

Approved by:

Kevin Jeffay, Advisor

F. Donelson Smith

Ketan Mayer-Patel

Jasleen Kaur

Dina Katabi

AN INVESTIGATION OF THE EFFECTS OF MODELING APPLICATION
WORKLOADS AND PATH CHARACTERISTICS ON NETWORK PERFORMANCE

Jay Aikat

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2010

 ii

© 2010

Jay Aikat

ALL RIGHTS RESERVED

 iii

ABSTRACT

JAY AIKAT: An Investigation of the Effects of Modeling Application

Workloads and Path Characteristics on Network Performance

(Under the direction of Professor Kevin Jeffay)

 Network testbeds and simulators remain the dominant platforms for evaluating networking

technologies today. Central to the problem of network emulation or simulation is the problem

modeling and generating realistic, synthetic Internet traffic as the results of such experiments are

valid to the extent that the traffic generated to drive these experiments accurately represents the

traffic carried in real production networks.

 Modeling and generating realistic Internet traffic remains a complex and not well-

understood problem in empirical networking research. When modeling production network

traffic, researchers lack a clear understanding about which characteristics of the traffic must be

modeled, and how these traffic characteristics affect the results of their experiments.

 In this dissertation, we developed and analyzed a spectrum of empirically-derived traffic

models with varying degrees of realism. For TCP traffic, we examined several choices for

modeling the internal structure of TCP connections (the pattern of request/response exchanges),

and the round trip times of connections. Using measurements from two different production

networks, we constructed nine different traffic models, each embodying different choices in the

modeling space, and conducted extensive experiments to evaluate these choices on a 10Gbps

laboratory testbed.

 iv

 As a result of this study, we demonstrate that the old adage of “garbage-in-garbage-out”

applies to empirical networking research. We conclude that the structure of traffic driving an

experiment significantly affects the results of the experiment. And we demonstrate this by

showing the effects on four key network performance metrics: connection durations, response

times, router queue lengths, and number of active connections in the network.

 v

ACKNOWLEDGEMENTS

The teacher who is indeed wise does not bid you to enter the house of

his wisdom but rather leads you to the threshold of your mind.

 – Khalil Gibran (1883-1931)
 Poet and philosopher, author of The Prophet.

 A deep quest for better experimental methods in computer networking inspired this research.

This dissertation reflects an ongoing study instilled and mentored by two outstanding professors –

Kevin Jeffay and Don Smith – who deeply influenced my intellectual rigor and research thinking

in my doctoral studies at Carolina. This study owes its existence to Kevin and Don’s

magnanimous mentoring, perspicacious advice, and their relentless pursuit of fundamental

networking research. By devoting long hours of research discussions and critical thinking, they

always motivated me to probe deeper.

 My dissertation research also owes much to the support and wisdom of other members of my

doctoral committee – Ketan Mayer-Patel, Jasleen Kaur, and Dina Katabi – who enriched this

study with their research acumen. I deeply appreciate Ketan’s insightful questions, Jasleen’s

candid advice, and Dina’s encouraging support. In myriad ways, they have all played an

important role in this study, and I cherish this opportunity to work with them.

 As I prepare to graduate, I can unequivocally say that I would not have been able to complete

my doctoral studies without the unwavering support and encouragement of my dissertation

advisor and mentor, Kevin Jeffay. I am deeply indebted to him for giving me the time and

freedom to explore my research interests before I decided on this dissertation topic. Kevin’s

 vi

patient guidance, affable humor, and honest advice kept me on track during my dissertation

research.

 I also am deeply grateful to Don Smith for introducing me to the art and science of

networking research in his class. I shall always cherish Don’s attention to detail and willingness

to discuss the smallest stumbling blocks that led to many enlightening deliberations during my

dissertation research.

 Several student colleagues in the networking research group enriched my days as a doctoral

student. I thank Michele Weigle, David Ott, Félix Hernández-Campos, Long Le, Jeff Terrell,

Srinivas Krishnan, Ryan McKenzie, and Shaddi Hasan for their camaraderie. I thank Felix for his

dissertation research on traffic generation, which inspired and enabled my own work.

 My time as a Carolina student was enriched by the faculty and staff at the Department of

Computer Science at the University of North Carolina at Chapel Hill. They created and sustained

an outstanding environment for teaching and research. I thank Tim Quigg for his continued

support and encouragement. I owe much gratitude to Janet Jones for her friendship and her

mentoring of all graduate students in our department.

 Two former colleagues – Jim Gogan and Bert Dempsey – deserve special mention for

inspiring me to pursue a PhD in networking. Thanks to Jim for teaching an amazing class that

first inspired me to explore networking research. I thank Bert for his pragmatic advice that the

PhD was the right path for me.

 Without doubt, my children, Vikram and Divya, will be most delighted when I am done with

the PhD! ☺ They have endured much in giving me the time and space to pursue my dissertation

work. I owe special thanks to my mother-in-law, Mrs. Geeta Aikat, for always supporting me in

my professional endeavors, and for giving me the time and encouraging me to complete this

project. I thank my brother, Rajesh and his wife, Lakshmi for gently but constantly prodding and

encouraging me to keep focused on graduating before my nephews, Alok and Arjun, started

elementary school. ☺

 vii

 I am most deeply grateful to my mom, Uma Swaminathan, and my dad, Retnasamy

Swaminathan, who made everything possible. I have always believed that parents perform the

greatest act of love when they allow and encourage their children to develop strong wings and fly

far above and beyond their own nest. I am so privileged that my parents believed in me and

enabled my adventurous journeys in life.

 Finally, and most importantly, thanks to one special person who encouraged me from the

start, believed in me, and stood by me through all the travails of graduate school and the

dissertation – my dear husband, Debashis Aikat, who is himself an inspiring teacher and scholar

in the School of Journalism and Mass Communication at the University of North Carolina at

Chapel Hill. Without his patience, love, and support, this dissertation would not have been

possible.

Jay Aikat

Chapel Hill, NC

September 27, 2010.

 viii

TABLE OF CONTENTS

LIST OF TABLES ...xiii

LIST OF FIGURES ...xiv

ABBREVIATIONS..xxxi

1. INTRODUCTION .. 1

1.1 Traffic Generation.. 2
1.2 The Tmix Traffic Generation System .. 6
1.3 Modeling TCP Connection Structure... 8
1.4 Emulating Network Path Characteristics ... 10
1.5 Changing the Network Environment.. 11
1.6 Using Two Input Traces... 12
1.7 Modeling Receiver Window Sizes... 12
1.8 Thesis Statement .. 13
1.9 Summary of Conclusions and Contributions ... 14
1.10 Organization of Dissertation .. 18

2. BACKGROUND AND RELATED WORK... 20

2.1 Network Simulators and Emulation Facilities ... 21
2.2 Evolution of Realistic Traffic Generation.. 27
2.3 Current Traffic Generation Systems .. 31

2.3.1 The Harpoon Model .. 32
2.3.2 The Tmix a-b-t Model... 35
2.3.3 The Swing Model.. 38

 ix

2.4 Does Traffic Modeling Matter?.. 41
2.4.1 Does Background Traffic Matter? .. 42
2.4.2 Impact of Background Traffic on High-Speed TCP Performance 43
2.4.3 Investigating the Effects of Active Queue Management on TCP Performance.... 44
2.4.4 TCP/IP Traffic Dynamics and Network Performance .. 46

2.5 Community Efforts Toward a Benchmark for TCP Evaluation... 47
2.6 Chapter Summary... 48

3. WORKLOAD MODELING AND TRAFFIC GENERATION ... 49

3.1 Traffic Characteristics of the Two Input Traces .. 49
3.1.1 Throughput.. 50
3.1.2 Sequential and Concurrent Connections ... 54
3.1.3 Application-level Characteristics .. 55

3.1.3.1 Epochs .. 55
3.1.3.2 Application Data Units (ADU)... 56
3.1.3.3 Endpoint Latencies ... 59

3.1.4 Network-level Characteristics ... 62
3.1.4.1 Round Trip Times (RTTs).. 63
3.1.4.2 Receiver Window Sizes.. 64

3.2 Traffic Generation with Tmix .. 66
3.3 Variations in the Workload Model... 67

3.3.1 Choice of Four Connection Structure Models... 75
3.4 Variations in Emulating Network Path Characteristics.. 77

3.4.1 Choice of Three RTT Emulation Models.. 82

4. EXPERIMENTAL METHODOLOGY ... 84

4.1 Network Configuration .. 86
4.1.1 Traffic Generators ... 87
4.1.2 Routers .. 87
4.1.3 Monitors .. 88

4.2 Network Calibration... 90
4.2.1 Calibrating Routers ... 91

4.2.1.1 Iperf Experiments for Calibrating Routers ... 94
4.2.1.2 Tmix Experiments for Calibrating Routers .. 97

 x

4.2.2 Calibrating Monitors ... 100
4.2.3 Calibrating Traffic Generators .. 100

4.3 Verification of Tmix Replay .. 106
4.4 Experimental Design.. 110

4.4.1 The Control Set: a-t-b-t with usernet .. 112
4.5 a-t-b-t with usernet in Unconstrained Mode .. 113

4.5.1 Throughput.. 113
4.5.2 Connection Duration ... 115
4.5.3 Response Time.. 117
4.5.4 Queue Length.. 119
4.5.5 Active Connections ... 120

4.6 a-t-b-t with usernet in Constrained Mode .. 121
4.6.1 Throughput.. 122
4.6.2 Connection Durations.. 124
4.6.3 Response Times .. 126
4.6.4 Queue Length.. 128
4.6.5 Active Connections ... 129

4.7 Chapter Summary... 130

5. EFFECTS OF ROUND TRIP TIMES AND CONNECTION STRUCTURES ON

NETWORK PERFORMANCE .. 131

5.1 Effects of RTT Emulation Model in the Unconstrained Mode.. 132
5.1.1 Effect of RTT Emulation Model on Connection Durations 134
5.1.2 Effect of RTT Emulation Model on Response Times... 142
5.1.3 Effect of RTT Emulation Model on Queue Length at the Router....................... 149
5.1.4 Effect of RTT Emulation Model on Active Connections.................................... 152
5.1.5 Section Summary .. 154

5.2 Effect of RTT Emulation Model in the Constrained Mode ... 156
5.2.1 Effect of RTT Emulation Model on Connection Durations 156
5.2.2 Effect of RTT Emulation Model on Response Times... 166
5.2.3 Effect of RTT Emulation Model on Queue Length at the Router....................... 173
5.2.4 Effect of RTT Emulation Model on Active Connections.................................... 177
5.2.5 Section Summary .. 179

 xi

5.3 Effect of Connection Structure in the Unconstrained Mode .. 182
5.3.1 Effect of Connection Structure on Connection Durations................................... 183
5.3.2 Effect of Connection Structure on Response Times ... 189
5.3.3 Effect of Connection Structure on Queue Length at the Router 193
5.3.4 Effect of Connection Structure on Active Connections 195
5.3.5 Section Summary .. 198

5.4 Results for Experiments in the Constrained Mode .. 199
5.4.1 Effect of Connection Structure on Connection Durations................................... 200
5.4.2 Effect of Connection Structure on Response Times ... 207
5.4.3 ffect of Connection Structure on Queue Length at the Router............................ 214
5.4.4 Effect of Connection Structure on Active Connections 217
5.4.5 Section Summary .. 219

5.5 Chapter Summary... 220
5.5.1 Effect of RTT Models ... 220
5.5.2 Effect of Connection Structure Models... 222

6. ADDITIONAL RESULTS... 226

6.1 Miscellaneous Round-Trip Time Models .. 227
6.1.1 Effect of RTT Emulation in the Unconstrained Mode.. 227

6.1.1.1 Connection Duration... 227
6.1.1.2 Response Time ... 230
6.1.1.3 Queue Length ... 231
6.1.1.4 Active Connections... 231

6.1.2 Effect of RTT Emulation in the Constrained Mode.. 232
6.1.2.1 Queue Length ... 232
6.1.2.2 Connection Duration... 234
6.1.2.3 Response Time ... 236
6.1.2.4 Active Connections... 238

6.2 Discrete Approximation (DA) RTT ... 238
6.2.1 Results in Unconstrained Mode .. 239
6.2.2 Results in Constrained Mode .. 241
6.2.3 Section Summary .. 244

6.3 Emulating Receiver Window Sizes.. 244

 xii

6.3.1 Results in Unconstrained Mode .. 245
6.3.2 Results in Constrained Mode .. 252
6.3.3 Section Summary .. 256

6.4 Connection Structure and Packet Arrival... 257
6.5 Long Range Dependence ... 264
6.6 Chapter Summary... 267

7. CONCLUSIONS AND FUTURE WORK.. 268

7.1 Observations and Conclusions ... 269
7.2 Modeling Traffic .. 278
7.3 Chapter Summary... 279

BIBLIOGRAPHY ..281

 xiii

LIST OF TABLES

2.1 Summary of Harpoon Configuration Parameters for TCP Sources.............................. 34

2.2 Swing’s Structural Model of Traffic .. 40

4.5.1 Connection Duration in the Unconstrained Mode using the Control Set................... 116

4.5.2 Response Time in the Unconstrained Mode using the Control Set............................ 118

4.6.1 Throughput in the Constrained Mode using the Control Set 123

4.6.2 Connection Duration in the Constrained Mode using the Control Set....................... 125

4.6.3 Response Time in the Constrained Mode using the Control Set................................ 127

4.6.4 Queue Length in the Constrained Mode using the Control Set.................................. 129

6.1 Connection Duration using Different Window Size Models...................................... 252

6.2 Packet Throughput using Different Connection Structure Models 260

6.3 Estimated Hurst Parameters and their Confidence Intervals for Packet Throughput
 Time Series using the Four Different Connection Structure Models 266

 xiv

LIST OF FIGURES

1.1 Traffic Generation ...7

2.1.1 The Emulab Testbed... 22

2.1.2 The WAN-in-Lab Testbed.. 23

2.1.3 Modelnet in a Testbed .. 24

2.1.4 PlanetLab nodes across the globe... 25

2.3.1 Harpoon’s two-level hierarchical traffic model.. 33

2.3.2 An a-b-t diagram illustrating a persistent HTTP connection (sequential).................. 37

2.3.3 An a-b-t diagram illustrating a concurrent connection... 37

2.4.1 Response Time – uniform RTT (Comparison of all AQM algorithms at 98% load) . 45

2.4.2 Response Time – empirical RTT (Comparison of all AQM algorithms at 98% load) 45

3.1.1 Throughput – as captured (high) – UNC .. 51

3.1.2 Throughput – as captured (low) – UNC .. 51

3.1.3 Throughput – as captured (high) – IBM.. 51

3.1.4 Throughput – as captured (low) – IBM .. 51

3.1.5 Offered Load (high) – UNC .. 53

3.1.6 Offered Load (low) – UNC ... 53

3.1.7 Offered Load (high) – IBM ... 53

3.1.8 Offered Load (low) – IBM .. 53

3.1.9 Number of connection epochs – UNC and IBM – CDF... 55

3.1.10 Number of connection epochs – UNC and IBM – CCDF ... 55

3.1.11 Request sizes - sequential connections – CDF ..55

3.1.12 Request sizes - sequential connections – CCDF ...55

3.1.13 Response sizes - sequential connections – CDF..55

3.1.14 Response sizes - sequential connections – CCDF ...55

 xv

3.1.15 ADU sizes - concurrent connections – CDF .. 58

3.1.16 ADU sizes - concurrent connections – CCDF ... 58

3.1.17 Intra-epoch endpoint latencies for sequential connections – CDF 60

3.1.18 Intra-epoch endpoint latencies for sequential connections – CCDF 60

3.1.19 Inter-epoch endpoint latencies for sequential connections – CDF 61

3.1.20 Inter-epoch endpoint latencies for sequential connections – CCDF 61

3.1.21 Endpoint latencies for concurrent connections – CDF .. 61

3.1.22 Endpoint latencies for concurrent connections – CCDF ... 61

3.1.23 Round Trip Times – CDF .. 63

3.1.24 Round Trip Times – CCDF ... 63

3.1.25 CDF of receiver maximum window sizes .. 65

3.3.1 An a-b-t diagram illustrating a persistent HTTP connection (sequential).................. 68

3.3.2 An a-b-t diagram illustrating a concurrent connection... 69

3.3.3 The Harpoon connection structure model for all TCP connections 70

3.3.4 The block-concurrent connection structure model for all TCP connections 70

3.3.5 The block-sequential connection structure model for all TCP connections 71

3.3.6 The a-b connection structure model for sequential TCP connections 72

3.3.7 The a-b connection structure model for concurrent TCP connections 72

3.3.8 The a-t-b connection structure model for sequential TCP connections 73

3.3.9 The a-t-b connection structure model for concurrent TCP connections 74

3.3.10 The a-t-b-t connection structure model for sequential TCP connections 74

3.3.11 The a-t-b-t connection structure model for concurrent TCP connections 75

3.4.1 Round Trip Times – CDF .. 78

3.4.2 Round Trip Times – CCDF ... 78

4.1.1 Network Testbed for all experiments in this dissertation .. 86

4.2.1 Routers’ inbound and outbound links .. 93

 xvi

4.2.1 (a) Throughput for the iperf flows – forward direction ... 96

4.2.1 (b) Throughput for the iperf flows – reverse direction .. 96

4.2.3 (a) Throughput for Tmix calibration experiment (byte throughput in Mbps) 99

4.2.3 (b) Throughput for Tmix calibration experiment (packet throughput in Kpps) 99

4.2.4 (a) Distribution of RTTs ... 99

4.2.4 (b) Router CPU Utilizations .. 99

4.2.5 (a) Throughput for Tmix calibration experiment for least capable traffic generator pair
 (byte throughput in Mbps) ... 102

4.2.5 (b) Throughput for Tmix calibration experiment for least capable traffic generator pair
 (packet throughput in Kpps) .. 102

4.2.6 (a) CDF of input and output round trip times ... 103

4.2.6 (b) CCDF of input and output epochs per connection .. 103

4.2.7 (a) CDF of input and output request sizes ... 103

4.2.7 (b) CCDF of input and output request sizes .. 103

4.2.8 (a) CDF of input and output response sizes .. 104

4.2.8 (b) CCDF of input and output response sizes ... 104

4.2.9 (a) CDF of input and output concurrent ‘a’ sizes .. 104

4.2.9 (b) CCDF of input and output concurrent ‘a’ sizes ... 104

4.2.10 (a) CDF of input and output concurrent ‘b’ sizes ... 104

4.2.10 (b) CCDF of input and output concurrent ‘b’ sizes ... 104

4.2.11 (a) CPU utilization of traffic generator one .. 105

4.2.11 (b) CPU utilization of traffic generator two .. 105

4.3.1 (a) Throughput for Tmix verification experiment (byte throughput in Mbps) 106

4.3.1 (b) Throughput for Tmix verification experiment (packet throughput in Kpps) 106

4.3.2 (a) Connection RTTs for Tmix verification experiment - CDF 107

4.3.2 (b) Connection RTTs for Tmix verification experiment - CCDF 107

4.3.3 (a) Number of epochs per connection for Tmix verification experiment - CDF 108

 xvii

4.3.3 (b) Number of epochs per connection for Tmix verification experiment - CCDF 108

4.3.4 (a) Request sizes for Tmix verification experiment - CDF .. 108

4.3.4 (b) Request sizes for Tmix verification experiment - CCDF ... 108

4.3.5 (a) Response sizes for Tmix verification experiment - CDF .. 109

4.3.5 (b) Response sizes for Tmix verification experiment - CCDF 109

4.3.6 (a) Concurrent ‘a’ sizes for Tmix verification experiment - CDF 109

4.3.6 (b) Concurrent ‘a’ sizes for Tmix verification experiment - CCDF 109

4.3.7 (a) Concurrent ‘b’ sizes for Tmix verification experiment - CDF 109

4.3.7 (b) Concurrent ‘b’ sizes for Tmix verification experiment - CCDF 109

4.3.8 (a) CPU utilization for the most and least capable traffic generator pairs on one
 subnet ... 110

4.3.8 (b) CPU utilization for the most and least capable traffic generator pairs on the
 other subnet .. 111

4.5.1 Link throughput in Mbps – UNC – unconstrained mode .. 114

4.5.2 Link throughput in Mbps – IBM – unconstrained mode .. 114

4.5.3 Link throughput in Kpps – UNC – unconstrained mode.. 114

4.5.4 Link throughput in Kpps – IBM – unconstrained mode... 114

4.5.5 Connection duration – CDF (control set – UNC and IBM – unconstrained) 116

4.5.6 Connection duration – CCDF (control set – UNC and IBM – unconstrained) 116

4.5.7 Response time – CDF (control set – UNC and IBM – unconstrained) 118

4.5.8 Response time – CCDF (control set – UNC and IBM – unconstrained) 118

4.5.9 Queue length – CCDF (control set – UNC and IBM – unconstrained).................... 120

4.5.10 Active connections (control set – UNC and IBM – unconstrained) 121

4.6.1 Link throughput in Mbps – UNC – constrained mode .. 122

4.6.2 Link throughput in Mbps – IBM – constrained mode .. 122

4.6.3 Link throughput in Kpps – UNC – constrained mode.. 122

4.6.4 Link throughput in Kpps – IBM – constrained mode .. 122

4.6.5 Connection duration – CDF – UNC (control set – UNC and IBM – constrained)... 124

 xviii

4.6.6 Connection duration – CDF – IBM (control set – UNC and IBM – constrained).... 124

4.6.7 Connection duration – CCDF – UNC (control set – UNC and IBM – constrained) 124

4.6.8 Connection duration – CCDF – IBM (control set – UNC and IBM – constrained) . 124

4.6.9 Response time – CDF – UNC (control set – UNC and IBM – constrained) 126

4.6.10 Response time – CDF – IBM (control set – UNC and IBM – constrained) 126

4.6.11 Response time – CCDF – UNC (control set – UNC and IBM – constrained) 126

4.6.12 Response time – CCDF – IBM (control set – UNC and IBM – constrained) 126

4.6.13 Queue length – CDF (control set – UNC and IBM – constrained) 128

4.6.14 Queue length – CCDF (control set – UNC and IBM – constrained) 128

4.6.15 Active connections (control set – UNC and IBM – constrained) 129

5.1.1 Connection duration – CDF – UNC (block-concurrent connection structure) 134

5.1.2 Connection duration – CDF – IBM (block-concurrent connection structure) 134

5.1.3 Connection duration – CDF – UNC (block-sequential connection structure) 135

5.1.4 Connection duration – CDF – IBM (block- sequential connection structure) 135

5.1.5 Connection duration – CDF – UNC (a-b connection structure) 135

5.1.6 Connection duration – CDF – IBM (a-b connection structure) 135

5.1.7 Connection duration – CDF – UNC (a-t-b-t connection structure) 136

5.1.8 Connection duration – CDF – IBM (a-t-b-t connection structure) 136

5.1.9 Connection duration – CDF – UNC (block-sequential connection structure) 137

5.1.10 Connection duration – CDF – IBM (block- sequential connection structure) 137

5.1.11 Connection duration – CDF – UNC (a-t-b-t connection structure) 137

5.1.12 Connection duration – CDF – IBM (a-t-b-t connection structure) 137

5.1.13 Connection duration – CCDF – UNC (block-concurrent connection structure) 141

5.1.14 Connection duration – CCDF – IBM (block-concurrent connection structure) 141

5.1.15 Connection duration – CCDF – UNC (block-sequential connection structure) 141

5.1.16 Connection duration – CCDF – IBM (block- sequential connection structure) 141

 xix

5.1.17 Connection duration – CCDF – UNC (a-b connection structure) 142

5.1.18 Connection duration – CCDF – IBM (a-b connection structure) 142

5.1.19 Connection duration – CCDF – UNC (a-t-b-t connection structure) 142

5.1.20 Connection duration – CCDF – IBM (a-t-b-t connection structure) 142

5.1.21 Response Time – CDF – UNC (block-sequential connection structure) 143

5.1.22 Response Time – CDF – IBM (block- sequential connection structure) 143

5.1.23 Response Time – CDF – UNC (a-b connection structure) 144

5.1.24 Response Time – CDF – IBM (a-b connection structure) 144

5.1.25 Response Time – CDF – UNC (a-t-b-t connection structure) 145

5.1.26 Response Time – CDF – IBM (a-t-b-t connection structure) 145

5.1.27 Response Time – CDF – UNC (block-sequential connection structure) 146

5.1.28 Response Time – CDF – IBM (block- sequential connection structure) 146

5.1.29 Response Time – CDF – UNC (a-t-b-t connection structure) 147

5.1.30 Response Time – CDF – IBM (a-t-b-t connection structure) 147

5.1.31 Response Time – CCDF – UNC (block-sequential connection structure) 148

5.1.32 Response Time – CCDF – IBM (block- sequential connection structure) 148

5.1.33 Response Time – CCDF – UNC (a-b connection structure) 149

5.1.34 Response Time – CCDF – IBM (a-b connection structure) 149

5.1.35 Response Time – CCDF – UNC (a-t-b-t connection structure) 149

5.1.36 Response Time – CCDF – IBM (a-t-b-t connection structure) 149

5.1.37 Queue length – CCDF – UNC (block-concurrent connection structure) 150

5.1.38 Queue length – CCDF – IBM (block-concurrent connection structure) 150

5.1.39 Queue length – CCDF – UNC (block-sequential connection structure) 151

5.1.40 Queue length – CCDF – IBM (block- sequential connection structure) 151

5.1.41 Queue length – CCDF – UNC (a-b connection structure) 151

5.1.42 Queue length – CCDF – IBM (a-b connection structure) 151

 xx

5.1.43 Queue length – CCDF – UNC (a-t-b-t connection structure) 151

5.1.44 Queue length – CCDF – IBM (a-t-b-t connection structure) 151

5.1.45 Active connections – UNC (block-concurrent connection structure) 152

5.1.46 Active connections – IBM (block-concurrent connection structure) 152

5.1.47 Active connections – UNC (block-sequential connection structure) 153

5.1.48 Active connections – IBM (block- sequential connection structure) 153

5.1.49 Active connections – UNC (a-b connection structure) .. 153

5.1.50 Active connections – IBM (a-b connection structure) .. 153

5.1.51 Active connections – UNC (a-t-b-t connection structure) 154

5.1.52 Active connections – IBM (a-t-b-t connection structure) .. 154

5.2.1 Connection duration – CDF – UNC (block-concurrent connection structure) 157

5.2.2 Connection duration – CDF – IBM (block-concurrent connection structure) 157

5.2.3 Connection duration – CDF – UNC (block-sequential connection structure) 158

5.2.4 Connection duration – CDF – IBM (block- sequential connection structure) 158

5.2.5 Connection duration – CDF – UNC (a-b connection structure) 159

5.2.6 Connection duration – CDF – IBM (a-b connection structure) 159

5.2.7 Connection duration – CDF – UNC (a-t-b-t connection structure) 160

5.2.8 Connection duration – CDF – IBM (a-t-b-t connection structure) 160

5.2.9 Connection duration – CCDF – UNC (block-concurrent connection structure) 161

5.2.10 Connection duration – CCDF – IBM (block-concurrent connection structure) 161

5.2.11 Connection duration – CCDF – UNC (block-sequential connection structure) 162

5.2.12 Connection duration – CCDF – IBM (block- sequential connection structure) 162

5.2.13 Connection duration – CCDF – UNC (a-b connection structure) 162

5.2.14 Connection duration – CCDF – IBM (a-b connection structure) 162

5.2.15 Connection duration – CCDF – UNC (a-t-b-t connection structure) 162

5.2.16 Connection duration – CCDF – IBM (a-t-b-t connection structure) 162

 xxi

5.2.17 Connection duration – CDF – UNC (block-concurrent connection structure) 163

5.2.18 Connection duration – CDF – IBM (block-concurrent connection structure) 163

5.2.19 Connection duration – CDF – UNC (block-sequential connection structure) 163

5.2.20 Connection duration – CDF – IBM (block- sequential connection structure) 163

5.2.21 Connection duration – CDF – UNC (a-b connection structure) 164

5.2.22 Connection duration – CDF – IBM (a-b connection structure) 164

5.2.23 Connection duration – CDF – UNC (a-t-b-t connection structure) 164

5.2.24 Connection duration – CDF – IBM (a-t-b-t connection structure) 164

5.2.25 Connection duration – CCDF – UNC (block-concurrent connection structure) 165

5.2.26 Connection duration – CCDF – IBM (block-concurrent connection structure) 165

5.2.27 Connection duration – CCDF – UNC (block-sequential connection structure) 165

5.2.28 Connection duration – CCDF – IBM (block- sequential connection structure) 165

5.2.29 Connection duration – CCDF – UNC (a-b connection structure) 165

5.2.30 Connection duration – CCDF – IBM (a-b connection structure) 165

5.2.31 Connection duration – CCDF – UNC (a-t-b-t connection structure) 166

5.2.32 Connection duration – CCDF – IBM (a-t-b-t connection structure) 166

5.2.33 Response Time – CDF – UNC (block-sequential connection structure) 167

5.2.34 Response Time – CDF – IBM (block- sequential connection structure) 167

5.2.35 Response Time – CDF – UNC (a-b connection structure) 168

5.2.36 Response Time – CDF – IBM (a-b connection structure) 168

5.2.37 Response Time – CDF – UNC (a-t-b-t connection structure) 168

5.2.38 Response Time – CDF – IBM (a-t-b-t connection structure) 168

5.2.39 Response Time – CCDF – UNC (block-sequential connection structure) 169

5.2.40 Response Time – CCDF – IBM (block- sequential connection structure) 169

5.2.41 Response Time – CCDF – UNC (a-b connection structure) 170

5.2.42 Response Time – CCDF – IBM (a-b connection structure) 170

 xxii

5.2.43 Response Time – CCDF – UNC (a-t-b-t connection structure) 170

5.2.44 Response Time – CCDF – IBM (a-t-b-t connection structure) 170

5.2.45 Response Time – CDF – UNC (block-sequential connection structure) 171

5.2.46 Response Time – CDF – IBM (block- sequential connection structure) 171

5.2.47 Response Time – CDF – UNC (a-b connection structure) 171

5.2.48 Response Time – CDF – IBM (a-b connection structure) 171

5.2.49 Response Time – CDF – UNC (a-t-b-t connection structure) 171

5.2.50 Response Time – CDF – IBM (a-t-b-t connection structure) 171

5.2.51 Response Time – CCDF – UNC (block-sequential connection structure) 172

5.2.52 Response Time – CCDF – IBM (block- sequential connection structure) 172

5.2.53 Response Time – CCDF – UNC (a-b connection structure) 172

5.2.54 Response Time – CCDF – IBM (a-b connection structure) 172

5.2.55 Response Time – CCDF – UNC (a-t-b-t connection structure) 172

5.2.56 Response Time – CCDF – IBM (a-t-b-t connection structure) 172

5.2.57 Queue length – CDF – UNC (block-concurrent connection structure) 174

5.2.58 Queue length – CDF – IBM (block-concurrent connection structure) 174

5.2.59 Queue length – CDF – UNC (block-sequential connection structure) 174

5.2.60 Queue length – CDF – IBM (block- sequential connection structure) 174

5.2.61 Queue length – CDF – UNC (a-b connection structure) ... 175

5.2.62 Queue length – CDF – IBM (a-b connection structure) .. 175

5.2.63 Queue length – CDF – UNC (a-t-b-t connection structure) 175

5.2.64 Queue length – CDF – IBM (a-t-b-t connection structure) 175

5.2.65 Queue length – CCDF – UNC (block-concurrent connection structure) 176

5.2.66 Queue length – CCDF – IBM (block-concurrent connection structure) 176

5.2.67 Queue length – CCDF – UNC (block-sequential connection structure) 176

5.2.68 Queue length – CCDF – IBM (block- sequential connection structure) 176

 xxiii

5.2.69 Queue length – CCDF – UNC (a-b connection structure) 177

5.2.70 Queue length – CCDF – IBM (a-b connection structure) 177

5.2.71 Queue length – CCDF – UNC (a-t-b-t connection structure) 177

5.2.72 Queue length – CCDF – IBM (a-t-b-t connection structure) 177

5.2.73 Active connections – UNC (block-concurrent connection structure) 178

5.2.74 Active connections – IBM (block-concurrent connection structure) 178

5.2.75 Active connections – UNC (block-sequential connection structure) 178

5.2.76 Active connections – IBM (block- sequential connection structure) 178

5.2.77 Active connections – UNC (a-b connection structure) .. 178

5.2.78 Active connections – IBM (a-b connection structure) .. 178

5.2.79 Active connections – UNC (a-t-b-t connection structure) 179

5.2.80 Active connections – IBM (a-t-b-t connection structure) .. 179

5.3.1 Connection duration – CDF – UNC (meanrtt round trip time) 183

5.3.2 Connection duration – CDF – IBM (meanrtt round trip time) 183

5.3.3 Connection duration – CDF – UNC (10path round trip time) 184

5.3.4 Connection duration – CDF – IBM (10path round trip time) 184

5.3.5 Connection duration – CDF – UNC (usernet round trip time) 185

5.3.6 Connection duration – CDF – IBM (usernet round trip time) 185

5.3.7 Connection duration – CCDF – UNC (meanrtt round trip time) 187

5.3.8 Connection duration – CCDF – IBM (meanrtt round trip time) 187

5.3.9 Connection duration – CCDF – UNC (10path round trip time) 188

5.3.10 Connection duration – CCDF – IBM (10path round trip time) 188

5.3.11 Connection duration – CCDF – UNC (usernet round trip time) 188

5.3.12 Connection duration – CCDF – IBM (usernet round trip time) 188

5.3.13 Response Time – CDF – UNC (meanrtt round trip time) .. 190

5.3.14 Response Time – CDF – IBM (meanrtt round trip time) .. 190

 xxiv

5.3.15 Response Time – CDF – UNC (10path round trip time) ... 191

5.3.16 Response Time – CDF – IBM (10path round trip time) ... 191

5.3.17 Response Time – CDF – UNC (usernet round trip time) .. 191

5.3.18 Response Time – CDF – IBM (usernet round trip time) ... 191

5.3.19 Response Time – CCDF – UNC (meanrtt round trip time) 192

5.3.20 Response Time – CCDF – IBM (meanrtt round trip time) 192

5.3.21 Response Time – CCDF – UNC (10path round trip time) 193

5.3.22 Response Time – CCDF – IBM (10path round trip time) 193

5.3.23 Response Time – CCDF – UNC (usernet round trip time) 193

5.3.24 Response Time – CCDF – IBM (usernet round trip time) 193

5.3.25 Queue length – CCDF – UNC (meanrtt round trip time) .. 194

5.3.26 Queue length – CCDF – IBM (meanrtt round trip time) ... 194

5.3.27 Queue length – CCDF – UNC (10path round trip time) ... 194

5.3.28 Queue length – CCDF – IBM (10path round trip time) .. 194

5.3.29 Queue length – CCDF – UNC (usernet round trip time) ... 195

5.3.30 Queue length – CCDF – IBM (usernet round trip time) ... 195

5.3.31 Active connections – UNC (meanrtt round trip time) ... 196

5.3.32 Active connections – IBM (meanrtt round trip time) .. 196

5.3.33 Active connections – UNC (10path round trip time) .. 196

5.3.34 Active connections – IBM (10path round trip time) ... 196

5.3.35 Active connections – UNC (usernet round trip time) .. 196

5.3.36 Active connections – IBM (usernet round trip time) ... 196

5.3.37 Active connections – UNC (usernet round trip time) .. 197

5.4.1 Connection duration – CDF – UNC (meanrtt round trip time) 200

5.4.2 Connection duration – CDF – IBM (meanrtt round trip time) 200

5.4.3 Connection duration – CDF – UNC (10path round trip time) 201

 xxv

5.4.4 Connection duration – CDF – IBM (10path round trip time) 201

5.4.5 Connection duration – CDF – UNC (usernet round trip time) 202

5.4.6 Connection duration – CDF – IBM (usernet round trip time) 202

5.4.7 Connection duration – CCDF – UNC (meanrtt round trip time) 203

5.4.8 Connection duration – CCDF – IBM (meanrtt round trip time) 203

5.4.9 Connection duration – CCDF – UNC (10path round trip time) 203

5.4.10 Connection duration – CCDF – IBM (10path round trip time) 203

5.4.11 Connection duration – CCDF – UNC (usernet round trip time) 203

5.4.12 Connection duration – CCDF – IBM (usernet round trip time) 203

5.4.13 Connection duration – CDF – UNC (meanrtt round trip time) 204

5.4.14 Connection duration – CDF – IBM (meanrtt round trip time) 204

5.4.15 Connection duration – CDF – UNC (10path round trip time) 205

5.4.16 Connection duration – CDF – IBM (10path round trip time) 205

5.4.17 Connection duration – CDF – UNC (usernet round trip time) 205

5.4.18 Connection duration – CDF – IBM (usernet round trip time) 205

5.4.19 Connection duration – CCDF – UNC (meanrtt round trip time) 206

5.4.20 Connection duration – CCDF – IBM (meanrtt round trip time) 206

5.4.21 Connection duration – CCDF – UNC (10path round trip time) 206

5.4.22 Connection duration – CCDF – IBM (10path round trip time) 206

5.4.23 Connection duration – CCDF – UNC (usernet round trip time) 206

5.4.24 Connection duration – CCDF – IBM (usernet round trip time) 206

5.4.25 Response Time – CDF – UNC (meanrtt round trip time) 208

5.4.26 Response Time – CDF – IBM (meanrtt round trip time) .. 208

5.4.27 Response Time – CDF – UNC (10path round trip time) ... 208

5.4.28 Response Time – CDF – IBM (10path round trip time) ... 208

5.4.29 Response Time – CDF – UNC (usernet round trip time) .. 208

 xxvi

5.4.30 Response Time – CDF – IBM (usernet round trip time) ... 208

5.4.31 Response Time – CCDF – UNC (meanrtt round trip time) 209

5.4.32 Response Time – CCDF – IBM (meanrtt round trip time) 209

5.4.33 Response Time – CCDF – UNC (10path round trip time) 209

5.4.34 Response Time – CCDF – IBM (10path round trip time) 209

5.4.35 Response Time – CCDF – UNC (usernet round trip time) 210

5.4.36 Response Time – CCDF – IBM (usernet round trip time) 210

5.4.37 Response Time – CDF – UNC (meanrtt round trip time) 211

5.4.38 Response Time – CDF – IBM (meanrtt round trip time) .. 211

5.4.39 Response Time – CDF – UNC (10path round trip time) ... 211

5.4.40 Response Time – CDF – IBM (10path round trip time) ... 211

5.4.41 Response Time – CDF – UNC (usernet round trip time) .. 212

5.4.42 Response Time – CDF – IBM (usernet round trip time) ... 212

5.4.43 Response Time – CCDF – UNC (meanrtt round trip time) 213

5.4.44 Response Time – CCDF – IBM (meanrtt round trip time) 213

5.4.45 Response Time – CCDF – UNC (10path round trip time) 213

5.4.46 Response Time – CCDF – IBM (10path round trip time) 213

5.4.47 Response Time – CCDF – UNC (usernet round trip time) 213

5.4.48 Response Time – CCDF – IBM (usernet round trip time) 213

5.4.49 Queue length – CDF – UNC (meanrtt round trip time) ... 214

5.4.50 Queue length – CDF – IBM (meanrtt round trip time) ... 214

5.4.51 Queue length – CDF – UNC (10path round trip time) .. 215

5.4.52 Queue length – CDF – IBM (10path round trip time) ... 215

5.4.53 Queue length – CDF – UNC (usernet round trip time) ... 215

5.4.54 Queue length – CDF – IBM (usernet round trip time) .. 215

5.4.55 Queue length – CCDF – UNC (meanrtt round trip time) .. 216

 xxvii

5.4.56 Queue length – CCDF – IBM (meanrtt round trip time) ... 216

5.4.57 Queue length – CCDF – UNC (10path round trip time) ... 216

5.4.58 Queue length – CCDF – IBM (10path round trip time) .. 216

5.4.59 Queue length – CCDF – UNC (usernet round trip time) ... 216

5.4.60 Queue length – CCDF – IBM (usernet round trip time) ... 216

5.4.61 Active connections – UNC (meanrtt round trip time) ... 217

5.4.62 Active connections – IBM (meanrtt round trip time) .. 217

5.4.63 Active connections – UNC (10path round trip time) .. 217

5.4.64 Active connections – IBM (10path round trip time) ... 217

5.4.65 Active connections – UNC (usernet round trip time) .. 218

5.4.66 Active connections – IBM (usernet round trip time) ... 218

6.1.1 Connection duration – CDF – UNC (a-t-b-t connection structure)228

6.1.2 Connection duration – CCDF – UNC (a-t-b-t connection structure)228

6.1.3 Response Time – CDF – UNC (a-t-b-t connection structure)230

6.1.4 Response Time – CCDF – UNC (a-t-b-t connection structure)230

6.1.5 Queue Length – CDF – UNC (a-t-b-t connection structure)231

6.1.6 Active connections – UNC (a-t-b-t connection structure) ..232

6.1.7 Queue Length – CDF – UNC (a-t-b-t connection structure)233

6.1.8 Queue Length – CCDF – UNC (a-t-b-t connection structure)233

6.1.9 Connection duration – CDF – UNC (a-t-b-t connection structure)234

6.1.10 Connection duration – CCDF – UNC (a-t-b-t connection structure)234

6.1.11 Connection duration – CDF – UNC (a-t-b-t connection structure)235

6.1.12 Connection duration – CDF – IBM (a-t-b-t connection structure)235

6.1.13 Response Time – CDF – UNC (a-t-b-t connection structure)237

6.1.14 Response Time – CCDF – UNC (a-t-b-t connection structure)237

6.1.15 Active connections – UNC (a-t-b-t connection structure) ..238

 xxviii

6.2.1 Connection duration – CDF – UNC (a-t-b-t connection structure)239

6.2.2 Connection duration – CCDF – UNC (a-t-b-t connection structure)239

6.2.3 Response Time – CDF – UNC (a-t-b-t connection structure)240

6.2.4 Response Time – CCDF – UNC (a-t-b-t connection structure)240

6.2.5 Queue Length – CDF – UNC (a-t-b-t connection structure)240

6.2.6 Queue Length – CCDF – UNC (a-t-b-t connection structure)240

6.2.7 Active connections – UNC (a-t-b-t connection structure) ..240

6.2.8 Connection duration – CDF – UNC (a-t-b-t connection structure)241

6.2.9 Connection duration – CCDF – UNC (a-t-b-t connection structure)241

6.2.10 Response Time – CDF – UNC (a-t-b-t connection structure)242

6.2.11 Response Time – CCDF – UNC (a-t-b-t connection structure)242

6.2.12 Queue Length – CDF – UNC (a-t-b-t connection structure)242

6.2.13 Queue Length – CCDF – UNC (a-t-b-t connection structure)242

6.2.14 Active connections – UNC (a-t-b-t connection structure) ..243

6.3.1 Connection duration – CDF – UNC (a-t-b-t connection structure)245

6.3.2 Connection duration – CCDF – UNC (a-t-b-t connection structure)245

6.3.3 Response Time – CDF – UNC (a-t-b-t connection structure)246

6.3.4 Response Time – CCDF – UNC (a-t-b-t connection structure)246

6.3.5 Queue Length – CCDF – UNC (a-t-b-t connection structure)247

6.3.6 Active connections – UNC (a-t-b-t connection structure) ..247

6.3.7 Connection size – CDF .. 248

6.3.8 Connection size – CCDF ... 248

6.3.9 Connection duration – CDF (connection size less than 4KB) 249

6.3.10 Connection duration – CDF (connection size greater than 4KB) 249

6.3.11 Connection duration – CDF (connection size greater than 1MB) 250

6.3.12 Connection duration – CDF (connection size greater than 1MB) 250

 xxix

6.3.13 Connection duration – CDF – UNC (a-t-b-t connection structure)253

6.3.14 Connection duration – CCDF – UNC (a-t-b-t connection structure)253

6.3.15 Response Time – CDF – UNC (a-t-b-t connection structure)253

6.3.16 Response Time – CCDF – UNC (a-t-b-t connection structure)253

6.3.17 Queue Length – CDF – UNC (a-t-b-t connection structure)254

6.3.18 Queue Length – CCDF – UNC (a-t-b-t connection structure)254

6.3.19 Active connections – UNC (a-t-b-t connection structure) ..255

6.3.20 Connection duration – CDF (connection size less than 4KB) 255

6.3.21 Connection duration – CDF (connection size greater than 4KB) 255

6.3.22 Connection duration – CDF (connection size greater than 1MB) 256

6.3.23 Connection duration – CDF (connection size greater than 1MB) 256

6.4.1 Link throughput in packets – blk-conc .. 258

6.4.2 Link throughput in packets – blk-seq .. 258

6.4.3 Link throughput in packets – a-b ... 258

6.4.4 Link throughput in packets – a-t-b-t .. 258

6.4.5 Link throughput in packets – 1s intervals .. 259

6.4.6 Link throughput in packets – 10ms intervals ... 259

6.4.7 Queue Length Time Series – blk-conc .. 261

6.4.8 Queue Length Time Series – blk-seq ... 262

6.4.9 Queue Length Time Series – a-b ... 262

6.4.10 Queue Length Time Series – a-t-b-t .. 263

6.5.1 Wavelet spectrum for packet throughput time series using the block-concurrent
connection structure model .. 264

6.5.2 Wavelet spectrum for packet throughput time series using the block-sequential
connection structure model .. 265

6.5.3 Wavelet spectrum for packet throughput time series using the a-b connection structure
model ... 265

 xxx

6.5.4 Wavelet spectrum for packet throughput time series using the a-t-b-t connection
structure model .. 265

 xxxi

ABBREVIATIONS

ACK acknowledgment

AQM Active Queue Management

CDF Cumulative Distribution Function

CCDF Complementary Cumulative Distribution Function

cwnd congestion window

ECN Explicit Congestion Notification

FIFO first-in, first-out

IP Internet Protocol

RTT Round-Trip Time

TCP Transmission Control Protocol

CHAPTER 1

INTRODUCTION

When one discovers a fact about nature, it is a contribution per se, no matter
how small. Since anyone can create something new [in a synthetic field like
Computer Science], that alone does not establish a contribution. Rather, one
must show that the creation is better. Accordingly, research in computer science
and engineering is largely devoted to establishing the "better" property.

 Fred Brooks [NRC, 1994, p. 35.]

 Over the past three decades, the Internet's rapid growth has spurred explosive development of

new applications such as mobile computing, digital music, and online video and gaming. The

performance of these applications depends on the performance of various protocols and

mechanisms enabling Internet functions. For 30 years now, TCP (Transmission Control Protocol)

and IP (Internet Protocol) have been the dominant communication protocols, and they have

fortuitously evolved despite the Internet’s multifold growth. To improve the Internet’s

performance, networking researchers constantly develop new protocols and innovations.

 These protocols must be tested before they can be deployed on the Internet. In most fields,

there are agreed-upon standards to test such new inventions and improvements. For example, if

Intel develops a new processor, several benchmarks test the new processor to demonstrate that it

performs better than an existing one. However, computer networking, as a nascent field with

explosive growth, still lacks such standards for protocol evaluation. Establishing such standards

remains a challenging research endeavor in networking, and it forms the central motivation for

 2

this dissertation research. By generating different kinds of network traffic within the laboratory

testbed, showing how and why the use of different models of application workload and network

path characteristics during traffic generation affect the outcome of experimentation, we have

asked and answered some fundamental questions about experimental methodology in networking

research. We plan to use the lessons learned from this study to motivate further discussions and

concrete steps in the networking research community toward establishing better practices in

experimental methods for networking research.

 Networking researchers have long used experimental networks and distributed systems for

evaluating new networking technologies. Indeed, experimentation, either via software simulation

using simulators such as the Network Simulator (NS), or via hardware emulation using laboratory

testbeds, has been the primary means for evaluating existing and newly proposed protocols and

algorithms for improving the Internet. Hence, improving the Internet involves constantly

improving the process of experimentation to produce reliable and reproducible results for

empirical evaluations. This requires research into methodology. This dissertation is a step in that

direction. Experimental methodology has many components. This dissertation is a

methodological study exploring one major component – traffic generation.

1.1 Traffic Generation

 One of the most complex components of empirical evaluations is modeling and generating

realistic Internet traffic. The mix of the ever changing and varied applications that constitute the

actual Internet traffic makes this a daunting task. Moreover, Internet traffic is different when

sampled at different times and in different parts of the globe. Networking researchers have

grappled with this problem by taking snapshots of Internet traffic at different times and at various

points in the network, and modeling the same for generating traffic in the lab. The generally held

 3

belief is that the more realistic the traffic used, the more reliable are the results of the empirical

evaluations using that traffic. Practice, however, does not adhere to this principle. So, although

laboratory testbeds and methods for simulations have evolved over the years, the question about

what constitutes essential components for modeling realistic traffic remains open for debate. For

example, networking researchers agree that realistic traffic generation for empirical research is

best accomplished by capturing traffic on a production link and then using source-level models to

generate this traffic in the laboratory or simulator. Source-level models capture the application

exchanges and application behavior on the ends (sources) of the TCP connections. But how do

you go from the original captured traffic to an acceptable source-level model? Which of the

several measures derived from the traffic sources should you model in your workload for your

experiments? Would your modeling choices for traffic generation impact the outcome of your

experiments? If yes, how significant would the impact be? These remain open questions.

 Let’s consider an example. Say you developed a new high-speed variant of TCP; let’s call it

TCP-X. To show that TCP-X is indeed better than the existing variants of TCP on the Internet

today, you would need to run some experiments either in a laboratory setting or using a simulator.

You would not wish to run your experiments directly on the Internet as that will reduce control,

and you could not repeat your experiments under the same conditions. Moreover, injecting traffic

using untested protocols with possible bugs can cause breakdown of network services. So, as part

of the experiment using a laboratory testbed or simulator, you would generate traffic between sets

of endpoints (traffic generators) that use either TCP-X or the other TCP variant against which you

are testing your new protocol. For your experiments, you need to generate realistic traffic. So you

collect network traffic on a production link. Since you are testing performance of transport

protocols, you decide to use application workload models (source-level models) for generating

traffic. That is, you generate traffic in your experiments by driving network stacks with the

application models derived from your empirical measurements and you use the applicable TCP

protocol on the endpoints. You choose this approach because traffic generated in this closed-loop

 4

manner fully preserves the fundamental feedback loop between the network endpoints and

network characteristics. This is essential for testing transport-level properties.

 Now, having made all these decisions on experimental design, how would you use the

captured traffic from that production link to drive the network stacks on these endpoints or traffic

generators? That is, given the empirical measurements of the traffic you captured, which of those

measurements will you use to create your application workload models for generating traffic in

your experiments, and why?

