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ABSTRACT

HYOWON AN: Gaussian Centered L-moments
(Under the direction of J. S. Marron and Kai Zhang)

As various types of media currently generate so-called big data, data visualization faces

the challenge of selecting a few representative variables that best summarize important

structure inherent in data. The conventional moments-based summary statistics can be

useful for the purpose of variable screening. In particular, they can find important distri-

butional features such as bimodality and skewness. However, their sensitivity to outliers

can lead to selection based on a few extreme outliers rather than distributional shape. To

address this type of non-robustness, we consider the L-moments. But, describing a marginal

distribution with the L-moments has an intuitive limitation in practice because these mo-

ments take zero values at the uniform distribution; the interest usually lies in the shape

of the marginal distribution compared to the Gaussian, but the sign and magnitude of

the L-moments are not as useful as expected for this purpose. As a remedy, we propose

the Gaussian Centered L-moments with zeros at the Gaussian distribution while sharing

robustness of the L-moments. The Gaussian Centered L-moments can be especially use-

ful for gene expression data in which variable screening corresponds to finding biologically

meaningful genes. The mixtures of Gaussian distributions seems to be underlying mecha-

nism generating gene expression profiles, and this suggests moments that are sensitive to

departure from Gaussianity.

This dissertation deeply investigates theoretical properties of the Gaussian Centered

L-moments in various ways. First, by the means of Oja’s criteria, the first four terms of the

Gaussian Centered L-moments are shown to describe the shape of a distribution in a phys-

ically meaningful fashion. Second, comparison between robustness of the conventional, L-

and Gaussian Centered L-moments is made based on asymptotic behavior of their influence

functions on Tukey’s h distributions. Third, the efficiencies of these moments in capturing
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departure from Gaussianity are compared by developing Jarque-Bera type goodness-of-fit

test statistics for Gaussianity. While developing such test statistics, a method for obtaining

optimal balance between skewness and kurtosis estimators is introduced. Finally, compre-

hensive performances including both the robustness and efficiency of the different moments

on high dimensional gene expression data are analyzed by the Gene Set Enrichment Anal-

ysis.
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CHAPTER 1

Introduction

Data quality is an issue that is currently not receiving as much attention as it deserves

in the age of big data. Traditional careful analysis of small data sets involves a study of

marginal distributions, which easily finds data quality challenges such as skewness and sug-

gests remedies such as data transformation. Furthermore, unusual marginal distributional

structure can suggest potential new scientific investigation. Direct implementation of this

type of operation is difficult with high dimensional data, as there are too many marginal

distributions to individually visualize. This hurdle can be overcome by using summary

statistics to select a representative set for visualization and potential remediation. Tradi-

tional summaries such as the sample mean, variance, skewness and kurtosis can be very

useful for this process. However, as seen in Chapter 5, those have some limitations for this

purpose, e.g. they can be strongly influenced by outliers. In some situations outliers are

important and well worth finding, but in other cases summaries that are dominated by them

(such as those based on the moments) can miss more important features of some variables,

such as bimodality.

For this purpose, this dissertation proposes, and deeply studies, some new univariate

distributional summaries. The starting point is the L-moments (Hosking, 1990), which are

known to have good robustness properties against outliers, while being interpretable be-

cause of their intuitive definition in terms of expected order statistics. Linear combinations

of order statistics, so-called L-statistics are typically chosen estimators of the L-moments.

L-statistics were first proposed in the general research area of robust statistics, in particu-

lar robustness against outliers; see Hampel et al. (2011), Staudte and Sheather (2011) and

Huber and Ronchetti (2009). With the goal of screening for non-Gaussianity, a limitation

of the classical L-moments is that they are not centered at the typically expected (and fre-

quently appearing in real data) Gaussian distribution, but instead are zero at the uniform



distribution. Zero at the uniform distribution hinders interpreting the signs and magni-

tudes of the L-moments, especially in terms of the critical notion of kurtosis, which should

be negative for bimodal distributions and highly positive for distributions with high peaks

and heavy tails.

This dissertation focuses on skewness and kurtosis as directions of departure from Gaus-

sianity. Those distributional aspects have gained relatively little attention from the robust-

ness community. The theoretical skewness γ1 and (excess) kurtosis γ2 of a random variable

X are defined as

γ1 =
E (X − EX)3(
E (X − EX)2

)3/2 , γ2 =
E (X −EX)4(
E (X − EX)2

)2 . (1.1)

Given a random sample X1,X2, · · · ,Xn and their sample mean X̄ , those are often estimated

by the sample skewness γ̂1 and sample kurtosis γ̂2 defined as

γ̂1 =

∑n
i=1

(
Xi − X̄

)3(∑n
i=1

(
Xi − X̄

)2)3/2 , γ̂2 =

∑n
i=1

(
Xi − X̄

)4(∑n
i=1

(
Xi − X̄

)2)2 . (1.2)

Each observation Xi influences both the sample skewness and kurtosis with polynomial

degree. If these statistics are used to select a few representative variables in high dimen-

sional data, variables with outliers will tend to be selected rather than variables with more

meaningful notions of skewness and kurtosis in their distributional bodies.

The limitation of conventional summary statistics in practice is demonstrated using a

modern high dimensional data set from cancer research in Chapter 5. These data are part

of the TCGA project, and were first studied in (Ciriello et al., 2015) and (Hu et al., 2015).

The precise version of the data here was used in (Feng et al., 2015). The data consist

of 16,615 genes and 817 breast cancer patients, each of which is labelled according to 5

subtypes. While much is known about this data, as discussed in (Feng et al., 2015), the

sheer data size means there have only been preliminary studies of the marginal (individual

gene) distributions. In this study we do a much deeper search for genes with unexpected

marginal structure. This provides a nonstandard, but very useful basis for the comparison

of marginal distributional summaries.
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Figure 1.1: The marginal distribution plots of the 15 genes with equally spaced sample conventional
skewness values. The upper left most plot is a quantile plot. The first and last genes should show
skewness to the left and right sides, respectively, but they actually have a couple of strong outliers
instead.
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Subtype LumA LumB Her2 Basal Normal-like

Symbol + × * � �

Table 1.1: The symbols and colors corresponding to the 5 breast cancer subtypes in the marginal
distribution plots. The upper left most plot is a quantile plot. For detailed explanation, see Chapter
1.

Figure 1.1 shows the marginal distributions of the 15 variables (or genes) with the

equally spaced sample skewness values. The upper left most plot shows the distribution of

the sorted values of the summary statistics, as the quantile function. The dashed vertical

lines indicate the locations of the displayed genes in the sorted list. The remaining plots

are a selected subset of the marginal distribution plots that correspond to equally spaced

sample quantiles of the sample skewness values. Each symbol represents a breast cancer

patient by colors and symbol based on subtypes; which are very important to determining

which modern treatments are best for which patients. See Table 1.1 for reference. The

height of each symbol provides visual separation, based on order in the data set. The black

solid line is a kernel density estimate, i.e. smooth histogram, of the marginal distribution,

with colored sub-densities corresponding to subtypes. The first and last genes selected by

the sample skewness have a couple of strong outliers on its left and right sides, respectively.

This does not realize the goal of finding genes with strong distributional body skewness, for

example driven by differing subtype behavior.

On the other hand, Figure 1.2 shows the marginal distributions of the 15 genes with

the equally spaced sample kurtosis values. The genes with low sample kurtosis values have

bi- or multimodality. It seem that those genes do not have strong outliers. This is a natural

result of the property of kurtosis that its negative side indicates large flanks, with light tails

and a low peak (i.e. bimodality) of a distribution. Since outliers affect measures of heavy-

tailedness rather than light-tailedness, the negative side of sample kurtosis are not affected

by outliers. On the contrary, the genes with high sampled kurtosis values, TDRD3 and

CSTF2T, have a couple of outliers on one side or both sides of their marginal distributions.

This shows that the conventional kurtosis is not effective at picking up genes possessing

distributional kurtosis.
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Figure 1.2: The marginal distribution plots of the 15 genes with equally spaced sample kurtosis
values. The upper left most plot is a quantile plot. The last gene should have heavy tailed-ness on
both sides of its marginal distribution, but the gene CSTF2T actually has a couple of strong outliers
on the both sides.
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1.1 Preliminaries

Throughout this dissertation, we assume that we have two random variables X and

Y following absolutely continuous cumulative distribution functions (CDF) F and G with

probability density functions f and g respectively. Also, a random sample X1,X2, · · · ,Xn

is assumed to be generated from F , and Xi:n denotes the i-th order statistic of the random

sample. Following Oja (1981), the cumulative distribution function F is said to be strictly

increasing if it is strictly increasing on its support, S(F ) = {x|0 < F (x) < 1} where S indi-

cates the closure of S ⊂ R. In this dissertation we consider only the family F of absolutely

continuous and strictly increasing cumulative distribution functions. The quantile function

F−1 is then the inverse of F ∈ F defined on (0, 1).

Various kinds of orthogonal polynomials are introduced and used throughout this paper.

One of the most famous sequences of orthogonal polynomials is the Legendre polynomials

{Pr}r≥0 which have been comprehensively investigated in Szegö (1959). The Legendre

polynomials are orthogonal to each other on the interval [−1, 1] with respect to the weight

function w(x) = 1, i.e. ∫ 1

−1
Pr1(u)Pr2(u) du = 0

for all r1, r2 = 0, 1, · · · such that r1 �= r2. The shifted Legendre polynomials {P ∗
r }r≥0 are

linear transformations of the Legendre polynomials such that

P ∗
r (u) = Pr(2u− 1) for 0 ≤ u ≤ 1

for all r = 0, 1, · · · . The shifted Legendre polynomials are orthogonal to each other on the

unit interval [0, 1] with respect to the weight function w(x) = 1 which is the uniform density

function. That is, ∫ 1

0
P ∗
r1(u)P

∗
r2(u) du = 0

for all r1, r2 = 0, 1, · · · such that r1 �= r2.

Another sequence of orthogonal polynomials of interest given in Szegö (1959) is the

Hermite polynomials {H ′
r}r≥0. The Hermite polynomials are orthogonal to each other on
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the real line R with respect to the weight function w(x) = e−x2
, i.e.

∫ ∞

−∞
e−x2

H ′
r1(x)H

′
r2(x) dx = 0

for all r1, r2 = 0, 1, · · · such that r1 �= r2. The sequence {H ′
r}r≥0 is sometimes called

the physicists’ Hermite polynomials. The primary focus of this dissertation is a variation

of physicists’ Hermite polynomials, which is called the probabilists’ Hermite polynomials.

These have a different weight function w(x) = e−x2/2 which is proportional to the standard

Gaussian density such that

∫ ∞

−∞
e−x2/2Hr1(x)Hr2(x) dx = 0

for all r1, r2 = 0, 1, · · · such that r1 �= r2. When we refer to the Hermite polynomials in this

paper, we indicate the probabilists’ Hermite polynomials.

The following is the list of mathematical notations used in this paper.

• If J is a function, then J(·) denotes the function itself while J(x) denotes the value

of J evaluated at x.

• If θ̂ is a statistic, EF

(
θ̂
)

and VarF

(
θ̂
)

indicate the mean and variance of θ̂ with

respect to the distribution F . If θ̂1 and θ̂2 are two statistics, their covariance with

respect to the distribution F is denoted by CovF

(
θ̂1, θ̂2

)
.

• The function Fa,b denotes the cumulative distribution function of aX + b.

• The function φ
(
·|μ, σ2

)
and Φ

(
·|μ, σ2

)
are the probability density function and cumu-

lative distribution function of N
(
μ, σ2

)
, the Gaussian distribution with mean μ and

variance σ2, respectively.

1.2 L-statistics and L-moments

The term L-statistic is used as a term indicating a statistic in the form of a linear

combination of order statistics (Andrews et al., 1972). An L-statistic is generally expressed
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as follows
n∑

i=1

cniXi:n (1.3)

where cni is a function of both i and n, and Xi:n is the i-th order statistic such that

X1:n ≤ X2:n ≤ · · · ≤ Xn:n is a reordering of the random sample X1,X2, · · · ,Xn. Theo-

retical properties and abundant examples of the order statistics are given in Chapter 8 of

David and Nagaraja (2003). Equation (1.3) is more often expressed in the form

θ̃n =

n∑
i=1

J

(
i

n+ 1

)
Xi:n. (1.4)

where J : (0, 1) → R is a measurable function. Section 8.2 of Serfling (1980) and Chapter

19 of Shorack and Wellner (2009) enumerate various sets of conditions on the function J

and distribution F that guarantee that θ̃n converges, under various modes of convergence

in the limit as n→ ∞, to the quantity

θ(F ) =

∫ ∞

−∞
xf(x)J(F (x)) dx =

∫ 1

0
F−1(u)P ∗

r−1(u)du. (1.5)

We call the functional θ : F → R in the form (1.5) an L-functional.

A connection between L-statistics and location, scale, skewness and kurtosis of a dis-

tribution has been made by Hosking (1990). That paper presented a way to use expected

order statistics in describing the shape of a distribution and called the moments defined

in such a way the theoretical L-moments. The r-th L-moment of a random variable X is

usually defined as

λr =

∫ ∞

−∞
xf(x)P ∗

r−1(F (x))dx =

∫ 1

0
F−1(u)P ∗

r−1(u)du (1.6)

for r = 1, 2, · · · where F−1 is the quantile function of F and P ∗
r is the r-th order shifted

Legendre polynomial which is explained in Chapter 4 of (Szegö, 1959). The r-th L-moment

ratio is defined as λ∗r = λr/λ2 for r = 3, 4, · · · . Some nice properties of the L-moments

presented in Hosking (1990) are as follows.

• Every integrable random variable has finite L-moment values.
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• A distribution whose mean exists is identified by its sequence of L-moments.

• The first four L-moment based measures λ1, λ2, λ
∗
3 and λ

∗
4 satisfy Oja’s criteria (Section

1.3) for measures of location, scale, skewness and kurtosis.

• The L-moment ratios are bounded between −1 and 1.

The L-moments can be estimated from a random sample X1,X2, · · · ,Xn in various

ways by the empirical L-statistics. A natural estimator in the form of Equation (1.4) is

λ̃n,r =
n∑

i=1

P ∗
r−1

(
i

n+ 1

)
Xi:n.

However, this estimator suffers from being biased, i.e. E
(
λ̃r (X1,X2, · · · ,Xn)

)
�= λr(F ) for

many distributions F . Hosking (1990) adopted the U-statistics based estimators

λ̂n,r =

⎛
⎜⎝ n

r

⎞
⎟⎠

−1 ∑∑
· · ·

∑
1≤i1<i2<···<ir≤n

1

r

r−1∑
k=0

(−1)k

⎛
⎜⎝ r − 1

k

⎞
⎟⎠Xir−k:n (1.7)

which is unbiased. Throughout this dissertation, the U-statistics based estimators λ̂r will

be used as the sample L-moments. The sample L-moment ratios are defined as λ̂∗r = λ̂r/λ̂2

accordingly.

1.3 Oja’s criteria

When defining new measures of location, scale, skewness and kurtosis, a challenge is to

ensure that those newmeasures reflect the intuitive meanings of corresponding distributional

properties. This challenge was elegantly addressed by the framework of Oja (1981) using

stochastic dominance ideas, which is applied here. Intuitively, a functional being a measure

of any property of a distribution means that the functional should preserve a partial ordering

among distributions in the direction of that property. For example, for a functional θ to be

a measure of location, its value at a distribution F , θ(F ), should be smaller than or equal

to its value at another distribution G, θ(G), whenever the distribution F is stochastically

dominated by the distribution G.
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To describe Oja’s criteria we first say that a function J : I → R is convex of order k if

J (k)(x) ≥ 0 for all x ∈ I where I is an open interval and J (k) is the k-th order derivative of

h. Note that

• If J is convex of order 0, then J is a nonnegative function,

• If J is convex of order 1, then J is a nondecreasing function,

• If J is convex of order 2, then J is a convex function.

The relationship between two distributions in terms of distributional shape is defined based

on the convexity of the following inverse composition function defined by those distributions.

Definition 1.1(Oja, 1981). Let ΔF,G : R → R be a function such that ΔF,G(x) =

G−1(F (x))− x for all x ∈ R. Then for k = 0, 1, · · · , we write

F �k G

if ΔF,G is convex of order k for 0, 1, · · · . �

For example, F �0 G if

G−1(F (x))− x ≥ 0 ∀x ∈ R

which is equivalent to

F (x) ≥ G(x) ∀x ∈ R.

This coincides with the well-known statement that F is stochastically dominated by G, which

is an important sense in which F does not lie to the right of G. In particular, the function

G−1 ◦ F provides a natural link between the distributions F and G via the Probability

Integral Transform. If a random variable X follows the distribution F , then F (X) follows

the uniform distribution U(0, 1) and thus G−1(F (X)) follows the distribution G.

(Oja, 1981) imposed a unique meaning to the inequality �k so that the relationship

between the two distributions F and G can be named in terms of the distributional aspect

corresponding to the order k. The functional ps : Fs → R for a family of absolutely
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continuous and symmetric distributions Fs is called the symmetry point if

f (ps(F ) + x) = f (ps(F )− x) (1.8)

for all F ∈ Fs and x ≥ 0. It was shown in Bickel and Lehmann (1975) that there exists

ps(F ) satisfying (1.8) for every absolutely continuous and symmetric distribution.

Definition 1.2(Oja, 1981). We say

a. F is not to the right of G if F �0 G,

b. F has scale not larger than G if F �1 G,

c. F is not more skew to the right than G if F �2 G,

d. F does not have more kurtosis than G if F and G are symmetric distributions and

Fs �2 Gs where Fs(x) = F (x)− F (−x) for all x ≥ 0. �

Oja’s criteria are given as follows.

