these findings indicate that 

vlPAG/DRDA+ function is not strictly limited to pain and may instead apply more broadly to states 

of vigilance, where contextual salience and threat response work in tandem to promote survival. 

Our findings additionally implicate the BNST in functional modulation by salience, as DA 

input relied on this structure to drive context-specific behaviors. Previous investigations suggest 

that the region is involved in value representation, particularly when it comes to how the BNST 

processes threatening or aversive stimuli (Avery et al., 2016). Increased functional connectivity 

between the BNST and downstream regions regulating stimulus detection (e.g. anterior insula, 

caudate nucleus) has been observed in patients with post-traumatic stress disorder (Rabellino 

et al., 2017). These salience networks have been linked to maladaptive anxiety following threat 

exposure, with the BNST and associated regions exhibiting longer lasting responses to hostile 

cues in patients with anxiety disorders compared to healthy controls (Herrmann et al., 2016; 

Brinkmann et al., 2017; Jenks et al., 2020). By contrast, regions like the amygdala, anterior 

cingulate cortex, and ventrolateral prefrontal cortex exhibit phasic responses that correspond to 

the onset of threat (Herrmann et al., 2016). The BNST is thus is a key region for sustained 

responses to stimuli that exhibit the potential for harm and may contribute to the intersection of 

pain and salience through hypervigilant monitoring of threats (Sommerville et al., 2010).  

This sustained attention for aversive stimuli is likely to involve CRF signaling, as 

antagonism of CRF receptors in the BNST mitigates persistent threat monitoring and other 

forms of adaptive anxiety (Davis et al., 2000; Heinrichs & Koob, 2004; Hummel et al., 2010). 

Noting that similar manipulations can block the sensory and affective-motivational components 

of pain (Ide et al., 2013; Tran et al., 2014), it is possible that the same effects on threat detection 

and response are taking place through CRF signaling in the BNST to modulate pain and affect. 

As detailed in Chapter 2, we demonstrate that BNSTCRF+ neurons exhibit greater increases in 
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activity during a noxious heat exposure compared to the epochs surrounding the exposure, with 

the largest magnitude and highest fraction of synchrony happening at the start of heat for males 

and female subjects respectively. This evidence for in vivo engagement of BNSTCRF+ neurons 

shows that activation happens in response to detection of the stimulus (i.e. at onset of heat) 

rather than motivated withdrawal from the stimulus (i.e. at the offset of heat). Progressive 

changes across trials in the magnitude and latency of maximum heat response additionally 

suggest that there is an element of novelty to stimulus encoding, where the extent of response 

decreases and becomes more delayed with habituation. These data corroborate findings in 

clinical studies that have shown that repeated exposure to a nociceptive stimulus leads to 

dissociations in how the stimulus is represented by the brain (Becerra et al.,1999).  

Biases towards the detection of unexpected nociceptive stimuli reinforces the idea that 

the BNST is modulated by salience, as the dynamics of responsivity in BNSTCRF+ neurons may 

reflect the association between the valence of a stimulus with its surroundings. Potentially 

supporting this notion, genetic deletion of Crf in the BNST may be impairing the detection of 

nociceptive stimuli to reduce reflexive sensitivity in both sexes, while enhancing salience for 

more demanding (i.e. longer acting/less escapable) nociceptive exposures in females. Although 

the contributions of BNSTCRF+ neurons to threat salience have not been explicitly investigated, 

activation of GABA neurons in the BNST can drive immediate transitions from non-REM sleep 

to wakefulness in mice (Kodani et al., 2017), making it a possibility for co-expression of CRF to 

influence arousal states and alter the perception of an environment or experience. This 

reciprocal modulation between the BNST and contextual salience would allow arousal states to 

either influence or be influenced by the structure. The potential link between BNSTCRF+ neurons 

and environment has major implications for threat response, as they can change the 

represented value of a stimulus relative to its surroundings and/or inform safe navigation of an 

environment. This proposed function thus supports a role for BNSTCRF+ neurons in states of 

threat vigilance and response. 



 

86 

 These findings mutually conclude that the ability of salience to modulate vlPAG/DRDA+ 

and BNSTCRF+ function depends on several factors that can change the distinctive value of a 

stimulus relative to other factors in the environment. In the case of nociceptive stimuli, these 

neuronal populations modulate responses to pain based on features like modality, duration, and 

escapability, with the greater net intensity and unpleasantness of the stimulus resulting in the 

more painful and salient experiences. This trend for vlPAG/DRDA+ and BNSTCRF+ functions 

differing when a stimulus is phasic-acting/escapable versus tonic-acting/inescapable may be 

reflective of how pain primes neuronal function based on the intensity/salience of the 

experience. Neuroimaging has revealed that a defining factor of distinguishing pain from inert 

experiences is prolonged salience, since pain produces longer lasting representations of brain 

activity than non-painful stimuli (Downar et al., 2003). This is especially true of the PAG and 

BNST, which have been reported to exhibit particularly sustained responses to the potential of 

harm (Davis et al., 2000; Herrmann et al., 2016). Similarly sustained physiological and 

behavioral phenotypes for these regions were observed in our own experiments with mice, 

where optogenetic stimulation of vlPAG/DRDA+ terminals in the BNST at 20 Hz produced firing in 

downstream BNST neurons lasting on the order of minutes, as well as anti-nociceptive effects 

that overlapped with subsequent Laser OFF sessions despite ten minute intervals between 

trials. These sustained properties of vlPAG/DRDA+ transmission to BNST are likely to be a 

product of DA signaling, as phasic stimulation (≥ 20 Hz) of DA release has been shown to 

similarly drive sustained activity on the order of minutes in the prefrontal cortex (Lohani et al., 

2019; Yagishita et al., 2019). Behavioral states that are prototypically salient can modulate the 

impact of this phasic DA release on the activity of brain networks and influence functional 

outputs, thus revealing the cyclical impact of DA on processes like attention, behavioral 

flexibility, and sustained affective-motivational states (Lohani et al., 2019).  

Sex differences in the consequences of phasic DA activation were evident in our 

investigation of the vlPAG/DRDA+-BNST pathway as well. We demonstrated that 20 Hz 
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stimulation of vlPAG/DRDA+-BNST drives sex differences in DA transmission, as males exhibited 

more robust D1R-gated depolarizations in the BNST than females. These firing conditions were 

also modulated by behavioral states, which changed pathway function in a sex-specific manner. 

Salient characteristics such as stimulus intensity selectively produced anti-nociceptive and 

locomotor behaviors through the vlPAG/DRDA+-BNST pathway for male and female mice. These 

properties of sustained DA signaling extended to BNSTCRF+ neurons, as more tonic-

acting/inescapable nociceptive contexts evoked female-specific behaviors as well. We posit that 

sustained activation may be important for driving behaviors of proportionate duration to the 

extended activity signatures of pain. By sustaining analgesic or defensive behaviors that last as 

long as the representation of the nociceptive experience itself, an organism is afforded 

adequate time to maintain vigilance in an environment and inform future behaviors following the 

initial suite of protective actions. Since inhibition of vlPAG/DRDA+ neurons increases delta (0.5-4 

Hz) frequency oscillations while decreasing theta (8-12 Hz) and gamma (40-100 Hz) to reduce 

environmental salience (Cho et al., 2017), and higher frequency oscillations are likely to 

correspond to increased salience, it is possible that the sustained effects of 20 Hz stimulation in 

vlPAG/DRDA+-BNST are influencing pain-related behaviors by emulating heightened arousal 

states. More direct evaluations of this hypothesis in male and female subjects, as well as similar 

investigations for BNSTCRF+ neurons, are required to test this possibility.  

Although we primarily studied the role of vlPAG/DRDA+ neurons in the context of pain, 

these neurons have been implicated in salience for both rewarding and aversive stimuli through 

associative learning tasks (Cho et al., 2017; Lin et al., 2020; Cho et al., 2020). Inhibition of 

vlPAG/DRDA+ neurons reduces time spent in a compartment with either a rewarding (opposite 

sex conspecific, high fat food, morphine) or aversive (2,5-dihydro-2,4,5-trimethylthiazoline, 

footshock, morphine withdrawal) stimulus (Cho et al., 2017; Lin et al., 2020), while activation 

increases the valence association of these cues (Cho et al., 2020). Both internal and external 

factors that alter salience can affect how these neurons process rewarding and aversive stimuli, 
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with satiety diminishing the ability of these neurons to respond to appetitive reward, while the 

extinction of novelty in a behavioral context can diminish responses to pain (Cho et al., 2020). 

Using the same CRISPR/Cas9-mediated knockout of Th in vlPAG/DR as Chapter 1, Lin et al. 

(2020) demonstrated the importance of DA signaling to associative learning, with TH deletion 

impairing incentive memory for high fat food, morphine reward, and morphine withdrawal. The 

study further shows that in vivo DA release in the BNST and CeA corresponds to appetitive 

reward and pain stimuli, with conditioning transiently shifting activity to the predictive auditory 

cue over five days of training (Lin et al., 2020), providing evidence that vlPAG/DRDA+ neurons 

communicates with the extended amygdala through DA signaling to modulate the motivational 

salience of the rewarding or aversive aspects of a stimulus relative to other cues in the 

environment. This form of associative learning has been shown to involve vlPAG/DRDA+ 

projections to the CeA (Groessl et al., 2018), but a similar assessment for the role of BNST and 

motivational salience has yet to be performed.  

Evidence supporting a role for the BNST in motivational salience shows that DA release 

increases with a palatable reward (sucrose) and decreases with appetitive punishment 

(quinine), suggesting that DA release in the BNST is attuned to the rewarding and aversive 

components of salient stimuli (Park et al., 2012). While this is likely due to the influence of the 

VTA, as similar biases for DA release in the BNST were not reported in the vlPAG/DR (Lin et 

al., 2020), this concept introduces an intriguing possibility for vlPAG/DR neurons to modify DA 

signaling to BNST based on the positive or negative valence of a stimulus. In the present 

dissertation, we generally report that this DA system contributes to pain, a prototypically 

aversive experience, but the ability of vlPAG/DRDA+-BNST to change functional outputs for both 

rewarding and aversive behavioral contexts corroborates a broader role in salient experiences. 

Describing the observed effects on pain as a facet of motivational salience may thus be more 

accurate in representing the overarching function of vlPAG/DRDA+ neurons and their projections 

to the BNST. Similar conclusions have been made for the mesolimbic DA system, which has 
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exhibited multifaceted roles in anti-nociceptive, associative learning, and salience (Berridge & 

Robinson, 1998; Taylor et al., 2016). This suggests that the dopaminergic systems we associate 

with pain response, including the vlPAG/DR and VTA, may more broadly apply as regions for 

motivational salience (Woodward et al., 1999; Legrain et al., 2011; Linnman et al., 2012a; Taylor 

et al., 2016). 

 

Motivational Salience as a Driver of Pain-Related Drug Use 

 Considering the evidence for vlPAG/DRDA+ and BNSTCRF+ contributions to pain and 

motivational salience, there remains an intriguing possibility that these signaling systems can 

influence the rewarding and aversive aspects of analgesic drug use. In this dissertation, we 

report that genetic deletion of Th in vlPAG/DR specifically mitigates the anti-nociceptive and 

locomotor effects of the neuronal population, while failing to prevent the same effects following 

systemic morphine treatment. This suggests that DA in vlPAG/DR is not solely responsible for 

the expression of morphine anti-nociception or locomotion, as parallel circuits that are sensitive 

to µ opioid agonists (e.g. descending pain pathway, mesolimbic DA system) drive intact 

expression of these behaviors. As demonstrated by the Luo lab, however, Th deletion in 

vlPAG/DR impairs associative learning for the rewarding and aversive effects of morphine use, 

with the absence of DA producing weaker conditioned place preference and avoidance for 

morphine treatment and withdrawal respectively (Lin et al., 2020). From this perspective, it 

appears that DA signaling in vlPAG/DR is essential for the expression of associative learning 

with morphine, but formation of this association does not require the anti-nociceptive or 

locomotor effects of the drug, as we show that expression of these behaviors are not impaired. 

This suggests that vlPAG/DRDA+ neurons primarily contribute to morphine use by modulating the 

motivational salience of rewarding and aversive components and strengthening associations 

between the valence of the drug and the environment. Interestingly, the circuits behind these 

reinforcing and punishing properties may be segregated, as glutamatergic input from lateral 
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parabrachial nucleus to vlPAG/DRDA+ neurons exclusively alters associative learning for the 

rewarding aspects of morphine and more generally disrupts the encoding of appetitive rewards 

like sucrose (Lin et al., 2020). Whether vlPAG/DRDA+ projections to the BNST and parallel 

circuits in this DA system exhibit similar biases for positive or negative valence remains to be 

seen, as circuit level investigations with vlPAG/DRDA+ have been limited for morphine, alcohol, 

and other analgesic drugs of abuse.  

By contrast, BNSTCRF+ neurons have been widely implicated in drug use through DA 

signaling. Several drugs of abuse, including morphine, alcohol, nicotine, and cocaine increase 

extracellular DA in the BNST (Carboni et al., 2000). Along with vlPAG/DR, the VTA shares 

reciprocal projections with the BNST (Kudo et al., 2012; Jennings et al., 2013; Silberman et al., 

2013), which includes DA input to BNSTCRF+ neurons (Meloni et al., 2006) and BNSTCRF+ 

projections to VTA (Rodaros et al., 2007). It has specifically been proposed that DA input from 

vlPAG/DR and VTA enhances activation of BNSTCRF+ neurons, thus triggering Glu projections to 

activate the mesolimbic DA system and promote drug use (Meloni et al., 2006; Dumont et al., 

2008; Silberman et al., 2013). These DA and CRF signaling interactions in the BNST have been 

posited to drive cue-induced reinstatement, where predictive cues of drug environments act as 

stressors to promote relapse (Mahler & Aston-Jones, 2012; Silberman & Winder., 2013; Goode 

& Maren, 2018). This link between drug and cue is a form of associative learning that is 

established through repeated pairings of rewarding (i.e. acute effects of drugs: hedonic value, 

positive mood, pain relief) or aversive (i.e. chronic effects of drugs: withdrawal, negative mood, 

hyperalgesia) drug effects with the environments these effects take place in (Mantsch et al., 

2015). The involvement of BNSTCRF+ neurons in cue-induced reinstatement through DA 

signaling suggests that the role of CRF in associative learning may be akin to that of 

vlPAG/DRDA+ neurons, with both regulating the motivational salience of rewarding and aversive 

stimuli.  
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Although we were not able to test this hypothesis directly, we showed that genetic 

deletion of Crf in the BNST interacts with persistent inflammatory pain to increase alcohol 

consumption in male and female mice. This effect suggests that sustained increases in pain 

intensity, a more salient experience than that of uninjured control mice, may paradoxically be 

enhanced by CRF deletion to promote greater alcohol use. Contrary to the expected result of 

CRF deletion reducing links between alcohol and its reinforcing effects in the context of 

inflammatory pain, the manipulation may instead have impaired the association between alcohol 

and its aversive consequences, leading mice to consume more alcohol. Though an obvious 

explanation for this outcome is not apparent, conceptualizing how DA signaling interacts with 

BNSTCRF+ neurons to encode for reward/aversion may provide mechanistic insight into these 

findings. Previous studies have shown that DA release is opposingly modulated by rewarding 

and aversive stimuli (Park et al., 2012) and can promote BNSTCRF+ activation (Silberman et al., 

2013). DA input to BNST specifically signals for reward predictive cues rather than the absence 

of reward (Park et al., 2013), implicating BNSTCRF+ neurons in responses to stimuli with positive 

valence. In pathological pain conditions, however, CRF signaling in the BNST is enhanced 

through local upregulation of CRF and CRFR1, resulting in the tonic suppression of VTA-

projecting BNST neurons (Takahashi et al., 2019; Hara et al., 2020). This mechanism is 

believed to impair affective-motivational contributions of the mesolimbic DA system and promote 

aversion (Minami, 2019), as CRFR1 antagonism in the BNST increases extracellular DA release 

in the nucleus accumbens and produces conditioned place preference in a rat model of 

neuropathic pain (Takahashi et al., 2019). Thus, it is conceivable for pathological pain states to 

enhance BNSTCRF+ responsivity to aversive stimuli by altering the motivational salience of these 

negative experiences. This shift in attentional bias from rewarding stimuli to aversive stimuli 

could potentially explain the paradoxical effects of Crf deletion in the BNST on alcohol use. 
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DA and CRF Signaling Systems as Potential Therapeutic Targets for Pain 

 Work from our lab and others have established that vlPAG/DRDA+ and BNSTCRF+ neurons 

are sensitive to morphine and alcohol (Carboni et al., 2000; Veinante et al. 2003; Flores et al., 

2004; Flores et al., 2006; Shalev et al., 2006; Jaferi et al., 2009; Silberman & Winder, 2013; Li et 

al., 2013; Pliel et al., 2015; Li et al., 2016; Lin et al., 2020) and can modulate pain (Ide et al., 

2013; Tran et al., 2014; Li et al., 2016; Taylor et al., 2019), but how these DA and CRF signaling 

systems are engaged by contemporary methods of pain management is unclear. Current 

pharmacological approaches to treatment generally include non-steroidal anti-inflammatory 

drugs, topical anesthetics, corticosteroids, anticonvulsants, antidepressants, and opioids. These 

analgesic drug classes employ an extensive range of mechanisms that aim to reduce 

nociceptive signaling, enhance immune system efficiency, or improve associated mood and 

autonomic symptoms in both the peripheral and central nervous system, demonstrating that 

pain constitutes a system-wide experience with multiple etiological factors.  

