AN INVESTIGATION OF THE EFFECTS OF MODELING APPLICATION
WORKLOADS AND PATH CHARACTERISTICS ON NETWORK PERFORMANCE

Jay Aikat

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2010

Approved by:

Kevin Jeffay, Advisor
F. Donelson Smith
Ketan Mayer-Patel
Jasleen Kaur

Dina Katabi

© 2010
Jay Aikat
ALL RIGHTS RESERVED

il

ABSTRACT

JAY AIKAT: An Investigation of the Effects of Modeling Application
Workloads and Path Characteristics on Network Performance

(Under the direction of Professor Kevin Jeffay)

Network testbeds and simulators remain the dominant platforms for evaluating networking
technologies today. Central to the problem of network emulation or simulation is the problem
modeling and generating realistic, synthetic Internet traffic as the results of such experiments are
valid to the extent that the traffic generated to drive these experiments accurately represents the
traffic carried in real production networks.

Modeling and generating realistic Internet traffic remains a complex and not well-
understood problem in empirical networking research. When modeling production network
traffic, researchers lack a clear understanding about which characteristics of the traffic must be
modeled, and how these traffic characteristics affect the results of their experiments.

In this dissertation, we developed and analyzed a spectrum of empirically-derived traffic
models with varying degrees of realism. For TCP traffic, we examined several choices for
modeling the internal structure of TCP connections (the pattern of request/response exchanges),
and the round trip times of connections. Using measurements from two different production
networks, we constructed nine different traffic models, each embodying different choices in the
modeling space, and conducted extensive experiments to evaluate these choices on a 10Gbps

laboratory testbed.

il

As a result of this study, we demonstrate that the old adage of “garbage-in-garbage-out”
applies to empirical networking research. We conclude that the structure of traffic driving an
experiment significantly affects the results of the experiment. And we demonstrate this by
showing the effects on four key network performance metrics: connection durations, response

times, router queue lengths, and number of active connections in the network.

v

ACKNOWLEDGEMENTS

The teacher who is indeed wise does not bid you to enter the house of
his wisdom but rather leads you to the threshold of your mind.

— Khalil Gibran (1883-1931)
Poet and philosopher, author of The Prophet.

A deep quest for better experimental methods in computer networking inspired this research.
This dissertation reflects an ongoing study instilled and mentored by two outstanding professors —
Kevin Jeffay and Don Smith — who deeply influenced my intellectual rigor and research thinking
in my doctoral studies at Carolina. This study owes its existence to Kevin and Don’s
magnanimous mentoring, perspicacious advice, and their relentless pursuit of fundamental
networking research. By devoting long hours of research discussions and critical thinking, they
always motivated me to probe deeper.

My dissertation research also owes much to the support and wisdom of other members of my
doctoral committee — Ketan Mayer-Patel, Jasleen Kaur, and Dina Katabi — who enriched this
study with their research acumen. I deeply appreciate Ketan’s insightful questions, Jasleen’s
candid advice, and Dina’s encouraging support. In myriad ways, they have all played an
important role in this study, and I cherish this opportunity to work with them.

As I prepare to graduate, I can unequivocally say that I would not have been able to complete
my doctoral studies without the unwavering support and encouragement of my dissertation
advisor and mentor, Kevin Jeffay. I am deeply indebted to him for giving me the time and

freedom to explore my research interests before I decided on this dissertation topic. Kevin’s

patient guidance, affable humor, and honest advice kept me on track during my dissertation
research.

I also am deeply grateful to Don Smith for introducing me to the art and science of
networking research in his class. I shall always cherish Don’s attention to detail and willingness
to discuss the smallest stumbling blocks that led to many enlightening deliberations during my
dissertation research.

Several student colleagues in the networking research group enriched my days as a doctoral
student. I thank Michele Weigle, David Ott, Félix Hernandez-Campos, Long Le, Jeff Terrell,
Srinivas Krishnan, Ryan McKenzie, and Shaddi Hasan for their camaraderie. I thank Felix for his
dissertation research on traffic generation, which inspired and enabled my own work.

My time as a Carolina student was enriched by the faculty and staff at the Department of
Computer Science at the University of North Carolina at Chapel Hill. They created and sustained
an outstanding environment for teaching and research. I thank Tim Quigg for his continued
support and encouragement. I owe much gratitude to Janet Jones for her friendship and her
mentoring of all graduate students in our department.

Two former colleagues — Jim Gogan and Bert Dempsey — deserve special mention for
inspiring me to pursue a PhD in networking. Thanks to Jim for teaching an amazing class that
first inspired me to explore networking research. I thank Bert for his pragmatic advice that the
PhD was the right path for me.

Without doubt, my children, Vikram and Divya, will be most delighted when I am done with
the PhD! © They have endured much in giving me the time and space to pursue my dissertation
work. I owe special thanks to my mother-in-law, Mrs. Geeta Aikat, for always supporting me in
my professional endeavors, and for giving me the time and encouraging me to complete this
project. I thank my brother, Rajesh and his wife, Lakshmi for gently but constantly prodding and
encouraging me to keep focused on graduating before my nephews, Alok and Arjun, started

elementary school. ©

vi

I am most deeply grateful to my mom, Uma Swaminathan, and my dad, Retnasamy
Swaminathan, who made everything possible. I have always believed that parents perform the
greatest act of love when they allow and encourage their children to develop strong wings and fly
far above and beyond their own nest. I am so privileged that my parents believed in me and
enabled my adventurous journeys in life.

Finally, and most importantly, thanks to one special person who encouraged me from the
start, believed in me, and stood by me through all the travails of graduate school and the
dissertation — my dear husband, Debashis Aikat, who is himself an inspiring teacher and scholar
in the School of Journalism and Mass Communication at the University of North Carolina at
Chapel Hill. Without his patience, love, and support, this dissertation would not have been

possible.

Jay Aikat
Chapel Hill, NC
September 27, 2010.

vil

TABLE OF CONTENTS

LIST OF TABLES ...ttt be et e st et et e s teesa e teeneetenseeneeneeeren Xiii
LIST OF FIGURES ...ttt ettt ettt bt e e bt e et sne e e e sbeenes Xiv
ABBREVIATIONS ...ttt ettt e e be et e seeeteeneesbeaneenbesneeneeneennens XXXi
L. INTRODUCTION ..ottt bbbttt b ettt ettt bt st ne e 1
1.1 Traffic GENETAtIONeeutiitietie ettt ettt e st e sate st et et e et e nbeesbeens 2

1.2 The Tmix Traffic Generation SYSLEMcccvevvieriiereiieciieiierrieree e e eee e ereeseeseeeseeesnnes 6

1.3 Modeling TCP Connection SIUCIUIE.........cccviiiiirerrieerieesreesteeesieeesreeestreessseesseeessseessseeans 8

1.4 Emulating Network Path CharacteriStiCscceevuierieriesienienieeie e see e 10

1.5 Changing the Network Environment.............ccceevveviiiriieriesiienriereereereesieeseesenesnessneesseenns 11

1.6 USING TWO INPUE TTACES ..c..eovtiiiiiriiiiiitieie sttt ettt sttt st 12

1.7 Modeling Receiver WINAOW SI1ZES........ccevvierrierierieeiieriesieesieeseeseessessesseesseessessssessnenes 12

1.8 Thesis Stat@MENToeiuiiiiitieitieiiee ettt ettt ettt ettt b e sbe e sbeesaeeeaeeeneeenbeenee 13

1.9 Summary of Conclusions and COntribUtIONSccveeveeriereeriierieiienieeieeseeseesaesneens 14
1.10 Organization Of DISSEITatiONccececveerciieiiiiieiieeeiee et eeteeereeeereeebeeesaeesereessseeeseseessseas 18

2. BACKGROUND AND RELATED WORK ..ottt 20
2.1 Network Simulators and Emulation Facilitiesccccevveeriiniiniiiiiiiiiieceeeiecceen 21

2.2 Evolution of Realistic Traffic Generation.............ccccueeeeuieerieeiirie e e 27

2.3 Current Traffic Generation SYSLEIMScceeieiierieieiiereeiere et eee ettt see e ee e eeeens 31
2.3.1 The Harpoon Model..........cccveiieiiiiniiiiieie ettt e e 32

2.3.2 The TmiX a-b-t MOdeL.......coiiiiiiiiieeee e 35

2.3.3 The SWING MOAEL....ccciiiiiiiiiie ettt e e e e e 38

viii

3.

4.

2.4 Does Traffic Modeling Matter?............ocoververrieriirieiiesieeseeseesereeereesreesreesseesesesesesssesssees 41
2.4.1 Does Background Traffic Matter?cccceveeverrieniieeiieieeceeeseee e 42

2.4.2 Impact of Background Traffic on High-Speed TCP Performance........................ 43

2.4.3 Investigating the Effects of Active Queue Management on TCP Performance....44

2.4.4 TCP/IP Traffic Dynamics and Network Performanceccccooceveieiiniencnenee. 46

2.5 Community Efforts Toward a Benchmark for TCP Evaluation.........c..cccccceeevvervieeneeennenn. 47
2.6 Chapter SUMIMATY.....cc.veviereereerreeteeteesseesseessressseaseeseesseessassssesssesssesssessseessessssesssesssesssees 48
WORKLOAD MODELING AND TRAFFIC GENERATIONcocooiiiiiiieee 49
3.1 Traffic Characteristics of the Two Input Tracesccccccvevierierieniereee e 49
T8 I N I 110117 1101 ST 50

3.1.2 Sequential and Concurrent CONNECTIONSecueerveererriirieerieerieeniesreeeeeveeeeenees 54

3.1.3 Application-level CharaCteriStiCScvirrieriereerierierreereeireesreesreeseesresnessnenenes 55

313 T EPOCRS ettt et et 55

3.1.3.2 Application Data Units (ADU).....cccccvrriieriieriienienieeieeieeie et see e 56

3.1.3.3 Endpoint LatenCiesceccveierrieiiiieiieeeieeecieeeeiteesreeeeveesireeseeeeseseessneeenns 59

3.1.4 Network-level CharacteriStiCscocerueerieruirieriinieeieriee ettt 62

3.1.4.1 Round Trip Times (RTTS) ..cccevieriirieiiieie ettt 63

3.1.4.2 Receiver WINAOW SIZES.......c.eeveerieerierieeieeieeieeieeieenieesieesieesieesseenee e 64

3.2 Traffic Generation With TIIXccceriiiiiiiiii e 66
3.3 Variations in the Workload Model...........cccoiiiriiiiiiiiiiieieeee et 67
3.3.1 Choice of Four Connection Structure Models..........cccceereririenininienieeeeeeeeee 75

3.4 Variations in Emulating Network Path Characteristics..........cccvvevveercrieevieerieeeciie e 77
3.4.1 Choice of Three RTT Emulation Models...........cccceoerininiininienininieceeeee 82
EXPERIMENTAL METHODOLOGY ...cciiiiiiiieit ittt st s 84
4.1 Network COnfiGUIAtIONcccveeiereieeiieieesieste st ete et et eseesteeseressreesseesseesseesssesssesnseensees 86
41,1 Traffic GENETALOTS ...c..eiuieeeeeieeeeie ettt ettt ettt et et e s teestebeeneeeeseeenean 87

412 ROULETS weeeeiiiiiiiee ittt ettt et ettt ettt e st e e bt e sat e e sabee e sabeesabeeebeeesabeeenbees 87

413 MOMIEOTS .ttt ettt et ettt et e et e a et e et es e be e et e s e sbeeneenseeseesesaeeneeneens 88

4.2 NetWork CaliDIation.........cceeiierierieeieeie ettt ettt et st e sseesatesnteeneeeseenseens 90
4.2.1 Calibrating ROULETScc.eecvieriieiiiiiiieiieieesee st ere e ete et sre e b e esseesraessaesraessneans 91
4.2.1.1 Iperf Experiments for Calibrating ROUtersccceeeveeeeiveenieenvieereenee, 94

4.2.1.2 Tmix Experiments for Calibrating ROULErsccccooceeveninienenerieene 97

X

5.

43
4.4

4.5

4.6

4.7

4.2.2 Calibrating MONILOTSccuvievierieriierieeireireereesseesteesteeseressseasseesseesseesssesssesssesssens 100
4.2.3 Calibrating Traffic GENEIatOrScueeruierieereerieerie et eieeteesreeseeeseeeseeeeeeeneeas 100
Verification of TmiX RePIaYc.ccvviiriiiiieiiiiiicieeietestese et 106
EXperimental DESIZN........cccuiiiiiiiiiieciie ettt ettt te e e sireesbee e saeeesbeeeaaee e 110
4.4.1 The Control Set: a-t-b-t With USEINEL.........ccccvivririiiieieeeecee e 112
a-t-b-t with usernet in Unconstrained Modec.coocuieiiiiiiiieniiiiiieeeeeesee e 113
4.5.1 THIOUGNPUL ...ttt ettt sttt e e e st e st e esbe e sa e seesssessseenseenseas 113
4.5.2 Connection DUIAtIONcecueiuieierieiiee ettt enes 115
4.53 ReESPONSE TIME .ccuuiiiiiiriiieiiieieeii ettt ettt et e st e s atesteeteebe et e bt e sseeseeens 117
454 QUEUC Length....ccccviiiiieiieeiee e e 119
4.5.5 ACLIVE CONNECLIONS ..ecuveeeiieiiieiiieieeieesteestte sttt eeteeteeteesteesseesseesneesnseenseenseenseenseens 120
a-t-b-t with usernet in Constrained Modecccoeoeiirieiinieeeee e 121
4.6.1 TRIOUGNPUL....cuiiiiiieeiie ettt e e e b e e ebaeesebeesaraeessseessraeenes 122
4.6.2 Connection DUTAtIONS.ceoueiuirierieiieie ettt e 124
4.6.3 RESPONSE TIMES .oovviieeiiiiiiieeiieeiieeiee et eite et e etee e stve e s beeetaeeseseessseeeeseesssanenes 126
4.6.4 QUEUE Length.......ccociiviiiiieiiciieeeee et es 128
4.6.5 ACtiVE CONMNECLIONSevieuieiieiieiieiieie st et ettt ete st este et e eesee et eneeseeeneesseeneenee e 129
Chapter SUMMEATY......cc.eoiiiiiiiie ettt ettt ettt ettt e st esaeesateenteeseesbeesseesnneens 130

EFFECTS OF ROUND TRIP TIMES AND CONNECTION STRUCTURES ON

NETWORK PERFORMANCE ...ttt s nee s 131
5.1 Effects of RTT Emulation Model in the Unconstrained Mode............ccccooevveviieveeennennen. 132
5.1.1 Effect of RTT Emulation Model on Connection Durations...........ccecceveereennnene 134
5.1.2 Effect of RTT Emulation Model on Response Times..........ccccccvevverieneerivennnenns 142
5.1.3 Effect of RTT Emulation Model on Queue Length at the Router....................... 149
5.1.4 Effect of RTT Emulation Model on Active Connections............ecceeveeereeeneeenenne 152
S5.1.5 SECtiON SUMIMATYveiviiiiiiieiiesieeseesteereereereesbeesteesteeseresssesssessseesseesseesseessnenes 154
5.2 Effect of RTT Emulation Model in the Constrained Mode..........ccccceeeveereceeniineeneennnnnen. 156
5.2.1 Effect of RTT Emulation Model on Connection Durations.............cccccecuerueneee. 156
5.2.2 Effect of RTT Emulation Model on Response Times..........cccccceeveerieniereennnnne 166
5.2.3 Effect of RTT Emulation Model on Queue Length at the Router....................... 173
5.2.4 Effect of RTT Emulation Model on Active Connections...........cccceecueereeeneenncnne 177
5.2.5 SeCLION SUMIMATYoeevvieiieriieiieeieeieeieesieeseeseeessseeseesseessaessaesssessseassessseessessseens 179

5.3 Effect of Connection Structure in the Unconstrained Modecccceeveririeienenceninnens 182
5.3.1 Effect of Connection Structure on Connection Durations...........c.cccoeeevveeeneenns 183

5.3.2 Effect of Connection Structure on Response Timesc.ccceevveevveerienienvennenns 189

5.3.3 Effect of Connection Structure on Queue Length at the Router 193

5.3.4 Effect of Connection Structure on Active Connectionscoceeeeveereeeeneennenne 195

5.3.5 SECLION SUMIMATY ..veeiviiiiiiieiiieeitieeereeesiteesteeesreeeseveesseeessseessseeessseessseesssseesseeanns 198

5.4 Results for Experiments in the Constrained Modeccceeevieieniinienieneeiesie e 199
5.4.1 Effect of Connection Structure on Connection Durations............cccceeceereerueenene 200

5.4.2 Effect of Connection Structure on Response Timescccceeveevvereeneerieennens 207

5.4.3 ffect of Connection Structure on Queue Length at the Router..........c...ceevenenn. 214

5.4.4 Effect of Connection Structure on Active CONNEctions............eecveeeeveeereveeeneeenns 217

5.4.5 SECtiON SUMIMATYvecviiiieiieiieriieseestesteeteereebeebeesteesebesssesssessseesseesseesseessnenns 219

5.5 CRaPLET SUIMIMATYeeciiiiiiieiiie et e eiee et e et e eteeesbee e tbeessbeesbeeesssaessseeassseesssaesnsseessseeanes 220
5.5.1 Effect of RTT MOMEIS ...cueiuiiiiiiiieiiieeieeeeeeeee et 220

5.5.2 Effect of Connection Structure Models.........cccceveiriiiiiiniinienieieeieeeeeeeene 222

6. ADDITIONAL RESULTS ..ottt sttt et sttt na e enaareas 226
6.1 Miscellanecous Round-Trip Time Modelscccuevviriiiiieiieiecieeiiereesee e 227
6.1.1 Effect of RTT Emulation in the Unconstrained Mode...........cccceveirienirriernnnnne 227

6.1.1.1 Connection DUTation..........cceeverieierieiieiesc et 227

6.1.1.2 ReSPOnSe TIMEc.eeiuieiuiiiiiiiieiie ettt ettt 230

6.1.1.3 QUEUE Lengthccvevviiiiiiiiiiecicecce et 231

6.1.1.4 ACtiVe CONNECTIONS. ...c.ueiiuiiiiieieetienitestteeite ettt ettt e st e st e st s eaeeeneeas 231

6.1.2 Effect of RTT Emulation in the Constrained Mode.........cceccevirieninennienenenne 232

6.1.2.1 Queue Lengthccooooiiiiiiiie et 232

6.1.2.2 Connection DUIation..........cceeeueririenieneeieniceteteieee e 234

6.1.2.3 ReSPONSE TIMEecvierieiieiieiieciie ettt e e st e sere e b e esseesreereesreens 236

6.1.2.4 ACtive CONNECLIONS.eecviieciiieeiieeiieeereeeieeeeteeesreeeieeesabeeeereseeaseesaneeas 238

6.2 Discrete Approximation (DA) RTTcccuiiiiiiiiiiiieciecie ettt s 238
6.2.1 Results in Unconstrained Modecocueeviieiiieriienienienieeieee et 239

6.2.2 Results in Constrained Modeccecueririeiinieeee e 241

6.2.3 SECLION SUMIMATY ...eeiviiiiiiieirieeiteeereeesiteesteeestteesreesseeessseesssesassseessessssseessseesnns 244

6.3 Emulating Receiver WINdOW SI1ZES.......c..cccveriieriierieiienieeieeieeieesieeseeseessnessesnseesseensens 244

X1

6.3.1 Results in Unconstrained MOAEooeeeueeeeeeeiieeeeeeeeeee et eeeeeeeeeeeeee e e 245

6.3.2 Results in ConstraiNed MOAEueeeeeeeeeeeeeee e 252

6.3.3 SECLION SUMIMATYooiivieeiieiieieesieeseesteereeveebeesbeesbeesteesebesssessseesseesseesseesseessrenns 256

6.4 Connection Structure and Packet ATTIVaAl...........eeeeeeeei e 257

6.5 Long Range Dependenceccccevveriiriiniiieriieriiereenee e sresseesseeseesseesenesssessseenseensens 264

6.6 CRAPLET SUMIMAIYccciiiiiiieiitiieeieeeieeerreeeteeestteesbeeetbeessseessaeessseeasseeessseessseeessseessenanes 267

7. CONCLUSIONS AND FUTURE WORKooiii ittt et 268
7.1 Observations and CONCIUSIONSooveeuuieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeraereeeeeseeeserereeeeeens 269

7.2 MoOdeling TTaffiCcceeiiiiieiie ettt ettt ettt saee et s 278

7.3 CRAPLer SUMIMATY.......cccviivieereertiesiesresreereeseeseesseesseesseesssessseasseasseesseesssssssesssesssesssesssens 279
BIBLIOGRAPHY oottt ettt e e e e e e e et et e e e e s e s et areeeessesssaaaeeeeesens 281

Xil

2.1

2.2

4.5.1

452

4.6.1

4.6.2

4.6.3

4.6.4

6.1

6.2

6.3

LIST OF TABLES

Summary of Harpoon Configuration Parameters for TCP Sources............cccoeevueenuennee. 34
Swing’s Structural Model of Trafficccccceveiiriiiirieiieceeeeeeee e 40
Connection Duration in the Unconstrained Mode using the Control Set................... 116
Response Time in the Unconstrained Mode using the Control Set...........c..ccccuveneee.. 118
Throughput in the Constrained Mode using the Control Setccccoecvevvevenienennnen. 123
Connection Duration in the Constrained Mode using the Control Set....................... 125
Response Time in the Constrained Mode using the Control Set..........c.cccevverieuennene. 127
Queue Length in the Constrained Mode using the Control Set............cccccceevevenenen. 129
Connection Duration using Different Window Size Models..........cccccveriinincnnnnen. 252
Packet Throughput using Different Connection Structure Modelscccceuenneee. 260

Estimated Hurst Parameters and their Confidence Intervals for Packet Throughput
Time Series using the Four Different Connection Structure Modelsc.cccee.... 266

xiii

231

232

233

24.1

242

3.1.1

3.1.10

3.1.11

3.1.12

3.1.13

3.1.14

LIST OF FIGURES

TTaffic GENETALIONeovieiieiieiieeee ettt ettt ettt e ete e beesbeesaeesneeeaes 7
The EMulab Testbed........ccvoriiiiiiieeeieeeee et 22
The WAN-IN-Lab Testbed.......cceiiiieiiieieie et 23
Modelnet in @ TeStDEdccceeiiiiieiieieee e 24
PlanetLab nodes across the globe...........cooiiiiiiiiiiiiic e 25
Harpoon’s two-level hierarchical traffic model............ccccooiriiiiiiiiiiiie, 33
An a-b-t diagram illustrating a persistent HTTP connection (sequential).................. 37
An a-b-t diagram illustrating a concurrent CONNECtION..........c.ccveeeevviereeierrreeereenenns 37

Response Time — uniform RTT (Comparison of all AQM algorithms at 98% load) . 45

Response Time — empirical RTT (Comparison of all AQM algorithms at 98% load) 45

Throughput — as captured (high) — UNCcccoviiiiiiiiieiecee et 51
Throughput — as captured (I10w) — UNCccoooiiiiiiiiiiiiieeeeeetee e 51
Throughput — as captured (high) — IBM.........cccocieiiiiiieiineecee e 51
Throughput — as captured (I0W) — IBMcccccoiiiiiiiiiiieieeecee e 51
Offered Load (high) — UNC ..o 53
Offered Load (I0W) — UNCoiiiiieieiece ettt ettt 53
Offered Load (high) — IBMccccoiiiiiiieiieieieee ettt 53
Offered Load (I0W) — IBMc.oooiiiiieiieiieciecee ettt s ssve e 53
Number of connection epochs — UNC and IBM — CDFc..cccocininiinininicninene 55
Number of connection epochs — UNC and IBM — CCDFcccccovvviveviencinnirnnnnns 55
Request sizes - sequential connections — CDFccccocovvviiiiiiiiinicicceeee e, 55
Request sizes - sequential connections — CCDFccccoeeeiiiiiiiiciieenie e, 55
Response sizes - sequential connections — CDF..........cocoviiiiiininniinnicnccene 55
Response sizes - sequential connections — CCDFcccooovvviiiiiiiiiiciieeeeeeeeeen, 55

Xiv

3.1.15

3.1.16

3.1.17

3.1.18

3.1.19

3.1.20

3.1.21

3.1.22

3.1.23

3.1.24

3.1.25

3.3.1

332

3.33

334

3.35

3.3.6

3.3.7

3.3.8

3.3.9

3.3.10

33.11

34.1

34.2

4.1.1

4.2.1

ADU sizes - concurrent connections — CDFc..ccoooiiiiniiiiiniiiiiieecee, 58
ADU sizes - concurrent connections — CCDF ..o 58
Intra-epoch endpoint latencies for sequential connections — CDFcccceeeenneee. 60
Intra-epoch endpoint latencies for sequential connections — CCDF 60
Inter-epoch endpoint latencies for sequential connections — CDFccccoceeeeeee. 61
Inter-epoch endpoint latencies for sequential connections — CCDF 61
Endpoint latencies for concurrent connections — CDF ..o, 61
Endpoint latencies for concurrent connections — CCDFcccocvvevieiieiieniieieenne, 61
Round Trip Times — CDFooooviiiiiiie ettt eareeens 63
Round Trip Times — CCDFooiiiiiiee ettt 63
CDF of receiver maximum WinAOW SIZESc.ceceeruerierierienieienieeieienieeee e seceeenaeas 65
An a-b-t diagram illustrating a persistent HTTP connection (sequential).................. 68
An a-b-t diagram illustrating a concurrent CONNECtION..........c.coveeeevrrereeeerreereereenenns 69
The Harpoon connection structure model for all TCP connections.............cccoc.u.e.... 70
The block-concurrent connection structure model for all TCP connections.............. 70
The block-sequential connection structure model for all TCP connections............... 71
The a-b connection structure model for sequential TCP connectionsc......... 72
The a-b connection structure model for concurrent TCP connections 72
The a-t-b connection structure model for sequential TCP connections 73
The a-t-b connection structure model for concurrent TCP connections 74
The a-t-b-t connection structure model for sequential TCP connections 74
The a-t-b-t connection structure model for concurrent TCP connections 75
Round Trip Times — CDFcooviiiieieciececeee ettt ve e be et n e 78
Round Trip Times — CCDEFooooiiiiiiiciece ettt et e ve e eeere e 78
Network Testbed for all experiments in this disSertationc..ceccevevecereneereennenn 86
Routers’ inbound and outbound 1NKScccceoiiiriiiiinee e 93

XV

4.2.1 (a) Throughput for the iperf flows — forward dir€ctioncccceeeeeveninieieneeeeeeee 96

4.2.1 (b) Throughput for the iperf flows — reverse direCtionccceeeeveeeeieeniiieesiieesieeeereeenns 96
4.2.3 (a) Throughput for Tmix calibration experiment (byte throughput in Mbps) 99
4.2.3 (b) Throughput for Tmix calibration experiment (packet throughput in Kpps) 99
4.2.4 (a) Distribution Of RTTSccciiviiiiiiiiiieriieciesiesieste et ereesteestaeseaeseressbeesseesseessaeeeas 99
4.2.4 (b) Router CPU UtIlIZAtIONSc.eevvieriieriiriieeieeie ettt ettt st ste et esbeesaeesseesneeenees 99
4.2.5 (a) Throughput for Tmix calibration experiment for least capable traffic generator pair
(byte throughput N MDPS) ..cccvviiiiieeiieeiiecee ettt et e st eesebeessreeens 102
4.2.5 (b) Throughput for Tmix calibration experiment for least capable traffic generator pair
(packet throughput in KPPs) ..oeecveeeciieeiiecie ettt 102
4.2.6 (a) CDF of input and output round trip tiMESccccceeveerieriieriieeiieieereeree e eeeeeeens 103
4.2.6 (b) CCDF of input and output epochs per CONNECLIONc.cccvercverieerieerieereereerrennens 103
4.2.7 (a) CDF of input and output TEQUESE SIZEScveevveerrierrierierreireereereereesseeseesieesenessneans 103
4.2.7 (b) CCDF of input and output reqUESt SIZEScveerveeecrireriieiieeenieeerreeereeesereesreeeenens 103
4.2.8 (a) CDF of input and output TESPONSE SIZESccveerveerrierrierierieeieeieeeeenieesieeseesnesneens 104
4.2.8 (b) CCDF of input and oUtPUL TESPONSE SIZES ..eveereeerererveerrereerreesieessrereesnessessseesseens 104
4.2.9 (a) CDF of input and output CONCUITENL ‘@’ SIZES ...veevvrererererieriereeriesieesieesaesresveeneens 104
4.2.9 (b) CCDF of input and output CONCUITENt ‘@° SIZESc.eervveeeereeerreerreeereeerereesereeenreeans 104
4.2.10 (a) CDF of input and output concurrent ‘b’ SIZEScccerevererrecreereerieereereesvesenesneans 104
4.2.10 (b) CCDF of input and output cONCUITENt ‘D’ SIZESc.eevveerreerreerreeieereereesieesreesieenenens 104
4.2.11 (a) CPU utilization of traffic generator ONecccceeeeieriiiriieeciie e cree e 105
4.2.11 (b)CPU utilization of traffic ZENerator tWOccccceveiieiireiiieiierieerieieerte e 105
4.3.1 (a) Throughput for Tmix verification experiment (byte throughput in Mbps) 106
4.3.1 (b) Throughput for Tmix verification experiment (packet throughput in Kpps) 106
4.3.2 (a) Connection RTTs for Tmix verification experiment - CDFc.cccoevviieeiieennnnn. 107
4.3.2 (b) Connection RTTs for Tmix verification experiment - CCDFccoccvevvenennnenne 107
4.3.3 (a) Number of epochs per connection for Tmix verification experiment - CDF 108

Xvi

4.3.3 (b) Number of epochs per connection for Tmix verification experiment - CCDF 108

4.3.4 (a) Request sizes for Tmix verification experiment - CDFcccccoooviviiiiiiienciieiien, 108
4.3.4 (b) Request sizes for Tmix verification experiment - CCDFccccciviiviiiniinninnnnnns 108
4.3.5 (a) Response sizes for Tmix verification experiment - CDFccccooevvvivviivniinnciennnnns 109
4.3.5 (b) Response sizes for Tmix verification experiment - CCDFc..ccoovevieviennennnnns 109
4.3.6 (a) Concurrent ‘a’ sizes for Tmix verification experiment - CDFccocceiininnneen. 109
4.3.6 (b) Concurrent ‘a’ sizes for Tmix verification experiment - CCDFcccoevvrvreennns 109
4.3.7 (a) Concurrent ‘b’ sizes for Tmix verification experiment - CDFccccoevvveveennns 109
4.3.7 (b) Concurrent ‘b’ sizes for Tmix verification experiment - CCDFc...cccceevveennenn. 109

4.3.8 (a) CPU utilization for the most and least capable traffic generator pairs on one

0L 0) 1< A RO PR PO 110
4.3.8 (b) CPU utilization for the most and least capable traffic generator pairs on the

ONET SUDINELeeniiiiiee ettt st et e beesaee e 111
4.5.1 Link throughput in Mbps — UNC — unconstrained modeccccceeveverrencreesnennnen. 114
4.5.2 Link throughput in Mbps — IBM — unconstrained mode............ccccccvevverrinreerennnen. 114
453 Link throughput in Kpps — UNC — unconstrained mode...........cccccevveevveeenveeereeennee. 114
4.5.4 Link throughput in Kpps — IBM — unconstrained mode...........cccceecveeueeciienreneennen. 114
4.5.5 Connection duration — CDF (control set — UNC and IBM — unconstrained) 116
4.5.6 Connection duration — CCDF (control set — UNC and IBM — unconstrained) 116
4.5.7 Response time — CDF (control set — UNC and IBM — unconstrained) 118
4.5.8 Response time — CCDF (control set — UNC and IBM — unconstrained) 118
4.5.9 Queue length — CCDF (control set — UNC and IBM — unconstrained).................... 120
4.5.10 Active connections (control set — UNC and IBM — unconstrained) 121
4.6.1 Link throughput in Mbps — UNC — constrained modec..ccccoeceeveenerciencneenennens 122
4.6.2 Link throughput in Mbps — IBM — constrained mode............cceccvevvververreecreesneennen. 122
4.6.3 Link throughput in Kpps — UNC — constrained mode............ccoeevevrverrenrencreaneannnn 122
4.6.4 Link throughput in Kpps — IBM — constrained modeccccceeeereeecieenieenreeennee. 122

4.6.5 Connection duration — CDF — UNC (control set — UNC and IBM — constrained)... 124

Xvii

4.6.6

4.6.7

4.6.8

4.6.9

4.6.10

4.6.11

4.6.12

4.6.13

4.6.14

4.6.15

5.1.1

5.1.10

5.1.11

5.1.12

5.1.13

5.1.14

5.1.15

5.1.16

Connection duration — CDF — IBM (control set — UNC and IBM — constrained).... 124
Connection duration — CCDF — UNC (control set — UNC and IBM — constrained) 124

Connection duration — CCDF — IBM (control set — UNC and IBM — constrained). 124

Response time — CDF — UNC (control set — UNC and IBM — constrained)............. 126
Response time — CDF — IBM (control set — UNC and IBM — constrained)............. 126
Response time — CCDF — UNC (control set — UNC and IBM — constrained) 126
Response time — CCDF — IBM (control set — UNC and IBM — constrained) 126
Queue length — CDF (control set — UNC and IBM — constrained)ccveenneene. 128
Queue length — CCDF (control set — UNC and IBM — constrained) 128
Active connections (control set — UNC and IBM — constrained)c.cccecevreennen. 129
Connection duration — CDF — UNC (block-concurrent connection structure) 134
Connection duration — CDF — IBM (block-concurrent connection structure) 134
Connection duration — CDF — UNC (block-sequential connection structure) 135
Connection duration — CDF — IBM (block- sequential connection structure) 135
Connection duration — CDF — UNC (a-b connection structure)cocceeevervenens 135
Connection duration — CDF — IBM (a-b connection structure)cccceeeveeueenens 135
Connection duration — CDF — UNC (a-t-b-t connection structure)ccceveeeee. 136
Connection duration — CDF — IBM (a-t-b-t connection structure)ccocvevveeees 136
Connection duration — CDF — UNC (block-sequential connection structure) 137
Connection duration — CDF — IBM (block- sequential connection structure) 137
Connection duration — CDF — UNC (a-t-b-t connection structure)ccoveueeee 137
Connection duration — CDF — IBM (a-t-b-t connection structure)ccccvevveeeees 137

Connection duration — CCDF — UNC (block-concurrent connection structure) 141
Connection duration — CCDF — IBM (block-concurrent connection structure) 141
Connection duration — CCDF — UNC (block-sequential connection structure) 141

Connection duration — CCDF — IBM (block- sequential connection structure) 141

XViil

5.1.17

5.1.18

5.1.19

5.1.20

5.1.21

5.1.22

5.1.23

5.1.24

5.1.25

5.1.26

5.1.27

5.1.28

5.1.29

5.1.30

5.1.31

5.1.32

5.1.33

5.1.34

5.1.35

5.1.36

5.1.37

5.1.38

5.1.39

5.1.40

5.1.41

5.1.42

Connection duration — CCDF — UNC (a-b connection structure)ccocuven..... 142

Connection duration — CCDF — IBM (a-b connection structure)ccccceeuven..e. 142
Connection duration — CCDF — UNC (a-t-b-t connection structure) 142
Connection duration — CCDF — IBM (a-t-b-t connection structure) 142
Response Time — CDF — UNC (block-sequential connection structure) 143
Response Time — CDF — IBM (block- sequential connection structure) 143
Response Time — CDF — UNC (a-b connection Structure)cceeverveeverrerreennns 144
Response Time — CDF — IBM (a-b connection Structure)ccceevevveevevresreennens 144
Response Time — CDF — UNC (a-t-b-t connection Structure)cccoeeveeveeveennens 145
Response Time — CDF — IBM (a-t-b-t connection structure)ccceeevererieiennenn 145
Response Time — CDF — UNC (block-sequential connection structure) 146
Response Time — CDF — IBM (block- sequential connection structure) 146
Response Time — CDF — UNC (a-t-b-t connection Structure)cccceeveeveeveennens 147
Response Time — CDF — IBM (a-t-b-t connection structure)ccceeeverervenennens 147
Response Time — CCDF — UNC (block-sequential connection structure) 148
Response Time — CCDF — IBM (block- sequential connection structure) 148
Response Time — CCDF — UNC (a-b connection Structure)ccoccevveeverreriennnens 149
Response Time — CCDF — IBM (@-b connection Structure)ccceeeeeveeeeeeeneenne. 149
Response Time — CCDF — UNC (a-t-b-t connection Structure)cceeeeverveennens 149
Response Time — CCDF — IBM (a-t-b-t connection structure)ccceeeeveeveenens 149
Queue length — CCDF — UNC (block-concurrent connection structure) 150
Queue length — CCDF — IBM (block-concurrent connection structure) 150
Queue length — CCDF — UNC (block-sequential connection structure) 151
Queue length — CCDF — IBM (block- sequential connection structure) 151
Queue length — CCDF — UNC (a@-b connection Structure)ccoceeeeevvereeruerreeenns 151
Queue length — CCDF — IBM (a-b connection Structure)ccceeeeevveeeevresreennns 151

XixX

5.1.43

5.1.44

5.1.45

5.1.46

5.1.47

5.1.48

5.1.49

5.1.50

5.1.51

5.1.52

5.2.1

522

5.23

524

525

5.2.6

5.2.7

528

529

5.2.10

5.2.11

5.2.12

5.2.13

5.2.14

5.2.15

5.2.16

Queue length — CCDF — UNC (a-t-b-t connection Structure)ccceeveeveeeresreennens 151