Definition 1.3(Oja, 1981). Let F be the distribution of a random variable X and Fa,b

be the distribution of a random variable aX + b. Then the functional ψ : F → R is a

a. measure of location in F if ψ (Fa,b) = aψ(F ) + b for all a, b ∈ R, F ∈ F and ψ(F ) ≤

ψ(G) when F is not to the right of G.

b. measure of scale in F if ψ (Fa,b) = |a|ψ(F ) for all a, b ∈ R, F ∈ F and ψ(F ) ≤ ψ(G)

when F has scale not larger than G.

c. measure of skewness in F if ψ (Fa,b) = sign(a)ψ(F ) for all a �= 0, b ∈ R, F ∈ F and

ψ(F ) ≤ ψ(G) when F is not more skew to the right than G.

d. measure of kurtosis in a family of symmetric distributions Fs if ψ (Fa,b) = ψ(F ) for

all a �= 0, b ∈ R, F ∈ F and ψ(F ) ≤ ψ(G) when F does not have more kurtosis than

G. �

Oja (1981) showed that the conventional moments based measures of location, scale, skew-

ness and kurtosis satisfy Oja’s criteria. As indicated in Section 1.2, the L-moments satisfy
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the criterion as well, enabling comparison between those two moments on data sets. The

results of comparison are given in Chapters 4 and 5.
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CHAPTER 2

Gaussian Centered L-moments

2.1 Motivation

As mentioned in Chapter 1, investigation into distributional shape is often performed

relative to the Gaussian distributions. Since observations in many data are aggregations of

small independent errors, they often have an approximately Gaussian shape by the Central

Limit Theorem. However, in high dimensional data such as the TCGA data shown in

Figure 1.1, marginal distributions often have strong departure from Gaussianity. A suitable

transformation can be adopted to yield bell shape distributions but this incurs loss of useful

information such as skewness and multimodality. This suggests that measures of departure

from Gaussianity can better reveal meaningful structure in high dimensional data than

transformation methods. The term (excess) kurtosis (Pearson, 1905) is an example of

the importance of measuring the difference between the shapes of a distribution and the

Gaussian distribution. Based on the sign of the excess kurtosis, distributions are classified

into platykurtic and leptokurtic distributions if they have positive and negative conventional

kurtosis values, respectively.

However, as discussed in Hosking (1990), the L-moments satisfy

λr(U(a, b)) =
∫ 1

0
{(b− a)x+ a}P ∗

r−1(x) dx = 0 ∀r = 3, 4, · · · (2.1)

where U(a, b) is the uniform distribution with the lower bound a and the upper bound b and

P ∗
r is the r-th order shifted Legendre polynomial given in Section 1.1. This implies that the

sign and magnitude of the L-moments measure the direction and magnitude of departure

from the uniform rather than the Gaussian distributions. For example, a positive value of



the L-kurtosis λ∗4 implies that a distribution has heavier tails than the uniform distributions,

which is not useful since the uniform distributions have abnormally light tails.

We introduce a definition.

Definition 2.1. A sequence of functionals {θr; r = 1, 2, · · · } is centered at the family of

distributions F when it satisfies θr(F ) = 0 for all r = 3, 4, · · · and F ∈ F . �

Important functionals centered at the Gaussian distributions are the cumulants

{κr; r = 1, 2, · · · }. The Marcinkiewicz theorem (Marcinkiewicz, 1939) showed that the fam-

ily of Gaussian distributions is the unique center of the cumulants. One of the main goal of

this dissertation is to develop different types of moments with their distributional centers

at the Gaussian family. For that purpose, we introduce the following definition.

Definition 2.2. Suppose that F contains the family of Gaussian distributions, i.e.

Φ(·|μ, σ2) ∈ F for all μ ∈ R and σ2 > 0. We call functionals {θr : F → R; r = 1, 2, · · · }

Gaussian Centered L-moments in F if they are L-functionals and centered at the Gaussian

distributions. �

The letter ‘L’ was originally for the linear combination of expected order statistics as

mentioned in Hosking (1990), but here is generalized to any L-functionals in the form (1.5).

2.2 Hermite L-moments

As pointed out Equation (2.1), the L-moments are centered at the uniform distributions

due to orthogonality property of the shifted Legendre polynomials. This motivates us to

consider adopting another sequence of orthogonal polynomials to locate the center of new

moments at the Gaussian distributions. In particular, the L-functional

θr(F ) =

∫ ∞

−∞
xf(x)Jr−1(F (x)) dx

where Jr : (0, 1) → R is an r-th order polynomial should satisfy

θr(Φ) =

∫ ∞

−∞
xφ(x)Jr−1(Φ(x)) dx = 0
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to be the Gaussian Centered L-moments. This results in one possible solution

ηr =

∫ ∞

−∞
xf(x)Hr−1

(
Φ−1(F (x))

)
dx =

∫ 1

0
F−1(u)Hr−1

(
Φ−1(u)

)
du (2.2)

whereHr is the r-th order Hermite polynomial which was introduced in Chapter 5 of (Szegö,

1959). Note that

ηr(Φ(·|μ, σ2)) =
∫ ∞

−∞
(μ+ σx)φ(x)Hr−1(x) dx = 0

for all μ ∈ R, σ > 0 and r = 3, 4, · · · by orthogonality of the Hermite polynomials. We call

{ηr; r = 1, 2, · · · } the Hermite L-moments (HL-moments).

Recall from Definition 1.3 that a measure of skewness or kurtosis should be invariant

under linear transformation of a random variable. The need for such invariance motivates

us to introduce Hermite L-moment ratios (HL-moment ratios) defined as η∗r = ηr/η2 for

r = 3, 4, · · · . The HL-skewness and HL-kurtosis are defined as η∗3 and η∗4 respectively. A

central issue is whether or not the HL-skewness and kurtosis actually measure the skewness

and kurtosis of a distribution in the sense of Oja’s criteria.

Theorem 2.1. The HL-moment based measures η1, η2, η
∗
3 and η∗4 satisfy Oja’s criteria for

measures of location, scale, skewness and kurtosis respectively.

Proof . See Chapter 7. �

Both the HL-moments and cumulants {κr|r = 1, 2, · · · } are centered at the Gaussian

distribution, and there is a relation between them. Substitution of F = Φ
(
·|μ, σ2

)
in the

definition of HL-moments (2.2) yields that the two functionals coincide with each other at

the family of Gaussian distributions. At other families, those two functionals are related

to each other based on the Cornish-Fisher expansion (Cornish and Fisher, 1938). Suppose

that the moment generating function of F exists. Then F−1(u) can be approximated for

all 0 < u < 1 by

F−1(u) = μ+ σ
{
Φ−1(u) + γ1h1(Φ

−1(u)) + γ2h2(Φ
−1(u)) + γ21h11(Φ

−1(u))

+γ3h3(Φ
−1(u)) + γ1γ2h12(Φ

−1(u)) + γ31h111(Φ
−1(u)) + · · ·

}
(2.3)

15



where γr−2 = κr/κ
r/2
2 for r = 3, 4, · · · , κr is the r-th cumulant and

h1(x) =
1
6H2(x), h2(x) =

1
24H3(x),

h11(x) = − 1
36 {2H3(x) +H1(x)} , h3(x) =

1
120H4(x),

h12(x) = − 1
24 {H4(x) +H2(x)} , h111(x) =

1
324 {12H4(x) + 19H2(x)} .

By substituting (2.3) for F−1(u) in the definition of the HL-moments (2.2), it can be seen

that ηr is a linear combination of powers of the cumulant ratios γr−2 = κr/κ
r/2
2 . For

example, the third HL-moment can be expressed as

η3 =

∫ 1

0
F−1(u)H2

(
Φ−1(u)

)
du

= σ

{
γ1 −

1

24
γ1γ2 +

19

324
γ31 + · · ·

}

= σ

⎧⎨
⎩ κ3

κ
3/2
2

− 1

24

κ3

κ
3/2
2

κ4

κ
4/2
2

+
19

324

(
κ3

κ
3/2
2

)3

+ · · ·

⎫⎬
⎭ .

A similar expression can be derived for the fourth HL-moment.

2.3 Rescaled L-moments

Additional insights come from another view of why the L-moments are centered at the

uniform. Note that

λ3 =
1

3
{E (X3:3 −X2:3)− E (X2:3 −X1:3)} ,

λ4 =
1

4
{E (X4:4 −X3:4)− 2E (X3:4 −X2:4) + E (X2:4 −X1:4)} .

These expressions indicate that if F has equally spaced expected order statistics, then its

third and higher order L-moments are zero. Figure 2.1 shows the four expected order

statistics of U(−1, 1) and N (0, 1) as four vertical dashed lines. Note that the vertical lines

of the uniform distribution are equally spaced, e.g. if F ∼ Uniform(0, 1), then EXi:4 =

i/5. However, for the standard Gaussian distribution, the space between the inner pair of

expected order statistics is smaller than the spaces between the two outer pairs.
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Figure 2.1: The four expected order statistics of the uniform distribution U(−1, 1) (left plot) and
the standard Gaussian distribution N (0, 1) (right plot). In each plot, a vertical dashed line indicates
the first, second, third and fourth expected order statistics from the leftmost to the rightmost.

This motivates us to rescale the space between adjacent expected order statistics by

the corresponding space of the standard Gaussian distribution. The following new theorem

shows another definition of the L-moments which re-expresses Equation (2.1) of Hosking

(1990) in terms of expected spaces between order statistics.

Theorem 2.2. The r-th L-moments λr can be expressed as

λr =
1

r

r−2∑
k=0

(−1)k

⎛
⎜⎝ r − 2

k

⎞
⎟⎠E

(
X(r−k):r −X(r−k−1):r

)

for r = 2, 3, · · · .

Proof . See Chapter 7. �

We first show that when any symmetric distribution is used for rescaling, the resulting

measures of location, scale, skewness and kurtosis satisfy Oja’s criteria (Definition 1.3).

This opens up a broad new family of potential distributional summaries, whose general

study could provide interesting future work. Let δi,j:k(F ) = E (Xj:k −Xi:k) for i < j be

the expected spacing between the i-th and j-th order statistics. Then we can consider the

17



rescaled L-moments based on the distribution F0 defined as

ρF0,r =
1

r

r−2∑
k=0

(−1)k

δ(r−k−1),(r−k):k(F0)

⎛
⎜⎝ r − 2

k

⎞
⎟⎠E

(
X(r−k):r −X(r−k−1):r

)
(2.4)

for r = 2, 3, · · · . We let ρF0,1 = λ1. The corresponding rescaled L-moment ratios based on

the distribution F0 are defined as ρ∗F0,r
= ρF0,r/ρF0,2 for r = 3, 4, · · · .

Theorem 2.3. Suppose that F0 is a symmetric distribution. Then the rescaled L-moments

based measures ρF0,1, ρF0,2, ρ
∗
F0,3

and ρ∗F0,4
satisfy Oja’s criteria for a measure of location,

scale, skewness and kurtosis, respectively.

Proof . See Chapter 7. �

Based on this theorem, we define the r-th Rescaled L-moment (RL-moment) as ρr =

ρΦ,r. Using Equation (2.4), it can easily be shown that ρr(Φ(·|μ, σ2)) = 0 for all μ ∈ R,

σ2 > 0 and r = 3, 4, · · · .

It is hard to obtain exact coefficients of Rr for general order r, but the first four

polynomials can be obtained using the results in Hosking (1986) as

R0(u) = P ∗
0 (u), R1(u) = c1P

∗
1 (u),

R2(u) = c2P
∗
2 (u), R3(u) = (6c3 + 2)u3 − 3(3c3 + 1)u2 + (3c3 + 3)u− 1.

(2.5)

where c1 ≈ 0.8862, c2 ≈ 1.1816 and c3 ≈ 3.4658. Based on these equations, it can be seen

that the first three terms the RL-moments and L-moments coincide with each other up to

a constant multiple while possibly from the fifth order they deviate from each other. This

observation has an impact on the analysis of Chapters 4 and 5.
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CHAPTER 3

Robustness

Since one of the main reasons for developing the Gaussian Centered L-moments is their

robustness, we analyze that first. We use the influence function as a primary tool for

robustness analysis. Note from Huber and Ronchetti (2009) that the influence function of

a functional θ evaluated at a distribution F is defined as the functional derivative

IF(x;F, θ) = lim
ε↓0

θ (Fε,x)− θ(F )

ε
(3.1)

based on the x point mass contaminated version of F , Fε,x = (1 − ε)F + εδx, where δx is

a degenerate distribution putting mass 1 at the point x. Hence, if a functional is sensitive

to an outlier, its influence function should have large absolute values at extreme values of

x. If the distribution F changes, the same outlier x can affect the functional in a different

way. In this dissertation, we compare the robustness of various measures of skewness and

kurtosis based on their influence functions evaluated at a family of distributions.

The papers Groeneveld (1991) and Ruppert (1987) compared various measures of skew-

ness and kurtosis, respectively, using the influence function. As a criterion of comparison,

both papers used the degree of polynomials that are asymptotic tight bounds of the influence

functions. Suppose that J1, J2 : R → R+ are two functions where R+ = {x ∈ R|x ≥ 0}. In

this dissertation, we indicate that the asymptotic behavior of J1 and J2 are the same by

J1(x) = Θ (J2(x))

to mean that there exist a1, a2 > 0 and x′ > 0 such that a1J2(x) ≤ J1(x) ≤ a2J2(x) for

all |x| ≥ x′. Using such asymptotic tight bounds, those papers compared the robustness of

different measures. For example, if two functionals θ1 and θ2 satisfy |IF (x;F, θ1)| = Θ(|x|)



and |IF (x;F, θ2)| = Θ
(
x2
)
, then θ1 was considered to be more robust than θ2 for the

distribution F .

An interesting family of distributions for evaluation of the influence functions is Tukey’s

g and h distributions, see Jorge and Boris (1984) for good discussion, which contain all the

transformed normal random variables of the form

(
egZ − 1

g

)
exp

[
hZ2

2

]

where g ∈ R, h ≥ 0 and Z is the standard Gaussian random variable. By convention, the

case when g = 0 is defined using the limit g → 0 as the random variable Z exp
(
hZ2/2

)
. We

denote the distribution function of Tukey(g, h) by T g,h. An important special case, where

the distributions are symmetric, T 0,h is called Tukey’s h distributions. Tukey’s g and h

family is ideal for our study because it allows direct application of Oja’s criteria as seen

below.

Theorem 3.1. If g > 0 and h = 0, then Φ is not more skew to the right than T g,0. On the

contrary, if g < 0 and h = 0, then T g,0 is not more skew to the right than Φ. If we have

g = 0 and h > 0, then, Φ is not more kurtotic than T 0,h.

Proof . See Chapter 7. �

A particular case of interest is when g = 0, h > 0 since this case corresponds to dis-

tributions with heavier tails than the Gaussian distributions. Note that a heavier tail of

a distribution indicates a higher chance of existence of extreme outliers. This suggests

checking the influence functions not only for the standard Gaussian distribution but also

for Tukey’s h distributions with h > 0.

Before we derive the influence functions of measures of skewness and kurtosis based on

the Gaussian Centered L-moments, we introduce the previous results for the conventional

skewness and kurtosis. Note that Ruppert (1987) used the notion of symmetric influence

function defined as

SIF(x;F, θ) = lim
ε↓0

θ ((Fε,x + Fε,−x) /2)− θ(F )

ε
.
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The symmetric influence function measures the sensitivity of a functional to symmetric

contamination by points −x and x so it is better suited for comparison of kurtosis measures.

Theorem 3.2 (Groeneveld, 1991), (Ruppert, 1987). Suppose that F is a symmetric

distribution such that μ(F ) = 0 and σ2(F ) = 1. Then we have

IF (x;F, γ1) = x3 − 3x = H3(x), SIF (x;F, γ2) = x4 − 6x2 + 3 = H4(x). �

Before we derive the influence functions of the measures of skewness and kurtosis based

on the HL- and RL-moments at various distributions, we show the relation between their

influence functions and symmetric influence functions.

Theorem 3.3. If F is a symmetric distribution, we have

SIF (x; Φ, η∗4) = IF (x; Φ, η∗4) , SIF (x; Φ, ρ∗4) = IF (x; Φ, ρ∗4) .

Proof . See Chapter 7. �

The following theorem shows the influence functions evaluated at the standard Gaussian

distribution.

Theorem 3.4. We have

IF (x; Φ, η∗r ) =
1

r
Hr(x),

IF (x; Φ, ρ∗r) = lΦ,Rr−1 +

∫ x

0
Rr−1(Φ(y)) dy

for x ∈ R and r = 3, 4, · · · where

lF,J =

∫ 0

−∞
F (y)J(F (y)) dy −

∫ ∞

0
{1− F (y)}J(F (y)) dy

for a distribution F ∈ F and measurable function J : (0, 1) → R.

Proof . See Chapter 7. �
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Note that we have

IF (x; Φ, η∗3) =
1

3
IF (x; Φ, γ1) , SIF (x; Φ, η∗4) =

1

4
SIF (x; Φ, γ2) . (3.2)

The influence function can be understood in some sense as description of local behavior of a

functional since it is the directional derivative of a functional with respect to contamination

of a distribution by a single point. Equation (3.2) implies that the HL- and conventional

skewness share the same local behavior up to a constant multiple, and the same holds

between the HL- and conventional kurtosis. This observation coincides with the observation

made in Section 2.2 where the HL- and conventional moments are related to each other by

the Cornish-Fisher expansion.

Note that Theorem 3.5 does not show distinction between robustness of measures based

on the conventional and HL-moments. It can be seen from Theorems 3.2, 3.3 and 3.4 that

we have

|IF(x; Φ, γ1)| = Θ
(
|x|3

)
, |IF(x; Φ, η∗3)| = Θ

(
|x|3

)
,

|SIF(x; Φ, γ2)| = Θ
(
|x|4

)
, |SIF(x; Φ, η∗4)| = Θ

(
|x|4

)
.

As noted above, we adopt distributions with heavier tails as other bases on which the

influence functions are compared.

Theorem 3.5. We have

|IF(x;F, ρ∗r)| = Θ(|x|),∣∣∣IF(x;T 0,h, η∗r
)∣∣∣ = Θ

(
|x| {log(|x|+ 1)}(r−1)/2

)

for all F ∈ F and h > 0.