Among chronic pain patients, the use of opioids and antidepressants have been 

common routes of intervention for pain management (Watson, 2000; Verdu et al., 2008; Busse 

et al., 2018). These drug classes exhibit unique treatment properties in efficacy and 

applicability, with antidepressants being recommended as a first line medication for severe pain 

and opioids being reserved for more refractory conditions (Watson, 2000). What unifies opioids 

and antidepressants is their ability to provide symptom relief through the recruitment of the 

catecholaminergic system. The majority of known analgesic mechanisms are based on 

endogenous opioid signaling (Holden et al., 2005), where µ, κ, and δ opioid interactions have 

been shown to promote NE and DA release (Van Loon et al., 1981; Jenson & Smith, 1982; 

Basbaum et al., 1984; Baron et al., 1985; Pang & Vasko, 1986; Bouaziz et al., 1996; Furst, 

1999; Zubieta et al., 2003; Narita et al., 2005; Wood, 2006; Niikura et al., 2010; Massaly et al., 

2016). Antidepressants similarly promote catecholaminergic signaling, as tricyclic 

antidepressants drive sustained extracellular levels of 5-HT, NE, and acetylcholine in the dorsal 
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horn of the spinal cord to produce pain relief (Sansone & Sansone, 2008; Verdu et al., 2008; 

Obata et al., 2017). Notably, 5-HT and NE reuptake inhibitors (e.g. amitriptyline, nortrypyline, 

imipramine) and related classes that increase catecholamine availability (e.g. venlafaxine, 

bupropion) have been reported to be more effective for pain treatment than selective 5-HT 

reuptake inhibitors (SSRI; e.g. paroxetine, citalopram, fluoxetine) (Max et al., 1992; Richeimer et 

al., 1997; Sansone & Sansone, 2008). The lower doses needed to drive pain relief but not mood 

changes further suggest that this specific drug class may be especially effective for influencing 

pain (Sullivan & Robinson, 2006; Sansone & Sansone, 2008). However, tricyclic 

antidepressants have also been reported to produce adverse side-effects like dry mouth, 

dizziness, nausea, heart palpitations, drowsiness (Riediger et al., 2017). 

Comparisons of tricyclic subclasses reveal that atypical antidepressants may be a good 

alternative for providing pain relief with less severe side-effects than traditional tricyclics 

(Semenchuk & Davis, 2001; Sansone & Sansone, 2008; Riediger et al., 2017). Bupropion, a NE 

and DA reuptake inhibitor (NDRI), has been reported to mitigate pain and associated 

disturbances in quality of life for 73% of neuropathic pain patients in a double-blind randomized 

trial (Semenchuk & Davis, 2001). The drug specifically enhances catecholaminergic signaling in 

the midbrain and hindbrain and produces analgesia with better tolerated side-effects than other 

antidepressants (Ascher et al., 1995; Wolfe & Trevedi, 2004). Similar functional outcomes have 

been observed with opioid use, as stimulants like dextroamphetamine can promote the release 

of NE and DA to reduce the minimal amount of morphine needed for anti-nociception (Forrest et 

al., 1977). This net enhancement of catecholaminergic signaling can additionally reduce the 

side-effects of morphine, with notable improvements for sedation, loss of alertness, and 

cognitive deficits in humans (Bruera et al. 1992; Dalal & Melzack, 1998). Considering that 

presynaptic µ and κ opioid receptors located on GABA neurons in the vlPAG/DR disinhibit local 

DA neurons to drive analgesia and wakefulness, we speculate that NDRI antidepressants like 

bupropion similarly drive sustained NE and DA signaling through vlPAG/DRDA+ neurons to 
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relieve pain and eliminate side-effects (Li et al., 2016; Li & Kash, 2019). In support of this 

theory, we observed that activation of vlPAG/DRDA+ projections to the BNST can produce 

analgesia without promoting reward or aversion in mice. Furthermore, we know that NE and DA 

work together to enhance arousal states, with noradrenergic signaling from the locus coeruleus 

regulating vlPAG/DRDA+ contributions to sleep-wake transitions (Porter-Stransky et al., 2019). 

Opioids and antidepressants may thus be activating vlPAG/DRDA+ circuits to help regulate the 

expression of pain, arousal, and the associated effects of drug use/environment to contribute to 

the overall outcomes of these pharmacological interventions.  

The promotion of DA release by these two classes of pain medications is expected to 

affect CRF signaling in the BNST as well (Carboni et al., 2000; Meloni et al., 2006). Having 

previously established the possibility of reciprocal modulation between the midbrain and BNST, 

we posit that DA input to the BNST can modulate pain and motivational salience of drugs 

through CRF signaling. Early pharmacology experiments implicate CRF in analgesia, with 

intravenous, intracerebroventricular, intracisternal, and intrathecal application of CRF reducing 

nociceptive sensitivity in rodents and humans (Guillemin et al., 1977; Wei et al., 1986; 

Hargreaves et al., 1987; 1989a; 1989b; Dunn & Berridge, 1990; Bianchi et al., 1991; Owens & 

Nemeroff, 1991; Song & Takemori, 1991; Kita et al., 1993; Schafer et al., 1994; Bianchi & 

Panerai, 1995; Mousa et al., 1996; Schafer et al., 1996; Lariviere & Melzack, 2000; Cabot et al., 

2005; Nijsen et al., 2005; Vit et al., 2006; Mousa et al., 2007). These anti-nociceptive effects 

were especially reliable in inflamed peripheral tissues, with CRF triggering the release of opioid 

peptides to relieve pain (Schafer et al., 1997). Although fewer descriptions of CRF contributions 

to pain exist for central tissues (Valentino & Foote, 1987; Bianchi & Panerai, 1995; Lariviere & 

Melzack, 2000; Cui et al., 2004; Sinniger et al., 2004; Mousa et al., 2007; Ji and Neugebauer., 

2007; 2008; Bourbia et al., 2010; Ji et al., 2013; Zhang et al., 2016; Zhang & Xu, 2017; Song et 

al., 2020), we were able gain some insight on this by demonstrating that activation of 

vlPAG/DRDA+ projections to the BNST reduces inflammatory pain through possible innervation 
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of CRF neurons (Eiden et al., 1985; Petit et al., 1995; Kozicz et al., 1997; Kozicz et al., 1998; 

Meloni et al., 2006; Silberman et al., 2013). We further show that Crf deletion in the BNST 

interacts with inflammatory pain to increase the voluntary consumption of alcohol, a drug that 

activates vlPAG/DRDA+ neurons (Li et al., 2013), promotes increases in extracellular DA in the 

BNST (Carboni et al., 2000), and likely interacts with DA to reduce pain (Eiden et al., 1985; Petit 

et al., 1995; Kozicz et al., 1997; Kozicz et al., 1998; Meloni et al., 2006; Egli et al., 2012; 

Silberman et al., 2013). Since chronic pain enhances CRF signaling in the BNST, with multiple 

studies suggesting that enhancements in local CRF and CRFR1 activity drive the transition to 

pathology (Sink et al., 2012; Tran et al., 2014; Takahashi et al., 2020), CRF is thus well 

positioned to contribute to the analgesic function of opioids (Schafer et al., 1997; Mousa et al., 

2007; Jaferi et al., 2009; 2011), antidepressants (Brady et al., 1992; Holmes et al., 2003; 

Nielsen, 2006; Marcinkiewcz and Mazzone et al., 2016), and alcohol (Olive et al., 2002; Helig et 

al., 2007; Silberman et al., 2013; Pleil et al., 2015; Rinker et al., 2017) through interactions with 

DA signaling.  

Sex differences in treatment efficacy remain one of the greatest issues of inequality in 

pain management. Indeed, responses to pain interventions have been shown to differ for men 

and women (Fillingam & Gear, 2004; Keogh, 2008), with multiple classes of analgesic drugs 

driving poorer long-term outcomes for women (Ciccone & Holdcroft, 1999; Cepeda & Carr, 

2003; Craft, 2003; LeGates et al., 2018). We theorize that vlPAG/DRDA+ neurons contribute to 

these drug-induced disparities in pain outcomes, as DA signaling to the BNST produces 

analgesia for males but not females. We additionally propose that BNSTCRF+ neurons mediate 

these downstream processes by altering representations of reward and aversion associated 

with analgesic drug use. Throughout our investigation, we have observed that female-specific 

function of these neurons is more prominent during salient contexts. In the presence of tonic-

acting/inescapable nociceptive stimuli, we found that vlPAG/DRDA+-BNST activation increases 

locomotor behaviors in females (with acetic acid) and exhibits more divergent anti-nociceptive 
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effects between sexes (with CFA treatment, where the trend for reduced mechanical nociceptive 

sensitivity in females is suppressed), while Crf deletion in BNST drives greater protective 

behaviors (with prolonged hot plate) and escalation from CA2BC to IA2BC in females (with CFA 

treatment). The ability for more aversively salient stimuli to elicit these behaviors indicates that 

vlPAG/DRDA+ and BNSTCRF+ neurons may selectively reserve active coping behaviors for more 

demanding environmental challenges in females but not males. This female-specific 

susceptibility for behavioral recruitment in more aversive contexts may reflect greater biases in 

how these DA and CRF signaling systems encode for negative valence in female subjects. 

We presume that this proposed mechanism is due to sex-dependent thresholds of 

nociceptive salience. In support of this theory, men report less pain when focusing attention on 

the ongoing nociceptive event, but women do not exhibit threshold changes when employing the 

same strategy (Keogh et al., 2000). Furthermore, women cope better with pain when focusing 

on the sensory components of the experience, and not the emotional components (Keogh & 

Herdenfeldt, 2002; Zubieta et al., 2002). Psychosocial coping mechanisms such as rumination 

over pain-related information also disproportionately affect women (Bartley & Fillingim, 2013). 

These differences in attention – where male focus may be biased towards reducing the sensory 

components of pain and female focus may be fixated on the aversive aspects of the experience 

– could more broadly explain why the outcomes of analgesic drug use differ for men and 

women. Knowing that vlPAG/DRDA+ neurons are important for associating the rewarding and 

aversive aspects of morphine use with an environment (Lin et al., 2020), sex differences in the 

salience of the drug experience likely explain discrepancies in long-term efficacy. Although the 

evidence strongly suggests that women disproportionately experience poorer therapeutic 

outcomes due to greater attending of the aversive components of pain and drug use, whether 

this theory translates to the involvement of vlPAG/DRDA+ and BNSTCRF+ neurons in contexts 

related to treatment remains to be determined. 
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Proposed Model 

 In this dissertation, we established a novel sex-specific role for DA and CRF signaling in 

pain. The series of experiments described in Chapters 1-3 establish that vlPAG/DRDA+ and 

BNSTCRF+ neurons contribute to pain with potentially important mechanistic differences for DA 

signaling and local inhibitory connectivity in males and females. Here, we propose a 

comprehensive circuit encompassing the functional properties of the midbrain and extended 

amygdala, where dopaminergic projections from vlPAG/DR and VTA terminate on BNSTCRF+ 

neurons and either work in synchrony or compete to influence behaviors during salient 

experiences such as pain and drug use (Eiden et al., 1985; Petit et al., 1995; Kozicz et al., 

1997; Kozicz et al., 1998; Meloni et al., 2006; Dougalis et al., 2012; Park et al., 2012; Silberman 

et al., 2013). DA signaling in the BNST enhances and is modulated by contextual salience, 

which may drive reciprocal feedback to the vlPAG/DR and VTA and sustain the actions of these 

midbrain DA systems (Gray & Magnusen, 1992; Kudo et al., 2012; Jennings et al., 2013; 

Silberman et al., 2013; Hao et al., 2019). Longer-term insults such as neuropathic and 

inflammatory pain are posited to robustly increase CRF and CRFR1 activity in a sex-specific 

manner, possibly leading to the constitutive activation of aversive salience. Considerations for 

male and female circuitry and function are detailed in Figure 33.  

 

Future Directions 

 Despite achieving important insight on sex differences in pain through our experiments, 

we recognize the need for more conclusive evidence on the functional role of DA and CRF 

signaling by sex. Here, we offer several lines of investigation to achieve a better understanding 

of vlPAG/DRDA+ and BNSTCRF+ neurons and their contributions to pain and drug use. The 

following questions serve to guide future experimenters in their ongoing pursuit of knowledge, 

with the intention of exposing the basic principles necessary to develop more effective and 

equitable intervention strategies of pain treatment in men and women.  
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i. Selectively Activating vlPAG/DRDA+ and BNSTCRF+ Function in Males and Females 

 Having characterized sex-specific contributions of vlPAG/DRDA+ and BNSTCRF+ neurons 

to pain, the next logical question is whether we take can advantage of this new mechanistic 

knowledge to selectively manipulate behaviors for males and females. For example, if there was 

a scenario where it would be advantageous to relieve pain, increasing D1R activity and/or the 

polysynaptic connectivity in the BNST for female mice would presumably drive comparable anti-

nociceptive to males. If it were more advantageous to move, however, we speculate that 

reducing D1R activity and/or polysynaptic engagement in male mice would produce comparable 

locomotion to females. Given our knowledge on BNSTCRF+ encoding dynamics in response to 

noxious stimuli, we may also be able to reduce the pro-nociceptive effects of tonic-

acting/inescapable nociception or pro-drinking effects of CFA treatment in females with Crf 

deletion by altering the magnitude, timing, and synchrony of BNSTCRF+ neurons in relation to 

pain exposure. These proof-of-concept experiments would test important hypotheses on how 

vlPAG/DRDA+ and BNSTCRF+ neurons are recruited by and regulate pain for both sexes and 

ultimately inform us on the utility of these neuronal populations as targets for behavioral 

modulation. 

 

ii. Pathological Pain as a Consequence or Driver of vlPAG/DRDA+ and BNSTCRF+ Function 

 Having demonstrated that vlPAG/DRDA+-BNST activation can attenuate heightened 

nociceptive sensitivity in CFA-treated male mice, we know that these neurons can preserve anti-

nociceptive function in the presence of persistent inflammatory pain. It remains unclear, 

however, whether these inflammatory conditions affect basal function of vlPAG/DRDA+ neurons 

to drive pathological pain sensitivity. Preliminary data suggests that vlPAG/DRDA+ neurons are 

not changed by inflammation, as saline- and CFA-treated males show comparable excitatory, 

inhibitory, and DA transmission between vlPAG/DRDA+ terminals and BNST neurons (data not 
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shown). These data do not preclude changes from happening in vlPAG/DRDA+ neurons of 

female mice, however, as we have observed a higher prevalence for female-specific behaviors 

in conditions of more severe pain. It is thus possible for a prolonged pain state to alter 

transmission from vlPAG/DRDA+ neurons to the BNST in female mice. CFA reduces the efficacy 

of morphine anti-nociception in females through a reduction in tonic GABAA currents of 

vlPAG/DR neurons (Tonsfeldt et al., 2016), presumably reducing disinhibition of vlPAG/DRDA+ 

neurons and DA transmission to the BNST of female mice. However, it is also feasible for the 

prolonged presence of pain to drive sustained increases in basal excitability, as neural 

representations of nociceptive stimuli are less sensitive to habituation in chronic pain patients 

(Malinen et al., 2011). Instead of reducing pathway function then, CFA may act as a 

motivationally salient stimulus akin to visceral nociception, opposite sex conspecific mice, or 

environmental novelty, where vlPAG/DRDA+ transmission to BNST is continually primed to drive 

locomotion in females. Future studies should test these dueling hypotheses, as it will provide 

important mechanistic insight on how vlPAG/DRDA+ neurons influence the experience of 

pathological pain. 