Queue length — CCDF — IBM (a-t-b-t connection structure)ccceceeveereeueennens 151
Active connections — UNC (block-concurrent connection structure) 152
Active connections — IBM (block-concurrent connection structure) 152
Active connections — UNC (block-sequential connection structure)c...... 153
Active connections — IBM (block- sequential connection structure) 153
Active connections — UNC (a-b connection Structure)ccecceeveeveerrieeereerrenenenn. 153
Active connections — IBM (@-b connection Structure)cceeceeeeveerreeeeeresreennens 153
Active connections — UNC (a-t-b-t connection Structure)ccccoeveeveeeveeriereennnns 154
Active connections — IBM (a-t-b-t connection structure)ccoccveevveeveeereneennen. 154
Connection duration — CDF — UNC (block-concurrent connection structure) 157
Connection duration — CDF — IBM (block-concurrent connection structure) 157
Connection duration — CDF — UNC (block-sequential connection structure) 158
Connection duration — CDF — IBM (block- sequential connection structure) 158
Connection duration — CDF — UNC (a-b connection structure)c.cceeevervenens 159
Connection duration — CDF — IBM (a-b connection structure)cccceeeveevrenens 159
Connection duration — CDF — UNC (a-t-b-t connection structure)ccceveeeee 160
Connection duration — CDF — IBM (a-t-b-t connection structure)cccceeveeees 160

Connection duration — CCDF — UNC (block-concurrent connection structure) 161
Connection duration — CCDF — IBM (block-concurrent connection structure) 161
Connection duration — CCDF — UNC (block-sequential connection structure) 162

Connection duration — CCDF — IBM (block- sequential connection structure) 162

Connection duration — CCDF — UNC (a-b connection structure)ccocuven..... 162
Connection duration — CCDF — IBM (a-b connection structure)ccocveunen.... 162
Connection duration — CCDF — UNC (a-t-b-t connection structure) 162
Connection duration — CCDF — IBM (a-t-b-t connection structure) 162

XX

5.2.17

5.2.18

5.2.19

5.2.20

5.2.21

5.2.22

5.2.23

5.2.24

5.2.25

5.2.26

5.2.27

5.2.28

5.2.29

5.2.30

5231

5.2.32

5.2.33

5.2.34

5.2.35

5.2.36

5.2.37

5.2.38

5.2.39

5.2.40

5241

5242

Connection duration — CDF — UNC (block-concurrent connection structure) 163

Connection duration — CDF — IBM (block-concurrent connection structure) 163
Connection duration — CDF — UNC (block-sequential connection structure) 163
Connection duration — CDF — IBM (block- sequential connection structure) 163
Connection duration — CDF — UNC (a-b connection structure)ccoeevervenns 164
Connection duration — CDF — IBM (a@-b connection structure)cccceveevvennnn. 164
Connection duration — CDF — UNC (a-t-b-t connection structure)cccoveeee. 164
Connection duration — CDF — IBM (a-t-b-t connection structure)cccceeveenes 164

Connection duration — CCDF — UNC (block-concurrent connection structure) 165

Connection duration — CCDF — IBM (block-concurrent connection structure) 165

Connection duration — CCDF — UNC (block-sequential connection structure) 165
Connection duration — CCDF — IBM (block- sequential connection structure) 165
Connection duration — CCDF — UNC (a-b connection structure)cc.cuo....... 165
Connection duration — CCDF — IBM (a-b connection structure)ccccoccveneenee.e. 165
Connection duration — CCDF — UNC (a-t-b-t connection structure) 166
Connection duration — CCDF — IBM (a-t-b-t connection structure) 166
Response Time — CDF — UNC (block-sequential connection structure) 167
Response Time — CDF — IBM (block- sequential connection structure) 167
Response Time — CDF — UNC (a-b connection Structure)ccceevevveeeerresreennns 168
Response Time — CDF — IBM (a-b connection Structure)cceeeeveerveeresreennnns 168
Response Time — CDF — UNC (a-t-b-t connection Structure)ccoecveevevverreennens 168
Response Time — CDF — IBM (a-t-b-t connection Structure)ccccecevevveriennnne 168
Response Time — CCDF — UNC (block-sequential connection structure) 169
Response Time — CCDF — IBM (block- sequential connection structure) 169
Response Time — CCDF — UNC (a-b connection Structure)ccocevvvevevrerreennnns 170
Response Time — CCDF — IBM (a-b connection Structure)ccocceeveeeeevesreennnns 170

xx1

5.243

5.2.44

5.2.45

5.2.46

5.2.47

5.2.48

5.2.49

5.2.50

5.2.51

5.2.52

5.2.53

5.2.54

5.2.55

5.2.56

5.2.57

5.2.58

5.2.59

5.2.60

5.2.61

5.2.62

5.2.63

5.2.64

5.2.65

5.2.66

5.2.67

5.2.68

Response Time — CCDF — UNC (a-t-b-t connection Structure)ccceeeverveennens 170

Response Time — CCDF — IBM (a-t-b-t connection structure)cceeveeveeveennns 170
Response Time — CDF — UNC (block-sequential connection structure) 171
Response Time — CDF — IBM (block- sequential connection structure) 171
Response Time — CDF — UNC (a-b connection Structure)cceevevveeeerresreennns 171
Response Time — CDF — IBM (a-b connection Structure)cceevereeverueneennnns 171
Response Time — CDF — UNC (a-t-b-t connection Structure)ccoeeeveeverveennens 171
Response Time — CDF — IBM (a-t-b-t connection structure)ccceevevvreveenennens 171
Response Time — CCDF — UNC (block-sequential connection structure) 172
Response Time — CCDF — IBM (block- sequential connection structure) 172
Response Time — CCDF — UNC (a-b connection structure)ccceeveveeeennenne. 172
Response Time — CCDF — IBM (a-b connection Structure)ccccceeveeveeresreennens 172
Response Time — CCDF — UNC (a-t-b-t connection Structure)cceeeeveeveenens 172
Response Time — CCDF — IBM (a-t-b-t connection structure)cccoeeveeveereennens 172
Queue length — CDF — UNC (block-concurrent connection structure) 174
Queue length — CDF — IBM (block-concurrent connection structure) 174
Queue length — CDF — UNC (block-sequential connection structure) 174
Queue length — CDF — IBM (block- sequential connection structure) 174
Queue length — CDF — UNC (@-b connection Structure)cccoeveeveevveeeevresreennens 175
Queue length — CDF — IBM (a-b connection Structure)cc.cceevevveeueeeenreereennns 175
Queue length — CDF — UNC (a-t-b-t connection Structure)cceceveeevecrereennens 175
Queue length — CDF — IBM (a-t-b-t connection Structure)cceeevveeceerverreennens 175
Queue length — CCDF — UNC (block-concurrent connection structure) 176
Queue length — CCDF — IBM (block-concurrent connection structure) 176
Queue length — CCDF — UNC (block-sequential connection structure) 176
Queue length — CCDF — IBM (block- sequential connection structure) 176

XX11

5.2.69

5.2.70

5.2.71

5.2.72

5.2.73

5.2.74

5.2.75

5.2.76

5.2.77

5.2.78

5.2.79

5.2.80

5.3.1

532

533

534

5.35

53.6

5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

5.3.13

53.14

Queue length — CCDF — UNC (a-b connection Structure)c.coceeeeevveeeevresveennns 177

Queue length — CCDF — IBM (a-b connection Structure)cccoeeeeveereeeuesreennens 177
Queue length — CCDF — UNC (a-t-b-t connection Structure)occeeverveererrennnens 177
Queue length — CCDF — IBM (a-t-b-t connection structure)ccoeveeveererreennens 177
Active connections — UNC (block-concurrent connection structure) 178
Active connections — IBM (block-concurrent connection structure) 178
Active connections — UNC (block-sequential connection structure) 178
Active connections — IBM (block- sequential connection structure) 178
Active connections — UNC (a-b connection Structure)cceceeveviiieiceriieennnns 178
Active connections — IBM (a-b connection Structure)c.cocceeeveeveeeeeeereneennenn 178
Active connections — UNC (a-t-b-t connection structure)cccoeeeevvieeevierreennennn. 179
Active connections — IBM (@-t-b-t connection Structure)cccceeveevvevreeeeeresreennns 179
Connection duration — CDF — UNC (meanrtt round trip time)ccccccvveeevveennenn. 183
Connection duration — CDF — IBM (meanrtt round trip time)cccccceevvervennnnne 183
Connection duration — CDF — UNC (10path round trip time)cceeveveeeverreennnns 184
Connection duration — CDF — IBM (10path round trip time)ccceceevvevierriennens 184
Connection duration — CDF — UNC (usernet round trip time)cccoceereveeveennenne. 185
Connection duration — CDF — IBM (usernet round trip time)cceevvevververenens 185
Connection duration — CCDF — UNC (meanrtt round trip time)cccccvervenennnn. 187
Connection duration — CCDF — IBM (meanrtt round trip time)cccceeeevveennenn. 187
Connection duration — CCDF — UNC (10path round trip time)ccoecvecverrerncne 188
Connection duration — CCDF — IBM (10path round trip time)cccccevveverreennnns 188
Connection duration — CCDF — UNC (usernet round trip time)cccccceevveenneene. 188
Connection duration — CCDF — IBM (usernet round trip time)ccccceeeeeveernnnnns 188
Response Time — CDF — UNC (meanrtt round trip time)cccceeeveecvrecrvereeneenenne 190
Response Time — CDF — IBM (meanrtt round trip time)ccceeeevveecreeenveenneeennnn. 190

XX1il

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

5.3.20

53.21

5.3.22

5.3.23

5.3.24

5.3.25

5.3.26

5.3.27

5.3.28

5.3.29

5.3.30

5.3.31

5.3.32

5.3.33

5.3.34

5.3.35

5.3.36

5.3.37

54.1

542

543

Response Time — CDF — UNC (10path round trip time)ccoocevveveevieeeecienreennns 191

Response Time — CDF — IBM (10path round trip time)cccccoevveveeiiereecieireennnns 191
Response Time — CDF — UNC (usernet round trip time)ccoceveeveereneeseenenens 191
Response Time — CDF — IBM (usernet round trip time)cocceeevverevervencveesneennen. 191
Response Time — CCDF — UNC (meanrtt round trip time)cccceevvvervenreaveennenn 192
Response Time — CCDF — IBM (meanrtt round trip time)ccccceeevveviveneeneenenene 192
Response Time — CCDF — UNC (10path round trip time)cceeeeeverierreecienrennnns 193
Response Time — CCDF — IBM (10path round trip time)ccccceevveveervreeecrenreennnns 193
Response Time — CCDF — UNC (usernet round trip time)ccccceevveerveeereeennen. 193
Response Time — CCDF — IBM (usernet round trip time)cccceeeeeecieenieeneennnnne 193
Queue length — CCDF — UNC (meanrtt round trip time)ccoeceveveereerverenennens 194
Queue length — CCDF — IBM (meanrtt round trip time)cccceeeveevveerreereernennenns 194
Queue length — CCDF — UNC (10path round trip time)cccccoeievievniieeeieiriennens 194
Queue length — CCDF — IBM (10path round trip time)ccoeeveveeveeriereecienienenens 194
Queue length — CCDF — UNC (usernet round trip time)ccoeeeereveereereervennnnns 195
Queue length — CCDF — IBM (usernet round trip time)ccccccveeevveercreeenveennnnnnn 195
Active connections — UNC (meanrtt round trip time)cccceveeerieeriiesieeneeneeninene 196
Active connections — IBM (meanrtt round trip time)ccecvvevvereververcvenceeeseennnenn 196
Active connections — UNC (10path round trip time)ccceeeviivevierrieeerieireennns 196
Active connections — IBM (10path round trip time)cccccoeveevieieveiieiceiecreeneen, 196
Active connections — UNC (usernet round trip time)cecceeveerienerecieeneeneenennne 196
Active connections — IBM (usernet round trip time)ccecveevvereeervenvenceesseeenen 196
Active connections — UNC (usernet round trip time)cceecvevveereevreereeneesneennens 197
Connection duration — CDF — UNC (meanrtt round trip time)cccceeveeeveernnnnns 200
Connection duration — CDF — IBM (meanrtt round trip time)ccccoceevvervennnne 200
Connection duration — CDF — UNC (10path round trip time)ccceveevererreennnns 201

XX1V

544

545

5.4.6

54.7

54.8

549

5.4.10

54.11

5.4.12

5.4.13

5.4.14

5.4.15

5.4.16

5.4.17

5.4.18

5.4.19

5.4.20

54.21

5.4.22

5.4.23

5.4.24

5.4.25

5.4.26

5.4.27

5.4.28

5.4.29

Connection duration — CDF — IBM (10path round trip time)ccceevevveererreennens 201

Connection duration — CDF — UNC (usernet round trip time)cccceeevveeevveennnnn. 202
Connection duration — CDF — IBM (usernet round trip time)ccoeeceeveervennnne 202
Connection duration — CCDF — UNC (meanrtt round trip time)cccoeververennne 203
Connection duration — CCDF — IBM (meanrtt round trip time)cccceeververennns 203
Connection duration — CCDF — UNC (10path round trip time)ccccoecvecverrennne 203
Connection duration — CCDF — IBM (10path round trip time)ccccceveeeverreenenns 203
Connection duration — CCDF — UNC (usernet round trip time)c.coeververennns 203
Connection duration — CCDF — IBM (usernet round trip time)ccccceeeeveeennenn. 203
Connection duration — CDF — UNC (meanrtt round trip time)ccccceeeveeveennenne. 204
Connection duration — CDF — IBM (meanrtt round trip time)c.ccccvevververnnne 204
Connection duration — CDF — UNC (10path round trip time)ccceeeeevrerreennens 205
Connection duration — CDF — IBM (10path round trip time)ccceeeeveeierriennens 205
Connection duration — CDF — UNC (usernet round trip time)cccccceevvervennenne 205
Connection duration — CDF — IBM (usernet round trip time)cccecvvevvervenenenns 205
Connection duration — CCDF — UNC (meanrtt round trip time)cccceeeevveenenn. 206
Connection duration — CCDF — IBM (meanrtt round trip time)ccceceevvernenne 206
Connection duration — CCDF — UNC (10path round trip time)ccoeeveeverreenenns 206
Connection duration — CCDF — IBM (10path round trip time)ccccceeveverreennes 206
Connection duration — CCDF — UNC (usernet round trip time)ccccceeevveennenn. 206
Connection duration — CCDF — IBM (usernet round trip time)cccceevvereennennne 206
Response Time — CDF — UNC (meanrtt round trip time)ccceccvevververcvrncnennnenn 208
Response Time — CDF — IBM (meanrtt round trip time)ccceeveveerciveerveeeneeennne. 208
Response Time — CDF — UNC (10path round trip time)cccccoeveevieiieeccieireennnns 208
Response Time — CDF — IBM (10path round trip time)cccocevveveeriieeenieneennnns 208
Response Time — CDF — UNC (usernet round trip time)cccceeevveeeveeerveesveeennnn 208

XXV

5.4.30

5431

5.4.32

5.4.33

5.4.34

5.4.35

5.4.36

5.4.37

5.4.38

5.4.39

5.4.40

5.4.41

5.4.42

5.4.43

5.4.44

5.4.45

5.4.46

5.4.47

5.4.48

5.4.49

5.4.50

5.4.51

5.4.52

5.4.53

5.4.54

5.4.55

Response Time — CDF — IBM (usernet round trip time)ccocceveereereeceneneennnns 208

Response Time — CCDF — UNC (meanrtt round trip time)ccccceeeevveerveeeveeennne. 209
Response Time — CCDF — IBM (meanrtt round trip time)ccccceeevveciieneeneenennne 209
Response Time — CCDF — UNC (10path round trip time)ccceeveveeeverrervesrennns 209
Response Time — CCDF — IBM (10path round trip time)c.ccoevvevvevveeeerenreennnns 209
Response Time — CCDF — UNC (usernet round trip time)c.ccoceeveereneevienienens 210
Response Time — CCDF — IBM (usernet round trip time)cccccevevvecvrerreereenenene 210
Response Time — CDF — UNC (meanrtt round trip time)cccoeeevvervenvenvennnens 211
Response Time — CDF — IBM (meanrtt round trip time)ccceeeeveeeveeevveeereeennnn. 211
Response Time — CDF — UNC (10path round trip time)ccoeevvecrerenrecieniennnnns 211
Response Time — CDF — IBM (10path round trip time)ccccevveeeevieeeecrenennnns 211
Response Time — CDF — UNC (usernet round trip time)cceevevververvenneannens 212
Response Time — CDF — IBM (usernet round trip time)ccceeeveeevveerveeenveennne. 212
Response Time — CCDF — UNC (meanrtt round trip time)ccccoceeveeveneenienennns 213
Response Time — CCDF — IBM (meanrtt round trip time)cccocceeevvecvverieereenennne 213
Response Time — CCDF — UNC (10path round trip time)cccoeeveevurereevieireennnns 213
Response Time — CCDF — IBM (10path round trip time)ccccceecveveereeevecieniennnens 213
Response Time — CCDF — UNC (usernet round trip time)cocceevververevercvennnenn 213
Response Time — CCDF — IBM (usernet round trip time)cccccceeeveecveevreenreenennns 213
Queue length — CDF — UNC (meanrtt round trip time)ccceeeveevieeecreeenreesneenns 214
Queue length — CDF — IBM (meanrtt round trip time)ccocceveeeeieeneeneeneennenne 214
Queue length — CDF — UNC (10path round trip time)ccooveeeeeviieienieieeienieennns 215
Queue length — CDF — IBM (10path round trip time)cccoeveevvevreeievieieeiesreennns 215
Queue length — CDF — UNC (usernet round trip time)ccceeeveerieencreeerveesnnenns 215
Queue length — CDF — IBM (usernet round trip time)cccoccvevvereereercvenveenenn 215
Queue length — CCDF — UNC (meanrtt round trip time)c.cceeevvevveereereesveaneans 216

XXV1

5.4.56

5.4.57

5.4.58

5.4.59

5.4.60

5.4.61

5.4.62

5.4.63

5.4.64

5.4.65

5.4.66

6.1.1

6.1.10

6.1.11

6.1.12

6.1.13

6.1.14

6.1.15

Queue length — CCDF — IBM (meanrtt round trip time)ccceeeveevveerreereernennenns 216

Queue length — CCDF — UNC (10path round trip time)cccoceeievieveiereecieiriennens 216
Queue length — CCDF — IBM (10path round trip time)cceeveveveveriereecienienenens 216
Queue length — CCDF — UNC (usernet round trip time)cceeeeveeveerieereenvennenns 216
Queue length — CCDF — IBM (usernet round trip time)ccccceeeveevveereervervenneans 216
Active connections — UNC (meanrtt round trip time)cocceveeeeieeieeecieeneeneeninnne 217
Active connections — IBM (meanrtt round trip time)ccecvevvverevervenvenceesseennnenn 217
Active connections — UNC (10path round trip time)cccoeeeeviiieveenieeienieireennns 217
Active connections — IBM (10path round trip time)cccccoeveeviiievieiieiiieeieenens 217
Active connections — UNC (usernet round trip time)cocceevvevieneeesieeneeneeninnne 218
Active connections — IBM (usernet round trip time)cceeevveevvereeervenvenceessnennnens 218
Connection duration — CDF — UNC (a-t-b-t connection structure)ceeu..... 228
Connection duration — CCDF — UNC (a-t-b-t connection structure) 228
Response Time — CDF — UNC (a-t-b-t connection Structure)cceceeeeerueeerenenne. 230
Response Time — CCDF — UNC (a-t-b-t connection structure)cocceevveeveenens 230
Queue Length — CDF — UNC (a-t-b-t connection Structure)cccceeevveeveereennenne. 231
Active connections — UNC (a-t-b-t connection Structure)cceceeveeverieneeeennnne. 232
Queue Length — CDF — UNC (a-t-b-t connection structure)cccoeeveeververeeennenne. 233
Queue Length — CCDF — UNC (a-t-b-t connection structure)cccceevevveeveennenne. 233
Connection duration — CDF — UNC (a-t-b-t connection structure)c.c....... 234
Connection duration — CCDF — UNC (a-t-b-t connection structure) 234
Connection duration — CDF — UNC (a-t-b-t connection structure)cceeneee.. 235
Connection duration — CDF — IBM (a-t-b-t connection structure)cccoceenene. 235
Response Time — CDF — UNC (a-t-b-t connection Structure)ccceeeeveeveeveennne. 237
Response Time — CCDF — UNC (a-t-b-t connection structure)cccoeveereenenene 237
Active connections — UNC (a-t-b-t connection Structure)ccocceeveeeeereereenrennene. 238

XXVil

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

6.2.8

6.2.9

6.2.10

6.2.11

6.2.12

6.2.13

6.2.14

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10

6.3.11

6.3.12

Connection duration — CDF — UNC (a-t-b-t connection structure)ceeu.ee.. 239

Connection duration — CCDF — UNC (a-t-b-t connection structure) 239
Response Time — CDF — UNC (a-t-b-t connection Structure)ccoeceeeverueeeeenene. 240
Response Time — CCDF — UNC (a-t-b-t connection structure)cccceeeveevenenene 240
Queue Length — CDF — UNC (a-t-b-t connection structure)ccceeeeevevveeeeennenne. 240
Queue Length — CCDF — UNC (a-t-b-t connection structure)cccceeevevverevenenne. 240
Active connections — UNC (a-t-b-t connection structure)ccceevevvecvenereeiennns 240
Connection duration — CDF — UNC (a-t-b-t connection structure)ceeu.e... 241
Connection duration — CCDF — UNC (a-t-b-t connection structure) 241
Response Time — CDF — UNC (a-t-b-t connection Structure)cceceeeverueeerenene. 242
Response Time — CCDF — UNC (a-t-b-t connection structure)cceceevveeveennnne. 242
Queue Length — CDF — UNC (a-t-b-t connection structure)ccceeeeevevveeveennnne. 242
Queue Length — CCDF — UNC (a-t-b-t connection structure)cccceeeeeveeveennenne. 242
Active connections — UNC (a-t-b-t connection Structure)cceceeveeverieneerennene. 243
Connection duration — CDF — UNC (a-t-b-t connection structure)ceeneen.. 245
Connection duration — CCDF — UNC (a-t-b-t connection structure) 245
Response Time — CDF — UNC (a-t-b-t connection Structure)cceceeeeervreereneene. 246
Response Time — CCDF — UNC (a-t-b-t connection structure)ccoeeveevenenene 246
Queue Length — CCDF — UNC (a-t-b-t connection structure)cccceevevveeveennenne. 247
Active connections — UNC (a-t-b-t connection Structure)cccccoevveeeereerrereennene. 247
Connection S1Z€ — CDFcc.ioiiiiiiiiieiieee ettt 248
Connection size — CCDFooiiiiiiiiee e 248
Connection duration — CDF (connection size less than 4KB)ccocceoieienene. 249
Connection duration — CDF (connection size greater than 4KB)ccccccveenee. 249
Connection duration — CDF (connection size greater than IMB)ccccoueenneene. 250
Connection duration — CDF (connection size greater than IMB)ccccovenneene. 250

XXViil

6.3.13

6.3.14

6.3.15

6.3.16

6.3.17

6.3.18

6.3.19

6.3.20

6.3.21

6.3.22

6.3.23

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

6.4.7

6.4.8

6.4.9

6.4.10

6.5.1

6.5.2

6.5.3

Connection duration — CDF — UNC (a-t-b-t connection structure)ceeu.ee.. 253

Connection duration — CCDF — UNC (a-t-b-t connection structure) 253
Response Time — CDF — UNC (a-t-b-t connection Structure)ccoeceeeeerueeerennne. 253
Response Time — CCDF — UNC (a-t-b-t connection structure)cocceeeveevenenene 253
Queue Length — CDF — UNC (a-t-b-t connection structure)cceeeeevevveeveennenne. 254
Queue Length — CCDF — UNC (a-t-b-t connection structure)cccceeevevverevenenne. 254
Active connections — UNC (a-t-b-t connection structure)ccceevevvecvenereeiennns 255
Connection duration — CDF (connection size less than 4KB)ccccocceiviininnneene 255
Connection duration — CDF (connection size greater than 4KB)ccccccveenee. 255
Connection duration — CDF (connection size greater than IMB)ccccceneee. 256
Connection duration — CDF (connection size greater than IMB)cccouvenneene. 256
Link throughput in packets — DIK-CONCcccoeviiiiiiciiiieieiceeeeeeeeee s 258
Link throughput in packets — DIK-S€Qccooieieiiiiieieeiceeeceeeee e 258
Link throughput in packets — 8-Dccoocveeiiiiiiieiiiieeeeeeeeeee e 258
Link throughput in packets — @-1-D-tccocievieiiiiiecieeeeeeeee s 258
Link throughput in packets — 18 intervalscccceeeviieriieiciie e 259
Link throughput in packets — 10ms intervalsccocevvieriiieiienienierecieeeeeeeen 259
Queue Length Time Series — DIK-CONCccooviiiiiiiiiiiiiiceeceeeee s 261
Queue Length Time Series — DIK-S8Qc.ccvevviiiiiiiiiiieiceeeeeee e 262
Queue Length Time Series — a-D ...cooovooiiiiiiiicceee e 262
Queue Length Time Series — a-t-D-tccoooviiiiiiiiieeeeene 263

Wavelet spectrum for packet throughput time series using the block-concurrent
connection Structure MOAE]c.eeecuiiiiiiiiiiiicie et 264

Wavelet spectrum for packet throughput time series using the block-sequential
connection Structure MOleiiiiiiiiiiiiiiiee e 265

Wavelet spectrum for packet throughput time series using the a-b connection structure
TNOAEL .ottt sttt sttt st st nre s 265

XX1X

6.5.4

Wavelet spectrum for packet throughput time series using the a-t-b-t connection

structure model

XXX

ACK
AQM
CDF
CCDF
cwnd
ECN
FIFO
1P
RTT

TCP

ABBREVIATIONS

acknowledgment

Active Queue Management

Cumulative Distribution Function

Complementary Cumulative Distribution Function
congestion window

Explicit Congestion Notification

first-in, first-out

Internet Protocol

Round-Trip Time

Transmission Control Protocol

XXX1

CHAPTER 1

INTRODUCTION

When one discovers a fact about nature, it is a contribution per se, no matter
how small. Since anyone can create something new [in a synthetic field like
Computer Science], that alone does not establish a contribution. Rather, one
must show that the creation is better. Accordingly, research in computer science
and engineering is largely devoted to establishing the "better" property.

Fred Brooks [NRC, 1994, p. 35.]

Over the past three decades, the Internet's rapid growth has spurred explosive development of
new applications such as mobile computing, digital music, and online video and gaming. The
performance of these applications depends on the performance of various protocols and
mechanisms enabling Internet functions. For 30 years now, TCP (Transmission Control Protocol)
and IP (Internet Protocol) have been the dominant communication protocols, and they have
fortuitously evolved despite the Internet’s multifold growth. To improve the Internet’s

performance, networking researchers constantly develop new protocols and innovations.

These protocols must be tested before they can be deployed on the Internet. In most fields,
there are agreed-upon standards to test such new inventions and improvements. For example, if
Intel develops a new processor, several benchmarks test the new processor to demonstrate that it
performs better than an existing one. However, computer networking, as a nascent field with
explosive growth, still lacks such standards for protocol evaluation. Establishing such standards

remains a challenging research endeavor in networking, and it forms the central motivation for

this dissertation research. By generating different kinds of network traffic within the laboratory
testbed, showing how and why the use of different models of application workload and network
path characteristics during traffic generation affect the outcome of experimentation, we have
asked and answered some fundamental questions about experimental methodology in networking
research. We plan to use the lessons learned from this study to motivate further discussions and
concrete steps in the networking research community toward establishing better practices in

experimental methods for networking research.

Networking researchers have long used experimental networks and distributed systems for
evaluating new networking technologies. Indeed, experimentation, either via software simulation
using simulators such as the Network Simulator (NS), or via hardware emulation using laboratory
testbeds, has been the primary means for evaluating existing and newly proposed protocols and
algorithms for improving the Internet. Hence, improving the Internet involves constantly
improving the process of experimentation to produce reliable and reproducible results for
empirical evaluations. This requires research into methodology. This dissertation is a step in that
direction. Experimental methodology has many components. This dissertation is a

methodological study exploring one major component — traffic generation.

1.1 Traffic Generation

One of the most complex components of empirical evaluations is modeling and generating
realistic Internet traffic. The mix of the ever changing and varied applications that constitute the
actual Internet traffic makes this a daunting task. Moreover, Internet traffic is different when
sampled at different times and in different parts of the globe. Networking researchers have
grappled with this problem by taking snapshots of Internet traffic at different times and at various

points in the network, and modeling the same for generating traffic in the lab. The generally held

belief is that the more realistic the traffic used, the more reliable are the results of the empirical
evaluations using that traffic. Practice, however, does not adhere to this principle. So, although
laboratory testbeds and methods for simulations have evolved over the years, the question about
what constitutes essential components for modeling realistic traffic remains open for debate. For
example, networking researchers agree that realistic traffic generation for empirical research is
best accomplished by capturing traffic on a production link and then using source-level models to
generate this traffic in the laboratory or simulator. Source-level models capture the application
exchanges and application behavior on the ends (sources) of the TCP connections. But how do
you go from the original captured traffic to an acceptable source-level model? Which of the
several measures derived from the traffic sources should you model in your workload for your
experiments? Would your modeling choices for traffic generation impact the outcome of your
experiments? If yes, how significant would the impact be? These remain open questions.

Let’s consider an example. Say you developed a new high-speed variant of TCP; let’s call it
TCP-X. To show that TCP-X is indeed better than the existing variants of TCP on the Internet
today, you would need to run some experiments either in a laboratory setting or using a simulator.
You would not wish to run your experiments directly on the Internet as that will reduce control,
and you could not repeat your experiments under the same conditions. Moreover, injecting traffic
using untested protocols with possible bugs can cause breakdown of network services. So, as part
of the experiment using a laboratory testbed or simulator, you would generate traffic between sets
of endpoints (traffic generators) that use either TCP-X or the other TCP variant against which you
are testing your new protocol. For your experiments, you need to generate realistic traffic. So you
collect network traffic on a production link. Since you are testing performance of transport
protocols, you decide to use application workload models (source-level models) for generating
traffic. That is, you generate traffic in your experiments by driving network stacks with the
application models derived from your empirical measurements and you use the applicable TCP

protocol on the endpoints. You choose this approach because traffic generated in this closed-loop

manner fully preserves the fundamental feedback loop between the network endpoints and
network characteristics. This is essential for testing transport-level properties.

Now, having made all these decisions on experimental design, how would you use the
captured traffic from that production link to drive the network stacks on these endpoints or traffic
generators? That is, given the empirical measurements of the traffic you captured, which of those
measurements will you use to create your application workload models for generating traffic in
your experiments, and why?

Let us consider some possible choices in modeling the workload you captured. You have the
packet header trace which can be used to derive a lot of information on every TCP connection
constituting that traffic. Do you send all the measured bytes for a given TCP connection as one
large data unit in each direction? If yes, do you send them concurrently in both directions, or do
you simulate a request-response behavior between a client and server, and thus send all the data
in one direction first, then send all the data in the other direction? Say, you use one of these two
methodologies to generate a persistent HTTP connection that originally had request-response,
request-response, and so on, with 25 such request-response pairs sending data back and forth
between client and server. Have you somehow distorted this connection by generating it all as one
large data unit in each direction? If you have, does it matter? If it matters, when does it matter?
That is, what performance metrics (output results that you use to show that TCP-X is better than
other TCP variants) are affected favorably or adversely by such distortion of the connections
generated during the experiment?

In the above scenario of generating a persistent HTTP connection, the original connection
could be represented in two dimensions — size and time. The size component is the data being
sent all at one time or in small chunks back and forth as measured in the original connection. But
while the size component of a connection seems obviously necessary for representing the
connection for traffic generation, what role does the time component play, and how does it affect

the performance metrics in your experiment? In fact, there is more than one time component in

any given connection. There are the times between packets sent on the network, times between a
request and its corresponding response, and the user-generated thinktimes which are the times
between consecutive request-response exchanges within a connection. Which of these do you
model, and how would your experimental results be affected by your choices?

So far, we have only discussed the application workload in both the size and time
components. But for realistic traffic generation, we must consider that the endpoints or traffic
generators that generate this application workload are also influenced by the network conditions
along the paths they traverse. This brings in another time component of traffic generation — the
connection round trip time (RTT). What is the best method of RTT emulation? Is one method
better than another, and why? For example, you could determine that the mean RTT of all
connections in your measured traffic was 80 milliseconds. Thus, could you use this as the default
RTT for every connection in your experiment? How would this choice for RTT emulation
influence the performance metrics you study in your experiment? What if, instead, you measured
the connection RTT for every connection on that original link, and faithfully assigned each
generated connection its measured RTT during your experiment? What is the benefit of such a
choice in generating traffic?

How will your choice of parameters for application workload modeling, and your choice of
model for emulating network path characteristics like RTT emulation, affect the outcome of your
experiments? That is, how will these choices affect whether your TCP-X shows better results
than some popular variant of TCP for the metrics you are using in this evaluation? Say the results
showed that TCP-X is indeed better for certain metrics of performance than other TCP variants.
Would you then be able to use the results from such an experiment with confidence to deploy
TCP-X on the Internet? Why or why not?

These are the kinds of questions that motivated this study. With this dissertation, we strive to
advance such discussion and the exploration of experimental methodologies in networking

research. We developed a spectrum of empirically-derived, realistic models for generating TCP

traffic, and different models for emulating RTT, in the laboratory. We conducted experiments
using this spectrum of application workload models we call TCP connection structures and round
trip time (RTT) emulation methods — all inspired by models used in leading publications. Our
goal was to explore how generating the same empirically-derived traffic using different
connection structures and different RTT emulation methods alters key characteristics of traffic in
the network, thus affecting the user perceived performance metrics of connection durations and

response times as well as network centric metrics of active connections and router queue lengths.

1.2 The Tmix Traffic Generation System

This dissertation is based on the foundation laid by the Tmix traffic generation system
developed by Hernandez-Campos et al. [HC06, WAHC+06]. In that work, the authors presented a
new methodology for generating network traffic using source-level modeling in testbed
experiments and software simulations. They developed a new source-level model of network
traffic, the a-b-t model (we call this the a-t-b-t model in our study), for describing in a generic
and intuitive manner the behavior of the applications driving the TCP connections in network
traffic. Hernandez-Campos et al. made the following major contribution: they showed that given
a packet header trace collected at any Internet link, their Tmix traffic generation system
reproduced the application-level behavior as well as network-level parameters, like RTT and
window size, such that the statistical properties of the generated traffic matched very closely with
those of the original traffic captured on the Internet link. We verify this demonstration as part of
our calibration experiments, and hence use their model as the control set for our experiments. We
use the Tmix traffic generation system in our research, and hence adopt their terminology to
explain our models for application workloads. Hence, in this section we explain their

terminology.

The Tmix traffic generator is an empirically-based approach to workload generation. Starting
from a trace of TCP/IP headers collected on a production network, they constructed a model for
all the TCP connections observed in the network without knowledge of the underlying
applications. The model, a set of a-t-b-t connection vectors, can be used in the workload
generator Tmix to generate the connections and reproduce the application-level behaviors
observed on the original network. That work also identifies a fundamental dichotomy in source-
level behavior between connections that exchange data sequentially and those that exchange data

concurrently.

Anonymized Packet .m Sonrce-level Trace:
Header Trace == Set of Connection Vectors
VA

Worklond \ \‘ \
Partitioning \ \ y
LU

TESTBED ¥ oK W ou o

S>>

Svnthetic Packet
Hender Trace

Figure 1: Traffic Generation

In Tmix each connection found in a trace of TCP/IP headers from a production network link
is analyzed to produce a “connection vector” representation. The connection vector includes the
connection’s start time relative to the beginning of the trace and a series of request-response
exchanges found by their analysis tool. Each request-response exchange (called an “epoch”) is
described by a 4-tuple consisting of the request size (called the “a” unit size), the response size

(called the “b” unit size) and two latency values (called the “t” values) for the time between a

request and its response and for the time between successive request-response exchanges.
Unidirectional transfers have only an ‘a’ or ‘b’ value depending on the direction of transfer.

Our definitions and models for traffic generation in this dissertation derive heavily from this
work [HCO06]. Hence, a high level summary of the Tmix analysis and generation framework is
given in Figure 1. The first step in this process is to capture a trace of TCP/IP headers on any
production link. This trace is then processed to produce a set of connection vectors such that each
TCP connection in the trace is now defined by a unique connection vector. The Tmix traffic
generation tool takes as input this set of connection vectors and replays these connections to
produce traffic on the link such that its statistical properties match those of the traffic that was

originally captured.

1.3 Modeling TCP Connection Structure

In this dissertation, we used Tmix’s a-t-b-t model as a control for all our connection structure
models. We define connection structure for a TCP connection as modeled in two dimensions —
size and time. The size dimension defines the total number of bytes transferred by the connection
in both directions. The time dimension models the internal dynamics of a connection consisting
of any synchronization and latencies introduced by exchanges of application-level protocol data
units, typically in a request-response pattern as in a client-service model of communication. The
time dimension includes all the latencies related to synchronization between requests and
responses (modeling epochs), the elapsed time between a request and its response (server latency,
or intra-epoch latency) or between requests (client latency also called user thinktime, or inter-
epoch latency). In connections that send data concurrently in both directions, the time dimensions
represent the quiet periods between transmissions of application data units in either direction..

We represent connection structures in this study by starting with a simple model, based on

Harpoon [SB04], defining the connection structure in the size dimension alone. Consider a
connection that transfers a total of X bytes in one direction between endpoints and Y bytes in the
opposite direction over the duration of the connection. Harpoon would use two separate
connections for each original connection with a unidirectional transfer of all the bytes in a given
direction in a single block in each of the two connections. We modified this concept to use a
single TCP connection for each original connection, but with two different methods of
synchronizing the bidirectional data transfers. In both methods, all the bytes flowing in one
direction are sent as one large block without internal gaps or latencies. In one method the two
blocks are sent concurrently in both directions while in the other method the two blocks are sent
sequentially as a request-response exchange. We call the first method the block-concurrent (blk-
conc) model and the second method the block-sequential (blk-seq) model.

The three ways of representing connection structure described so far (Harpoon, block-
concurrent, and block-sequential) are all based solely on the size dimension of connections. To
introduce the time dimension, we turn to the representations exemplified by the Swing [VV(09]
and Tmix [HCO06] traffic generators. Using Tmix’s a-t-b-t framework, we can describe several
variations for representing connection structures. First, we retain the set of epochs representing
the request-response exchanges along with the a and b values for each epoch but without any of
the t values. This representation that we call the a-b model includes the time dimension only in
the implied synchronization between a request and its response.