Proof . See Chapter 7. �

It can simply be checked from Ruppert (1987) and Groeneveld (1991) that even though

the distribution F does not satisfy σ(F ) = 1, the influence functions of γ1 and γ2 satisfy

|IF (x;F, γ1)| = Θ
(
|x|3

)
and |SIF (x;F, γ2)| = Θ

(
|x|4

)
, respectively. Theorem 3.5 implies

that the new measures are much more robust than the conventional skewness and kurtosis

on Tukey’s h distributions. The RL-moment based measures, ρ∗r, are somewhat more robust
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than the the HL-moment based moments. Note that the influence function of η∗r does not

depend on the parameter h. This indicates that even slightly heavier tails of distributions

than the standard Gaussian distribution can result in better robustness of the HL-moment

based measures than the conventional moment based measures.
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CHAPTER 4

Goodness-of-fit test for Gaussianity

4.1 Estimation of the Gaussian Centered L-moments

One of main strengths of the Gaussian Centered L-moments is their interpretability;

their signs and absolute values indicate direction and magnitude of departure from the

Gaussian distributions, respectively. Consistency, which shows that estimators converge to

the true underlying functionals in the limit as the sample size goes to infinity, is a reassuring

property. In addition, their asymptotic distributions are useful in hypothesis testing and

general statistical inferences. Based on the relationship between an L-statistic (1.4) and L-

functional (1.5), L-statistics based estimators of the r-th HL- and RL-moments are naturally

derived as

η̃n,r =
1

n

n∑
i=1

Hr−1

(
Φ−1

(
i

n+ 1

))
Xi:n,

ρ̃n,r =
1

n

n∑
i=1

Rr−1

(
i

n+ 1

)
Xi:n. (4.1)

As mentioned in Section 1.2, there are multiple ways to estimate L-functionals by L-

statistics. We illustrate potential improvements using the HL-moments. Motivation comes

from the following approximation

ηr = E
(
Hr−1

(
Φ−1(F (X))

)
X
)
≈ 1

n

n∑
i=1

Hr−1

(
Φ−1 (F (Xi))

)
Xi

=
1

n

n∑
i=1

Hr−1

(
Φ−1 (F (Xi:n))

)
Xi:n

where the approximation can be replaced by the almost sure convergence when suitable

assumptions are made on the distribution F . For the last expression to actually play the

role of an estimator, the terms including F should be estimated. The L-statistics η̃n,r given



in Equation (4.1) originate from the following approximation

1

n

n∑
i=1

Hr−1

(
Φ−1

(
F (Xi:n)

))
Xi:n ≈ 1

n

n∑
i=1

Hr−1

(
Φ−1

(
E (F (Xi:n))

))
Xi:n

=
1

n

n∑
i=1

Hr−1

(
Φ−1 (E (Ui:n))

)
Xi:n

=
1

n

n∑
i=1

Hr−1

(
Φ−1

(
i

n+ 1

))
Xi:n = η̃∗n,r (4.2)

where the underlined expressions present approximated and approximating terms and Ui:n

is the i-th uniform order statistic. This implies that commonly used L-statistics base their

performance on how well the coefficient i/(n+ 1) approximates F (Xi:n).

Another estimator can be obtained from a different approximation in Equation (4.2) as

1

n

n∑
i=1

Hr−1

(
Φ−1 (F (Xi:n))

)
Xi:n ≈ 1

n

n∑
i=1

E
(
Hr−1

(
Φ−1 (F (Xi:n))

))
Xi:n

=
1

n

n∑
i=1

E (Hr−1 (Zi:n))Xi:n (4.3)

where Zi:n is the i-th standard Gaussian order statistic. The key idea is that careful choice

of location of the expectation can increase accuracy of approximation of an L-functional

by an L-statistic. Since the quantile function Φ−1 is a highly nonlinear function, taking

expectation outside Φ−1 can yield better approximation in Equation (4.3). The sample

Hermite L-moments (sample HL-moments) are defined as

η̂n,r =
1

n

n∑
i=1

E (Hr−1 (Zi:n))Xi:n. (4.4)

This can be understood as the inner product between the order statistics Xi:n and polyno-

mials of the expected order statistics of the standard Gaussian distribution. By changing

the degree of the polynomial, r, different distributional aspects of F are compared with the

standard Gaussian distribution Φ. For example, the third and fourth sample HL-moments
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are

η̂n,3 =
1

n

n∑
i=1

{
E
(
Z2
i:n

)
− 1

}
Xi:n,

η̂n,4 =
1

n

n∑
i=1

{
E
(
Z3
i:n

)
− 3E (Zi:n)

}
Xi:n.

We have the following theorem on asymptotic Gaussianity of the sample Gaussian Cen-

tered L-moments based on Shorack (1972) and Li et al. (2001).

Theorem 4.1. Let r1, r2 = 3, 4, · · · such that r1 �= r2. If E |X1|2 <∞, then we have

n1/2

⎛
⎜⎝
⎛
⎜⎝ ρ̂∗n,r1

ρ̂∗n,r2

⎞
⎟⎠−

⎛
⎜⎝ ρ∗r1

ρ∗r2

⎞
⎟⎠
⎞
⎟⎠ d→N

(
0,ΨR

)

where

ΨR
i,j =

(
σRrirj − ρ∗riσ

R
2ri − ρ∗rjσ

R
2rj + ρ∗riρ

∗
rjσ

R
22

)
/ρ22,

σRk1k2 =

∫ 1

0

∫ 1

0
(u ∧ v − uv)Rk1−1(u)Rk2−1(v) dF

−1(u) dF−1(v).

for i, j ∈ {1, 2} and for k1, k2 ∈ {2, r1, r2}. If we further have E |X1|2+ε <∞ for some ε > 0,

then we have

n1/2

⎛
⎜⎝
⎛
⎜⎝ η̂∗n,r1

η̂∗n,r2

⎞
⎟⎠−

⎛
⎜⎝ η∗r1

η∗r2

⎞
⎟⎠
⎞
⎟⎠ d→N

(
0,ΨH

)

where

ΨH
i,j =

(
σHrirj − η∗riσ

H
2ri − η∗rjσ

H
2rj + η∗riη

∗
rjσ

H
22

)
/η22 ,

σHk1k2 =

∫ 1

0

∫ 1

0
(u ∧ v − uv)Hk1−1

(
Φ−1(u)

)
Hk2−1

(
Φ−1(v)

)
dF−1(u) dF−1(v).

for i, j ∈ {1, 2} and k1, k2 ∈ {2, r1, r2}.

Proof . See Chapter 7. �
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4.2 Goodness-of-fit test for Gaussianity

As seen in Chapter 3, the Gaussian Centered L-moments exhibit better robustness than

the conventional moments. Since robustness often comes at a price of loss of efficiency, we

compare the conventional and Gaussian Centered L-moments in those terms. To this end,

we consider the goodness-of-fit test for Gaussianity defined by the null and alternative

hypotheses

H0 : F = Φ
(
·|μ, σ2

)
for some μ ∈ R, σ2 > 0, H1 : Not H0. (4.5)

Various test statistics for these hypotheses were introduced and compared in terms of their

powers under various alternative hypothetical distributions in Romão et al. (2010).

The Kolmogorov-Smirnov test (KS ) is one of the most popular goodness-of-fit tests in

the statistics literature. The KS test statistic measures the maximum departure of the prob-

ability integral transform of the distribution of data from the uniform distribution. Given

the sample mean X̄ and the sample variance S2
X of the random sample {X1,X2, · · · ,Xn},

the KS test statistic is

DKS = max
1≤i≤n

max

{
Φ(Xi:n|X̄, S2)− i− 1

n
,
i

n
− Φ(Xi:n|X̄, S2)

}
.

The Gaussianity null hypothesis is rejected for large values of DKS. Since the power

of this test in important directions has been questioned by several studies including

(Gan and Koehler, 1990), this method is not included in our analysis.

Rather than applying the probability integral transform to data, Anderson and Darling

(1954) suggested comparing the empirical distribution function (EDF ) with the standard

Gaussian distribution based on L2 distance. The Anderson-Darling (AD) test statistic is

given as

DAD = n

∫ ∞

−∞
{Fn(x)− Φ(x)}2 w(x) dF (x)

27



where Fn is the EDF given by

Fn(x) =
1

n

n∑
i=1

1(Yi ≤ x) (4.6)

where Yi = (Xi − X̄)/SX and w is a weight function given by

w(x) =
1

Φ(x) {1− Φ(x)} .

The null hypothesis of (4.5) is rejected for large values of the test statistics. It was shown

in (Anderson and Darling, 1954) that DAD can be rewritten as

DAD = −n− 1

n

n∑
i=1

(2i − 1) {ln (pi) + ln (1− pn+1−i)}

where the pi = Φ(Yi:n). It can be seen from this equation that if there is a strong outlier in

data, then that data point will significantly increase the value of log (pi) + log (1− pn+1−i)

resulting in rejection.

The Shapiro-Wilk (SW ) test (Shapiro and Wilk, 1965) is a well-established test for

Gaussianity which is based on the analysis of variance of a Q-Q plot. In such a plot, one

can consider regression of order statistics of a random sample on the expected order statistics

of a hypothesized distribution, and that is the Gaussian distribution in the Shapiro-Wilk

test. Application of analysis of variance to the regression yields the ratio of the squared

slope of the regression line to the residual mean square about the regression line. The test

statistic is formally defined as

DSW =
(
∑n

i=1 aiXi:n)
2∑n

i=1

(
Xi:n − X̄

)2
where the weight vector a is obtained by

(a1, · · · , an) = mV −1
(
mV −1V −1mT

)−1/2
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in which m = (EZ1:n, EZ2:n, · · · , EZn:n)
T is the mean vector of standard Gaussian order

statistics and V is their covariance matrix such that Vi,j = Cov (Zi:n, Zj:n). It was estab-

lished in (Shapiro and Wilk, 1965) that the Gaussian null hypothesis should be rejected for

small values of DSW.

Joint use of conventional skewness and kurtosis has been investigated in the literature

as another method for measuring non-Gaussianity. D’Agostino and Pearson (1973) first

suggested an omnibus test statistic in the form of a weighted average of transformed sample

skewness and kurtosis into approximately Gaussian random variables

δn,1 sinh
−1

(
γ̂1
δn,2

)
+ δn,3 sinh

−1

(
γ̂2
δn,4

)
(4.7)

where δn,1 and δn,2 are the functions of conventional variance and kurtosis of the distribu-

tion of the conventional sample skewness γ̂n,1, and δn,3 and δn,4 are functions of those of

conventional sample kurtosis γ̂n,2. The reasoning behind using the hyperbolic sine function

sinh is that the distribution of γ̂n,1 is closely approximated by Johnson’s symmetric SU dis-

tributions (p.22, Johnson and Kotz (1970)) whose natural link with the standard Gaussian

distribution is given as the inverse hyperbolic sine function. Later, Bowman and Shenton

(1975) derived the distribution of the statistic (4.7) under the Gaussianity assumption by

simulation and claimed that its finite sample distribution is far from its asymptotic distri-

bution which is the chi squared distribution with 2 degrees of freedom χ2
2.

Jarque and Bera (1980) showed that instead of searching for suitable transformations

of the conventional sample skewness and kurtosis, we can adopt their asymptotic means

and variances but still obtain good properties like an asymptotic χ2
2 distribution and

being asymptotically locally most powerful. Their test is the score test (Chapter 9,

Cox and Hinkley (1974)) on the Pearson family of distributions (p.148, Kendall and Stuart

(1977)) whose densities f satisfy

df(u)

du
=

(c1 − u) f(u)

(c0 − c1u+ c2u2)
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where u ∈ R, for the null hypothesis H0 : c1 = c2 = 0. This results in the Jarque-Bera test

statistic

DJB = n
γ̂2n,1
6

+ n
(γ̂n,2 − 3)2

24
. (4.8)

Jarque and Bera (1980) pointed out that this statistic can be understood from asymptotic

joint Gaussianity of the sample conventional skewness and kurtosis

n1/2

⎛
⎜⎝
⎛
⎜⎝ γ̂n,1

γ̂n,2

⎞
⎟⎠−

⎛
⎜⎝ 0

0

⎞
⎟⎠
⎞
⎟⎠ d→N

⎛
⎜⎝0,

⎛
⎜⎝ 6 0

0 24

⎞
⎟⎠
⎞
⎟⎠ (4.9)

which can also be derived from Theorem 2.2.3.B of Serfling (1980). Note from this equation

that the sample skewness and kurtosis are asymptotically independent of each other. This

motivates investigation of joint distributions of the sample Gaussian Centered L-moments.

A similar but stronger fact can be proven for the HL-moments, which is that all of them are

asymptotically independent of each other. This is done by showing the off-diagonal terms

of ΨH in Theorem 4.1 are zero at the Gaussian distributions.

Theorem 4.2. Suppose thatX1,X2, · · · ,Xn ∼ N (0, 1). Then for the sample HL-moments,

we have limn→∞Cov
(
n1/2η̃∗r1 , n

1/2η̃∗r2
)
= ΨH

r1r2 = 0 for all r1, r2 = 3, 4, · · · such that r1 �= r2.

For the sample RL-moments, we have limn→∞Cov
(
n1/2ρ̃∗3, n1/2ρ̃∗4

)
= ΨR

34 = 0.

Proof . See Chapter 7. �

Theorem 4.2 shows that for Gaussian data, the sample HL-moments are asymptotically

uncorrelated with each other. This is a substantial improvement over the sample conven-

tional moments. For example, the fourth and sixth sample moments are not independent

of each other at a Gaussian distribution, which can be checked by Monte-Carlo simulation.

Similarly, numerical calculation yields that the fourth and sixth sample RL-moments are

not independent of each other.

Based on the asymptotic Gaussianity shown in Section 4.1, we can define Gaussian

Centered L-moments based goodness-of-fit test statistics for Gaussianity. The L-moments
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based goodness-of-fit test statistic for Gaussianity was first defined in Henderson (2006) as

DL = n

(
λ̂∗3 − EΦ

(
λ̂∗3
))2

VarΦ

(
λ̂∗3
) + n

(
λ̂∗4 − EΦ

(
λ̂∗4
))2

VarΦ

(
λ̂∗4
) (4.10)

where the sample L-skewness λ̂∗3 and sample L-kurtosis λ̂∗4 were defined in Section 1.2 and

their means and variances are numerically computed by Monte Carlo simulation with 10,000

replications at the standard Gaussian distribution. The reason that Henderson (2006) used

Monte Carlo simulation is that the closed form expressions of the variances VarΦ

(
λ̂∗3
)
and

VarΦ

(
λ̂∗4
)
do not have known closed forms. In a similar manner with the L-moments, the

HL- and RL-moments based goodness-of-fit test statistics for Gaussianity are defined as

DHL = n
(η̂∗n,3 − EΦ

(
η̂∗n,3

)
)2

VarΦ

(
η̂∗n,3

) + n

(
η̂∗n,4 − EΦ

(
η̂∗n,4

))2
VarΦ

(
η̂∗n,4

) ,

DRL = n

(
ρ̂∗n,3 − EΦ

(
ρ̂∗n,3

))2
VarΦ

(
ρ̂∗n,3

) + n

(
ρ̂∗n,4 − EΦ

(
ρ̂∗n,4

))2
VarΦ

(
ρ̂∗n,4

) . (4.11)

Here the reason that we use the approximate values for the means and variances is that

the estimators η̂n,r and ρ̂n,r are biased. For example, we have EΦ (η̂20,4) ≈ 0.2833 and

EΦ (η̂50,4) ≈ −0.1733 which can significantly affect data analysis. Explicit correction for

the biases remains as future work. By simulation, we checked that using the finite sample

means and variances for the conventional skewness and kurtosis did not bring us any benefit,

we stick to the original Jarque-Bera test statistic given in Equation (4.8).

4.3 Optimal balance between skewness and kurtosis estimators

There are two assumptions that underlie the test statistics in Equations (4.8) and (4.11).

To illustrate, we restrict our attention to the HL-moments based test statistic DHL. First,

equal weights are given to the skewness estimator η̂∗n,3 and the kurtosis estimator η̂∗n,4 no

matter what distribution the random sample X1,X2, · · · ,Xn follows. If the distribution of

that random sample, F , is a symmetric distribution, then there is no signal in the skewness

estimator. Secondly, the covariance between η̂∗n,3 and η̂∗n,4 is not taken into account by the
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test statistic. It was noted in Equation (2.7) of Hosking (1990) that the L-skewness λ∗3 and

L-kurtosis λ∗4 are related to each other by

1

4

(
5 (λ∗3)

2 − 1
)
≤ λ∗4 < 1.

This suggests that the sample L-skewness and L-kurtosis may have some correlation with

each other. To improve the power of a test statistic, we investigate an adaptive approach

that incorporates the covariance between those skewness and kurtosis estimators with the

goal of resolving the two limitations given above.

To begin with, consider a convex combination of the sample HL-skewness and kurtosis

DHL,α = α

⎧⎨
⎩n(η̂

∗
n,3 − EΦ

(
η̂∗n,3

)
)2

VarΦ

(
η̂∗n,3

)
⎫⎬
⎭+ (1− α)

⎧⎨
⎩n

(
η̂∗n,4 − EΦ

(
η̂∗n,4

))2
VarΦ

(
η̂∗n,4

)
⎫⎬
⎭ (4.12)

where 0 ≤ α ≤ 1. If the alternative distribution is not more skew to the left or right than

the null Gaussian distribution but more kurtotic than that distribution, the test statistic

that purely depends on the sample HL-kurtosis, DHL,0, will yield a more powerful test. For

example, DHL,0 will have higher power than the equal weight test statistic DHL,0.5 when

the alternative distribution is Tukey’s h distribution with h > 0. Recall from Theorem 3.1

that the Gaussian distributions are not more kurtotic than Tukey’s h distributions.

The test statistic (4.12) can be more intuitively understood as the following Mahalanobis

distance,

DHL =
(
n1/2η̂n,3 − n1/2EΦ (η̂n,3) , n

1/2η̂n,4 − n1/2EΦ (η̂n,4)
)

×

⎛
⎜⎝ VarΦ

(
η̂∗n,3

)
/α 0

0 VarΦ
(
η̂∗n,4

)
/(1− α)

⎞
⎟⎠

−1⎛
⎜⎝ n1/2η̂n,3 − n1/2EΦ (η̂n,3)

n1/2η̂n,4 − n1/2EΦ (η̂n,4)

⎞
⎟⎠ .

(4.13)

This motivates us to focus on the family of projections

w1

(
n1/2η̂∗n,3 − n1/2EΦ

(
η̂∗n,3

))
+ w2

(
n1/2η̂∗n,4 − n1/2EΦ

(
η̂∗n,4

))
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indexed by w = (w1, w2)
T ∈ R

2 subject to ‖w‖ = 1. Let the joint distribution of(
n1/2η̂∗n,3, n1/2η̂∗n,4

)T
under the null Gaussian hypothesis be F0 and under the alternative

distribution F be F1. Then choosing the weight vector w is equivalent to finding a di-

rection in which separation between the bivariate distributions F0 and F1 generated by Φ

and F , respectively, becomes maximal in R
2. A simple approach to this is Fisher’s linear

discriminant (FLD) introduced in Fisher (1936).