 Let us consider some possible choices in modeling the workload you captured. You have the

packet header trace which can be used to derive a lot of information on every TCP connection

constituting that traffic. Do you send all the measured bytes for a given TCP connection as one

large data unit in each direction? If yes, do you send them concurrently in both directions, or do

you simulate a request-response behavior between a client and server, and thus send all the data

in one direction first, then send all the data in the other direction? Say, you use one of these two

methodologies to generate a persistent HTTP connection that originally had request-response,

request-response, and so on, with 25 such request-response pairs sending data back and forth

between client and server. Have you somehow distorted this connection by generating it all as one

large data unit in each direction? If you have, does it matter? If it matters, when does it matter?

That is, what performance metrics (output results that you use to show that TCP-X is better than

other TCP variants) are affected favorably or adversely by such distortion of the connections

generated during the experiment?

 In the above scenario of generating a persistent HTTP connection, the original connection

could be represented in two dimensions – size and time. The size component is the data being

sent all at one time or in small chunks back and forth as measured in the original connection. But

while the size component of a connection seems obviously necessary for representing the

connection for traffic generation, what role does the time component play, and how does it affect

the performance metrics in your experiment? In fact, there is more than one time component in

 5

any given connection. There are the times between packets sent on the network, times between a

request and its corresponding response, and the user-generated thinktimes which are the times

between consecutive request-response exchanges within a connection. Which of these do you

model, and how would your experimental results be affected by your choices?

 So far, we have only discussed the application workload in both the size and time

components. But for realistic traffic generation, we must consider that the endpoints or traffic

generators that generate this application workload are also influenced by the network conditions

along the paths they traverse. This brings in another time component of traffic generation – the

connection round trip time (RTT). What is the best method of RTT emulation? Is one method

better than another, and why? For example, you could determine that the mean RTT of all

connections in your measured traffic was 80 milliseconds. Thus, could you use this as the default

RTT for every connection in your experiment? How would this choice for RTT emulation

influence the performance metrics you study in your experiment? What if, instead, you measured

the connection RTT for every connection on that original link, and faithfully assigned each

generated connection its measured RTT during your experiment? What is the benefit of such a

choice in generating traffic?

 How will your choice of parameters for application workload modeling, and your choice of

model for emulating network path characteristics like RTT emulation, affect the outcome of your

experiments? That is, how will these choices affect whether your TCP-X shows better results

than some popular variant of TCP for the metrics you are using in this evaluation? Say the results

showed that TCP-X is indeed better for certain metrics of performance than other TCP variants.

Would you then be able to use the results from such an experiment with confidence to deploy

TCP-X on the Internet? Why or why not?

 These are the kinds of questions that motivated this study. With this dissertation, we strive to

advance such discussion and the exploration of experimental methodologies in networking

research. We developed a spectrum of empirically-derived, realistic models for generating TCP

 6

traffic, and different models for emulating RTT, in the laboratory. We conducted experiments

using this spectrum of application workload models we call TCP connection structures and round

trip time (RTT) emulation methods – all inspired by models used in leading publications. Our

goal was to explore how generating the same empirically-derived traffic using different

connection structures and different RTT emulation methods alters key characteristics of traffic in

the network, thus affecting the user perceived performance metrics of connection durations and

response times as well as network centric metrics of active connections and router queue lengths.

1.2 The Tmix Traffic Generation System

 This dissertation is based on the foundation laid by the Tmix traffic generation system

developed by Hernandez-Campos et al. [HC06, WAHC+06]. In that work, the authors presented a

new methodology for generating network traffic using source-level modeling in testbed

experiments and software simulations. They developed a new source-level model of network

traffic, the a-b-t model (we call this the a-t-b-t model in our study), for describing in a generic

and intuitive manner the behavior of the applications driving the TCP connections in network

traffic. Hernandez-Campos et al. made the following major contribution: they showed that given

a packet header trace collected at any Internet link, their Tmix traffic generation system

reproduced the application-level behavior as well as network-level parameters, like RTT and

window size, such that the statistical properties of the generated traffic matched very closely with

those of the original traffic captured on the Internet link. We verify this demonstration as part of

our calibration experiments, and hence use their model as the control set for our experiments. We

use the Tmix traffic generation system in our research, and hence adopt their terminology to

explain our models for application workloads. Hence, in this section we explain their

terminology.

 7

 The Tmix traffic generator is an empirically-based approach to workload generation. Starting

from a trace of TCP/IP headers collected on a production network, they constructed a model for

all the TCP connections observed in the network without knowledge of the underlying

applications. The model, a set of a-t-b-t connection vectors, can be used in the workload

generator Tmix to generate the connections and reproduce the application-level behaviors

observed on the original network. That work also identifies a fundamental dichotomy in source-

level behavior between connections that exchange data sequentially and those that exchange data

concurrently.

Figure 1: Traffic Generation

 In Tmix each connection found in a trace of TCP/IP headers from a production network link

is analyzed to produce a “connection vector” representation. The connection vector includes the

connection’s start time relative to the beginning of the trace and a series of request-response

exchanges found by their analysis tool. Each request-response exchange (called an “epoch”) is

described by a 4-tuple consisting of the request size (called the “a” unit size), the response size

(called the “b” unit size) and two latency values (called the “t” values) for the time between a

 8

request and its response and for the time between successive request-response exchanges.

Unidirectional transfers have only an ‘a’ or ‘b’ value depending on the direction of transfer.

 Our definitions and models for traffic generation in this dissertation derive heavily from this

work [HC06]. Hence, a high level summary of the Tmix analysis and generation framework is

given in Figure 1. The first step in this process is to capture a trace of TCP/IP headers on any

production link. This trace is then processed to produce a set of connection vectors such that each

TCP connection in the trace is now defined by a unique connection vector. The Tmix traffic

generation tool takes as input this set of connection vectors and replays these connections to

produce traffic on the link such that its statistical properties match those of the traffic that was

originally captured.

1.3 Modeling TCP Connection Structure

 In this dissertation, we used Tmix’s a-t-b-t model as a control for all our connection structure

models. We define connection structure for a TCP connection as modeled in two dimensions –

size and time. The size dimension defines the total number of bytes transferred by the connection

in both directions. The time dimension models the internal dynamics of a connection consisting

of any synchronization and latencies introduced by exchanges of application-level protocol data

units, typically in a request-response pattern as in a client-service model of communication. The

time dimension includes all the latencies related to synchronization between requests and

responses (modeling epochs), the elapsed time between a request and its response (server latency,

or intra-epoch latency) or between requests (client latency also called user thinktime, or inter-

epoch latency). In connections that send data concurrently in both directions, the time dimensions

represent the quiet periods between transmissions of application data units in either direction..

 We represent connection structures in this study by starting with a simple model, based on

 9

Harpoon [SB04], defining the connection structure in the size dimension alone. Consider a

connection that transfers a total of X bytes in one direction between endpoints and Y bytes in the

opposite direction over the duration of the connection. Harpoon would use two separate

connections for each original connection with a unidirectional transfer of all the bytes in a given

direction in a single block in each of the two connections. We modified this concept to use a

single TCP connection for each original connection, but with two different methods of

synchronizing the bidirectional data transfers. In both methods, all the bytes flowing in one

direction are sent as one large block without internal gaps or latencies. In one method the two

blocks are sent concurrently in both directions while in the other method the two blocks are sent

sequentially as a request-response exchange. We call the first method the block-concurrent (blk-

conc) model and the second method the block-sequential (blk-seq) model.

 The three ways of representing connection structure described so far (Harpoon, block-

concurrent, and block-sequential) are all based solely on the size dimension of connections. To

introduce the time dimension, we turn to the representations exemplified by the Swing [VV09]

and Tmix [HC06] traffic generators. Using Tmix’s a-t-b-t framework, we can describe several

variations for representing connection structures. First, we retain the set of epochs representing

the request-response exchanges along with the a and b values for each epoch but without any of

the t values. This representation that we call the a-b model includes the time dimension only in

the implied synchronization between a request and its response.

 Next, we define the a-t-b model in which the t represents the full latency between a request

and its response thus implicitly representing any server processing time. The full representation of

a connection, the a-t-b-t model, adds the latency between successive requests and thus any client

processing or user think times. Thus we start with only the size dimension to model a TCP

connection, and add in the time dimension creating six slightly different models for any TCP

connection. These are the Harpoon, blk-conc, blk-seq, a-b, a-t-b, and the a-t-b-t models.

 10

1.4 Emulating Network Path Characteristics

 In addition to experimenting with six models for representing connection structure for a TCP

connection, we ran experiments using seven different methods of emulating round trip times

(RTTs) in our experiments. All of these have either been used in, or are inspired by, previously

published work. For one extreme we first tried emulating no RTT latency (nodelay) beyond that

inherent in the laboratory network used in the experiments which is typically 1 millisecond or less

(reasonable for studying local networks but obviously wrong for wide-area emulation). At the

other extreme, we used the Tmix capability (called usernet) to emulate the specific minimum

RTT measured for each connection from the empirical analysis of the originally captured TCP/IP

header traces.

 Between the nodelay and usernet RTT models, we developed five more models as follows.

First, we emulated a single non-zero value for all connections, using either the mean or median of

the RTTs found by analyzing all the several million connections in the TCP/IP header traces. The

“nodelay”, mean and median RTT cases all represent one method of assigning a single value to

all connections in the hour long experiment. This method of assigning connection RTTs

effectively emulates a single end-to-end network path for all the connections in the experiment.

We then created models emulating n network paths by assigning a specific round trip time delay

to each of the n end-to-end paths where n was 10 in one model and 30 in another.

 The network used in this dissertation has a maximum of 30 pairs of traffic generator

machines. So, in one case, we assigned a unique emulated RTT to a path shared among three

pairs (a total of 10 end-to-end path RTTs). The values chosen for this case were the values

recommended for the TMRG common TCP evaluation suite [AMF+08]. In a second variation, we

assigned a unique RTT value for each of the 30 end-to-end paths between the 30 pairs of traffic

generator machines. In this case, we used a discrete approximation method to approximate the

empirical RTT distribution found from analysis of the traces.

 11

 Finally, we ran experiments using an RTT emulation method where a value was assigned per

connection to each of the several million connections in the experiment. In one case, we assigned

to each connection a value randomly sampled from a uniform distribution of RTT values. In the

other case, we used the Tmix method of assigning the specific minimum RTT for each connection

as observed in the originally captured TCP/IP header trace. Thus we used seven different RTT

emulation methods, three assigning values on a per-experiment basis (one RTT value for all

connections), two assigning values on a per-path basis and two more on a per-connection basis.

 We ran experiments with the full cross product of six connection structures and seven RTT

emulations, and we report those results in Chapters 5 and 6.

1.5 Changing the Network Environment

We ran every experiment described above in two distinct environments in the network. First,

we set the link between the two routers in the unconstrained network mode where the link

capacity was unchanged at 1Gbps. Next, we set the link in constrained network mode where the

link bandwidth was limited such that the link capacity was 105% of the traffic traversing the link.

Setting constraints on this link enabled us to study the queue dynamics for the outgoing queue at

the router before this link. See Chapter 4 for details on network setup and topology.

We first ran all calibration experiments in unconstrained mode. Then we ran experiments

using the different connection structure models and RTT emulations in both unconstrained and

constrained modes to study the effect of changing the network environment on network

performance. We detail the results from these experiments and discuss the effect of the network

environment on the outcome of experiments in Chapters 5 and 6. Chapter 5 present results for a

complete set of experiments run in both network environments. Chapter 6 presents interesting,

additional results for experiments run in one or both network environments.

 12

1.6 Using Two Input Traces

 To ensure robustness of our results, we ran all our experiments using two input traces

collected at two diverse locations on the Internet. The first one from UNC was taken on the

border link connecting the campus to the Internet service provider network. The second trace was

taken at an aggregation switch for four internal networks, connecting one of IBM Corporation’s

largest development sites to the Internet. The UNC campus trace was a 1-hour trace on a weekday

during the school year. The IBM trace was also a 1-hour trace which was representative of typical

peak workday traffic on this corporate network. The UNC trace has almost 4.7 million

connections with an average load of 471 Mbps in one direction and 202 Mbps in the other. The

IBM trace has about 2.8 million connections with an average load of 404 Mbps in one direction

and 366 Mbps in the other.

1.7 Modeling Receiver Window Sizes

 For all the experiments exploring connection structure models and RTT emulation methods,

we used Tmix’s model for assigning window sizes to the two ends of every TCP connection.

Each side of every connection was assigned the maximum receiver window size exactly as

measured through the analysis of the original trace. Hence, even when we modeled the simplest

connection structures like block-concurrent, we provided some inherent sophistication to the

overall traffic modeling by the assignment of measured receiver window sizes. Our decision here

was based on the idea that a system is best studied when adjusting one tunable knob at a time.

Hence we kept the window size for connections in these experiments the same as empirically

observed in the original header trace.

 Besides the full suite of experiments using different connection structure models and different

RTT emulation methods, we ran experiments where the maximum receiver window sizes were

 13

fixed for all connections as 8KB, 16KB, or 64KB, using only the control set combination of the

a-t-b-t connection structure and usernet RTT models. Results for these experiments are reported

in Chapter 6.

1.8 Thesis Statement

 This dissertation is based on the following hypotheses:

The structure of application workload models (TCP connection structure) and

the characteristics of the network path through the emulation of Round-Trip-

Time (RTT) models, significantly impact the outcome of experiments. Such

impact can be quantitatively demonstrated through measurement of performance

metrics both by the user-perceived performance metrics of application behavior

as well as network-centric performance metrics at the routers and links in the

network.

 In this dissertation, through extensive laboratory experimentation and analyses, we show how

specific modeling choices in traffic generation affect the outcome of the experiments in which

they are used. The outcome of any experimental evaluation depends heavily on the input to the

system – this is the garbage-in garbage-out concept. Based on the detailed study of the behavior

of standard TCP and its high-speed variants by many leading researchers as well as preliminary

laboratory experiments, my initial hypotheses was that the application workload and network path

characteristics applied as input to the research network testbed system heavily impact the

resulting application and network behavior. Within the realm of empirically-derived traffic

generation, my goal was to differentiate among different aspects of emulating application

workloads and network path characteristics, and show how they affect performance metrics both

at the network-level and the application-level.

 14

1.9 Summary of Conclusions and Contributions

 Through extensive experimentation using the Tmix traffic generation system as the basis for

running experiments on a laboratory testbed, we arrive at the following conclusions.

In an unconstrained network, regardless of the application workload model used,

or the input traffic used, round trip time had a significant effect on user

perceived performance measures of connection duration and response times, but

only up to a maximum of 1 second of the distribution for these metrics.

 With no constraint on the link, we found that different round trip time models used in traffic

generation affect experimental outcomes differently. As expected, we found that different RTT

models resulted in different distributions of connection duration and response times. These

differences, however, were significant only up to about 500 milliseconds, or a maximum of 1

second of the distribution for these metrics. Beyond that, the RTT model has no effect on these

metrics.

RTT model had no impact on the number of active connections (measured in 1

second intervals) in the network.

 The number of active connections in the network is a second order measure of performance

and a key metric for many router protocol evaluations. It is directly affected by the durations of

connections in the network. Since the choice of RTT model affects the distribution of connection

durations only up to 1 second of the distribution, and since we compute a connection to be active

in one second intervals, this effect of RTT model on connection durations does not affect the

number of active connections in the network.

 15

In a constrained environment, the smaller the median of the distribution of

connection RTTs, the heavier was the resulting queue distribution at the router.

 When the router-to-router link is constrained, the different round trip time models used in

generating traffic alter the queuing dynamics at the router before the constrained link to slightly

different degrees. In such a constrained mode, some RTT models cause larger queuing delays

than others. For example, let us compare two experiments – one in which we used the usernet

RTT model which has thousands of connections with small RTTs (median RTT for this

distribution was 36 milliseconds), and the second in which we use one value of 80 milliseconds

as the RTT for all connections in the experiment (80 ms was the mean of the usernet RTT

distribution). We found that for a given connection structure model, using the usernet RTT model

resulted in the heavier queue length distribution because for a large number of connections, their

RTTs were smaller than the 80 ms RTT assigned to all connections in the meanrtt model. The

experiments using meanRTT resulted in relatively lighter queue distributions.

In a constrained environment, there were no differences in connection durations

or response times due to different RTT models for the block and a-b connection

structure models.

 In an unconstrained environment, we observed clear differences in connection durations and

response times due to different RTT models for the block and a-b connection structure models.

However, in the constrained mode, the block and a-b models resulted in very heavy queue

distributions. This caused long enough queuing delays that almost completely masked the

differences in distribution of connection durations and response times among the three connection

structure models. The distribution of these metrics, however, had shifted heavily in the

constrained mode as compared to their corresponding unconstrained experiments. The only

 16

connection structure for which RTT models still made a difference on these metrics in the

constrained mode was the a-t-b-t model. This is because the a-t-b-t model does not create as

heavy queues as the other connection structure models. Hence when using the a-t-b-t model, the

differences in connection duration and response times up to 1 second of the distributions were still

observed in the constrained mode.

Randomly assigning the same empirically derived round trip times to

connections, using the discrete-approximation RTT model, is almost as effective,

on an aggregate level in the unconstrained mode, as assigning each connection

its originally measured RTT using the usernet model.

 We developed an approximation of the empirical RTT distribution from the usernet model;

we called the discrete approximation or the DA RTT model. We found that the DA model for

RTT emulation yields results for all metrics very similar to the usernet model in the

unconstrained mode, as shown in Chapter 6.

The differences in impact of the RTT model used in traffic generation, while

significant, become negligible when compared to the dramatic differences in

impact of the connection structure models used in the experiment.

 We found that the application workload model or TCP connection structure has an even more

significant effect on all performance metrics than the RTT model used in traffic generation. The

two block structure models, representing TCP connections by their sizes alone, create

significantly different outcomes for all performance metrics as compared with the a-b model that

includes object size representation and synchronizations or the a-t-b-t model that includes object

sizes, the synchronization of objects, and endpoint latencies in its structure. As expected, we

 17

found that connection durations and response times increased when epoch structure and endpoint

latencies were included in the connection structure model for traffic generation. Also, network-

centric measures like the number of active connections in the network increased dramatically as a

result of the increase in connection duration.

Unlike RTT models which affected connection duration and response times only

up to 1 second, the connection structure models affect these metrics significantly

in the body as well as the tail of the distribution for these metrics.

 That is, the distributions for these metrics show significant differences for different

connection structure models not only for short connections, but also for very long connections

lasting the entire duration of the experiment. Why is this? We attribute this effect directly to the

fact that connection durations, while affected by connection RTTs, are most heavily affected by

the endpoint latencies, when they exist, within the connections. Number of active connections in

the network also goes up dramatically, by orders of magnitude, when using endpoint latencies in

the connection structures, as in the case (the a-t-b-t model).

In the constrained mode, the absence of endpoint latencies in the block structures

and the a-b model resulted in much heavier queues at the router, thus creating

counter-intuitively long durations and response times because of the second

order effects of queuing delay on connection duration and response times.

 In the unconstrained mode, for example, using the block structures, the average connection

duration was much smaller than when using the a-t-b-t model. This is because the endpoint

latencies in the a-t-b-t model add to the duration of connections. However, in constrained mode,

the long queuing delays caused by the block structures added long delays to the connection

duration; so much so that the duration of connections was longer in some cases for the block

structures than for the a-t-b-t model.

 18

The take away message, if there is to be just one, is that the time components of

traffic generation are as important, perhaps more so, than the size components.

 That is, while it is important to emulate TCP connections by the size of the connections, it is

equally important to emulate them by their time components. These consist of the connection

RTTs, the sequential or concurrent nature of data exchanges within connections, and especially

the endpoint latencies measured for these connections.

For the bulk of connections in any experiment, window size assignment made no

difference in connection durations or response times.

 For a small set of experiments using the control combination of the a-t-b-t connection

structure and usernet RTT models, we assigned a fixed window size of 8KB, 16KB, and 64KB

for all connections in an experiment. This results stated above is mainly because the bulk of

connections are small in size and hence unable to take advantage of the larger windows. For

connections carrying more than 1MB of data, however, we observed clear differences in these

metrics due to different window sizes. These connections performed better with larger window

sizes. While this is to be expected, it is noteworthy that in most Internet traffic, a small number of

connections is found to carry a relatively large percentage of the bytes. Hence for realistic traffic

generation, if those connections had larger window sizes in the original traffic, it is useful to

assign them those larger windows. Otherwise, these large connections may not complete in the

experiment.

1.10 Organization of Dissertation

 The rest of this dissertation is organized as follows. Chapter 2 presents related works with

some background and historical overview of traffic generation and empirical evaluations in

networking research. We discuss the three leading traffic generation systems used in empirical

 19

research today. We also present some evidence in the literature that point to the need for studying

the effects of traffic generation models and path emulations for experimental methodology in

empirical networking research. Chapter 3 discusses the design of the various TCP connection

structure models in traffic generation used in this dissertation as well as the motivation for their

selection. We also present the details of all the RTT methods used in the dissertation and cite their

usage in published research wherever applicable. We present the detailed characteristics of the

UNC and IBM traffic used in this dissertation.

 Chapter 4 presents the details of the network configuration and experimental methodology

used in this dissertation for running experiments. This chapter gives details of network setup and

how the experiments were designed and conducted. This chapter also presents results for the

control combination of connection structure model (the a-t-b-t model) and round trip time

emulation (the usernet method). Chapter 5 presents the main set of results for this study. We

present results for connection duration, response times, router queuing, and active connections in

the network. Note that the same set of results is presented twice in this chapter for clarity of

discussion. First we study the impact of the RTT emulation model; then we study the impact of

the application workload model. We discuss results using the UNC and IBM traffic in each of the

two network environments – unconstrained and constrained modes.

 Chapter 6 presents additional results. In this chapter, we present results for other connection

structure and RTT models that we developed and experimented with. This chapter also presents

results for varying the receiver maximum window size of TCP connections, and discusses the

effect on the process of packet arrivals at the router for different connection structure models.

 In Chapter 7, we discuss conclusions and future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

A science is any discipline in which the fool of this generation can go beyond the
point reached by the genius of the last generation.

Max Gluckman
South-African born British social anthropologist (1911- 1975)

 Experimental networking has evolved significantly over the last two decades, but it

remains a daunting endeavor. Throughout this time, traffic generation, a key component for

experimental networking, has remained a major challenge. What is traffic generation and what

role does it play in empirical networking research? Consider this example: you develop a new

Active Queue Management (AQM) scheme for routers on the Internet. AQM is a router-based

form of congestion control wherein routers notify end-systems of incipient congestion. The

common goal of all AQM designs is to keep the average queue size in routers small [LAJS07].

Before deploying this scheme in the wild (Internet), you must test it to ensure that it is better than

the existing queue management schemes on your routers. You do this by running experiments

using a laboratory network or a simulator.

 To produce reliable results from your experiments, you must generate realistic network traffic

in your experiments. Why? Say, you use only long-lived FTP-like connections to test your new

protocol. While that is representative of some real connections on the Internet, it is not

representative of the mix of Internet traffic that will be managed by the router using your new

protocol in a production network. Hence, the traffic you generate in the lab or simulator must

 21

represent a real mix of traffic on the Internet. So, how do you generate such realistic network

traffic? The state of the art in generating realistic traffic today consists of measuring traffic on a

real production link and using one of several methods to replay this traffic in the laboratory

network. In this dissertation, we use the Tmix traffic generation system to generate traffic in all

our experiments. We discuss Tmix and other related work in this chapter.

 This chapter is organized as follows. In Section 2.1, we present a brief overview of the

network simulators and emulation facilities used by various networking research groups. This is

followed by a discussion of the evolution of realistic traffic generation in Section 2.2. In Section

2.3, we present three major traffic generation systems: Harpoon, Tmix, and Swing. In Section 2.4,

we present examples in the research that addresses the need to generate realistic background

traffic in networking experiments. In Section 2.5, we discuss some community efforts to promote

benchmarking tools for congestion control experiments, concluding with a Chapter summary in

Section 2.6.

2.1 Network Simulators and Emulation Facilities

 Traffic generators are used in network simulators and emulators. Broadly classified,

networking experimentation is conducted in two experimental environments: simulation and

emulation. Emulation can be further classified into (i) controlled and repeatable experiments in a

laboratory, and (ii) live-Internet experimentation. In this section, we shall discuss examples of

each of these environments.

 At first, the networking research community developed simulators targeted towards the very

narrow and specific goals of their projects. Then, from the strong belief that “a diverse set of

researchers using a standard framework increases the reliability and acceptance of simulation

results” [BEF+00] the effort to create the NS network simulator was born almost a decade ago.

 22

More recently, several emulation testbed labs have been developed. These include the Emulab

[Emu], Wan-in-Lab [WIL], ModelNet [SN], and UNC’s NetLab [UNCnet] testbeds.

 The most commonly used network simulator is the ns-2 [NS2] simulator, and ns-3 which is

its recently developed replacement. ns-3 is a discrete-event software simulator; that is, the

simulation state changes only at discrete points in time. It is a network simulator targeted

primarily for research and educational use. It is written in C++ and Python. It is easy to configure

and provides an environment for rapid prototyping and building. We use network simulators like

ns-2 and ns-3 because they provide complete control, repeatability, and ease of use. However, in

doing so, we also sacrifice many protocol implementation details and the realism that requires

using real hosts and network elements. Hence, let us discuss some leading emulation testbeds.

Figure 2.1.1: The Emulab Testbed [http://www.emulab.net/, 2010]

 Emulab [Emu], at the University of Utah, is a network testbed, giving researchers a wide

range of environments in which to develop, debug, and evaluate their systems. A slice of this lab

facility is shown in Figure 2.1.1. Emulab is a networked PC cluster that provides a space- and

time-shared public facility for studying networked and distributed systems. Emulab tries to

transparently integrate a variety of different experimental environments. Historically, Emulab has

supported three such environments: emulation, simulation, and live-Internet experimentation.

More recently, they have expanded to a fourth environment, virtualized emulation. Emulab

 23

allows for integrated experiments where they spatially combine real elements with simulated

elements to model different portions of a network topology in the same experimental run. This

enables new validation techniques and larger experiments than obtainable by using real elements

alone [G05].

Figure 2.1.2: The WAN-in-Lab Testbed [http://wil.cs.caltech.edu/, 2010]

 WAN-in-Lab [WIL], at The California Institute of Technology, is an experimental

networking testbed aimed at developing, testing and evaluating new communications protocols

and technologies. A slice of this lab facility is shown in Figure 2.1.2. WAN-in-Lab has a 1500-

mile long-haul fiber optic test bed, located in a single laboratory, to allow detailed control and

measurement. Initially built to aid FAST TCP research [WJLH06], WAN-in-Lab is now used for

a variety of networking research and is being equipped to provide a publicly available TCP

benchmarking facility. WAN-in-Lab includes a dynamically reconfigurable array of Cisco routers

interconnected via OC-48, Gigabit Ethernet (GbE) and 10 Gigabit Ethernet (10GbE) links, using

an optical switch. They provide a complement to existing testbeds (that use software for

emulating delays) by providing real propagation delay using spools of fiber and active real-time

monitoring. Their goal was to reproduce a real production environment more closely.

 24

 ModelNet [SN] at the University of California at San Diego, is a large-scale network

emulator that allows users to evaluate distributed networked systems in realistic Internet-like

environments. It is a software that can be used as part of a laboratory testbed as shown in Figure

2.1.3. With hundreds of applications deployed over the nodes, ModelNet enables them to behave

as if they were distributed all over the world. That is, it emulates actual packet delays, losses, and

throughput of packets flowing between the different instances of the application. There are

physical Emulator nodes that run ModelNet on FreeBSD machines, and virtual nodes running

applications on Linux machines as shown in the Figure 2.1.3. ModelNet also sets up routing

tables on the emulator nodes so that packets from two virtual nodes that are on the same physical

machine flow through the emulator thus enabling the emulation of a wide-area network testbed.

Figure 2.1.3: Modelnet in a Testbed [http://www.ics.uci.edu/~mayur/model-net-details.html]

 So, far, we discussed some examples of simulation and emulation environments that provide

a controlled, repeatable, and in some cases realistic, systems framework for understanding, testing

and evaluating new and existing protocols and algorithms. The third experimentation

environment consists of running experiments in the wild; that is, running experiments on hosts

 25

that are not isolated from the Internet, thus injecting experimentally produced traffic onto real

production network traffic. Planetlab is one such overlay testbed that provides real Internet

connectivity, and hence does not have the control and repeatability of isolated laboratory testbeds.

Figure 2.1.4: PlanetLab nodes across the globe [http://www.planet-lab.org/, 2007]

 PlanetLab is a global research network that began in 2003. Researchers across the globe have

used PlanetLab to develop new technologies for distributed storage, network mapping, peer-to-

peer systems, distributed hash tables, and query processing. PlanetLab currently consists of 1,125

nodes at 511 sites as shown in Figure 2.1.4 [PL]. It is built as a consortium of academic,

industrial, and government institutions. Most of the PlanetLab machines are hosted by research

institutions, although some are located in co-location and routing centers (for example, on

Internet2's Abilene backbone). All of the machines are connected to the Internet.

 All PlanetLab machines run a common software package that includes a Linux-based

operating system, mechanisms for bootstrapping nodes and distributing software updates, a

collection of management tools that monitor node health, audit system activity, and control

 26

system parameters, and a facility for managing user accounts and distributing keys. The key

objective of the software is to support distributed virtualization—the ability to allocate a slice of

PlanetLab's network-wide hardware resources to an application. This allows an application to run

across all (or some) of the machines distributed over the globe, where at any given time, multiple

applications may be running in different slices of PlanetLab. One of PlanetLab's main purposes is

to serve as a testbed for overlay networks. Research groups are able to request a PlanetLab slice

in which they can experiment with a variety of planetary-scale services, including file sharing and

network-embedded storage, content distribution networks, routing and multicast overlays, QoS

overlays, scalable object location, scalable event propagation, anomaly detection mechanisms,

and network measurement tools. There are currently over 600 active research projects running on

PlanetLab [PL].

 The advantage to researchers in using PlanetLab (or similar testbeds) is that they are able to

experiment with new services under real-world conditions, and at large scale. Of course, the

disadvantage is that it is difficult to clearly interpret the results. With far too many unknown and

uncontrollable variables when running experiments in the wild, it is challenging to draw

conclusions. Still, such experiments are valuable and serve an important purpose in empirical

networking research as follows. A new protocol could be quickly prototyped and tested for

viability in a simulation environment. Then an emulation facility could be used to conduct more

testing and evaluation of the protocol under controlled and repeatable network conditions.

Finally, before deployment on the Internet, overlay networks like PlanetLab could serve as a

confirmation testing platform enabling experiments in the wild, while still restricting the

deployment of the new protocol to the overlay hosts.

 As the above emulation facilities have evolved, the most recent work in building such large-

scale networking testbeds has been an ongoing project called the Global Initiative for Networking

Infrastructure (GENI), started in 2005. Under the auspices of GENI, more sophisticated testbeds

 27

have been developed, and successfully collaborated with many of the above mentioned labs to

incorporate some or all of their resources into several large-scale research testbeds. For example,

Emulab and PlanetLab have both collaborated with the GENI project. Emulab’s shared GENI

infrastructure is known as ProtoGENI. PlanetLab is now fully absorbed into the GENI project,

while there are projects like the SuperCharged PlanetLab that are building high-performance

overlays in the PlanetLab context.

2.2 Evolution of Realistic Traffic Generation

 Each of the above mentioned testing and evaluation environments has different properties and

goals. However, a common challenge shared among all these environments is the generation of

synthetic traffic and the emulation of network path characteristics in experimentation. Floyd and

Paxson [FP01] outlined this problem in the course of declaring traffic generation to be one of the

key challenges in modeling and simulating the Internet. Their goal in discussing the difficulties of

simulating the Internet was to spur further work in these areas. In a possible response to their

challenge, several researchers have attempted to create workload models for traffic generation.

 To understand the concerns raised by Floyd and Paxson, consider the simplest method of

generating realistic traffic on a single link in the laboratory. One might approximate realistic

traffic generation by injecting packets into the network such that the characteristics of these

packets are the same as that of the packets on some real link. This is packet-level traffic

generation and can be achieved in two ways. Either we reproduce the exact sizes and arrival

times of every observed packet, or we inject packets into the network such that they preserve

some set of statistical properties relevant to the experiment. For example, the packet and byte

throughput on the link in 10 millisecond intervals, or the inter-arrival times of these packets could

match these same characteristics on some real production link. Such packet-level replay is a

 28

straightforward technique that is useful for certain types of experiments. For example, packet-

level replays have been used to evaluate cache replacement policies in routing tables [Jai90,

Fel88, GcC02]. In these experiments, the traffic generated need not respond to the changes in the

network. That is, evaluating these policies in the routing tables does not depend on the traffic

responding to changes in the policies.

 Packet-level traffic generation, however, has two important shortcomings: it is inflexible and

it is open-loop. First it is inflexible because there is no way to introduce variability in the

experiments. For example, once we acquire a trace, we inject packets into the network to match

some characteristics of that trace, as explained above. What if we wished to change packet sizes,

or use a different throughput on the link? These are clearly not options available with packet-level

traffic replay, other than acquiring a collection of traces and using a different trace (to match the

characteristics we need) in different runs of the experiments. Such traffic generation paradigm is

simply too cumbersome and impractical for running a large set of experiments [HC06].

 Second, packet-level traffic generation is straightforward. However, since the traffic we

replay in our experiments consists of all TCP connections, replaying them in an open-loop

manner in the experiments means that we would not preserve the feedback loop that existed

between the original sources of the traffic (the endpoints) and the network. TCP is a closed-loop

transport protocol. The rate of data transfer is dependent on flow control and congestion control.

Flow control is the mechanism used to impose a limit on the maximum sending rate of the

sending endpoint. Hence a TCP sender endpoint cannot have more than a maximum, called

receiver maximum window, of bytes outstanding (unacknowledged by the receiver endpoint) in

the network. Also, the sending rate is limited by a mechanism called congestion control, a set of

algorithms at the sender and receiver that react to implicit and explicit feedback from the

network. This feedback loop enables the endpoints to react to network congestion. This is

important because such reaction itself can change the conditions in the network, thus triggering

 29

changes in the behavior of the endpoints. For example TCP traffic reacts to congestion in the

network by lowering its sending rate, which is turn decreases congestion. Packet-level replay,

however, would not react to changes in the traffic. Therefore, packet-level replay would not be

useful in experiments studying the effect of network changes on protocol performance.

 Floyd and Paxson strongly urged against open-loop packet-level modeling, and

advocated modeling the sources of traffic instead [PF95]; that is, modeling the application

behavior at the endpoints. For example, they argued, individual FTP connections between

endpoints (sources) must not have a constant rate. Each packet must be sent only after a TCP

source receives an acknowledgement for an earlier packet. And if there is congestion in the

network, then an FTP connection must vary its sending rate depending on the TCP congestion

control window. Also, whether or not there is congestion in the network, different FTP

connections will have different average rates, depending on such factors as the TCP window and

packet sizes, the connection’s roundtrip time, and the congestion encountered in the network.

Capturing such application-level interactions and reactions to changing network conditions is

essential for realistic traffic generation.

 Application workload models are used on top of network stacks which implement flow

control and congestion control mechanisms which enable the traffic to react to changes in the

network conditions. Such models produce a closed-loop traffic generation system which is more

realistic. Early application workload models were infinite source models. The infinite source

model is inherently unidirectional. That is, for each TCP connection, the sender-receiver pair of

generators opens a connection; then the sender constantly sends data packets while the receiver

constantly receives or reads these packets. This was a simple model with no parameters and hence

was quite popular in leading studies for a number of years, including the mathematical analysis of

steady-state TCP throughput [PFTK00, BHC+04]. Most long-lasting FTP connections could be

 30

represented by this model. This was “realistic” because these FTP connections behaved like real

FTP connections on a production link.

 The rapid growth of the web drastically changed traffic characteristics on network links so

that short (small) request-response exchanges dominated the type of connections on these links.

As a result, it was no longer appropriate to use the unidirectional infinite source level model to

represent the applications using network links. Such modeling was now unrealistic because most

network traffic was found to be bidirectional.

 The advent of the web led to attempts by several research groups to model the

conversations between web browsers and web servers. One such effort at Boston University led

to the development of the SURGE (Scalable URL Reference Generator) model of web traffic

[BC98]. The SURGE model describes the behavior of each user as a sequence of web page

downloads and thinktimes between downloads. Each web page download consisted of one or

more web objects downloaded from the same server on one TCP connection. Surge models the

following components: (i) server file size distribution, (ii) request size distribution, (iii) relative

file popularity, (iv) embedded file references, (v) temporal locality of reference, and (vi) idle

periods of individual users.

 Each component was further modeled by a distribution of values observed for that

component. Thus, the empirical distribution for each component was represented analytically. For

example, they used the Pareto distribution for modeling the sizes of downloaded objects, and

Zipf's law for modeling the popularity of specific pages. Thus, SURGE provided parametric fits

for each of the components of the model, heavily relying on powerlaws and other long-tailed

distributions.

 A model of web traffic contemporary to SURGE was also presented by Mah [Mah97]. It

described web traffic using empirical CDFs which were derived from the analysis of packet

header traces. They captured traffic on a production link and filtered only HTTP traffic. They

 31

modeled the HTTP traffic using parameters of Web client behavior, such as file sizes and think

times. They developed empirical probability distributions from those traffic traces to describe

various components of the Web client behavior. They then used these distributions to determine a

synthetic workload. These components were: HTTP request length, HTTP reply length, document

size or number of files per document, think time or time between retrieval of two successive

documents, number of consecutive documents retrieved from any given server, and server

selection – the parameter used to select each succeeding server accessed. At the lowest level, their

model deals with individual HTTP transfers, each of which consists of a request-reply pair of

messages, sent over a single TCP connection.

2.3 Current Traffic Generation Systems

 Most of the work in workload generation during the 1990s, including the ones we have

discussed so far, focused on one or a limited set of application protocols such as FTP, Telnet, and

SMTP [Pax94], HTTP [BC98] [Mah97] [CCG+04] [LAJS07], and some forms of multimedia.

The obvious limitation of these approaches is that real links carry a continuously evolving mix of

a number of different applications. While Paxson and Floyd introduced the concept of using

source models of individual connections to generate traffic for simulations, they also cautioned

that simulating each individual source can be prohibitively expensive in terms of processing time,

for many current simulators, because a highly-aggregated Internet link consists (today) of many

thousands of simultaneous connections [FP01].

Solid, high-level descriptions of aggregate traffic, and simulation models of

aggregate traffic that faithfully reproduce the response of the aggregate to

individual packet drops (or to other indications of congestion), would be a great

 32

help to researchers in exploring large-scale simulations. But, so far, such

abstractions are beyond the state of the art. [Floyd and Paxson, p. 398, 2001]

 That was in 2001. Today’s state of the art traffic generation systems like Tmix have indeed

achieved this goal.

 In this section, we discuss three such application workload models used in realistic traffic

generation systems. They are the Harpoon model, the Tmix a-b-t model, and the Swing model.

The Harpoon [SB04] traffic generator was a landmark contribution in such application workload

modeling and traffic generation, because it first addressed the issue of representing a complete set

of applications empirically using both TCP and UDP transport protocols without specific

knowledge of application protocols or port usage. Swing [VV09] and Tmix [WAHC+06] are also

empirically based approaches (using tcpdump packet header traces) to represent and generate

workloads for the complete set of applications using a given network link. Both Swing and Tmix

depart from the Harpoon approach by using the additional information available in a packet

header trace to represent the internal dynamic structure of connections or flows.

 In the rest of this section, we discuss these three leading traffic generation systems.

2.3.1 The Harpoon Model

 The Harpoon modeling process was empirically based using easily obtained NetFlow records

for all the connections/flows traversing a given network link. Harpoon fundamentally represents

a connection or flow by its source-destination IP address pair, its relative start time, and the total

number of bytes transferred independently in each direction between source and destination

endpoints, as seen at a router. The Harpoon traffic generator [SB04] takes a router Netflow trace

and generates representative packet traffic at the IP flow level. Sommers et al. define an IP flow

as a unidirectional series of IP packets of a given protocol traveling between a source and a

 33

destination IP/port pair within a certain period of time. Netflow data includes source and

destination AS/IP/port pairs, packet and byte counts, flow start and end times, and protocol

information. Harpoon uses this data to generate TCP and UDP packet flows that have the same

byte, packet, temporal (diurnal effects associated with traffic volume) and spatial (vis-à-vis IP

address space coverage) characteristics as measured at routers in live environments [SB04].

 The Harpoon flow model, as shown in Figure 2.3.1 has a two level architecture: connection

level and session level. Each “connection” is defined by its file size transferred, and inter-

connection time, or time between file transfers. Harpoon connections are 5-tuple flows: source IP

address, destination IP address, source port, destination port, and protocol. Harpoon sessions are

divided into either TCP or UDP types that conduct data transfers using the respective protocol

during the time that they are active. The sessions are 3-tuple flows: source IP address, destination

IP address, and protocol.

Figure 2.3.1: Harpoon’s two-level hierarchical traffic model [Barford and Crovella, p. 70, 2004]

 The session level has two components: the number of active sessions and the IP spatial

distribution (IP address space coverage). By modulating the number of sessions that are active at

any point in time, Harpoon can match the byte, packet, and flow volumes every five minutes from

the original data and realize the temporal (diurnal) traffic volumes. Five minutes also happens to

 34

be the interval over which flows are aggregated by NetFlow [Netflow]. The intent and domain of

Harpoon is to create necessary volumes over longer time scales to produce self-similarity and

diurnal patterns in a way that real application traffic is generated.

Parameters Description
PFilesize Empirical distribution of file sizes transferred.

PInterConnection
Empirical distribution of time between consecutive TCP connections
initiated by an IP source-destination pair.

PIP Rangesrc and
PIP Rangedest

Ranges of IP addresses with preferential weights set to match the empirical
frequency distributions from the original data.

PActiveSessions

The distribution of the average number of sessions (IP source-destination
pairs) active during consecutive intervals of the measured data. By
modulating this distribution, Harpoon can match the temporal byte, packets
and flow volumes from the original data.

IntervalDuration Time granularity over which Harpoon matches average byte, packets and
flow volumes.

Table 2.1: Summary of Harpoon Configuration Parameters for TCP Sources
[Barford and Crovella, p. 72, 2004]

 Thus, the Harpoon model, as summarized in Table 1, is made up of a combination of five

distributional, empirically-derived, models for TCP sessions: file size, interconnection time,

source and destination IP ranges, and number of active sessions. The interval duration parameter

was set to five minutes for all their experiments. For UDP packet transfer, Harpoon contains three

distributional models: a simple parameterized constant packet rate, a fixed-interval periodic ping-

pong, and an exponentially distributed ping-pong. The first source type is similar to some audio

and video streams, while the latter two types are intended to mimic the standard Network Time

Protocol (NTP) and Domain Name Service (DNS), respectively.

 While the Harpoon traffic model was a major breakthrough in empirically derived source

modeling, it has its drawbacks. Most importantly, they model the size dimension of application

models, completely ignoring the time dimension. As we demonstrate using our results in Chapter

 35

5, the time dimension in application workloads plays a major role in the outcome of experiments.

Furthermore, the Harpoon model discards “ACK” flows or flows that are very small, for example,

request direction for an HTTP transfer. They also use only complete connections, discarding all

incomplete connections, that is, connections for which one or more of the initiation or termination

markers (SYN, or FIN/RST) was not recorded in the Netflow logs. The Harpoon model recreates

aggregate trace characteristics without reproducing wide-area network conditions. That is, they

do not reproduce connection round trip times, receiver maximum window sizes or loss rates seen

on the network. Despite these drawbacks, the Harpoon traffic generator was a landmark

contribution because it addressed the issue of representing a complete set of applications using

both TCP and UDP transport protocols without specific knowledge of application protocols or

port usage.

2.3.2 The Tmix a-b-t Model

 Tmix [WAHC+06], like Harpoon, is also an empirically based approach (using tcpdump

packet header traces) to represent and generate workloads for the complete set of applications

using a given network link. But Tmix departs from the Harpoon approach by using the additional

information available in a packet header trace to represent the internal dynamic structure of

connections or flows as follows. Tmix uses inferences about TCP sequence and

acknowledgement number exchanges in a packet header trace to characterize connections as

sequences of request-response exchanges between endpoints. The request-response exchanges for

a connection are represented by the number of exchanges, the amount of data in each direction

per exchange, and the elapsed time between a request and its response (“server” or intra-epoch

latency) or between requests (“user” or inter-epoch latency).

 This model allows one to faithfully reproduce the essential pattern of socket reads and writes

that the original application performed without knowledge of what the original application

 36

actually was. In [HC06], the author describes Tmix and demonstrates how the generated traffic

displays all the key characteristics of the original captured trace. In addition to the details of

request-response exchanges, Tmix reproduces the relative start time, RTT, receiver maximum

window size, and loss rate for each connection found in the original tcpdump from a production

link.

 Thus, starting from a trace of TCP/IP headers collected on a production network, Tmix

constructs a model for all the TCP connections observed in the network. The model, a set of a-b-t

connection vectors, can be used in the workload generator of Tmix to generate the connections

and reproduce the application-level behaviors observed on the original network link. The a’s and

b’s are application data units (ADUs) as recorded from the original captured trace, and the t’s are

the intra-epoch and inter-epoch quiet times within a TCP connection. Modeling as ADUs allows

the TCP stack to deal with packetizing, so that inter-packet time is actually not captured, just

inter-ADU time is represented.

 The a-b-t model is used to generate TCP workloads only. A major contribution of this work is

that it identifies a fundamental dichotomy in application behavior between connections that

exchange data sequentially and those that exchange data concurrently. These two types of

connections are shown in Figures 2.2.1 and 2.2.2. Each TCP connection is represented as a

connection vector, and every request-response-time sequence is called an epoch within the

connection. An epoch represents the abstract characterization of a request/response exchange.

Thus every connection consists of one or more epochs.

 37

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

ta3ms

b3 bytes

Epoch 1 Epoch 3Epoch 2

Connection
initiator

Connection
acceptor

Time

Figure 2.3.2: An a-b-t diagram illustrating a persistent HTTP connection (sequential)

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

b3 bytes

Connection
initiator

Connection
acceptor

Time

Figure 2.3.3: An a-b-t diagram illustrating a concurrent connection

 Unlike Harpoon’s model, Tmix’s a-b-t model is a non-parametric model. Harpoon uses

distribution-based models parameterized from analysis of empirical data that are then used with

random sampling methods to generate statistically representative workloads in laboratory

networks. Tmix, however, emphasizes faithful replays in the laboratory using derived details

 38

about each connection to create a replay trace that is used to initiate operations at the socket level

to generate workloads. It also offers a method to scale offered loads by sampling the original

trace, thus offering huge flexibility in creating modified datasets of workloads resembling the real

Internet traffic for specific evaluations on testbeds [HC06]. This method enables the researcher to

introduce controlled load variability in the source-level trace replay experiments without

sacrificing realistic workload modeling.

 Tmix is a highly flexible traffic generation system and the a-b-t model provides a basis for

comparing traffic generation methods for our study. Tmix, like the other systems, has its

drawbacks. First, it does not emulate UDP flows. Second, Tmix does not account for any

correlation among start times of TCP connections; that is, it does not model the sessions that

Harpoon and Swing model on top of the connection model.

 The Tmix method of traffic generation works as follows. Given a packet header trace, the

trace is analyzed and described as a set of connection vectors. Each connection vector describes

the application-level behavior of one of the TCP connections in the trace. In addition, each vector

includes the relative start time of each connection, and its measured minimum round trip time, the

TCP receiver window sizes, and loss rate. The basic approach to generating traffic is to replay

each connection vector. For each connection, the replay consists of starting a TCP connection,

carefully preserving its relative start time, and reproducing ADUs and inter-ADU quiet times.

[HC06].

2.3.3 The Swing Model

 Swing [VV09], like Tmix, is a closed-loop, network-responsive traffic generator that

accurately captures the workloads from a range of applications using a simple structural model.

But Swing, unlike Tmix or Harpoon, advocates a common parameterization model for various

 39

application classes instead of grouping them all together. Starting from observed traffic at a single

point in the network, Swing automatically extracts distributions for user, application, and network

behavior. It then generates live traffic corresponding to the underlying models in a network

emulation environment running commodity network protocol stacks, generating traces that are

statistically similar to the original traces. They extract and assign the following network

characteristics: link delays, link capacities, and loss rates.

 Swing develops a session model on top of the connection model of Tmix. Swing includes

characterizations of the user and session interarrivals which implicitly determine the connection

start times. Swing defines request-response exchanges as RREs, where a base request for a web

page accompanied by several image downloads as part of that request and all its responses are

considered part of the same RRE, and as different connections within the same RRE. It could

amount to parallel or simultaneous connections. Connections are part of the same RRE if the

SYN of a new connection is within an RREtimeout of 30 seconds of the previous connection from

the same IP address. If not, then this connection is a new RRE. However, if this new RRE is from

the same IP address pair, and if its SYN is within a session timeout period of 5 minutes, then it’s a

new RRE in the same session as the previous RRE. If it’s beyond the 5 minute session period,

then a new session has started.

 So, the structural model of Swing, as shown in Table 2, is as follows: each session consists of

a number of RREs, which in turn consist of a number of protocol connections. Hence their

structural model consists of users, sessions, connections, and network characteristics. For each

HTTP session, for instance, they pick a randomly generated value (from the corresponding

distribution) for each of the variables. First they pick a client and then decide how many RREs to

generate along with their interRRE times. For each RRE, they decide how many parallel

connections (separated by interConn times) to open and to whom (server). Within a connection

 40

they decide the total number of request-response exchanges along with the request sizes, response

sizes, and the request think time (reqthink) separating them.

Layer Variable in the parametrization model: Description
Users ClientIP, numRRE: Number of RREs, interRRE: think time

RRE numconn: number of connections, interConn: time between start of
connections

Connection

Numpairs: number of request-response exchanges per connection,
Transport: TCP/UDP based on the application, ServerIP, Response Sizes,
Request Sizes, reqthink: user think time between exchanges on a
connection

Packet packetsize, MTU, bitrate, packet arrival distribution (only for UDP)
Network Link latency, Delay, Loss rates

Table 2.2: Swing’s structural model of traffic [Vishwanath et al., pg. 715, 2009]

 Swing emulates the network path using ModelNet. Every packet is routed to a single

ModelNet core. Swing generates traffic that matches the burstiness of the original traffic for both

bytes and packets in both directions. They have shown this to be true for a variety of individual

applications and original traces at a range of speeds and taken from a variety of locations. The

generated traffic also matches burstiness of the packet arrival process of the original trace at a

variety of timescales ranging from 1ms to multiple minutes. Their metrics for success in traffic

generation are realism, responsiveness, and maximally random traffic generation. This last metric

calls for a traffic generation tool to be able to generate a family of traces constrained only by the

target characteristics of the original trace and not the particular pattern of communication in that

trace. While Tmix strove to generate traffic that was the same as the original traffic, the authors

of Swing clearly declare that they want their generated traffic to be “representative” of real traffic

and not necessarily the same as the real traffic. Thus Swing was designed to allow

experimentation with changing loads and application characteristics. It also allows estimation of

 41

experimental variation by generating random instances of traces using different random number

seeds.