Next, we define the a-t-b model in which the t represents the full latency between a request
and its response thus implicitly representing any server processing time. The full representation of
a connection, the a-t-b-t model, adds the latency between successive requests and thus any client
processing or user think times. Thus we start with only the size dimension to model a TCP
connection, and add in the time dimension creating six slightly different models for any TCP

connection. These are the Harpoon, blk-conc, blk-seq, a-b, a-t-b, and the a-t-b-t models.

1.4 Emulating Network Path Characteristics

In addition to experimenting with six models for representing connection structure for a TCP
connection, we ran experiments using seven different methods of emulating round trip times
(RTTs) in our experiments. All of these have either been used in, or are inspired by, previously
published work. For one extreme we first tried emulating no RTT latency (nodelay) beyond that
inherent in the laboratory network used in the experiments which is typically 1 millisecond or less
(reasonable for studying local networks but obviously wrong for wide-area emulation). At the
other extreme, we used the Tmix capability (called usernet) to emulate the specific minimum
RTT measured for each connection from the empirical analysis of the originally captured TCP/IP
header traces.

Between the nodelay and usernet RTT models, we developed five more models as follows.
First, we emulated a single non-zero value for all connections, using either the mean or median of
the RTTs found by analyzing all the several million connections in the TCP/IP header traces. The
“nodelay”, mean and median RTT cases all represent one method of assigning a single value to
all connections in the hour long experiment. This method of assigning connection RTTs
effectively emulates a single end-to-end network path for all the connections in the experiment.
We then created models emulating n network paths by assigning a specific round trip time delay
to each of the n end-to-end paths where n was 10 in one model and 30 in another.

The network used in this dissertation has a maximum of 30 pairs of traffic generator
machines. So, in one case, we assigned a unique emulated RTT to a path shared among three
pairs (a total of 10 end-to-end path RTTs). The values chosen for this case were the values
recommended for the TMRG common TCP evaluation suite [AMF+08]. In a second variation, we
assigned a unique RTT value for each of the 30 end-to-end paths between the 30 pairs of traffic
generator machines. In this case, we used a discrete approximation method to approximate the

empirical RTT distribution found from analysis of the traces.

10

Finally, we ran experiments using an RTT emulation method where a value was assigned per
connection to each of the several million connections in the experiment. In one case, we assigned
to each connection a value randomly sampled from a uniform distribution of RTT values. In the
other case, we used the Tmix method of assigning the specific minimum RTT for each connection
as observed in the originally captured TCP/IP header trace. Thus we used seven different RTT
emulation methods, three assigning values on a per-experiment basis (one RTT value for all
connections), two assigning values on a per-path basis and two more on a per-connection basis.

We ran experiments with the full cross product of six connection structures and seven RTT

emulations, and we report those results in Chapters 5 and 6.

1.5 Changing the Network Environment

We ran every experiment described above in two distinct environments in the network. First,
we set the link between the two routers in the unconstrained network mode where the link
capacity was unchanged at 1Gbps. Next, we set the link in constrained network mode where the
link bandwidth was limited such that the link capacity was 105% of the traffic traversing the link.
Setting constraints on this link enabled us to study the queue dynamics for the outgoing queue at

the router before this link. See Chapter 4 for details on network setup and topology.

We first ran all calibration experiments in unconstrained mode. Then we ran experiments
using the different connection structure models and RTT emulations in both unconstrained and
constrained modes to study the effect of changing the network environment on network
performance. We detail the results from these experiments and discuss the effect of the network
environment on the outcome of experiments in Chapters 5 and 6. Chapter 5 present results for a
complete set of experiments run in both network environments. Chapter 6 presents interesting,

additional results for experiments run in one or both network environments.

11

1.6 Using Two Input Traces

To ensure robustness of our results, we ran all our experiments using two input traces
collected at two diverse locations on the Internet. The first one from UNC was taken on the
border link connecting the campus to the Internet service provider network. The second trace was
taken at an aggregation switch for four internal networks, connecting one of IBM Corporation’s
largest development sites to the Internet. The UNC campus trace was a 1-hour trace on a weekday
during the school year. The IBM trace was also a 1-hour trace which was representative of typical
peak workday traffic on this corporate network. The UNC trace has almost 4.7 million
connections with an average load of 471 Mbps in one direction and 202 Mbps in the other. The
IBM trace has about 2.8 million connections with an average load of 404 Mbps in one direction

and 366 Mbps in the other.

1.7 Modeling Receiver Window Sizes

For all the experiments exploring connection structure models and RTT emulation methods,
we used Tmix’s model for assigning window sizes to the two ends of every TCP connection.
Each side of every connection was assigned the maximum receiver window size exactly as
measured through the analysis of the original trace. Hence, even when we modeled the simplest
connection structures like block-concurrent, we provided some inherent sophistication to the
overall traffic modeling by the assignment of measured receiver window sizes. Our decision here
was based on the idea that a system is best studied when adjusting one tunable knob at a time.
Hence we kept the window size for connections in these experiments the same as empirically
observed in the original header trace.

Besides the full suite of experiments using different connection structure models and different

RTT emulation methods, we ran experiments where the maximum receiver window sizes were

12

fixed for all connections as 8KB, 16KB, or 64KB, using only the control set combination of the
a-t-b-t connection structure and usernet RTT models. Results for these experiments are reported

in Chapter 6.

1.8 Thesis Statement

This dissertation is based on the following hypotheses:

The structure of application workload models (TCP connection structure) and
the characteristics of the network path through the emulation of Round-Trip-
Time (RTT) models, significantly impact the outcome of experiments. Such
impact can be quantitatively demonstrated through measurement of performance
metrics both by the user-perceived performance metrics of application behavior
as well as network-centric performance metrics at the routers and links in the

network.

In this dissertation, through extensive laboratory experimentation and analyses, we show how
specific modeling choices in traffic generation affect the outcome of the experiments in which
they are used. The outcome of any experimental evaluation depends heavily on the input to the
system — this is the garbage-in garbage-out concept. Based on the detailed study of the behavior
of standard TCP and its high-speed variants by many leading researchers as well as preliminary
laboratory experiments, my initial hypotheses was that the application workload and network path
characteristics applied as input to the research network testbed system heavily impact the
resulting application and network behavior. Within the realm of empirically-derived traffic
generation, my goal was to differentiate among different aspects of emulating application
workloads and network path characteristics, and show how they affect performance metrics both

at the network-level and the application-level.

13

1.9 Summary of Conclusions and Contributions

Through extensive experimentation using the Tmix traffic generation system as the basis for

running experiments on a laboratory testbed, we arrive at the following conclusions.

In an unconstrained network, regardless of the application workload model used,
or the input traffic used, round trip time had a significant effect on user
perceived performance measures of connection duration and response times, but

only up to a maximum of 1 second of the distribution for these metrics.

With no constraint on the link, we found that different round trip time models used in traffic
generation affect experimental outcomes differently. As expected, we found that different RTT
models resulted in different distributions of connection duration and response times. These
differences, however, were significant only up to about 500 milliseconds, or a maximum of 1
second of the distribution for these metrics. Beyond that, the RTT model has no effect on these

metrics.

RTT model had no impact on the humber of active connections (measured in 1

second intervals) in the network.

The number of active connections in the network is a second order measure of performance
and a key metric for many router protocol evaluations. It is directly affected by the durations of
connections in the network. Since the choice of RTT model affects the distribution of connection
durations only up to 1 second of the distribution, and since we compute a connection to be active
in one second intervals, this effect of RTT model on connection durations does not affect the

number of active connections in the network.

14

In a constrained environment, the smaller the median of the distribution of

connection RTTs, the heavier was the resulting queue distribution at the router.

When the router-to-router link is constrained, the different round trip time models used in
generating traffic alter the queuing dynamics at the router before the constrained link to slightly
different degrees. In such a constrained mode, some RTT models cause larger queuing delays
than others. For example, let us compare two experiments — one in which we used the usernet
RTT model which has thousands of connections with small RTTs (median RTT for this
distribution was 36 milliseconds), and the second in which we use one value of 80 milliseconds
as the RTT for all connections in the experiment (80 ms was the mean of the usernet RTT
distribution). We found that for a given connection structure model, using the usernet RTT model
resulted in the heavier queue length distribution because for a large number of connections, their
RTTs were smaller than the 80 ms RTT assigned to all connections in the meanrtt model. The

experiments using meanRTT resulted in relatively lighter queue distributions.

In a constrained environment, there were no differences in connection durations
or response times due to different RTT models for the block and a-b connection

structure models.

In an unconstrained environment, we observed clear differences in connection durations and
response times due to different RTT models for the block and a-b connection structure models.
However, in the constrained mode, the block and a-b models resulted in very heavy queue
distributions. This caused long enough queuing delays that almost completely masked the
differences in distribution of connection durations and response times among the three connection
structure models. The distribution of these metrics, however, had shifted heavily in the

constrained mode as compared to their corresponding unconstrained experiments. The only

15

connection structure for which RTT models still made a difference on these metrics in the
constrained mode was the a-t-b-t model. This is because the a-t-b-t model does not create as
heavy queues as the other connection structure models. Hence when using the a-t-b-t model, the
differences in connection duration and response times up to 1 second of the distributions were still

observed in the constrained mode.

Randomly assigning the same empirically derived round trip times to
connections, using the discrete-approximation RTT model, is almost as effective,
on an aggregate level in the unconstrained mode, as assigning each connection

its originally measured RTT using the usernet model.

We developed an approximation of the empirical RTT distribution from the usernet model;
we called the discrete approximation or the DA RTT model. We found that the DA model for
RTT emulation yields results for all metrics very similar to the usernet model in the

unconstrained mode, as shown in Chapter 6.

The differences in impact of the RTT model used in traffic generation, while
significant, become negligible when compared to the dramatic differences in
impact of the connection structure models used in the experiment.

We found that the application workload model or TCP connection structure has an even more
significant effect on all performance metrics than the RTT model used in traffic generation. The
two block structure models, representing TCP connections by their sizes alone, create
significantly different outcomes for all performance metrics as compared with the a-b model that
includes object size representation and synchronizations or the a-t-b-t model that includes object

sizes, the synchronization of objects, and endpoint latencies in its structure. As expected, we

16

found that connection durations and response times increased when epoch structure and endpoint
latencies were included in the connection structure model for traffic generation. Also, network-
centric measures like the number of active connections in the network increased dramatically as a

result of the increase in connection duration.

Unlike RTT models which affected connection duration and response times only
up to 1 second, the connection structure models affect these metrics significantly
in the body as well as the tail of the distribution for these metrics.

That is, the distributions for these metrics show significant differences for different
connection structure models not only for short connections, but also for very long connections
lasting the entire duration of the experiment. Why is this? We attribute this effect directly to the
fact that connection durations, while affected by connection RTTs, are most heavily affected by
the endpoint latencies, when they exist, within the connections. Number of active connections in
the network also goes up dramatically, by orders of magnitude, when using endpoint latencies in

the connection structures, as in the case (the a-t-b-t model).

In the constrained mode, the absence of endpoint latencies in the block structures
and the a-b model resulted in much heavier queues at the router, thus creating
counter-intuitively long durations and response times because of the second

order effects of queuing delay on connection duration and response times.

In the unconstrained mode, for example, using the block structures, the average connection
duration was much smaller than when using the a-t-b-t model. This is because the endpoint
latencies in the a-t-b-t model add to the duration of connections. However, in constrained mode,
the long queuing delays caused by the block structures added long delays to the connection
duration; so much so that the duration of connections was longer in some cases for the block

structures than for the a-t-b-t model.

17

The take away message, if there is to be just one, is that the time components of
traffic generation are as important, perhaps more so, than the size components.
That is, while it is important to emulate TCP connections by the size of the connections, it is
equally important to emulate them by their time components. These consist of the connection
RTTs, the sequential or concurrent nature of data exchanges within connections, and especially

the endpoint latencies measured for these connections.

For the bulk of connections in any experiment, window size assignment made no
difference in connection durations or response times.

For a small set of experiments using the control combination of the a-t-b-t connection
structure and usernet RTT models, we assigned a fixed window size of 8KB, 16KB, and 64KB
for all connections in an experiment. This results stated above is mainly because the bulk of
connections are small in size and hence unable to take advantage of the larger windows. For
connections carrying more than 1MB of data, however, we observed clear differences in these
metrics due to different window sizes. These connections performed better with larger window
sizes. While this is to be expected, it is noteworthy that in most Internet traffic, a small number of
connections is found to carry a relatively large percentage of the bytes. Hence for realistic traffic
generation, if those connections had larger window sizes in the original traffic, it is useful to
assign them those larger windows. Otherwise, these large connections may not complete in the

experiment.

1.10 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents related works with
some background and historical overview of traffic generation and empirical evaluations in

networking research. We discuss the three leading traffic generation systems used in empirical

18

research today. We also present some evidence in the literature that point to the need for studying
the effects of traffic generation models and path emulations for experimental methodology in
empirical networking research. Chapter 3 discusses the design of the various TCP connection
structure models in traffic generation used in this dissertation as well as the motivation for their
selection. We also present the details of all the RTT methods used in the dissertation and cite their
usage in published research wherever applicable. We present the detailed characteristics of the

UNC and IBM traffic used in this dissertation.

Chapter 4 presents the details of the network configuration and experimental methodology
used in this dissertation for running experiments. This chapter gives details of network setup and
how the experiments were designed and conducted. This chapter also presents results for the
control combination of connection structure model (the a-t-b-t model) and round trip time
emulation (the usernet method). Chapter 5 presents the main set of results for this study. We
present results for connection duration, response times, router queuing, and active connections in
the network. Note that the same set of results is presented twice in this chapter for clarity of
discussion. First we study the impact of the RTT emulation model; then we study the impact of
the application workload model. We discuss results using the UNC and IBM traffic in each of the

two network environments — unconstrained and constrained modes.

Chapter 6 presents additional results. In this chapter, we present results for other connection
structure and RTT models that we developed and experimented with. This chapter also presents
results for varying the receiver maximum window size of TCP connections, and discusses the

effect on the process of packet arrivals at the router for different connection structure models.

In Chapter 7, we discuss conclusions and future work.

19

CHAPTER 2

BACKGROUND AND RELATED WORK

A science is any discipline in which the fool of this generation can go beyond the
point reached by the genius of the last generation.

Max Gluckman

South-African born British social anthropologist (1911- 1975)

Experimental networking has evolved significantly over the last two decades, but it
remains a daunting endeavor. Throughout this time, traffic generation, a key component for
experimental networking, has remained a major challenge. What is traffic generation and what
role does it play in empirical networking research? Consider this example: you develop a new
Active Queue Management (AQM) scheme for routers on the Internet. AQM is a router-based
form of congestion control wherein routers notify end-systems of incipient congestion. The
common goal of all AQM designs is to keep the average queue size in routers small [LAJS07].
Before deploying this scheme in the wild (Internet), you must test it to ensure that it is better than
the existing queue management schemes on your routers. You do this by running experiments
using a laboratory network or a simulator.

To produce reliable results from your experiments, you must generate realistic network traffic
in your experiments. Why? Say, you use only long-lived FTP-like connections to test your new
protocol. While that is representative of some real connections on the Internet, it is not
representative of the mix of Internet traffic that will be managed by the router using your new

protocol in a production network. Hence, the traffic you generate in the lab or simulator must

represent a real mix of traffic on the Internet. So, how do you generate such realistic network
traffic? The state of the art in generating realistic traffic today consists of measuring traffic on a
real production link and using one of several methods to replay this traffic in the laboratory
network. In this dissertation, we use the Tmix traffic generation system to generate traffic in all

our experiments. We discuss Tmix and other related work in this chapter.

This chapter is organized as follows. In Section 2.1, we present a brief overview of the
network simulators and emulation facilities used by various networking research groups. This is
followed by a discussion of the evolution of realistic traffic generation in Section 2.2. In Section
2.3, we present three major traffic generation systems: Harpoon, Tmix, and Swing. In Section 2.4,
we present examples in the research that addresses the need to generate realistic background
traffic in networking experiments. In Section 2.5, we discuss some community efforts to promote
benchmarking tools for congestion control experiments, concluding with a Chapter summary in

Section 2.6.

2.1 Network Simulators and Emulation Facilities

Traffic generators are used in network simulators and emulators. Broadly classified,
networking experimentation is conducted in two experimental environments: simulation and
emulation. Emulation can be further classified into (i) controlled and repeatable experiments in a
laboratory, and (ii) live-Internet experimentation. In this section, we shall discuss examples of
each of these environments.

At first, the networking research community developed simulators targeted towards the very
narrow and specific goals of their projects. Then, from the strong belief that “a diverse set of
researchers using a standard framework increases the reliability and acceptance of simulation

results” [BEF+00] the effort to create the NS network simulator was born almost a decade ago.

21

More recently, several emulation testbed labs have been developed. These include the Emulab
[Emu], Wan-in-Lab [WIL], ModelNet [SN], and UNC’s NetLab [UNCnet] testbeds.

The most commonly used network simulator is the ns-2 [NS2] simulator, and ns-3 which is
its recently developed replacement. ns-3 is a discrete-event software simulator; that is, the
simulation state changes only at discrete points in time. It is a network simulator targeted
primarily for research and educational use. It is written in C++ and Python. It is easy to configure
and provides an environment for rapid prototyping and building. We use network simulators like
ns-2 and ns-3 because they provide complete control, repeatability, and ease of use. However, in
doing so, we also sacrifice many protocol implementation details and the realism that requires

using real hosts and network elements. Hence, let us discuss some leading emulation testbeds.

Figure 2.1.1: The Emulab Testbed [http://www.emulab.net/, 2010]

Emulab [Emu], at the University of Utah, is a network testbed, giving researchers a wide
range of environments in which to develop, debug, and evaluate their systems. A slice of this lab
facility is shown in Figure 2.1.1. Emulab is a networked PC cluster that provides a space- and
time-shared public facility for studying networked and distributed systems. Emulab tries to
transparently integrate a variety of different experimental environments. Historically, Emulab has
supported three such environments: emulation, simulation, and live-Internet experimentation.

More recently, they have expanded to a fourth environment, virtualized emulation. Emulab

22

allows for integrated experiments where they spatially combine real elements with simulated
elements to model different portions of a network topology in the same experimental run. This
enables new validation techniques and larger experiments than obtainable by using real elements

alone [GO5].

Figure 2.1.2: The WAN-in-Lab Testbed [http://wil.cs.caltech.edu/, 2010]

WAN-in-Lab [WIL], at The California Institute of Technology, is an experimental
networking testbed aimed at developing, testing and evaluating new communications protocols
and technologies. A slice of this lab facility is shown in Figure 2.1.2. WAN-in-Lab has a 1500-
mile long-haul fiber optic test bed, located in a single laboratory, to allow detailed control and
measurement. Initially built to aid FAST TCP research [WJLH06], WAN-in-Lab is now used for
a variety of networking research and is being equipped to provide a publicly available TCP
benchmarking facility. WAN-in-Lab includes a dynamically reconfigurable array of Cisco routers
interconnected via OC-48, Gigabit Ethernet (GbE) and 10 Gigabit Ethernet (10GbE) links, using
an optical switch. They provide a complement to existing testbeds (that use software for
emulating delays) by providing real propagation delay using spools of fiber and active real-time

monitoring. Their goal was to reproduce a real production environment more closely.

23

ModelNet [SN] at the University of California at San Diego, is a large-scale network
emulator that allows users to evaluate distributed networked systems in realistic Internet-like
environments. It is a software that can be used as part of a laboratory testbed as shown in Figure
2.1.3. With hundreds of applications deployed over the nodes, ModelNet enables them to behave
as if they were distributed all over the world. That is, it emulates actual packet delays, losses, and
throughput of packets flowing between the different instances of the application. There are
physical Emulator nodes that run ModelNet on FreeBSD machines, and virtual nodes running
applications on Linux machines as shown in the Figure 2.1.3. ModelNet also sets up routing
tables on the emulator nodes so that packets from two virtual nodes that are on the same physical

machine flow through the emulator thus enabling the emulation of a wide-area network testbed.

|Errl|-l:|s:s|

Sub-MNetwarks Irremal Backbors
Stub-Transit [Trarai-Tramnsl)

T
g

Eruiator Mode

Virual |Wirksl | Virual Wiriy Wirtusd

hode PMoic: o o]

0ot 10g0D2 003 IEIJF 10024

W

Figure 2.1.3: Modelnet in a Testbed [http://www.ics.uci.edu/~mayur/model-net-details.html]

So, far, we discussed some examples of simulation and emulation environments that provide
a controlled, repeatable, and in some cases realistic, systems framework for understanding, testing
and evaluating new and existing protocols and algorithms. The third experimentation

environment consists of running experiments in the wild; that is, running experiments on hosts

24

that are not isolated from the Internet, thus injecting experimentally produced traffic onto real
production network traffic. Planetlab is one such overlay testbed that provides real Internet

connectivity, and hence does not have the control and repeatability of isolated laboratory testbeds.

Figure 2.1.4: PlanetLab nodes across the globe [http://www.planet-lab.org/, 2007]

PlanetLab is a global research network that began in 2003. Researchers across the globe have
used PlanetLab to develop new technologies for distributed storage, network mapping, peer-to-
peer systems, distributed hash tables, and query processing. PlanetLab currently consists of 1,125
nodes at 511 sites as shown in Figure 2.1.4 [PL]. It is built as a consortium of academic,
industrial, and government institutions. Most of the PlanetLab machines are hosted by research
institutions, although some are located in co-location and routing centers (for example, on

Internet2's Abilene backbone). All of the machines are connected to the Internet.

All PlanetLab machines run a common software package that includes a Linux-based
operating system, mechanisms for bootstrapping nodes and distributing software updates, a

collection of management tools that monitor node health, audit system activity, and control

25

system parameters, and a facility for managing user accounts and distributing keys. The key
objective of the software is to support distributed virtualization—the ability to allocate a slice of
PlanetLab's network-wide hardware resources to an application. This allows an application to run
across all (or some) of the machines distributed over the globe, where at any given time, multiple
applications may be running in different slices of PlanetLab. One of PlanetLab's main purposes is
to serve as a testbed for overlay networks. Research groups are able to request a PlanetLab slice
in which they can experiment with a variety of planetary-scale services, including file sharing and
network-embedded storage, content distribution networks, routing and multicast overlays, QoS
overlays, scalable object location, scalable event propagation, anomaly detection mechanisms,
and network measurement tools. There are currently over 600 active research projects running on

PlanetLab [PL].

The advantage to researchers in using PlanetLab (or similar testbeds) is that they are able to
experiment with new services under real-world conditions, and at large scale. Of course, the
disadvantage is that it is difficult to clearly interpret the results. With far too many unknown and
uncontrollable variables when running experiments in the wild, it is challenging to draw
conclusions. Still, such experiments are valuable and serve an important purpose in empirical
networking research as follows. A new protocol could be quickly prototyped and tested for
viability in a simulation environment. Then an emulation facility could be used to conduct more
testing and evaluation of the protocol under controlled and repeatable network conditions.
Finally, before deployment on the Internet, overlay networks like PlanetLab could serve as a
confirmation testing platform enabling experiments in the wild, while still restricting the

deployment of the new protocol to the overlay hosts.

As the above emulation facilities have evolved, the most recent work in building such large-
scale networking testbeds has been an ongoing project called the Global Initiative for Networking

Infrastructure (GENI), started in 2005. Under the auspices of GENI, more sophisticated testbeds

26

have been developed, and successfully collaborated with many of the above mentioned labs to
incorporate some or all of their resources into several large-scale research testbeds. For example,
Emulab and PlanetLab have both collaborated with the GENI project. Emulab’s shared GENI
infrastructure is known as ProtoGENI. PlanetLab is now fully absorbed into the GENI project,
while there are projects like the SuperCharged PlanetLab that are building high-performance

overlays in the PlanetLab context.

2.2 Evolution of Realistic Traffic Generation

Each of the above mentioned testing and evaluation environments has different properties and
goals. However, a common challenge shared among all these environments is the generation of
synthetic traffic and the emulation of network path characteristics in experimentation. Floyd and
Paxson [FP01] outlined this problem in the course of declaring traffic generation to be one of the
key challenges in modeling and simulating the Internet. Their goal in discussing the difficulties of
simulating the Internet was to spur further work in these areas. In a possible response to their

challenge, several researchers have attempted to create workload models for traffic generation.

To understand the concerns raised by Floyd and Paxson, consider the simplest method of
generating realistic traffic on a single link in the laboratory. One might approximate realistic
traffic generation by injecting packets into the network such that the characteristics of these
packets are the same as that of the packets on some real link. This is packet-level traffic
generation and can be achieved in two ways. Either we reproduce the exact sizes and arrival
times of every observed packet, or we inject packets into the network such that they preserve
some set of statistical properties relevant to the experiment. For example, the packet and byte
throughput on the link in 10 millisecond intervals, or the inter-arrival times of these packets could

match these same characteristics on some real production link. Such packet-level replay is a

27

straightforward technique that is useful for certain types of experiments. For example, packet-
level replays have been used to evaluate cache replacement policies in routing tables [Jai90,
Fel88, GcCO02]. In these experiments, the traffic generated need not respond to the changes in the
network. That is, evaluating these policies in the routing tables does not depend on the traffic

responding to changes in the policies.

Packet-level traffic generation, however, has two important shortcomings: it is inflexible and
it is open-loop. First it is inflexible because there is no way to introduce variability in the
experiments. For example, once we acquire a trace, we inject packets into the network to match
some characteristics of that trace, as explained above. What if we wished to change packet sizes,
or use a different throughput on the link? These are clearly not options available with packet-level
traffic replay, other than acquiring a collection of traces and using a different trace (to match the
characteristics we need) in different runs of the experiments. Such traffic generation paradigm is

simply too cumbersome and impractical for running a large set of experiments [HCO06].

Second, packet-level traffic generation is straightforward. However, since the traffic we
replay in our experiments consists of all TCP connections, replaying them in an open-loop
manner in the experiments means that we would not preserve the feedback loop that existed
between the original sources of the traffic (the endpoints) and the network. TCP is a closed-loop
transport protocol. The rate of data transfer is dependent on flow control and congestion control.
Flow control is the mechanism used to impose a limit on the maximum sending rate of the
sending endpoint. Hence a TCP sender endpoint cannot have more than a maximum, called
receiver maximum window, of bytes outstanding (unacknowledged by the receiver endpoint) in
the network. Also, the sending rate is limited by a mechanism called congestion control, a set of
algorithms at the sender and receiver that react to implicit and explicit feedback from the
network. This feedback loop enables the endpoints to react to network congestion. This is

important because such reaction itself can change the conditions in the network, thus triggering

28

changes in the behavior of the endpoints. For example TCP traffic reacts to congestion in the
network by lowering its sending rate, which is turn decreases congestion. Packet-level replay,
however, would not react to changes in the traffic. Therefore, packet-level replay would not be

useful in experiments studying the effect of network changes on protocol performance.

Floyd and Paxson strongly urged against open-loop packet-level modeling, and
advocated modeling the sources of traffic instead [PF95]; that is, modeling the application
behavior at the endpoints. For example, they argued, individual FTP connections between
endpoints (sources) must not have a constant rate. Each packet must be sent only after a TCP
source receives an acknowledgement for an earlier packet. And if there is congestion in the
network, then an FTP connection must vary its sending rate depending on the TCP congestion
control window. Also, whether or not there is congestion in the network, different FTP
connections will have different average rates, depending on such factors as the TCP window and
packet sizes, the connection’s roundtrip time, and the congestion encountered in the network.
Capturing such application-level interactions and reactions to changing network conditions is

essential for realistic traffic generation.

Application workload models are used on top of network stacks which implement flow
control and congestion control mechanisms which enable the traffic to react to changes in the
network conditions. Such models produce a closed-loop traffic generation system which is more
realistic. Early application workload models were infinite source models. The infinite source
model is inherently unidirectional. That is, for each TCP connection, the sender-receiver pair of
generators opens a connection; then the sender constantly sends data packets while the receiver
constantly receives or reads these packets. This was a simple model with no parameters and hence
was quite popular in leading studies for a number of years, including the mathematical analysis of

steady-state TCP throughput [PFTK00, BHC+04]. Most long-lasting FTP connections could be

29

represented by this model. This was “realistic” because these FTP connections behaved like real
FTP connections on a production link.

The rapid growth of the web drastically changed traffic characteristics on network links so
that short (small) request-response exchanges dominated the type of connections on these links.
As a result, it was no longer appropriate to use the unidirectional infinite source level model to
represent the applications using network links. Such modeling was now unrealistic because most

network traffic was found to be bidirectional.

The advent of the web led to attempts by several research groups to model the
conversations between web browsers and web servers. One such effort at Boston University led
to the development of the SURGE (Scalable URL Reference Generator) model of web traffic
[BCI8]. The SURGE model describes the behavior of each user as a sequence of web page
downloads and thinktimes between downloads. Each web page download consisted of one or
more web objects downloaded from the same server on one TCP connection. Surge models the
following components: (i) server file size distribution, (ii) request size distribution, (iii) relative
file popularity, (iv) embedded file references, (v) temporal locality of reference, and (vi) idle
periods of individual users.

Each component was further modeled by a distribution of values observed for that
component. Thus, the empirical distribution for each component was represented analytically. For
example, they used the Pareto distribution for modeling the sizes of downloaded objects, and
Zipf's law for modeling the popularity of specific pages. Thus, SURGE provided parametric fits
for each of the components of the model, heavily relying on powerlaws and other long-tailed
distributions.

A model of web traffic contemporary to SURGE was also presented by Mah [Mah97]. It
described web traffic using empirical CDFs which were derived from the analysis of packet

header traces. They captured traffic on a production link and filtered only HTTP traffic. They

30

modeled the HTTP traffic using parameters of Web client behavior, such as file sizes and think
times. They developed empirical probability distributions from those traffic traces to describe
various components of the Web client behavior. They then used these distributions to determine a
synthetic workload. These components were: HTTP request length, HTTP reply length, document
size or number of files per document, think time or time between retrieval of two successive
documents, number of consecutive documents retrieved from any given server, and server
selection — the parameter used to select each succeeding server accessed. At the lowest level, their
model deals with individual HTTP transfers, each of which consists of a request-reply pair of

messages, sent over a single TCP connection.

2.3 Current Traffic Generation Systems

Most of the work in workload generation during the 1990s, including the ones we have
discussed so far, focused on one or a limited set of application protocols such as FTP, Telnet, and
SMTP [Pax94], HTTP [BC98] [Mah97] [CCG+04] [LAJS07], and some forms of multimedia.
The obvious limitation of these approaches is that real links carry a continuously evolving mix of
a number of different applications. While Paxson and Floyd introduced the concept of using
source models of individual connections to generate traffic for simulations, they also cautioned
that simulating each individual source can be prohibitively expensive in terms of processing time,
for many current simulators, because a highly-aggregated Internet link consists (today) of many

thousands of simultaneous connections [FPO1].

Solid, high-level descriptions of aggregate traffic, and simulation models of
aggregate traffic that faithfully reproduce the response of the aggregate to

individual packet drops (or to other indications of congestion), would be a great

31

help to researchers in exploring large-scale simulations. But, so far, such

abstractions are beyond the state of the art. [Floyd and Paxson, p. 398, 2001]

That was in 2001. Today’s state of the art traffic generation systems like Tmix have indeed

achieved this goal.

In this section, we discuss three such application workload models used in realistic traffic
generation systems. They are the Harpoon model, the Tmix a-b-t model, and the Swing model.
The Harpoon [SB04] traffic generator was a landmark contribution in such application workload
modeling and traffic generation, because it first addressed the issue of representing a complete set
of applications empirically using both TCP and UDP transport protocols without specific
knowledge of application protocols or port usage. Swing [VV09] and Tmix [WAHC+06] are also
empirically based approaches (using tcpdump packet header traces) to represent and generate
workloads for the complete set of applications using a given network link. Both Swing and Tmix
depart from the Harpoon approach by using the additional information available in a packet

header trace to represent the internal dynamic structure of connections or flows.

In the rest of this section, we discuss these three leading traffic generation systems.

2.3.1 The Harpoon Model

The Harpoon modeling process was empirically based using easily obtained NetFlow records
for all the connections/flows traversing a given network link. Harpoon fundamentally represents
a connection or flow by its source-destination IP address pair, its relative start time, and the total
number of bytes transferred independently in each direction between source and destination
endpoints, as seen at a router. The Harpoon traffic generator [SB04] takes a router Netflow trace
and generates representative packet traffic at the IP flow level. Sommers et al. define an IP flow

as a unidirectional series of IP packets of a given protocol traveling between a source and a

32

destination IP/port pair within a certain period of time. Netflow data includes source and
destination AS/IP/port pairs, packet and byte counts, flow start and end times, and protocol
information. Harpoon uses this data to generate TCP and UDP packet flows that have the same
byte, packet, temporal (diurnal effects associated with traffic volume) and spatial (vis-a-vis IP

address space coverage) characteristics as measured at routers in live environments [SB04].

The Harpoon flow model, as shown in Figure 2.3.1 has a two level architecture: connection
level and session level. Each “connection” is defined by its file size transferred, and inter-
connection time, or time between file transfers. Harpoon connections are 5-tuple flows: source IP
address, destination IP address, source port, destination port, and protocol. Harpoon sessions are
divided into either TCP or UDP types that conduct data transfers using the respective protocol
during the time that they are active. The sessions are 3-tuple flows: source IP address, destination

IP address, and protocol.

session level 1
sessions are analogous to

canonical three-tuples: number of active sessions
<IP source, IP dest, protocol> ¥ : H A is modulated to achieve
""""" desired volumes

. " source and destination addresses
connection level ! T T | are assigned to active sessions to

obtain desired spatial distribution

connections are analogous
to canonical five-tuple flows:
<P source, IP dest, protocol,
source port, dest port>

blocks represent
individual files

inter-connection times

Figure 2.3.1: Harpoon’s two-level hierarchical traffic model [Barford and Crovella, p. 70, 2004]

The session level has two components: the number of active sessions and the IP spatial
distribution (IP address space coverage). By modulating the number of sessions that are active at
any point in time, Harpoon can match the byte, packet, and flow volumes every five minutes from

the original data and realize the temporal (diurnal) traffic volumes. Five minutes also happens to

33

be the interval over which flows are aggregated by NetFlow [Netflow]. The intent and domain of
Harpoon is to create necessary volumes over longer time scales to produce self-similarity and

diurnal patterns in a way that real application traffic is generated.

Parameters Description

Prilesize Empirical distribution of file sizes transferred.

Empirical distribution of time between consecutive TCP connections

InterConnection initiated by an IP source-destination pair.

PP Ranges @Nd Ranges of IP addresses with preferential weights set to match the empirical
PP Rangesest frequency distributions from the original data.

The distribution of the average number of sessions (IP source-destination
pairs) active during consecutive intervals of the measured data. By
modulating this distribution, Harpoon can match the temporal byte, packets
and flow volumes from the original data.

I:’ActiveSessions

Time granularity over which Harpoon matches average byte, packets and

IntervalDuration
flow volumes.

Table 2.1: Summary of Harpoon Configuration Parameters for TCP Sources
[Barford and Crovella, p. 72, 2004]

Thus, the Harpoon model, as summarized in Table 1, is made up of a combination of five
distributional, empirically-derived, models for TCP sessions: file size, interconnection time,
source and destination IP ranges, and number of active sessions. The interval duration parameter
was set to five minutes for all their experiments. For UDP packet transfer, Harpoon contains three
distributional models: a simple parameterized constant packet rate, a fixed-interval periodic ping-
pong, and an exponentially distributed ping-pong. The first source type is similar to some audio
and video streams, while the latter two types are intended to mimic the standard Network Time

Protocol (NTP) and Domain Name Service (DNS), respectively.

While the Harpoon traffic model was a major breakthrough in empirically derived source
modeling, it has its drawbacks. Most importantly, they model the size dimension of application

models, completely ignoring the time dimension. As we demonstrate using our results in Chapter

34

5, the time dimension in application workloads plays a major role in the outcome of experiments.
Furthermore, the Harpoon model discards “ACK” flows or flows that are very small, for example,
request direction for an HTTP transfer. They also use only complete connections, discarding all
incomplete connections, that is, connections for which one or more of the initiation or termination
markers (SYN, or FIN/RST) was not recorded in the Netflow logs. The Harpoon model recreates
aggregate trace characteristics without reproducing wide-area network conditions. That is, they
do not reproduce connection round trip times, receiver maximum window sizes or loss rates seen
on the network. Despite these drawbacks, the Harpoon traffic generator was a landmark
contribution because it addressed the issue of representing a complete set of applications using
both TCP and UDP transport protocols without specific knowledge of application protocols or

port usage.

2.3.2 The Tmix a-b-t Model

Tmix [WAHC+06], like Harpoon, is also an empirically based approach (using tcpdump
packet header traces) to represent and generate workloads for the complete set of applications
using a given network link. But Tmix departs from the Harpoon approach by using the additional
information available in a packet header trace to represent the internal dynamic structure of
connections or flows as follows. Tmix uses inferences about TCP sequence and
acknowledgement number exchanges in a packet header trace to characterize connections as
sequences of request-response exchanges between endpoints. The request-response exchanges for
a connection are represented by the number of exchanges, the amount of data in each direction
per exchange, and the elapsed time between a request and its response (“server” or intra-epoch

latency) or between requests (‘“user” or inter-epoch latency).

This model allows one to faithfully reproduce the essential pattern of socket reads and writes

that the original application performed without knowledge of what the original application

35

actually was. In [HCO06], the author describes Tmix and demonstrates how the generated traffic
displays all the key characteristics of the original captured trace. In addition to the details of
request-response exchanges, Tmix reproduces the relative start time, RTT, receiver maximum
window size, and loss rate for each connection found in the original tcpdump from a production

link.

Thus, starting from a trace of TCP/IP headers collected on a production network, Tmix
constructs a model for all the TCP connections observed in the network. The model, a set of a-b-t
connection vectors, can be used in the workload generator of Tmix to generate the connections
and reproduce the application-level behaviors observed on the original network link. The a’s and
b’s are application data units (ADUs) as recorded from the original captured trace, and the t’s are
the intra-epoch and inter-epoch quiet times within a TCP connection. Modeling as ADUs allows
the TCP stack to deal with packetizing, so that inter-packet time is actually not captured, just

inter-ADU time is represented.