The FLD aims at a projection direction in which two distributions are “best” separated

from each other. Suppose that µF0
and µF1

are the means of the distributions F0 and F1,

respectively, and ΨF0 and ΨF1 are their covariance matrices, respectively. Then the FLD

seeks the projection direction w ∈ R
2 which maximizes the gain function

G(w) =
wTΨBw

wTΨWw

subject to ‖w‖ = 1 where ΨB and ΨW are the between-class and within-class covariance

matrices defined as

ΨB =
(
µF1

− µF0

) (
µF1

− µF0

)T
, ΨW = ΨF0 +ΨF1 ,

respectively. The solution vector wFLD maximizing the gain G is given as

wFLD = wF0,F1/ ‖wF0,F1‖

where

wF0,F1 =
(
ΨW

)−1 (
µF1

− µF0

)
= (ΨF0 +ΨF1)

−1 (µF1
− µF0

)
.

For applications, µF0
,µF1

and ΨF0 ,ΨF1 are usually substituted for by suitable estimators.

For a broad range of underlying distributions of the random sample X1,X2, · · · ,Xn, their

sample HL-skewness and kurtosis have an asymptotically joint Gaussian distribution. This

enables us to expect somewhat stable performance of the FLD.
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Based on the FLD, the optimal weights are given by

wFHL = wHL/
∥∥wHL

∥∥ where wHL = (ΨF0 +ΨF1)
−1 (µF1

− µF0

)
(4.14)

where

µF0
=

⎛
⎜⎝ n1/2EΦ(η̂

∗
3)

n1/2EΦ(η̂
∗
4)

⎞
⎟⎠ , µF1

=

⎛
⎜⎝ n1/2EF (η̂

∗
3)

n1/2EF (η̂
∗
4)

⎞
⎟⎠ ,

ΨF0 =

⎛
⎜⎝ VarΦ

(
n1/2η̂∗n,3

)
CovΦ

(
n1/2η̂∗n,3, n

1/2η̂∗n,4
)

CovΦ
(
n1/2η̂∗n,3, n1/2η̂∗n,4

)
VarΦ

(
n1/2η̂∗n,4

)
⎞
⎟⎠ ,

ΨF1 =

⎛
⎜⎝ VarF

(
n1/2η̂∗n,3

)
CovF

(
n1/2η̂∗n,3, n

1/2η̂∗n,4
)

CovF
(
n1/2η̂∗n,3, n1/2η̂∗n,4

)
VarF

(
n1/2η̂∗n,4

)
⎞
⎟⎠ . (4.15)

The mean vector µF0
and covariance matrix ΨF0 can be approximated by Monte Carlo

simulation under the Gaussian distributions. Note that the off-diagonal terms of ΨF0 can

be nonzero since those are finite sample covariances of the sample HL-moments even though

Theorem 4.2 indicates their asymptotic independence.

Suitable estimators should be chosen for µF1
and ΨF1 . We first use the sample HL-

moment ratio η̂∗n,r as an estimator of its expectation EF

(
η̂∗n,r

)
. For the covariance matrix,

we note from Theorem 4.1 that the asymptotic covariance matrix of the random variables

n1/2η̂∗n,3 and n1/2η̂∗n,4 is ΨH whose (i, j)-th element is

ΨH
i,j =

(
σHrirj − η∗riσ

H
2ri − η∗rjσ

H
2rj + η∗riη

∗
rjσ

H
22

)
/η22 ,

σHk1k2 =

∫ 1

0

∫ 1

0
(u ∧ v − uv)Hk1−1

(
Φ−1(u)

)
Hk2−1

(
Φ−1(v)

)
dF−1(u) dF−1(v)

for i, j ∈ {1, 2} and k1, k2 ∈ {2, r1, r2}. Once we find an estimator of covariances, σ̂Hk1k2 , the

estimator of the covariance matrix Ψ̂H can be obtained by

Ψ̂HL
i,j =

(
σ̂HL
rirj − η̂∗ri σ̂

HL
2ri − η̂∗rj σ̂

HL
2rj + η̂∗ri η̂

∗
rj σ̂

HL
22

)
/η̂22 .
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One way to estimate σHk1k2 is to use the jackknife method. Parr and Schucany (1982)

used the jackknife method to obtain a consistent estimator of the variance of the random

variable n1/2θ̃n where

θ̃n =
1

n

n∑
i=1

J

(
i

n+ 1

)
Xi:n

in the case when J is trimmed, i.e. J(u) = 0 for u ∈ (0, α) and u ∈ (1 − α, 1). Later, Sen

(1984) showed the same result when the function J is bounded by integrable functions and

broadened the range of possible constants used inside J rather than used a fixed constant

i/(n + 1).

We first define a jackknife estimator for the covariances of the HL-moments as

σ̂HL,JK
n,r1r2 =

1

n− 1

n∑
i=1

(
η̂JKi:n,r1r2 − η̄JKn,r1r2

)2

for r1, r2 = 3, 4, · · · where

η̄JKn,r1r2 =
1

n

n∑
i=1

η̂JKi:n,r1r2

η̂JKi:n,r1r2 =

n∑
i=1

E (Hr1−1 (Zi:n) +Hr2−1 (Zi:n))Xi:n

−
i−1∑
j=1

E
(
Hr1−1

(
Zj:(n−1)

)
+Hr2−1

(
Zj:(n−1)

))
Xj:n

−
n∑

j=i+1

E
(
Hr1−1

(
Z(j−1):(n−1)

)
+Hr2−1

(
Z(j−1):(n−1)

))
Xj:n.

Furthermore, we can define a jackknife estimator for the covariances of the L-moments as

σ̂L,JKn,r1r2 =
1

n− 1

n∑
i=1

(
λ̂JKi:n,r1r2 − λ̄JKn,r1r2

)2

for r1, r2 = 3, 4, · · · where

λ̄JKn,r1r2 =
1

n

n∑
i=1

λ̂JKi:n,r1r2
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and λ̂JKi:n,r1r2 is defined in the same way with η̂JKi:n,r1r2 by removing the i-th observation from

the observed sample. The closed form expression is hard to obtain for λ̂JKi:n,r1r2 since it is

defined as a U-statistic. Parr and Schucany (1982) pointed out that the jackknife estimators

perform well for symmetric distributions.

Another way to estimate the covariance σHL
r1r2 is to use the EDF defined in (4.6) as

Fn(x) =
1

n

n∑
i=1

I (Xi ≤ x) .

Gardiner and Sen (1979) showed that plugging the EDF into F in the expression of the

asymptotic variance of an L-statistic yields a consistent estimator of that variance. Referring

to Equation (2.9) of that paper, we obtain the EDF estimator of the covariance σHL
r1r2 as

σ̂HL,EDF
n,r1r2 =

n−1∑
i=1

n−1∑
j=1

(
i ∧ j
n

− i

n

j

n

)
Hr1−1

(
Φ−1

(
i

n

))
Hr2−1

(
Φ−1

(
j

n

))

(
X(i+1):n −Xi:n

) (
X(j+1):n −Xj:n

)
. (4.16)

Similarly, the EDF estimator of the covariance σLr1r2 is given as

σ̂L,EDF
n,r1r2 =

n−1∑
i=1

n−1∑
j=1

(
i ∧ j
n

− i

n

j

n

)
P ∗
r1−1

(
i

n

)
P ∗
r2−1

(
j

n

)

(
X(i+1):n −Xi:n

) (
X(j+1):n −Xj:n

)
. (4.17)

Based on these results, we proceed with finalization of a new test statistic. Let σ̂HL
n,k1k2

be either the jackknife or EDF estimator of σHL
k1k2

. Then the estimator of the covariance

matrix ΨHL
ij can accordingly be defined as

Ψ̂HL
i,j =

(
σ̂HL
rirj − η̂∗ri σ̂

HL
2ri − η̂∗rj σ̂

HL
2rj + η̂∗ri η̂

∗
rj σ̂

HL
22

)
/η̂22 .
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Using Equation (4.14) and suitable estimators suggested so far, we can derive the FLD type

HL-moments based test statistic for Gaussianity (FHL test statistic) as

DFHL =
(
ŵHL

)T ⎛⎜⎝ η̂∗n,3 − EΦ

(
η̂∗n,3

)
η̂∗n,4 − EΦ

(
η̂∗n,4

)
⎞
⎟⎠

= n
(
η̂∗n,3 − EΦ

(
η̂∗n,3

)
, η̂∗n,4 − EΦ

(
η̂∗n,4

))

×

⎛
⎜⎝

(
ψHL
Φ,3

)2
+
(
ψ̂HL
n,3

)2
ψHL
Φ,34 + ψ̂HL

n,34

ψHL
Φ,34 + ψ̂HL

n,34

(
ψHL
Φ,4

)2
+
(
ψ̂HL
n,4

)2

⎞
⎟⎠

−1⎛
⎜⎝ η̂∗n,3 − EΦ

(
η̂∗n,3

)
η̂∗n,4 − EΦ

(
η̂∗n,4

)
⎞
⎟⎠ . (4.18)

By adopting Fisher’s linear discriminant method, we are able to exploit the covariance

between the skewness and kurtosis estimators in an adaptive fashion. This gives a data

adaptive optimal balance between the skewness and kurtosis estimators yielding a test

statistic which is the Mahalanobis distance between the estimators (η̂n,3, η̂n,4) and their

null hypothesis means (EΦ(η̂n,3) , EΦ(η̂n,4)).

In the same way, we can derive a FLD type L-moments based test statistic for Gaus-

sianity (FL test statistic) as follows

DFL = n
(
λ̂∗n,3 − EΦ

(
λ̂∗n,3

)
, λ̂∗n,4 − EΦ

(
λ̂∗n,4

))

×

⎛
⎜⎝

(
ψL
Φ,3

)2
+
(
ψ̂L
n,3

)2
ψL
Φ,34 + ψ̂L

n,34

ψL
Φ,34 + ψ̂L

n,34

(
ψL
Φ,4

)2
+
(
ψ̂L
n,4

)2
⎞
⎟⎠

−1⎛
⎜⎝ λ̂∗n,3 − EΦ

(
λ̂∗n,3

)
λ̂∗n,4 − EΦ

(
λ̂∗n,4

)
⎞
⎟⎠ . (4.19)

From simulation results, we confirmed that the RL-moments perform exactly the same with

the L-moments in the goodness-of-fit test. Hence, we do not further develop a test based on

the RL-moments. The reason of the same performance of the L- and RL-moments remains

a future research topic.

The same reasoning can be applied to conventional moments. To derive, we first define

the standardized moments μk and standardized sample moments mn,k as

μk = E (X − μ)k , mn,k =
1

n

n∑
i=1

(
Xi − X̄

)k
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for k = 1, 2, · · · . Note that the standardized sample moments can be understood as the

EDF based estimators of their parallel population moments such that

mn,k = EFn (X − EFn (X))k . (4.20)

By Theorem 2.2.3.A of Serfling (1980), we have the almost sure convergence of the

standardized sample moments to the standardized moments,

mn,k
a.s.→ μk (4.21)

when E |X1|k < ∞. Direct application of Theorems 2.2.3.B and 3.3.A of Serfling (1980)

yields

n1/2

⎛
⎜⎝

mn,3

m
3/2
n,3

− μ3

μ
3/2
2

mn,4

m2
n,2

− μ4

μ2
2

⎞
⎟⎠ d→N

(
0,DMΣM

(
DM

)T)

where 0 = (0, 0)T and

DM =

⎛
⎜⎝ −3

2
μ3

μ
5/2
2

1

μ
3/2
2

0

−2μ4

μ3
2

0 1
μ2
2

⎞
⎟⎠ ,

ΣM
i,j = μi+j+2 − μi+1μj+1 − (i+ 1)μiμj+2 − (j + 1)μi+2μj + (i+ 1)(j + 1)μiμjμ2

for i, j ∈ {1, 2, 3}. Based on Equation (4.21), we can obtain the estimators of covariances

of the sample conventional moments as

D̂M =

⎛
⎜⎝ −3

2
mn,3

m
5/2
n,2

1

m
3/2
n,2

0

−2
mn,4

m3
n,2

0 1
m2

n,2

⎞
⎟⎠ ,

Σ̂M
i,j = mn,i+j+2 −mn,i+1mn,j+1 − (i+ 1)mn,imn,j+2 − (j + 1)mn,i+2mn,j (4.22)

+ (i+ 1)(j + 1)mn,imn,jmn,2. (4.23)
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As a result, we obtain a FLD type Jarque-Bera test statistic for Gaussianity (FJB test

statistic) as follows

DFJB = n
(
γ̂∗n,1 − EΦ

(
γ̂∗n,1

)
, γ̂∗n,2 − EΦ

(
γ̂∗n,2

))

×

⎛
⎜⎝ 6 +

(
ψ̂JB
n,3

)2
ψ̂JB
n,34

ψ̂JB
n,34 24 +

(
ψ̂JB
n,4

)2

⎞
⎟⎠

−1⎛
⎜⎝ γ̂∗n,1 − EΦ

(
γ̂∗n,1

)
γ̂∗n,2 − EΦ

(
γ̂∗n,2

)
⎞
⎟⎠ . (4.24)

Note that the asymptotic distribution of the sample conventional skewness and kurtosis in

(4.9) is used in the equation.

4.4 Simulation results

Based on the goodness-of-fit test statistics developed in Sections 4.1 and 4.3, we com-

pare their efficiencies in terms of their powers against various alternative hypothetical dis-

tributions. The Shapiro-Wilk (SW) and Anderson-Darling (AD) test statistics introduced

in Section 4.1 are used as baseline tests. Many papers including Shapiro et al. (1968)

pointed out that those test statistics perform better than distance-based statistics such as

the Kolmogorov-Smirnov statistic for a wide range of alternative distributions, so we do

not consider the Kolmogorov-Smirnov statistic here. For moments based tests, we consider

the Jarque-Bera (4.8), FLD-type Jarque-Bera (4.24), HL-moments based (4.11), FLD-type

HL-moments based (4.18), L-moments based (4.10) and FLD-type L-moments based (4.19)

test statistics as main focuses of comparison. The abbreviations for those test statistics

in the upcoming figures are presented in Table 4.1. As mentioned in Section 4.3, the RL-

moments are not considered in these experiments since their power curves were exactly the

same as those of the L-moments. For the covariance estimation method in the FLD-type

improvement, we use the EDF method because the jackknife method made performances of

the moments-based statistics worse. This seems to originate from the observation made in

Parr and Schucany (1982) that the jackknife method performs worse than the EDF method

for asymmetric distributions. Since many distributions that we deal with in this section

and coming sections have skewness, the jackknife method is not included in our analysis.
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Ab. Test Name Ab. Test Name

AD Anderson-Darling SW Shapiro-Wilk

JB Jarque-Bera FJB FLD-type Jarque-Bera

HL HL-moments based FHL FLD type HL-moments based

L L-moments based FL FLD type L-moments based

Table 4.1: Abbreviations used in the legend of Figures 4.2 and 4.1. ‘Ab.’ stands for an abbreviation.

As alterative hypothetical distributions, we first focus on 2-component mixture distri-

butions. The reason is that the TCGA lobular freeze data, which was introduced in Chapter

1 and will be deeply investigated in Chapter 5, consist of 5 subtypes each of which often

forms its own cluster. There can be more than or equal to 5 clusters in data, but capturing

many clusters with only skewness and kurtosis estimators is limited. Oja’s criteria (Theo-

rem 1.3) for a measure of kurtosis are related to bimodality of a distribution as shown in Oja

(1981), but none of these criteria which are equivalent to tri- or multi-modality have been

suggested so far. To compare the performances of kurtosis estimators to capture bimodality,

we choose 2-component location-mixtures of Gaussian distributions.

Next, we consider Tukey’s g and h distributions introduced in Section 3. Based on

Theorem 3.1, the parameters g and h enable us to study a broad range of skewness and

kurtosis of these distributions. We consider a few pairs of values of g and h in the simula-

tion. Romão et al. (2010) used various types of 2-component scale-mixtures of the Gaussian

distributions to cover alternative distributions with heavier tails than a single Gaussian dis-

tribution. However, we do not investigate them in the following simulations since Gleason

(1993) pointed out that those distributions are not comparable with a single Gaussian distri-

bution in Oja’s sense (Theorem 1.3). That is, if F = Φ and G = αΦ (·|0, 1)+(1−α)Φ (·|0, 10)

for 0 < α < 1, then neither F does not have more kurtosis than G or vice versa (Theorem

1.2). Hence, we substitute Tukey’s h distributions for those scale-mixtures.

For fair comparison, we do not use the critical regions given in the original papers

but perform simulation to obtain them. For each test, 20,000 values of test statistics were

computed from simulated samples, each of which has n(= 15, 20, 25, · · · , 100) observations

generated from N (0, 1). The significance level was set at α = 0.05. Then 5,000 repetitions
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of simulation from alternative hypothetical distributions were performed where the same

number of observations n was generated.

The first family of alternative distributions is the family of 2-component mixtures of the

Gaussian distributions which are shown in Figure 4.1. The plots in the left column show the

power curves of test statistics and those in the right column show the densities of the null

and alternative hypotheses. The colored lines in the left plots represent moments-based,

JB, HL-moments based and L-moments based test statistics and their FLD-type variations

while the gray-level lines represent the baseline test statistics, the Anderson-Darling (AD)

and Shapiro-Wilk (SW).

The mixture model given in the top row gives a small proportion to one of its two

components, so it is skew like the Tukey distribution T (g, 0) with positive g. The HL-

moments based statistic performs better than the other moments based statistics. After

the FLD improvement is applied, the FJB statistic performs better than the FHL statistic,

and the FL statistic performs the worst. The SW statistic performs the best among all

the statistics, while the AD statistic performs the worst. This indicates that even though

we only incorporate skewness and kurtosis estimators, we can achieve higher power than

conventionally used goodness-of-fit test statistics.

The second mixture model in the middle row has mild skewness and bimodality. In this

case, the FLD variations significantly improve the performances of moments-based tests.

The JB test has very low power against this alternative distribution, but it performs quite

well after being adjusted by the FLD and catches up with other tests after the sample

size 70. Among the moments-based tests, the L-moments perform better than the other

two moments. This coincides with the observation made in Romão et al. (2010) where the

L-moments based test performed the best for almost all the 2-component mixture models

considered therein. Interestingly, the AD test performs the best among all tests and the

SW test is not the best any more beaten by the FL statistic. Again this implies that the

skewness and kurtosis based statistic can outperform conventional goodness-of-fit statistics.

