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ABSTRACT 

 

JAY AIKAT: An Investigation of the Effects of Modeling Application  

Workloads and Path Characteristics on Network Performance 

(Under the direction of Professor Kevin Jeffay) 

 

 Network testbeds and simulators remain the dominant platforms for evaluating networking 

technologies today. Central to the problem of network emulation or simulation is the problem 

modeling and generating realistic, synthetic Internet traffic as the results of such experiments are 

valid to the extent that the traffic generated to drive these experiments accurately represents the 

traffic carried in real production networks.  

 Modeling and generating realistic Internet traffic remains a complex and not well-

understood problem in empirical networking research. When modeling production network 

traffic, researchers lack a clear understanding about which characteristics of the traffic must be 

modeled, and how these traffic characteristics affect the results of their experiments.  

 In this dissertation, we developed and analyzed a spectrum of empirically-derived traffic 

models with varying degrees of realism. For TCP traffic, we examined several choices for 

modeling the internal structure of TCP connections (the pattern of request/response exchanges), 

and the round trip times of connections. Using measurements from two different production 

networks, we constructed nine different traffic models, each embodying different choices in the 

modeling space, and conducted extensive experiments to evaluate these choices on a 10Gbps 

laboratory testbed.  



 iv

 As a result of this study, we demonstrate that the old adage of “garbage-in-garbage-out” 

applies to empirical networking research. We conclude that the structure of traffic driving an 

experiment significantly affects the results of the experiment. And we demonstrate this by 

showing the effects on four key network performance metrics: connection durations, response 

times, router queue lengths, and number of active connections in the network. 
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CHAPTER 1 

 
INTRODUCTION 

 

 

When one discovers a fact about nature, it is a contribution per se, no matter 
how small. Since anyone can create something new [in a synthetic field like 
Computer Science], that alone does not establish a contribution. Rather, one 
must show that the creation is better. Accordingly, research in computer science 
and engineering is largely devoted to establishing the "better" property. 

        Fred Brooks [NRC, 1994, p. 35.] 

 
 Over the past three decades, the Internet's rapid growth has spurred explosive development of 

new applications such as mobile computing, digital music, and online video and gaming. The 

performance of these applications depends on the performance of various protocols and 

mechanisms enabling Internet functions. For 30 years now, TCP (Transmission Control Protocol) 

and IP (Internet Protocol) have been the dominant communication protocols, and they have 

fortuitously evolved despite the Internet’s multifold growth. To improve the Internet’s 

performance, networking researchers constantly develop new protocols and innovations.  

 These protocols must be tested before they can be deployed on the Internet. In most fields, 

there are agreed-upon standards to test such new inventions and improvements. For example, if 

Intel develops a new processor, several benchmarks test the new processor to demonstrate that it 

performs better than an existing one. However, computer networking, as a nascent field with 

explosive growth, still lacks such standards for protocol evaluation. Establishing such standards 

remains a challenging research endeavor in networking, and it forms the central motivation for 
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this dissertation research. By generating different kinds of network traffic within the laboratory 

testbed, showing how and why the use of different models of application workload and network 

path characteristics during traffic generation affect the outcome of experimentation, we have 

asked and answered some fundamental questions about experimental methodology in networking 

research. We plan to use the lessons learned from this study to motivate further discussions and 

concrete steps in the networking research community toward establishing better practices in 

experimental methods for networking research.  

 Networking researchers have long used experimental networks and distributed systems for 

evaluating new networking technologies. Indeed, experimentation, either via software simulation 

using simulators such as the Network Simulator (NS), or via hardware emulation using laboratory 

testbeds, has been the primary means for evaluating existing and newly proposed protocols and 

algorithms for improving the Internet. Hence, improving the Internet involves constantly 

improving the process of experimentation to produce reliable and reproducible results for 

empirical evaluations. This requires research into methodology. This dissertation is a step in that 

direction. Experimental methodology has many components. This dissertation is a 

methodological study exploring one major component – traffic generation.   

1.1 Traffic Generation  

 One of the most complex components of empirical evaluations is modeling and generating 

realistic Internet traffic. The mix of the ever changing and varied applications that constitute the 

actual Internet traffic makes this a daunting task. Moreover, Internet traffic is different when 

sampled at different times and in different parts of the globe. Networking researchers have 

grappled with this problem by taking snapshots of Internet traffic at different times and at various 

points in the network, and modeling the same for generating traffic in the lab. The generally held 
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belief is that the more realistic the traffic used, the more reliable are the results of the empirical 

evaluations using that traffic. Practice, however, does not adhere to this principle. So, although 

laboratory testbeds and methods for simulations have evolved over the years, the question about 

what constitutes essential components for modeling realistic traffic remains open for debate. For 

example, networking researchers agree that realistic traffic generation for empirical research is 

best accomplished by capturing traffic on a production link and then using source-level models to 

generate this traffic in the laboratory or simulator. Source-level models capture the application 

exchanges and application behavior on the ends (sources) of the TCP connections. But how do 

you go from the original captured traffic to an acceptable source-level model? Which of the 

several measures derived from the traffic sources should you model in your workload for your 

experiments? Would your modeling choices for traffic generation impact the outcome of your 

experiments? If yes, how significant would the impact be? These remain open questions.  

 Let’s consider an example. Say you developed a new high-speed variant of TCP; let’s call it 

TCP-X. To show that TCP-X is indeed better than the existing variants of TCP on the Internet 

today, you would need to run some experiments either in a laboratory setting or using a simulator. 

You would not wish to run your experiments directly on the Internet as that will reduce control, 

and you could not repeat your experiments under the same conditions. Moreover, injecting traffic 

using untested protocols with possible bugs can cause breakdown of network services. So, as part 

of the experiment using a laboratory testbed or simulator, you would generate traffic between sets 

of endpoints (traffic generators) that use either TCP-X or the other TCP variant against which you 

are testing your new protocol. For your experiments, you need to generate realistic traffic. So you 

collect network traffic on a production link. Since you are testing performance of transport 

protocols, you decide to use application workload models (source-level models) for generating 

traffic. That is, you generate traffic in your experiments by driving network stacks with the 

application models derived from your empirical measurements and you use the applicable TCP 

protocol on the endpoints. You choose this approach because traffic generated in this closed-loop 
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manner fully preserves the fundamental feedback loop between the network endpoints and 

network characteristics. This is essential for testing transport-level properties. 

 Now, having made all these decisions on experimental design, how would you use the 

captured traffic from that production link to drive the network stacks on these endpoints or traffic 

generators? That is, given the empirical measurements of the traffic you captured, which of those 

measurements will you use to create your application workload models for generating traffic in 

your experiments, and why?  

 Let us consider some possible choices in modeling the workload you captured. You have the 

packet header trace which can be used to derive a lot of information on every TCP connection 

constituting that traffic. Do you send all the measured bytes for a given TCP connection as one 

large data unit in each direction? If yes, do you send them concurrently in both directions, or do 

you simulate a request-response behavior between a client and server, and thus send all the data 

in one direction first, then send all the data in the other direction? Say, you use one of these two 

methodologies to generate a persistent HTTP connection that originally had request-response, 

request-response, and so on, with 25 such request-response pairs sending data back and forth 

between client and server. Have you somehow distorted this connection by generating it all as one 

large data unit in each direction? If you have, does it matter? If it matters, when does it matter? 

That is, what performance metrics (output results that you use to show that TCP-X is better than 

other TCP variants) are affected favorably or adversely by such distortion of the connections 

generated during the experiment?  

 In the above scenario of generating a persistent HTTP connection, the original connection 

could be represented in two dimensions – size and time. The size component is the data being 

sent all at one time or in small chunks back and forth as measured in the original connection. But 

while the size component of a connection seems obviously necessary for representing the 

connection for traffic generation, what role does the time component play, and how does it affect 

the performance metrics in your experiment? In fact, there is more than one time component in 
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any given connection. There are the times between packets sent on the network, times between a 

request and its corresponding response, and the user-generated thinktimes which are the times 

between consecutive request-response exchanges within a connection. Which of these do you 

model, and how would your experimental results be affected by your choices? 

 So far, we have only discussed the application workload in both the size and time 

components. But for realistic traffic generation, we must consider that the endpoints or traffic 

generators that generate this application workload are also influenced by the network conditions 

along the paths they traverse. This brings in another time component of traffic generation – the 

connection round trip time (RTT). What is the best method of RTT emulation? Is one method 

better than another, and why? For example, you could determine that the mean RTT of all 

connections in your measured traffic was 80 milliseconds. Thus, could you use this as the default 

RTT for every connection in your experiment? How would this choice for RTT emulation 

influence the performance metrics you study in your experiment? What if, instead, you measured 

the connection RTT for every connection on that original link, and faithfully assigned each 

generated connection its measured RTT during your experiment? What is the benefit of such a 

choice in generating traffic? 

 How will your choice of parameters for application workload modeling, and your choice of 

model for emulating network path characteristics like RTT emulation, affect the outcome of your 

experiments? That is, how will these choices affect whether your TCP-X shows better results 

than some popular variant of TCP for the metrics you are using in this evaluation? Say the results 

showed that TCP-X is indeed better for certain metrics of performance than other TCP variants. 

Would you then be able to use the results from such an experiment with confidence to deploy 

TCP-X on the Internet? Why or why not? 

 These are the kinds of questions that motivated this study. With this dissertation, we strive to 

advance such discussion and the exploration of experimental methodologies in networking 

research. We developed a spectrum of empirically-derived, realistic models for generating TCP 
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traffic, and different models for emulating RTT, in the laboratory. We conducted experiments 

using this spectrum of application workload models we call TCP connection structures and round 

trip time (RTT) emulation methods – all inspired by models used in leading publications. Our 

goal was to explore how generating the same empirically-derived traffic using different 

connection structures and different RTT emulation methods alters key characteristics of traffic in 

the network, thus affecting the user perceived performance metrics of connection durations and 

response times as well as network centric metrics of active connections and router queue lengths.  

1.2 The Tmix Traffic Generation System 

 This dissertation is based on the foundation laid by the Tmix traffic generation system 

developed by Hernandez-Campos et al. [HC06, WAHC+06]. In that work, the authors presented a 

new methodology for generating network traffic using source-level modeling in testbed 

experiments and software simulations.  They developed a new source-level model of network 

traffic, the a-b-t model (we call this the a-t-b-t model in our study), for describing in a generic 

and intuitive manner the behavior of the applications driving the TCP connections in network 

traffic. Hernandez-Campos et al. made the following major contribution: they showed that given 

a packet header trace collected at any Internet link, their Tmix traffic generation system 

reproduced the application-level behavior as well as network-level parameters, like RTT and 

window size, such that the statistical properties of the generated traffic matched very closely with 

those of the original traffic captured on the Internet link. We verify this demonstration as part of 

our calibration experiments, and hence use their model as the control set for our experiments. We 

use the Tmix traffic generation system in our research, and hence adopt their terminology to 

explain our models for application workloads. Hence, in this section we explain their 

terminology.  
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 The Tmix traffic generator is an empirically-based approach to workload generation. Starting 

from a trace of TCP/IP headers collected on a production network, they constructed a model for 

all the TCP connections observed in the network without knowledge of the underlying 

applications. The model, a set of a-t-b-t connection vectors, can be used in the workload 

generator Tmix to generate the connections and reproduce the application-level behaviors 

observed on the original network. That work also identifies a fundamental dichotomy in source-

level behavior between connections that exchange data sequentially and those that exchange data 

concurrently.  

 

Figure 1: Traffic Generation 

 

 In Tmix each connection found in a trace of TCP/IP headers from a production network link 

is analyzed to produce a “connection vector” representation. The connection vector includes the 

connection’s start time relative to the beginning of the trace and a series of request-response 

exchanges found by their analysis tool. Each request-response exchange (called an “epoch”) is 

described by a 4-tuple consisting of the request size (called the “a” unit size), the response size 

(called the “b” unit size) and two latency values (called the “t” values) for the time between a 
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request and its response and for the time between successive request-response exchanges. 

Unidirectional transfers have only an ‘a’ or ‘b’ value depending on the direction of transfer.  

 Our definitions and models for traffic generation in this dissertation derive heavily from this 

work [HC06]. Hence, a high level summary of the Tmix analysis and generation framework is 

given in Figure 1. The first step in this process is to capture a trace of TCP/IP headers on any 

production link. This trace is then processed to produce a set of connection vectors such that each 

TCP connection in the trace is now defined by a unique connection vector. The Tmix traffic 

generation tool takes as input this set of connection vectors and replays these connections to 

produce traffic on the link such that its statistical properties match those of the traffic that was 

originally captured.  

1.3 Modeling TCP Connection Structure 

 In this dissertation, we used Tmix’s a-t-b-t model as a control for all our connection structure 

models. We define connection structure for a TCP connection as modeled in two dimensions – 

size and time. The size dimension defines the total number of bytes transferred by the connection 

in both directions. The time dimension models the internal dynamics of a connection consisting 

of any synchronization and latencies introduced by exchanges of application-level protocol data 

units, typically in a request-response pattern as in a client-service model of communication. The 

time dimension includes all the latencies related to synchronization between requests and 

responses (modeling epochs), the elapsed time between a request and its response (server latency, 

or intra-epoch latency) or between requests (client latency also called user thinktime, or inter-

epoch latency). In connections that send data concurrently in both directions, the time dimensions 

represent the quiet periods between transmissions of application data units in either direction..

 We represent connection structures in this study by starting with a simple model, based on 
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Harpoon [SB04], defining the connection structure in the size dimension alone. Consider a 

connection that transfers a total of X bytes in one direction between endpoints and Y bytes in the 

opposite direction over the duration of the connection. Harpoon would use two separate 

connections for each original connection with a unidirectional transfer of all the bytes in a given 

direction in a single block in each of the two connections. We modified this concept to use a 

single TCP connection for each original connection, but with two different methods of 

synchronizing the bidirectional data transfers. In both methods, all the bytes flowing in one 

direction are sent as one large block without internal gaps or latencies. In one method the two 

blocks are sent concurrently in both directions while in the other method the two blocks are sent 

sequentially as a request-response exchange. We call the first method the block-concurrent (blk-

conc) model and the second method the block-sequential (blk-seq) model. 

 The three ways of representing connection structure described so far (Harpoon, block-

concurrent, and block-sequential) are all based solely on the size dimension of connections. To 

introduce the time dimension, we turn to the representations exemplified by the Swing [VV09] 

and Tmix [HC06] traffic generators. Using Tmix’s a-t-b-t framework, we can describe several 

variations for representing connection structures. First, we retain the set of epochs representing 

the request-response exchanges along with the a and b values for each epoch but without any of 

the t values. This representation that we call the a-b model includes the time dimension only in 

the implied synchronization between a request and its response.  

 Next, we define the a-t-b model in which the t represents the full latency between a request 

and its response thus implicitly representing any server processing time. The full representation of 

a connection, the a-t-b-t model, adds the latency between successive requests and thus any client 

processing or user think times. Thus we start with only the size dimension to model a TCP 

connection, and add in the time dimension creating six slightly different models for any TCP 

connection. These are the Harpoon, blk-conc, blk-seq, a-b, a-t-b, and the a-t-b-t models. 
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1.4 Emulating Network Path Characteristics 

 In addition to experimenting with six models for representing connection structure for a TCP 

connection, we ran experiments using seven different methods of emulating round trip times 

(RTTs) in our experiments. All of these have either been used in, or are inspired by, previously 

published work. For one extreme we first tried emulating no RTT latency (nodelay) beyond that 

inherent in the laboratory network used in the experiments which is typically 1 millisecond or less 

(reasonable for studying local networks but obviously wrong for wide-area emulation). At the 

other extreme, we used the Tmix capability (called usernet) to emulate the specific minimum 

RTT measured for each connection from the empirical analysis of the originally captured TCP/IP 

header traces. 

 Between the nodelay and usernet RTT models, we developed five more models as follows. 

First, we emulated a single non-zero value for all connections, using either the mean or median of 

the RTTs found by analyzing all the several million connections in the TCP/IP header traces. The 

“nodelay”, mean and median RTT cases all represent one method of assigning a single value to 

all connections in the hour long experiment. This method of assigning connection RTTs 

effectively emulates a single end-to-end network path for all the connections in the experiment. 

We then created models emulating n network paths by assigning a specific round trip time delay 

to each of the n end-to-end paths where n was 10 in one model and 30 in another.  

 The network used in this dissertation has a maximum of 30 pairs of traffic generator 

machines. So, in one case, we assigned a unique emulated RTT to a path shared among three 

pairs (a total of 10 end-to-end path RTTs). The values chosen for this case were the values 

recommended for the TMRG common TCP evaluation suite [AMF+08]. In a second variation, we 

assigned a unique RTT value for each of the 30 end-to-end paths between the 30 pairs of traffic 

generator machines. In this case, we used a discrete approximation method to approximate the 

empirical RTT distribution found from analysis of the traces. 
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 Finally, we ran experiments using an RTT emulation method where a value was assigned per 

connection to each of the several million connections in the experiment. In one case, we assigned 

to each connection a value randomly sampled from a uniform distribution of RTT values. In the 

other case, we used the Tmix method of assigning the specific minimum RTT for each connection 

as observed in the originally captured TCP/IP header trace. Thus we used seven different RTT 

emulation methods, three assigning values on a per-experiment basis (one RTT value for all 

connections), two assigning values on a per-path basis and two more on a per-connection basis.  

 We ran experiments with the full cross product of six connection structures and seven RTT 

emulations, and we report those results in Chapters 5 and 6.  

1.5  Changing the Network Environment 

We ran every experiment described above in two distinct environments in the network. First, 

we set the link between the two routers in the unconstrained network mode where the link 

capacity was unchanged at 1Gbps. Next, we set the link in constrained network mode where the 

link bandwidth was limited such that the link capacity was 105% of the traffic traversing the link. 

Setting constraints on this link enabled us to study the queue dynamics for the outgoing queue at 

the router before this link. See Chapter 4 for details on network setup and topology.  

We first ran all calibration experiments in unconstrained mode. Then we ran experiments 

using the different connection structure models and RTT emulations in both unconstrained and 

constrained modes to study the effect of changing the network environment on network 

performance. We detail the results from these experiments and discuss the effect of the network 

environment on the outcome of experiments in Chapters 5 and 6. Chapter 5 present results for a 

complete set of experiments run in both network environments. Chapter 6 presents interesting, 

additional results for experiments run in one or both network environments.  
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1.6 Using Two Input Traces 

 To ensure robustness of our results, we ran all our experiments using two input traces 

collected at two diverse locations on the Internet. The first one from UNC was taken on the 

border link connecting the campus to the Internet service provider network. The second trace was 

taken at an aggregation switch for four internal networks, connecting one of IBM Corporation’s 

largest development sites to the Internet. The UNC campus trace was a 1-hour trace on a weekday 

during the school year. The IBM trace was also a 1-hour trace which was representative of typical 

peak workday traffic on this corporate network. The UNC trace has almost 4.7 million 

connections with an average load of 471 Mbps in one direction and 202 Mbps in the other. The 

IBM trace has about 2.8 million connections with an average load of 404 Mbps in one direction 

and 366 Mbps in the other.  

1.7 Modeling Receiver Window Sizes 

 For all the experiments exploring connection structure models and RTT emulation methods, 

we used Tmix’s model for assigning window sizes to the two ends of every TCP connection. 

Each side of every connection was assigned the maximum receiver window size exactly as 

measured through the analysis of the original trace. Hence, even when we modeled the simplest 

connection structures like block-concurrent, we provided some inherent sophistication to the  

overall traffic modeling by the assignment of measured receiver window sizes. Our decision here 

was based on the idea that a system is best studied when adjusting one tunable knob at a time. 

Hence we kept the window size for connections in these experiments the same as empirically 

observed in the original header trace. 

 Besides the full suite of experiments using different connection structure models and different 

RTT emulation methods, we ran experiments where the maximum receiver window sizes were 
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fixed for all connections as 8KB, 16KB, or 64KB, using only the control set combination of the 

a-t-b-t connection structure and usernet RTT models. Results for these experiments are reported 

in Chapter 6. 

1.8 Thesis Statement  

 This dissertation is based on the following hypotheses: 

The structure of application workload models (TCP connection structure) and 

the characteristics of the network path through the emulation of Round-Trip-

Time (RTT) models, significantly impact the outcome of experiments. Such 

impact can be quantitatively demonstrated through measurement of performance 

metrics both by the user-perceived performance metrics of application behavior 

as well as network-centric performance metrics at the routers and links in the 

network.  

 In this dissertation, through extensive laboratory experimentation and analyses, we show how 

specific modeling choices in traffic generation affect the outcome of the experiments in which 

they are used. The outcome of any experimental evaluation depends heavily on the input to the 

system – this is the garbage-in garbage-out concept. Based on the detailed study of the behavior 

of standard TCP and its high-speed variants by many leading researchers as well as preliminary 

laboratory experiments, my initial hypotheses was that the application workload and network path 

characteristics applied as input to the research network testbed system heavily impact the 

resulting application and network behavior. Within the realm of empirically-derived traffic 

generation, my goal was to differentiate among different aspects of emulating application 

workloads and network path characteristics, and show how they affect performance metrics both 

at the network-level and the application-level.  
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1.9 Summary of Conclusions and Contributions 

 Through extensive experimentation using the Tmix traffic generation system as the basis for 

running experiments on a laboratory testbed, we arrive at the following conclusions.  

 

In an unconstrained network, regardless of the application workload model used, 

or the input traffic used, round trip time had a significant effect on user 

perceived performance measures of connection duration and response times, but 

only up to a maximum of 1 second of the distribution for these metrics. 

 With no constraint on the link, we found that different round trip time models used in traffic 

generation affect experimental outcomes differently. As expected, we found that different RTT 

models resulted in different distributions of connection duration and response times. These 

differences, however, were significant only up to about 500 milliseconds, or a maximum of 1 

second of the distribution for these metrics. Beyond that, the RTT model has no effect on these 

metrics.  

 

RTT model had no impact on the number of active connections (measured in 1 

second intervals) in the network.  

 The number of active connections in the network is a second order measure of performance 

and a key metric for many router protocol evaluations. It is directly affected by the durations of 

connections in the network. Since the choice of RTT model affects the distribution of connection 

durations only up to 1 second of the distribution, and since we compute a connection to be active 

in one second intervals, this effect of RTT model on connection durations does not affect the 

number of active connections in the network.  
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In a constrained environment, the smaller the median of the distribution of 

connection RTTs, the heavier was the resulting queue distribution at the router. 

 When the router-to-router link is constrained, the different round trip time models used in 

generating traffic alter the queuing dynamics at the router before the constrained link to slightly 

different degrees. In such a constrained mode, some RTT models cause larger queuing delays 

than others. For example, let us compare two experiments – one in which we used the usernet 

RTT model which has thousands of connections with small RTTs (median RTT for this 

distribution was 36 milliseconds), and the second in which we use one value of 80 milliseconds 

as the RTT for all connections in the experiment (80 ms was the mean of the usernet RTT 

distribution). We found that for a given connection structure model, using the usernet RTT model 

resulted in the heavier queue length distribution because for a large number of connections, their 

RTTs were smaller than the 80 ms RTT assigned to all connections in the meanrtt model. The 

experiments using meanRTT resulted in relatively lighter queue distributions.  

 

In a constrained environment, there were no differences in connection durations 

or response times due to different RTT models for the block and a-b connection 

structure models.  

 In an unconstrained environment, we observed clear differences in connection durations and 

response times due to different RTT models for the block and a-b connection structure models. 

However, in the constrained mode, the block and a-b models resulted in very heavy queue 

distributions. This caused long enough queuing delays that almost completely masked the 

differences in distribution of connection durations and response times among the three connection 

structure models. The distribution of these metrics, however, had shifted heavily in the 

constrained mode as compared to their corresponding unconstrained experiments.  The only 
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connection structure for which RTT models still made a difference on these metrics in the 

constrained mode was the a-t-b-t model. This is because the a-t-b-t model does not create as 

heavy queues as the other connection structure models. Hence when using the a-t-b-t model, the 

differences in connection duration and response times up to 1 second of the distributions were still 

observed in the constrained mode.  

 

Randomly assigning the same empirically derived round trip times to 

connections, using the discrete-approximation RTT model, is almost as effective, 

on an aggregate level in the unconstrained mode, as assigning each connection 

its originally measured RTT using the usernet model.  

 We developed an approximation of the empirical RTT distribution from the usernet model; 

we called the discrete approximation or the DA RTT model. We found that the DA model for 

RTT emulation yields results for all metrics very similar to the usernet model in the 

unconstrained mode, as shown in Chapter 6. 

 

The differences in impact of the RTT model used in traffic generation, while 

significant, become negligible when compared to the dramatic differences in 

impact of the connection structure models used in the experiment.  

 We found that the application workload model or TCP connection structure has an even more 

significant effect on all performance metrics than the RTT model used in traffic generation. The 

two block structure models, representing TCP connections by their sizes alone, create 

significantly different outcomes for all performance metrics as compared with the a-b model that 

includes object size representation and synchronizations or the a-t-b-t model that includes object 

sizes, the synchronization of objects, and endpoint latencies in its structure. As expected, we 
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found that connection durations and response times increased when epoch structure and endpoint 

latencies were included in the connection structure model for traffic generation. Also, network-

centric measures like the number of active connections in the network increased dramatically as a 

result of the increase in connection duration.   

 

Unlike RTT models which affected connection duration and response times only 

up to 1 second, the connection structure models affect these metrics significantly 

in the body as well as the tail of the distribution for these metrics. 

 That is, the distributions for these metrics show significant differences for different 

connection structure models not only for short connections, but also for very long connections 

lasting the entire duration of the experiment. Why is this? We attribute this effect directly to the 

fact that connection durations, while affected by connection RTTs, are most heavily affected by 

the endpoint latencies, when they exist, within the connections. Number of active connections in 

the network also goes up dramatically, by orders of magnitude, when using endpoint latencies in 

the connection structures, as in the case (the a-t-b-t model).  

 

In the constrained mode, the absence of endpoint latencies in the block structures 

and the a-b model resulted in much heavier queues at the router, thus creating 

counter-intuitively long durations and response times because of the second 

order effects of queuing delay on connection duration and response times.  

 In the unconstrained mode, for example, using the block structures, the average connection 

duration was much smaller than when using the a-t-b-t model. This is because the endpoint 

latencies in the a-t-b-t model add to the duration of connections. However, in constrained mode, 

the long queuing delays caused by the block structures added long delays to the connection 

duration; so much so that the duration of connections was longer in some cases for the block 

structures than for the a-t-b-t model. 
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The take away message, if there is to be just one, is that the time components of 

traffic generation are as important, perhaps more so, than the size components.  

 That is, while it is important to emulate TCP connections by the size of the connections, it is 

equally important to emulate them by their time components. These consist of the connection 

RTTs, the sequential or concurrent nature of data exchanges within connections, and especially 

the endpoint latencies measured for these connections. 

 

For the bulk of connections in any experiment, window size assignment made no 

difference in connection durations or response times. 

 For a small set of experiments using the control combination of the a-t-b-t connection 

structure and usernet RTT models, we assigned a fixed window size of 8KB, 16KB, and 64KB 

for all connections in an experiment. This results stated above is mainly because the bulk of 

connections are small in size and hence unable to take advantage of the larger windows. For 

connections carrying more than 1MB of data, however, we observed clear differences in these 

metrics due to different window sizes. These connections performed better with larger window 

sizes. While this is to be expected, it is noteworthy that in most Internet traffic, a small number of 

connections is found to carry a relatively large percentage of the bytes. Hence for realistic traffic 

generation, if those connections had larger window sizes in the original traffic, it is useful to 

assign them those larger windows. Otherwise, these large connections may not complete in the 

experiment.  

1.10 Organization of Dissertation 

 The rest of this dissertation is organized as follows. Chapter 2 presents related works with 

some background and historical overview of traffic generation and empirical evaluations in 

networking research. We discuss the three leading traffic generation systems used in empirical 
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research today. We also present some evidence in the literature that point to the need for studying 

the effects of traffic generation models and path emulations for experimental methodology in 

empirical networking research. Chapter 3 discusses the design of the various TCP connection 

structure models in traffic generation used in this dissertation as well as the motivation for their 

selection. We also present the details of all the RTT methods used in the dissertation and cite their 

usage in published research wherever applicable. We present the detailed characteristics of the 

UNC and IBM traffic used in this dissertation.  

 Chapter 4 presents the details of the network configuration and experimental methodology 

used in this dissertation for running experiments. This chapter gives details of network setup and 

how the experiments were designed and conducted. This chapter also presents results for the 

control combination of connection structure model (the a-t-b-t model) and round trip time 

emulation (the usernet method).  Chapter 5 presents the main set of results for this study. We 

present results for connection duration, response times, router queuing, and active connections in 

the network. Note that the same set of results is presented twice in this chapter for clarity of 

discussion. First we study the impact of the RTT emulation model; then we study the impact of 

the application workload model. We discuss results using the UNC and IBM traffic in each of the 

two network environments – unconstrained and constrained modes. 

 Chapter 6 presents additional results. In this chapter, we present results for other connection 

structure and RTT models that we developed and experimented with. This chapter also presents 

results for varying the receiver maximum window size of TCP connections, and discusses the 

effect on the process of packet arrivals at the router for different connection structure models.  

 In Chapter 7, we discuss conclusions and future work.  



 

 

CHAPTER 2 

 
BACKGROUND AND RELATED WORK 

 

 

A science is any discipline in which the fool of this generation can go beyond the 
point reached by the genius of the last generation. 

Max Gluckman 
South-African born British social anthropologist (1911- 1975) 

 

 

 Experimental networking has evolved significantly over the last two decades, but it 

remains a daunting endeavor. Throughout this time, traffic generation, a key component for 

experimental networking, has remained a major challenge. What is traffic generation and what 

role does it play in empirical networking research? Consider this example: you develop a new 

Active Queue Management (AQM) scheme for routers on the Internet. AQM is a router-based 

form of congestion control wherein routers notify end-systems of incipient congestion. The 

common goal of all AQM designs is to keep the average queue size in routers small [LAJS07]. 

Before deploying this scheme in the wild (Internet), you must test it to ensure that it is better than 

the existing queue management schemes on your routers. You do this by running experiments 

using a laboratory network or a simulator.  

 To produce reliable results from your experiments, you must generate realistic network traffic 

in your experiments. Why? Say, you use only long-lived FTP-like connections to test your new 

protocol. While that is representative of some real connections on the Internet, it is not 

representative of the mix of Internet traffic that will be managed by the router using your new 

protocol in a production network. Hence, the traffic you generate in the lab or simulator must 
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represent a real mix of traffic on the Internet. So, how do you generate such realistic network 

traffic? The state of the art in generating realistic traffic today consists of measuring traffic on a 

real production link and using one of several methods to replay this traffic in the laboratory 

network. In this dissertation, we use the Tmix traffic generation system to generate traffic in all 

our experiments. We discuss Tmix and other related work in this chapter.  

 This chapter is organized as follows. In Section 2.1, we present a brief overview of the 

network simulators and emulation facilities used by various networking research groups. This is 

followed by a discussion of the evolution of realistic traffic generation in Section 2.2. In Section 

2.3, we present three major traffic generation systems: Harpoon, Tmix, and Swing. In Section 2.4, 

we present examples in the research that addresses the need to generate realistic background 

traffic in networking experiments. In Section 2.5, we discuss some community efforts to promote 

benchmarking tools for congestion control experiments, concluding with a Chapter summary in 

Section 2.6. 

2.1 Network Simulators and Emulation Facilities 

 Traffic generators are used in network simulators and emulators. Broadly classified, 

networking experimentation is conducted in two experimental environments: simulation and 

emulation. Emulation can be further classified into (i) controlled and repeatable experiments in a 

laboratory, and (ii) live-Internet experimentation. In this section, we shall discuss examples of 

each of these environments. 

 At first, the networking research community developed simulators targeted towards the very 

narrow and specific goals of their projects. Then, from the strong belief that “a diverse set of 

researchers using a standard framework increases the reliability and acceptance of simulation 

results” [BEF+00] the effort to create the NS network simulator was born almost a decade ago. 
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More recently, several emulation testbed labs have been developed. These include the Emulab 

[Emu], Wan-in-Lab [WIL], ModelNet [SN], and UNC’s NetLab [UNCnet] testbeds.  

 The most commonly used network simulator is the ns-2 [NS2] simulator, and ns-3 which is 

its recently developed replacement. ns-3 is a discrete-event software simulator; that is, the 

simulation state changes only at discrete points in time. It is a network simulator targeted 

primarily for research and educational use. It is written in C++ and Python. It is easy to configure 

and provides an environment for rapid prototyping and building.  We use network simulators like 

ns-2 and ns-3 because they provide complete control, repeatability, and ease of use. However, in 

doing so, we also sacrifice many protocol implementation details and the realism that requires 

using real hosts and network elements. Hence, let us discuss some leading emulation testbeds.  

 

 

Figure 2.1.1: The Emulab Testbed [http://www.emulab.net/, 2010] 

 

 Emulab [Emu], at the University of Utah, is a network testbed, giving researchers a wide 

range of environments in which to develop, debug, and evaluate their systems. A slice of this lab 

facility is shown in Figure 2.1.1. Emulab is a networked PC cluster that provides a space- and 

time-shared public facility for studying networked and distributed systems. Emulab tries to 

transparently integrate a variety of different experimental environments. Historically, Emulab has 

supported three such environments: emulation, simulation, and live-Internet experimentation. 

More recently, they have expanded to a fourth environment, virtualized emulation. Emulab 
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allows for integrated experiments where they spatially combine real elements with simulated 

elements to model different portions of a network topology in the same experimental run. This 

enables new validation techniques and larger experiments than obtainable by using real elements 

alone [G05]. 

 

 

Figure 2.1.2: The WAN-in-Lab Testbed [http://wil.cs.caltech.edu/, 2010] 

 

 WAN-in-Lab [WIL], at The California Institute of Technology, is an experimental 

networking testbed aimed at developing, testing and evaluating new communications protocols 

and technologies. A slice of this lab facility is shown in Figure 2.1.2. WAN-in-Lab has a 1500- 

mile long-haul fiber optic test bed, located in a single laboratory, to allow detailed control and 

measurement. Initially built to aid FAST TCP research [WJLH06], WAN-in-Lab is now used for 

a variety of networking research and is being equipped to provide a publicly available TCP 

benchmarking facility. WAN-in-Lab includes a dynamically reconfigurable array of Cisco routers 

interconnected via OC-48, Gigabit Ethernet (GbE) and 10 Gigabit Ethernet (10GbE) links, using 

an optical switch. They provide a complement to existing testbeds (that use software for 

emulating delays) by providing real propagation delay using spools of fiber and active real-time 

monitoring. Their goal was to reproduce a real production environment more closely.  
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 ModelNet [SN] at the University of California at San Diego, is a large-scale network 

emulator that allows users to evaluate distributed networked systems in realistic Internet-like 

environments. It is a software that can be used as part of a laboratory testbed as shown in Figure 

2.1.3. With hundreds of applications deployed over the nodes, ModelNet enables them to behave 

as if they were distributed all over the world. That is, it emulates actual packet delays, losses, and 

throughput of packets flowing between the different instances of the application. There are 

physical Emulator nodes that run ModelNet on FreeBSD machines, and virtual nodes running 

applications on Linux machines as shown in the Figure 2.1.3. ModelNet also sets up routing 

tables on the emulator nodes so that packets from two virtual nodes that are on the same physical 

machine flow through the emulator thus enabling the emulation of a wide-area network testbed. 

 

 

Figure 2.1.3: Modelnet in a Testbed [http://www.ics.uci.edu/~mayur/model-net-details.html] 

 

 So, far, we discussed some examples of simulation and emulation environments that provide 

a controlled, repeatable, and in some cases realistic, systems framework for understanding, testing 

and evaluating new and existing protocols and algorithms. The third experimentation 

environment consists of running experiments in the wild; that is, running experiments on hosts 
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that are not isolated from the Internet, thus injecting experimentally produced traffic onto real 

production network traffic. Planetlab is one such overlay testbed that provides real Internet 

connectivity, and hence does not have the control and repeatability of isolated laboratory testbeds.  

 

 

Figure 2.1.4: PlanetLab nodes across the globe [http://www.planet-lab.org/, 2007] 

 

 PlanetLab is a global research network that began in 2003. Researchers across the globe have 

used PlanetLab to develop new technologies for distributed storage, network mapping, peer-to-

peer systems, distributed hash tables, and query processing. PlanetLab currently consists of 1,125 

nodes at 511 sites as shown in Figure 2.1.4 [PL]. It is built as a consortium of academic, 

industrial, and government institutions. Most of the PlanetLab machines are hosted by research 

institutions, although some are located in co-location and routing centers (for example, on 

Internet2's Abilene backbone). All of the machines are connected to the Internet.   

 All PlanetLab machines run a common software package that includes a Linux-based 

operating system, mechanisms for bootstrapping nodes and distributing software updates, a 

collection of management tools that monitor node health, audit system activity, and control 
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system parameters, and a facility for managing user accounts and distributing keys. The key 

objective of the software is to support distributed virtualization—the ability to allocate a slice of 

PlanetLab's network-wide hardware resources to an application. This allows an application to run 

across all (or some) of the machines distributed over the globe, where at any given time, multiple 

applications may be running in different slices of PlanetLab. One of PlanetLab's main purposes is 

to serve as a testbed for overlay networks. Research groups are able to request a PlanetLab slice 

in which they can experiment with a variety of planetary-scale services, including file sharing and 

network-embedded storage, content distribution networks, routing and multicast overlays, QoS 

overlays, scalable object location, scalable event propagation, anomaly detection mechanisms, 

and network measurement tools. There are currently over 600 active research projects running on 

PlanetLab [PL].  

 The advantage to researchers in using PlanetLab (or similar testbeds) is that they are able to 

experiment with new services under real-world conditions, and at large scale. Of course, the 

disadvantage is that it is difficult to clearly interpret the results. With far too many unknown and 

uncontrollable variables when running experiments in the wild, it is challenging to draw 

conclusions. Still, such experiments are valuable and serve an important purpose in empirical 

networking research as follows. A new protocol could be quickly prototyped and tested for 

viability in a simulation environment. Then an emulation facility could be used to conduct more 

testing and evaluation of the protocol under controlled and repeatable network conditions. 

Finally, before deployment on the Internet, overlay networks like PlanetLab could serve as a 

confirmation testing platform enabling experiments in the wild, while still restricting the 

deployment of the new protocol to the overlay hosts.  

 As the above emulation facilities have evolved, the most recent work in building such large-

scale networking testbeds has been an ongoing project called the Global Initiative for Networking 

Infrastructure (GENI), started in 2005. Under the auspices of GENI, more sophisticated testbeds 
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have been developed, and successfully collaborated with many of the above mentioned labs to 

incorporate some or all of their resources into several large-scale research testbeds. For example, 

Emulab and PlanetLab have both collaborated with the GENI project. Emulab’s shared GENI 

infrastructure is known as ProtoGENI. PlanetLab is now fully absorbed into the GENI project, 

while there are projects like the SuperCharged PlanetLab that are building high-performance 

overlays in the PlanetLab context. 

2.2 Evolution of Realistic Traffic Generation 

 Each of the above mentioned testing and evaluation environments has different properties and 

goals. However, a common challenge shared among all these environments is the generation of 

synthetic traffic and the emulation of network path characteristics in experimentation. Floyd and 

Paxson [FP01] outlined this problem in the course of declaring traffic generation to be one of the 

key challenges in modeling and simulating the Internet. Their goal in discussing the difficulties of 

simulating the Internet was to spur further work in these areas. In a possible response to their 

challenge, several researchers have attempted to create workload models for traffic generation.  

 To understand the concerns raised by Floyd and Paxson, consider the simplest method of 

generating realistic traffic on a single link in the laboratory. One might approximate realistic 

traffic generation by injecting packets into the network such that the characteristics of these 

packets are the same as that of the packets on some real link. This is packet-level traffic 

generation and can be achieved in two ways. Either we reproduce the exact sizes and arrival 

times of every observed packet, or we inject packets into the network such that they preserve 

some set of statistical properties relevant to the experiment. For example, the packet and byte 

throughput on the link in 10 millisecond intervals, or the inter-arrival times of these packets could 

match these same characteristics on some real production link. Such packet-level replay is a 
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straightforward technique that is useful for certain types of experiments. For example, packet-

level replays have been used to evaluate cache replacement policies in routing tables [Jai90, 

Fel88, GcC02]. In these experiments, the traffic generated need not respond to the changes in the 

network. That is, evaluating these policies in the routing tables does not depend on the traffic 

responding to changes in the policies.  

 Packet-level traffic generation, however, has two important shortcomings: it is inflexible and 

it is open-loop. First it is inflexible because there is no way to introduce variability in the 

experiments. For example, once we acquire a trace, we inject packets into the network to match 

some characteristics of that trace, as explained above. What if we wished to change packet sizes, 

or use a different throughput on the link? These are clearly not options available with packet-level 

traffic replay, other than acquiring a collection of traces and using a different trace (to match the 

characteristics we need) in different runs of the experiments. Such traffic generation paradigm is 

simply too cumbersome and impractical for running a large set of experiments [HC06].  

 Second, packet-level traffic generation is straightforward. However, since the traffic we 

replay in our experiments consists of all TCP connections, replaying them in an open-loop 

manner in the experiments means that we would not preserve the feedback loop that existed 

between the original sources of the traffic (the endpoints) and the network. TCP is a closed-loop 

transport protocol. The rate of data transfer is dependent on flow control and congestion control. 

Flow control is the mechanism used to impose a limit on the maximum sending rate of the 

sending endpoint. Hence a TCP sender endpoint cannot have more than a maximum, called 

receiver maximum window, of bytes outstanding (unacknowledged by the receiver endpoint) in 

the network. Also, the sending rate is limited by a mechanism called congestion control, a set of 

algorithms at the sender and receiver that react to implicit and explicit feedback from the 

network.  This feedback loop enables the endpoints to react to network congestion. This is 

important because such reaction itself can change the conditions in the network, thus triggering 
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changes in the behavior of the endpoints. For example TCP traffic reacts to congestion in the 

network by lowering its sending rate, which is turn decreases congestion. Packet-level replay, 

however, would not react to changes in the traffic. Therefore, packet-level replay would not be 

useful in experiments studying the effect of network changes on protocol performance. 

 Floyd and Paxson strongly urged against open-loop packet-level modeling, and 

advocated modeling the sources of traffic instead [PF95]; that is, modeling the application 

behavior at the endpoints. For example, they argued, individual FTP connections between 

endpoints (sources) must not have a constant rate. Each packet must be sent only after a TCP 

source receives an acknowledgement for an earlier packet. And if there is congestion in the 

network, then an FTP connection must vary its sending rate depending on the TCP congestion 

control window. Also, whether or not there is congestion in the network, different FTP 

connections will have different average rates, depending on such factors as the TCP window and 

packet sizes, the connection’s roundtrip time, and the congestion encountered in the network. 

Capturing such application-level interactions and reactions to changing network conditions is 

essential for realistic traffic generation.  

 Application workload models are used on top of network stacks which implement flow 

control and congestion control mechanisms which enable the traffic to react to changes in the 

network conditions. Such models produce a closed-loop traffic generation system which is more 

realistic. Early application workload models were infinite source models. The infinite source 

model is inherently unidirectional. That is, for each TCP connection, the sender-receiver pair of 

generators opens a connection; then the sender constantly sends data packets while the receiver 

constantly receives or reads these packets. This was a simple model with no parameters and hence 

was quite popular in leading studies for a number of years, including the mathematical analysis of 

steady-state TCP throughput [PFTK00, BHC+04]. Most long-lasting FTP connections could be 
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represented by this model. This was “realistic” because these FTP connections behaved like real 

FTP connections on a production link.  

 The rapid growth of the web drastically changed traffic characteristics on network links so 

that short (small) request-response exchanges dominated the type of connections on these links. 