The a-b-t model is used to generate TCP workloads only. A major contribution of this work is
that it identifies a fundamental dichotomy in application behavior between connections that
exchange data sequentially and those that exchange data concurrently. These two types of
connections are shown in Figures 2.2.1 and 2.2.2. Each TCP connection is represented as a
connection vector, and every request-response-time sequence is called an epoch within the
connection. An epoch represents the abstract characterization of a request/response exchange.

Thus every connection consists of one or more epochs.

36

Epoch1l Epoch 2 Epoch3

A A A
4 Y Y A\

a, bytes a, bytes a; bytes
Connection |:| | : I:I .- I:I .
initiator o R | B Time
Connection Lo ' . l:l |
acceptor . ! b i Lo
\ | b;bytes L by . P

bytes | . | bsbytes

YN v Y

ta; ms tb,ms ta,ms tb, ms ta;ms

Figure 2.3.2: An a-b-t diagram illustrating a persistent HT TP connection (sequential)

ta; ms ta, ms
f_*ﬂ A
| 0 B
a, bytc:és azibytc:és 103 bytes
Connection | | | | I
initiator Time
Connection I | I | |
acceptor 1o ! .
b, bytes | | b,bytes | bsbytes
tb; ms tb, ms

Figure 2.3.3: An a-b-t diagram illustrating a concurrent connection

Unlike Harpoon’s model, Tmix’s a-b-t model is a non-parametric model. Harpoon uses
distribution-based models parameterized from analysis of empirical data that are then used with
random sampling methods to generate statistically representative workloads in laboratory

networks. Tmix, however, emphasizes faithful replays in the laboratory using derived details

37

about each connection to create a replay trace that is used to initiate operations at the socket level
to generate workloads. It also offers a method to scale offered loads by sampling the original
trace, thus offering huge flexibility in creating modified datasets of workloads resembling the real
Internet traffic for specific evaluations on testbeds [HCO06]. This method enables the researcher to
introduce controlled load variability in the source-level trace replay experiments without

sacrificing realistic workload modeling.

Tmix is a highly flexible traffic generation system and the a-b-t model provides a basis for
comparing traffic generation methods for our study. Tmix, like the other systems, has its
drawbacks. First, it does not emulate UDP flows. Second, Tmix does not account for any
correlation among start times of TCP connections; that is, it does not model the sessions that

Harpoon and Swing model on top of the connection model.

The Tmix method of traffic generation works as follows. Given a packet header trace, the
trace is analyzed and described as a set of connection vectors. Each connection vector describes
the application-level behavior of one of the TCP connections in the trace. In addition, each vector
includes the relative start time of each connection, and its measured minimum round trip time, the
TCP receiver window sizes, and loss rate. The basic approach to generating traffic is to replay
each connection vector. For each connection, the replay consists of starting a TCP connection,
carefully preserving its relative start time, and reproducing ADUs and inter-ADU quiet times.

[HCO6].

2.3.3 The Swing Model

Swing [VV09], like Tmix, is a closed-loop, network-responsive traffic generator that
accurately captures the workloads from a range of applications using a simple structural model.

But Swing, unlike Tmix or Harpoon, advocates a common parameterization model for various

38

application classes instead of grouping them all together. Starting from observed traffic at a single
point in the network, Swing automatically extracts distributions for user, application, and network
behavior. It then generates live traffic corresponding to the underlying models in a network
emulation environment running commodity network protocol stacks, generating traces that are
statistically similar to the original traces. They extract and assign the following network

characteristics: link delays, link capacities, and loss rates.

Swing develops a session model on top of the connection model of Tmix. Swing includes
characterizations of the user and session interarrivals which implicitly determine the connection
start times. Swing defines request-response exchanges as RRES, where a base request for a web
page accompanied by several image downloads as part of that request and all its responses are
considered part of the same RRE, and as different connections within the same RRE. It could
amount to parallel or simultaneous connections. Connections are part of the same RRE if the
SYN of a new connection is within an RREtimeout of 30 seconds of the previous connection from
the same IP address. If not, then this connection is a new RRE. However, if this new RRE is from
the same IP address pair, and if its SYN is within a session timeout period of 5 minutes, then it’s a
new RRE in the same session as the previous RRE. If it’s beyond the 5 minute session period,

then a new session has started.

So, the structural model of Swing, as shown in Table 2, is as follows: each session consists of
a number of RREs, which in turn consist of a number of protocol connections. Hence their
structural model consists of users, sessions, connections, and network characteristics. For each
HTTP session, for instance, they pick a randomly generated value (from the corresponding
distribution) for each of the variables. First they pick a client and then decide how many RREs to
generate along with their interRRE times. For each RRE, they decide how many parallel

connections (separated by interConn times) to open and to whom (server). Within a connection

39

they decide the total number of request-response exchanges along with the request sizes, response

sizes, and the request think time (reqthink) separating them.

Layer Variable in the parametrization model: Description

Users ClientIP, numRRE: Number of RREs, interRRE: think time

RRE numconn: number of connections, interConn: time between start of
connections

Numpairs: number of request-response exchanges per connection,
Transport: TCP/UDP based on the application, ServerIP, Response Sizes,

Connection Request Sizes, reqthink: user think time between exchanges on a
connection

Packet packetsize, MTU, bitrate, packet arrival distribution (only for UDP)

Network Link latency, Delay, Loss rates

Table 2.2: Swing’s structural model of traffic [Vishwanath et al., pg. 715, 2009]

Swing emulates the network path using ModelNet. Every packet is routed to a single
ModelNet core. Swing generates traffic that matches the burstiness of the original traffic for both
bytes and packets in both directions. They have shown this to be true for a variety of individual
applications and original traces at a range of speeds and taken from a variety of locations. The
generated traffic also matches burstiness of the packet arrival process of the original trace at a
variety of timescales ranging from 1ms to multiple minutes. Their metrics for success in traffic
generation are realism, responsiveness, and maximally random traffic generation. This last metric
calls for a traffic generation tool to be able to generate a family of traces constrained only by the
target characteristics of the original trace and not the particular pattern of communication in that
trace. While Tmix strove to generate traffic that was the same as the original traffic, the authors
of Swing clearly declare that they want their generated traffic to be “representative” of real traffic
and not necessarily the same as the real traffic. Thus Swing was designed to allow

experimentation with changing loads and application characteristics. It also allows estimation of

40

experimental variation by generating random instances of traces using different random number

seeds.

While Swing is also a highly flexible traffic generation system, it has two major drawbacks.
Swing is not application independent like Tmix and Harpoon. Given a packet header trace, they
first assign packets and flows to application classes, based on destination port numbers. For those
applications with port numbers that cannot be classified, there is an “other” application class.
They start with a set of parameters for each application and add in more parameters as needed.
This may not be scalable as applications change constantly. However, their argument for doing
this is that they can then change the characteristics of the generated traffic in terms of applications

represented in the traffic. And like Harpoon, Swing does not use incomplete connections.

In summary, the researchers that developed the Harpoon, Swing, and Tmix workload
generators reported extensive validations to show that the resulting synthetic packet-level traffic
on an emulated network link was a realistic or faithful reproduction of the traffic seen on a real-
world network link. To the best of our knowledge, however, ours is the first research that
explores in detail the effects of using different models of application workloads and path

characteristics on various metrics of network performance in a realistic network environment.

2.4 Does Traffic Modeling Matter?

Besides the work that has produced realistic application workload modeling and traffic
generation tools over the last decade, there have also been a few attempts to show that simply the
presence of background traffic (realistic or not) makes a difference in the outcome of the
experiments. For example, in [VVO08], the authors show that realistic background traffic matters
in experimental evaluations of distributed systems, and that simple models like CBR and Poisson

are insufficient. Another example is in [HLRX07] where the authors make observations about the

41

effects of background network traffic for TCP protocol evaluations.

In his dissertation [Le05], Long Le shows that the results for response times using different
Active Queue Management (AQM) schemes changes dramatically when a different RTT
distribution was used. And in [JRF+01], the authors illustrate how variability in network traffic
affects buffer dynamics in IP routers. In the rest of this section, we discuss these four research

projects more closely.

2.4.1 Does Background Traffic Matter?

In [VVO08], the authors make the point that simple models of background traffic, such as
constant bit rate, Poisson arrivals, or deterministic link loss rates are insufficient to capture the
effects of background traffic on applications. They contend that we require more complex
background traffic models that capture the burstiness on a particular network link. Traffic models

that drive tools like Tmix, Harpoon and Swing are based on this idea.

In this paper they show that in order to evaluate distributed systems and networked services
in a realistic manner in an experimental testbed, a key ingredient to model correctly is
background traffic. They study the impact of background traffic on three applications - web
traffic, multimedia traffic, and bandwidth estimation tools. Also, they use four different methods
of generating background traffic. They employ constant bit rate (CBR), Poisson model, TCP
replay, and Swing. Swing is the only one among these that uses a real trace and generates TCP
traffic using stacks on the end-systems. Hence the resulting background traffic using Swing is

responsive.

How does this paper relate to the work in this dissertation? They show that realistic traffic
matters in experimental evaluations, and that simple models like CBR and Poisson models are

insufficient. We move further beyond this idea — we show that even within the realm of realistic

42

traffic models, some aspects of the structural model matter more than others, depending on what
is being evaluated. For example, preserving the request-response exchanges within TCP
connections affects router queue dynamics, but modeling the inter-epoch times between these
request-response exchanges within TCP connections has an even greater effect on router queue

dynamics and number of active connections in the network.

2.4.2 Impact of Background Traffic on High-Speed TCP Performance

In [HLRXO07], the authors examine the effect of background traffic on the performance of
existing high-speed TCP variant protocols, namely BIC-TCP, CUBIC, FAST, HSTCP, H-TCP
and Scalable TCP. They demonstrate that the stability, link utilization, convergence speed and
fairness of the protocols are clearly affected by the variability of flow sizes and round-trip times
(RTTs), and the amount of background flows competing with high-speed flows in a bottleneck
router.

For all their experiments, they use dummynet to assign a per-flow delay. The delay is
randomly selected from a distribution obtained from [AKSJ03]. For background traffic, they use
Iperf to generate long-lived flows and SURGE to generate short-lived flows. They randomly
sample from a distribution of file sizes the amount of data (flow size) to be transferred in each
web session. This distribution consists of a log-normal body and a Pareto tail. As an example, for
background traffic, they use 12 long-lived flows and SURGE-generated web traffic with 70%
body and 30% tail. The minimum file size of the Pareto distribution is IMB. The arrival time of
flows follows an exponential distribution with intensity 0.6.

Their experimental results include evidence that the presence of some background traffic
affects TCP-friendliness. TCP-friendliness is defined to be the fairness of a high-speed flow in
sharing bandwidth with another TCP-NewReno or TCP-SACK flow over the same end-to-end

path. They do not restrain the maximum window size of TCP-SACK. Their experimental results

43

with no background traffic indicate that with very low RTTs, the TCP-friendliness of H-TCP is
the best. All protocols improve their TCP-friendliness at varying degrees when some background
traffic is added. Among all the protocols tested, BIC-TCP and STCP show the biggest
improvement. There is also significant improvement in the TCP-friendliness of CUBIC under
some background traffic.

How does this paper relate to the work in this dissertation? They show that the presence of
any background traffic, as opposed to no background traffic, affects certain TCP fairness metrics.
While their goal is notable — showing that background traffic matters in protocol evaluation —
their traffic is statistically modeled and their methodology for traffic generation lacks the

aggregation levels needed to make their case for realistic traffic generation.

2.4.3 Investigating the Effects of Active Queue Management on TCP

Performance

In his dissertation [Le05], Long Le investigates the effect of active queue management on the
performance of TCP applications. This study involves a thorough evaluation of the leading AQM
algorithms, including PI, REM, and ARED, comparing them with the prevalent drop-tail queuing
in routers. As part of this study, Le, using the same application workload but two different RTT
distributions, shows that there are pronounced differences in the response time behavior for
almost every AQM scheme using the two RTT distributions. Figure 2.4.1 shows results using
uniform RTT distribution U[10,200] whereas Figure 2.4.2 shows results using an empirical RTT

distribution [AKSJO03].

All the distributions for response times, other than the one labeled uncongested network are
results for experiments with 98% offered load of web traffic. Even the response time CDF

(cumulative distribution function) for the uncongested network is quite different for the two

44

different sets of experiments. With uniform RTT distribution, in an uncongested network, 97% of
response times are 500 ms or less, whereas with a more general RTT distribution, only 73% of
response times are less than 500ms. When a uniform distribution of RTT was used, there was a
pronounced difference in the perceived performance of the different schemes. That is, DCN was
clearly the best AQM scheme, followed by PI and REM, then BLUE, ARED and drop-tail in that

order. The performances of the last three AQM schemes were significantly worse than the top

three.
100 T 5 100
/e/& =
M I
80 ’// e 80 Wwﬁé‘«u
S X,_/—X, S
=R 5 60 ps
Q Q
o o
(=% (=%
S / /// S /f%{{
E 40 E 40
g Uncongested network — + g
=1 drop-tail - glen=240 X S Uncongested network ~ +
© PIECN - qref=24 x © drop-tail - glen=240 x
20 - REM/ECN - qref=24 o]| 20 - PI/ECN - qref=24 x|
BLUE/ECN - qref=500 m REM/ECN - gref=24 &
DCN - gref=24 o DCN-qgref=24 =
o AREP/ECN new gem‘le - min=120 ma‘x:360 . o ARED/EF:N new gentle - ‘thmin=120 thma‘x:360 [o}
0 500 1000 1500 2000 0 500 1000 1500 2000
Response time (milliseconds) Response time (milliseconds)
Figure 2.4.1: Response Time —uniform RTT Figure 2.4.2: Response Time —empirical RTT
Comparison of all AQM algorithms at 98% load Comparison of all AQM algorithms at 98% load
[LeO5, Figure 4.112, p. 139] [LeO5, Figure 5.54, p. 187]

All else being the same, when the RTT emulation is changed to an empirical, non-uniform
distribution, there is virtually no difference among DCN, PI and REM, and though not as good,
both ARED and drop-tail are comparable in performance to the other schemes. Also, each of
these AQM schemes performed better when using uniform RTT distribution than when using the
general distribution. Although this study about comparing AQM performance also shows that
RTT distribution matters for performance evaluations, it does not shed light on what aspects of

the RTT model matters, nor does it investigate various RTT models.

45

How does this study relate to the work in this dissertation? Such studies could strongly
encourage or discourage router manufacturers and network administrators from turning on a new
queuing algorithm or changing the default TCP congestion control mechanism on the end
systems. Hence this only underscores the importance of investigating and developing standards
for traffic generation and network emulation. That includes exploring the choice of application
workload and network path characteristics in experiments and studying how such choices
influence the outcome of these evaluations. Such examples serve to emphasize and underscore
our hypothesis that application workload models and network path characteristics greatly

influence protocol performance.

2.4.4 TCP/IP Traffic Dynamics and Network Performance

This paper [JRF+01] highlights the extent to which assumptions underlying the nature of
network traffic can influence practical engineering decisions. Using a simple network
configuration of a web server and its clients in the ns2 network simulator, they run experiments to
illustrate two points. First, by either implicitly accounting for or explicitly ignoring some aspects
of the empirically observed variability of network traffic, a range of different, and at times
opposing conclusions can be drawn about the inferred buffer dynamics for IP routers. Second,
TCP’s feedback-based congestion control is a possible contributing factor to the observed
variability of measured TCP/IP traffic over small scales, in the order of RTT.

To show evidence for their first point, they create variability in the workload model as
follows. On one end of the spectrum of variability, they use 50 infinite sources that always have
data to transfer, thus creating the no variability mode. On the other end of the spectrum, they
generate purely web workloads similar to SURGE. The main idea behind these Web workload
models is that during a Web session, a user typically requests several Web pages, where each

Web page may contain several Web objects, thus emulating high variability in file sizes. To show

46

evidence for their second point about the TCP feedback loop, they compare the results from
simulations using closed loop and open loop traffic generation.

How does this paper relate to the work in this dissertation? They admit that their network
setup and experiments are unrealistic and oversimplified. But through experimental evidence,
they emphasize the risk associated with then conventional analysis and simulation of large-scale
networks. The risk concerns the wide-spread tendency to rely on and use “a model simplified to
the point where key facets of Internet traffic have been lost, in which case the ensuing results are

useless (though they may not appear to be so!).” [Paxson and Floyd, p. 1043, 1997].

2.5 Community Efforts Toward a Benchmark for TCP Evaluation

There are currently no standards or benchmarks for protocol evaluation. However, there has
recently been interest in the community toward developing better practices for such
experimentation. In Time for a TCP Benchmark Suite? [WCLO05], the authors make one of the
first cogent arguments for the need for a TCP benchmarking system. They propose a benchmark
consisting of a set of network configurations (topologies and routing matrix), a set of workloads
(traffic generation rules), and a set of metrics. The benchmark would have two modes: NS

simulation mode, and hardware experiment mode.

More recently, Floyd and Kohler document in their 2008 Internet Draft (“Tools for the
Evaluation of Simulation and Testbed Scenarios”), that there has been some effort to formulate
evaluation scenarios specific to congestion control experiments. At the same time, there has been
increased awareness and consensus among networking researchers for the need to create a
common TCP evaluation suite. One of the key components of such a suite would be traffic
generation. In [AMF+08], the authors create a case for a common evaluation standard for TCP

evaluations. This paper does not present any results of experimentation, but acts as a powerful

47

catalyst for discussions on this topic. There is also a related and ongoing effort by the “Transport
Modeling Research Group” [TMRG] to come up with a consensus for a baseline standard for
protocol evaluation. This effort, however, is simply to come up with a consensus, and use that for

testing. It does not itself present any experimental results.

While all these efforts are making, albeit small, progress towards benchmarks for TCP
evaluations, none of them venture toward the much larger goal of benchmarks for empirical

research in networking. This dissertation is a step in that direction.

2.6 Chapter Summary

The above examples (in Sections 2.3, 2.4, and 2.5) are papers or dissertations published
within the last few years. There is still no consensus about generating realistic workload models
as background traffic in networking research. All of these studies differ from the work in this
dissertation significantly, in that we move past the debate of whether or not background traffic
matters. Our questions are about the underlying structure of the workload model used in such
traffic, and the emulation of path characteristics in such experiments, for network performance.
We show, through extensive experimental evidence, how the choices made in both workload
modeling and network path characteristics strongly affect network performance for a set of

performance metrics.

48

CHAPTER 3

WORKLOAD MODELING AND TRAFFIC GENERATION

Building a large packet-switching network is easy; understanding the behavior of
traffic in a large packet-switching network is nearly impossible.
Douglas Comer [CO08]

In this chapter, we present two main topics: traffic characteristics of the input traffic used in
this study, and the models developed for this traffic to represent the application workloads and
network characteristics. This chapter is organized as follows. In Section 3.1 we give detailed
analyses for the traffic characteristics of the two sets of input traffic mixes — UNC and IBM - that
we use as input for all our experiments for traffic generation. In Section 3.2 we discuss the Tmix
traffic generation system used for all our experiments in this study. In Sections 3.3 and 3.4 we
develop the six different connection structure models (application workloads) for TCP
connections and the seven different round trip time models (network characteristics) for

emulating the end-to-end paths.

3.1 Traffic Characteristics of the Two Input Traces

For realistic traffic generation, we begin with real network traffic captured on production
links on the Internet. In this study, we use two very different network traces collected at two
diverse locations on the Internet. The first one from UNC was taken on the border link connecting

the campus of the University of North Carolina at Chapel Hill to the Internet service provider

network. The second trace was taken at an aggregation switch for four internal networks,
connecting one of IBM Corporation’s largest development sites to the Internet. The UNC campus
trace was a 1-hour packet-header trace taken on a weekday during the school year, from 2:00 PM
to 3:00 PM on January 10, 2008. The IBM trace was also a 1-hour packet-header trace which was
representative of typical peak workday traffic on their corporate network, and was taken from
2:20 PM to 3:20 PM on October 10, 2006. Both these traces were captured using a 1Gbps Endace
Systems’ DAG capture card on a FreeBSD monitoring machine which is a 1.8GHz server class
PC with 1.2GB of memory. DAG technology provides 100% capture into host memory at full
line rate for all packets on the link [dag]. The traffic captured by the monitor was then converted
to pcap and processed using an enhanced tcpdump program, and several diagnostic and other
tools developed at UNC.

In the rest of this section, we present detailed characteristics for the UNC and IBM traffic.
Why? While most network researchers will agree that application workload modeling is essential
for realistic traffic generation, we also know that there is no such thing as a standard network
trace. That is, two large production links on the Internet will likely yield two slightly different, or
as in our case two fairly different, traffic mixes. While we use such real traffic as input for our
empirical studies, we emphasize by example that we must first analyze and understand the
characteristics of the input traffic. Yes, indeed, the characteristics of the input traffic play a major
role in experimental outcomes. Using two such input traffic mixes then validates the results
more firmly while helping to bring out any methodological choices that lead to differences in the
results from using the two different inputs. Hence it is also useful to clearly study the similarities

and differences between the two input traces.

3.1.1 Throughput

We begin the analysis of the two input traffic mixes by presenting the time series of their

50

throughput.

600 600

HL(M‘WVM { u W nvf”w s 500

50

]

400 400

300

300

g el MMMWW

200 200

Link throughput in Mbps
Link throughput in Mbps

100 100
o UNF:-dirl) + o UNF-dirZ) +
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes
Figure 3.1.1: Throughput as captured (high) - UNC Figure 3.1.2: Throughput as captured (low) — UNC
600 600
500 AVNWM ﬁmVAw Wﬂm) 500 U‘w ‘B&M
P Woos T A AN P
: ' - T e
;i 300 ;i 300
ii 200 ii 200
100 100
o IBM-dirl Lt 0 IBM-dir2 Lt
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes
Figure 3.1.3: Throughput as captured (high) - IBM Figure 3.1.4: Throughput as captured (low) — IBM

In Figures 3.1.1 through 3.1.4, we show the time series of the link throughput in both
directions for the original UNC and IBM traces respectively as captured. Although both traces
were an hour long, we have shown only the period between 10 and 50 minutes because that is the
period we use for all our experiments. The UNC original traffic, as captured, averaged 533 Mbps
in one direction (labeled high) and 248Mbps in the other direction (labeled low). The IBM
original traffic, as captured, averaged 464 Mbps in the high throughput direction and 427Mbps in
the other direction. Both exhibit variability, but the IBM traffic is significantly more variable.

The throughput in these figures is for TCP traffic only. However, we do not use all of these

51

connections to generate traffic in our experiments. We process this traffic as follows. First, using
tools developed by Hernandez-Campos [HCO06], we classify the captured traffic into two
categories of TCP connections. The first category of connections, we discard. These connections
consist mainly of two sets: one in which the connections and their packets carry no data, and
second in which the connections were captured in only one direction. The first set of discarded
connections and packets carried no data, and the second carried small amounts of data in only one
direction. For connections that carried data in only one direction, we included them if we
captured the packets traversing both directions for that connection. Connections that carried no
data, however, still contributed a good fraction of the throughput due to their packet overhead.
For example, in the UNC traffic, the connections carrying no data were 10% of the total
connections.

The connections with packets seen in only one of the two directions constituted 16% of the
total connections though they carried only 1.8% of the total data. And in the IBM traffic, the
connections carrying no data were 7% of the total connections. The connections with packets
seen in only one of the two directions constituted 5.6% of the total connections and carried
negligible (close to 0%) of the total data. It would be interesting to study what applications were
represented by these discarded connections, but that is out of scope of this study.

The second category of connections constitutes the traffic we use for emulation in our
experiments. This is the bulk of the captured traffic that we then classify into sequential and
concurrent connections (see Section 3.1.2 for their representations). We further classify the
sequential and concurrent connections into complete and incomplete connections. A complete
connection is one for which we see the SYN and FIN or RST for the connection. An incomplete
connection is one in which we do not see any one or more of these initiation or termination
markers for that connection.

In HCO06, the authors used only complete connections for their study. We extend that work of

traffic generation by also including incomplete connections since these connections form a large

52

part of the captured traffic. For example, for the UNC trace, 70% (about 4.5 million) of the
connections were complete sequential connections, carrying 52% of the total data bytes. And
while only 0.37% (about 24,000) of the connections were incomplete concurrent connections,
these connections carried fully 21% of the total data bytes. Similarly, for the IBM trace, 80%
(about 2.6 million) of the connections were complete sequential connections, carrying 56% of the
total data bytes. And while only 0.63% (about 20,000) of the connections were incomplete

concurrent connections, these connections carried fully 12% of the total data bytes.

600 600

500 ﬂ W va mw/‘l M) IW)WULIR w\ﬁ%‘\ A/\wfww m 500
2 2
£ 400 | food £ 400
% 300 % 300
g g ﬂ
Z 20 Z 20 Ml 1 b o K’u L] .MM
5 5 ’Mn WY WW P WWVY T A W

100 100

o UNC-dirt + o UNC-dir2 +
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes

Figure 3.1.5: Offered Load (high) - UNC Figure 3.1.6: Offered Load (low) — UNC

600 600

500 | J\ 500
O T O LV Y I ‘
R R i U W Syt 2 iy
8 8
g 200 g 200

100 100

o IBM-dirl Lt 0 IBM-dir2 LT
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes
Figure 3.1.7: Offered Load (high) — IBM Figure 3.1.8: Offered Load (low) — IBM

After including all the sequential and concurrent TCP connections, both complete and

53

incomplete, the UNC trace had nearly 4.7 million total connections with an average offered load
of 471 Mbps in one direction and 202 Mbps in the other, as shown in Figures 3.1.5 and 3.1.6. The
IBM trace had about 2.8 million connections with an offered load of 404 Mbps in one direction

and 366 Mbps in the other, as shown in Figures 3.1.7 and 3.1.8.

3.1.2 Sequential and Concurrent Connections

Of the 4.7 million total connections in the UNC traffic, 4,568,847 are sequential connections
and 115,045 are concurrent connections. The sequential connections transfer 214 billion bytes
(70%) of the total payload. The concurrent connections transfer 86 billion bytes (28%) of the total
payload. Of the 2.8 million total connections in the IBM traffic, 2,733,996 are sequential
connections and 51,058 are concurrent connections. The sequential connections in the IBM traffic
transfer 310 billion bytes (85%) of the total payload. The concurrent connections transfer 55

billion bytes (15%) of the total payload.

So what are sequential and concurrent connections? Hernandez-Campos et al. first identified
and classified TCP connections for traffic generation as being sequential or concurrent in nature.
A sequential TCP connection is a sequence of one or more request-response exchanges, called
epochs. Each epoch describes the properties of a pair of application data unit (ADU) exchanges
between the two TCP endpoints. [HCO06]. The concept of an epoch arises from the client/server
structure of many distributed systems, in which one endpoint acts as a client and the other one as
a server. This representation captures the sequential order of the ADUs within the TCP
connection, the direction in which the ADUs flow, and the sizes of the ADUs.

In the sequential model, the application data is either flowing from the client (connection
initiator) to the server (connection acceptor) or from the server to the client. However, some TCP
connections are not driven by this client-server model of data exchanges. Some applications send

data from both TCP endpoints simultaneously. For example, such connections are said to have

54

data exchange concurrency and are called concurrent connections. In such connections, one or

more pairs of ADUs are exchanged simultaneously.

3.1.3 Application-level Characteristics

Hernandez-Campos et al. first developed this classification for all TCP connections into
sequential and concurrent connections with the goal of capturing and generating application data
exchanges, including the pattern of such exchanges, without knowledge of the underlying
applications. In this sub-section, we present data for these application-level characteristics for the
two input traffic mixes obtained from their packet-header traces. Specifically, we compare the
distributions for the number of epochs per connection, the size of ADUs, and the endpoint

latencies in the connections for the two traces.

3.1.3.1 Epochs

=
= > 0.1
& o8 - £
©
2 e 0.01
2 : N
- [
g 0.6 £ 0001 %
& E P
%] =1
< 04 . 3 0.0001
E e
I S le-05
3 02 N s j 7\
UNC-epochs + g 1e-06
IBM-epochs X 8 Univ-epochs +
0 1e-07 IBM-epochs <
"
1 10 100 1 10 100 1000 10000 100000
Number of Epochs Number of Epochs
Figure 3.1.9: Number of connection epochs Figure 3.1.10: Number of connection epochs
UNC and IBM - CDF UNC and IBM - CCDF

An epoch is a request-response exchange within a sequential TCP connection. On average,
the sequential connections in the UNC trace used 3 epochs to transfer bytes, with a standard

deviation of 42 epochs. Sequential connections in the IBM trace used a mean of 9 epochs with a

55

standard deviation of 123 epochs to transfer data. The cumulative distributions of number of
epochs per connection for both traces are shown in Figures 3.1.9 and 3.1.10. The CCDFs for both
are distributions are approximately linear on a log-log scale. Hence, both clearly have a heavy-

tailed distribution in the number of epochs.

We observe that 60% of sequential connections in the UNC trace had only one epoch, with
90% of sequential connections having only 5 or fewer epochs. For the IBM trace, 44% of
sequential connections had only one epoch, with 90% of sequential connections having 14 or
fewer epochs. Only 3% of UNC connections had 12 or more epochs whereas 13% of IBM
connections did. So, while the top 3% of UNC connections had 12 or more epochs, the top 3% of
IBM connections had 33 or more epochs. In the UNC trace, only 0.01% of connections had 1000
epochs or more, whereas in the IBM trace that number was 0.05% of connections. The tails of the
distributions clearly show that the number of epochs in connections in the IBM trace was much

higher than those in the UNC trace.

3.1.3.2 Application Data Units (ADU)

Sequential connections exchange data in epochs, that is, in a request-response pattern. Hence,
we measure the ADU sizes in each epoch as a request-size and a response-size for these
sequential connections. Concurrent connections, on the other hand, send bytes in both directions
simultaneously, so we represent all concurrent ADUs in one distribution. In Figures 3.1.11
through 3.1.16, we show the cumulative distributions of these ADU sizes for sequential and
concurrent connections. First, let us compare the request sizes for both the UNC and IBM traces
in Figures 3.1.11 and 3.1.12.

The median data size for requests in sequential connections is 460 bytes in the UNC trace, but
only 84 bytes in the IBM trace. 20% of these requests are greater than 1000 bytes in the UNC

trace but only greater than 466 bytes in the IBM trace. But the average request size is 2.5 KB in

56

the UNC trace and 6 KB in the IBM trace. The top 10% of request sizes are greater than 1.6 KB
in the UNC trace and greater than 1 KB in the IBM trace. So, while the IBM traffic has a few
sequential connections with very large request sizes (skewing the average), most of the request

sizes in the UNC trace are comparatively larger.

1 1
] g 0.1
0.8 3 i
] 0.01
2z / 3 %
£ P M
8 o6 g 0001 Dz
£ N
© 0.0001
2 £ K\
o (5]
- 0.4 > 1e05
E s \
o [
/ € 1e06
0.2 E \
Q
. E teo7
unc_request_sizes + 3 unc_request_sizes +
ibm_request_sizes x |bm_req|uest_5|zes X
0 1 1 1e_08 1 1 1
0 200 400 600 800 1000 1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09
R t Sizes for ial tions (bytes) R t Sizes for ial tions (bytes)
Figure 3.1.11: Request sizes - sequential connections Figure 3.1.12: Request sizes - sequential connections
1 1
R B o e o —_
e X T g 0.1 \\.\k"
08 oot 3
> / P g oo
5 T
f 0s // g oot
©
s 2 00001 &%
'gg 3
5 04 % 105
E g
a3 £
g 1e06
0.2 3 \
o
. E 1e07 -
unc_response_sizes + 3 unc_response_sizes +
ibm_response_sizes x |bm_response sizes x 1
0 i 1 1e_08 1 n | 1 1
0 2000 4000 6000 8000 10000 1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09
R Sizes for ial tions (bytes) Response Sizes for sequential connections (bytes)
Figure 3.1.13: Response sizes - sequential connections Figure 3.1.14: Response sizes - sequential connections

Now, let us compare the response sizes for the two traces in Figures 3.1.13 and 3.1.14. The
median response size is 420 bytes in the UNC trace and 128 bytes in the IBM trace. 20% of
responses are greater than 4KB bytes in the UNC trace but only greater than 680 bytes in the IBM

trace. The average response size is 11 KB in the UNC trace and 9 KB in the IBM trace. The top

57

10% of response sizes are greater than 13 KB in the UNC trace but greater than only 3.3 KB in
the IBM trace. So we note that sequential connections in the IBM trace have much smaller
response sizes as compared with those in the UNC trace. The CCDFs clearly show a heavy-tailed

distribution for response sizes in both UNC and IBM traffic.

1 1
WW&—H@%- — \
M WWW B 0.1 \\H‘kn
i Zz ¥
08 H
N © 0.01
b o
3 % oot %K
o . i
E 0.6 g *\\
é E 0.0001 <
é 04 S tess
S]
§ : N
2 te0s
02 o
‘El 1e-07
unc_conc_ADU_sizes + 8 unc_conc_ADU_sizes + \
ibm_conc_ADU_sizes x ibm_conc_ADU_sizes = x
0 1 1 1e‘08 1 I 1 | 1 1
0 2000 4000. 6000 8000 10000 1 10 100. 1000 100001000001e+06 1e+07.1e+08 1e+09.
ADU Sizes for concurrent connections (bytes) ADU Sizes for concurrent connections (bytes)
Figure 3.1.15: ADU sizes - concurrent connections Figure 3.1.16: ADU sizes - concurrent connections

For concurrent connections, we consider all ADUs in one distribution, since there are no
request-response exchanges within these connections. As shown in Figures 3.1.15 and 3.1.16, the
median size of concurrent ADUs is 208 bytes in the UNC trace and 91 bytes in the IBM trace.
20% of ADUs are greater than 1400 bytes in the UNC trace but only greater than 610 bytes in the
IBM trace. The average ADU size is 5.9 KB in the UNC trace but larger than 11.5 KB in the IBM
trace. As with the sequential ADUs, we see here that a small number of very large concurrent
ADUs skew the average ADU size in the IBM traffic.

The top 10% of ADU sizes are greater than 6.8 KB in the UNC trace and greater than only
3.4 KB in the IBM trace. ADU sizes in the IBM trace, other than for a few very large ADUs, are
smaller than those in the UNC trace. Figure 3.1.16 shows that the ADU sizes in both sets of

concurrent connections are equivalent in the tail, and they have a heavy-tailed distribution.

58

3.1.3.3 Endpoint Latencies

In the Tmix a-b-t model, besides ADUs, the sequential and concurrent connections have
endpoint latencies. We identify two kinds of such endpoint latencies, developed as part of the a-
b-t model by Hernandez-Campos et al. First, we have the intra-epoch endpoint latency which is
the time elapsed at the connection initiator (client), and within an epoch, between sending a
request and receiving its response. This is usually the time taken by the server to process the
request plus one round trip time of network latency. Second, we have the inter-epoch endpoint
latencies which are the times between two epochs, that is, the time between receiving a response
and sending the next request. These could be either due to some processing time or user
thinktime. Every epoch in a sequential connection has an intra-epoch latency. And multiple epoch
connections have inter-epoch latencies as well. Concurrent connections have one or more
endpoint latencies. These latencies are simply associated with the preceding ADU sent by that
endpoint. When endpoint latencies are less than 500ms, they could easily be due to network
effects and hence we do not consider them as part of the source-level behavior. Hence we do not
emulate endpoint latencies less than 500ms.

It is worth noting that of all the measured latencies, roughly 16% of intra-epoch latencies
were greater than 500ms for both UNC and IBM traces. This means that server processing
latencies have an effect on a small number of epochs in both traces. For inter-epoch latencies
44% of them were larger than 500ms for the UNC trace, but only 20% of them were larger than
500ms for the IBM trace. Each latency measure is considered a data point here, regardless of the
number of latencies measured for each connection. This difference in inter-epoch latencies
between the two traces becomes very significant when we study the effect on queue length. For
the same level of capacity constraint on the router-to-router link (95%), the IBM trace shows
much heavier queues using this model of connection structure because in the UNC traffic, the
larger number of inter-epoch latencies plays a significant role in allowing the queue to drain and

maintaining a smaller queue overall. For concurrent connections, it is interesting to note that most

59

(99%) of the latencies were greater than 500ms for both UNC and IBM traces. So essentially all
measured latencies are emulated for concurrent connections.

Let us now analyze these endpoint latencies in the UNC and IBM traffic. We show all the
intra-epoch latencies (including those below 500ms) for the two traces in Figures 3.1.17 and
3.1.18. Note that for the CCDFs, we start the Y-axes at 500ms. Each plot compares the data for

the two traces — UNC and IBM.

0.8
0.01

1le-07 \

UNC_intra-epoch-latency ~ +

g
2
£
©
8 o
& o6 g 0001 ﬁfL@
] g2 >\{
A /f/ 2 00001 5
=] S
3 3
s 04 > 1e05 s
£]
5 : 1\
2 1e06
0.2 %
£
o
o

UNC_intra-epoch-latency ~ +

IBM_intrg-epoch-Iateqcy X IBM_imra—egoch-Ialency X ‘

0 L 1le-08 L L
0 200 400 600 800 1000 1000 10000 100000 1le+06
Endpoint Latencies (milliseconds) Endpoint Latencies (milliseconds)
Figure 3.1.17: Intra-epoch endpoint latencies Figure 3.1.18: Intra-epoch endpoint latencies
for sequential connections for sequential connections

We observe that the median intra-epoch latency is 47 milliseconds for UNC connections and
53 milliseconds for IBM connections. 20% of these latencies are greater than 273 milliseconds
for UNC connections and greater than 168 milliseconds for IBM connections. The average intra-
epoch latency is quite high, however, with 3.1 seconds for UNC and 4.7 seconds for IBM
connections. This high average reflects the small number of multi-epoch, long connections with
long latencies present in both traces. The top 10% of intra-epoch latencies are greater than 1
second for the UNC trace and greater than 1.1 seconds for the IBM trace.