Similar questions remain for BNSTCRF+ neurons, since increased paw attending 

behaviors were observed with Crf deletion in female mice. Whether CFA treatment produces 

tonic-acting/inescapable effects similar to that of prolonged hot plate exposure was not been 

assessed, but we did observe female-specific increases in alcohol consumption between 

CA2BC and IA2BC, suggesting that the exacerbation of pain and drug seeking behaviors of Crf 

deletion in the BNST can explain similar effects observed with CFA treatment. Although there 

was no interaction between Crf deletion and CFA treatment in our own measures of nociceptive 

sensitivity, future investigations should monitor how spontaneous pain and avoidance learning 

behaviors are affected by these manipulations, as these outcomes more accurately reflect the 

increases in protective behaviors observed in females. Follow-up studies should also track how 

the induction of pathological pain affects the processing of nociceptive information, since 
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upregulation of CRF and/or CRFR1 in the BNST has been observed with chronic pain and stress 

(Tran et al., 2014; Takahashi et al., 2019). Under the assumption that prolonged pain conditions 

enhance CRF signaling in the BNST, it may also be possible for the transition from acute to 

pathological pain to be blocked by deleting CRFR1 from BNST. In data not shown, genetic 

deletion of Crfr1 from the BNST did not alter nociceptive sensitivity or alcohol use in male or 

female mice. However, the same measures were not tested after CFA treatment, so it may be 

possible that that genetic deletion of Crfr1 in the BNST prior to the induction of pathological pain 

is needed to prevent the development of dysfunction (Tran et al., 2014; Takahashi et al., 2019). 

Collectively, these experiments would be valuable indications for the therapeutic potential of 

vlPAG/DRDA+ and BNSTCRF+ neurons pertaining to whether they can accelerate or impede the 

induction of pathological pain.  

 

iii. Cell Type Diversity and the Contributions of Parallel Circuits 

 Revealing the behavioral contributions of vlPAG/DRDA+ and BNSTCRF+ neurons has 

opened the possibility for other cell types and circuits in these regions to play similar functional 

roles, since these structures exhibit great molecular diversity. For example, it is well known that 

Glu neurons in the vlPAG/DR project to the RVM as a primary component of the descending 

pain pathway, but whether these circuits exhibit sex-specific effects on pain is unclear. Given 

that DA neurons are a subset of these Glu neurons, but do not project to the RVM, it is possible 

for these ascending and descending pain circuits to either exhibit functional distinction or 

redundancy. Evidence suggests that RVM-projecting Glu neurons in the vlPAG/DR exhibit sex 

differences in the endogenous opioid system, with male rats showing fewer Glu projections, 

greater µ opioid receptor expression, and more robust morphine anti-nociception than females 

(Loyd et al., 2008; Bobeck et al., 2009; Doyle et al., 2017). However, a definitive experiment has 

yet to show that Glu neurons in the vlPAG/DR produce these sex-specific effects on nociceptive 

sensitivity using the same stimulation parameters and in the absence of µ opioid signaling. This 
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prospective divergence of µ opioid activation and anti-nociceptive potential could determine the 

relative importance of the vlPAGGLU+-RVM and vlPAG/DRDA+-BNST pathways for pain, as it 

would show whether the sex-specific functions of our novel ascending pain pathway are 

conserved in the canonical descending pain pathway.  

Co-expression in these vlPAG/DR neurons is likely to be essential for function. Within 

the vlPAG/DR, neurons that express DA also produce Glu (Li et al., 2016) and VIP (Dougalis et 

al., 2012). Interestingly, Glu and DA neurons in the vlPAG/DR produce comparable reductions 

in pain sensitivity but make distinct contributions to anxiety-like behavior (Taylor et al., 2019), 

while similar observations have been made for the function of Glu and DA co-release in the VTA 

as well (Zell et al., 2020). This DA subpopulation has also been shown to promote wakefulness, 

while vlPAG/DR neurons that co-express Glu and NT opposingly drive non-REM sleep (Zhong 

et al., 2019), indicating that functional divergence exists within Glu neurons. Functional 

specificity is additionally determined by downstream target regions, as these same Glu neurons 

can selectively drive anti-nociceptive or freezing behaviors based on outputs to the RVM and 

magnocellular nucleus (Tovote et al., 2016). These examples demonstrate the complexity of cell 

type- and projection-specific contributions to function in the vlPAG/DR. How these molecular 

and anatomical interactions contribute to the role of vlPAG/DRDA+ neurons in pain-related 

behavior requires further investigation.  

Co-expression of VIP in DA neurons may have particularly interesting implications for 

vlPAG/DRDA+ projections to the BNST. Since VIP neurons in vlPAG/DR project to the BNST 

(Eiden et al., 1985; Petit et al., 1995) and form synapses on BNSTCRF+ neurons (Kozicz et al., 

1997; Kozicz et al., 1998), similar connectivity may occur between vlPAG/DRDA+ and BNSTCRF+ 

neurons (Meloni et al., 2006; Dougalis et al., 2012). Although there has been ample 

cytoarchitectural evidence supporting the existence of a vlPAG/DRDA+-BNSTCRF+ circuit (Meloni 

et al., 2006; Dougalis et al., 2012), future studies will need to utilize more direct functional 

approaches to examine this possibility (e.g. establishing connectivity with optically-evoked 
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transmission from vlPAG/DRDA+ terminals to BNSTCRF+ neurons using TH-Cre x CRF-Flp mice). 

Comparisons of DA and VIP release in the BNST may also be informative, as VIP expression in 

the vlPAG/DR is enhanced by chronic pain (Castorina et al., 2019) and VIP receptors in the 

BNST are increased by stress (Hammack et al., 2009). Whether VIP transmission produces 

similar downstream activation as DA signaling in the BNST is unknown, but VIP innervation of 

BNSTCRF+ neurons suggests that the peptide could play a role in pain processing and 

modulation.  

 Assuming vlPAG/DRDA+ projections terminate on BNSTCRF+ neurons, forthcoming 

investigations of BNSTCRF+ neurons should explore how DA inputs from vlPAG/DR contribute to 

functional outcomes relative to the VTA. Determining whether mesolimbic inputs innervate the 

same downstream neurons as vlPAG/DR and then deciphering how these inputs work in 

combination or competition to drive behavior will be critical to our understanding of DA signaling 

in the BNST, since both DA sources appear to contribute to pain through the modulation of 

nociceptive salience (Taylor et al., 2016; Cho et al., 2020; Lin et al., 2020). The possibility of 

DA-responsive BNST neurons directly contributing to reciprocal projections back to the PAG 

and VTA is also noteworthy, since similar mechanisms of inhibitory feedback have been 

implicated in enhancing the salience of environmental cues (Friesen, 1994; Mysore & Knudsen, 

2012). RNA sequencing of the BNST neurons that share connections with vlPAG/DR and VTA 

will need to be performed in the future as well. Considering the heterogeneity of the BNST, 

where several diverse subpopulations of GABA (86%) and Glu (14%) neurons are present 

(Nguyen et al., 2016), these downstream neurons will likely consist of BNSTCRF+ subpopulations 

that co-express various combinations of neuropeptides (e.g. neuropeptide Y, dynorphin, 

somatostatin, protein kinase C δ, pituitary adenylate cyclase-activating polypeptide, oxytocin, 

neurotensin, nociception, orexin, vasoactive intestinal peptide) that differentially contribute to the 

processing of rewarding and aversive stimuli (Kash et al., 2015; Ye & Veinante, 2020). Greater 

efforts to investigate the functional divergence of these vlPAG/DR and BNST populations are 
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needed to understand how such molecularly and anatomically diverse structures compute 

sensory information and inform behavior. 

 

iv. The Role of Environmental Salience and Circuit Priming 

 Our finding that vlPAG/DRDA+-BNST function is regulated by context has widespread 

implications on how internal and external states can influence behavior. Having determined that 

the same parameters of stimulation were able to produce sex-specific outcomes based on 

behavioral context, we posit that highly salient experiences can prime neuronal networks to 

have greater basal excitation in a sex-specific manner, thus increasing the potential for activity 

and altering the weights of relative connections (Lee & Lee, 2013; Kuchibhotla et al., 2016; 

Pakan et al., 2016). Network-level analysis that factors in multiple behavioral contexts may thus 

be necessary to fully appreciate how the vlPAG/DRDA+-BNST circuit functions, since pain and 

other stimuli that necessitate attention appear to prime the projection to produce discrete 

function outcomes for males and females. A promising approach for monitoring how neuronal 

dynamics change with context is by simultaneously tracking in vivo activity of vlPAG/DRDA+ and 

BNSTCRF+ neurons at the single cell type and network level. As demonstrated in Cho et al. 

(2017), it is possible to record a single population of neurons using fiber photometry and track 

broader changes in arousal with electroencephalography and electromyography. Applying 

similar methods with variable levels of nociceptive salience would allow us to correlate 

oscillatory changes with a single population of cells for several modalities and intensities of pain. 

Using this experimental design to monitor vlPAG/DRDA+ and BNSTCRF+ activity could be a 

promising approach to attain a more holistic picture of the relationship between pain and 

salience. 

Based on clinical evidence, we would expect stimuli with greater nociceptive salience to 

engage in more prolonged network level activity and correlate with particularly sustained 

responses in the PAG and BNST (Downar et al., 2003; Herrmann et al., 2016). In our initial 
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attempts at tracking pain processing, we showed that BNSTCRF+ responses to phasic-

acting/escapable nociception were not sustained (i.e. spikes in activity were primarily restricted 

to the duration of the heat exposure). However, it remains unclear how more salient nociceptive 

experiences would be encoded by BNSTCRF+ neurons, as one would predict upregulations in 

CRF signaling to drive longer representations of a tonic-acting/inescapable stimulus. In support 

of this hypothesis, clinical studies have observed that the sustained activation seen with 

nociceptive exposure can be diminished with habituation in health adults but not chronic pain 

patients (Malinen et al., 2011; Borsook et al., 2013), indicating that sustained attention may 

contribute to the experience of prolonged pain. Greater attention for aversive information may 

further drive the sex-specific expression of pain, as hyperfixations over pain-related information 

have been posited to contribute to poorer outcomes in pain intervention for women (Keogh et 

al., 2005; Bartley & Fillingim, 2013). Future investigations should consider testing whether 

dysfunction in motivational salience contributes to pathological pain by monitoring vlPAG/DRDA+ 

and BNSTCRF+ neurons in CFA-treated mice. Since sustained attention is believed to amplify the 

aversive aspects of chronic pain and drive higher instances of pathology in women, we predict 

that CFA treatment will result in sustained encoding for nociceptive stimuli across repeated 

exposure trials when compared to controls, with representations lasting longer in female 

subjects. Monitoring sex differences will be important, as it will determine if we can model these 

links between pain and motivational salience in vlPAG/DRDA+ and BNSTCRF+ neurons. 

 

v. Changing the Perception of Pain Interventions 

 To address more immediate concerns about how to leverage our knowledge on 

vlPAG/DRDA+ and BNSTCRF+ neurons and pain, we propose a straightforward evaluation 

determining whether vlPAG/DRDA+ and/or BNSTCRF+ activation can enhance the anti-

nociceptive, hedonic, and adverse effects of analgesic drugs. This could be achieved by pairing 

optogenetic activation of DA and CRF neurons with morphine or alcohol and testing nociceptive 
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sensitivity to see how endogenous and artificial recruitment of these neurons interact to 

influence pain responses. Alternatively, manipulating neuronal activity during operant 

conditioning for sucrose- or quinine-infused morphine/alcohol could illuminate the role of these 

neurons during rewarding and aversive drug experiences. Highlighting how these circuits 

encode for the motivational salience of rewarding and aversive stimuli may help us understand 

how vlPAG/DRDA+ and BNSTCRF+ neurons relatively process the analgesic and punishing 

components of drug use. Understanding how these DA and CRF signaling systems can be 

manipulated to change the experience of drug use may lead to better treatment outcomes for 

pain in the future. 

 

vi. Conclusions 

 Through these proposed experiments, we hope to achieve greater equity in pain 

management. The field of pain has historically excluded women in research and, by 

consequence, obstructed access to thoroughly informed pain relief for half of the world’s 

population. The effects of untreated pain are vast, as vital measures of quality of life such as 

income, education, and deaths of despair – notably by drug abuse and suicide – are correlated 

with higher pain (Lumley et al., 2011; Gaskin & Richard, 2012; Case & Deaton, 2017). Factoring 

in female subjects into the design and implementation of research is a simple act but these 

practices are necessary to correct for the past exclusionary practices of the field and, most 

importantly, improve health outcomes. My contribution to this broader goal is this 

characterization of sex-specific functions in vlPAG/DRDA+ and BNSTCRF+ neurons. The hope for 

this work going forward is that it will be informative for the field and translate to more equitable 

therapeutic outcomes by sex. 
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FIGURES & CAPTIONS 

 

 

Figure 1. Whole Brain Input-Output Map of PAG/DR Circuitry 

(A) Inputs to the PAG/DR. The PAG/DR receives inputs from BNST, BLA, Cb, CeA, HYP, NTS, PB, and PFC. 

(B) Outputs from the PAG/DR. The PAG/DR sends outputs to BF, BNST, CeA, HYP, LC, LDT, THA, PFC, RVM, and 

VTA. 

Abbreviations: BF: basal forebrain, BLA: basolateral amygdala, BNST: bed nucleus of the stria terminalis, Cb: 

cerebellum, CeA: central nucleus of the amygdala, DR: dorsal raphe, HYP: hypothalamus, LC: locus coeruleus, LDT: 

laterodorsal tegmental nucleus, NTS: nucleus of the solitary tract, PAG: periaqueductal gray, PB: parabrachial 

nucleus, PFC: prefrontal cortex, RVM: rostral ventromedial medulla, THA: thalamus, VTA: ventral tegmental area; 

Glu: glutamate, GABA: γ-aminobutyric acid, DA: dopamine, 5-HT: serotonin, NT: neurotensin, VIP: vasoactive 

intestinal peptide, NE: norepinephrine. 
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Figure 2. Cell Type and Input-Output Map of PAG/DR and BNST Microcircuitry 

(A) Inputs and outputs of vlPAG/DRDA+ neurons. 

(B) Inputs and outputs of BNSTCRF+ neurons. 

(C) Input-output map of PAG/DR and BNST microcircuitry. Cell types and connectivity is indicated for the structures, 

with an emphasis on DA and CRF signaling systems. 

Abbreviations: BLA: basolateral amygdala, CeA: central nucleus of the amygdala, HPC: hippocampus, HYP: 

hypothalamus, NTS: nucleus of the solitary tract, PB: parabrachial nucleus, PFC: prefrontal cortex, PVT: 

paraventricular thalamus, VTA: ventral tegmental area; Glu: glutamate, GABA: γ-aminobutyric acid, DA: dopamine, 5-

HT: serotonin, NT: neurotensin, VIP: vasoactive intestinal peptide, NE: norepinephrine, CRF: corticotropin-releasing 

factor, DYN: dynorphin, MOR: µ opioid receptor, KOR: κ opioid receptor, D1R: dopamine receptor D1, D2R: 

dopamine receptor D2, CRFR1: corticotropin-releasing factor receptor 1, CRFR2: corticotropin-releasing factor 

receptor 2. 
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Figure 3. Activation of vlPAG/DRDA+ Produces Sex-Specific Reductions in Pain Sensitivity 

(A) Chemogenetic approach for vlPAG/DRDA+ activation. (Top) Diagram of virus infusion. (Bottom) Representative 

image of hM3Dq (orange), TH (green), and colocalization (yellow) in vlPAG/DR. Scale bar, 100 µm. 

(B) Timeline with schematic of pain sensitivity testing and CFA treatment. 

(C-D) Thermal nociceptive sensitivity of (C) male (n = 7) and (D) female (n = 7) TH-Cre mice following saline or CNO 

injection (2-way mixed-model ANOVA with Sidak’s post hoc: Drug x Virus interaction [F(1,12) = 9.955, p = 0.0083], no 

main effect of Drug [F(1,12) = 3.811, p = 0.0746], main effect of Virus [F(1,12) = 5.813, p = 0.0329] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.2139, p = 0.6520] or main effect of 

Drug [F(1,12) = 0.7924, p = 0.3909] and Virus [F(1,12) = 0.04543, p = 0.8348] for females). 
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(E-F) Mechanical nociceptive sensitivity of (E) male (n = 7) and (F) female (n = 7) TH-Cre mice following saline or 

CNO injection (2-way mixed-model ANOVA with Sidak’s post hoc: Drug x Virus interaction [F(1,12) = 11.21, p = 

0.0058], no main effect of Drug [F(1,12) = 3.222, p = 0.0979], main effect of Virus [F(1,12) = 7.853, p = 0.0160] for males; 

2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.6219, p = 0.4456] or main 

effect of Drug [F(1,12) = 1.671, p = 0.2205] and Virus [F(1,12) = 1.316, p = 0.2736] for females). 