 While Swing is also a highly flexible traffic generation system, it has two major drawbacks.

Swing is not application independent like Tmix and Harpoon. Given a packet header trace, they

first assign packets and flows to application classes, based on destination port numbers. For those

applications with port numbers that cannot be classified, there is an ”other” application class.

They start with a set of parameters for each application and add in more parameters as needed.

This may not be scalable as applications change constantly. However, their argument for doing

this is that they can then change the characteristics of the generated traffic in terms of applications

represented in the traffic. And like Harpoon, Swing does not use incomplete connections.

 In summary, the researchers that developed the Harpoon, Swing, and Tmix workload

generators reported extensive validations to show that the resulting synthetic packet-level traffic

on an emulated network link was a realistic or faithful reproduction of the traffic seen on a real-

world network link. To the best of our knowledge, however, ours is the first research that

explores in detail the effects of using different models of application workloads and path

characteristics on various metrics of network performance in a realistic network environment.

2.4 Does Traffic Modeling Matter?

 Besides the work that has produced realistic application workload modeling and traffic

generation tools over the last decade, there have also been a few attempts to show that simply the

presence of background traffic (realistic or not) makes a difference in the outcome of the

experiments. For example, in [VV08], the authors show that realistic background traffic matters

in experimental evaluations of distributed systems, and that simple models like CBR and Poisson

are insufficient. Another example is in [HLRX07] where the authors make observations about the

 42

effects of background network traffic for TCP protocol evaluations.

 In his dissertation [Le05], Long Le shows that the results for response times using different

Active Queue Management (AQM) schemes changes dramatically when a different RTT

distribution was used. And in [JRF+01], the authors illustrate how variability in network traffic

affects buffer dynamics in IP routers. In the rest of this section, we discuss these four research

projects more closely.

2.4.1 Does Background Traffic Matter?

 In [VV08], the authors make the point that simple models of background traffic, such as

constant bit rate, Poisson arrivals, or deterministic link loss rates are insufficient to capture the

effects of background traffic on applications. They contend that we require more complex

background traffic models that capture the burstiness on a particular network link. Traffic models

that drive tools like Tmix, Harpoon and Swing are based on this idea.

 In this paper they show that in order to evaluate distributed systems and networked services

in a realistic manner in an experimental testbed, a key ingredient to model correctly is

background traffic. They study the impact of background traffic on three applications - web

traffic, multimedia traffic, and bandwidth estimation tools. Also, they use four different methods

of generating background traffic. They employ constant bit rate (CBR), Poisson model, TCP

replay, and Swing. Swing is the only one among these that uses a real trace and generates TCP

traffic using stacks on the end-systems. Hence the resulting background traffic using Swing is

responsive.

 How does this paper relate to the work in this dissertation? They show that realistic traffic

matters in experimental evaluations, and that simple models like CBR and Poisson models are

insufficient. We move further beyond this idea – we show that even within the realm of realistic

 43

traffic models, some aspects of the structural model matter more than others, depending on what

is being evaluated. For example, preserving the request-response exchanges within TCP

connections affects router queue dynamics, but modeling the inter-epoch times between these

request-response exchanges within TCP connections has an even greater effect on router queue

dynamics and number of active connections in the network.

2.4.2 Impact of Background Traffic on High-Speed TCP Performance

 In [HLRX07], the authors examine the effect of background traffic on the performance of

existing high-speed TCP variant protocols, namely BIC-TCP, CUBIC, FAST, HSTCP, H-TCP

and Scalable TCP. They demonstrate that the stability, link utilization, convergence speed and

fairness of the protocols are clearly affected by the variability of flow sizes and round-trip times

(RTTs), and the amount of background flows competing with high-speed flows in a bottleneck

router.

 For all their experiments, they use dummynet to assign a per-flow delay. The delay is

randomly selected from a distribution obtained from [AKSJ03]. For background traffic, they use

Iperf to generate long-lived flows and SURGE to generate short-lived flows. They randomly

sample from a distribution of file sizes the amount of data (flow size) to be transferred in each

web session. This distribution consists of a log-normal body and a Pareto tail. As an example, for

background traffic, they use 12 long-lived flows and SURGE-generated web traffic with 70%

body and 30% tail. The minimum file size of the Pareto distribution is 1MB. The arrival time of

flows follows an exponential distribution with intensity 0.6.

 Their experimental results include evidence that the presence of some background traffic

affects TCP-friendliness. TCP-friendliness is defined to be the fairness of a high-speed flow in

sharing bandwidth with another TCP-NewReno or TCP-SACK flow over the same end-to-end

path. They do not restrain the maximum window size of TCP-SACK. Their experimental results

 44

with no background traffic indicate that with very low RTTs, the TCP-friendliness of H-TCP is

the best. All protocols improve their TCP-friendliness at varying degrees when some background

traffic is added. Among all the protocols tested, BIC-TCP and STCP show the biggest

improvement. There is also significant improvement in the TCP-friendliness of CUBIC under

some background traffic.

 How does this paper relate to the work in this dissertation? They show that the presence of

any background traffic, as opposed to no background traffic, affects certain TCP fairness metrics.

While their goal is notable – showing that background traffic matters in protocol evaluation –

their traffic is statistically modeled and their methodology for traffic generation lacks the

aggregation levels needed to make their case for realistic traffic generation.

2.4.3 Investigating the Effects of Active Queue Management on TCP

Performance

 In his dissertation [Le05], Long Le investigates the effect of active queue management on the

performance of TCP applications. This study involves a thorough evaluation of the leading AQM

algorithms, including PI, REM, and ARED, comparing them with the prevalent drop-tail queuing

in routers. As part of this study, Le, using the same application workload but two different RTT

distributions, shows that there are pronounced differences in the response time behavior for

almost every AQM scheme using the two RTT distributions. Figure 2.4.1 shows results using

uniform RTT distribution U[10,200] whereas Figure 2.4.2 shows results using an empirical RTT

distribution [AKSJ03].

 All the distributions for response times, other than the one labeled uncongested network are

results for experiments with 98% offered load of web traffic. Even the response time CDF

(cumulative distribution function) for the uncongested network is quite different for the two

 45

different sets of experiments. With uniform RTT distribution, in an uncongested network, 97% of

response times are 500 ms or less, whereas with a more general RTT distribution, only 73% of

response times are less than 500ms. When a uniform distribution of RTT was used, there was a

pronounced difference in the perceived performance of the different schemes. That is, DCN was

clearly the best AQM scheme, followed by PI and REM, then BLUE, ARED and drop-tail in that

order. The performances of the last three AQM schemes were significantly worse than the top

three.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

BLUE/ECN - qref=500
DCN - qref=24

ARED/ECN new gentle - min=120 max=360

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

 Figure 2.4.1: Response Time – uniform RTT Figure 2.4.2: Response Time – empirical RTT
 Comparison of all AQM algorithms at 98% load Comparison of all AQM algorithms at 98% load
 [Le05, Figure 4.112, p. 139] [Le05, Figure 5.54, p. 187]

 All else being the same, when the RTT emulation is changed to an empirical, non-uniform

distribution, there is virtually no difference among DCN, PI and REM, and though not as good,

both ARED and drop-tail are comparable in performance to the other schemes. Also, each of

these AQM schemes performed better when using uniform RTT distribution than when using the

general distribution. Although this study about comparing AQM performance also shows that

RTT distribution matters for performance evaluations, it does not shed light on what aspects of

the RTT model matters, nor does it investigate various RTT models.

 46

 How does this study relate to the work in this dissertation? Such studies could strongly

encourage or discourage router manufacturers and network administrators from turning on a new

queuing algorithm or changing the default TCP congestion control mechanism on the end

systems. Hence this only underscores the importance of investigating and developing standards

for traffic generation and network emulation. That includes exploring the choice of application

workload and network path characteristics in experiments and studying how such choices

influence the outcome of these evaluations. Such examples serve to emphasize and underscore

our hypothesis that application workload models and network path characteristics greatly

influence protocol performance.

2.4.4 TCP/IP Traffic Dynamics and Network Performance

 This paper [JRF+01] highlights the extent to which assumptions underlying the nature of

network traffic can influence practical engineering decisions. Using a simple network

configuration of a web server and its clients in the ns2 network simulator, they run experiments to

illustrate two points. First, by either implicitly accounting for or explicitly ignoring some aspects

of the empirically observed variability of network traffic, a range of different, and at times

opposing conclusions can be drawn about the inferred buffer dynamics for IP routers. Second,

TCP’s feedback-based congestion control is a possible contributing factor to the observed

variability of measured TCP/IP traffic over small scales, in the order of RTT.

 To show evidence for their first point, they create variability in the workload model as

follows. On one end of the spectrum of variability, they use 50 infinite sources that always have

data to transfer, thus creating the no variability mode. On the other end of the spectrum, they

generate purely web workloads similar to SURGE. The main idea behind these Web workload

models is that during a Web session, a user typically requests several Web pages, where each

Web page may contain several Web objects, thus emulating high variability in file sizes. To show

 47

evidence for their second point about the TCP feedback loop, they compare the results from

simulations using closed loop and open loop traffic generation.

 How does this paper relate to the work in this dissertation? They admit that their network

setup and experiments are unrealistic and oversimplified. But through experimental evidence,

they emphasize the risk associated with then conventional analysis and simulation of large-scale

networks. The risk concerns the wide-spread tendency to rely on and use “a model simplified to

the point where key facets of Internet traffic have been lost, in which case the ensuing results are

useless (though they may not appear to be so!).” [Paxson and Floyd, p. 1043, 1997].

2.5 Community Efforts Toward a Benchmark for TCP Evaluation

 There are currently no standards or benchmarks for protocol evaluation. However, there has

recently been interest in the community toward developing better practices for such

experimentation. In Time for a TCP Benchmark Suite? [WCL05], the authors make one of the

first cogent arguments for the need for a TCP benchmarking system. They propose a benchmark

consisting of a set of network configurations (topologies and routing matrix), a set of workloads

(traffic generation rules), and a set of metrics. The benchmark would have two modes: NS

simulation mode, and hardware experiment mode.

 More recently, Floyd and Kohler document in their 2008 Internet Draft (“Tools for the

Evaluation of Simulation and Testbed Scenarios”), that there has been some effort to formulate

evaluation scenarios specific to congestion control experiments. At the same time, there has been

increased awareness and consensus among networking researchers for the need to create a

common TCP evaluation suite. One of the key components of such a suite would be traffic

generation. In [AMF+08], the authors create a case for a common evaluation standard for TCP

evaluations. This paper does not present any results of experimentation, but acts as a powerful

 48

catalyst for discussions on this topic. There is also a related and ongoing effort by the “Transport

Modeling Research Group” [TMRG] to come up with a consensus for a baseline standard for

protocol evaluation. This effort, however, is simply to come up with a consensus, and use that for

testing. It does not itself present any experimental results.

 While all these efforts are making, albeit small, progress towards benchmarks for TCP

evaluations, none of them venture toward the much larger goal of benchmarks for empirical

research in networking. This dissertation is a step in that direction.

2.6 Chapter Summary

 The above examples (in Sections 2.3, 2.4, and 2.5) are papers or dissertations published

within the last few years. There is still no consensus about generating realistic workload models

as background traffic in networking research. All of these studies differ from the work in this

dissertation significantly, in that we move past the debate of whether or not background traffic

matters. Our questions are about the underlying structure of the workload model used in such

traffic, and the emulation of path characteristics in such experiments, for network performance.

We show, through extensive experimental evidence, how the choices made in both workload

modeling and network path characteristics strongly affect network performance for a set of

performance metrics.

CHAPTER 3

WORKLOAD MODELING AND TRAFFIC GENERATION

Building a large packet-switching network is easy; understanding the behavior of
traffic in a large packet-switching network is nearly impossible.

 Douglas Comer [C08]

 In this chapter, we present two main topics: traffic characteristics of the input traffic used in

this study, and the models developed for this traffic to represent the application workloads and

network characteristics. This chapter is organized as follows. In Section 3.1 we give detailed

analyses for the traffic characteristics of the two sets of input traffic mixes – UNC and IBM - that

we use as input for all our experiments for traffic generation. In Section 3.2 we discuss the Tmix

traffic generation system used for all our experiments in this study. In Sections 3.3 and 3.4 we

develop the six different connection structure models (application workloads) for TCP

connections and the seven different round trip time models (network characteristics) for

emulating the end-to-end paths.

3.1 Traffic Characteristics of the Two Input Traces

 For realistic traffic generation, we begin with real network traffic captured on production

links on the Internet. In this study, we use two very different network traces collected at two

diverse locations on the Internet. The first one from UNC was taken on the border link connecting

the campus of the University of North Carolina at Chapel Hill to the Internet service provider

 50

network. The second trace was taken at an aggregation switch for four internal networks,

connecting one of IBM Corporation’s largest development sites to the Internet. The UNC campus

trace was a 1-hour packet-header trace taken on a weekday during the school year, from 2:00 PM

to 3:00 PM on January 10, 2008. The IBM trace was also a 1-hour packet-header trace which was

representative of typical peak workday traffic on their corporate network, and was taken from

2:20 PM to 3:20 PM on October 10, 2006. Both these traces were captured using a 1Gbps Endace

Systems’ DAG capture card on a FreeBSD monitoring machine which is a 1.8GHz server class

PC with 1.2GB of memory. DAG technology provides 100% capture into host memory at full

line rate for all packets on the link [dag]. The traffic captured by the monitor was then converted

to pcap and processed using an enhanced tcpdump program, and several diagnostic and other

tools developed at UNC.

 In the rest of this section, we present detailed characteristics for the UNC and IBM traffic.

Why? While most network researchers will agree that application workload modeling is essential

for realistic traffic generation, we also know that there is no such thing as a standard network

trace. That is, two large production links on the Internet will likely yield two slightly different, or

as in our case two fairly different, traffic mixes. While we use such real traffic as input for our

empirical studies, we emphasize by example that we must first analyze and understand the

characteristics of the input traffic. Yes, indeed, the characteristics of the input traffic play a major

role in experimental outcomes. Using two such input traffic mixes then validates the results

more firmly while helping to bring out any methodological choices that lead to differences in the

results from using the two different inputs. Hence it is also useful to clearly study the similarities

and differences between the two input traces.

3.1.1 Throughput

 We begin the analysis of the two input traffic mixes by presenting the time series of their

 51

throughput.

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

UNC-dir1

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

UNC-dir2

Figure 3.1.1: Throughput as captured (high) – UNC Figure 3.1.2: Throughput as captured (low) – UNC

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

IBM-dir1

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

IBM-dir2

Figure 3.1.3: Throughput as captured (high) – IBM Figure 3.1.4: Throughput as captured (low) – IBM

 In Figures 3.1.1 through 3.1.4, we show the time series of the link throughput in both

directions for the original UNC and IBM traces respectively as captured. Although both traces

were an hour long, we have shown only the period between 10 and 50 minutes because that is the

period we use for all our experiments. The UNC original traffic, as captured, averaged 533 Mbps

in one direction (labeled high) and 248Mbps in the other direction (labeled low). The IBM

original traffic, as captured, averaged 464 Mbps in the high throughput direction and 427Mbps in

the other direction. Both exhibit variability, but the IBM traffic is significantly more variable.

 The throughput in these figures is for TCP traffic only. However, we do not use all of these

 52

connections to generate traffic in our experiments. We process this traffic as follows. First, using

tools developed by Hernandez-Campos [HC06], we classify the captured traffic into two

categories of TCP connections. The first category of connections, we discard. These connections

consist mainly of two sets: one in which the connections and their packets carry no data, and

second in which the connections were captured in only one direction. The first set of discarded

connections and packets carried no data, and the second carried small amounts of data in only one

direction. For connections that carried data in only one direction, we included them if we

captured the packets traversing both directions for that connection. Connections that carried no

data, however, still contributed a good fraction of the throughput due to their packet overhead.

For example, in the UNC traffic, the connections carrying no data were 10% of the total

connections.

 The connections with packets seen in only one of the two directions constituted 16% of the

total connections though they carried only 1.8% of the total data. And in the IBM traffic, the

connections carrying no data were 7% of the total connections. The connections with packets

seen in only one of the two directions constituted 5.6% of the total connections and carried

negligible (close to 0%) of the total data. It would be interesting to study what applications were

represented by these discarded connections, but that is out of scope of this study.

 The second category of connections constitutes the traffic we use for emulation in our

experiments. This is the bulk of the captured traffic that we then classify into sequential and

concurrent connections (see Section 3.1.2 for their representations). We further classify the

sequential and concurrent connections into complete and incomplete connections. A complete

connection is one for which we see the SYN and FIN or RST for the connection. An incomplete

connection is one in which we do not see any one or more of these initiation or termination

markers for that connection.

 In HC06, the authors used only complete connections for their study. We extend that work of

traffic generation by also including incomplete connections since these connections form a large

 53

part of the captured traffic. For example, for the UNC trace, 70% (about 4.5 million) of the

connections were complete sequential connections, carrying 52% of the total data bytes. And

while only 0.37% (about 24,000) of the connections were incomplete concurrent connections,

these connections carried fully 21% of the total data bytes. Similarly, for the IBM trace, 80%

(about 2.6 million) of the connections were complete sequential connections, carrying 56% of the

total data bytes. And while only 0.63% (about 20,000) of the connections were incomplete

concurrent connections, these connections carried fully 12% of the total data bytes.

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

UNC-dir1

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

UNC-dir2

 Figure 3.1.5: Offered Load (high) – UNC Figure 3.1.6: Offered Load (low) – UNC

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

IBM-dir1

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

IBM-dir2

 Figure 3.1.7: Offered Load (high) – IBM Figure 3.1.8: Offered Load (low) – IBM

 After including all the sequential and concurrent TCP connections, both complete and

 54

incomplete, the UNC trace had nearly 4.7 million total connections with an average offered load

of 471 Mbps in one direction and 202 Mbps in the other, as shown in Figures 3.1.5 and 3.1.6. The

IBM trace had about 2.8 million connections with an offered load of 404 Mbps in one direction

and 366 Mbps in the other, as shown in Figures 3.1.7 and 3.1.8.

3.1.2 Sequential and Concurrent Connections

 Of the 4.7 million total connections in the UNC traffic, 4,568,847 are sequential connections

and 115,045 are concurrent connections. The sequential connections transfer 214 billion bytes

(70%) of the total payload. The concurrent connections transfer 86 billion bytes (28%) of the total

payload. Of the 2.8 million total connections in the IBM traffic, 2,733,996 are sequential

connections and 51,058 are concurrent connections. The sequential connections in the IBM traffic

transfer 310 billion bytes (85%) of the total payload. The concurrent connections transfer 55

billion bytes (15%) of the total payload.

 So what are sequential and concurrent connections? Hernandez-Campos et al. first identified

and classified TCP connections for traffic generation as being sequential or concurrent in nature.

A sequential TCP connection is a sequence of one or more request-response exchanges, called

epochs. Each epoch describes the properties of a pair of application data unit (ADU) exchanges

between the two TCP endpoints. [HC06]. The concept of an epoch arises from the client/server

structure of many distributed systems, in which one endpoint acts as a client and the other one as

a server. This representation captures the sequential order of the ADUs within the TCP

connection, the direction in which the ADUs flow, and the sizes of the ADUs.

 In the sequential model, the application data is either flowing from the client (connection

initiator) to the server (connection acceptor) or from the server to the client. However, some TCP

connections are not driven by this client-server model of data exchanges. Some applications send

data from both TCP endpoints simultaneously. For example, such connections are said to have

 55

data exchange concurrency and are called concurrent connections. In such connections, one or

more pairs of ADUs are exchanged simultaneously.

3.1.3 Application-level Characteristics

 Hernandez-Campos et al. first developed this classification for all TCP connections into

sequential and concurrent connections with the goal of capturing and generating application data

exchanges, including the pattern of such exchanges, without knowledge of the underlying

applications. In this sub-section, we present data for these application-level characteristics for the

two input traffic mixes obtained from their packet-header traces. Specifically, we compare the

distributions for the number of epochs per connection, the size of ADUs, and the endpoint

latencies in the connections for the two traces.

3.1.3.1 Epochs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Number of Epochs

UNC-epochs
IBM-epochs

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Number of Epochs

Univ-epochs
IBM-epochs

 Figure 3.1.9: Number of connection epochs Figure 3.1.10: Number of connection epochs
 UNC and IBM – CDF UNC and IBM - CCDF

 An epoch is a request-response exchange within a sequential TCP connection. On average,

the sequential connections in the UNC trace used 3 epochs to transfer bytes, with a standard

deviation of 42 epochs. Sequential connections in the IBM trace used a mean of 9 epochs with a

 56

standard deviation of 123 epochs to transfer data. The cumulative distributions of number of

epochs per connection for both traces are shown in Figures 3.1.9 and 3.1.10. The CCDFs for both

are distributions are approximately linear on a log-log scale. Hence, both clearly have a heavy-

tailed distribution in the number of epochs.

 We observe that 60% of sequential connections in the UNC trace had only one epoch, with

90% of sequential connections having only 5 or fewer epochs. For the IBM trace, 44% of

sequential connections had only one epoch, with 90% of sequential connections having 14 or

fewer epochs. Only 3% of UNC connections had 12 or more epochs whereas 13% of IBM

connections did. So, while the top 3% of UNC connections had 12 or more epochs, the top 3% of

IBM connections had 33 or more epochs. In the UNC trace, only 0.01% of connections had 1000

epochs or more, whereas in the IBM trace that number was 0.05% of connections. The tails of the

distributions clearly show that the number of epochs in connections in the IBM trace was much

higher than those in the UNC trace.

3.1.3.2 Application Data Units (ADU)

 Sequential connections exchange data in epochs, that is, in a request-response pattern. Hence,

we measure the ADU sizes in each epoch as a request-size and a response-size for these

sequential connections. Concurrent connections, on the other hand, send bytes in both directions

simultaneously, so we represent all concurrent ADUs in one distribution. In Figures 3.1.11

through 3.1.16, we show the cumulative distributions of these ADU sizes for sequential and

concurrent connections. First, let us compare the request sizes for both the UNC and IBM traces

in Figures 3.1.11 and 3.1.12.

 The median data size for requests in sequential connections is 460 bytes in the UNC trace, but

only 84 bytes in the IBM trace. 20% of these requests are greater than 1000 bytes in the UNC

trace but only greater than 466 bytes in the IBM trace. But the average request size is 2.5 KB in

 57

the UNC trace and 6 KB in the IBM trace. The top 10% of request sizes are greater than 1.6 KB

in the UNC trace and greater than 1 KB in the IBM trace. So, while the IBM traffic has a few

sequential connections with very large request sizes (skewing the average), most of the request

sizes in the UNC trace are comparatively larger.

 Figure 3.1.11: Request sizes - sequential connections Figure 3.1.12: Request sizes - sequential connections

Figure 3.1.13: Response sizes - sequential connections Figure 3.1.14: Response sizes - sequential connections

 Now, let us compare the response sizes for the two traces in Figures 3.1.13 and 3.1.14. The

median response size is 420 bytes in the UNC trace and 128 bytes in the IBM trace. 20% of

responses are greater than 4KB bytes in the UNC trace but only greater than 680 bytes in the IBM

trace. The average response size is 11 KB in the UNC trace and 9 KB in the IBM trace. The top

 58

10% of response sizes are greater than 13 KB in the UNC trace but greater than only 3.3 KB in

the IBM trace. So we note that sequential connections in the IBM trace have much smaller

response sizes as compared with those in the UNC trace. The CCDFs clearly show a heavy-tailed

distribution for response sizes in both UNC and IBM traffic.

Figure 3.1.15: ADU sizes - concurrent connections Figure 3.1.16: ADU sizes - concurrent connections

 For concurrent connections, we consider all ADUs in one distribution, since there are no

request-response exchanges within these connections. As shown in Figures 3.1.15 and 3.1.16, the

median size of concurrent ADUs is 208 bytes in the UNC trace and 91 bytes in the IBM trace.

20% of ADUs are greater than 1400 bytes in the UNC trace but only greater than 610 bytes in the

IBM trace. The average ADU size is 5.9 KB in the UNC trace but larger than 11.5 KB in the IBM

trace. As with the sequential ADUs, we see here that a small number of very large concurrent

ADUs skew the average ADU size in the IBM traffic.

 The top 10% of ADU sizes are greater than 6.8 KB in the UNC trace and greater than only

3.4 KB in the IBM trace. ADU sizes in the IBM trace, other than for a few very large ADUs, are

smaller than those in the UNC trace. Figure 3.1.16 shows that the ADU sizes in both sets of

concurrent connections are equivalent in the tail, and they have a heavy-tailed distribution.

 59

3.1.3.3 Endpoint Latencies

 In the Tmix a-b-t model, besides ADUs, the sequential and concurrent connections have

endpoint latencies. We identify two kinds of such endpoint latencies, developed as part of the a-

b-t model by Hernandez-Campos et al. First, we have the intra-epoch endpoint latency which is

the time elapsed at the connection initiator (client), and within an epoch, between sending a

request and receiving its response. This is usually the time taken by the server to process the

request plus one round trip time of network latency. Second, we have the inter-epoch endpoint

latencies which are the times between two epochs, that is, the time between receiving a response

and sending the next request. These could be either due to some processing time or user

thinktime. Every epoch in a sequential connection has an intra-epoch latency. And multiple epoch

connections have inter-epoch latencies as well. Concurrent connections have one or more

endpoint latencies. These latencies are simply associated with the preceding ADU sent by that

endpoint. When endpoint latencies are less than 500ms, they could easily be due to network

effects and hence we do not consider them as part of the source-level behavior. Hence we do not

emulate endpoint latencies less than 500ms.

 It is worth noting that of all the measured latencies, roughly 16% of intra-epoch latencies

were greater than 500ms for both UNC and IBM traces. This means that server processing

latencies have an effect on a small number of epochs in both traces. For inter-epoch latencies

44% of them were larger than 500ms for the UNC trace, but only 20% of them were larger than

500ms for the IBM trace. Each latency measure is considered a data point here, regardless of the

number of latencies measured for each connection. This difference in inter-epoch latencies

between the two traces becomes very significant when we study the effect on queue length. For

the same level of capacity constraint on the router-to-router link (95%), the IBM trace shows

much heavier queues using this model of connection structure because in the UNC traffic, the

larger number of inter-epoch latencies plays a significant role in allowing the queue to drain and

maintaining a smaller queue overall. For concurrent connections, it is interesting to note that most

 60

(99%) of the latencies were greater than 500ms for both UNC and IBM traces. So essentially all

measured latencies are emulated for concurrent connections.

 Let us now analyze these endpoint latencies in the UNC and IBM traffic. We show all the

intra-epoch latencies (including those below 500ms) for the two traces in Figures 3.1.17 and

3.1.18. Note that for the CCDFs, we start the Y-axes at 500ms. Each plot compares the data for

the two traces – UNC and IBM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Endpoint Latencies (milliseconds)

UNC_intra-epoch-latency
IBM_intra-epoch-latency

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Endpoint Latencies (milliseconds)

UNC_intra-epoch-latency
IBM_intra-epoch-latency

Figure 3.1.17: Intra-epoch endpoint latencies Figure 3.1.18: Intra-epoch endpoint latencies
 for sequential connections for sequential connections

 We observe that the median intra-epoch latency is 47 milliseconds for UNC connections and

53 milliseconds for IBM connections. 20% of these latencies are greater than 273 milliseconds

for UNC connections and greater than 168 milliseconds for IBM connections. The average intra-

epoch latency is quite high, however, with 3.1 seconds for UNC and 4.7 seconds for IBM

connections. This high average reflects the small number of multi-epoch, long connections with

long latencies present in both traces. The top 10% of intra-epoch latencies are greater than 1

second for the UNC trace and greater than 1.1 seconds for the IBM trace.

 We now compare all inter-epoch latencies for the two sets of traffic in Figures 3.1.19 and

3.1.20. We observe that the median inter-epoch latency is 173 milliseconds for UNC connections

and 55 milliseconds for IBM connections. 20% of the inter-epoch latencies are greater than 1.5

seconds for UNC connections and greater than 490 milliseconds for IBM connections, thus much

 61

longer than their respective intra-epoch latencies. The average latency is also quite high with 5.6

seconds for UNC and 5.9 seconds for IBM connections, again reflecting the small number of

multi-epoch, long connections with long endpoint latencies present in both traces. The top 10% of

inter-epoch latencies are greater than 7.5 seconds for the UNC trace and greater than 3 seconds

for the IBM trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Endpoint Latencies (milliseconds)

UNC_inter-epoch-latency
IBM_inter-epoch-latency

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Endpoint Latencies (milliseconds)

UNC_inter-epoch-latency
IBM_inter-epoch-latency

Figure 3.1.19: Inter-epoch endpoint latencies Figure 3.1.20: Inter-epoch endpoint latencies
 for sequential connections for sequential connections

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Endpoint Latencies (milliseconds)

UNC_latency
IBM_latency

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Endpoint Latencies (milliseconds)

UNC_latency
IBM_latency

 Figure 3.1.21: Endpoint latencies for Figure 3.1.22: Endpoint latencies for
 concurrent connections concurrent connections

 Finally, let us compare all the endpoint latencies for concurrent connections for the two traces

in Figures 3.1.21 and 3.1.22. Here, we observe that the median latency for concurrent connections

is 1.1 seconds for UNC connections and 1.5 seconds for IBM connections. 20% of these latencies

are greater than 4 seconds for UNC connections and greater than 17 seconds for IBM

 62

connections. Note that concurrent connections constitute only a small fraction of the total number

of connections in both traces – 1.8% of UNC connections and 1.6% of IBM connections, but they

transfer 28% and 15% of the total bytes respectively. These percentages stated here for endpoint

latencies are for connections within that fraction, and not part of all the endpoint latencies. Still,

these long latency concurrent connections clearly carry a large number of bytes. In the case of the

IBM trace, they contribute to the heavier distribution of connection durations, compared with that

of UNC connections. The average latency is also quite high, with 6.7 seconds for UNC and 16.7

seconds for IBM connections. The top 10% of latencies in concurrent connections are greater

than 14 seconds for the UNC trace and greater than 60 seconds for the IBM trace.

 We must note here that for both sequential and concurrent connections in the original trace,

there are connections which exhibit a quiet time between the last ADU and TCP’s connection

termination. Most of these quiet times are under 500ms and hence discarded anyway. However,

there are a few connections with exceedingly long quiet times at the end. Such quiet times reflect

more realistic durations for those connections, but add much overhead to our traffic generation

system. Hence, we do not model any quiet times that occur after the last ADU within a

connection.

3.1.4 Network-level Characteristics

 So far, we discussed the application-level characteristics for the UNC and IBM traffic that we

use as input for generating traffic in all our experiments. We now discuss the network-level

characteristics of round trip times and window sizes for these TCP connections. For this

discussion, we do not distinguish between sequential and concurrent connections, but treat all

connections as simply TCP connections.

 63

3.1.4.1 Round Trip Times (RTTs)

 The round-trip time (RTT) of a TCP connection between two endpoints, a sender and a

receiver, is defined as the time it takes for a TCP segment from the sender to reach the receiver

and for a segment carrying the generated acknowledgment from the receiver to return to the

sender. The cumulative distribution functions (CDFs) for the measured minimum round trip time

per connection in the two traces are shown in Figure 3.1.23. The CCDFs for the same are shown

in Figure 3.1.24. The RTTs in the UNC trace were on average smaller than those in the IBM

trace, but the CCDF shows much longer connection RTTs for the UNC trace than in the IBM

trace in the tail of the distributions. The mean RTT for connections was 80ms in the UNC trace

while it was 92ms in the IBM trace. The standard deviation of RTTs was 210ms and 144ms for

connections in the UNC and IBM traces respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

RTT (ms)

UNC-RTT
IBM-RTT

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

RTT (ms)

Univ-RTT
IBM-RTT

 Figure 3.1.23: CDF of round trip times Figure 3.1.24: CCDF of round trip times

 Thus while the median RTT for connections in the UNC trace was 36ms, fully 3% of these

connection RTTs were above 429ms. And while the median RTT for connections in the IBM

trace was 68ms, the top 3% of these connection RTTs were greater than 275ms. As seen in Figure

3.1.24, some connection RTTs were longer than one second for both UNC and IBM connections.

 64

Such long delays are sometimes due to compounding effects of long propagation delays added to

slow modems on one end of the connection, or due to long delays on cell hosts in the network.

 We used these empirical measures to develop all our RTT models discussed later in this

chapter.

3.1.4.2 Receiver Window Sizes

 Just as we used the empirical measures from the original RTT distributions to develop our

RTT models, we used the empirical measures from the original receiver-advertised maximum

window size distributions to develop the window size models for our experiments. Hence, let us

now examine this network-level characteristic in the two input traces. But first, what is the role of

the receiver window size in a TCP connection? When a segment is received by a TCP endpoint,

its payload is stored in an operating system buffer until the application uses a system call to

receive the data. In order to avoid overflowing this buffer, TCP receiver endpoints use a

mechanism called flow control to impose a limit on the maximum sending rate of the sending

endpoint. Hence a TCP sender cannot have more than this maximum, called receiver maximum

window, of bytes outstanding (unacknowledged) in the network.

 How is this relevant to our traffic generation? Window size allocation in TCP connections

affects the growth of the window of unacknowledged packets that the sender can have in the

network. Hence a larger receiver window size, all other thing being equal, means that a TCP

connection can transmit data faster and have more data in the network before it receives feedback

from the other end of the connection.

 In this study, we measured the maximum advertised window for both ends in each connection

from the original trace for both UNC and IBM traffic. Each connection in all our experiments,

unless otherwise specified, was assigned the measured receiver window for each of the two

endpoints of the TCP connection. This included all the experiments regardless of the connection

 65

structure model used for traffic generation, the RTT model used for network emulation, or the

network environment, that is unconstrained or constrained link mode, for each experiment. This

maximum receiver window is often different for each endpoint of a connection. Hence we show

the separate distributions for the initiator of a TCP connection, and the acceptor for that

connection. We show this data for both the UNC and IBM traces in Figure 3.1.25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Receiver Window Size (KB)

UNC-initiator
UNC-acceptor

IBM-initiator
IBM-acceptor

Figure 3.1.25: CDF of receiver maximum window sizes of the input UNC and IBM traces

 We observe from this figure that the smallest maximum receiver window size is 4KB for any

connection in both traces. This window size then increases to values of 8KB, 16KB, 32KB,

48KB, or 64KB. We did not measure or analyze window scaling and hence the maximum

window size we measured was 64KB. As shown in this figure, the initiators have larger

advertised window sizes – roughly 65% of UNC initiators had 64KB and 80% of IBM initiators

had 64KB receiver windows. However, only 25% of UNC acceptors and 50% of IBM acceptors

had 64KB receiver windows.

 66

3.2 Traffic Generation with Tmix

 For all experiments in this study, we use the Tmix traffic generation system. Although we

discussed some details about this system among the related works in Chapter 2, let us briefly

discuss the Tmix model for both application workload and network characteristics in this section.

This will aid in later discussions in this chapter when we present our own models. Hernandez-

Campos in [HC06] developed a new application-level model to characterize workloads, called the

a-b-t model. Given a packet header trace collected from an arbitrary Internet link, this work

algorithmically infers the application-level behavior driving each connection, and casts it into the

notation of the a-b-t model. The result from processing the packet header trace is a collection of

a-b-t connection vectors, each vector representing a TCP connection from the original captured

trace. These vectors are then replayed in software simulators and testbed experiments to drive

network stacks. This replay of the original traffic, using the a-b-t model, generates workloads that

fully preserve the feedback loop between the TCP endpoints, and also preserve the state of the

network.

 The a-b-t model is used to generate TCP workloads only. Each TCP connection is

represented as an a-b-t connection vector, and every request-response-time sequence in a

sequential connection is called an epoch within the connection. Thus every sequential connection

consists of one or more epochs. The a’s and b’s in both sequential and concurrent connections are

the application data units (ADUs), sizes as recorded from the original captured trace. The a-type

ADUs are data units sent from the connection initiator to the connection acceptor, and the b-type

ADUs are data units sent from the connection acceptor to the connection initiator, i.e. data flow in

the opposite direction. The t’s represent the quiet times during which no data segments are

exchanged. The quiet times may be the time taken between sending of ADUs to the transport

layer, or it may be user think times or server processing times. The reason for the quiet times and

the actual data in the ADUs are not important to traffic generation, but modeling these quiet times

 67

and application data exchanges is very important to represent the lifetime of the connection as we

will see in this study. This a-b-t emulation model faithfully reproduces the essential pattern of

socket reads and writes that the original application performed without knowledge of what the

original application actually was. Furthermore, Tmix emulates network path characteristics by

assigning to each connection its observed minimum RTT and receiver window sizes.

 We note here that there is a fundamental difference between Tmix and the other two traffic

generation systems (Harpoon and Swing) discussed in Chapter 2. Although all three systems are

based on modeling traffic and network characteristics from empirical measures of real network

traffic, Tmix is a non-parametric model of traffic generation. Tmix accurately and faithfully

replays the application-level behavior using a set of connection vectors using real TCP sockets on

the traffic generators. Each connection vector input to the traffic generators represents exactly one

TCP connection from the original traffic and there is a one-to-one assignment of connection

parameters for each connection from the original traffic to the replayed traffic. On the other hand,

both Harpoon and Swing use parametric modeling; they are based on random sampling from

distributions of empirical parameters of network traffic.

3.3 Variations in the Workload Model

 The Tmix a-b-t model is a complete representation of a connection’s structure for traffic

generation. We define connection structure as the representation of the connection workload that

has one or more of the following components: ADU sizes, connection sizes, direction and

sequence of ADUs, and endpoint latencies. Henceforth, we call this full Tmix model as the a-t-b-t

model to show its complete representation. Our a-t-b-t model is the same as Tmix’s original a-b-t

model. As described in Chapter 2, the Harpoon traffic generation system uses a very different and

much simpler model for modeling TCP connections. While the Tmix model includes every

 68

application data unit and quiet time within a connection, the Harpoon model simply represents

each connection as two blocks of data transferred, one in each direction. Hence we begin with this

simple model for representing a TCP connection.

 To study the effect of different connection structures on application and network

performance, we developed six different structural models to represent a TCP connection. Our six

models, as discussed below, were developed with a representation of the simple Harpoon model

on one end of the spectrum and the a-t-b-t model on the other end. We now present all the six

connection structure models as originally developed in this study. Although only four of these

models were used for the complete set of experiments presented in Chapter 5, we ran smaller

subsets of experiments with all of them.

 Since the same traces of the original traffic were used to build each of these models, we

define some notations for clarity and consistency using the a-b-t model representation shown in

Figures 3.3.1 and 3.3.2 for sequential and concurrent connections respectively. Let the sequential

connection shown in Figure 3.3.1 with three epochs be represented by the following connection

vector { (a1, ta1, b1, tb1), (a2, ta2, b2, tb2), (a3, ta3, b3, tb3)}.

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

ta3ms

b3 bytes

Epoch 1 Epoch 3Epoch 2

Connection
initiator

Connection
acceptor

Time

Figure 3.3.1: An a-b-t diagram illustrating a persistent HTTP connection (sequential)

 69

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

b3 bytes

Connection
initiator

Connection
acceptor

Time

Figure 3.3.2: An a-b-t diagram illustrating a concurrent connection

 For the concurrent connection shown in Figure 3.3.2, let the connection vector be represented

as (α, β) where α = { (a1, ta1), (a2, ta2), (a3, ta3) } and β = { (b1, tb1), (b2, tb2), (b3, tb3) }. In both

cases, let a = a1 + a2 + a3 be the total bytes transferred by the original connection initiator to the

connection acceptor. And let b = b1 + b2 + b3 be the total bytes transferred by the original

connection acceptor to the connection initiator.

 We use these notations to describe the six connection structure models below. To use the

Tmix traffic generation system for running experiments using these new models, we made some

changes as follows. We modified the input connection vectors to the Tmix system to include

accurate representations for each of our new models, and we modified the replay engine to

appropriately parse the new models and replay the TCP connections in our experiments.

(i) The Harpoon connection structure model

 Harpoon models a TCP connection by its size and direction of data transfer. That is, a

connection is modeled as two endpoints where the first endpoint transmits X bytes while

 70

simultaneously the second endpoint transmits Y bytes with both endpoints transmitting their bytes

as one large block without internal delays (other than those imposed by TCP).

a1 + a2 + a3 bytes

b1 + b2 + b3 bytes

Connection1
initiator

Connection2
initiator

Time

Figure 3.3.3: The Harpoon connection structure model for all TCP connections

 Hence in our Harpoon model, we replay every TCP connection observed in a trace as two

TCP connections, each initiated on opposite sides of the laboratory network. Each endpoint opens

a TCP connection, sends all its bytes in one block and then closes the connection. A total of a (a

= a1 + a2 + a3) bytes is sent by one TCP connection, and a total of b (b = b1 + b2 + b3) bytes is

sent by the other TCP connection. This model is represented in Figure 3.3.3 above.

 (ii) The block-concurrent connection structure model

a1 + a2 + a3 bytes

b1 + b2 + b3 bytes

Connection
initiator

Connection
acceptor

Time

Figure 3.3.4: The block-concurrent connection structure model for all TCP connections

 71

 We developed the block-concurrent model (shown in Figure 3.3.4) as a variation of the

Harpoon model. Unlike the Harpoon model, however, a TCP connection observed in a trace is

represented in this model by only one TCP connection between two endpoints. The two blocks, a

(a = a1 + a2 + a3) bytes and b (b = b1 + b2 + b3) bytes, are sent simultaneously by the two

endpoints after connection establishment. In this model, all the TCP connections in the

experiment behave like concurrent connections without any endpoint latencies within the

connections, other than those imposed by TCP.

(iii) The block-sequential connection structure model

a1 + a2 + a3 bytes

b1 + b2 + b3 bytes

Connection
initiator

Connection
acceptor

Figure 3.3.5: The block-sequential connection structure model for all TCP connections

 We developed the block-sequential model, shown in Figure 3.3.5, as another variation of the

Harpoon model. In this model, all the TCP connections in the experiment behave like sequential

connections but with only one epoch and no endpoint latencies within the connections, other than

those imposed by TCP. Unlike the Harpoon and the block-concurrent models, however, this

model introduces sequentiality and an inherent synchronization within a TCP connection. After

connection establishment, the connection initiator sends one block, a (a = a1 + a2 + a3) bytes in

size, and upon receiving this request, the connection acceptor sends its response in one block, b

(b = b1 + b2 + b3) bytes in size. Thus all connections in this model are represented as single-

epoch sequential connections, regardless of connection size.

 72

(iv) The a-b connection structure model

 The three connection structure models, discussed so far, model a connection based on its size

alone. There were no endpoint latencies within the connections, and only the synchronization

latency implicitly introduced by the request-response nature of the block-sequential model. In the

a-b model shown in Figure 3.3.6, we introduce the difference between sequential and concurrent

connections, while still not including any measured endpoint latencies in the model. We do this

by introducing the concept of epochs in sequential connections.

a1 bytes

b1 bytes

a2 bytes

b2 bytes

a3 bytes

b3 bytes

Epoch 1 Epoch 3Epoch 2

Connection
initiator

Connection
acceptor

Time

Figure 3.3.6: The a-b connection structure model for sequential TCP connections

a1 + a2 + a3 bytes

b1 + b2 + b3 bytes

Connection
initiator

Connection
acceptor

Time

Figure 3.3.7: The a-b connection structure model for concurrent TCP connections

 73

 So, in this model, the original sequential connections replay in a pattern of request-response

exchanges without the endpoint latencies representing processing times or other end system

delays. For the original concurrent connections, the a-b model adopts the same representation as

the block-concurrent model. This is because, in the absence of endpoint latencies, each endpoint

of a concurrent connection will simply send its a1, a2 and a3 or b1, b2, and b3 bytes in single

blocks of size a and b respectively. This is shown in Figure 3.3.7.

(v) The a-t-b connection structure model

a1 bytes

ta1ms

b1 bytes

a2 bytes

ta2ms

b2 bytes

a3 bytes

ta3ms

b3 bytes

Epoch 1 Epoch 3Epoch 2

Connection
initiator

Connection
acceptor

Figure 3.3.8: The a-t-b connection structure model for sequential TCP connections

 This is the first connection structure model in which we explicitly introduce the endpoint

latencies. We developed this a-t-b model mainly to differentiate between the effects of intra-

epoch latencies and inter-epoch latencies. For the sequential connection, this model represents

each epoch similar to the a-b model with the additional intra-epoch latency between the request

and its response, as shown in Figure 3.3.8. For concurrent connections, there is no difference

 74

among the endpoint latencies. Each endpoint latency is associated with sending the preceding

ADU from the endpoint and then waiting for the duration of the endpoint latency before sending

the next ADU from that endpoint. It is not associated with any request-response exchange. Hence

for concurrent connections, as shown in Figure 3.3.9, we represent the connection using all the

ADUs and the endpoint latencies as measured (similar to the a-t-b-t connection structure).

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

b3 bytes

Connection
initiator

Connection
acceptor

Figure 3.3.9: The a-t-b connection structure model for concurrent TCP connections

(vi) The a-t-b-t connection structure model

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

ta3ms

b3 bytes

Epoch 1 Epoch 3Epoch 2

Connection
initiator

Connection
acceptor

Figure 3.3.10: The a-t-b-t connection structure model for sequential TCP connections

 75

a1 bytes

ta1ms

b1 bytes

tb1ms

a2 bytes

ta2ms

b2 bytes

tb2ms

a3 bytes

b3 bytes

Connection
initiator

Connection
acceptor

Figure 3.3.11: The a-t-b-t connection structure model for concurrent TCP connections

 All TCP connections in this model are represented using the same concepts originally

developed by Hernandez-Campos et al. for the Tmix traffic generation system. So the a-t-b-t

model represents a TCP connection with all ADUs and endpoint latencies and preserves all

sequences or epochs exactly as measured in the original trace. This model is shown for the

sequential and concurrent connections in Figures 3.3.10 and 3.3.11 respectively. Note that

concurrent connections have the same structure in both a-t-b and a-t-b-t models.

3.3.1 Choice of Four Connection Structure Models

 From the six different connection structure models described above, we chose to use only

four among these to emulate the traffic for our complete sets of experiments. Our goal in picking

the models was the following: introduce, one at a time, the following concepts within TCP

connection structure modeling: size of the connection, client-server behavior between the two

endpoints, the request-response exchange or epoch behavior between the client and the server, the

fundamental dichotomy in application-level behavior that distinguishes connections as sequential

or concurrent, and finally the endpoint latencies that represent intra-epoch and inter-epoch

 76

latencies in sequential connections or quiet times between sending of application data units in

concurrent connections.

Here’s why we chose (or did not choose) each of these connection structure models for our

complete experimentation set.

Harpoon: This model inspired our development of the two block models. However, we did not

choose this specific model because in faithfully adhering to the original Harpoon method of

traffic generation, we had to model every TCP connection as two connections in the experiment.

This led to difficulties in comparing performance metrics among the different models. The block-

concurrent model is, therefore, a better representation of TCP connections for Harpoon-like

traffic generation.

block-concurrent: We chose this model as it best represented the Harpoon model while also

being the simplest model for emulating connection structure in terms of its size alone.

block-sequential: We chose this model as it introduced the notion of a client-server with inherent

request-response synchronization while still preserving the simplest representation of a TCP

connection by its size alone.

a-b model: This model was chosen because it introduces the concept of epoch structure within the

sequential connections. Thus while there is the implicit addition of a time component to the

structure in the synchronization implied by request-response exchanges, this model still does not

explicitly include any of the measured endpoint latencies within the connections.

a-t-b model: We developed this model to differentiate between the effects of intra-epoch and

inter-epoch latencies on the performance metrics. However, our preliminary investigations found

that this model does not have significantly different effects from that of the a-b model. Here’s

why: the bulk (84%) of all intra-epoch latencies are below 500ms for both UNC and IBM traffic

 77

and hence are not emulated in our experiments as explained earlier. Experiments using this model

did not serve the original purpose envisioned while developing this connection structure model.

a-t-b-t model: We chose this model as it is a complete representation of connection structure for a

TCP connection. To the a-b model, this adds all the endpoint latencies for both sequential and

concurrent connections, thus explicitly introducing the dimension of time within a TCP

connection.

3.4 Variations in Emulating Network Path Characteristics

 Using the Tmix traffic generation system as the basis for generating traffic for all our

experiments, we varied the emulation of the network path characteristics to study the effects of

connection round trip times (RTT) on various metrics of performance. We developed seven

different (some just subtly different) methods of RTT emulation. For our spectrum of RTT

models, we have on one end the nodelay model where we completely eliminate the emulation of

connection RTT, and on the other end the usernet model from Tmix where we emulate the

specific minimum RTT for each connection as measured by analyzing the TCP/IP header traces

from the captured traffic. We briefly discuss each of these models below.

 In Figures 3.4.1 and 3.4.2, we show the CDF and CCDF respectively for the minimum RTTs

for connections in the UNC and IBM traffic. These figures are the same as Figures 3.1.23 and

3.1.24. For six of our seven RTT models, we retained some measure of realism for RTT

emulation, the only exception being the nodelay model. For five of the other six models, we used

the empirical data shown in the RTT distributions above for each of the two input traces. Only the

10pathRTT model was not derived from the above empirical distribution as explained below.

 Tmix uses a modified version of dummynet that implements a user-level interface that can be

used by Tmix instances to assign per-connection delays from the input set of connection vectors.

 78

Although RTT is propagation delay between sender and receiver, and in most cases the latency

was emulated half on sender and half on receiver, in the case of uniform RTT, the latency was

emulated in only one direction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

RTT (ms)

UNC-RTT
IBM-RTT

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000
C

om
pl

em
en

ta
ry

 C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

RTT (ms)

Univ-RTT
IBM-RTT

 Figure 3.4.1: CDF of round trip times Figure 3.4.2: CCDF of round trip times
 (UNC and IBM traffic) (UNC and IBM traffic)

(i) The nodelay model

 First, the nodelay model was chosen simply as an extreme case to study why it was important

to model any form of RTT emulation rather than not model RTT at all. For experiments using this

RTT model, we replayed connections without any round trip time latency. Thus the sending of

packets within a connection was still limited by the size of the connection, and the receiver

window size, but the round trip time experienced by the connections was on average only 1.42ms

with a standard deviation of 1.14ms. This average was simply the latency introduced by our

laboratory network setup.