The mixture model in the bottom row shows similar patterns. The FLD greatly im-

proves the performances of all the moments-based tests. Among the moments, the L-

moments based statistic and its FLD variation again achieve the best power outperforming
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the two baseline tests, AD and SW. The JB test again achieves significant power improve-

ment after being tuned by the FLD method.

Figure 4.2 shows the power comparison results for Tukey’s g and h distributions. The

top row presents a distribution which is obviously more skew to the right than the standard

Gaussian distribution. The middle row presents a distributions with more skewness and

heavy-tailedness than the standard Gaussian. The bottom row corresponds to a more

asymmetric distribution than the distribution in the first row. The upper row studies the

T (0.3, 0) as the alternative distribution. It can be seen from the upper right plot that

T (0.3, 0) (black curve) is more skew to the right than N (0, 1) (gray curve). As can be seen

from the upper left plot, the SW and FHL statistics perform the best for all the sample

sizes. The FJB test catches up with those two statistics from the sample size 50, and then

competes with them. Unlike 2-component mixtures of Gaussian distributions presented in

4.1, the L-moments based statistic and its FLD variation perform worse than the other

moments based statistics. This implies that the direction of powers of moments can depend

on an alternative distribution under consideration.

The middle row corresponds to Tukey(0.3, 0.1) which is more skew to the right and

has heavier tails on both sides than the Gaussian distributions. Similarly to the first row,

the SW and FJB statistics perform the best for all the sample sizes and the FHL statistic

catches up with them from the sample size 70. Again the L-moments based statistic and

its FLD variation generally do not perform well. The lower row corresponds to Tukey(4, 0)

when the alternative distribution is asymmetric with heavier skewness than the first row.

The patterns of power curves are very similar to those in the first row. The SW and FHL

statistics perform the best and the FJB statistic catches up with them in the middle.
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Figure 4.1: Power curves of test statistics when an alternative distribution is a 2-component
mixture of Gaussian distributions. The FLD significantly increases powers for the alternative distri-
butions in the middle and bottom rows. Among the moments-based statistics, the L-moments based
statistic and its FLD variation perform the best, while the conventional moments based statistic
and its variation perform the worst.
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Figure 4.2: Power curves of test statistics when the alternative distribution is the Tukey. The
legend in the right plots indicate which of Tukey’s distributions is used.
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CHAPTER 5

Variable screening analysis of TCGA lobular freeze data

5.1 Marginal distribution plots

As introduced in Chapter 1, the TCGA data contain 16,615 genes each of which has 817

expression profiles. The goal of our analysis is to discover interesting genes, i.e. variables,

in terms of the shape of their marginal distributions. In high dimensional data such as the

TCGA data, visualizing all the variables is usually infeasible. As discussed in Chapter 1,

this motivates us to use summary statistics to sort and choose representative variables to

look at. As shown below, such interesting variables often have skewness or multimodality

in their marginal distributions. We investigate whether L-statistics based skewness and

kurtosis estimators capture more interesting and genetically useful departures from the

Gaussian distributions. The sorted list of genes generated by the L- and RL-moments were

essentially the same, so we omit marginal distribution analysis of the RL-moments.

5.1.1 Comparison among skewness and kurtosis estimators

Figure 5.1 shows the 7 genes with the smallest conventional and HL-skewness. The

format of this figure is the same as Figure 1.1 discussed in Chapter 1 except that the left

arrow in the upper left plot indicates that the presented genes are at the bottom of the

sorted genes. That is, the 7 genes presented have the smallest values of the current measure

which is the conventional skewness for the upper panel of Figure 5.1. The upper two rows

correspond to the conventional skewness while the lower two rows correspond to the negative

HL-skewness. For color specification, see Table 1.1. Note that the 7 genes in the upper

panel are all selected because of strong outliers on their left sides. On the other hand, the

7 genes in the lower panel have a much more biologically relevant type of skewness that is



clearly related to subtypes. This coincides with Theorem 3.5 in which the HL-skewness was

shown to have more robustness than the conventional skewness.

Figure 5.2 shows the 7 genes selected by the negative L-skewness. It can be seen that the

negative L-skewness selects a similar set of genes with the negative HL-skewness. Especially,

the genes ‘FOXA1’, ‘GSTT1’, ‘SPDEF’, ‘AGR3’ and ‘MLPH’ are selected by both skewness

measures. This implies that even though the HL-skewness was shown to have less robustness

than the L-skewness as in Theorems 3.4 and 3.5, both share the level of robustness in real

data. Comparison based on the genes with the largest skewness estimates shows a similar

pattern among different measures, so it is omitted.

The next direction of sorting genes is kurtosis of distributions. As mentioned so far, high

kurtosis of a distribution implies its central peakedness and heavy-tailedness on its both

sides while low kurtosis implies the distribution’s light-tailedness which is often related to

bimodality. In the case of skewness, all the three measures of skewness, conventional, HL-

and L-skewness, are zero at the Gaussian distributions. However, the measures of kurtosis

presented herein have different zeros from each other. On top of that, the different kurtosis

measures have different robustness as shown in Chapter 3. This motivates us to compare

the genes selected by different kurtosis measures.

Figure 5.3 shows the 7 genes with the largest conventional and HL-kurtosis values which

are presented at the upper and lower panels, respectively. The fact that we are looking at

the top of the sorted list of genes is implied by the right arrow in the quantile plot in the

upper left. Like the conventional skewness, the conventional kurtosis screens genes with at

least one strong outlier on either the left or right side of their marginal distributions. This

implies that conventional moment based measures are driven more by a couple of outliers

than the shapes of underlying distributions. The HL-kurtosis, on the contrary, finds the

genes with heavy-tailedness in their distributional bodies. Especially, the gene ‘MTAP’ has

a concentrated region of Basal type samples (�) on its right tail, and the gene ‘CBLC’

has a cluster of Her2 type samples (*) on its light tail. However, the gene with the largest

HL-kurtosis value, ‘CSTF2T’, is driven by two outliers on its left and right sides. This

implies that even though the HL-kurtosis is based on an L-statistic, it can sometimes be

driven by outliers.
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Figure 5.1: The 7 genes with smallest conventional skewness (upper panel) and HL-skewness (lower
panel). The upper left plot in each panel shows the quantile plot of the statistics. The genes selected
by conventional skewness have strong outliers on their left sides while the genes of the HL-skewness
have strong subtype driven skewness.
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Figure 5.2: The 7 genes with smallest L-skewness. All the genes clearly have skewness to the left
side in their distributional bodies.

As seen in Chapter 3, the L-kurtosis has better robustness than the other two kurtosis

measures considered in this dissertation, which can be assured by Figure 5.4. All the 7

genes picked up by the HL-kurtosis have heavy-tailedness in thier distributional bodies.

Unlike the HL-kurtosis, the L-kurtosis finds the gene ‘CBLC’ as the most highly kurtotic

gene which has a heavy left tail. This implies that the L-kurtosis has better robustness

than the HL-kurtosis in actual data as well.

Figure 5.5 shows the 7 genes with the smallest values of the conventional and HL-

kurtosis. The upper pannel corresponds to the conventional kurtosis. All the 7 genes

have multimodality, i.e. they do not have unimodal shape. Even though the negative

kurtosis value is typically thought to indicate bimodality, this figure shows that it can also

capture multimodality of data. Interestingly, the sets of 7 genes selected by conventional and

HL-kurtosis are exactly the same. The 7 genes, ‘RPL9’, ‘GSTM1’, ‘PRAME’, ‘SLC7A4’,

‘BMPR1B’, ‘RPS27’ and ‘C10orf82’, appear in both panels of Figure 5.5. This seems to be

because at the negative kurtosis end, both methods find bimodal genes. The genes screened

by the L-kurtosis showed a similar pattern, so we omit presenting those genes.
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Figure 5.3: The 7 genes with largest conventional kurtosis (upper panel) and HL-kurtosis (lower
panel). The upper left plot in each panel shows the quantile plot of the statistics. The genes
selected by conventional kurtosis have strong outliers on their left or right sides while the genes of
the HL-kurtosis mostly have heavy-tailed distributions in their bodies.
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Figure 5.4: The 7 genes with largest L-kurtosis. All the genes clearly have skewness to the left
side in their bodies.

5.1.2 Comparison among goodness-of-fit test statistics

The two goodness-of-fit tests of Gaussianity presented in Chapter 4 are the Anderson-

Darling (AD) and Shapiro-Wilk (SW) tests. Since one of the main assumptions that we

make in TCGA data analysis is that biologically meaningful genes have departure from

Gaussianity in their distributional bodies, we check whether those two goodness-of-fit test

statistics actually screen such interesting genes. Figure 5.6 shows the 7 genes with the

highest AD test statistics and lowest SW test statistics. Recall from Section 4.2 that the

AD test rejects the Gaussianity hypothesis for large test statistic values while the SW test

rejects the hypothesis for small statistic values.

As can be seen from Figure 5.6, the AD statistic screened 7 genes with at least one

strong outlier. It was mentioned in Section 4.2 that the AD test statistic can be highly

affected by outliers. On the contrary, the SW test statistic generally screened the genes

with skewness to the left or right side of their marginal distributions. Among those genes,

the genes ‘FOXA1’ and ‘SPDEF’ especially exhibit distinction between different subtypes

implying that those are biologically related to breast cancer subtypes.
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Figure 5.5: The 7 genes with the smallest conventional kurtosis (upper panel) and HL-kurtosis
(lower panel). The sets of 7 genes in both panels have multimodality and no outlier.
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Figure 5.6: The 7 genes with the largest AD test statistics (upper panel) and smallest SW test
statistics (lower panel). The 7 genes screened by the AD statistic were driven by outliers while those
screened by the SW test statistic have strong skewness in their distributional bodies.
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Figure 5.7 shows the comparison result between the JB and FJB test. As shown in

Chapter 3, the JB test statistic is highly sensitive to outliers. Here, all the 7 genes screened

by the JB statistic have at least one strong outlier on either side of their distributions.

However, the FJB statistic finds the genes with skewness in their distributional bodies

rather than a couple of outliers. perhaps surprising result can be explained as follows. The

FJB statistic formula given in (4.24) as

DFJB = n
(
γ̂∗n,1 − EΦ

(
γ̂∗n,1

)
, γ̂∗n,2 − EΦ

(
γ̂∗n,2

))

×

⎛
⎜⎝ 6 +

(
ψ̂JB
n,3

)2
ψ̂JB
n,34

ψ̂JB
n,34 24 +

(
ψ̂JB
n,4

)2
⎞
⎟⎠

−1⎛
⎜⎝ γ̂∗n,1 − EΦ

(
γ̂∗n,1

)
γ̂∗n,2 − EΦ

(
γ̂∗n,2

)
⎞
⎟⎠ ,

implies that outliers affect not only the skewness and kurtosis measures but also their

covariances, with some cancellation effect on the statistic DFJB.

As shown in Figure 5.8, the 7 genes with the smallest HL statistic values have more

skewness in their distributional bodies than those with the smallest JB statistic values.

Especially, the genes ‘SPDEF’ and ‘FOXA1’ have a cluster of Basal type (�) samples

on their right side. Robustness of the HL-skewness relative to the conventional skewness

shown in Section 5.1.1 is confirmed here. The FHL statistic seems to screen more subtype

relevant genes than the HL statistic. All the 7 genes screened by the FHL, except the gene

‘TDRD12’, have a subtype driven cluster of samples.

The L-moments based statistic screens more subtype related genes than the HL-

moments based statistic as can be seen from the upper panel of Figure 5.9. All the genes

except the gene ‘GSTT1’ have a cluster of either Basal (�) or LumA (+) type samples.

The FL test statistic screens mostly the same genes with the L test statistic. The 5 genes,

‘SLC44A4’, ‘MLPH’, ‘AGR3’, ‘SPDEF’ and ‘GSTT1’, were screened by both the L and FL

statistics. This implies that there might not be much difference between performances of L

and FL statistics, which will be confirmed in the next section.
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Figure 5.7: The 7 genes with the largest JB statistics (upper panel) and FJB statistics (lower
panel). All the 7 genes screened by the JB statistic have at least one outlier while the 7 genes
screened by the FJB statistic have skewness and multimodality in their distributional bodies.
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Figure 5.8: The 7 genes with the largest HL statistic values (upper panel) and FHL statistic values
(lower panel). The FHL seems to screen more subtype relevant genes than the HL.
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Figure 5.9: The 7 genes with the largest L test statistic values (upper panel) and FL statistic
values (lower panel). Unlike the JB and HL, there is not much difference between the sets of genes
screened by the L and FL test statistics.
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5.2 Gene Set Enrichment Analysis

A main goal of the TCGA data analysis done here is to assess the performances of var-

ious skewness and kurtosis measures by their abilities in screening biologically meaningful

genes. Marginal distributions shaped similarly with the standard Gaussian distributions

or having outliers on either side tend not to be helpful for understanding subtypes. This

suggests use of robust skewness and kurtosis measures which can efficiently capture more

relevant departures from Gaussianity to screen for biologically meaningful genes. To as-

sess such abilities, we focus on the Gene Set Enrichment Analysis (GSEA) introduced in

Subramanian et al. (2005).

The GSEA deals with a matrix D of mRNA expression profiles in which rows represent

genes and columns represent samples. Samples belong to one of two phenotype classes,

e.g. tumors resistant to a drug or not. For a ranked list L of genes, the GSEA assesses

whether interesting genes in an independent gene set S are randomly distributed through-

out L or primarily found at the top or bottom of it. Figure 5.10 adopted from Figure 1 in

Subramanian et al. (2005) shows an example of an expression profile matrix and an inde-

pendent gene set. The heatmap given on the left side shows the levels of expression values

by color. The rectangle on the right side indicates the location of genes in an independent

gene set presented by horizontal lines. The GSEA assesses whether the interesting genes

corresponding to the horizontal lines gather more closely to the top, bottom or both of the

list.

To statistically evaluate goodness of a ranked list, we first define a score which is a

function of true and false positive rates. Suppose that we rank the N genes in D to form

L = {g1, g2, · · · , gN} according to their correlations rj for j = 1, 2, · · · , N with the 2-class

phenotype. We first compute the probabilities of hitting and missing interesting genes in S

in the top n list of genes extracted from the ranked list L as

Phit(S, n) =

∑
j≤n,gj∈S 1∑

gj∈S 1
, Pmiss(S, n) =

∑
j≤n,gj /∈S 1∑

gj /∈S 1
. (5.1)
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Figure 5.10: Figure 1 of Subramanian et al. (2005). The left heatmap represents a sorted list of
genes whose expression values are colored based on their values, and the right rectangle represents
the locations of biologically meaningful genes in that sorted list by the horizontal lines.

The probabilities Phit and Pmiss can be understood as true and false positive rates, respec-

tively. Note that Subramanian et al. (2005) suggested using a correlation value instead of

1 given in Equation 5.1. However, using the values of different skewness and kurtosis mea-

sures can cause a problem in our case since different measures have different scales. The

largest problem is the conventional kurtosis which ranges from 0 to the infinity. Computing

the ES based on the values of the conventional kurtosis can yield unpredictable results.

As we increase the size n of the top-n list, both Phit(S, i) and Pmiss(S, i) become functions

of n whose maximum or minimum value is of interest. We define the enrichment score (ES )

of the gene set S as

ES(S) = max
1≤n≤N

(Phit(S, n)− Pmiss(S, n))

to assess the significance of difference between them. That is, we compute the maximum

distance of a random walk from zero in which we step up when we encounter an interesting

gene and step down when we miss it. If interesting genes are gathered at the top of the

ranked list, the enrichment score will be highly positive, and if they are gathered at the
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Figure 5.11: Figure 2 of Subramanian et al. (2005). Each plot shows the trace of the random walk
generated by Equation 5.1 for three different independent gene sets.

bottom, the score will be highly negative. Since both of those cases are of interest, we

perform 2-sided tests to obtain the p-value of ES(S).

Figure 5.11 shows the three examples of the random walk generated by the probabilities

in (5.1). Each plot shows the trace of the random walk for three different independent gene

sets. The vertical bars presented on top of the plots show the locations of independent genes

in the ranked list of genes. In the left plot, the independent genes gather at the top of the

ranked list yielding highly positive ES. On the other hand, the middle plot does not have

highly positive or negative ES since the independent genes are equally spread throughout

the ranked list of genes.

To obtain a p-value, we do a permutation test. We randomly permute the ranks of genes

in the ranked list, and for the k-th permuted list, we compute the k-th enrichment score

ESk(S). Repeat the permutation for, say, K = 1, 000 times and obtain the null distribution

of ESk(S). This gives a nominal p-value of ES(S). Since there are many different sets of

interesting genes, we adjust the p-values for multiple comparisons so that multiple gene

sets can be jointly used to assess the significance of L. For multiple gene sets Sm for

m = 1, 2, · · · ,M , we control the False Discovery Rate (FDR) by computing

FDR(S) =

∑M
m=1

∑K
k=1 I (|ESk (Sm)| ≥ |ES(S)|)

KM
.
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If the FDR(S) is less 0.05, then it is said that the corresponding gene set S is signif-

icantly enriched. We also investigate the FDR level 0.25 since the GSEA User Guide

(http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html) recom-

mends that both the FDR levels 0.05 and 0.25 are worth being investigated.

5.2.1 Comparison among skewness and kurtosis estimators

On top of the conventional and Gaussian Centered L-moments, we consider also the

quantile-based measures which have been known to be robust as baseline measures. Bowley’s

skewness measure (Bowley, 1920) is a typically used quantile-based measure of skewness

defined as

γp =
F−1(1− p)− F−1(1/2) −

{
F−1(1/2) − F−1(p)

}
F−1(1− p)− F−1(p)

where p is usually set to 0.75. On the other hand, Ruppert’s interfractile range ratio

(Ruppert, 1987) is frequently used as a measure of kurtosis and defined as

γp1,p2 =
F−1 (1− p1)− F−1 (p1)

F−1 (1− p2)− F−1 (p2)

where the parameter p1 and p2 are usually set to 0.9 0.7, respectively. The sample quantiles

are used to estimate the quantiles in γp and γp1,p2 for data. Both Bowley’s and Ruppert’s

estimators were shown to satisfy Oja’s criteria for measures of skewness and kurtosis, re-

spectively in those papers. The papers Ruppert (1987) and Groeneveld (1991) showed that

their influence functions evaluated at symmetric distributions are bounded while we showed

in Theorems 3.4 and 3.5 that the HL- and L-moments have unbounded influence functions

for some symmetric distributions. This indicates that those quantile based measures can

play the role of baseline robust estimators.