As a result, it was no longer appropriate to use the unidirectional infinite source level model to 

represent the applications using network links. Such modeling was now unrealistic because most 

network traffic was found to be bidirectional.  

 The advent of the web led to attempts by several research groups to model the 

conversations between web browsers and web servers. One such effort at Boston University led 

to the development of the SURGE (Scalable URL Reference Generator) model of web traffic 

[BC98]. The SURGE model describes the behavior of each user as a sequence of web page 

downloads and thinktimes between downloads. Each web page download consisted of one or 

more web objects downloaded from the same server on one TCP connection. Surge models the 

following components: (i) server file size distribution, (ii) request size distribution, (iii) relative 

file popularity, (iv) embedded file references, (v) temporal locality of reference, and (vi) idle 

periods of individual users.  

 Each component was further modeled by a distribution of values observed for that 

component. Thus, the empirical distribution for each component was represented analytically. For 

example, they used the Pareto distribution for modeling the sizes of downloaded objects, and 

Zipf's law for modeling the popularity of specific pages. Thus, SURGE provided parametric fits 

for each of the components of the model, heavily relying on powerlaws and other long-tailed 

distributions.  

 A model of web traffic contemporary to SURGE was also presented by Mah [Mah97]. It 

described web traffic using empirical CDFs which were derived from the analysis of packet 

header traces. They captured traffic on a production link and filtered only HTTP traffic. They 
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modeled the HTTP traffic using parameters of Web client behavior, such as file sizes and think 

times. They developed empirical probability distributions from those traffic traces to describe 

various components of the Web client behavior. They then used these distributions to determine a 

synthetic workload. These components were: HTTP request length, HTTP reply length, document 

size or number of files per document, think time or time between retrieval of two successive 

documents, number of consecutive documents retrieved from any given server, and server 

selection – the parameter used to select each succeeding server accessed. At the lowest level, their 

model deals with individual HTTP transfers, each of which consists of a request-reply pair of 

messages, sent over a single TCP connection.   

2.3 Current Traffic Generation Systems 

 Most of the work in workload generation during the 1990s, including the ones we have 

discussed so far, focused on one or a limited set of application protocols such as FTP, Telnet, and 

SMTP [Pax94], HTTP [BC98] [Mah97] [CCG+04] [LAJS07], and some forms of multimedia. 

The obvious limitation of these approaches is that real links carry a continuously evolving mix of 

a number of different applications. While Paxson and Floyd introduced the concept of using 

source models of individual connections to generate traffic for simulations, they also cautioned 

that simulating each individual source can be prohibitively expensive in terms of processing time, 

for many current simulators, because a highly-aggregated Internet link consists (today) of many 

thousands of simultaneous connections [FP01].  

Solid, high-level descriptions of aggregate traffic, and simulation models of 

aggregate traffic that faithfully reproduce the response of the aggregate to 

individual packet drops (or to other indications of congestion), would be a great 
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help to researchers in exploring large-scale simulations. But, so far, such 

abstractions are beyond the state of the art. [Floyd and Paxson, p. 398, 2001]  

 That was in 2001. Today’s state of the art traffic generation systems like Tmix have indeed 

achieved this goal.  

 In this section, we discuss three such application workload models used in realistic traffic 

generation systems. They are the Harpoon model, the Tmix a-b-t model, and the Swing model. 

The Harpoon [SB04] traffic generator was a landmark contribution in such application workload 

modeling and traffic generation, because it first addressed the issue of representing a complete set 

of applications empirically using both TCP and UDP transport protocols without specific 

knowledge of application protocols or port usage. Swing [VV09] and Tmix [WAHC+06] are also 

empirically based approaches (using tcpdump packet header traces) to represent and generate 

workloads for the complete set of applications using a given network link. Both Swing and Tmix 

depart from the Harpoon approach by using the additional information available in a packet 

header trace to represent the internal dynamic structure of connections or flows.  

 In the rest of this section, we discuss these three leading traffic generation systems.   

2.3.1 The Harpoon Model 

 The Harpoon modeling process was empirically based using easily obtained NetFlow records 

for all the connections/flows traversing a given network link.  Harpoon fundamentally represents 

a connection or flow by its source-destination IP address pair, its relative start time, and the total 

number of bytes transferred independently in each direction between source and destination 

endpoints, as seen at a router. The Harpoon traffic generator [SB04] takes a router Netflow trace 

and generates representative packet traffic at the IP flow level. Sommers et al. define an IP flow 

as a unidirectional series of IP packets of a given protocol traveling between a source and a 
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destination IP/port pair within a certain period of time. Netflow data includes source and 

destination AS/IP/port pairs, packet and byte counts, flow start and end times, and protocol 

information. Harpoon uses this data to generate TCP and UDP packet flows that have the same 

byte, packet, temporal (diurnal effects associated with traffic volume) and spatial (vis-à-vis IP 

address space coverage) characteristics as measured at routers in live environments [SB04].  

 The Harpoon flow model, as shown in Figure 2.3.1 has a two level architecture: connection 

level and session level. Each “connection” is defined by its file size transferred, and inter-

connection time, or time between file transfers. Harpoon connections are 5-tuple flows: source IP 

address, destination IP address, source port, destination port, and protocol. Harpoon sessions are 

divided into either TCP or UDP types that conduct data transfers using the respective protocol 

during the time that they are active. The sessions are 3-tuple flows: source IP address, destination 

IP address, and protocol. 

 

Figure 2.3.1: Harpoon’s two-level hierarchical traffic model [Barford and Crovella, p. 70, 2004] 

 

 The session level has two components: the number of active sessions and the IP spatial 

distribution (IP address space coverage). By modulating the number of sessions that are active at 

any point in time, Harpoon can match the byte, packet, and flow volumes every five minutes from 

the original data and realize the temporal (diurnal) traffic volumes. Five minutes also happens to 
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be the interval over which flows are aggregated by NetFlow [Netflow]. The intent and domain of 

Harpoon is to create necessary volumes over longer time scales to produce self-similarity and 

diurnal patterns in a way that real application traffic is generated. 

 

Parameters Description 
PFilesize Empirical distribution of file sizes transferred. 

PInterConnection 
Empirical distribution of time between consecutive TCP connections 
initiated by an IP source-destination pair. 

PIP Rangesrc and  
PIP Rangedest 

Ranges of IP addresses with preferential weights set to match the empirical 
frequency distributions from the original data. 

PActiveSessions 

The distribution of the average number of sessions (IP source-destination 
pairs) active during consecutive intervals of the measured data. By 
modulating this distribution, Harpoon can match the temporal byte, packets 
and flow volumes from the original data. 

IntervalDuration Time granularity over which Harpoon matches average byte, packets and 
flow volumes. 

Table 2.1: Summary of Harpoon Configuration Parameters for TCP Sources 
[Barford and Crovella, p. 72, 2004] 

 

 Thus, the Harpoon model, as summarized in Table 1, is made up of a combination of five 

distributional, empirically-derived, models for TCP sessions: file size, interconnection time, 

source and destination IP ranges, and number of active sessions. The interval duration parameter 

was set to five minutes for all their experiments. For UDP packet transfer, Harpoon contains three 

distributional models: a simple parameterized constant packet rate, a fixed-interval periodic ping-

pong, and an exponentially distributed ping-pong. The first source type is similar to some audio 

and video streams, while the latter two types are intended to mimic the standard Network Time 

Protocol (NTP) and Domain Name Service (DNS), respectively. 

 While the Harpoon traffic model was a major breakthrough in empirically derived source 

modeling, it has its drawbacks. Most importantly, they model the size dimension of application 

models, completely ignoring the time dimension. As we demonstrate using our results in Chapter 
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5, the time dimension in application workloads plays a major role in the outcome of experiments. 

Furthermore, the Harpoon model discards “ACK” flows or flows that are very small, for example, 

request direction for an HTTP transfer. They also use only complete connections, discarding all 

incomplete connections, that is, connections for which one or more of the initiation or termination 

markers (SYN, or FIN/RST) was not recorded in the Netflow logs. The Harpoon model recreates 

aggregate trace characteristics without reproducing wide-area network conditions. That is, they 

do not reproduce connection round trip times, receiver maximum window sizes or loss rates seen 

on the network. Despite these drawbacks, the Harpoon traffic generator was a landmark 

contribution because it addressed the issue of representing a complete set of applications using 

both TCP and UDP transport protocols without specific knowledge of application protocols or 

port usage. 

2.3.2 The Tmix a-b-t Model 

 Tmix [WAHC+06], like Harpoon, is also an empirically based approach (using tcpdump 

packet header traces) to represent and generate workloads for the complete set of applications 

using a given network link. But Tmix departs from the Harpoon approach by using the additional 

information available in a packet header trace to represent the internal dynamic structure of 

connections or flows as follows. Tmix uses inferences about TCP sequence and 

acknowledgement number exchanges in a packet header trace to characterize connections as 

sequences of request-response exchanges between endpoints. The request-response exchanges for 

a connection are represented by the number of exchanges, the amount of data in each direction 

per exchange, and the elapsed time between a request and its response (“server” or intra-epoch 

latency) or between requests (“user” or inter-epoch latency).  

 This model allows one to faithfully reproduce the essential pattern of socket reads and writes 

that the original application performed without knowledge of what the original application 
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actually was. In [HC06], the author describes Tmix and demonstrates how the generated traffic 

displays all the key characteristics of the original captured trace. In addition to the details of 

request-response exchanges, Tmix reproduces the relative start time, RTT, receiver maximum 

window size, and loss rate for each connection found in the original tcpdump from a production 

link. 

 Thus, starting from a trace of TCP/IP headers collected on a production network, Tmix 

constructs a model for all the TCP connections observed in the network. The model, a set of a-b-t 

connection vectors, can be used in the workload generator of Tmix to generate the connections 

and reproduce the application-level behaviors observed on the original network link. The a’s and 

b’s are application data units (ADUs) as recorded from the original captured trace, and the t’s are 

the intra-epoch and inter-epoch quiet times within a TCP connection. Modeling as ADUs allows 

the TCP stack to deal with packetizing, so that inter-packet time is actually not captured, just 

inter-ADU time is represented. 

 The a-b-t model is used to generate TCP workloads only. A major contribution of this work is 

that it identifies a fundamental dichotomy in application behavior between connections that 

exchange data sequentially and those that exchange data concurrently. These two types of 

connections are shown in Figures 2.2.1 and 2.2.2. Each TCP connection is represented as a 

connection vector, and every request-response-time sequence is called an epoch within the 

connection. An epoch represents the abstract characterization of a request/response exchange. 

Thus every connection consists of one or more epochs.  
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Figure 2.3.2: An a-b-t diagram illustrating a persistent HTTP connection (sequential) 
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Figure 2.3.3: An a-b-t diagram illustrating a concurrent connection 

 

 Unlike Harpoon’s model, Tmix’s a-b-t model is a non-parametric model. Harpoon uses 

distribution-based models parameterized from analysis of empirical data that are then used with 

random sampling methods to generate statistically representative workloads in laboratory 

networks. Tmix, however, emphasizes faithful replays in the laboratory using derived details 
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about each connection to create a replay trace that is used to initiate operations at the socket level 

to generate workloads. It also offers a method to scale offered loads by sampling the original 

trace, thus offering huge flexibility in creating modified datasets of workloads resembling the real 

Internet traffic for specific evaluations on testbeds [HC06]. This method enables the researcher to 

introduce controlled load variability in the source-level trace replay experiments without 

sacrificing realistic workload modeling. 

 Tmix is a highly flexible traffic generation system and the a-b-t model provides a basis for 

comparing traffic generation methods for our study. Tmix, like the other systems, has its 

drawbacks. First, it does not emulate UDP flows. Second, Tmix does not account for any 

correlation among start times of TCP connections; that is, it does not model the sessions that 

Harpoon and Swing model on top of the connection model.  

 The Tmix method of traffic generation works as follows. Given a packet header trace, the 

trace is analyzed and described as a set of connection vectors. Each connection vector describes 

the application-level behavior of one of the TCP connections in the trace. In addition, each vector 

includes the relative start time of each connection, and its measured minimum round trip time, the 

TCP receiver window sizes, and loss rate. The basic approach to generating traffic is to replay 

each connection vector. For each connection, the replay consists of starting a TCP connection, 

carefully preserving its relative start time, and reproducing ADUs and inter-ADU quiet times. 

[HC06]. 

2.3.3 The Swing Model 

 Swing [VV09], like Tmix, is a closed-loop, network-responsive traffic generator that 

accurately captures the workloads from a range of applications using a simple structural model. 

But Swing, unlike Tmix or Harpoon, advocates a common parameterization model for various 
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application classes instead of grouping them all together. Starting from observed traffic at a single 

point in the network, Swing automatically extracts distributions for user, application, and network 

behavior. It then generates live traffic corresponding to the underlying models in a network 

emulation environment running commodity network protocol stacks, generating traces that are 

statistically similar to the original traces. They extract and assign the following network 

characteristics: link delays, link capacities, and loss rates. 

 Swing develops a session model on top of the connection model of Tmix. Swing includes 

characterizations of the user and session interarrivals which implicitly determine the connection 

start times. Swing defines request-response exchanges as RREs, where a base request for a web 

page accompanied by several image downloads as part of that request and all its responses are 

considered part of the same RRE, and as different connections within the same RRE. It could 

amount to parallel or simultaneous connections. Connections are part of the same RRE if the 

SYN of a new connection is within an RREtimeout of 30 seconds of the previous connection from 

the same IP address. If not, then this connection is a new RRE. However, if this new RRE is from 

the same IP address pair, and if its SYN is within a session timeout period of 5 minutes, then it’s a 

new RRE in the same session as the previous RRE. If it’s beyond the 5 minute session period, 

then a new session has started. 

 So, the structural model of Swing, as shown in Table 2, is as follows: each session consists of 

a number of RREs, which in turn consist of a number of protocol connections. Hence their 

structural model consists of users, sessions, connections, and network characteristics. For each 

HTTP session, for instance, they pick a randomly generated value (from the corresponding 

distribution) for each of the variables. First they pick a client and then decide how many RREs to 

generate along with their interRRE times. For each RRE, they decide how many parallel 

connections (separated by interConn times) to open and to whom (server). Within a connection 
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they decide the total number of request-response exchanges along with the request sizes, response 

sizes, and the request think time (reqthink) separating them. 

  

Layer Variable in the parametrization model: Description 
Users ClientIP, numRRE: Number of RREs, interRRE: think time  

RRE numconn: number of connections, interConn: time between start of 
connections 

Connection 

Numpairs: number of request-response exchanges per connection, 
Transport: TCP/UDP based on the application, ServerIP, Response Sizes, 
Request Sizes, reqthink: user think time between exchanges on a 
connection 

Packet packetsize, MTU, bitrate, packet arrival distribution (only for UDP) 
Network Link latency, Delay, Loss rates 

Table 2.2: Swing’s structural model of traffic [Vishwanath et al., pg. 715, 2009] 

 

 Swing emulates the network path using ModelNet. Every packet is routed to a single 

ModelNet core. Swing generates traffic that matches the burstiness of the original traffic for both 

bytes and packets in both directions. They have shown this to be true for a variety of individual 

applications and original traces at a range of speeds and taken from a variety of locations. The 

generated traffic also matches burstiness of the packet arrival process of the original trace at a 

variety of timescales ranging from 1ms to multiple minutes. Their metrics for success in traffic 

generation are realism, responsiveness, and maximally random traffic generation. This last metric 

calls for a traffic generation tool to be able to generate a family of traces constrained only by the 

target characteristics of the original trace and not the particular pattern of communication in that 

trace. While Tmix strove to generate traffic that was the same as the original traffic, the authors 

of Swing clearly declare that they want their generated traffic to be “representative” of real traffic 

and not necessarily the same as the real traffic. Thus Swing was designed to allow 

experimentation with changing loads and application characteristics. It also allows estimation of 
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experimental variation by generating random instances of traces using different random number 

seeds.  

 While Swing is also a highly flexible traffic generation system, it has two major drawbacks. 

Swing is not application independent like Tmix and Harpoon. Given a packet header trace, they 

first assign packets and flows to application classes, based on destination port numbers. For those 

applications with port numbers that cannot be classified, there is an ”other” application class. 

They start with a set of parameters for each application and add in more parameters as needed. 

This may not be scalable as applications change constantly. However, their argument for doing 

this is that they can then change the characteristics of the generated traffic in terms of applications 

represented in the traffic. And like Harpoon, Swing does not use incomplete connections.  

 In summary, the researchers that developed the Harpoon, Swing, and Tmix workload 

generators reported extensive validations to show that the resulting synthetic packet-level traffic 

on an emulated network link was a realistic or faithful reproduction of the traffic seen on a real-

world network link.  To the best of our knowledge, however, ours is the first research that 

explores in detail the effects of using different models of application workloads and path 

characteristics on various metrics of network performance in a realistic network environment. 

2.4 Does Traffic Modeling Matter? 

 Besides the work that has produced realistic application workload modeling and traffic 

generation tools over the last decade, there have also been a few attempts to show that simply the 

presence of background traffic (realistic or not) makes a difference in the outcome of the 

experiments. For example, in [VV08], the authors show that realistic background traffic matters 

in experimental evaluations of distributed systems, and that simple models like CBR and Poisson 

are insufficient. Another example is in [HLRX07] where the authors make observations about the 
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effects of background network traffic for TCP protocol evaluations.  

 In his dissertation [Le05], Long Le shows that the results for response times using different 

Active Queue Management (AQM) schemes changes dramatically when a different RTT 

distribution was used. And in [JRF+01], the authors illustrate how variability in network traffic 

affects buffer dynamics in IP routers. In the rest of this section, we discuss these four research 

projects more closely.   

2.4.1 Does Background Traffic Matter? 

 In [VV08], the authors make the point that simple models of background traffic, such as 

constant bit rate, Poisson arrivals, or deterministic link loss rates are insufficient to capture the 

effects of background traffic on applications. They contend that we require more complex 

background traffic models that capture the burstiness on a particular network link. Traffic models 

that drive tools like Tmix, Harpoon and Swing are based on this idea.  

 In this paper they show that in order to evaluate distributed systems and networked services 

in a realistic manner in an experimental testbed, a key ingredient to model correctly is 

background traffic. They study the impact of background traffic on three applications - web 

traffic, multimedia traffic, and bandwidth estimation tools. Also, they use four different methods 

of generating background traffic. They employ constant bit rate (CBR), Poisson model, TCP 

replay, and Swing. Swing is the only one among these that uses a real trace and generates TCP 

traffic using stacks on the end-systems. Hence the resulting background traffic using Swing is 

responsive.  

 How does this paper relate to the work in this dissertation? They show that realistic traffic 

matters in experimental evaluations, and that simple models like CBR and Poisson models are 

insufficient. We move further beyond this idea – we show that even within the realm of realistic 
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traffic models, some aspects of the structural model matter more than others, depending on what 

is being evaluated. For example, preserving the request-response exchanges within TCP 

connections affects router queue dynamics, but modeling the inter-epoch times between these 

request-response exchanges within TCP connections has an even greater effect on router queue 

dynamics and number of active connections in the network.   

2.4.2 Impact of Background Traffic on High-Speed TCP Performance 

 In [HLRX07], the authors examine the effect of background traffic on the performance of 

existing high-speed TCP variant protocols, namely BIC-TCP, CUBIC, FAST, HSTCP, H-TCP 

and Scalable TCP. They demonstrate that the stability, link utilization, convergence speed and 

fairness of the protocols are clearly affected by the variability of flow sizes and round-trip times 

(RTTs), and the amount of background flows competing with high-speed flows in a bottleneck 

router.  

 For all their experiments, they use dummynet to assign a per-flow delay. The delay is 

randomly selected from a distribution obtained from [AKSJ03]. For background traffic, they use 

Iperf to generate long-lived flows and SURGE to generate short-lived flows. They randomly 

sample from a distribution of file sizes the amount of data (flow size) to be transferred in each 

web session. This distribution consists of a log-normal body and a Pareto tail. As an example, for 

background traffic, they use 12 long-lived flows and SURGE-generated web traffic with 70% 

body and 30% tail. The minimum file size of the Pareto distribution is 1MB. The arrival time of 

flows follows an exponential distribution with intensity 0.6.  

 Their experimental results include evidence that the presence of some background traffic 

affects TCP-friendliness. TCP-friendliness is defined to be the fairness of a high-speed flow in 

sharing bandwidth with another TCP-NewReno or TCP-SACK flow over the same end-to-end 

path. They do not restrain the maximum window size of TCP-SACK. Their experimental results 
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with no background traffic indicate that with very low RTTs, the TCP-friendliness of H-TCP is 

the best. All protocols improve their TCP-friendliness at varying degrees when some background 

traffic is added. Among all the protocols tested, BIC-TCP and STCP show the biggest 

improvement. There is also significant improvement in the TCP-friendliness of CUBIC under 

some background traffic.  

 How does this paper relate to the work in this dissertation? They show that the presence of 

any background traffic, as opposed to no background traffic, affects certain TCP fairness metrics. 

While their goal is notable – showing that background traffic matters in protocol evaluation – 

their traffic is statistically modeled and their methodology for traffic generation lacks the 

aggregation levels needed to make their case for realistic traffic generation. 

2.4.3 Investigating the Effects of Active Queue Management on TCP 

Performance  

 In his dissertation [Le05], Long Le investigates the effect of active queue management on the 

performance of TCP applications. This study involves a thorough evaluation of the leading AQM 

algorithms, including PI, REM, and ARED, comparing them with the prevalent drop-tail queuing 

in routers. As part of this study, Le, using the same application workload but two different RTT 

distributions, shows that there are pronounced differences in the response time behavior for 

almost every AQM scheme using the two RTT distributions. Figure 2.4.1 shows results using 

uniform RTT distribution U[10,200] whereas Figure 2.4.2 shows results using an empirical RTT 

distribution [AKSJ03].  

 All the distributions for response times, other than the one labeled uncongested network are 

results for experiments with 98% offered load of web traffic. Even the response time CDF 

(cumulative distribution function) for the uncongested network is quite different for the two 
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different sets of experiments. With uniform RTT distribution, in an uncongested network, 97% of 

response times are 500 ms or less, whereas with a more general RTT distribution, only 73% of 

response times are less than 500ms. When a uniform distribution of RTT was used, there was a 

pronounced difference in the perceived performance of the different schemes. That is, DCN was 

clearly the best AQM scheme, followed by PI and REM, then BLUE, ARED and drop-tail in that 

order. The performances of the last three AQM schemes were significantly worse than the top 

three. 
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 Figure 2.4.1: Response Time – uniform RTT Figure 2.4.2: Response Time – empirical RTT 
 Comparison of all AQM algorithms at 98% load Comparison of all AQM algorithms at 98% load 
 [Le05, Figure 4.112, p. 139] [Le05, Figure 5.54, p. 187] 
 

 All else being the same, when the RTT emulation is changed to an empirical, non-uniform 

distribution, there is virtually no difference among DCN, PI and REM, and though not as good, 

both ARED and drop-tail are comparable in performance to the other schemes. Also, each of 

these AQM schemes performed better when using uniform RTT distribution than when using the 

general distribution. Although this study about comparing AQM performance also shows that 

RTT distribution matters for performance evaluations, it does not shed light on what aspects of 

the RTT model matters, nor does it investigate various RTT models. 
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 How does this study relate to the work in this dissertation? Such studies could strongly 

encourage or discourage router manufacturers and network administrators from turning on a new 

queuing algorithm or changing the default TCP congestion control mechanism on the end 

systems. Hence this only underscores the importance of investigating and developing standards 

for traffic generation and network emulation. That includes exploring the choice of application 

workload and network path characteristics in experiments and studying how such choices 

influence the outcome of these evaluations. Such examples serve to emphasize and underscore 

our hypothesis that application workload models and network path characteristics greatly 

influence protocol performance. 

2.4.4 TCP/IP Traffic Dynamics and Network Performance 

 This paper [JRF+01] highlights the extent to which assumptions underlying the nature of 

network traffic can influence practical engineering decisions. Using a simple network 

configuration of a web server and its clients in the ns2 network simulator, they run experiments to 

illustrate two points. First, by either implicitly accounting for or explicitly ignoring some aspects 

of the empirically observed variability of network traffic, a range of different, and at times 

opposing conclusions can be drawn about the inferred buffer dynamics for IP routers. Second, 

TCP’s feedback-based congestion control is a possible contributing factor to the observed 

variability of measured TCP/IP traffic over small scales, in the order of RTT.  

  To show evidence for their first point, they create variability in the workload model as 

follows. On one end of the spectrum of variability, they use 50 infinite sources that always have 

data to transfer, thus creating the no variability mode. On the other end of the spectrum, they 

generate purely web workloads similar to SURGE. The main idea behind these Web workload 

models is that during a Web session, a user typically requests several Web pages, where each 

Web page may contain several Web objects, thus emulating high variability in file sizes. To show 
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evidence for their second point about the TCP feedback loop, they compare the results from 

simulations using closed loop and open loop traffic generation. 

 How does this paper relate to the work in this dissertation? They admit that their network 

setup and experiments are unrealistic and oversimplified. But through experimental evidence, 

they emphasize the risk associated with then conventional analysis and simulation of large-scale 

networks. The risk concerns the wide-spread tendency to rely on and use “a model simplified to 

the point where key facets of Internet traffic have been lost, in which case the ensuing results are 

useless (though they may not appear to be so!).” [Paxson and Floyd, p. 1043, 1997].  

2.5 Community Efforts Toward a Benchmark for TCP Evaluation 

 There are currently no standards or benchmarks for protocol evaluation. However, there has 

recently been interest in the community toward developing better practices for such 

experimentation. In Time for a TCP Benchmark Suite? [WCL05], the authors make one of the 

first cogent arguments for the need for a TCP benchmarking system. They propose a benchmark 

consisting of a set of network configurations (topologies and routing matrix), a set of workloads 

(traffic generation rules), and a set of metrics. The benchmark would have two modes: NS 

simulation mode, and hardware experiment mode. 

 More recently, Floyd and Kohler document in their 2008 Internet Draft (“Tools for the 

Evaluation of Simulation and Testbed Scenarios”), that there has been some effort to formulate 

evaluation scenarios specific to congestion control experiments. At the same time, there has been 

increased awareness and consensus among networking researchers for the need to create a 

common TCP evaluation suite. One of the key components of such a suite would be traffic 

generation. In [AMF+08], the authors create a case for a common evaluation standard for TCP 

evaluations. This paper does not present any results of experimentation, but acts as a powerful 
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catalyst for discussions on this topic. There is also a related and ongoing effort by the “Transport 

Modeling Research Group” [TMRG] to come up with a consensus for a baseline standard for 

protocol evaluation. This effort, however, is simply to come up with a consensus, and use that for 

testing. It does not itself present any experimental results.  

 While all these efforts are making, albeit small, progress towards benchmarks for TCP 

evaluations, none of them venture toward the much larger goal of benchmarks for empirical 

research in networking. This dissertation is a step in that direction.   

2.6 Chapter Summary 

 The above examples (in Sections 2.3, 2.4, and 2.5) are papers or dissertations published 

within the last few years. There is still no consensus about generating realistic workload models 

as background traffic in networking research. All of these studies differ from the work in this 

dissertation significantly, in that we move past the debate of whether or not background traffic 

matters. Our questions are about the underlying structure of the workload model used in such 

traffic, and the emulation of path characteristics in such experiments, for network performance. 

We show, through extensive experimental evidence, how the choices made in both workload 

modeling and network path characteristics strongly affect network performance for a set of 

performance metrics.  



       

 

 

CHAPTER 3 

 
WORKLOAD MODELING AND TRAFFIC GENERATION 

 

Building a large packet-switching network is easy; understanding the behavior of 
traffic in a large packet-switching network is nearly impossible. 

         Douglas Comer [C08] 

 

 In this chapter, we present two main topics: traffic characteristics of the input traffic used in 

this study, and the models developed for this traffic to represent the application workloads and 

network characteristics. This chapter is organized as follows. In Section 3.1 we give detailed 

analyses for the traffic characteristics of the two sets of input traffic mixes – UNC and IBM - that 

we use as input for all our experiments for traffic generation. In Section 3.2 we discuss the Tmix 

traffic generation system used for all our experiments in this study. In Sections 3.3 and 3.4 we 

develop the six different connection structure models (application workloads) for TCP 

connections and the seven different round trip time models (network characteristics) for 

emulating the end-to-end paths.  

3.1 Traffic Characteristics of the Two Input Traces 

 For realistic traffic generation, we begin with real network traffic captured on production 

links on the Internet. In this study, we use two very different network traces collected at two 

diverse locations on the Internet. The first one from UNC was taken on the border link connecting 

the campus of the University of North Carolina at Chapel Hill to the Internet service provider 
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network. The second trace was taken at an aggregation switch for four internal networks, 

connecting one of IBM Corporation’s largest development sites to the Internet. The UNC campus 

trace was a 1-hour packet-header trace taken on a weekday during the school year, from 2:00 PM 

to 3:00 PM on January 10, 2008. The IBM trace was also a 1-hour packet-header trace which was 

representative of typical peak workday traffic on their corporate network, and was taken from 

2:20 PM to 3:20 PM on October 10, 2006. Both these traces were captured using a 1Gbps Endace 

Systems’ DAG capture card on a FreeBSD monitoring machine which is a 1.8GHz server class 

PC with 1.2GB of memory. DAG technology provides 100% capture into host memory at full 

line rate for all packets on the link [dag]. The traffic captured by the monitor was then converted 

to pcap and processed using an enhanced tcpdump program, and several diagnostic and other 

tools developed at UNC. 

 In the rest of this section, we present detailed characteristics for the UNC and IBM traffic. 

Why? While most network researchers will agree that application workload modeling is essential 

for realistic traffic generation, we also know that there is no such thing as a standard network 

trace. That is, two large production links on the Internet will likely yield two slightly different, or 

as in our case two fairly different, traffic mixes. While we use such real traffic as input for our 

empirical studies, we emphasize by example that we must first analyze and understand the 

characteristics of the input traffic. Yes, indeed, the characteristics of the input traffic play a major 

role in experimental outcomes.  Using two such input traffic mixes then validates the results 

more firmly while helping to bring out any methodological choices that lead to differences in the 

results from using the two different inputs. Hence it is also useful to clearly study the similarities 

and differences between the two input traces.  

3.1.1 Throughput 

 We begin the analysis of the two input traffic mixes by presenting the time series of their 
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throughput.  

 

 0

 100

 200

 300

 400

 500

 600

 10  15  20  25  30  35  40  45  50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

UNC-dir1

 
 0

 100

 200

 300

 400

 500

 600

 10  15  20  25  30  35  40  45  50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

UNC-dir2

 

Figure 3.1.1: Throughput as captured (high) – UNC Figure 3.1.2: Throughput as captured (low) – UNC 
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Figure 3.1.3: Throughput as captured (high) – IBM Figure 3.1.4: Throughput as captured (low) – IBM 

 

 In Figures 3.1.1 through 3.1.4, we show the time series of the link throughput in both 

directions for the original UNC and IBM traces respectively as captured. Although both traces 

were an hour long, we have shown only the period between 10 and 50 minutes because that is the 

period we use for all our experiments. The UNC original traffic, as captured, averaged 533 Mbps 

in one direction (labeled high) and 248Mbps in the other direction (labeled low). The IBM 

original traffic, as captured, averaged 464 Mbps in the high throughput direction and 427Mbps in 

the other direction. Both exhibit variability, but the IBM traffic is significantly more variable.  

 The throughput in these figures is for TCP traffic only. However, we do not use all of these 
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connections to generate traffic in our experiments. We process this traffic as follows. First, using 

tools developed by Hernandez-Campos [HC06], we classify the captured traffic into two 

categories of TCP connections. The first category of connections, we discard. These connections 

consist mainly of two sets: one in which the connections and their packets carry no data, and 

second in which the connections were captured in only one direction. The first set of discarded 

connections and packets carried no data, and the second carried small amounts of data in only one 

direction. For connections that carried data in only one direction, we included them if we 

captured the packets traversing both directions for that connection. Connections that carried no 

data, however, still contributed a good fraction of the throughput due to their packet overhead. 

For example, in the UNC traffic, the connections carrying no data were 10% of the total 

connections.  

 The connections with packets seen in only one of the two directions constituted 16% of the 

total connections though they carried only 1.8% of the total data. And in the IBM traffic, the 

connections carrying no data were 7% of the total connections. The connections with packets 

seen in only one of the two directions constituted 5.6% of the total connections and carried 

negligible (close to 0%) of the total data. It would be interesting to study what applications were 

represented by these discarded connections, but that is out of scope of this study. 

 The second category of connections constitutes the traffic we use for emulation in our 

experiments. This is the bulk of the captured traffic that we then classify into sequential and 

concurrent connections (see Section 3.1.2 for their representations). We further classify the 

sequential and concurrent connections into complete and incomplete connections. A complete 

connection is one for which we see the SYN and FIN or RST for the connection. An incomplete 

connection is one in which we do not see any one or more of these initiation or termination 

markers for that connection.  

 In HC06, the authors used only complete connections for their study. We extend that work of 

traffic generation by also including incomplete connections since these connections form a large 
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part of the captured traffic. For example, for the UNC trace, 70% (about 4.5 million) of the 

connections were complete sequential connections, carrying 52% of the total data bytes. And 

while only 0.37% (about 24,000) of the connections were incomplete concurrent connections, 

these connections carried fully 21% of the total data bytes. Similarly, for the IBM trace, 80% 

(about 2.6 million) of the connections were complete sequential connections, carrying 56% of the 

total data bytes. And while only 0.63% (about 20,000) of the connections were incomplete 

concurrent connections, these connections carried fully 12% of the total data bytes.  
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 Figure 3.1.5: Offered Load (high) – UNC Figure 3.1.6: Offered Load (low) – UNC 
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 Figure 3.1.7: Offered Load (high) – IBM Figure 3.1.8: Offered Load (low) – IBM 

 

 After including all the sequential and concurrent TCP connections, both complete and 
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incomplete, the UNC trace had nearly 4.7 million total connections with an average offered load 

of 471 Mbps in one direction and 202 Mbps in the other, as shown in Figures 3.1.5 and 3.1.6. The 

IBM trace had about 2.8 million connections with an offered load of 404 Mbps in one direction 

and 366 Mbps in the other, as shown in Figures 3.1.7 and 3.1.8.  

3.1.2 Sequential and Concurrent Connections 

 Of the 4.7 million total connections in the UNC traffic, 4,568,847 are sequential connections 

and 115,045 are concurrent connections. The sequential connections transfer 214 billion bytes 

(70%) of the total payload. The concurrent connections transfer 86 billion bytes (28%) of the total 

payload. Of the 2.8 million total connections in the IBM traffic, 2,733,996 are sequential 

connections and 51,058 are concurrent connections. The sequential connections in the IBM traffic 

transfer 310 billion bytes (85%) of the total payload. The concurrent connections transfer 55 

billion bytes (15%) of the total payload.  

 So what are sequential and concurrent connections? Hernandez-Campos et al. first identified 

and classified TCP connections for traffic generation as being sequential or concurrent in nature. 

A sequential TCP connection is a sequence of one or more request-response exchanges, called 

epochs. Each epoch describes the properties of a pair of application data unit (ADU) exchanges 

between the two TCP endpoints. [HC06]. The concept of an epoch arises from the client/server 

structure of many distributed systems, in which one endpoint acts as a client and the other one as 

a server. This representation captures the sequential order of the ADUs within the TCP 

connection, the direction in which the ADUs flow, and the sizes of the ADUs. 

 In the sequential model, the application data is either flowing from the client (connection 

initiator) to the server (connection acceptor) or from the server to the client. However, some TCP 

connections are not driven by this client-server model of data exchanges. Some applications send 

data from both TCP endpoints simultaneously. For example, such connections are said to have 
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data exchange concurrency and are called concurrent connections. In such connections, one or 

more pairs of ADUs are exchanged simultaneously. 

3.1.3 Application-level Characteristics 

 Hernandez-Campos et al. first developed this classification for all TCP connections into 

sequential and concurrent connections with the goal of capturing and generating application data 

exchanges, including the pattern of such exchanges, without knowledge of the underlying 

applications. In this sub-section, we present data for these application-level characteristics for the 

two input traffic mixes obtained from their packet-header traces. Specifically, we compare the 

distributions for the number of epochs per connection, the size of ADUs, and the endpoint 

latencies in the connections for the two traces.  

3.1.3.1   Epochs 
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 Figure 3.1.9: Number of connection epochs   Figure 3.1.10:  Number of connection epochs  
   UNC and IBM – CDF    UNC and IBM - CCDF 

 

 An epoch is a request-response exchange within a sequential TCP connection. On average, 

the sequential connections in the UNC trace used 3 epochs to transfer bytes, with a standard 

deviation of 42 epochs. Sequential connections in the IBM trace used a mean of 9 epochs with a 
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standard deviation of 123 epochs to transfer data. The cumulative distributions of number of 

epochs per connection for both traces are shown in Figures 3.1.9 and 3.1.10. The CCDFs for both 

are distributions are approximately linear on a log-log scale. Hence, both clearly have a heavy-

tailed distribution in the number of epochs.  

 We observe that 60% of sequential connections in the UNC trace had only one epoch, with 

90% of sequential connections having only 5 or fewer epochs. For the IBM trace, 44% of 

sequential connections had only one epoch, with 90% of sequential connections having 14 or 

fewer epochs. Only 3% of UNC connections had 12 or more epochs whereas 13% of IBM 

connections did. So, while the top 3% of UNC connections had 12 or more epochs, the top 3% of 

IBM connections had 33 or more epochs. In the UNC trace, only 0.01% of connections had 1000 

epochs or more, whereas in the IBM trace that number was 0.05% of connections. The tails of the 

distributions clearly show that the number of epochs in connections in the IBM trace was much 

higher than those in the UNC trace. 

3.1.3.2  Application Data Units (ADU) 

 Sequential connections exchange data in epochs, that is, in a request-response pattern. Hence, 

we measure the ADU sizes in each epoch as a request-size and a response-size for these 

sequential connections. Concurrent connections, on the other hand, send bytes in both directions 

simultaneously, so we represent all concurrent ADUs in one distribution. In Figures 3.1.11 

through 3.1.16, we show the cumulative distributions of these ADU sizes for sequential and 

concurrent connections. First, let us compare the request sizes for both the UNC and IBM traces 

in Figures 3.1.11 and 3.1.12.  

 The median data size for requests in sequential connections is 460 bytes in the UNC trace, but 

only 84 bytes in the IBM trace. 20% of these requests are greater than 1000 bytes in the UNC 

trace but only greater than 466 bytes in the IBM trace. But the average request size is 2.5 KB in 
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the UNC trace and 6 KB in the IBM trace. The top 10% of request sizes are greater than 1.6 KB 

in the UNC trace and greater than 1 KB in the IBM trace. So, while the IBM traffic has a few 

sequential connections with very large request sizes (skewing the average), most of the request 

sizes in the UNC trace are comparatively larger. 

 

  

 Figure 3.1.11: Request sizes - sequential connections Figure 3.1.12: Request sizes - sequential connections  

 

  

Figure 3.1.13: Response sizes - sequential connections Figure 3.1.14: Response sizes - sequential connections  

 

 Now, let us compare the response sizes for the two traces in Figures 3.1.13 and 3.1.14. The 

median response size is 420 bytes in the UNC trace and 128 bytes in the IBM trace. 20% of 

responses are greater than 4KB bytes in the UNC trace but only greater than 680 bytes in the IBM 

trace. The average response size is 11 KB in the UNC trace and 9 KB in the IBM trace. The top 
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10% of response sizes are greater than 13 KB in the UNC trace but greater than only 3.3 KB in 

the IBM trace. So we note that sequential connections in the IBM trace have much smaller 

response sizes as compared with those in the UNC trace. The CCDFs clearly show a heavy-tailed 

distribution for response sizes in both UNC and IBM traffic. 

 

  

Figure 3.1.15: ADU sizes - concurrent connections Figure 3.1.16: ADU sizes - concurrent connections  

 

 For concurrent connections, we consider all ADUs in one distribution, since there are no 

request-response exchanges within these connections. As shown in Figures 3.1.15 and 3.1.16, the 

median size of concurrent ADUs is 208 bytes in the UNC trace and 91 bytes in the IBM trace. 

20% of ADUs are greater than 1400 bytes in the UNC trace but only greater than 610 bytes in the 

IBM trace. The average ADU size is 5.9 KB in the UNC trace but larger than 11.5 KB in the IBM 

trace. As with the sequential ADUs, we see here that a small number of very large concurrent 

ADUs skew the average ADU size in the IBM traffic.  

 The top 10% of ADU sizes are greater than 6.8 KB in the UNC trace and greater than only 

3.4 KB in the IBM trace. ADU sizes in the IBM trace, other than for a few very large ADUs, are 

smaller than those in the UNC trace. Figure 3.1.16 shows that the ADU sizes in both sets of 

concurrent connections are equivalent in the tail, and they have a heavy-tailed distribution.  
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3.1.3.3  Endpoint Latencies 

 In the Tmix a-b-t model, besides ADUs, the sequential and concurrent connections have 

endpoint latencies. We identify two kinds of such endpoint latencies, developed as part of the a-

b-t model by Hernandez-Campos et al. First, we have the intra-epoch endpoint latency which is 

the time elapsed at the connection initiator (client), and within an epoch, between sending a 

request and receiving its response. This is usually the time taken by the server to process the 

request plus one round trip time of network latency. Second, we have the inter-epoch endpoint 

latencies which are the times between two epochs, that is, the time between receiving a response 

and sending the next request. These could be either due to some processing time or user 

thinktime. Every epoch in a sequential connection has an intra-epoch latency. And multiple epoch 

connections have inter-epoch latencies as well. Concurrent connections have one or more 

endpoint latencies. These latencies are simply associated with the preceding ADU sent by that 

endpoint. When endpoint latencies are less than 500ms, they could easily be due to network 

effects and hence we do not consider them as part of the source-level behavior. Hence we do not 

emulate endpoint latencies less than 500ms.   

 It is worth noting that of all the measured latencies, roughly 16% of intra-epoch latencies 

were greater than 500ms for both UNC and IBM traces. This means that server processing 

latencies have an effect on a small number of epochs in both traces. For inter-epoch latencies 

44% of them were larger than 500ms for the UNC trace, but only 20% of them were larger than 

500ms for the IBM trace. Each latency measure is considered a data point here, regardless of the 

number of latencies measured for each connection. This difference in inter-epoch latencies 

between the two traces becomes very significant when we study the effect on queue length. For 

the same level of capacity constraint on the router-to-router link (95%), the IBM trace shows 

much heavier queues using this model of connection structure because in the UNC traffic, the 

larger number of inter-epoch latencies plays a significant role in allowing the queue to drain and 

maintaining a smaller queue overall. For concurrent connections, it is interesting to note that most 
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(99%) of the latencies were greater than 500ms for both UNC and IBM traces. So essentially all 

measured latencies are emulated for concurrent connections.   

 Let us now analyze these endpoint latencies in the UNC and IBM traffic. We show all the 

intra-epoch latencies (including those below 500ms) for the two traces in Figures 3.1.17 and 

3.1.18. Note that for the CCDFs, we start the Y-axes at 500ms. Each plot compares the data for 

the two traces – UNC and IBM. 
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Figure 3.1.17: Intra-epoch endpoint latencies  Figure 3.1.18: Intra-epoch endpoint latencies 
  for sequential connections   for sequential connections 
 

 We observe that the median intra-epoch latency is 47 milliseconds for UNC connections and 

53 milliseconds for IBM connections. 20% of these latencies are greater than 273 milliseconds 

for UNC connections and greater than 168 milliseconds for IBM connections. The average intra-

epoch latency is quite high, however, with 3.1 seconds for UNC and 4.7 seconds for IBM 

connections. This high average reflects the small number of multi-epoch, long connections with 

long latencies present in both traces. The top 10% of intra-epoch latencies are greater than 1 

second for the UNC trace and greater than 1.1 seconds for the IBM trace. 