We now compare all inter-epoch latencies for the two sets of traffic in Figures 3.1.19 and
3.1.20. We observe that the median inter-epoch latency is 173 milliseconds for UNC connections
and 55 milliseconds for IBM connections. 20% of the inter-epoch latencies are greater than 1.5

seconds for UNC connections and greater than 490 milliseconds for IBM connections, thus much

60

longer than their respective intra-epoch latencies. The average latency is also quite high with 5.6
seconds for UNC and 5.9 seconds for IBM connections, again reflecting the small number of
multi-epoch, long connections with long endpoint latencies present in both traces. The top 10% of

inter-epoch latencies are greater than 7.5 seconds for the UNC trace and greater than 3 seconds

for the IBM trace.
1 1
g 01 I e SN
08 B w— =
. —— 3 o001
) o
3 — S o001
£ o6 g “H
5 ©
E.; / — 2 00001 &
= =1
g 04 Lg)‘ le-05 \j
£ g ‘ \
c
© g 1e06
0.2 k3 \
o
: E leo07 -
UNC_inter-epoch-latency ~ + 8 UNC_inter-epoch-latency ~ +
o) IBMJntgr-epoch-Iateqcy X 108) IBMflmer-ep‘och-Iatency X
0 200 400 600 800 1000 1000 10000 100000 1e+06
Endpoint Latencies (milliseconds) Endpoint Latencies (milliseconds)
Figure 3.1.19: Inter-epoch endpoint latencies Figure 3.1.20: Inter-epoch endpoint latencies
for sequential connections for sequential connections
1 1
g 01 W%
2
0.8 z
©
2z] 8 o0 %
3 a
g o6 s 000
o [N k=]
a e ‘—;
¢ 2 00001
£ 04 S 1e-05 O \
c
© 2 1e06
0.2 K]
[=%
] le-07
UNC_latency + 8 UNC_latency +
IBM_latency ~ x IBM_latency ~ x
0 ! 1e-08 ! !
500 1000 1500 2000 2500 3000 1000 10000 100000 1e+06
Endpoint Latencies (milliseconds) Endpoint Latencies (milliseconds)
Figure 3.1.21: Endpoint latencies for Figure 3.1.22: Endpoint latencies for
concurrent connections concurrent connections

Finally, let us compare all the endpoint latencies for concurrent connections for the two traces
in Figures 3.1.21 and 3.1.22. Here, we observe that the median latency for concurrent connections
is 1.1 seconds for UNC connections and 1.5 seconds for IBM connections. 20% of these latencies

are greater than 4 seconds for UNC connections and greater than 17 seconds for IBM

61

connections. Note that concurrent connections constitute only a small fraction of the total number
of connections in both traces — 1.8% of UNC connections and 1.6% of IBM connections, but they
transfer 28% and 15% of the total bytes respectively. These percentages stated here for endpoint
latencies are for connections within that fraction, and not part of all the endpoint latencies. Still,
these long latency concurrent connections clearly carry a large number of bytes. In the case of the
IBM trace, they contribute to the heavier distribution of connection durations, compared with that
of UNC connections. The average latency is also quite high, with 6.7 seconds for UNC and 16.7
seconds for IBM connections. The top 10% of latencies in concurrent connections are greater
than 14 seconds for the UNC trace and greater than 60 seconds for the IBM trace.

We must note here that for both sequential and concurrent connections in the original trace,
there are connections which exhibit a quiet time between the last ADU and TCP’s connection
termination. Most of these quiet times are under 500ms and hence discarded anyway. However,
there are a few connections with exceedingly long quiet times at the end. Such quiet times reflect
more realistic durations for those connections, but add much overhead to our traffic generation
system. Hence, we do not model any quiet times that occur after the last ADU within a

connection.

3.1.4 Network-level Characteristics

So far, we discussed the application-level characteristics for the UNC and IBM traffic that we
use as input for generating traffic in all our experiments. We now discuss the network-level
characteristics of round trip times and window sizes for these TCP connections. For this
discussion, we do not distinguish between sequential and concurrent connections, but treat all

connections as simply TCP connections.

62

3.1.4.1 Round Trip Times (RTTs)

The round-trip time (RTT) of a TCP connection between two endpoints, a sender and a
receiver, is defined as the time it takes for a TCP segment from the sender to reach the receiver
and for a segment carrying the generated acknowledgment from the receiver to return to the
sender. The cumulative distribution functions (CDFs) for the measured minimum round trip time
per connection in the two traces are shown in Figure 3.1.23. The CCDFs for the same are shown
in Figure 3.1.24. The RTTs in the UNC trace were on average smaller than those in the IBM
trace, but the CCDF shows much longer connection RTTs for the UNC trace than in the IBM
trace in the tail of the distributions. The mean RTT for connections was 80ms in the UNC trace
while it was 92ms in the IBM trace. The standard deviation of RTTs was 210ms and 144ms for

connections in the UNC and IBM traces respectively.

IS
= ,ﬁ > 0.1 x‘v
S 08 - z
=y ! 0.01
g &
- [

8 0-6 £ 0001
a :
3] =1
> 04 - 3 0.0001
g z ’%
g S le0s ™
3 02 1 5 N

UNC-RTT + g 1e06

IBM-RTT X S UnivRTT +

0 . L il i 1007 IBM-RTT x
e
1 10 100 1000 1 10 100 1000 10000 100000
RTT (ms) RTT (ms)
Figure 3.1.23: CDF of round trip times Figure 3.1.24: CCDF of round trip times

Thus while the median RTT for connections in the UNC trace was 36ms, fully 3% of these
connection RTTs were above 429ms. And while the median RTT for connections in the IBM
trace was 68ms, the top 3% of these connection RTTs were greater than 275ms. As seen in Figure

3.1.24, some connection RTTs were longer than one second for both UNC and IBM connections.

63

Such long delays are sometimes due to compounding effects of long propagation delays added to
slow modems on one end of the connection, or due to long delays on cell hosts in the network.
We used these empirical measures to develop all our RTT models discussed later in this

chapter.

3.1.4.2 Receiver Window Sizes

Just as we used the empirical measures from the original RTT distributions to develop our
RTT models, we used the empirical measures from the original receiver-advertised maximum
window size distributions to develop the window size models for our experiments. Hence, let us
now examine this network-level characteristic in the two input traces. But first, what is the role of
the receiver window size in a TCP connection? When a segment is received by a TCP endpoint,
its payload is stored in an operating system buffer until the application uses a system call to
receive the data. In order to avoid overflowing this buffer, TCP receiver endpoints use a
mechanism called flow control to impose a limit on the maximum sending rate of the sending
endpoint. Hence a TCP sender cannot have more than this maximum, called receiver maximum

window, of bytes outstanding (unacknowledged) in the network.

How is this relevant to our traffic generation? Window size allocation in TCP connections
affects the growth of the window of unacknowledged packets that the sender can have in the
network. Hence a larger receiver window size, all other thing being equal, means that a TCP
connection can transmit data faster and have more data in the network before it receives feedback

from the other end of the connection.

In this study, we measured the maximum advertised window for both ends in each connection
from the original trace for both UNC and IBM traffic. Each connection in all our experiments,
unless otherwise specified, was assigned the measured receiver window for each of the two

endpoints of the TCP connection. This included all the experiments regardless of the connection

64

structure model used for traffic generation, the RTT model used for network emulation, or the
network environment, that is unconstrained or constrained link mode, for each experiment. This
maximum receiver window is often different for each endpoint of a connection. Hence we show
the separate distributions for the initiator of a TCP connection, and the acceptor for that

connection. We show this data for both the UNC and IBM traces in Figure 3.1.25.

0.8 B
> T
5 o6 -
]
o
5 a—a
2 o4 / N 1]
T
g A
S 4
0.2 K UNC-initidtor + 7]
J UNC-acceptor %
IBM-initiator %
IBM-acceptor O
O 1 1
10 20 30 40 50 60 70

Receiver Window Size (KB)

Figure 3.1.25: CDF of receiver maximum window sizes of the input UNC and IBM traces

We observe from this figure that the smallest maximum receiver window size is 4KB for any
connection in both traces. This window size then increases to values of 8KB, 16KB, 32KB,
48KB, or 64KB. We did not measure or analyze window scaling and hence the maximum
window size we measured was 64KB. As shown in this figure, the initiators have larger
advertised window sizes — roughly 65% of UNC initiators had 64KB and 80% of IBM initiators
had 64KB receiver windows. However, only 25% of UNC acceptors and 50% of IBM acceptors

had 64KB receiver windows.

65

3.2 Traffic Generation with Tmix

For all experiments in this study, we use the Tmix traffic generation system. Although we
discussed some details about this system among the related works in Chapter 2, let us briefly
discuss the Tmix model for both application workload and network characteristics in this section.
This will aid in later discussions in this chapter when we present our own models. Hernandez-
Campos in [HC06] developed a new application-level model to characterize workloads, called the
a-b-t model. Given a packet header trace collected from an arbitrary Internet link, this work
algorithmically infers the application-level behavior driving each connection, and casts it into the
notation of the a-b-t model. The result from processing the packet header trace is a collection of
a-b-t connection vectors, each vector representing a TCP connection from the original captured
trace. These vectors are then replayed in software simulators and testbed experiments to drive
network stacks. This replay of the original traffic, using the a-b-t model, generates workloads that
fully preserve the feedback loop between the TCP endpoints, and also preserve the state of the
network.

The a-b-t model is used to generate TCP workloads only. Each TCP connection is
represented as an a-b-t connection vector, and every request-response-time sequence in a
sequential connection is called an epoch within the connection. Thus every sequential connection
consists of one or more epochs. The a’s and b’s in both sequential and concurrent connections are
the application data units (ADUs), sizes as recorded from the original captured trace. The a-type
ADUs are data units sent from the connection initiator to the connection acceptor, and the b-type
ADUs are data units sent from the connection acceptor to the connection initiator, i.e. data flow in
the opposite direction. The t’s represent the quiet times during which no data segments are
exchanged. The quiet times may be the time taken between sending of ADUs to the transport
layer, or it may be user think times or server processing times. The reason for the quiet times and

the actual data in the ADUs are not important to traffic generation, but modeling these quiet times

66

and application data exchanges is very important to represent the lifetime of the connection as we
will see in this study. This a-b-t emulation model faithfully reproduces the essential pattern of
socket reads and writes that the original application performed without knowledge of what the
original application actually was. Furthermore, Tmix emulates network path characteristics by
assigning to each connection its observed minimum RTT and receiver window sizes.

We note here that there is a fundamental difference between Tmix and the other two traffic
generation systems (Harpoon and Swing) discussed in Chapter 2. Although all three systems are
based on modeling traffic and network characteristics from empirical measures of real network
traffic, Tmix is a non-parametric model of traffic generation. Tmix accurately and faithfully
replays the application-level behavior using a set of connection vectors using real TCP sockets on
the traffic generators. Each connection vector input to the traffic generators represents exactly one
TCP connection from the original traffic and there is a one-to-one assignment of connection
parameters for each connection from the original traffic to the replayed traffic. On the other hand,
both Harpoon and Swing use parametric modeling; they are based on random sampling from

distributions of empirical parameters of network traffic.

3.3 Variations in the Workload Model

The Tmix a-b-t model is a complete representation of a connection’s structure for traffic
generation. We define connection structure as the representation of the connection workload that
has one or more of the following components: ADU sizes, connection sizes, direction and
sequence of ADUs, and endpoint latencies. Henceforth, we call this full Tmix model as the a-t-b-t
model to show its complete representation. Our a-t-b-t model is the same as Tmix’s original a-b-t
model. As described in Chapter 2, the Harpoon traffic generation system uses a very different and

much simpler model for modeling TCP connections. While the Tmix model includes every

67

application data unit and quiet time within a connection, the Harpoon model simply represents
each connection as two blocks of data transferred, one in each direction. Hence we begin with this

simple model for representing a TCP connection.

To study the effect of different connection structures on application and network
performance, we developed six different structural models to represent a TCP connection. Our six
models, as discussed below, were developed with a representation of the simple Harpoon model
on one end of the spectrum and the a-t-b-t model on the other end. We now present all the six
connection structure models as originally developed in this study. Although only four of these
models were used for the complete set of experiments presented in Chapter 5, we ran smaller

subsets of experiments with all of them.

Since the same traces of the original traffic were used to build each of these models, we
define some notations for clarity and consistency using the a-b-t model representation shown in
Figures 3.3.1 and 3.3.2 for sequential and concurrent connections respectively. Let the sequential
connection shown in Figure 3.3.1 with three epochs be represented by the following connection

vector { (a]_, ta]_] b]_, tbl), (az, ta,, bz, tbz), (83, tas, b3, tb3)}

Epoch1 Epoch 2 Epoch3

A A A
4 Y Y A\

a, bytes a, bytes a; bytes
comeion (] [0, [
initiator Time
Connection | ' N |
acceptor P ! A o
\ | b;bytes i b,bytes . | bsbytes

YN v

ta; ms tb,ms ta,ms tb, ms ta;ms

Figure 3.3.1: An a-b-t diagram illustrating a persistent HT TP connection (sequential)

68

ta; ms ta, ms

— A A
: 0 N

a,bytés a,bytes | as bytes
Connection |:| |:| . I
initiator Time
Connection I | I | |
acceptor P ! !
b, bytes | b, bytes | bsbytes
tb; ms tb, ms

Figure 3.3.2: An a-b-t diagram illustrating a concurrent connection

For the concurrent connection shown in Figure 3.3.2, let the connection vector be represented
as (o, B) where o = { (ay, tay), (az, tay), (as, tag) } and B = { (by, thy), (by, thy), (b3, ths) }. In both
cases, let a =al + a2 + a3 be the total bytes transferred by the original connection initiator to the
connection acceptor. And let b = bl + b2 + b3 be the total bytes transferred by the original

connection acceptor to the connection initiator.

We use these notations to describe the six connection structure models below. To use the
Tmix traffic generation system for running experiments using these new models, we made some
changes as follows. We modified the input connection vectors to the Tmix system to include
accurate representations for each of our new models, and we modified the replay engine to

appropriately parse the new models and replay the TCP connections in our experiments.

(i) The Harpoon connection structure model

Harpoon models a TCP connection by its size and direction of data transfer. That is, a

connection is modeled as two endpoints where the first endpoint transmits X bytes while

69

simultaneously the second endpoint transmits Y bytes with both endpoints transmitting their bytes

as one large block without internal delays (other than those imposed by TCP).

a, + a,+ a; bytes
Connectionl |
initiator Time

Connection2 I
initiator

b, + b, + b; bytes

Figure 3.3.3: The Harpoon connection structure model for all TCP connections

Hence in our Harpoon model, we replay every TCP connection observed in a trace as two
TCP connections, each initiated on opposite sides of the laboratory network. Each endpoint opens
a TCP connection, sends all its bytes in one block and then closes the connection. A total of a (a
=al + a2 + a3) bytes is sent by one TCP connection, and a total of b (b = b1 + b2 + b3) bytes is

sent by the other TCP connection. This model is represented in Figure 3.3.3 above.

(ii) The block-concurrent connection structure model

a, + a,+ a; bytes

Connection |

initiator Time
>

Connection

acceptor

b, + b, + b; bytes

Figure 3.3.4: The block-concurrent connection structure model for all TCP connections

70

We developed the block-concurrent model (shown in Figure 3.3.4) as a variation of the
Harpoon model. Unlike the Harpoon model, however, a TCP connection observed in a trace is
represented in this model by only one TCP connection between two endpoints. The two blocks, a
(a=al + a2 + a3) bytes and b (b = bl + b2 + b3) bytes, are sent simultaneously by the two
endpoints after connection establishment. In this model, all the TCP connections in the
experiment behave like concurrent connections without any endpoint latencies within the

connections, other than those imposed by TCP.

(iii) The block-sequential connection structure model

a, + a,+ a; bytes
Connection |
initiator

Connection |
acceptor

b, + b, + b; bytes

Figure 3.3.5: The block-sequential connection structure model for all TCP connections

We developed the block-sequential model, shown in Figure 3.3.5, as another variation of the
Harpoon model. In this model, all the TCP connections in the experiment behave like sequential
connections but with only one epoch and no endpoint latencies within the connections, other than
those imposed by TCP. Unlike the Harpoon and the block-concurrent models, however, this
model introduces sequentiality and an inherent synchronization within a TCP connection. After
connection establishment, the connection initiator sends one block, a (a = al + a2 + a3) bytes in
size, and upon receiving this request, the connection acceptor sends its response in one block, b
(b = bl + b2 + b3) bytes in size. Thus all connections in this model are represented as single-

epoch sequential connections, regardless of connection size.

71

(iv) The a-b connection structure model

The three connection structure models, discussed so far, model a connection based on its size
alone. There were no endpoint latencies within the connections, and only the synchronization
latency implicitly introduced by the request-response nature of the block-sequential model. In the
a-b model shown in Figure 3.3.6, we introduce the difference between sequential and concurrent
connections, while still not including any measured endpoint latencies in the model. We do this

by introducing the concept of epochs in sequential connections.

Epoch1l Epoch2 Epoch3
a, bytes a, bytes a; bytes
Connection |:| |:| :|
initiator Time
>
Connection
acceptor [1 [| |
b, bytes b, bytes b; bytes
Figure 3.3.6: The a-b connection structure model for sequential TCP connections
a; +a,+a;bytes
Connection I
initiator Time

Connection I
acceptor

b, + b, + b; bytes

Figure 3.3.7: The a-b connection structure model for concurrent TCP connections

72

So, in this model, the original sequential connections replay in a pattern of request-response
exchanges without the endpoint latencies representing processing times or other end system
delays. For the original concurrent connections, the a-b model adopts the same representation as
the block-concurrent model. This is because, in the absence of endpoint latencies, each endpoint
of a concurrent connection will simply send its al, a2 and a3 or bl, b2, and b3 bytes in single

blocks of size a and b respectively. This is shown in Figure 3.3.7.

(v) The a-t-b connection structure model

Epoch1 Epoch 2 Epoch3

KAWA\

a, bytes” a; bytes

Connectionl | | N | |

initiator

Connection o

[]

b, bytes b2 bytes

i bsbytes
ta, ms ta, ms ta; ms

Figure 3.3.8: The a-t-b connection structure model for sequential TCP connections

This is the first connection structure model in which we explicitly introduce the endpoint
latencies. We developed this a-t-b model mainly to differentiate between the effects of intra-
epoch latencies and inter-epoch latencies. For the sequential connection, this model represents
each epoch similar to the a-b model with the additional intra-epoch latency between the request

and its response, as shown in Figure 3.3.8. For concurrent connections, there is no difference

73

among the endpoint latencies. Each endpoint latency is associated with sending the preceding
ADU from the endpoint and then waiting for the duration of the endpoint latency before sending
the next ADU from that endpoint. It is not associated with any request-response exchange. Hence
for concurrent connections, as shown in Figure 3.3.9, we represent the connection using all the

ADUs and the endpoint latencies as measured (similar to the a-t-b-t connection structure).

ta; ms ta, ms
f-A'W A
| 0 A
a, byte:‘:s azibyte:‘es 103 bytes
Connection |:| |:| ' I
initiator
Connection I | | | |
acceptor o ! !
b, bytes | | b,bytes { bz bytes
tb; ms tb, ms

Figure 3.3.9: The a-t-b connection structure model for concurrent TCP connections

(vi) The a-t-b-t connection structure model

Epoch1 Epoch 2 Epoch3

A A A
4 Y Y)

a, bytes a, bytes a; bytes
Connection | ' . - .
initiator
Connection Lo ' AN :
acceptor R .
i1 b;bytes Lb | : bs bytes

YN v

ta; ms tb;ms ta,ms tb,ms ta; ms

Figure 3.3.10: The a-t-b-t connection structure model for sequential TCP connections

74

ta; ms ta, ms

—A e A
. e N

a;bytes a,ibytes | 0 bytes

Connection |: ' I

initiator
Connection | | | | |
acceptor o !
b,bytes | | b,bytes { bsbytes
v
tb; ms tb, ms

Figure 3.3.11: The a-t-b-t connection structure model for concurrent TCP connections

All TCP connections in this model are represented using the same concepts originally
developed by Hernandez-Campos et al. for the Tmix traffic generation system. So the a-t-b-t
model represents a TCP connection with all ADUs and endpoint latencies and preserves all
sequences or epochs exactly as measured in the original trace. This model is shown for the
sequential and concurrent connections in Figures 3.3.10 and 3.3.11 respectively. Note that

concurrent connections have the same structure in both a-t-b and a-t-b-t models.

3.3.1 Choice of Four Connection Structure Models

From the six different connection structure models described above, we chose to use only
four among these to emulate the traffic for our complete sets of experiments. Our goal in picking
the models was the following: introduce, one at a time, the following concepts within TCP
connection structure modeling: size of the connection, client-server behavior between the two
endpoints, the request-response exchange or epoch behavior between the client and the server, the
fundamental dichotomy in application-level behavior that distinguishes connections as sequential

or concurrent, and finally the endpoint latencies that represent intra-epoch and inter-epoch

75

latencies in sequential connections or quiet times between sending of application data units in

concurrent connections.

Here’s why we chose (or did not choose) each of these connection structure models for our

complete experimentation set.

Harpoon: This model inspired our development of the two block models. However, we did not
choose this specific model because in faithfully adhering to the original Harpoon method of
traffic generation, we had to model every TCP connection as two connections in the experiment.
This led to difficulties in comparing performance metrics among the different models. The block-
concurrent model is, therefore, a better representation of TCP connections for Harpoon-like

traffic generation.

block-concurrent: We chose this model as it best represented the Harpoon model while also

being the simplest model for emulating connection structure in terms of its size alone.

block-sequential: We chose this model as it introduced the notion of a client-server with inherent
request-response synchronization while still preserving the simplest representation of a TCP

connection by its size alone.

a-b model: This model was chosen because it introduces the concept of epoch structure within the
sequential connections. Thus while there is the implicit addition of a time component to the
structure in the synchronization implied by request-response exchanges, this model still does not

explicitly include any of the measured endpoint latencies within the connections.

a-t-b model: We developed this model to differentiate between the effects of intra-epoch and
inter-epoch latencies on the performance metrics. However, our preliminary investigations found
that this model does not have significantly different effects from that of the a-b model. Here’s

why: the bulk (84%) of all intra-epoch latencies are below 500ms for both UNC and IBM traffic

76

and hence are not emulated in our experiments as explained earlier. Experiments using this model

did not serve the original purpose envisioned while developing this connection structure model.

a-t-b-t model: We chose this model as it is a complete representation of connection structure for a
TCP connection. To the a-b model, this adds all the endpoint latencies for both sequential and
concurrent connections, thus explicitly introducing the dimension of time within a TCP

connection.

3.4 Variations in Emulating Network Path Characteristics

Using the Tmix traffic generation system as the basis for generating traffic for all our
experiments, we varied the emulation of the network path characteristics to study the effects of
connection round trip times (RTT) on various metrics of performance. We developed seven
different (some just subtly different) methods of RTT emulation. For our spectrum of RTT
models, we have on one end the nodelay model where we completely eliminate the emulation of
connection RTT, and on the other end the usernet model from Tmix where we emulate the
specific minimum RTT for each connection as measured by analyzing the TCP/IP header traces

from the captured traffic. We briefly discuss each of these models below.

In Figures 3.4.1 and 3.4.2, we show the CDF and CCDF respectively for the minimum RTTs
for connections in the UNC and IBM traffic. These figures are the same as Figures 3.1.23 and
3.1.24. For six of our seven RTT models, we retained some measure of realism for RTT
emulation, the only exception being the nodelay model. For five of the other six models, we used
the empirical data shown in the RTT distributions above for each of the two input traces. Only the
10pathRTT model was not derived from the above empirical distribution as explained below.

Tmix uses a modified version of dummynet that implements a user-level interface that can be

used by Tmix instances to assign per-connection delays from the input set of connection vectors.

77

Although RTT is propagation delay between sender and receiver, and in most cases the latency
was emulated half on sender and half on receiver, in the case of uniform RTT, the latency was

emulated in only one direction.

0.1 x“

0.01

08 /W —
0.6 =
0.4 /
0.2
UNC-RTT +
|B|\I/|-RTT X

0.001

0.0001

le-05 XS& KK\\
le-06

Univ-RTT +

IBM-RTT‘ X

Cumulative Probability (%)

Complementary Cumulative Probability (%)

1 10 100 1000 Le0r 1 10 100 1000 10000 100000
RTT (ms) RTT (ms)
Figure 3.4.1: CDF of round trip times Figure 3.4.2: CCDF of round trip times
(UNC and IBM traffic) (UNC and IBM traffic)

(i) The nodelay model

First, the nodelay model was chosen simply as an extreme case to study why it was important
to model any form of RTT emulation rather than not model RTT at all. For experiments using this
RTT model, we replayed connections without any round trip time latency. Thus the sending of
packets within a connection was still limited by the size of the connection, and the receiver
window size, but the round trip time experienced by the connections was on average only 1.42ms
with a standard deviation of 1.14ms. This average was simply the latency introduced by our

laboratory network setup.

(i) The meanRTT model
For round trip time emulation in experiments using the meanRTT model, we assigned a
minimum RTT of 80ms for all connections using the UNC trace and 92ms for all connections

using the IBM trace. These numbers were the measured average connection RTTs from the

78

empirical distributions for these two traces. This model was inspired by several leading studies,
including the paper [SB04] which describes the Harpoon traffic generation system. It is worth
noting here that this emulation effectively models a single end-to-end path for all the millions of
connections that play during the hour long experiment. What do we mean? Note that when we
assign different round trip time to different connections in the laboratory network, we effectively
enable the emulation of different end-to-end paths (by assigning different delays) for these TCP
connections. But in the meanrtt model, we assign all connections the same RTT value, thus

reducing the experimental network to emulate a single end-to-end path for all connections.

(iif) The medianRTT model

This model of RTT emulation is very similar to the meanRTT model, creating one shared
end-to-end network path for all connections in an experiment. Assigning the mean RTT of the
distribution seems to be a more popular method adopted in networking research, for example in
[SB04]. However, studying the traffic characteristics of traces captured on production network
links shows that a small fraction of connections with very long RTTs often skew the average RTT
for the distribution. Hence although still an empirically derived value, the mean RTT is less
representative of the distribution of RTTs than the median RTT. For example, the mean RTT for
the UNC trace is 80ms while its median is only 36ms. Similarly, the mean RTT for the IBM trace
is 92ms while its median is only 68ms.

Besides emulating a single shared end-to-end path for all connections in the experiment,
assigning a single RTT wvalue for all connections also significantly changes the traffic
characteristics of the replayed trace. For example, with the medianRTT model, all those
connections that had less than medianRTT in the original trace now take much longer to replay.
Similarly, all those connections that had more than medianRTT delay in the original trace now

replay faster. This has implications for several performance metrics as we show in Chapter 5.

79

(iv) The 10pathRTT model

All three models discussed so far — nodelay, meanRTT, and medianRTT — emulate a single
shared path in the network for all connections in the experiment. The 10pathRTT model expands
the modeled network paths to a total of 10 different end-to-end paths for the connections in the
experiment. The values chosen for these 10 paths were selected as follows: the TMRG common
TCP evaluation suite [TMRG] recommended 9 RTT path values based on some empirical
measures. To this set of discrete values, we added a tenth RTT value to create our 10pathRTT
model.

Here’s the small and discrete set of values that constitute the 10pathRTT model: [4, 16, 28,
54, 74, 98, 124, 150, 174, 200] milliseconds. This set is used for both the UNC and IBM

experiments.

(v) The Discrete Approximation (DA) RTT model

We created this model from the empirical distribution of RTTs for the original trace. Hence
the set of RTT values were different for the two traces — UNC and IBM. Our laboratory network
has 30 pairs of traffic generators; hence we chose 30 values, thus creating 30 end-to-end paths in
the network. The goal behind developing this model was to create as close an approximation of
the empirical distribution of RTTs seen in the original trace as possible. For this we use the
concept of a quantile function. A quantile function of a probability distribution is the inverse F'
of its cumulative distribution function. Hence the quantile function returns the value of x such
that F(x) =P(X <x)=p.

Our method of approximating the CDF of the RTTs was as follows: first we approximated the
distribution such that we cut off the bottom 1% and top 1% of RTT values. These represented
only 2% of connections but were skewing our overall approximations such that a very large

portion of RTTs would be much larger than the median (or mean) RTTs. Now, with the

80

remaining 98% of the distribution, we divided this distribution into 30 equal size bins, and then
found the average RTT for each of these 30 bins in the distribution.

The resulting RTT values for UNC formed this set: [8, 8, 10, 10, 12, 14, 14, 16, 18, 20, 22,
24, 26, 30, 34, 38, 42, 48, 52, 60, 74, 80, 82, 86, 92, 98, 124, 172, 258, 420] milliseconds. The
resulting RTT values for IBM formed this set: [22, 28, 32, 36, 40, 44, 46, 46, 48, 52, 54, 56, 58,

62, 66, 70, 74, 78, 82, 86, 92, 96, 102, 108, 114, 122, 136, 154, 188, 310] milliseconds.

(vi) The uniformRTT model

With the uniformRTT model, we made two significant changes to the assignment of
connection RTTs discussed so far. First, instead of assigning specific delays to a small set of
end-to-end paths, this model assigns a specific delay to each TCP connection. Thus instead of
emulating 1, 10, or 30 shared end-to-end network paths, this model effectively enables emulation
of a distinct end-to-end path for each TCP connection in the experiment. Second, the RTT values
assigned to the connections were sampled from a discrete uniform distribution such that they
approximately represented the middle 80% of the original RTT distribution for each trace. Hence
for all experiments using the UNC trace, we sampled from the uniform distribution U[10, 200]
milliseconds, and for all experiments using the IBM trace, we sampled from the uniform

distribution U[30, 150] milliseconds.

(vii) The usernetRTT model

The usernet RTT model is adopted directly from the original design for RTT emulation used
in the Tmix traffic generation system. In this model, every one of the millions of connections in
an experiment is assigned the specific minimum RTT that was measured for that connection from
analyzing the TCP/IP headers of the original trace. The complete distribution of RTTs used in this

model is shown in Figures 3.4.1 and 3.4.2.

81

3.4.1 Choice of Three RTT Emulation Models

From the seven different RTT emulation models described above, we chose to run complete
sets of experiments using only three models. We have presented the results for a subset of
experiments using the other four models in Chapter 6. Our goal in picking the three RTT models
was the following: pick one model that emulates a single end-to-end path for all flows, pick one
model that emulates a multiple but small set of end-to-end paths, and pick one model that creates
the most faithful representation of the path characteristics of the original trace. Here’s why we

chose (or did not choose) each of these models.

nodelay: We did not choose this model for our full set of experiments. This model was used for
preliminary experiments, simply to study the huge difference in performance metrics between not

implementing any delay model, and implementing even the simplest model of RTT.

meanRTT: We chose this model for all our experiments because it is used in leading publications

of networking research, for example in [SB04].

medianRTT: We decided not to use this model for our complete set of experiments. To create a
single path for all connections, and given the distribution of RTTs, this model would actually
make more sense since the mean skews the result in favor of the few large RTTs present in the
distribution. However, since mean RTT is what is favored among networking researchers, we

chose to evaluate using that model instead.

10pathRTT: We chose this model as it best satisfied our dual goals of using one multi-path RTT
model which is also recommended by other networking researchers [TMRG] as a model for all

experimentation.

DA RTT: We chose not to use this model for two reasons. First, the 10pathRTT model already

satisfied our multi-path model requirement. Second, we discovered during our preliminary

82

investigations that this model produces results very similar to the complete usernet RTT model
because this model is the closest approximation of the empirical RTT distribution. Hence
although we did not use it for our full set of experiments, we show some results with this RTT in

Chapter 6, where we discuss some additional and interesting results from our study.

uniformRTT: We chose not to run our complete set of experiments using this model for two
reasons. First, the usernet model captures the per-connection assignment of RTTs that this model
introduces. Second, the 10pathRTT already models a uniform distribution although with a much

smaller set of values.

usernet: We chose this model to study the most precise emulation of RTT for empirically-
derived, realistic traffic generation, where every connection is assigned its originally measured

RTT value.

83

CHAPTER 4

EXPERIMENTAL METHODOLOGY

A theory is something nobody believes, except the person who made it. An
experiment is something everybody believes, except the person who made it.
Albert Einstein

Experimental methodology plays an important role in protocol evaluations in networking
research. For experiments run in a laboratory network, as we did in this study, this methodology
consists of the design of the network testbed, the calibration of the testbed components, and the
design and running of experiments to test the hypotheses of the study. In this chapter, we first
describe the methodology used for all experiments in this dissertation. Next, using our control set
for traffic generation comprising the a-t-b-t connection structure model and the usernet RTT
model, we introduce the measurement and evaluation methodology that we use to run all
experiments in this study.

What is this control set for traffic generation? We refer to the combination of the a-t-b-t
model for connection structure and the usernet model for RTT as our control set. Here’s why. In
this study, we develop several new models for both connection structure and RTT emulation. The
ideal method for comparing the effects of different models of traffic generation would be to
compare the results for these models with the original traffic itself. That is, the real gold standard

is obviously the original traffic captured on the production link. However, there are some

differences between the original traffic and what is ultimately in the complete set of traffic
components that we use as input in our experiments.

Now, Hernandez-Campos et al. have already shown that the Tmix models for connection
structure (a-t-b-t) and network characteristics (usernet RTT, window size) can emulate any given
input traffic in a realistic, reliable, and reproducible manner. That is, the traffic characteristics
produced using the Tmix model at the packet level and byte level on the laboratory network link
are the same as the traffic characteristics of the original input traffic to the Tmix system. Hence
we use the Tmix models as our control set and compare all other models against them. As our
results bear out, this combination of models is indeed an excellent choice as a control for realistic
traffic generation.

The rest of this chapter is organized as follows. In Sections 4.1, we describe the network
configuration in detail. In Section 4.2 we discuss the process we used to calibrate the network,
and its individual components, and present results from calibration experiments. Then, in Section
4.3, we describe our experimental procedures used in this dissertation. And in Section 4.4, we
introduce our control set for traffic generation. In Sections 4.5 and 4.6 we present the results for
experiments using the control set in unconstrained and constrained modes.

The unconstrained mode is one in which the router-to-router link in the network is set to
1Gbps. In the constrained mode, that link is set such to 105% of the expected average offered
load on that link. More specifically, we recall that the average offered load for the UNC and IBM
traffic is 471 Mbps and 404 Mbps respectively, on the high throughput or forward path on this
link. Hence for experiments using the UNC traffic, we set this router-to-router link at 496 Mbps
to create the constrained network mode. And for experiments using the IBM traffic, we set this
link at 424 Mbps to create the constrained network mode. This way, the generated traffic

consumes, on average, 95% of the link capacity.

85

4.1 Network Configuration

We setup a network consisting of 60 PCs configured as traffic generators, two FreeBSD
routers and three monitors collecting data on 1Gbps and 10Gbps fiber links at different points in
the core of the network. All systems are Intel-based machines that run FreeBSD. A schematic
diagram for this network is shown in Figure 4.1. The traffic generators have 1Gbps Intel Ethernet
interfaces and are attached to 1Gbps ports on the Ethernet switches. The two routers each connect
to a 10Gbps fiber switch port on these switches. The switches aggregate the traffic on each subnet
to a 10Gbps fiber connection to the router. The routers themselves are linked by a 1Gbps fiber
link in the middle of the network. This is the link we refer to as the “router-to-router link”
throughout this dissertation. This is also the link that we manipulate to toggle the network

environment between unconstrained and constrained modes for different experiments.

Switch

Ethernet <

Traffic 10 Gbps monitor g&=y DAG monitor Trafﬂc
generators generators

Figure 4.1.1: Network Testbed for all experiments in this dissertation

This network emulates a peering point between two ISPs with traffic flowing in both
directions on the link between the two routers. During each experiment, traffic generated on the

30 traffic generators on each end is aggregated at the switches. This aggregate traffic then

86

traverses the 10Gbps link to the router. The router on each end forwards the packets to the other
side of the network. We capture this traffic as it traverses the router-to-router link. This physical
network has a simple dumbbell topology. Logically, however, our traffic generation includes
emulating per-flow minimum round-trip-times (RTTs). These minimum RTTs are obtained from
a production network link on the Internet. This makes the network and the traffic traversing it

effectively able to emulate a wide-area network.

4.1.1 Traffic Generators

Each subnet at the end of this dumbbell contains 30 PCs that serve as both traffic generators
and data collection tools. These PCs range in capabilities from 450 MHz to 3GHz in processing
speeds, and 256 MB to 1GB in memory. In each experiment, these traffic generators create
application workloads and network characteristics based on the connection structure and RTT
models used in that experiment. For all the experiments discussed in this study, unless otherwise
specified, we assigned to each side of every TCP connection the exact maximum receiver
window size that was determined from analysis of the original packet header trace. Connection
durations and response times were measured and recorded by the traffic generators on each edge

of the network during every experiment.

4.1.2 Routers

The two routers running FreeBSD are 3.6GHz machines with 2GB of memory. They are
running the OpenBSD firewall software application known as packet filter (pf), which is a
complete, full-featured firewall that has optional support for queuing. We use this packet filter
module to restrict the bandwidth on the router-to-router link to desired limits during our

experiments, and also to provide specific queue limits at the router’s outgoing link. For

87

experiments in the unconstrained network environment, we leave this 1Gbps router-to-router link
unrestricted. This 1Gbps link capacity is significantly greater than the load generated from the
two input traffic mixes we use in this study. For experiments in the constrained network
environment, we restrict the router-to-router link to 105% of the expected average offered load.
Hence, we set the router-to-router link to 496 Mbps for the UNC replays and 424 Mbps for the
IBM replays.

During calibration, we connected the two routers using either 1Gbps or 10Gbps network
interface cards. For all our experiments, however, we used only the 1Gbps network interface
cards to connect the routers. In all cases the router queues were set to a large size (65,000
packets) which was determined to be sufficient to avoid any packet drops at the queue so that loss
rates were not a factor in any of the results, even in constrained mode. We made this deliberate
decision to provide such a long queue so that there would be no losses in the network. We
designed our experiments to study the different effects on router queue dynamics due to different
models used for generating traffic. Providing a shorter queue and thus inducing losses was out of

scope for this study.

