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Abstract
CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a
single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead
to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-
related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic
reticulum (ER). More than 70% of patients harbor the ΔF508 CFTR mutation that causes misfolding
of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane
of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS.
Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR
for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes
polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the
26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the
application of ‘corrector’ drugs that aid CFTR folding, shielding it from the UPS machinery.
Corrector molecules elevate cellular CFTR protein levels by protecting the protein from
degradation and aiding folding, promoting its maturation and localization to the apical plasma
membrane. Combinatory application of corrector drugs with activator molecules that enhance
CFTR Cl- ion channel activity offers significant potential for treatment of CF patients.

Publication history: Republished from Current BioData's Targeted Proteins database (TPdb;
http://www.targetedproteinsdb.com).

Introduction
One of the most common inherited genetic diseases is CF
[1], which affects 1 in 3200 births globally, culminating in
~1000 new diagnoses annually. Due to the high frequency
of CF, the gravity of the symptoms and the resulting mor-
tality, it is imperative that research is carried out to gain a
better understanding of the disease and to develop new
therapies. CF manifests due to mutation(s) in the CFTR
gene, whose protein product is a cAMP-regulated Cl- ion
channel belonging to the ATP binding cassette family [2].
In non-CF patients the CFTR protein is predominantly

localized to the apical membrane of ciliate cells that line
the lungs and gut, where it regulates Cl- ion movement
across epithelia [3,4]. CFTR mutations that abrogate chan-
nel function inhibit trans-epithelial ion transport, which
in turn leads to onset of CF symptoms such as pancreatic
failure and lung disease, the greatest cause of CF patient
mortality [3,5].

CFTR biogenesis
CFTR is a 1480 amino acid polytopic glycomembrane
protein comprised of two membrane-spanning domains
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(MSD1 and MSD2) (each containing six transmembrane
domains (TMD)), two cytoplasmic nucleotide binding
domains (NBD1 and NBD2) and a regulatory (R) region
[3] (Figure 1). CFTR folding occurs in the ER and necessi-
tates that the cytoplasmic domains be folded properly to
ensure intramolecular interaction between MSDI and
MSDII [6], ultimately resulting in the NBDs and R region
forming a functional ion channel [7-9]. The NBDs of
CFTR are responsible for binding and hydrolyzing ATP to
enable ion channel function [2]. The co-translational
folding of CFTR (A-form) is an inefficient, slow and com-
plex process [10,11] whereby the nascent polypeptide is
concomitantly folded and inserted into the ER lipid
bilayer [12] (Figure 2). Not surprisingly, ~55–80% of
newly synthesized wild-type CFTR protein is improperly
folded and targeted to the cytoplasmic proteasome for
degradation in human cells [13-15], proposed to be due
the complex and error prone folding process.

The folded and ER membrane-inserted CFTR, referred to
as the immature B-form, leaves the ER via coat protein
complex II (COPII)-coated vesicles [16,17] (Figure 2).
CFTR then enters the Golgi apparatus where two of the
Asn-linked glycans in the fourth extracellular loop are
converted from immature high-mannose forms to mature

complex oligosaccharides, creating C-form CFTR [12]. The
mature CFTR protein is subsequently delivered to the
plasma membrane where it functions as a Cl- ion channel.
At the apical membrane, CFTR levels are regulated by sub-
apical vesicle internalization, resulting in one of two fates:
recycling to the plasma membrane or lysosomal degrada-
tion [12].

CFTR mutations
Over a thousand CF disease-related mutations have been
identified to date, which yield a wide of range of defects in
the CFTR protein. CF disease-related mutations are
assigned into different classes depending on their molec-
ular characteristics [18,19]. Class I mutants include dele-
tions, frameshifts and non-sense mutations that result in
prematurely truncated CFTR protein products, class II
mutants are defective in intracellular trafficking (although
they may exhibit a level of ion channel activity) and class
III mutants are full-length proteins with little or no ion
channel activity. Class IV mutants generally result in a less
severe phenotype, as the CFTR protein only exhibits
slightly reduced channel activity. Class V mutants proteins
are functional but expressed at reduced levels, while class
VI mutants are expressed at wild-type levels but exhibit
decreased stability at the plasma membrane. The more

CFTR domain layout in the ER membrane lipid bilayer during ATP hydrolysisFigure 1
CFTR domain layout in the ER membrane lipid bilayer during ATP hydrolysis, depicting the membrane spanning domains 
(MSD), nucleotide binding domains (NBD) and regulatory domain (R). The membrane spanning domains are depicted in sepia 
and the cytosolic domains in aqua.
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severe CF symptoms are associated with class I, II and III
mutations due to the almost complete absence of channel
activity at the plasma membrane [18,19].