 We now compare all inter-epoch latencies for the two sets of traffic in Figures 3.1.19 and 

3.1.20. We observe that the median inter-epoch latency is 173 milliseconds for UNC connections 

and 55 milliseconds for IBM connections. 20% of the inter-epoch latencies are greater than 1.5 

seconds for UNC connections and greater than 490 milliseconds for IBM connections, thus much 
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longer than their respective intra-epoch latencies. The average latency is also quite high with 5.6 

seconds for UNC and 5.9 seconds for IBM connections, again reflecting the small number of 

multi-epoch, long connections with long endpoint latencies present in both traces. The top 10% of 

inter-epoch latencies are greater than 7.5 seconds for the UNC trace and greater than 3 seconds 

for the IBM trace.  
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Figure 3.1.19: Inter-epoch endpoint latencies  Figure 3.1.20: Inter-epoch endpoint latencies 
  for sequential connections   for sequential connections 
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 Figure 3.1.21: Endpoint latencies for Figure 3.1.22: Endpoint latencies for 
  concurrent connections   concurrent connections 
 

 Finally, let us compare all the endpoint latencies for concurrent connections for the two traces 

in Figures 3.1.21 and 3.1.22. Here, we observe that the median latency for concurrent connections 

is 1.1 seconds for UNC connections and 1.5 seconds for IBM connections. 20% of these latencies 

are greater than 4 seconds for UNC connections and greater than 17 seconds for IBM 
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connections. Note that concurrent connections constitute only a small fraction of the total number 

of connections in both traces – 1.8% of UNC connections and 1.6% of IBM connections, but they 

transfer 28% and 15% of the total bytes respectively. These percentages stated here for endpoint 

latencies are for connections within that fraction, and not part of all the endpoint latencies. Still, 

these long latency concurrent connections clearly carry a large number of bytes. In the case of the 

IBM trace, they contribute to the heavier distribution of connection durations, compared with that 

of UNC connections. The average latency is also quite high, with 6.7 seconds for UNC and 16.7 

seconds for IBM connections. The top 10% of latencies in concurrent connections are greater 

than 14 seconds for the UNC trace and greater than 60 seconds for the IBM trace.  

 We must note here that for both sequential and concurrent connections in the original trace, 

there are connections which exhibit a quiet time between the last ADU and TCP’s connection 

termination. Most of these quiet times are under 500ms and hence discarded anyway. However, 

there are a few connections with exceedingly long quiet times at the end. Such quiet times reflect 

more realistic durations for those connections, but add much overhead to our traffic generation 

system. Hence, we do not model any quiet times that occur after the last ADU within a 

connection. 

3.1.4 Network-level Characteristics 

 So far, we discussed the application-level characteristics for the UNC and IBM traffic that we 

use as input for generating traffic in all our experiments. We now discuss the network-level 

characteristics of round trip times and window sizes for these TCP connections. For this 

discussion, we do not distinguish between sequential and concurrent connections, but treat all 

connections as simply TCP connections.  
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3.1.4.1  Round Trip Times (RTTs) 

 The round-trip time (RTT) of a TCP connection between two endpoints, a sender and a 

receiver, is defined as the time it takes for a TCP segment from the sender to reach the receiver 

and for a segment carrying the generated acknowledgment from the receiver to return to the 

sender. The cumulative distribution functions (CDFs) for the measured minimum round trip time 

per connection in the two traces are shown in Figure 3.1.23. The CCDFs for the same are shown 

in Figure 3.1.24. The RTTs in the UNC trace were on average smaller than those in the IBM 

trace, but the CCDF shows much longer connection RTTs for the UNC trace than in the IBM 

trace in the tail of the distributions. The mean RTT for connections was 80ms in the UNC trace 

while it was 92ms in the IBM trace. The standard deviation of RTTs was 210ms and 144ms for 

connections in the UNC and IBM traces respectively.  
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 Figure 3.1.23: CDF of round trip times Figure 3.1.24: CCDF of round trip times 

 

 Thus while the median RTT for connections in the UNC trace was 36ms, fully 3% of these 

connection RTTs were above 429ms. And while the median RTT for connections in the IBM 

trace was 68ms, the top 3% of these connection RTTs were greater than 275ms. As seen in Figure 

3.1.24, some connection RTTs were longer than one second for both UNC and IBM connections. 
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Such long delays are sometimes due to compounding effects of long propagation delays added to 

slow modems on one end of the connection, or due to long delays on cell hosts in the network. 

 We used these empirical measures to develop all our RTT models discussed later in this 

chapter. 

3.1.4.2  Receiver Window Sizes 

 Just as we used the empirical measures from the original RTT distributions to develop our 

RTT models, we used the empirical measures from the original receiver-advertised maximum 

window size distributions to develop the window size models for our experiments. Hence, let us 

now examine this network-level characteristic in the two input traces. But first, what is the role of 

the receiver window size in a TCP connection? When a segment is received by a TCP endpoint, 

its payload is stored in an operating system buffer until the application uses a system call to 

receive the data. In order to avoid overflowing this buffer, TCP receiver endpoints use a 

mechanism called flow control to impose a limit on the maximum sending rate of the sending 

endpoint. Hence a TCP sender cannot have more than this maximum, called receiver maximum 

window, of bytes outstanding (unacknowledged) in the network.  

 How is this relevant to our traffic generation? Window size allocation in TCP connections 

affects the growth of the window of unacknowledged packets that the sender can have in the 

network. Hence a larger receiver window size, all other thing being equal, means that a TCP 

connection can transmit data faster and have more data in the network before it receives feedback 

from the other end of the connection. 

 In this study, we measured the maximum advertised window for both ends in each connection 

from the original trace for both UNC and IBM traffic. Each connection in all our experiments, 

unless otherwise specified, was assigned the measured receiver window for each of the two 

endpoints of the TCP connection. This included all the experiments regardless of the connection 
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structure model used for traffic generation, the RTT model used for network emulation, or the 

network environment, that is unconstrained or constrained link mode, for each experiment. This 

maximum receiver window is often different for each endpoint of a connection. Hence we show 

the separate distributions for the initiator of a TCP connection, and the acceptor for that 

connection. We show this data for both the UNC and IBM traces in Figure 3.1.25. 
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Figure 3.1.25: CDF of receiver maximum window sizes of the input UNC and IBM traces 

 

 We observe from this figure that the smallest maximum receiver window size is 4KB for any 

connection in both traces. This window size then increases to values of 8KB, 16KB, 32KB, 

48KB, or 64KB. We did not measure or analyze window scaling and hence the maximum 

window size we measured was 64KB. As shown in this figure, the initiators have larger 

advertised window sizes – roughly 65% of UNC initiators had 64KB and 80% of IBM initiators 

had 64KB receiver windows. However, only 25% of UNC acceptors and 50% of IBM acceptors 

had 64KB receiver windows.   
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3.2 Traffic Generation with Tmix 

 For all experiments in this study, we use the Tmix traffic generation system. Although we 

discussed some details about this system among the related works in Chapter 2, let us briefly 

discuss the Tmix model for both application workload and network characteristics in this section.  

This will aid in later discussions in this chapter when we present our own models. Hernandez-

Campos in [HC06] developed a new application-level model to characterize workloads, called the 

a-b-t model. Given a packet header trace collected from an arbitrary Internet link, this work 

algorithmically infers the application-level behavior driving each connection, and casts it into the 

notation of the a-b-t model. The result from processing the packet header trace is a collection of 

a-b-t connection vectors, each vector representing a TCP connection from the original captured 

trace. These vectors are then replayed in software simulators and testbed experiments to drive 

network stacks. This replay of the original traffic, using the a-b-t model, generates workloads that 

fully preserve the feedback loop between the TCP endpoints, and also preserve the state of the 

network. 

 The a-b-t model is used to generate TCP workloads only. Each TCP connection is 

represented as an a-b-t connection vector, and every request-response-time sequence in a 

sequential connection is called an epoch within the connection. Thus every sequential connection 

consists of one or more epochs. The a’s and b’s in both sequential and concurrent connections are 

the application data units (ADUs), sizes as recorded from the original captured trace. The a-type 

ADUs are data units sent from the connection initiator to the connection acceptor, and the b-type 

ADUs are data units sent from the connection acceptor to the connection initiator, i.e. data flow in 

the opposite direction. The t’s represent the quiet times during which no data segments are 

exchanged. The quiet times may be the time taken between sending of ADUs to the transport 

layer, or it may be user think times or server processing times. The reason for the quiet times and 

the actual data in the ADUs are not important to traffic generation, but modeling these quiet times 
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and application data exchanges is very important to represent the lifetime of the connection as we 

will see in this study. This a-b-t emulation model faithfully reproduces the essential pattern of 

socket reads and writes that the original application performed without knowledge of what the 

original application actually was. Furthermore, Tmix emulates network path characteristics by 

assigning to each connection its observed minimum RTT and receiver window sizes.  

 We note here that there is a fundamental difference between Tmix and the other two traffic 

generation systems (Harpoon and Swing) discussed in Chapter 2. Although all three systems are 

based on modeling traffic and network characteristics from empirical measures of real network 

traffic, Tmix is a non-parametric model of traffic generation. Tmix accurately and faithfully 

replays the application-level behavior using a set of connection vectors using real TCP sockets on 

the traffic generators. Each connection vector input to the traffic generators represents exactly one 

TCP connection from the original traffic and there is a one-to-one assignment of connection 

parameters for each connection from the original traffic to the replayed traffic. On the other hand, 

both Harpoon and Swing use parametric modeling; they are based on random sampling from 

distributions of empirical parameters of network traffic.  

3.3 Variations in the Workload Model 

 The Tmix a-b-t model is a complete representation of a connection’s structure for traffic 

generation. We define connection structure as the representation of the connection workload that 

has one or more of the following components: ADU sizes, connection sizes, direction and 

sequence of ADUs, and endpoint latencies. Henceforth, we call this full Tmix model as the a-t-b-t 

model to show its complete representation. Our a-t-b-t model is the same as Tmix’s original a-b-t 

model. As described in Chapter 2, the Harpoon traffic generation system uses a very different and 

much simpler model for modeling TCP connections. While the Tmix model includes every 
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application data unit and quiet time within a connection, the Harpoon model simply represents 

each connection as two blocks of data transferred, one in each direction. Hence we begin with this 

simple model for representing a TCP connection.  

 To study the effect of different connection structures on application and network 

performance, we developed six different structural models to represent a TCP connection. Our six 

models, as discussed below, were developed with a representation of the simple Harpoon model 

on one end of the spectrum and the a-t-b-t model on the other end. We now present all the six 

connection structure models as originally developed in this study. Although only four of these 

models were used for the complete set of experiments presented in Chapter 5, we ran smaller 

subsets of experiments with all of them.  

 Since the same traces of the original traffic were used to build each of these models, we 

define some notations for clarity and consistency using the a-b-t model representation shown in 

Figures 3.3.1 and 3.3.2 for sequential and concurrent connections respectively. Let the sequential 

connection shown in Figure 3.3.1 with three epochs be represented by the following connection 

vector { (a1, ta1, b1, tb1), (a2, ta2, b2, tb2), (a3, ta3, b3, tb3)}.  
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Figure 3.3.1: An a-b-t diagram illustrating a persistent HTTP connection (sequential) 
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Figure 3.3.2: An a-b-t diagram illustrating a concurrent connection 

 

 For the concurrent connection shown in Figure 3.3.2, let the connection vector be represented 

as (α, β ) where α = { (a1, ta1), (a2, ta2), (a3, ta3) } and β = { (b1, tb1), (b2, tb2), (b3, tb3) }. In both 

cases, let a = a1 + a2 + a3 be the total bytes transferred by the original connection initiator to the 

connection acceptor. And let b = b1 + b2 + b3 be the total bytes transferred by the original 

connection acceptor to the connection initiator. 

 We use these notations to describe the six connection structure models below. To use the 

Tmix traffic generation system for running experiments using these new models, we made some 

changes as follows. We modified the input connection vectors to the Tmix system to include 

accurate representations for each of our new models, and we modified the replay engine to 

appropriately parse the new models and replay the TCP connections in our experiments.   

 

(i) The Harpoon connection structure model 

 Harpoon models a TCP connection by its size and direction of data transfer. That is, a 

connection is modeled as two endpoints where the first endpoint transmits X bytes while 
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simultaneously the second endpoint transmits Y bytes with both endpoints transmitting their bytes 

as one large block without internal delays (other than those imposed by TCP). 

 

a1 + a2 + a3 bytes

b1 + b2 + b3 bytes

Connection1 
initiator

Connection2 
initiator

Time

 

Figure 3.3.3: The Harpoon connection structure model for all TCP connections 

 

 Hence in our Harpoon model, we replay every TCP connection observed in a trace as two 

TCP connections, each initiated on opposite sides of the laboratory network. Each endpoint opens 

a TCP connection, sends all its bytes in one block and then closes the connection. A total of a (a 

= a1 + a2 + a3) bytes is sent by one TCP connection, and a total of b (b = b1 + b2 + b3) bytes is 

sent by the other TCP connection. This model is represented in Figure 3.3.3 above.  

 

 (ii) The block-concurrent connection structure model 
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Figure 3.3.4: The block-concurrent connection structure model for all TCP connections 
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 We developed the block-concurrent model (shown in Figure 3.3.4) as a variation of the 

Harpoon model. Unlike the Harpoon model, however, a TCP connection observed in a trace is 

represented in this model by only one TCP connection between two endpoints. The two blocks, a 

(a = a1 + a2 + a3) bytes and b (b = b1 + b2 + b3) bytes, are sent simultaneously by the two 

endpoints after connection establishment. In this model, all the TCP connections in the 

experiment behave like concurrent connections without any endpoint latencies within the 

connections, other than those imposed by TCP.  

 

(iii) The block-sequential connection structure model 
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Figure 3.3.5: The block-sequential connection structure model for all TCP connections 

 

 We developed the block-sequential model, shown in Figure 3.3.5, as another variation of the 

Harpoon model. In this model, all the TCP connections in the experiment behave like sequential 

connections but with only one epoch and no endpoint latencies within the connections, other than 

those imposed by TCP. Unlike the Harpoon and the block-concurrent models, however, this 

model introduces sequentiality and an inherent synchronization within a TCP connection. After 

connection establishment, the connection initiator sends one block, a (a = a1 + a2 + a3) bytes in 

size, and upon receiving this request, the connection acceptor sends its response in one block, b 

(b = b1 + b2 + b3) bytes in size. Thus all connections in this model are represented as single-

epoch sequential connections, regardless of connection size.   



 72

(iv) The a-b connection structure model 

 The three connection structure models, discussed so far, model a connection based on its size 

alone. There were no endpoint latencies within the connections, and only the synchronization 

latency implicitly introduced by the request-response nature of the block-sequential model. In the 

a-b model shown in Figure 3.3.6, we introduce the difference between sequential and concurrent 

connections, while still not including any measured endpoint latencies in the model. We do this 

by introducing the concept of epochs in sequential connections.  
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Figure 3.3.6: The a-b connection structure model for sequential TCP connections 
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Figure 3.3.7: The a-b connection structure model for concurrent TCP connections 
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 So, in this model, the original sequential connections replay in a pattern of request-response 

exchanges without the endpoint latencies representing processing times or other end system 

delays. For the original concurrent connections, the a-b model adopts the same representation as 

the block-concurrent model. This is because, in the absence of endpoint latencies, each endpoint 

of a concurrent connection will simply send its a1, a2 and a3 or b1, b2, and b3 bytes in single 

blocks of size a and b respectively. This is shown in Figure 3.3.7.  

 

(v) The a-t-b connection structure model 
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Figure 3.3.8: The a-t-b connection structure model for sequential TCP connections 

 

 This is the first connection structure model in which we explicitly introduce the endpoint 

latencies. We developed this a-t-b model mainly to differentiate between the effects of intra-

epoch latencies and inter-epoch latencies. For the sequential connection, this model represents 

each epoch similar to the a-b model with the additional intra-epoch latency between the request 

and its response, as shown in Figure 3.3.8. For concurrent connections, there is no difference 
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among the endpoint latencies. Each endpoint latency is associated with sending the preceding 

ADU from the endpoint and then waiting for the duration of the endpoint latency before sending 

the next ADU from that endpoint. It is not associated with any request-response exchange. Hence 

for concurrent connections, as shown in Figure 3.3.9, we represent the connection using all the 

ADUs and the endpoint latencies as measured (similar to the a-t-b-t connection structure). 
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Figure 3.3.9: The a-t-b connection structure model for concurrent TCP connections 

 

(vi) The a-t-b-t connection structure model 
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Figure 3.3.10: The a-t-b-t connection structure model for sequential TCP connections 
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Figure 3.3.11: The a-t-b-t connection structure model for concurrent TCP connections 

 

 All TCP connections in this model are represented using the same concepts originally 

developed by Hernandez-Campos et al. for the Tmix traffic generation system. So the a-t-b-t 

model represents a TCP connection with all ADUs and endpoint latencies and preserves all 

sequences or epochs exactly as measured in the original trace. This model is shown for the 

sequential and concurrent connections in Figures 3.3.10 and 3.3.11 respectively. Note that 

concurrent connections have the same structure in both a-t-b and a-t-b-t models.  

3.3.1 Choice of Four Connection Structure Models  

 From the six different connection structure models described above, we chose to use only 

four among these to emulate the traffic for our complete sets of experiments. Our goal in picking 

the models was the following: introduce, one at a time, the following concepts within TCP 

connection structure modeling: size of the connection, client-server behavior between the two 

endpoints, the request-response exchange or epoch behavior between the client and the server, the 

fundamental dichotomy in application-level behavior that distinguishes connections as sequential 

or concurrent, and finally the endpoint latencies that represent intra-epoch and inter-epoch 
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latencies in sequential connections or quiet times between sending of application data units in 

concurrent connections.   

Here’s why we chose (or did not choose) each of these connection structure models for our 

complete experimentation set. 

Harpoon: This model inspired our development of the two block models. However, we did not 

choose this specific model because in faithfully adhering to the original Harpoon method of 

traffic generation, we had to model every TCP connection as two connections in the experiment. 

This led to difficulties in comparing performance metrics among the different models. The block-

concurrent model is, therefore, a better representation of TCP connections for Harpoon-like 

traffic generation.     

block-concurrent: We chose this model as it best represented the Harpoon model while also 

being the simplest model for emulating connection structure in terms of its size alone. 

block-sequential: We chose this model as it introduced the notion of a client-server with inherent 

request-response synchronization while still preserving the simplest representation of a TCP 

connection by its size alone.  

a-b model: This model was chosen because it introduces the concept of epoch structure within the 

sequential connections. Thus while there is the implicit addition of a time component to the 

structure in the synchronization implied by request-response exchanges, this model still does not 

explicitly include any of the measured endpoint latencies within the connections. 

a-t-b model: We developed this model to differentiate between the effects of intra-epoch and 

inter-epoch latencies on the performance metrics. However, our preliminary investigations found 

that this model does not have significantly different effects from that of the a-b model. Here’s 

why: the bulk (84%) of all intra-epoch latencies are below 500ms for both UNC and IBM traffic 
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and hence are not emulated in our experiments as explained earlier. Experiments using this model 

did not serve the original purpose envisioned while developing this connection structure model. 

a-t-b-t model: We chose this model as it is a complete representation of connection structure for a 

TCP connection. To the a-b model, this adds all the endpoint latencies for both sequential and 

concurrent connections, thus explicitly introducing the dimension of time within a TCP 

connection.  

3.4 Variations in Emulating Network Path Characteristics 

 Using the Tmix traffic generation system as the basis for generating traffic for all our 

experiments, we varied the emulation of the network path characteristics to study the effects of 

connection round trip times (RTT) on various metrics of performance. We developed seven 

different (some just subtly different) methods of RTT emulation. For our spectrum of RTT 

models, we have on one end the nodelay model where we completely eliminate the emulation of 

connection RTT, and on the other end the usernet model from Tmix where we emulate the 

specific minimum RTT for each connection as measured by analyzing the TCP/IP header traces 

from the captured traffic. We briefly discuss each of these models below. 

 In Figures 3.4.1 and 3.4.2, we show the CDF and CCDF respectively for the minimum RTTs 

for connections in the UNC and IBM traffic. These figures are the same as Figures 3.1.23 and 

3.1.24. For six of our seven RTT models, we retained some measure of realism for RTT 

emulation, the only exception being the nodelay model. For five of the other six models, we used 

the empirical data shown in the RTT distributions above for each of the two input traces. Only the 

10pathRTT model was not derived from the above empirical distribution as explained below.  

 Tmix uses a modified version of dummynet that implements a user-level interface that can be 

used by Tmix instances to assign per-connection delays from the input set of connection vectors. 
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Although RTT is propagation delay between sender and receiver, and in most cases the latency 

was emulated half on sender and half on receiver, in the case of uniform RTT, the latency was 

emulated in only one direction.   
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 Figure 3.4.1: CDF of round trip times Figure 3.4.2: CCDF of round trip times 
  (UNC and IBM traffic)   (UNC and IBM traffic) 

 

(i) The nodelay model 

 First, the nodelay model was chosen simply as an extreme case to study why it was important 

to model any form of RTT emulation rather than not model RTT at all. For experiments using this 

RTT model, we replayed connections without any round trip time latency. Thus the sending of 

packets within a connection was still limited by the size of the connection, and the receiver 

window size, but the round trip time experienced by the connections was on average only 1.42ms 

with a standard deviation of 1.14ms. This average was simply the latency introduced by our 

laboratory network setup.  

 

(ii)The meanRTT model 

 For round trip time emulation in experiments using the meanRTT model, we assigned a 

minimum RTT of 80ms for all connections using the UNC trace and 92ms for all connections 

using the IBM trace. These numbers were the measured average connection RTTs from the 
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empirical distributions for these two traces. This model was inspired by several leading studies, 

including the paper [SB04] which describes the Harpoon traffic generation system. It is worth 

noting here that this emulation effectively models a single end-to-end path for all the millions of 

connections that play during the hour long experiment. What do we mean? Note that when we 

assign different round trip time to different connections in the laboratory network, we effectively 

enable the emulation of different end-to-end paths (by assigning different delays) for these TCP 

connections. But in the meanrtt model, we assign all connections the same RTT value, thus 

reducing the experimental network to emulate a single end-to-end path for all connections.  

 

(iii) The medianRTT model 

 This model of RTT emulation is very similar to the meanRTT model, creating one shared 

end-to-end network path for all connections in an experiment. Assigning the mean RTT of the 

distribution seems to be a more popular method adopted in networking research, for example in 

[SB04]. However, studying the traffic characteristics of traces captured on production network 

links shows that a small fraction of connections with very long RTTs often skew the average RTT 

for the distribution. Hence although still an empirically derived value, the mean RTT is less 

representative of the distribution of RTTs than the median RTT. For example, the mean RTT for 

the UNC trace is 80ms while its median is only 36ms. Similarly, the mean RTT for the IBM trace 

is 92ms while its median is only 68ms.  

 Besides emulating a single shared end-to-end path for all connections in the experiment, 

assigning a single RTT value for all connections also significantly changes the traffic 

characteristics of the replayed trace. For example, with the medianRTT model, all those 

connections that had less than medianRTT in the original trace now take much longer to replay. 

Similarly, all those connections that had more than medianRTT delay in the original trace now 

replay faster. This has implications for several performance metrics as we show in Chapter 5.  
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(iv) The 10pathRTT model 

 All three models discussed so far – nodelay, meanRTT, and medianRTT – emulate a single 

shared path in the network for all connections in the experiment. The 10pathRTT model expands 

the modeled network paths to a total of 10 different end-to-end paths for the connections in the 

experiment. The values chosen for these 10 paths were selected as follows: the TMRG common 

TCP evaluation suite [TMRG] recommended 9 RTT path values based on some empirical 

measures. To this set of discrete values, we added a tenth RTT value to create our 10pathRTT 

model. 

 Here’s the small and discrete set of values that constitute the 10pathRTT model: [4, 16, 28, 

54, 74, 98, 124, 150, 174, 200] milliseconds. This set is used for both the UNC and IBM 

experiments.  

 

(v) The Discrete Approximation (DA) RTT model 

 We created this model from the empirical distribution of RTTs for the original trace. Hence 

the set of RTT values were different for the two traces – UNC and IBM. Our laboratory network 

has 30 pairs of traffic generators; hence we chose 30 values, thus creating 30 end-to-end paths in 

the network. The goal behind developing this model was to create as close an approximation of 

the empirical distribution of RTTs seen in the original trace as possible. For this we use the 

concept of a quantile function. A quantile function of a probability distribution is the inverse F-1 

of its cumulative distribution function. Hence the quantile function returns the value of x such 

that F(x) = P( X ≤ x ) = p.  

 Our method of approximating the CDF of the RTTs was as follows: first we approximated the 

distribution such that we cut off the bottom 1% and top 1% of RTT values. These represented 

only 2% of connections but were skewing our overall approximations such that a very large 

portion of RTTs would be much larger than the median (or mean) RTTs. Now, with the 
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remaining 98% of the distribution, we divided this distribution into 30 equal size bins, and then 

found the average RTT for each of these 30 bins in the distribution.  

 The resulting RTT values for UNC formed this set: [ 8, 8, 10, 10, 12, 14, 14, 16, 18, 20, 22, 

24, 26, 30, 34, 38, 42, 48, 52, 60, 74, 80, 82, 86, 92, 98, 124, 172, 258, 420 ] milliseconds. The 

resulting RTT values for IBM formed this set: [ 22, 28, 32, 36, 40, 44, 46, 46, 48, 52, 54, 56, 58, 

62, 66, 70, 74, 78, 82, 86, 92, 96, 102, 108, 114, 122, 136, 154, 188, 310 ] milliseconds. 

 

(vi) The uniformRTT model 

 With the uniformRTT model, we made two significant changes to the assignment of 

connection RTTs discussed so far. First, instead of assigning specific delays to a small set of  

end-to-end paths, this model assigns a specific delay to each TCP connection. Thus instead of 

emulating 1, 10, or 30 shared end-to-end network paths, this model effectively enables emulation 

of a distinct end-to-end path for each TCP connection in the experiment. Second, the RTT values 

assigned to the connections were sampled from a discrete uniform distribution such that they 

approximately represented the middle 80% of the original RTT distribution for each trace. Hence 

for all experiments using the UNC trace, we sampled from the uniform distribution U[10, 200] 

milliseconds, and for all experiments using the IBM trace, we sampled from the uniform 

distribution U[30, 150] milliseconds.  

 

(vii) The usernetRTT model 

 The usernet RTT model is adopted directly from the original design for RTT emulation used 

in the Tmix traffic generation system. In this model, every one of the millions of connections in 

an experiment is assigned the specific minimum RTT that was measured for that connection from 

analyzing the TCP/IP headers of the original trace. The complete distribution of RTTs used in this 

model is shown in Figures 3.4.1 and 3.4.2.  
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3.4.1 Choice of Three RTT Emulation Models  

 From the seven different RTT emulation models described above, we chose to run complete 

sets of experiments using only three models. We have presented the results for a subset of 

experiments using the other four models in Chapter 6. Our goal in picking the three RTT models 

was the following: pick one model that emulates a single end-to-end path for all flows, pick one 

model that emulates a multiple but small set of end-to-end paths, and pick one model that creates 

the most faithful representation of the path characteristics of the original trace. Here’s why we 

chose (or did not choose) each of these models.  

nodelay: We did not choose this model for our full set of experiments. This model was used for 

preliminary experiments, simply to study the huge difference in performance metrics between not 

implementing any delay model, and implementing even the simplest model of RTT. 

meanRTT: We chose this model for all our experiments because it is used in leading publications 

of networking research, for example in [SB04]. 

medianRTT: We decided not to use this model for our complete set of experiments. To create a 

single path for all connections, and given the distribution of RTTs, this model would actually 

make more sense since the mean skews the result in favor of the few large RTTs present in the 

distribution. However, since mean RTT is what is favored among networking researchers, we 

chose to evaluate using that model instead. 

10pathRTT: We chose this model as it best satisfied our dual goals of using one multi-path RTT 

model which is also recommended by other networking researchers [TMRG] as a model for all 

experimentation. 

DA RTT: We chose not to use this model for two reasons. First, the 10pathRTT model already 

satisfied our multi-path model requirement. Second, we discovered during our preliminary 
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investigations that this model produces results very similar to the complete usernet RTT model 

because this model is the closest approximation of the empirical RTT distribution. Hence 

although we did not use it for our full set of experiments, we show some results with this RTT in 

Chapter 6, where we discuss some additional and interesting results from our study.   

uniformRTT: We chose not to run our complete set of experiments using this model for two 

reasons. First, the usernet model captures the per-connection assignment of RTTs that this model 

introduces. Second, the 10pathRTT already models a uniform distribution although with a much 

smaller set of values.  

usernet: We chose this model to study the most precise emulation of RTT for empirically-

derived, realistic traffic generation, where every connection is assigned its originally measured 

RTT value.   



 

 

 

CHAPTER 4 

 

EXPERIMENTAL METHODOLOGY 
 

A theory is something nobody believes, except the person who made it. An 

experiment is something everybody believes, except the person who made it. 

        Albert Einstein 

 

 Experimental methodology plays an important role in protocol evaluations in networking 

research. For experiments run in a laboratory network, as we did in this study, this methodology 

consists of the design of the network testbed, the calibration of the testbed components, and the 

design and running of experiments to test the hypotheses of the study. In this chapter, we first 

describe the methodology used for all experiments in this dissertation. Next, using our control set 

for traffic generation comprising the a-t-b-t connection structure model and the usernet RTT 

model, we introduce the measurement and evaluation methodology that we use to run all 

experiments in this study.  

 What is this control set for traffic generation? We refer to the combination of the a-t-b-t 

model for connection structure and the usernet model for RTT as our control set. Here’s why. In 

this study, we develop several new models for both connection structure and RTT emulation. The 

ideal method for comparing the effects of different models of traffic generation would be to 

compare the results for these models with the original traffic itself. That is, the real gold standard 

is obviously the original traffic captured on the production link. However, there are some 
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differences between the original traffic and what is ultimately in the complete set of traffic 

components that we use as input in our experiments.  

 Now, Hernandez-Campos et al. have already shown that the Tmix models for connection 

structure (a-t-b-t) and network characteristics (usernet RTT, window size) can emulate any given 

input traffic in a realistic, reliable, and reproducible manner. That is, the traffic characteristics 

produced using the Tmix model at the packet level and byte level on the laboratory network link 

are the same as the traffic characteristics of the original input traffic to the Tmix system.  Hence 

we use the Tmix models as our control set and compare all other models against them. As our 

results bear out, this combination of models is indeed an excellent choice as a control for realistic 

traffic generation.  

 The rest of this chapter is organized as follows. In Sections 4.1, we describe the network 

configuration in detail. In Section 4.2 we discuss the process we used to calibrate the network, 

and its individual components, and present results from calibration experiments. Then, in Section 

4.3, we describe our experimental procedures used in this dissertation. And in Section 4.4, we 

introduce our control set for traffic generation. In Sections 4.5 and 4.6 we present the results for 

experiments using the control set in unconstrained and constrained modes.  

 The unconstrained mode is one in which the router-to-router link in the network is set to 

1Gbps. In the constrained mode, that link is set such to 105% of the expected average offered 

load on that link. More specifically, we recall that the average offered load for the UNC and IBM 

traffic is 471 Mbps and 404 Mbps respectively, on the high throughput or forward path on this 

link. Hence for experiments using the UNC traffic, we set this router-to-router link at 496 Mbps 

to create the constrained network mode. And for experiments using the IBM traffic, we set this 

link at 424 Mbps to create the constrained network mode. This way, the generated traffic 

consumes, on average, 95% of the link capacity. 



 86

4.1 Network Configuration 

 We setup a network consisting of 60 PCs configured as traffic generators, two FreeBSD 

routers and three monitors collecting data on 1Gbps and 10Gbps fiber links at different points in 

the core of the network. All systems are Intel-based machines that run FreeBSD. A schematic 

diagram for this network is shown in Figure 4.1. The traffic generators have 1Gbps Intel Ethernet 

interfaces and are attached to 1Gbps ports on the Ethernet switches. The two routers each connect 

to a 10Gbps fiber switch port on these switches. The switches aggregate the traffic on each subnet 

to a 10Gbps fiber connection to the router. The routers themselves are linked by a 1Gbps fiber 

link in the middle of the network. This is the link we refer to as the “router-to-router link” 

throughout this dissertation. This is also the link that we manipulate to toggle the network 

environment between unconstrained and constrained modes for different experiments.  
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Figure 4.1.1: Network Testbed for all experiments in this dissertation 

 

 This network emulates a peering point between two ISPs with traffic flowing in both 

directions on the link between the two routers. During each experiment, traffic generated on the 

30 traffic generators on each end is aggregated at the switches. This aggregate traffic then 
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traverses the 10Gbps link to the router. The router on each end forwards the packets to the other 

side of the network. We capture this traffic as it traverses the router-to-router link. This physical 

network has a simple dumbbell topology. Logically, however, our traffic generation includes 

emulating per-flow minimum round-trip-times (RTTs). These minimum RTTs are obtained from 

a production network link on the Internet. This makes the network and the traffic traversing it 

effectively able to emulate a wide-area network.  

4.1.1 Traffic Generators 

 Each subnet at the end of this dumbbell contains 30 PCs that serve as both traffic generators 

and data collection tools. These PCs range in capabilities from 450 MHz to 3GHz in processing 

speeds, and 256 MB to 1GB in memory. In each experiment, these traffic generators create 

application workloads and network characteristics based on the connection structure and RTT 

models used in that experiment. For all the experiments discussed in this study, unless otherwise 

specified, we assigned to each side of every TCP connection the exact maximum receiver 

window size that was determined from analysis of the original packet header trace. Connection 

durations and response times were measured and recorded by the traffic generators on each edge 

of the network during every experiment. 

4.1.2 Routers 

 The two routers running FreeBSD are 3.6GHz machines with 2GB of memory. They are 

running the OpenBSD firewall software application known as packet filter (pf), which is a 

complete, full-featured firewall that has optional support for queuing. We use this packet filter 

module to restrict the bandwidth on the router-to-router link to desired limits during our 

experiments, and also to provide specific queue limits at the router’s outgoing link. For 
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experiments in the unconstrained network environment, we leave this 1Gbps router-to-router link 

unrestricted.  This 1Gbps link capacity is significantly greater than the load generated from the 

two input traffic mixes we use in this study. For experiments in the constrained network 

environment, we restrict the router-to-router link to 105% of the expected average offered load. 

Hence, we set the router-to-router link to 496 Mbps for the UNC replays and 424 Mbps for the 

IBM replays.  

 During calibration, we connected the two routers using either 1Gbps or 10Gbps network 

interface cards. For all our experiments, however, we used only the 1Gbps network interface 

cards to connect the routers. In all cases the router queues were set to a large size (65,000 

packets) which was determined to be sufficient to avoid any packet drops at the queue so that loss 

rates were not a factor in any of the results, even in constrained mode. We made this deliberate 

decision to provide such a long queue so that there would be no losses in the network. We 

designed our experiments to study the different effects on router queue dynamics due to different 

models used for generating traffic. Providing a shorter queue and thus inducing losses was out of 

scope for this study.   

4.1.3 Monitors 

 We used two slightly differently monitoring and measurement configurations in the network 

for calibrations versus the main set of experiments. In this section, we discuss the details of these 

setups and the reasoning behind the two different configurations. Our main monitoring machine is 

a 3GHz server class PC with 4GB of memory and running FreeBSD. For calibration, this 

machine was equipped with a specialized traffic capturing card capable of collecting traffic at up 

to 1Gbps load between the two routers. The traffic capturing card is an Endace Systems’ DAG 

4.3S single channel network monitoring card. DAG technology provides 100% capture into host 

memory at full line rate for all packets on the link [dag]. The traffic captured by the monitor was 
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analyzed using dagtools, and several diagnostic and other tools developed at UNC, including an 

enhanced tcpdump program. 

 The trace collection process in the laboratory is similar to the trace collection process on any 

production link. Only the packet protocol headers (IP and TCP) are collected, and the timestamp 

of the packet arrival is recorded. For all calibration, we use the specialized DAG hardware to 

extract headers and provide accurate timestamps. The DAG trace collection has accuracy in the 

order of nanoseconds for timestamping of the packets. Such accurate packet header traffic 

captures were essential for calibration and testing so that we could verify that the connection 

structure and RTT models were being emulated exactly as designed. 

 Once the laboratory network was calibrated, we changed the monitoring setup for all 

experiments as follows. We used three FreeBSD machines for monitoring and measurement. The 

first machine is a 2.3GHz machine with 2GB of memory, the second is a 1.5GHz machine with 

512MB of memory, and the third is a 3GHz machine with 4GB of memory. The first two 

recorded traffic data traversing the router-to-router link in both directions, one recording counts 

of the bytes and packets in hundred microsecond intervals, and the other recording all SYN, FIN, 

or RST packets to count active connections in the network. The third monitor recorded, in 

hundred microsecond intervals, the arrival of bytes and packets to the router queue.  

 Both our input traffic sets – UNC and IBM – had offered loads that were not symmetrical in 

the two directions. For queue lengths, we were therefore interested only in the router queue on the 

high throughput path of this traffic. Hence the third machine monitored the 10Gbps fiber link 

aggregating the traffic between the switch and the router only on the path of this higher traffic 

throughput. At the router we recorded a log of the queue size (number of packets in the queue) 

sampled every 10 milliseconds.  

 The two switches in the core of the network are 26-port HP Procurve 3400cl switches, each 

connected to a 48-port Netgear GS748T switch. Each HP switch has 24 1Gbps copper ports and 

two 10Gbps fiber ports. Each Netgear switch has 48 ports which can be configured as 40 ports of 
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1Gbps copper and eight ports of 1Gbps fiber. In order to avoid any bottleneck on the switch 

connections between the Netgear and the HP switches, we setup a 4Gbps trunk between each pair 

of switches. This trunking is based on the IEEE 802.3ad Link Aggregation Control Protocol 

(LACP). This is an IEEE standard for link aggregation supported by both sets of switches (HP 

and Netgear). Such a setup enables a virtual link of 4Gbps between the switches. Key features of 

link aggregation are: it is performed above the MAC layer, it assumes all links are full-duplex and 

same data rate, traffic is distributed packet by packet, and all packets associated with a given flow 

are transmitted on the same physical link to prevent mis-ordering of packets. 

4.2 Network Calibration 

 Once we have configured the network, it must be calibrated before any experiments can be 

reliably run using this network. But why do we calibrate a network? The main motivation for 

network calibration is to ensure that the network, or any of its individual components, do not 

present any resource constraints (unless otherwise designed to do so, as in a bandwidth 

constrained link) when running experiments. The way we verify this is through calibration. 

Calibration involves first identifying the set of all inputs to the experiment, deciding what the 

outputs will be, and figuring out the correlations, if any, between these inputs and outputs.  

 The goal of calibration then is to ensure that these correlations are not influenced by an 

unintended lack of resources in the network. Consider the case where the throughput in the core 

of the network (output metric) is dependent on the number of TCP connections (input variable) in 

the traffic. If increasing the number of TCP connections linearly increased the link throughput in 

the core up to a certain point, then we could use this correlation to calibrate the network and 

determine the reliable working range of inputs and corresponding outputs for which this 

relationship holds. Say, for the sake of simplicity, that each TCP connection generated 1 Mbps of 
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traffic, and each traffic generator could handle 100 such connections without overloading any 

resources on these machines. With 30 such traffic generators, we could then easily generate 

3Gbps of traffic into the network. Assume that the traffic generators have 1Gbps link each, and 

all the aggregation links are 10Gbps. What if the one of the routers in the network were 

continuously overloaded with 100% CPU utilization trying to forward packets at this rate of 

3Gbps? The router would start dropping packets and this affects the previously established 

correlation between number of TCP connections and the throughput in the network. This is a case 

where lack of resources at one point in the network affects the input-output dynamics of the 

experiment.  

 During calibration, we push the network components, one at a time to determine its limits. 

Then we design our experiments so that each network component is working well below its 

resource limits. Hence we calibrate the network by designing and running a set of experiments 

that stress-test every component of the laboratory testbed system with the goal of ensuring that no 

single network component (individually or as part of the full network), presents a resource 

bottleneck for the main set of experiments designed to test the hypotheses of this study. Toward 

this end, we designed a series of calibration experiments with target loads of bytes and packets 

that were much higher than the target loads in any of the main set of experiments of this study. If 

these higher target loads were achieved, then these experiments would ensure that the traffic 

generators, routers and monitors would not present any bottleneck in the main set of experiments. 

4.2.1 Calibrating Routers 

 The two routers in the core of the network forward packets, constrain the router-to-router link 

to operate at a specified bandwidth (by managing an outbound queue of packets to this link), and 

collect measurement data. To calibrate the routers we had to ensure that their CPU utilization was 

acceptable when performing all of these tasks in any given experiment. The maximum average 
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offered load for any experiments in this dissertation is 471 Mbps in one direction. Hence, to stress 

test the routers, we designed two sets of experiments. The first set used the iperf program [iperf] 

between two pairs of traffic generators using four TCP connections to generate an aggregate load 

that was only limited by a constraint of 622 Mbps imposed on the forward path link between the 

routers. The traffic on the reverse path was about 550 Mbps. The link was constrained on the 

forward path to create a worst-case scenario to stress-test the routers. That is, the router had to be 

able to forward packets onto the constrained link at the rate of 622 Mbps while also managing the 

outbound queue of packets to this link.  

 The second set used the Tmix traffic generation system between 32 pairs of traffic generators 

using 8.5 million TCP connections to generate 740 Mbps in the forward path and 230 Mbps in the 

reverse path. The two routers were determined not to be a bottleneck at any of these high loads of 

traffic. That is, the routers were able to forward packets at these rates without dropping packets, 

and do so while maintaining an acceptable level of CPU utilization, that is, at or below 95% 

utilization at all times.  

 We also experimented with different clock frequencies on the routers setting them at 100Hz, 

1 KHz and 10 KHz. At 1 KHz, the clock interrupts occur 1000 times a second. This is the 

frequency at which all the traffic generation systems operate. We wanted a higher frequency of 

clock interrupts on the routers to allow for a finer granularity for timers. Higher frequencies, 

however, also cause processing overhead. Hence we ran experiments with different clock 

frequencies to study the balance between these two tradeoffs of finer timer granularity versus 

higher CPU utilization. We found that the 10 KHz clock frequency resulted in slightly higher but 

still well below 90% utilization at all times, for the throughput levels designed for our 

experiments. Hence we used 10 KHz as clock frequency for our routers in all our experiments.  

 We ran another set of calibration experiments to test the following: the CPU utilization on the 

routers seemed dependent on the inbound and outbound links on these routers. Let us discuss this 

using Figure 4.2 shown below. From the figure we have the following: for the forward path or 
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higher throughput path, the first router’s inbound and outbound links are labeled “link1” and 

“link2” respectively. Similarly, the second router’s inbound and outbound links are labeled 

“link2” and “link3” respectively for the forward or higher throughput path. 
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Figure 4.2.1: Routers’ inbound and outbound links 

 

 Through initial calibration, we had found that the second router on the forward path showed 

higher CPU utilization than the first router on that path. This seemed counter-intuitive at first. But 

we determined through a series of specially designed experiments that this was due to more 

efficient processing of incoming packets on the first router’s 10Gbps inbound NIC than the 

second router’s 1Gbps inbound NIC for the traffic on the forward path. We conjecture that this is 

a difference in the efficiency of the drivers for the two network interfaces though they are both 

Intel network cards. We verified this by running several experiments with varying loads using 

1Gbps NICs throughout, and then repeating these experiments with 10Gbps NICs throughout as 

well as combinations of 1Gbps and 10Gbps links.  

 In the presence of a 10Gbps NIC on the second router for inbound traffic on the forward path, 

this second router dropped its CPU utilization to the same lower levels as that of the first router. 