4.1.3 Monitors

We used two slightly differently monitoring and measurement configurations in the network
for calibrations versus the main set of experiments. In this section, we discuss the details of these
setups and the reasoning behind the two different configurations. Our main monitoring machine is
a 3GHz server class PC with 4GB of memory and running FreeBSD. For calibration, this
machine was equipped with a specialized traffic capturing card capable of collecting traffic at up
to 1Gbps load between the two routers. The traffic capturing card is an Endace Systems’ DAG
4.3S single channel network monitoring card. DAG technology provides 100% capture into host

memory at full line rate for all packets on the link [dag]. The traffic captured by the monitor was

88

analyzed using dagtools, and several diagnostic and other tools developed at UNC, including an
enhanced tcpdump program.

The trace collection process in the laboratory is similar to the trace collection process on any
production link. Only the packet protocol headers (IP and TCP) are collected, and the timestamp
of the packet arrival is recorded. For all calibration, we use the specialized DAG hardware to
extract headers and provide accurate timestamps. The DAG trace collection has accuracy in the
order of nanoseconds for timestamping of the packets. Such accurate packet header traffic
captures were essential for calibration and testing so that we could verify that the connection
structure and RTT models were being emulated exactly as designed.

Once the laboratory network was calibrated, we changed the monitoring setup for all
experiments as follows. We used three FreeBSD machines for monitoring and measurement. The
first machine is a 2.3GHz machine with 2GB of memory, the second is a 1.5GHz machine with
512MB of memory, and the third is a 3GHz machine with 4GB of memory. The first two
recorded traffic data traversing the router-to-router link in both directions, one recording counts
of the bytes and packets in hundred microsecond intervals, and the other recording all SYN, FIN,
or RST packets to count active connections in the network. The third monitor recorded, in
hundred microsecond intervals, the arrival of bytes and packets to the router queue.

Both our input traffic sets — UNC and IBM — had offered loads that were not symmetrical in
the two directions. For queue lengths, we were therefore interested only in the router queue on the
high throughput path of this traffic. Hence the third machine monitored the 10Gbps fiber link
aggregating the traffic between the switch and the router only on the path of this higher traffic
throughput. At the router we recorded a log of the queue size (number of packets in the queue)
sampled every 10 milliseconds.

The two switches in the core of the network are 26-port HP Procurve 3400cl switches, each
connected to a 48-port Netgear GS748T switch. Each HP switch has 24 1Gbps copper ports and

two 10Gbps fiber ports. Each Netgear switch has 48 ports which can be configured as 40 ports of

&9

1Gbps copper and eight ports of 1Gbps fiber. In order to avoid any bottleneck on the switch
connections between the Netgear and the HP switches, we setup a 4Gbps trunk between each pair
of switches. This trunking is based on the IEEE 802.3ad Link Aggregation Control Protocol
(LACP). This is an IEEE standard for link aggregation supported by both sets of switches (HP
and Netgear). Such a setup enables a virtual link of 4Gbps between the switches. Key features of
link aggregation are: it is performed above the MAC layer, it assumes all links are full-duplex and
same data rate, traffic is distributed packet by packet, and all packets associated with a given flow

are transmitted on the same physical link to prevent mis-ordering of packets.

4.2 Network Calibration

Once we have configured the network, it must be calibrated before any experiments can be
reliably run using this network. But why do we calibrate a network? The main motivation for
network calibration is to ensure that the network, or any of its individual components, do not
present any resource constraints (unless otherwise designed to do so, as in a bandwidth
constrained link) when running experiments. The way we verify this is through calibration.
Calibration involves first identifying the set of all inputs to the experiment, deciding what the
outputs will be, and figuring out the correlations, if any, between these inputs and outputs.

The goal of calibration then is to ensure that these correlations are not influenced by an
unintended lack of resources in the network. Consider the case where the throughput in the core
of the network (output metric) is dependent on the number of TCP connections (input variable) in
the traffic. If increasing the number of TCP connections linearly increased the link throughput in
the core up to a certain point, then we could use this correlation to calibrate the network and
determine the reliable working range of inputs and corresponding outputs for which this

relationship holds. Say, for the sake of simplicity, that each TCP connection generated 1 Mbps of

90

traffic, and each traffic generator could handle 100 such connections without overloading any
resources on these machines. With 30 such traffic generators, we could then easily generate
3Gbps of traffic into the network. Assume that the traffic generators have 1Gbps link each, and
all the aggregation links are 10Gbps. What if the one of the routers in the network were
continuously overloaded with 100% CPU utilization trying to forward packets at this rate of
3Gbps? The router would start dropping packets and this affects the previously established
correlation between number of TCP connections and the throughput in the network. This is a case
where lack of resources at one point in the network affects the input-output dynamics of the
experiment.

During calibration, we push the network components, one at a time to determine its limits.
Then we design our experiments so that each network component is working well below its
resource limits. Hence we calibrate the network by designing and running a set of experiments
that stress-test every component of the laboratory testbed system with the goal of ensuring that no
single network component (individually or as part of the full network), presents a resource
bottleneck for the main set of experiments designed to test the hypotheses of this study. Toward
this end, we designed a series of calibration experiments with target loads of bytes and packets
that were much higher than the target loads in any of the main set of experiments of this study. If
these higher target loads were achieved, then these experiments would ensure that the traffic

generators, routers and monitors would not present any bottleneck in the main set of experiments.

4.2.1 Calibrating Routers

The two routers in the core of the network forward packets, constrain the router-to-router link
to operate at a specified bandwidth (by managing an outbound queue of packets to this link), and
collect measurement data. To calibrate the routers we had to ensure that their CPU utilization was

acceptable when performing all of these tasks in any given experiment. The maximum average

91

offered load for any experiments in this dissertation is 471 Mbps in one direction. Hence, to stress
test the routers, we designed two sets of experiments. The first set used the iperf program [iperf]
between two pairs of traffic generators using four TCP connections to generate an aggregate load
that was only limited by a constraint of 622 Mbps imposed on the forward path link between the
routers. The traffic on the reverse path was about 550 Mbps. The link was constrained on the
forward path to create a worst-case scenario to stress-test the routers. That is, the router had to be
able to forward packets onto the constrained link at the rate of 622 Mbps while also managing the
outbound queue of packets to this link.

The second set used the Tmix traffic generation system between 32 pairs of traffic generators
using 8.5 million TCP connections to generate 740 Mbps in the forward path and 230 Mbps in the
reverse path. The two routers were determined not to be a bottleneck at any of these high loads of
traffic. That is, the routers were able to forward packets at these rates without dropping packets,
and do so while maintaining an acceptable level of CPU utilization, that is, at or below 95%
utilization at all times.

We also experimented with different clock frequencies on the routers setting them at 100Hz,
1 KHz and 10 KHz. At 1 KHz, the clock interrupts occur 1000 times a second. This is the
frequency at which all the traffic generation systems operate. We wanted a higher frequency of
clock interrupts on the routers to allow for a finer granularity for timers. Higher frequencies,
however, also cause processing overhead. Hence we ran experiments with different clock
frequencies to study the balance between these two tradeoffs of finer timer granularity versus
higher CPU utilization. We found that the 10 KHz clock frequency resulted in slightly higher but
still well below 90% utilization at all times, for the throughput levels designed for our
experiments. Hence we used 10 KHz as clock frequency for our routers in all our experiments.

We ran another set of calibration experiments to test the following: the CPU utilization on the
routers seemed dependent on the inbound and outbound links on these routers. Let us discuss this

using Figure 4.2 shown below. From the figure we have the following: for the forward path or

92

higher throughput path, the first router’s inbound and outbound links are labeled “link1” and
“link2” respectively. Similarly, the second router’s inbound and outbound links are labeled

“link2” and “link3” respectively for the forward or higher throughput path.

Link 2
Link 1 Link 3
Ethernet E. gEthernet
Switch Switch
Flrst Router Second Router

Forward path (path of higher throughput)

\ 4

Figure 4.2.1: Routers’ inbound and outbound links

Through initial calibration, we had found that the second router on the forward path showed
higher CPU utilization than the first router on that path. This seemed counter-intuitive at first. But
we determined through a series of specially designed experiments that this was due to more
efficient processing of incoming packets on the first router’s 10Gbps inbound NIC than the
second router’s 1Gbps inbound NIC for the traffic on the forward path. We conjecture that this is
a difference in the efficiency of the drivers for the two network interfaces though they are both
Intel network cards. We verified this by running several experiments with varying loads using
1Gbps NICs throughout, and then repeating these experiments with 10Gbps NICs throughout as
well as combinations of 1Gbps and 10Gbps links.

In the presence of a 10Gbps NIC on the second router for inbound traffic on the forward path,
this second router dropped its CPU utilization to the same lower levels as that of the first router.
For all our experiments, however, we used the 1Gbps router-to-router link and 10Gbps link from

the switch to the router after determining that the slightly higher router CPU utilization on the

93

second router did not present a bottleneck for the traffic. That is, although this second router had
significantly higher CPU utilizations with this configuration (see Figure 4.2.4(b)), the level of
CPU utilization achieved for the throughputs at which we were operating in our experiments was
acceptable. That is, we found the router utilization to be below 80% for the middle 40 minutes in
all our experiments. Note that we report performance results using only the data from the middle
40 minutes of each experiment. In the set of iperf calibration experiments presented below, we
used the worst case (in terms of testing CPU utilization) of having 1Gbps Intel NICs on both the
routers on the incoming and outgoing paths.

We also ran some experiments to determine the appropriate size for the transmit buffer on the
router’s network interface card (NIC) driver. Here’s why. When this transmit buffer on the NIC
driver was left at its default value, there were times in an experiment when the router’s outbound
queue (managed by the pf module) seemed to drain; that is the router queue had no packets in it.
However, the corresponding queuing delay results did not support this apparent draining of the
queue. Further investigation revealed that these packets that were dequeued from the router’s
outbound queue were actually being enqueued in the NIC’s onboard transmit buffer before being
transmitted out on the link. We then ran experiments with different buffer sizes for that transmit
buffer to determine an optimum size that would be small enough not to cause noticeable
additional queuing delays but also large enough not to drop packets. We found this number to be

4 packets instead of the default 256 packets for the transmit queue.

4.2.1.1 Iperf Experiments for Calibrating Routers

Iperf, orginally developed by NLANR (National Laboratory for Applied Network Research),
is a tool often used by networking researchers for some basic measurement and testing in a
network. This includes testing of bandwidth, latency, jitter and loss using TCP and UDP flows.
Iperf allows the tuning of various parameters and UDP characteristics. Iperf uses FTP-like data

streams. The throughput of each TCP connection is, therefore, mostly dependent on the receiver

94

window size and available network bandwidth. The data is sent only in one direction for each
connection, with pure acks traversing the opposite direction.

For calibration, we ran several experiments using iperf: first, between two pairs, and then four
pairs, of traffic generators to generate TCP traffic in both directions. We ran every experiment in
the forward and reverse directions to ensure there was no difference in the setup of the two
routers. In these experiments, we use the term forward to refer to the direction in which there is
higher throughput of bytes and packets in the network. We refer to the opposite direction as the
reverse direction. To run the experiments, we used four pairs of machines with two pairs (pairl
and pair2) sending data in the forward direction using one TCP flow each and two pairs (pair3
and pair4) sending data in the reverse direction using one TCP flow each. Hence the forward path
also carried the acks for the TCP connections between the traffic generators in pair3 and pair4
while the reverse path carried the acks for the TCP connections between the machines in pairl
and pair2. Thus we had two TCP flows in the forward path with their corresponding ack flows in
the reverse path, and we had two TCP flows in the reverse path with their corresponding ack
flows in the forward path.

Each iperf experiment was run for five minutes. We collected data on the iperf clients and
servers, the routers and at the router-to-router link using the monitor with the DAG capture card.
We ran these iperf experiments at different loads constrained by the capacity of the router-to-
router link. We set this link to 100Mbps, 200Mbps, and so on up to the unconstrained mode of
1Gbps. Recall that since iperf can generate connections with unlimited data, these TCP flows
grow their window size up to the maximum available bandwidth. The TCP receiver maximum
windows were set to 64KB. And since we provided very large router queues, the packets were
queued without any packet loss at the constrained link.

As we explained earlier, the constrained experiments represent the maximum usage of
resources on the routers because the routers have to forward packets onto the constrained link

while also managing the outbound queue of packets to this link. Hence, we show the throughput

95

results for the worst-case experiment in the above mentioned series of iperf experiments. We only
show the results for the middle 3 minutes of that 5 minute experiment in Figures 4.2.2 (a) and (b)
since this is the stable region. In this experiment, we emulated connection RTTs by using
dummynet to set delays of 10 ms and 15 ms on the iperf servers, thus delaying all acks going from
server to client (Iperf sends data from client to server). Figure 4.2.2 (a) shows the byte throughput
in the forward (high throughput) direction and Figure 4.2.2 (b) shows the throughput in the
reverse direction. The router-to-router link was constrained at 622Mbps in both directions. Hence
each figure shows the throughput in one direction. The throughput in each direction consists of

two data streams and two acks streams.

600 ‘ ‘ ‘ 600
A
500 500
1% 1%
& &
= =
c 400 c 400
5 5
3 —_— % x| s
2 300 S 300 g g
<] %%]
£ £ e M U ——
< 200 < 200
-} -}
Total-throughput-forward_direction ~ + Total-throughput-reverse_direction ~ +
pairl-data X pairl-acks X
100 - pair2-data x| 100 - pair2-acks x|
pair3-acks O pair3-data ©
0 pair4-acks = 0 pair4-data =
1 15 2 2.5 3 3.5 4 1 15 2 2.5 3 3.5 4
Time in minutes Time in minutes
Figure 4.2.2 (a): Throughput for the iperf flows Figure 4.2.2 (b): Throughput for the iperf flows
— forward direction — reverse direction

Figure 4.2.2 (a) shows the two data streams for pairl and pair2. These two flows had an
average throughput in the forward direction of 332 Mbps and 275 Mbps, which along with the
throughput of the two acks streams from pair3 and pair4 of 8 Mbps and 7Mbps, totaled 622Mbps
or the full capacity of the link. Figure 4.2.2 (b) shows the throughputs of the data streams on the
reverse paths (generated by pair3 and pair4) and the ack throughput generated by pairl and pair2
on this path. The data throughputs on this path are slightly lower at 293 Mbps and 249 Mbps.

This reflects the fact that pair3 and pair4 were the least capable machines in the network so the

96

total on this path did not hit the link capacity limit. The ack throughputs on this path are 10 Mbps

and 8 Mbps.

Each iperf flow shown above sends TCP data in only one direction with pure acks sent in the
other direction. Hence, we note the following interesting data collected from these experiments.
In the forward direction, 38% of Ethernet frames were 66 bytes in size (acks for pair 3 and 4) and
62% were 1514 bytes (data for pair 1 and 2). In the reverse direction, 43% of Ethernet frames
were 66 bytes in size (acks for pair 1 and 2) and 57% were 1514 bytes (data for pair 3 and 4).
There were 24.4 million packets in the forward direction and 23.6 million packets in the reverse
direction, generating roughly 80 Kpps (thousand frames per second) in each direction during this
short 5-minute experiment. Why does this matter? We also measured the CPU utilization at the
routers to be 95% and 85% on average for the first and the second routers respectively. This
difference in router CPU utilization for the same data being handled had to do with the fact that
the network interface card handling this incoming traffic was 10Gbps on one router and 1Gbps on
the other. Details of experiments specifically exploring this difference in CPU utilization were
discussed in Section 4.2.1 (Calibrating Routers). Hence, we can conclude that the routers can
handle packet throughputs of 80Kpps without presenting resource constraints on the routers. The
main experiments of this dissertation (presented in Chapter 5) were all designed for lower target

loads (total byte and packet throughputs) than these.

4.2.1.2 Tmix Experiments for Calibrating Routers

Iperf experiments use large size data packets, while most traffic on the Internet consists of a
large variety of packet sizes. Hence we ran another set of calibration experiments using a
captured UNC trace as input to the Tmix traffic generation system. This system consists of
several components. The traffic generation tool, TmiX, replays the source-level behavior of a set

of input connection vectors using real TCP sockets in a FreeBSD environment. [HC06]. Usernet,

97

a modified version of dummynet, implements a user-level programming interface that is used by
tmix instances on the traffic generators to assign per connection delays as specified in the input
set of connection vectors. Finally, a single program, treplay, is used to control the setup of the
experimental environment, configure and start the tmix instances (assigning them a subset of
connection vectors and traffic generation peer), and collect the results. Tmix instances rely on the
standard socket interface to create a connection, send and receive ADUs, and to close the
connection. For every experiment, all the machines are first initialized and configured. Then the
routers and monitors start their monitoring programs followed by the traffic generators running

instances of the tmix program.

For the router calibration using Tmix, we tested the network using several different offered
loads, scaling the same input traffic to these higher loads in each case, using the block-resampling
methods from [HCO6]. In this section, we describe the experiment with the highest of these loads
because that created the most stress on the routers in the network. In this highest load case, we
had an average byte throughput of 740Mbps in the forward direction and 230 Mbps in the reverse
direction. The corresponding average packet throughputs were 89Kpps in the forward direction
and 74Kpps in the reverse direction. We show the time series of byte and packet throughputs for
the entire hour long experiment in Figures 4.2.3 (a) and (b) respectively. In this experiment, we
used 32 pairs of traffic generators, and the average load per pair of traffic generators was 1.4
times the highest average load per traffic generator in the experiments reported in Chapter 5. The
distribution of RTTs for the connections (shown in Figure 4.2.4(a)) is similar to that of the UNC

traffic used for experiments reported in Chapter 5.

We make an important observation from these two throughput figures: with such large
numbers of TCP connections (8.5 million over the hour long experiment), and with 32 pairs of
traffic generators starting at the same time, there is a significant startup effect at the beginning of

the experiment and a visible termination effect at the end of the experiment. Hence, although we

98

ran every experiment in this dissertation for an hour, when reporting performance results in
Chapters 5 and 6, we only use the data from the middle 40 minutes of each experiment. This
eliminates any Tmix-related startup and termination effects. During this experiment, the CPU
utilizations for the routers were on average 75% and 92% for the first and second routers on the
forward path respectively, as shown in Figure 4.2.4(b). For why this difference in router

utilizations between the two routers, we refer to Section 4.2.1.

1000 120

100 -
Boo -
80 - |
a0 -
forward i T

tput CHbps 1n 55 bins)
pkts CKpps 1n 5s bins)

400

«| forward
reverse

200

20
\ reverse ot + srotben, &
selrtout X dst-pkts
? o 10 20 30 a0 50 60 70 8o ? o 10 20 30 40 50 60 70
Time in minutes Time in minutes
(a) byte throughput in Mbps (b) packet throughput in Kpps

Figure 4.2.3 : Throughput for Tmix calibration experiment

Empirical distribution for RTTs

enpirical distribution
CPU Uil Cin

BTTs peru-cpu-util +

- L L L L L L
1 10 100 1000 10000 B sa@ 1880 1568 2aaa esee 3088 3san
RTTs Cin ms) Time in seconds

Figure 4.2.4 (a): Distribution of RTTs Figure 4.2.4 (b) : Router CPU utilizations

99

The routers performed well under the high offered loads in this experiment without
introducing any resource constraints of CPU, memory, or allocated buffers. And the offered loads
in this experiment were much higher than the loads in experiments reported in Chapter 5. Hence
we can conclude from this calibration that the routers would not present resource constraints

when running those experiments.

4.2.2 Calibrating Monitors

There were no separate set of experiments conducted for determining the capabilities of the
three monitors. However, buffers on the monitors were tuned during initial calibration to collect
data at high throughputs for the hour long experiments. The monitors were then used for all
calibration both for routers and traffic generators and in that process, we determined that all three
monitors could capture the generated traffic without any drops while maintaining low CPU

utilizations.

4.2.3 Calibrating Traffic Generators

The traffic generators had to be stress-tested to answer two main questions. First, what is the
highest throughput they can generate using a few flows — this would test handling of byte and
packet rates. Second, how many TCP connections could they manage while running Tmix?
Running Tmix with a few thousand flows would test the CPU, memory and buffer management
capabilities for managing these connections. Toward this end, we calibrated the traffic generators
(similar to the router calibration) as follows. First, we generated a few high throughput TCP flows
per traffic generator pair, sending large packets using the iperf program. Then we generated more
than one hundred thousand TCP flows per traffic generator pair, sending a diverse mix of packet

sizes and flow sizes using the Tmix traffic generation system.

100

The number of connections managed per traffic generator is an important factor in
calibration. This is because with a few thousand TCP connections alive per second on average per
traffic generator, the traffic generators must manage the CPU, memory and buffer resources to
keep state for all these connections while servicing each connection in a round-robin fashion. For
the calibration using iperf, we refer to Figures 4.2.2 (a) and (b) back in Section 4.2.1. The two
pairs of traffic generators used in that experiment represented the most capable and the least
capable pair of machines in our set of 30 pairs of traffic generators (with respect to their
processing and memory capabilities). Each of these four PCs served as either client or server, and
thus generated two data streams and two ack streams in each direction. As seen in Figures
4.2.2(a) and 4.2.2(b), the least capable of these traffic generators was able to generate iperf data
traffic of at least 240Mbps. This is more than an order of magnitude higher throughput than what
we require for the experiments reported in Chapter 5. For all experiments reported in Chapter 5,
we require each traffic generator to generate traffic that is less than 20Mbps. Also, the CPU
utilizations on these PCs during the iperf experiments were quite low — they were less than 20%
on each traffic generator. Hence, this iperf experiment gave us an upper bound for the traffic
generators in terms of the total throughput they could each generate using only one connection

per pair even for the least capable traffic generators.

For traffic generators, generating and managing thousands of TCP connections over an hour
long experiment is a better stress test than generating a few TCP flows of very high throughput.
Hence we ran experiments using Tmix with realistic traffic captured at the UNC campus link.
This input was an hour long trace captured on December 7, 2007 starting at 11:30 AM. This
represents peak campus-Internet traffic just like the January 2008 trace we used for the
experiments reported in Chapter 5. Unlike the router calibration using Tmix (where we ran all
pairs of traffic generators at once), we ran these experiments using only one pair of machines at a

time to determine their capability and find any bottlenecks. The median of the maximum CPU

101

utilizations on the most capable and least capable pair of machines were 53% and 72%

respectively.

In this section, we present the results only for the worst-case — that is, the least capable pair of
machines running Tmix. As shown in Figure 4.2.5 (a), the average throughput was 31Mbps and
11Mbps in the forward and reverse paths. The corresponding packet throughputs were 3.8 Kpps
and 3.2 Kpps as shown in Figure 4.2.5 (b). It must be noted that by generating only 30Mbps of
traffic with each of the 30 pairs, we could potentially generate 900 Mbps using all 30 pairs,
without these traffic generators presenting any bottlenecks. This is almost double the traffic
generated in any of the experiments reported in Chapter 5, and thus provides a much higher upper

limit for each traffic generator.

10
througﬁput - forwa‘rd directioﬁ + throudhput - forwérd directioﬁ +
throughput - reverse direction % throughput - reverse direction ~ x

100

"

40

Link throughput in Mbps
Link throughput in Kpps

ol | |
20

. b
i

"kl

0 0 10 20 30 40 50 60 0 0 10 20 30 40 50 60
Time in minutes Time in minutes
(a) byte throughput in Mbps (b) packet throughput in Kpps

Figure 4.2.5: Throughput for Tmix calibration experiment for least capable traffic generator pair

Our calibration for this least capable pair of traffic generators showed that even at these
relatively high loads, they replay the input traffic using Tmix exactly as intended. We verified
this as follows. We extracted the following data from the connection vectors representing the

input traffic for this experiment: roundtrip times, number of epochs in sequential connections,

102

request sizes and response sizes in sequential connections and the ‘a’ and ‘b> ADU sizes for the
concurrent connections. Then during the hour long experiment, we acquired the packet header
trace of the generated traffic on the router-to-router link using the 1Gbps DAG card. We then
processed and analyzed this trace for the same set of measures as we did for the input connection
vectors (derived from the trace on the production link). Figures 4.2.6 through 4.2.10 compare the
distributions of various measures of TCP connections in the original traffic (input to the traffic

generators) and the results of the calibration replay experiments (output to the traffic generators).

1 1
0.8 0.8
2 2
2 2
g 0.6 / g 0.6
o o
[[
2 =
2 =1
5 04 < 04
£ £
= =
]]
0.2 0.2
replay-RTTs + replay-epochs +
originaljtrace-RTTs x ‘originalftrace-epochs x
0 0
1 10 100 1000 1 10 100
Round Trip Time (ms) Number of Epochs
Figures 4.2.6 (a) and (b): CDF and CCDF for input and output round trip times
1 1
> 0.1
0.8 3
2> | 0.01
= o .
5 g X
[
5 06 2 0001
s E p\
>
= =
g o4 3 0.0001
Pl
£ s
o S 1e-05
0.2 g N
g 1e06
__ replay-request_sizes + 8 __ replay-request_sizes +
0 e original_trace-request_sizes < Le.07 | _ original_trace-request_sizes = x
1 10 100 1000 10000 100000 1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09
Request Sizes (bytes) Request Sizes (bytes)

Figures 4.2.7 (a) and (b): CDF and CCDF for input and output request sizes

103

Cumulative Probability

Cumulative Probability

Cumulative Probability

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

yd

__ replay-response_sizes +
quglnal_trace-‘response_mz‘es X

10

100 1000
Response Sizes (bytes)

10000

100000

Mw

A

_ replay-concurrent-ADU-a-sizes +
onglnal_t‘race-concurre‘nt-ADU-a-5|z‘es X

10

100 1000
ADU Sizes (bytes)

10000

100000

Complementary Cumulative Probability (%)

Complementary Cumulative Probability (%)

0.1

0.01

0.001

0.0001

1le-05

1e-06

1e-07

0.1

0.01

0.001

0.0001

1le-05

1e-06

1e-07

\\

\

__ replay-response_sizes +
orlglnal_tr‘ace-r6§ponsey_5|zes‘ X

10

100 1000 100001000001e+06 1e+07 1e+08 1e+09
Response Sizes (bytes)

Figures 4.2.8 (a) and (b): CDF and CCDF for input and output response sizes

replay-concurrent-ADU-a-sizes ~ +

Qriginalrtrace-Foncur‘rent-AI‘DU-a-si‘zes X

10

100 1000 100001000001e+06 1e+07 1e+08 1e+09
ADU Sizes (bytes)

Figures 4.2.9 (a) and (b): CDF and CCDF for input and output concurrent ‘a’ sizes

o~

replay-concurrent-ADU-b-sizes ~ +
originalft‘race-concurre‘:nt-ADU-b-siz‘es X

10

100 1000
ADU Sizes (bytes)

10000

100000

Complementary Cumulative Probability (%)

0.1

0.01

0.001

0.0001

1le-05

1le-06

1le-07

replay-concurrent-ADU-b-size: +
griginalrtrace-‘concurrent—ApU-b-si;e

10

100 1000 100001000001e+06 1e+07 1e+08 1le+09
ADU Sizes (bytes)

Figures 4.2.10 (a) and (b): CDF and CCDF for input and output concurrent ‘b’ sizes

104

Figures 4.2.6 (a) and (b) compare the CCDFs of the original and replay-generated
distributions for connection RTTs and number of epochs per connection. We observe that these
distributions match closely indicating that the traffic generator pair is replaying the traffic as
designed. Similarly, Figures 4.2.7 (a) and (b) compare the original and replay-generated
distributions for request sizes in sequential connections, showing the CDF and CCDF in the two

figures respectively.

Figures 4.2.8 (a) and (b) confirm that this traffic generator pair also replayed response sizes in
sequential connections as designed. Figures 4.2.9 (a) and (b), and Figures 4.2.10 (a) and (b)
compare the original and replay-generated distributions for the ADUs in concurrent connections
in the two directions for each connection. These are the a and b sizes as shown in these figures.
Figures 4.2.11 (a) and (b) show that, throughout this experiment, the CPU utilizations over 1

second intervals were less than 75% for the two traffic generators.

From these data, we conclude that the traffic generators would replay the traffic using the
Tmix traffic generation system as designed, and no traffic generators would present a bottleneck

in the experiments we report in Chapter 5 and 6.

100 T T 100 T T
Traffic Generator 1~ + Traffic Generator 2 +
80 80
s s
= 60 5& | = 60 I il m“ i “\ 1 I
£ £
= =
2 40 2 40
O O
20 20
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time in minutes Time in minutes

Figures 4.2.11 (a) and (b): CPU utilization for the two traffic generators used in this experiment

105

4.3 Verification of Tmix Replay

In the previous sections, we discussed calibration of routers, monitors and traffic generators.
Having completed calibrating the network, we now show that our full laboratory network testbed
was configured properly to replay traffic using the Tmix traffic generation system for the
experiments reported in Chapter 5. We verify that Tmix realistically reproduces the traffic from
the production link in our laboratory testbed. We show that the traffic we generate bears all the
key characteristics found in the input traffic used for replay. While we already showed that this is
true for one pair of traffic generators in Section 4.2.3, we now show that this holds in the

aggregate when using all pairs of traffic generators.

The input traffic for this Tmix experiment was acquired from the UNC production link.
While this traffic is derived from the same UNC traffic we use for experiments reported in
Chapter 5, there are a few thousand connections that were not included in these experiments.
During this hour long Tmix experiment, we captured the packet header trace on the router-to-
router link using the 1Gbps DAG card. We then processed and analyzed this experiment-

generated trace for several key measures of traffic.

120
througﬁput - fOﬂNE‘lrd directior‘1 + throudhput - fonNélrd directior‘1 +
throughput - reverse direction % throughput - reverse direction x

:: V\w\«f\ﬁmw) Ty ‘
o Mt | |V tbisans,

Ut i w
20 MMWMWWMMMWMM | 20)

0

1000

800

600

|

Link throughput in Mbps
Link throughput in Kpps

0 20 3 0 50 60 0 10 20 30 40 50 60
Time in minutes Time in minutes
(a) byte throughput in Mbps (b) packet throughput in Kpps

Figure 4.3.1: Throughput for Tmix verification experiment

106

Figures 4.3.1 (a) and (b) show the throughput in Mbps and Kpps computed in 5 second
intervals. The average byte throughput in the middle 40 minutes of this replay was 451 Mbps
with a standard deviation of 35Mbps in the forward direction, and 165 Mbps with a standard
deviation of 19 Mbps in the reverse direction. The corresponding average packet throughput was
56 Kpps with a standard deviation of 3 Kpps in the forward direction, and 47 Kpps with a

standard deviation of 2.6 Kpps in the reverse direction.

As we observed in the router calibration using Tmix, we find there is a significant spike in
throughput at the beginning of the replay due to the 30 pairs of traffic generators starting all at
once, and all of them starting TCP connections in the first few minutes of the experiment. There
is also a significant decay in throughput during the last few minutes of the experiment. For results

reported here, we use data collected during minutes 10 to 50 of the replay.

We now verify this Tmix experiment (similar to Section 4.2.3) by visually comparing the
distribution of several key measures of the traffic on the production link with the corresponding
measures for this replay using the CDFs and CCDFs for these parameters. We extracted the
following distributions from measurements of both sets of traffic: connection minimum RTTs,
number of epochs in sequential connections, request sizes and response sizes in sequential

connections, and the ‘a’ and ‘b> ADU sizes for the concurrent connections.

/

0.1 \\
0.01
0.001 X

0.0001 X

le-05

Zﬁi /
/
S/

Cumulative Probability

le-06

Complementary Cumulative Probability (%)

replay-RTTs + replay-RTTs +
original_trace-RTTs X original_trace-RTTs X
0 L 1le-07 = L
1 10 100 1000 1 10 100 1000 10000
Round Trip Time (ms) Round Trip Time (ms)

Figure 4.3.2 (a) and (b): CDF and CCDF of connection RTTs for Tmix verification experiment

107

1 1
S
> 0.1
0.8 =
©
2 g 0.01
= <
[
5 06 2 0001
e S
g E \\
g o 3 0.0001 S
< 04 <
5 8
o $ 1le-05
£
: .
£ 1le-06
replay-epochs + 8 replay-epochs +
original_trace-epochs ~ x original_trace-epochs X
0 L 1le-07 L L L
1 10 100 1 10 100 1000 10000 100000
Number of Epochs Number of Epochs

Figure 4.3.3 (a) and (b): CDF and CCDF of number of epochs per connection for Tmix verification experiment

Figures 4.3.2 through 4.3.9 show the distributions for each of these measures comparing data
from the original trace (input to the experiment) with data from the replay experiment. ~ Figures
4.3.2 (a) and (b) compare the distributions of the minimum round trip times per connection for the
original trace and the replay. The two distributions match very closely showing that we emulated
the connection RTTs exactly as required. Similarly Figures 4.3.3 (a) and (b) compare the
distributions for the number of epochs for sequential connections in the original trace with the

number of sequential epochs in the replay.

1 1
g N
B 0.1
0.8 3
©
2 8 0.01
= &
[
5 06 2 0.001 W
a &
2 g b
K] 04 3 0.0001 Eﬁx\
=] N >
g / g
o $ le-05
£
0.2 %_ \
£ 1le-06
replay-request sizes + 8 replay-request sizes +
‘ original_tra‘ce-requestsiz‘es X ‘ ori‘ginal_t‘race-reguest s‘izes X
0 1le-07
1 10 100 1000 10000 100000 1 10 100 1000 100001000001e+06 1e+07 1le+08 1le+09
Request Sizes (bytes) Request Sizes (bytes)

Figures 4.3.4 (a) and (b): CDF and CCDF for request sizes for Tmix verification experiment

108

Cumulative Probability

Cumulative Probability

Cumulative Probability

1 1
‘/ _]

S

ﬂ@@ > o1
0.8 3
8

S 0.01
y a
0.6 <

E 0.001
=]
5

0.0001
(8]

0.4 < X

s

$ 1le-05
£
0.2 %

£ 1le-06

replay-response sizes = + 8 replay-response sizes +
original_trace-response sizes X original_trace-response sizes X
0 Il Il Il 16-07 Il Il Il Il Il Il
1 10 100 1000 10000 100000 1 10 100 1000 100001000001e+06 1e+07 1le+08 1le+09
Response Sizes (bytes) Response Sizes (bytes)

Figures 4.3.5 (a) and (b): CDF and CCDF for response sizes for Tmix verification experiment

1 — 1
\9@
M 0.1
0.8
/%W 0.01 A
06 0.001 %
0.4 0.0001 ’\S&
le-05 \

0.2 2

Complementary Cumulative Probability (%)

le-06
replay-concurrent-ADU-a-sizes + replay-concurrent-ADU-a-sizes
original_trace-concurrent-ADU-a-sizes X original_trace-concurrent-ADU-a-sizes X
0 Il] Il Il 16-07 Il Il he Il Il Il Il Il
1 10 100 1000 10000 100000 1 10 100 1000 100001000001e+06 1e+07 1le+08 1e+09
ADU Sizes (bytes) ADU Sizes (bytes)

Figures 4.3.6 (a) and (b): CDF and CCDF for concurrent ‘a’ sizes for Tmix verification experiment

1 F 1
g \%
B 0.1
0.8 3
8
S 0.01
a
0.6 <
E 0.001 %
>
5 x&,
0.0001
(8]
0.4 > \
g
$ le-05
£
0.2 X} \\
£ 1le-06
replay-concurrent-ADU-b sizes + 8 replay-concurrent-ADU-b sizes
original_trace-concurrent-ADU-b sizes X original_trace-concurrent-ADU-b sizes
0 Il 1 Il Il 16-07 Il Il hel Il Il Il Il
1 10 100 1000 10000 100000 1 10 100 1000 100001000001e+06 1e+07 1le+08 1le+09
ADU Sizes (bytes) ADU Sizes (bytes)

Figures 4.3.7 (a) and (b): CDF and CCDF for concurrent ‘b’ sizes for Tmix verification experiment

109

Figures 4.3.4 and 4.3.5 compare the distributions of the measured request sizes and response
sizes with the distribution of request sizes and response sizes produced by the replay experiment.
Figures 4.3.6 and 4.3.7 compare the distributions of the ‘a’ sizes and ‘b’ sizes in concurrent
ADUs with the corresponding distributions measured from the production link. As shown in all
these figures, the replay trace has the same distributions of measures of connection structure and

network characteristics (RTTs) as the original trace which was captured on the Internet link.

The CPU utilizations on the traffic generators were fairly low (see Figures 4.2.8 (a) and (b)).
Each figure shows the most capable and least capable traffic generators. The CPU utilization is
about 10% for the most capable machines and about 40% for the least capable machines. We
conclude that our network was configured properly and the whole system consisting of traffic

generators, routers, and monitors reproduced the input traffic exactly as intended.

100

100

élowest traff‘ic generato‘r + élowest traff‘ic generato‘r +
fastest traffic generator % fastest traffic generator %
80 80
j = j =
2 60 2 60
© ©
3 3
5 =1
E 40 . E 40 i
@] @]
20 20
0 | | | | 0 | |
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time in minutes Time in minutes

Figures 4.3.8 (a) and (b): CPU utilization for the most and least capable traffic generator pairs on each subnet

4.4 Experimental Design

So far, in this chapter, we discussed network configuration and calibration, and verification of

the Tmix replay experiment. In this section, we discuss the process of developing the overall

110

design of experiments to prove or disprove our hypotheses in this dissertation. We conducted
experiments using all combinations of the four connections structure models and three RTT
emulation methods (described in Chapter 3). In Chapter 5, we report the results from
combinations of experiments using these models. We ran every experiment at least three times,
but report the results of only one experiment for each combination of connection structure model
and round trip time emulation. If the results varied among the three runs, we would have chosen
to report the average over all repetitions. However, our experimental results were consistent over

different runs; hence we picked one run to report the outcomes.

We repeated the entire set of experiments using both UNC and IBM traffic. Every
combination of connection structure and RTT model was run in two modes: unconstrained
(1Gbps) and constrained (95% offered load). In the unconstrained mode, the link between the
core routers is 1Gbps. In the constrained mode, this same link is set to 105% of the expected
average offered load on this link. Whether unconstrained or constrained, the (aggregation) link
between the switch and the router on each of the two subnets was always 10Gbps for all
experiments. For experiments with UNC traffic, the average uncongested load was 471 Mbps and
hence the constrained link capacity was set to 496 Mbps. For experiments with IBM traffic, the
average uncongested load was 404 Mbps and hence the constrained link capacity was set to 424

Mbps.