(ii)The meanRTT model

 For round trip time emulation in experiments using the meanRTT model, we assigned a

minimum RTT of 80ms for all connections using the UNC trace and 92ms for all connections

using the IBM trace. These numbers were the measured average connection RTTs from the

 79

empirical distributions for these two traces. This model was inspired by several leading studies,

including the paper [SB04] which describes the Harpoon traffic generation system. It is worth

noting here that this emulation effectively models a single end-to-end path for all the millions of

connections that play during the hour long experiment. What do we mean? Note that when we

assign different round trip time to different connections in the laboratory network, we effectively

enable the emulation of different end-to-end paths (by assigning different delays) for these TCP

connections. But in the meanrtt model, we assign all connections the same RTT value, thus

reducing the experimental network to emulate a single end-to-end path for all connections.

(iii) The medianRTT model

 This model of RTT emulation is very similar to the meanRTT model, creating one shared

end-to-end network path for all connections in an experiment. Assigning the mean RTT of the

distribution seems to be a more popular method adopted in networking research, for example in

[SB04]. However, studying the traffic characteristics of traces captured on production network

links shows that a small fraction of connections with very long RTTs often skew the average RTT

for the distribution. Hence although still an empirically derived value, the mean RTT is less

representative of the distribution of RTTs than the median RTT. For example, the mean RTT for

the UNC trace is 80ms while its median is only 36ms. Similarly, the mean RTT for the IBM trace

is 92ms while its median is only 68ms.

 Besides emulating a single shared end-to-end path for all connections in the experiment,

assigning a single RTT value for all connections also significantly changes the traffic

characteristics of the replayed trace. For example, with the medianRTT model, all those

connections that had less than medianRTT in the original trace now take much longer to replay.

Similarly, all those connections that had more than medianRTT delay in the original trace now

replay faster. This has implications for several performance metrics as we show in Chapter 5.

 80

(iv) The 10pathRTT model

 All three models discussed so far – nodelay, meanRTT, and medianRTT – emulate a single

shared path in the network for all connections in the experiment. The 10pathRTT model expands

the modeled network paths to a total of 10 different end-to-end paths for the connections in the

experiment. The values chosen for these 10 paths were selected as follows: the TMRG common

TCP evaluation suite [TMRG] recommended 9 RTT path values based on some empirical

measures. To this set of discrete values, we added a tenth RTT value to create our 10pathRTT

model.

 Here’s the small and discrete set of values that constitute the 10pathRTT model: [4, 16, 28,

54, 74, 98, 124, 150, 174, 200] milliseconds. This set is used for both the UNC and IBM

experiments.

(v) The Discrete Approximation (DA) RTT model

 We created this model from the empirical distribution of RTTs for the original trace. Hence

the set of RTT values were different for the two traces – UNC and IBM. Our laboratory network

has 30 pairs of traffic generators; hence we chose 30 values, thus creating 30 end-to-end paths in

the network. The goal behind developing this model was to create as close an approximation of

the empirical distribution of RTTs seen in the original trace as possible. For this we use the

concept of a quantile function. A quantile function of a probability distribution is the inverse F-1

of its cumulative distribution function. Hence the quantile function returns the value of x such

that F(x) = P(X ≤ x) = p.

 Our method of approximating the CDF of the RTTs was as follows: first we approximated the

distribution such that we cut off the bottom 1% and top 1% of RTT values. These represented

only 2% of connections but were skewing our overall approximations such that a very large

portion of RTTs would be much larger than the median (or mean) RTTs. Now, with the

 81

remaining 98% of the distribution, we divided this distribution into 30 equal size bins, and then

found the average RTT for each of these 30 bins in the distribution.

 The resulting RTT values for UNC formed this set: [8, 8, 10, 10, 12, 14, 14, 16, 18, 20, 22,

24, 26, 30, 34, 38, 42, 48, 52, 60, 74, 80, 82, 86, 92, 98, 124, 172, 258, 420] milliseconds. The

resulting RTT values for IBM formed this set: [22, 28, 32, 36, 40, 44, 46, 46, 48, 52, 54, 56, 58,

62, 66, 70, 74, 78, 82, 86, 92, 96, 102, 108, 114, 122, 136, 154, 188, 310] milliseconds.

(vi) The uniformRTT model

 With the uniformRTT model, we made two significant changes to the assignment of

connection RTTs discussed so far. First, instead of assigning specific delays to a small set of

end-to-end paths, this model assigns a specific delay to each TCP connection. Thus instead of

emulating 1, 10, or 30 shared end-to-end network paths, this model effectively enables emulation

of a distinct end-to-end path for each TCP connection in the experiment. Second, the RTT values

assigned to the connections were sampled from a discrete uniform distribution such that they

approximately represented the middle 80% of the original RTT distribution for each trace. Hence

for all experiments using the UNC trace, we sampled from the uniform distribution U[10, 200]

milliseconds, and for all experiments using the IBM trace, we sampled from the uniform

distribution U[30, 150] milliseconds.

(vii) The usernetRTT model

 The usernet RTT model is adopted directly from the original design for RTT emulation used

in the Tmix traffic generation system. In this model, every one of the millions of connections in

an experiment is assigned the specific minimum RTT that was measured for that connection from

analyzing the TCP/IP headers of the original trace. The complete distribution of RTTs used in this

model is shown in Figures 3.4.1 and 3.4.2.

 82

3.4.1 Choice of Three RTT Emulation Models

 From the seven different RTT emulation models described above, we chose to run complete

sets of experiments using only three models. We have presented the results for a subset of

experiments using the other four models in Chapter 6. Our goal in picking the three RTT models

was the following: pick one model that emulates a single end-to-end path for all flows, pick one

model that emulates a multiple but small set of end-to-end paths, and pick one model that creates

the most faithful representation of the path characteristics of the original trace. Here’s why we

chose (or did not choose) each of these models.

nodelay: We did not choose this model for our full set of experiments. This model was used for

preliminary experiments, simply to study the huge difference in performance metrics between not

implementing any delay model, and implementing even the simplest model of RTT.

meanRTT: We chose this model for all our experiments because it is used in leading publications

of networking research, for example in [SB04].

medianRTT: We decided not to use this model for our complete set of experiments. To create a

single path for all connections, and given the distribution of RTTs, this model would actually

make more sense since the mean skews the result in favor of the few large RTTs present in the

distribution. However, since mean RTT is what is favored among networking researchers, we

chose to evaluate using that model instead.

10pathRTT: We chose this model as it best satisfied our dual goals of using one multi-path RTT

model which is also recommended by other networking researchers [TMRG] as a model for all

experimentation.

DA RTT: We chose not to use this model for two reasons. First, the 10pathRTT model already

satisfied our multi-path model requirement. Second, we discovered during our preliminary

 83

investigations that this model produces results very similar to the complete usernet RTT model

because this model is the closest approximation of the empirical RTT distribution. Hence

although we did not use it for our full set of experiments, we show some results with this RTT in

Chapter 6, where we discuss some additional and interesting results from our study.

uniformRTT: We chose not to run our complete set of experiments using this model for two

reasons. First, the usernet model captures the per-connection assignment of RTTs that this model

introduces. Second, the 10pathRTT already models a uniform distribution although with a much

smaller set of values.

usernet: We chose this model to study the most precise emulation of RTT for empirically-

derived, realistic traffic generation, where every connection is assigned its originally measured

RTT value.

CHAPTER 4

EXPERIMENTAL METHODOLOGY

A theory is something nobody believes, except the person who made it. An

experiment is something everybody believes, except the person who made it.

 Albert Einstein

 Experimental methodology plays an important role in protocol evaluations in networking

research. For experiments run in a laboratory network, as we did in this study, this methodology

consists of the design of the network testbed, the calibration of the testbed components, and the

design and running of experiments to test the hypotheses of the study. In this chapter, we first

describe the methodology used for all experiments in this dissertation. Next, using our control set

for traffic generation comprising the a-t-b-t connection structure model and the usernet RTT

model, we introduce the measurement and evaluation methodology that we use to run all

experiments in this study.

 What is this control set for traffic generation? We refer to the combination of the a-t-b-t

model for connection structure and the usernet model for RTT as our control set. Here’s why. In

this study, we develop several new models for both connection structure and RTT emulation. The

ideal method for comparing the effects of different models of traffic generation would be to

compare the results for these models with the original traffic itself. That is, the real gold standard

is obviously the original traffic captured on the production link. However, there are some

 85

differences between the original traffic and what is ultimately in the complete set of traffic

components that we use as input in our experiments.

 Now, Hernandez-Campos et al. have already shown that the Tmix models for connection

structure (a-t-b-t) and network characteristics (usernet RTT, window size) can emulate any given

input traffic in a realistic, reliable, and reproducible manner. That is, the traffic characteristics

produced using the Tmix model at the packet level and byte level on the laboratory network link

are the same as the traffic characteristics of the original input traffic to the Tmix system. Hence

we use the Tmix models as our control set and compare all other models against them. As our

results bear out, this combination of models is indeed an excellent choice as a control for realistic

traffic generation.

 The rest of this chapter is organized as follows. In Sections 4.1, we describe the network

configuration in detail. In Section 4.2 we discuss the process we used to calibrate the network,

and its individual components, and present results from calibration experiments. Then, in Section

4.3, we describe our experimental procedures used in this dissertation. And in Section 4.4, we

introduce our control set for traffic generation. In Sections 4.5 and 4.6 we present the results for

experiments using the control set in unconstrained and constrained modes.

 The unconstrained mode is one in which the router-to-router link in the network is set to

1Gbps. In the constrained mode, that link is set such to 105% of the expected average offered

load on that link. More specifically, we recall that the average offered load for the UNC and IBM

traffic is 471 Mbps and 404 Mbps respectively, on the high throughput or forward path on this

link. Hence for experiments using the UNC traffic, we set this router-to-router link at 496 Mbps

to create the constrained network mode. And for experiments using the IBM traffic, we set this

link at 424 Mbps to create the constrained network mode. This way, the generated traffic

consumes, on average, 95% of the link capacity.

 86

4.1 Network Configuration

 We setup a network consisting of 60 PCs configured as traffic generators, two FreeBSD

routers and three monitors collecting data on 1Gbps and 10Gbps fiber links at different points in

the core of the network. All systems are Intel-based machines that run FreeBSD. A schematic

diagram for this network is shown in Figure 4.1. The traffic generators have 1Gbps Intel Ethernet

interfaces and are attached to 1Gbps ports on the Ethernet switches. The two routers each connect

to a 10Gbps fiber switch port on these switches. The switches aggregate the traffic on each subnet

to a 10Gbps fiber connection to the router. The routers themselves are linked by a 1Gbps fiber

link in the middle of the network. This is the link we refer to as the “router-to-router link”

throughout this dissertation. This is also the link that we manipulate to toggle the network

environment between unconstrained and constrained modes for different experiments.

Ethernet
Switch

Ethernet
Switch

Edge Router Edge Router

… …

1 Gbps

DAG monitorTraffic
generators

10 Gbps monitor Traffic
generators

10 Gbps 10 Gbps

Figure 4.1.1: Network Testbed for all experiments in this dissertation

 This network emulates a peering point between two ISPs with traffic flowing in both

directions on the link between the two routers. During each experiment, traffic generated on the

30 traffic generators on each end is aggregated at the switches. This aggregate traffic then

 87

traverses the 10Gbps link to the router. The router on each end forwards the packets to the other

side of the network. We capture this traffic as it traverses the router-to-router link. This physical

network has a simple dumbbell topology. Logically, however, our traffic generation includes

emulating per-flow minimum round-trip-times (RTTs). These minimum RTTs are obtained from

a production network link on the Internet. This makes the network and the traffic traversing it

effectively able to emulate a wide-area network.

4.1.1 Traffic Generators

 Each subnet at the end of this dumbbell contains 30 PCs that serve as both traffic generators

and data collection tools. These PCs range in capabilities from 450 MHz to 3GHz in processing

speeds, and 256 MB to 1GB in memory. In each experiment, these traffic generators create

application workloads and network characteristics based on the connection structure and RTT

models used in that experiment. For all the experiments discussed in this study, unless otherwise

specified, we assigned to each side of every TCP connection the exact maximum receiver

window size that was determined from analysis of the original packet header trace. Connection

durations and response times were measured and recorded by the traffic generators on each edge

of the network during every experiment.

4.1.2 Routers

 The two routers running FreeBSD are 3.6GHz machines with 2GB of memory. They are

running the OpenBSD firewall software application known as packet filter (pf), which is a

complete, full-featured firewall that has optional support for queuing. We use this packet filter

module to restrict the bandwidth on the router-to-router link to desired limits during our

experiments, and also to provide specific queue limits at the router’s outgoing link. For

 88

experiments in the unconstrained network environment, we leave this 1Gbps router-to-router link

unrestricted. This 1Gbps link capacity is significantly greater than the load generated from the

two input traffic mixes we use in this study. For experiments in the constrained network

environment, we restrict the router-to-router link to 105% of the expected average offered load.

Hence, we set the router-to-router link to 496 Mbps for the UNC replays and 424 Mbps for the

IBM replays.

 During calibration, we connected the two routers using either 1Gbps or 10Gbps network

interface cards. For all our experiments, however, we used only the 1Gbps network interface

cards to connect the routers. In all cases the router queues were set to a large size (65,000

packets) which was determined to be sufficient to avoid any packet drops at the queue so that loss

rates were not a factor in any of the results, even in constrained mode. We made this deliberate

decision to provide such a long queue so that there would be no losses in the network. We

designed our experiments to study the different effects on router queue dynamics due to different

models used for generating traffic. Providing a shorter queue and thus inducing losses was out of

scope for this study.

4.1.3 Monitors

 We used two slightly differently monitoring and measurement configurations in the network

for calibrations versus the main set of experiments. In this section, we discuss the details of these

setups and the reasoning behind the two different configurations. Our main monitoring machine is

a 3GHz server class PC with 4GB of memory and running FreeBSD. For calibration, this

machine was equipped with a specialized traffic capturing card capable of collecting traffic at up

to 1Gbps load between the two routers. The traffic capturing card is an Endace Systems’ DAG

4.3S single channel network monitoring card. DAG technology provides 100% capture into host

memory at full line rate for all packets on the link [dag]. The traffic captured by the monitor was

 89

analyzed using dagtools, and several diagnostic and other tools developed at UNC, including an

enhanced tcpdump program.

 The trace collection process in the laboratory is similar to the trace collection process on any

production link. Only the packet protocol headers (IP and TCP) are collected, and the timestamp

of the packet arrival is recorded. For all calibration, we use the specialized DAG hardware to

extract headers and provide accurate timestamps. The DAG trace collection has accuracy in the

order of nanoseconds for timestamping of the packets. Such accurate packet header traffic

captures were essential for calibration and testing so that we could verify that the connection

structure and RTT models were being emulated exactly as designed.

 Once the laboratory network was calibrated, we changed the monitoring setup for all

experiments as follows. We used three FreeBSD machines for monitoring and measurement. The

first machine is a 2.3GHz machine with 2GB of memory, the second is a 1.5GHz machine with

512MB of memory, and the third is a 3GHz machine with 4GB of memory. The first two

recorded traffic data traversing the router-to-router link in both directions, one recording counts

of the bytes and packets in hundred microsecond intervals, and the other recording all SYN, FIN,

or RST packets to count active connections in the network. The third monitor recorded, in

hundred microsecond intervals, the arrival of bytes and packets to the router queue.

 Both our input traffic sets – UNC and IBM – had offered loads that were not symmetrical in

the two directions. For queue lengths, we were therefore interested only in the router queue on the

high throughput path of this traffic. Hence the third machine monitored the 10Gbps fiber link

aggregating the traffic between the switch and the router only on the path of this higher traffic

throughput. At the router we recorded a log of the queue size (number of packets in the queue)

sampled every 10 milliseconds.

 The two switches in the core of the network are 26-port HP Procurve 3400cl switches, each

connected to a 48-port Netgear GS748T switch. Each HP switch has 24 1Gbps copper ports and

two 10Gbps fiber ports. Each Netgear switch has 48 ports which can be configured as 40 ports of

 90

1Gbps copper and eight ports of 1Gbps fiber. In order to avoid any bottleneck on the switch

connections between the Netgear and the HP switches, we setup a 4Gbps trunk between each pair

of switches. This trunking is based on the IEEE 802.3ad Link Aggregation Control Protocol

(LACP). This is an IEEE standard for link aggregation supported by both sets of switches (HP

and Netgear). Such a setup enables a virtual link of 4Gbps between the switches. Key features of

link aggregation are: it is performed above the MAC layer, it assumes all links are full-duplex and

same data rate, traffic is distributed packet by packet, and all packets associated with a given flow

are transmitted on the same physical link to prevent mis-ordering of packets.

4.2 Network Calibration

 Once we have configured the network, it must be calibrated before any experiments can be

reliably run using this network. But why do we calibrate a network? The main motivation for

network calibration is to ensure that the network, or any of its individual components, do not

present any resource constraints (unless otherwise designed to do so, as in a bandwidth

constrained link) when running experiments. The way we verify this is through calibration.

Calibration involves first identifying the set of all inputs to the experiment, deciding what the

outputs will be, and figuring out the correlations, if any, between these inputs and outputs.

 The goal of calibration then is to ensure that these correlations are not influenced by an

unintended lack of resources in the network. Consider the case where the throughput in the core

of the network (output metric) is dependent on the number of TCP connections (input variable) in

the traffic. If increasing the number of TCP connections linearly increased the link throughput in

the core up to a certain point, then we could use this correlation to calibrate the network and

determine the reliable working range of inputs and corresponding outputs for which this

relationship holds. Say, for the sake of simplicity, that each TCP connection generated 1 Mbps of

 91

traffic, and each traffic generator could handle 100 such connections without overloading any

resources on these machines. With 30 such traffic generators, we could then easily generate

3Gbps of traffic into the network. Assume that the traffic generators have 1Gbps link each, and

all the aggregation links are 10Gbps. What if the one of the routers in the network were

continuously overloaded with 100% CPU utilization trying to forward packets at this rate of

3Gbps? The router would start dropping packets and this affects the previously established

correlation between number of TCP connections and the throughput in the network. This is a case

where lack of resources at one point in the network affects the input-output dynamics of the

experiment.

 During calibration, we push the network components, one at a time to determine its limits.

Then we design our experiments so that each network component is working well below its

resource limits. Hence we calibrate the network by designing and running a set of experiments

that stress-test every component of the laboratory testbed system with the goal of ensuring that no

single network component (individually or as part of the full network), presents a resource

bottleneck for the main set of experiments designed to test the hypotheses of this study. Toward

this end, we designed a series of calibration experiments with target loads of bytes and packets

that were much higher than the target loads in any of the main set of experiments of this study. If

these higher target loads were achieved, then these experiments would ensure that the traffic

generators, routers and monitors would not present any bottleneck in the main set of experiments.

4.2.1 Calibrating Routers

 The two routers in the core of the network forward packets, constrain the router-to-router link

to operate at a specified bandwidth (by managing an outbound queue of packets to this link), and

collect measurement data. To calibrate the routers we had to ensure that their CPU utilization was

acceptable when performing all of these tasks in any given experiment. The maximum average

 92

offered load for any experiments in this dissertation is 471 Mbps in one direction. Hence, to stress

test the routers, we designed two sets of experiments. The first set used the iperf program [iperf]

between two pairs of traffic generators using four TCP connections to generate an aggregate load

that was only limited by a constraint of 622 Mbps imposed on the forward path link between the

routers. The traffic on the reverse path was about 550 Mbps. The link was constrained on the

forward path to create a worst-case scenario to stress-test the routers. That is, the router had to be

able to forward packets onto the constrained link at the rate of 622 Mbps while also managing the

outbound queue of packets to this link.

 The second set used the Tmix traffic generation system between 32 pairs of traffic generators

using 8.5 million TCP connections to generate 740 Mbps in the forward path and 230 Mbps in the

reverse path. The two routers were determined not to be a bottleneck at any of these high loads of

traffic. That is, the routers were able to forward packets at these rates without dropping packets,

and do so while maintaining an acceptable level of CPU utilization, that is, at or below 95%

utilization at all times.

 We also experimented with different clock frequencies on the routers setting them at 100Hz,

1 KHz and 10 KHz. At 1 KHz, the clock interrupts occur 1000 times a second. This is the

frequency at which all the traffic generation systems operate. We wanted a higher frequency of

clock interrupts on the routers to allow for a finer granularity for timers. Higher frequencies,

however, also cause processing overhead. Hence we ran experiments with different clock

frequencies to study the balance between these two tradeoffs of finer timer granularity versus

higher CPU utilization. We found that the 10 KHz clock frequency resulted in slightly higher but

still well below 90% utilization at all times, for the throughput levels designed for our

experiments. Hence we used 10 KHz as clock frequency for our routers in all our experiments.

 We ran another set of calibration experiments to test the following: the CPU utilization on the

routers seemed dependent on the inbound and outbound links on these routers. Let us discuss this

using Figure 4.2 shown below. From the figure we have the following: for the forward path or

 93

higher throughput path, the first router’s inbound and outbound links are labeled “link1” and

“link2” respectively. Similarly, the second router’s inbound and outbound links are labeled

“link2” and “link3” respectively for the forward or higher throughput path.

Ethernet
Switch

Ethernet
Switch

First Router Second Router

Link 2
Link 1 Link 3

Forward path (path of higher throughput)

Figure 4.2.1: Routers’ inbound and outbound links

 Through initial calibration, we had found that the second router on the forward path showed

higher CPU utilization than the first router on that path. This seemed counter-intuitive at first. But

we determined through a series of specially designed experiments that this was due to more

efficient processing of incoming packets on the first router’s 10Gbps inbound NIC than the

second router’s 1Gbps inbound NIC for the traffic on the forward path. We conjecture that this is

a difference in the efficiency of the drivers for the two network interfaces though they are both

Intel network cards. We verified this by running several experiments with varying loads using

1Gbps NICs throughout, and then repeating these experiments with 10Gbps NICs throughout as

well as combinations of 1Gbps and 10Gbps links.

 In the presence of a 10Gbps NIC on the second router for inbound traffic on the forward path,

this second router dropped its CPU utilization to the same lower levels as that of the first router.

For all our experiments, however, we used the 1Gbps router-to-router link and 10Gbps link from

the switch to the router after determining that the slightly higher router CPU utilization on the

 94

second router did not present a bottleneck for the traffic. That is, although this second router had

significantly higher CPU utilizations with this configuration (see Figure 4.2.4(b)), the level of

CPU utilization achieved for the throughputs at which we were operating in our experiments was

acceptable. That is, we found the router utilization to be below 80% for the middle 40 minutes in

all our experiments. Note that we report performance results using only the data from the middle

40 minutes of each experiment. In the set of iperf calibration experiments presented below, we

used the worst case (in terms of testing CPU utilization) of having 1Gbps Intel NICs on both the

routers on the incoming and outgoing paths.

 We also ran some experiments to determine the appropriate size for the transmit buffer on the

router’s network interface card (NIC) driver. Here’s why. When this transmit buffer on the NIC

driver was left at its default value, there were times in an experiment when the router’s outbound

queue (managed by the pf module) seemed to drain; that is the router queue had no packets in it.

However, the corresponding queuing delay results did not support this apparent draining of the

queue. Further investigation revealed that these packets that were dequeued from the router’s

outbound queue were actually being enqueued in the NIC’s onboard transmit buffer before being

transmitted out on the link. We then ran experiments with different buffer sizes for that transmit

buffer to determine an optimum size that would be small enough not to cause noticeable

additional queuing delays but also large enough not to drop packets. We found this number to be

4 packets instead of the default 256 packets for the transmit queue.

4.2.1.1 Iperf Experiments for Calibrating Routers

 Iperf, orginally developed by NLANR (National Laboratory for Applied Network Research),

is a tool often used by networking researchers for some basic measurement and testing in a

network. This includes testing of bandwidth, latency, jitter and loss using TCP and UDP flows.

Iperf allows the tuning of various parameters and UDP characteristics. Iperf uses FTP-like data

streams. The throughput of each TCP connection is, therefore, mostly dependent on the receiver

 95

window size and available network bandwidth. The data is sent only in one direction for each

connection, with pure acks traversing the opposite direction.

 For calibration, we ran several experiments using iperf: first, between two pairs, and then four

pairs, of traffic generators to generate TCP traffic in both directions. We ran every experiment in

the forward and reverse directions to ensure there was no difference in the setup of the two

routers. In these experiments, we use the term forward to refer to the direction in which there is

higher throughput of bytes and packets in the network. We refer to the opposite direction as the

reverse direction. To run the experiments, we used four pairs of machines with two pairs (pair1

and pair2) sending data in the forward direction using one TCP flow each and two pairs (pair3

and pair4) sending data in the reverse direction using one TCP flow each. Hence the forward path

also carried the acks for the TCP connections between the traffic generators in pair3 and pair4

while the reverse path carried the acks for the TCP connections between the machines in pair1

and pair2. Thus we had two TCP flows in the forward path with their corresponding ack flows in

the reverse path, and we had two TCP flows in the reverse path with their corresponding ack

flows in the forward path.

 Each iperf experiment was run for five minutes. We collected data on the iperf clients and

servers, the routers and at the router-to-router link using the monitor with the DAG capture card.

We ran these iperf experiments at different loads constrained by the capacity of the router-to-

router link. We set this link to 100Mbps, 200Mbps, and so on up to the unconstrained mode of

1Gbps. Recall that since iperf can generate connections with unlimited data, these TCP flows

grow their window size up to the maximum available bandwidth. The TCP receiver maximum

windows were set to 64KB. And since we provided very large router queues, the packets were

queued without any packet loss at the constrained link.

 As we explained earlier, the constrained experiments represent the maximum usage of

resources on the routers because the routers have to forward packets onto the constrained link

while also managing the outbound queue of packets to this link. Hence, we show the throughput

 96

results for the worst-case experiment in the above mentioned series of iperf experiments. We only

show the results for the middle 3 minutes of that 5 minute experiment in Figures 4.2.2 (a) and (b)

since this is the stable region. In this experiment, we emulated connection RTTs by using

dummynet to set delays of 10 ms and 15 ms on the iperf servers, thus delaying all acks going from

server to client (Iperf sends data from client to server). Figure 4.2.2 (a) shows the byte throughput

in the forward (high throughput) direction and Figure 4.2.2 (b) shows the throughput in the

reverse direction. The router-to-router link was constrained at 622Mbps in both directions. Hence

each figure shows the throughput in one direction. The throughput in each direction consists of

two data streams and two acks streams.

0

100

200

300

400

500

600

1 1.5 2 2.5 3 3.5 4

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

Total-throughput-forward_direction
pair1-data
pair2-data
pair3-acks
pair4-acks

0

100

200

300

400

500

600

1 1.5 2 2.5 3 3.5 4

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

Total-throughput-reverse_direction
pair1-acks
pair2-acks
pair3-data
pair4-data

Figure 4.2.2 (a): Throughput for the iperf flows Figure 4.2.2 (b): Throughput for the iperf flows
 – forward direction – reverse direction

 Figure 4.2.2 (a) shows the two data streams for pair1 and pair2. These two flows had an

average throughput in the forward direction of 332 Mbps and 275 Mbps, which along with the

throughput of the two acks streams from pair3 and pair4 of 8 Mbps and 7Mbps, totaled 622Mbps

or the full capacity of the link. Figure 4.2.2 (b) shows the throughputs of the data streams on the

reverse paths (generated by pair3 and pair4) and the ack throughput generated by pair1 and pair2

on this path. The data throughputs on this path are slightly lower at 293 Mbps and 249 Mbps.

This reflects the fact that pair3 and pair4 were the least capable machines in the network so the

 97

total on this path did not hit the link capacity limit. The ack throughputs on this path are 10 Mbps

and 8 Mbps.

 Each iperf flow shown above sends TCP data in only one direction with pure acks sent in the

other direction. Hence, we note the following interesting data collected from these experiments.

In the forward direction, 38% of Ethernet frames were 66 bytes in size (acks for pair 3 and 4) and

62% were 1514 bytes (data for pair 1 and 2). In the reverse direction, 43% of Ethernet frames

were 66 bytes in size (acks for pair 1 and 2) and 57% were 1514 bytes (data for pair 3 and 4).

There were 24.4 million packets in the forward direction and 23.6 million packets in the reverse

direction, generating roughly 80 Kpps (thousand frames per second) in each direction during this

short 5-minute experiment. Why does this matter? We also measured the CPU utilization at the

routers to be 95% and 85% on average for the first and the second routers respectively. This

difference in router CPU utilization for the same data being handled had to do with the fact that

the network interface card handling this incoming traffic was 10Gbps on one router and 1Gbps on

the other. Details of experiments specifically exploring this difference in CPU utilization were

discussed in Section 4.2.1 (Calibrating Routers). Hence, we can conclude that the routers can

handle packet throughputs of 80Kpps without presenting resource constraints on the routers. The

main experiments of this dissertation (presented in Chapter 5) were all designed for lower target

loads (total byte and packet throughputs) than these.

4.2.1.2 Tmix Experiments for Calibrating Routers

 Iperf experiments use large size data packets, while most traffic on the Internet consists of a

large variety of packet sizes. Hence we ran another set of calibration experiments using a

captured UNC trace as input to the Tmix traffic generation system. This system consists of

several components. The traffic generation tool, Tmix, replays the source-level behavior of a set

of input connection vectors using real TCP sockets in a FreeBSD environment. [HC06]. Usernet,

 98

a modified version of dummynet, implements a user-level programming interface that is used by

tmix instances on the traffic generators to assign per connection delays as specified in the input

set of connection vectors. Finally, a single program, treplay, is used to control the setup of the

experimental environment, configure and start the tmix instances (assigning them a subset of

connection vectors and traffic generation peer), and collect the results. Tmix instances rely on the

standard socket interface to create a connection, send and receive ADUs, and to close the

connection. For every experiment, all the machines are first initialized and configured. Then the

routers and monitors start their monitoring programs followed by the traffic generators running

instances of the tmix program.

 For the router calibration using Tmix, we tested the network using several different offered

loads, scaling the same input traffic to these higher loads in each case, using the block-resampling

methods from [HC06]. In this section, we describe the experiment with the highest of these loads

because that created the most stress on the routers in the network. In this highest load case, we

had an average byte throughput of 740Mbps in the forward direction and 230 Mbps in the reverse

direction. The corresponding average packet throughputs were 89Kpps in the forward direction

and 74Kpps in the reverse direction. We show the time series of byte and packet throughputs for

the entire hour long experiment in Figures 4.2.3 (a) and (b) respectively. In this experiment, we

used 32 pairs of traffic generators, and the average load per pair of traffic generators was 1.4

times the highest average load per traffic generator in the experiments reported in Chapter 5. The

distribution of RTTs for the connections (shown in Figure 4.2.4(a)) is similar to that of the UNC

traffic used for experiments reported in Chapter 5.

 We make an important observation from these two throughput figures: with such large

numbers of TCP connections (8.5 million over the hour long experiment), and with 32 pairs of

traffic generators starting at the same time, there is a significant startup effect at the beginning of

the experiment and a visible termination effect at the end of the experiment. Hence, although we

 99

ran every experiment in this dissertation for an hour, when reporting performance results in

Chapters 5 and 6, we only use the data from the middle 40 minutes of each experiment. This

eliminates any Tmix-related startup and termination effects. During this experiment, the CPU

utilizations for the routers were on average 75% and 92% for the first and second routers on the

forward path respectively, as shown in Figure 4.2.4(b). For why this difference in router

utilizations between the two routers, we refer to Section 4.2.1.

 (a) byte throughput in Mbps (b) packet throughput in Kpps

Figure 4.2.3 : Throughput for Tmix calibration experiment

 Figure 4.2.4 (a): Distribution of RTTs Figure 4.2.4 (b) : Router CPU utilizations

forward

reverse

reverse
forward

 100

 The routers performed well under the high offered loads in this experiment without

introducing any resource constraints of CPU, memory, or allocated buffers. And the offered loads

in this experiment were much higher than the loads in experiments reported in Chapter 5. Hence

we can conclude from this calibration that the routers would not present resource constraints

when running those experiments.

4.2.2 Calibrating Monitors

 There were no separate set of experiments conducted for determining the capabilities of the

three monitors. However, buffers on the monitors were tuned during initial calibration to collect

data at high throughputs for the hour long experiments. The monitors were then used for all

calibration both for routers and traffic generators and in that process, we determined that all three

monitors could capture the generated traffic without any drops while maintaining low CPU

utilizations.

4.2.3 Calibrating Traffic Generators

 The traffic generators had to be stress-tested to answer two main questions. First, what is the

highest throughput they can generate using a few flows – this would test handling of byte and

packet rates. Second, how many TCP connections could they manage while running Tmix?

Running Tmix with a few thousand flows would test the CPU, memory and buffer management

capabilities for managing these connections. Toward this end, we calibrated the traffic generators

(similar to the router calibration) as follows. First, we generated a few high throughput TCP flows

per traffic generator pair, sending large packets using the iperf program. Then we generated more

than one hundred thousand TCP flows per traffic generator pair, sending a diverse mix of packet

sizes and flow sizes using the Tmix traffic generation system.

 101

 The number of connections managed per traffic generator is an important factor in

calibration. This is because with a few thousand TCP connections alive per second on average per

traffic generator, the traffic generators must manage the CPU, memory and buffer resources to

keep state for all these connections while servicing each connection in a round-robin fashion. For

the calibration using iperf, we refer to Figures 4.2.2 (a) and (b) back in Section 4.2.1. The two

pairs of traffic generators used in that experiment represented the most capable and the least

capable pair of machines in our set of 30 pairs of traffic generators (with respect to their

processing and memory capabilities). Each of these four PCs served as either client or server, and

thus generated two data streams and two ack streams in each direction. As seen in Figures

4.2.2(a) and 4.2.2(b), the least capable of these traffic generators was able to generate iperf data

traffic of at least 240Mbps. This is more than an order of magnitude higher throughput than what

we require for the experiments reported in Chapter 5. For all experiments reported in Chapter 5,

we require each traffic generator to generate traffic that is less than 20Mbps. Also, the CPU

utilizations on these PCs during the iperf experiments were quite low – they were less than 20%

on each traffic generator. Hence, this iperf experiment gave us an upper bound for the traffic

generators in terms of the total throughput they could each generate using only one connection

per pair even for the least capable traffic generators.

 For traffic generators, generating and managing thousands of TCP connections over an hour

long experiment is a better stress test than generating a few TCP flows of very high throughput.

Hence we ran experiments using Tmix with realistic traffic captured at the UNC campus link.

This input was an hour long trace captured on December 7, 2007 starting at 11:30 AM. This

represents peak campus-Internet traffic just like the January 2008 trace we used for the

experiments reported in Chapter 5. Unlike the router calibration using Tmix (where we ran all

pairs of traffic generators at once), we ran these experiments using only one pair of machines at a

time to determine their capability and find any bottlenecks. The median of the maximum CPU

 102

utilizations on the most capable and least capable pair of machines were 53% and 72%

respectively.

 In this section, we present the results only for the worst-case – that is, the least capable pair of

machines running Tmix. As shown in Figure 4.2.5 (a), the average throughput was 31Mbps and

11Mbps in the forward and reverse paths. The corresponding packet throughputs were 3.8 Kpps

and 3.2 Kpps as shown in Figure 4.2.5 (b). It must be noted that by generating only 30Mbps of

traffic with each of the 30 pairs, we could potentially generate 900 Mbps using all 30 pairs,

without these traffic generators presenting any bottlenecks. This is almost double the traffic

generated in any of the experiments reported in Chapter 5, and thus provides a much higher upper

limit for each traffic generator.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

throughput - forward direction
throughput - reverse direction

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

throughput - forward direction
throughput - reverse direction

 (a) byte throughput in Mbps (b) packet throughput in Kpps

Figure 4.2.5: Throughput for Tmix calibration experiment for least capable traffic generator pair

 Our calibration for this least capable pair of traffic generators showed that even at these

relatively high loads, they replay the input traffic using Tmix exactly as intended. We verified

this as follows. We extracted the following data from the connection vectors representing the

input traffic for this experiment: roundtrip times, number of epochs in sequential connections,

 103

request sizes and response sizes in sequential connections and the ‘a’ and ‘b’ ADU sizes for the

concurrent connections. Then during the hour long experiment, we acquired the packet header

trace of the generated traffic on the router-to-router link using the 1Gbps DAG card. We then

processed and analyzed this trace for the same set of measures as we did for the input connection

vectors (derived from the trace on the production link). Figures 4.2.6 through 4.2.10 compare the

distributions of various measures of TCP connections in the original traffic (input to the traffic

generators) and the results of the calibration replay experiments (output to the traffic generators).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Round Trip Time (ms)

replay-RTTs
original_trace-RTTs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Number of Epochs

replay-epochs
original_trace-epochs

Figures 4.2.6 (a) and (b): CDF and CCDF for input and output round trip times

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Request Sizes (bytes)

replay-request_sizes
original_trace-request_sizes

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Request Sizes (bytes)

replay-request_sizes
original_trace-request_sizes

Figures 4.2.7 (a) and (b): CDF and CCDF for input and output request sizes

 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Sizes (bytes)

replay-response_sizes
original_trace-response_sizes

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Sizes (bytes)

replay-response_sizes
original_trace-response_sizes

Figures 4.2.8 (a) and (b): CDF and CCDF for input and output response sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ADU Sizes (bytes)

replay-concurrent-ADU-a-sizes
original_trace-concurrent-ADU-a-sizes

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

ADU Sizes (bytes)

replay-concurrent-ADU-a-sizes
original_trace-concurrent-ADU-a-sizes

Figures 4.2.9 (a) and (b): CDF and CCDF for input and output concurrent ‘a’ sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ADU Sizes (bytes)

replay-concurrent-ADU-b-sizes
original_trace-concurrent-ADU-b-sizes

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

ADU Sizes (bytes)

replay-concurrent-ADU-b-sizes
original_trace-concurrent-ADU-b-sizes

Figures 4.2.10 (a) and (b): CDF and CCDF for input and output concurrent ‘b’ sizes

 105

 Figures 4.2.6 (a) and (b) compare the CCDFs of the original and replay-generated

distributions for connection RTTs and number of epochs per connection. We observe that these

distributions match closely indicating that the traffic generator pair is replaying the traffic as

designed. Similarly, Figures 4.2.7 (a) and (b) compare the original and replay-generated

distributions for request sizes in sequential connections, showing the CDF and CCDF in the two

figures respectively.

 Figures 4.2.8 (a) and (b) confirm that this traffic generator pair also replayed response sizes in

sequential connections as designed. Figures 4.2.9 (a) and (b), and Figures 4.2.10 (a) and (b)

compare the original and replay-generated distributions for the ADUs in concurrent connections

in the two directions for each connection. These are the a and b sizes as shown in these figures.

Figures 4.2.11 (a) and (b) show that, throughout this experiment, the CPU utilizations over 1

second intervals were less than 75% for the two traffic generators.

 From these data, we conclude that the traffic generators would replay the traffic using the

Tmix traffic generation system as designed, and no traffic generators would present a bottleneck

in the experiments we report in Chapter 5 and 6.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n

Time in minutes

Traffic Generator 1

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n

Time in minutes

Traffic Generator 2

Figures 4.2.11 (a) and (b): CPU utilization for the two traffic generators used in this experiment

 106

4.3 Verification of Tmix Replay

 In the previous sections, we discussed calibration of routers, monitors and traffic generators.

Having completed calibrating the network, we now show that our full laboratory network testbed

was configured properly to replay traffic using the Tmix traffic generation system for the

experiments reported in Chapter 5. We verify that Tmix realistically reproduces the traffic from

the production link in our laboratory testbed. We show that the traffic we generate bears all the

key characteristics found in the input traffic used for replay. While we already showed that this is

true for one pair of traffic generators in Section 4.2.3, we now show that this holds in the

aggregate when using all pairs of traffic generators.

 The input traffic for this Tmix experiment was acquired from the UNC production link.

While this traffic is derived from the same UNC traffic we use for experiments reported in

Chapter 5, there are a few thousand connections that were not included in these experiments.

During this hour long Tmix experiment, we captured the packet header trace on the router-to-

router link using the 1Gbps DAG card. We then processed and analyzed this experiment-

generated trace for several key measures of traffic.

0

200

400

600

800

1000

0 10 20 30 40 50 60

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

throughput - forward direction
throughput - reverse direction

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

throughput - forward direction
throughput - reverse direction

 (a) byte throughput in Mbps (b) packet throughput in Kpps

Figure 4.3.1: Throughput for Tmix verification experiment

 107

 Figures 4.3.1 (a) and (b) show the throughput in Mbps and Kpps computed in 5 second

intervals. The average byte throughput in the middle 40 minutes of this replay was 451 Mbps

with a standard deviation of 35Mbps in the forward direction, and 165 Mbps with a standard

deviation of 19 Mbps in the reverse direction. The corresponding average packet throughput was

56 Kpps with a standard deviation of 3 Kpps in the forward direction, and 47 Kpps with a

standard deviation of 2.6 Kpps in the reverse direction.

 As we observed in the router calibration using Tmix, we find there is a significant spike in

throughput at the beginning of the replay due to the 30 pairs of traffic generators starting all at

once, and all of them starting TCP connections in the first few minutes of the experiment. There

is also a significant decay in throughput during the last few minutes of the experiment. For results

reported here, we use data collected during minutes 10 to 50 of the replay.

 We now verify this Tmix experiment (similar to Section 4.2.3) by visually comparing the

distribution of several key measures of the traffic on the production link with the corresponding

measures for this replay using the CDFs and CCDFs for these parameters. We extracted the

following distributions from measurements of both sets of traffic: connection minimum RTTs,

number of epochs in sequential connections, request sizes and response sizes in sequential

connections, and the ‘a’ and ‘b’ ADU sizes for the concurrent connections.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Round Trip Time (ms)

replay-RTTs
original_trace-RTTs

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Round Trip Time (ms)

replay-RTTs
original_trace-RTTs

Figure 4.3.2 (a) and (b): CDF and CCDF of connection RTTs for Tmix verification experiment

 108

0

0.2

0.4

0.6

0.8

1

1 10 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Number of Epochs

replay-epochs
original_trace-epochs

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Number of Epochs

replay-epochs
original_trace-epochs

Figure 4.3.3 (a) and (b): CDF and CCDF of number of epochs per connection for Tmix verification experiment

 Figures 4.3.2 through 4.3.9 show the distributions for each of these measures comparing data

from the original trace (input to the experiment) with data from the replay experiment. Figures

4.3.2 (a) and (b) compare the distributions of the minimum round trip times per connection for the

original trace and the replay. The two distributions match very closely showing that we emulated

the connection RTTs exactly as required. Similarly Figures 4.3.3 (a) and (b) compare the

distributions for the number of epochs for sequential connections in the original trace with the

number of sequential epochs in the replay.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Request Sizes (bytes)

replay-request sizes
original_trace-request sizes

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Request Sizes (bytes)

replay-request sizes
original_trace-request sizes

Figures 4.3.4 (a) and (b): CDF and CCDF for request sizes for Tmix verification experiment

 109

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Sizes (bytes)

replay-response sizes
original_trace-response sizes

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Sizes (bytes)

replay-response sizes
original_trace-response sizes

 Figures 4.3.5 (a) and (b): CDF and CCDF for response sizes for Tmix verification experiment

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ADU Sizes (bytes)

replay-concurrent-ADU-a-sizes
original_trace-concurrent-ADU-a-sizes

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

ADU Sizes (bytes)

replay-concurrent-ADU-a-sizes
original_trace-concurrent-ADU-a-sizes

Figures 4.3.6 (a) and (b): CDF and CCDF for concurrent ‘a’ sizes for Tmix verification experiment

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ADU Sizes (bytes)

replay-concurrent-ADU-b sizes
original_trace-concurrent-ADU-b sizes

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

ADU Sizes (bytes)

replay-concurrent-ADU-b sizes
original_trace-concurrent-ADU-b sizes

Figures 4.3.7 (a) and (b): CDF and CCDF for concurrent ‘b’ sizes for Tmix verification experiment

 110

 Figures 4.3.4 and 4.3.5 compare the distributions of the measured request sizes and response

sizes with the distribution of request sizes and response sizes produced by the replay experiment.

Figures 4.3.6 and 4.3.7 compare the distributions of the ‘a’ sizes and ‘b’ sizes in concurrent

ADUs with the corresponding distributions measured from the production link. As shown in all

these figures, the replay trace has the same distributions of measures of connection structure and

network characteristics (RTTs) as the original trace which was captured on the Internet link.

 The CPU utilizations on the traffic generators were fairly low (see Figures 4.2.8 (a) and (b)).

Each figure shows the most capable and least capable traffic generators. The CPU utilization is

about 10% for the most capable machines and about 40% for the least capable machines. We

conclude that our network was configured properly and the whole system consisting of traffic

generators, routers, and monitors reproduced the input traffic exactly as intended.

0

20

40

60

80

100

0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n

Time in minutes

slowest traffic generator
fastest traffic generator

0

20

40

60

80

100

0 10 20 30 40 50 60

C
P

U
 U

til
iz

at
io

n

Time in minutes

slowest traffic generator
fastest traffic generator

Figures 4.3.8 (a) and (b): CPU utilization for the most and least capable traffic generator pairs on each subnet

4.4 Experimental Design

 So far, in this chapter, we discussed network configuration and calibration, and verification of

the Tmix replay experiment. In this section, we discuss the process of developing the overall

 111

design of experiments to prove or disprove our hypotheses in this dissertation. We conducted

experiments using all combinations of the four connections structure models and three RTT

emulation methods (described in Chapter 3). In Chapter 5, we report the results from

combinations of experiments using these models. We ran every experiment at least three times,

but report the results of only one experiment for each combination of connection structure model

and round trip time emulation. If the results varied among the three runs, we would have chosen

to report the average over all repetitions. However, our experimental results were consistent over

different runs; hence we picked one run to report the outcomes.

 We repeated the entire set of experiments using both UNC and IBM traffic. Every

combination of connection structure and RTT model was run in two modes: unconstrained

(1Gbps) and constrained (95% offered load). In the unconstrained mode, the link between the

core routers is 1Gbps. In the constrained mode, this same link is set to 105% of the expected

average offered load on this link. Whether unconstrained or constrained, the (aggregation) link

between the switch and the router on each of the two subnets was always 10Gbps for all

experiments. For experiments with UNC traffic, the average uncongested load was 471 Mbps and

hence the constrained link capacity was set to 496 Mbps. For experiments with IBM traffic, the

average uncongested load was 404 Mbps and hence the constrained link capacity was set to 424

Mbps.

 For every experiment, we collected measurements at various points in the experimental

network. We then analyzed these measurements to study the effect of connection structure models

and round trip time emulation methods on four key performance metrics. These performance

metrics are connection durations and response times (both recorded on the traffic generators for

every TCP connection), the router queue length (recorded on the router for its outbound queue),

and active connections (recorded on one of the two monitors on the router-to-router link).

 112

 Unlike the calibration experiments, we did not use the monitor with the DAG card in these

experiments. Hence, we did not capture the packet header trace for all the traffic on the link.

Instead, we measured throughput on the link, counting every byte and every packet traversing that

link in 100 microsecond intervals. In this section, all figures showing throughput results show this

data aggregated over 5 second intervals. The arrival of packets and bytes into the network is fairly

bursty, representing the nature of arrivals onto the Internet link at which the original trace was

measured. The aggregation uplink before the core routers is a 10Gbps link in our testbed network.

On that link, we measured byte arrivals well over 1Gbps at sub-10ms intervals. In the figures,

‘Mbps’ indicates throughput in units of Megabits per second, and ‘Kpps’ indicates throughput in

packets with units of Kilopackets (thousands of packets) per second. Every experiment was run

for 60 minutes, but all data shown in the results sections are for the middle 40 minutes to

eliminate startup and termination effects. It was determined during calibration that allowing 10

minutes for startup effects to diminish and 10 minutes for termination effects to diminish was

adequate to account for such effects.

4.4.1 The Control Set: a-t-b-t with usernet

 In this section, using our control set for traffic generation comprising the a-t-b-t connection

structure model and the usernet RTT model, we introduce the measurement and evaluation

methodology that we use for all experiments reported in Chapter 5. As we explained earlier, we

adopted the combination of the a-t-b-t model for connection structure and the usernet model for

RTT as our control set. We use this set to compare the effects of different models of traffic

generation on application-level and network-level performance metrics. While the real gold

standard is obviously the original traffic captured on the production link, Hernandez-Campos et

al. have already shown that the Tmix models for connection structure (a-t-b-t) and network

characteristics (usernet RTT, window size) can emulate any given input traffic in a realistic,

 113

reliable, and reproducible manner. In Section 4.3, we successfully verified that the output

characteristics of the traffic generated matched their corresponding input parameters for traffic

generation, given our particular experimental setup. Hence we use the Tmix models as our control

set and compare all other models against them. As our results bear out in this dissertation, this

combination of models is indeed a good choice as a control set for realistic traffic generation.

 We have already used this control set of models for the three Tmix experiments presented for

calibration and verification in this chapter so far. So what differentiates those experiments from

the ones below? Those experiments used only UNC traffic, not IBM traffic. Though the traffic

sets for those experiments were acquired from the UNC production link, they are different from

the traffic set we use for results reported in Chapter 5.

4.5 a-t-b-t with usernet in Unconstrained Mode

 In this section, we discuss the results for two experiments (one using UNC traffic, and the

other using IBM traffic) modeled with the control set and run in the unconstrained network mode.

We present results for the time series of throughput followed by results for the performance

metrics: connection durations, response times, router queue length, and active connections. For all

of these measures, we present results for both experiments, comparing them on the same figure

wherever possible.

4.5.1 Throughput

 Figures 4.5.1 and 4.5.2 show the byte throughput time-series for the experiments using the

UNC and IBM traffic in the unconstrained mode. Figures 4.5.3 and 4.5.4 show the corresponding

packet throughput time-series. We present the throughput time series because it is the most

common and familiar measure of characterizing traffic on any production link or, in this case,

 114

traffic generated in the laboratory. These figures show throughput data averaged over 5 second

intervals.