For all our experiments, however, we used the 1Gbps router-to-router link and 10Gbps link from 

the switch to the router after determining that the slightly higher router CPU utilization on the 
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second router did not present a bottleneck for the traffic. That is, although this second router had 

significantly higher CPU utilizations with this configuration (see Figure 4.2.4(b)), the level of 

CPU utilization achieved for the throughputs at which we were operating in our experiments was 

acceptable. That is, we found the router utilization to be below 80% for the middle 40 minutes in 

all our experiments. Note that we report performance results using only the data from the middle 

40 minutes of each experiment. In the set of iperf calibration experiments presented below, we 

used the worst case (in terms of testing CPU utilization) of having 1Gbps Intel NICs on both the 

routers on the incoming and outgoing paths.  

 We also ran some experiments to determine the appropriate size for the transmit buffer on the 

router’s network interface card (NIC) driver. Here’s why. When this transmit buffer on the NIC 

driver was left at its default value, there were times in an experiment when the router’s outbound 

queue (managed by the pf module) seemed to drain; that is the router queue had no packets in it. 

However, the corresponding queuing delay results did not support this apparent draining of the 

queue. Further investigation revealed that these packets that were dequeued from the router’s 

outbound queue were actually being enqueued in the NIC’s onboard transmit buffer before being 

transmitted out on the link. We then ran experiments with different buffer sizes for that transmit 

buffer to determine an optimum size that would be small enough not to cause noticeable 

additional queuing delays but also large enough not to drop packets. We found this number to be 

4 packets instead of the default 256 packets for the transmit queue.  

4.2.1.1 Iperf Experiments for Calibrating Routers 

 Iperf, orginally developed by NLANR (National Laboratory for Applied Network Research), 

is a tool often used by networking researchers for some basic measurement and testing in a 

network. This includes testing of bandwidth, latency, jitter and loss using TCP and UDP flows. 

Iperf allows the tuning of various parameters and UDP characteristics. Iperf uses FTP-like data 

streams. The throughput of each TCP connection is, therefore, mostly dependent on the receiver 
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window size and available network bandwidth. The data is sent only in one direction for each 

connection, with pure acks traversing the opposite direction. 

 For calibration, we ran several experiments using iperf: first, between two pairs, and then four 

pairs, of traffic generators to generate TCP traffic in both directions. We ran every experiment in 

the forward and reverse directions to ensure there was no difference in the setup of the two 

routers. In these experiments, we use the term forward to refer to the direction in which there is 

higher throughput of bytes and packets in the network. We refer to the opposite direction as the 

reverse direction. To run the experiments, we used four pairs of machines with two pairs (pair1 

and pair2) sending data in the forward direction using one TCP flow each and two pairs (pair3 

and pair4) sending data in the reverse direction using one TCP flow each. Hence the forward path 

also carried the acks for the TCP connections between the traffic generators in pair3 and pair4 

while the reverse path carried the acks for the TCP connections between the machines in pair1 

and pair2. Thus we had two TCP flows in the forward path with their corresponding ack flows in 

the reverse path, and we had two TCP flows in the reverse path with their corresponding ack 

flows in the forward path.   

 Each iperf experiment was run for five minutes. We collected data on the iperf clients and 

servers, the routers and at the router-to-router link using the monitor with the DAG capture card. 

We ran these iperf experiments at different loads constrained by the capacity of the router-to-

router link. We set this link to 100Mbps, 200Mbps, and so on up to the unconstrained mode of 

1Gbps. Recall that since iperf can generate connections with unlimited data, these TCP flows 

grow their window size up to the maximum available bandwidth. The TCP receiver maximum 

windows were set to 64KB. And since we provided very large router queues, the packets were 

queued without any packet loss at the constrained link.    

 As we explained earlier, the constrained experiments represent the maximum usage of 

resources on the routers because the routers have to forward packets onto the constrained link 

while also managing the outbound queue of packets to this link. Hence, we show the throughput 
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results for the worst-case experiment in the above mentioned series of iperf experiments. We only 

show the results for the middle 3 minutes of that 5 minute experiment in Figures 4.2.2 (a) and (b) 

since this is the stable region. In this experiment, we emulated connection RTTs by using 

dummynet to set delays of 10 ms and 15 ms on the iperf servers, thus delaying all acks going from 

server to client (Iperf sends data from client to server). Figure 4.2.2 (a) shows the byte throughput 

in the forward (high throughput) direction and Figure 4.2.2 (b) shows the throughput in the 

reverse direction. The router-to-router link was constrained at 622Mbps in both directions. Hence 

each figure shows the throughput in one direction. The throughput in each direction consists of 

two data streams and two acks streams. 
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Figure 4.2.2 (a): Throughput for the iperf flows  Figure 4.2.2 (b): Throughput for the iperf flows  
   – forward direction     – reverse direction 
 

 Figure 4.2.2 (a) shows the two data streams for pair1 and pair2. These two flows had an 

average throughput in the forward direction of 332 Mbps and 275 Mbps, which along with the 

throughput of the two acks streams from pair3 and pair4 of 8 Mbps and 7Mbps, totaled 622Mbps 

or the full capacity of the link. Figure 4.2.2 (b) shows the throughputs of the data streams on the 

reverse paths (generated by pair3 and pair4) and the ack throughput generated by pair1 and pair2 

on this path. The data throughputs on this path are slightly lower at 293 Mbps and 249 Mbps. 

This reflects the fact that pair3 and pair4 were the least capable machines in the network so the 
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total on this path did not hit the link capacity limit. The ack throughputs on this path are 10 Mbps 

and 8 Mbps. 

 Each iperf flow shown above sends TCP data in only one direction with pure acks sent in the 

other direction. Hence, we note the following interesting data collected from these experiments. 

In the forward direction, 38% of Ethernet frames were 66 bytes in size (acks for pair 3 and 4) and 

62% were 1514 bytes (data for pair 1 and 2). In the reverse direction, 43% of Ethernet frames 

were 66 bytes in size (acks for pair 1 and 2) and 57% were 1514 bytes (data for pair 3 and 4). 

There were 24.4 million packets in the forward direction and 23.6 million packets in the reverse 

direction, generating roughly 80 Kpps (thousand frames per second) in each direction during this 

short 5-minute experiment. Why does this matter? We also measured the CPU utilization at the 

routers to be 95% and 85% on average for the first and the second routers respectively. This 

difference in router CPU utilization for the same data being handled had to do with the fact that 

the network interface card handling this incoming traffic was 10Gbps on one router and 1Gbps on 

the other. Details of experiments specifically exploring this difference in CPU utilization were 

discussed in Section 4.2.1 (Calibrating Routers). Hence, we can conclude that the routers can 

handle packet throughputs of 80Kpps without presenting resource constraints on the routers. The 

main experiments of this dissertation (presented in Chapter 5) were all designed for lower target 

loads (total byte and packet throughputs) than these.  

4.2.1.2 Tmix Experiments for Calibrating Routers 

 Iperf experiments use large size data packets, while most traffic on the Internet consists of a 

large variety of packet sizes. Hence we ran another set of calibration experiments using a 

captured UNC trace as input to the Tmix traffic generation system. This system consists of 

several components.  The traffic generation tool, Tmix, replays the source-level behavior of a set 

of input connection vectors using real TCP sockets in a FreeBSD environment. [HC06]. Usernet, 
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a modified version of dummynet, implements a user-level programming interface that is used by 

tmix instances on the traffic generators to assign per connection delays as specified in the input 

set of connection vectors. Finally, a single program, treplay, is used to control the setup of the 

experimental environment, configure and start the tmix instances (assigning them a subset of 

connection vectors and traffic generation peer), and collect the results. Tmix instances rely on the 

standard socket interface to create a connection, send and receive ADUs, and to close the 

connection. For every experiment, all the machines are first initialized and configured. Then the 

routers and monitors start their monitoring programs followed by the traffic generators running 

instances of the tmix program. 

 For the router calibration using Tmix, we tested the network using several different offered 

loads, scaling the same input traffic to these higher loads in each case, using the block-resampling 

methods from [HC06]. In this section, we describe the experiment with the highest of these loads 

because that created the most stress on the routers in the network. In this highest load case, we 

had an average byte throughput of 740Mbps in the forward direction and 230 Mbps in the reverse 

direction. The corresponding average packet throughputs were 89Kpps in the forward direction 

and 74Kpps in the reverse direction. We show the time series of byte and packet throughputs for 

the entire hour long experiment in Figures 4.2.3 (a) and (b) respectively. In this experiment, we 

used 32 pairs of traffic generators, and the average load per pair of traffic generators was 1.4 

times the highest average load per traffic generator in the experiments reported in Chapter 5. The 

distribution of RTTs for the connections (shown in Figure 4.2.4(a)) is similar to that of the UNC 

traffic used for experiments reported in Chapter 5.   

 We make an important observation from these two throughput figures: with such large 

numbers of TCP connections (8.5 million over the hour long experiment), and with 32 pairs of 

traffic generators starting at the same time, there is a significant startup effect at the beginning of 

the experiment and a visible termination effect at the end of the experiment. Hence, although we 
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ran every experiment in this dissertation for an hour, when reporting performance results in 

Chapters 5 and 6, we only use the data from the middle 40 minutes of each experiment. This 

eliminates any Tmix-related startup and termination effects. During this experiment, the CPU 

utilizations for the routers were on average 75% and 92% for the first and second routers on the 

forward path respectively, as shown in Figure 4.2.4(b). For why this difference in router 

utilizations between the two routers, we refer to Section 4.2.1. 

   

  

  (a) byte throughput in Mbps   (b) packet throughput in Kpps 

Figure 4.2.3 : Throughput for Tmix calibration experiment 

 

  

 Figure 4.2.4 (a): Distribution of RTTs   Figure 4.2.4 (b) : Router CPU utilizations 
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 The routers performed well under the high offered loads in this experiment without 

introducing any resource constraints of CPU, memory, or allocated buffers. And the offered loads 

in this experiment were much higher than the loads in experiments reported in Chapter 5. Hence 

we can conclude from this calibration that the routers would not present resource constraints 

when running those experiments.   

4.2.2 Calibrating Monitors 

 There were no separate set of experiments conducted for determining the capabilities of the 

three monitors. However, buffers on the monitors were tuned during initial calibration to collect 

data at high throughputs for the hour long experiments. The monitors were then used for all 

calibration both for routers and traffic generators and in that process, we determined that all three 

monitors could capture the generated traffic without any drops while maintaining low CPU 

utilizations. 

4.2.3 Calibrating Traffic Generators 

 The traffic generators had to be stress-tested to answer two main questions. First, what is the 

highest throughput they can generate using a few flows – this would test handling of byte and 

packet rates. Second, how many TCP connections could they manage while running Tmix? 

Running Tmix with a few thousand flows would test the CPU, memory and buffer management 

capabilities for managing these connections. Toward this end, we calibrated the traffic generators 

(similar to the router calibration) as follows. First, we generated a few high throughput TCP flows  

per traffic generator pair, sending large packets using the iperf program. Then we generated more 

than one hundred thousand TCP flows per traffic generator pair, sending a diverse mix of packet 

sizes and flow sizes using the Tmix traffic generation system.  
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 The number of connections managed per traffic generator is an important factor in 

calibration. This is because with a few thousand TCP connections alive per second on average per 

traffic generator, the traffic generators must manage the CPU, memory and buffer resources to 

keep state for all these connections while servicing each connection in a round-robin fashion. For 

the calibration using iperf, we refer to Figures 4.2.2 (a) and (b) back in Section 4.2.1. The two 

pairs of traffic generators used in that experiment represented the most capable and the least 

capable pair of machines in our set of 30 pairs of traffic generators (with respect to their 

processing and memory capabilities). Each of these four PCs served as either client or server, and 

thus generated two data streams and two ack streams in each direction. As seen in Figures 

4.2.2(a) and 4.2.2(b), the least capable of these traffic generators was able to generate iperf data 

traffic of at least 240Mbps. This is more than an order of magnitude higher throughput than what 

we require for the experiments reported in Chapter 5. For all experiments reported in Chapter 5, 

we require each traffic generator to generate traffic that is less than 20Mbps. Also, the CPU 

utilizations on these PCs during the iperf experiments were quite low – they were less than 20% 

on each traffic generator. Hence, this iperf experiment gave us an upper bound for the traffic 

generators in terms of the total throughput they could each  generate using only one connection 

per pair even for the least capable traffic generators.  

 For traffic generators, generating and managing thousands of TCP connections over an hour 

long experiment is a better stress test than generating a few TCP flows of very high throughput. 

Hence we ran experiments using Tmix with realistic traffic captured at the UNC campus link. 

This input was an hour long trace captured on December 7, 2007 starting at 11:30 AM. This 

represents peak campus-Internet traffic just like the January 2008 trace we used for the 

experiments reported in Chapter 5. Unlike the router calibration using Tmix (where we ran all 

pairs of traffic generators at once), we ran these experiments using only one pair of machines at a 

time to determine their capability and find any bottlenecks. The median of the maximum CPU 
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utilizations on the most capable and least capable pair of machines were 53% and 72% 

respectively.  

 In this section, we present the results only for the worst-case – that is, the least capable pair of 

machines running Tmix. As shown in Figure 4.2.5 (a), the average throughput was 31Mbps and 

11Mbps in the forward and reverse paths. The corresponding packet throughputs were 3.8 Kpps 

and 3.2 Kpps as shown in Figure 4.2.5 (b). It must be noted that by generating only 30Mbps of 

traffic with each of the 30 pairs, we could potentially generate 900 Mbps using all 30 pairs, 

without these traffic generators presenting any bottlenecks. This is almost double the traffic 

generated in any of the experiments reported in Chapter 5, and thus provides a much higher upper 

limit for each traffic generator.  
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  (a) byte throughput in Mbps   (b) packet throughput in Kpps 

Figure 4.2.5: Throughput for Tmix calibration experiment for least capable traffic generator pair 

 

 Our calibration for this least capable pair of traffic generators showed that even at these 

relatively high loads, they replay the input traffic using Tmix exactly as intended. We verified 

this as follows. We extracted the following data from the connection vectors representing the 

input traffic for this experiment: roundtrip times, number of epochs in sequential connections, 
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request sizes and response sizes in sequential connections and the ‘a’ and ‘b’ ADU sizes for the 

concurrent connections. Then during the hour long experiment, we acquired the packet header 

trace of the generated traffic on the router-to-router link using the 1Gbps DAG card. We then 

processed and analyzed this trace for the same set of measures as we did for the input connection 

vectors (derived from the trace on the production link). Figures 4.2.6 through 4.2.10 compare the 

distributions of various measures of TCP connections in the original traffic (input to the traffic 

generators) and the results of the calibration replay experiments (output to the traffic generators).  
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Figures 4.2.6 (a) and (b): CDF and CCDF for input and output round trip times 
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Figures 4.2.7 (a) and (b): CDF and CCDF for input and output request sizes  
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Figures 4.2.8 (a) and (b): CDF and CCDF for input and output response sizes 
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Figures 4.2.9 (a) and (b): CDF and CCDF for input and output concurrent ‘a’ sizes 
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Figures 4.2.10 (a) and (b): CDF and CCDF for input and output concurrent ‘b’ sizes 
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 Figures 4.2.6 (a) and (b) compare the CCDFs of the original and replay-generated 

distributions for connection RTTs and number of epochs per connection. We observe that these 

distributions match closely indicating that the traffic generator pair is replaying the traffic as 

designed. Similarly, Figures 4.2.7 (a) and (b) compare the original and replay-generated 

distributions for request sizes in sequential connections, showing the CDF and CCDF in the two 

figures respectively.  

 Figures 4.2.8 (a) and (b) confirm that this traffic generator pair also replayed response sizes in 

sequential connections as designed. Figures 4.2.9 (a) and (b), and Figures 4.2.10 (a) and (b) 

compare the original and replay-generated distributions for the ADUs in concurrent connections 

in the two directions for each connection. These are the a and b sizes as shown in these figures. 

Figures 4.2.11 (a) and (b) show that, throughout this experiment, the CPU utilizations over 1 

second intervals were less than 75% for the two traffic generators.  

 From these data, we conclude that the traffic generators would replay the traffic using the 

Tmix traffic generation system as designed, and no traffic generators would present a bottleneck 

in the experiments we report in Chapter 5 and 6.  
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Figures 4.2.11 (a) and (b): CPU utilization for the two traffic generators used in this experiment 
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4.3 Verification of Tmix Replay  

 In the previous sections, we discussed calibration of routers, monitors and traffic generators. 

Having completed calibrating the network, we now show that our full laboratory network testbed 

was configured properly to replay traffic using the Tmix traffic generation system for the 

experiments reported in Chapter 5. We verify that Tmix realistically reproduces the traffic from 

the production link in our laboratory testbed. We show that the traffic we generate bears all the 

key characteristics found in the input traffic used for replay. While we already showed that this is 

true for one pair of traffic generators in Section 4.2.3, we now show that this holds in the 

aggregate when using all pairs of traffic generators.   

 The input traffic for this Tmix experiment was acquired from the UNC production link. 

While this traffic is derived from the same UNC traffic we use for experiments reported in 

Chapter 5, there are a few thousand connections that were not included in these experiments. 

During this hour long Tmix experiment, we captured the packet header trace on the router-to-

router link using the 1Gbps DAG card. We then processed and analyzed this experiment-

generated trace for several key measures of traffic.  
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 (a) byte throughput in Mbps   (b) packet throughput in Kpps 

Figure 4.3.1: Throughput for Tmix verification experiment 
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 Figures 4.3.1 (a) and (b) show the throughput in Mbps and Kpps computed in 5 second 

intervals. The average byte throughput in the middle 40 minutes of this replay was 451 Mbps 

with a standard deviation of 35Mbps in the forward direction, and 165 Mbps with a standard 

deviation of 19 Mbps in the reverse direction. The corresponding average packet throughput was 

56 Kpps with a standard deviation of 3 Kpps in the forward direction, and 47 Kpps with a 

standard deviation of 2.6 Kpps in the reverse direction. 

 As we observed in the router calibration using Tmix, we find there is a significant spike in 

throughput at the beginning of the replay due to the 30 pairs of traffic generators starting all at 

once, and all of them starting TCP connections in the first few minutes of the experiment. There 

is also a significant decay in throughput during the last few minutes of the experiment. For results 

reported here, we use data collected during minutes 10 to 50 of the replay.   

 We now verify this Tmix experiment (similar to Section 4.2.3) by visually comparing the 

distribution of several key measures of the traffic on the production link with the corresponding 

measures for this replay using the CDFs and CCDFs for these parameters. We extracted the 

following distributions from measurements of both sets of traffic: connection minimum RTTs, 

number of epochs in sequential connections, request sizes and response sizes in sequential 

connections, and the ‘a’ and ‘b’ ADU sizes for the concurrent connections.   
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Figure 4.3.2 (a) and (b): CDF and CCDF of connection RTTs for Tmix verification experiment  
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Figure 4.3.3 (a) and (b): CDF and CCDF of number of epochs per connection for Tmix verification experiment 

 

 Figures 4.3.2 through 4.3.9 show the distributions for each of these measures comparing data 

from the original trace (input to the experiment) with data from the replay experiment.  Figures 

4.3.2 (a) and (b) compare the distributions of the minimum round trip times per connection for the 

original trace and the replay. The two distributions match very closely showing that we emulated 

the connection RTTs exactly as required. Similarly Figures 4.3.3 (a) and (b) compare the 

distributions for the number of epochs for sequential connections in the original trace with the 

number of sequential epochs in the replay. 
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Figures 4.3.4 (a) and (b): CDF and CCDF for request sizes for Tmix verification experiment  

 



 109

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Response Sizes (bytes)

replay-response sizes
original_trace-response sizes

 
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 100001000001e+06 1e+07 1e+08 1e+09

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y 
(%

)

Response Sizes (bytes)

replay-response sizes
original_trace-response sizes

 
 Figures 4.3.5 (a) and (b): CDF and CCDF for response sizes for Tmix verification experiment 
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Figures 4.3.6 (a) and (b): CDF and CCDF for concurrent ‘a’ sizes for Tmix verification experiment  
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Figures 4.3.7 (a) and (b): CDF and CCDF for concurrent ‘b’ sizes for Tmix verification experiment   
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 Figures 4.3.4 and 4.3.5 compare the distributions of the measured request sizes and response 

sizes with the distribution of request sizes and response sizes produced by the replay experiment. 

Figures 4.3.6 and 4.3.7 compare the distributions of the ‘a’ sizes and ‘b’ sizes in concurrent 

ADUs with the corresponding distributions measured from the production link. As shown in all 

these figures, the replay trace has the same distributions of measures of connection structure and 

network characteristics (RTTs) as the original trace which was captured on the Internet link. 

 The CPU utilizations on the traffic generators were fairly low (see Figures 4.2.8 (a) and (b)). 

Each figure shows the most capable and least capable traffic generators. The CPU utilization is 

about 10% for the most capable machines and about 40% for the least capable machines. We 

conclude that our network was configured properly and the whole system consisting of traffic 

generators, routers, and monitors reproduced the input traffic exactly as intended. 
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Figures 4.3.8 (a) and (b): CPU utilization for the most and least capable traffic generator pairs on each subnet 

4.4 Experimental Design 

 So far, in this chapter, we discussed network configuration and calibration, and verification of 

the Tmix replay experiment. In this section, we discuss the process of developing the overall 
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design of experiments to prove or disprove our hypotheses in this dissertation. We conducted 

experiments using all combinations of the four connections structure models and three RTT 

emulation methods (described in Chapter 3). In Chapter 5, we report the results from 

combinations of experiments using these models. We ran every experiment at least three times, 

but report the results of only one experiment for each combination of connection structure model 

and round trip time emulation. If the results varied among the three runs, we would have chosen 

to report the average over all repetitions. However, our experimental results were consistent over 

different runs; hence we picked one run to report the outcomes.  

 We repeated the entire set of experiments using both UNC and IBM traffic. Every 

combination of connection structure and RTT model was run in two modes: unconstrained 

(1Gbps) and constrained (95% offered load). In the unconstrained mode, the link between the 

core routers is 1Gbps. In the constrained mode, this same link is set to 105% of the expected 

average offered load on this link. Whether unconstrained or constrained, the (aggregation) link 

between the switch and the router on each of the two subnets was always 10Gbps for all 

experiments. For experiments with UNC traffic, the average uncongested load was 471 Mbps and 

hence the constrained link capacity was set to 496 Mbps. For experiments with IBM traffic, the 

average uncongested load was 404 Mbps and hence the constrained link capacity was set to 424 

Mbps.  

 For every experiment, we collected measurements at various points in the experimental 

network. We then analyzed these measurements to study the effect of connection structure models 

and round trip time emulation methods on four key performance metrics. These performance 

metrics are connection durations and response times (both recorded on the traffic generators for 

every TCP connection), the router queue length (recorded on the router for its outbound queue), 

and active connections (recorded on one of the two monitors on the router-to-router link). 
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 Unlike the calibration experiments, we did not use the monitor with the DAG card in these 

experiments. Hence, we did not capture the packet header trace for all the traffic on the link. 

Instead, we measured throughput on the link, counting every byte and every packet traversing that 

link in 100 microsecond intervals. In this section, all figures showing throughput results show this 

data aggregated over 5 second intervals. The arrival of packets and bytes into the network is fairly 

bursty, representing the nature of arrivals onto the Internet link at which the original trace was 

measured. The aggregation uplink before the core routers is a 10Gbps link in our testbed network. 

On that link, we measured byte arrivals well over 1Gbps at sub-10ms intervals. In the figures, 

‘Mbps’ indicates throughput in units of Megabits per second, and ‘Kpps’ indicates throughput in 

packets with units of Kilopackets (thousands of packets) per second. Every experiment was run 

for 60 minutes, but all data shown in the results sections are for the middle 40 minutes to 

eliminate startup and termination effects. It was determined during calibration that allowing 10 

minutes for startup effects to diminish and 10 minutes for termination effects to diminish was 

adequate to account for such effects. 

4.4.1 The Control Set: a-t-b-t with usernet 

 In this section, using our control set for traffic generation comprising the a-t-b-t connection 

structure model and the usernet RTT model, we introduce the measurement and evaluation 

methodology that we use for all experiments reported in Chapter 5. As we explained earlier, we 

adopted the combination of the a-t-b-t model for connection structure and the usernet model for 

RTT as our control set. We use this set to compare the effects of different models of traffic 

generation on application-level and network-level performance metrics. While the real gold 

standard is obviously the original traffic captured on the production link, Hernandez-Campos et 

al. have already shown that the Tmix models for connection structure (a-t-b-t) and network 

characteristics (usernet RTT, window size) can emulate any given input traffic in a realistic, 
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reliable, and reproducible manner. In Section 4.3, we successfully verified that the output 

characteristics of the traffic generated matched their corresponding input parameters for traffic 

generation, given our particular experimental setup. Hence we use the Tmix models as our control 

set and compare all other models against them. As our results bear out in this dissertation, this 

combination of models is indeed a good choice as a control set for realistic traffic generation.  

 We have already used this control set of models for the three Tmix experiments presented for 

calibration and verification in this chapter so far. So what differentiates those experiments from 

the ones below? Those experiments used only UNC traffic, not IBM traffic. Though the traffic 

sets for those experiments were acquired from the UNC production link, they are different from 

the traffic set we use for results reported in Chapter 5.   

4.5 a-t-b-t with usernet in Unconstrained Mode 

 In this section, we discuss the results for two experiments (one using UNC traffic, and the 

other using IBM traffic) modeled with the control set and run in the unconstrained network mode. 

We present results for the time series of throughput followed by results for the performance 

metrics: connection durations, response times, router queue length, and active connections. For all 

of these measures, we present results for both experiments, comparing them on the same figure 

wherever possible.  

4.5.1 Throughput 

 Figures 4.5.1 and 4.5.2 show the byte throughput time-series for the experiments using the 

UNC and IBM traffic in the unconstrained mode. Figures 4.5.3 and 4.5.4 show the corresponding 

packet throughput time-series. We present the throughput time series because it is the most 

common and familiar measure of characterizing traffic on any production link or, in this case, 
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traffic generated in the laboratory. These figures show throughput data averaged over 5 second 

intervals. 
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 Figure 4.5.1: Link throughput in Mbps – UNC Figure 4.5.2: Link throughput in Mbps – IBM 
  (unconstrained mode)   (unconstrained mode) 
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 Figure 4.5.3: Link throughput in Kpps – UNC Figure 4.5.4: Link throughput in Kpps – IBM 
  (unconstrained mode)   (unconstrained mode) 

 

 Figure 4.5.1 shows that the mean throughput for a replay of UNC traffic is 471 Mbps with a 

standard deviation of 34 Mbps. Figure 4.5.2 shows that the mean throughput for a replay of IBM 

traffic is 404 Mbps with a standard deviation of 37 Mbps. The corresponding packet throughputs 

are shown in Figures 4.5.3 and 4.5.4.  The mean packet throughput for a replay of UNC traffic is 
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60 Kpps with a standard deviation of 3.0 Kpps. And the mean packet throughput for a replay of 

IBM traffic is 62 Kpps with a standard deviation of 3.7 Kpps. 

 It is worth noting that the throughput time-series for the experiment using the UNC traffic is 

stationary for the hour. The throughput time-series for the experiment using the IBM traffic, 

however, is non-stationary. That is, for the experiment using the IBM traffic, the mean of the 

throughput changes significantly in the latter half of the time-series (see Figures 4.5.2 and 4.5.4). 

A stationary time series is one whose statistical properties such as mean, variance, and 

autocorrelation are constant over time. The throughput of traffic on an Internet link may be 

stationary if measured over short periods of time, for example an hour. However, for realistic 

protocol evaluations, it is useful to note that not only is Internet traffic non-stationary over longer 

periods, for example a day, it may even be non-stationary over shorter periods of an hour, as is 

the case in the hour long IBM traffic we use as input in half our experiments. This creates 

interesting effects on the metrics in the constrained experiments when using the IBM traffic, 

especially for queue dynamics at the router.  

In the following sections, we present results for two experiments: one using the UNC traffic 

as input, and the other using IBM traffic as input. Both experiments were run in the 

unconstrained mode. We present results for the four performance metrics. All of these results are 

again presented in Chapter 5. However, in that chapter, we use the control set for comparison 

against other models. In this chapter we present these results as a study of the control set with a 

focus on detailed discussion of the four performance metrics.    

4.5.2 Connection Duration 

 We define connection duration for any TCP connection as the time elapsed between the 

transmission of the first data byte and the receipt of the last data byte of that connection. 

Connection duration for every connection is measured and logged at the traffic generators. During 
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the hour long experiment, every traffic generator creates a number of logs reporting on the 

performance of the TCP connections in the experiment. This includes connection duration and 

response times for every connection. Figures 4.5.5 and 4.5.6 compare the cumulative distribution 

functions (CDFs) and the complementary cumulative distribution functions (CCDFs) for duration 

of the TCP connections in the two experiments. The CDF shows a linear plot of durations up to 3 

seconds. The CCDF is on a log-log scale and shows durations up to the entire hour of the 

experiment, which is 3600 seconds or 3.6 x 106 milliseconds. These data show durations for 

several million TCP connections – 4.7 million for the experiment using UNC traffic and 2.8 

million for the experiment using IBM traffic. 
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 Figure 4.5.5: Connection duration – CDF  Figure 4.5.6: Connection duration – CCDF 
 Control set – UNC and IBM – unconstrained Control set – UNC and IBM – unconstrained 

 

 Unconstrained 
experiments 

Median of 
connection 
durations 

80% or less of 
connection 
durations 

Mean of 
connection 
durations 

Top 10% of 
connection 
durations 

using UNC traffic 260 milliseconds 2 seconds or less 33 seconds ≥ 8 seconds 

using IBM traffic 550 milliseconds 3 seconds or less 87 seconds ≥ 13.5 seconds  

Table 4.5.1: Connection duration a-t-b-t with usernet in unconstrained mode 

As shown in Figure 4.5.5, and enumerated in Table 4.5.1, 80% of the connections in the UNC 

replay complete in less than 2 seconds, while 80% of the connections in the IBM replay take 3 
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seconds or less to complete. The median connection durations are 260 milliseconds and 550 

milliseconds for the UNC and IBM replays respectively. These distributions have long tails as 

shown in Figure 4.5.6. Hence the average connection duration is relatively high. The average 

duration of the TCP connections was 33 seconds and 87 seconds for the UNC and IBM replays 

respectively.  

Fully 10% of the connections run longer than 8 seconds in the UNC replay and longer than 

13.5 seconds in the IBM replay. There are some connections that last the entire hour of the 

experiment. These were connections that, as measured in the original Internet link, started at or 

before the start of our trace collection, and continued to transmit data up to the end of, or beyond, 

our hour long trace collection. Such long connections were sometimes dominated by the number 

of bytes transmitted; for example, a single connection transmitting a few gigabytes of data over 

the period of an hour. Often, however, very long duration connections, at least in the traffic we 

used, were dominated by long endpoint latencies with user thinktimes (inter-epoch latencies) of a 

minute or more between request-response exchanges within a connection. And as shown in 

Figure 3.1.10 (see Chapter 3), several thousand connections in both UNC and IBM traffic had 

more than 100 epochs (request-response exchanges). 

4.5.3 Response Time 

 We define response time for a request-response exchange in a sequential connection as the 

time elapsed between the transmission of the first data byte of a request and the receipt of the last 

data byte of its response. Hence, response time or epoch response time is defined only for 

sequential connections since concurrent connections do not have the notion of serialized request-

response exchanges between the endpoints of a TCP connection. Response times are measured 

for every request-response exchange, and recorded in logs on the traffic generators.  
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 Figure 4.5.7: Response Time – CDF  Figure 4.5.8: Response Time – CCDF 
 Control set – UNC and IBM – unconstrained Control set – UNC and IBM - unconstrained 

 

Experiment Median of 
response times 

80% or less of 
response times 

Mean of response 
times 

Top 10% of 
response times 

UNC replay 110 milliseconds 295 milliseconds 2.6 seconds ≥ 800 milliseconds 

IBM replay 130 milliseconds 240 milliseconds 4.4 seconds ≥ 550 milliseconds 

Table 4.5.2: Response Time for a-t-b-t with usernet in unconstrained mode 

 

 It is interesting to note that while connection durations are recorded as one data point for 

every TCP connection in an experiment, response times are recorded as one data point for every 

epoch in a sequential connection. Hence, the number of response time data points in the 

distribution is dependent on not only the number of sequential connections but also the average 

number of epochs per sequential connection in the traffic being replayed. The IBM traffic had 

only 2.73 million sequential connections and the UNC traffic had 4.57 million sequential 

connections. However, on average the number of epochs for the IBM connections (9 epochs per 

connection) is higher than that of the UNC connections (3 epochs per connection) as shown in 

Figure 3.1.9 (in Chapter 3). Hence the UNC replay had only 13 million request-response 

exchanges while the IBM replay had about 24 million request-response exchanges, despite the 

fact that IBM traffic had only 60% the number of connections as UNC traffic. 
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 Figures 4.5.7 and 4.5.8 show the distributions for response times for all epochs of all 

sequential connections. The CDFs show response times up to 1 second. As shown in Figure 

4.5.7, and enumerated in Table 4.5.2, 80% of the response times in the UNC replay are less than 

295 ms, and 80% of the response times in the IBM replay are less than 240 ms. The median 

response times are 110 ms and 130 ms for the UNC and IBM replays respectively. These 

distributions have long tails as shown in Figure 4.5.8. Hence the average connection duration is 

relatively high. In fact, the analysis of the original traffic used for these replays revealed much 

longer intra-epoch endpoint latencies for the top 1% in both traffic sets, with the IBM connections 

having longer intra-epoch endpoint latencies than the UNC connections (see Figure 3.1.18). 

Hence the average response time is relatively high, with 2.6 seconds and 4.4 seconds for the UNC 

and IBM replays respectively. These long response times possibly indicate long server processing 

times from slow servers from the original connections.  

 We note that for a given input traffic, longer response times do not necessarily lead to longer 

connection durations. For example, the IBM replay had shorter response times for 80% of its 

connections as compared to the UNC replay. However, the IBM replay had much longer 

connection durations than those of the UNC replay. We note that the duration of a connection 

depends on the size (total bytes) of the connection, the number of epochs in the connection and 

the length of inter-epoch endpoint latencies in the connection. Response times, however, are not 

influenced by the inter-epoch endpoint latencies at all.  

4.5.4 Queue Length 

 Sections 4.5.2 and 4.5.3 discussed the application-level performance metrics of connection 

duration and response time. In this section and the next, we present results for network-level 

performance measures of queue length at the core router and the number of active connections in 

the network. During each experiment, we sampled the outbound queue at the first router (see 
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Figure 4.2.1) every 10ms. Figure 4.5.9 shows the distributions for router queue lengths for both 

UNC and IBM replays.  
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Figure 4.5.9: CCDF of queue length (control set – UNC and IBM – unconstrained) 

 

 Since the average throughput was 471 Mbps for the UNC replay, and 404 Mbps for the IBM 

replay, there was almost no congestion on this 1Gbps link. The traffic was bursty, however, and 

there were a few brief intervals when the network experienced spikes that were well over 1Gbps. 

Hence although the queue was almost always empty (about 99% of the time), these momentary 

spikes led to packets being queued with roughly 10 or more packets in the queue for 0.05% of the 

time for both experiments. 

4.5.5 Active Connections 

 In this study, we define a connection as an ‘active connection’ in the network at a given time 

t, if the SYN for that TCP connection has been seen on the network, but the FIN or RST has not 

yet been recorded. Hence, an active connection could be actively sending packets or just 

experiencing end system or network latencies at the time that it is considered an active connection 

in the network.  
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Figure 4.5.10: Active connections (control set – UNC and IBM – unconstrained) 

 

 The number of active connections in the network is directly proportional to two 

characteristics of the original traffic. First is the total number of connections being replayed in the 

hour-long experiment. Second, and more influential, is the duration of these connections. Figure 

4.5.10 shows the time series of active connections in the two experiments. The UNC replay 

recorded on average 45,000 active TCP connections in the network while the IBM replay 

recorded on average between 68,000 and 78,800 active connections during the middle 40 minutes 

of the experiment. Note the change in active connections around t=30 minutes for the IBM replay 

is consistent with the non-stationarity of that traffic. The IBM traffic had fewer total connections 

than the UNC traffic over the hour. So, how come the IBM replay shows more active 

connections? Indeed, the UNC traffic consisted of 4.7 million TCP connections, while the IBM 

traffic consisted of 2.8 million TCP connections. However, on average, the TCP connections in 

the IBM traffic were longer in duration. Hence, we observe that the number of active connections 

in the IBM replay is much higher than that of the UNC replay.  

4.6 a-t-b-t with usernet in Constrained Mode 

 So far, we have discussed results for the replay experiments using the UNC and IBM traffic 

in the unconstrained mode, using the a-t-b-t connection structure model with usernet RTT 



 122

emulation. In this section, we present the results for this control set in the constrained mode. For 

experiments in the constrained mode, the link bandwidth between the core routers was set to 

105% of the expected average offered load. Hence, for replays in the constrained mode, we set 

this router-to-router link to 496Mbps for UNC replay and 424Mbps for IBM replay. 

4.6.1 Throughput 
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 Figure 4.6.1: Link throughput in Mbps – UNC Figure 4.6.2: Link throughput in Mbps – IBM 
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 
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 Figure 4.6.3: Link throughput in Kpps – UNC Figure 4.6.4: Link throughput in Kpps – IBM 
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 

 

 Figures 4.6.1 and 4.6.2 show the byte throughput time-series for the UNC and IBM replay 

experiments respectively. Figures 4.6.3 and 4.6.4 show the corresponding packet throughput 
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time-series. These figures show throughput data aggregated over 5 second intervals. We show the 

throughput as measured in the middle 40 minutes of the experiments at the bottleneck link 

between the routers.  

 

Constrained 
experiments 

Mean throughput 
in Mbps 

Standard deviation 
of throughput in 
Mbps 

Mean throughput 
in Kpps 

Standard deviation 
of throughput in 
Kpps 

UNC replay 485 Mbps 18 Mbps 61 Kpps 1.8 Kpps 

IBM replay 421 Mbps 9 Mbps 64 Kpps 1.8 Kpps 

Table 4.6.1: Throughput for constrained experiments using the control set 

 

 Figure 4.6.1 shows that the mean throughput for the UNC replay – 485 Mbps with a standard 

deviation of 18 Mbps. Figure 4.6.2 shows that the mean throughput for the IBM replay – 421 

Mbps with a standard deviation of 9 Mbps. The corresponding packet throughputs are shown in 

Figures 4.6.3 and 4.6.4. The mean packet throughput for the UNC replay was 61 Kpps with a 

standard deviation of 1.8 Kpps. And the mean packet throughput for the IBM replay was 64 Kpps 

with a standard deviation of 1.8 Kpps. 

Figures 4.6.1 and 4.6.2 demonstrate the effect of using average throughput when setting the 

constraints on the link bandwidth. For the IBM replay in the unconstrained mode (see Figure 

4.5.2), we noted that the mean of the throughput drops around t=32 minutes. This was due to non-

stationarity of the throughput time-series for the original IBM traffic. As a result, however, we 

note that for the first 36 minutes of the experiment, the bottleneck link is constantly utilized. This 

indicates the outbound queue at the router before this link rarely drained during this time. We see 

the direct consequence of this on the router queue length measurements shown in Section 4.6.4. 
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4.6.2 Connection Durations 

 Figures 4.6.5 through 4.6.8 show the distributions for connection durations for the UNC and 

IBM replay experiments in the constrained mode. The CDF shows a linear plot of duration up to 

3 seconds. The CCDF is on a log-log scale and shows duration up to the entire hour of the 

experiment. For comparison, we have included the results for connection duration from the 

replays in the unconstrained mode.  
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 Figure 4.6.5: Connection durations – UNC  Figure 4.6.6: Connection durations – IBM  
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 
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 Figure 4.6.7: Connection durations – UNC  Figure 4.6.8: Connection durations – IBM  
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 
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 For the UNC replay, Figure 4.6.5 shows that 80% of the connections completed in less than 

2.1 seconds in the constrained mode compared to 2 seconds in the unconstrained case. For the 

IBM replay, Figure 4.6.6 shows that 80% of the connections took 3.9 seconds or less to complete 

in the constrained mode compared with 3 seconds in the unconstrained case. Clearly congestion 

had a slightly more debilitating effect on the IBM replay traffic than the UNC replay, though both 

were run with the constrained link set to 105% of the average offered load. To some extent this is 

due to the much higher load in the experiment using the IBM trace in the first half of the 

experiment as compared with the second half, causing longer queuing delays in the IBM replay 

than in the UNC replay.  

 

Experiments Median of 
connection 
durations 

80% or less of 
connection 
durations 

Mean of 
connection 
durations 

Top 10% of 
connection 
durations 

Unconstrained - 
UNC replay 

260 milliseconds ≤ 2 seconds or less 33 seconds ≥ 8 seconds 

constrained - UNC 
replay 

330 milliseconds ≤ 2.1 seconds 33 seconds ≥ 8.3 seconds 

Unconstrained - 
IBM replay 

550 milliseconds ≤ 3 seconds  87 seconds ≥ 13.5 seconds 

constrained - IBM 
replay 

790 milliseconds ≤ 3.9 seconds 88 seconds ≥ 14.7 seconds 

Table 4.6.2: Connection Duration for constrained experiments using the control set 

In the constrained mode (shown in Figures 4.6.5 through 4.6.8 and in Table 4.6.2), the 

median connection durations were 330 milliseconds and 790 milliseconds for the UNC and IBM 

replays respectively. In the unconstrained mode, these measures were 260 milliseconds and 550 

milliseconds for the two experiments respectively. Figures 4.6.7 and 4.6.8 show the long tails of 

these distributions. These long tails lead to high average connection durations of 33 seconds and 

88 seconds for the UNC and IBM replay experiments respectively. Fully 10% of the connections 

take longer than 8.3 seconds in the UNC replay and longer than 14.7 seconds in the IBM replay. 

In the unconstrained modes, these measures were 8 seconds and 13.5 seconds respectively. 
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4.6.3 Response Times 
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 Figure 4.6.9: Response Times – UNC  Figure 4.6.10: Response Times – IBM  
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 

 

 Figures 4.6.9 through 4.6.12 show the distributions for the epoch response times in the 

sequential TCP connections in the two experiments in constrained mode. The CDFs show 

response times up to 1 second. Again, for comparison we include the response time results for the 

experiments in the unconstrained modes.  
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 Figure 4.6.11: Response Times – UNC  Figure 4.6.12: Response Times – IBM  
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 

 

 As shown in these figures, and enumerated in the Table 4.6.3, the response times for the 

bottom 80% of the response times are up 19% and 33% for the constrained experiments for the 
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UNC and IBM replays as compared with the unconstrained modes for the same experiments. 

Clearly constraint on the link has a greater effect on response times (the time between a request-

response exchange) than on connection durations. This is because connection duration is often 

dominated by the connection structure itself which includes the inter-epoch endpoint latencies 

between consecutive request-response exchanges.  

 

Experiments Median of 
response times 

80% or less of 
response times 

Mean of response 
times 

Top 10% of 
response times 

Unconstrained – 
UNC replay 

110 milliseconds ≤ 295 milliseconds 2.6 seconds ≥ 800 milliseconds 

constrained - UNC 
replay 

140 milliseconds ≤ 350 milliseconds 2.6 seconds ≥ 880 milliseconds 

Unconstrained - 
IBM replay 

130 milliseconds ≤ 240 milliseconds 4.4 seconds ≥ 550 milliseconds 

constrained - IBM 
replay 

187 milliseconds ≤ 320 milliseconds 4.5 seconds ≥ 660 milliseconds 

Table 4.6.3: Response Time for constrained experiments using the control set 

 

 The median response times for the constrained experiments using the UNC and IBM traffic 

were up 23% and 36% respectively from the unconstrained case. This is also a direct effect of the 

queuing delay in the network with queuing delay affecting the response time in the IBM replay 

more than in the UNC replay. The tails of these distributions are long but these are dominated 

more by the size of the data transfer and intra-epoch endpoint latencies than by the effect of 

queuing delay. Hence the average response times for the constrained experiments were similar to 

that of the unconstrained experiments.  