F508 CFTR, a temperature-sensitive class II mutation, is
the most commonly identified mutation in CF patients,
accounting for 70% of CF mutant alleles [20]. Other iden-
tified class II disease-causing mutations in CFTR include

N1303K, G85E and G91R [18]. These class II mutations
all result in a misfolded CFTR protein that is recognized
by the quality control machinery and thus prematurely
degraded. The exact mechanism by which these mutations
disrupt folding is not completely clear [21], but both the
G85E and G91R mutations have been shown to affect
folding due to the insertion of a charged residue in the
plane of the lipid bilayer [9].

CFTR is co-translationally inserted into the ER membrane during ribosomal translation of CFTR mRNA from the nucleusFigure 2
CFTR is co-translationally inserted into the ER membrane during ribosomal translation of CFTR mRNA from the nucleus. If 
CFTR is misfolded in the ER it is ubiquitylated and retrotranslocated to the cytosol, where it is degraded by the 26S proteas-
ome. Upon inhibition of the proteasome, ubiquitylated CFTR is localized to a pericentriolar aggresome structure. Correctly 
folded CFTR proteins are transferred to the Golgi apparatus for glycolytic maturation via the coat complex II (COPII) machin-
ery. Mature CFTR is exported to the plasma membrane to function as a chloride ion channel. CFTR protein levels at the 
plasma membrane are regulated by sub-apical vesicles delivering CFTR protein for either lysosomal degradation or recycling. 
For simplicity, we have represented CFTR with a single membrane spanning sepia symbol. Readers are invited to refer to fig-
ures 1 and 3 for the full domain architecture of the protein.
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The ubiquitin proteasome system (UPS)
A cell's necessity to remove and degrade misfolded pro-
teins directly results in the sorting of these proteins,
diverting them from a folding to a degradation pathway.
In addition, selecting substrates for degradation prevents
their accumulation into insoluble and potentially toxic
aggregates. Degradation of the misfolded proteins is car-
ried out by the UPS, whereby substrates are polyubiquit-
ylated and then degraded by the cytosolic proteasome
[22-25]. Ubiquitylation refers to the addition of ubiqui-
tin, a small monomeric 76 amino acid polypeptide, by
covalent linkage to lysine residues on the substrate mole-
cules [26]. Ubiquitylation is a multistep process involving
three classes of enzymes: E1 ubiquitin activating enzymes,
E2 ubiquitin conjugating (UBC) enzymes and E3 ubiqui-
tin protein ligases (See [27] for review). The ubiquitin
process is initiated through activation of an E1 by hydrol-
ysis of ATP to promote the formation of a thioester bond
between an internal active site cysteine and the C-terminal
glycine of ubiquitin [26]. The activated ubiquitin is then
transferred to the E2 active site cysteine where a new
thioester linkage is formed [26]. Finally, the activated
ubiquitin is covalently attached by an E3 ligase to the ε-
amino group of a lysine side chain on the substrate pro-
tein [26]. Depending on the type of E3 involved, this step
can entail an initial transfer of ubiquitin from the E2 to
the E3 or the E3 can catalyze the transfer of ubiquitin
directly from the E2 to the substrate protein [28]. Once a
single ubiquitin molecule has been conjugated to a sub-
strate, polyubiquitylation can occur by linking single
ubiquitin molecules together to form a ubiquitin chain.
Ubiquitin contains numerous lysine residues, any of
which has the capacity to form isopeptide bonds. Interest-
ingly, chains linked at lysine-63 are not targeted for degra-
dation, whereas those linked by lysine-29 and lysine-48
are [29]. Ubiquitin chains vary in length and linkage [30],
and their addition results in a variety of outcomes [31].
However, only polyubiquitylated proteins are targeted for
26S proteasomal degradation [29].

In the case of ER-localized proteins, polyubiquitylated
substrates are dislocated from the ER membrane to enable
translocation to the cytoplasmic 26S proteasome, where
they are selectively degraded [24,29]. The proteasome is a
large 2.5 MDa multi-subunit complex comprising around
30 subunits [29] that degrades substrates with four or
more ubiquitin molecules, with a tetra-ubiquitin motif
being the minimum requirement for efficient proteaso-
mal targeting [32].

CFTR and the UPS
Misassembled CFTR mutants appear to be detected during
the folding process via two distinct systems in human
cells; one that senses defects located within the cytoplasm
[21,33,34] and the other within the ER membrane [35]

(Figure 3). Distinct complexes of ubiquitylating proteins
act in conjunction with factors such as Hsp70 and Derlin-
1, which appear to recognize misassembled substrates at
CFTR folding checkpoints in the cytosol and within the ER
membrane, respectively.