For every experiment, we collected measurements at various points in the experimental
network. We then analyzed these measurements to study the effect of connection structure models
and round trip time emulation methods on four key performance metrics. These performance
metrics are connection durations and response times (both recorded on the traffic generators for
every TCP connection), the router queue length (recorded on the router for its outbound queue),

and active connections (recorded on one of the two monitors on the router-to-router link).

111

Unlike the calibration experiments, we did not use the monitor with the DAG card in these
experiments. Hence, we did not capture the packet header trace for all the traffic on the link.
Instead, we measured throughput on the link, counting every byte and every packet traversing that
link in 100 microsecond intervals. In this section, all figures showing throughput results show this
data aggregated over 5 second intervals. The arrival of packets and bytes into the network is fairly
bursty, representing the nature of arrivals onto the Internet link at which the original trace was
measured. The aggregation uplink before the core routers is a 10Gbps link in our testbed network.
On that link, we measured byte arrivals well over 1Gbps at sub-10ms intervals. In the figures,
‘Mbps’ indicates throughput in units of Megabits per second, and ‘Kpps’ indicates throughput in
packets with units of Kilopackets (thousands of packets) per second. Every experiment was run
for 60 minutes, but all data shown in the results sections are for the middle 40 minutes to
eliminate startup and termination effects. It was determined during calibration that allowing 10
minutes for startup effects to diminish and 10 minutes for termination effects to diminish was

adequate to account for such effects.

4.4.1 The Control Set: a-t-b-t with usernet

In this section, using our control set for traffic generation comprising the a-t-b-t connection
structure model and the usernet RTT model, we introduce the measurement and evaluation
methodology that we use for all experiments reported in Chapter 5. As we explained earlier, we
adopted the combination of the a-t-b-t model for connection structure and the usernet model for
RTT as our control set. We use this set to compare the effects of different models of traffic
generation on application-level and network-level performance metrics. While the real gold
standard is obviously the original traffic captured on the production link, Hernandez-Campos et
al. have already shown that the Tmix models for connection structure (a-t-b-t) and network

characteristics (usernet RTT, window size) can emulate any given input traffic in a realistic,

112

reliable, and reproducible manner. In Section 4.3, we successfully verified that the output
characteristics of the traffic generated matched their corresponding input parameters for traffic
generation, given our particular experimental setup. Hence we use the Tmix models as our control
set and compare all other models against them. As our results bear out in this dissertation, this
combination of models is indeed a good choice as a control set for realistic traffic generation.

We have already used this control set of models for the three Tmix experiments presented for
calibration and verification in this chapter so far. So what differentiates those experiments from
the ones below? Those experiments used only UNC traffic, not IBM traffic. Though the traffic
sets for those experiments were acquired from the UNC production link, they are different from

the traffic set we use for results reported in Chapter 5.

45 a-t-b-t with usernet in Unconstrained Mode

In this section, we discuss the results for two experiments (one using UNC traffic, and the
other using IBM traffic) modeled with the control set and run in the unconstrained network mode.
We present results for the time series of throughput followed by results for the performance
metrics: connection durations, response times, router queue length, and active connections. For all
of these measures, we present results for both experiments, comparing them on the same figure

wherever possible.

4.5.1 Throughput

Figures 4.5.1 and 4.5.2 show the byte throughput time-series for the experiments using the
UNC and IBM traffic in the unconstrained mode. Figures 4.5.3 and 4.5.4 show the corresponding
packet throughput time-series. We present the throughput time series because it is the most

common and familiar measure of characterizing traffic on any production link or, in this case,

113

traffic generated in the laboratory. These figures show throughput data averaged over 5 second

intervals.

600

600
550 A ‘ f | 550
§ y”% sﬂl‘ﬂ A% }w\ IL .V wﬁ Wm ol §]
% 450 ff TM{“] nw A\ / v ‘ M}W\' % 450& i ’ NW |)\
£ 00 S ol M b b
e LR,
350 350 ‘nv” w W 1
200 bytqs-dep Lt 200 bete‘s-dep 7t
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes
Figure 4.5.1: Link throughput in Mbps - UNC Figure 4.5.2: Link throughput in Mbps — IBM
(unconstrained mode) (unconstrained mode)
80 80
75 75
» 70 . 70 | b | |
gGSA | Mn.m ¢ W.” . ,
£ il il IR £l MDA W LK
g n g B A
£ 55 { } ! £ 55
B
50 50
45 45
20 pk}s-dep Lt W0 pk}s-dep ,*
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

Time in minutes

Figure 4.5.3: Link throughput in Kpps — UNC
(unconstrained mode)

Time in minutes

Figure 4.5.4: Link throughput in Kpps — IBM
(unconstrained mode)

Figure 4.5.1 shows that the mean throughput for a replay of UNC traffic is 471 Mbps with a
standard deviation of 34 Mbps. Figure 4.5.2 shows that the mean throughput for a replay of IBM
traffic is 404 Mbps with a standard deviation of 37 Mbps. The corresponding packet throughputs

are shown in Figures 4.5.3 and 4.5.4. The mean packet throughput for a replay of UNC traffic is

114

60 Kpps with a standard deviation of 3.0 Kpps. And the mean packet throughput for a replay of
IBM traffic is 62 Kpps with a standard deviation of 3.7 Kpps.

It is worth noting that the throughput time-series for the experiment using the UNC traffic is
stationary for the hour. The throughput time-series for the experiment using the IBM traffic,
however, is non-stationary. That is, for the experiment using the IBM traffic, the mean of the
throughput changes significantly in the latter half of the time-series (see Figures 4.5.2 and 4.5.4).
A stationary time series is one whose statistical properties such as mean, variance, and
autocorrelation are constant over time. The throughput of traffic on an Internet link may be
stationary if measured over short periods of time, for example an hour. However, for realistic
protocol evaluations, it is useful to note that not only is Internet traffic non-stationary over longer
periods, for example a day, it may even be non-stationary over shorter periods of an hour, as is
the case in the hour long IBM traffic we use as input in half our experiments. This creates
interesting effects on the metrics in the constrained experiments when using the IBM traffic,
especially for queue dynamics at the router.

In the following sections, we present results for two experiments: one using the UNC traffic
as input, and the other using IBM traffic as input. Both experiments were run in the
unconstrained mode. We present results for the four performance metrics. All of these results are
again presented in Chapter 5. However, in that chapter, we use the control set for comparison
against other models. In this chapter we present these results as a study of the control set with a

focus on detailed discussion of the four performance metrics.

4.5.2 Connection Duration

We define connection duration for any TCP connection as the time elapsed between the
transmission of the first data byte and the receipt of the last data byte of that connection.

Connection duration for every connection is measured and logged at the traffic generators. During

115

the hour long experiment, every traffic generator creates a number of logs reporting on the
performance of the TCP connections in the experiment. This includes connection duration and
response times for every connection. Figures 4.5.5 and 4.5.6 compare the cumulative distribution
functions (CDFs) and the complementary cumulative distribution functions (CCDFs) for duration
of the TCP connections in the two experiments. The CDF shows a linear plot of durations up to 3
seconds. The CCDF is on a log-log scale and shows durations up to the entire hour of the
experiment, which is 3600 seconds or 3.6 x 10° milliseconds. These data show durations for
several million TCP connections — 4.7 million for the experiment using UNC traffic and 2.8

million for the experiment using IBM traffic.

1 1 =
=) 0.1
0.8 SE— e 2 ' R
z // e £ 0.01 -
s y T ¥ ™~
& o6 Z
° e 0.001]
a £
[=1
g o4 / 2 0.0001
> 3 <
£ £
3 g 1e05
K
0.2 a
§ 1e-06
unc_connection_durations ~ + unc_connection_durations +
o ibmrconnectiop_duration§ X Le07 it‘)m_conm‘sction_dL‘lrations | X
~
0 500 1000 1500 2000 2500 3000 1 10 100 1000 10000 100000 1e+06 1e+07
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 4.5.5: Connection duration - CDF Figure 4.5.6: Connection duration - CCDF
Control set - UNC and IBM - unconstrained Control set — UNC and IBM - unconstrained
Unconstrained Median of 80% or less of Mean of Top 10% of
experiments connection connection connection connection
durations durations durations durations
using UNC traffic 260 milliseconds | 2 seconds or less | 33 seconds > 8 seconds
using IBM traffic 550 milliseconds | 3 seconds or less | 87 seconds >13.5 seconds

4.5.1: Connection duration a-t-b-t with usernet in unconstrained mode

As shown in Figure 4.5.5, and enumerated in Table 4.5.1, 80% of the connections in the UNC

replay complete in less than 2 seconds, while 80% of the connections in the IBM replay take 3

116

seconds or less to complete. The median connection durations are 260 milliseconds and 550
milliseconds for the UNC and IBM replays respectively. These distributions have long tails as
shown in Figure 4.5.6. Hence the average connection duration is relatively high. The average
duration of the TCP connections was 33 seconds and 87 seconds for the UNC and IBM replays
respectively.

Fully 10% of the connections run longer than 8 seconds in the UNC replay and longer than
13.5 seconds in the IBM replay. There are some connections that last the entire hour of the
experiment. These were connections that, as measured in the original Internet link, started at or
before the start of our trace collection, and continued to transmit data up to the end of, or beyond,
our hour long trace collection. Such long connections were sometimes dominated by the number
of bytes transmitted; for example, a single connection transmitting a few gigabytes of data over
the period of an hour. Often, however, very long duration connections, at least in the traffic we
used, were dominated by long endpoint latencies with user thinktimes (inter-epoch latencies) of a
minute or more between request-response exchanges within a connection. And as shown in
Figure 3.1.10 (see Chapter 3), several thousand connections in both UNC and IBM traffic had

more than 100 epochs (request-response exchanges).

4.5.3 Response Time

We define response time for a request-response exchange in a sequential connection as the
time elapsed between the transmission of the first data byte of a request and the receipt of the last
data byte of its response. Hence, response time or epoch response time is defined only for
sequential connections since concurrent connections do not have the notion of serialized request-
response exchanges between the endpoints of a TCP connection. Response times are measured

for every request-response exchange, and recorded in logs on the traffic generators.

117

=
e
e g 01
0.8 " 8 \
| 7 5 T
2 & 0.01 ke
5 06 S o001
o 2 \\
[3
- 2 0.0001
> 3 <
g 2
3 g 1e05
K}
0.2 =% \
/ . § 1e-06 -
unc_response_times + unc_response_times +
ibm_response_times X ibm_response_times X \
0 a Il 1e_07 il Il Il
0 200 400 600 800 1000 10 100 1000 10000 100000 1e+06 1e+07
Response Times in milliseconds Response Times in milliseconds
Figure 4.5.7: Response Time — CDF Figure 4.5.8: Response Time — CCDF
Control set — UNC and IBM - unconstrained Control set — UNC and IBM - unconstrained
Experiment Median of 80% or less of Mean of response | Top 10% of
response times response times times response times
UNC replay 110 milliseconds 295 milliseconds 2.6 seconds > 800 milliseconds
IBM replay 130 milliseconds 240 milliseconds 4.4 seconds > 550 milliseconds

Table 4.5.2: Response Time for a-t-b-t with usernet in unconstrained mode

It is interesting to note that while connection durations are recorded as one data point for

every TCP connection in an experiment, response times are recorded as one data point for every

epoch in a sequential connection. Hence, the number of response time data points in the

distribution is dependent on not only the number of sequential connections but also the average

number of epochs per sequential connection in the traffic being replayed. The IBM traffic had

only 2.73 million sequential connections and the UNC traffic had 4.57 million sequential

connections. However, on average the number of epochs for the IBM connections (9 epochs per

connection) is higher than that of the UNC connections (3 epochs per connection) as shown in

Figure 3.1.9 (in Chapter 3). Hence the UNC replay had only 13 million request-response

exchanges while the IBM replay had about 24 million request-response exchanges, despite the

fact that IBM traffic had only 60% the number of connections as UNC traffic.

118

Figures 4.5.7 and 4.5.8 show the distributions for response times for all epochs of all
sequential connections. The CDFs show response times up to 1 second. As shown in Figure
4.5.7, and enumerated in Table 4.5.2, 80% of the response times in the UNC replay are less than
295 ms, and 80% of the response times in the IBM replay are less than 240 ms. The median
response times are 110 ms and 130 ms for the UNC and IBM replays respectively. These
distributions have long tails as shown in Figure 4.5.8. Hence the average connection duration is
relatively high. In fact, the analysis of the original traffic used for these replays revealed much
longer intra-epoch endpoint latencies for the top 1% in both traffic sets, with the IBM connections
having longer intra-epoch endpoint latencies than the UNC connections (see Figure 3.1.18).
Hence the average response time is relatively high, with 2.6 seconds and 4.4 seconds for the UNC
and IBM replays respectively. These long response times possibly indicate long server processing
times from slow servers from the original connections.

We note that for a given input traffic, longer response times do not necessarily lead to longer
connection durations. For example, the IBM replay had shorter response times for 80% of its
connections as compared to the UNC replay. However, the IBM replay had much longer
connection durations than those of the UNC replay. We note that the duration of a connection
depends on the size (total bytes) of the connection, the number of epochs in the connection and
the length of inter-epoch endpoint latencies in the connection. Response times, however, are not

influenced by the inter-epoch endpoint latencies at all.

4.5.4 Queue Length

Sections 4.5.2 and 4.5.3 discussed the application-level performance metrics of connection
duration and response time. In this section and the next, we present results for network-level
performance measures of queue length at the core router and the number of active connections in

the network. During each experiment, we sampled the outbound queue at the first router (see

119

Figure 4.2.1) every 10ms. Figure 4.5.9 shows the distributions for router queue lengths for both

UNC and IBM replays.

0.1

0.001
0.0001 :
1e-05 \

1e-06

Complementary Cumulative Probability

1le-07

unc_queue_length i—+—
ibm_queue_length |--->---
1e-08 L

1 10 100

Queue Length in packets

Figure 4.5.9: CCDF of queue length (control set — UNC and IBM — unconstrained)

Since the average throughput was 471 Mbps for the UNC replay, and 404 Mbps for the IBM
replay, there was almost no congestion on this 1Gbps link. The traffic was bursty, however, and
there were a few brief intervals when the network experienced spikes that were well over 1Gbps.
Hence although the queue was almost always empty (about 99% of the time), these momentary
spikes led to packets being queued with roughly 10 or more packets in the queue for 0.05% of the

time for both experiments.

455 Active Connections

In this study, we define a connection as an ‘active connection’ in the network at a given time
t, if the SYN for that TCP connection has been seen on the network, but the FIN or RST has not
yet been recorded. Hence, an active connection could be actively sending packets or just
experiencing end system or network latencies at the time that it is considered an active connection

in the network.

120

80000

70000 Vs

60000

50000

40000

30000

20000

Number of active connections

10000

UNC - Active connections per second +
‘IBM - A‘ctive copnectioqs per sqcond X

0 Il
10 15 20 25 30 35 40 45 50
Time in minutes

Figure 4.5.10: Active connections (control set — UNC and IBM — unconstrained)

The number of active connections in the network is directly proportional to two
characteristics of the original traffic. First is the total number of connections being replayed in the
hour-long experiment. Second, and more influential, is the duration of these connections. Figure
4.5.10 shows the time series of active connections in the two experiments. The UNC replay
recorded on average 45,000 active TCP connections in the network while the IBM replay
recorded on average between 68,000 and 78,800 active connections during the middle 40 minutes
of the experiment. Note the change in active connections around t=30 minutes for the IBM replay
is consistent with the non-stationarity of that traffic. The IBM traffic had fewer total connections
than the UNC traffic over the hour. So, how come the IBM replay shows more active
connections? Indeed, the UNC traffic consisted of 4.7 million TCP connections, while the IBM
traffic consisted of 2.8 million TCP connections. However, on average, the TCP connections in
the IBM traffic were longer in duration. Hence, we observe that the number of active connections

in the IBM replay is much higher than that of the UNC replay.

4.6 a-t-b-t with usernet in Constrained Mode

So far, we have discussed results for the replay experiments using the UNC and IBM traffic

in the unconstrained mode, using the a-t-b-t connection structure model with usernet RTT

121

emulation. In this section, we present the results for this control set in the constrained mode. For

experiments in the constrained mode, the link bandwidth between the core routers was set to

105% of the expected average offered load. Hence, for replays in the constrained mode, we set

this router-to-router link to 496Mbps for UNC replay and 424Mbps for IBM replay.

4.6.1 Throughput

600
550
s 500
ST A
% 450 V f yw w M
; 400
350
bytes-dep +
300 L L
10 15 20 25 30 35 40 45 50
Time in minutes
Figure 4.6.1: Link throughput in Mbps — UNC
Control set — UNC and IBM - constrained mode
80
75
» 70
g 65 |l |
. Ay Yl WWW\W M J“VMUA“IW
%('
5 50
45
pkts-dep +
40 L !

10 15 20 25 30 35 40 45 50
Time in minutes

Figure 4.6.3: Link throughput in Kpps — UNC
Control set - UNC and IBM - constrained mode

Link throughput in Mbps

Link throughput in Kpps

600

550

500

450

iy

350

bytgs-dep +

Il
10 15 20 25 30 35 40 45 50
Time in minutes

300

Figure 4.6.2: Link throughput in Mbps — IBM
Control set — UNC and IBM - constrained mode

80

75

70

hA b Sl M ANWWM«/‘MM fiih

65 (\\MNV VW«'V WV WV i [/ A |

55

50

45

pk‘ts-dep ,*

40

10 15 20 25 30 35 40 45 50
Time in minutes

Figure 4.6.4: Link throughput in Kpps — IBM
Control set - UNC and IBM - constrained mode

Figures 4.6.1 and 4.6.2 show the byte throughput time-series for the UNC and IBM replay

experiments respectively. Figures 4.6.3 and 4.6.4 show the corresponding packet throughput

122

time-series. These figures show throughput data aggregated over 5 second intervals. We show the

throughput as measured in the middle 40 minutes of the experiments at the bottleneck link

between the routers.

Constrained Mean throughput | Standard deviation | Mean throughput | Standard deviation

experiments in Mbps of throughput in in Kpps of throughput in
Mbps Kpps

UNC replay 485 Mbps 18 Mbps 61 Kpps 1.8 Kpps

IBM replay 421 Mbps 9 Mbps 64 Kpps 1.8 Kpps

Table 4.6.1: Throughput for constrained experiments using the control set

Figure 4.6.1 shows that the mean throughput for the UNC replay — 485 Mbps with a standard
deviation of 18 Mbps. Figure 4.6.2 shows that the mean throughput for the IBM replay — 421
Mbps with a standard deviation of 9 Mbps. The corresponding packet throughputs are shown in
Figures 4.6.3 and 4.6.4. The mean packet throughput for the UNC replay was 61 Kpps with a
standard deviation of 1.8 Kpps. And the mean packet throughput for the IBM replay was 64 Kpps

with a standard deviation of 1.8 Kpps.

Figures 4.6.1 and 4.6.2 demonstrate the effect of using average throughput when setting the
constraints on the link bandwidth. For the IBM replay in the unconstrained mode (see Figure
4.5.2), we noted that the mean of the throughput drops around t=32 minutes. This was due to non-
stationarity of the throughput time-series for the original IBM traffic. As a result, however, we
note that for the first 36 minutes of the experiment, the bottleneck link is constantly utilized. This
indicates the outbound queue at the router before this link rarely drained during this time. We see

the direct consequence of this on the router queue length measurements shown in Section 4.6.4.

123

4.6.2 Connection Durations

Figures 4.6.5 through 4.6.8 show the distributions for connection durations for the UNC and

IBM replay experiments in the constrained mode. The CDF shows a linear plot of duration up to

3 seconds. The CCDF is on a log-log scale and shows duration up to the entire hour of the

experiment. For comparison, we have included the results for connection duration from the

replays in the unconstrained mode.

0.8

0.6

Cumulative Probability

0.4 /
0.2

a-t-b-t.usernet-unconstrained ~ +
a—t-p-t.usernet-gonstraineq x

Complementary Cumulative Probability

0 500 1000 1500 2000

Connection Duration in milliseconds

2500

Figure 4.6.5: Connection durations — UNC
Control set — UNC and IBM - constrained mode

3000

0.1

0.01

e

0.001

0.0001

1le-05

1e-06

1le-07

a-t-b-t.usernet-unconstrained ~ +
a—t-b‘-t.usernet‘-constrair}ed X

1e-08 .
1

10 100 1000

Connection Duration in milliseconds

Figure 4.6.7: Connection durations — UNC
Control set — UNC and IBM - constrained mode

10000 100000 1e+06

Cumulative Probability

Complementary Cumulative Probability

124

0.8

0.6

0.4 /

//

/

a-t-b-t.usernet-unconstrained ~ +
a—t-p-t.usernet-‘constrainec‘j X

0.2 /
0

0 500 1000 1500 2000

Connection Duration in milliseconds

2500

Figure 4.6.6: Connection durations — IBM
Control set - UNC and IBM - constrained mode

3000

1
0.1 g
m
0.01 %
0.001
0.0001
1le-05
1e-06
1le-07 :
a-t-b-t.usernet-unconstrained +
a-t-b-t.usernet-constrained ~ x
1e-08 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06

Connection Duration in milliseconds

Figure 4.6.8: Connection durations — IBM
Control set — UNC and IBM - constrained mode

For the UNC replay, Figure 4.6.5 shows that 80% of the connections completed in less than
2.1 seconds in the constrained mode compared to 2 seconds in the unconstrained case. For the
IBM replay, Figure 4.6.6 shows that 80% of the connections took 3.9 seconds or less to complete
in the constrained mode compared with 3 seconds in the unconstrained case. Clearly congestion
had a slightly more debilitating effect on the IBM replay traffic than the UNC replay, though both
were run with the constrained link set to 105% of the average offered load. To some extent this is
due to the much higher load in the experiment using the IBM trace in the first half of the

experiment as compared with the second half, causing longer queuing delays in the IBM replay

than in the UNC replay.

Experiments Median of 80% or less of Mean of Top 10% of
connection connection connection connection
durations durations durations durations

Unconstrained - 260 milliseconds <2 seconds or less | 33 seconds > 8 seconds

UNC replay

constrained - UNC 330 milliseconds < 2.1 seconds 33 seconds > 8.3 seconds

replay

Unconstrained - 550 milliseconds < 3 seconds 87 seconds >13.5 seconds

IBM replay

constrained - IBM 790 milliseconds < 3.9 seconds 88 seconds > 14.7 seconds

replay

Table 4.6.2: Connection Duration for constrained experiments using the control set

In the constrained mode (shown in Figures 4.6.5 through 4.6.8 and in Table 4.6.2), the
median connection durations were 330 milliseconds and 790 milliseconds for the UNC and IBM
replays respectively. In the unconstrained mode, these measures were 260 milliseconds and 550
milliseconds for the two experiments respectively. Figures 4.6.7 and 4.6.8 show the long tails of
these distributions. These long tails lead to high average connection durations of 33 seconds and
88 seconds for the UNC and IBM replay experiments respectively. Fully 10% of the connections
take longer than 8.3 seconds in the UNC replay and longer than 14.7 seconds in the IBM replay.

In the unconstrained modes, these measures were 8 seconds and 13.5 seconds respectively.

125

4.6.3 Response Times

0.6 /
0.4

Cumulative Probability

/

a-t-b-t.usernet-unconstrained

+

0.2 /
0

0 200 400 600 800

Response Time in milliseconds

‘ a—t-b-t.use‘rnet-constraiqed X

Figure 4.6.9: Response Times — UNC

Control set — UNC and IBM - constrained mode

1000

Cumulative Probability

0.8
/
0.6 /
0.4 /
0.2 }/
0
0 200 400 600 800
Response Time in milliseconds

+

a-t-b-t.usernet-unconstrained
‘ a—t-b-t.use‘rnet-constraiqed X

1000

Figure 4.6.10: Response Times — IBM
Control set — UNC and IBM - constrained mode

Figures 4.6.9 through 4.6.12 show the distributions for the epoch response times in the

sequential TCP connections in the two experiments in constrained mode. The CDFs show

response times up to 1 second. Again, for comparison we include the response time results for the

experiments in the unconstrained modes.

0.1 o
0.01 \L«

0.001

0.0001 %
1e-05 \\

Complementary Cumulative Probability (%)

1e-06
1e-07 :
a-t-b-t.usernet-unconstrained ~ +
a-t-b-t.usernet-constrained ~ x
1e-08 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06

Response Time in milliseconds

Figure 4.6.11: Response Times — UNC
Control set — UNC and IBM - constrained mode

Complementary Cumulative Probability (%)

0.1

T
0.01 %

0.001

0.0001 %&

1e-05 V\S

1e-06
1e-07 :
a-t-b-t.usernet-unconstrained ~ +
a-t-b-t.usernet-constrained ~ x
1e-08 1 1 1 1 1
1 10 100 1000 10000 100000 1le+06

Response Time in milliseconds

Figure 4.6.12: Response Times — IBM
Control set — UNC and IBM - constrained mode

As shown in these figures, and enumerated in the Table 4.6.3, the response times for the

bottom 80% of the response times are up 19% and 33% for the constrained experiments for the

126

UNC and IBM replays as compared with the unconstrained modes for the same experiments.
Clearly constraint on the link has a greater effect on response times (the time between a request-
response exchange) than on connection durations. This is because connection duration is often
dominated by the connection structure itself which includes the inter-epoch endpoint latencies

between consecutive request-response exchanges.

Experiments Median of 80% or less of Mean of response | Top 10% of
response times response times times response times

Unconstrained — 110 milliseconds <295 milliseconds | 2.6 seconds > 800 milliseconds

UNC replay

constrained - UNC 140 milliseconds <350 milliseconds | 2.6 seconds > 880 milliseconds

replay

Unconstrained - 130 milliseconds <240 milliseconds | 4.4 seconds > 550 milliseconds

IBM replay

constrained - IBM 187 milliseconds < 320 milliseconds | 4.5 seconds > 660 milliseconds

replay

Table 4.6.3: Response Time for constrained experiments using the control set

The median response times for the constrained experiments using the UNC and IBM traffic
were up 23% and 36% respectively from the unconstrained case. This is also a direct effect of the
queuing delay in the network with queuing delay affecting the response time in the IBM replay
more than in the UNC replay. The tails of these distributions are long but these are dominated
more by the size of the data transfer and intra-epoch endpoint latencies than by the effect of
queuing delay. Hence the average response times for the constrained experiments were similar to
that of the unconstrained experiments.

The reason the tails of the response times seem unaffected is because the queuing delay, in
the case of a-t-b-t connection structure experiments, represents a small fraction of the intra-epoch
latencies measured for these connections in the original trace. Specifically, queuing delay is in

tens of milliseconds while the intra-epoch latencies are hundreds of milliseconds to several

127

seconds. For the top 10% of the epochs, response times in the constrained mode represent an
increase of 10% and 20% for results for the UNC and IBM replays respectively as compared with

their unconstrained modes.

4.6.4 Queue Length

Figures 4.6.13 and 4.6.14 show the outbound queue at the core router before the constrained
link. The queue was sampled every 10 milliseconds. Although both experiments were setup so
that the link was constrained to 105% of the average of the unconstrained throughput, the IBM
replay saw a much longer queue. Also, the distribution of the inter-epoch endpoint latencies is
heavier for the connections in the UNC traffic than those in the IBM traffic. This allows the

queue to drain more often in the UNC replay, causing a relatively lighter queue.

1 1 =
0.8 g \R\C\
7/ 8 0.01
E 1
2 £ o001
= I
% § 0.0001 \ \
8 04 >
§ % 1e-05
© 5 1e06
0.2 g
_/ unc_queue_length + © 1e-07 unc_queue_length +
ibm_queue_length x ibm_queue_length x
0 ! 1e-08 ! I
1 10 100 1000 10000 1 10 100 1000 10000
Queue Length in packets Queue Length in packets
Figure 4.6.13: CDF of queue length Figure 4.6.14: CDF of queue length
Control set — UNC and IBM - constrained mode Control set — UNC and IBM - constrained mode

As shown in Figures 4.6.13 and 4.6.14, and enumerated in the Table 4.6.4, the queue was
empty for 18% of the time for the UNC replay, and 7% of the time for the IBM replay. The
higher queue length for the IBM replay was partly due to the higher volume of packets and bytes
in the first half of the IBM traffic. The median queue length for the UNC and IBM replays was

350 packets for the UNC replay and 2600 packets for the IBM replay.

128

Constrained Queue empty | Median of Mean / standard | Top 10% of Peak queue
experiments / drained queue length deviation queue length occupancy
of queue length
using UNC traffic | 18% of the 350 packets 659 /992 > 1460 packets | 6800 packets
time packets
using IBM traffic | 7% of the 2600 packets 255772025 > 5400 packets | 8300 packets
time packets

4.6.5 Active Connections

80000

70000

60000

50000

40000

30000

Number of active connections

20000

10000

Table 4.6.4: Queue length for constrained experiments using the control set

UNC - Active connections per second
‘IBM - Agtive copnectioqs per sgcond

10 15 20 25

30 35 40 45

Time in minutes

Figure 4.6.15: Active connections

50

Figure 4.6.15 shows the number of active connections in the network in the middle 40

minutes of the two experiments. In the unconstrained mode, the UNC replay recorded a median

of 46,200 active TCP connections in the network, while the IBM replay recorded a median of

72,200 active connections. In the constrained mode, the number of active connections goes up

only slightly compared to the unconstrained mode. This is because the queue buildup causes a

small increase in the duration of connections, which leads to a small increase in the number of

active connections in the network. So, in the constrained mode, the number of active connections

had a median of 72,680 in the IBM case, but the UNC case remains roughly the same since the

queuing delay was not significant enough to adversely affect the connection durations.

129

4.7 Chapter Summary

In this chapter, we described in detail the network configuration followed by calibration of all
network components. We verified the replay of Tmix showing that the control set of a-t-b-t
connection structure and usernet RTT models do indeed realistically and reliably reproduce the
original traffic captured on the production link. We then presented experiments using the UNC
and IBM traffic in the unconstrained and constrained modes. We reported results for these
experiments using four performance metrics — throughput, connection durations, response times,

queue length and active connections.

130

CHAPTER 5

EFFECTS OF ROUND TRIP TIMES AND CONNECTION
STRUCTURES ON NETWORK PERFORMANCE

The principle of science, the definition, almost, is the following: the test of all

knowledge is experiment. Experiment is the sole judge of scientific “truth”...

Also needed is imagination to create from these hints [experimental results] the
great generalizations — to guess at the wonderful, simple, but very strange
patterns beneath them all.

Richard Feynman [The Feynman Lectures on Physics, 1965]

In this chapter, we present results for the core set of connection replay experiments conducted
for this dissertation. We used combinations of four connection structure models, three round trip
time (RTT) emulation models, two network link modes, and two sets of traffic mixes for
generating traffic for these experiments. For each experiment, we studied the effect of traffic
generation on four performance metrics: application-level metrics of connection durations and
epoch response times, and network-level metrics of router queue length and the number of active

connections in the network.

Our study leads us to two main findings. First: the RTT model used in emulating network
characteristics significantly affects application and network performance. Second: the connection
structure model used for generating the TCP connections affects these performance metrics even

more (often orders of magnitude more) significantly than the RTT model used.

This chapter is organized as follows: In the first half of this chapter, in Sections 5.1 and 5.2,
we present results showing how the RTT emulation model used in traffic generation affects these
four metrics in the unconstrained and constrained network modes respectively. Then, using the
same set of experiments, in the second half of the chapter, in Sections 5.3 and 5.4, we present the
results showing how the TCP connection structure model used in traffic generation affects the

same four metrics for the unconstrained and constrained network modes respectively.

5.1 Effects of RTT Emulation Model in the Unconstrained Mode

For a given connection, we expect that the RTT will affect its duration and epoch response
times. But how does using one RTT model versus another affect the aggregate distribution of
connection durations and response times for a large aggregation of connections? Moreover, does
the RTT model used to generate these millions of connections also affect router queue length and

active connections in the network? If yes, how significant is this effect?

We quantify the answers to these questions through the results from our experiments in this
and the next section, comparing the impact of three different RTT models on four performance
metrics. For the first set of experiments, we assign a single RTT value for all connections using
the meanRTT model. For the second set of experiments, we create 10 end-to-end paths in the
network by emulating 10 unique delay values using the 10pathRTT model. For the third set of
experiments, we assign to each connection the specific minimum RTT found by analyzing the
TCP/IP header traces using the usernet RTT model. For more details on these RTT models, we

refer to Section 3.4 (Chapter 3).

These three RTT models create three realistic, yet significantly different, emulations of
network characteristics. The meanRTT model emulates the network as one single path from end

to end for all connections in the hour long experiment. The 10pathRTT model is slightly more

132

diverse and provides 10 distinct paths in the network, with discrete RTT values that are
representative of measured RTTs on production links. The usernet RTT model is most closely
representative of the original traffic being replayed. By assigning the measured RTT for each
connection in the experiment, it creates a distinct end-to-end virtual path on the testbed network
for each connection in the experiment. For more details on any of these (or other) RTT models,
we refer to Section 3.4 (Chapter 3).

Each set of experiments in this section and the next consists of using one RTT model per
experiment, keeping the TCP connection structure constant for the set. The connection structure
models (described in Chapter 3) are labeled as follows in all the figures: blk-conc for the block-
concurrent model which sends all bytes of a connection in both directions simultaneously, blk-seq
for the block sequential model which sends all the bytes of a connection as one request-response
exchange between the two TCP endpoints, a-b for the a-b model that emulates all epochs
(request-response exchanges) from the original connection but does not model any of the
endpoint latencies measured in the original connection, and finally, a-t-b-t for the a-t-b-t model
that emulates all sequential epochs and concurrent ADUs as well as all endpoint latencies in

every connection.

Results for experiments using the a-t-b-t model with usernet RTT, for both unconstrained and
constrained modes, were presented in Chapter 4. This is the control set against which we compare
all results presented in this chapter.

In the four subsections that follow, we present results for replays in the unconstrained mode
showing the effect of using different RTT models on each of the four performance measures. For
all sections in this chapter we present the results for experiments using the UNC traffic as well as
the IBM traffic. Unless otherwise specified, the figures on the left show results for the UNC

replay, and those on the right show results for the IBM replay.

133

5.1.1 Effect of RTT Emulation Model on Connection Durations

In this section, we present results showing the impact of the RTT model on connection
durations. We vary the RTT model per experiment while keeping the connection structure
constant for that set of experiments. For example, in Figure 5.1.1 we present results for
connection duration for three experiments using meanRTT in one, 10pathRTT in the second and
usernet RTT in the third. All three experiments used the block-concurrent connection structure

for generating TCP traffic.

Figures 5.1.1 and 5.1.2 show results for connection durations for varying RTT model using
the block-concurrent connection structure for the UNC and IBM replays respectively. Similarly,
Figures 5.1.3 and 5.1.4 show results for varying RTT models using the block-sequential
connection structure for the UNC and IBM replays respectively. Figures 5.1.5 and 5.1.6 show
results for varying RTT models using the a-b connection structure while Figures 5.1.7 and 5.1.8

show results for varying RTT models using the a-t-b-t connection structure.

08 bt /ff 08 #

0.6 j 0.6 W
0.4 0.4
0.2 / 0.2 j

blk-conc.meanrtt + / blk-conc.meanrtt +

Cumulative Probability

H
Cumulative Probability

blk-conc.10pathrtt ~ x blk-conc.10path x
blk-c‘onc.userne‘t X blk-c‘onc.userne‘t *

0 I

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.1: Connection duration — UNC Figure 5.1.2: Connection duration — IBM
(block-concurrent connection structure) (block-concurrent connection structure)

For a given connection structure, we find that the RTT model impacts connection duration

significantly if the duration is 500ms or less. The RTT model continues to moderately impact

134

connection durations that are up to about 1 second. But regardless of the connection structure
used, the RTT model seems to have little impact on the distribution for connections with duration
more than 1 second. For example, for the block-concurrent or block-sequential connection
structures (see Figures 5.1.1 through 5.1.4), at least 98% of connections complete in 3 seconds or

less with little or no difference in the distribution due to the RTT model beyond 1 second of

duration.
1 1 —— s
%// %&%:fﬁé #
08 / 08 7
£ 2
3 3
g 0.6 g 0.6 f
o o
| ;
S o4 S o4
£ //r/ £
=1 =1
8] 8]
0.2 0.2
blk-seq.meanrt + blk-seq.meanrt +
blk-seq.10path ~ x blk-seq.10path X
o blk-‘seq.userne‘t * 0 r blk-‘seq.userne‘t *
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.3: Connection duration — UNC Figure 5.1.4: Connection duration — IBM
(block-sequential connection structure) (block-sequential connection structure)
1 1
/ Mﬂ”s"’z’z <
0.8 % 0.8 i
£ 2
3 3
g 0.6 g 0.6
o o
/) Ny
§ 0.4 § 0.4
£ £
=1 =1
0.2 0.2
a-b.meanrt + a-b.meanrt +
a-b.10path X a-b.10path X
o ‘a-b.userne‘t * 0 ‘a-b.userne‘t *
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Connection Duration in milliseconds

Figure 5.1.5: Connection duration — UNC
(a-b connection structure)

Connection Duration in milliseconds

Figure 5.1.6: Connection duration — IBM
(a-b connection structure)

When using the a-b model, as shown in Figures 5.1.5 and 5.1.6, 97% of connections in the

UNC replay complete in less than 3 seconds and 90% of connections complete in 1 second or

135

less, regardless of what RTT model was used in the experiment. For the IBM replay experiment
using the a-b model (Figure 5.1.6), 95% of connections complete in less than 3 seconds, while
only 80% of connections complete in 1 second or less. This difference in connection durations for
the UNC versus IBM replays can be attributed to the number of epochs per connection in the two
traffic mixes. 60% of connections in the original UNC traffic have only one epoch while 60% of
connections in the original IBM traffic have more than one epoch. But we find that the RTT
model has little impact in either set of experiments after about 1 second in the distribution of
connection duration. In the replays using the a-t-b-t connection structure model (results shown in
Figures 5.1.7 and 5.1.8), we find that the RTT model again has a significant impact on connection

durations, but only up to 500ms and a moderate impact on durations up to 1 second.