The analysis was performed using the Gene Set Enrichment v2.2.4 software released

by the Broad Institute (http://software.broadinstitute.org/gsea/index.jsp). The

independent gene sets in MSigDB v5.2 were downloaded, and the gene sets with the mini-

mum 15 and maximum 5,000 genes were used in the analysis. This left us 15,470 gene sets

for the analysis including FDR computation.
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FDR Skewness HL-skewness p-value Kurtosis HL-kurtosis p-value

0.05 3022 3147 0.078 1520 2037 0

FDR Skewness HL-skewness p-value Kurtosis HL-kurtosis p-value

0.25 6220 6349 0.14 4088 5009 0

Table 5.1: The numbers of genes screened by the conventional and HL-moments with FDR less than
0.05 and 0.25. Generally, the HL-moment screened for interesting genes better than the conventional
moments with larger superiority for the direction of kurtosis.

Table 5.1 shows the comparison results of the conventional and HL-moments when the

FDR is fixed as 0.05 and 0.25. The values in the first, second, fourth and fifth columns are

the numbers of independent gene sets with the given FDR screened by different measures.

The p-values are obtained by Fisher’s exact test in which screened genes are treated as

positive samples and the other genes are treated as negative samples. By performing this

test, we can measure the statistical significance of the differences between different measures

in screening genes. About comparison between the conventional and HL-moments, the HL-

skewness performs better than the conventional skewness but its degree is not statistically

significant at either FDR level 0.05 or 0.25. For kurtosis, HL-kurtosis significantly performs

better than the conventional kurtosis at both levels. This indicates that the robustness

of the HL-moments enables themselves to screen meaningful genes without being much

affected by outliers.

About comparison between the HL- and L-moments in Table 5.2, the L-skewness per-

forms significantly better than the HL-skewness at the FDR level 0.05 but the HL-skewness

performs slightly, but not significantly, better than the L-skewness at the level FDR 0.25.

For the kurtosis, HL-kurtosis performs significantly better than the L-kurtosis at both FDR

levels. This shows that relative superiority of the HL- and L-moments depends on the di-

rection of departure from Gaussianity. Their abilities in the skew direction can depend on

the size of the test that we look at, but the HL-moments clearly screen for genes better in

the heavy-tailed and bimodal direction.

From comparison results between the L-moments and quantile-based measures given

in 5.3, the L-moments perform better than the quantile-based measures in every direction.

This shows that even though L-statistics have less robustness than the quantile-based mo-
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FDR HL-skewness L-skewness p-value HL-kurtosis L-kurtosis p-value

0.05 3147 3303 0.03 2037 1145 0

FDR HL-skewness L-skewness p-value HL-kurtosis L-kurtosis p-value

0.25 6349 6287 0.48 5009 3349 0

Table 5.2: The numbers of genes screened by the HL- and L-moments with FDR less than 0.05 and
0.25. Generally, the HL-moments perform better than the L-moments in the direction of kurtosis
whatever FDR level is given. In the direction of skewness, their relative performances depend on
the FDR levels with statistically significant superiority of the L-moments when the FDR is 0.05.

FDR L-skewness Q-skewness p-value L-kurtosis Q-kurtosis p-value

0.05 3303 2016 0 1445 681 0

FDR L-skewness Q-skewness p-value L-kurtosis Q-kurtosis p-value

0.25 6287 4318 0 3349 2700 0

Table 5.3: The numbers of genes screened by the L-moments and quantile-based moments with
FDR less than 0.05 and 0.25. Generally, the HL-moments perform better than the L-moments in the
direction of kurtosis whatever FDR level is given. For both skewness and kurtosis, the L-moments
based estimators screen for meaningful genes better than the quantile based estimators.

ments, they are actually more able to screen for important variables in high dimensional

data. The mild balance between robustness and efficiency that L-statistics possess seems

to fit to the goal of TCGA data analysis.

5.2.2 Comparison among goodness-of-fit test statistics

Since our main claim in TCGA data analysis is that biologically meaningful genes

often have asymmetry and bimodality in their marginal distributions, we check whether

goodness-of-fit test statistics for Gaussianity based on skewness and kurtosis estimators

screen such genes well. We use the AD and SW test statistics as baselines. We first check

whether the skewness and kurtosis based test statistics perform better than those baseline

statistics, then compare relative performances among different moments based statistics.

Unlike Subsection 5.2.1, only the direction of positive enrichment scores is of our interest

since goodness-of-fit test statistics put Gaussian shape genes at the bottom of their ranked

lists. Hence, the FDR is fixed as 0.25 in this subsection to offset reduction of the critical

region.
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FDR AD JB p-value AD FJB p-value

0.25 933 623 0 933 1334 0

FDR SW JB p-value SW FJB p-value

0.25 1081 623 0 1081 1334 0

Table 5.4: The numbers of genes screened by the baseline statistics, AD and SW, and the JB and
FJB with FDR 0.25. The JB statistic is inferior to the baseline statistics, but the FJB statistic
screens biologically meaningful genes better than the baseline statistics.

FDR AD HL p-value AD FHL p-value

0.25 933 972 0.369 933 1340 0

FDR SW HL p-value SW FHL p-value

0.25 1081 972 0.0136 1081 1340 0

Table 5.5: The numbers of genes screened by the baseline statistics, AD and SW, and the HL and
FHL with FDR 0.25. The HL statistic competes with the baseline statistics, but the FJB statistic
outperforms those baseline statistics.

The result of comparing the JB and FJB with the AD and SW is given in Table 5.4.

As can be seen from the table, the JB significantly performs worse than the AD and SW.

However, after Fisher type improvement is applied to the JB statistic, its performance is

dramatically enhanced and significantly better than both the SW and AD. This shows that

the FLD type adjustment introduced in Section 4.3 improves not only the power of the test

statistic in the goodness-of-fit test but also its ability in screening biologically meaningful

genes in our data. In addition, the SW and AD statistics seem not to be appropriate for

the purpose of variable screening in our context, since their directions of departure from

Gaussianity are too broadly spread to capture interesting shape in marginal distributions.

The fact that the FJB outperforms both the AD and SW shows that we are studying the

right direction of departure from Gaussianity, which are skewness and bimodality.

Similarly to the JB statistic, the HL-moments based statistic does not outperform the

baseline statistics, but the FLD type improvement makes its performance surpass the AD

and SW statistics as can be seen in Table 5.5. The HL-moments based statistic is better

than the AD statistic but the degree is not significant, and it performs worse than the SW

statistic. However, the FHL statistic performs significantly better than the AD and SW.

The comparison between the FJB and FHL statistics is presented later.
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FDR AD L p-value AD FL p-value

0.25 933 1218 0 933 1437 0

FDR SW L p-value SW FL p-value

0.25 1081 1218 0.003 1081 1437 0

Table 5.6: The numbers of genes screened by the AD, SW and L and FL with FDR 0.25. Both
the L and FL statistics outperform the AD and SW statistics.

FDR JB HL p-value HL L p-value

0.25 623 972 0 972 1218 0

FDR FJB FHL p-value FHL FL p-value

0.25 1334 1340 0.919 1340 1437 0.0562

Table 5.7: The numbers of genes screened by the AD, SW and L and FL with FDR 0.25. The
HL test statistic outperforms the JB test statistic, and the L test statistic outperforms the HL test
statistic.

In Subsection 5.1.2, we saw that the L-moments based statistics seem to best capture

biologically meaningful genes in data among all statistics based on marginal distributions.

This can be confirmed in Table 5.6 in which both the L and FL test statistics perform

significantly better than the baseline test statistics. The degree to which the L test statistic

without FLD improvement performs better than the baseline statistics is significant. This

implies that the L-moments themselves have enough power to capture important structure

in data without covariance adjustment.

The most interesting part is comparison among different skewness and kurtosis based

statistics, which is presented in Table 5.7. Before the Fisher improvement is applied, the

order of performances is JB < HL < L which coincides with our observation made in

Subsection 5.1.2. This also coincides with robustness result shown in Chapter 3 where the

order of robustness was shown to be JB < HL < L. After the Fisher improvement is

applied, the differences between performances of different statistics get much narrower, but

the order of relative performances remains the same. The difference between the FHL and

FL is slightly non-significant. On the contrary, the p-value of the difference between the

FJB and FL was slightly significant (p = 0.0423), which is not shown in the table. The

numbers of genes screened by the FJB and FHL are almost the same. This shows that the

HL-moments are on the border between the sample conventional moments and L-statistics.
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CHAPTER 6

Future work

6.1 Including more moments in goodness-of-fit test statistics

The goodness-of-fit test statistics developed in Chapter 4 have skewness and kurtosis

estimators as building blocks. However, there is no limit on the number of terms that can

be included in those test statistics. For example, the FHL statistic can be defined as

DFHL,6 = n
(
η̂∗n,3 − EΦ

(
η̂∗n,3

)
, η̂∗n,4 − EΦ

(
η̂∗n,4

)
, η̂∗n,5 − EΦ

(
η̂∗n,5

)
, η̂∗n,6 −EΦ

(
η̂∗n,6

))

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
ψHL
Φ,3

)2
+
(
ψ̂HL
n,3

)2
ψHL
Φ,34 + ψ̂HL

n,34 · · · ψHL
Φ,36 + ψ̂HL

n,36

ψHL
Φ,34 + ψ̂HL

n,34

(
ψHL
Φ,4

)2
+
(
ψ̂HL
n,4

)2
· · · ψHL

Φ,46 + ψ̂HL
n,46

. . .

ψHL
Φ,36 + ψ̂HL

n,36 ψHL
Φ,46 + ψ̂HL

n,46 · · ·
(
ψHL
Φ,6

)2
+
(
ψ̂HL
n,6

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

η̂∗n,3 − EΦ

(
η̂∗n,3

)
η̂∗n,4 − EΦ

(
η̂∗n,4

)
η̂∗n,5 − EΦ

(
η̂∗n,5

)
η̂∗n,6 − EΦ

(
η̂∗n,6

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

by including the fifth and sixth HL-moments. As mentioned in Section 7 of Oja (1981),

the sixth moment term is usually related to the tri-modality of a distribution. This implies

that by incorporating more terms in the test statistic, we can measure departure from

Gaussianity in more various directions. However, that can result in poor efficiency in each

of directions of departure from Gaussianity. For example, DFHL,6 can result in poorer

performance than DFHL in discriminating between a Gaussian distribution and a bimodal

distribution. In the TCGA data analysis, it seems appropriate to use the terms between



η∗3 and η∗10 to screen penta-modalities since there are five subtypes in the data which often

form their own groups.

6.2 Centering L-functionals at other distributions

An approach to setting a non-uniform distribution as the center of the L-moments has

been explored earlier in Hosking (2007). That paper developed the theory of trimmed L-

moments (TL-moments) which had originally been proposed by Elamir and Seheult (2003).

The trimmed L-moments are basically linear combinations of expected order statistics but

have a different form from the L-moments (1.6) given as

λ(s,t)r =
1

r

r−1∑
k=0

(−1)k

⎛
⎜⎝ r − 1

k

⎞
⎟⎠EXr+s−k:r+s+t.

Note that the s smallest order statistics and t largest order statistics are excluded from

the random sample of size r + s + t. Even though the TL-moments were proposed for

better robustness, an interesting discovery made in the paper was that appropriately setting

the coefficient before expected order statistics makes a family of logistic distributions the

distributional center of the TL-moments.

However, Hosking (2007) did not show the possibility of systematically shifting the

distributional center of the L-moments to an arbitrary distribution. As seen in Theorem

2.3, one of the interesting properties of the RL-moments is that those can be centered at

any symmetric distribution using its expected order statistics. This suggests that the HL-

moments can also be centered at another family of distributions different from the Gaussian

distributions.

For the HL-moments, note that their Gaussian centering property

ηr =

∫ ∞

−∞
xf(x)Hr−1

(
Φ−1(F (x))

)
dx
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comes from the orthogonality of the Hermite polynomials Hr with respect to the weight

function φ. We can consider a similar type of moments defined as

ηαΓ,r(F ) =

∫ ∞

−∞
xf(x)Lα

r−1

(
Γ−1(F (x)|α, 1)

)
dx

where Lα
r is the r-th order Laguerre polynomial and Γ(·|α, β) is the CDF of the gamma

distribution with the parameters α and β. It can be seen that ηαΓ,r (Γ(·|α, 1)) = 0 for

r = 3, 4, · · · from the equation

∫ ∞

−∞
xg(x|α, 1)Lα

r−1(x) dx = 0

since

x = −(1 + α− x) + (1 + α) = −Lα
1 (x) + (1 + α)Lα

0 (x),

i.e. x is a linear combination of the first two Laguerre polynomials of order α. Since the

limit of the Gamma distributions is the Gaussian distribution, the relationship between the

moments {ηαΓ,rr = 1, 2, · · · } and the HL-moments {ηr|r = 1, 2, · · · } might shed light on the

relationship between the Laguerre and Hermite polynomials.
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CHAPTER 7

Proofs

The following lemma can be derived from Section 3.1 of David and Nagaraja (2003).

Lemma 7.1. Suppose that E|X|k <∞ for some k, then we have

lim
u→1

∣∣F−1(u)
∣∣k (1 − u) = 0 and lim

u→0

∣∣F−1(u)
∣∣k u = 0. (7.1)

This further implies that

lim
u→1

∣∣F−1(u)
∣∣sk (1− u)s = 0 and lim

u→0

∣∣F−1(u)
∣∣sk us = 0 ∀s > 0

Moreover, if the CDF F has a MGF, then we have

lim
u→1

∣∣F−1(u)
∣∣s (1− u)t = 0 and lim

u→0

∣∣F−1(u)
∣∣s ut = 0 ∀s, t > 0. (7.2)

�

The following lemma in Chapter 22 of Abramowitz and Stegun (1964) is also used

throughout this chapter.

Lemma 7.2. The Hermite polynomials {Hr|r = 0, 1, 2, · · · } satisfy the recursion formula

(r + 1)Hr(x) =
∂
∂xHr+1(x) for x ∈ R and r = 0, 1, · · · . In addition, if r is odd, then Hr is

an odd function. If r is even, then Hr is an even function. �

To obtain the influence functions of the HL- and RL-moment ratios, the following lemma

is needed.



Lemma 7.3. For a functional θ = θ1/θ2 such that θ1, θ2 : F → R, we have

IF(x;F, θ) =
θ2(F )IF(x;F, θ1)− θ1(F )IF(x;F, θ2)

θ2(F )2
,

SIF(x;F, θ) =
θ2(F )SIF(x;F, θ1)− θ1(F )SIF(x;F, θ2)

θ2(F )2

since both the influence and symmetric influence functions are right-hand derivatives of a

function. �

We present a useful definition and a lemma for deriving the symmetric influence func-

tions given below. We say a functional θ : F → R is symmetric if θ(F ) = θ (F−1,0) for all

F ∈ F .

Lemma 7.4. Let θ : F → R be an L-functional in the form (1.5) of the main paper. If θ

is a symmetric L-functional and F is a symmetric distribution, then we have SIF(x;F, θ) =

IF(x;F, θ) for all x ∈ R.

Proof . From Equation (5.35) of Huber and Ronchetti (2009), if both the functional θ and

distribution F are symmetric, then we have

IF(x;F, θ) = IF(−x;F, θ). (7.3)

Let Qu : F → R be a functional such that Qu(F ) = F−1(u). Then it can be seen from

Equations (3.46) and (3.47) of Huber and Ronchetti (2009) that

SIF (x, F,Qu) =
1

2
{IF (−x;F,Qu) + IF (x;F,Qu)} .

It can be seen using this result and the first equality in Equation (3.49) of

Huber and Ronchetti (2009) that

SIF(x, F, θ) =
1

2
{IF(−x;F, θ) + IF(x;F, θ)}.

Combining this equation and Equation (7.3), we obtain the desired result. �
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Proof of Theorem 2.1. It can be seen from

η1 =

∫ 1

0
F−1(u)H0

(
Φ−1(u)

)
du =

∫ 1

0
F−1(u) du

that the first HL-moment is the mean. It was shown in Oja (1981) that the mean satisfies

Oja’s criterion for a measure of location.

To check whether η2 satisfies the first condition of Oja’s criterion for a measure of scale

(Definition 1.3.b), we let Y = aX + b and F,G be the cumulative distribution functions

of X,Y respectively. First, assume that a > 0. Then we have G−1(u) = aF−1(u) + b for

0 < u < 1. Now we have

η2(G) =

∫ 1

0
G−1(u)Φ−1(u) du

=

∫ 1

0

{
aF−1(u) + b

}
Φ−1(u) du

= a

∫ 1

0
F−1(u)Φ−1(u) du+ b

∫ 1

0
Φ−1(u) du

= a

∫ 1

0
F−1(u)Φ−1(u) du

= aη2(F ). (7.4)

Hence, we have η(G) = aη(F ) when a > 0. If we assume that a < 0, then we have

G−1(u) = aF−1(1 − u) + b. Following the same steps of derivation as Equation (7.4), we

can obtain η2(G) = −aη2(F ). Combining these two results, we obtain η2(G) = |a|η2(F ).

To check the second condition, we first have

G−1(F (x))− x is nondecreasing in x ⇔ f(x)

g(G−1(F (x)))
≥ 1

⇔ 1

g(G−1(u))
− 1

f(F−1(u))
≥ 0

⇔ G−1(u)− F−1(u) is nondecreasing in u.
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This yields G−1(u)−F−1(u)−G−1(1/2)+F−1(1/2) ≤ 0 for u ≤ 1/2 and G−1(u)−F−1(u)−

G−1(1/2) + F−1(1/2) ≥ 0 for u ≥ 1/2. Now we have

η2(G)− η2(F ) =

∫ 1

0

{
G−1(u)− F−1(u)

}
Φ−1(u) du

=

∫ 1

0

{
G−1(u)− F−1(u)−G−1

(
1

2

)
+ F−1

(
1

2

)}
Φ−1(u) du

+

∫ 1

0

{
G−1

(
1

2

)
− F−1

(
1

2

)}
Φ−1(u) du

≥ 0

where the last inequality results from the same signs of two functions inside the integral.

We first prove the following lemma.

