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9 Limitations of the actuarial approach
2 A physics-based approach

~ 2 Coupling to ADCIRC to assess surge
risk




Hurricane Risks:

» Wind

» Rain

» Storm Surge




U. S. Hurricane Mortality (1970-1999)
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U.S. Hurricane Damage, 1900-2004,Adjusted
Intlation, Wealth, and Population
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Total Number: of' Landrall Events, by Category, 1670-2004
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Limitations of a strictly statistical approach
to hurricane risk assessment

d >50% of all normalized U.S. hurricane damage caused
by top 8 events, all category 3,4 and 5

? >90% of all damage caused by storms of category 3 and
greater

» Category3,4 and 5 events are only 13% of total
landfalling events; only 30 since 1870

3 .". Landfalling storm statistics are inadequate for
assessing hurricane risk



Risk Assessment by Direct Numerical
Simulation of Hurricanes:
The Problem

» The hurricane eyewall is a front, attaining
scales of ~1 km or less

» At the same time, the storm’s circulation
extends to ~1000 km and is embedded In
much larger scale flows

» The computational nodes of global models
are typically spaced 100 km apart



frequancy

Histograms of Tropical
Cyclone Intensity as
Simulated by a Global

| Category 3 Model with 50 km grid
EatPacis / , point spacing. (Courtesy
Modele -
N bserve _ Isaac Held, GFDL)
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Global models do not
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Numerical convergence in an axisymmetric,
nonhydrostatic model (Rotunno and Emanuel, 1987)
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How to deal with this?

» Embed high-resolution, fast coupled
ocean-atmosphere hurricane model in
GCM or reanalysis data
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Time-dependent, axisymmetric model
phrased in R space
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Hydrostatic and gradient balance above PBL

Moist adiabatic lapse rates on M surfaces above
PBL

Boundary layer quasi-equilibrium convection
Deformation-based radial diffusion

Coupled to simple 1-D ocean model
Environmental wind shear effects parameterized



Angular Momentum Distribution
]

16 -

14

12+
Altitude
(km) 10+

8_

z (km)

0 50 100 150
1\ Radius (km)

Storm Center



- - - - N
N N (2] o0 (=]

Absolute wind error (knots)
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How Can We Use This Model to
Help Assess Hurricane Risk in
Current and Future Climates?



Risk Assessment Approach:

Step 1: Seed each ocean basin with a very large number
of weak, randomly located cyclones

Step 2: Cyclones are assumed to move with the large
scale atmospheric flow in which they are embedded, plus
a correction for the earth’s rotation and sphericity

Step 3: Run the CHIPS model for each cyclone, and note
how many achieve at least tropical storm strength

Step 4. Using the small fraction of surviving events,
determine storm statistics. Can easily generate 100,000
events

Details: Emanuel et al., Bull. Amer. Meteor. Soc, 2008
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Comparison of Random Seeding Genesis Locations
with Observations
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Cumulative Distribution of Storm Lifetime Peak Wind
Speed, with Sample of 1755 Synthetic Tracks
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Sample Storm Wind Swath

Track number 7940, September
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Accumulated Rainfall (mm)
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Storm Surge Simulation
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- Taking Climate Change Into
> Account




Captures effects of regional climate phenomena
(e.g. ENSO, AMM)

Annual Frequency

16 T I [

I Best track
14k B Synthetic ||
12+ -

-
(=]
T

Annual Frequency
(=]
I

Cold_AMM Cold_N34 Neutral AMM Neutral N34 Warm_AMM Warm_N34



GCM flood height return level, Battery,

Manhattan
(assuming SLR of 1 m for the future climate
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Black: Current climate (1981-2000)
Blue: A1B future climate (2081-2100)

Red: A1B future climate (2081-2100) with R, increased by 10% and R, increased by 21%

Lin et al. (2012)



A Black Swan: Dubal

Max Surge (NCEP track237; Dubai: 3.45 m)
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Black Swan Affecting Tampa

cnrma1b2081_2100tampasurgeal Track number 261
August
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cnrmaib2081_2100tampasurgeal

Track number 261, August 16, 08:00 GMT
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ADCIRC Mesh
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Peak Surge at
each point
along Florida
west coast

Maximum Surge (CNRM_A1B track261)
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J History is too short and imperfect to estimate
hurricane risk

o Better estimates can be made from
downscaling hurricane activity from
climatological or global model output

2 Hurricanes clearly vary with climate and
there is a risk that hurricane threats will
Increase over this century