(G-H) Post-CFA thermal nociceptive sensitivity in (G) male (n = 7) and (H) female (n = 7) TH-Cre mice following 

saline or CNO injection (2-way mixed-model ANOVA with Sidak’s post hoc: Drug x Virus interaction [F(1,12) = 8.089, p 

= 0.0148], main effect of Drug [F(1,12) = 10.23, p = 0.0077] and Virus [F(1,12) = 16.21, p = 0.0017] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.03255, p = 0.8598] or main effect 

of Drug [F(1,12) = 0.3740, p = 0.5522] and Virus [F(1,12) = 0.1154, p = 0.7400] for females). 

(I-J) Post-CFA mechanical nociceptive sensitivity in (I) male (n = 7) and (J) female (n = 7) TH-Cre mice following 

saline or CNO injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 

4.642, p = 0.0522], main effect of Drug [F(1,12) = 5.540, p = 0.0365] and Virus [F(1,12) = 5.430, p = 0.0381] for males; 2-

way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.001187, p = 0.9731] or main 

effect of Drug [F(1,12) = 0.5143, p = 0.4870] and Virus [F(1,12) = 0.07060, p = 0.7950] for females). 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 3C-3J. 

Comparisons of Sex x Virus (Two-way ANOVA with Tukey’s post hoc) reveal that CNO treatment results in male 

hM3Dq mice with greater paw withdrawal latencies and mechanosensitivity thresholds than male mCherry control 

and female hM3Dq mice. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 4. vlPAG/DRDA+ Attenuates Pain Sensitivity Without Affecting Tail Flick or Anxiety-Like Behaviors in 

Naïve and CFA-Treated Mice 

(A-B) Thermal nociceptive sensitivity by ipsilateral and contralateral paw for (A) male (n = 7) and (B) female (n = 7) 

TH-Cre mice following saline or CNO injection (2-way mixed-model ANOVA with Sidak’s post hoc: Drug x Virus/Paw 

interaction [F(3,24) = 3.979, p = 0.0196], main effect of Drug [F(1,24) = 4.478, p = 0.0449], no main effect of Virus/Paw 

[F(3,24) = 3.004, p = 0.0502] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus/Paw 

interaction [F(3,24) = 0.6055, p = 0.6178] or main effect of Drug [F(1,24) = 0.8648, p = 0.3617] and Virus/Paw [F(3,24) = 

0.6215, p = 0.6079] for females). 

(C-D) Post-CFA thermal nociceptive sensitivity by ipsilateral and contralateral paw for (C) male (n = 7) and (D) female 

(n = 7) TH-Cre mice following saline or CNO injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x 

Virus/Paw interaction [F(3,24) = 1.746, p = 0.1844], main effect of Drug [F(1,24) = 12.89, p = 0.0015] and Virus/Paw 

[F(3,24) = 12.75, p < 0.0001] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus/Paw 

interaction [F(3,24) = 0.0460, p = 0.9866] or main effect of Drug [F(1,24) = 1.775, p = 0.1953], main effect of Virus/Paw 

[F(3,24) = 12.17, p < 0.0001] for females). 

(E-F) Tail flick response in (E) male (n = 7) and (F) female (n = 7) TH-Cre mice following saline or CNO injection (2-

way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.01733, p = 0.8974] or main 

effect of Drug [F(1,12) = 1.536, p = 0.2388] and Virus [F(1,12) = 0.02716, p = 0.8719] for males; 2-way mixed-model 

ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.01733, p = 0.8974] or main effect of Drug [F(1,12) 

= 1.536, p = 0.2388], main effect of Virus [F(1,12) = 0.02716, p = 0.8719] for females). 
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(G-J) Open field test. Measures for (G-H) center time (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x 

Virus interaction [F(1,12) = 0.3255, p = 0.5788] or main effect of Drug [F(1,12) = 0.6795, p = 0.4258] and Virus [F(1,12) = 

0.01891, p = 0.8929] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) 

= 0.09438, p = 0.7639] or main effect of Drug [F(1,12) = 0.4115, p = 0.5333] and Virus [F(1,12) = 0.2079, p = 0.6566] for 

females) and (I-J) distance traveled (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction 

[F(1,12) = 0.001836, p = 0.9665] or main effect of Drug [F(1,12) = 0.2168, p = 0.6498] and Virus [F(1,12) = 0.01907, p = 

0.8925] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.03190, p 

= 0.8612] or main effect of Drug [F(1,12) = 0.06748, p = 0.7994] and Virus [F(1,12) = 2.921, p = 0.1131] for females) in 

(G, I) male (n = 7) and (H, J) female (n = 7) TH-Cre mice following saline or CNO injection. 

(K-L) Post-CFA tail flick response in (K) male (n = 7) and (L) female (n = 7) TH-Cre mice following saline or CNO 

injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.6959, p = 0.4205] 

or main effect of Drug [F(1,12) = 0.4143, p = 0.5319], main effect of Virus [F(1,12) = 4.967, p = 0.0457] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.8544, p = 0.3735] or main effect of 

Drug [F(1,12) = 2.431, p = 0.1449], main effect of Virus [F(1,12) = 4.800, p = 0.0489] for females). 

(M-P) Post-CFA open field test. Measures for (M-N) center time (2-way mixed-model ANOVA with Sidak’s post hoc: 

no Drug x Virus interaction [F(1,12) = 0.5665, p = 0.4662] or main effect of Drug [F(1,12) = 0.9871, p = 0.3401] and Virus 

[F(1,12) = 1.283, p = 0.2795] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction 

[F(1,12) = 1.358, p = 0.2665] or main effect of Drug [F(1,12) = 0.1128, p = 0.7428] and Virus [F(1,12) = 1.024, p = 0.3315] 

for females) and (O-P) distance traveled (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus 

interaction [F(1,12) = 1.151, p = 0.3045] or main effect of Drug [F(1,12) = 0.1132, p = 0.7424] and Virus [F(1,12) = 0.3576, 

p = 0.5609] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.4247, 

p = 0.5269] or main effect of Drug [F(1,12) = 0.07608, p = 0.7874] and Virus [F(1,12) = 0.1648, p = 0.6919] for females) in 

(M, O) male (n = 7) and (N, P) female (n = 7) TH-Cre mice following saline or CNO injection. 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 4A-4P. 

Comparisons of Sex x Virus/Paw (Two-way ANOVA with Tukey’s post hoc) reveal that CNO treatment results in male 

hM3Dq mice with greater paw withdrawal latencies for the ipsilateral and contralateral paws than females in the CFA 

(but not the Naïve) condition, suggesting that sex differences in anti-nociceptive effects were more pronounced after 

CFA treatment. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 5. Estrous Cycle Does Not Alter vlPAG/DRDA+ Contributions to Nociceptive Sensitivity in Female Mice  

(A) Timeline with schematic of pain sensitivity testing and estrous cycle tracking in female TH-Cre mice. 

(B) Thermal nociceptive sensitivity of female (n = 7-8) TH-Cre mice following CNO injection (2-way mixed-model 

ANOVA with Sidak’s post hoc: no Estrus Cycle x Virus interaction [F(1,13) = 0.2458, p = 0.6283] or main effect of 

Estrus Cycle [F(1,13) = 0.4980, p = 0.4929] and Virus [F(1,13) = 1.227, p = 0.2881]). 

(C) Mechanical nociceptive sensitivity of female (n = 7-8) TH-Cre mice following CNO injection (2-way mixed-model 

ANOVA with Sidak’s post hoc: no Estrus Cycle x Virus interaction [F(1,13) = 0.0005, p = 0.9816] or main effect of 

Estrus Cycle [F(1,13) = 0.1595, p = 0.6961] and Virus [F(1,13) = 4.650, p = 0.0504]). 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 5B-5C. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 6. TH and DBH Expression Across the A/P Axis in vlPAG/DR  

(A) (Left) Representative images of TH immunoreactivity (green) in vlPAG/DR of male (top/blue row) and female 

(bottom/pink row) mice. Scale bars, 100 µm. (Right) TH immunoreactivity in vlPAG/DR of male and female mice (n = 

7; unpaired t-test, t(12) = 0.2148, p = 0.8335).  

(B-D) Expression of (B) TH, (C) DBH, and (D) TH/DBH colocalization in the vlPAG/DR of male (n = 5 slices per 

mouse / 4 mice total) and female (n = 5 slices per mouse / 4 mice total) mice. No sex differences were observed 

across the A/P axis. (2-way ANOVA with Tukey’s post hoc: no A/P x Sex interaction [F(4,30) = 0.5462, p = 0.7031], 

main effect of A/P [F(4,30) = 7.987, p = 0.0002], no main effect of Sex [F(1,30) = 0.4503, p = 0.5073] for TH; 2-way 

ANOVA with Tukey’s post hoc: no A/P x Sex interaction [F(4,30) = 0.3490, p = 0.8426] or main effect of A/P [F(4,30) = 

1.237, p = 0.3165] and Sex [F(1,30) = 0.8896, p = 0.3531] for DBH; 2-way ANOVA with Tukey’s post hoc: no A/P x Sex 
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interaction [F(4,30) = 0.2216, p = 0.9243] or main effect of A/P [F(4,30) = 1.778, p = 0.1592] and Sex [F(1,30) = 0.2216, p = 

0.6413] for TH/DBH colocalization). 

(E-G) Expression of (E) TH mRNA, (F) DBH mRNA, and (G) TH/DBH mRNA colocalization in the vlPAG/DR of male 

(n = 5 slices per mouse / 4 mice total) and female (n = 5 slices per mouse / 2 mice total) mice. No sex differences 

were observed across the A/P axis. (2-way ANOVA with Tukey’s post hoc: no A/P x Sex interaction [F(4,18) = 2.219, p 

= 0.1077], no main effect of A/P [F(4,18) = 1.747, p = 0.1837], main effect of Sex [F(1,18) = 10.24, p = 0.0050] for TH 

mRNA; N/A for DBH mRNA; N/A for TH/DBH mRNA colocalization [N/A due to no variation among replicates]). 

(H) Representative images of TH immunoreactivity (purple), DBH-eGFP (cyan), and colocalization (pink) in vlPAG/DR 

of male (top/blue row) and female (bottom/pink row) mice across the A/P axis. TH and DBH colocalization in the locus 

coeruleus (right/gray) is shown as a positive control. 

Unpaired (two-tailed) t-test used for Figure 6A. 

Two-way ANOVA with Tukey’s post hoc used for Figures 6B-6G. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 7. vlPAG/DRDA+-BNST Drives Anti-Nociceptive Behaviors in Male, but not Female, Mice  

(A) Optogenetic approach for vlPAG/DRDA+ terminal activation in the BNST. (Left) Diagram of virus infusion and 

optical fiber implantation. (Right) AAV-DIO-ChR2 (green) expression in vlPAG/DR and BNST. Scale bar, 200 µm for 

vlPAG/DR; 100 µm for BNST.  

(B) Schematic of photostimulation during thermal and mechanical nociceptive sensitivity testing. Epochs of laser 

exposure (i.e. trials [T1-8] for Hargreaves, days for Von Frey) are indicated for each assay. 

(C-D) Thermal nociceptive sensitivity averaged by laser status in (C) male (n = 6-7) and (D) female (n = 8-10) TH-Cre 

mice (2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus interaction [F(1,11) = 16.72, p = 0.0018], main 

effect of Laser [F(1,11) = 10.89, p = 0.0071], no main effect of Virus [F(1,11) = 4.657, p = 0.0539] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,16) = 0.8441, p = 0.3719], main effect of 

Laser [F(1,16) = 5.513, p = 0.0321], no main effect of Virus [F(1,16) = 1.948, p = 0.1819] for females). 

(E-F) Mechanical nociceptive sensitivity averaged by laser status in (E) male (n = 7-8) and (F) female (n = 8-9) TH-

Cre mice (2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus interaction [F(1,13) = 17.99, p = 0.0010], no 

main effect of Laser [F(1,13) = 3.202, p = 0.0969] and Virus [F(1,13) = 2.808, p = 0.1177] for males; 2-way mixed-model 
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ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,15) = 2.428, p = 0.1400] or main effect of Laser [F(1,15) = 

0.3336, p = 0.5721] and Virus [F(1,15) = 2.075, p = 0.1702] for females). 

(G-H) Post-CFA thermal nociceptive sensitivity averaged by laser status in (G) male (n = 6-7)  and (H) female (n = 4-

6) TH-Cre mice (2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus interaction [F(1,11) = 5.587, p = 

0.0376], no main effect of Laser [F(1,11) = 2.458, p = 0.1453] and Virus [F(1,11) = 2.655, p = 0.1315] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,8) = 0.07627, p = 0.7894] or main effect 

of Laser [F(1,8) = 0.3549, p = 0.5678] and Virus [F(1,8) = 0.2628, p = 0.6220] for females). 

(I-J) Post-CFA mechanical nociceptive sensitivity averaged by laser status in (I) male (n = 6-7) and (J) female (n = 4-

6) TH-Cre mice (2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus interaction [F(1,11) = 8.950, p = 

0.0123], main effect of Laser [F(1,11) = 11.37, p = 0.0062] and Virus [F(1,11) = 9.776, p = 0.0096] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,8) = 0.02840, p = 0.8704] or main effect 

of Laser [F(1,8) = 1.280, p = 0.2907] and Virus [F(1,8) = 0.1248, p = 0.7331] for females). 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 7C-7J. 

Comparisons of Sex x Virus (Two-way ANOVA with Tukey’s post hoc) reveal that Laser ON treatment results in male 

ChR2 mice with greater paw withdrawal latencies than male eYFP mice in the Naïve condition, and male ChR2 mice 

with greater paw withdrawal latencies and mechanosensitivity thresholds than male eYFP and female hM3Dq mice in 

the CFA condition. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 

 

Figure 8. vlPAG/DRDA+-BNST Produces Sustained Supraspinal Analgesia in Male, but not Female, Mice 

Without Affecting Tail Flick Responses 

(A-B) Thermal nociceptive sensitivity by laser status and session. (A-B) Light ON and OFF sessions in (A) male (n = 

6-7) and (B) female (n = 8-10) TH-Cre mice (2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus 

interaction [F(3,33) = 6.827, p = 0.0011], main effect of Laser [F(3,33) = 7.966, p = 0.0004] and Virus [F(1,11) = 10.45, p = 

0.0080] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus interaction [F(3,24) = 1.601, p = 

0.2015], no main effect of Laser [F(3,33) = 2.185, p = 0.1020] and Virus [F(1,8) = 0.04641, p = 0.8322] for females).  

(C-D) Thermal nociceptive sensitivity by ipsilateral and contralateral paw for (C) male (n = 6-7) and (D) female (n = 4-

6) TH-Cre mice for Light OFF and ON sessions (2-way mixed-model ANOVA with Sidak’s post hoc: Laser x 

Virus/Paw interaction [F(3,22) = 7.800, p = 0.0010], main effect of Laser [F(1,22) = 11.56, p = 0.0026] and Virus/Paw 

[F(3,22) = 3.276, p = 0.0402] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus/Paw 

interaction [F(3,16) = 3.106, p = 0.0561] or main effect of Laser [F(1,16) = 0.08316, p = 0.7768] and Virus/Paw [F(3,16) = 

1.184, p = 0.3470] for females). 
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(E-F) Post-CFA thermal nociceptive sensitivity by Light ON and OFF sessions in (E) male (n = 6-7 for Naïve and 

CFA) and (F) female (n = 8-10 for Naïve, 4-6 for CFA) TH-Cre mice (2-way mixed-model ANOVA with Sidak’s post 

hoc: no Laser x Virus interaction [F(3,33) = 2.349, p = 0.0904], no main effect of Laser [F(3,33) = 2.710, p = 0.0609], 

main effect of Virus [F(1,11) = 23.43, p = 0.0005] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no 

Laser x Virus interaction [F(3,24) = 0.1462, p = 0.9311] or main effect of Laser [F(3,33) = 0.6225, p = 0.6074] and Virus 

[F(1,8) = 0.9130, p = 0.2479] for females).   