1 1
e
0.8 e 0.8 e
%ﬂ“’
g 5
s
@ 0.6 // @ 0.6
o o
[[
2 =
£ 04 £ o4
€ €
5 S
0.2 0.2
a-t-b-tmeanrtt + a-t-b-tmeanrtt +
a-t-b-t.10path X a-t-b-t.10path X
a-t‘-b-t.userne‘t * a-t‘-b-t.userne‘t *
0 0

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.7: Connection duration — UNC Figure 5.1.8: Connection duration — IBM
(a-t-b-t connection structure) (a-t-b-t connection structure)

Since the maximum impact of RTT model is seen for connection durations up to 500ms, we
zoom into this part of the distribution for further discussion. See Figures 5.1.9 through 5.1.12.
These four figures show the same data as in Figures 5.1.3, 5.1.4, 5.1.7 and 5.1.8 but we now
amplify the first 500 ms of the distribution for connection durations; that is, we change the X-

axis. We show only the block-sequential and a-t-b-t models for this discussion since the block-

136

concurrent and a-b models have similar effects (for connection duration with RTT variation) as

the block-sequential model.

These figures show that there is a large variation among the distributions of connection
duration for different RTT models used in the experiments for durations below 500ms. Note that
the mean RTT for the UNC traffic was 80 ms and for the IBM traffic, it was 92ms. Hence, most
connections in experiments using the meanRTT model have a minimum duration of 160 ms (two

RTTs) for the UNC replay, and a minimum duration of 184 ms for the IBM replay.

1 1
08 e] 08 ==
§ 0.6 X rJ_* HJ/ § 0.6 /’l;
o o
£ J £ f?
2 f 2
S 04 S 04
E E
=1 =1
EY T : |
0.2 0.2 .
blk-seq.meanrtt + blk-seq.meanrtt +
blk-seq.10path x blk-seq.10path ~ x
0 ‘blk-seq.user‘net X 0 [‘blk-seq.user‘net *
0 100 200 300 400 500 0 100 200 300 400 500
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.9: Connection duration — UNC Figure 5.1.10: Connection duration — IBM
(block-sequential connection structure) (block-sequential connection structure)
1 1
0.8 0.8
2 2
3 3
g o6 — 2 46
° — °
E /// E
Z o4 S o4 / ——
E E
3 3 = =
0.2 /6 0.2 ¥
a-t-b-t.meanrtt + / a-t-b-t.meanrtt +
a-t-b-t.10path x a-t-b-t.10path x
o ‘ a—t—b-tuserpet * o /Fi ‘ a—t—b-tuserpet *
0 100 200 300 400 500 0 100 200 300 400 500
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.11: Connection duration - UNC Figure 5.1.12: Connection duration — IBM
(a-t-b-t connection structure) (a-t-b-t connection structure)

137

In a replay using the meanRTT model, the original connections that had a connection RTT
much less than meanRTT now last longer and hence contribute to a heavier distribution of
connection duration for the initial part of the distribution. The use of 10pathRTT results in longer
connection durations than using the meanRTT or the usernet models. This is more so for the UNC
replays than the IBM replays. This is because the mean of the RTTs in the 10pathRTT is 92ms,
which is much higher than the mean of the RTTs (80ms) for the UNC traffic. Coincidentally, this
mean of the 10pathRTT is the same as the mean of the RTTs for the IBM traffic. Hence, the
distribution of connection durations in the IBM replays for 10pathRTT and usernet RTT are
closer. The usernet RTT shows much lighter distribution for connection duration that does the
meanRTT model because all those connections with connection RTTs less than the mean RTT for
the traffic can now replay at the rate of their original RTTs. Hence these connections complete

faster with usernet than when using the meanRTT model for these same connections.

For the UNC replay with the block- sequential connection structure (Figure 5.1.9), only 40%
of connections complete in less than 160 ms using the 10pathRTT model, whereas 60% of
connections complete in the same duration using the meanRTT model. While no connections
complete in less than 125 ms when using meanRTT, fully 50% of connections complete in 125 ms
or less when using the usernet model and about 32% of connections complete in 125 ms or less
when using the 10pathRTT model. So, clearly, the RTT model used in traffic generation has a
significant impact on connection durations for durations less than 500 ms.

But, why is there a step characteristic for the distribution of connection durations when using
meanRTT and 10pathRTT in most of these figures? This is because there are a very small number
(1 for meanRTT and 10 for 10pathRTT) of discrete values for connection RTTs in these models.
This directly results in certain discrete values for connection durations that are multiples of these

RTT values. In the case of meanRTT, there is only one RTT value whose multiples constitute

138

possible values for connection durations, whereas in the case of 10pathRTT, there are only 10
RTT values whose multiples constitute possible values for connection durations.

Then, why is this step effect more pronounced (for meanRTT and 10pathRTT) only in the
block-concurrent, block-sequential, and a-b models, while barely present in the a-t-b-t model (see
Figure 5.1.11)? This is because the connections in the a-t-b-t model, though still dominated by
their RTT for durations less than 500ms, are also influenced (and more so) by the varied
distribution of endpoint latencies being generated within each connection. These latencies
significantly dampen the effect of a connection’s RTT on its duration, thus almost eliminating the
step effect for the a-t-b-t model. That is, due to the varied distribution of endpoint latencies which
contribute to connection durations, connections emulated using the a-t-b-t model are not
restricted to durations that are multiples of RTT alone, even when we use the meanRTT or the
10pathRTT models.

Continuing discussion of Figures 5.1.9 and 5.1.10, we observe that in the case of usernet,
there could be as many discrete RTT values as there are TCP connections because usernet
emulates connection RTT exactly as measured on the original network link. Hence the
distribution of connection durations when using usernet is as diverse a set of connection duration
values as the original captured traffic. However when using a small set of discrete values as in the
case of meanRTT or 10pathRTT, we limit the values that the distribution of connection duration
can exhibit simply because connection duration can now only be some multiple of the 10 discrete
values in the 10pathRTT and the one discrete value in meanRTT model. This is especially true
when using the block-concurrent model for the following reasons: there are no endpoint latencies,
and in these experiments there is no queuing delay. Thus a connection is restricted in such cases
only by how fast it can grow its congestion window to send packets. And this window growth is
dependent on the connection RTT. Hence, the dominant contributor of time within a connection
becomes the connection RTT. And in the absence of other time components, the duration of the

connection becomes a multiple of the connection RTT. For short connections, where RTT is most

139

dominant, this effect is seen more prominently. For connections which last longer than 1 second,
the RTT model does not seem to matter. This is possibly because the size of the data transferred
by the connection influences the connection duration by adding in larger amounts of transmission
times relative to connection RTT. Alternately, even for small size connections, if the congestion
window is relatively small, then the connection duration is increased by having to wait until

acknowledgements are received before further transmission of data.

In Figures 5.1.11 and 5.1.12, we show connection duration up to 500 ms using the a-t-b-t
model with the three different RTT models of emulation. Clearly, the difference in connection
duration among different RTT models is greater for the UNC replay than for the IBM replay.
Again this is because the meanRTT value and the mean of the 10pathRTT set of values happen to
be the same for the IBM traffic. Also, as shown in Figure 3.1.23 (Chapter 3), the body of the RTT
distribution for UNC traffic is much lighter than that of the IBM traffic. The median connection

RTT for UNC traffic was 36 ms, and for IBM traffic it was 68 ms.

There is also a much more diverse set of RTTs in the UNC traffic with a large variance in the
distribution of RTTs, as compared with that of the IBM traffic. A key observation from these
results is that, for a given connection structure, the distribution of connection durations and the
variance in that distribution is directly related to the distribution of the connection RTTs and the
variance in that original RTT distribution. Modeling RTT using the meanRTT or 10pathRTT
methods reduces this variance in connection RTTs and hence the resulting traffic generation

produces less variance in the distribution of connection durations.

So far, we have discussed the body of the distribution of connection duration. We now study
the tails of these distributions in Figures 5.1.13 through 5.1.20. We have already found that the

model of RTT emulation does not greatly affect connection durations for connections lasting

140

more than 1 second. The tails of the distribution for connection duration shown in all these eight

figures only confirm this finding.

1 QEQ\ 1 \\
2 0.1 = 0.1 N
o a
g 0.01 \\ g 0.01 \
.| [<]
E WM & K
£ o001 £ o001
k5 \ kS
=] =]
E 0.0001 E 0.0001
O O
> >
S 1e-05 S 1e-05
5 \ 5
5 1e06 5 1e06
£ £
S .07 blk-conc.meanrtt + o .07 blk-conc.meanrtt +
© 1e-07 blk-conc.10path x © 1e-07 blk-conc.10path x
blk-conc.usernet * blk-conc.usernet *
1e-08 . : L 1e-08 . : L
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 l1e+06
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.13: Connection duration — UNC Figure 5.1.14: Connection duration — IBM
(block-concurrent connection structure) (block-concurrent connection structure)

1 1 \\
2 0.1 2 0.1 N
ks o
g 0.01 g 0.01 \\
A [} A

g W% T s
£ oo01 2 oo01
8 8
é AN D o

0.0001 X
a ‘\ 3 \\
g 1e0s g 1e0s
5 \ 5
5 1e06 5 1e06
g g
S .07 - blk-seq.meanrtt + S .07 - blk-seq.meanrtt +
© le-07 bIk-se?qJOpath X © le-07 bIk-se?qJOpath X

blk-seq.usernet % blk-seq.usernet %
1e-08 : ‘ ‘ 1e-08 : ‘ ‘
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.15: Connection duration — UNC Figure 5.1.16: Connection duration — IBM
(block-sequential connection structure) (block-sequential connection structure)

We also observe in Figure 5.1.13 that for the UNC replay and the block-concurrent
connection structure, there is a relatively quick convergence of connection durations for
meanRTT and usernet beyond the initial 250 ms. This is directly because the meanRTT method
uses the average RTT from the distribution of connection RTTs in the usernet model. We observe

a similar convergence for these two RTT methods for the IBM replays in Figure 5.1.14. Figures

141

5.1.15 through 5.1.20 show similar results for UNC and IBM replays using the block-sequential,

a-b, and the a-t-b-t connection structures.

1 1
2 0.1 2 0.1
5 3 vy
8 0.01 8 0.01
o ['% %
£ o001 £ o001
g \ k| X
=] =]
£ 0.0001 £ 0.0001
=1 =1
¢ N\ ¢
§ 1e05 g 1e-05
5 \ 5
5 1eo0s 5 1eos
[=% [=%
£ £
2 .07 ab.meanrtt + Q .07 ab.meanrtt +
T b T shie
1e-08 L L 1e-08 L L
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.17: Connection duration — UNC Figure 5.1.18: Connection duration — IBM
(a-b connection structure) (a-b connection structure)
1 1
= 0.1 = 0.1
a a
© ©
S 0.01 .. S 0.01
o o
£ o001 £ o001
8 8
=] =]
E 0.0001 E 0.0001
O O
> >
S 1e-05 S 1e-05
5 5
5 1e06 5 1e06
[=% [=%
£ £
S .07 - a-t-b-tmeanrtt + o .07 a-t-b-tmeanrtt +
© le-07 a—t-bb-t.wpath x © le-07 a—t-bb-t.wpath X
a-t-b-t.usernet * a-t-b-t.usernet *
1e-08 . L . 1e-08 . L .
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 l1e+06
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.1.19: Connection duration — UNC Figure 5.1.20: Connection duration — IBM
(a-t-b-t connection structure) (a-t-b-t connection structure)

5.1.2 Effect of RTT Emulation Model on Response Times

In this section, we present the results of the impact of the RTT model on response times for
request-response exchanges. Recall that response time is defined for each request-response
exchange within a sequential TCP connection. It is the time elapsed between the transmission of

the first data byte of a request and the receipt of the last data byte of its response. Hence response

142

time, or epoch response time, is not defined for concurrent connections or the block-concurrent
model. For the block-sequential model, every connection transmits all of its data within one
epoch and hence the connection duration of a connection in the block-sequential model is the

same as its response time.

For the a-b and a-t-b-t models, there are as many response time data points in a TCP
connection as there are epochs in that connection. In this section we discuss the impact of the
RTT model on response times when using the blk-seq, a-b or a-t-b-t models. Keeping connection
structure the same for each set of experiments, we vary the RTT model used for each experiment.
For all the replays in this section, the data is only for connections that were sequential in the
original traffic. For example, even for the replay using the block-sequential model, we present
response time data only for those connections that were sequential in the original traffic. This is

necessary for proper comparison with other models.

1 1
] ek
f,_f—f_/,——:—x—f’—’ e
//_’/CJ—K—_; %f
0.8 0.8
2 fm z -
3 3
g o6 E g o6 /ﬁ
[[
o o
S S /
S o4 S o4
E E
=1 =1
O / O
0.2 0.2
blk-seq.meanrtt + blk-seq.meanrtt ~ +
blk-seq.10path ~ x blk-seq.10path ~ x
0 ‘blk-seq.userr‘\et * 0 ‘blk-seq.userr‘\et *
0 200 400 600 800 1000 0 200 400 600 800 1000
Response Time in milliseconds Response Time in milliseconds
Figure 5.1.21: Response Time — UNC Figure 5.1.22: Response Time — IBM
(block-sequential connection structure) (block-sequential connection structure)

Figures 5.1.21 through 5.1.26 show the distributions of response times for the UNC and IBM
replays. We observe that different RTT emulation methods clearly have different impact on the

response times. The effect of different RTT models on response time also depends on the

143

characteristics of the original traffic. For example, the UNC replays show greater differences in

the distributions of response times due to RTT models than do the IBM replays.

For a given connection structure, we find that the RTT model impacts response time
distribution significantly up to about 500ms or less. As seen in Figure 5.1.21, with the block-
sequential connection structure, the RTT model continues to moderately impact response times
up to about 1 second. However, for IBM replays (Figure 5.1.22) with the block-sequential
connection structure, we see that there is almost no difference among the RTT models after about
500 ms of response time. In Figure 5.1.21, we also observe that the usernet RTT model causes the
smallest response times followed by meanRTT followed by 10pathRTT. This result is clearly
because the RTT of the average connection becomes larger when using the meanRTT model since
all the connections that would have had lesser than the mean RTT (in the original distribution)
now have a greater connection RTT. Similarly, since the mean of the 10pathRTT is the largest,

the response time of the request-response exchanges using this model shows the heaviest

distribution.
1 1 /
0.8 0.8 /
2z 2z
2 2
g 06 g 06
[N o
S }JJ S
S o4 S o4
E E
=1 =1
0.2 0.2
a-b.meanrtt + a-b.meanrtt +
a-b.10path x a-b.10path x
0 a-b.userpet * 0 a-b.userpet *
0 200 400 600 800 1000 0 200 400 600 800 1000
Response Time in milliseconds Response Time in milliseconds
Figure 5.1.23: Response Time — UNC Figure 5.1.24: Response Time — IBM
(a-b connection structure) (a-b connection structure)

When using the a-b model for UNC replay (Figure 5.1.23), 98% of epochs complete in less

than 1 second and 90% of epochs complete in less than 400ms, regardless of what RTT model

144

was used in the experiment. For the IBM replays with the a-b model (Figure 5.1.24), 99% of
epochs complete in less than 600 ms, while 90% of epochs complete in 250 ms or less. In the a-t-
b-t connection structure model (Figures 5.1.25 and 5.1.26), we find even lesser impact of the RTT
models on response times, with the response time distributions converging at about 600 ms in the

UNC replay, and about 300 ms in the IBM replay.

1 1
] L
——
0.8 0.8
£ 2
2 2
g 0.6 g 0.6
o o
T LT
£ 04 £ 04
s Ny
=1 =1
8] 8]
0.2 0.2
a-t-b-tmeanrtt + a-t-b-tmeanrtt +
a-t-b-t.10path X a-t-b-t.10path x
o) a—t-b-t.userpet * 0) a—t-b-t.userpet *
0 200 400 600 800 1000 0 200 400 600 800 1000
Response Time in milliseconds Response Time in milliseconds
Figure 5.1.25: Response Time — UNC Figure 5.1.26: Response Time — IBM
(a-t-b-t connection structure) (a-t-b-t connection structure)

We also observe that, regardless of RTT model, the response times in the UNC replay using
the a-b and a-t-b-t connection structures are longer than those in the IBM replay. However,
connection durations in the IBM replays were longer than in the UNC ones (see figures in Section
5.1.1). Hence we note that short response times do not necessarily correspond to short connection
durations. For example, a very long connection (even one running for the whole hour) could have
very short response times if each epoch had small ADU sizes and short intra-epoch endpoint
latencies. This would account for shorter response times. These same connections, however,
could have hundreds of epochs and long inter-epoch endpoint latencies between epochs thus
contributing to longer connection durations.

Clearly, the RTT emulation method has an impact on the distribution of epoch response times
up to 500 ms or 1 second at the most. Beyond that, response times are possibly dominated by

ADU sizes and intra-epoch endpoint latencies. Since the maximum impact of RTT model is seen

145

for response times up to 500ms, we zoom into this part of the distribution for further discussion
below in Figures 5.1.27 through 5.1.30. These four figures below show the same data as in
Figures 5.1.21, 5.1.22, 5.1.25 and 5.1.26 but amplify the first 500 ms of the distribution for
response times. So, the X-axes are now up to 500 ms only. We show results for only the block-

sequential and a-t-b-t models.

These figures show that there is a large variation among the distributions of response times,
up to 500 ms, for different RTT models used in the experiments. In Figure 5.1.27, we find that
RTT is a dominant time component in the request-response exchange when using the block-
sequential model. Just as the connection durations were multiples of connection RTT for
meanRTT and 10pathRTT experiments, the response times are also multiples of connection RTTs
for these RTT models using the block-sequential connection structure. This step effect is absent
for response times using the usernet RTT model because there is a much greater variation in the

distribution of connection RTTs when using the usernet model than when using the meanRTT or

10pathRTT models.
1 1
/é]
08 o 08]
3 3 e
2 o6 G S o6
<) <)
& ?JJ & ?ﬁl
Q o
= =
T 04 < o4 1
£ £
3 3
(8] JJ (8]
0.2 0.2
blk-seq.meanrtt + blk-seq.meanrtt +
blk-seq.10path ~ x blk-seq.10path X
‘blk-seq.userpet * ‘blk-seq.userpet *
0 0

0 100 200 300 400 500 0 100 200 300 400 500
Response Time in milliseconds Response Time in milliseconds
Figure 5.1.27: Response Time — UNC Figure 5.1.28: Response Time — IBM
(block-sequential connection structure) (block-sequential connection structure)

Figure 5.1.27 shows that 50% of the response times are 80ms or less in the UNC replay, for

both the meanRTT and usernet models. The use of 10pathRTT results in longer response times

146

than using the meanRTT or the usernet models. The effect of using meanRTT over usernet is that
80 ms becomes the minimum response time for request-response exchanges with this model.
Whereas about 40% of response times using usernet were 50 ms or less, that is not a possibility
when using the meanRTT model. For the 10pathRTT whose mean is even larger than the other
two RTT models, response times are longer initially but eventually merge with the other two
models. 40% of response times when using the 10pathRTT model are 100 ms or less. Similarly,
Figure 5.1.28 shows that in the IBM replay, 55% of epochs have response times of 92ms or less
with meanRTT model while only 40% do so using the usernet RTT model. But 36% of epochs
have response times less than 92 ms with the usernet model which is not even a possibility when

using the meanRTT model.

0.8 0.8
0.4 0.4 /
0.2 0.2
a-t-b-t.meanrtt + a-t-b-tmeanrtt +
a-t-b-t.10path x a-t-b-t.10path x
o ‘a-t»b-t.userpet * 0 ‘a-t»b-t.userpet *

0.6

Cumulative Probability
Cumulative Probability

0 100 200 300 400 500 0 100 200 300 400 500
Response Time in milliseconds Response Time in milliseconds
Figure 5.1.29: Response Time — UNC Figure 5.1.30: Response Time — IBM
(a-t-b-t connection structure) (a-t-b-t connection structure)

The usernet RTT model shows the lightest distribution for response time for both the UNC
and IBM replays because all the epochs with connection RTTs less than the mean RTT for the
traffic now replay at the rate of their original RTTs. Hence these epochs experience faster
response times than when using the meanRTT. Thus the distribution of response times when using
usernet RTT is as diverse a set of possible values as the original captured traffic. For short

epochs, where RTT is most dominant, this effect is seen more prominently. For epochs which last

147

longer than 500ms, the RTT model does not seem to matter as much. This is because the size of
the epoch and the intra-epoch endpoint latencies (for the a-t-b-t model) influence the response

time more than RTT does.

Figures 5.1.29 and 5.1.30 show the response times up to 500 ms with the three different RTT
models for the a-t-b-t connection structure. Again, the difference in connection duration among
different RTT models is greater in the UNC replay than in the IBM replay. And the effect of RTT
model on the distribution of response times diminishes after 500 ms in the UNC replays and as

early as 300 ms in the IBM replays.

So far, we have discussed the body of the response time distributions. We now study the tails
of these distributions shown in Figures 5.1.31 through 5.1.36. We have already found that the
model of RTT emulation does not greatly affect response time for epochs lasting more than 1

second. The tails of the distribution for response time only confirm this finding.

1 1
= T

§ 01 i\ § 01 \\
8§ om \ 8§ om \
S \%éﬁ% 2 \%X
% 0.001 % 0.001
2 AN\ 2 >
kS \ © \
2 00001 2 00001
=1 =1
3 3 \
> 1le05 > le-05
& & \
[= [=
g 1e06 g 1e06
K% K%
Q Q
£ - - blk- . rt + £ - blk- . rt +
§ U blkseq 10path x § U bllcsen 10path

blk-seq.usernet * blk-seq.usernet %

1le-08 L L L 1le-08 L L L
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
Response Time in milliseconds Response Time in milliseconds
Figure 5.1.31: Response Time — UNC Figure 5.1.32: Response Time — IBM
(block-sequential connection structure) (block-sequential connection structure)

Figures 5.1.31 through 5.1.36 show the CCDF of response times for the UNC and IBM replay
experiments with the block-sequential, a-b, and a-t-b-t models and the three RTT emulation

methods. In the block-sequential and a-b models, the RTT methods show small differences in

148

impact on response times even for long response times. But for the a-t-b-t model, there is almost

no difference in response time distribution. This is clearly because these long response times are

dominated more by the intra-epoch endpoint latencies than the RTT of the connection.

\

0.01 x
0.001

0.0001 \
le-05

1e-06 \\

Complementary Cumulative Probability (%)

1e-07 ab.meanrtt +
a-b.10path x “

a-b.gsernet X

le-08
1 10 100 1000 10000 100000 1e+06

Response Time in milliseconds

Figure 5.1.33: Response Time — UNC
(a-b connection structure)

0.1

0.01 W%

0.001 %

0.0001 %%1

1le-05 \.\‘

Complementary Cumulative Probability (%)

1le-06

1e-07 a-t-b-tmeanrtt +
a-t-b-t.10path X
a-t-b-tusernet *

1le-08 L L L

10 100 1000 10000 100000 1e+06
Response Time in milliseconds

Figure 5.1.35: Response Time — UNC
(a-t-b-t connection structure)

Complementary Cumulative Probability (%)

Complementary Cumulative Probability (%)

0.1 \
0.01
0.001 \

0.0001)
1le-05 o
le-06 \ﬁt\
1e-07 ab.meanrtt +

a-b.10path x

a-b.gsernet X

10 100 1000 10000 100000 1e+06
Response Time in milliseconds

le-08
1

Figure 5.1.34: Response Time — IBM
(a-b connection structure)

0.1

0.001 \"'ﬁn
0.0001 B%j%
le-05

1le-06
1e-07 a-t-b-tmeanrtt +
a-t-b-t.10path x
a-t-b-tusernet *
1le-08 L L L
1 10 100 1000 10000 100000 1e+06

Response Time in milliseconds

Figure 5.1.36: Response Time — IBM
(a-t-b-t connection structure)

5.1.3 Effect of RTT Emulation Model on Queue Length at the Router

In this section, we show the queue lengths at the outbound queue of the router before the

unconstrained router-to-router link. The queue was sampled every 10 ms for the entire hour of the

experiment. However, we only show the queue length data for the stable middle 40 minutes of the

experiment. Each figure in this section shows the experimental results for a given connection

149

structure model while varying the RTT models. In Figures 5.1.37 and 5.1.38, we show the
distribution of queue length for three experiments in each set, using UNC and IBM traffic
respectively. Each set of experiments used the block-concurrent connection structure while we
varied the RTT model per experiment among meanRTT, 10pathRTT and the usernet RTT models.
Similarly, in Figures 5.1.39 through 5.1.44, we show results for queue length for experiments
varying the RTT models while keeping the connection structures constant among the block-
sequential, a-b, and a-t-b-t models.

A common observation from all these experiments is that for more than 99% of the time, the
queue was empty, regardless of the RTT model used for emulation. Hence Figures 5.1.37 through
5.1.44 showing distributions of the queue length indicate almost empty queues for all those
experiments. The traffic generated was bursty, however, such that even on the unconstrained
1Gbps link, there were momentary spikes greater than 1Gbps. Our record of the arrival pattern on
the 10Gbps aggregation link before the router confirms these spikes. Hence, the tails of these
distributions show a maximum queue length of around 100 packets at those momentary spikes,
and 10 or more packets in the queue for about 0.05% of the time for all these replays in the

unconstrained mode.

blk-conc.me‘anrtt + ‘ blk-conc.méanm +
blk-conc.10path X blk-conc.10path x
*

- o * &
01 blk-conc.usernet 01 blk-conc.usernet

0.01

BAN
N
NN
B

0.01

AN
NS
ol
el 1]

Complementary Cumulative Probability
Complementary Cumulative Probability

1le-06
0

50 100 150 200 0 50 100 150 200
Queue Length in packets Queue Length in packets
Figure 5.1.37: Queue Length — UNC Figure 5.1.38: Queue Length — IBM
(block-concurrent connection structure) (block-concurrent connection structure)

150

Complementary Cumulative Probability Complementary Cumulative Probability

Complementary Cumulative Probability

1 1 ‘
bIk-seq.méanrn + blk-seq.meanrtt ~ +
blk-seq.10path ~ x - blk-seq.10path ~ x
blk-seg.usernet * £ blk-seq.usernet %
0.1 s 0.1
8
o
o
0.01 ¢ 0.01
E \\
=1
0.001 \< E o001 N
)
N
0.0001 £ 00001 2N
\g £ \/«\ \\
N :
Q
1le-05 5 le-05
AR) N
1le-06 1le-06
0 50 100 150 200 0 50 100 150 200
Queue Length in packets Queue Length in packets
Figure 5.1.39: Queue Length — UNC Figure 5.1.40: Queue Length — IBM
(block-sequential connection structure) (block-sequential connection structure)
1 T 1 T
a-b.meanrtt + a-b.meanrtt +
a-b.10path x - a-b.10path X
01 a-b.usernet x £ 01 a-b.usernet x
o
T
0.01 e 0.01
: AN
g
0.001 E o001
>
h E ol W
0.0001 o £ 00001 e
N : AN
[=%
1e-05 E 1e05
17)) W
le-06 le-06
0 50 100 150 200 0 50 100 150 200
Queue Length in packets Queue Length in packets
Figure 5.1.41: Queue Length — UNC Figure 5.1.42: Queue Length — IBM
(a-b connection structure) (a-b connection structure)
1 T 1 T
a-t-b-tmeanrtt + a-t-b-tmeanrtt +
a-t-b-t.10path x - a-t-b-t.10path X
01 a-t-b-t.usernet x % 01 a-t-b-tusernet *
3
T
0.01 ¢ 0.01
x&x K]
g
0.001 E o001
x 3 \%
>
0.0001 = £ o001 \f\&&‘
\\\\\\\ 5 AN
[=%
1e-05 E 1e05 X
il) 0
le-06 le-06
0 50 100 150 200 0 50 100 150 200

Queue Length in packets

Queue Length in packets

Figure 5.1.43: Queue Length — UNC
(a-t-b-t connection structure)

Figure 5.1.44: Queue Length — IBM
(a-t-b-t connection structure)

151

5.1.4 Effect of RTT Emulation Model on Active Connections

We define any TCP connection as an ‘active connection’ in the network at a given time t, if
the SYN for that TCP connection has been seen on the network, but the FIN or RST has not yet
been recorded. Figures 5.1.45 and 5.1.46 show the number of active connections in the network
for the UNC and IBM replay experiments in the unconstrained mode respectively, for the middle
40 minutes of each experiment for the block-concurrent connection structure using a different
RTT model in each of the three experiments. The RTT model clearly makes little difference in
the number of active connections. Similarly, Figures 5.1.47 and 5.1.48 show the time series of
active connections for the block-sequential connection structure using the three RTT models.
Figures 5.1.49 and 5.1.50 show the same for the a-b model, and Figures 5.1.51 and 5.1.52 show
the results for the a-t-b-t model.

We find that, for any given connection structure, the RTT model does not affect the number
of active connections in the network. This seems counter to the results that RTT model clearly
made a difference in connection durations that were 500 ms or less, and that the number of active
connections in the network is directly affected by the connection durations. So, why does that

difference in connection duration not manifest itself in number of active connections?

80000 80000
70000 70000
2 2
S 60000 S 60000
2 2
£ 50000 £ 50000
;’ blk-conc.meanrtt ~ + ;’ blk-conc.meanrtt ~ +
2 40000 blk-conc.10path x o 2 40000 blk-conc.10path x o
£ blk-conc.usernet x £ blk-conc.usernet x
S 30000 S 30000
5 5
E 20000 E 20000
z z
10000 10000
0 0 * :
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes
Figure 5.1.45: Active connections — UNC Figure 5.1.46: Active connections — IBM
(block-concurrent connection structure) (block-concurrent connection structure)

152

80000 80000
70000 70000
2 2
S 60000 S 60000
o o
2 2
S 50000 S 50000
ﬁ blk-seq.meanrtt ~ + g blk-seq.meanrtt ~ +
2 40000 blk-seq.10path X - 2 40000 blk-seq.10path X =
£ blk-seq.usernet * £ blk-seq.usernet %
S 30000 S 30000
5 5
E 20000 E 20000
z z
10000 10000
”‘T%——M .
0 - 0
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

Time in minutes Time in minutes

Figure 5.1.47: Active connections — UNC
(block-sequential connection structure)

Figure 5.1.48: Active connections — IBM
(block-sequential connection structure)

A connection is considered active during a given second whether it only lasted for 10ms or
for that whole second; so whether a connection was active for 300 ms or 550 ms on the network,
it would be counted as one active connection for that second. Hence the number of active
connections (measured per second as we did in this study) is a slightly gross measure of
performance and is a second order effect in the network. This is why those clear differences seen
in connection durations due to the different RTT models do not affect active connection counts in

the network.

80000 80000

70000 70000
2 2
S 60000 S 60000
o o
17 Q
£ 50000 £ 50000
g a-b.meanrtt + g a-b.meanrtt +
2 40000 a-b.10path x 2 40000 a-b.10path x
£ a-b.usernet x £ a-b.usernet x
S 30000 S 30000
5 5
E 20000 E 20000
z 4

10000 10000

0 0 ~
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

Time in minutes Time in minutes

Figure 5.1.49: Active connections — UNC
(a-b connection structure)

153

Figure 5.1.50: Active connections — IBM
(a-b connection structure)

80000 80000

e mpranre s e

70000 70000 A Qﬁﬁm\‘\\ Y
2 2 AN
S 60000 S 60000
]]
S 50000 B S 50000
g a-t-b-tmeanrtt + g a-t-b-tmeanrtt +
2 40000 a-t-b-t.10path x 2 40000 a-t-b-t.10path x
£ a-t-b-tusernet * £ a-t-b-tusernet *
S 30000 S 30000
5 5
E 20000 E 20000
=4 =4

10000 10000

0 0
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Time in minutes Time in minutes
Figure 5.1.51: Active connections — UNC Figure 5.1.52: Active connections — IBM
(a-t-b-t connection structure) (a-t-b-t connection structure)

The number of active connections in the network is dominated by the few thousands of very
long-lived connections, among the several million connections being generated over the hour,
rather than the short-lived connections that replace other connections as they start and complete
quickly. As an example of this effect of the long-lived connections, we observe that the number
of active connections in the IBM replays is almost the same as that in the UNC replays for block-
concurrent, block-sequential and a-b models for all RTT models although the total number of
connections over the hour for UNC replay was almost double that of the IBM replay. What is
even more noteworthy is that the long-lived connections have such a strong impact on active
connections in the network that the number of active connections for IBM replay using the a-t-b-t
model is much higher than that for UNC replay. This is a direct consequence of the results seen in
Section 5.1.1 where we found that the duration of connections using the a-t-b-t model was higher

for IBM replay than for UNC replay.

5.1.5 Section Summary

In this section, we presented results for replays in the unconstrained mode using UNC traffic
and IBM traffic. We discussed the results for four sets of experiments for each of the two input

traffic mixes. For each set of experiments, we kept the connection structure model the same,

154

while varying the RTT model among the meanRTT, the 10pathRTT, and the usernet RTT models.
Thus we studied the effect of these empirically-derived RTT models on four key performance
metrics: connection duration, response time, router queue length, and active connections.

We found that the RTT model used in emulating network characteristics has some impact on
these performance metrics. That was an expected result. However, in this section, we quantified
these results. We found that the RTT model affects connection durations and response times
when these measures are less than 1 second. Beyond that, any effect of the RTT model used in an
experiment is masked by other factors of traffic generation including the components of the
connection structure models, which are discussed in detail in Sections 5.3 and 5.4. We also found
that the router queue length showed no differences among the experiments using different RTT
models. However, this was due to the fact that these were replays in the unconstrained mode, and
hence designed to not create any queue buildup. The number of active connections in the network
is a second order effect of connection durations. This metric was not affected by the differences
in the RTT models used in the experiments.

So, if we had to choose an RTT model to be used for experiments, run in an unconstrained
mode, which model would we pick? A lot depends on the performance metrics used to evaluate
these experiments. If these metrics are measured at gross levels above one second, then the RTT
model used may not matter. However, we would question if such gross measures would play a
useful part in any protocol evaluations? If network traffic being generated is to be somewhat
realistic, then it is imperative that the richness and diversity of the original connection round trip
times be preserved in the generated traffic. How does the RTT model affect this?

Any metric that is affected by the connection RTT will only produce as diverse a distribution
of values, for a given performance metric, as the input RTTs. For example, even for the few
performance metrics we discussed here, clearly the diversity of allowable values in the
distribution for these metrics, like connection durations or response times, becomes highly limited

when the connection RTTs is a small discrete set of values, as was the case with meanRTT or

155

10pathRTT models. Conversely, a rich and full set of input connection RTTs results in a similarly
diverse distribution for the measured performance metric. Thus, while this is not necessarily a
case of “garbage in, garbage out” since we use all empirically derived RTT models, it is still true
that the quality and diversity of the inputs used for traffic generation and network emulation

directly impacts the quality and diversity of the outputs measured during the experiments.

5.2 Effect of RTT Emulation Model in the Constrained Mode

In Section 5.1 we discussed the effect of the three different RTT emulation methods on four
performance metrics: connection durations, response times, router queue length and active
connections. Those were replays in the unconstrained mode; that is, the router-to-router link was
set to 1Gbps. In this section we present results for a set of experiments run in the constrained
mode, showing the impact of RTT models on the same four metrics; that is, the router-to-router
link is set so that it is 105% of the offered load on that link. For the UNC replays in the
constrained mode, the link was set to 496Mbps, and for the IBM replays in the constrained mode,
the link was set to 424Mbps. For each set of experiments, we compare the performance metrics
for different RTT models, keeping the connection structure model the same for all experiments in

that set.

5.2.1 Effect of RTT Emulation Model on Connection Durations

Before we compare the effects of RTT models on connection durations for replays in the
constrained mode, we begin by looking at the effect of such a constraint on connection duration
for a given combination of connection structure and RTT. We first compare the connection
durations for 10pathRTT and usernet RTT models in the unconstrained and constrained modes

for both UNC and IBM replays.

156

Figure 5.2.1 and 5.2.2 show the distributions of connection duration for four experiments
each, using the UNC and IBM traffic respectively. In each figure, there are two replays in the
unconstrained mode and two replays in the constrained mode. All these experiments use the
block-concurrent model, with either the 10pathRTT or the usernet RTT emulation. As observed
earlier, the two experiments in the unconstrained mode show clear differences in connection
durations between the two RTT models up to about 1 second of the distribution for connection
duration. But there is a drastic shift in connection duration for both RTT emulation methods in
the constrained mode. That is, regardless of the RTT method used, the connections experience
long delays that are much greater than connection RTTs, thus causing these huge shifts in the
distributions. What is causing these long delays? As we show in Section 5.2.3, the constraint on
the router-to-router link results in very large queuing delays in most cases. The long delays are
also related to the very large queue (64K packets) but do not have any effects from losses in TCP

congestion control.

1 1 e
MW 20F o M M
0.8 %E;?’? =™ 0.8 o
z 7/?“ z /f
3 3
£ os £ os 9‘5%!
: / f if : F -
Qo [
2 =
< 04 < 04 //g
£ £
=1 =1
0.2 blk-conc.10pathrtt-unconstrained + B 02 blk-conc.10pathrtt-unconstrained + 7
blk-conc.usernet-unconstrained ~ x blk-conc.usernet-unconstrained ~ x
blk-conc.10pathrtt-constrained blk-conc.10pathrtt-constrained ~ *
0) blk»copc.usernet»gonstraineq o 0 %) blk»copc.usernet»gonstraineq o
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Connection Duration in milliseconds Connection Duration in milliseconds
Figure 5.2.1: Connection duration — UNC Figure 5.2.2: Connection duration — IBM
(block-concurrent connection structure) (block-concurrent connection structure)

In the unconstrained mode for the UNC replays (Figure 5.2.1), more than 80% of all
connections completed in 500 ms or less for both the 10pathRTT and usernet RTT models. But in
the constrained mode, only 55% of connections completed in 500 ms or less using the same RTT

models. There are no losses in these connections since the outbound queue at the router was set to

157

65,000 packets. This was done deliberately to study queuing effects due to RTT emulation.
Figure 5.2.2 shows that the queuing delay had an even more debilitating effect on the connection
durations in the IBM replays than in the UN