Lemma 7.5. If G−1 ◦ F is convex on the support of F and μ(F ) = μ(G), then there exist

two points 0 < u1 < u2 < 1 such that

G−1(u)− F−1(u) ≥ 0 for 0 < u ≤ u1 and u2 < u < 1,

G−1(u)− F−1(u) ≤ 0 for u1 < u ≤ u2.

Proof . Since the function G−1 ◦ F is convex, it meets the function y = x at most twice.

Suppose that the two functions meet less than twice. Then we have G−1(F (x))− x > 0 for

all x ∈ R except at most one point x′ which implies G−1(u) > F−1(u) for all 0 < u < 1

except at most one point u′. However, this implies that

μ(G) =

∫ 1

0
G−1(u) du >

∫ 1

0
F−1(u) du = μ(F )

which contradicts the assumption μ(F ) = μ(G). Hence there exist two points x1, x2 ∈ R

such that G−1(F (x)) − x ≥ 0 for all x < x1 or x > x2 and G−1(F (x)) − x ≤ 0 for all

x1 ≤ x ≤ x2. This implies that there exist two points u1 and u2 such that 0 ≤ u1 < u2 ≤ 1

and G−1(u) − F−1(u) ≥ 0 for all u ≤ u1 or u ≥ u2 and G−1(u) − F−1(u) ≤ 0 for all

u1 ≤ u ≤ u2. �

71



To check that η∗3 satisfies the first condition of Definition 1.3.c, let G = Fa,b. We first

assume that a > 0. Then we have

η3(G) =

∫ 1

0
G−1(u)

{
Φ−1(u)2 − 1

}
du

=

∫ 1

0

{
aF−1(u) + b

}{
Φ−1(u)2 − 1

}
du

= a

∫ 1

0
F−1(u)

{
Φ−1(u)2 − 1

}
du+ b

∫ 1

0

{
Φ−1(u)2 − 1

}
du

= a

∫ 1

0
F−1(u)

{
Φ−1(u)2 − 1

}
du

= aη3(F ). (7.5)

Hence, we have η3(G) = aη3(F ) when a > 0. Following similar steps of derivation, it can be

shown that η3(G) = aη3(F ) when a < 0. Combining these two results and η2(G) = |a|η2(F ),

we obtain the desired result η∗3(G) = sign(a)η∗3(F ).

To check the second condition, we first assume that η1(F ) = η1(G) = 0 and η2(F ) =

η2(G) = 1. Note that

η3(G)− η3(F ) =

∫ 1

0

{
G−1(u)− F−1(u)

} {
Φ−1(u)2 − 1

}
du

=

∫ ∞

−∞

{
G−1(Φ(x))− F−1(Φ(x))

}
φ(x)

{
x2 − 1

}
dx

By Lemma 7.5 and the monotonic increasing property of Φ(x), we know that there exist

two points x1 < x2 such that G−1(Φ(x)) − F−1(Φ(x)) ≥ 0 for x ≤ x1 or x ≥ x2 and

G−1(Φ(x)) − F−1(Φ(x)) ≤ 0 for x1 ≤ x ≤ x2. Now consider a polynomial K(x|a, b) =

H2(x) + aH1(x) + bH0(x) = x2 + ax + b − 1 for a �= 0, b ∈ R. By equating x2 + ax + b −

1 = (x − x1)(x − x2) for all x ∈ R, we can find two constants aF,G and bF,G such that

K(x|aF,G, bF,G) ≥ 0 for x < x1 or x > x2 and K(x|aF,G, bF,G) ≤ 0 for x1 ≤ x ≤ x2.
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Now we have

0 ≤
∫ ∞

−∞
φ(x)

{
G−1(Φ(x))− F−1(Φ(x))

}
K(x|aF,G, bF,G) dx

=

∫ ∞

−∞
φ(x)

{
G−1(Φ(x))− F−1(Φ(x))

}
{H2(x) + aF,GH1(x) + bF,GH0(x)} dx

= {η3(G)− η3(F )}+ aF,G {η2(G)− η2(F )}+ bF,G {η1(G)− η1(F )}

= η3(G) − η3(F )

where the first inequality holds since the two functions G−1(Φ(x)) − F−1(Φ(x)) and

K(x|aF,G, bF,G) have the same sign for all x ∈ R, and the last equality comes from the

assumption that η1(F ) = η1(G) = 0 and η2(F ) = η2(G) = 1.

Now assume that two distributions F and G have arbitrary first and second HL-moment

coefficients. Then we have

η∗3(F ) = η3
(
F1/η2(F ),−η1(F )/η2(F )

)
≤ η3

(
G1/η2(G),−η1(G)/η2(G)

)
= η∗3(G)

where the first and last equality holds since we showed that the first condition of Oja’s

criterion is satisfied.

To prove the theorem, we need the following lemmas.

Lemma 7.6. If F is a symmetric distribution, then η3(F ) = 0.

Proof . Since F−1 is symmetric with respect to the point (1/2,m(F )), we have

F−1(u)−m(F ) = m(F )− F−1(1− u) (7.6)

for all 1/2 ≤ u < 1. We have

η3(F ) =

∫ 1/2

0
F−1(u)

{
Φ−1(u)2 − 1

}
du+

∫ 1

1/2
F−1(u)

{
Φ−1(u)2 − 1

}
du

=

∫ 1/2

0
F−1(u)

{
Φ−1(u)2 − 1

}
du+

∫ 1/2

0
F−1(1− v)

{
Φ−1(v)2 − 1

}
dv

= 2m(F )

∫ 1/2

0
Φ−1(u)2 − 1 du

= 0
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where the second equation results from the change of variable v = 1− u and the second to

last equation results from Equation (7.6). �

Lemma 7.7. Let F and G be symmetric distributions with the symmetry points m(F )

and m(G) such that η1(F ) = η1(G) = 0 and η2(F ) = η2(G) = 1. If G−1 ◦ F is concave on

{x|x < 0} and convex on {x|x > 0}, then there exists two points 0 < u1 < 1/2 < u2 < 1

such that

G−1(u)− F−1(u) ≤ 0 for 0 < u ≤ u1 and 1/2 < u ≤ u2,

G−1(u)− F−1(u) ≥ 0 for u1 < u ≤ 1/2 and u2 < u ≤ 1.

Proof . By the convexity assumption on G−1 ◦ F , this function meets the function y = x

either once at x = 0 or three times at x = x1, 0, x2 such that x1 < x2 on the real line R.

Suppose that these two functions meet each other once. Then we have G−1(F (x)) − x < 0

for x < 0 and G−1(F (x))− x > 0 for x > 0 which implies that

G−1(u)− F−1(u) < 0 for u <
1

2
and G−1(u)− F−1(u) > 0 for u >

1

2
(7.7)

since we assumed that m(F ) = 0. We have

η2(G) =

∫ 1

0
G−1(u)Φ−1(u) du

=

∫ 1/2

0
G−1(u)Φ−1(u) du+

∫ 1

1/2
G−1(u)Φ−1(u) du

>

∫ 1/2

0
F−1(u)Φ−1(u) du+

∫ 1

1/2
F−1(u)Φ−1(u) du

= η2(F )

where the strict inequality holds owing to Equation (7.7). This contradicts the assumption

η2(F ) = η2(G). Hence, G
−1(F (x))−x ≤ 0 for x < x1, 0 < x < x2 and G

−1(F (x))−x ≥ 0 for

x1 < x < 0, x > x2. This indicates that there exist two points u1, u2 such that 0 < u1 < 0 <

u2 < 1 and G−1(u) − F−1(u) ≤ 0 for 0 < u ≤ u1, 1/2 < u ≤ u2 and G−1(u) − F−1(u) ≥ 0

for u1 < u ≤ 1/2, u2 < u < 1. �
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To check whether η∗4 satisfies the first condition of Oja’s criterion (Definition 1.3.d), we

let G = Fa,b. First, assume that a < 0. Then we have

η4(G) =

∫ 1

0
G−1(u)

{
Φ−1(u)3 − 3Φ−1(u)

}
du

=

∫ 1

0

{
aF−1(1− u) + b

}{
Φ−1(u)3 − 3Φ−1(u)

}
du

= a

∫ 1

0
F−1(1− u)

{
Φ−1(u)3 − 3Φ−1(u)

}
du+ b

∫ 1

0
Φ−1(u)3 − 3Φ−1(u) du

= −a
∫ 1

0
F−1(u)

{
Φ−1(u)3 − 3Φ−1(u)

}
du

= −aη4(F ).

The case when a > 0 can be derived in a similar and easier way yielding η4(G) = aη4(F ).

Combining these two results and η2(G) = |a|η2(F ), we obtain the desired result η∗4(G) =

η∗4(F ).

To check the second condition, we first assume that η1(F ) = η1(G) = 0 and η2(F ) =

η2(G) = 1. Since we have assumed that F and G are symmetric distributions, we have

η3(F ) = η3(G) = 0 by Lemma 7.6. Note that

η4(G)− η4(F ) =

∫ 1

0

{
G−1(u)− F−1(u)

} {
Φ−1(u)3 − 3Φ−1(u)

}
du

=

∫ ∞

−∞

{
G−1(Φ(x))− F−1(Φ(x))

}
φ(x)

{
x3 − 3x

}
dx

By Lemma 7.7 and the monotonic increasing property of Φ(x), we know that there exist

two points x1 < 0 < x2 and G−1(Φ(x)) − F−1(Φ(x)) ≥ 0 for x1 < x < 0 and x > x2,

and G−1(Φ(x)) − F−1(Φ(x)) ≤ 0 for x < x1 and 0 ≤ x ≤ x2. Now consider a polynomial

K(x|a, b, c) = H3(x) + aH2(x) + bH1(x) + cH0(x) = x3 − 3x + a(x2 − 1) + bx + c =

x3 + ax2 + (b− 3)x+ c− a for some a, b and c. By equating

x3 + ax2 + (b− 3)x+ c− a = x(x− x1)(x− x2) (7.8)

for all x ∈ R, we can find aF,G, bF,G and cF,G such that K(x|aF,G, bF,G, cF,G) ≥ 0 for

x1 ≤ x ≤ 0 and x ≥ x2, K(x|aF,G, bF,G, cF,G) ≤ 0 for x ≤ x1 and 0 ≤ x ≤ x2. Note that
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aF,G = cF,G should hold from the equation (7.8). Now we have

0 ≤
∫ ∞

−∞
φ(x)

{
G−1(Φ(x))− F−1(Φ(x))

}
K(x|aF,G, bF,G, cF,G) dx

=

∫ ∞

−∞
φ(x)

{
G−1(Φ(x))− F−1(Φ(x))

}
× {H3(x) + aF,GH2(x) + bF,GH1(x) + cF,GH0(x)} dx

= {η4(G)− η4(F )}+ aF,G {η3(G)− η3(F )} + bF,G {η2(G) − η2(F )}

+cF,G {η1(G) − η1(F )}

= η4(G) − η4(F ).

Now assume that two distributions F and G have arbitrary first and second HL-moment

values. Then we have

η∗4(F ) = η4
(
F1/η2(F ),−η1(F )/η2(F )

)
≤ η4

(
G1/η2(G),−η1(G)/η2(G)

)
= η∗4(G)

where the first and last equality holds since we showed that the first condition of Oja’s

criterion is satisfied. �

Proof of Theorem 2.2. Note that

1

r

r−2∑
k=0

(−1)k

⎛
⎜⎝ r − 2

k

⎞
⎟⎠E

(
X(r−k):r −X(r−k−1):r

)

=
1

r

r−2∑
k=1

⎧⎪⎨
⎪⎩(−1)k

⎛
⎜⎝ r − 2

k

⎞
⎟⎠− (−1)k−1

⎛
⎜⎝ r − 2

k − 1

⎞
⎟⎠
⎫⎪⎬
⎪⎭EX(r−k):r

+
1

r
EXr:r −

1

r
(−1)r−2EX1:r. (7.9)

We have

(−1)k

⎛
⎜⎝ r − 2

k

⎞
⎟⎠− (−1)k−1

⎛
⎜⎝ r − 2

k − 1

⎞
⎟⎠ = (−1)k

⎛
⎜⎝ r − 1

k

⎞
⎟⎠ .
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Substituting this result into (7.9) yields

1

r

r−2∑
k=0

(−1)k

⎛
⎜⎝ r − 2

k

⎞
⎟⎠E

(
X(r−k):r −X(r−k−1):r

)
=

1

r

r−1∑
k=0

(−1)k

⎛
⎜⎝ r − 1

k

⎞
⎟⎠EX(r−k):r = λr

where the last equality results from Equation (2.1) of Hosking (1990). �

Proof of Theorem 2.3. Following the same steps of the proof of Lemma 7.7, we can show

the following lemma.

Lemma 7.8. Let F and G be symmetric distributions with the symmetry points m(F )

and m(G) such that λ1(F ) = λ1(G) = 0 and λ2(F ) = λ2(G) = 1. If G−1 ◦ F is concave on

{x|x < 0} and convex on {x|x > 0}, then there exist two points 0 < u1 < 1/2 < u2 < 1

such that

G−1(u)− F−1(u) ≤ 0 for 0 < u ≤ u1 and 1/2 < u ≤ u2,

G−1(u)− F−1(u) ≥ 0 for u1 < u ≤ 1/2 and u2 < u < 1. �

Since ρF0,r is basically defined in terms of expected order statistics (2.4), it has an

integral representation similar with that of the L-moments (1.6). Hence, there exists a

polynomial RF0,r with degree r such that

ρF0,r =

∫ ∞

−∞
xf(x)RF0,r−1(F (x))dx =

∫ 1

0
F−1(u)RF0,r−1(u)du. (7.10)

Since F0 is symmetric, we have

ρF0,1 = λ1

ρF0,2 =
1

2δ1,2:2 (F0)
E (X2:2 −X1:2) =

1

δ1,2:2 (F0)
λ2

ρF0,3 =
1

3δ2,3:3 (F0)
{E (X3:3 −X2:3)− E (X2:3 −X1:3)} =

1

δ2,3:3 (F0)
λ3

ρF0,4 =
1

4δ3,4:4 (F0)

{
E (X4:4 −X3:4)−

2δ3,4:4 (F0)

δ2,3:4 (F0)
E (X3:4 −X2:4) + E (X2:4 −X1:4)

}

=
1

4δ3,4:4 (F0)

{
E (X4:4 −X1:4)−

δ2,3:4 (F0) + 2δ3,4:4 (F0)

δ2,3:4 (F0)
E (X3:4 −X2:4)

}
. (7.11)
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The first rescaled L-moment ρF0,1 is the mean, so it satisfies Oja’s criterion for a measure of

location by Oja (1981). Since the second and third rescaled L-moments ρF0,2 and ρF0,3 are

constant multiples of the second and third L-moments respectively, those two functionals

satisfy Oja’s criterion for a measure of scale and skewness respectively by Hosking (1989).

For the fourth rescaled L-moment, we first define α = {δ2,3:4 (F0) + 2δ3,4:4 (F0)} /δ2,3:4 (F0)

and let

ρα,4 =
1

4
{E (X4:4 −X1:4)− αE (X3:4 −X2:4)} , (7.12)

then show that ρ∗α,4 = ρα,4/λ2 satisfies Oja’s criterion for a measure of kurtosis.

To check whether ρ∗α,4 satisfies the first condition of Oja’s criterion (Definition 1.3.d),

we let G = Fa,b with a < 0. Then we have

ρ∗α,4(G) =
EY4:4 − αEY3:4 + αEY2:4 − EY1:4

2 (EY2:2 − EY1:2)

=
aEX1:4 − aαEX2:4 + aαEX3:4 − aEX4:4

2 (aEX1:2 − aEX2:2)

=
EX4:4 − αEX3:4 + αEX2:4 − EX1:4

2 (EX2:2 − EX1:2)

= ρ∗α,4(F ).

The case when a > 0 can be derived in a similar and easier way yielding ρ∗α,4(G) = ρ∗α,4(F ).

To check the second condition, we first assume that λ1(F ) = λ1(G) = 0 and λ2(F ) =

λ2(G) = 1. Since we assumed that F and G are symmetric distributions, we have λ3(F ) =

λ3(G) = 0 from Hosking (1990). From (7.12) we have

ρα,4 =

∫ 1

0
F−1(u)

{
u3 − 3αu2(1− u) + 3αu(1 − u)2 − (1− u)3

}
du

=

∫ 1

0
F−1(u)

{
(6α+ 2)u3 − 3(3α + 1)u2 + (3α + 3)u− 1

}
du.

We let Rα,3(u) = (6α + 2)u3 − 3(3α + 1)u2 + (3α+ 3)u− 1. By Lemma 7.8, we know that

there exist two points 0 < u1 < 1/2 < u2 < 1 such that G−1(u)−F−1(u) ≤ 0 for 0 < u ≤ u1

and 1/2 < u ≤ u2, and G−1(u) − F−1(u) ≥ 0 for u1 < u ≤ 1/2 and u2 < u < 1. Now

consider a polynomial K(u|a, b, c) = Rα,3(u) + aP ∗
2 (u) + bP ∗

1 (u) + cP ∗
0 (u) for a, b, c ∈ R.
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Then there exist aF,G, bF,G and cF,G such that

K (u|aF,G, bF,G, cF,G) = (6α + 2)

(
u− 1

2

)
(u− u1)(u− u2)

for all u ∈ (0, 1). Then we have

0 ≤
∫ 1

0

{
G−1(u)− F−1(u)

}
K (u|aF,G, bF,G, cF,G) du

= {ρα,4(G)− ρα,4(F )}+ aF,G {λ3(G) − λ3(F )} + bF,G {λ2(G)− λ2(F )}

+cF,G {λ1(G)− λ1(F )}

= ρα,4(G) − ρα,4(F ).

since the two functions G−1(u)− F−1(u) and K (u|aF,G, bF,G, cF,G) have the same signs on

(0, 1) due to α > 0.

Now assume that two distributions F and G have arbitrary λ1 and λ2 values. Then we

have

ρ∗α,4(F ) = ρα,4
(
F1/λ2(F ),−λ1(F )/λ2(F )

)
≤ ρα,4

(
G1/λ2(G),−λ1(G)/λ2(G)

)
= ρ∗α,4(G)

where the first and last equality holds since we showed that the first condition of Oja’s

criterion is satisfied. Note from (7.11) that

ρ∗F0,4 =
δ1,2:2 (F0)

δ3,4:4 (F0)
ρ∗α,4,

i.e. ρ∗F0,4
is a constant multiple of ρ∗α,4. Hence, the functional ρ∗F0,4

satisfies Oja’s criterion

for a measure of kurtosis. �

Proof of Theorem 4.1. The paper Serfling (1980) presented asymptotic distributions

of functions of a random vector which asymptotically follows the multivariate Gaussian

distribution.