 300

 350

 400

 450

 500

 550

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

bytes-dep

 300

 350

 400

 450

 500

 550

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

bytes-dep

 Figure 4.5.1: Link throughput in Mbps – UNC Figure 4.5.2: Link throughput in Mbps – IBM
 (unconstrained mode) (unconstrained mode)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

pkts-dep

 40

 45

 50

 55

 60

 65

 70

 75

 80

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

pkts-dep

 Figure 4.5.3: Link throughput in Kpps – UNC Figure 4.5.4: Link throughput in Kpps – IBM
 (unconstrained mode) (unconstrained mode)

 Figure 4.5.1 shows that the mean throughput for a replay of UNC traffic is 471 Mbps with a

standard deviation of 34 Mbps. Figure 4.5.2 shows that the mean throughput for a replay of IBM

traffic is 404 Mbps with a standard deviation of 37 Mbps. The corresponding packet throughputs

are shown in Figures 4.5.3 and 4.5.4. The mean packet throughput for a replay of UNC traffic is

 115

60 Kpps with a standard deviation of 3.0 Kpps. And the mean packet throughput for a replay of

IBM traffic is 62 Kpps with a standard deviation of 3.7 Kpps.

 It is worth noting that the throughput time-series for the experiment using the UNC traffic is

stationary for the hour. The throughput time-series for the experiment using the IBM traffic,

however, is non-stationary. That is, for the experiment using the IBM traffic, the mean of the

throughput changes significantly in the latter half of the time-series (see Figures 4.5.2 and 4.5.4).

A stationary time series is one whose statistical properties such as mean, variance, and

autocorrelation are constant over time. The throughput of traffic on an Internet link may be

stationary if measured over short periods of time, for example an hour. However, for realistic

protocol evaluations, it is useful to note that not only is Internet traffic non-stationary over longer

periods, for example a day, it may even be non-stationary over shorter periods of an hour, as is

the case in the hour long IBM traffic we use as input in half our experiments. This creates

interesting effects on the metrics in the constrained experiments when using the IBM traffic,

especially for queue dynamics at the router.

In the following sections, we present results for two experiments: one using the UNC traffic

as input, and the other using IBM traffic as input. Both experiments were run in the

unconstrained mode. We present results for the four performance metrics. All of these results are

again presented in Chapter 5. However, in that chapter, we use the control set for comparison

against other models. In this chapter we present these results as a study of the control set with a

focus on detailed discussion of the four performance metrics.

4.5.2 Connection Duration

 We define connection duration for any TCP connection as the time elapsed between the

transmission of the first data byte and the receipt of the last data byte of that connection.

Connection duration for every connection is measured and logged at the traffic generators. During

 116

the hour long experiment, every traffic generator creates a number of logs reporting on the

performance of the TCP connections in the experiment. This includes connection duration and

response times for every connection. Figures 4.5.5 and 4.5.6 compare the cumulative distribution

functions (CDFs) and the complementary cumulative distribution functions (CCDFs) for duration

of the TCP connections in the two experiments. The CDF shows a linear plot of durations up to 3

seconds. The CCDF is on a log-log scale and shows durations up to the entire hour of the

experiment, which is 3600 seconds or 3.6 x 106 milliseconds. These data show durations for

several million TCP connections – 4.7 million for the experiment using UNC traffic and 2.8

million for the experiment using IBM traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

unc_connection_durations
ibm_connection_durations

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

unc_connection_durations
ibm_connection_durations

 Figure 4.5.5: Connection duration – CDF Figure 4.5.6: Connection duration – CCDF
 Control set – UNC and IBM – unconstrained Control set – UNC and IBM – unconstrained

 Unconstrained
experiments

Median of
connection
durations

80% or less of
connection
durations

Mean of
connection
durations

Top 10% of
connection
durations

using UNC traffic 260 milliseconds 2 seconds or less 33 seconds ≥ 8 seconds

using IBM traffic 550 milliseconds 3 seconds or less 87 seconds ≥ 13.5 seconds

Table 4.5.1: Connection duration a-t-b-t with usernet in unconstrained mode

As shown in Figure 4.5.5, and enumerated in Table 4.5.1, 80% of the connections in the UNC

replay complete in less than 2 seconds, while 80% of the connections in the IBM replay take 3

 117

seconds or less to complete. The median connection durations are 260 milliseconds and 550

milliseconds for the UNC and IBM replays respectively. These distributions have long tails as

shown in Figure 4.5.6. Hence the average connection duration is relatively high. The average

duration of the TCP connections was 33 seconds and 87 seconds for the UNC and IBM replays

respectively.

Fully 10% of the connections run longer than 8 seconds in the UNC replay and longer than

13.5 seconds in the IBM replay. There are some connections that last the entire hour of the

experiment. These were connections that, as measured in the original Internet link, started at or

before the start of our trace collection, and continued to transmit data up to the end of, or beyond,

our hour long trace collection. Such long connections were sometimes dominated by the number

of bytes transmitted; for example, a single connection transmitting a few gigabytes of data over

the period of an hour. Often, however, very long duration connections, at least in the traffic we

used, were dominated by long endpoint latencies with user thinktimes (inter-epoch latencies) of a

minute or more between request-response exchanges within a connection. And as shown in

Figure 3.1.10 (see Chapter 3), several thousand connections in both UNC and IBM traffic had

more than 100 epochs (request-response exchanges).

4.5.3 Response Time

 We define response time for a request-response exchange in a sequential connection as the

time elapsed between the transmission of the first data byte of a request and the receipt of the last

data byte of its response. Hence, response time or epoch response time is defined only for

sequential connections since concurrent connections do not have the notion of serialized request-

response exchanges between the endpoints of a TCP connection. Response times are measured

for every request-response exchange, and recorded in logs on the traffic generators.

 118

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Times in milliseconds

unc_response_times
ibm_response_times

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Response Times in milliseconds

unc_response_times
ibm_response_times

 Figure 4.5.7: Response Time – CDF Figure 4.5.8: Response Time – CCDF
 Control set – UNC and IBM – unconstrained Control set – UNC and IBM - unconstrained

Experiment Median of
response times

80% or less of
response times

Mean of response
times

Top 10% of
response times

UNC replay 110 milliseconds 295 milliseconds 2.6 seconds ≥ 800 milliseconds

IBM replay 130 milliseconds 240 milliseconds 4.4 seconds ≥ 550 milliseconds

Table 4.5.2: Response Time for a-t-b-t with usernet in unconstrained mode

 It is interesting to note that while connection durations are recorded as one data point for

every TCP connection in an experiment, response times are recorded as one data point for every

epoch in a sequential connection. Hence, the number of response time data points in the

distribution is dependent on not only the number of sequential connections but also the average

number of epochs per sequential connection in the traffic being replayed. The IBM traffic had

only 2.73 million sequential connections and the UNC traffic had 4.57 million sequential

connections. However, on average the number of epochs for the IBM connections (9 epochs per

connection) is higher than that of the UNC connections (3 epochs per connection) as shown in

Figure 3.1.9 (in Chapter 3). Hence the UNC replay had only 13 million request-response

exchanges while the IBM replay had about 24 million request-response exchanges, despite the

fact that IBM traffic had only 60% the number of connections as UNC traffic.

 119

 Figures 4.5.7 and 4.5.8 show the distributions for response times for all epochs of all

sequential connections. The CDFs show response times up to 1 second. As shown in Figure

4.5.7, and enumerated in Table 4.5.2, 80% of the response times in the UNC replay are less than

295 ms, and 80% of the response times in the IBM replay are less than 240 ms. The median

response times are 110 ms and 130 ms for the UNC and IBM replays respectively. These

distributions have long tails as shown in Figure 4.5.8. Hence the average connection duration is

relatively high. In fact, the analysis of the original traffic used for these replays revealed much

longer intra-epoch endpoint latencies for the top 1% in both traffic sets, with the IBM connections

having longer intra-epoch endpoint latencies than the UNC connections (see Figure 3.1.18).

Hence the average response time is relatively high, with 2.6 seconds and 4.4 seconds for the UNC

and IBM replays respectively. These long response times possibly indicate long server processing

times from slow servers from the original connections.

 We note that for a given input traffic, longer response times do not necessarily lead to longer

connection durations. For example, the IBM replay had shorter response times for 80% of its

connections as compared to the UNC replay. However, the IBM replay had much longer

connection durations than those of the UNC replay. We note that the duration of a connection

depends on the size (total bytes) of the connection, the number of epochs in the connection and

the length of inter-epoch endpoint latencies in the connection. Response times, however, are not

influenced by the inter-epoch endpoint latencies at all.

4.5.4 Queue Length

 Sections 4.5.2 and 4.5.3 discussed the application-level performance metrics of connection

duration and response time. In this section and the next, we present results for network-level

performance measures of queue length at the core router and the number of active connections in

the network. During each experiment, we sampled the outbound queue at the first router (see

 120

Figure 4.2.1) every 10ms. Figure 4.5.9 shows the distributions for router queue lengths for both

UNC and IBM replays.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

unc_queue_length
ibm_queue_length

Figure 4.5.9: CCDF of queue length (control set – UNC and IBM – unconstrained)

 Since the average throughput was 471 Mbps for the UNC replay, and 404 Mbps for the IBM

replay, there was almost no congestion on this 1Gbps link. The traffic was bursty, however, and

there were a few brief intervals when the network experienced spikes that were well over 1Gbps.

Hence although the queue was almost always empty (about 99% of the time), these momentary

spikes led to packets being queued with roughly 10 or more packets in the queue for 0.05% of the

time for both experiments.

4.5.5 Active Connections

 In this study, we define a connection as an ‘active connection’ in the network at a given time

t, if the SYN for that TCP connection has been seen on the network, but the FIN or RST has not

yet been recorded. Hence, an active connection could be actively sending packets or just

experiencing end system or network latencies at the time that it is considered an active connection

in the network.

 121

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50
N

um
be

r
of

 a
ct

iv
e

co
nn

ec
tio

ns

Time in minutes

UNC - Active connections per second
IBM - Active connections per second

Figure 4.5.10: Active connections (control set – UNC and IBM – unconstrained)

 The number of active connections in the network is directly proportional to two

characteristics of the original traffic. First is the total number of connections being replayed in the

hour-long experiment. Second, and more influential, is the duration of these connections. Figure

4.5.10 shows the time series of active connections in the two experiments. The UNC replay

recorded on average 45,000 active TCP connections in the network while the IBM replay

recorded on average between 68,000 and 78,800 active connections during the middle 40 minutes

of the experiment. Note the change in active connections around t=30 minutes for the IBM replay

is consistent with the non-stationarity of that traffic. The IBM traffic had fewer total connections

than the UNC traffic over the hour. So, how come the IBM replay shows more active

connections? Indeed, the UNC traffic consisted of 4.7 million TCP connections, while the IBM

traffic consisted of 2.8 million TCP connections. However, on average, the TCP connections in

the IBM traffic were longer in duration. Hence, we observe that the number of active connections

in the IBM replay is much higher than that of the UNC replay.

4.6 a-t-b-t with usernet in Constrained Mode

 So far, we have discussed results for the replay experiments using the UNC and IBM traffic

in the unconstrained mode, using the a-t-b-t connection structure model with usernet RTT

 122

emulation. In this section, we present the results for this control set in the constrained mode. For

experiments in the constrained mode, the link bandwidth between the core routers was set to

105% of the expected average offered load. Hence, for replays in the constrained mode, we set

this router-to-router link to 496Mbps for UNC replay and 424Mbps for IBM replay.

4.6.1 Throughput

 300

 350

 400

 450

 500

 550

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

bytes-dep

 300

 350

 400

 450

 500

 550

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

bytes-dep

 Figure 4.6.1: Link throughput in Mbps – UNC Figure 4.6.2: Link throughput in Mbps – IBM
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 40

 45

 50

 55

 60

 65

 70

 75

 80

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

pkts-dep

 40

 45

 50

 55

 60

 65

 70

 75

 80

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

pkts-dep

 Figure 4.6.3: Link throughput in Kpps – UNC Figure 4.6.4: Link throughput in Kpps – IBM
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 Figures 4.6.1 and 4.6.2 show the byte throughput time-series for the UNC and IBM replay

experiments respectively. Figures 4.6.3 and 4.6.4 show the corresponding packet throughput

 123

time-series. These figures show throughput data aggregated over 5 second intervals. We show the

throughput as measured in the middle 40 minutes of the experiments at the bottleneck link

between the routers.

Constrained
experiments

Mean throughput
in Mbps

Standard deviation
of throughput in
Mbps

Mean throughput
in Kpps

Standard deviation
of throughput in
Kpps

UNC replay 485 Mbps 18 Mbps 61 Kpps 1.8 Kpps

IBM replay 421 Mbps 9 Mbps 64 Kpps 1.8 Kpps

Table 4.6.1: Throughput for constrained experiments using the control set

 Figure 4.6.1 shows that the mean throughput for the UNC replay – 485 Mbps with a standard

deviation of 18 Mbps. Figure 4.6.2 shows that the mean throughput for the IBM replay – 421

Mbps with a standard deviation of 9 Mbps. The corresponding packet throughputs are shown in

Figures 4.6.3 and 4.6.4. The mean packet throughput for the UNC replay was 61 Kpps with a

standard deviation of 1.8 Kpps. And the mean packet throughput for the IBM replay was 64 Kpps

with a standard deviation of 1.8 Kpps.

Figures 4.6.1 and 4.6.2 demonstrate the effect of using average throughput when setting the

constraints on the link bandwidth. For the IBM replay in the unconstrained mode (see Figure

4.5.2), we noted that the mean of the throughput drops around t=32 minutes. This was due to non-

stationarity of the throughput time-series for the original IBM traffic. As a result, however, we

note that for the first 36 minutes of the experiment, the bottleneck link is constantly utilized. This

indicates the outbound queue at the router before this link rarely drained during this time. We see

the direct consequence of this on the router queue length measurements shown in Section 4.6.4.

 124

4.6.2 Connection Durations

 Figures 4.6.5 through 4.6.8 show the distributions for connection durations for the UNC and

IBM replay experiments in the constrained mode. The CDF shows a linear plot of duration up to

3 seconds. The CCDF is on a log-log scale and shows duration up to the entire hour of the

experiment. For comparison, we have included the results for connection duration from the

replays in the unconstrained mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 Figure 4.6.5: Connection durations – UNC Figure 4.6.6: Connection durations – IBM
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 Figure 4.6.7: Connection durations – UNC Figure 4.6.8: Connection durations – IBM
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 125

 For the UNC replay, Figure 4.6.5 shows that 80% of the connections completed in less than

2.1 seconds in the constrained mode compared to 2 seconds in the unconstrained case. For the

IBM replay, Figure 4.6.6 shows that 80% of the connections took 3.9 seconds or less to complete

in the constrained mode compared with 3 seconds in the unconstrained case. Clearly congestion

had a slightly more debilitating effect on the IBM replay traffic than the UNC replay, though both

were run with the constrained link set to 105% of the average offered load. To some extent this is

due to the much higher load in the experiment using the IBM trace in the first half of the

experiment as compared with the second half, causing longer queuing delays in the IBM replay

than in the UNC replay.

Experiments Median of
connection
durations

80% or less of
connection
durations

Mean of
connection
durations

Top 10% of
connection
durations

Unconstrained -
UNC replay

260 milliseconds ≤ 2 seconds or less 33 seconds ≥ 8 seconds

constrained - UNC
replay

330 milliseconds ≤ 2.1 seconds 33 seconds ≥ 8.3 seconds

Unconstrained -
IBM replay

550 milliseconds ≤ 3 seconds 87 seconds ≥ 13.5 seconds

constrained - IBM
replay

790 milliseconds ≤ 3.9 seconds 88 seconds ≥ 14.7 seconds

Table 4.6.2: Connection Duration for constrained experiments using the control set

In the constrained mode (shown in Figures 4.6.5 through 4.6.8 and in Table 4.6.2), the

median connection durations were 330 milliseconds and 790 milliseconds for the UNC and IBM

replays respectively. In the unconstrained mode, these measures were 260 milliseconds and 550

milliseconds for the two experiments respectively. Figures 4.6.7 and 4.6.8 show the long tails of

these distributions. These long tails lead to high average connection durations of 33 seconds and

88 seconds for the UNC and IBM replay experiments respectively. Fully 10% of the connections

take longer than 8.3 seconds in the UNC replay and longer than 14.7 seconds in the IBM replay.

In the unconstrained modes, these measures were 8 seconds and 13.5 seconds respectively.

 126

4.6.3 Response Times

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 Figure 4.6.9: Response Times – UNC Figure 4.6.10: Response Times – IBM
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 Figures 4.6.9 through 4.6.12 show the distributions for the epoch response times in the

sequential TCP connections in the two experiments in constrained mode. The CDFs show

response times up to 1 second. Again, for comparison we include the response time results for the

experiments in the unconstrained modes.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.usernet-constrained

 Figure 4.6.11: Response Times – UNC Figure 4.6.12: Response Times – IBM
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 As shown in these figures, and enumerated in the Table 4.6.3, the response times for the

bottom 80% of the response times are up 19% and 33% for the constrained experiments for the

 127

UNC and IBM replays as compared with the unconstrained modes for the same experiments.

Clearly constraint on the link has a greater effect on response times (the time between a request-

response exchange) than on connection durations. This is because connection duration is often

dominated by the connection structure itself which includes the inter-epoch endpoint latencies

between consecutive request-response exchanges.

Experiments Median of
response times

80% or less of
response times

Mean of response
times

Top 10% of
response times

Unconstrained –
UNC replay

110 milliseconds ≤ 295 milliseconds 2.6 seconds ≥ 800 milliseconds

constrained - UNC
replay

140 milliseconds ≤ 350 milliseconds 2.6 seconds ≥ 880 milliseconds

Unconstrained -
IBM replay

130 milliseconds ≤ 240 milliseconds 4.4 seconds ≥ 550 milliseconds

constrained - IBM
replay

187 milliseconds ≤ 320 milliseconds 4.5 seconds ≥ 660 milliseconds

Table 4.6.3: Response Time for constrained experiments using the control set

 The median response times for the constrained experiments using the UNC and IBM traffic

were up 23% and 36% respectively from the unconstrained case. This is also a direct effect of the

queuing delay in the network with queuing delay affecting the response time in the IBM replay

more than in the UNC replay. The tails of these distributions are long but these are dominated

more by the size of the data transfer and intra-epoch endpoint latencies than by the effect of

queuing delay. Hence the average response times for the constrained experiments were similar to

that of the unconstrained experiments.

 The reason the tails of the response times seem unaffected is because the queuing delay, in

the case of a-t-b-t connection structure experiments, represents a small fraction of the intra-epoch

latencies measured for these connections in the original trace. Specifically, queuing delay is in

tens of milliseconds while the intra-epoch latencies are hundreds of milliseconds to several

 128

seconds. For the top 10% of the epochs, response times in the constrained mode represent an

increase of 10% and 20% for results for the UNC and IBM replays respectively as compared with

their unconstrained modes.

4.6.4 Queue Length

 Figures 4.6.13 and 4.6.14 show the outbound queue at the core router before the constrained

link. The queue was sampled every 10 milliseconds. Although both experiments were setup so

that the link was constrained to 105% of the average of the unconstrained throughput, the IBM

replay saw a much longer queue. Also, the distribution of the inter-epoch endpoint latencies is

heavier for the connections in the UNC traffic than those in the IBM traffic. This allows the

queue to drain more often in the UNC replay, causing a relatively lighter queue.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

unc_queue_length
ibm_queue_length

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

unc_queue_length
ibm_queue_length

 Figure 4.6.13: CDF of queue length Figure 4.6.14: CDF of queue length
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode

 As shown in Figures 4.6.13 and 4.6.14, and enumerated in the Table 4.6.4, the queue was

empty for 18% of the time for the UNC replay, and 7% of the time for the IBM replay. The

higher queue length for the IBM replay was partly due to the higher volume of packets and bytes

in the first half of the IBM traffic. The median queue length for the UNC and IBM replays was

350 packets for the UNC replay and 2600 packets for the IBM replay.

 129

Constrained
experiments

Queue empty
/ drained

Median of
queue length

Mean / standard
deviation
of queue length

Top 10% of
queue length

Peak queue
occupancy

using UNC traffic 18% of the
time

350 packets 659 / 992
packets

≥ 1460 packets 6800 packets

using IBM traffic 7% of the
time

2600 packets 2557 / 2025
packets

≥ 5400 packets 8300 packets

Table 4.6.4: Queue length for constrained experiments using the control set

4.6.5 Active Connections

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 a

ct
iv

e
co

nn
ec

tio
ns

Time in minutes

UNC - Active connections per second
IBM - Active connections per second

Figure 4.6.15: Active connections

 Figure 4.6.15 shows the number of active connections in the network in the middle 40

minutes of the two experiments. In the unconstrained mode, the UNC replay recorded a median

of 46,200 active TCP connections in the network, while the IBM replay recorded a median of

72,200 active connections. In the constrained mode, the number of active connections goes up

only slightly compared to the unconstrained mode. This is because the queue buildup causes a

small increase in the duration of connections, which leads to a small increase in the number of

active connections in the network. So, in the constrained mode, the number of active connections

had a median of 72,680 in the IBM case, but the UNC case remains roughly the same since the

queuing delay was not significant enough to adversely affect the connection durations.

 130

4.7 Chapter Summary

 In this chapter, we described in detail the network configuration followed by calibration of all

network components. We verified the replay of Tmix showing that the control set of a-t-b-t

connection structure and usernet RTT models do indeed realistically and reliably reproduce the

original traffic captured on the production link. We then presented experiments using the UNC

and IBM traffic in the unconstrained and constrained modes. We reported results for these

experiments using four performance metrics – throughput, connection durations, response times,

queue length and active connections.

CHAPTER 5

EFFECTS OF ROUND TRIP TIMES AND CONNECTION
STRUCTURES ON NETWORK PERFORMANCE

The principle of science, the definition, almost, is the following: the test of all

knowledge is experiment. Experiment is the sole judge of scientific “truth”…

Also needed is imagination to create from these hints [experimental results] the

great generalizations – to guess at the wonderful, simple, but very strange

patterns beneath them all.

 Richard Feynman [The Feynman Lectures on Physics, 1965]

 In this chapter, we present results for the core set of connection replay experiments conducted

for this dissertation. We used combinations of four connection structure models, three round trip

time (RTT) emulation models, two network link modes, and two sets of traffic mixes for

generating traffic for these experiments. For each experiment, we studied the effect of traffic

generation on four performance metrics: application-level metrics of connection durations and

epoch response times, and network-level metrics of router queue length and the number of active

connections in the network.

 Our study leads us to two main findings. First: the RTT model used in emulating network

characteristics significantly affects application and network performance. Second: the connection

structure model used for generating the TCP connections affects these performance metrics even

more (often orders of magnitude more) significantly than the RTT model used.

 132

 This chapter is organized as follows: In the first half of this chapter, in Sections 5.1 and 5.2,

we present results showing how the RTT emulation model used in traffic generation affects these

four metrics in the unconstrained and constrained network modes respectively. Then, using the

same set of experiments, in the second half of the chapter, in Sections 5.3 and 5.4, we present the

results showing how the TCP connection structure model used in traffic generation affects the

same four metrics for the unconstrained and constrained network modes respectively.

5.1 Effects of RTT Emulation Model in the Unconstrained Mode

 For a given connection, we expect that the RTT will affect its duration and epoch response

times. But how does using one RTT model versus another affect the aggregate distribution of

connection durations and response times for a large aggregation of connections? Moreover, does

the RTT model used to generate these millions of connections also affect router queue length and

active connections in the network? If yes, how significant is this effect?

 We quantify the answers to these questions through the results from our experiments in this

and the next section, comparing the impact of three different RTT models on four performance

metrics. For the first set of experiments, we assign a single RTT value for all connections using

the meanRTT model. For the second set of experiments, we create 10 end-to-end paths in the

network by emulating 10 unique delay values using the 10pathRTT model. For the third set of

experiments, we assign to each connection the specific minimum RTT found by analyzing the

TCP/IP header traces using the usernet RTT model. For more details on these RTT models, we

refer to Section 3.4 (Chapter 3).

 These three RTT models create three realistic, yet significantly different, emulations of

network characteristics. The meanRTT model emulates the network as one single path from end

to end for all connections in the hour long experiment. The 10pathRTT model is slightly more

 133

diverse and provides 10 distinct paths in the network, with discrete RTT values that are

representative of measured RTTs on production links. The usernet RTT model is most closely

representative of the original traffic being replayed. By assigning the measured RTT for each

connection in the experiment, it creates a distinct end-to-end virtual path on the testbed network

for each connection in the experiment. For more details on any of these (or other) RTT models,

we refer to Section 3.4 (Chapter 3).

 Each set of experiments in this section and the next consists of using one RTT model per

experiment, keeping the TCP connection structure constant for the set. The connection structure

models (described in Chapter 3) are labeled as follows in all the figures: blk-conc for the block-

concurrent model which sends all bytes of a connection in both directions simultaneously, blk-seq

for the block sequential model which sends all the bytes of a connection as one request-response

exchange between the two TCP endpoints, a-b for the a-b model that emulates all epochs

(request-response exchanges) from the original connection but does not model any of the

endpoint latencies measured in the original connection, and finally, a-t-b-t for the a-t-b-t model

that emulates all sequential epochs and concurrent ADUs as well as all endpoint latencies in

every connection.

 Results for experiments using the a-t-b-t model with usernet RTT, for both unconstrained and

constrained modes, were presented in Chapter 4. This is the control set against which we compare

all results presented in this chapter.

 In the four subsections that follow, we present results for replays in the unconstrained mode

showing the effect of using different RTT models on each of the four performance measures. For

all sections in this chapter we present the results for experiments using the UNC traffic as well as

the IBM traffic. Unless otherwise specified, the figures on the left show results for the UNC

replay, and those on the right show results for the IBM replay.

 134

5.1.1 Effect of RTT Emulation Model on Connection Durations

 In this section, we present results showing the impact of the RTT model on connection

durations. We vary the RTT model per experiment while keeping the connection structure

constant for that set of experiments. For example, in Figure 5.1.1 we present results for

connection duration for three experiments using meanRTT in one, 10pathRTT in the second and

usernet RTT in the third. All three experiments used the block-concurrent connection structure

for generating TCP traffic.

 Figures 5.1.1 and 5.1.2 show results for connection durations for varying RTT model using

the block-concurrent connection structure for the UNC and IBM replays respectively. Similarly,

Figures 5.1.3 and 5.1.4 show results for varying RTT models using the block-sequential

connection structure for the UNC and IBM replays respectively. Figures 5.1.5 and 5.1.6 show

results for varying RTT models using the a-b connection structure while Figures 5.1.7 and 5.1.8

show results for varying RTT models using the a-t-b-t connection structure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10pathrtt

blk-conc.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.1.1: Connection duration – UNC Figure 5.1.2: Connection duration – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 For a given connection structure, we find that the RTT model impacts connection duration

significantly if the duration is 500ms or less. The RTT model continues to moderately impact

 135

connection durations that are up to about 1 second. But regardless of the connection structure

used, the RTT model seems to have little impact on the distribution for connections with duration

more than 1 second. For example, for the block-concurrent or block-sequential connection

structures (see Figures 5.1.1 through 5.1.4), at least 98% of connections complete in 3 seconds or

less with little or no difference in the distribution due to the RTT model beyond 1 second of

duration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.3: Connection duration – UNC Figure 5.1.4: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.1.5: Connection duration – UNC Figure 5.1.6: Connection duration – IBM
 (a-b connection structure) (a-b connection structure)

 When using the a-b model, as shown in Figures 5.1.5 and 5.1.6, 97% of connections in the

UNC replay complete in less than 3 seconds and 90% of connections complete in 1 second or

 136

less, regardless of what RTT model was used in the experiment. For the IBM replay experiment

using the a-b model (Figure 5.1.6), 95% of connections complete in less than 3 seconds, while

only 80% of connections complete in 1 second or less. This difference in connection durations for

the UNC versus IBM replays can be attributed to the number of epochs per connection in the two

traffic mixes. 60% of connections in the original UNC traffic have only one epoch while 60% of

connections in the original IBM traffic have more than one epoch. But we find that the RTT

model has little impact in either set of experiments after about 1 second in the distribution of

connection duration. In the replays using the a-t-b-t connection structure model (results shown in

Figures 5.1.7 and 5.1.8), we find that the RTT model again has a significant impact on connection

durations, but only up to 500ms and a moderate impact on durations up to 1 second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.7: Connection duration – UNC Figure 5.1.8: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 Since the maximum impact of RTT model is seen for connection durations up to 500ms, we

zoom into this part of the distribution for further discussion. See Figures 5.1.9 through 5.1.12.

These four figures show the same data as in Figures 5.1.3, 5.1.4, 5.1.7 and 5.1.8 but we now

amplify the first 500 ms of the distribution for connection durations; that is, we change the X-

axis. We show only the block-sequential and a-t-b-t models for this discussion since the block-

 137

concurrent and a-b models have similar effects (for connection duration with RTT variation) as

the block-sequential model.

 These figures show that there is a large variation among the distributions of connection

duration for different RTT models used in the experiments for durations below 500ms. Note that

the mean RTT for the UNC traffic was 80 ms and for the IBM traffic, it was 92ms. Hence, most

connections in experiments using the meanRTT model have a minimum duration of 160 ms (two

RTTs) for the UNC replay, and a minimum duration of 184 ms for the IBM replay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.9: Connection duration – UNC Figure 5.1.10: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.11: Connection duration – UNC Figure 5.1.12: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 138

 In a replay using the meanRTT model, the original connections that had a connection RTT

much less than meanRTT now last longer and hence contribute to a heavier distribution of

connection duration for the initial part of the distribution. The use of 10pathRTT results in longer

connection durations than using the meanRTT or the usernet models. This is more so for the UNC

replays than the IBM replays. This is because the mean of the RTTs in the 10pathRTT is 92ms,

which is much higher than the mean of the RTTs (80ms) for the UNC traffic. Coincidentally, this

mean of the 10pathRTT is the same as the mean of the RTTs for the IBM traffic. Hence, the

distribution of connection durations in the IBM replays for 10pathRTT and usernet RTT are

closer. The usernet RTT shows much lighter distribution for connection duration that does the

meanRTT model because all those connections with connection RTTs less than the mean RTT for

the traffic can now replay at the rate of their original RTTs. Hence these connections complete

faster with usernet than when using the meanRTT model for these same connections.

 For the UNC replay with the block- sequential connection structure (Figure 5.1.9), only 40%

of connections complete in less than 160 ms using the 10pathRTT model, whereas 60% of

connections complete in the same duration using the meanRTT model. While no connections

complete in less than 125 ms when using meanRTT, fully 50% of connections complete in 125 ms

or less when using the usernet model and about 32% of connections complete in 125 ms or less

when using the 10pathRTT model. So, clearly, the RTT model used in traffic generation has a

significant impact on connection durations for durations less than 500 ms.

 But, why is there a step characteristic for the distribution of connection durations when using

meanRTT and 10pathRTT in most of these figures? This is because there are a very small number

(1 for meanRTT and 10 for 10pathRTT) of discrete values for connection RTTs in these models.

This directly results in certain discrete values for connection durations that are multiples of these

RTT values. In the case of meanRTT, there is only one RTT value whose multiples constitute

 139

possible values for connection durations, whereas in the case of 10pathRTT, there are only 10

RTT values whose multiples constitute possible values for connection durations.

 Then, why is this step effect more pronounced (for meanRTT and 10pathRTT) only in the

block-concurrent, block-sequential, and a-b models, while barely present in the a-t-b-t model (see

Figure 5.1.11)? This is because the connections in the a-t-b-t model, though still dominated by

their RTT for durations less than 500ms, are also influenced (and more so) by the varied

distribution of endpoint latencies being generated within each connection. These latencies

significantly dampen the effect of a connection’s RTT on its duration, thus almost eliminating the

step effect for the a-t-b-t model. That is, due to the varied distribution of endpoint latencies which

contribute to connection durations, connections emulated using the a-t-b-t model are not

restricted to durations that are multiples of RTT alone, even when we use the meanRTT or the

10pathRTT models.

 Continuing discussion of Figures 5.1.9 and 5.1.10, we observe that in the case of usernet,

there could be as many discrete RTT values as there are TCP connections because usernet

emulates connection RTT exactly as measured on the original network link. Hence the

distribution of connection durations when using usernet is as diverse a set of connection duration

values as the original captured traffic. However when using a small set of discrete values as in the

case of meanRTT or 10pathRTT, we limit the values that the distribution of connection duration

can exhibit simply because connection duration can now only be some multiple of the 10 discrete

values in the 10pathRTT and the one discrete value in meanRTT model. This is especially true

when using the block-concurrent model for the following reasons: there are no endpoint latencies,

and in these experiments there is no queuing delay. Thus a connection is restricted in such cases

only by how fast it can grow its congestion window to send packets. And this window growth is

dependent on the connection RTT. Hence, the dominant contributor of time within a connection

becomes the connection RTT. And in the absence of other time components, the duration of the

connection becomes a multiple of the connection RTT. For short connections, where RTT is most

 140

dominant, this effect is seen more prominently. For connections which last longer than 1 second,

the RTT model does not seem to matter. This is possibly because the size of the data transferred

by the connection influences the connection duration by adding in larger amounts of transmission

times relative to connection RTT. Alternately, even for small size connections, if the congestion

window is relatively small, then the connection duration is increased by having to wait until

acknowledgements are received before further transmission of data.

 In Figures 5.1.11 and 5.1.12, we show connection duration up to 500 ms using the a-t-b-t

model with the three different RTT models of emulation. Clearly, the difference in connection

duration among different RTT models is greater for the UNC replay than for the IBM replay.

Again this is because the meanRTT value and the mean of the 10pathRTT set of values happen to

be the same for the IBM traffic. Also, as shown in Figure 3.1.23 (Chapter 3), the body of the RTT

distribution for UNC traffic is much lighter than that of the IBM traffic. The median connection

RTT for UNC traffic was 36 ms, and for IBM traffic it was 68 ms.

 There is also a much more diverse set of RTTs in the UNC traffic with a large variance in the

distribution of RTTs, as compared with that of the IBM traffic. A key observation from these

results is that, for a given connection structure, the distribution of connection durations and the

variance in that distribution is directly related to the distribution of the connection RTTs and the

variance in that original RTT distribution. Modeling RTT using the meanRTT or 10pathRTT

methods reduces this variance in connection RTTs and hence the resulting traffic generation

produces less variance in the distribution of connection durations.

 So far, we have discussed the body of the distribution of connection duration. We now study

the tails of these distributions in Figures 5.1.13 through 5.1.20. We have already found that the

model of RTT emulation does not greatly affect connection durations for connections lasting

 141

more than 1 second. The tails of the distribution for connection duration shown in all these eight

figures only confirm this finding.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.1.13: Connection duration – UNC Figure 5.1.14: Connection duration – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.15: Connection duration – UNC Figure 5.1.16: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 We also observe in Figure 5.1.13 that for the UNC replay and the block-concurrent

connection structure, there is a relatively quick convergence of connection durations for

meanRTT and usernet beyond the initial 250 ms. This is directly because the meanRTT method

uses the average RTT from the distribution of connection RTTs in the usernet model. We observe

a similar convergence for these two RTT methods for the IBM replays in Figure 5.1.14. Figures

 142

5.1.15 through 5.1.20 show similar results for UNC and IBM replays using the block-sequential,

a-b, and the a-t-b-t connection structures.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.1.17: Connection duration – UNC Figure 5.1.18: Connection duration – IBM
 (a-b connection structure) (a-b connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.19: Connection duration – UNC Figure 5.1.20: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

5.1.2 Effect of RTT Emulation Model on Response Times

 In this section, we present the results of the impact of the RTT model on response times for

request-response exchanges. Recall that response time is defined for each request-response

exchange within a sequential TCP connection. It is the time elapsed between the transmission of

the first data byte of a request and the receipt of the last data byte of its response. Hence response

 143

time, or epoch response time, is not defined for concurrent connections or the block-concurrent

model. For the block-sequential model, every connection transmits all of its data within one

epoch and hence the connection duration of a connection in the block-sequential model is the

same as its response time.

 For the a-b and a-t-b-t models, there are as many response time data points in a TCP

connection as there are epochs in that connection. In this section we discuss the impact of the

RTT model on response times when using the blk-seq, a-b or a-t-b-t models. Keeping connection

structure the same for each set of experiments, we vary the RTT model used for each experiment.

For all the replays in this section, the data is only for connections that were sequential in the

original traffic. For example, even for the replay using the block-sequential model, we present

response time data only for those connections that were sequential in the original traffic. This is

necessary for proper comparison with other models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.21: Response Time – UNC Figure 5.1.22: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 Figures 5.1.21 through 5.1.26 show the distributions of response times for the UNC and IBM

replays. We observe that different RTT emulation methods clearly have different impact on the

response times. The effect of different RTT models on response time also depends on the

 144

characteristics of the original traffic. For example, the UNC replays show greater differences in

the distributions of response times due to RTT models than do the IBM replays.

 For a given connection structure, we find that the RTT model impacts response time

distribution significantly up to about 500ms or less. As seen in Figure 5.1.21, with the block-

sequential connection structure, the RTT model continues to moderately impact response times

up to about 1 second. However, for IBM replays (Figure 5.1.22) with the block-sequential

connection structure, we see that there is almost no difference among the RTT models after about

500 ms of response time. In Figure 5.1.21, we also observe that the usernet RTT model causes the

smallest response times followed by meanRTT followed by 10pathRTT. This result is clearly

because the RTT of the average connection becomes larger when using the meanRTT model since

all the connections that would have had lesser than the mean RTT (in the original distribution)

now have a greater connection RTT. Similarly, since the mean of the 10pathRTT is the largest,

the response time of the request-response exchanges using this model shows the heaviest

distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.1.23: Response Time – UNC Figure 5.1.24: Response Time – IBM
 (a-b connection structure) (a-b connection structure)

 When using the a-b model for UNC replay (Figure 5.1.23), 98% of epochs complete in less

than 1 second and 90% of epochs complete in less than 400ms, regardless of what RTT model

 145

was used in the experiment. For the IBM replays with the a-b model (Figure 5.1.24), 99% of

epochs complete in less than 600 ms, while 90% of epochs complete in 250 ms or less. In the a-t-

b-t connection structure model (Figures 5.1.25 and 5.1.26), we find even lesser impact of the RTT

models on response times, with the response time distributions converging at about 600 ms in the

UNC replay, and about 300 ms in the IBM replay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.25: Response Time – UNC Figure 5.1.26: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 We also observe that, regardless of RTT model, the response times in the UNC replay using

the a-b and a-t-b-t connection structures are longer than those in the IBM replay. However,

connection durations in the IBM replays were longer than in the UNC ones (see figures in Section

5.1.1). Hence we note that short response times do not necessarily correspond to short connection

durations. For example, a very long connection (even one running for the whole hour) could have

very short response times if each epoch had small ADU sizes and short intra-epoch endpoint

latencies. This would account for shorter response times. These same connections, however,

could have hundreds of epochs and long inter-epoch endpoint latencies between epochs thus

contributing to longer connection durations.

 Clearly, the RTT emulation method has an impact on the distribution of epoch response times

up to 500 ms or 1 second at the most. Beyond that, response times are possibly dominated by

ADU sizes and intra-epoch endpoint latencies. Since the maximum impact of RTT model is seen

 146

for response times up to 500ms, we zoom into this part of the distribution for further discussion

below in Figures 5.1.27 through 5.1.30. These four figures below show the same data as in

Figures 5.1.21, 5.1.22, 5.1.25 and 5.1.26 but amplify the first 500 ms of the distribution for

response times. So, the X-axes are now up to 500 ms only. We show results for only the block-

sequential and a-t-b-t models.

 These figures show that there is a large variation among the distributions of response times,

up to 500 ms, for different RTT models used in the experiments. In Figure 5.1.27, we find that

RTT is a dominant time component in the request-response exchange when using the block-

sequential model. Just as the connection durations were multiples of connection RTT for

meanRTT and 10pathRTT experiments, the response times are also multiples of connection RTTs

for these RTT models using the block-sequential connection structure. This step effect is absent

for response times using the usernet RTT model because there is a much greater variation in the

distribution of connection RTTs when using the usernet model than when using the meanRTT or

10pathRTT models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.27: Response Time – UNC Figure 5.1.28: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 Figure 5.1.27 shows that 50% of the response times are 80ms or less in the UNC replay, for

both the meanRTT and usernet models. The use of 10pathRTT results in longer response times

 147

than using the meanRTT or the usernet models. The effect of using meanRTT over usernet is that

80 ms becomes the minimum response time for request-response exchanges with this model.

Whereas about 40% of response times using usernet were 50 ms or less, that is not a possibility

when using the meanRTT model. For the 10pathRTT whose mean is even larger than the other

two RTT models, response times are longer initially but eventually merge with the other two

models. 40% of response times when using the 10pathRTT model are 100 ms or less. Similarly,

Figure 5.1.28 shows that in the IBM replay, 55% of epochs have response times of 92ms or less

with meanRTT model while only 40% do so using the usernet RTT model. But 36% of epochs

have response times less than 92 ms with the usernet model which is not even a possibility when

using the meanRTT model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.29: Response Time – UNC Figure 5.1.30: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 The usernet RTT model shows the lightest distribution for response time for both the UNC

and IBM replays because all the epochs with connection RTTs less than the mean RTT for the

traffic now replay at the rate of their original RTTs. Hence these epochs experience faster

response times than when using the meanRTT. Thus the distribution of response times when using

usernet RTT is as diverse a set of possible values as the original captured traffic. For short

epochs, where RTT is most dominant, this effect is seen more prominently. For epochs which last

 148

longer than 500ms, the RTT model does not seem to matter as much. This is because the size of

the epoch and the intra-epoch endpoint latencies (for the a-t-b-t model) influence the response

time more than RTT does.

 Figures 5.1.29 and 5.1.30 show the response times up to 500 ms with the three different RTT

models for the a-t-b-t connection structure. Again, the difference in connection duration among

different RTT models is greater in the UNC replay than in the IBM replay. And the effect of RTT

model on the distribution of response times diminishes after 500 ms in the UNC replays and as

early as 300 ms in the IBM replays.

 So far, we have discussed the body of the response time distributions. We now study the tails

of these distributions shown in Figures 5.1.31 through 5.1.36. We have already found that the

model of RTT emulation does not greatly affect response time for epochs lasting more than 1

second. The tails of the distribution for response time only confirm this finding.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.31: Response Time – UNC Figure 5.1.32: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 Figures 5.1.31 through 5.1.36 show the CCDF of response times for the UNC and IBM replay

experiments with the block-sequential, a-b, and a-t-b-t models and the three RTT emulation

methods. In the block-sequential and a-b models, the RTT methods show small differences in

 149

impact on response times even for long response times. But for the a-t-b-t model, there is almost

no difference in response time distribution. This is clearly because these long response times are

dominated more by the intra-epoch endpoint latencies than the RTT of the connection.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06
C

om
pl

em
en

ta
ry

 C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.1.33: Response Time – UNC Figure 5.1.34: Response Time – IBM
 (a-b connection structure) (a-b connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.35: Response Time – UNC Figure 5.1.36: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

5.1.3 Effect of RTT Emulation Model on Queue Length at the Router

 In this section, we show the queue lengths at the outbound queue of the router before the

unconstrained router-to-router link. The queue was sampled every 10 ms for the entire hour of the

experiment. However, we only show the queue length data for the stable middle 40 minutes of the

experiment. Each figure in this section shows the experimental results for a given connection

 150

structure model while varying the RTT models. In Figures 5.1.37 and 5.1.38, we show the

distribution of queue length for three experiments in each set, using UNC and IBM traffic

respectively. Each set of experiments used the block-concurrent connection structure while we

varied the RTT model per experiment among meanRTT, 10pathRTT and the usernet RTT models.

Similarly, in Figures 5.1.39 through 5.1.44, we show results for queue length for experiments

varying the RTT models while keeping the connection structures constant among the block-

sequential, a-b, and a-t-b-t models.

 A common observation from all these experiments is that for more than 99% of the time, the

queue was empty, regardless of the RTT model used for emulation. Hence Figures 5.1.37 through

5.1.44 showing distributions of the queue length indicate almost empty queues for all those

experiments. The traffic generated was bursty, however, such that even on the unconstrained

1Gbps link, there were momentary spikes greater than 1Gbps. Our record of the arrival pattern on

the 10Gbps aggregation link before the router confirms these spikes. Hence, the tails of these

distributions show a maximum queue length of around 100 packets at those momentary spikes,

and 10 or more packets in the queue for about 0.05% of the time for all these replays in the

unconstrained mode.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.1.37: Queue Length – UNC Figure 5.1.38: Queue Length – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 151

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.39: Queue Length – UNC Figure 5.1.40: Queue Length – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-b.meanrtt
a-b.10path
a-b.usernet

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.1.41: Queue Length – UNC Figure 5.1.42: Queue Length – IBM
 (a-b connection structure) (a-b connection structure)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.43: Queue Length – UNC Figure 5.1.44: Queue Length – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 152

5.1.4 Effect of RTT Emulation Model on Active Connections

 We define any TCP connection as an ‘active connection’ in the network at a given time t, if

the SYN for that TCP connection has been seen on the network, but the FIN or RST has not yet

been recorded. Figures 5.1.45 and 5.1.46 show the number of active connections in the network

for the UNC and IBM replay experiments in the unconstrained mode respectively, for the middle

40 minutes of each experiment for the block-concurrent connection structure using a different

RTT model in each of the three experiments. The RTT model clearly makes little difference in

the number of active connections. Similarly, Figures 5.1.47 and 5.1.48 show the time series of

active connections for the block-sequential connection structure using the three RTT models.

Figures 5.1.49 and 5.1.50 show the same for the a-b model, and Figures 5.1.51 and 5.1.52 show

the results for the a-t-b-t model.

 We find that, for any given connection structure, the RTT model does not affect the number

of active connections in the network. This seems counter to the results that RTT model clearly

made a difference in connection durations that were 500 ms or less, and that the number of active

connections in the network is directly affected by the connection durations. So, why does that

difference in connection duration not manifest itself in number of active connections?

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.1.45: Active connections – UNC Figure 5.1.46: Active connections – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 153

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.1.47: Active connections – UNC Figure 5.1.48: Active connections – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 A connection is considered active during a given second whether it only lasted for 10ms or

for that whole second; so whether a connection was active for 300 ms or 550 ms on the network,

it would be counted as one active connection for that second. Hence the number of active

connections (measured per second as we did in this study) is a slightly gross measure of

performance and is a second order effect in the network. This is why those clear differences seen

in connection durations due to the different RTT models do not affect active connection counts in

the network.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.1.49: Active connections – UNC Figure 5.1.50: Active connections – IBM
 (a-b connection structure) (a-b connection structure)

 154

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.1.51: Active connections – UNC Figure 5.1.52: Active connections – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 The number of active connections in the network is dominated by the few thousands of very

long-lived connections, among the several million connections being generated over the hour,

rather than the short-lived connections that replace other connections as they start and complete

quickly. As an example of this effect of the long-lived connections, we observe that the number

of active connections in the IBM replays is almost the same as that in the UNC replays for block-

concurrent, block-sequential and a-b models for all RTT models although the total number of

connections over the hour for UNC replay was almost double that of the IBM replay. What is

even more noteworthy is that the long-lived connections have such a strong impact on active

connections in the network that the number of active connections for IBM replay using the a-t-b-t

model is much higher than that for UNC replay. This is a direct consequence of the results seen in

Section 5.1.1 where we found that the duration of connections using the a-t-b-t model was higher

for IBM replay than for UNC replay.

5.1.5 Section Summary

 In this section, we presented results for replays in the unconstrained mode using UNC traffic

and IBM traffic. We discussed the results for four sets of experiments for each of the two input

traffic mixes. For each set of experiments, we kept the connection structure model the same,

 155

while varying the RTT model among the meanRTT, the 10pathRTT, and the usernet RTT models.

Thus we studied the effect of these empirically-derived RTT models on four key performance

metrics: connection duration, response time, router queue length, and active connections.

 We found that the RTT model used in emulating network characteristics has some impact on

these performance metrics. That was an expected result. However, in this section, we quantified

these results. We found that the RTT model affects connection durations and response times

when these measures are less than 1 second. Beyond that, any effect of the RTT model used in an

experiment is masked by other factors of traffic generation including the components of the

connection structure models, which are discussed in detail in Sections 5.3 and 5.4. We also found

that the router queue length showed no differences among the experiments using different RTT

models. However, this was due to the fact that these were replays in the unconstrained mode, and

hence designed to not create any queue buildup. The number of active connections in the network

is a second order effect of connection durations. This metric was not affected by the differences

in the RTT models used in the experiments.

 So, if we had to choose an RTT model to be used for experiments, run in an unconstrained

mode, which model would we pick? A lot depends on the performance metrics used to evaluate

these experiments. If these metrics are measured at gross levels above one second, then the RTT

model used may not matter. However, we would question if such gross measures would play a

useful part in any protocol evaluations? If network traffic being generated is to be somewhat

realistic, then it is imperative that the richness and diversity of the original connection round trip

times be preserved in the generated traffic. How does the RTT model affect this?

 Any metric that is affected by the connection RTT will only produce as diverse a distribution

of values, for a given performance metric, as the input RTTs. For example, even for the few

performance metrics we discussed here, clearly the diversity of allowable values in the

distribution for these metrics, like connection durations or response times, becomes highly limited

when the connection RTTs is a small discrete set of values, as was the case with meanRTT or

 156

10pathRTT models. Conversely, a rich and full set of input connection RTTs results in a similarly

diverse distribution for the measured performance metric. Thus, while this is not necessarily a

case of “garbage in, garbage out” since we use all empirically derived RTT models, it is still true

that the quality and diversity of the inputs used for traffic generation and network emulation

directly impacts the quality and diversity of the outputs measured during the experiments.

5.2 Effect of RTT Emulation Model in the Constrained Mode

 In Section 5.1 we discussed the effect of the three different RTT emulation methods on four

performance metrics: connection durations, response times, router queue length and active

connections. Those were replays in the unconstrained mode; that is, the router-to-router link was

set to 1Gbps. In this section we present results for a set of experiments run in the constrained

mode, showing the impact of RTT models on the same four metrics; that is, the router-to-router

link is set so that it is 105% of the offered load on that link. For the UNC replays in the

constrained mode, the link was set to 496Mbps, and for the IBM replays in the constrained mode,

the link was set to 424Mbps. For each set of experiments, we compare the performance metrics

for different RTT models, keeping the connection structure model the same for all experiments in

that set.

5.2.1 Effect of RTT Emulation Model on Connection Durations

 Before we compare the effects of RTT models on connection durations for replays in the

constrained mode, we begin by looking at the effect of such a constraint on connection duration

for a given combination of connection structure and RTT. We first compare the connection

durations for 10pathRTT and usernet RTT models in the unconstrained and constrained modes

for both UNC and IBM replays.

