

Program

Limitations of the actuarial approach

A physics-based approach

 Coupling to ADCIRC to assess surge risk

Hurricane Risks:

Wind

Rain

Storm Surge

U. S. Hurricane Mortality (1970-1999)

Source: Rappaport, E. N., 1999:
The threat to life in inland areas of the United States from Atlantic tropical cyclones.

Prepreints 23rd Conferenceon Hurricanes and Tropical Meteorology,
American Meteorological Society (10-15 Jan 1999, Dallas Tx), 339-342.

Limitations of the Actuarial Approach

U.S. Hurricane Damage, 1900-2004, Adjusted for Inflation, Wealth, and Population

Total Number of Landfall Events, by Category, 1870-2004

Limitations of a strictly statistical approach to hurricane risk assessment

- >50% of all normalized U.S. hurricane damage caused by top 8 events, all category 3, 4 and 5
- >90% of all damage caused by storms of category 3 and greater
- Category 3,4 and 5 events are only 13% of total landfalling events; only 30 since 1870
- ... Landfalling storm statistics are inadequate for assessing hurricane risk

Risk Assessment by Direct Numerical Simulation of Hurricanes: The Problem

- The hurricane eyewall is a front, attaining scales of ~ 1 km or less
- At the same time, the storm's circulation extends to ~1000 km and is embedded in much larger scale flows
- The computational nodes of global models are typically spaced 100 km apart

Histograms of Tropical
Cyclone Intensity as
Simulated by a Global
Model with 50 km grid
point spacing. (Courtesy
Isaac Held, GFDL)

Global models do not simulate the storms that cause destruction

Numerical convergence in an axisymmetric, nonhydrostatic model (Rotunno and Emanuel, 1987)

How to deal with this?

 Embed high-resolution, fast coupled ocean-atmosphere hurricane model in GCM or reanalysis data

Time-dependent, axisymmetric model phrased in R space

$$M = rV + \frac{1}{2}fr^2$$
 $\frac{1}{2}fR^2 \equiv M$ $f \equiv 2\Omega \sin \theta$

- Hydrostatic and gradient balance above PBL
- Moist adiabatic lapse rates on M surfaces above PBL
- Boundary layer quasi-equilibrium convection
- Deformation-based radial diffusion
- Coupled to simple 1-D ocean model
- Environmental wind shear effects parameterized

Angular Momentum Distribution

How Can We Use This Model to Help Assess Hurricane Risk in Current and Future Climates?

Risk Assessment Approach:

- Step 1: Seed each ocean basin with a very large number of weak, randomly located cyclones
- Step 2: Cyclones are assumed to move with the large scale atmospheric flow in which they are embedded, plus a correction for the earth's rotation and sphericity
- Step 3: Run the CHIPS model for each cyclone, and note how many achieve at least tropical storm strength
- Step 4: Using the small fraction of surviving events, determine storm statistics. Can easily generate 100,000 events

Details: Emanuel et al., Bull. Amer. Meteor. Soc, 2008

Comparison of Random Seeding Genesis Locations with Observations

Cumulative Distribution of Storm Lifetime Peak Wind Speed, with Sample of 1755 Synthetic Tracks

Return Periods

Sample Storm Wind Swath

Accumulated Rainfall (mm)

Storm Surge Simulation

Taking Climate Change Into Account

Captures effects of regional climate phenomena (e.g. ENSO, AMM)

GCM flood height return level, Battery, Manhattan

(assuming SLR of 1 m for the future climate)

Black: Current climate (1981-2000)

Blue: A1B future climate (2081-2100)

Red: A1B future climate (2081-2100) with R_0 increased by 10% and R_m increased by 21%

A Black Swan: Dubai

Max Surge (NCEP track237; Dubai: 3.45 m)

Black Swan Affecting Tampa

cnrma1b2081_2100tampasurgeal Track number 261 August

cnrma1b2081_2100tampasurgeal Track number 261, August 16, 08:00 GMT

ADCIRC Mesh

Maximum Surge (CNRM_A1B track261)

Peak Surge at each point along Florida west coast

Summary

 History is too short and imperfect to estimate hurricane risk

- Better estimates can be made from downscaling hurricane activity from climatological or global model output
- Hurricanes clearly vary with climate and there is a risk that hurricane threats will increase over this century