(G-H) Post-CFA thermal nociceptive sensitivity by ipsilateral and contralateral paw for (G) male (n = 6-7) and (H) 

female (n = 4-6) TH-Cre mice for Light OFF and ON sessions (2-way mixed-model ANOVA with Sidak’s post hoc: 

Laser x Virus/Paw interaction [F(3,22) = 6.343, p = 0.0029], no main effect of Laser [F(1,22) = 2.858, p = 0.1050], main 

effect of Virus/Paw [F(3,22) = 9.234, p = 0.0004] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser 

x Virus/Paw interaction [F(3,16) = 0.4414, p = 0.7266] or main effect of Laser [F(1,16) = 0.3821, p = 0.5452], main effect 

of Virus/Paw [F(3,16) = 18.00, p < 0.0001] for females). 

(I-J) Tail flick responses by laser status in (I) male (n = 7) and (J) female (n = 7-8) TH-Cre mice. 

(2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,12) = 0.1901, p = 0.6706] or main 

effect of Laser [F(1,12) = 1.051, p = 0.3254] and Virus [F(1,12) = 0.002219, p = 0.9632] for males; 2-way mixed-model 

ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,13) = 0.03543, p = 0.8536] or main effect of Laser 

[F(1,13) = 0.6576, p = 0.4320] and Virus [F(1,13) = 0.008466, p = 0.9281] for females). 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 8A-8B, 8E-8F, 8I-8J. 

Two-way ANOVA with Tukey’s post hoc used for Figures 8C-8D, 8G-8H. 

Comparisons of Sex x Virus/Paw (Two-way ANOVA with Tukey’s post hoc) reveal that CNO treatment results in male 

hM3Dq mice with greater paw withdrawal latencies for the ipsilateral paw than females in both the Naïve and CFA 

condition, suggesting that sex differences in anti-nociceptive effects were more pronounced in a specific paw. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 9. vlPAG/DRDA+-BNST Drives Pain-Related Locomotor Behaviors in Female, but not Male, Mice 

(A) Schematic of photostimulation during visceral nociceptive sensitivity testing.   

(B-C) Cleared nesting zones with ddH2O/Acetic Acid treatment following optogenetic activation of vlPAG/DRDA+-

BNST in (B) male (n = 5) and (C) female (n = 5-6) TH-Cre mice (2-way mixed-model ANOVA with Sidak’s post hoc: 

no Pain Treatment x Virus interaction [F(1,8) = 0.04878, p = 0.8307], main effect of Pain Treatment [F(1,8) = 30.49, p = 

0.0006], no main effect of Virus [F(1,8) = 0.2857, p = 0.6075] for males; 2-way mixed-model ANOVA with Sidak’s post 

hoc: no Pain Treatment x Virus interaction [F(1,9) = 0.1657, p = 0.6935], main effect of Pain Treatment [F(1,9) = 56.71, p 

< 0.0001], no main effect of Virus [F(1,9) = 2.231, p = 0.1695] for females). 

(D-E) Writhing by Light ON and OFF sessions in (D) male (n = 5) and (E) female (n = 5-6) subjects (2-way mixed-

model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(3,24) = 0.1835, p = 0.9066], main effect of Time 

[F(3,24) = 8.786, p = 0.0004], no main effect of Virus [F(1,8) = 0.5922, p = 0.4637] for males; 2-way mixed-model 

ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(3,27) = 1.063, p = 0.3812], main effect of Time [F(3,27) = 

6.542, p = 0.0018], no main effect of Virus [F(1,9) = 2.122, p = 0.1722] for females). 

(F-G) Writhing averaged by laser status in (F) male (n = 5) and (G) female (n = 5-6) subjects (2-way mixed-model 

ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,8) = 0.2177, p = 0.6532], main effect of Laser [F(1,8) = 
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6.829, p = 0.0310], no main effect of Virus [F(1,8) = 0.5922, p = 0.4637] for males; 2-way mixed-model ANOVA with 

Sidak’s post hoc: no Laser x Virus interaction [F(1,9) = 2.219, p = 0.1705] or main effect of Laser [F(1,9) = 0.3062, p = 

0.5935] and Virus [F(1,9) = 2.122, p = 0.1791] for females; however, unpaired t-test for Laser ON only revealed 

statistical significance exclusively for females [t(9) = 3.185, p = 0.0111]). 

(H-I) Distance traveled by Light ON and OFF sessions in (H) male (n = 5) and (I) female (n = 5-6) subjects (2-way 

mixed-model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(3,24) = 0.9763, p = 0.4203], main effect of 

Time [F(3,24) = 4.961, p = 0.0081], no main effect of Virus [F(1,8) = 0.1569, p = 0.7024] for males; 2-way mixed-model 

ANOVA with Sidak’s post hoc: Time x Virus interaction [F(3,27) = 3.772, p = 0.0221], main effect of Time [F(3,27) = 

10.88, p < 0.0001], no main effect of Virus [F(1,9) = 1.793, p = 0.2134] for females). 

(J-K) Distance traveled by laser status in (J) male (n = 5) and (K) female (n = 5-6) subjects (2-way mixed-model 

ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,8) = 1.310, p = 0.2854] or main effect of Laser [F(1,8) = 

0.3975, p = 0.5460] and Virus [F(1,8) = 0.1569, p = 0.7024] for males; 2-way mixed-model ANOVA with Sidak’s post 

hoc: Laser x Virus interaction [F(1,9) = 5.603, p = 0.0421], no main effect of Laser [F(1,9) = 0.6172, p = 0.4523] and 

Virus [F(1,9) = 1.793, p = 0.2134] for females). 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 9B-9K. 

Comparisons of Sex x Virus (Two-way ANOVA with Tukey’s post hoc) reveal that Laser ON treatment results in 

female ChR2 mice with greater writhing behaviors than female eYFP and male ChR2 mice. By contrast, distance 

traveled does not differ by sex when compared within laser status, signifying that the female-specific locomotor 

differences observed in Figure 3K are restricted to comparisons across laser status and within sex. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 10. vlPAG/DRDA+-BNST Increases Context-Dependent Locomotor Behaviors in Female, but not Male, 

Mice 

(A-C) Real-time place preference/aversion with optogenetic activation of vlPAG/DRDA+-BNST. (A) Schematic of 

RTPP/RTPA with designated sides for 20 Hz light stimulation (purple) and no stimulation (gray). Comparisons by sex 

are shown for (B) duration in stimulus zone (n = 5-6; 2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction 

[F(1,17) = 0.07355, p = 0.7895] or main effect of Sex [F(1,17) = 0.3119, p = 0.5838] and Virus [F(1,17) = 0.7953, p = 

0.3879]) and (C) distance traveled (n = 5-6; 2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,17) = 

1.036, p = 0.3230] or main effect of Sex [F(1,17) = 3.325, p = 0.0859, main effect of Virus [F(1,17) = 8.512, p = 0.0096]). 

(D-H) Sociability test with a same sex conspecific mouse and novel object. (D) Schematic of sociability test. (E-F) 

Ratio of mouse and object exploration by laser status (2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x 
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Virus interaction [F(1,13) = 0.1482, p = 0.7065] or main effect of Laser [F(1,13) = 0.3906, p = 0.5480] and Virus [F(1,13) = 

1.867, p = 0.1950] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,9) = 

0.1463, p = 0.7110] and main effect of Laser [F(1,9) = 3.141, p = 0.1101] or Virus [F(1,9) = 9.159e-5, p = 0.9926] for 

females) and (G-H) distance traveled (2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction 

[F(1,13) = 4.011, p = 0.0665] or main effect of Laser [F(1,13) = 0.1065, p = 0.7493] and Virus [F(1,13) = 0.01096, p = 

0.9182] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction [F(1,9) = 4.764, p = 

0.0569] or main effect of Laser [F(1,9) = 0.06317, p = 0.8072] and Virus [F(1,9) = 0.4294, p = 0.5287] for females) in (E, 

G) male (n = 7-8) and (F, H) female (n = 5-6) TH-Cre mice.  

(I-M) Sociability test with an opposite sex conspecific mouse and novel object. (I) Schematic of sociability test. (J-K) 

Ratio of mouse and object exploration by laser status (2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x 

Virus interaction [F(1,13) = 0.003895, p = 0.9512] or main effect of Laser [F(1,13) = 0.4360, p = 0.5206] and Virus [F(1,13) 

= 0.006109, p = 0.9389] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus interaction 

[F(1,14) = 0.2141, p = 0.6507] or main effect of Laser [F(1,14) = 0.2706, p = 0.6111] and Virus [F(1,14) = 1.323, p = 0.2694] 

for females) and (L-M) distance traveled (2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus 

interaction [F(1,13) = 0.6009, p = 0.4521] or main effect of Laser [F(1,13) = 0.2998, p = 0.5933, main effect of Virus [F(1,13) 

= 10.92, p = 0.0057] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: Laser x Virus interaction [F(1,14) = 

7.305, p = 0.0172], no main effect of Laser [F(1,14) = 2.511, p = 0.1354] and Virus [F(1,14) = 3.232, p = 0.0938] for 

females) in (J, L) male (n = 7-8) and (K, M) female (n = 8) TH-Cre mice.  

(N-R) Sociability test with a male conspecific mouse and novel object following social isolation. (N) Schematic of post-

isolation sociability test. (O-P) Ratio of mouse and object exploration by laser status (2-way mixed-model ANOVA 

with Sidak’s post hoc: no Laser x Virus interaction [F(1,7) = 0.8180, p = 0.3958] or main effect of Laser [F(1,7) = 0.6009, 

p = 0.4521] and Virus [F(1,7) = 0.009865, p = 0.9237]; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x 

Virus interaction [F(1,9) = 0.2679, p = 0.6172] or main effect of Laser [F(1,9) = 3.466, p = 0.0956] and Virus [F(1,9) = 

4.238, p = 0.0696] for females) and (Q-R) distance traveled (2-way mixed-model ANOVA with Sidak’s post hoc: no 

Laser x Virus interaction [F(1,7) = 0.2124, p = 0.6589] or main effect of Laser [F(1,7) = 0.5946, p = 0.4659] and Virus 

[F(1,7) = 0.03920, p = 0.8487] for males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Laser x Virus 

interaction [F(1,9) = 2.459, p = 0.1513], main effect of Laser [F(1,9) = 9.767, p = 0.0122], no main effect of Virus [F(1,9) = 

0.04573, p = 0.8354] for females) for (O, Q) male (n = 4-5) and (P, R) female (n = 5-6) TH-Cre mice. 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures S5E-S5H, S5J-S5M, S5O-S5R. 

Two-way ANOVA with Tukey’s post hoc used for Figures S5B-S5C. 
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Comparisons of Sex x Virus (Two-way ANOVA with Tukey’s post hoc) reveal that Laser ON treatment generally 

results in ChR2 mice with greater distance traveled than eYFP mice when not segregated by same and opposite sex 

conspecifics. The only retained post hoc effect showed that male ChR2 mice exhibit greater distance traveled than 

male eYFP mice with Laser OFF treatment, signifying that the female-specific locomotor differences observed in 

Figures 10M and 10R are restricted to comparisons across laser status and within sex. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 11. Sex Differences in vlPAG/DRDA+-BNST Transmission and Connectivity  

(A) Experimental schematic illustrating whole cell patch clamp in ACSF. Recordings were performed in the BNST 

following optogenetic activation of vlPAG/DRDA+ terminals. 

(B) Representative o(E/I)PSC traces from BNST neurons following activation of vlPAG/DRDA+ terminals with a single 

1 ms pulse of 473 nm light (blue). Onset latency (green) and amplitude (pink) are indicated to highlight the distinct 

properties of excitatory and inhibitory transmission between vlPAG/DRDA+ and BNST. 

(C) E/I ratio comparison in male mice (n = 16 cells / 1-7 cells per mouse / 5 mice total) and female (n = 5 cells / 1-3 

cells per mouse / 3 mice total) TH-Cre mice (unpaired t-test: t(19) = 0.3007, p = 0.7669).  

(D) Onset latency comparison for oEPSCs in male (n = 20 cells / 1-7 cells per mouse / 6 mice total) and female (n = 

14 cells / 1-5 cells per mouse / 4 mice total) subjects (unpaired t-test: t(32) = 0.6429, p = 0.5249). 

(E) Amplitude comparison for oEPSCs in male (n = 20 cells / 1-7 cells per mouse / 6 mice total) and female (n = 14 

cells / 1-5 cells per mouse / 4 mice total) subjects (unpaired t-test: t(32) = 1.700, p = 0.0989). 

(F) Paired-pulse ratio of oEPSCs in male (n = 19-20 cells at each ISI / 1-7 cells per mouse / 6 mice total) and female 

(n = 12-14 cells at each ISI / 1-5 cells per mouse / 4 mice total) subjects (2-way ANOVA with Tukey’s post hoc: no ISI 
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x Sex interaction [F(4,153) = 0.3571, p = 0.8388] or main effect of ISI [F(4,153) = 1.584, p = 0.1813] and Sex [F(1,153) = 

3.570, p = 0.0607]). 

(G) Percentage of responsive and non-responsive cells for oEPSCs in male (n = 52 cells) and female (n = 53 cells) 

subjects (Fisher’s exact test: p = 0.3314). 

(H) Onset latency comparison for oIPSCs in male (n = 18 cells / 1-7 cells per mouse / 6 mice total) and female (n = 5 

cells / 1-3 cells per mouse / 3 mice total) subjects (unpaired t-test: t(21) = 0.4467, p = 0.6597). 

(I) Amplitude comparison for oIPSCs in male (n = 18 cells / 1-7 cells per mouse / 6 mice total) and female (n = 5 cells 

/ 1-3 cells per mouse / 3 mice total) subjects (unpaired t-test: t(21) = 0.2712, p = 0.7889). 

(J) Paired-pulse ratio of oIPSCs (n = 3-15 cells) in male (n = 12-15 cells at each ISI / 1-4 cells per mouse / 6 mice 

total) and female (n = 3-4 cells at each ISI / 1-3 cells per mouse / 3 mice total) subjects (2-way ANOVA with Tukey’s 

post hoc: no ISI x Sex interaction [F(4,78) = 0.2449, p = 0.9119] or main effect of ISI [F(4,78) = 0.1636, p = 0.9562], main 

effect of Sex [F(1,78) = 5.212, p = 0.0252]). 

(K) Percentage of responsive and non-responsive cells for oIPSCs in male (n = 52 cells) and female (n = 53 cells) 

subjects (Fisher’s exact test: p = 0.0015). 

Unpaired (two-tailed) t-test used for Figures 11C-11E, 11H-11I. 

Fisher’s exact test used for Figures 11G, 11K. 

Two-way ANOVA with Tukey’s post hoc used for Figures 11F, 11J.  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 12. Sex Differences in vlPAG/DRDA+-BNST Dopaminergic Transmission  

(A) Experimental schematic illustrating fast-scan cyclic voltammetry in ACSF. Recordings were performed in the 

BNST following optogenetic activation of vlPAG/DRDA+ terminals. 

(B-C) Peak DA current following photostimulation of vlPAG/DRDA+ terminals in the BNST in male (n = 6-7 slices / 1-4 

slices per mouse / 4 mice total in ACSF; n = 6 slices / 1-3 slices per mouse / 4 mice total in ACSF + Sulpiride) and 

female (n = 8 slices / 1-2 slices per mouse / 6 mice total; n = 6 slices / 1-2 slices per mouse / 5 mice total in ACSF + 

Sulpiride) TH-Cre mice. Recordings with (B) varying light pulses (2-way mixed-model ANOVA with Sidak’s post hoc: 

no Pulse x Sex interaction [F(4,52) = 0.7132, p = 0.5867], main effect of Pulse [F(4,52) = 15.84, p < 0.0001], no main 

effect of Sex [F(1,13) = 0.2812, p = 0.6049]) and frequencies (2-way mixed-model ANOVA with Sidak’s post hoc: no 

Frequency x Sex interaction [F(4,48) = 1.542, p = 0.2052], main effect of Frequency [F(4,48) = 9.436, p < 0.0001], no 

main effect of Sex [F(1,12) = 1.733, p = 0.2127]) were performed in ACSF, then (C) repeated with varying frequencies 

in ACSF + 2 µM sulpiride (2-way mixed-model ANOVA with Sidak’s post hoc: no Frequency x Sex interaction [F(4,40) = 

0.7303, p = 0.5766], main effect of Frequency [F(4,40) = 8.330, p < 0.0001], no main effect of Sex [F(1,10) = 0.08074, p = 

0.7821]). Drug effects were quantified using the percentage change in peak DA current following D2R antagonism  

(2-way mixed-model ANOVA with Sidak’s post hoc: no Frequency x Sex interaction [F(4,40) = 1.940, p = 0.1225], main 

effect of Frequency [F(4,40) = 2.736, p = 0.0420], no main effect of Sex [F(1,10) = 2.138, p = 0.1744]). 
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(D) Experimental schematic illustrating whole cell patch clamp in ACSF + 3 mM kynurenic acid + 25 µM picrotoxin. 