 157

 Figure 5.2.1 and 5.2.2 show the distributions of connection duration for four experiments

each, using the UNC and IBM traffic respectively. In each figure, there are two replays in the

unconstrained mode and two replays in the constrained mode. All these experiments use the

block-concurrent model, with either the 10pathRTT or the usernet RTT emulation. As observed

earlier, the two experiments in the unconstrained mode show clear differences in connection

durations between the two RTT models up to about 1 second of the distribution for connection

duration. But there is a drastic shift in connection duration for both RTT emulation methods in

the constrained mode. That is, regardless of the RTT method used, the connections experience

long delays that are much greater than connection RTTs, thus causing these huge shifts in the

distributions. What is causing these long delays? As we show in Section 5.2.3, the constraint on

the router-to-router link results in very large queuing delays in most cases. The long delays are

also related to the very large queue (64K packets) but do not have any effects from losses in TCP

congestion control.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10pathrtt-unconstrained
blk-conc.usernet-unconstrained
blk-conc.10pathrtt-constrained

blk-conc.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10pathrtt-unconstrained
blk-conc.usernet-unconstrained
blk-conc.10pathrtt-constrained

blk-conc.usernet-constrained

 Figure 5.2.1: Connection duration – UNC Figure 5.2.2: Connection duration – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 In the unconstrained mode for the UNC replays (Figure 5.2.1), more than 80% of all

connections completed in 500 ms or less for both the 10pathRTT and usernet RTT models. But in

the constrained mode, only 55% of connections completed in 500 ms or less using the same RTT

models. There are no losses in these connections since the outbound queue at the router was set to

 158

65,000 packets. This was done deliberately to study queuing effects due to RTT emulation.

Figure 5.2.2 shows that the queuing delay had an even more debilitating effect on the connection

durations in the IBM replays than in the UNC replay (see Figure 5.2.1). In these experiments,

while 82% of connections completed in 500 ms or less in the unconstrained mode, only 50% of

the connections did so in the constrained mode. It is important to note here that although we

observe the significant effect of queuing delay on the connection durations, this queue buildup

and queuing delay seen by the shift in the distributions is the same for both methods of RTT

emulation. As we will show in Section 5.2.3, the queue lengths and resulting queuing delays,

though impacted differently by the three RTT models, are in fact a more direct consequence of

the connection structure used for traffic generation. Also, the queue lengths were much greater in

the case of the IBM replay experiments, partly due to the initial queue buildup since the

throughput of the IBM traffic was non-stationary.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 Figure 5.2.3: Connection duration – UNC Figure 5.2.4: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 Figure 5.2.3 shows these queuing effects using the block-sequential connection structure

model with the 10pathRTT and usernet RTT models for the UNC replays. We observe again that

the RTT emulation method has an effect on connection duration up to 500 ms in the

unconstrained mode, but it has little or no effect on connection duration in the constrained mode.

In the unconstrained UNC replay (Figure 5.2.3), 80% of connections completed in 400ms or less

 159

when using the usernet RTT model and 80% of connections completed in 540ms or less using the

10pathRTT model. However, in the replays in the constrained mode, these small yet significant

differences in connection durations for the two RTT models are masked by the huge effect of

queuing delays on all connections in the experiment. Hence for both usernet RTT and 10pathRTT

models, 80% of connections complete in 1400ms. Thus what was a significant 35% shift in the

distribution of connection duration between the two RTT models in replays in the unconstrained

mode is masked by the more than 85% increase in connection durations due to queuing delay in

the replays in the constrained mode for each RTT model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 Figure 5.2.5: Connection duration – UNC Figure 5.2.6: Connection duration – IBM
 (a-b connection structure) (a-b connection structure)

 Similar effects on connection duration are seen for the UNC replay experiments using the a-b

model with different RTT methods in unconstrained and constrained modes as shown in Figure

5.2.5. In the unconstrained mode (Figure 5.2.5), 80% of connections completed in 550ms or less

when using the usernet RTT model and in 650ms or less using the 10pathRTT model. However,

in the replays in the constrained mode, for both usernet RTT and 10pathRTT models, 80% of

connections complete in 1700ms or less due to the huge effect of queuing delays. The small yet

significant differences in connection durations between the two RTT models are masked by the

long queuing delays on all connections in the experiments.

 160

 In Figures 5.2.4 and 5.2.6, we show results for different RTT models using the block-

sequential and a-b models respectively for the IBM replays. Again we observe the huge shift in

distributions for connection durations in replays in the constrained mode from their respective

distributions in replays in the unconstrained mode. While this large shift is due to the large

queuing delays in both sets of experiments, there is also little to no difference in the distribution

of connection durations due to the RTT model being used in the replays in the constrained mode.

 In Figures 5.2.7 and 5.2.8 we study the results in unconstrained and constrained modes, using

the a-t-b-t model with the 10pathRTT and the usernet RTT models for the UNC and IBM replays

respectively. These results are significantly different from those discussed so far with other

connection structures. First, there is still a small yet significant difference in connection durations

between the two RTT models even in the replays in the constrained mode. Second, and more

significant, is that the shift in the distributions between the unconstrained and constrained replays

for each RTT model is much smaller than with the other connection structure models seen in

Figures 5.2.1 through 5.2.6. Why is there such a small shift? We found that this could be

completely attributed to the effect of connection structure model on queuing delay. The a-t-b-t

model creates relatively much smaller queues (hence shorter queuing delays) than the other

connection structure models. We discuss this effect in more detail in Section 5.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 Figure 5.2.7: Connection duration – UNC Figure 5.2.8: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 161

 Clearly, there is an effect from queuing on connection durations in these replays in the

constrained mode but it is not as drastic. The difference in the connection durations for the a-t-b-t

connection structure model using 10pathRTT and usernet RTT models in the unconstrained

modes is the same as their difference in the constrained modes. The effect of queuing delay is

much smaller using the a-t-b-t model and hence the difference in connection duration between the

two RTT models is preserved even in the replays in the constrained mode.

 So far, we observed the dramatic shift in the distribution of connection durations between the

unconstrained and constrained replays. This effect is also seen in the tails of the distributions for

connection durations as well. We show these results in Figures 5.2.9 through 5.2.14. It must be

noted that the CCDFs are in log-log scale; hence what looks like a small shift in the distributions

is really a large difference in the actual distributions. And Figures 5.2.15 and 5.2.16 show that

there is not much effect of queuing delay on connections with long durations.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

blk-conc.10pathrtt-unconstrained
blk-conc.usernet-unconstrained
blk-conc.10pathrtt-constrained

blk-conc.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

blk-conc.10pathrtt-unconstrained
blk-conc.usernet-unconstrained
blk-conc.10pathrtt-constrained

blk-conc.usernet-constrained

 Figure 5.2.9: Connection duration – UNC Figure 5.2.10: Connection duration – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 We observe that, for a given connection structure model, there is a significant effect of

queuing delay in each set of experiments regardless of the RTT emulation method used in the

experiment. The only set of experiments this does not hold true is the set using the a-t-b-t

connection structure model. This is because the queuing delay and the differences in RTT

 162

emulations are insignificant latencies for these long-lived connections compared with their

endpoint latencies being generated as part of the traffic model.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 Figure 5.2.11: Connection duration – UNC Figure 5.2.12: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 Figure 5.2.13: Connection duration – UNC Figure 5.2.14: Connection duration – IBM
 (a-b connection structure) (a-b connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Connection Duration in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 Figure 5.2.15: Connection duration – UNC Figure 5.2.16: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 163

 Having studied the queuing delays for replays in the constrained mode by observing the

difference in connection durations between the unconstrained and constrained replays, we now

discuss the direct effect of RTT emulation on connection duration for different RTT models in

these replays in the constrained mode. Figures 5.2.17 through 5.2.24 show the distributions of the

connection durations such that each figure shows the effect of different RTT methods for a given

connection structure. For example, Figure 5.2.17 shows three UNC replays in the constrained

mode, all using the block-concurrent structure with the meanRTT, 10pathRTT, or usernet RTT

methods of emulation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.2.17: Connection duration – UNC Figure 5.2.18: Connection duration – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.19: Connection duration – UNC Figure 5.2.20: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 164

 The most remarkable observation in all these figures is that while the method of RTT

emulation resulted in significantly different distribution of connection durations for durations up

to 500 ms in the unconstrained modes, the RTT emulation method makes almost no difference in

the replays in the constrained mode. The only set of replays in the constrained mode which show

impact of RTT emulation method are the UNC replay with the a-t-b-t connection structure (see

Figure 5.2.23). And this is because the queuing delay is not significant enough in these

experiments to have overshadowed the effect of differences in RTT emulation methods. The

queuing delay in the IBM replay in constrained mode was significantly higher even with the a-t-

b-t model and this is explained in detail in Section 5.2.3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.21: Connection duration – UNC Figure 5.2.22: Connection duration – IBM
 (a-b connection structure) (a-b connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.23: Connection duration – UNC Figure 5.2.24: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 165

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.2.25: Connection duration – UNC Figure 5.2.26: Connection duration – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.27: Connection duration – UNC Figure 5.2.28: Connection duration – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.29: Connection duration – UNC Figure 5.2.30: Connection duration – IBM
 (a-b connection structure) (a-b connection structure)

 166

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.31: Connection duration – UNC Figure 5.2.32: Connection duration – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 Figures 5.2.25 through 5.2.32 show the CCDFs for connection duration for each connection

structure while varying the RTT emulation method. These clearly show that the RTT emulation

differences have no impact on connection duration in the tail of these distributions for replays in

the constrained mode, for the same reasons already stated above for the body of these

distributions.

5.2.2 Effect of RTT Emulation Model on Response Times

 In Section 5.1.2, we observed the direct effect of RTT emulation on the response times of

request-response exchanges within TCP connections when there was no congestion in the

network. The distribution of response time was affected by the RTT emulation method up to 500

ms and up to about 1 second in some cases, but was not affected beyond that. In this section, we

discuss the results for a similar set of experiments run in the constrained mode. We begin this

discussion by looking at the effect of the constrained mode on response times. Hence, we first

compare the response times for the 10pathRTT and usernet RTT models for replays in the

unconstrained and constrained modes.

 Figure 5.2.33 shows the distributions of response time for four experiments using UNC

traffic. There are two replays in the unconstrained mode and two replays in the constrained

 167

mode. These experiments use the block-sequential model, with the 10pathRTT emulation or the

usernet RTT. The two experiments in the unconstrained mode show significant differences in

response times between the two RTT models up to about 500 ms and even up to about 1 second.

But there is a much larger shift in response time for both RTT emulation methods due to the

congestion in the network. That is, regardless of the RTT method used, the epochs experience

queuing delays that are much greater than connection RTTs, thus causing the huge shift in the

distributions of response times for replays in the constrained mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 Figure 5.2.33: Response Time – UNC Figure 5.2.34: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 In the unconstrained mode, shown in Figure 5.2.33, roughly 80% of all request-response

exchanges took about 250 ms using the usernet RTT method and about 400 ms using the

10pathRTT model in the UNC replay. However, only 60% of response times are less than 400 ms

when the same RTT methods were used in the presence of congestion in the network. 80% of

these response times took up to 1 second to complete due to the effect of queuing delay in the

constrained mode. Figure 5.2.34 shows that the queuing delay had an even more debilitating

effect on the response times in the IBM replays with the 10pathRTT or the usernet RTT. In these

experiments, while 83% of request-response exchanges completed in 400 ms or less in the

unconstrained mode, only 55% did so in the constrained mode. As we will show in Section 5.2.3,

the queue lengths and hence queuing delays were much greater in the case of the IBM replays.

 168

 In Figures 5.2.35 and 5.2.36 we show these queuing effects using the a-b connection structure

model with the 10pathRTT and usernet RTT models for the UNC and IBM replay experiments

respectively. We observe again that the RTT emulation method has an effect on response times

up to 600 ms in the UNC replay and 250 ms in the IBM replay in the unconstrained mode. Even

in the constrained mode, there is clearly a difference in response times due to the two different

methods of RTT emulation, seen more clearly in the IBM case. However, these differences due to

RTT emulation methods are significantly masked by the much larger effect of queuing delay on

the response times in all the replays in the constrained mode. Thus we see that response times are

not only affected by the difference in RTT emulation methods, but also have much larger second

order effect from the queuing delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 Figure 5.2.35: Response Time – UNC Figure 5.2.36: Response Time – IBM
 (a-b connection structure) (a-b connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 Figure 5.2.37: Response Time – UNC Figure 5.2.38: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 169

 Figures 5.2.37 and 5.2.38 show the distributions for response times for the a-t-b-t model

running 10pathRTT and usernet RTT models in the unconstrained and constrained modes using

UNC and IBM traffic respectively. While the IBM replays show the larger effect of queuing

delay, there is still clearly a difference in effect on response times due to the two different RTT

models even in the constrained mode. This is unlike the other connection structure models. As we

show in Section 5.2.3, queue buildup and queuing delays are relatively smaller when using the a-

t-b-t connection structure model. Hence the effect on response times due to the RTT emulation

methods is preserved even in these replays in the constrained mode.

 In Figures 5.2.39 through 5.2.44 we show the CCDFs for response times for the 10pathRTT

and usernet RTT models, using block-sequential, a-b and a-t-b-t connection structures. We

observe that, for a given connection structure model, there is a significant effect of queuing delay

in each set of experiments regardless of the RTT emulation method used in the experiment. The

only set of experiments for which this does not hold true is the set using the a-t-b-t connection

structure model. This is because the queuing delay, as well as delay difference among the RTT

models, is insignificant for these connections compared with the endpoint latencies being

generated as part of the traffic model.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 Figure 5.2.39: Response Time – UNC Figure 5.2.40: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 170

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 Figure 5.2.41: Response Time – UNC Figure 5.2.42: Response Time – IBM
 (a-b connection structure) (a-b connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.10pathrtt-unconstrained
a-t-b-t.usernet-unconstrained
a-t-b-t.10pathrtt-constrained

a-t-b-t.usernet-constrained

 Figure 5.2.43: Response Time – UNC Figure 5.2.44: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 Having established the dominant effect of queuing delay over RTT model on response times

in replays in the constrained mode, we now discuss the direct effect of different RTT emulation

methods on response time. Hence, we keep the connection structure model same for a set of

replays. Figures 5.2.45 through 5.2.50 show the distributions of the response times such that each

figure shows the effect of different RTT methods keeping the connection structure model same

for that set of experiments.

 For example, Figure 5.2.45 shows three replays in the constrained mode, all using the block-

sequential connection structure model while using the meanRTT, 10pathRTT, or usernet RTT

model for each experiment. We observe that the method of RTT emulation still affects, to a small

 171

degree, the response times differently up to 500 ms even in the constrained mode. But there is a

significant shift in overall response times due to the queuing delays.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.45: Response Time – UNC Figure 5.2.46: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.47: Response Time – UNC Figure 5.2.48: Response Time – IBM
 (a-b connection structure) (a-b connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.49: Response Time – UNC Figure 5.2.50: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 172

 In Figures 5.2.51 through 5.2.56, we show the CCDFs for response time for the same set of

replays in the constrained mode.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.51: Response Time – UNC Figure 5.2.52: Response Time – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.53: Response Time – UNC Figure 5.2.54: Response Time – IBM
 (a-b connection structure) (a-b connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.55: Response Time – UNC Figure 5.2.56: Response Time – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 173

 These clearly show that the RTT emulation differences have no impact on response times in

the tail of these distributions when the experiments were run in the constrained mode. As we

observed in the unconstrained mode, the RTT model in the constrained mode also does not affect

response times beyond 1 second in the distribution.

5.2.3 Effect of RTT Emulation Model on Queue Length at the Router

 In this section, we study the distribution of queue lengths at the outbound queue of the router

before the constrained link. The queue was sampled every 10 ms for the entire hour of the

experiment. However, we only show the queue length data for the stable middle 40 minutes of the

experiment. Clearly, as illustrated in Figures 5.2.57 through 5.2.64 showing the distributions of

queue lengths for these experiments, the different RTT emulation methods have different effects

on the queue dynamics for a given connection structure model. This effect is seen for both the

UNC and IBM replay experiments. Regardless of RTT distribution the queue is empty less than

15% of the time or less, indicating heavy queuing for all the RTT models.

 For example, in Figure 5.2.57, we show the queue lengths for the three replays in the

constrained mode using UNC traffic, all using the block-concurrent connection structure while

varying the RTT model used from among the meanRTT, 10pathRTT and usernet RTT models.

When using the meanRTT model, the router queue has less than 1000 packets for 34% of the

time. However, when using the usernet model, the queue has less than 1000 packets only 17% of

the time.

 Similarly, in Figure 5.2.58 we observe that in the IBM replay with the block-concurrent

connection structure, 33% of the time there are less than 1000 packets in the queue with the

meanRTT model, whereas only 25% of the time, there are less than 1000 packets in the queue

with the usernet RTT model. This clear difference in the distribution of queue length due to the

different RTT models is seen for every connection structure. We show these results in Figures

 174

5.2.59 and 5.2.60 for the block-sequential connection structure, Figures 5.2.61 and 5.2.62 for the

a-b model and Figures 5.2.63 and 5.2.64 for the a-t-b-t model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.2.57: Queue Length – UNC Figure 5.2.58: Queue Length – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.59: Queue Length – UNC Figure 5.2.60: Queue Length – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 There is a clear and consistent pattern in the difference in effects on queue length among the

RTT emulation methods. For both UNC and IBM replays and for any given connection structure,

we find the following pattern: the meanRTT model has the relatively lightest queue while the

usernet model results in the relatively heaviest queue. This is because when all connections are

using the meanRTT of 80 ms or 92 ms for connection RTTs for UNC and IBM replays

respectively, there is a larger delay between subsequent packets arriving at the router queue as

compared to the other models.

 175

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.61: Queue Length – UNC Figure 5.2.62: Queue Length – IBM
 (a-b connection structure) (a-b connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.63: Queue Length – UNC Figure 5.2.64: Queue Length – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 For example, with the 10pathRTT model, there are several thousands of connections with

RTTs less than 80 ms which generate burstier arrival patterns at the router that results in more

queuing. This is the same reason why the usernet method results in the heaviest queuing because

a significant number of connections in this method have RTTs less than 80 ms (which is the mean

RTT for UNC traffic), thus causing burstier arrival at the router queue. The median RTT for the

usernet distribution is 36 ms for UNC and 68 ms for IBM. Hence half the connections in the UNC

replay have RTTs less than 36 ms, and half the connections in the IBM replay have RTTs less

than 68 ms, when modeling RTT with the usernet method.

 Figures 5.2.65 through 5.2.72 show the CCDFs for the same set of experiments discussed

above. Each figure shows the CCDF of queue length for three replays in the constrained mode

 176

using the same connection structure model but using different RTT emulation methods for the

UNC and IBM replays respectively. For the block-concurrent, block-sequential and the a-b

models, all three RTT methods result in queuing that shows over 10,000 packets in the queue for

roughly 12% of the time. This indicates very heavy queuing due to the connection structure

model, regardless of RTT model used in the experiments.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.2.65: Queue Length – UNC Figure 5.2.66: Queue Length – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.67: Queue Length – UNC Figure 5.2.68: Queue Length – IBM
 (block-sequential connection structure) (block-sequential connection structure)

For the a-t-b-t model in both UNC and IBM replays, there is a small difference in the queue

occupancy depending on the RTT method used. The usernet model accounts for the most queue

occupancy since the round trip time delays between subsequent packets in a connection is more

likely to be smaller in the usernet model than in the other two models.

 177

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-b.meanrtt
a-b.10path
a-b.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.69: Queue Length – UNC Figure 5.2.70: Queue Length – IBM
 (a-b connection structure) (a-b connection structure)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.71: Queue Length – UNC Figure 5.2.72: Queue Length – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

5.2.4 Effect of RTT Emulation Model on Active Connections

 We show the number of active connections in the network for the UNC and IBM replays in

constrained mode in Figures 5.2.73 and 5.2.74 respectively. The data shown is only for the

middle 40 minutes of each experiment for the block-concurrent connection structure using a

different RTT method in each experiment. The RTT model clearly makes little difference in the

number of active connections. Similar results are shown for the block-sequential, a-b and a-t-b-t

connection structures in Figures 5.2.73 through 5.2.80.

 178

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-conc.meanrtt
blk-conc.10path
blk-conc.usernet

 Figure 5.2.73: Active connections – UNC Figure 5.2.74: Active connections – IBM
 (block-concurrent connection structure) (block-concurrent connection structure)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 Figure 5.2.75: Active connections – UNC Figure 5.2.76: Active connections – IBM
 (block-sequential connection structure) (block-sequential connection structure)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-b.meanrtt
a-b.10path
a-b.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-b.meanrtt
a-b.10path
a-b.usernet

 Figure 5.2.77: Active connections – UNC Figure 5.2.78: Active connections – IBM
 (a-b connection structure) (a-b connection structure)

 This is because connection durations directly affect the number of active connections in the

network. In the replays in the constrained mode, we observed in Section 5.2.1 that the method of

 179

RTT emulation had less impact on connection duration for all but the a-t-b-t model. And in

Section 5.2.3 we observed that in all the cases other than the a-t-b-t experiments, there is clearly

an effect of queuing for all the replays in the constrained mode, independent of RTT method.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50
N

um
be

r
of

 A
ct

iv
e

C
on

ne
ct

io
ns

Time in minutes

a-t-b-t.meanrtt
a-t-b-t.10path
a-t-b-t.usernet

 Figure 5.2.79: Active connections – UNC Figure 5.2.80: Active connections – IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 That is, the number of active connections in the network is slightly higher in the initial

several minutes of the experiment due to queue buildup that takes a long time to settle down. This

effect is not due to the RTT emulation method but due directly to the connection structure model

used. Hence we discuss this effect in greater detail in Section 5.4.4 when presenting the results of

connection structure on active connections.

5.2.5 Section Summary

 For replays in the constrained mode, the RTT method used for emulating network

characteristics has little impact on connection durations if there is heavy congestion resulting in

large queues and long queuing delays in the network. In such cases, the small effect that RTT

might have had on connection durations under 1 second is mostly masked by the large effect of

queuing delay on those durations.

 180

 For response times, the RTT model has a small impact on response times less than 500ms for

most connection structure models, and a significant impact when using the a-t-b-t model.

However, if there is heavy congestion resulting in large queues and long queuing delays in the

network, the effect of connection RTT on response times is very small compared with the large

effect of queuing delay on this metric.

 In this section, we also compared the effects of different RTT models on the queue length at

the router. The router-to-router link was set at 105% of the offered load, and a queue capacity was

65,000 packets. For a given connection structure model, different RTT models used in generating

traffic affects queue dynamics differently. In general, the usernet model has a diverse distribution

of RTTs, and so large number of connections have connection RTT less than the meanRTT or the

10pathRTTs. Hence we see the following patterns in all of the queue length distributions. The

heaviest queue length distribution is seen when using the usernet model because for the large

number of connections with smaller than mean RTTs, windows of packets are being sent back to

back with greater frequency than with the other RTT models. That is, when the RTT is smaller,

the acknowledgements from the receiver come back faster, thus allowing the sender to send

another window of packets into the network. For the same reason, the next heaviest distribution

of queue lengths is observed in experiments using the 10pathRTT followed by those using the

meanRTT. This is because with smaller RTT, a connection can grow its congestion window much

faster, and thus have more packets outstanding in the network.

 In the constrained mode, regardless of connection structure, the queue length distributions are

much heavier in the IBM replays than in the UNC replays. This is best explained by referring to

the original time series of byte and packet throughput for the IBM traffic as shown in Figures

3.1.3, 3.1.4, 3.1.7, and 3.1.8 (Chapter 3). Although the average byte throughput was measured as

404 Mbps, the time series was non-stationary. Close observations reveal that the throughput is on

average higher than 404Mbps for two-thirds of the hour, and then it is on average lower than

 181

404Mbps for the rest of the hour. For IBM replays in the constrained mode, the link was set to

424Mbps, so that average offered load was effectively 95% of the router-to-router link capacity

over the experiment duration. However, due to the non-stationarity, this meant that the average

offered load was actually much higher than 95% for the initial two-thirds of the hour, and much

lower than 95% for the last third of the hour.

 Why did we then decide to use this input traffic for generating connections for this study?

There were two main reasons. First, this condition did not matter for the replays in the

unconstrained mode. Hence, we were able to use this corporate traffic data for this study, thus

providing different traffic characteristics compared to the campus traffic data acquired at UNC.

Such comparison between different traffic inputs was helpful in understanding the outcome of

experiments, and verifying the discoveries we were making about using different connection

structures and roundtrip times for traffic generation. Second, for replays in the constrained mode,

this non-stationarity helped us study the effect of very severe congestion and the prolonged and

debilitating effect it has on performance metrics even if the congestion is not sustained

throughout the experiment.

 In summary, the RTT model used in traffic generation has a significant impact on router

queue dynamics. If there is a heavier distribution of connection RTTs in an experiment, that

translates to more time on average between subsequent packets in a TCP connection. The

experiment using such an input RTT distribution in a constrained mode experiences more

latencies within TCP connections, thus resulting in a lighter distribution of queue lengths because

there is more time for the queue to drain. The number of active connections in the network is

directly affected by the duration of connections generated in the experiment. Since the effect of

the RTT model on connection durations is small to none for replays in the constrained mode, we

do not see any effect of the RTT model on active connections.

 182

5.3 Effect of Connection Structure in the Unconstrained Mode

 We experimented with four different structural models for generating a given TCP

connection. As described in Chapter 3, these are the block-concurrent model, the block-sequential

model, the a-b model, and the a-t-b-t model. Let us recall the basic differences among these four

models. The first two connection structure models are based on only the total bytes transmitted by

a TCP connection. They both transfer all bytes in both directions as one large block without

internal delays in the connection. The block-concurrent model transfers the bytes simultaneously

in both directions between the two endpoints of a TCP connection while the block-sequential

model sends the two blocks sequentially, emulating a single request-response exchange between

the two TCP endpoints.

 The a-b model preserves the sequential exchange of bytes while further preserving the epoch

structure of request-response exchanges within a TCP connection without emulating any endpoint

latencies. Finally the a-t-b-t connection structure model not only preserves every epoch within the

connection but also emulates all the endpoint latencies measured in the original traffic. These four

connection structure models create four significantly different emulations for the same measured

TCP connections.

 So far in this chapter, we presented results for replays in the unconstrained and constrained

modes to study the effects of different RTT emulation methods on the following performance

measures: connection duration, response time, router queue length, and active connections. In this

section and the next, we present those results for the same set of replays in the unconstrained and

constrained modes, but with the goal of studying the effect of connection structure models on the

four metrics mentioned above. Each set of results in this section and the next consists of

presenting one RTT model per set of experiments, while varying the TCP connection structure

model for each experiment. In the four subsections that follow, we present results for replays in

 183

the unconstrained mode showing the effect of using different TCP connection structure models

on each of the four performance measures. Note that the results presented in Sections 5.3 and 5.4

are exactly the same as those in Sections 5.1 and 5.2 respectively. They are presented here with

different organization of figure content to make the presentation about differences in impact of

connection structures clearer.

5.3.1 Effect of Connection Structure on Connection Durations

 In this section, we show the effect of different connection structure models on the duration of

connections. For example, in Figure 5.3.1 we present results for connection duration for four

experiments using block-concurrent in one, block-sequential in the second, a-b in the third, and

a-t-b-t in the fourth experiment. All four experiments used the meanRTT model for emulating

network characteristics.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.3.1: Connection duration – UNC Figure 5.3.2: Connection duration – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 In Figures 5.3.1 and 5.3.2 we show results for varying connection structure models using the

meanRTT emulation method for the UNC and IBM replays. Similarly, Figures 5.3.3 and 5.3.4

show results for connection duration, varying connection structure models using the 10pathRTT

 184

model in every experiment. Figures 5.3.5 and 5.3.6 show results varying connection structure

models using the usernet RTT model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.3.3: Connection duration – UNC Figure 5.3.4: Connection duration – IBM
 (10path round trip time) (10path round trip time)

As seen in Figures 5.3.1 through 5.3.6, for both the UNC or the IBM replays, the block-

concurrent and block-sequential connection structures result in very similar distributions of

connection duration for a given input traffic and a given RTT model. The connections in the

block-concurrent model finish very slightly faster than those in the block-sequential model

because the bytes are transferred simultaneously in the block-concurrent case. For both these

models, a little over 90% of connections complete in less than one second for both traffic inputs.

This holds for all RTT models – the meanRTT, 10pathRTT and usernet RTT models.

Studying Figure 5.3.1 (UNC replay using meanRTT), we find that the a-b model takes

slightly longer than the block models because the a-b model preserves the epoch structure of the

original connection thus adding a small component of time into the connections. In the UNC

replay, fully 60% of sequential connections had only one epoch and hence the fastest 60% of the

connections in the a-b model have the same effect on connection durations as the block-

sequential model. This result holds for all experiments using the a-b model, regardless of which

RTT emulation method was used. Figures 5.3.1, 5.3.3, and 5.3.5 confirm this finding.

 185

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.3.5: Connection duration – UNC Figure 5.3.6: Connection duration – IBM
 (usernet round trip time) (usernet round trip time)

For the IBM replays, only 44% of the connections in the original traffic had one epoch.

Hence with these experiments, as seen in Figures 5.3.2, 5.3.4, and 5.3.6, we see that the

distribution of connection durations caused by the a-b model diverges from the ones created by

the block models much sooner than that for the UNC replay. Also, the average number of epochs

in the IBM traffic was 9; for UNC, it was 3. Hence we see that introduction of epoch structure

alone in the a-b model has a greater effect on connection duration for the IBM replay than for the

UNC replay. Especially for connections with more than one epoch, the generation of epoch

structure adds a significant time component for these TCP connections. For example, with the

usernet model (Figures 5.3.5 for the UNC replay), 94% of connections complete in less than 1s

using one of the two block connection structure models whereas only 88% of connections

complete in less than 1s using the a-b model. Similarly for IBM replays using usernet (Figure

5.3.6), roughly 92% of connections complete in less than 1s using one of the block connection

structure models but only 82% of connections complete in less than 1s using the a-b model. In the

IBM replay, this larger difference is clearly due to the larger number of epochs on average in

these connections and the additional time taken to replay these epochs faithfully.

For all UNC and IBM replay experiments, however, we see that the distribution of

connection durations using the a-b model eventually lessens the gap with connection durations

created by the block structure models. We conjecture that this is because not all short connections

 186

are due to small number of epochs. There are many very long connections with a small number of

epochs but with a very large number of bytes to be transferred. Such large and long-lived

connections would result in similar, though not same, connection durations when using the a-b or

one of the block models.

In Figures 5.3.1 through 5.3.4, for experiments using meanRTT or 10pathRTT models, we see

a step-effect in the distribution of connection durations. That is, there are only certain discrete

possible values for connection durations with these RTT models (discussed in Section 5.1). This

step effect is prominent in the block models because, in the absence of other time components

within the generated TCP connections, the block models are most heavily influenced by the

connection RTT for the resulting connection duration. This step effect is dampened as we add in

epochs and endpoint latencies because these structural components add variance to the

distribution of latencies within each TCP connection. These other latencies dampen the otherwise

dominant influence of the round trip time latency for these TCP connections.

When we include the endpoint latencies (both server times and user thinktimes), we observe

the most significant impact on connection duration. This effect is obvious from the experimental

results using the a-t-b-t model. While 86% or more connections finished in l second or less

without endpoint latencies for all UNC replays regardless of RTT models (see Figures 5.3.1, 5.3.3

and 5.3.5), only 62%, 57% and 63% of connections completed in less than a second for the

replays using the a-t-b-t model with the meanRTT, 10pathRTT and usernet RTT models

respectively. This is the effect of including endpoint latencies in the modeling of connection

structure. Thus, we find that including endpoint latencies in TCP traffic generation plays a highly

significant role in the resulting distribution of connection durations. These results are even more

significant for the IBM replays, where only 60% of connections completed in less than a second

when endpoint latencies are included in the modeling of connection structure for all RTT

emulations.

 187

There is a slightly greater difference in the distribution of connection durations between using

the a-b and a-t-b-t models with IBM traffic as compared to using UNC traffic. This is directly

dependent on the slightly larger average intra-epoch endpoint latencies for IBM connections.

These latencies are not modeled in the a-b connection structure. And the much more significant

shift of the a-b and a-t-b-t models indicating longer connections for the IBM replay than for UNC

replay is also due to the larger number of epochs in the connections in the IBM traffic.

So far, in this section, we have discussed the body of the distributions of connection

durations. We now study the tails of these distributions. The CCDFs show results for the tails in

Figures 5.3.7 through 5.3.12. The two block models have the same impact on connection duration

while connections using the a-b model take slightly longer to complete. Note that even the small

difference seen in the distributions between the block models and the a-b model is significant

since the axes are on log-log scale.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.3.7: Connection duration – UNC Figure 5.3.8: Connection duration – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 Here again, we observe a greater difference in impact by using the a-b model than by using

one of the block models in the IBM replays. This is due to a high average number of epochs (9

per connection) in the IBM traffic. Addition of endpoint latencies in the a-t-b-t model has the

largest effect for these long connections. For example, in Figure 5.3.7, we find that roughly 0.5%

of connections take more than 10 seconds to complete when using one of the two block

 188

connection structure models while fully 1% of connections take longer than 10 seconds when

using the a-b model.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.3.9: Connection duration – UNC Figure 5.3.10: Connection duration – IBM
 (10path round trip time) (10path round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.3.11: Connection duration – UNC Figure 5.3.12: Connection duration – IBM
 (usernet round trip time) (usernet round trip time)

With the a-t-b-t model, however, as much as 10% of the connections take 10 seconds or

longer to complete. The top 10% of connections have durations greater than 1 second when using

the block-concurrent and block-sequential models, while they take about 3-5 seconds when using

the a-b model. These connections take 10 or more seconds to complete when we add in endpoint

latencies using the a-t-b-t model for connection structure. These results hold true for all the

experiments discussed here, using either the UNC traffic or IBM traffic, and regardless of the

RTT emulation method used.

 189

10 seconds for a connection to complete seems like a rather long time. The top 10% of

connection durations using the a-t-b-t model for the UNC and IBM replays are greater than 10

seconds. What might be the contributing factors? This compares to the top 10% of the distribution

of intra-epoch endpoint latencies which were greater than 1 second and 1.1 second for the original

UNC and IBM traffic respectively. Similarly, the top 10% of the distribution of user thinktimes or

inter-epoch latencies were 7.5 seconds and 3 seconds for the UNC and IBM traffic respectively.

Concurrent connections in the UNC and IBM traffic had 14 seconds and 60 seconds respectively

for the top 10% of endpoint latencies within those connections.

5.3.2 Effect of Connection Structure on Response Times

 In this section, we present the results of the impact of the four connection structure models on

the response times for request-response exchanges. Since response time is defined for each

request-response exchange within a sequential TCP connection, and since the block-concurrent

model does not generate bytes in a request-response sequence, response time is not defined for

concurrent connections or the block-concurrent model. For the block-sequential model, every

connection transmits data as one epoch and hence the connection duration of a connection in the

block-sequential model is the same as its response time. For the a-b and a-t-b-t models, there are

as many response time data points in a TCP connection as there are epochs in that connection.

 In this section we discuss the impact of the connection structure model on response times.

These figures show response times for request response exchanges for every epoch in sequential

connections. Figures 5.3.13 through 5.3.18 show the distributions of response times for the UNC

and IBM replays, varying connection structure models while keeping the RTT emulation method

the same for each set of experiments. Overall, we observe that different connection structure

models clearly have different impacts on the response times. The effect of different connection

structure models on response time also depends on the characteristics of the original traffic.

 190

Hence, the UNC replays show slight differences in the impact of these models on the distributions

of response times than do the IBM replays.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 Figure 5.3.13: Response Time – UNC Figure 5.3.14: Response Time – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 In Figure 5.3.13, we show the results of response times for the three connection structure

models, all using the meanRTT emulation. The a-b model shows much faster response times since

there are no endpoint latencies within these epochs. Fully 80% of response times are 160ms or

less using this model. There is, however, a significant difference in response times between the a-

b and a-t-b-t models, which is the consequence of modeling intra-epoch endpoint latencies in the

a-t-b-t model. Thus only 52% of response times are 160ms or less when using the a-t-b-t model.

The block-sequential model does not include these latencies but has much larger data transfers

since every TCP connection in the block-sequential model transfers all its bytes as a single

request-response exchange; hence these response times are longer than those using the a-b model.

 In Figure 5.3.14, we show similar results for the IBM replays. The a-b model again results in

much shorter response times than the other two connection structure models. But what is equally

significant is that the response times here are faster than in the UNC replay. This is directly due to

the request sizes and response sizes in these epochs. While 80% of request sizes were less than

1000 bytes for UNC traffic, they were less than 466 bytes for IBM traffic. And while 80% of

 191

response sizes were less than 4KB for UNC traffic, they were less than 680 bytes for IBM traffic

(Figures 3.1.11 and 3.1.13 in Chapter 3). This may explain the much faster response times for

epochs in the IBM replays compared to those in the UNC replay. There are of course other

factors, like connection RTT, that also affect response times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 Figure 5.3.15: Response Time – UNC Figure 5.3.16: Response Time – IBM
 (10path round trip time) (10path round trip time)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 Figure 5.3.17: Response Time – UNC Figure 5.3.18: Response Time – IBM
 (usernet round trip time) (usernet round trip time)

 Although we discussed the meanRTT experiments in detail above, these results hold when

using the 10pathRTT or the usernet RTT models as well. That is, the a-b model has the fastest

response times regardless of RTT model, because there are no intra-epoch latencies (endpoint

latencies) within each epoch. The cross-over of the distribution of response times between the

 192

block-sequential and the a-t-b-t models in the IBM replays is probably due to the differences in

impact of request and response sizes (larger in block-sequential model) vs. the impact of endpoint

latencies (present in the a-t-b-t model) on epoch response times.

 The Figures 5.3.19 through 5.3.24 show the CCDFs for response times for these experiments.

Clearly connection structure has a large effect on the distribution of response times even in the

tails of the distributions, espcially considering that these figures are on a log-log scale. In all

cases, regardless of the RTT emulation used, the a-b model has the lightest tail because it has the

smallest ADU sizes, though same as that of the a-t-b-t but smaller than that of the block-

sequential. The a-t-b-t model has the heaviest tail of response times because these epochs are

dominated by the intra-epoch endpoint latencies for this connection structure model.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 Figure 5.3.19: Response Time – UNC Figure 5.3.20: Response Time – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 In the body of these distributions, we noted that the a-b model resulted in the shortest

response times regardless of RTT model used. Also, the distribution of response times for the a-b

model when in the UNC replay was heavier than in the IBM replay due to the smaller request and

response sizes for IBM traffic. Those results still hold for the tails of these distributions across

RTT models. However, the a-t-b-t model produces slightly heavier distribution of response times

in the IBM replay than in the UNC replay, in the very end of the tail of the distributions. This is

 193

because the top 1% of intra-epoch latencies for connections in the IBM traffic was slightly

heavier than that for connections in the UNC traffic.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 Figure 5.3.21: Response Time – UNC Figure 5.3.22: Response Time – IBM
 (10path round trip time) (10path round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 Figure 5.3.23: Response Time – UNC Figure 5.3.24: Response Time – IBM
 (usernet round trip time) (usernet round trip time)

5.3.3 Effect of Connection Structure on Queue Length at the Router

 In this section, we show the queue lengths at the outbound queue of the router before the

unconstrained router-to-router link. The queue was sampled every 10 ms for the entire hour of the

experiment. However, we only show the queue length data for the stable middle 40 minutes of the

experiment. In Figures 5.3.25 and 5.3.26, we show the distribution of queue length at the router’s

outbound queue for four experiments in each of the UNC and IBM replays respectively. Each set

 194

of experiments used the meanRTT model while we varied the connection structure model per

experiment among the block-concurrent, block-sequential, a-b, and a-t-b-t models. Similarly, in

Figures 5.3.27 through 5.3.30, we show results for queue length for experiments varying the

connection structure models while keeping the RTT emulation method the same between the

10pathRTT and the usernet methods of emulation.

 The Figures 5.3.25 through 5.3.30 show the distributions of the queue length at the router.

The average throughput in these experiments was around 471 Mbps for the UNC replays and 404

Mbps for the IBM replays. The router-to-router link was set to 1Gbps. Hence, for every

combination of connection structure model and RTT emulation, the queue was empty for 99% of

the time, as seen in these figures.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.3.25: Queue Length – UNC Figure 5.3.26: Queue Length – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.3.27: Queue Length – UNC Figure 5.3.28: Queue Length – IBM
 (10path round trip time) (10path round trip time)

 195

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.3.29: Queue Length – UNC Figure 5.3.30: Queue Length – IBM
 (usernet round trip time) (usernet round trip time)

 The CCDFs show that the queue had up to 100 packets at times. This is because there were a

few short periods of peak traffic arriving at the router queue at greater than 1Gbps from the

10Gbps aggregation link before the router. Hence, there were 10 or more packets in the queue for

all the replays in the unconstrained mode for about 0.05% of the time.

5.3.4 Effect of Connection Structure on Active Connections

 We define any TCP connection as an ‘active connection’ in the network at a given time t,

if the SYN for that TCP connection has been seen on the network, but the FIN or RST has not yet

been recorded. In this section, we study the effects on number of active connection in the network

when varying connection structure and keeping the RTT emulation method the same for that set.

The Figures 5.3.31 through 5.3.36 show the time series of the number of connections that were

recorded as active in the network during the middle 40 minutes of each experiment.

 The block-concurrent and block-sequential models open the TCP connection and transfer

bytes as quickly as possible. The block-concurrent model transmits data concurrently from both

ends of the connection, while the block-sequential model transmits data sequentially, like one

giant epoch per connection. The a-b model transmits data in epochs. However, all three models

 196

spend most of the connection duration in data transmission and RTTs, and hence they complete

the connections very quickly.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-conc.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-conc.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.3.31: Active Connections – UNC Figure 5.3.32: Active Connections – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.10path
blk-conc.10path

a-b.10path
a-t-b-t.10path

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.10path
blk-conc.10path

a-b.10path
a-t-b-t.10path

 Figure 5.3.33: Active Connections – UNC Figure 5.3.34: Active Connections – IBM
 (10path round trip time) (10path round trip time)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet
a-t-b-t.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.3.35: Active Connections – UNC Figure 5.3.36: Active Connections – IBM
 (usernet round trip time) (usernet round trip time)

 197

 The effect is that the number of active connections at any given time during the experiment is

at least an order of magnitude lower for these three models as compared to the a-t-b-t model for

both UNC and IBM replays, as seen in these figures. The a-t-b-t model preserves the endpoint

latencies in each TCP connection. The number of active connections for the a-t-b-t model thus

increases dramatically compared to the other three models.

In Figure 5.3.37, we change the y-axis but show the same data for the UNC replay as shown

in Figure 5.3.35. We observe here that there is indeed a difference in number of connections

among the first three models, with block-concurrent having the least number of connections

active in the network at any time, followed by block-sequential and then a-b. For example, at

almost any given time during the experiment, the block-sequential model results in about an

average of 200 more active connections in the network than the block-concurrent model. And the

a-b model results in roughly 400 more active connections in the network than the block-

sequential model. However, these differences pale in comparison to the multi-fold increase in the

number of active connections in the network when using the a-t-b-t model. This is due to the

modeling of endpoint latencies in that connection structure. The a-t-b-t model clearly results in at

least 40,000 more active connections in the network than all the other three connection structures.

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 25 26 27 28 29 30

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet

Figure 5.3.37: Active Connections – UNC

(usernet round trip time)

 198

For the UNC replay experiments, we measured about 45,000 active connections throughout

the hour for the a-t-b-t model, while for the IBM replay, we measured about 78,000 active

connections. The total number of connections over the hour for UNC replay was almost double

that of the IBM replay. However, since the connections in the IBM replay with the a-t-b-t model

clearly showed much longer connection durations, the number of active connections for IBM

replay is much higher (Figures 5.3.35 and 5.3.36).

5.3.5 Section Summary

 In this section, we presented results for replays in the unconstrained mode using UNC traffic

and IBM traffic. We discussed the results for three sets of experiments for each of the two input

traffic mixes. For each set of experiments, we kept the RTT model the same for all experiments,

while varying the connection structure model from among the block-concurrent, block-sequential,

a-b and a-t-b-t models. Thus we studied the effect of these empirically-derived connection

structure models on four key performance metrics: connection duration, response time, router

queue length, and active connections.

 We found that the connection structure model used in emulating network characteristics has a

significant impact on the performance metrics – orders of magnitude more than the effect of RTT

emulation methods. The connection structure model significantly affects connection durations

and response times both in the body and the tail of the distributions of these performance metrics.

We also found that the router queue length showed no differences among the experiments using

different connection structure models. This was expected because these were replays in the

unconstrained mode, and hence designed to not create any queue buildup. The number of active

connections in the network is a second order effect that is affected by connection durations. This

metric was also greatly affected by the differences in the connection structure models used in the

experiments.

 199

 So, if we had to choose a connection structure model to be used for experiments, which

model would we pick? The choice of connection structure model is actually easier than the choice

of RTT emulation. All the connection structure models we used were empirically derived from

the same sources. But clearly, the a-t-b-t model with its endpoint latencies makes a huge

difference in all outcomes for an experiment. So the take away message, if there is to be just one,

is that the time components of traffic generation are as important as the size components. That is,

while it is important to emulate TCP connections by the size of the connections, it is equally

important to emulate them by the time components. These consist of the connection RTTs, the

sequential or concurrent nature of data exchanges within connections, and the endpoint latencies

measured for these connections. Unlike with RTT models, the connection structure models affect

all the performance metrics significantly and throughout the distributions.

5.4 Results for Experiments in the Constrained Mode

 In Section 5.3 we discussed the effect of connection structure models on the four performance

metrics of connection durations, response times, router queue length and active connections.

Those were replays in the unconstrained mode; that is, the router-to-router link was set to 1Gbps.

In this section we present results showing the impact of connection structure models on the same

four metrics for a set of replays in the constrained mode; that is, the router-to-router link is set to

105% of the offered load on that link. For the replays in the constrained mode using UNC traffic,

the link was set to 496Mbps, and for the replays in the constrained mode using IBM traffic, the

link was set to 424Mbps. For each set of experiments, we compare the performance metrics for

different connection structure models, keeping the RTT emulation method the same for all

experiments in that set.

 200

5.4.1 Effect of Connection Structure on Connection Durations

 Before we compare the effects of connection structure models on connection durations, we

begin by studying the effect of the constraint on the router-to-router link on connection durations

in the constrained mode. For this we compare the connection durations for block-concurrent and

a-t-b-t models in the unconstrained and constrained modes.

 In Section 5.3.1, we observed the direct effect of connection structure modeling on the

durations of connections when there was no constraint in the network. In this section, we observe

that the connection duration is not only affected by the difference in connection structure, but it is

even more significantly affected by the constraint on the link. In Figures 5.4.1 through 5.4.6 we

show the distributions of the connection durations for these experiments. In each figure, the RTT

model is the same for all experiments while the connection structure is varied. Each figure shows

results from two replays in the unconstrained mode and two replays in the constrained mode.

Each figure shows results from experiments using either the block-concurrent or the a-t-b-t

connection structure models keeping the RTT emulation method constant using either the meanrtt

or the usernet RTT emulation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained
blk-conc.meanrtt-constrained

a-t-b-t.meanrtt-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained
blk-conc.meanrtt-constrained

a-t-b-t.meanrtt-constrained

 Figure 5.4.1: Connection Duration – UNC Figure 5.4.2: Connection Duration – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 201

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10path-unconstrained
a-t-b-t.10path-unconstrained
blk-conc.10path-constrained

a-t-b-t.10path-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10path-unconstrained
a-t-b-t.10path-unconstrained
blk-conc.10path-constrained

a-t-b-t.10path-constrained

 Figure 5.4.3: Connection Duration – UNC Figure 5.4.4: Connection Duration – IBM
 (10path round trip time) (10path round trip time)

 See Figure 5.4.1 showing four UNC replay experiments. We find that 84% of connections

complete in 500ms or less using the block-concurrent model in the unconstrained replay, but only

58% of connections complete in the constrained replay for the same connection structure. The

effects of queuing delay are so profound on connection duration that for about 70% of

connections, the duration is the same for the a-t-b-t model in the replay in unconstrained mode as

for the block-concurrent model in the constrained case. That is, the queuing delay for the block-

concurrent model in the constrained case is as large as the endpoint latencies that were present in

the original connections (and represented in the a-t-b-t model).

 This same effect is seen when using the 10pathRTT, as shown in Figure 5.4.3 for the UNC

replay. In the case of usernet RTT emulation, Figure 5.4.5 shows that the queuing delays in the

block-concurrent model exceed the endpoint latencies in the a-t-b-t model for 75% of

connections, resulting in longer connections in the block-concurrent model than in the a-t-b-t

model. As we will see in Section 5.4.3, the queue buildup for block-concurrent model is simply

much heavier than for the a-t-b-t model. The other observation (Figures 5.4.1, 5.4.3, and 5.4.5) is

that for UNC replays, there is a very small difference in the distributions of connection durations

between the a-t-b-t model in unconstrained and constrained modes. This is because the a-t-b-t

model does not cause a huge queue buildup and hence the queuing delay is small, especially

 202

compared with the endpoint latencies that are the primary contributors to the connection

durations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet-unconstrained
a-t-b-t.usernet-unconstrained
blk-conc.usernet-constrained

a-t-b-t.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet-unconstrained
a-t-b-t.usernet-unconstrained
blk-conc.usernet-constrained

a-t-b-t.usernet-constrained

 Figure 5.4.5: Connection Duration – UNC Figure 5.4.6: Connection Duration – IBM
 (usernet round trip time) (usernet round trip time)

 Figures 5.4.2, 5.4.4, and 5.4.6 show results for IBM replay experiments in the constrained

mode. The queue buildup in these experiments is slightly heavier for both block-concurrent and

the a-t-b-t models as compared with the UNC replays. Hence we see large queuing delays

affecting connection durations when using the block-concurrent connection structure model in the

constrained mode. And even the a-t-b-t model creates a significant shift in the distributions of

connection durations between its replays in the unconstrained and constrained modes. This is due

to the heavier queue buildup in the IBM replay in constrained mode. Hence, we observe a greater

difference in the distribution of connection duration between the unconstrained and constrained

replays with the a-t-b-t model in the IBM replay than in the UNC replay.

 Figures 5.4.7 through 5.4.12 show the CCDFs of connection durations for these experiments,

varying connection structure while keeping the method of RTT emulation the same. Regardless of

the RTT method used, there is still a large effect of the queuing delay on the connection durations

for these long connections in the replays in the constrained mode using the block-concurrent

model. With the a-t-b-t model, the queuing delay is masked by the much more dominant effect of

the endpoint latencies within these very long connections.