Theorem 7.1(Serfling, 1980). Suppose that Xn = (Xn1,Xn2, · · · ,Xnk)
T converges in

distribution to N (µ, b2nΣ) where µ = (μ1, μ2, · · · , μk) and bn → 0 as n→ ∞. Let g : Rk →
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R
m be a vector-valued function such that g(x) = (g1(x), g2(x), · · · , gk(x)) with a nonzero

derivative at µ. Then g (Xn) converges in distribution to

N
(
g(µ), b2nDΣDT

)
(7.13)

where D is a matrix of which the (i, j)-th element is dgi/dxj|xj=μj . �

The paper Shorack (1972) showed asymptotic Gaussianity of L-statistics in the form

(1.4) with some boundedness and smoothness conditions on F and J . We present Example

1 in that paper as the following theorem.

Theorem 7.2(Shorack, 1972). Let X1,X2, · · · ,Xn be a random sample generated by

the distribution F such that E |X1|k <∞ for some positive real number k. Let

θ̃n =
1

n

n∑
i=1

J (tni)Xi:n

be the L-statistic of interest. Assume that J , tni and F satisfy the following conditions;

1. nmax1≤i≤n

∣∣tni − i
n

∣∣ = O(1).

2. There exists a > 0 such that

a

{(
i

n

)
∧
(
1− i

n

)}
≤ tni ≤ 1− a

{(
i

n

)
∧
(
1− i

n

)}
(7.14)

for all 1 ≤ i ≤ n.

3. J is continuous except at a finite number of points at which F−1 is continuous and

there exist 0 < M < ∞ and δ > 0 such that |J(t)| ≤ M {t(1− t)}−1/2+1/k+δ for

0 < t < 1.

4. The derivative of J , say J ′, exists and is continuous on (0, 1), and there exist 0 <

M <∞ and δ > 0 such that |J ′(t)| ≤M {t(1− t)}−3/2+1/k+δ for 0 < t < 1.

Then we have

n1/2
(
θ̃n − μ

)
→ N

(
0, σ2

)
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as n→ ∞ where

μ =

∫ 1

0
J(u)F−1(u) du, σ2 =

∫ 1

0

∫ 1

0
(u ∧ v − uv)J(u)J(v) dF−1(u) dF−1(v). �

We first show asymptotic Gaussianity of a linear combination of the sample HL-moments

η̃r.

Lemma 7.9. Suppose that E|X1|2+ε < ∞ for some ε > 0. Let c1, c2, · · · , cr ∈ R be given

and let

η̄n,r =

r∑
k=1

ckη̃n,k =
1

n

n∑
i=1

J̄r

(
i

n+ 1

)
Xi:n

where J̄r(t) =
∑r

k=1 ckHk−1

(
Φ−1(t)

)
. Then η̄n,r satisfies

n1/2

(
η̄n,r −

r∑
k=1

ckηk

)
d→N (0, σ2)

as n→ ∞ for all r = 1, 2, · · · where

σ̄2 =

∫ 1

0

∫ 1

0
(s ∧ t− st)J̄r(s)J̄r(t) dF

−1(s) dF−1(t).

Proof . We show that η̄n,r satisfies the conditions of Theorem 7.2. We only show the parts

3 and 4 since the parts 1 and 2 can easily be obtained from algebra.

3. Since J̄r =
∑r

k=1 ckHk−1 ◦ Φ−1 is a sum of compositions of continuous functions Hk−1

and Φ−1, Jr is continuous.

Let Ks : (0, 1) → R be a function for s = 1, 2, · · · , r − 1 such that Ks(t) =
{
Φ−1(t)

}s
for 0 < t < 1. Since we have k = 2 + ε in Theorem 7.2, there exists δ > 0 such that

−1

2
+

1

2 + ε
+ δ = − ε

2(2 + ε)
+ δ < 0.

Let ν(δ, ε) = ε/{2(2 + ε)} − δ > 0 It can be seen from (7.2) that

lim
t→0

tν(δ,ε) |Ks(t)| = 0 and lim
t→1

(1− t)ν(δ,ε) |Ks(t)| = 0.
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This implies that there exist two points 0 < lr < ur < 1 such that

tν(δ,ε) |Ks(t)| ≤ (1 − t)−ν(δ,ε) for 0 < t < ls

(1− t)ν(δ,ε) |Ks(t)| ≤ t−ν(δ,ε) for us < t < 1.

Since the function |Ks(t)| tν(δ,ε)(1 − t)ν(δ,ε) is continuous, there exists a constant M ′
s < ∞

such that |Ks(t)| tν(δ,ε)(1 − t)ν(δ,ε) ≤ M ′
s for ls ≤ t ≤ us. Now letting Ms = max{M ′

s, 1}

yields |Ks(t)| tν(δ,ε)(1 − t)ν(δ,ε) ≤ Ms for 0 < t < 1. Since there exist c1r, c2r, · · · , crr such

that

J̄r(t) =

r∑
k=1

ckHk

(
Φ−1(t)

)
= c1rΦ

−1(t) + c2rΦ
−1(t)2 + · · ·+ crrΦ

−1(t)r,

we have

∣∣J̄r(t)∣∣ ≤ |c1r|
∣∣Φ−1(t)

∣∣+ |c2r|
∣∣Φ−1(t)

∣∣2 + · · ·+ |crr|
∣∣Φ−1(t)

∣∣r
= |c1r| |K1(t)|+ |c2r| |K2(t)|2 + · · ·+ |crr| |Kr(t)|r

≤ (|c1r|M1 + |c2r|M2 + · · ·+ |crr|Mr) t
ν(δ,ε)(1− t)ν(δ,ε)

for all 0 < t < 1.

4. Note that

1

x
φ(x) ≥ 1− Φ(x) for x ≥ 0 ⇔ 1

x {1− Φ(x)} ≥ 1

φ(x)
for x ≥ 0

⇔ 1

Φ−1(t)(1 − t)
≥ 1

φ(Φ−1(t))
for 1/2 < t < 1.

Let K ′ be the derivative of K. Then we have

∣∣K ′
s(t)

∣∣ = s
∣∣Φ−1(t)

∣∣s−1 · 1

φ(Φ−1(t))
≤ s

∣∣Φ−1(t)
∣∣s−1 · 1

(1− t) |Φ−1(t)|

= s
∣∣Φ−1(t)

∣∣s−2 · 1

1− t

for 1/2 ≤ t < 1 which implies that

(1− t)1+ν(δ,ε)
∣∣K ′

s(t)
∣∣ ≤ s(1− t)ν(δ,ε)

∣∣Φ−1(t)
∣∣s−2 · 1

t1+ν(δ,ε)
→ 0
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as t→ 1. Similarly, it can be seen that

−1

x
φ(x) ≥ Φ(x) ⇔ − 1

xΦ(x)
≥ 1

φ(x)
⇔ − 1

tΦ−1(t)
≥ 1

φ(Φ−1(t))

for 0 < t < 1/2. Hence we have

∣∣K ′
s(t)

∣∣ ≤ s
∣∣Φ−1(t)

∣∣s−1 · 1

t |Φ−1(t)| = s
∣∣Φ−1(t)

∣∣s−2 · 1
t

which implies that

t1+ν(δ,ε)
∣∣K ′

s(t)
∣∣ ≤ stν(δ,ε)

∣∣Φ−1(t)
∣∣s−2 · 1

(1− t)1+ν(δ,ε)
→ 0

as t→ 0. This implies that there exist two points 0 < lr < ur < 1 such that

t1+ν(δ,ε)
∣∣K ′

s(t)
∣∣ ≤ (1− t)−1−ν(δ,ε) for 0 < t < lr

(1− t)1+ν(δ,ε) |Ks(t)| ≤ t−1−ν(δ,ε) for ur < t < 1.

Since the function |K ′
s(t)| t1+ν(δ,ε)(1− t)1+ν(δ,ε) is continuous, there exists a constant M ′

s <

∞ such that |K ′
s(t)| t1+ν(δ,ε)(1 − t)1+ν(δ,ε) ≤ M ′

s for lr ≤ t ≤ ur. Now letting Ms =

max{M ′
s, 1} yields |K ′

s(t)| t1+ν(δ,ε)(1 − t)1+ν(δ,ε) ≤ Ms for 0 < t < 1. Since there exist

constants c1r, · · · , crr such that

J̄ ′
r(t) = c1rK

′
1(t) + c2rK

′
2(t) + · · ·+ crrK

′
r(t)

we have

∣∣J̄ ′
r(t)

∣∣ ≤ |c1r|
∣∣K ′

1(t)
∣∣+ |c2r|

∣∣K ′
2(t)

∣∣2 + · · ·+ |crr|
∣∣K ′

r(t)
∣∣r

≤ (|c1r|M1 + |c2r|M2 + · · · + |crr|Mr) t
−1−ν(δ,ε)(1− t)−1−ν(δ,ε)

for all 0 < t < 1. �
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By Lemma 7.9 and the Cramér-Wold Theorem, we have

n1/2

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

η̃n,2

η̃n,r1

η̃n,r2

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

η2

ηr1

ηr2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

d→N

⎛
⎜⎜⎜⎜⎝0,

⎛
⎜⎜⎜⎜⎝

σH22 σH2r1 σH2r2

σH2r1 σHr1r1 σHr1r2

σH2r2 σHr2r1 σHr2r2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

as n→ ∞ where

σHrirj = Cov
(
n1/2η̃ri , n

1/2η̃rj

)
=

1

2

{
Var(η̃ri + η̃rj )−Var(η̃ri)−Var(η̃rj )

}
=

1

2

{∫ 1

0

∫ 1

0
(u ∧ v − uv)

{
Hri−1

(
Φ−1(u)

)
+Hrj−1

(
Φ−1(u)

)}
×
{
Hri−1

(
Φ−1(v)

)
+Hrj−1

(
Φ−1(v)

)}
dF−1(u) dF−1(v)

−
∫ 1

0

∫ 1

0
(u ∧ v − uv)Hri−1

(
Φ−1(u)

)
Hri−1

(
Φ−1(v)

)
dF−1(u) dF−1(v)

−
∫ 1

0

∫ 1

0
(u ∧ v − uv)Hrj−1

(
Φ−1(u)

)
Hrj−1

(
Φ−1(v)

)
dF−1(u) dF−1(v)

}

=

∫ 1

0

∫ 1

0
(u ∧ v − uv)Hri−1

(
Φ−1(u)

)
Hrj−1

(
Φ−1(v)

)
dF−1(u) dF−1(v)

where ri, rj ∈ {2, r1, r2}. Now let the function g = (g1, g2)
T in Theorem 7.1 be such that

g1(x1, x2, x3) = x2/x1 and g2(x1, x2, x3) = x3/x1. Then we have

D =

⎛
⎜⎝ −ηr1

η22

1
η2

0

−ηr2
η22

0 1
η2

⎞
⎟⎠

Substituting this equation into (7.13) yields

n1/2

⎛
⎜⎝
⎛
⎜⎝ η̃∗n,r1

η̃∗n,r2

⎞
⎟⎠−

⎛
⎜⎝ η∗r1

η∗r2

⎞
⎟⎠
⎞
⎟⎠ d→N

(
0,ΨH

)

where ΨH
i,j =

(
σHrirj − η∗riσ

H
2ri

− η∗rjσ
H
2rj

+ η∗riη
∗
rjσ

H
22

)
/η22 for i, j = 1, 2. �

84



Proof of Theorem 4.2. Note that

σr1r2 =

∫ ∞

−∞

∫ ∞

−∞
{Φ(x ∧ y)− Φ(x)Φ(y)}Hr1(x)Hr2(y) dxdy

=

∫ ∫
−∞<x<y<∞

Φ(x) {1− Φ(y)}Hr1(x)Hr2(y) dxdy

+

∫ ∫
−∞<y<x<∞

Φ(y) {1− Φ(x)}Hr1(x)Hr2(y) dxdy. (7.15)

First, suppose that one of r1 and r2 is even and the other is odd. Then we have

∫ ∫
−∞<x<y<∞

Φ(x) {1− Φ(y)}Hr1(x)Hr2(y) dxdy

=

∫ ∫
−∞<t<s<∞

Φ(−s) {1− Φ(−t)}Hr1(−s)Hr2(−t) ds dt

= −
∫ ∫

−∞<t<s<∞
Φ(t) {1−Φ(s)}Hr1(s)Hr2(t) ds dt. (7.16)

where the first equality results from the change of variables s = −x, t = −y and the second

equality results from Lemma 7.2. From (7.15), we have σr1r2 = 0.

Next, suppose both r1 and r2 are even numbers. Following the same steps of derivation

as Equation (7.16), it can be seen that

∫ ∫
−∞<x<y<∞

Φ(x) {1− Φ(y)}Hr1(x)Hr2(y) dxdy

=

∫ ∫
−∞<y<x<∞

Φ(y) {1− Φ(x)}Hr1(y)Hr2(x) dxdy.

but this time without a negative sign in front of the right hand side expression because both

Hr1 and Hr2 are even. This implies that

σr1r2 = 2

∫ ∫
−∞<x<y<∞

Φ(x) {1− Φ(y)}Hr1(x)Hr2(y) dxdy

= 2

∫ ∞

−∞

∫ y

−∞
Φ(x)Hr1(x) dx {1− Φ(y)}Hr2(y) dy. (7.17)
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Performing integration by parts yields

∫ y

−∞
Φ(x)Hr1(x) dx =

[
1

r1 + 1
Φ(x)Hr1+1(x)

]y
−∞

− 1

r1 + 1

∫ y

−∞
φ(x)Hr1(x) dx

=
1

r1 + 1
Φ(y)Hr1+1(y)−

1

r1 + 1

∫ y

−∞
φ(x)Hr1(x) dx (7.18)

where the first equality comes from Lemma 7.2 and the second equality comes from Lemma

7.1. Substituting this equation into (7.17) yields

σr1r2 = 2

∫ ∞

−∞

{
1

r1 + 1
Φ(y)Hr1+1(y)−

1

r1 + 1

∫ y

−∞
φ(x)Hr1(x) dx

}
{1− Φ(y)}Hr2(y) dy

=
2

r1 + 1

∫ ∞

−∞
Φ(y) {1− Φ(y)}Hr1+1(y)Hr2(y) dy

− 2

r1 + 1

∫ ∞

−∞

∫ y

−∞
φ(x) {1− Φ(y)}Hr1(x)Hr2(y) dxdy. (7.19)

Note that

Φ(−y) {1− Φ(−y)}Hr1+1(−y)Hr2(−y) = −Φ(y) {1− Φ(y)}Hr1+1(y)Hr2(y)

holds for y ≥ 0 since Hr1+1 is an odd function and Hr2 is an even function. Hence, we have

2

r1 + 1

∫ ∞

−∞
Φ(y) {1− Φ(y)}Hr1+1(y)Hr2(y) dy = 0. (7.20)

Note also that

∫ ∞

−∞

∫ y

−∞
φ(x) {1− Φ(y)}Hr1(x)Hr2(y) dxdy

=
2

r1 + 1

∫ ∞

−∞

∫ ∞

x
{1− Φ(y)}Hr2(y) dyφ(x)Hr1+1(x) dx

= − 2

(r1 + 1)(r2 + 1)

∫ ∞

−∞
φ(x) {1− Φ(x)}Hr1+1(x)Hr2+1(x) dx

+
2

(r1 + 1)(r2 + 1)

∫ ∞

−∞

∫ ∞

x
φ(x)φ(y)Hr1+1(x)Hr2+1(y) dy dx
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where the second equality comes from the same steps of derivation as Equation (7.18). Note

that

∫ ∞

−∞
φ(x) {1− Φ(x)}Hr1+1(x)Hr2+1(x) dx

quad

∫ ∞

−∞
φ(x)

{
1

2
− Φ(x)

}
Hr1+1(x)Hr2+1(x) dx

quad+
1

2

∫ ∞

−∞
φ(x)Hr1+1(x)Hr2+1(x) dx

= 0

where the second equality results from the fact that

φ(−x)
{
1

2
− Φ(−x)

}
Hr1+1(−x)Hr2+1(−x) = −φ(x)

{
1

2
− Φ(x)

}
Hr1+1(x)Hr2+1(x)

which holds since Hr1+1,Hr2+1 both are odd functions. Note also that

∫ ∞

−∞

∫ ∞

x
φ(x)φ(y)Hr1+1(x)Hr2+1(y) dy dx

=

∫ ∞

−∞

∫ s

−∞
φ(−s)φ(−t)Hr1+1(−s)Hr2+1(−t) dt ds

=

∫ ∞

−∞

∫ s

−∞
φ(s)φ(t)Hr1+1(s)Hr2+1(t) dt ds (7.21)

where the first equality comes from the change of variables s = −x, t = −y and the second

equality comes from the fact that both Hr1+1 and Hr2+1 are odd functions. This implies

that

0 =

(∫ ∞

−∞
φ(x)Hr1+1(x) dx

)(∫ ∞

−∞
φ(y)Hr2+1(y) dy

)

=

∫ ∞

−∞

∫ ∞

−∞
φ(x)φ(y)Hr1+1(x)Hr2+1(y) dxdy

=

∫ ∞

−∞

∫ ∞

x
φ(x)φ(y)Hr1+1(x)Hr2+1(y) dy dx

+

∫ ∞

−∞

∫ x

−∞
φ(x)φ(y)Hr1+1(x)Hr2+1(y) dy dx

= 2

∫ ∞

−∞

∫ ∞

x
φ(x)φ(y)Hr1+1(x)Hr2+1(y) dy dx
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where the first equality results from the orthogonality of the Hermite polynomials and the

last equality results from Equation (7.21). Hence, it can be seen that we have

2

r1 + 1

∫ ∞

−∞

∫ y

−∞
φ(x) {1−Φ(y)}Hr1(x)Hr2(y) dxdy = 0.

Being combined with the result (7.20), this indicates that σr1r2 = 0. The case when both

r1 and r2 are odd numbers can be proved in the same manner. Substituting σr1r2 = 0 and

η∗r1(Φ) = η∗r2(Φ) = 0 yields

ΨH
r1,r2 =

σHr1r2 − η∗r1σ
H
2r1 − η∗r2σ

H
2r2 + η∗r1η

∗
r2σ

H
22

η22
= 0. �
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