 The reason the tails of the response times seem unaffected is because the queuing delay, in 

the case of a-t-b-t connection structure experiments, represents a small fraction of the intra-epoch 

latencies measured for these connections in the original trace. Specifically, queuing delay is in 

tens of milliseconds while the intra-epoch latencies are hundreds of milliseconds to several 
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seconds. For the top 10% of the epochs, response times in the constrained mode represent an 

increase of 10% and 20% for results for the UNC and IBM replays respectively as compared with 

their unconstrained modes. 

4.6.4 Queue Length 

 Figures 4.6.13 and 4.6.14 show the outbound queue at the core router before the constrained 

link. The queue was sampled every 10 milliseconds. Although both experiments were setup so 

that the link was constrained to 105% of the average of the unconstrained throughput, the IBM 

replay saw a much longer queue. Also, the distribution of the inter-epoch endpoint latencies is 

heavier for the connections in the UNC traffic than those in the IBM traffic. This allows the 

queue to drain more often in the UNC replay, causing a relatively lighter queue.  
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 Figure 4.6.13: CDF of queue length Figure 4.6.14: CDF of queue length 
 Control set – UNC and IBM – constrained mode Control set – UNC and IBM – constrained mode 

 

 As shown in Figures 4.6.13 and 4.6.14, and enumerated in the Table 4.6.4, the queue was 

empty for 18% of the time for the UNC replay, and 7% of the time for the IBM replay. The 

higher queue length for the IBM replay was partly due to the higher volume of packets and bytes 

in the first half of the IBM traffic. The median queue length for the UNC and IBM replays was 

350 packets for the UNC replay and 2600 packets for the IBM replay.   
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Constrained 
experiments 

Queue empty 
/ drained 

Median of 
queue length 

Mean / standard 
deviation  
of queue length 

Top 10% of 
queue length 

Peak queue 
occupancy 

using UNC traffic 18% of the 
time 

350 packets 659 / 992 
packets 

≥ 1460 packets 6800 packets 

using IBM traffic 7% of the 
time 

2600 packets 2557 / 2025 
packets 

≥ 5400 packets 8300 packets 

Table 4.6.4: Queue length for constrained experiments using the control set 

4.6.5 Active Connections 
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Figure 4.6.15: Active connections 

 

 Figure 4.6.15 shows the number of active connections in the network in the middle 40 

minutes of the two experiments. In the unconstrained mode, the UNC replay recorded a median 

of 46,200 active TCP connections in the network, while the IBM replay recorded a median of 

72,200 active connections. In the constrained mode, the number of active connections goes up 

only slightly compared to the unconstrained mode. This is because the queue buildup causes a 

small increase in the duration of connections, which leads to a small increase in the number of 

active connections in the network. So, in the constrained mode, the number of active connections 

had a median of 72,680 in the IBM case, but the UNC case remains roughly the same since the 

queuing delay was not significant enough to adversely affect the connection durations. 
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4.7 Chapter Summary 

 In this chapter, we described in detail the network configuration followed by calibration of all 

network components. We verified the replay of Tmix showing that the control set of a-t-b-t 

connection structure and usernet RTT models do indeed realistically and reliably reproduce the 

original traffic captured on the production link. We then presented experiments using the UNC 

and IBM traffic in the unconstrained and constrained modes. We reported results for these 

experiments using four performance metrics – throughput, connection durations, response times, 

queue length and active connections.  



 

 

 

CHAPTER 5 

 
 

EFFECTS OF ROUND TRIP TIMES AND CONNECTION 
STRUCTURES ON NETWORK PERFORMANCE 

 

 

The principle of science, the definition, almost, is the following: the test of all 

knowledge is experiment. Experiment is the sole judge of scientific “truth”… 

Also needed is imagination to create from these hints [experimental results] the 

great generalizations – to guess at the wonderful, simple, but very strange 

patterns beneath them all. 

  Richard Feynman [The Feynman Lectures on Physics, 1965] 

 

 In this chapter, we present results for the core set of connection replay experiments conducted 

for this dissertation. We used combinations of four connection structure models, three round trip 

time (RTT) emulation models, two network link modes, and two sets of traffic mixes for 

generating traffic for these experiments. For each experiment, we studied the effect of traffic 

generation on four performance metrics: application-level metrics of connection durations and 

epoch response times, and network-level metrics of router queue length and the number of active 

connections in the network.  

 Our study leads us to two main findings. First: the RTT model used in emulating network 

characteristics significantly affects application and network performance. Second: the connection 

structure model used for generating the TCP connections affects these performance metrics even 

more (often orders of magnitude more) significantly than the RTT model used.  
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 This chapter is organized as follows: In the first half of this chapter, in Sections 5.1 and 5.2, 

we present results showing how the RTT emulation model used in traffic generation affects these 

four metrics in the unconstrained and constrained network modes respectively. Then, using the 

same set of experiments, in the second half of the chapter, in Sections 5.3 and 5.4, we present the 

results showing how the TCP connection structure model used in traffic generation affects the 

same four metrics for the unconstrained and constrained network modes respectively.  

5.1 Effects of RTT Emulation Model in the Unconstrained Mode 

 For a given connection, we expect that the RTT will affect its duration and epoch response 

times. But how does using one RTT model versus another affect the aggregate distribution of 

connection durations and response times for a large aggregation of connections? Moreover, does 

the RTT model used to generate these millions of connections also affect router queue length and 

active connections in the network? If yes, how significant is this effect?  

 We quantify the answers to these questions through the results from our experiments in this 

and the next section, comparing the impact of three different RTT models on four performance 

metrics. For the first set of experiments, we assign a single RTT value for all connections using 

the meanRTT model. For the second set of experiments, we create 10 end-to-end paths in the 

network by emulating 10 unique delay values using the 10pathRTT model. For the third set of 

experiments, we assign to each connection the specific minimum RTT found by analyzing the 

TCP/IP header traces using the usernet RTT model. For more details on these RTT models, we 

refer to Section 3.4 (Chapter 3). 

 These three RTT models create three realistic, yet significantly different, emulations of 

network characteristics. The meanRTT model emulates the network as one single path from end 

to end for all connections in the hour long experiment. The 10pathRTT model is slightly more 
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diverse and provides 10 distinct paths in the network, with discrete RTT values that are 

representative of measured RTTs on production links. The usernet RTT model is most closely 

representative of the original traffic being replayed. By assigning the measured RTT for each 

connection in the experiment, it creates a distinct end-to-end virtual path on the testbed network 

for each connection in the experiment. For more details on any of these (or other) RTT models, 

we refer to Section 3.4 (Chapter 3). 

 Each set of experiments in this section and the next consists of using one RTT model per 

experiment, keeping the TCP connection structure constant for the set. The connection structure 

models (described in Chapter 3) are labeled as follows in all the figures: blk-conc for the block-

concurrent model which sends all bytes of a connection in both directions simultaneously, blk-seq 

for the block sequential model which sends all the bytes of a connection as one request-response 

exchange between the two TCP endpoints, a-b for the a-b model that emulates all epochs 

(request-response exchanges) from the original connection but does not model any of the 

endpoint latencies measured in the original connection, and finally, a-t-b-t for the a-t-b-t model 

that emulates all sequential epochs and concurrent ADUs as well as all endpoint latencies in 

every connection.  

 Results for experiments using the a-t-b-t model with usernet RTT, for both unconstrained and 

constrained modes, were presented in Chapter 4. This is the control set against which we compare 

all results presented in this chapter.  

 In the four subsections that follow, we present results for replays in the unconstrained mode 

showing the effect of using different RTT models on each of the four performance measures. For 

all sections in this chapter we present the results for experiments using the UNC traffic as well as 

the IBM traffic. Unless otherwise specified, the figures on the left show results for the UNC 

replay, and those on the right show results for the IBM replay. 
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5.1.1 Effect of RTT Emulation Model on Connection Durations 

 In this section, we present results showing the impact of the RTT model on connection 

durations. We vary the RTT model per experiment while keeping the connection structure 

constant for that set of experiments. For example, in Figure 5.1.1 we present results for 

connection duration for three experiments using meanRTT in one, 10pathRTT in the second and 

usernet RTT in the third. All three experiments used the block-concurrent connection structure 

for generating TCP traffic.  

 Figures 5.1.1 and 5.1.2 show results for connection durations for varying RTT model using 

the block-concurrent connection structure for the UNC and IBM replays respectively. Similarly, 

Figures 5.1.3 and 5.1.4 show results for varying RTT models using the block-sequential 

connection structure for the UNC and IBM replays respectively. Figures 5.1.5 and 5.1.6 show 

results for varying RTT models using the a-b connection structure while Figures 5.1.7 and 5.1.8 

show results for varying RTT models using the a-t-b-t connection structure.  
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 Figure 5.1.1: Connection duration – UNC Figure 5.1.2: Connection duration – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 

 

 For a given connection structure, we find that the RTT model impacts connection duration 

significantly if the duration is 500ms or less. The RTT model continues to moderately impact 



 135

connection durations that are up to about 1 second. But regardless of the connection structure 

used, the RTT model seems to have little impact on the distribution for connections with duration 

more than 1 second. For example, for the block-concurrent or block-sequential connection 

structures (see Figures 5.1.1 through 5.1.4), at least 98% of connections complete in 3 seconds or 

less with little or no difference in the distribution due to the RTT model beyond 1 second of 

duration.  
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 Figure 5.1.3: Connection duration – UNC Figure 5.1.4: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.1.5: Connection duration – UNC Figure 5.1.6: Connection duration – IBM 
  (a-b connection structure)   (a-b connection structure) 
 

 When using the a-b model, as shown in Figures 5.1.5 and 5.1.6, 97% of connections in the 

UNC replay complete in less than 3 seconds and 90% of connections complete in 1 second or 
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less, regardless of what RTT model was used in the experiment. For the IBM replay experiment 

using the a-b model (Figure 5.1.6), 95% of connections complete in less than 3 seconds, while 

only 80% of connections complete in 1 second or less. This difference in connection durations for 

the UNC versus IBM replays can be attributed to the number of epochs per connection in the two 

traffic mixes.  60% of connections in the original UNC traffic have only one epoch while 60% of 

connections in the original IBM traffic have more than one epoch. But we find that the RTT 

model has little impact in either set of experiments after about 1 second in the distribution of 

connection duration. In the replays using the a-t-b-t connection structure model (results shown in 

Figures 5.1.7 and 5.1.8), we find that the RTT model again has a significant impact on connection 

durations, but only up to 500ms and a moderate impact on durations up to 1 second. 
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 Figure 5.1.7: Connection duration – UNC Figure 5.1.8: Connection duration – IBM 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 Since the maximum impact of RTT model is seen for connection durations up to 500ms, we 

zoom into this part of the distribution for further discussion. See Figures 5.1.9 through 5.1.12. 

These four figures show the same data as in Figures 5.1.3, 5.1.4, 5.1.7 and 5.1.8 but we now 

amplify the first 500 ms of the distribution for connection durations; that is, we change the X-

axis. We show only the block-sequential and a-t-b-t models for this discussion since the block-
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concurrent and a-b models have similar effects (for connection duration with RTT variation) as 

the block-sequential model.  

 These figures show that there is a large variation among the distributions of connection 

duration for different RTT models used in the experiments for durations below 500ms. Note that 

the mean RTT for the UNC traffic was 80 ms and for the IBM traffic, it was 92ms. Hence, most 

connections in experiments using the meanRTT model have a minimum duration of 160 ms (two 

RTTs) for the UNC replay, and a minimum duration of 184 ms for the IBM replay. 
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 Figure 5.1.9: Connection duration – UNC Figure 5.1.10: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.1.11: Connection duration – UNC Figure 5.1.12: Connection duration – IBM 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
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 In a replay using the meanRTT model, the original connections that had a connection RTT 

much less than meanRTT now last longer and hence contribute to a heavier distribution of 

connection duration for the initial part of the distribution. The use of 10pathRTT results in longer 

connection durations than using the meanRTT or the usernet models. This is more so for the UNC 

replays than the IBM replays. This is because the mean of the RTTs in the 10pathRTT is 92ms, 

which is much higher than the mean of the RTTs (80ms) for the UNC traffic. Coincidentally, this 

mean of the 10pathRTT is the same as the mean of the RTTs for the IBM traffic. Hence, the 

distribution of connection durations in the IBM replays for 10pathRTT and usernet RTT are 

closer. The usernet RTT shows much lighter distribution for connection duration that does the 

meanRTT model because all those connections with connection RTTs less than the mean RTT for 

the traffic can now replay at the rate of their original RTTs. Hence these connections complete 

faster with usernet than when using the meanRTT model for these same connections.  

 For the UNC replay with the block- sequential connection structure (Figure 5.1.9), only 40% 

of connections complete in less than 160 ms using the 10pathRTT model, whereas 60% of 

connections complete in the same duration using the meanRTT model. While no connections 

complete in less than 125 ms when using meanRTT, fully 50% of connections complete in 125 ms 

or less when using the usernet model and about 32% of connections complete in 125 ms or less 

when using the 10pathRTT model. So, clearly, the RTT model used in traffic generation has a 

significant impact on connection durations for durations less than 500 ms.  

 But, why is there a step characteristic for the distribution of connection durations when using 

meanRTT and 10pathRTT in most of these figures? This is because there are a very small number 

(1 for meanRTT and 10 for 10pathRTT) of discrete values for connection RTTs in these models. 

This directly results in certain discrete values for connection durations that are multiples of these 

RTT values. In the case of meanRTT, there is only one RTT value whose multiples constitute 
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possible values for connection durations, whereas in the case of 10pathRTT, there are only 10 

RTT values whose multiples constitute possible values for connection durations.  

 Then, why is this step effect more pronounced (for meanRTT and 10pathRTT) only in the 

block-concurrent, block-sequential, and a-b models, while barely present in the a-t-b-t model (see 

Figure 5.1.11)? This is because the connections in the a-t-b-t model, though still dominated by 

their RTT for durations less than 500ms, are also influenced (and more so) by the varied 

distribution of endpoint latencies being generated within each connection. These latencies 

significantly dampen the effect of a connection’s RTT on its duration, thus almost eliminating the 

step effect for the a-t-b-t model. That is, due to the varied distribution of endpoint latencies which 

contribute to connection durations, connections emulated using the a-t-b-t model are not 

restricted to durations that are multiples of RTT alone, even when we use the meanRTT or the 

10pathRTT models. 

 Continuing discussion of Figures 5.1.9 and 5.1.10, we observe that in the case of usernet, 

there could be as many discrete RTT values as there are TCP connections because usernet 

emulates connection RTT exactly as measured on the original network link. Hence the 

distribution of connection durations when using usernet is as diverse a set of connection duration 

values as the original captured traffic. However when using a small set of discrete values as in the 

case of meanRTT or 10pathRTT, we limit the values that the distribution of connection duration 

can exhibit simply because connection duration can now only be some multiple of the 10 discrete 

values in the 10pathRTT and the one discrete value in meanRTT model. This is especially true 

when using the block-concurrent model for the following reasons: there are no endpoint latencies, 

and in these experiments there is no queuing delay. Thus a connection is restricted in such cases 

only by how fast it can grow its congestion window to send packets. And this window growth is 

dependent on the connection RTT. Hence, the dominant contributor of time within a connection 

becomes the connection RTT. And in the absence of other time components, the duration of the 

connection becomes a multiple of the connection RTT. For short connections, where RTT is most 
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dominant, this effect is seen more prominently. For connections which last longer than 1 second, 

the RTT model does not seem to matter. This is possibly because the size of the data transferred 

by the connection influences the connection duration by adding in larger amounts of transmission 

times relative to connection RTT. Alternately, even for small size connections, if the congestion 

window is relatively small, then the connection duration is increased by having to wait until 

acknowledgements are received before further transmission of data.   

 In Figures 5.1.11 and 5.1.12, we show connection duration up to 500 ms using the a-t-b-t 

model with the three different RTT models of emulation. Clearly, the difference in connection 

duration among different RTT models is greater for the UNC replay than for the IBM replay. 

Again this is because the meanRTT value and the mean of the 10pathRTT set of values happen to 

be the same for the IBM traffic. Also, as shown in Figure 3.1.23 (Chapter 3), the body of the RTT 

distribution for UNC traffic is much lighter than that of the IBM traffic. The median connection 

RTT for UNC traffic was 36 ms, and for IBM traffic it was 68 ms.  

 There is also a much more diverse set of RTTs in the UNC traffic with a large variance in the 

distribution of RTTs, as compared with that of the IBM traffic. A key observation from these 

results is that, for a given connection structure, the distribution of connection durations and the 

variance in that distribution is directly related to the distribution of the connection RTTs and the 

variance in that original RTT distribution. Modeling RTT using the meanRTT or 10pathRTT 

methods reduces this variance in connection RTTs and hence the resulting traffic generation 

produces less variance in the distribution of connection durations.  

 So far, we have discussed the body of the distribution of connection duration. We now study 

the tails of these distributions in Figures 5.1.13 through 5.1.20. We have already found that the 

model of RTT emulation does not greatly affect connection durations for connections lasting 
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more than 1 second. The tails of the distribution for connection duration shown in all these eight 

figures only confirm this finding.  
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 Figure 5.1.13: Connection duration – UNC Figure 5.1.14: Connection duration – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.1.15: Connection duration – UNC Figure 5.1.16: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
 

 We also observe in Figure 5.1.13 that for the UNC replay and the block-concurrent 

connection structure, there is a relatively quick convergence of connection durations for 

meanRTT and usernet beyond the initial 250 ms. This is directly because the meanRTT method 

uses the average RTT from the distribution of connection RTTs in the usernet model. We observe 

a similar convergence for these two RTT methods for the IBM replays in Figure 5.1.14. Figures 
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5.1.15 through 5.1.20 show similar results for UNC and IBM replays using the block-sequential, 

a-b, and the a-t-b-t connection structures.   
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 Figure 5.1.17: Connection duration – UNC Figure 5.1.18: Connection duration – IBM 
  (a-b connection structure)   (a-b connection structure) 
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 Figure 5.1.19: Connection duration – UNC Figure 5.1.20: Connection duration – IBM 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
 

5.1.2 Effect of RTT Emulation Model on Response Times 

 In this section, we present the results of the impact of the RTT model on response times for 

request-response exchanges. Recall that response time is defined for each request-response 

exchange within a sequential TCP connection. It is the time elapsed between the transmission of 

the first data byte of a request and the receipt of the last data byte of its response. Hence response 
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time, or epoch response time, is not defined for concurrent connections or the block-concurrent 

model. For the block-sequential model, every connection transmits all of its data within one 

epoch and hence the connection duration of a connection in the block-sequential model is the 

same as its response time.  

 For the a-b and a-t-b-t models, there are as many response time data points in a TCP 

connection as there are epochs in that connection. In this section we discuss the impact of the 

RTT model on response times when using the blk-seq, a-b or a-t-b-t models. Keeping connection 

structure the same for each set of experiments, we vary the RTT model used for each experiment. 

For all the replays in this section, the data is only for connections that were sequential in the 

original traffic. For example, even for the replay using the block-sequential model, we present 

response time data only for those connections that were sequential in the original traffic. This is 

necessary for proper comparison with other models.  
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  Figure 5.1.21: Response Time – UNC   Figure 5.1.22: Response Time – IBM  
  (block-sequential connection structure)  (block-sequential connection structure) 
 

 Figures 5.1.21 through 5.1.26 show the distributions of response times for the UNC and IBM 

replays. We observe that different RTT emulation methods clearly have different impact on the 

response times. The effect of different RTT models on response time also depends on the 
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characteristics of the original traffic. For example, the UNC replays show greater differences in 

the distributions of response times due to RTT models than do the IBM replays.  

 For a given connection structure, we find that the RTT model impacts response time 

distribution significantly up to about 500ms or less. As seen in Figure 5.1.21, with the block-

sequential connection structure, the RTT model continues to moderately impact response times 

up to about 1 second. However, for IBM replays (Figure 5.1.22) with the block-sequential 

connection structure, we see that there is almost no difference among the RTT models after about 

500 ms of response time. In Figure 5.1.21, we also observe that the usernet RTT model causes the 

smallest response times followed by meanRTT followed by 10pathRTT. This result is clearly 

because the RTT of the average connection becomes larger when using the meanRTT model since 

all the connections that would have had lesser than the mean RTT (in the original distribution) 

now have a greater connection RTT. Similarly, since the mean of the 10pathRTT is the largest, 

the response time of the request-response exchanges using this model shows the heaviest 

distribution. 
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  Figure 5.1.23: Response Time – UNC   Figure 5.1.24: Response Time – IBM  
  (a-b connection structure)   (a-b connection structure) 
 

 When using the a-b model for UNC replay (Figure 5.1.23), 98% of epochs complete in less 

than 1 second and 90% of epochs complete in less than 400ms, regardless of what RTT model 
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was used in the experiment. For the IBM replays with the a-b model (Figure 5.1.24), 99% of 

epochs complete in less than 600 ms, while 90% of epochs complete in 250 ms or less. In the a-t-

b-t connection structure model (Figures 5.1.25 and 5.1.26), we find even lesser impact of the RTT 

models on response times, with the response time distributions converging at about 600 ms in the 

UNC replay, and about 300 ms in the IBM replay.  
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  Figure 5.1.25: Response Time – UNC   Figure 5.1.26: Response Time – IBM  
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
 

 We also observe that, regardless of RTT model, the response times in the UNC replay using 

the a-b and a-t-b-t connection structures are longer than those in the IBM replay. However, 

connection durations in the IBM replays were longer than in the UNC ones (see figures in Section 

5.1.1). Hence we note that short response times do not necessarily correspond to short connection 

durations. For example, a very long connection (even one running for the whole hour) could have 

very short response times if each epoch had small ADU sizes and short intra-epoch endpoint 

latencies. This would account for shorter response times. These same connections, however, 

could have hundreds of epochs and long inter-epoch endpoint latencies between epochs thus 

contributing to longer connection durations.  

 Clearly, the RTT emulation method has an impact on the distribution of epoch response times 

up to 500 ms or 1 second at the most. Beyond that, response times are possibly dominated by 

ADU sizes and intra-epoch endpoint latencies. Since the maximum impact of RTT model is seen 
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for response times up to 500ms, we zoom into this part of the distribution for further discussion 

below in Figures 5.1.27 through 5.1.30. These four figures below show the same data as in 

Figures 5.1.21, 5.1.22, 5.1.25 and 5.1.26 but amplify the first 500 ms of the distribution for 

response times. So, the X-axes are now up to 500 ms only. We show results for only the block-

sequential and a-t-b-t models.  

 These figures show that there is a large variation among the distributions of response times, 

up to 500 ms, for different RTT models used in the experiments. In Figure 5.1.27, we find that 

RTT is a dominant time component in the request-response exchange when using the block-

sequential model. Just as the connection durations were multiples of connection RTT for 

meanRTT and 10pathRTT experiments, the response times are also multiples of connection RTTs 

for these RTT models using the block-sequential connection structure. This step effect is absent 

for response times using the usernet RTT model because there is a much greater variation in the 

distribution of connection RTTs when using the usernet model than when using the meanRTT or 

10pathRTT models. 
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 Figure 5.1.27: Response Time – UNC   Figure 5.1.28: Response Time – IBM  
 (block-sequential connection structure)  (block-sequential connection structure) 
 

 Figure 5.1.27 shows that 50% of the response times are 80ms or less in the UNC replay, for 

both the meanRTT and usernet models. The use of 10pathRTT results in longer response times 
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than using the meanRTT or the usernet models. The effect of using meanRTT over usernet is that 

80 ms becomes the minimum response time for request-response exchanges with this model. 

Whereas about 40% of response times using usernet were 50 ms or less, that is not a possibility 

when using the meanRTT model. For the 10pathRTT whose mean is even larger than the other 

two RTT models, response times are longer initially but eventually merge with the other two 

models. 40% of response times when using the 10pathRTT model are 100 ms or less. Similarly, 

Figure 5.1.28 shows that in the IBM replay, 55% of epochs have response times of 92ms or less 

with meanRTT model while only 40% do so using the usernet RTT model. But 36% of epochs 

have response times less than 92 ms with the usernet model which is not even a possibility when 

using the meanRTT model. 
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 Figure 5.1.29: Response Time – UNC   Figure 5.1.30: Response Time – IBM  
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
 

 The usernet RTT model shows the lightest distribution for response time for both the UNC 

and IBM replays because all the epochs with connection RTTs less than the mean RTT for the 

traffic now replay at the rate of their original RTTs. Hence these epochs experience faster 

response times than when using the meanRTT. Thus the distribution of response times when using 

usernet RTT is as diverse a set of possible values as the original captured traffic. For short 

epochs, where RTT is most dominant, this effect is seen more prominently. For epochs which last 
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longer than 500ms, the RTT model does not seem to matter as much. This is because the size of 

the epoch and the intra-epoch endpoint latencies (for the a-t-b-t model) influence the response 

time more than RTT does.  

 Figures 5.1.29 and 5.1.30 show the response times up to 500 ms with the three different RTT 

models for the a-t-b-t connection structure. Again, the difference in connection duration among 

different RTT models is greater in the UNC replay than in the IBM replay. And the effect of RTT 

model on the distribution of response times diminishes after 500 ms in the UNC replays and as 

early as 300 ms in the IBM replays.  

 So far, we have discussed the body of the response time distributions. We now study the tails 

of these distributions shown in Figures 5.1.31 through 5.1.36. We have already found that the 

model of RTT emulation does not greatly affect response time for epochs lasting more than 1 

second. The tails of the distribution for response time only confirm this finding.  
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 Figure 5.1.31: Response Time – UNC  Figure 5.1.32: Response Time – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
 

 Figures 5.1.31 through 5.1.36 show the CCDF of response times for the UNC and IBM replay 

experiments with the block-sequential, a-b, and a-t-b-t models and the three RTT emulation 

methods. In the block-sequential and a-b models, the RTT methods show small differences in 
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impact on response times even for long response times. But for the a-t-b-t model, there is almost 

no difference in response time distribution. This is clearly because these long response times are 

dominated more by the intra-epoch endpoint latencies than the RTT of the connection. 
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  Figure 5.1.33: Response Time – UNC   Figure 5.1.34: Response Time – IBM  
  (a-b connection structure)   (a-b connection structure) 
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  Figure 5.1.35: Response Time – UNC   Figure 5.1.36: Response Time – IBM 
   (a-t-b-t connection structure)   (a-t-b-t connection structure) 
 

5.1.3 Effect of RTT Emulation Model on Queue Length at the Router 

 In this section, we show the queue lengths at the outbound queue of the router before the 

unconstrained router-to-router link. The queue was sampled every 10 ms for the entire hour of the 

experiment. However, we only show the queue length data for the stable middle 40 minutes of the 

experiment. Each figure in this section shows the experimental results for a given connection 
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structure model while varying the RTT models. In Figures 5.1.37 and 5.1.38, we show the 

distribution of queue length for three experiments in each set, using UNC and IBM traffic 

respectively. Each set of experiments used the block-concurrent connection structure while we 

varied the RTT model per experiment among meanRTT, 10pathRTT and the usernet RTT models. 

Similarly, in Figures 5.1.39 through 5.1.44, we show results for queue length for experiments 

varying the RTT models while keeping the connection structures constant among the block-

sequential, a-b, and a-t-b-t models.    

 A common observation from all these experiments is that for more than 99% of the time, the 

queue was empty, regardless of the RTT model used for emulation. Hence Figures 5.1.37 through 

5.1.44 showing distributions of the queue length indicate almost empty queues for all those 

experiments. The traffic generated was bursty, however, such that even on the unconstrained 

1Gbps link, there were momentary spikes greater than 1Gbps. Our record of the arrival pattern on 

the 10Gbps aggregation link before the router confirms these spikes. Hence, the tails of these 

distributions show a maximum queue length of around 100 packets at those momentary spikes, 

and 10 or more packets in the queue for about 0.05% of the time for all these replays in the 

unconstrained mode. 
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 Figure 5.1.37: Queue Length – UNC  Figure 5.1.38: Queue Length – IBM  
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.1.39: Queue Length – UNC Figure 5.1.40: Queue Length – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
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  Figure 5.1.41: Queue Length – UNC   Figure 5.1.42: Queue Length – IBM  
  (a-b connection structure)   (a-b connection structure) 
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  Figure 5.1.43: Queue Length – UNC   Figure 5.1.44: Queue Length – IBM  
  (a-t-b-t connection structure)  (a-t-b-t connection structure) 
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5.1.4 Effect of RTT Emulation Model on Active Connections 

 We define any TCP connection as an ‘active connection’ in the network at a given time t, if 

the SYN for that TCP connection has been seen on the network, but the FIN or RST has not yet 

been recorded. Figures 5.1.45 and 5.1.46 show the number of active connections in the network 

for the UNC and IBM replay experiments in the unconstrained mode respectively, for the middle 

40 minutes of each experiment for the block-concurrent connection structure using a different 

RTT model in each of the three experiments. The RTT model clearly makes little difference in 

the number of active connections. Similarly, Figures 5.1.47 and 5.1.48 show the time series of 

active connections for the block-sequential connection structure using the three RTT models. 

Figures 5.1.49 and 5.1.50 show the same for the a-b model, and Figures 5.1.51 and 5.1.52 show 

the results for the a-t-b-t model.  

 We find that, for any given connection structure, the RTT model does not affect the number 

of active connections in the network. This seems counter to the results that RTT model clearly 

made a difference in connection durations that were 500 ms or less, and that the number of active 

connections in the network is directly affected by the connection durations. So, why does that 

difference in connection duration not manifest itself in number of active connections?  
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 Figure 5.1.45: Active connections – UNC Figure 5.1.46: Active connections – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.1.47: Active connections – UNC Figure 5.1.48: Active connections – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
 

 A connection is considered active during a given second whether it only lasted for 10ms or 

for that whole second; so whether a connection was active for 300 ms or 550 ms on the network, 

it would be counted as one active connection for that second. Hence the number of active 

connections (measured per second as we did in this study) is a slightly gross measure of 

performance and is a second order effect in the network. This is why those clear differences seen 

in connection durations due to the different RTT models do not affect active connection counts in 

the network.  
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 Figure 5.1.49: Active connections – UNC Figure 5.1.50: Active connections – IBM 
  (a-b connection structure)   (a-b connection structure) 
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 Figure 5.1.51: Active connections – UNC Figure 5.1.52: Active connections – IBM 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
 

 The number of active connections in the network is dominated by the few thousands of very 

long-lived connections, among the several million connections being generated over the hour, 

rather than the short-lived connections that replace other connections as they start and complete 

quickly. As an example of this effect of the long-lived connections, we observe that the number 

of active connections in the IBM replays is almost the same as that in the UNC replays for block-

concurrent, block-sequential and a-b models for all RTT models although the total number of 

connections over the hour for UNC replay was almost double that of the IBM replay. What is 

even more noteworthy is that the long-lived connections have such a strong impact on active 

connections in the network that the number of active connections for IBM replay using the a-t-b-t 

model is much higher than that for UNC replay. This is a direct consequence of the results seen in 

Section 5.1.1 where we found that the duration of connections using the a-t-b-t model was higher 

for IBM replay than for UNC replay. 

5.1.5 Section Summary 

 In this section, we presented results for replays in the unconstrained mode using UNC traffic 

and IBM traffic. We discussed the results for four sets of experiments for each of the two input 

traffic mixes. For each set of experiments, we kept the connection structure model the same, 
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while varying the RTT model among the meanRTT, the 10pathRTT, and the usernet RTT models. 

Thus we studied the effect of these empirically-derived RTT models on four key performance 

metrics: connection duration, response time, router queue length, and active connections.  

 We found that the RTT model used in emulating network characteristics has some impact on 

these performance metrics. That was an expected result. However, in this section, we quantified 

these results. We found that the RTT model affects connection durations and response times 

when these measures are less than 1 second. Beyond that, any effect of the RTT model used in an 

experiment is masked by other factors of traffic generation including the components of the 

connection structure models, which are discussed in detail in Sections 5.3 and 5.4. We also found 

that the router queue length showed no differences among the experiments using different RTT 

models. However, this was due to the fact that these were replays in the unconstrained mode, and 

hence designed to not create any queue buildup. The number of active connections in the network 

is a second order effect of connection durations. This metric was not affected by the differences 

in the RTT models used in the experiments. 

 So, if we had to choose an RTT model to be used for experiments, run in an unconstrained 

mode, which model would we pick? A lot depends on the performance metrics used to evaluate 

these experiments. If these metrics are measured at gross levels above one second, then the RTT 

model used may not matter. However, we would question if such gross measures would play a 

useful part in any protocol evaluations? If network traffic being generated is to be somewhat 

realistic, then it is imperative that the richness and diversity of the original connection round trip 

times be preserved in the generated traffic. How does the RTT model affect this?  

 Any metric that is affected by the connection RTT will only produce as diverse a distribution 

of values, for a given performance metric, as the input RTTs. For example, even for the few 

performance metrics we discussed here, clearly the diversity of allowable values in the 

distribution for these metrics, like connection durations or response times, becomes highly limited 

when the connection RTTs is a small discrete set of values, as was the case with meanRTT or 
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10pathRTT models. Conversely, a rich and full set of input connection RTTs results in a similarly 

diverse distribution for the measured performance metric. Thus, while this is not necessarily a 

case of “garbage in, garbage out” since we use all empirically derived RTT models, it is still true 

that the quality and diversity of the inputs used for traffic generation and network emulation 

directly impacts the quality and diversity of the outputs measured during the experiments.      

5.2 Effect of RTT Emulation Model in the Constrained Mode 

 In Section 5.1 we discussed the effect of the three different RTT emulation methods on four 

performance metrics: connection durations, response times, router queue length and active 

connections. Those were replays in the unconstrained mode; that is, the router-to-router link was 

set to 1Gbps. In this section we present results for a set of experiments run in the constrained 

mode, showing the impact of RTT models on the same four metrics; that is, the router-to-router 

link is set so that it is 105% of the offered load on that link. For the UNC replays in the 

constrained mode, the link was set to 496Mbps, and for the IBM replays in the constrained mode, 

the link was set to 424Mbps. For each set of experiments, we compare the performance metrics 

for different RTT models, keeping the connection structure model the same for all experiments in 

that set.  

5.2.1 Effect of RTT Emulation Model on Connection Durations 

 Before we compare the effects of RTT models on connection durations for replays in the 

constrained mode, we begin by looking at the effect of such a constraint on connection duration 

for a given combination of connection structure and RTT. We first compare the connection 

durations for 10pathRTT and usernet RTT models in the unconstrained and constrained modes 

for both UNC and IBM replays.  
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 Figure 5.2.1 and 5.2.2 show the distributions of connection duration for four experiments 

each, using the UNC and IBM traffic respectively. In each figure, there are two replays in the 

unconstrained mode and two replays in the constrained mode. All these experiments use the 

block-concurrent model, with either the 10pathRTT or the usernet RTT emulation. As observed 

earlier, the two experiments in the unconstrained mode show clear differences in connection 

durations between the two RTT models up to about 1 second of the distribution for connection 

duration. But there is a drastic shift in connection duration for both RTT emulation methods in 

the constrained mode. That is, regardless of the RTT method used, the connections experience 

long delays that are much greater than connection RTTs, thus causing these huge shifts in the 

distributions. What is causing these long delays? As we show in Section 5.2.3, the constraint on 

the router-to-router link results in very large queuing delays in most cases. The long delays are 

also related to the very large queue (64K packets) but do not have any effects from losses in TCP 

congestion control.   

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10pathrtt-unconstrained
blk-conc.usernet-unconstrained
blk-conc.10pathrtt-constrained

blk-conc.usernet-constrained

 
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.10pathrtt-unconstrained
blk-conc.usernet-unconstrained
blk-conc.10pathrtt-constrained

blk-conc.usernet-constrained

  

 Figure 5.2.1: Connection duration – UNC Figure 5.2.2: Connection duration – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
 

 In the unconstrained mode for the UNC replays (Figure 5.2.1), more than 80% of all 

connections completed in 500 ms or less for both the 10pathRTT and usernet RTT models. But in 

the constrained mode, only 55% of connections completed in 500 ms or less using the same RTT 

models. There are no losses in these connections since the outbound queue at the router was set to 



 158

65,000 packets. This was done deliberately to study queuing effects due to RTT emulation. 

Figure 5.2.2 shows that the queuing delay had an even more debilitating effect on the connection 

durations in the IBM replays than in the UNC replay (see Figure 5.2.1). In these experiments, 

while 82% of connections completed in 500 ms or less in the unconstrained mode, only 50% of 

the connections did so in the constrained mode. It is important to note here that although we 

observe the significant effect of queuing delay on the connection durations, this queue buildup 

and queuing delay seen by the shift in the distributions is the same for both methods of RTT 

emulation. As we will show in Section 5.2.3, the queue lengths and resulting queuing delays, 

though impacted differently by the three RTT models, are in fact a more direct consequence of 

the connection structure used for traffic generation. Also, the queue lengths were much greater in 

the case of the IBM replay experiments, partly due to the initial queue buildup since the 

throughput of the IBM traffic was non-stationary.  

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-seq.10pathrtt-unconstrained
blk-seq.usernet-unconstrained
blk-seq.10pathrtt-constrained

blk-seq.usernet-constrained

 

 Figure 5.2.3: Connection duration – UNC Figure 5.2.4: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
 

 Figure 5.2.3 shows these queuing effects using the block-sequential connection structure 

model with the 10pathRTT and usernet RTT models for the UNC replays. We observe again that 

the RTT emulation method has an effect on connection duration up to 500 ms in the 

unconstrained mode, but it has little or no effect on connection duration in the constrained mode. 

In the unconstrained UNC replay (Figure 5.2.3), 80% of connections completed in 400ms or less 
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when using the usernet RTT model and 80% of connections completed in 540ms or less using the 

10pathRTT model. However, in the replays in the constrained mode, these small yet significant 

differences in connection durations for the two RTT models are masked by the huge effect of 

queuing delays on all connections in the experiment. Hence for both usernet RTT and 10pathRTT 

models, 80% of connections complete in 1400ms. Thus what was a significant 35% shift in the 

distribution of connection duration between the two RTT models in replays in the unconstrained 

mode is masked by the more than 85% increase in connection durations due to queuing delay in 

the replays in the constrained mode for each RTT model.  
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 Figure 5.2.5: Connection duration – UNC Figure 5.2.6: Connection duration – IBM 
 (a-b connection structure) (a-b connection structure) 
 

 Similar effects on connection duration are seen for the UNC replay experiments using the a-b 

model with different RTT methods in unconstrained and constrained modes as shown in Figure 

5.2.5. In the unconstrained mode (Figure 5.2.5), 80% of connections completed in 550ms or less 

when using the usernet RTT model and in 650ms or less using the 10pathRTT model. However, 

in the replays in the constrained mode, for both usernet RTT and 10pathRTT models, 80% of 

connections complete in 1700ms or less due to the huge effect of queuing delays. The small yet 

significant differences in connection durations between the two RTT models are masked by the 

long queuing delays on all connections in the experiments. 
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 In Figures 5.2.4 and 5.2.6, we show results for different RTT models using the block-

sequential and a-b models respectively for the IBM replays. Again we observe the huge shift in 

distributions for connection durations in replays in the constrained mode from their respective 

distributions in replays in the unconstrained mode. While this large shift is due to the large 

queuing delays in both sets of experiments, there is also little to no difference in the distribution 

of connection durations due to the RTT model being used in the replays in the constrained mode.  

 In Figures 5.2.7 and 5.2.8 we study the results in unconstrained and constrained modes, using 

the a-t-b-t model with the 10pathRTT and the usernet RTT models for the UNC and IBM replays 

respectively. These results are significantly different from those discussed so far with other 

connection structures. First, there is still a small yet significant difference in connection durations 

between the two RTT models even in the replays in the constrained mode. Second, and more 

significant, is that the shift in the distributions between the unconstrained and constrained replays 

for each RTT model is much smaller than with the other connection structure models seen in 

Figures 5.2.1 through 5.2.6. Why is there such a small shift? We found that this could be 

completely attributed to the effect of connection structure model on queuing delay. The a-t-b-t 

model creates relatively much smaller queues (hence shorter queuing delays) than the other 

connection structure models. We discuss this effect in more detail in Section 5.4.  
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 Figure 5.2.7: Connection duration – UNC Figure 5.2.8: Connection duration – IBM 
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
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 Clearly, there is an effect from queuing on connection durations in these replays in the 

constrained mode but it is not as drastic. The difference in the connection durations for the a-t-b-t 

connection structure model using 10pathRTT and usernet RTT models in the unconstrained 

modes is the same as their difference in the constrained modes. The effect of queuing delay is 

much smaller using the a-t-b-t model and hence the difference in connection duration between the 

two RTT models is preserved even in the replays in the constrained mode. 

 So far, we observed the dramatic shift in the distribution of connection durations between the 

unconstrained and constrained replays. This effect is also seen in the tails of the distributions for 

connection durations as well. We show these results in Figures 5.2.9 through 5.2.14. It must be 

noted that the CCDFs are in log-log scale; hence what looks like a small shift in the distributions 

is really a large difference in the actual distributions. And Figures 5.2.15 and 5.2.16 show that 

there is not much effect of queuing delay on connections with long durations. 
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 Figure 5.2.9: Connection duration – UNC Figure 5.2.10: Connection duration – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
 

 We observe that, for a given connection structure model, there is a significant effect of 

queuing delay in each set of experiments regardless of the RTT emulation method used in the 

experiment. The only set of experiments this does not hold true is the set using the a-t-b-t 

connection structure model. This is because the queuing delay and the differences in RTT 
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emulations are insignificant latencies for these long-lived connections compared with their 

endpoint latencies being generated as part of the traffic model. 
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 Figure 5.2.11: Connection duration – UNC Figure 5.2.12: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.2.13: Connection duration – UNC Figure 5.2.14: Connection duration – IBM 
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.15: Connection duration – UNC Figure 5.2.16: Connection duration – IBM 
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
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 Having studied the queuing delays for replays in the constrained mode by observing the 

difference in connection durations between the unconstrained and constrained replays, we now 

discuss the direct effect of RTT emulation on connection duration for different RTT models in 

these replays in the constrained mode. Figures 5.2.17 through 5.2.24 show the distributions of the 

connection durations such that each figure shows the effect of different RTT methods for a given 

connection structure. For example, Figure 5.2.17 shows three UNC replays in the constrained 

mode, all using the block-concurrent structure with the meanRTT, 10pathRTT, or usernet RTT 

methods of emulation.  
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 Figure 5.2.17: Connection duration – UNC Figure 5.2.18: Connection duration – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.2.19: Connection duration – UNC Figure 5.2.20: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
 



 164

 The most remarkable observation in all these figures is that while the method of RTT 

emulation resulted in significantly different distribution of connection durations for durations up 

to 500 ms in the unconstrained modes, the RTT emulation method makes almost no difference in 

the replays in the constrained mode. The only set of replays in the constrained mode which show 

impact of RTT emulation method are the UNC replay with the a-t-b-t connection structure (see 

Figure 5.2.23). And this is because the queuing delay is not significant enough in these 

experiments to have overshadowed the effect of differences in RTT emulation methods. The 

queuing delay in the IBM replay in constrained mode was significantly higher even with the a-t-

b-t model and this is explained in detail in Section 5.2.3.  
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 Figure 5.2.21: Connection duration – UNC Figure 5.2.22: Connection duration – IBM 
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.23: Connection duration – UNC Figure 5.2.24: Connection duration – IBM 
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
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 Figure 5.2.25: Connection duration – UNC Figure 5.2.26: Connection duration – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.2.27: Connection duration – UNC Figure 5.2.28: Connection duration – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.2.29: Connection duration – UNC Figure 5.2.30: Connection duration – IBM 
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.31: Connection duration – UNC Figure 5.2.32: Connection duration – IBM 
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
  

 Figures 5.2.25 through 5.2.32 show the CCDFs for connection duration for each connection 

structure while varying the RTT emulation method. These clearly show that the RTT emulation 

differences have no impact on connection duration in the tail of these distributions for replays in 

the constrained mode, for the same reasons already stated above for the body of these 

distributions. 