 203

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained
blk-conc.meanrtt-constrained

a-t-b-t.meanrtt-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained
blk-conc.meanrtt-constrained

a-t-b-t.meanrtt-constrained

 Figure 5.4.7: Connection Duration – UNC Figure 5.4.8: Connection Duration – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.10path-unconstrained
a-t-b-t.10path-unconstrained
blk-conc.10path-constrained

a-t-b-t.10path-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.10path-unconstrained
a-t-b-t.10path-unconstrained
blk-conc.10path-constrained

a-t-b-t.10path-constrained

 Figure 5.4.9: Connection Duration – UNC Figure 5.4.10: Connection Duration – IBM
 (10path round trip time) (10path round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.usernet-unconstrained
a-t-b-t.usernet-unconstrained
blk-conc.usernet-constrained

a-t-b-t.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.usernet-unconstrained
a-t-b-t.usernet-unconstrained
blk-conc.usernet-constrained

a-t-b-t.usernet-constrained

 Figure 5.4.11: Connection Duration – UNC Figure 5.4.12: Connection Duration – IBM
 (usernet round trip time) (usernet round trip time)

 So far, we studied the difference in connection durations between replays in the

unconstrained and constrained modes due to queuing delays caused by connection structure

 204

differences. We now present the results of replays in the constrained mode for studying the effect

of connection structure modeling on connection durations. The Figures 5.4.13, 5.4.15, and 5.4.17

show distributions of connection durations for the UNC replays in the constrained mode for four

connection structure models. The connections in the block-concurrent and block-sequential

models still complete faster overall than the other models but much slower than in their replays in

the unconstrained mode.

 The effects of queuing delay are so profound on connection duration that for the UNC replay

experiments in the meanRTT and 10pathRTT experiments, the connection duration for about 70%

of connections is the same for the a-t-b-t model as for the block-concurrent and blk-seq models.

That is, the queuing delay in the block models is as large as the endpoint latencies in the a-t-b-t

model. In the case of usernet RTT emulation, Figure 5.4.17 shows that the queuing delays in the

block models exceeds the endpoint latencies in the a-t-b-t model for 70% of the connections.

Thus these connections take longer to complete in the block models than in the a-t-b-t model.

Recall that for a given connection structure, the usernet RTT model resulted in the longest

queues.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.4.13: Connection Duration – UNC Figure 5.4.14: Connection Duration – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 205

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.4.15: Connection Duration – UNC Figure 5.4.16: Connection Duration – IBM
 (10path round trip time) (10path round trip time)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.4.17: Connection Duration – UNC Figure 5.4.18: Connection Duration – IBM
 (usernet round trip time) (usernet round trip time)

 Figures 5.4.14, 5.4.16 and 5.4.18 show results for the IBM replay experiments. The effect of

queuing delay is seen in all four models of connection structure. We recall that even in the

unconstrained mode, the a-b and a-t-b-t models in the IBM replays showed longer connection

durations. This was due to the much larger number of epochs per connection in the IBM

connections than in the UNC connections.

 So, now in the constrained mode, the replays with the a-b and a-t-b-t models continue to

have the heavier distributions of connection durations. In the constrained mode, the effect of

queuing delay further adds to the duration of these connections.

 206

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.4.19: Connection Duration – UNC Figure 5.4.20: Connection Duration – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.4.21: Connection Duration – UNC Figure 5.4.22: Connection Duration – IBM
 (10path round trip time) (10path round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.4.23: Connection Duration – UNC Figure 5.4.24: Connection Duration – IBM
 (usernet round trip time) (usernet round trip time)

 Figures 5.4.19 through 5.4.24 show the CCDFs of the connection durations for the different

connection structures. We observe that for these long connections, the connections using block-

 207

concurrent and block-sequential models complete at about the same rate. Connections using the

a-b model take slightly longer due to the added time generating and transmitting data in epochs.

The a-t-b-t model has the heaviest distribution of connection durations because of the significant

effect of the endpoint latencies within these connections.

5.4.2 Effect of Connection Structure on Response Times

 In Section 5.3.2, we observed the direct effect of connection structure modeling on the

response times for request-response exchanges in sequential connections when there was no

constraint on the router-to-router link. In this section, we observe response times not only affected

by the difference in connection structure, but also affected (even more significantly) by the

second order effect of the queuing delay that resulted from difference in connection structures.

Hence we first study the effect of queuing delay for a combination of connection structure model

and RTT emulation method. We compare the response times for the a-b and the a-t-b-t models in

the unconstrained and constrained cases in Figures 5.4.25 through 5.4.30.

 The response time metric is most sensitive to differences in connection structure. Whereas the

epochs in the a-b model experienced faster response times than the epochs in the a-t-b-t model in

the replays in the unconstrained mode, the queuing delay in the replays in the constrained mode

causes much longer response times for these same epochs. For example, in Figure 5.4.25, while

90% of response times for the a-b model using meanRTT in the unconstrained experiment were

400 ms or less, only 70% of these response times were less than 400 ms in the constrained

experiment. For the a-t-b-t model with meanRTT, roughly 80-82% of response times were 400 ms

or less for the replays in the unconstrained and constrained modes. The effect of queuing delay is

slightly more pronounced for the a-t-b-t experiment in the constrained mode using IBM traffic as

seen in Figure 5.4.26.

 208

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained

a-b.meanrtt-constrained
a-t-b-t.meanrtt-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained

a-b.meanrtt-constrained
a-t-b-t.meanrtt-constrained

 Figure 5.4.25: Response Time – UNC Figure 5.4.26: Response Time – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.10path-unconstrained
a-t-b-t.10path-unconstrained

a-b.10path-constrained
a-t-b-t.10path-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.10path-unconstrained
a-t-b-t.10path-unconstrained

a-b.10path-constrained
a-t-b-t.10path-constrained

 Figure 5.4.27: Response Time – UNC Figure 5.4.28: Response Time – IBM
 (10path round trip time) (10path round trip time)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.usernet-unconstrained
a-t-b-t.usernet-unconstrained

a-b.usernet-constrained
a-t-b-t.usernet-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.usernet-unconstrained
a-t-b-t.usernet-unconstrained

a-b.usernet-constrained
a-t-b-t.usernet-constrained

 Figure 5.4.29: Response Time – UNC Figure 5.4.30: Response Time – IBM
 (usernet round trip time) (usernet round trip time)

 Figures 5.4.27 and 5.4.28 show the response times for UNC and IBM replays using the

10pathRTT model. Again, we see a very significant effect of queuing delay on the distribution

 209

when using the a-b model and relatively small effect of queuing delay when using the a-t-b-t

model. Similar results are shown when using the usernet RTT model, as shown in Figures 5.4.29

and 5.4.30.

 Figures 5.4.31 through 5.4.36 show the CCDFs for the same experiments discussed above,

showing the effect of queuing delay for the a-b and a-t-b-t models while keeping the RTT

emulation method the same in each figure. We oberve that regardless of the RTT emulation

method, there is a significant queuing delay effect on response times even for those long response

times in the tails of the distributions.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained

a-b.meanrtt-constrained
a-t-b-t.meanrtt-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.meanrtt-unconstrained
a-t-b-t.meanrtt-unconstrained

a-b.meanrtt-constrained
a-t-b-t.meanrtt-constrained

 Figure 5.4.31: Response Time – UNC Figure 5.4.32: Response Time – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.10path-unconstrained
a-t-b-t.10path-unconstrained

a-b.10path-constrained
a-t-b-t.10path-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.10path-unconstrained
a-t-b-t.10path-unconstrained

a-b.10path-constrained
a-t-b-t.10path-constrained

 Figure 5.4.33: Response Time – UNC Figure 5.4.34: Response Time – IBM
 (10path round trip time) (10path round trip time)

 210

 The a-t-b-t model shows no effect of queuing delay for response times in the long tail of the

distribution. However, the response time distribution when using the a-t-b-t model is much

heavier than those when using the a-b- model for replays in both unconstrained and constrained

modes. This is because response times for the a-t-b-t model are dominated by the intra-epoch

endpoint latencies which are orders of magnitude larger than the smaller queuing delays

experienced by the connections in the a-t-b-t model.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.usernet-unconstrained
a-t-b-t.usernet-unconstrained

a-b.usernet-constrained
a-t-b-t.usernet-constrained

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-b.usernet-unconstrained
a-t-b-t.usernet-unconstrained

a-b.usernet-constrained
a-t-b-t.usernet-constrained

 Figure 5.4.35: Response Time – UNC Figure 5.4.36: Response Time – IBM
 (usernet round trip time) (usernet round trip time)

 So far, in this section, we studied the effect of queuing delay on a given combination of

connection structure and RTT models. We now compare the response times for different

connection structure models for replays in the constrained mode. Figures 5.4.37 through 5.4.42

show response times for different connection structure models while keeping the RTT emulation

method the same. We do not include the block-concurrent model in this section because that

model has no notion of request-response exchanges and hence no notion of response times either.

Overall, we observe from these figures that regardless of the RTT emulation method, the queuing

delay has such a debilitating effect on response times for the block-sequential and a-b models that

despite the a-t-b-t model generating intra-epoch endpoint latencies, the a-t-b-t connections show

the fastest response times in the constrained cases for experiments using either UNC or IBM

traffic. Interestingly, the same endpoint latencies within connections in the a-t-b-t model that

 211

were responsible for longer response times in replays in the unconstrained mode are now also

responsible for shorter queues and hence smaller queuing delays in the replays in the constrained

mode; this leads to shorter response times for the a-t-b-t model compared to the a-b model in

constrained mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 Figure 5.4.37: Response Time – UNC Figure 5.4.38: Response Time – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 Figure 5.4.39: Response Time – UNC Figure 5.4.40: Response Time – IBM
 (10path round trip time) (10path round trip time)

 In Figure 5.4.37, we observe that 80% of epochs using the a-t-b-t model have response times

less than 400 ms while only 68% of epochs using the a-b model have response times less than

400 ms. In the replays in the unconstrained mode, the response times of the a-b model were much

shorter than those for the a-t-b-t model. This drastic shift in distribution of response time for the

 212

a-b model is due to very heavy queuing delays. Similarly, due to queuing delays, only 60% of

epochs using the block-sequential model have response times less than 400 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 Figure 5.4.41: Response Time – UNC Figure 5.4.42: Response Time – IBM
 (usernet round trip time) (usernet round trip time)

 The difference in response time distributions among the different connection structures is

significantly greater than the response time distributions among the different RTT emulation

methods. Also, with both connection duration and response time, the effect of RTT emulation

was seen up to about 500 ms to 1 second. The queuing delay was due to differences in connection

structure more so than differences in RTT emulation. Hence we conclude that although RTT

emulation affects end-user performance measures of connection durations and response times, the

differences in connection structures, especially the endpoint latencies within TCP connections

have the single most dominant effect on connection durations and response times, both due to the

structure of the connections itself and due to the queuing delay effect of such structure.

 Figures 5.4.43 through 5.4.48 show the CCDFs of the response times for the different

connection structures while keeping the RTT emulation method the same in each figure. We

observe that for these long response times, the request-response exchanges in the a-b model are

the fastest since the ADU sizes of these single epochs is smallest along with having no endpoint

latencies. The block-sequential connections have longer response times due to larger ADU sizes

than the a-b model. The a-t-b-t model has the heaviest distribution of response times because of

 213

the significant effect of the intra-epoch endpoint latencies within these request-response

exchanges.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.meanrtt
a-b.meanrtt

a-t-b-t.meanrtt

 Figure 5.4.43: Response Time – UNC Figure 5.4.44: Response Time – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.10path
a-b.10path

a-t-b-t.10path

 Figure 5.4.45: Response Time – UNC Figure 5.4.46: Response Time – IBM
 (10path round trip time) (10path round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

 Figure 5.4.47: Response Time – UNC Figure 5.4.48: Response Time – IBM
 (usernet round trip time) (usernet round trip time)

 214

5.4.3 Effect of Connection Structure on Queue Length at the Router

 In this section, we discuss the effects of different connection structures on the network-level

performance measure of queue lengths at the outbound queue of the router before the constrained

link. Figures 5.4.49 through 5.4.53 show the distributions of the outbound queue length at the

router, measured every 10ms, during the middle 40 minutes in each hour long experiment. These

figures represent the results from replays in the constrained mode. For the UNC replays the

bottleneck link was set to 496Mbps and for the IBM replays it was set to 424 Mbps. The router

queue was deliberately set to accommodate 65,000 packets so as not to cause any packet drops.

The goal here was to determine the first order effect of different connection structure models on

the router queue, and thus study the second order effects this had on connection durations, active

connections and response times.

 With effectively 95% load on the link, and the moments of peak load creating even more

queuing in the router, we see the router queues significantly loaded for much of the time. The

IBM replay experiments show even greater queue occupation than the UNC replay experiments.

This is directly due to the much higher load for IBM replay in the first half of the experiment

since the original traffic had this characteristic of having greater throughput in the first half than

in the second half of the traffic capture.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.4.49: Queue Length – UNC Figure 5.4.50: Queue Length – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 215

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.4.51: Queue Length – UNC Figure 5.4.52: Queue Length – IBM
 (10path round trip time) (10path round trip time)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.4.53: Queue Length – UNC Figure 5.4.54: Queue Length – IBM
 (usernet round trip time) (usernet round trip time)

 In both sets of experiments using UNC and IBM traffic we observe that the block-concurrent

and block-sequential models do not allow the queue to drain for most of the time. This is due to

the back-to-back sending of windows of data packets for connections using either of these

models. In the block models, since there is no separation of ADUs and no endpoint latencies

between ADUs, the application can send all the data at once, and TCP can grow its congestion

window much faster. For a given RTT, this leads to more packets outstanding in the network.

Even the a-b model, though it consists of epochs, does little or nothing to alleviate the queuing on

the router.

 216

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.4.55: Queue Length – UNC Figure 5.4.56: Queue Length – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.10path
blk-seq.10path

a-b.10path
a-t-b-t.10path

 Figure 5.4.57: Queue Length – UNC Figure 5.4.58: Queue Length – IBM
 (10path round trip time) (10path round trip time)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.4.59: Queue Length – UNC Figure 5.4.60: Queue Length – IBM
 (usernet round trip time) (usernet round trip time)

 217

 Thus for experiments using UNC traffic, these three models result in the queue having more

than 1000 packets for 65% to 80% of the time, depending on RTT emulation method used. With

the a-t-b-t model, however, the endpoint latencies in the connection structure allow the queue to

drain and create different queue dynamics as a result. Only 20% of the time does the queue have

more than 1000 packets in it. For the IBM replays, we see similar effects on the queue. However,

the a-t-b-t model in this case does not alleviate the queue as much as in the UNC replays. This is

because the endpoint latency distribution is much heavier in the UNC traffic than in the IBM

traffic.

5.4.4 Effect of Connection Structure on Active Connections

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-conc.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.meanrtt
blk-conc.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 Figure 5.4.61: Active Connections – UNC Figure 5.4.62: Active Connections – IBM
 (meanrtt round trip time) (meanrtt round trip time)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.10path
blk-conc.10path

a-b.10path
a-t-b-t.10path

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.10path
blk-conc.10path

a-b.10path
a-t-b-t.10path

 Figure 5.4.63: Active Connections – UNC Figure 5.4.64: Active Connections – IBM
 (10path round trip time) (10path round trip time)

 218

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet
a-t-b-t.usernet

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet
a-t-b-t.usernet

 Figure 5.4.65: Active Connections – UNC Figure 5.4.66: Active Connections – IBM
 (usernet round trip time) (usernet round trip time)

 In this section, we discuss the results for the number of active connections and compare the

effect of connection structure models on this network-level measure in the constrained mode.

Figures 5.4.61 through 5.4.66 show the time series of the number of connections that were seen

active in the network for the middle 40 minutes of each experiment. The TCP connections using

block-concurrent, block-sequential, and a-b models spend most of the connection duration in data

transmission, and hence they complete the connections very quickly. Hence, the number of active

connections at any given time during the experiment is much lower for these three models as

compared to the experiments using the a-t-b-t model. This is similar to results seen in the

unconstrained cases.

 The a-t-b-t model preserves the endpoint latencies in each connection. The number of active

connections thus increases dramatically compared to the other three models. The active

connections in the network are a direct consequence of connection durations experienced by the

end user. One difference seen here, and not in the unconstrained case is the initial slightly higher

number of active connections for the block-concurrent, block-sequential and a-b models. This

was because of much higher queuing delay experienced by these connections in the network

during the initial several minutes of each experiment. Such queue dynamics are a direct

consequence of unrealistically sending windows of packets back to back within a TCP connection

 219

ignoring all endpoint latencies that are an inherent part of the application models and hence

connection structure. The lack of structure allows faster window growth, thus completing

connections much faster.

5.4.5 Section Summary

 For replays in the constrained mode, the connection structure model used for emulating TCP

connections has a huge impact on connection durations. This is due to large queues and long

queuing delays in the network which are a direct consequence of the connection structure used for

traffic generation. There is also a significant impact on response times due to the connection

structure model used for traffic generation.

 In this section, we also compared the effects of different connection structure models on the

queue length at the router with the router-to-router link set to 105% of the offered load on that

link, and a router queue length of 65,000 packets. Different connection structure models used in

traffic generation affect queue dynamics differently. In general, the block-concurrent and block-

sequential models create the heaviest queue length distributions because every connection sends

all its bytes in one block. Thus in the absence of any latencies within the connection structure, the

arrival pattern of packets at the queue is burstier for the block models than for the other models.

This is because for a given window size, the block and the a-b models are restricted only by the

connection RTT in how quickly they can grow their window.

 For connections using the a-b model, especially for those connections that originally had

several epochs within the connection, the a-b model helps introduce latencies implicitly by way

of generating synchronized request-response exchanges in sequence within the connection. Thus

the replays in the constrained mode using the a-b model have a slightly lighter distribution of

queue lengths compared with those using one of the block models. When connections are

 220

generated using the a-t-b-t model, they not only maintain the time sequence of request-response

exchanges but also emulate intra-epoch and inter-epoch latencies within each TCP connection.

This significantly alleviates queue buildup and hence the replays in the constrained mode using

the a-t-b-t model result in the lightest queue distributions.

 Hence we see the following patterns in all of the queue length distribution, regardless of the

RTT emulation used. The heaviest queue length distribution is seen when using the block-

concurrent and block-sequential models followed by the a-b model and finally the a-t-b-t model

which creates the lightest distribution of queue lengths. All of these results hold true for the IBM

replays in constrained mode as well. However, the queue length distributions in the IBM replay

experiments were much heavier due to reasons discussed earlier, and directly related to the non-

stationarity of the original throughput time series of the IBM traffic.

5.5 Chapter Summary

In this section, we summarize the effect of RTT models and connections structure models on

network performance in 5.5.1 and 5.5.2 respectively.

5.5.1 Effect of RTT Models

 In this chapter, we first presented our findings that the round trip time model used for traffic

generation affects connection duration significantly. However, this effect is significant up to

about 500 ms and, moderately so, up to 1 second in the distribution of connection durations. This

holds true for all UNC and IBM replay experiments and for all the four connection structure

models. Beyond the duration of 500ms, and especially after about 1 second, the RTT model has

little or no effect on the distribution of connection durations. This is due to various reasons. In the

 221

block-concurrent and block-sequential models, connections with duration beyond 500ms are

often dominated by the large filesize (total number of bytes transmitted) of the connection. For

the a-b and a-t-b-t models, the number of epochs plays a significant role in connection duration

above and beyond the bytes transmitted. And lastly, for the a-t-b-t model, the endpoint latencies

in the form of server processing or user think times add to this duration. All these factors lessen

the impact of the RTT model used in traffic generation, for durations beyond 500ms.

 So what do these sets of results tell us about how to emulate RTT for traffic generation for

experiments where connection duration is a performance metric of importance? As long as the

method of RTT emulation is representative of the empirical distribution of the traffic being

replayed, the differences in RTT models affecting connection duration beyond 1 second are not

significant. However, since the majority of connections in most production traffic are likely to

have original connection durations less than 1 second, and since this is the region in which RTT

emulation model matters most, if connection duration is an important performance metric in an

experiment, then it would be advisable to use the usernet model for RTT emulation.

 It is important to note that all three RTT methods discussed in this chapter are based on the

same empirical measures and hence represent some form of realistic round trip times for TCP

connections on the production link from which this traffic was acquired.

 We also found that the round trip time of a connection significantly affects response times of

epochs in that connection. This effect is seen mainly up to about 500 ms or 1 second of the

response times. This is true for all experiments using both UNC and IBM traffic and holds for all

the four connection structure models. Beyond the duration of 500ms, or 1 second of the

distribution, the RTT method has little or no effect on the distribution of response times. So

which RTT model would we pick for traffic generation for experiments where response time is a

 222

performance metric of importance, as is often the case when evaluating new protocols or router

queue mechanisms?

 Since the majority of request-response exchanges in most traffic on production links are

likely to have original response times much less than 1 second, and since this is the region in

which RTT emulation model matters most, it would be advisable to use the usernet model of RTT

emulation. Furthermore, the meanRTT or 10pathRTT models lack the diversity of RTT values

seen in the original distribution. Thus the resulting distribution of response times for an

experiment is varied when using the usernet RTT model but constrained to discrete values that

are multiples of the few available connection RTTs when using meanRTT or 10pathRTT models.

 For experiments in the constrained mode, the RTT model had a significant impact on the

distribution of queue lengths at the router. If there is a heavier distribution of connection RTTs in

an experiment, that translates to more time on average between subsequent windows of packets in

a TCP connection. The experiment using such an input RTT distribution in a constrained mode

experiences more latencies within TCP connections, thus resulting in a lighter distribution of

queue lengths because there is more time for the queue to drain. The number of active

connections in the network is directly affected by the durations of connections in the network. We

found that the RTT model does not affect the number of active connections in the network.

5.5.2 Effect of Connection Structure Models

 The effect of RTT models on the application-level and network-level performance metrics,

while significant, becomes almost negligible when compared to the dramatic effect of connection

structure models on these metrics. While differences in RTT models clearly created differences in

generation of the time component of each TCP connection, we found that the greater time

components are actually part of the connection structure model.

 223

 The a-b model, even without any endpoint latencies can creates a much heavier distribution

of connection durations if there was a high average number of epochs in the original traffic being

replayed. Modeling a TCP connection using the a-t-b-t model, which includes both epoch

structure and endpoint latencies, captures all the original application data exchange patterns

without knowledge of the actual applications. In doing so, this captures what we have discovered

to be the most significant time component within TCP connections – the endpoint latencies.

 We use connection duration as a performance metric not in the sense that the connection

structure causing the fastest completions is the best model. Instead, our goal is to generate traffic

such that the performance metrics measured during an experiment in the laboratory reflect the

realistic measurements taken for connections in the original traffic. Why does this matter? Say,

we develop a new transport protocol to operate at high speeds and enable faster connection

completions. If we test this protocol in the laboratory using one of the block models, we cannot

accurately assess whether faster connection completions are due to the block model or due to our

new protocol. Hence, we conclude that if connection duration is a metric of importance, we

should use the a-t-b-t model.

 Response times for request-response exchanges within a TCP connection depend on three

main factors: connection round trip time, the size of requests and responses, and the intra-epoch

latencies. We see the clear effect of each of these components when studying the distribution of

response times in this study. Connection RTT influences response times up to about 500 ms only.

The sizes of requests and responses clearly have a significant effect on response times as seen

from comparing the results between the a-b and the block-sequential connection structure models.

And then intra-epoch latencies have the most significant effect on response times as seen from the

results of the a-t-b-t model which generates all endpoint latencies.

 The distributions of response times are often used as a metric of performance. For example,

in [LAJS07], the authors demonstrate that one AQM scheme is better than another if the resulting

distribution of response times when using the first AQM scheme in the routers is lighter (faster

 224

response times) than when using the other scheme. This is not the kind of assessment we seek to

emphasize in this study. Faster response time for a connection structure in no way indicates that

that connection structure is better than another. However, response time is an important metric in

such protocol evaluation studies like the AQM example. And a metric is only good for

comparison when it reflects reality; that is, when the traffic reflects the original request-response

exchange sequence mimicking application behaviors found in the traffic on production links.

 We found that the different connection structure models had significantly different effects on

the queue length at the router. In general, the block-concurrent and block-sequential models

create the heaviest queue length distributions because every connection sends all its bytes in one

block. For connections using the a-b model, especially for those connections that originally had

several epochs within the connection, the a-b model helps introduce latencies implicitly by way

of generating request-response exchanges in sequence within the connection. Thus the replays in

the constrained mode using the a-b model have a slightly lighter distribution of queue lengths

compared with those using one of the block models. When connections are generated using the a-

t-b-t model, they not only maintain the time sequence of request-response exchanges but also

emulate intra-epoch and inter-epoch latencies within each TCP connection. This significantly

alleviates queue buildup and hence the replays in the constrained mode using the a-t-b-t model

result in the lightest queue distributions. The reason the tails of the response times seem

unaffected is because the queuing delay, in the case of a-t-b-t connection structure experiments,

represents a small fraction of the intra-epoch latencies measured for these connections in the

original trace. Specifically, queuing delay is in tens of milliseconds while the intra-epoch

latencies are hundreds of milliseconds to several seconds. For the top 10% of the epochs,

response times in the constrained mode represent an increase of 10% and 20% for results for the

UNC and IBM replays respectively as compared with their unconstrained modes.

 Hence we see the following patterns in all of the queue length distribution, regardless of the

RTT emulation used. The heaviest queue length distribution is seen when using the block-

 225

concurrent and block-sequential models followed by the a-b model and finally the a-t-b-t model

creates the lightest distribution of queue lengths. All of these results hold true for the IBM replays

in constrained mode as well.

 The number of active connections in the network is directly affected by the durations of

connections in the network. We observed that the connection structure model used in traffic

generation significantly affects connection durations. The number of active connections in the

network is a second order effect of the connection structure used in traffic generation. Thus we

see that the number of active connections in the network is smallest when using the block-

concurrent model and largest when using the a-t-b-t model, differing by an order of magnitude.

CHAPTER 6

ADDITIONAL RESULTS

Discovery consists in seeing what everyone else has seen and thinking what no
one else has thought.

Albert Szent-Gyorgi
(Hungarian Biochemist, 1937 Nobel Prize for Medicine, 1893-1986)

 So far in this dissertation, we have presented results for a complete set of experiments using

four connection structure models and three RTT models, in both unconstrained and constrained

network link modes, using two different input traces. In this chapter, we present some additional

results from experiments we conducted in the process of completing this dissertation. For all

experiments discussed in this chapter, we used only the UNC traffic as input. While these

experiments are not central to our overall results, we have included them here for completeness.

We present these results in three sections as follows. In Section 6.1, we present results for a small

set of experiments using three RTT models we developed (explained in Chapter 3) – nodelay,

medianRTT, and uniformRTT. For each of these RTT models, we ran experiments using only the

control set (the a-t-b-t connection structure model with the usernet RTT model). In Section 6.2,

we present results for the DA (discrete approximation) RTT model, showing that its results

closely follow that of the usernet RTT model.

 In Section 6.3, we present results from experiments varying another network-level parameter

for traffic generation – receiver maximum window sizes assigned to endpoints of individual

 227

connections. Finally in Sections 6.3 and 6.4 respectively, we discuss the arrival patterns of

packets at the router before the bottleneck link for different traffic models.

6.1 Miscellaneous Round-Trip Time Models

 In Chapter 5, we presented results for experiments using three round trip time models for

traffic generation for each of four connection structure models. They were meanrtt, 10pathrtt, and

usernet RTT. In this section, we show results for experiments using three other RTT models: the

nodelay, medianRTT, and uniformRTT models. For connection structure, we use only the a-t-b-t

model, having already established that it most closely and realistically emulates the original

traffic. For details on how we emulate these four models of RTT, we refer to Section 3.4:

Variations in emulating network path characteristics.

6.1.1 Effect of RTT Emulation in the Unconstrained Mode

 Let us begin this discussion with presenting results using these three RTT models in the

unconstrained network mode. For each of the four performance metrics, we compare the results

for experiments using nodelay, medianRTT, and uniformRTT models against experiments using

the usernet RTT model as the control set. Sections 6.1.1 and 6.1.2 show results for experiments in

the unconstrained and constrained modes respectively.

6.1.1.1 Connection Duration

 In Figures 6.1.1 and 6.1.2 we show CDFs and CCDFs for connection duration for four

experiments – all using the a-t-b-t connection structure model, but different RTT models. As we

observed with the three RTT models discussed in Chapter 5, we find that there is a significant

difference in the distribution of connection duration among experiments using different RTT

 228

models. While the models used in Chapter 5 showed differences only up to 1 second, we observe

a greater difference here. Why?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 Figure 6.1.1: Connection duration – CDF Figure 6.1.2: Connection duration – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 First, the nodelay model is really an extreme case where we emulate no connection RTTs at

all. While this is not realistic, it serves a purpose here – to provide a quantitative assessment of

the role of round trip times in connection duration. We find that although 60% of the connections

complete in less than 127 ms with the nodelay RTT model, the mean completion time for

connections using this model is still 33 ms. So, why do 40% of connections take more than 127ms

to complete when there is no RTT delay? And why do 20% of the connections take more than 1

second to complete with no connection RTT? What is causing these connections to last so long?

It is the epoch structure and endpoint latencies within the connections. We recall that 60% of the

sequential connections had only one epoch, but almost 20% of sequential connections had 3 or

more epochs for the UNC traffic which is the input traffic for all experiments discussed in this

chapter. For these connections, almost 50% of these inter-epoch latencies were greater than 200

ms – much larger than most connection RTTs. In the case of concurrent connections, the endpoint

latencies played an even more significant role in connection durations, with 60% of the endpoint

latencies greater than 1 second. Hence although having no RTT delay makes a significant impact

 229

on the distribution of connection duration, it is not as dramatic as we would have expected, and

this is because of the even more significant impact of endpoint latencies on the durations of

connections.

 The median RTT for all these 4.7 million connections in the input traffic was 36ms.

Continuing discussion of the results shown in Figure 6.1.1, we observe that when all connections

were replayed using 36ms as the connection RTT – this is the medianRTT model – they

completed faster than the uniformRTT and usernet cases. 60% of connections using the

medianRTT model completed in 250ms or less while the average was still 33 ms, similar to the

nodelay model. This is because the average connection duration is mostly influenced by the

longer connections which are in turn influenced more by the endpoint latencies than the

connection RTT. 20% of connections take more than 1.2 seconds to complete with the medianrtt

model. Compare this to the results for the usernet RTT model which also shows an average

connection duration of 33 ms. But with the usernet RTT model, 60% of those connections

complete in 372 ms, while 20% of them take 2 seconds or more to complete.

 Emulating round trip times using the uniformRTT model (shown in the results in Figure 6.1.1)

slowed completion time more than any other RTT model. This is likely because we used the

U[10,200] distribution, which has a mean of 105ms. This is significantly higher than the 80ms

mean of the empirical distribution of RTTs in the original traffic. Hence, while 60% of

connections completed in 370ms or less with usernet RTT, it took up to 580ms for the completion

for 60% of connections when using the uniformRTT model.

 Comparing this result and those of the 10pathRTT model (shown in Chapter 5) which is also

a uniform distribution, we conclude that using a uniformRTT model is not necessarily an

unrealistic method of RTT emulation. However, it is important to choose a distribution that has

the same mean as that of the empirical distribution of connection RTTs for the particular set of

connections being emulated. This is important for realistic traffic generation.

 230

 The CCDFs of connection durations, shown in Figure 6.1.2, merely confirm what we have

observed earlier with other RTT emulations; viz. that the effect of the RTT model used is greatly

masked by endpoint latencies within connections, especially for connections with longer

durations. Hence there is no difference in the tails of the distributions of connection durations

using different RTT models.

6.1.1.2 Response Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 Figure 6.1.3: Response Time – CDF Figure 6.1.4: Response Time – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 For the effect of RTT models on response times, we observe a similar trend as that of

connection duration. That is, the fastest response times occur when no RTT delay is emulated (the

nodelay model). In this case, while the nodelay model is obviously not a realistic RTT model, it

again serves a purpose of differentiating between the impact of RTT delay and other latencies on

epoch response times. 60% of response times are 68ms or less for the nodelay model as compare

with 156ms or less when using the usernet RTT model. We find that response times are

somewhat comparable for the medianRTT and usernetRTT models. The uniformRTT model

results in the longest response times. Again, we attribute this to the longer average connection

RTT for this model compared to the other three models for RTT emulation. The difference in

 231

impact on response times due to different RTT emulations models diminishes after 1 second of

response time distribution

 The CCDFs shown in Figure 6.1.4 confirm that the RTT model used in an experiment has an

effect on response times up to 1 second, but not beyond that. For response times greater than 1

second, the ADU sizes and intra-epoch latencies play a more significant role than the RTT model

used for traffic generation.

6.1.1.3 Queue Length

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

Figure 6.1.5: Queue Length – CCDF (a-t-b-t connection structure with different RTT emulations)

 The results for queue length, shown in Figure 6.1.5 are for experiments run in the

unconstrained mode. Hence, as was observed for experiments shown in Chapter 5, we find that in

the unconstrained mode, the queue is empty most of the time, except for the occasional spikes in

traffic. In this unconstrained mode, the router-to-router link is 1Gbps, and mean throughput is

less than half that. Hence, although the change in RTT model creates changes in the packet arrival

patterns on the link before the router, the throughput is not high enough to cause queue buildup.

6.1.1.4 Active Connections

 The number of active connections in the network is a direct result of the duration of

connections in the experiment. So we find that the nodelay and medianRTT models result in the

 232

least number of active connections, relatively speaking. And the uniformRTT model results in the

maximum number. However, since all these experiments use the a-t-b-t model of connection

structure, the number of active connections is about 45,000 connections, which is fairly high

regardless of RTT model used, but this is due to the endpoint latencies within these connections.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

Figure 6.1.6: Time series of Active connections (a-t-b-t connection structure)

6.1.2 Effect of RTT Emulation in the Constrained Mode

 In this section, we discuss results for experiments using the UNC traffic in the constrained

mode. In all experiments discussed here, we use the a-t-b-t connection structure model while

varying RTT among the nodelay, medianrtt, uniformrtt, and usernet models.

6.1.2.1 Queue Length

 We observed in Chapter 5 how a heavier RTT distribution caused a lighter router queue

length distribution as a result of using that RTT model. That observation continues to hold true

for the RTT models discussed in this chapter. Figures 6.1.7 and 6.1.8 show the queue length

distributions for the four RTT models discussed in this section. The nodelay model is obviously

the lightest RTT distribution, and hence creates the longest queue lengths. We observe that while

the usernet RTT distribution causes the queue to have 1000 or more packets for about 20% of the

 233

time, the nodelay model causes the queue to have 1000 or more packets for 93% of the time. Thus

queuing dynamics are drastically affected when the RTT delay is smaller. That is, as seen before,

larger RTTs on average lead to more time between packets and thus chances for the queue to

drain. Nodelay results in quick and massive queue buildup that takes a long time to drain. The

effect of the queuing delay induced by this buildup was seen in both connection duration and

response time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 Figure 6.1.7: Queue Length – CDF Figure 6.1.8: Queue Length – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 MedianRTT emulation means that every connection has only 36ms round trip time, and hence

connections that originally had much longer RTTs now send windows of packets much faster

back-to-back into the network, causing queue buildup. The queue barely drains and has 1000

packets or more for fully 78% of the time. With usernet, there is a wide range of RTT delays, the

average being 80ms, which is much longer than the median RTT of 36ms. Hence there are 1000

or more packets for only 20% of the time. More time to drain the queue means less impact of

queuing delay on connection duration and response times, as observed in the previous sections.

The uniformRTT model, with even larger average connection RTTs, results in 1000 or more

packets for only 4% of the time. So, there is little queuing delay compared to the other RTT

models. Still, the connection duration and response times were longer than for the other RTT

 234

models with larger queues. Why? That was due to the longer connection RTTs, and not due to

added queuing delay with this emulation.

 The CCDFs for the queue lengths in Figure 6.1.8 show fairly significant differences in queue

buildup for the different RTT models. Uniform RTT shows the lightest tail, followed by usernet,

then medianRTT and finally the nodelay model. The top 10% of the distributions show that the

queue has 650 packets or more when using the uniformRTT model, 1460 packets or more when

using the usernet RTT model, 3869 packets or more when using the medianRTT model, and 4710

packets or more when emulating nodelay as the RTT model in the experiment.

6.1.2.2 Connection Duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 Figure 6.1.9: Connection duration - CDF Figure 6.1.10: Connection duration - CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 We now discuss results from experiments using the same set of connection structures and

RTT models discussed in Section 6.1.1, but with the router-to-router link in constrained mode. In

this mode, the link capacity is set to 105% of the mean throughput on that link. As we recall from

the results in Chapter 5, the a-t-b-t connection structure model does not cause as severe a queue

buildup as the other connection structure models, regardless of RTT emulation method used in

the experiments. This was mostly due to the endpoint latencies within these connections that

 235

allowed the queue to drain between packet arrivals. Why is this significant? Because queue

buildup causes queuing delay which increases connection duration. Hence we observe in Figure

6.1.9 that while the nodelay RTT model still has the fastest completion time in this constrained

mode, the connection durations experience the largest degradation from their corresponding

distribution in the unconstrained mode. This is seen more clearly in Figure 6.1.11 and 6.1.12. In

Figure 6.1.11, we observe that 60% of connections completed in 125ms or less with the nodelay

model in unconstrained mode, but only 21% of connections complete in 125ms or less with the

nodelay model in constrained mode. 60% of connections actually take up to 400ms to complete in

constrained mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.nodelay-unconstrained
a-t-b-t.medianrtt-unconstrained

a-t-b-t.nodelay-constrained
a-t-b-t.medianrtt-constrained

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.usernet-unconstrained
a-t-b-t.unif-unconstrained

a-t-b-t.usernet-constrained
a-t-b-t.unif-constrained

 Figure 6.1.11: Connection duration – CDF - UNC Figure 6.1.12: Connection duration – CDF - IBM
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 Similarly, while the connections using the medianRTT model completed much faster in the

unconstrained mode, these completion times, now in constrained mode, are just comparable to

those using the usernet RTT model. This is because the queuing delay caused by using the

medianRTT model is much longer than that caused by the usernet RTT model. So, as shown in

Figure 6.1.11, while 60% of connections completed in 250ms or less with medianRTT in the

unconstrained mode, now with the constrained link they take up to 485 ms to complete. This is

up 94%. The average connection duration, however, remains 33 ms. This is because the RTT

 236

emulation model does not affect the longer connections as much, and it is the longer connections

that skew the mean duration.

 Finally, the uniformRTT model again results in the longest completion times as seen in Figure

6.1.12. However, the change in the distribution of connection durations between the

unconstrained and constrained modes for this RTT model is small compared with the others. For

instance, 60% of the connections completed in 588 ms in the unconstrained mode, and 621 ms in

the constrained mode when using the uniformRTT model. This is because the average of this

distribution of RTTs is higher, and as we mentioned earlier, the heavier the RTT distribution,

lighter is the queue length caused by the traffic, all else remaining the same. Hence while we saw

a 94% increase in duration for the shortest 60% of connections between the unconstrained and

constrained modes when using the medianRTT model, we only observed a 6% increase in

duration using this uniformRTT model. This is not due to the uniformity of the distribution, but

rather due to the larger mean for this uniformRTT model.

 The CCDFs of connection duration shown in Figure 6.1.10 confirm that either the endpoint

latencies or the effect of queuing delays add up to overshadow any effects of RTT models for

very long connections in all these cases.

6.1.2.3 Response Time

 Figures 6.1.13 and 6.1.14 show the results in CDFs and CCDFs for response times for

experiments using the four different RTT models. Again, we see the second order effect of

queuing delay on response times. That is, in the unconstrained mode, different RTT models

created different response time distributions purely due to differences in connection RTTs. But

now in the constrained mode, there is the added effect of queuing delay, and this queuing delay is

different for the different RTT models. What do we mean by this?

 237

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

 Figure 6.1.13: Response Time – CDF Figure 6.1.14: Response Time – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 Consider the nodelay RTT model. 60% of response times were 68ms or less for the nodelay

model as compared with 156ms or less when using the usernet RTT model in the unconstrained

mode. But in constrained mode, where the nodelay RTT model causes very large queuing delays,

we observe that 60% of response times actually take up to 156 ms, which is a 129% increase in

response times, whereas 60% of response times in the usernet model is now 178 ms which is a

14% increase in response time.

 Similarly, the response time distribution when using medianRTT is much heavier than its

corresponding distribution in the unconstrained mode. This has led to a decrease in what was

previously a significant difference in the distributions for response times for the four different

RTT models. Indeed, medianRTT seems to mirror the effect of usernet RTT, but that is only

because the queuing delay from using the medianRTT model has caused a significant increase in

response times in the constrained mode.

 Finally, the uniformRTT model has the longest response times, but this distribution is very

similar to that obtained when using the uniformRTT model in the unconstrained mode. The fastest

60% of response times increased from 215 ms to 229 ms which is a mere 6% increase. Figure

6.1.14 showing CCDFs for the response times for these experiments clearly shows that the RTT

model used has no effect beyond 1 second in the distribution of response time.

 238

6.1.2.4 Active Connections

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.nodelay
a-t-b-t.medianrtt

a-t-b-t.unif
a-t-b-t.usernet

Figure 6.1.15: Time series of Active connections (a-t-b-t connection structure)

 The small differences in the number of active connections that we observed in the

unconstrained mode, when using these different RTT models, are now overshadowed by the

second order effect of queuing delay in the constrained mode. What do we mean? Number of

active connections in the network is directly dependent on connection durations. The differences

in connection durations due to the different RTT models reduced due to the longer queuing delays

in the nodelay and medianRTT models. Hence, we observe, as shown in Figure 6.1.15, that there

is not much difference in the number of active connections in the network among the four RTT

models.

6.2 Discrete Approximation (DA) RTT

 Now we examine the effect of another RTT model – the Discrete Approximation (DA)

RTT model, also called the 30path model. We developed this model as an approximation of the

cumulative distribution of RTTs seen in the original trace. Using the concept of a quantile

function (see Chapter 3 for more details), we approximated the CDF of the empirical RTTs as

follows: we divided the distribution into 30 bins, and then found the average RTT for each of

 239

these 30 bins in the distribution. The resulting RTT values formed this set: [8, 8, 10, 10, 12, 14,

14, 16, 18, 20, 22, 24, 26, 30, 34, 38, 42, 48, 52, 60, 74, 80, 82, 86, 92, 98, 124, 172, 258, 420]

milliseconds.

 The reason we discuss this model separately is that the results from this RTT emulation most

closely resemble the results using the usernet RTT model. Hence, we present this model as a

realistic and reliable approximation for the standard usernet model. Why does this matter?

Emulating usernet involves measuring every connection RTT and assigning the original

connection RTT to that exact connection at the time of traffic generation. The DA RTT model is

an approximation of the empirical model and is easier to implement because it only requires that

we pick a discrete set of values that approximate the original minimum RTT distribution, and

then assign these values to a small number of end-to-end paths in the experimental network.

Hence, where appropriate, the DA model could be used for realistic RTT emulation.

6.2.1 Results in Unconstrained Mode

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 Figure 6.2.1: Connection duration - CDF Figure 6.2.2: Connection duration – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 In this section, we present the results for all four performance metrics using the DA model in

the unconstrained mode. For comparison, we show results for the control or usernet model of

RTT. Both experiments were run using the a-t-b-t connection structure model. In Figures 6.2.1

 240

through 6.2.6, we show the CDFs and CCDFs for connection duration, response time, and queue

length for these two RTT models. In Figure 6.2.7, we show the time series of the number of

active connections during these experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 Figure 6.2.3: Response Time – CDF Figure 6.2.4: Response Time – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-t-b-t.30path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.30path
a-t-b-t.usernet

 Figure 6.2.5: Queue Length – CDF Figure 6.2.6: Queue Length – CCDF
 (a-t-b-t connection structure) (a-t-b-t connection structure)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.30path
a-t-b-t.usernet

Figure 6.2.7: Time series of Active connections (a-t-b-t connection structure)

 241

 The distribution of connection duration for the DA RTT model practically tracks that of the

usernet RTT model for the body as well as the tail of the distributions – see Figures 6.2.1 and

6.2.2. Figures 6.2.3 and 6.2.4 show that the distribution of response time for the DA RTT model

also closely tracks that of the usernet model for the body and the tails of these distributions. For

both connection duration and response times, it is to be expected that the tail of the distributions

would remain the same, since we already observed that the RTT model used in traffic generation

does not affect these metrics beyond 1 second in most cases, and up to a maximum of 3 seconds

in some of the models discussed in this chapter.

 However, for shorter connection durations and response times, there were significant

differences among the different RTT models studied so far. Hence, it is noteworthy that of all the

other six RTT models we developed and tested, none of them matched the control usernet model

as closely as this DA model. The results for the queue length distributions as well as the time

series of active connections in the network are also very similar when using the two RTT models

in the unconstrained mode. So, clearly, if these were the performance metrics of interest, then the

DA model could work just as well for RTT emulation as the usernet model.

6.2.2 Results in Constrained Mode

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 Figure 6.2.8: Connection duration - CDF Figure 6.2.9: Connection duration - CCDF

 242

 In this section, we present the results for all four performance metrics using the DA model in

the constrained mode. Figures 6.2.8 through 6.2.14 show the CDFs and CCDFs for connection

duration, response time, and queue length for the DA and the usernet RTT models. Finally, in

Figure 6.2.14, we show the time series of the number of active connections during these

experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

a-t-b-t.30path
a-t-b-t.usernet

 Figure 6.2.10: Response Time – CDF Figure 6.2.11: Response Time – CCDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

a-t-b-t.30path
a-t-b-t.usernet

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

a-t-b-t.30path
a-t-b-t.usernet

 Figure 6.2.12: Queue Length – CDF Figure 6.2.13: Queue Length – CCDF

 Even in the constrained mode, the DA RTT model results in a distribution for connection

durations that is comparable to that when using the usernet model. For response times below

500ms, as shown in Figure 6.2.10, there is a small shift, with usernet having faster response

times. This is due to the fairly large difference in queue buildup for the DA model as compared

with the usernet model, as seen in Figure 6.2.12. This buildup for the DA RTT model is likely due

 243

to the fact that RTT emulation by paths (which is what the DA model emulates) would lead to

many connections that originally had long RTTs now having very small RTTs (and vice versa). In

such cases, if these connections also had a large amount of data to send, then that would directly

and drastically affect the queue.

 Even so, we find that the effect of this fairly significant difference in queuing dynamics is not

as large on connection duration and response time as might be expected. Note that the 67 ms

mean RTT of the DA RTT model is less than the 80 ms mean RTT of the usernet model. As seen

before, the smaller the mean of the RTT distribution, the longer is the queue at the router. The

number of active connections is the same for both RTT models throughout the experiment as

shown in Figure 6.2.14.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

a-t-b-t.30path
a-t-b-t.usernet

Figure 6.2.14: Time series of Active connections

 The CCDFs shown in Figures 6.2.9 and 6.2.11 show that the connection duration and

response times produce similar tails in their distributions for these two RTT models. In Figure

6.2.13 showing the tail of the queue length distributions, we observe that the two RTT models

cause similarly long tails for the top 10% of the time.

 244

6.2.3 Section Summary

 The discrete approximation model of RTT emulation may be used instead of the usernet

RTT model where a simpler yet empirically-based model is desired for traffic generation. If the

experiment does not involve heavily congested scenarios, the DA RTT model produces results at

the application-level and network-level that are very similar to that of the usernet model. In the

presence of heavily constrained links in the network, the DA model creates significantly longer

queues, and hence this must be taken into account when using this model for traffic generation.

6.3 Emulating Receiver Window Sizes

 In all the sections in Chapter 5 and the previous sections in this chapter, we discussed results

for using all combinations of the four connection structure models and seven RTT models we

developed for realistic traffic generation. In every experiment so far, we used the Tmix model of

window size assignments to connections. That is, we measure the window sizes for each of the

two endpoints for every connection in the original traffic on the production link, and then assign

the same two values to our traffic generation pair that generated that traffic in the laboratory.

While we consider this method to be the best practice, in this section we explore other options

that are commonly practiced in the research today. Experimenters typically assign the same

window size to all the connections for traffic generation in a given experiment.

What role does window size assignment play on the performance metrics in an experiment?

To answer this question, we ran some experiments varying window sizes while keeping all other

variables the same. But before we present the results for varying window sizes, let us briefly

review the role of the receiver maximum window allocation in TCP. During the setup, or the

three-way handshake, for a TCP connection, both endpoints of the connection advertise their

 245

receiver maximum window size. This is the size of the operating system buffer where the received

TCP payload is stored until it can be read by the application. The endpoints communicate their

receiver window size to each other to avoid any buffer overflow and resulting loss of TCP data at

the receiver. The sender controls the number of unacknowledged TCP segments in the network so

that this buffer does not overflow on the receiver’s end. This mechanism is called flow control

and imposes a limit on the maximum throughput of a TCP connection.

 In this section, we present results for experiments using the a-t-b-t connection structure

model with the usernet RTT emulation. We varied the receiver window model among these

experiments to study the effect of window sizes on performance metrics. Other than for the

standard Tmix model, we assigned the same window size for all connections for each set of

experiments discussed in this section. Hence we assigned 8KB, or 16KB, or 64KB buffers for

receiver maximum window for all connections within an experiment, and to both endpoints of

traffic generation for a given experiment. First, we present the results for experiments run in the

unconstrained mode.

6.3.1 Results in Unconstrained Mode

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 Figure 6.3.1: Connection duration – CDF Figure 6.3.2: Connection duration – CCDF
 (a-t-b-t with usernet – unconstrained – UNC) (a-t-b-t with usernet – unconstrained – UNC)

 246

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 Figure 6.3.3: Response Time – CDF Figure 6.3.4: Response Time – CCDF
 (a-t-b-t with usernet – unconstrained – UNC) (a-t-b-t with usernet – unconstrained – UNC)

 We performed four experiments (in the unconstrained mode), all using the a-t-b-t connection

structure model and usernet RTT model. For the first experiment, we assigned 8KB buffers as the

receiver maximum window size for both sides of every one of the 4.7 million connections

generated in the experiment, regardless of what the original receiver window sizes were, when we

captured the traffic on the production link. For the second and third experiments we assigned

16KB and 64KB receiver window sizes for all connections at both endpoints. From here on, we

refer to this receiver maximum window size as window size. It is not to be confused with other

window sizes like congestion window which we do not manipulate directly during our

experiments. For the fourth experiment, we assigned window sizes to both endpoints of every

connection exactly as obtained from the original traffic data (the method employed for all

experiments reported in Chapter 5).