Recordings were performed in the BNST following optogenetic activation of vlPAG/DRDA+ terminals. 

(E) Representative traces of BNST neurons responding to optically-evoked DA transmission from vlPAG/DRDA+ 

terminals. (Left) Depolarization following 20 Hz (5 ms width, 20 pulses) stimulation in ACSF. (Left Middle) Same 

stimulation parameters in ACSF + kynurenic acid (KA) / picrotoxin (P) produces a mix of depolarization and 

hyperpolarization. (Right Middle-Right) These responses are blocked by the addition of SCH23390 or sulpiride to 

ACSF + KA/P. Scale bars, x = time (4 sec), y = membrane potential (2 mV). 

(F-I) Change in membrane potential of BNST neurons following optically-evoked DA transmission from vlPAG/DR. 

Comparison of (F) depolarization and (H) hyperpolarization size between male (depolarization: n = 26 slices / 1-10 

slices per mouse / 7 mice total; hyperpolarization: n = 13 slices / 2-6 slices per mouse / 4 mice total) and female 

(depolarization: 23 slices / 1-6 slices per mouse / 8 mice total; hyperpolarization: 14 slices / 1-5 slices per mouse / 6 

mice total) TH-Cre mice (unpaired t-test, depolarization: t(47) = 2.028, p = 0.0242; hyperpolarization: t(25) = 0.9501, p = 

0.3512). DA receptor antagonism of (G) depolarization (n = 14 cells; 7 cells per sex / 1-3 cells per mouse / 6 mice 

total) and (I) hyperpolarization (n = 6 cells; 3 cells per sex / 1 cell per mouse / 6 mice total) is shown with individual 

cells from male (blue) and female (pink) subjects (paired t-test, D1R antagonism: t(13) = 2.523, p = 0.0222; D2R 

antagonism: t(5) = 9.708, p = 0.0002; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Sex interaction 

[F(1,12) = 1.444, p = 0.2526], main effect of Drug [F(1,12) = 6.585, p = 0.0247], no main effect of Sex [F(1,12) = 0.7438, p 

= 0.4054] for D1R antagonism; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Sex interaction [F(1,4) = 

1.665, p = 0.2664], main effect of Drug [F(1,4) = 106.8, p = 0.0005], no main effect of Sex [F(1,4) = 0.6425, p = 0.4677] 

for D2R antagonism; with males exhibiting greater D1R antagonism than females, p = 0.0408). 

(J) Percentage of BNST neurons showing depolarization, hyperpolarization, and no response following light-evoked 

DA transmission from vlPAG/DRDA+ terminals in male (n = 53 cells) and female (n = 56 cells) subjects (Chi-square 

test, p = 0.8900). 

Unpaired (two-tailed) t-test used for Figures 12F, 12H. 

Paired (two-tailed) t-test used for Figures 12G, 12I. 

Chi-square test used for Figures 12J. 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 12B-12C, 12G, 12I. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 13. Excitatory and Inhibitory Signaling in vlPAG/DRDA+-BNST 

(A) oEPSCs (green) and oIPSCs (light green) in ACSF and ACSF + 5 mM TTX + 200 mM 4-AP to assess 

monosynaptic and polysynaptic connectivity between vlPAG/DRDA+ and BNST neurons. 

(B) (Left) Expression of Drd1 (blue) and Drd2 (purple) mRNA in the BNST of male and female mice. Scale Bar, 100 

µm. (Right-Top) Average number of BNST neurons expressing Drd1, Drd2, and Drd1-Drd2 colocalization in male and 

female mice (n = 4; 2-way ANOVA with Tukey’s post hoc: DA-R x Sex interaction [F(2,42) = 4.927, p = 0.0120], main 

effect of DA-R [F(2,42) = 94.68, p < 0.0001] and Sex [F(1,42) = 6.815, p = 0.0125]). (Right-Bottom) Average number of 

BNST neurons expressing Drd2 in male and female C57BL/6J mice following CFA treatment (n = 4; 2-way ANOVA 

with Tukey’s post hoc: no interaction [F(1,12) = 0.4050, p = 0.5365] or main effect of Paw Treatment [F(1,12) = 0.2744, p 

= 0.6099], main effect of Sex [F(1,12) = 7.866, p = 0.0159]). 

(C) Example trace of light-evoked DA transmission from vlPAG/DR and sustained depolarization in the BNST. 

(Upper-Left) Light activation (blue) of first sweep (green) produced sustained depolarization, where membrane 

potential increased over time and led to repeated firing in the second sweep (gray). (Upper-Middle and Upper-Right) 

Firing is sustained for several minutes. (Lower-Left) Close up of the first sweep shows light-evoked depolarization 
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following DA transmission has a smaller and more sustained peak than (Lower-Middle) the same cell responding to 

light activation in ACSF. (Lower-Right) Comparison of 20 Hz (5 ms, 20 pulses) stimulation of BNST in ACSF by sex 

(n = 10 cells / 1-2 cells per mouse / 9 mice total for males; n = 11 cells / 1-3 cells per mouse / 7 mice total for females; 

unpaired t-test: t(19) = 0.06774, p = 0.9467).  

Unpaired (two-tailed) t-test used for Figures 13C 

Two-way ANOVA with Tukey’s post hoc used for Figure 13B. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 14. vlPAG/DRDA+ Anti-Nociception and Locomotion is Dopamine-Dependent  

(A) Chemogenetic approach for vlPAG/DRDA+ activation with local genetic deletion of TH. (Top-Left) Diagram of virus 

infusion. (Top-Right) Detailed schematic of TH CRISPR provided by Zweifel lab. (Bottom-Left) Validation of TH 

deletion in vlPAG/DR (2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 0.08343, p = 0.7752], 

main effect of Sex [F(1,24) = 5.063, p = 0.0339] and Virus [F(1,24) = 15.44, p = 0.0006]) for male (n = 7; unpaired t-test: 

t(12) = 2.389, p = 0.0342) and female (n = 7; unpaired t-test: t(12) = 3.257, p = 0.0069) TH-Cre mice. (Bottom-Right) 

hM3Dq expression (orange), TH immunoreactivity (green), and colocalization (yellow) in vlPAG/DR. Scale bar, 100 

µm.  

(B) Schematic illustrating the measurement of thermal and mechanical nociceptive sensitivity and locomotion 

following treatment with saline or CNO. 
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(C-D) Thermal nociceptive sensitivity of (C) male (n = 7) and (D) female (n = 7) TH-Cre mice following saline or CNO 

injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 4.719, p = 0.0506], 

main effect of Drug [F(1,12) = 6.501, p = 0.0255], no main effect of Virus [F(1,12) = 1.384, p = 0.2622] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 1.092, p = 0.3166] or main effect of 

Drug [F(1,12) = 0.5589, p = 0.4691] and Virus [F(1,12) = 0.08844, p = 0.7713] for females). 

(E-F) Mechanical nociceptive sensitivity of (E) male (n = 7) and (F) female (n = 7) TH-Cre mice following CNO or 

saline injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 4.657, p = 

0.0519], main effect of Drug [F(1,12) = 9.057, p = 0.0109] and Virus [F(1,12) = 5.552, p = 0.0363] for males; 2-way 

mixed-model ANOVA with Sidak’s post hoc: Drug x Virus interaction [F(1,12) = 7.305, p = 0.0192], no main effect of 

Drug [F(1,12) = 0.05274, p = 0.8222] and Virus [F(1,12) = 5.642e-5, p = 0.9941] for females). 

(G-H) Locomotor activity of (G) male (n = 7) and (H) female (n = 7) TH-Cre mice following a saline injection (2-way 

mixed-model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 1.090, p = 0.3743], main effect of 

Time [F(4.638,55.66) = 36.95, p < 0.0001], no main effect of Virus [F(1,12) = 0.5790, p = 0.4614] for males; 2-way mixed-

model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 1.497, p = 0.1397], main effect of Time 

[F(4.80,57.60) = 29.09, p < 0.0001], no main effect of Virus [F(1,12) = 0.4847, p = 0.4996] for females). 

(I-J) Locomotor activity of (I) male (n = 7) and (J) female (n = 7) TH-Cre mice following a CNO injection (2-way 

mixed-model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 1.843, p = 0.0529], main effect of 

Time [F(5.062,60.75) = 41.17, p < 0.0001], no main effect of Virus [F(1,12) = 0.1730, p = 0.6848] for males; 2-way mixed-

model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 0.5433, p = 0.8706], main effect of Time 

[F(4.410,52.92) = 39.16, p < 0.0001], no main effect of Virus [F(1,12) = 0.8127, p = 0.3851] for females). 

(K) Pre-Saline Habituation (I). Averaged locomotor activity prior to saline treatment in male (n = 7) and female (n = 7) 

TH-Cre mice (2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 0.04664, p = 0.8308] or main 

effect of Sex [F(1,24) = 0.2023, p = 0.6569], main effect of Virus [F(1,24) = 5.770, p = 0.0244]). 

(L) Saline (I). Averaged locomotor activity after saline treatment in male (n = 7) and female (n = 7) TH-Cre mice (2-

way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 0.03254, p = 0.8584] or main effect of Sex 

[F(1,24) = 0.02904, p = 0.8661] and Virus [F(1,24) = 0.2752, p = 0.6046]). 

(M) Pre-Saline Habituation (II). Averaged locomotor activity prior to CNO treatment in male (n = 7) and female (n = 7) 

TH-Cre mice (2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 0.4548, p = 0.5065] or main 

effect of Sex [F(1,24) = 0.7035, p = 0.4099] and Virus [F(1,24) = 0.4513, p = 0.5081]). 

(N) CNO (II). Averaged locomotor activity after CNO treatment in male (n = 7) and female (n = 7) TH-Cre mice (2-way 

ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 0.02032, p = 0.8878] or main effect of Sex [F(1,24) = 
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0.3066, p = 0.5849] and Virus [F(1,24) = 2.797, p = 0.1075]). 

Unpaired (two-tailed) t-test used for Figure 14A. 

Two-way ANOVA with Tukey’s post hoc used for Figures 14A, 14K-14N. 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 14C-14J. 

Comparisons of Sex x Virus (Two-way ANOVA with Tukey’s post hoc) reveal that CNO treatment results in a Sex x 

Virus interaction and main effect of Sex for the Hargreaves test, as well as main effects of Sex and Virus for the Von 

Frey test, with post hoc tests showing that male hM3Dq + CTRL mice exhibit greater mechanosensitivity thresholds 

than male hM3Dq + TH CRISPR mice. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 15. Morphine Anti-Nociception and Locomotion is Not Dependent on vlPAG/DR Dopamine  

(A) Pharmacological approach for opiate-induced vlPAG/DRDA+ activation with local genetic deletion of TH. 

Schematic illustrating measurement of thermal and mechanical nociceptive sensitivity and locomotion following 

systemic treatment with saline or morphine.  

(B-C) Thermal nociceptive sensitivity of (B) male (n = 7) and (C) female (n = 7) TH-Cre mice following saline or 

morphine injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.1093, p 

= 0.7467], main effect of Drug [F(1,12) = 18.70, p = 0.0010], no main effect of Virus [F(1,12) = 0.01576, p = 0.9022] for 

males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 1.788, p = 0.2060], 

main effect of Drug [F(1,12) = 5.647, p = 0.0350], no main effect of Virus [F(1,12) = 0.5461, p = 0.4741] for females). 
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(D-E) Mechanical nociceptive sensitivity of (D) male (n = 7) and (E) female (n = 7) TH-Cre mice following saline or 

morphine injection (2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 0.1383, p 

= 0.7165], main effect of Drug [F(1,12) = 43.71, p < 0.0001], no main effect of Virus [F(1,12) = 0.0300, p = 0.8654] for 

males; 2-way mixed-model ANOVA with Sidak’s post hoc: no Drug x Virus interaction [F(1,12) = 1.757, p = 0.2097] or 

main effect of Drug [F(1,12) = 1.548, p = 0.2372] and Virus [F(1,12) = 1.806, p = 0.2038] for females). 

(F-G) Locomotor activity of (F) male (n = 7) and (G) female (n = 7) TH-Cre mice following a saline injection (2-way 

mixed-model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 0.4578, p = 0.9258], main effect of 

Time [F(3.177,38.13) = 27.86, p < 0.0001], no main effect of Virus [F(1,12) = 0.4267, p = 0.5259] for males; 2-way mixed-

model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 1.475, p = 0.1482], main effect of Time 

[F(4.396,52.75) = 36.34, p < 0.0001], no main effect of Virus [F(1,12) = 0.1568, p = 0.6991] for females). 

(H-I) Locomotor activity of (H) male (n = 7) and (I) female (n = 7) TH-Cre mice following a morphine injection (2-way 

mixed-model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 0.9981, p = 0.4516], main effect of 

Time [F(4.032,48.39) = 7.084, p = 0.0001], no main effect of Virus [F(1,12) = 1.015, p = 0.3336] for males; 2-way mixed-

model ANOVA with Sidak’s post hoc: no Time x Virus interaction [F(11,132) = 1.033, p = 0.4214], main effect of Time 

[F(3.130,37.56) = 20.89, p < 0.0001], no main effect of Virus [F(1,12) = 0.4201, p = 0.5291] for females). 

(J) Pre-Saline Habituation (III). Averaged locomotor activity prior to saline treatment in male (n = 7) and female (n = 

7) TH-Cre mice (2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 0.7391, p = 0.3985] or main 

effect of Sex [F(1,24) = 0.1799, p = 0.6753] and Virus [F(1,24) = 0.003611, p = 0.9526]). 

(K) Saline (III). Averaged locomotor activity after saline treatment in male (n = 7) and female (n = 7) TH-Cre mice (2-

way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 1.080, p = 0.3091] or main effect of Sex [F(1,24) 

= 0.03754, p = 0.8480] and Virus [F(1,24) = 0.005701, p = 0.9404]). 

(L) Pre-Morphine Habituation (IV). Averaged locomotor activity prior to morphine treatment in male (n = 7) and female 

(n = 7) TH-Cre mice (2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 1.379, p = 0.2518] or 

main effect of Sex [F(1,24) = 1.411, p = 0.2465] and Virus [F(1,24) = 0.3702, p = 0.5486]). 

(M) Morphine (IV). Averaged locomotor activity after morphine treatment in male (n = 7) and female (n = 7) TH-Cre 

mice (2-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1,24) = 1.880, p = 0.1831], main effect of Sex 

[F(1,24) = 7.039, p = 0.0139], no main effect of Virus [F(1,24) = 0.05683, p = 0.8136]). 

Two-way ANOVA with Tukey’s post hoc used for Figures 15J-15M. 

Two-way mixed-model ANOVA with Sidak’s post hoc used for Figures 15B-15I. 
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Comparisons of Sex x Virus (Two-way ANOVA with Tukey’s post hoc) reveal that morphine treatment results in a 

main effect of Sex for the Hargreaves and Von Frey tests, with no sex difference in how TH knockout impacts the 

effects of morphine. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 16. Measurement of Single-Cell Ca2+ Activity in BNSTCRF+ Neurons During Pain  

(A) Miniature microscope imaging in BNSTCRF+ neurons. (Left) Diagram of GCaMP6s infusion and endoscopic lens / 

baseplate implantation in the BNST of CRF-Cre mice. (Upper-Right) Imaging field-of-view (FOV) depicting GCaMP6s 

expression in BNSTCRF+ neurons. (Lower-Right) Experimental timeline with schematic of BNSTCRF+ imaging during 

thermal nociceptive sensitivity testing. Epochs relative to heat exposure are color-coded: Before (blue), Heat Start 

(red), Heat End (orange), and After (green).  

(B) (Left) Thermal nociceptive sensitivity of male (n = 3) and female (n = 5) CRF-Cre mice, as measured by the 

average paw withdrawal latency (PWL) following four trials of the Hargreaves test (unpaired t-test: t(6) = 0.07921, p = 

0.9394). (Right) Average PWL of male and female subjects by trial (Two-way mixed-model ANOVA with Sidak’s post 

hoc: no Trial x Sex interaction [F(3, 18) = 1.159, p = 0.3526] or main effect of Trial [F(2.498, 14.99) = 0.5867, p = 

0.6041]; main effect of Sex [F(1, 6) = 0.0062, p < 0.0001]). 