CFTR proteins with mutations that cause misfolding of
their cytoplasmic regions, (NBD1, NBD2 and the R
domain) are detected by the cytosolic chaperone Hsp70.
Hsp70 is believed to maintain the misfolded substrate in
a soluble state, and upon interaction with the E3 ubiqui-
tin ligase CHIP, the Hsp70–CHIP complex diverts CFTR
from the folding to the degradation pathway [33,34,36-
38]. CHIP promotes ubiquitylation and degradation of
CFTR in association with the cytosolic E2 ubiquitin conju-
gating enzyme UbcH5a [33,34]. CHIP carries out this
function by mediating the attachment of ubiquitin to a
chaperone-presented CFTR, thereby stimulating its pro-
teasomal degradation [33,34,36-38]. The role of CHIP in
the ubiquitylation and degradation of CFTR has been
demonstrated both in vitro by reconstitution of the ubiq-
uitylation reaction [34], and in human cells by overex-
pression and pulse chase analysis [33].

The important role of CHIP in the degradation of CFTR is
evident in studies in which CHIP's activity is inhibited by
one means or another. for example, CHIP's E3 ubiquitin
ligase activity can be regulated by other Hsp70 co-chaper-
ones such as BAG-2 and HspBP1 [39-41]. BAG-2 inhibits
the ubiquitin ligase activity of CHIP by abrogating the
CHIP–E2 cooperation and stimulates the chaperone-
assisted maturation of CFTR [40,41]. Likewise, overex-
pression of HspBP1, which has been shown to inhibit
CHIP's activity and is a nucleotide exchange factor that
can promote the release of substrates from Hsp70, stimu-
lates the maturation of CFTR [39]. Furthermore, inhibi-
tion of the CHIP–Hsp70 E3 ubiquitin ligase complex by
overexpression of a CHIP mutant results in the accumula-
tion of a folding-competent stable B-form of CFTR [34].
Additionally, geldanamycin treatment of microsomes
containing in vitro translated CFTR results in the release of
the CFTR protein from Hsp70, which coincides with the
cessation of ubiquitylation and formation of stable B-
form CFTR [42], which is resistant to ubiquitylation/deg-
radation [13,14,43].

However, while Hsp70 is necessary for the degradation of
CFTR by CHIP, it also plays an important role in the fold-
ing pathway of CFTR [7,44]. This idea is supported by
both in vitro studies in which Hsp70 can prevent the aggre-
gation of the NBD1 domain [7], and cell culture studies
which show that the induction of Hsp70 results in the
increased trafficking of mutant ΔF508 CFTR to the plasma
membrane [44]. There must exist a yet unexplained mech-
anism that determines whether Hsp70-bound substrates
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The UPS complexes located in the ER membrane (Derlin-1, RMA1, Ubc6e and p97) and cytoplasm (Hsp70 and CHIP) are shownFigure 3
The UPS complexes located in the ER membrane (Derlin-1, RMA1, Ubc6e and p97) and cytoplasm (Hsp70 and CHIP) are 
shown. The figure demonstrates the polyubiquitylation of CFTR due to membrane-bound and cytosolic E3 ubiquitin ligase 
complexes. While the ubiquitylation likely occurs on the cytoplasmic domains of CFTR, the exact lysine residues conjugated 
with ubiquitin are unknown. p97 and possibly other associated factors are thought to participate in the extraction and delivery 
of CFTR from the ER membrane to the cytosolic proteasome. However, it is unknown whether the CFTR protein is extracted 
from the membrane in one piece, or degraded into smaller domains before retrotranslocation. Membrane spanning domains 
are depicted in sepia and the cytosolic domains in aqua.
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are allowed to fold or be targeted for degradation by the
co-chaperone, CHIP.

In addition to the CHIP–Hsp70 complex, which monitors
the cytosolic domains of CFTR, there are also membrane-
anchored proteins that can potentially monitor the assem-
bly of CFTR membrane domains. Aberrant CFTR folding
within the ER lipid bilayer is proposed to be identified by
the ER quality control (QC) factor Derlin-1 and its associ-
ated proteins [35,45]. Co-immunoprecipitation analysis
of both yeast and human cells has shown that Derlin-1
associates with substrate proteins and other QC factors
such as the retro-translocation factors p97/Cdc48 and
VIMP, E2 (Ubc6e) and E3 ubiquitin ligases (RMA1, HRD1
and gp78), and the deglycosylating enzyme peptide N-
glycanase [35,45-51]. Studies in human cells have shown
that the overexpression of Derlin-1 leads to the retention
of CFTR in the ER [35,45], while RNAi mediated knock-
down of Derlin-1 leads to an increase in steady state levels
of mutant CFTR [45]. These results suggest that Derlin-1
can participate in the selection of misfolded membrane
proteins such as CFTR for ER-associated degradation
(ERAD).