 See Figures 6.3.1 and 6.3.2 for the CDFs and CCDFs of connection duration. We observe that

there is no difference in either the body or the tail of these distributions. Figures 6.3.3 and 6.3.4

show similar results for response time distributions. That is, there is no effect of different window

size assignment models on either connection duration or response times. The queue length

distributions shown in Figures 6.3.5 and 6.3.6 are as expected, since there is no constraint on the

 247

link and hence there is no queue buildup. And Figure 6.3.7 shows no significant difference in the

number of active connections in the network using these different window size models.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

Figure 6.3.5: Queue Length – CCDF
(a-t-b-t connection structure with usernet RTT – different window size emulations)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

Figure 6.3.6: Time series of Active connections
(a-t-b-t with usernet – unconstrained – UNC)

 Now, why would window size have no effect on connection duration? A connection with a

larger window size, say 64KB should finish faster than one with a smaller, say 8KB, window. But

this is assuming that that connection has enough data to use the larger 64KB window. Hence the

characteristics of the traffic being generated play an influential role in this case. That is, if all

connections were long and had large number of bytes to be transferred, then of course, we would

 248

have seen significant differences with the different window size models. In that case, the 8KB

windows would result in longer durations for transmitting data, while the 64KB windows would

allow for much quicker data transfers and hence lead to faster completion times. On the other end

of that spectrum, if all connections were short with a few hundreds of bytes to transmit, then

window sizes would make no difference at all.

 Going back to some statistics on the input UNC traffic characteristics from Chapter 3 (refer

Figures 3.1.11, 3.1.13, 3.1.15), we note: for sequential connections, only 20% of request sizes

were greater than 1000 bytes, and only 20% of response sizes were greater than 4KB. Due to a

few thousand very large connections, the averages were much higher. Even so, the average

request size was 2.5KB and the average response size was 11KB. For concurrent connections, the

application data units (ADUs) are slightly larger than the request or response sizes of the

sequential connections. Still, only 20% of ADUs are greater than 1400 bytes.

 That was ADU or object sizes; now let us look at the connection sizes for the input data used

to generate traffic in these experiments as shown in Figures 6.3.7 and 6.3.8. Of the 4.7 million

connections, 63% carry less than 4KB total data, and 37% carry more than 4KB. But only 0.6%

of connections carry more than 1MB of data total; but that’s still 29,000 connections. Top 10% of

connections by size carry 35KB of data each – that’s 470,000 connections. The mean connection

size is 62KB while the median is only 2.2KB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Data transferred per connection (bytes)

connection size

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Data transferred per connection (bytes)

connection size

 Figure 6.3.7: Connection size - CDF Figure 6.3.8: Connection size - CCDF

 249

 So, in order to observe if these larger connections within the generated traffic benefited from

larger window size models, let us break down the above results in terms of the connection sizes.

We now look at the following sets of connections: (i) all connections with less than 4KB of data

to be transferred in total, (ii) all connections with more than 4KB of data to be transferred, and

(iii) all connections with more than 1MB of data to be transferred. The third set of connections is

obviously a subset of the second, but the first and second sets are exclusive sets of connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize < 4KB
16KB - connsize < 4KB
64KB - connsize < 4KB

empirical - connsize < 4KB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize > 4KB
16KB - connsize > 4KB
64KB - connsize > 4KB

empirical - connsize > 4KB

 Figure 6.3.9: Connection duration - CDF Figure 6.3.10: Connection duration - CDF

 Connection size less than 4KB Connection size greater than 4KB

 In Figures 6.3.9 and 6.3.10, we show the distribution of connection durations using all four

window size models. Figure 6.3.9 shows connection duration only for those connections carrying

less than 4KB of data, whereas Figure 6.3.10 shows connection duration only for those

connections carrying more than 4KB of data. Comparing the two plots above, we find that the

window size model does not make a difference in the distribution of connection durations in

either case – the set of all connections with less than 4KB to transfer, or the set of all connections

with more than 4KB to transfer.

 There is, however, a significant difference between the two sets of durations. For connections

carrying less than 4KB, 78% of the connections complete in less than 500ms, and only 8% of

connections take longer than 3 seconds to complete. For connections carrying more than 4KB,

 250

however, only 47% of the connections complete in less than 500ms, and 28% of connections take

longer than 3 seconds to complete.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize > 1MB
16KB - connsize > 1MB
64KB - connsize > 1MB

empirical - connsize > 1MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize > 1MB
16KB - connsize > 1MB
64KB - connsize > 1MB

empirical - connsize > 1MB

 Figure 6.3.11: Connection duration - CDF Figure 6.3.12: Connection duration - CDF

 Connection size greater than 1MB Connection size greater than 1MB

 Now let us look at the results for connections carrying more than 1MB of data. The Figures

6.3.11 and 6.3.12 show the same distributions. However, Figure 6.3.11 shows durations up to the

entire hour of the experimental run and indicates there is no difference in the window size models

used in traffic generation. Whereas Figure 6.3.12 shows durations up to only 200 seconds, and

indicates that for connections carrying more than 1MB of data, if they all had 64KB buffers for

receiver maximum windows, they would indeed complete much faster; for example, 40% of these

connections would complete in 12 seconds or less. Using 16KB window sizes, 40% of

connections would take up to 22 seconds to complete. And using 8KB, which compares with the

Tmix model, 40% of connections would take up to 36 seconds to complete. Clearly, for

connections carrying more than 1MB of data, window size model makes a significant difference.

 We now present these same results in a tabular form for a better comparison. See Table 6.1

showing the connection duration for these connections differentiated by the amount of data they

had to transfer. Clearly, the mean and median duration for connections having less than 4KB of

 251

data to transfer do not change with change in receiver window size. But more the data to be

transferred in a connection, the better it can use larger window sizes. Hence we observe a slight

shift in median durations for the set of connections carrying more than 4KB of data. For

connections carrying more than 1MB of data, however, the differences are more significant. For

example, between using a 8KB window size to a 64KB window size, the median duration of these

connections reduces by 50% which is a significant difference.

 Comparing durations of connections for those transferring more than 1MB of data, we note

that when using 8KB window sizes, the mean duration was 369 seconds, whereas when using the

usernet model of window size assignments, the mean duration was 393 seconds. Does this mean

that UNC connections with more than 1MB of data to transfer actually had windows smaller than

8KB? This seems counter-intuitive. However, when we examined the data, we found that this was

indeed the case for a large number of connections. To be specific, 8.4% of connection initiators

and 36% of connection acceptors had receiver maximum window sizes less than 8KB (see Figure

3.1.25 in Chapter 3). Moreover, among the 28,000 connections transferring more than 1MB, 2711

connections had window size less than 8KB for the connection initiator and 10,380 connections

had window size less than 8KB for the connection acceptor. It would be interesting to explore

what kind of applications were represented by these connections, but that is currently out of scope

for this study.

 Now that we have seen the characteristics of the input traffic used in traffic generation, it is

clearer why the window size model used in traffic generation has little to no effect on all the

performance metrics when seen in aggregation for each of the performance metrics. Does this

mean that the Tmix style empirical window size assignment model is too complicated and

unnecessary? Before we answer that question, let us look at these same experiments run in the

constrained mode.

 252

Window size model

< 4KB data transfer

(3 million connections)

> 4KB data transfer

(1.7 million connections)

> 1MB data transfer

(28,000 connections)

8KB for all

connections

Mean: 17 sec

Median: 187 ms

Mean: 60 sec

Median: 598 ms

Mean: 369 sec

Median: 50 sec

16KB for all

connections

Mean: 17 sec

Median: 187 ms

Mean: 60 sec

Median: 592 ms

Mean: 355 sec

Median: 35 sec

64KB for all

connections

Mean: 17 sec

Median: 187 ms

Mean: 60 sec

Median: 575 ms

Mean: 350 sec

Median: 25 sec

Empirical – Tmix

style

Mean: 17 sec

Median: 187 ms

Mean: 62 sec

Median: 603 ms

Mean: 393 sec

Median: 52 sec

Table 6.1: Connection Duration – using different window size models

6.3.2 Results in Constrained Mode

 In the constrained mode, however, window size models seem to make a significant difference

for both connection durations and response times, as shown in Figures 6.3.13 through 6.3.16.

How is that possible? Not only are there differences in the distribution of connection durations,

the results are counterintuitive. That is, the experiment in which all connections have 64KB

window sizes is the one in which the connections take the longest time to complete. For example,

 253

while only 55% of connections complete in less than 500 ms when using 64KB windows, more

than 65% of connections complete in less than 500 ms when using 4 KB windows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 Figure 6.3.13: Connection duration - CDF Figure 6.3.14: Connection duration – CCDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 Figure 6.3.15: Response Time - CDF Figure 6.3.16: Response Time - CCDF

 Similarly, Figures 6.3.15 and 6.3.16 show that connections with the large 64KB windows

result in longer response times than the same connections with 4KB window sizes. The reason for

the results for these two metrics lies partially in Figure 6.3.17 and 6.3.18 which show the queue

length distributions for these experiments.

 The queue length distributions clearly show that the experiment with 8KB window sizes

creates the lightest router queues, followed by the experiment with 16KB window sizes. The

experiment with 64KB window sizes creates the heaviest queues, while the Tmix model creates

 254

slightly lighter queue lengths than the 64KB case. So, on the one hand, the connection duration

and response time distributions are heaviest for the 64KB window sizes because they experience

the longest queuing delays. And the connections with 8KB windows experience relatively much

shorter queuing delays. But although this effect is due to window sizes, there is another reason.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Queue Length in packets

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 Figure 6.3.17: Queue Length – CDF Figure 6.3.18: Queue Length – CCDF

 We found that when we use 8KB or even 16KB as window sizes for all connections, there are

a few thousand very large and long-lasting connections that originally had 64KB windows that

are now simply unable to complete. That is they cannot send the data fast enough with these

smaller window sizes. Thus the overall number of bytes transferred in these experiments with

smaller window sizes is less than the original total data transferred. Hence the average link

throughput is slightly lower when using the 8KB or 16KB windows as compared with using

64KB windows which would obviously account for smaller queue sizes. [Note: for all

experiments reported in Chapters 5 and 6 (other than these window size experiments), we ensured

that the same total number of bytes were transferred per experiment. This is necessary to enable

comparison among the performance metrics from those experiments.]

 Now why is the experiment using all 64KB windows then creating heavier queues than the

Tmix model? We conjecture that this is because those connections that have enough data to send

 255

but had originally had smaller windows now make use of the larger 64KB windows to send more

packets back to back, thus populating the queue. Finally, Figure 6.3.19 shows that the difference

in effects on connection durations among the different window size models was not significant

enough to create noticeable differences in active connections; at least not at the scale we have

studied them.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

Figure 6.3.19: Time series of Active connections

 As we did in Section 6.3.1 for the unconstrained mode, let us now consider connection

durations with respect to their connection sizes for experiments run in the constrained mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize < 4KB
16KB - connsize < 4KB
64KB - connsize < 4KB

empirical - connsize < 4KB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize > 4KB
16KB - connsize > 4KB
64KB - connsize > 4KB

empirical - connsize > 4KB

 Figure 6.3.20: Connection duration - CDF Figure 6.3.21: Connection duration - CDF
 Connection size less than 4KB Connection size greater than 4KB

 256

 We start with results shown in Figures 6.3.20 and 6.3.21 for all connections carrying less than

4KB data and more than 4KB data respectively. Clearly, for connections carrying less than 4KB

of data, there is a slight difference in durations, up to 500ms of duration, for 8KB, 16KB, and the

Tmix model of window sizes, and a very significant shift in duration for the 64KB window size

model. And as we observed, this is directly due to the effect of queue lengths.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize > 1MB
16KB - connsize > 1MB
64KB - connsize > 1MB

empirical - connsize > 1MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - connsize > 1MB
16KB - connsize > 1MB
64KB - connsize > 1MB

empirical - connsize > 1MB

 Figure 6.3.22: Connection duration - CDF Figure 6.3.23: Connection duration - CDF
 Connection size greater than 1MB Connection size greater than 1MB

 Figures 6.3.22 and 6.3.23 show connection durations for the different window size models

only for connections carrying more than 1MB of data. Both figures use the same data set, with the

second one zooming into the first 200 seconds of connection duration. For connections carrying

more than 1MB of data, the use of 64KB window buffers is clearly helpful in completing faster,

despite the effect of longer queuing delays. Why is the Tmix model showing longest duration?

We conjecture that this is a combination of the longer queuing delays, and possible (faithful)

assignment of smaller original window sizes to these large connections.

6.3.3 Section Summary

 In the unconstrained mode, we found that on aggregate, the window size model did not seem

to make a difference in performance metrics. However, when we differentiated the connections

 257

by the amount of data they carried, we clearly saw that larger window sizes helped in faster

completion times for connections carrying large amounts of data, for example those connections

transferring more than 1MB. Then why not simply assign 64KB windows to all? While it is not a

bad idea, it is also not advisable if faithful replay of traffic is a goal. That is, the pattern of

injection of packets into the network for a given connection is dependent on its window size.

Keeping its window size the same as was seen in the original traffic retains the packet arrival

pattern into the network.

 The case against using the smaller 8KB or 16KB windows for all connections is clearly laid

out by the fact that large, and long-lasting connections with originally large window sizes now do

not even send all the data if assigned these smaller windows. Hence, we conclude that faithfully

replaying all traffic as captured clearly calls for assigning originally measured window sizes to

every connection during traffic generation in the laboratory.

6.4 Connection Structure and Packet Arrival

Why does the connection structure model matter so much in traffic generation? One

perspective may lie in how the structure of the generated TCP connections changes the

characteristic of the overall traffic being generated in the testbed. That is, the TCP connection

structure changes the pattern of packet arrivals aggregating before the core router. To study this,

we observe the packet throughput in the context of the effect on queue dynamics. Specifically, we

look at how different connection structures create different arrival patterns and hence create the

very different queue dynamics that we saw in Chapter 5.

 We study only packet arrival (and not byte arrival) patterns in this section because the queue

length is measured in packets. We study the arrival of packets in the unconstrained mode – this

gives us a sense of the traffic characteristics without the second order effect created on the traffic

 258

by the router queue in the constrained mode. In order to study the effect of changing connection

structures, we keep the RTT and window size models the same in all these experiments; that is,

we use the usernet RTT model and the Tmix window size model.

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

blk-conc.usernet

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

blk-seq.usernet

 Figure 6.4.1: Link throughput in packets – blk-conc Figure 6.4.2: Link throughput in packets – blk-seq

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

a-b.usernet

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 K
pp

s

Time in minutes

a-t-b-t.usernet

 Figure 6.4.3: Link throughput in packets – a-b Figure 6.4.4: Link throughput in packets – a-t-b-t

 In Figures 6.4.1 through 6.4.4, we show the packet throughput time series for the middle 40

minutes of each experiment, using the block-concurrent, block-sequential, a-b, and a-t-b-t models

of connection structure respectively. This is the throughput as measured on the 10Gbps link

 259

before the first router on the path with higher throughput, and is measured in Kpps (kilo packets

per second), computed in 1 second intervals. A mere visual observation indicates that the two

block models create very similar patterns of packet arrivals, with high variability, into the

network. The a-b model shows slightly less variability than the block models, while the a-t-b-t

model shows even less variability in packet arrivals but higher average throughput of packets in

the network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 45 50 55 60 65 70

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Throughput (in Kpps at 1s intervals)

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 450 500 550 600 650 700

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Throughput (in Kpps at 10ms intervals)

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

Figure 6.4.5: Link throughput in packets – 1s intervals Figure 6.4.6: Link throughput in packets – 10ms intervals

 We now observe the same data shown above, but in the form of distribution of packet

throughput, called throughput marginals. In Figures 6.4.5 and 6.4.6, we show the link throughput

of packet arrivals to the network in Kpps, in 1 second intervals and 10ms intervals respectively.

This is for experiments in the unconstrained mode. We quantify these observations in the Table

6.2 below.

From the table, we observe that using either of the two block structures to generate the same input

traffic creates slightly less packet throughput than when using the a-b model. The block structures

produce mean packet throughputs of 48.8 Kpps and 49.0 Kpps, whereas the a-b model produces

50.3 Kpps. This is because the a-b model sends data in epochs in a request-response exchange

 260

pattern. This creates slightly more packets whereas in the block structure models, the same

connection data is sent all at once instead of in application data units, and hence the block

structures maximize packet sizes for sending the data.

Connection
structure

Mean throughput
in Kpps

Standard deviation of
throughput in Kpps

Coefficient of Variation
(CoV) = std_dev/mean

blk-conc 48.8 Kpps 5.6 Kpps 0.1147

blk-seq 49.0 Kpps 5.5 Kpps 0.1126

a-b 50.3 Kpps 5.0 Kpps 0.0999

a-t-b-t 60.2 Kpps 3.8 Kpps 0.0625

Table 6.2: Packet throughput – using different connection structure models

The a-b model, however, models concurrent connections (which carry a very large

percentage of bytes) exactly as modeled in the block-concurrent connection structure. This partly

explains why there is not an even greater difference between the a-b model and the block

structure models. The a-t-b-t model creates a major shift in packet arrival patterns. First the mean

packet throughput is much higher at 60.2 Kpps. This is due to data being sent in application data

units for concurrent connections which carry a substantially large amount of data. The

combination of introducing ADUs for concurrent connections and endpoint latencies in between

these ADUs results in greater number of packets carrying the same data. The few thousand very

long concurrent connections with large ADUs and several long endpoint latencies make a huge

difference in the packet arrival patterns in this model.

 If we looked at mean packet throughput numbers alone, we would have expected the a-t-b-t

connection structure to cause more queuing in a constrained environment. But that is clearly not

the case as shown in results in Chapter 5 (see Figure 5.4.53). Instead, the much higher standard

 261

deviation of the packet arrivals in small intervals for the block structures and fairly high standard

deviation for a-b explain why these structures create different dynamics at the router queue as

compared with the a-t-b-t model.

 Given an input traffic for experimental use, the connection structure of the generated TCP

connections affects the number of packets used for the same data. That is, for the same amount of

data transferred, if there are more epochs in a connection transferring this data, then a higher

number of packets are generated for that connection. More packets for the same data also result in

more packet overhead which then slightly increases the overall throughput in Mbps as well.

Intuitively, this would have indicated that the a-t-b-t model would result in the heaviest queues.

But the experimental results show counter-intuitive queue dynamics. Higher average throughput

in packets should result in larger queues, right? Wrong, or not always. It’s just not that simple.

When these higher average throughput for packets are accompanied by endpoint latencies, such

as in the a-t-b-t model, this allows time for the queue to drain, and hence the queues are smaller

on average.

Figure 6.4.7: Queue Length Time Series – blk-conc

 262

Figure 6.4.8: Queue Length Time Series – blk-seq

 A major problem with not using endpoint latencies within connections is that large

connections send packets at a faster pace occupying the queue, which creates queue buildup that

takes an inordinate amount of time to drain. Of course, one could argue that we used an

unrealistic queue size – but, as explained in Chapter 4 on methodology, that is besides the point

here. To explain this queue buildup, we show in Figures 6.4.7 through 6.4.10 the queue length

time series of the router queue when the router-to-router link was in the constrained mode.

Figure 6.4.9: Queue Length Time Series – a-b

 263

Figure 6.4.10: Queue Length Time Series – a-t-b-t

 These figures show the queue length time series for only the middle 40 minutes of the

experiments. Even so, as seen in Figures 6.4.7, 6.4.8, and 6.4.9, the initial queue buildup is so

drastic that the queue has not drained well into more than half hour in to the experiment. Thus,

using the block structures and even the a-b model for connection structure builds up the queue

very quickly, and here’s why. Large, long connections that start at the beginning of the

experiment, and would have lasted for, say, 3 minutes or even up to 40 minutes into the

experiment, when replayed without any of the endpoint latencies, now send packets into the

network at a much faster pace. These connections build the queue quickly such that it takes a long

time for the queue to recover from this buildup. Sure, a shorter queue would have alleviated this

dynamic, but we wished to eliminate the loss dynamics that would result from a shorter queue,

and study the effect on traffic characteristics due to the different connection structures. When the

a-t-b-t connection structure model is used, as shown in Figure 6.3.10, replaying the endpoint

latencies as was present in the original traffic allows the queue to drain. Thus even though there is

an initial queue buildup, the queue is able to drain by just 12 minutes into the experiment. This

does also bring up the question about what constitutes an appropriate time for running an

experiment. We discuss this among other such methodological questions in Chapter 7.

 264

 We conjecture that the differences in round trip time emulation schemes created similar

effects as shown above for the different connection structure models. That is, larger average

RTTs for connections means more time between packets for the queue to drain, and hence less

average queue lengths as we observed in Chapter 5 (see Figures 5.2.57 through 5.2.64).

6.5 Long Range Dependence

 Router queue dynamics are affected by many factors. One of them is the long-range

dependence (LRD) characteristic of the traffic. In this section, we explore whether changing the

connection structure model changed the long-range dependence of the traffic by studying the

wavelet spectrum and computing the Hurst parameters for these packet arrivals.

2 4 6 8 10 12 14
5

10

15

20

25
Pkts-arrival

j = log2(scale)

lo
g 2 V

ar
ia

nc
e(

j) H = 0.9636
C.I. 95% [0.92759, 0.9996]

Figure 6.5.1: Wavelet spectrum for packet throughput time series
using the block-concurrent connection structure model

 Figures 6.5.1 through 6.5.4 show the wavelet spectrum for packet arrivals for the block-

concurrent, block-sequential, a-b and a-t-b-t models, all using the usernet RTT model for traffic

generation, using the same input UNC traffic in all these experiments.

 265

2 4 6 8 10 12 14
5

10

15

20

25
Pkts-arrival

j = log2(scale)

lo
g 2 V

ar
ia

nc
e(

j) H = 0.96592
C.I. 95% [0.92991, 1.0019]

Figure 6.5.2: Wavelet spectrum for packet throughput time series
using the block-sequential connection structure model

1

2 4 6 8 10 12 14
5

10

15

20

25
Pkts-arrival

j = log2(scale)

lo
g 2 V

ar
ia

nc
e(

j) H = 0.98256
C.I. 95% [0.92548, 1.0396]

Figure 6.5.3: Wavelet spectrum for packet throughput time series
using the a-b connection structure model

2 4 6 8 10 12 14
5

10

15

20

25
Pkts-arrival

j = log2(scale)

lo
g 2 V

ar
ia

nc
e(

j) H = 0.96308
C.I. 95% [0.906, 1.0202]

Figure 6.5.4: Wavelet spectrum for packet throughput time series
using the a-t-b-t connection structure model

 266

 We found that the long-range dependence characteristics of the packet arrival time series

remains the same regardless of the connection structure used for traffic generation. How is that

possible? While not all the factors affecting LRD have been clearly identified in networking

research studies, we know that the distribution of connection sizes, distribution of object sizes,

connection arrival times, and the distribution of round trip times all play an important role in the

LRD characteristic of traffic.

Connection Structure Hurst parameter Confidence interval (95%)

blk-conc 0.9636 [0.92759, 0.9996]

blk-seq 0.9659 [0.92991, 1.0019]

a-b 0.9826 [0.92548, 1.0396]

a-t-b-t 0.9631 [0.906, 1.0202]

Table 6.3: Estimated Hurst parameters and their confidence intervals for
packet throughput time series using the four different connection structure models

 Changing the connection structure only changes the inter-packet arrival times within a

connection. For example, lack of epoch structure and endpoint latencies results in packets being

sent back to back more frequently in the block structure models. That is we keep the connection

sizes the same in all these models, but the two block structure models change all object sizes

within each connection. However, we leave the other factors unchanged. Connection sizes, start

times of connections, and round trip times were all retained as part of the traffic generation

discussed above, even as we changed the TCP connection structure model for generating these

connections. Hence, changing the connection structure model alone did not affect the LRD

characteristics of the traffic generated on the link in the laboratory testbed.

 267

6.6 Chapter Summary

 In this chapter, we presented results for experiments using four RTT models not discussed in

Chapter 5. The results for all four performance metrics for these RTT models support and

supplement the results seen for the three main RTT models presented in Chapter 5. Of these, the

DA RTT model emerged as a close approximation of the more realistic usernet RTT model. That

is, using the DA model for RTT emulation in traffic generation is an acceptable alternative to the

usernet RTT model.

 We also presented results for varying the receiver window size model for traffic generation.

While window size assignment does not seem to affect most of the TCP connections, the window

size model makes a large impact on performance metrics for connections carrying more than

1MB of data. From the results obtained in that section, we recommend using the Tmix model of

window size assignments. Finally, we discuss how changing the connection structure model

changes the pattern of packet arrivals into the network and hence causes changes in performance

metrics.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The most exciting phrase to hear in science, the one that heralds the most
discoveries, is not “Eureka!”, but “That’s funny...”

ISAAC ASIMOV

There are two possible outcomes: if the result confirms the hypothesis, then
you’ve made a measurement. If the result is contrary to the hypothesis, then
you’ve made a discovery.
 ENRICO FERMI

 This dissertation was a methodological study seeking some fundamental insights into

experimental methods in networking. Specifically, we looked at methods and modeling for traffic

generation in empirical networking research. We plan to use the lessons learned from this study to

motivate further discussions and take concrete steps to engage the networking research

community toward establishing better practices in experimental methods for networking research.

 We examined the effect of several choices for modeling network traffic generated for

empirical research on the following application-level and network-level performance metrics:

connection duration, response time, router queue length, and number of active connections in the

network. We examined the choices in modeling TCP connection structure, connection round trip

times (RTTs), and receiver window sizes within the realm of realistic traffic generation. In this

 269

chapter, we discuss our findings, their implications, and some related work we wish to explore in

the future.

7.1 Observations and Conclusions

 To arrive at the conclusions presented in this chapter, we conducted extensive sets of

experiments using the Tmix traffic generation system on a 10Gbps laboratory testbed, using four

different connection structure models, seven different RTT models and four window size models.

We ran our experiments using two very different traffic inputs and in two different network

environments. Here are our key observations.

In an unconstrained network, regardless of the connection structure model used,

or the input traffic used, round trip time had a significant effect on application-

level performance measures of connection duration and response times, but only

up to a maximum of 1 second for these metrics.

 Consider this example. You are designing a set of experiments to evaluate a new Active

Queue Management (AQM) protocol. This is a study in which application-level performance

metrics are important. In fact, your study relies on response time as the main metric that

distinguishes whether this new AQM scheme is better than, say, the currently used drop-tail

method of queue management. Which RTT model will you pick for generating traffic? If you

pick the meanrtt model, or any similar model that emulates a single path for all the millions of

connections traversing the router that has implemented the new AQM scheme, are you creating a

realistic scenario for testing that AQM scheme? When it is deployed on routers in the middle of

the network, those routers will service connections with a wide range of RTTs each possibly

traversing completely different paths through the Internet.

 270

 Say, you obtain results for this AQM scheme using the meanrtt model, and find that it

performs worse than the drop-tail scheme. Could you then be confident that your AQM scheme

was not good enough for deployment? We assume you picked the meanrtt value from the

empirical mean of the original RTT distribution. Still, is it possible that the artificial emulation of

one single path for all connections created queue dynamics that would have been different if there

had been a wide range of realistically possible connection RTT values? So, then let’s say you

picked the usernet RTT model instead. Could you now be sure of the results and use it for

deployment? At least, you could be sure in this case that the characteristics of traffic you used is

as similar as possible to real network traffic, and hence the results obtained would be that much

more reliable.

 Of course, network traffic keeps changing and is different at different points on the Internet.

Hence it would be even better if you could run your entire set of experiments using two or more

input traces with significantly different application mixes. Why? Traffic characteristics play a

huge role in the outcome of experiments as we saw in this study. The UNC and IBM traffic had

many similar characteristics when seen on a high level, but there were significant differences. For

example the average RTT for UNC connections was 80ms and for IBM connections, it was 92

ms. If the results you obtain from your AQM study hold for two such very different traffic mixes,

then that in itself will serve to make your results more reliable when you make the argument for

deployment of your new AQM scheme.

RTT model had no impact on the number of active connections in the network.

 This result must be qualified with the following statement: we measured active connections

for every second in the hour long experiment. In fact, since connection durations affect number of

active connections, and RTT models had no effect beyond 1 second for connection durations, it is

 271

expected that RTT models would have no effect on active connections. So, in this case, say your

experiment involved testing a routing protocol that had to keep state for active connections

traversing that router queue. What is the granularity at which you wish to update and compute the

number for active connections? If it is every second, then the RTT model you use will not greatly

affect this computation. But if it is every millisecond, then our result above would have changed.

That is, the RTT model would have affected your experiment. Hence, it is important to verify the

scale at which your choice of traffic generation (RTT model in this case) will or will not affect

your metric of performance.

In a constrained environment, the lighter the distribution of connection RTTs, the

heavier was the queue distribution at the router.

 Choosing the right RTT model for your study depends not only on the direct effect of the

RTT model on application-level performance metrics but also on the indirect or second-order

effect of queue lengths on such application-level metrics. For example, in our study, we

deliberately chose a very high level of congestion, which was induced by constraining the router-

to-router link at 105% of the traffic on that link. This created long queues at the router before this

link, which added very large queuing delays to connection durations and response times. If your

study did not involve constrained links and created no heavy congestion scenarios, then perhaps

you would not have to take into effect these second-order queuing effects on your application-

level metrics of performance.

Randomly assigning the same empirically derived round trip times to

connections, using the discrete-approximation (DA) RTT model, is almost as

effective, on an aggregate level, as assigning each connection its originally

measured RTT as done in the usernet model.

 272

 We developed a model for RTT emulation that approximated the empirical RTT distribution

and emulated 30 paths for connection RTTs in the experiment. We concluded, from our

experimental results, that this model would mimic the usernet model quite closely for the metrics

of performance used in our study. We recommend that this is a viable alternative to the usernet

RTT model in cases where the usernet model cannot be deployed. However, we found that if

queuing dynamics in highly congested environments is of interest in an experiment, then this

model is not appropriate since it produces heavier queues than the usernet model. We used 30

values to approximate the 4.7 million connection RTTs in our traffic. We conjecture that if more

paths were used, for example 150 paths were used, then this DA model would produce results that

would even more closely resemble the usernet model. The choice of the number of paths for this

model was purely dependent on the topology of the physical laboratory network in our study.

The impact of the RTT model used in traffic generation, while significant,

becomes negligible when compared to the dramatic impact of the connection

structure model used in the experiment.

 We strongly recommend that experimenters design their methodology carefully and select an

appropriate RTT model for their study for all the reasons already stated above. We are convinced

from the results in this study, however, that while modeling connection RTTs is still a choice that

depends on the overall experimental design and goals, there is less choice in picking a connection

structure model. But did we not show four choices for connection structure models in this study?

Yes. However, we have come to the following conclusion that restricts the choice of connection

structure model. That is, both the size and time components are just as important in modeling

connection structure. Simply modeling connections by their size (as we did in the two block

structures), or even adding the number of objects and size of objects (as we did in the a-b model),

or further preserving the request-response exchanges (as we did in the a-b model) are not enough

 273

detail in connection structure modeling. The one component of endpoint latencies within

connections creates such a dramatic effect on all metrics of performance (both application-level

and network-level) that we are convinced that connections must be modeled at this level of detail;

that is we must include the epoch structure as well as all endpoint latencies.

 Is the a-t-b-t model then the only correct model for traffic generation? It is definitely one

method of detailed connection structure modeling, and it is the one we explored in this study.

However, there may be others that work just as well, but were out of scope in this study. For

example, how would the results have differed if we used the number of epochs per connection,

the epoch sizes, and the endpoint latencies as input distributions to our traffic generation system?

In such a case, we are indeed including details of connection structure but have not preserved the

correlation, if any, among these various components of connection structure within connections.

The a-t-b-t is a non-parametric model while what we just described here is a parametric model for

connection structure, similar to the Swing traffic model [VV09]. Is one better than the other, or

more realistic than the other? Would these two models produce similar or very different results?

That is, given the same input traffic, let us say we use Swing for parametric modeling and Tmix

for non-parametric modeling to generate traffic. Thus with inputs from the same empirical

measurements, it would be interesting to bring out the similarities and differences, strengths and

weaknesses of the two modeling techniques. These parametric distributions usually represent

millions of connections; at such high levels of aggregation, how does parametric modeling

compare with its non-parametric counterpart? These are all open research questions and intended

for future work.

Unlike RTT models which affected connection duration and response times only

up to 1 second, the connection structure models affect these metrics significantly

in the body as well as the tail of the distribution for these metrics. Hence, the

connection structure model greatly affects number of active connections in the

 274

network as well. And in the constrained mode, the absence of endpoint latencies

in the block structures and the a-b model result in much heavier queues at the

router, thus creating counter-intuitively long durations and response times

because of the second order effects of queuing delay on connection duration and

response times.

 As we mentioned above, the connection structure model affects application-level metrics very

significantly and throughout the experiment duration. Hence, if we used our previous example of

evaluating a new AQM scheme in a router, choosing a realistic model for connection structure

becomes very important for a reliable study. If we eliminated endpoint latencies from the model,

there is a multi-fold decrease in the number of active connections in the network. And in

constrained mode, the queuing dynamics would be very different for the different connections

structure models. For example, say you used one of the block structure models in your study and

determined that your protocol could keep state for active connections for a certain level of

network traffic. Now, in the real network, the traffic resembles the a-t-b-t model where the

number of active connections is multi-fold that for block structures, and your protocol may fail in

this scenario.

 It must be noted that in order to isolate and study queuing dynamics, we deliberately set the

router queue to 65,000 packets for all our experiments. While this might be considered

unrealistic, this helped us study the queue dynamics in the absence of loss within TCP

connections. For our experiments in the constrained mode, the connection structure model used

for traffic generation had dramatically different queue dynamics at the outbound queue of the

router. This caused very large queuing delays for these connection structures and hence created a

second order effect on all other performance metrics due to the queuing delay. Sure, if we had

shorter queues, say 1200 packets, these connections would have incurred losses and created a

different dynamic in the network. But we designed the queue size with the intention of

 275

eliminating losses since study of loss characteristics was not part of our goals. This is definitely a

topic that we intend to explore in the near future. That is, set the queue size to different levels

inducing loss and study how this changes the traffic characteristics and the effect it has on the

different performance metrics at both application and network levels.

 The choice of this very large queue size at the router caused the block structures and the a-b

model to buildup long queues at the beginning of the experiment, and these long queues did not

drain until well into more than half the experiment duration of one hour. This leads us to another

open question for experimenters: what is an appropriate length of time to run an experiment? It

may be different depending on traffic characteristics of the input trace being emulated, as well as

on network characteristics during the experiment. However, there seems to be no consensus on

this, except to say that you must have a stable region from which to derive results. Such a stable

region remains to be clearly defined. Five minutes for an experiment seems to be an acceptable

time for running experiments, and used in some leading papers. For example, Swing [VV09] uses

very small traces of five minutes and up to a maximum of twenty-two minutes. The open question

here is: what constitutes stability in an experiment? Is it that the input must attain stability? For

example, in our experiments, we see a spike in the throughput in the middle of the network as all

30 pairs of traffic generators start up. It takes about 5 minutes for the throughput to settle down,

and hence we use 10 minutes into the experiment as the start of our stable region. This stabilizes

the input. But is stability of the experiment defined by the effect on performance metrics? For

example, should we wait until the router queue stabilizes? Is that really achieving stability in the

experiment, or ignoring the effects of traffic generation models?

The take away message, if there is to be just one, is that the time components of

traffic generation are as important as the size components.

 276

 We simply wish to emphasize that experimenters must take into account the endpoint

latencies when designing a model for connection structures in their experiments for all the

reasons already enumerated above.

For the bulk of connections in any experiment, window size assignment made no

difference in connection durations or response times.

 We found that the window size assignment model for assigning receiver maximum windows

does not seem to affect the bulk of connections in our experiments, when run in the

unconstrained mode. This is because the bulk of connections carry a small number of bytes and

last for a short time. However, we also found that the window size makes a huge difference in

these metrics for connections transferring more than 1MB of data. While this is not surprising, it

is noteworthy that these usually small number of connections carry a relatively large percentage

of the bytes, and hence they do affect network-centric metrics like queue length in a congested

environment and number of active connections in the network. Moreover, the queuing dynamics

of using a single value of window size for all connections in an experiment changes significantly

in a highly congested network environment. For this reason, and for preserving the network-level

pattern of injection of packets for large connections, we recommend using the Tmix model of

window size assignment for traffic generation. It would also be interesting to measure how often

window scaling is used in real connections. We did not measure or try to emulate window scaling

in our study.

Changing the connection structure model (to the extent done in this study) for a

given input traffic does not change the long-range dependence characteristic of

the packet arrival time series generated using these different connection

structures.

 277

 We found that the long-range dependence characteristics of the packet arrival time series

remains the same regardless of the connection structure used for traffic generation. This is

because while we removed endpoint latencies and even epoch structure in some models, we

retained connection sizes and round trip times. It would be interesting to study which components

of connection structure affect LRD of the traffic generated. For example, for a given set of

connection sizes that cause LRD in traffic, is it the large connection sizes or the feedback/pacing

of TCP that causes LRD? That is, exactly what components add LRD characteristics to traffic?

And how does varying the LRD affect the various metrics in this study? It would be interesting to

experiment with the following designs to study their effect on the LRD of the generated traffic:

inter-packet times at the IP level, packet arrivals within TCP flows, flow arrivals at the TCP level,

inter-arrival time for start times of TCP flows, use only top 30% of flows by duration, or use only

top 30% of flows by bytes.

The outcome of any experimental evaluation depends heavily on the input to the

system – this is the garbage-in garbage-out concept.

 The more realistic the generation of traffic, the more reliable will be the outcome of the

empirical research. Hence, if we wish to run experiments with the goal of evaluating a new or

improved network protocol, then we should test this protocol using realistic network traffic. Of

course, there is no standard network traffic. Indeed traffic captured at one location on the Internet

could be vastly different from any other location on the Internet. This is why it is desirable to use

as input traffic captured at a production link and preferably at more than one such production

links. Reproduction of traffic on a link should include all the traffic on that link. However, in this

study and in most others, we only consider TCP traffic which constitutes over 90% of all traffic

on the Internet. How would UDP traffic generation affect the overall results obtained in this

study? Although non-TCP transport protocols, mainly UDP, are a small fraction of the traffic on

 278

the Internet today, they are almost always left out of traffic generation systems. It would be useful

to have UDP traffic as one of the suite of traffic scenarios in an experimental standards suite.

7.2 Modeling Traffic

 A major goal of traffic generation on the experimental network is to represent the original

mix of applications while doing so without knowledge of what the original applications were.

Changing the connection structure model, however, effectively changes the application mix in the

original traffic by changing the behavior of the application as well as the behavior of the end user

in some cases. This causes TCP to send packets in a different pattern, in both size of packets as

well as the time elapsed between successive packet transmissions. This change at the TCP

connection level due to change in application behavior gets amplified when playing tens of

thousands of connections simultaneously, and this alters the aggregate arrival pattern of the traffic

to the network link.

 Similarly, changing the round trip time (RTT) for each connection, while keeping the

connection structure model and hence application behavior unchanged, changes the pace at which

each individual TCP connection sends windows of packets into the network. The dynamics of the

TCP feedback loop are heavily influenced by the RTT for the connection. Smaller the RTT faster

is the feedback from one end of the TCP connection to the other, leading to a quicker growth of

the congestion window for that connection. This means that a connection with smaller RTT

results in quicker transmission of the same application data. And similarly, a larger RTT results in

slower feedback, slower transmission of data and larger completion times for connections. So,

RTT plays a role in both propagation time for the TCP packets and also the time taken for the

window to grow and allow for faster transmission of data. When such a change is effected at the

level of every TCP connection, the aggregate traffic resulting from this change creates a different

 279

pattern of arrival of packets to the network. Window size changes in TCP connections similarly

affect the growth of the window and thus the amount of unacknowledged packets in the network

for a given TCP connection. Hence larger window size means the TCP connection can transmit

the same data faster and have more data in the network before it receives feedback from the other

end of the connection.

 If connection structure modeling, RTT emulation methods and window size assignment each

have such significant impact on every TCP connection, the expectation would be that every one

of these input changes would see very drastic changes in the traffic characteristics of the resulting

input traffic to the network link. However, that is not the case. The changes are more pronounced

in some cases than others. This is largely due to the fact that today’s Internet links constitute load

from a very large number of connections, most of which are small in size in terms of the bytes

they transfer. A significant percentage of the connections are not large enough to take advantage,

or be adversely affected as the case may be, of the changes in RTT or window size, and in some

cases, of the changes in connection structure models as well.

 The importance of changing these input variables is, however, significant when we consider

that they have a considerable impact on large connections. Though such large connections

constitute a small fraction of the number of connections in the traffic on any given Internet link,

they tend to carry disproportionately large amount of bytes and packets on the link, and thus

contribute heavily to the overall characteristics of traffic on that link.

7.3 Chapter Summary

 In this chapter, we discuss the main observations and conclusions reached in this dissertation.

We made some recommendations for experimenters to consider as they design experiments and

model traffic for networking research. In the longer-term future, the networking research

 280

community needs some clearly defined and accepted standards for testing protocols, one that is a

suite of tests that is maintained and constantly updated by the research community. This suite

would contain various types of emulation scenarios with various types of input, and measurement

tools for studying various performance metrics. Using such a testing suite, a researcher proposing

a new protocol or an improvement to an existing protocol could clearly show that it would

improve performance for specific metrics using different traffic mixes.

 281

BIBLIOGRAPHY

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers. In
 Proceedings of ACM SIGCOMM, August 2004.

[AKSJ03] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variability in TCP
 round-trip times. In Proceedings of Internet Measurement Conference, 2003.

[AMF+08] Lachlan Andrew, Cesar Marcondes, Sally Floyd, Lawrence Dunn, Romaric Guillier,
Wang Gang, Lars Eggert, Sangtae Ha, and Injong Rhee. Towards a common TCP
evaluation suite. In Proceedings of PFLDnet, March 2008.

[BBBC99] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes in web

client access patterns: characteristics and caching implications. World Wide Web,
2(12):15-28, 1999.

[BC98] Paul Barford and Mark E. Crovella. Generating representative web workloads for

network and server performance evaluation. In Proceedings of ACM
SIGMETRICS, pages 151–160, 1998.

[BEF+00] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed

Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu.
Advances in Network Simulation. IEEE Computer, 33(5):59–67, May 2000.

[BHC+04] Amarjit Budhiraja, Felix Hernandez-Campos, V. G. Kulkarni, and F. Donelson
 Smith. Stochastic Differential Equation for TCP window size: Analysis and
 Experimental Validation. Probab. Eng. Inf. Sci., 18(1):111-140, 2004.

[C08] Comer, Douglas. Talk titled “Lesson Learned from the Internet Project” given at the
 Department of Computer Science, University of North Carolina at Chapel Hill,
 October 2008.

[CCG+04] Jin Cao, William S. Cleveland, Yuan Gao, Kevin Jeffay, F. Donelson Smith, and
 Michele C. Weigle, Stochastic Models for Generating Synthetic HTTP Source
 Traffic. Proceedings of INFOCOM 2004, pp. 1546-1557.

[CDJM91] R. Caceres, P. Danzig, S. Jamin, and D. Mitzel, Characteristics of Wide-Area
 TCP/IP Conversations, Proc. ACM SIGCOMM ’91.

[dag] Dag 4.3s single channel network monitoring card.

 http://www.endace.com/dag-4.3s-datasheet.html

[DJC+92] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin, An Empirical Workload
 Model for Driving Wide-Area TCP/IP Network Simulations, Internetworking:
 Research and Experience, 3(1): 1−26, March 1992.

[DXWH06] S. H. Low D. X. Wei, C. Jin and S. Hegde. FAST TCP: motivation, architecture,

 algorithms, performance. IEEE/ACM Transactions on Networking, 14(6):1246–
 1259, December 2006.

 282

[Emu] Emulab: total network testbed. http://www.emulab.net.

[FLS65] Richard P. Feynman, Robert B. Leighton, Matthew Sands. The Feynman Lectures
 on Physics. Addison Wesley, 1965.

[Fel88] David C. Feldmeier. Improving gateway performance with a routing-table cache. In
 Proceedings of IEEE Infocom, pp. 27-31, March 1988.

[FGS01] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive red: An

algorithm for increasing the robustness of red’s active queue management.
 http://www.icir.org/floyd/papers/adaptiveRed.pdf, August 2001.

[FHPW08] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP friendly rate control (TFRC):

 Protocol specification. RFC 5348, September 2008.

[FKSS99] W. Feng, D. Kandlur, D. Saha, and K. Shin. A self-configuring red gateway. In

 Proceedings of IEEE INFOCOM, March 1999.

[FP01] Sally Floyd and Vern Paxson. Difficulties in simulating the internet. IEEE/ACM

 Transactions on Networking, 9(4):392–403, August 2001.

[G05] Shashikiran B. Guruprasad. Issues In Integrated Network Experimentation Using

 Simulation And Emulation. PhD thesis, University of Utah, August 2005.

[GcC02] Kartik Gopalan and Tzi cker Chiueh. Improving route lookup performance using
 network processor cache. In Proceedings of ACM/IEEE Conference on
 Supercomputing, pp. 1-10, Los Alamitos, CA, 2002.

[HC06] Felix Hernandez-Campos. Generation and Validation of Empirically-Derived TCP

 Application Workloads. PhD thesis, University of North Carolina at Chapel Hill,
 August 2006.

[HLRX07] Sangtae Ha, Long Le, Injong Rhee, and Lisong Xu. Impact of background traffic on

 performance of high-speed tcp variant protocols. In Computer Networks, 2007.

[HMTG01] C. V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. On designing
 Improved controllers for aqm routers supporting tcp flows. In Proceedings of IEEE
 INFOCOM, April 2001.

[HRSD+08] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad, Tim
 Stack, Kirk Webb, Jay Lepreau. Large-scale Virtualization in the Emulab Network
 Testbed. In Proceedings of the 2008 USENIX Annual Technical Conference, pp.
 113-128, June 2008.
[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-speed tcp

 variant. In ACM SIGOPS Operating Systems Review, August 2008.

[iperf] Iperf – bandwidth measurement tool. http://dast.nlanr.net/Projects/Iperf/

[Jai90] Raj Jain. Characteristics of destination address locality in computer networks: a
 comparison of caching schemes. Computer Networks and ISDN Systems,
 18(4):243-254, 1990.

 283

[JRF+01] Youngmi Joo, Vinay Ribeiro, Anja Feldmann, Anna C. Gilbert, and Walter
 Willinger. TCP/IP traffic dynamics and network performance: A lesson in workload
 modeling, flow control, and trace-driven simulations, In Proceedings of ACM
 SIGCOMM, August 2001.

[KHR02] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high

 bandwidth-delay product networks. In Proceedings of ACM SIGCOMM, August
 2002.

[LAJS03] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. The Effects of Active
 Queue Management on Web Performance. In Proceedings of ACM SIGCOMM,
 August 2003.

[LAJS04] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. Differential Congestion

Notification: Taming the Elephants. In Proceedings of the IEEE International
Conference on Network Protocols (ICNP), October 2004.

[LAJS07] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. The Effects of Active
 Queue Management and Explicit Congestion Notification on Web Performance.
 IEEE/ACM Transactions on Networking, 15(6):1217–1230, December 2007.

[Le05] Nguyen Tuong Long Le. Investigating the Effects of Active Queue Management on
 the Performance of TCP Applications. PhD thesis, University of North Carolina at
 Chapel Hill, August 2005.

[LLS07] Yee-Ting Li, Douglas Leith, and Robert N. Shorten. Experimental evaluation of
 TCP protocols for high-speed networks. IEEE/ACM Transactions on Networking,

 15(5):1109–1122, October 2007.

[Mah97] Bruce A. Mah. An Empirical Model of HTTP Network Traffic. In Proceedings of
 IEEE INFOCOM, vol. 2, pp. 592-600, 1997.

[Netflow] Cisco’s IOS Netflow feature.
 http://www.cisco.com/en/US/products/ps6601/
 products_ios_protocol_group_home.html
 Accessed Oct 2010.

[NRC94] National Research Council (U.S.). Committee on Academic Careers for

 Experimental Computer Scientists. Academic careers for experimental computer
 scientists and engineers. National Academy Press, Washington, DC. 1994.

[NS2] The Network Simulator. http://nsnam.isi.edu/nsnam/index.php/Main_Page

[Pax94] Vern Paxson. Empirically derived analytical models of wide-area TCP connections.
 IEEE/ACM Transactions on Networking, 2(4):316-336, 1994.

[PDT07] Ravi Prasad, Constantine Dovrolis, and Marina Thottan. Router buffer sizing
 revisited: The role of the output/input capacity ratio. In Proceedings of ACM
 CoNEXT, December 2007.

 284

[PF95] Vern Paxson and Sally Floyd. Wide Area Traffic: the Failure of Poisson Modeling.
 IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[PF97] Vern Paxson and Sally Floyd. Why We Don’t Know How to Simulate the Internet.
 Proceedings of the 1997 Winter Simulation Conference, pp. 1037-1044, 1997.

[PFTK00] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling tcp reno

 performance: a simple model and its empirical validation. IEEE/ACM Transactions
 on Networking, 8(2):133–145, April 2000.

[PL] The PlanetLab Project.
 http://www.planet-lab.org/

[SB04] Joel Summers and Paul Barford. Self-configuring network traffic generation. In

 Proceedings of Internet Measurement Conference, 2004.

[SN] UCSD Computer Science Systems and Networking. Modelnet.

 http://modelnet.ucsd.edu/.

[D00] Mayur Deshpande. Some answers on Modelnet.
 http://www.ics.uci.edu/~mayur/model-net-details.html

[TMRG] The Transport Modeling Research Group.

 http://trac.tools.ietf.org/group/irtf/trac/wiki/tmrg.

[UNCnet] University of North Carolina at Chapel Hill’s Networking Laboratory.
 http://www.cs.unc.edu/Research/dirt/

[VV08] Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating distributed systems:
 Does background traffic matter? In Proceedings of USENIX Annual Technical
 Conference, June 2008.

[VV09] Kashi Vishwanath and Amin Vahdat. Swing: Realistic and responsive network
 traffic generation. IEEE/ACM Transactions on Networking, August 2009.

[WAHC+06] Michele C. Weigle, Prashanth Adurthi, Felix Hernandez-Campos, Kevin Jeffay, and

F. Donelson Smith. A tool for generating realistic TCP application workloads in
ns-2. ACM Computer Communication Review, 36(3):67–76, July 2006.

[WCL05] David X. Wei, Pei Cao, and Steven H. Low. Time for a TCP benchmark suite?

[WJLH06] David X. Wei, Cheng Jin, Steven H. Low, Sanjay Hegde. FAST TCP: Motivation,
 Architecture, Algorithms, Performance. IEEE/ACM Transactions on Networking,
 14(6), pp. 1246-1259, December 2006.

[WIL] The wan in lab (wil) project. http://wil.cs.caltech.edu/.