5.2.2 Effect of RTT Emulation Model on Response Times 

 In Section 5.1.2, we observed the direct effect of RTT emulation on the response times of 

request-response exchanges within TCP connections when there was no congestion in the 

network. The distribution of response time was affected by the RTT emulation method up to 500 

ms and up to about 1 second in some cases, but was not affected beyond that. In this section, we 

discuss the results for a similar set of experiments run in the constrained mode. We begin this 

discussion by looking at the effect of the constrained mode on response times. Hence, we first 

compare the response times for the 10pathRTT and usernet RTT models for replays in the 

unconstrained and constrained modes.  

 Figure 5.2.33 shows the distributions of response time for four experiments using UNC 

traffic. There are two replays in the unconstrained mode and two replays in the constrained 
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mode. These experiments use the block-sequential model, with the 10pathRTT emulation or the 

usernet RTT. The two experiments in the unconstrained mode show significant differences in 

response times between the two RTT models up to about 500 ms and even up to about 1 second. 

But there is a much larger shift in response time for both RTT emulation methods due to the 

congestion in the network. That is, regardless of the RTT method used, the epochs experience 

queuing delays that are much greater than connection RTTs, thus causing the huge shift in the 

distributions of response times for replays in the constrained mode.  
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 Figure 5.2.33: Response Time – UNC  Figure 5.2.34: Response Time – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
 

 In the unconstrained mode, shown in Figure 5.2.33, roughly 80% of all request-response 

exchanges took about 250 ms using the usernet RTT method and about 400 ms using the 

10pathRTT model in the UNC replay. However, only 60% of response times are less than 400 ms 

when the same RTT methods were used in the presence of congestion in the network. 80% of 

these response times took up to 1 second to complete due to the effect of queuing delay in the 

constrained mode. Figure 5.2.34 shows that the queuing delay had an even more debilitating 

effect on the response times in the IBM replays with the 10pathRTT or the usernet RTT. In these 

experiments, while 83% of request-response exchanges completed in 400 ms or less in the 

unconstrained mode, only 55% did so in the constrained mode. As we will show in Section 5.2.3, 

the queue lengths and hence queuing delays were much greater in the case of the IBM replays.  
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 In Figures 5.2.35 and 5.2.36 we show these queuing effects using the a-b connection structure 

model with the 10pathRTT and usernet RTT models for the UNC and IBM replay experiments 

respectively. We observe again that the RTT emulation method has an effect on response times 

up to 600 ms in the UNC replay and 250 ms in the IBM replay in the unconstrained mode. Even 

in the constrained mode, there is clearly a difference in response times due to the two different 

methods of RTT emulation, seen more clearly in the IBM case. However, these differences due to 

RTT emulation methods are significantly masked by the much larger effect of queuing delay on 

the response times in all the replays in the constrained mode. Thus we see that response times are 

not only affected by the difference in RTT emulation methods, but also have much larger second 

order effect from the queuing delay. 
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 Figure 5.2.35: Response Time – UNC  Figure 5.2.36: Response Time – IBM  
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.37: Response Time – UNC  Figure 5.2.38: Response Time – IBM  
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
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 Figures 5.2.37 and 5.2.38 show the distributions for response times for the a-t-b-t model 

running 10pathRTT and usernet RTT models in the unconstrained and constrained modes using 

UNC and IBM traffic respectively. While the IBM replays show the larger effect of queuing 

delay, there is still clearly a difference in effect on response times due to the two different RTT 

models even in the constrained mode. This is unlike the other connection structure models. As we 

show in Section 5.2.3, queue buildup and queuing delays are relatively smaller when using the a-

t-b-t connection structure model. Hence the effect on response times due to the RTT emulation 

methods is preserved even in these replays in the constrained mode. 

 In Figures 5.2.39 through 5.2.44 we show the CCDFs for response times for the 10pathRTT 

and usernet RTT models, using block-sequential, a-b and a-t-b-t connection structures. We 

observe that, for a given connection structure model, there is a significant effect of queuing delay 

in each set of experiments regardless of the RTT emulation method used in the experiment. The 

only set of experiments for which this does not hold true is the set using the a-t-b-t connection 

structure model. This is because the queuing delay, as well as delay difference among the RTT 

models, is insignificant for these connections compared with the endpoint latencies being 

generated as part of the traffic model.  
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 Figure 5.2.39: Response Time – UNC  Figure 5.2.40: Response Time – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
 



 170

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y 
(%

)

Response Time in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 
 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y 
(%

)

Response Time in milliseconds

a-b.10pathrtt-unconstrained
a-b.usernet-unconstrained
a-b.10pathrtt-constrained

a-b.usernet-constrained

 

 Figure 5.2.41: Response Time – UNC  Figure 5.2.42: Response Time – IBM  
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.43: Response Time – UNC  Figure 5.2.44: Response Time – IBM  
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
 

 Having established the dominant effect of queuing delay over RTT model on response times 

in replays in the constrained mode, we now discuss the direct effect of different RTT emulation 

methods on response time. Hence, we keep the connection structure model same for a set of 

replays. Figures 5.2.45 through 5.2.50 show the distributions of the response times such that each 

figure shows the effect of different RTT methods keeping the connection structure model same 

for that set of experiments.  

 For example, Figure 5.2.45 shows three replays in the constrained mode, all using the block-

sequential connection structure model while using the meanRTT, 10pathRTT, or usernet RTT 

model for each experiment. We observe that the method of RTT emulation still affects, to a small 
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degree, the response times differently up to 500 ms even in the constrained mode. But there is a 

significant shift in overall response times due to the queuing delays.   
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 Figure 5.2.45: Response Time – UNC  Figure 5.2.46: Response Time – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.2.47: Response Time – UNC  Figure 5.2.48: Response Time – IBM  
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.49: Response Time – UNC  Figure 5.2.50: Response Time – IBM  
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
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 In Figures 5.2.51 through 5.2.56, we show the CCDFs for response time for the same set of 

replays in the constrained mode.  
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 Figure 5.2.51: Response Time – UNC  Figure 5.2.52: Response Time – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.2.53: Response Time – UNC  Figure 5.2.54: Response Time – IBM  
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.55: Response Time – UNC  Figure 5.2.56: Response Time – IBM  
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
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 These clearly show that the RTT emulation differences have no impact on response times in 

the tail of these distributions when the experiments were run in the constrained mode. As we 

observed in the unconstrained mode, the RTT model in the constrained mode also does not affect 

response times beyond 1 second in the distribution. 

5.2.3 Effect of RTT Emulation Model on Queue Length at the Router 

 In this section, we study the distribution of queue lengths at the outbound queue of the router 

before the constrained link. The queue was sampled every 10 ms for the entire hour of the 

experiment. However, we only show the queue length data for the stable middle 40 minutes of the 

experiment. Clearly, as illustrated in Figures 5.2.57 through 5.2.64 showing the distributions of 

queue lengths for these experiments, the different RTT emulation methods have different effects 

on the queue dynamics for a given connection structure model. This effect is seen for both the 

UNC and IBM replay experiments. Regardless of RTT distribution the queue is empty less than 

15% of the time or less, indicating heavy queuing for all the RTT models. 

 For example, in Figure 5.2.57, we show the queue lengths for the three replays in the 

constrained mode using UNC traffic, all using the block-concurrent connection structure while 

varying the RTT model used from among the meanRTT, 10pathRTT and usernet RTT models. 

When using the meanRTT model, the router queue has less than 1000 packets for 34% of the 

time. However, when using the usernet model, the queue has less than 1000 packets only 17% of 

the time.  

 Similarly, in Figure 5.2.58 we observe that in the IBM replay with the block-concurrent 

connection structure, 33% of the time there are less than 1000 packets in the queue with the 

meanRTT model, whereas only 25% of the time, there are less than 1000 packets in the queue 

with the usernet RTT model. This clear difference in the distribution of queue length due to the 

different RTT models is seen for every connection structure. We show these results in Figures 
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5.2.59 and 5.2.60 for the block-sequential connection structure, Figures 5.2.61 and 5.2.62 for the 

a-b model and Figures 5.2.63 and 5.2.64 for the a-t-b-t model. 
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 Figure 5.2.57: Queue Length – UNC  Figure 5.2.58: Queue Length – IBM  
 (block-concurrent connection structure) (block-concurrent connection structure) 
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 
 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Queue Length in packets

blk-seq.meanrtt
blk-seq.10path
blk-seq.usernet

 

 Figure 5.2.59: Queue Length – UNC  Figure 5.2.60: Queue Length – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
 

 There is a clear and consistent pattern in the difference in effects on queue length among the 

RTT emulation methods. For both UNC and IBM replays and for any given connection structure, 

we find the following pattern: the meanRTT model has the relatively lightest queue while the 

usernet model results in the relatively heaviest queue. This is because when all connections are 

using the meanRTT of 80 ms or 92 ms for connection RTTs for UNC and IBM replays 

respectively, there is a larger delay between subsequent packets arriving at the router queue as 

compared to the other models.  
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 Figure 5.2.61: Queue Length – UNC  Figure 5.2.62: Queue Length – IBM  
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.63: Queue Length – UNC  Figure 5.2.64: Queue Length – IBM  
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
 

 For example, with the 10pathRTT model, there are several thousands of connections with 

RTTs less than 80 ms which generate burstier arrival patterns at the router that results in more 

queuing. This is the same reason why the usernet method results in the heaviest queuing because 

a significant number of connections in this method have RTTs less than 80 ms (which is the mean 

RTT for UNC traffic), thus causing burstier arrival at the router queue. The median RTT for the 

usernet distribution is 36 ms for UNC and 68 ms for IBM. Hence half the connections in the UNC 

replay have RTTs less than 36 ms, and half the connections in the IBM replay have RTTs less 

than 68 ms, when modeling RTT with the usernet method. 

 Figures 5.2.65 through 5.2.72 show the CCDFs for the same set of experiments discussed 

above. Each figure shows the CCDF of queue length for three replays in the constrained mode 
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using the same connection structure model but using different RTT emulation methods for the 

UNC and IBM replays respectively. For the block-concurrent, block-sequential and the a-b 

models, all three RTT methods result in queuing that shows over 10,000 packets in the queue for 

roughly 12% of the time.  This indicates very heavy queuing due to the connection structure 

model, regardless of RTT model used in the experiments. 
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 Figure 5.2.65: Queue Length – UNC  Figure 5.2.66: Queue Length – IBM  
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.2.67: Queue Length – UNC  Figure 5.2.68: Queue Length – IBM  
 (block-sequential connection structure) (block-sequential connection structure) 
 

For the a-t-b-t model in both UNC and IBM replays, there is a small difference in the queue 

occupancy depending on the RTT method used. The usernet model accounts for the most queue 

occupancy since the round trip time delays between subsequent packets in a connection is more 

likely to be smaller in the usernet model than in the other two models. 
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 Figure 5.2.69: Queue Length – UNC  Figure 5.2.70: Queue Length – IBM  
 (a-b connection structure) (a-b connection structure) 
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 Figure 5.2.71: Queue Length – UNC  Figure 5.2.72: Queue Length – IBM  
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
 

5.2.4 Effect of RTT Emulation Model on Active Connections 

 We show the number of active connections in the network for the UNC and IBM replays in 

constrained mode in Figures 5.2.73 and 5.2.74 respectively. The data shown is only for the 

middle 40 minutes of each experiment for the block-concurrent connection structure using a 

different RTT method in each experiment. The RTT model clearly makes little difference in the 

number of active connections.  Similar results are shown for the block-sequential, a-b and a-t-b-t 

connection structures in Figures 5.2.73 through 5.2.80. 
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 Figure 5.2.73: Active connections – UNC Figure 5.2.74: Active connections – IBM 
 (block-concurrent connection structure) (block-concurrent connection structure) 
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 Figure 5.2.75: Active connections – UNC Figure 5.2.76: Active connections – IBM 
 (block-sequential connection structure) (block-sequential connection structure) 
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 Figure 5.2.77: Active connections – UNC Figure 5.2.78: Active connections – IBM 
 (a-b connection structure) (a-b connection structure) 
 

 This is because connection durations directly affect the number of active connections in the 

network. In the replays in the constrained mode, we observed in Section 5.2.1 that the method of 
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RTT emulation had less impact on connection duration for all but the a-t-b-t model. And in 

Section 5.2.3 we observed that in all the cases other than the a-t-b-t experiments, there is clearly 

an effect of queuing for all the replays in the constrained mode, independent of RTT method.  
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 Figure 5.2.79: Active connections – UNC Figure 5.2.80: Active connections – IBM 
 (a-t-b-t connection structure) (a-t-b-t connection structure) 
 

 That is, the number of active connections in the network is slightly higher in the initial 

several minutes of the experiment due to queue buildup that takes a long time to settle down. This 

effect is not due to the RTT emulation method but due directly to the connection structure model 

used. Hence we discuss this effect in greater detail in Section 5.4.4 when presenting the results of 

connection structure on active connections. 

5.2.5 Section Summary 

 For replays in the constrained mode, the RTT method used for emulating network 

characteristics has little impact on connection durations if there is heavy congestion resulting in 

large queues and long queuing delays in the network. In such cases, the small effect that RTT 

might have had on connection durations under 1 second is mostly masked by the large effect of 

queuing delay on those durations.  
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 For response times, the RTT model has a small impact on response times less than 500ms for 

most connection structure models, and a significant impact when using the a-t-b-t model. 

However, if there is heavy congestion resulting in large queues and long queuing delays in the 

network, the effect of connection RTT on response times is very small compared with the large 

effect of queuing delay on this metric. 

 In this section, we also compared the effects of different RTT models on the queue length at 

the router. The router-to-router link was set at 105% of the offered load, and a queue capacity was 

65,000 packets. For a given connection structure model, different RTT models used in generating 

traffic affects queue dynamics differently. In general, the usernet model has a diverse distribution 

of RTTs, and so large number of connections have connection RTT less than the meanRTT or the 

10pathRTTs. Hence we see the following patterns in all of the queue length distributions. The 

heaviest queue length distribution is seen when using the usernet model because for the large 

number of connections with smaller than mean RTTs, windows of packets are being sent back to 

back with greater frequency than with the other RTT models. That is, when the RTT is smaller, 

the acknowledgements from the receiver come back faster, thus allowing the sender to send 

another window of packets into the network. For the same reason, the next heaviest distribution 

of queue lengths is observed in experiments using the 10pathRTT followed by those using the 

meanRTT. This is because with smaller RTT, a connection can grow its congestion window much 

faster, and thus have more packets outstanding in the network. 

 In the constrained mode, regardless of connection structure, the queue length distributions are 

much heavier in the IBM replays than in the UNC replays. This is best explained by referring to 

the original time series of byte and packet throughput for the IBM traffic as shown in Figures 

3.1.3, 3.1.4, 3.1.7, and 3.1.8 (Chapter 3). Although the average byte throughput was measured as 

404 Mbps, the time series was non-stationary. Close observations reveal that the throughput is on 

average higher than 404Mbps for two-thirds of the hour, and then it is on average lower than 
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404Mbps for the rest of the hour. For IBM replays in the constrained mode, the link was set to 

424Mbps, so that average offered load was effectively 95% of the router-to-router link capacity 

over the experiment duration. However, due to the non-stationarity, this meant that the average 

offered load was actually much higher than 95% for the initial two-thirds of the hour, and much 

lower than 95% for the last third of the hour.  

 Why did we then decide to use this input traffic for generating connections for this study? 

There were two main reasons. First, this condition did not matter for the replays in the 

unconstrained mode. Hence, we were able to use this corporate traffic data for this study, thus 

providing different traffic characteristics compared to the campus traffic data acquired at UNC. 

Such comparison between different traffic inputs was helpful in understanding the outcome of 

experiments, and verifying the discoveries we were making about using different connection 

structures and roundtrip times for traffic generation. Second, for replays in the constrained mode, 

this non-stationarity helped us study the effect of very severe congestion and the prolonged and 

debilitating effect it has on performance metrics even if the congestion is not sustained 

throughout the experiment.      

  In summary, the RTT model used in traffic generation has a significant impact on router 

queue dynamics. If there is a heavier distribution of connection RTTs in an experiment, that 

translates to more time on average between subsequent packets in a TCP connection. The 

experiment using such an input RTT distribution in a constrained mode experiences more 

latencies within TCP connections, thus resulting in a lighter distribution of queue lengths because 

there is more time for the queue to drain. The number of active connections in the network is 

directly affected by the duration of connections generated in the experiment. Since the effect of 

the RTT model on connection durations is small to none for replays in the constrained mode, we 

do not see any effect of the RTT model on active connections.  
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5.3 Effect of Connection Structure in the Unconstrained Mode 

 We experimented with four different structural models for generating a given TCP 

connection. As described in Chapter 3, these are the block-concurrent model, the block-sequential 

model, the a-b model, and the a-t-b-t model. Let us recall the basic differences among these four 

models. The first two connection structure models are based on only the total bytes transmitted by 

a TCP connection. They both transfer all bytes in both directions as one large block without 

internal delays in the connection. The block-concurrent model transfers the bytes simultaneously 

in both directions between the two endpoints of a TCP connection while the block-sequential 

model sends the two blocks sequentially, emulating a single request-response exchange between 

the two TCP endpoints.  

 The a-b model preserves the sequential exchange of bytes while further preserving the epoch 

structure of request-response exchanges within a TCP connection without emulating any endpoint 

latencies. Finally the a-t-b-t connection structure model not only preserves every epoch within the 

connection but also emulates all the endpoint latencies measured in the original traffic. These four 

connection structure models create four significantly different emulations for the same measured 

TCP connections.  

 So far in this chapter, we presented results for replays in the unconstrained and constrained 

modes to study the effects of different RTT emulation methods on the following performance 

measures: connection duration, response time, router queue length, and active connections. In this 

section and the next, we present those results for the same set of replays in the unconstrained and 

constrained modes, but with the goal of studying the effect of connection structure models on the 

four metrics mentioned above. Each set of results in this section and the next consists of 

presenting one RTT model per set of experiments, while varying the TCP connection structure 

model for each experiment. In the four subsections that follow, we present results for replays in 
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the unconstrained mode showing the effect of using different TCP connection structure models 

on each of the four performance measures. Note that the results presented in Sections 5.3 and 5.4 

are exactly the same as those in Sections 5.1 and 5.2 respectively. They are presented here with 

different organization of figure content to make the presentation about differences in impact of 

connection structures clearer. 

5.3.1 Effect of Connection Structure on Connection Durations 

 In this section, we show the effect of different connection structure models on the duration of 

connections. For example, in Figure 5.3.1 we present results for connection duration for four 

experiments using block-concurrent in one, block-sequential in the second, a-b in the third, and 

a-t-b-t in the fourth experiment. All four experiments used the meanRTT model for emulating 

network characteristics.  
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 Figure 5.3.1: Connection duration – UNC Figure 5.3.2: Connection duration – IBM 
   (meanrtt round trip time)   (meanrtt round trip time)  
 

 In Figures 5.3.1 and 5.3.2 we show results for varying connection structure models using the 

meanRTT emulation method for the UNC and IBM replays. Similarly, Figures 5.3.3 and 5.3.4 

show results for connection duration, varying connection structure models using the 10pathRTT 
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model in every experiment. Figures 5.3.5 and 5.3.6 show results varying connection structure 

models using the usernet RTT model. 
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 Figure 5.3.3: Connection duration – UNC Figure 5.3.4: Connection duration – IBM 
  (10path round trip time)  (10path round trip time)  
 

As seen in Figures 5.3.1 through 5.3.6, for both the UNC or the IBM replays, the block-

concurrent and block-sequential connection structures result in very similar distributions of 

connection duration for a given input traffic and a given RTT model. The connections in the 

block-concurrent model finish very slightly faster than those in the block-sequential model 

because the bytes are transferred simultaneously in the block-concurrent case. For both these 

models, a little over 90% of connections complete in less than one second for both traffic inputs. 

This holds for all RTT models – the meanRTT, 10pathRTT and usernet RTT models. 

Studying Figure 5.3.1 (UNC replay using meanRTT), we find that the a-b model takes 

slightly longer than the block models because the a-b model preserves the epoch structure of the 

original connection thus adding a small component of time into the connections. In the UNC 

replay, fully 60% of sequential connections had only one epoch and hence the fastest 60% of the 

connections in the a-b model have the same effect on connection durations as the block-

sequential model. This result holds for all experiments using the a-b model, regardless of which 

RTT emulation method was used. Figures 5.3.1, 5.3.3, and 5.3.5 confirm this finding.  
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 Figure 5.3.5: Connection duration – UNC Figure 5.3.6: Connection duration – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

For the IBM replays, only 44% of the connections in the original traffic had one epoch. 

Hence with these experiments, as seen in Figures 5.3.2, 5.3.4, and 5.3.6, we see that the 

distribution of connection durations caused by the a-b model diverges from the ones created by 

the block models much sooner than that for the UNC replay. Also, the average number of epochs 

in the IBM traffic was 9; for UNC, it was 3. Hence we see that introduction of epoch structure 

alone in the a-b model has a greater effect on connection duration for the IBM replay than for the 

UNC replay. Especially for connections with more than one epoch, the generation of epoch 

structure adds a significant time component for these TCP connections. For example, with the 

usernet model (Figures 5.3.5 for the UNC replay), 94% of connections complete in less than 1s 

using one of the two block connection structure models whereas only 88% of connections 

complete in less than 1s using the a-b model. Similarly for IBM replays using usernet (Figure 

5.3.6), roughly 92% of connections complete in less than 1s using one of the block connection 

structure models but only 82% of connections complete in less than 1s using the a-b model. In the 

IBM replay, this larger difference is clearly due to the larger number of epochs on average in 

these connections and the additional time taken to replay these epochs faithfully. 

For all UNC and IBM replay experiments, however, we see that the distribution of 

connection durations using the a-b model eventually lessens the gap with connection durations 

created by the block structure models. We conjecture that this is because not all short connections 
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are due to small number of epochs. There are many very long connections with a small number of 

epochs but with a very large number of bytes to be transferred. Such large and long-lived 

connections would result in similar, though not same, connection durations when using the a-b or 

one of the block models.     

In Figures 5.3.1 through 5.3.4, for experiments using meanRTT or 10pathRTT models, we see 

a step-effect in the distribution of connection durations. That is, there are only certain discrete 

possible values for connection durations with these RTT models (discussed in Section 5.1). This 

step effect is prominent in the block models because, in the absence of other time components 

within the generated TCP connections, the block models are most heavily influenced by the 

connection RTT for the resulting connection duration. This step effect is dampened as we add in 

epochs and endpoint latencies because these structural components add variance to the 

distribution of latencies within each TCP connection. These other latencies dampen the otherwise 

dominant influence of the round trip time latency for these TCP connections. 

When we include the endpoint latencies (both server times and user thinktimes), we observe 

the most significant impact on connection duration. This effect is obvious from the experimental 

results using the a-t-b-t model. While 86% or more connections finished in l second or less 

without endpoint latencies for all UNC replays regardless of RTT models (see Figures 5.3.1, 5.3.3 

and 5.3.5), only 62%, 57% and 63% of connections completed in less than a second for the 

replays using the a-t-b-t model with the meanRTT, 10pathRTT and usernet RTT models 

respectively. This is the effect of including endpoint latencies in the modeling of connection 

structure. Thus, we find that including endpoint latencies in TCP traffic generation plays a highly 

significant role in the resulting distribution of connection durations.  These results are even more 

significant for the IBM replays, where only 60% of connections completed in less than a second 

when endpoint latencies are included in the modeling of connection structure for all RTT 

emulations.  
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There is a slightly greater difference in the distribution of connection durations between using 

the a-b and a-t-b-t models with IBM traffic as compared to using UNC traffic. This is directly 

dependent on the slightly larger average intra-epoch endpoint latencies for IBM connections. 

These latencies are not modeled in the a-b connection structure. And the much more significant 

shift of the a-b and a-t-b-t models indicating longer connections for the IBM replay than for UNC 

replay is also due to the larger number of epochs in the connections in the IBM traffic.  

So far, in this section, we have discussed the body of the distributions of connection 

durations. We now study the tails of these distributions. The CCDFs show results for the tails in 

Figures 5.3.7 through 5.3.12. The two block models have the same impact on connection duration 

while connections using the a-b model take slightly longer to complete. Note that even the small 

difference seen in the distributions between the block models and the a-b model is significant 

since the axes are on log-log scale.  
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 Figure 5.3.7: Connection duration – UNC Figure 5.3.8: Connection duration – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
 

 Here again, we observe a greater difference in impact by using the a-b model than by using 

one of the block models in the IBM replays. This is due to a high average number of epochs (9 

per connection) in the IBM traffic. Addition of endpoint latencies in the a-t-b-t model has the 

largest effect for these long connections. For example, in Figure 5.3.7, we find that roughly 0.5% 

of connections take more than 10 seconds to complete when using one of the two block 
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connection structure models while fully 1% of connections take longer than 10 seconds when 

using the a-b model. 
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 Figure 5.3.9: Connection duration – UNC Figure 5.3.10: Connection duration – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.3.11: Connection duration – UNC Figure 5.3.12: Connection duration – IBM 
  (usernet round trip time)  (usernet round trip time)  

 

With the a-t-b-t model, however, as much as 10% of the connections take 10 seconds or 

longer to complete. The top 10% of connections have durations greater than 1 second when using 

the block-concurrent and block-sequential models, while they take about 3-5 seconds when using 

the a-b model. These connections take 10 or more seconds to complete when we add in endpoint 

latencies using the a-t-b-t model for connection structure. These results hold true for all the 

experiments discussed here, using either the UNC traffic or IBM traffic, and regardless of the 

RTT emulation method used.  
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10 seconds for a connection to complete seems like a rather long time. The top 10% of 

connection durations using the a-t-b-t model for the UNC and IBM replays are greater than 10 

seconds. What might be the contributing factors? This compares to the top 10% of the distribution 

of intra-epoch endpoint latencies which were greater than 1 second and 1.1 second for the original 

UNC and IBM traffic respectively. Similarly, the top 10% of the distribution of user thinktimes or 

inter-epoch latencies were 7.5 seconds and 3 seconds for the UNC and IBM traffic respectively. 

Concurrent connections in the UNC and IBM traffic had 14 seconds and 60 seconds respectively 

for the top 10% of endpoint latencies within those connections.  

5.3.2 Effect of Connection Structure on Response Times 

 In this section, we present the results of the impact of the four connection structure models on 

the response times for request-response exchanges. Since response time is defined for each 

request-response exchange within a sequential TCP connection, and since the block-concurrent 

model does not generate bytes in a request-response sequence, response time is not defined for 

concurrent connections or the block-concurrent model. For the block-sequential model, every 

connection transmits data as one epoch and hence the connection duration of a connection in the 

block-sequential model is the same as its response time. For the a-b and a-t-b-t models, there are 

as many response time data points in a TCP connection as there are epochs in that connection.  

 In this section we discuss the impact of the connection structure model on response times. 

These figures show response times for request response exchanges for every epoch in sequential 

connections. Figures 5.3.13 through 5.3.18 show the distributions of response times for the UNC 

and IBM replays, varying connection structure models while keeping the RTT emulation method 

the same for each set of experiments. Overall, we observe that different connection structure 

models clearly have different impacts on the response times. The effect of different connection 

structure models on response time also depends on the characteristics of the original traffic. 



 190

Hence, the UNC replays show slight differences in the impact of these models on the distributions 

of response times than do the IBM replays.  
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 Figure 5.3.13: Response Time – UNC Figure 5.3.14: Response Time – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
 

  In Figure 5.3.13, we show the results of response times for the three connection structure 

models, all using the meanRTT emulation. The a-b model shows much faster response times since 

there are no endpoint latencies within these epochs. Fully 80% of response times are 160ms or 

less using this model. There is, however, a significant difference in response times between the a-

b and a-t-b-t models, which is the consequence of modeling intra-epoch endpoint latencies in the 

a-t-b-t model. Thus only 52% of response times are 160ms or less when using the a-t-b-t model. 

The block-sequential model does not include these latencies but has much larger data transfers 

since every TCP connection in the block-sequential model transfers all its bytes as a single 

request-response exchange; hence these response times are longer than those using the a-b model.  

 In Figure 5.3.14, we show similar results for the IBM replays. The a-b model again results in 

much shorter response times than the other two connection structure models. But what is equally 

significant is that the response times here are faster than in the UNC replay. This is directly due to 

the request sizes and response sizes in these epochs. While 80% of request sizes were less than 

1000 bytes for UNC traffic, they were less than 466 bytes for IBM traffic. And while 80% of 
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response sizes were less than 4KB for UNC traffic, they were less than 680 bytes for IBM traffic 

(Figures 3.1.11 and 3.1.13 in Chapter 3). This may explain the much faster response times for 

epochs in the IBM replays compared to those in the UNC replay. There are of course other 

factors, like connection RTT, that also affect response times. 
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 Figure 5.3.15: Response Time – UNC Figure 5.3.16: Response Time – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.3.17: Response Time – UNC Figure 5.3.18: Response Time – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 Although we discussed the meanRTT experiments in detail above, these results hold when 

using the 10pathRTT or the usernet RTT models as well. That is, the a-b model has the fastest 

response times regardless of RTT model, because there are no intra-epoch latencies (endpoint 

latencies) within each epoch. The cross-over of the distribution of response times between the 
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block-sequential and the a-t-b-t models in the IBM replays is probably due to the differences in 

impact of request and response sizes (larger in block-sequential model) vs. the impact of endpoint 

latencies (present in the a-t-b-t model) on epoch response times.  

 The Figures 5.3.19 through 5.3.24 show the CCDFs for response times for these experiments. 

Clearly connection structure has a large effect on the distribution of response times even in the 

tails of the distributions, espcially considering that these figures are on a log-log scale. In all 

cases, regardless of the RTT emulation used, the a-b model has the lightest tail because it has the 

smallest ADU sizes, though same as that of the a-t-b-t but smaller than that of the block-

sequential. The a-t-b-t model has the heaviest tail of response times because these epochs are 

dominated by the intra-epoch endpoint latencies for this connection structure model. 
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 Figure 5.3.19: Response Time – UNC Figure 5.3.20: Response Time – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
 

 In the body of these distributions, we noted that the a-b model resulted in the shortest 

response times regardless of RTT model used. Also, the distribution of response times for the a-b 

model when in the UNC replay was heavier than in the IBM replay due to the smaller request and 

response sizes for IBM traffic. Those results still hold for the tails of these distributions across 

RTT models. However, the a-t-b-t model produces slightly heavier distribution of response times 

in the IBM replay than in the UNC replay, in the very end of the tail of the distributions. This is 
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because the top 1% of intra-epoch latencies for connections in the IBM traffic was slightly 

heavier than that for connections in the UNC traffic.    
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 Figure 5.3.21: Response Time – UNC Figure 5.3.22: Response Time – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.3.23: Response Time – UNC Figure 5.3.24: Response Time – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

5.3.3 Effect of Connection Structure on Queue Length at the Router 

 In this section, we show the queue lengths at the outbound queue of the router before the 

unconstrained router-to-router link. The queue was sampled every 10 ms for the entire hour of the 

experiment. However, we only show the queue length data for the stable middle 40 minutes of the 

experiment. In Figures 5.3.25 and 5.3.26, we show the distribution of queue length at the router’s 

outbound queue for four experiments in each of the UNC and IBM replays respectively. Each set 
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of experiments used the meanRTT model while we varied the connection structure model per 

experiment among the block-concurrent, block-sequential, a-b, and a-t-b-t models. Similarly, in 

Figures 5.3.27 through 5.3.30, we show results for queue length for experiments varying the 

connection structure models while keeping the RTT emulation method the same between the 

10pathRTT and the usernet methods of emulation.    

 The Figures 5.3.25 through 5.3.30 show the distributions of the queue length at the router. 

The average throughput in these experiments was around 471 Mbps for the UNC replays and 404 

Mbps for the IBM replays. The router-to-router link was set to 1Gbps. Hence, for every 

combination of connection structure model and RTT emulation, the queue was empty for 99% of 

the time, as seen in these figures. 
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 Figure 5.3.25: Queue Length – UNC Figure 5.3.26: Queue Length – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.3.27: Queue Length – UNC Figure 5.3.28: Queue Length – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.3.29: Queue Length – UNC Figure 5.3.30: Queue Length – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 The CCDFs show that the queue had up to 100 packets at times. This is because there were a 

few short periods of peak traffic arriving at the router queue at greater than 1Gbps from the 

10Gbps aggregation link before the router. Hence, there were 10 or more packets in the queue for 

all the replays in the unconstrained mode for about 0.05% of the time.  

5.3.4 Effect of Connection Structure on Active Connections 

  We define any TCP connection as an ‘active connection’ in the network at a given time t, 

if the SYN for that TCP connection has been seen on the network, but the FIN or RST has not yet 

been recorded. In this section, we study the effects on number of active connection in the network 

when varying connection structure and keeping the RTT emulation method the same for that set. 

The Figures 5.3.31 through 5.3.36 show the time series of the number of connections that were 

recorded as active in the network during the middle 40 minutes of each experiment. 

 The block-concurrent and block-sequential models open the TCP connection and transfer 

bytes as quickly as possible. The block-concurrent model transmits data concurrently from both 

ends of the connection, while the block-sequential model transmits data sequentially, like one 

giant epoch per connection. The a-b model transmits data in epochs. However, all three models 
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spend most of the connection duration in data transmission and RTTs, and hence they complete 

the connections very quickly.  
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 Figure 5.3.31: Active Connections – UNC Figure 5.3.32: Active Connections – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.3.33: Active Connections – UNC Figure 5.3.34: Active Connections – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.3.35: Active Connections – UNC Figure 5.3.36: Active Connections – IBM 
  (usernet round trip time)  (usernet round trip time)  
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 The effect is that the number of active connections at any given time during the experiment is 

at least an order of magnitude lower for these three models as compared to the a-t-b-t model for 

both UNC and IBM replays, as seen in these figures. The a-t-b-t model preserves the endpoint 

latencies in each TCP connection. The number of active connections for the a-t-b-t model thus 

increases dramatically compared to the other three models. 

In Figure 5.3.37, we change the y-axis but show the same data for the UNC replay as shown 

in Figure 5.3.35. We observe here that there is indeed a difference in number of connections 

among the first three models, with block-concurrent having the least number of connections 

active in the network at any time, followed by block-sequential and then a-b. For example, at 

almost any given time during the experiment, the block-sequential model results in about an 

average of 200 more active connections in the network than the block-concurrent model. And the 

a-b model results in roughly 400 more active connections in the network than the block-

sequential model. However, these differences pale in comparison to the multi-fold increase in the 

number of active connections in the network when using the a-t-b-t model. This is due to the 

modeling of endpoint latencies in that connection structure. The a-t-b-t model clearly results in at 

least 40,000 more active connections in the network than all the other three connection structures.  
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Figure 5.3.37: Active Connections – UNC 
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For the UNC replay experiments, we measured about 45,000 active connections throughout 

the hour for the a-t-b-t model, while for the IBM replay, we measured about 78,000 active 

connections. The total number of connections over the hour for UNC replay was almost double 

that of the IBM replay. However, since the connections in the IBM replay with the a-t-b-t model 

clearly showed much longer connection durations, the number of active connections for IBM 

replay is much higher (Figures 5.3.35 and 5.3.36).  

5.3.5 Section Summary 

 In this section, we presented results for replays in the unconstrained mode using UNC traffic 

and IBM traffic. We discussed the results for three sets of experiments for each of the two input 

traffic mixes. For each set of experiments, we kept the RTT model the same for all experiments, 

while varying the connection structure model from among the block-concurrent, block-sequential, 

a-b and a-t-b-t models. Thus we studied the effect of these empirically-derived connection 

structure models on four key performance metrics: connection duration, response time, router 

queue length, and active connections.  

 We found that the connection structure model used in emulating network characteristics has a 

significant impact on the performance metrics – orders of magnitude more than the effect of RTT 

emulation methods. The connection structure model significantly affects connection durations 

and response times both in the body and the tail of the distributions of these performance metrics. 

We also found that the router queue length showed no differences among the experiments using 

different connection structure models. This was expected because these were replays in the 

unconstrained mode, and hence designed to not create any queue buildup. The number of active 

connections in the network is a second order effect that is affected by connection durations. This 

metric was also greatly affected by the differences in the connection structure models used in the 

experiments. 
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 So, if we had to choose a connection structure model to be used for experiments, which 

model would we pick? The choice of connection structure model is actually easier than the choice 

of RTT emulation. All the connection structure models we used were empirically derived from 

the same sources. But clearly, the a-t-b-t model with its endpoint latencies makes a huge 

difference in all outcomes for an experiment. So the take away message, if there is to be just one, 

is that the time components of traffic generation are as important as the size components. That is, 

while it is important to emulate TCP connections by the size of the connections, it is equally 

important to emulate them by the time components. These consist of the connection RTTs, the 

sequential or concurrent nature of data exchanges within connections, and the endpoint latencies 

measured for these connections. Unlike with RTT models, the connection structure models affect 

all the performance metrics significantly and throughout the distributions. 

5.4 Results for Experiments in the Constrained Mode 

 In Section 5.3 we discussed the effect of connection structure models on the four performance 

metrics of connection durations, response times, router queue length and active connections. 

Those were replays in the unconstrained mode; that is, the router-to-router link was set to 1Gbps. 

In this section we present results showing the impact of connection structure models on the same 

four metrics for a set of replays in the constrained mode; that is, the router-to-router link is set to 

105% of the offered load on that link. For the replays in the constrained mode using UNC traffic, 

the link was set to 496Mbps, and for the replays in the constrained mode using IBM traffic, the 

link was set to 424Mbps. For each set of experiments, we compare the performance metrics for 

different connection structure models, keeping the RTT emulation method the same for all 

experiments in that set.  
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5.4.1 Effect of Connection Structure on Connection Durations 

 Before we compare the effects of connection structure models on connection durations, we 

begin by studying the effect of the constraint on the router-to-router link on connection durations 

in the constrained mode. For this we compare the connection durations for block-concurrent and 

a-t-b-t models in the unconstrained and constrained modes.  

 In Section 5.3.1, we observed the direct effect of connection structure modeling on the 

durations of connections when there was no constraint in the network. In this section, we observe 

that the connection duration is not only affected by the difference in connection structure, but it is 

even more significantly affected by the constraint on the link. In Figures 5.4.1 through 5.4.6 we 

show the distributions of the connection durations for these experiments. In each figure, the RTT 

model is the same for all experiments while the connection structure is varied. Each figure shows 

results from two replays in the unconstrained mode and two replays in the constrained mode. 

Each figure shows results from experiments using either the block-concurrent or the a-t-b-t 

connection structure models keeping the RTT emulation method constant using either the meanrtt 

or the usernet RTT emulation. 
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 Figure 5.4.1: Connection Duration – UNC Figure 5.4.2: Connection Duration – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.3: Connection Duration – UNC Figure 5.4.4: Connection Duration – IBM 
  (10path round trip time)  (10path round trip time)  
 

 See Figure 5.4.1 showing four UNC replay experiments. We find that 84% of connections 

complete in 500ms or less using the block-concurrent model in the unconstrained replay, but only 

58% of connections complete in the constrained replay for the same connection structure. The 

effects of queuing delay are so profound on connection duration that for about 70% of 

connections, the duration is the same for the a-t-b-t model in the replay in unconstrained mode as 

for the block-concurrent model in the constrained case. That is, the queuing delay for the block-

concurrent model in the constrained case is as large as the endpoint latencies that were present in 

the original connections (and represented in the a-t-b-t model).  

 This same effect is seen when using the 10pathRTT, as shown in Figure 5.4.3 for the UNC 

replay. In the case of usernet RTT emulation, Figure 5.4.5 shows that the queuing delays in the 

block-concurrent model exceed the endpoint latencies in the a-t-b-t model for 75% of 

connections, resulting in longer connections in the block-concurrent model than in the a-t-b-t 

model. As we will see in Section 5.4.3, the queue buildup for block-concurrent model is simply 

much heavier than for the a-t-b-t model. The other observation (Figures 5.4.1, 5.4.3, and 5.4.5) is 

that for UNC replays, there is a very small difference in the distributions of connection durations 

between the a-t-b-t model in unconstrained and constrained modes. This is because the a-t-b-t 

model does not cause a huge queue buildup and hence the queuing delay is small, especially 
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compared with the endpoint latencies that are the primary contributors to the connection 

durations. 
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 Figure 5.4.5: Connection Duration – UNC Figure 5.4.6: Connection Duration – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 Figures 5.4.2, 5.4.4, and 5.4.6 show results for IBM replay experiments in the constrained 

mode. The queue buildup in these experiments is slightly heavier for both block-concurrent and 

the a-t-b-t models as compared with the UNC replays. Hence we see large queuing delays 

affecting connection durations when using the block-concurrent connection structure model in the 

constrained mode. And even the a-t-b-t model creates a significant shift in the distributions of 

connection durations between its replays in the unconstrained and constrained modes. This is due 

to the heavier queue buildup in the IBM replay in constrained mode. Hence, we observe a greater 

difference in the distribution of connection duration between the unconstrained and constrained 

replays with the a-t-b-t model in the IBM replay than in the UNC replay.  

 Figures 5.4.7 through 5.4.12 show the CCDFs of connection durations for these experiments, 

varying connection structure while keeping the method of RTT emulation the same. Regardless of 

the RTT method used, there is still a large effect of the queuing delay on the connection durations 

for these long connections in the replays in the constrained mode using the block-concurrent 

model. With the a-t-b-t model, the queuing delay is masked by the much more dominant effect of 

the endpoint latencies within these very long connections.  
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 Figure 5.4.7: Connection Duration – UNC Figure 5.4.8: Connection Duration – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.9: Connection Duration – UNC Figure 5.4.10: Connection Duration – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.11: Connection Duration – UNC Figure 5.4.12: Connection Duration – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 So far, we studied the difference in connection durations between replays in the 

unconstrained and constrained modes due to queuing delays caused by connection structure 
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differences. We now present the results of replays in the constrained mode for studying the effect 

of connection structure modeling on connection durations. The Figures 5.4.13, 5.4.15, and 5.4.17 

show distributions of connection durations for the UNC replays in the constrained mode for four 

connection structure models. The connections in the block-concurrent and block-sequential 

models still complete faster overall than the other models but much slower than in their replays in 

the unconstrained mode.  

 The effects of queuing delay are so profound on connection duration that for the UNC replay 

experiments in the meanRTT and 10pathRTT experiments, the connection duration for about 70% 

of connections is the same for the a-t-b-t model as for the block-concurrent and blk-seq models. 

That is, the queuing delay in the block models is as large as the endpoint latencies in the a-t-b-t 

model. In the case of usernet RTT emulation, Figure 5.4.17 shows that the queuing delays in the 

block models exceeds the endpoint latencies in the a-t-b-t model for 70% of the connections. 

Thus these connections take longer to complete in the block models than in the a-t-b-t model. 

Recall that for a given connection structure, the usernet RTT model resulted in the longest 

queues. 
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 Figure 5.4.13: Connection Duration – UNC Figure 5.4.14: Connection Duration – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.15: Connection Duration – UNC Figure 5.4.16: Connection Duration – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.17: Connection Duration – UNC Figure 5.4.18: Connection Duration – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 Figures 5.4.14, 5.4.16 and 5.4.18 show results for the IBM replay experiments. The effect of 

queuing delay is seen in all four models of connection structure. We recall that even in the 

unconstrained mode, the a-b and a-t-b-t models in the IBM replays showed longer connection 

durations. This was due to the much larger number of epochs per connection in the IBM 

connections than in the UNC connections.  

 So, now in the constrained mode, the replays with the a-b and a-t-b-t models continue to 

have the heavier distributions of connection durations. In the constrained mode, the effect of 

queuing delay further adds to the duration of these connections.  