(C) Relative fluorescence change (ΔF/F) of BNSTCRF+ activity during noxious heat exposure. Z-scores of male (n = 49 

cells / 7-30 cells per mouse) and female (n = 68 cells / 8-19 cells per mouse) subjects are represented over time by 

aligning traces that were averaged across trials to the onset of the heat stimulus. Individual cell activity is indicated in 

lighter colors, with total average cell activity in darker colors, and maximum heat duration (20 seconds) in the 

transparent blue block. Scale bars, x = time (10 sec), y = z-score based on relative ΔF/F (1 z-score). Imaging 

timelines for individual subjects are located above to represent epochs via the color-coding system described in (A). 

(D) Total percentage of pain responsive cells for male (purple) and female (magenta) subjects across four trials. Cells 
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that respond to noxious heat exposure with positive (darker), negative (lighter), and no (gray) changes in z-score 

were determined relative to the Before and After epochs, as demarcated by the onset of heat exposure and paw 

withdrawal (Wilcoxon rank-sum, p < 0.05).  

(E) Peri-event heatmap of average BNSTCRF+ activity surrounding heat onset (red line) and paw withdrawal (orange 

line).  

(F) Average z-score of each neuron across epochs for male and female subjects.  

(G) Average z-score by epoch for male and female subjects (Two-way mixed-model ANOVA with Tukey’s post hoc: 

Sex x Epoch interaction [F(3, 345) = 5.996, p = 0.0005], main effect of Sex [F(1, 115) = 13.20, p = 0.0004] and Epoch 

[F(2.153, 247.7) = 26.31, p < 0.0001]). * denotes comparison of epochs for each sex, ^ denotes comparison of the 

same epoch between sexes. 

(H) Cumulative distribution function comparing z-score frequency for each epoch in male and female subjects (KS 

test: By Sex – Before [D(117) = 0.3466, p value = 0.0014], Heat Start [D(117) = 0.3850, p value = 0.0002], Heat End 

[D(117) = 0.1815, p value = 0.2759], After [D(117) = 0.2611, p value = 0.0334]; Comparing each epoch within males 

results in significance with Heat Start and Heat End over Before and After [Before vs. Heat Start, D(98) = 0.4694, p 

value = 2.183e-05; Before vs. Heat End, D(98) = 0.4286, p value = 0.0001; Heat Start vs. After, D(98) = 0.4082, p 

value = 0.0003; Heat End vs. After, D(98) = 0.3265, p value = 0.0079], whereas comparing each epoch within 

females results in significance with Heat End over Before, Heat Start, and After [Before vs. Heat Start, D(136) = 

0.2647, p value = 0.0135; Before vs. Heat End, D(136) = 0.4558, p value = 7.372e-07; Heat Start vs. Heat End, 

D(136) = 0.2352, p value = 0.0386; Heat Start vs. After, D(136) = 0.2941, p value = 0.0041; Heat End vs. After, 

D(136) = 0.3970, p value = 2.634e-05]). 

(I) Neuronal coactivity as measured by mean proportion of active cells (Two-way mixed-model ANOVA with Sidak’s 

post hoc: no Sex x Epoch interaction [F(3, 18) = 0.5414, p = 0.6601] or main effect of Sex [F(1, 6) = 0.9203, p = 

0.3744]; main effect of Epoch [F(1.840, 11.04) = 4.163, p = 0.0475]). 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 17. Progression of BNSTCRF+ Activity Across Pain Exposure Trials 

(A-B) Average BNSTCRF+ traces of (A) male (n = 49 cells / 7-30 cells per mouse / 3 mice total) and (B) female (n = 68 

cells / 8-19 cells per mouse / 5 mice total) subjects by trial. Within the representative time window, heat exposure 

starts at 30 seconds (first line [red]) with the maximum possible heat duration indicated at 50 seconds (second line 

[orange]).  

(C-D) Average z-score by epoch and trials for (C) male and (D) female subjects (Males = Two-way repeated 

measures [RM] ANOVA with Sidak’s post hoc: Epoch x Trial interaction [F(9, 576) = 7.373, p < 0.0001], main effect of 

Epoch [F(2.477, 475.5) = 21.42, p < 0.0001] and Trial [F(3, 192) = 8.695, p < 0.0001]; Females = Two-way RM 

ANOVA with Sidak’s post hoc: Epoch x Trial interaction [F(9, 804) = 17.04, p < 0.0001], main effect of Epoch 

[F(2.203, 590.4) = 13.95, p < 0.0001] and Trial [F(3, 268) = 6.913, p = 0.0002]). 

(E) Percentage of pain responsive cells for male (purple) and female (magenta) subjects were determined relative to 

epochs surrounding the onset of heat exposure and paw withdrawal across trials 1-4. Positive, negative, and non-

responsive cells are indicated by darker purple/magenta, lighter purple/magenta, and gray respectively (Wilcoxon 

rank-sum, p < 0.05).  

(F) Proportion of pain responsive cells in individual subjects by trial and sex relative to the epochs surrounding (Left) 
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heat onset (Two-way mixed-model ANOVA with Sidak’s post hoc: no Trial x Sex interaction [F(3, 18) = 0.0466, p = 

0.9862] or main effect of Trial [F(1.092, 6.553) = 0.4473, p = 0.5435] and Sex [F(1, 6) = 1.510, p = 0.2651]) and 

(Right) paw withdrawal (Two-way mixed-model ANOVA with Sidak’s post hoc: no Trial x Sex interaction [F(3, 18) = 

0.3670, p = 0.7777] or main effect of Trial [F(2.740, 16.44) = 0.3368, p = 0.7818] and Sex [F(1, 6) = 0.0008, p = 

0.9776]). 

(G) (Left) Maximum z-score in response to heat by trial and sex (Two-way mixed-model ANOVA with Sidak’s post 

hoc: Trial x Sex interaction [F(3, 345) = 14.96, p < 0.0001], main effect of Trial [F(2.609, 300) = 20.28, p < 0.0001] 

and Sex [F(1, 115) = 13.69, p = 0.0003]). (Right) Average maximum z-score in response to heat by trial and sex 

(unpaired t-test: t(115) = 3.70, p = 0.0003). 

(H) (Left) Latency of maximum z-score in response to heat by trial and sex (Two-way mixed-model ANOVA with 

Sidak’s post hoc: Trial x Sex interaction [F(3, 345) = 16.90, p < 0.0001], main effect of Trial [F(2.717, 312.5) = 7.890, 

p < 0.0001], no main effect of Sex [F(1, 115) = 3.20, p = 0.0763]). (Right) Average latency of maximum z-score in 

response to heat stimulus by trial and sex (unpaired t-test: t(115) = 1.789, p = 0.0763).   

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 18. CRF Deletion in BNST Reduces Nociceptive Sensitivity 

(A) Diagram of Cre-dependent approach for CRF deletion in BNST.  

(B) Representative histology of CRF mRNA expression in BNST of Floxed-CRF mice following virus infusion. 

(C-D) Quantification of CRF mRNA expression in BNST of male (n = 25-26) and female (n = 25-26) subjects by (C) 

cells/mm2 (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 98) = 2.548, p =0.1136] or main 

effect of Sex [F(1, 98) = 0.2667, p = 0.6067]; main effect of Virus [F(1, 98) = 66.74, p < 0.0001]) and (D) Fold change 

compared to control (Two-way ANOVA with Tukey’s post hoc: Two-way ANOVA: no Sex x Virus interaction [F(1, 98) 

= 0.007260, p =0.9323] or main effect of Sex [F(1, 98) = 2.239, p = 0.1378]; main effect of Virus [F(1, 98) = 60.23, p < 

0.0001]).  

(E-G) Pain sensitivity of male (n = 25-26) and female (n = 25-27) subjects with schematic of behavioral test for (E) 

thermal (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 99) = 0.1585, p =0.6914] or main 

effect of Sex [F(1, 99) = 2.385, p = 0.1257]; main effect of Virus [F(1, 99) = 5.677, p = 0.0191]), (F) mechanical (Two-

way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 99) = 0.07088, p =0.7906] or main effect of Sex 

[F(1, 99) = 3.297, p = 0.0724]; main effect of Virus [F(1, 99) = 10.05, p = 0.0020]), and (G) reflexive (Two-way 

ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 99) = 0.1933, p =0.6611] or main effect of Virus [F(1, 

99) = 2.224, p = 0.1391]; main effect of Sex [F(1, 99) = 4.631, p = 0.0338]) nociception. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 19. CRF Deletion in BNST Differentially Alters Sensory-Discriminative and Affective-Motivational 

Behaviors  

(A) Schematic of hot plate test. 

(B) Thermal nociceptive sensitivity of male (n = 16-17) and female (n = 15-17) Floxed-CRF mice, as defined by 

latency to first paw withdrawal for each mouse (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction 

[F(1, 61) = 1.853, p =0.1785] or main effect of Sex [F(1, 61) = 0.1124, p = 0.7386] and Virus [F(1, 61) = 0.1524, p = 

0.6976]).  

(C) Quantification of sensory-discriminative and affective-motivational behaviors throughout the 45-second exposure 

to hot plate. Averaged AUC of paw withdrawal (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction 

[F(1, 61) = 1.072, p =0.3047] or main effect of Sex [F(1, 61) = 1.885, p = 0.1747] and Virus [F(1, 61) = 0.6208, p = 

0.4338]), paw attending (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 61) = 2.605, p 

=0.1117] or main effect of Sex [F(1, 61) = 0.8298, p = 0.3659]; main effect of Virus [F(1, 61) = 4.695, p = 0.0342]), 

paw guarding (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 61) = 0.09333, p =0.7610] or 

main effect of Sex [F(1, 61) = 1.026, p = 0.3152] and Virus [F(1, 61) = 0.04448, p = 0.8337]), escape jumping (Two-

way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 61) = 0.001778, p =0.9665] or main effect of Sex 

[F(1, 61) = 1.936, p = 0.1691] and Virus [F(1, 61) = 0.001778, p = 0.9665]), and combined affective behaviors (Two-

way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 61) = 0.5696, p =0.4533] or main effect of Sex 

[F(1, 61) = 0.5631, p = 0.4559] and Virus [F(1, 61) = 0.1580, p = 0.6924]) are shown, with corresponding cumulative 

distribution functions displayed in (D-E). 

(D-E) Sensory-discriminative and affective-motivational behaviors are exhibited across time with cumulative 

distribution functions for (D) male and (E) female subjects (paw withdrawal: CON (M): 391.9 [341.0-442.9], CRE (M): 

311.7 [263.2-360.2], CON (F): 285.9 [249.1-322.7], CRE (F): 296.8 [261.1-332.5]; paw attending: CON (M): 11.00 

[4.672-17.33], CRE (M): 14.03 [6.087-21.97], CON (F): 7.147 [2.442-11.85], CRE (F): 27.87 [17.95-37.78]; paw 
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guarding: CON (M): 189.3 [171.7-207.0], CRE (M): 179.3 [156.7-201.9], CON (F): 163.8 [147.6-180.0], CRE (F): 

165.6 [147.8-183.4]; escape jumping: CON (M): 0.03125 [0-0.2762], CRE (M): 0.2941 [0-0.2671], CON (F): 0 [0-0], 

CRE (F): 0 [0-0]; combined affective behaviors: CON (M): 200.4 [183.4-217.3], CRE (M): 193.4 [170.1-216.7], CON 

(F): 170.9 [154.3-187.5], CRE (F): 193.5 [173.8-213.1]). 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 20. CRF Deletion in BNST Does Not Alter Avoidance Behaviors 

(A) Avoidance behaviors in male (n = 7) and female (n = 8) Floxed-CRF mice, as measured by duration in the center 

(seconds) of the open field (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 26) = 2.098, p = 

0.1594], no main effect of Sex [F(1, 26) = 0.0001, p = 0.9911] and Virus [F(1, 26) = 0.8511, p = 0.3647]). 

(B) Locomotor behaviors in male (n = 7) and female (n = 8) subjects, as measured by distance traveled (cm) in the 

open field (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 26) = 0.1251, p = 0.7265], no 

main effect of Sex [F(1, 26) = 3.015, p = 0.0943] and Virus [F(1, 26) = 0.5665, p = 0.4584]). 

(C) Avoidance behaviors in male (n = 7) and female (n = 8) subjects, as measured by duration in the open arms 

(seconds) of the elevated plus maze (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 26) = 

0.0995, p = 0.7549], main effect of Sex [F(1, 26) = 4.908, p = 0.0357], no main effect of Virus [F(1, 26) = 0.0083, p = 

0.9280]). 

(D) Locomotor behaviors in male (n = 7) and female (n = 8) subjects, as measured by distance traveled (cm) in the 

elevated plus maze (Two-way ANOVA with Tukey’s post hoc: no Sex x Virus interaction [F(1, 26) = 0.6221, p = 

0.4374], no main effect of Sex [F(1, 26) = 0.4944, p = 0.4882] and Virus [F(1, 26) = 1.161, p = 0.2911]). 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 21. Experimental Timeline of CFA/CA2BC.  

Days are marked relative to arrival of subjects. Following a week-long habituation, adult male (n = 8) and female (n = 

8) C57BL6/J mice were treated with a 50 µL paw injection of saline or CFA. Subjects were tested in the CA2BC 

paradigm for three weeks and then assessed for thermal nociceptive sensitivity during acute withdrawal. Following a 

2-hr terminal drinking session on Day 35, brain tissue and blood samples were collected. 
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Figure 22. Daily Alcohol Intake (g/kg/24 hr) of Saline- or CFA-Treated C57BL/6J Mice Over a 3-Week 

Continuous Access Regimen.  

(A-B) Pain-related consumption of 20% EtOH (w/v) was assessed for (A) males (n = 8) (Two-way mixed-model 

ANOVA with Sidak’s post hoc: no Session x Inflammatory Pain interaction [F(19, 266) = 0.7802, p = 0.7301], main 

effect of Session [F(19, 266) = 1.656, p = 0.0437] and Inflammatory Pain [F(1, 14) = 4.768, p = 0.0465]) and (B) 

females (n = 8) (Two-way mixed-model ANOVA with Sidak’s post hoc: no Session x Inflammatory Pain interaction 

[F(19, 266) = 1.149, p = 0.3023], main effect of Session [F(19, 266) = 9.470, p < 0.0001], no main effect of 

Inflammatory Pain [F(1, 14) = 0.09215, p = 0.7659]) in 20 consecutive sessions.  

(C) Averages of daily intake were compared between saline- and CFA-treated males and females (Two-way mixed-

model ANOVA with Sidak’s post hoc: no Sex x Inflammatory Pain interaction [F(1, 28) = 2.229, p = 0.1466], main 

effect of Sex [F(1, 28) = 24.34, p < 0.0001], no main effect of Inflammatory Pain [F(1, 28) = 3.524, p = 0.0709]).  

(D-E) Cumulative distribution functions of ethanol intake for (D) male and (E) female subjects (SAL (M): 1432 [1301-

1564], CFA (M): 2571 [2045-3098]; SAL (F): 3357 [3094-3620], CON-CFA (F): 3265 [2863-3667]). 

(F) Averaged AUC of cumulative ethanol intake for male (n = 8-9) and female (n = 8) Floxed-CRF mice (Two-way 

ANOVA: no Sex x Inflammatory Pain interaction [F(1, 28) = 3.054, p =0.0915], main effect of Sex [F(1, 28) = 13.82, p 

= 0.0009], no main effect of Inflammatory Pain [F(1, 28) = 2.209, p = 0.1484]), with corresponding cumulative 

distribution functions displayed in (D-E). 
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Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 23. Daily Alcohol Preference Ratio of Saline- or CFA-Treated C57BL/6J Mice Over a 3-Week 

Continuous Access Regimen.  

(A-B) Pain-related alcohol preference was assessed for (A) males (n = 8) (Two-way mixed-model ANOVA with 

Sidak’s post hoc: no Session x Inflammatory Pain interaction [F(19, 266) = 0.4569, p = 0.9765] or main effect of 

Session [F(19, 266) = 0.9432, p = 0.5298], main effect of Inflammatory Pain [F(1, 14) = 6.777, p = 0.0208]) and (B) 

females (n = 8) (Two-way mixed-model ANOVA with Sidak’s post hoc: no Session x Inflammatory Pain interaction 

[F(19, 266) = 1.374, p = 0.1392], main effect of Session [F(19, 266) = 5.297, p < 0.0001], no main effect of 

Inflammatory Pain [F(1, 14) = 0.1650, p = 0.6907]) in 20 consecutive sessions.  