 206

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 
 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-seq.meanrtt

a-b.meanrtt
a-t-b-t.meanrtt

 

 Figure 5.4.19: Connection Duration – UNC Figure 5.4.20: Connection Duration – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.21: Connection Duration – UNC Figure 5.4.22: Connection Duration – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.23: Connection Duration – UNC Figure 5.4.24: Connection Duration – IBM 
  (usernet round trip time)  (usernet round trip time)  
  
 Figures 5.4.19 through 5.4.24 show the CCDFs of the connection durations for the different 

connection structures. We observe that for these long connections, the connections using block-
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concurrent and block-sequential models complete at about the same rate. Connections using the 

a-b model take slightly longer due to the added time generating and transmitting data in epochs. 

The a-t-b-t model has the heaviest distribution of connection durations because of the significant 

effect of the endpoint latencies within these connections.   

5.4.2 Effect of Connection Structure on Response Times 

 In Section 5.3.2, we observed the direct effect of connection structure modeling on the 

response times for request-response exchanges in sequential connections when there was no 

constraint on the router-to-router link. In this section, we observe response times not only affected 

by the difference in connection structure, but also affected (even more significantly) by the 

second order effect of the queuing delay that resulted from difference in connection structures. 

Hence we first study the effect of queuing delay for a combination of connection structure model 

and RTT emulation method. We compare the response times for the a-b and the a-t-b-t models in 

the unconstrained and constrained cases in Figures 5.4.25 through 5.4.30.  

 The response time metric is most sensitive to differences in connection structure. Whereas the 

epochs in the a-b model experienced faster response times than the epochs in the a-t-b-t model in 

the replays in the unconstrained mode, the queuing delay in the replays in the constrained mode 

causes much longer response times for these same epochs. For example, in Figure 5.4.25, while 

90% of response times for the a-b model using meanRTT in the unconstrained experiment were 

400 ms or less, only 70% of these response times were less than 400 ms in the constrained 

experiment. For the a-t-b-t model with meanRTT, roughly 80-82% of response times were 400 ms 

or less for the replays in the unconstrained and constrained modes. The effect of queuing delay is 

slightly more pronounced for the a-t-b-t experiment in the constrained mode using IBM traffic as 

seen in Figure 5.4.26.  
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 Figure 5.4.25: Response Time – UNC Figure 5.4.26: Response Time – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.10path-unconstrained
a-t-b-t.10path-unconstrained

a-b.10path-constrained
a-t-b-t.10path-constrained

 
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.10path-unconstrained
a-t-b-t.10path-unconstrained

a-b.10path-constrained
a-t-b-t.10path-constrained

 

 Figure 5.4.27: Response Time – UNC Figure 5.4.28: Response Time – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.29: Response Time – UNC Figure 5.4.30: Response Time – IBM 
  (usernet round trip time)  (usernet round trip time)  
  

 Figures 5.4.27 and 5.4.28 show the response times for UNC and IBM replays using the 

10pathRTT model. Again, we see a very significant effect of queuing delay on the distribution 
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when using the a-b model and relatively small effect of queuing delay when using the a-t-b-t 

model. Similar results are shown when using the usernet RTT model, as shown in Figures 5.4.29 

and 5.4.30.   

 Figures 5.4.31 through 5.4.36 show the CCDFs for the same experiments discussed above, 

showing the effect of queuing delay for the a-b and a-t-b-t models while keeping the RTT 

emulation method the same in each figure. We oberve that regardless of the RTT emulation 

method, there is a significant queuing delay effect on response times even for those long response 

times in the tails of the distributions.  
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 Figure 5.4.31: Response Time – UNC Figure 5.4.32: Response Time – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.33: Response Time – UNC Figure 5.4.34: Response Time – IBM 
  (10path round trip time)  (10path round trip time)  
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 The a-t-b-t model shows no effect of queuing delay for response times in the long tail of the 

distribution. However, the response time distribution when using the a-t-b-t model is much 

heavier than those when using the a-b- model for replays in both unconstrained and constrained 

modes. This is because response times for the a-t-b-t model are dominated by the intra-epoch 

endpoint latencies which are orders of magnitude larger than the smaller queuing delays 

experienced by the connections in the a-t-b-t model. 
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 Figure 5.4.35: Response Time – UNC Figure 5.4.36: Response Time – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 So far, in this section, we studied the effect of queuing delay on a given combination of 

connection structure and RTT models. We now compare the response times for different 

connection structure models for replays in the constrained mode. Figures 5.4.37 through 5.4.42 

show response times for different connection structure models while keeping the RTT emulation 

method the same. We do not include the block-concurrent model in this section because that 

model has no notion of request-response exchanges and hence no notion of response times either. 

Overall, we observe from these figures that regardless of the RTT emulation method, the queuing 

delay has such a debilitating effect on response times for the block-sequential and a-b models that 

despite the a-t-b-t model generating intra-epoch endpoint latencies, the a-t-b-t connections show 

the fastest response times in the constrained cases for experiments using either UNC or IBM 

traffic. Interestingly, the same endpoint latencies within connections in the a-t-b-t model that 
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were responsible for longer response times in replays in the unconstrained mode are now also 

responsible for shorter queues and hence smaller queuing delays in the replays in the constrained 

mode; this leads to shorter response times for the a-t-b-t model compared to the a-b model in 

constrained mode. 
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 Figure 5.4.37: Response Time – UNC Figure 5.4.38: Response Time – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.39: Response Time – UNC Figure 5.4.40: Response Time – IBM 
  (10path round trip time)  (10path round trip time)  
 

 In Figure 5.4.37, we observe that 80% of epochs using the a-t-b-t model have response times 

less than 400 ms while only 68% of epochs using the a-b model have response times less than 

400 ms. In the replays in the unconstrained mode, the response times of the a-b model were much 

shorter than those for the a-t-b-t model. This drastic shift in distribution of response time for the 
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a-b model is due to very heavy queuing delays. Similarly, due to queuing delays, only 60% of 

epochs using the block-sequential model have response times less than 400 ms. 
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 Figure 5.4.41: Response Time – UNC Figure 5.4.42: Response Time – IBM 
  (usernet round trip time)  (usernet round trip time)  
 

 The difference in response time distributions among the different connection structures is 

significantly greater than the response time distributions among the different RTT emulation 

methods. Also, with both connection duration and response time, the effect of RTT emulation 

was seen up to about 500 ms to 1 second. The queuing delay was due to differences in connection 

structure more so than differences in RTT emulation. Hence we conclude that although RTT 

emulation affects end-user performance measures of connection durations and response times, the 

differences in connection structures, especially the endpoint latencies within TCP connections 

have the single most dominant effect on connection durations and response times, both due to the 

structure of the connections itself and due to the queuing delay effect of such structure. 

 Figures 5.4.43 through 5.4.48 show the CCDFs of the response times for the different 

connection structures while keeping the RTT emulation method the same in each figure. We 

observe that for these long response times, the request-response exchanges in the a-b model are 

the fastest since the ADU sizes of these single epochs is smallest along with having no endpoint 

latencies. The block-sequential connections have longer response times due to larger ADU sizes 

than the a-b model. The a-t-b-t model has the heaviest distribution of response times because of 



 213

the significant effect of the intra-epoch endpoint latencies within these request-response 

exchanges.   
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 Figure 5.4.43: Response Time – UNC Figure 5.4.44: Response Time – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.45: Response Time – UNC Figure 5.4.46: Response Time – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.47: Response Time – UNC Figure 5.4.48: Response Time – IBM 
   (usernet round trip time)    (usernet round trip time) 



 214

5.4.3 Effect of Connection Structure on Queue Length at the Router 

 In this section, we discuss the effects of different connection structures on the network-level 

performance measure of queue lengths at the outbound queue of the router before the constrained 

link. Figures 5.4.49 through 5.4.53 show the distributions of the outbound queue length at the 

router, measured every 10ms, during the middle 40 minutes in each hour long experiment. These 

figures represent the results from replays in the constrained mode. For the UNC replays the 

bottleneck link was set to 496Mbps and for the IBM replays it was set to 424 Mbps. The router 

queue was deliberately set to accommodate 65,000 packets so as not to cause any packet drops. 

The goal here was to determine the first order effect of different connection structure models on 

the router queue, and thus study the second order effects this had on connection durations, active 

connections and response times.  

 With effectively 95% load on the link, and the moments of peak load creating even more 

queuing in the router, we see the router queues significantly loaded for much of the time. The 

IBM replay experiments show even greater queue occupation than the UNC replay experiments. 

This is directly due to the much higher load for IBM replay in the first half of the experiment 

since the original traffic had this characteristic of having greater throughput in the first half than 

in the second half of the traffic capture. 
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 Figure 5.4.49: Queue Length – UNC Figure 5.4.50: Queue Length – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.51: Queue Length – UNC Figure 5.4.52: Queue Length – IBM 
  (10path round trip time)  (10path round trip time)  
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 
 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

 

 Figure 5.4.53: Queue Length – UNC Figure 5.4.54: Queue Length – IBM 
   (usernet round trip time)    (usernet round trip time) 

 

 In both sets of experiments using UNC and IBM traffic we observe that the block-concurrent 

and block-sequential models do not allow the queue to drain for most of the time. This is due to 

the back-to-back sending of windows of data packets for connections using either of these 

models. In the block models, since there is no separation of ADUs and no endpoint latencies 

between ADUs, the application can send all the data at once, and TCP can grow its congestion 

window much faster. For a given RTT, this leads to more packets outstanding in the network. 

Even the a-b model, though it consists of epochs, does little or nothing to alleviate the queuing on 

the router.  
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 Figure 5.4.55: Queue Length – UNC Figure 5.4.56: Queue Length – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.57: Queue Length – UNC Figure 5.4.58: Queue Length – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.59: Queue Length – UNC Figure 5.4.60: Queue Length – IBM 
   (usernet round trip time)    (usernet round trip time) 
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 Thus for experiments using UNC traffic, these three models result in the queue having more 

than 1000 packets for 65% to 80% of the time, depending on RTT emulation method used. With 

the a-t-b-t model, however, the endpoint latencies in the connection structure allow the queue to 

drain and create different queue dynamics as a result. Only 20% of the time does the queue have 

more than 1000 packets in it. For the IBM replays, we see similar effects on the queue. However, 

the a-t-b-t model in this case does not alleviate the queue as much as in the UNC replays. This is 

because the endpoint latency distribution is much heavier in the UNC traffic than in the IBM 

traffic. 

5.4.4 Effect of Connection Structure on Active Connections 
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 Figure 5.4.61: Active Connections – UNC Figure 5.4.62: Active Connections – IBM 
  (meanrtt round trip time)  (meanrtt round trip time)  
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 Figure 5.4.63: Active Connections – UNC Figure 5.4.64: Active Connections – IBM 
  (10path round trip time)  (10path round trip time)  
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 Figure 5.4.65: Active Connections – UNC Figure 5.4.66: Active Connections – IBM 
   (usernet round trip time)    (usernet round trip time) 

 

 In this section, we discuss the results for the number of active connections and compare the 

effect of connection structure models on this network-level measure in the constrained mode. 

Figures 5.4.61 through 5.4.66 show the time series of the number of connections that were seen 

active in the network for the middle 40 minutes of each experiment. The TCP connections using 

block-concurrent, block-sequential, and a-b models spend most of the connection duration in data 

transmission, and hence they complete the connections very quickly. Hence, the number of active 

connections at any given time during the experiment is much lower for these three models as 

compared to the experiments using the a-t-b-t model. This is similar to results seen in the 

unconstrained cases. 

 The a-t-b-t model preserves the endpoint latencies in each connection. The number of active 

connections thus increases dramatically compared to the other three models. The active 

connections in the network are a direct consequence of connection durations experienced by the 

end user. One difference seen here, and not in the unconstrained case is the initial slightly higher 

number of active connections for the block-concurrent, block-sequential and a-b models. This 

was because of much higher queuing delay experienced by these connections in the network 

during the initial several minutes of each experiment. Such queue dynamics are a direct 

consequence of unrealistically sending windows of packets back to back within a TCP connection 
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ignoring all endpoint latencies that are an inherent part of the application models and hence 

connection structure. The lack of structure allows faster window growth, thus completing 

connections much faster. 

5.4.5 Section Summary 

 For replays in the constrained mode, the connection structure model used for emulating TCP 

connections has a huge impact on connection durations. This is due to large queues and long 

queuing delays in the network which are a direct consequence of the connection structure used for 

traffic generation. There is also a significant impact on response times due to the connection 

structure model used for traffic generation.  

 In this section, we also compared the effects of different connection structure models on the 

queue length at the router with the router-to-router link set to 105% of the offered load on that 

link, and a router queue length of 65,000 packets. Different connection structure models used in 

traffic generation affect queue dynamics differently. In general, the block-concurrent and block-

sequential models create the heaviest queue length distributions because every connection sends 

all its bytes in one block. Thus in the absence of any latencies within the connection structure, the 

arrival pattern of packets at the queue is burstier for the block models than for the other models. 

This is because for a given window size, the block and the a-b models are restricted only by the 

connection RTT in how quickly they can grow their window.    

 For connections using the a-b model, especially for those connections that originally had 

several epochs within the connection, the a-b model helps introduce latencies implicitly by way 

of generating synchronized request-response exchanges in sequence within the connection. Thus 

the replays in the constrained mode using the a-b model have a slightly lighter distribution of 

queue lengths compared with those using one of the block models. When connections are 
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generated using the a-t-b-t model, they not only maintain the time sequence of request-response 

exchanges but also emulate intra-epoch and inter-epoch latencies within each TCP connection. 

This significantly alleviates queue buildup and hence the replays in the constrained mode using 

the a-t-b-t model result in the lightest queue distributions.  

 Hence we see the following patterns in all of the queue length distribution, regardless of the 

RTT emulation used. The heaviest queue length distribution is seen when using the block-

concurrent and block-sequential models followed by the a-b model and finally the a-t-b-t model 

which creates the lightest distribution of queue lengths. All of these results hold true for the IBM 

replays in constrained mode as well. However, the queue length distributions in the IBM replay 

experiments were much heavier due to reasons discussed earlier, and directly related to the non-

stationarity of the original throughput time series of the IBM traffic. 

5.5 Chapter Summary  

In this section, we summarize the effect of RTT models and connections structure models on 

network performance in 5.5.1 and 5.5.2 respectively.  

5.5.1 Effect of RTT Models 

 In this chapter, we first presented our findings that the round trip time model used for traffic 

generation affects connection duration significantly. However, this effect is significant up to 

about 500 ms and, moderately so, up to 1 second in the distribution of connection durations. This 

holds true for all UNC and IBM replay experiments and for all the four connection structure 

models. Beyond the duration of 500ms, and especially after about 1 second, the RTT model has 

little or no effect on the distribution of connection durations. This is due to various reasons. In the 
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block-concurrent and block-sequential models, connections with duration beyond 500ms are 

often dominated by the large filesize (total number of bytes transmitted) of the connection. For 

the a-b and a-t-b-t models, the number of epochs plays a significant role in connection duration 

above and beyond the bytes transmitted. And lastly, for the a-t-b-t model, the endpoint latencies 

in the form of server processing or user think times add to this duration. All these factors lessen 

the impact of the RTT model used in traffic generation, for durations beyond 500ms.  

 So what do these sets of results tell us about how to emulate RTT for traffic generation for 

experiments where connection duration is a performance metric of importance? As long as the 

method of RTT emulation is representative of the empirical distribution of the traffic being 

replayed, the differences in RTT models affecting connection duration beyond 1 second are not 

significant. However, since the majority of connections in most production traffic are likely to 

have original connection durations less than 1 second, and since this is the region in which RTT 

emulation model matters most, if connection duration is an important performance metric in an 

experiment, then it would be advisable to use the usernet model for RTT emulation. 

 It is important to note that all three RTT methods discussed in this chapter are based on the 

same empirical measures and hence represent some form of realistic round trip times for TCP 

connections on the production link from which this traffic was acquired. 

 We also found that the round trip time of a connection significantly affects response times of 

epochs in that connection. This effect is seen mainly up to about 500 ms or 1 second of the 

response times. This is true for all experiments using both UNC and IBM traffic and holds for all 

the four connection structure models. Beyond the duration of 500ms, or 1 second of the 

distribution, the RTT method has little or no effect on the distribution of response times. So 

which RTT model would we pick for traffic generation for experiments where response time is a 
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performance metric of importance, as is often the case when evaluating new protocols or router 

queue mechanisms?  

 Since the majority of request-response exchanges in most traffic on production links are 

likely to have original response times much less than 1 second, and since this is the region in 

which RTT emulation model matters most, it would be advisable to use the usernet model of RTT 

emulation. Furthermore, the meanRTT or 10pathRTT models lack the diversity of RTT values 

seen in the original distribution. Thus the resulting distribution of response times for an 

experiment is varied when using the usernet RTT model but constrained to discrete values that 

are multiples of the few available connection RTTs when using meanRTT or 10pathRTT models.  

 For experiments in the constrained mode, the RTT model had a significant impact on the 

distribution of queue lengths at the router. If there is a heavier distribution of connection RTTs in 

an experiment, that translates to more time on average between subsequent windows of packets in 

a TCP connection. The experiment using such an input RTT distribution in a constrained mode 

experiences more latencies within TCP connections, thus resulting in a lighter distribution of 

queue lengths because there is more time for the queue to drain. The number of active 

connections in the network is directly affected by the durations of connections in the network. We 

found that the RTT model does not affect the number of active connections in the network. 

5.5.2 Effect of Connection Structure Models 

 The effect of RTT models on the application-level and network-level performance metrics, 

while significant, becomes almost negligible when compared to the dramatic effect of connection 

structure models on these metrics. While differences in RTT models clearly created differences in 

generation of the time component of each TCP connection, we found that the greater time 

components are actually part of the connection structure model.  



 223

 The a-b model, even without any endpoint latencies can creates a much heavier distribution 

of connection durations if there was a high average number of epochs in the original traffic being 

replayed. Modeling a TCP connection using the a-t-b-t model, which includes both epoch 

structure and endpoint latencies, captures all the original application data exchange patterns 

without knowledge of the actual applications. In doing so, this captures what we have discovered 

to be the most significant time component within TCP connections – the endpoint latencies.   

 We use connection duration as a performance metric not in the sense that the connection 

structure causing the fastest completions is the best model. Instead, our goal is to generate traffic 

such that the performance metrics measured during an experiment in the laboratory reflect the 

realistic measurements taken for connections in the original traffic. Why does this matter? Say, 

we develop a new transport protocol to operate at high speeds and enable faster connection 

completions. If we test this protocol in the laboratory using one of the block models, we cannot 

accurately assess whether faster connection completions are due to the block model or due to our 

new protocol. Hence, we conclude that if connection duration is a metric of importance, we 

should use the a-t-b-t model.   

 Response times for request-response exchanges within a TCP connection depend on three 

main factors: connection round trip time, the size of requests and responses, and the intra-epoch 

latencies. We see the clear effect of each of these components when studying the distribution of 

response times in this study. Connection RTT influences response times up to about 500 ms only. 

The sizes of requests and responses clearly have a significant effect on response times as seen 

from comparing the results between the a-b and the block-sequential connection structure models. 

And then intra-epoch latencies have the most significant effect on response times as seen from the 

results of the a-t-b-t model which generates all endpoint latencies. 

 The distributions of response times are often used as a metric of performance. For example, 

in [LAJS07], the authors demonstrate that one AQM scheme is better than another if the resulting 

distribution of response times when using the first AQM scheme in the routers is lighter (faster 
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response times) than when using the other scheme. This is not the kind of assessment we seek to 

emphasize in this study. Faster response time for a connection structure in no way indicates that 

that connection structure is better than another. However, response time is an important metric in 

such protocol evaluation studies like the AQM example. And a metric is only good for 

comparison when it reflects reality; that is, when the traffic reflects the original request-response 

exchange sequence mimicking application behaviors found in the traffic on production links.  

 We found that the different connection structure models had significantly different effects on 

the queue length at the router. In general, the block-concurrent and block-sequential models 

create the heaviest queue length distributions because every connection sends all its bytes in one 

block. For connections using the a-b model, especially for those connections that originally had 

several epochs within the connection, the a-b model helps introduce latencies implicitly by way 

of generating request-response exchanges in sequence within the connection. Thus the replays in 

the constrained mode using the a-b model have a slightly lighter distribution of queue lengths 

compared with those using one of the block models. When connections are generated using the a-

t-b-t model, they not only maintain the time sequence of request-response exchanges but also 

emulate intra-epoch and inter-epoch latencies within each TCP connection. This significantly 

alleviates queue buildup and hence the replays in the constrained mode using the a-t-b-t model 

result in the lightest queue distributions. The reason the tails of the response times seem 

unaffected is because the queuing delay, in the case of a-t-b-t connection structure experiments, 

represents a small fraction of the intra-epoch latencies measured for these connections in the 

original trace. Specifically, queuing delay is in tens of milliseconds while the intra-epoch 

latencies are hundreds of milliseconds to several seconds. For the top 10% of the epochs, 

response times in the constrained mode represent an increase of 10% and 20% for results for the 

UNC and IBM replays respectively as compared with their unconstrained modes. 

 Hence we see the following patterns in all of the queue length distribution, regardless of the 

RTT emulation used. The heaviest queue length distribution is seen when using the block-
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concurrent and block-sequential models followed by the a-b model and finally the a-t-b-t model 

creates the lightest distribution of queue lengths. All of these results hold true for the IBM replays 

in constrained mode as well.  

  The number of active connections in the network is directly affected by the durations of 

connections in the network. We observed that the connection structure model used in traffic 

generation significantly affects connection durations. The number of active connections in the 

network is a second order effect of the connection structure used in traffic generation. Thus we 

see that the number of active connections in the network is smallest when using the block-

concurrent model and largest when using the a-t-b-t model, differing by an order of magnitude.  



 

 

 

CHAPTER 6 

 
 

ADDITIONAL RESULTS 
 

 

Discovery consists in seeing what everyone else has seen and thinking what no 
one else has thought. 

Albert Szent-Gyorgi  
(Hungarian Biochemist, 1937 Nobel Prize for Medicine, 1893-1986) 

 

 

 So far in this dissertation, we have presented results for a complete set of experiments using 

four connection structure models and three RTT models, in both unconstrained and constrained 

network link modes, using two different input traces. In this chapter, we present some additional 

results from experiments we conducted in the process of completing this dissertation. For all 

experiments discussed in this chapter, we used only the UNC traffic as input. While these 

experiments are not central to our overall results, we have included them here for completeness. 

We present these results in three sections as follows. In Section 6.1, we present results for a small 

set of experiments using three RTT models we developed (explained in Chapter 3) – nodelay, 

medianRTT, and uniformRTT. For each of these RTT models, we ran experiments using only the 

control set (the a-t-b-t connection structure model with the usernet RTT model). In Section 6.2, 

we present results for the DA (discrete approximation) RTT model, showing that its results 

closely follow that of the usernet RTT model. 

 In Section 6.3, we present results from experiments varying another network-level parameter 

for traffic generation – receiver maximum window sizes assigned to endpoints of individual 
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connections. Finally in Sections 6.3 and 6.4 respectively, we discuss the arrival patterns of 

packets at the router before the bottleneck link for different traffic models.  

6.1 Miscellaneous Round-Trip Time Models 

 In Chapter 5, we presented results for experiments using three round trip time models for 

traffic generation for each of four connection structure models. They were meanrtt, 10pathrtt, and 

usernet RTT. In this section, we show results for experiments using three other RTT models: the 

nodelay, medianRTT, and uniformRTT models. For connection structure, we use only the a-t-b-t 

model, having already established that it most closely and realistically emulates the original 

traffic. For details on how we emulate these four models of RTT, we refer to Section 3.4: 

Variations in emulating network path characteristics.  

6.1.1 Effect of RTT Emulation in the Unconstrained Mode 

 Let us begin this discussion with presenting results using these three RTT models in the 

unconstrained network mode. For each of the four performance metrics, we compare the results 

for experiments using nodelay, medianRTT, and uniformRTT models against experiments using 

the usernet RTT model as the control set. Sections 6.1.1 and 6.1.2 show results for experiments in 

the unconstrained and constrained modes respectively. 

6.1.1.1 Connection Duration 

 In Figures 6.1.1 and 6.1.2 we show CDFs and CCDFs for connection duration for four 

experiments – all using the a-t-b-t connection structure model, but different RTT models. As we 

observed with the three RTT models discussed in Chapter 5, we find that there is a significant 

difference in the distribution of connection duration among experiments using different RTT 
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models. While the models used in Chapter 5 showed differences only up to 1 second, we observe 

a greater difference here. Why?  
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 Figure 6.1.1: Connection duration – CDF Figure 6.1.2: Connection duration – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 First, the nodelay model is really an extreme case where we emulate no connection RTTs at 

all. While this is not realistic, it serves a purpose here – to provide a quantitative assessment of 

the role of round trip times in connection duration. We find that although 60% of the connections 

complete in less than 127 ms with the nodelay RTT model, the mean completion time for 

connections using this model is still 33 ms. So, why do 40% of connections take more than 127ms 

to complete when there is no RTT delay? And why do 20% of the connections take more than 1 

second to complete with no connection RTT? What is causing these connections to last so long? 

It is the epoch structure and endpoint latencies within the connections. We recall that 60% of the 

sequential connections had only one epoch, but almost 20% of sequential connections had 3 or 

more epochs for the UNC traffic which is the input traffic for all experiments discussed in this 

chapter. For these connections, almost 50% of these inter-epoch latencies were greater than 200 

ms – much larger than most connection RTTs. In the case of concurrent connections, the endpoint 

latencies played an even more significant role in connection durations, with 60% of the endpoint 

latencies greater than 1 second. Hence although having no RTT delay makes a significant impact 
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on the distribution of connection duration, it is not as dramatic as we would have expected, and 

this is because of the even more significant impact of endpoint latencies on the durations of 

connections.   

 The median RTT for all these 4.7 million connections in the input traffic was 36ms. 

Continuing discussion of the results shown in Figure 6.1.1, we observe that when all connections 

were replayed using 36ms as the connection RTT – this is the medianRTT model – they 

completed faster than the uniformRTT and usernet cases. 60% of connections using the 

medianRTT model completed in 250ms or less while the average was still 33 ms, similar to the 

nodelay model. This is because the average connection duration is mostly influenced by the 

longer connections which are in turn influenced more by the endpoint latencies than the 

connection RTT. 20% of connections take more than 1.2 seconds to complete with the medianrtt 

model. Compare this to the results for the usernet RTT model which also shows an average 

connection duration of 33 ms. But with the usernet RTT model, 60% of those connections 

complete in 372 ms, while 20% of them take 2 seconds or more to complete.   

 Emulating round trip times using the uniformRTT model (shown in the results in Figure 6.1.1) 

slowed completion time more than any other RTT model. This is likely because we used the 

U[10,200] distribution, which has a mean of 105ms. This is significantly higher than the 80ms 

mean of the empirical distribution of RTTs in the original traffic. Hence, while 60% of 

connections completed in 370ms or less with usernet RTT, it took up to 580ms for the completion 

for 60% of connections when using the uniformRTT model.  

 Comparing this result and those of the 10pathRTT model (shown in Chapter 5) which is also 

a uniform distribution, we conclude that using a uniformRTT model is not necessarily an 

unrealistic method of RTT emulation. However, it is important to choose a distribution that has 

the same mean as that of the empirical distribution of connection RTTs for the particular set of 

connections being emulated. This is important for realistic traffic generation. 
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 The CCDFs of connection durations, shown in Figure 6.1.2, merely confirm what we have 

observed earlier with other RTT emulations; viz. that the effect of the RTT model used is greatly 

masked by endpoint latencies within connections, especially for connections with longer 

durations. Hence there is no difference in the tails of the distributions of connection durations 

using different RTT models.   

6.1.1.2 Response Time 
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  Figure 6.1.3: Response Time – CDF  Figure 6.1.4: Response Time – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 For the effect of RTT models on response times, we observe a similar trend as that of 

connection duration. That is, the fastest response times occur when no RTT delay is emulated (the 

nodelay model). In this case, while the nodelay model is obviously not a realistic RTT model, it 

again serves a purpose of differentiating between the impact of RTT delay and other latencies on 

epoch response times. 60% of response times are 68ms or less for the nodelay model as compare 

with 156ms or less when using the usernet RTT model. We find that response times are 

somewhat comparable for the medianRTT and usernetRTT models. The uniformRTT model 

results in the longest response times. Again, we attribute this to the longer average connection 

RTT for this model compared to the other three models for RTT emulation. The difference in 
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impact on response times due to different RTT emulations models diminishes after 1 second of 

response time distribution 

 The CCDFs shown in Figure 6.1.4 confirm that the RTT model used in an experiment has an 

effect on response times up to 1 second, but not beyond that. For response times greater than 1 

second, the ADU sizes and intra-epoch latencies play a more significant role than the RTT model 

used for traffic generation.    

6.1.1.3 Queue Length 
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Figure 6.1.5: Queue Length – CCDF (a-t-b-t connection structure with different RTT emulations) 

 

 The results for queue length, shown in Figure 6.1.5 are for experiments run in the 

unconstrained mode. Hence, as was observed for experiments shown in Chapter 5, we find that in 

the unconstrained mode, the queue is empty most of the time, except for the occasional spikes in 

traffic. In this unconstrained mode, the router-to-router link is 1Gbps, and mean throughput is 

less than half that. Hence, although the change in RTT model creates changes in the packet arrival 

patterns on the link before the router, the throughput is not high enough to cause queue buildup.  

6.1.1.4 Active Connections 

 The number of active connections in the network is a direct result of the duration of 

connections in the experiment. So we find that the nodelay and medianRTT models result in the 
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least number of active connections, relatively speaking. And the uniformRTT model results in the 

maximum number. However, since all these experiments use the a-t-b-t model of connection 

structure, the number of active connections is about 45,000 connections, which is fairly high 

regardless of RTT model used, but this is due to the endpoint latencies within these connections. 
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Figure 6.1.6: Time series of Active connections (a-t-b-t connection structure) 

6.1.2 Effect of RTT Emulation in the Constrained Mode 

 In this section, we discuss results for experiments using the UNC traffic in the constrained 

mode. In all experiments discussed here, we use the a-t-b-t connection structure model while 

varying RTT among the nodelay, medianrtt, uniformrtt, and usernet models. 

6.1.2.1 Queue Length 

 We observed in Chapter 5 how a heavier RTT distribution caused a lighter router queue 

length distribution as a result of using that RTT model. That observation continues to hold true 

for the RTT models discussed in this chapter. Figures 6.1.7 and 6.1.8 show the queue length 

distributions for the four RTT models discussed in this section. The nodelay model is obviously 

the lightest RTT distribution, and hence creates the longest queue lengths. We observe that while 

the usernet RTT distribution causes the queue to have 1000 or more packets for about 20% of the 
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time, the nodelay model causes the queue to have 1000 or more packets for 93% of the time. Thus 

queuing dynamics are drastically affected when the RTT delay is smaller. That is, as seen before, 

larger RTTs on average lead to more time between packets and thus chances for the queue to 

drain. Nodelay results in quick and massive queue buildup that takes a long time to drain. The 

effect of the queuing delay induced by this buildup was seen in both connection duration and 

response time. 
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  Figure 6.1.7: Queue Length – CDF  Figure 6.1.8: Queue Length – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 MedianRTT emulation means that every connection has only 36ms round trip time, and hence 

connections that originally had much longer RTTs now send windows of packets much faster 

back-to-back into the network, causing queue buildup. The queue barely drains and has 1000 

packets or more for fully 78% of the time. With usernet, there is a wide range of RTT delays, the 

average being 80ms, which is much longer than the median RTT of 36ms. Hence there are 1000 

or more packets for only 20% of the time. More time to drain the queue means less impact of 

queuing delay on connection duration and response times, as observed in the previous sections. 

The uniformRTT model, with even larger average connection RTTs, results in 1000 or more 

packets for only 4% of the time. So, there is little queuing delay compared to the other RTT 

models. Still, the connection duration and response times were longer than for the other RTT 
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models with larger queues. Why? That was due to the longer connection RTTs, and not due to 

added queuing delay with this emulation. 

 The CCDFs for the queue lengths in Figure 6.1.8 show fairly significant differences in queue 

buildup for the different RTT models. Uniform RTT shows the lightest tail, followed by usernet, 

then medianRTT and finally the nodelay model. The top 10% of the distributions show that the 

queue has 650 packets or more when using the uniformRTT model, 1460 packets or more when 

using the usernet RTT model, 3869 packets or more when using the medianRTT model, and 4710 

packets or more when emulating nodelay as the RTT model in the experiment. 

6.1.2.2 Connection Duration 
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 Figure 6.1.9: Connection duration - CDF Figure 6.1.10: Connection duration - CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 We now discuss results from experiments using the same set of connection structures and 

RTT models discussed in Section 6.1.1, but with the router-to-router link in constrained mode. In 

this mode, the link capacity is set to 105% of the mean throughput on that link. As we recall from 

the results in Chapter 5, the a-t-b-t connection structure model does not cause as severe a queue 

buildup as the other connection structure models, regardless of RTT emulation method used in 

the experiments. This was mostly due to the endpoint latencies within these connections that 
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allowed the queue to drain between packet arrivals. Why is this significant? Because queue 

buildup causes queuing delay which increases connection duration. Hence we observe in Figure 

6.1.9 that while the nodelay RTT model still has the fastest completion time in this constrained 

mode, the connection durations experience the largest degradation from their corresponding 

distribution in the unconstrained mode. This is seen more clearly in Figure 6.1.11 and 6.1.12. In 

Figure 6.1.11, we observe that 60% of connections completed in 125ms or less with the nodelay 

model in unconstrained mode, but only 21% of connections complete in 125ms or less with the 

nodelay model in constrained mode. 60% of connections actually take up to 400ms to complete in 

constrained mode. 
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 Figure 6.1.11: Connection duration – CDF - UNC Figure 6.1.12: Connection duration – CDF - IBM 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 Similarly, while the connections using the medianRTT model completed much faster in the 

unconstrained mode, these completion times, now in constrained mode, are just comparable to 

those using the usernet RTT model. This is because the queuing delay caused by using the 

medianRTT model is much longer than that caused by the usernet RTT model. So, as shown in 

Figure 6.1.11, while 60% of connections completed in 250ms or less with medianRTT in the 

unconstrained mode, now with the constrained link they take up to 485 ms to complete. This is 

up 94%. The average connection duration, however, remains 33 ms. This is because the RTT 
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emulation model does not affect the longer connections as much, and it is the longer connections 

that skew the mean duration.  

 Finally, the uniformRTT model again results in the longest completion times as seen in Figure 

6.1.12. However, the change in the distribution of connection durations between the 

unconstrained and constrained modes for this RTT model is small compared with the others. For 

instance, 60% of the connections completed in 588 ms in the unconstrained mode, and 621 ms in 

the constrained mode when using the uniformRTT model. This is because the average of this 

distribution of RTTs is higher, and as we mentioned earlier, the heavier the RTT distribution, 

lighter is the queue length caused by the traffic, all else remaining the same. Hence while we saw 

a 94% increase in duration for the shortest 60% of connections between the unconstrained and 

constrained modes when using the medianRTT model, we only observed a 6% increase in 

duration using this uniformRTT model. This is not due to the uniformity of the distribution, but 

rather due to the larger mean for this uniformRTT model. 

 The CCDFs of connection duration shown in Figure 6.1.10 confirm that either the endpoint 

latencies or the effect of queuing delays add up to overshadow any effects of RTT models for 

very long connections in all these cases.  

6.1.2.3 Response Time 

 Figures 6.1.13 and 6.1.14 show the results in CDFs and CCDFs for response times for 

experiments using the four different RTT models. Again, we see the second order effect of 

queuing delay on response times. That is, in the unconstrained mode, different RTT models 

created different response time distributions purely due to differences in connection RTTs. But 

now in the constrained mode, there is the added effect of queuing delay, and this queuing delay is 

different for the different RTT models. What do we mean by this?  
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  Figure 6.1.13: Response Time – CDF  Figure 6.1.14: Response Time – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 Consider the nodelay RTT model. 60% of response times were 68ms or less for the nodelay 

model as compared with 156ms or less when using the usernet RTT model in the unconstrained 

mode. But in constrained mode, where the nodelay RTT model causes very large queuing delays, 

we observe that 60% of response times actually take up to 156 ms, which is a 129% increase in 

response times, whereas 60% of response times in the usernet model is now 178 ms which is a 

14% increase in response time.  

 Similarly, the response time distribution when using medianRTT is much heavier than its 

corresponding distribution in the unconstrained mode. This has led to a decrease in what was 

previously a significant difference in the distributions for response times for the four different 

RTT models. Indeed, medianRTT seems to mirror the effect of usernet RTT, but that is only 

because the queuing delay from using the medianRTT model has caused a significant increase in 

response times in the constrained mode.  

 Finally, the uniformRTT model has the longest response times, but this distribution is very 

similar to that obtained when using the uniformRTT model in the unconstrained mode. The fastest 

60% of response times increased from 215 ms to 229 ms which is a mere 6% increase. Figure 

6.1.14 showing CCDFs for the response times for these experiments clearly shows that the RTT 

model used has no effect beyond 1 second in the distribution of response time. 
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6.1.2.4 Active Connections 
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Figure 6.1.15: Time series of Active connections (a-t-b-t connection structure) 

 

 The small differences in the number of active connections that we observed in the 

unconstrained mode, when using these different RTT models, are now overshadowed by the 

second order effect of queuing delay in the constrained mode. What do we mean? Number of 

active connections in the network is directly dependent on connection durations. The differences 

in connection durations due to the different RTT models reduced due to the longer queuing delays 

in the nodelay and medianRTT models. Hence, we observe, as shown in Figure 6.1.15, that there 

is not much difference in the number of active connections in the network among the four RTT 

models.  

6.2 Discrete Approximation (DA) RTT 

 Now we examine the effect of another RTT model – the Discrete Approximation (DA) 

RTT model, also called the 30path model. We developed this model as an approximation of the 

cumulative distribution of RTTs seen in the original trace. Using the concept of a quantile 

function (see Chapter 3 for more details), we approximated the CDF of the empirical RTTs as 

follows: we divided the distribution into 30 bins, and then found the average RTT for each of 
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these 30 bins in the distribution. The resulting RTT values formed this set: [ 8, 8, 10, 10, 12, 14, 

14, 16, 18, 20, 22, 24, 26, 30, 34, 38, 42, 48, 52, 60, 74, 80, 82, 86, 92, 98, 124, 172, 258, 420 ] 

milliseconds. 

 The reason we discuss this model separately is that the results from this RTT emulation most 

closely resemble the results using the usernet RTT model. Hence, we present this model as a 

realistic and reliable approximation for the standard usernet model. Why does this matter? 

Emulating usernet involves measuring every connection RTT and assigning the original 

connection RTT to that exact connection at the time of traffic generation. The DA RTT model is 

an approximation of the empirical model and is easier to implement because it only requires that 

we pick a discrete set of values that approximate the original minimum RTT distribution, and 

then assign these values to a small number of end-to-end paths in the experimental network. 

Hence, where appropriate, the DA model could be used for realistic RTT emulation. 

6.2.1 Results in Unconstrained Mode 
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 Figure 6.2.1: Connection duration - CDF Figure 6.2.2: Connection duration – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 

 

 In this section, we present the results for all four performance metrics using the DA model in 

the unconstrained mode. For comparison, we show results for the control or usernet model of 

RTT. Both experiments were run using the a-t-b-t connection structure model. In Figures 6.2.1 
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through 6.2.6, we show the CDFs and CCDFs for connection duration, response time, and queue 

length for these two RTT models. In Figure 6.2.7, we show the time series of the number of 

active connections during these experiments.  
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  Figure 6.2.3: Response Time – CDF  Figure 6.2.4: Response Time – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
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  Figure 6.2.5: Queue Length – CDF  Figure 6.2.6: Queue Length – CCDF 
  (a-t-b-t connection structure)   (a-t-b-t connection structure) 
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Figure 6.2.7: Time series of Active connections (a-t-b-t connection structure) 
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 The distribution of connection duration for the DA RTT model practically tracks that of the 

usernet RTT model for the body as well as the tail of the distributions – see Figures 6.2.1 and 

6.2.2. Figures 6.2.3 and 6.2.4 show that the distribution of response time for the DA RTT model 

also closely tracks that of the usernet model for the body and the tails of these distributions. For 

both connection duration and response times, it is to be expected that the tail of the distributions 

would remain the same, since we already observed that the RTT model used in traffic generation 

does not affect these metrics beyond 1 second in most cases, and up to a maximum of 3 seconds 

in some of the models discussed in this chapter.  

 However, for shorter connection durations and response times, there were significant 

differences among the different RTT models studied so far. Hence, it is noteworthy that of all the 

other six RTT models we developed and tested, none of them matched the control usernet model 

as closely as this DA model. The results for the queue length distributions as well as the time 

series of active connections in the network are also very similar when using the two RTT models 

in the unconstrained mode. So, clearly, if these were the performance metrics of interest, then the 

DA model could work just as well for RTT emulation as the usernet model. 

6.2.2 Results in Constrained Mode 
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 Figure 6.2.8: Connection duration - CDF Figure 6.2.9: Connection duration - CCDF 
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 In this section, we present the results for all four performance metrics using the DA model in 

the constrained mode. Figures 6.2.8 through 6.2.14 show the CDFs and CCDFs for connection 

duration, response time, and queue length for the DA and the usernet RTT models. Finally, in 

Figure 6.2.14, we show the time series of the number of active connections during these 

experiments.  
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  Figure 6.2.10: Response Time – CDF  Figure 6.2.11: Response Time – CCDF 
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  Figure 6.2.12: Queue Length – CDF  Figure 6.2.13: Queue Length – CCDF  

 

 Even in the constrained mode, the DA RTT model results in a distribution for connection 

durations that is comparable to that when using the usernet model. For response times below 

500ms, as shown in Figure 6.2.10, there is a small shift, with usernet having faster response 

times. This is due to the fairly large difference in queue buildup for the DA model as compared 

with the usernet model, as seen in Figure 6.2.12. This buildup for the DA RTT model is likely due 
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to the fact that RTT emulation by paths (which is what the DA model emulates) would lead to 

many connections that originally had long RTTs now having very small RTTs (and vice versa). In 

such cases, if these connections also had a large amount of data to send, then that would directly 

and drastically affect the queue.  

 Even so, we find that the effect of this fairly significant difference in queuing dynamics is not 

as large on connection duration and response time as might be expected. Note that the 67 ms 

mean RTT of the DA RTT model is less than the 80 ms mean RTT of the usernet model. As seen 

before, the smaller the mean of the RTT distribution, the longer is the queue at the router. The 

number of active connections is the same for both RTT models throughout the experiment as 

shown in Figure 6.2.14. 
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Figure 6.2.14: Time series of Active connections 

 

 The CCDFs shown in Figures 6.2.9 and 6.2.11 show that the connection duration and 

response times produce similar tails in their distributions for these two RTT models. In Figure 

6.2.13 showing the tail of the queue length distributions, we observe that the two RTT models 

cause similarly long tails for the top 10% of the time.   
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6.2.3 Section Summary 

 The discrete approximation model of RTT emulation may be used instead of the usernet 

RTT model where a simpler yet empirically-based model is desired for traffic generation. If the 

experiment does not involve heavily congested scenarios, the DA RTT model produces results at 

the application-level and network-level that are very similar to that of the usernet model. In the 

presence of heavily constrained links in the network, the DA model creates significantly longer 

queues, and hence this must be taken into account when using this model for traffic generation. 

6.3 Emulating Receiver Window Sizes 

 In all the sections in Chapter 5 and the previous sections in this chapter, we discussed results 

for using all combinations of the four connection structure models and seven RTT models we 

developed for realistic traffic generation. In every experiment so far, we used the Tmix model of 

window size assignments to connections. That is, we measure the window sizes for each of the 

two endpoints for every connection in the original traffic on the production link, and then assign 

the same two values to our traffic generation pair that generated that traffic in the laboratory. 

While we consider this method to be the best practice, in this section we explore other options 

that are commonly practiced in the research today. Experimenters typically assign the same 

window size to all the connections for traffic generation in a given experiment.   

What role does window size assignment play on the performance metrics in an experiment? 

To answer this question, we ran some experiments varying window sizes while keeping all other 

variables the same. But before we present the results for varying window sizes, let us briefly 

review the role of the receiver maximum window allocation in TCP. During the setup, or the 

three-way handshake, for a TCP connection, both endpoints of the connection advertise their 
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receiver maximum window size. This is the size of the operating system buffer where the received 

TCP payload is stored until it can be read by the application. The endpoints communicate their 

receiver window size to each other to avoid any buffer overflow and resulting loss of TCP data at 

the receiver. The sender controls the number of unacknowledged TCP segments in the network so 

that this buffer does not overflow on the receiver’s end. This mechanism is called flow control 

and imposes a limit on the maximum throughput of a TCP connection. 

 In this section, we present results for experiments using the a-t-b-t connection structure 

model with the usernet RTT emulation. We varied the receiver window model among these 

experiments to study the effect of window sizes on performance metrics. Other than for the 

standard Tmix model, we assigned the same window size for all connections for each set of 

experiments discussed in this section. Hence we assigned 8KB, or 16KB, or 64KB buffers for 

receiver maximum window for all connections within an experiment, and to both endpoints of 

traffic generation for a given experiment. First, we present the results for experiments run in the 

unconstrained mode. 

6.3.1 Results in Unconstrained Mode 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 
 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

Connection Duration in milliseconds

8KB - all conns
16KB - all conns
64KB - all conns

empirical - each conn

 

 Figure 6.3.1: Connection duration – CDF Figure 6.3.2: Connection duration – CCDF 
 (a-t-b-t with usernet – unconstrained – UNC) (a-t-b-t with usernet – unconstrained – UNC) 
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  Figure 6.3.3: Response Time – CDF  Figure 6.3.4: Response Time – CCDF 
 (a-t-b-t with usernet – unconstrained – UNC) (a-t-b-t with usernet – unconstrained – UNC) 
 

 

 We performed four experiments (in the unconstrained mode), all using the a-t-b-t connection 

structure model and usernet RTT model. For the first experiment, we assigned 8KB buffers as the 

receiver maximum window size for both sides of every one of the 4.7 million connections 

generated in the experiment, regardless of what the original receiver window sizes were, when we 

captured the traffic on the production link. For the second and third experiments we assigned 

16KB and 64KB receiver window sizes for all connections at both endpoints. From here on, we 

refer to this receiver maximum window size as window size. It is not to be confused with other 

window sizes like congestion window which we do not manipulate directly during our 

experiments. For the fourth experiment, we assigned window sizes to both endpoints of every 

connection exactly as obtained from the original traffic data (the method employed for all 

experiments reported in Chapter 5). 

 See Figures 6.3.1 and 6.3.2 for the CDFs and CCDFs of connection duration. We observe that 

there is no difference in either the body or the tail of these distributions. Figures 6.3.3 and 6.3.4 

show similar results for response time distributions. That is, there is no effect of different window 

size assignment models on either connection duration or response times. The queue length 

distributions shown in Figures 6.3.5 and 6.3.6 are as expected, since there is no constraint on the 
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link and hence there is no queue buildup. And Figure 6.3.7 shows no significant difference in the 

number of active connections in the network using these different window size models. 
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Figure 6.3.5: Queue Length – CCDF  
(a-t-b-t connection structure with usernet RTT – different window size emulations) 
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Figure 6.3.6: Time series of Active connections 
(a-t-b-t with usernet – unconstrained – UNC) 

 

 

 Now, why would window size have no effect on connection duration? A connection with a 

larger window size, say 64KB should finish faster than one with a smaller, say 8KB, window. But 

this is assuming that that connection has enough data to use the larger 64KB window. Hence the 

characteristics of the traffic being generated play an influential role in this case. That is, if all 

connections were long and had large number of bytes to be transferred, then of course, we would 
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have seen significant differences with the different window size models. In that case, the 8KB 

windows would result in longer durations for transmitting data, while the 64KB windows would 

allow for much quicker data transfers and hence lead to faster completion times. On the other end 

of that spectrum, if all connections were short with a few hundreds of bytes to transmit, then 

window sizes would make no difference at all.  

 Going back to some statistics on the input UNC traffic characteristics from Chapter 3 (refer 

Figures 3.1.11, 3.1.13, 3.1.15), we note: for sequential connections, only 20% of request sizes 

were greater than 1000 bytes, and only 20% of response sizes were greater than 4KB. Due to a 

few thousand very large connections, the averages were much higher. Even so, the average 

request size was 2.5KB and the average response size was 11KB. For concurrent connections, the 

application data units (ADUs) are slightly larger than the request or response sizes of the 

sequential connections. Still, only 20% of ADUs are greater than 1400 bytes. 

 That was ADU or object sizes; now let us look at the connection sizes for the input data used 

to generate traffic in these experiments as shown in Figures 6.3.7 and 6.3.8. Of the 4.7 million 

connections, 63% carry less than 4KB total data, and 37% carry more than 4KB. But only 0.6% 

of connections carry more than 1MB of data total; but that’s still 29,000 connections. Top 10% of 

connections by size carry 35KB of data each – that’s 470,000 connections. The mean connection 

size is 62KB while the median is only 2.2KB.  
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 Figure 6.3.7: Connection size - CDF  Figure 6.3.8: Connection size - CCDF 
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 So, in order to observe if these larger connections within the generated traffic benefited from 

larger window size models, let us break down the above results in terms of the connection sizes. 

We now look at the following sets of connections: (i) all connections with less than 4KB of data 

to be transferred in total, (ii) all connections with more than 4KB of data to be transferred, and 

(iii) all connections with more than 1MB of data to be transferred. The third set of connections is 

obviously a subset of the second, but the first and second sets are exclusive sets of connections.   
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 Figure 6.3.9: Connection duration - CDF   Figure 6.3.10: Connection duration - CDF 

  Connection size less than 4KB   Connection size greater than 4KB 

 

 In Figures 6.3.9 and 6.3.10, we show the distribution of connection durations using all four 

window size models. Figure 6.3.9 shows connection duration only for those connections carrying 

less than 4KB of data, whereas Figure 6.3.10 shows connection duration only for those 

connections carrying more than 4KB of data. Comparing the two plots above, we find that the 

window size model does not make a difference in the distribution of connection durations in 

either case – the set of all connections with less than 4KB to transfer, or the set of all connections 

with more than 4KB to transfer.  

 There is, however, a significant difference between the two sets of durations. For connections 

carrying less than 4KB, 78% of the connections complete in less than 500ms, and only 8% of 

connections take longer than 3 seconds to complete. For connections carrying more than 4KB, 
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however, only 47% of the connections complete in less than 500ms, and 28% of connections take 

longer than 3 seconds to complete.  
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 Figure 6.3.11: Connection duration - CDF Figure 6.3.12: Connection duration - CDF 

  Connection size greater than 1MB   Connection size greater than 1MB  

 

 Now let us look at the results for connections carrying more than 1MB of data. The Figures 

6.3.11 and 6.3.12 show the same distributions. However, Figure 6.3.11 shows durations up to the 

entire hour of the experimental run and indicates there is no difference in the window size models 

used in traffic generation. Whereas Figure 6.3.12 shows durations up to only 200 seconds, and 

indicates that for connections carrying more than 1MB of data, if they all had 64KB buffers for 

receiver maximum windows, they would indeed complete much faster; for example, 40% of these 

connections would complete in 12 seconds or less. Using 16KB window sizes, 40% of 

connections would take up to 22 seconds to complete. And using 8KB, which compares with the 

Tmix model, 40% of connections would take up to 36 seconds to complete. Clearly, for 

connections carrying more than 1MB of data, window size model makes a significant difference.  

 We now present these same results in a tabular form for a better comparison. See Table 6.1 

showing the connection duration for these connections differentiated by the amount of data they 

had to transfer. Clearly, the mean and median duration for connections having less than 4KB of 



 251

data to transfer do not change with change in receiver window size. But more the data to be 

transferred in a connection, the better it can use larger window sizes. Hence we observe a slight 

shift in median durations for the set of connections carrying more than 4KB of data. For 

connections carrying more than 1MB of data, however, the differences are more significant. For 

example, between using a 8KB window size to a 64KB window size, the median duration of these 

connections reduces by 50% which is a significant difference. 

 Comparing durations of connections for those transferring more than 1MB of data, we note 

that when using 8KB window sizes, the mean duration was 369 seconds, whereas when using the 

usernet model of window size assignments, the mean duration was 393 seconds. Does this mean 

that UNC connections with more than 1MB of data to transfer actually had windows smaller than 

8KB? This seems counter-intuitive. However, when we examined the data, we found that this was 

indeed the case for a large number of connections. To be specific, 8.4% of connection initiators 

and 36% of connection acceptors had receiver maximum window sizes less than 8KB (see Figure 

3.1.25 in Chapter 3). Moreover, among the 28,000 connections transferring more than 1MB, 2711 

connections had window size less than 8KB for the connection initiator and 10,380 connections 

had window size less than 8KB for the connection acceptor. It would be interesting to explore 

what kind of applications were represented by these connections, but that is currently out of scope 

for this study. 

 Now that we have seen the characteristics of the input traffic used in traffic generation, it is 

clearer why the window size model used in traffic generation has little to no effect on all the 

performance metrics when seen in aggregation for each of the performance metrics. Does this 

mean that the Tmix style empirical window size assignment model is too complicated and 

unnecessary? Before we answer that question, let us look at these same experiments run in the 

constrained mode. 
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Window size model 

 

< 4KB data transfer 

(3 million connections) 

 

> 4KB data transfer 

(1.7 million connections) 

 

> 1MB data transfer 

(28,000 connections) 

 

8KB for all 

connections 

 

Mean: 17 sec 

Median: 187 ms 

 

Mean: 60 sec 

Median: 598 ms 

 

Mean: 369 sec 

Median: 50 sec 

 

16KB for all 

connections 

 

Mean: 17 sec 

Median: 187 ms 

 

Mean: 60 sec 

Median: 592 ms 

 

Mean: 355 sec 

Median: 35 sec 

 

64KB for all 

connections 

 

Mean: 17 sec 

Median: 187 ms 

 

Mean: 60 sec 

Median: 575 ms 

 

Mean: 350 sec 

Median: 25 sec 

 

Empirical – Tmix 

style 

 

Mean: 17 sec 

Median: 187 ms 

 

Mean: 62 sec 

Median: 603 ms 

 

Mean: 393 sec 

Median: 52 sec 

 

Table 6.1: Connection Duration – using different window size models 

6.3.2 Results in Constrained Mode 

 In the constrained mode, however, window size models seem to make a significant difference 

for both connection durations and response times, as shown in Figures 6.3.13 through 6.3.16. 

How is that possible? Not only are there differences in the distribution of connection durations, 

the results are counterintuitive. That is, the experiment in which all connections have 64KB 

window sizes is the one in which the connections take the longest time to complete. For example, 
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while only 55% of connections complete in less than 500 ms when using 64KB windows, more 

than 65% of connections complete in less than 500 ms when using 4 KB windows.  
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 Figure 6.3.13: Connection duration - CDF Figure 6.3.14: Connection duration – CCDF 
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 Figure 6.3.15: Response Time - CDF  Figure 6.3.16: Response Time - CCDF 

 

 Similarly, Figures 6.3.15 and 6.3.16 show that connections with the large 64KB windows 

result in longer response times than the same connections with 4KB window sizes. The reason for 

the results for these two metrics lies partially in Figure 6.3.17 and 6.3.18 which show the queue 

length distributions for these experiments. 

 The queue length distributions clearly show that the experiment with 8KB window sizes 

creates the lightest router queues, followed by the experiment with 16KB window sizes. The 

experiment with 64KB window sizes creates the heaviest queues, while the Tmix model creates 
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slightly lighter queue lengths than the 64KB case. So, on the one hand, the connection duration 

and response time distributions are heaviest for the 64KB window sizes because they experience 

the longest queuing delays. And the connections with 8KB windows experience relatively much 

shorter queuing delays. But although this effect is due to window sizes, there is another reason. 
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  Figure 6.3.17: Queue Length – CDF  Figure 6.3.18: Queue Length – CCDF 

 

 We found that when we use 8KB or even 16KB as window sizes for all connections, there are 

a few thousand very large and long-lasting connections that originally had 64KB windows that 

are now simply unable to complete. That is they cannot send the data fast enough with these 

smaller window sizes. Thus the overall number of bytes transferred in these experiments with 

smaller window sizes is less than the original total data transferred. Hence the average link 

throughput is slightly lower when using the 8KB or 16KB windows as compared with using 

64KB windows which would obviously account for smaller queue sizes. [Note: for all 

experiments reported in Chapters 5 and 6 (other than these window size experiments), we ensured 

that the same total number of bytes were transferred per experiment. This is necessary to enable 

comparison among the performance metrics from those experiments.] 

 Now why is the experiment using all 64KB windows then creating heavier queues than the 

Tmix model? We conjecture that this is because those connections that have enough data to send 
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but had originally had smaller windows now make use of the larger 64KB windows to send more 

packets back to back, thus populating the queue. Finally, Figure 6.3.19 shows that the difference 

in effects on connection durations among the different window size models was not significant 

enough to create noticeable differences in active connections; at least not at the scale we have 

studied them. 
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Figure 6.3.19: Time series of Active connections 

 

 As we did in Section 6.3.1 for the unconstrained mode, let us now consider connection 

durations with respect to their connection sizes for experiments run in the constrained mode.  
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 Figure 6.3.20: Connection duration - CDF Figure 6.3.21: Connection duration - CDF 
  Connection size less than 4KB   Connection size greater than 4KB 
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 We start with results shown in Figures 6.3.20 and 6.3.21 for all connections carrying less than 

4KB data and more than 4KB data respectively. Clearly, for connections carrying less than 4KB 

of data, there is a slight difference in durations, up to 500ms of duration, for 8KB, 16KB, and the 

Tmix model of window sizes, and a very significant shift in duration for the 64KB window size 

model. And as we observed, this is directly due to the effect of queue lengths.  
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 Figure 6.3.22: Connection duration - CDF Figure 6.3.23: Connection duration - CDF 
  Connection size greater than 1MB   Connection size greater than 1MB  

 

 Figures 6.3.22 and 6.3.23 show connection durations for the different window size models 

only for connections carrying more than 1MB of data. Both figures use the same data set, with the 

second one zooming into the first 200 seconds of connection duration. For connections carrying 

more than 1MB of data, the use of 64KB window buffers is clearly helpful in completing faster, 

despite the effect of longer queuing delays. Why is the Tmix model showing longest duration? 

We conjecture that this is a combination of the longer queuing delays, and possible (faithful) 

assignment of smaller original window sizes to these large connections.  

6.3.3 Section Summary 

 In the unconstrained mode, we found that on aggregate, the window size model did not seem 

to make a difference in performance metrics. However, when we differentiated the connections 
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by the amount of data they carried, we clearly saw that larger window sizes helped in faster 

completion times for connections carrying large amounts of data, for example those connections 

transferring more than 1MB. Then why not simply assign 64KB windows to all? While it is not a 

bad idea, it is also not advisable if faithful replay of traffic is a goal. That is, the pattern of 

injection of packets into the network for a given connection is dependent on its window size. 

Keeping its window size the same as was seen in the original traffic retains the packet arrival 

pattern into the network.  

 The case against using the smaller 8KB or 16KB windows for all connections is clearly laid 

out by the fact that large, and long-lasting connections with originally large window sizes now do 

not even send all the data if assigned these smaller windows. Hence, we conclude that faithfully 

replaying all traffic as captured clearly calls for assigning originally measured window sizes to 

every connection during traffic generation in the laboratory. 

6.4 Connection Structure and Packet Arrival 

Why does the connection structure model matter so much in traffic generation? One 

perspective may lie in how the structure of the generated TCP connections changes the 

characteristic of the overall traffic being generated in the testbed. That is, the TCP connection 

structure changes the pattern of packet arrivals aggregating before the core router. To study this, 

we observe the packet throughput in the context of the effect on queue dynamics. Specifically, we 

look at how different connection structures create different arrival patterns and hence create the 

very different queue dynamics that we saw in Chapter 5.  

 We study only packet arrival (and not byte arrival) patterns in this section because the queue 

length is measured in packets. We study the arrival of packets in the unconstrained mode – this 

gives us a sense of the traffic characteristics without the second order effect created on the traffic 
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by the router queue in the constrained mode. In order to study the effect of changing connection 

structures, we keep the RTT and window size models the same in all these experiments; that is, 

we use the usernet RTT model and the Tmix window size model. 
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 Figure 6.4.1: Link throughput in packets – blk-conc Figure 6.4.2: Link throughput in packets – blk-seq 
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 Figure 6.4.3: Link throughput in packets – a-b Figure 6.4.4: Link throughput in packets – a-t-b-t 

 

 In Figures 6.4.1 through 6.4.4, we show the packet throughput time series for the middle 40 

minutes of each experiment, using the block-concurrent, block-sequential, a-b, and a-t-b-t models 

of connection structure respectively. This is the throughput as measured on the 10Gbps link 



 259

before the first router on the path with higher throughput, and is measured in Kpps (kilo packets 

per second), computed in 1 second intervals. A mere visual observation indicates that the two 

block models create very similar patterns of packet arrivals, with high variability, into the 

network. The a-b model shows slightly less variability than the block models, while the a-t-b-t 

model shows even less variability in packet arrivals but higher average throughput of packets in 

the network.  
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Figure 6.4.5: Link throughput in packets – 1s intervals Figure 6.4.6: Link throughput in packets – 10ms intervals 

 

 We now observe the same data shown above, but in the form of distribution of packet 

throughput, called throughput marginals. In Figures 6.4.5 and 6.4.6, we show the link throughput 

of packet arrivals to the network in Kpps, in 1 second intervals and 10ms intervals respectively. 

This is for experiments in the unconstrained mode. We quantify these observations in the Table 

6.2 below. 

From the table, we observe that using either of the two block structures to generate the same input 

traffic creates slightly less packet throughput than when using the a-b model. The block structures 

produce mean packet throughputs of 48.8 Kpps and 49.0 Kpps, whereas the a-b model produces 

50.3 Kpps. This is because the a-b model sends data in epochs in a request-response exchange 
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pattern. This creates slightly more packets whereas in the block structure models, the same 

connection data is sent all at once instead of in application data units, and hence the block 

structures maximize packet sizes for sending the data. 

   

Connection 
structure 

Mean throughput 
in Kpps 

Standard deviation of 
throughput in Kpps 

Coefficient of Variation 
(CoV) = std_dev/mean 

blk-conc 48.8 Kpps 5.6 Kpps 0.1147 

blk-seq 49.0 Kpps 5.5 Kpps 0.1126 

a-b 50.3 Kpps 5.0 Kpps 0.0999 

a-t-b-t 60.2 Kpps 3.8 Kpps 0.0625 
 

Table 6.2: Packet throughput – using different connection structure models 

 

The a-b model, however, models concurrent connections (which carry a very large 

percentage of bytes) exactly as modeled in the block-concurrent connection structure. This partly 

explains why there is not an even greater difference between the a-b model and the block 

structure models. The a-t-b-t model creates a major shift in packet arrival patterns. First the mean 

packet throughput is much higher at 60.2 Kpps. This is due to data being sent in application data 

units for concurrent connections which carry a substantially large amount of data. The 

combination of introducing ADUs for concurrent connections and endpoint latencies in between 

these ADUs results in greater number of packets carrying the same data. The few thousand very 

long concurrent connections with large ADUs and several long endpoint latencies make a huge 

difference in the packet arrival patterns in this model.  

 If we looked at mean packet throughput numbers alone, we would have expected the a-t-b-t 

connection structure to cause more queuing in a constrained environment. But that is clearly not 

the case as shown in results in Chapter 5 (see Figure 5.4.53). Instead, the much higher standard 
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deviation of the packet arrivals in small intervals for the block structures and fairly high standard 

deviation for a-b explain why these structures create different dynamics at the router queue as 

compared with the a-t-b-t model. 

 Given an input traffic for experimental use, the connection structure of the generated TCP 

connections affects the number of packets used for the same data. That is, for the same amount of 

data transferred, if there are more epochs in a connection transferring this data, then a higher 

number of packets are generated for that connection. More packets for the same data also result in 

more packet overhead which then slightly increases the overall throughput in Mbps as well. 

Intuitively, this would have indicated that the a-t-b-t model would result in the heaviest queues. 

But the experimental results show counter-intuitive queue dynamics. Higher average throughput 

in packets should result in larger queues, right? Wrong, or not always. It’s just not that simple. 

When these higher average throughput for packets are accompanied by endpoint latencies, such 

as in the a-t-b-t model, this allows time for the queue to drain, and hence the queues are smaller 

on average.  

 

 

Figure 6.4.7: Queue Length Time Series – blk-conc 
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Figure 6.4.8: Queue Length Time Series – blk-seq 

 

 A major problem with not using endpoint latencies within connections is that large 

connections send packets at a faster pace occupying the queue, which creates queue buildup that 

takes an inordinate amount of time to drain. Of course, one could argue that we used an 

unrealistic queue size – but, as explained in Chapter 4 on methodology, that is besides the point 

here. To explain this queue buildup, we show in Figures 6.4.7 through 6.4.10 the queue length 

time series of the router queue when the router-to-router link was in the constrained mode.  

 

Figure 6.4.9: Queue Length Time Series – a-b 
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Figure 6.4.10: Queue Length Time Series – a-t-b-t 

 

 These figures show the queue length time series for only the middle 40 minutes of the 

experiments. Even so, as seen in Figures 6.4.7, 6.4.8, and 6.4.9, the initial queue buildup is so 

drastic that the queue has not drained well into more than half hour in to the experiment. Thus, 

using the block structures and even the a-b model for connection structure builds up the queue 

very quickly, and here’s why. Large, long connections that start at the beginning of the 

experiment, and would have lasted for, say, 3 minutes or even up to 40 minutes into the 

experiment, when replayed without any of the endpoint latencies, now send packets into the 

network at a much faster pace. These connections build the queue quickly such that it takes a long 

time for the queue to recover from this buildup. Sure, a shorter queue would have alleviated this 

dynamic, but we wished to eliminate the loss dynamics that would result from a shorter queue, 

and study the effect on traffic characteristics due to the different connection structures. When the 

a-t-b-t connection structure model is used, as shown in Figure 6.3.10, replaying the endpoint 

latencies as was present in the original traffic allows the queue to drain. Thus even though there is 

an initial queue buildup, the queue is able to drain by just 12 minutes into the experiment. This 

does also bring up the question about what constitutes an appropriate time for running an 

experiment. We discuss this among other such methodological questions in Chapter 7. 
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 We conjecture that the differences in round trip time emulation schemes created similar 

effects as shown above for the different connection structure models. That is, larger average 

RTTs for connections means more time between packets for the queue to drain, and hence less 

average queue lengths as we observed in Chapter 5 (see Figures 5.2.57 through 5.2.64). 

6.5 Long Range Dependence 

 Router queue dynamics are affected by many factors. One of them is the long-range 

dependence (LRD) characteristic of the traffic. In this section, we explore whether changing the 

connection structure model changed the long-range dependence of the traffic by studying the 

wavelet spectrum and computing the Hurst parameters for these packet arrivals.  
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Figure 6.5.1: Wavelet spectrum for packet throughput time series 
using the block-concurrent connection structure model 

 

 Figures 6.5.1 through 6.5.4 show the wavelet spectrum for packet arrivals for the block-

concurrent, block-sequential, a-b and a-t-b-t models, all using the usernet RTT model for traffic 

generation, using the same input UNC traffic in all these experiments. 
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Figure 6.5.2: Wavelet spectrum for packet throughput time series 
using the block-sequential connection structure model 
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Figure 6.5.3: Wavelet spectrum for packet throughput time series  
using the a-b connection structure model 
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Figure 6.5.4: Wavelet spectrum for packet throughput time series  
using the a-t-b-t connection structure model 
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 We found that the long-range dependence characteristics of the packet arrival time series 

remains the same regardless of the connection structure used for traffic generation. How is that 

possible? While not all the factors affecting LRD have been clearly identified in networking 

research studies, we know that the distribution of connection sizes, distribution of object sizes, 

connection arrival times, and the distribution of round trip times all play an important role in the 

LRD characteristic of traffic. 

 

Connection Structure Hurst parameter Confidence interval (95%) 

blk-conc 0.9636 [0.92759, 0.9996] 

blk-seq 0.9659 [0.92991, 1.0019] 

a-b 0.9826 [0.92548, 1.0396] 

a-t-b-t 0.9631 [0.906, 1.0202] 

 

Table 6.3: Estimated Hurst parameters and their confidence intervals for  
packet throughput time series using the four different connection structure models 

 

 Changing the connection structure only changes the inter-packet arrival times within a 

connection. For example, lack of epoch structure and endpoint latencies results in packets being 

sent back to back more frequently in the block structure models. That is we keep the connection 

sizes the same in all these models, but the two block structure models change all object sizes 

within each connection. However, we leave the other factors unchanged. Connection sizes, start 

times of connections, and round trip times were all retained as part of the traffic generation 

discussed above, even as we changed the TCP connection structure model for generating these 

connections. Hence, changing the connection structure model alone did not affect the LRD 

characteristics of the traffic generated on the link in the laboratory testbed.  
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6.6 Chapter Summary 

 In this chapter, we presented results for experiments using four RTT models not discussed in 

Chapter 5. The results for all four performance metrics for these RTT models support and 

supplement the results seen for the three main RTT models presented in Chapter 5. Of these, the 

DA RTT model emerged as a close approximation of the more realistic usernet RTT model. That 

is, using the DA model for RTT emulation in traffic generation is an acceptable alternative to the 

usernet RTT model.  

 We also presented results for varying the receiver window size model for traffic generation. 

While window size assignment does not seem to affect most of the TCP connections, the window 

size model makes a large impact on performance metrics for connections carrying more than 

1MB of data. From the results obtained in that section, we recommend using the Tmix model of 

window size assignments. Finally, we discuss how changing the connection structure model 

changes the pattern of packet arrivals into the network and hence causes changes in performance 

metrics.     



 
 

 

CHAPTER 7 

 
 

CONCLUSIONS AND FUTURE WORK 
 

 

The most exciting phrase to hear in science, the one that heralds the most 
discoveries, is not “Eureka!”, but “That’s funny...” 

ISAAC ASIMOV 
 

 
There are two possible outcomes: if the result confirms the hypothesis, then 
you’ve made a measurement. If the result is contrary to the hypothesis, then 
you’ve made a discovery. 
       ENRICO FERMI 

 
 
 
 This dissertation was a methodological study seeking some fundamental insights into 

experimental methods in networking. Specifically, we looked at methods and modeling for traffic 

generation in empirical networking research. We plan to use the lessons learned from this study to 

motivate further discussions and take concrete steps to engage the networking research 

community toward establishing better practices in experimental methods for networking research.  

 We examined the effect of several choices for modeling network traffic generated for 

empirical research on the following application-level and network-level performance metrics: 

connection duration, response time, router queue length, and number of active connections in the 

network. We examined the choices in modeling TCP connection structure, connection round trip 

times (RTTs), and receiver window sizes within the realm of realistic traffic generation.  In this 
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chapter, we discuss our findings, their implications, and some related work we wish to explore in 

the future. 

7.1 Observations and Conclusions 

 To arrive at the conclusions presented in this chapter, we conducted extensive sets of 

experiments using the Tmix traffic generation system on a 10Gbps laboratory testbed, using four 

different connection structure models, seven different RTT models and four window size models. 

We ran our experiments using two very different traffic inputs and in two different network 

environments. Here are our key observations. 

 

In an unconstrained network, regardless of the connection structure model used, 

or the input traffic used, round trip time had a significant effect on application-

level performance measures of connection duration and response times, but only 

up to a maximum of 1 second for these metrics. 

 Consider this example. You are designing a set of experiments to evaluate a new Active 

Queue Management (AQM) protocol. This is a study in which application-level performance 

metrics are important. In fact, your study relies on response time as the main metric that 

distinguishes whether this new AQM scheme is better than, say, the currently used drop-tail 

method of queue management. Which RTT model will you pick for generating traffic? If you 

pick the meanrtt model, or any similar model that emulates a single path for all the millions of 

connections traversing the router that has implemented the new AQM scheme, are you creating a 

realistic scenario for testing that AQM scheme? When it is deployed on routers in the middle of 

the network, those routers will service connections with a wide range of RTTs each possibly 

traversing completely different paths through the Internet.  



 270

 Say, you obtain results for this AQM scheme using the meanrtt model, and find that it 

performs worse than the drop-tail scheme. Could you then be confident that your AQM scheme 

was not good enough for deployment? We assume you picked the meanrtt value from the 

empirical mean of the original RTT distribution. Still, is it possible that the artificial emulation of 

one single path for all connections created queue dynamics that would have been different if there 

had been a wide range of realistically possible connection RTT values? So, then let’s say you 

picked the usernet RTT model instead. Could you now be sure of the results and use it for 

deployment? At least, you could be sure in this case that the characteristics of traffic you used is 

as similar as possible to real network traffic, and hence the results obtained would be that much 

more reliable.   

 Of course, network traffic keeps changing and is different at different points on the Internet. 

Hence it would be even better if you could run your entire set of experiments using two or more 

input traces with significantly different application mixes. Why? Traffic characteristics play a 

huge role in the outcome of experiments as we saw in this study. The UNC and IBM traffic had 

many similar characteristics when seen on a high level, but there were significant differences. For 

example the average RTT for UNC connections was 80ms and for IBM connections, it was 92 

ms. If the results you obtain from your AQM study hold for two such very different traffic mixes, 

then that in itself will serve to make your results more reliable when you make the argument for 

deployment of your new AQM scheme. 

 

RTT model had no impact on the number of active connections in the network.  

 This result must be qualified with the following statement: we measured active connections 

for every second in the hour long experiment. In fact, since connection durations affect number of 

active connections, and RTT models had no effect beyond 1 second for connection durations, it is 
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expected that RTT models would have no effect on active connections. So, in this case, say your 

experiment involved testing a routing protocol that had to keep state for active connections 

traversing that router queue. What is the granularity at which you wish to update and compute the 

number for active connections? If it is every second, then the RTT model you use will not greatly 

affect this computation. But if it is every millisecond, then our result above would have changed. 

That is, the RTT model would have affected your experiment. Hence, it is important to verify the 

scale at which your choice of traffic generation (RTT model in this case) will or will not affect 

your metric of performance.   

 

In a constrained environment, the lighter the distribution of connection RTTs, the 

heavier was the queue distribution at the router. 

 Choosing the right RTT model for your study depends not only on the direct effect of the 

RTT model on application-level performance metrics but also on the indirect or second-order 

effect of queue lengths on such application-level metrics. For example, in our study, we 

deliberately chose a very high level of congestion, which was induced by constraining the router-

to-router link at 105% of the traffic on that link. This created long queues at the router before this 

link, which added very large queuing delays to connection durations and response times. If your 

study did not involve constrained links and created no heavy congestion scenarios, then perhaps 

you would not have to take into effect these second-order queuing effects on your application-

level metrics of performance.  

 

Randomly assigning the same empirically derived round trip times to 

connections, using the discrete-approximation (DA) RTT model, is almost as 

effective, on an aggregate level, as assigning each connection its originally 

measured RTT as done in the usernet model.  
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 We developed a model for RTT emulation that approximated the empirical RTT distribution 

and emulated 30 paths for connection RTTs in the experiment. We concluded, from our 

experimental results, that this model would mimic the usernet model quite closely for the metrics 

of performance used in our study. We recommend that this is a viable alternative to the usernet 

RTT model in cases where the usernet model cannot be deployed. However, we found that if 

queuing dynamics in highly congested environments is of interest in an experiment, then this 

model is not appropriate since it produces heavier queues than the usernet model. We used 30 

values to approximate the 4.7 million connection RTTs in our traffic. We conjecture that if more 

paths were used, for example 150 paths were used, then this DA model would produce results that 

would even more closely resemble the usernet model. The choice of the number of paths for this 

model was purely dependent on the topology of the physical laboratory network in our study.  

   

The impact of the RTT model used in traffic generation, while significant, 

becomes negligible when compared to the dramatic impact of the connection 

structure model used in the experiment.  

 We strongly recommend that experimenters design their methodology carefully and select an 

appropriate RTT model for their study for all the reasons already stated above. We are convinced 

from the results in this study, however, that while modeling connection RTTs is still a choice that 

depends on the overall experimental design and goals, there is less choice in picking a connection 

structure model. But did we not show four choices for connection structure models in this study? 

Yes. However, we have come to the following conclusion that restricts the choice of connection 

structure model. That is, both the size and time components are just as important in modeling 

connection structure. Simply modeling connections by their size (as we did in the two block 

structures), or even adding the number of objects and size of objects (as we did in the a-b model), 

or further preserving the request-response exchanges (as we did in the a-b model) are not enough 
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detail in connection structure modeling. The one component of endpoint latencies within 

connections creates such a dramatic effect on all metrics of performance (both application-level 

and network-level) that we are convinced that connections must be modeled at this level of detail; 

that is we must include the epoch structure as well as all endpoint latencies.  

 Is the a-t-b-t model then the only correct model for traffic generation? It is definitely one 

method of detailed connection structure modeling, and it is the one we explored in this study. 

However, there may be others that work just as well, but were out of scope in this study. For 

example, how would the results have differed if we used the number of epochs per connection, 

the epoch sizes, and the endpoint latencies as input distributions to our traffic generation system? 

In such a case, we are indeed including details of connection structure but have not preserved the 

correlation, if any, among these various components of connection structure within connections. 

The a-t-b-t is a non-parametric model while what we just described here is a parametric model for 

connection structure, similar to the Swing traffic model [VV09]. Is one better than the other, or 

more realistic than the other? Would these two models produce similar or very different results? 

That is, given the same input traffic, let us say we use Swing for parametric modeling and Tmix 

for non-parametric modeling to generate traffic. Thus with inputs from the same empirical 

measurements, it would be interesting to bring out the similarities and differences, strengths and 

weaknesses of the two modeling techniques. These parametric distributions usually represent 

millions of connections; at such high levels of aggregation, how does parametric modeling 

compare with its non-parametric counterpart? These are all open research questions and intended 

for future work.  

 

Unlike RTT models which affected connection duration and response times only 

up to 1 second, the connection structure models affect these metrics significantly 

in the body as well as the tail of the distribution for these metrics. Hence, the 

connection structure model greatly affects number of active connections in the 
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network as well. And in the constrained mode, the absence of endpoint latencies 

in the block structures and the a-b model result in much heavier queues at the 

router, thus creating counter-intuitively long durations and response times 

because of the second order effects of queuing delay on connection duration and 

response times. 

 As we mentioned above, the connection structure model affects application-level metrics very 

significantly and throughout the experiment duration. Hence, if we used our previous example of 

evaluating a new AQM scheme in a router, choosing a realistic model for connection structure 

becomes very important for a reliable study. If we eliminated endpoint latencies from the model, 

there is a multi-fold decrease in the number of active connections in the network. And in 

constrained mode, the queuing dynamics would be very different for the different connections 

structure models. For example, say you used one of the block structure models in your study and 

determined that your protocol could keep state for active connections for a certain level of 

network traffic. Now, in the real network, the traffic resembles the a-t-b-t model where the 

number of active connections is multi-fold that for block structures, and your protocol may fail in 

this scenario.   

 It must be noted that in order to isolate and study queuing dynamics, we deliberately set the 

router queue to 65,000 packets for all our experiments. While this might be considered 

unrealistic, this helped us study the queue dynamics in the absence of loss within TCP 

connections. For our experiments in the constrained mode, the connection structure model used 

for traffic generation had dramatically different queue dynamics at the outbound queue of the 

router. This caused very large queuing delays for these connection structures and hence created a 

second order effect on all other performance metrics due to the queuing delay. Sure, if we had 

shorter queues, say 1200 packets, these connections would have incurred losses and created a 

different dynamic in the network. But we designed the queue size with the intention of 
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eliminating losses since study of loss characteristics was not part of our goals. This is definitely a 

topic that we intend to explore in the near future. That is, set the queue size to different levels 

inducing loss and study how this changes the traffic characteristics and the effect it has on the 

different performance metrics at both application and network levels.   

 The choice of this very large queue size at the router caused the block structures and the a-b 

model to buildup long queues at the beginning of the experiment, and these long queues did not 

drain until well into more than half the experiment duration of one hour. This leads us to another 

open question for experimenters: what is an appropriate length of time to run an experiment? It 

may be different depending on traffic characteristics of the input trace being emulated, as well as 

on network characteristics during the experiment. However, there seems to be no consensus on 

this, except to say that you must have a stable region from which to derive results. Such a stable 

region remains to be clearly defined. Five minutes for an experiment seems to be an acceptable 

time for running experiments, and used in some leading papers. For example, Swing [VV09] uses 

very small traces of five minutes and up to a maximum of twenty-two minutes. The open question 

here is: what constitutes stability in an experiment? Is it that the input must attain stability? For 

example, in our experiments, we see a spike in the throughput in the middle of the network as all 

30 pairs of traffic generators start up. It takes about 5 minutes for the throughput to settle down, 

and hence we use 10 minutes into the experiment as the start of our stable region. This stabilizes 

the input. But is stability of the experiment defined by the effect on performance metrics? For 

example, should we wait until the router queue stabilizes? Is that really achieving stability in the 

experiment, or ignoring the effects of traffic generation models? 

 

The take away message, if there is to be just one, is that the time components of 

traffic generation are as important as the size components.  
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 We simply wish to emphasize that experimenters must take into account the endpoint 

latencies when designing a model for connection structures in their experiments for all the 

reasons already enumerated above. 

 

For the bulk of connections in any experiment, window size assignment made no 

difference in connection durations or response times. 

 We found that the window size assignment model for assigning receiver maximum windows 

does not seem to affect the bulk of connections in our experiments, when run in the 

unconstrained mode. This is because the bulk of connections carry a small number of bytes and 

last for a short time. However, we also found that the window size makes a huge difference in 

these metrics for connections transferring more than 1MB of data. While this is not surprising, it 

is noteworthy that these usually small number of connections carry a relatively large percentage 

of the bytes, and hence they do affect network-centric metrics like queue length in a congested 

environment and number of active connections in the network. Moreover, the queuing dynamics 

of using a single value of window size for all connections in an experiment changes significantly 

in a highly congested network environment. For this reason, and for preserving the network-level 

pattern of injection of packets for large connections, we recommend using the Tmix model of 

window size assignment for traffic generation. It would also be interesting to measure how often 

window scaling is used in real connections. We did not measure or try to emulate window scaling 

in our study. 

 

Changing the connection structure model (to the extent done in this study) for a 

given input traffic does not change the long-range dependence characteristic of 

the packet arrival time series generated using these different connection 

structures. 
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 We found that the long-range dependence characteristics of the packet arrival time series 

remains the same regardless of the connection structure used for traffic generation. This is 

because while we removed endpoint latencies and even epoch structure in some models, we 

retained connection sizes and round trip times. It would be interesting to study which components 

of connection structure affect LRD of the traffic generated. For example, for a given set of 

connection sizes that cause LRD in traffic, is it the large connection sizes or the feedback/pacing 

of TCP that causes LRD? That is, exactly what components add LRD characteristics to traffic? 

And how does varying the LRD affect the various metrics in this study? It would be interesting to 

experiment with the following designs to study their effect on the LRD of the generated traffic: 

inter-packet times at the IP level, packet arrivals within TCP flows, flow arrivals at the TCP level, 

inter-arrival time for start times of TCP flows, use only top 30% of flows by duration, or use only 

top 30% of flows by bytes.  

 

The outcome of any experimental evaluation depends heavily on the input to the 

system – this is the garbage-in garbage-out concept. 

 The more realistic the generation of traffic, the more reliable will be the outcome of the 

empirical research. Hence, if we wish to run experiments with the goal of evaluating a new or 

improved network protocol, then we should test this protocol using realistic network traffic. Of 

course, there is no standard network traffic. Indeed traffic captured at one location on the Internet 

could be vastly different from any other location on the Internet. This is why it is desirable to use 

as input traffic captured at a production link and preferably at more than one such production 

links. Reproduction of traffic on a link should include all the traffic on that link. However, in this 

study and in most others, we only consider TCP traffic which constitutes over 90% of all traffic 

on the Internet. How would UDP traffic generation affect the overall results obtained in this 

study? Although non-TCP transport protocols, mainly UDP, are a small fraction of the traffic on 
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the Internet today, they are almost always left out of traffic generation systems. It would be useful 

to have UDP traffic as one of the suite of traffic scenarios in an experimental standards suite. 

7.2 Modeling Traffic  

 A major goal of traffic generation on the experimental network is to represent the original 

mix of applications while doing so without knowledge of what the original applications were. 

Changing the connection structure model, however, effectively changes the application mix in the 

original traffic by changing the behavior of the application as well as the behavior of the end user 

in some cases. This causes TCP to send packets in a different pattern, in both size of packets as 

well as the time elapsed between successive packet transmissions. This change at the TCP 

connection level due to change in application behavior gets amplified when playing tens of 

thousands of connections simultaneously, and this alters the aggregate arrival pattern of the traffic 

to the network link.  

 Similarly, changing the round trip time (RTT) for each connection, while keeping the 

connection structure model and hence application behavior unchanged, changes the pace at which 

each individual TCP connection sends windows of packets into the network. The dynamics of the 

TCP feedback loop are heavily influenced by the RTT for the connection. Smaller the RTT faster 

is the feedback from one end of the TCP connection to the other, leading to a quicker growth of 

the congestion window for that connection. This means that a connection with smaller RTT 

results in quicker transmission of the same application data. And similarly, a larger RTT results in 

slower feedback, slower transmission of data and larger completion times for connections. So, 

RTT plays a role in both propagation time for the TCP packets and also the time taken for the 

window to grow and allow for faster transmission of data. When such a change is effected at the 

level of every TCP connection, the aggregate traffic resulting from this change creates a different 
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pattern of arrival of packets to the network. Window size changes in TCP connections similarly 

affect the growth of the window and thus the amount of unacknowledged packets in the network 

for a given TCP connection. Hence larger window size means the TCP connection can transmit 

the same data faster and have more data in the network before it receives feedback from the other 

end of the connection.  

 If connection structure modeling, RTT emulation methods and window size assignment each 

have such significant impact on every TCP connection, the expectation would be that every one 

of these input changes would see very drastic changes in the traffic characteristics of the resulting 

input traffic to the network link. However, that is not the case. The changes are more pronounced 

in some cases than others. This is largely due to the fact that today’s Internet links constitute load 

from a very large number of connections, most of which are small in size in terms of the bytes 

they transfer. A significant percentage of the connections are not large enough to take advantage, 

or be adversely affected as the case may be, of the changes in RTT or window size, and in some 

cases, of the changes in connection structure models as well.  

 The importance of changing these input variables is, however, significant when we consider 

that they have a considerable impact on large connections. Though such large connections 

constitute a small fraction of the number of connections in the traffic on any given Internet link, 

they tend to carry disproportionately large amount of bytes and packets on the link, and thus 

contribute heavily to the overall characteristics of traffic on that link.  

7.3 Chapter Summary 

 In this chapter, we discuss the main observations and conclusions reached in this dissertation. 

We made some recommendations for experimenters to consider as they design experiments and 

model traffic for networking research. In the longer-term future, the networking research 
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community needs some clearly defined and accepted standards for testing protocols, one that is a 

suite of tests that is maintained and constantly updated by the research community. This suite 

would contain various types of emulation scenarios with various types of input, and measurement 

tools for studying various performance metrics. Using such a testing suite, a researcher proposing 

a new protocol or an improvement to an existing protocol could clearly show that it would 

improve performance for specific metrics using different traffic mixes.  
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