(C) Averages of daily intake were compared between saline- and CFA-treated males and females (Two-way mixed-

model ANOVA with Sidak’s post hoc: Sex x Inflammatory Pain interaction [F(1, 28) = 5.140, p = 0.0313], main effect 

of Sex [F(1, 28) = 14.18, p = 0.0008], no main effect of Inflammatory Pain [F(1, 28) = 3.362, p = 0.0774]).  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 24. Daily Water Intake (mL) of Saline- or CFA-Treated C57BL/6J Mice Over a 3-Week Continuous 

Access Regimen.  

(A-B) Pain-related consumption of water was assessed for (A) males (n = 8) (Two-way mixed-model ANOVA with 

Sidak’s post hoc: no Session x Inflammatory Pain interaction [F(19, 266) = 0.2718, p = 0.9992] or main effect of 

Session [F(19, 266) = 5.661, p < 0.0001] and Inflammatory Pain [F(1, 14) = 3.264, p = 0.0923]) and (B) females (n = 

8) (Two-way mixed-model ANOVA with Sidak’s post hoc: no Session x Inflammatory Pain interaction [F(19, 266) = 

1.129, p = 0.3211] or main effect of Session [F(19, 266) = 1.320, p = 0.1698] and Inflammatory Pain [F(1, 14) = 

0.4658, p = 0.5060]) in 20 consecutive sessions.  

(C) Averages of daily intake were compared between saline- and CFA-treated males and females (Two-way mixed-

model ANOVA with Sidak’s post hoc: no Sex x Inflammatory Pain interaction [F(1, 28) = 2.117, p = 0.1568] or main 

effect of Sex [F(1, 28) = 2.903, p = 0.0995] and Inflammatory Pain [F(1, 28) = 0.06344, p = 0.8030]).  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 25. Daily Alcohol and Water Intake (mL) of Saline- or CFA-Treated C57BL/6J Mice Over a 3-Week 

Continuous Access Regimen.  

(A-B) Pain-related consumption of fluids was assessed for (A) males (n = 8) (Two-way mixed-model ANOVA with 

Sidak’s post hoc: no Session x Inflammatory Pain interaction [F(19, 266) = 1.295, p = 0.1862], main effect of Session 

[F(19, 266) = 13.35, p < 0.0001], no main effect of Inflammatory Pain [F(1, 14) = 1.727, p = 0.2100]) and (B) females 

(n = 8) (Two-way mixed-model ANOVA with Sidak’s post hoc: no Session x Inflammatory Pain interaction [F(19, 266) 

= 0.7379, p = 0.7782], main effect of Session [F(19, 266) = 4.514, p < 0.0001], no main effect of Inflammatory Pain 

[F(1, 14) = 0.6436, p = 0.4358]) in 20 consecutive sessions.  

(C) Averages of daily intake were compared between saline- and CFA-treated males and females (Two-way mixed-

model ANOVA with Sidak’s post hoc: no Sex x Inflammatory Pain interaction [F(1, 28) = 0.02455, p = 0.8766] or main 

effect of Sex [F(1, 28) = 0.2754, p = 0.6039] and Inflammatory Pain [F(1, 28) = 1.653, p = 0.2091]).  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 26. Pain Sensitivity of Saline- and CFA-Treated C57BL6/J Mice During Acute Withdrawal.  

(A-B) Thermal nociceptive sensitivity of saline- and CFA-treated C57BL/6J mice was tested 24 hrs after last alcohol 

exposure. Using the Hargreaves test, paw withdrawal latency (s) was measured in response to a thermal nociceptive 

stimulus for substance-treated and untreated paws of (A) male (Two-way mixed-model ANOVA with Sidak’s post hoc: 

Paw x Inflammatory Pain interaction [F(1, 14) = 27.46, p = 0.0001], main effect of Paw [F(1, 14) = 8.155, p = 0.0127] 

and Inflammatory Pain [F(1, 14) = 7.010, p = 0.0191]) and (B) female (Two-way mixed-model ANOVA with Sidak’s 

post hoc: Paw x Inflammatory Pain interaction [F(1, 14) = 10.15, p = 0.0066], main effect of Paw [F(1, 14) = 11.00, p 

= 0.0051], no main effect of Inflammatory Pain [F(1, 14) = 3.276, p = 0.0918]) mice.  

(C-D) Pain sensitivity correlations with average daily alcohol intake in (C) males and (D) females.  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 27. Average Alcohol and Water consumption of Saline- or CFA-Treated C57BL/6J Mice over a 2-hr 

Terminal Drinking Session.  

(A) Average alcohol intake (g/kg/2 hr) in saline- or CFA-treated male (n = 8) and female (n = 8) C57BL/6J mice during 

a final 2-hr drinking session (Two-way mixed-model ANOVA with Sidak’s post hoc: no Sex x Inflammatory Pain 

interaction [F(1, 28) = 0.6611, p = 0.4230], main effect of Sex [F(1, 28) = 83.19, p < 0.0001], no main effect of 

Inflammatory Pain [F(1, 28) = 0.1574, p = 0.6945]). 

(B) Average preference ratio in saline- or CFA-treated males (n = 8) and females (n = 8) during a final 2-hr drinking 

session (Two-way mixed-model ANOVA with Sidak’s post hoc: Sex x Inflammatory Pain interaction [F(1, 28) = 5.599, 

p = 0.0251], no main effect of Sex [F(1, 28) = 1.673, p = 0.2064] and Inflammatory Pain [F(1, 28) = 0.2239, p = 

0.6397]). 

(C) Average water intake (g/kg/2 hr) in saline- or CFA-treated males (n = 8) and females (n = 8) during a final 2-hr 

drinking session (Two-way mixed-model ANOVA with Sidak’s post hoc: no Sex x Inflammatory Pain interaction [F(1, 

28) = 3.800, p = 0.0613] or main effect of Sex [F(1, 28) = 0.2640, p = 0.6114] and Inflammatory Pain [F(1, 28) = 

0.03288, p = 0.8574]). 
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(D) Average total fluid intake (mL) in saline- or CFA-treated males (n = 8) and females (n = 8) during a final 2-hr 

drinking session (Two-way mixed-model ANOVA with Sidak’s post hoc: no Sex x Inflammatory Pain interaction [F(1, 

28) = 1.341, p = 0.2566], main effect of Sex [F(1, 28) = 8.726, p = 0.0063], no main effect of Inflammatory Pain [F(1, 

28) = 0.4069, p = 0.5288]).  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 28. Blood Ethanol Content of Saline- or CFA-Treated C57BL/6J Mice following a 2-hr Terminal Drinking 

Session.  

(A) Blood ethanol content (mg/dl) of saline- and CFA-treated C57BL/6J mice was measured 2-hrs into the final 

alcohol exposure day in male and female mice (Two-way mixed-model ANOVA with Sidak’s post hoc: no Sex x 

Inflammatory Pain interaction [F(1, 28) = 1.890, p = 0.1801] or main effect of Sex [F(1, 28) = 0.8967, p = 0.3518] and 

Inflammatory Pain [F(1, 28) = 0.1365, p = 0.7146]).  

(B-C) BEC was correlated with average daily alcohol intake in (B) males and (C) females.  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 

 

 

 



 

154 

    

Figure 29. Plasma Corticosterone of Saline- or CFA-Treated C57BL/6J Mice following a 2-hr Terminal 

Drinking Session. 

(A) Plasma corticosterone (CORT [ng/mL]) of saline- and CFA-treated C57BL/6J mice was measured 2-hrs into the 

final alcohol exposure day in male and female mice (Two-way mixed-model ANOVA with Sidak’s post hoc: no Sex x 

Inflammatory Pain interaction [F(1, 28) = 0.3202, p = 0.5760], main effect of Sex [F(1, 28) = 7.298, p = 0.0116], no 

main effect of Inflammatory Pain [F(1, 28) = 0.1243, p = 0.7270]).  

(B-C) CORT levels were correlated with average daily alcohol intake in (B) males and (C) females.  

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 30. CRF Deletion in BNST Alters Pain-Alcohol Interactions 

(A) Schematic of pain-related alcohol drinking with experimental timeline. 

(B) Comparisons of average daily ethanol intake for (Left) male (n = 8-9; Two-way mixed-model ANOVA: no Drinking 

Protocol x Virus/Inflammatory Pain interaction [F(3, 29) = 0.6600, p =0.5833], main effect of Drinking Protocol [F(1, 

29) = 7.266, p = 0.0116], no main effect of Virus/Inflammatory Pain [F(3, 29) = 0.5242, p = 0.6691]) and (Right) 

female (n = 7-8; Two-way mixed-model ANOVA: no Drinking Protocol x Virus/Inflammatory Pain interaction [F(3, 27) 

= 0.8899, p =0.4589], main effect of Drinking Protocol [F(1, 27) = 48.36, p < 0.0001], no main effect of 

Virus/Inflammatory Pain [F(3, 27) = 1.418, p = 0.2593]) subjects during CA2BC and IA2BC.  

(C) Average ethanol preference for (Left) male (n = 8-9; Two-way mixed-model ANOVA: no Drinking Protocol x 

Virus/Inflammatory Pain interaction [F(3, 29) = 0.3407, p =0.7961], main effect of Drinking Protocol [F(1, 29) = 14.34, 

p = 0.0007], no main effect of Virus/Inflammatory Pain [F(3, 29) = 0.3888, p = 0.7619]) and (Right) female (n = 7-8; 

Two-way mixed-model ANOVA: no Drinking Protocol x Virus/Inflammatory Pain interaction [F(3, 27) = 1.333, p 

=0.2842], main effect of Drinking Protocol [F(1, 27) = 101.5, p < 0.0001], no main effect of Virus/Inflammatory Pain 

[F(3, 27) = 1.518, p = 0.2324]) subjects during CA2BC and IA2BC. 

(D) Cumulative distribution functions of ethanol intake for (Left) male and (Right) female subjects (CON-SAL (M): 

2643 [1873-3413], CON-CFA (M): 2386 [2179-2593], CRE-SAL (M): 3090 [2609-3572], CRE-CFA (M): 3565 [2794-

4335]; CON-SAL (F): 8476 [7167-9784], CON-CFA (F): 7257 [6547-7967], CRE-SAL (F): 9449 [8762-10136], CRE-

CFA (F): 11065 [9866-12264]). 

(E) Averaged AUC of cumulative ethanol intake for (Left) male (n = 8-9; Two-way ANOVA: no Inflammatory Pain x 

Virus interaction [F(1, 29) = 0.2343, p =0.6320] or main effect of Inflammatory Pain [F(1, 29) = 0.02055, p = 0.8870] 

and Virus [F(1, 29) = 1.164, p = 0.2895]) and (Right) female (n = 7-8; Two-way ANOVA: no Pain x Virus interaction 
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[F(1, 27) = 1.055, p = 0.3134] or main effect of Sex [F(1, 27) = 0.02071, p = 0.8866] and Virus [F(1, 27) = 3.003, p = 

0.0945]) Floxed-CRF mice, with corresponding cumulative distribution functions displayed in (D). 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 31. CRF Deletion in BNST Alters Pain-Related Alcohol Drinking Behaviors but not Sucrose Drinking 

Behaviors or Plasma Corticosterone Levels 

(A) Cumulative distribution of ethanol intake for male subjects with individual group comparisons (CON-SAL (M): 

2643 [1873-3413], CON-CFA (M): 2386 [2179-2593], CRE-SAL (M): 3090 [2609-3572], CRE-CFA (M): 3565 [2794-

4335]). 

(B) Cumulative distribution of ethanol intake for female subjects with individual group comparisons (CON-SAL (F): 

8476 [7167-9784], CON-CFA (F): 7257 [6547-7967], CRE-SAL (F): 9449 [8762-10136], CRE-CFA (F): 11065 [9866-

12264]). 

(C-D) Cumulative distribution of sucrose intake for (C) male (CON-SAL (M): 5.312 [3.839-6.785], CON-CFA (M): 

5.495 [4.089-6.901], CRE-SAL (M): 4.849 [3.491-6.206], CRE-CFA (M): 5.542 [3.936-7.149]) and (D) female subjects 

(CON-SAL (F): 8.707 [7.552-9.862], CON-CFA (F): 7.956 [6.691-9.220], CRE-SAL (F): 8.599 [7.248-9.950], CRE-

CFA (F): 7.156 [3.912-10.40]). 

(E-F) Average plasma corticosterone levels for (E) male (n = 8-9; Two-way ANOVA: no Inflammatory Pain x Virus 

interaction [F(1, 29) = 2.362, p = 0.1351] or main effect of Inflammatory Pain [F(1, 29) = 0.003521, p = 0.9531] and 

Virus [F(1, 29) = 0.01273, p = 0.9109]) and (F) female subjects (n = 7-8; Two-way ANOVA: no Inflammatory Pain x 
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Virus interaction [F(1, 27) = 0.003371, p = 0.9541] or main effect of Inflammatory Pain [F(1, 27) = 0.6430, p = 0.4296] 

and Virus [F(1, 27) = 0.0007458, p = 0.9784]). 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 32. Effects of Persistent Inflammatory Pain on CRF Deletion in BNST 

(A-B) Thermal nociceptive sensitivity of (A) male (n = 8-9) (Two-way ANOVA with Tukey’s post hoc: no Inflammatory 

Pain x Virus/Paw interaction [F(3, 58) = 2.428, p = 0.0745] or main effect of Inflammatory Pain [F(1, 58) = 4.000, p = 

0.0502]; main effect of Virus/Paw [F(3, 58) = 7.240, p = 0.0003]) and (B) female (n = 7-9) (Two-way ANOVA with 

Tukey’s post hoc: Inflammatory Pain x Virus/Paw interaction [F(3, 56) = 9.186, p < 0.0001], main effect of 

Inflammatory Pain [F(1, 58) = 14.57, p = 0.0003] and Virus/Paw [F(3, 58) = 14.82, p < 0.0001]) Floxed-CRF mice. 

(C-D) Quantification of CRF mRNA expression in BNST of (C) male (n = 8-9) (Two-way ANOVA with Tukey’s post 

hoc: no Inflammatory Pain x Virus interaction [F(1, 29) = 1.882, p =0.1807] or main effect of Inflammatory Pain [F(1, 

29) = 1.038, p = 0.3167]; main effect of Virus [F(1, 29) = 22.09, p < 0.0001]) and (D) female (n = 7-8) (Two-way 

ANOVA with Tukey’s post hoc: no Inflammatory Pain x Virus interaction [F(1, 27) = 1.161, p =0.2907] or main effect 

of Inflammatory Pain [F(1, 27) = 0.4011, p = 0.5319]; main effect of Virus [F(1, 27) = 6.014, p = 0.0209]) subjects by 

cells/mm2. 

Data are shown as mean ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. 
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Figure 33. Proposed Model of PAG/DRDA+ and BNSTCRF+ Circuitry for Sex-Specific Pain and Drug Use 

(A) Functional connectivity map by cell type featuring PAG/DRDA+ and BNSTCRF+ neurons and supporting circuits in 

the VTA and NAc. We hypothesize that PAG/DRDA+ neurons are recruited by contextual salience to express pain 

responses through the BNST-VTA-NAc circuit in a sex-specific manner. This DA signaling system may specifically 

recruit BNSTCRF+ neurons via D1-like and D2-like receptors to represent the salient features of rewarding and 

aversive stimuli in relation to the environment. These DA and CRF circuit mechanisms are likely to be important for 

adaptive behaviors and associative learning, acting as a link between the valence of a cue and the environment to 

inform functional outcomes.  

(B) Enhanced CRF signaling in the BNST is posited to support the transition from acute pain to chronic pain. 

Following the induction of a chronic pain state, local CRF and CRFR1 production are augmented in the BNST to 

suppress the mesolimbic DA system. This mechanism could explain observed sex differences in the processing of 

reward and aversion among chronic pain patients. Female-specific increases in BNST representations of aversive 

information are specifically thought to correspond to negative experiences with analgesic drug use and worse 

therapeutic outcomes in women. 

Abbreviations: BNST: bed nucleus of the stria terminalis, DR: dorsal raphe, NAc: nucleus accumbens, PAG: 

periaqueductal gray; VTA: ventral tegmental area; DA: dopamine, Glu: glutamate, GABA: γ-aminobutyric acid, CRF: 

corticotropin releasing factor, CRFR1: corticotropin releasing factor receptor 1. 
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