Within the context of the ER membrane, overexpression
studies in human cells have shown that the E2 ubiquitin
conjugating enzyme Ubc6e functions in association with
the E3 ubiquitin ligase RMA1 to mediate the ubiquityla-
tion of aberrant CFTR proteins, promoting their degrada-
tion. Both Ubc6e and RMA1 are localized to the cytosolic
face of the ER membrane via their C-terminal domains
[35,52-54] and therefore are likely to ubiquitylate
cytosolic regions of CFTR that are exposed in its misfolded
form. while both of these proteins have been isolated in
complex with Derlin-1 [35], it has not been established
whether or not this interaction is necessary for Ubc6e and
RMA1 to promote the ubiquitylation of CFTR.

Misfolded membrane proteins that are identified by the
ER QC factors are polyubiquitylated and dislocated from
the ER membrane, then transported to the 26S proteas-
ome for degradation. Yeast lacking Derlin-1 show
increased stability and accumulation of ERAD substrate
protein in the ER lumen, suggesting an additional func-
tion for Derlin-1 in retro-translocation [55]. Derlin-1
appears to contribute to retro-translocation of substrates
such as MHC class I heavy chain molecules from the ER to
the cytosol in association with p97 [46,48,56]. p97 is also
required for mutant CFTR degradation [57,58] and specif-
ically associates with ubiquitylated CFTR proteins [45]. It
acts to remove ubiquitylated CFTR from the ER to enable
its degradation [59], as disruption of p97–CFTR com-
plexes results in accumulation of immature CFTR in the
ER [60,61].

CF disease models, knockouts and assays
Basic CF research to understand CFTR biogenesis and deg-
radation has been carried out in immortalized cell line
systems such as HEK293 transfected with CFTR due to
ease of manipulation [62]. Theses findings have subse-
quently been investigated in CFTR-expressing cell lines
such as Fischer rat thyroid (FRT) epithelial cells [63], and
in primary mouse cultures of polarized epithelial cells
[64], both of which represent more biologically relevant
model systems. To extend the observations made in trans-
formed and rodent model cell lines, human bronchial
epithelial (HBE) cells cultured as a monolayer have also
been employed [65]. HBE cells are not used in initial stud-
ies as they are less amenable to manipulation by transfec-
tion and CFTR expression is low. However, HBE cells
make excellent candidates for testing potential drug treat-
ments.

There have been multiple attempts to create mouse mod-
els of CF that mimic the human disease (see [66] for com-
prehensive review). Unfortunately, there are limitations
in using whole organisms such as mice for physiological
studies due to differences in airway epithelial biology
when compared with humans that present challenges in
evaluating CF therapies using murine models [67]. Never-
theless, the models that would be of the greatest use for
studies relating to the role of the UPS in CF are ΔF508
models. Three such models have been generated by
Doorninck et al.[68], Colledge et al.[69] and Zeiher and
colleagues [70]. The models show different levels of sur-
vival and different phenotypes, likely due to the differ-
ences in mRNA and proteins levels. To date, due to the
difficulties in performing in vivo studies on protein fold-
ing and degradation, these models have mainly been used
to study the physiological effects of the ΔF508 mutant.
However, ΔF508 CFTR exhibits a temperature sensitive
folding and processing defect in epithelial cells isolated
from the ΔF508 CFTR mouse [69]. Therefore, these mod-
els should prove useful in the study of the role of the UPS
in CF and for the development of novel therapeutic
approaches based on overcoming the folding and process-
ing defect. As the list of QC factors that participate in the
degradation of mutant CFTR is further developed, the CF
field can also benefit from studies in which the ΔF508
mouse models are crossed with knockout models of the
different QC factors.

Drugs with potential for CF therapeutics
Restoration of just 5% of wild-type CFTR function dra-
matically improves lung and gut function in CF patients
[71]. Research efforts into CF therapy development have
generated drugs that can be divided into the different
classes of potentiators or correctors, both of which will be
discussed in more detail. In addition, the possibility of
developing compounds that activate alternative Cl- and K+
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channels to compensate for the loss of CFTR activity is
promising according to studies in both HEK 293 cells and
IB3-1 cells, which were isolated from a CF patient express-
ing the ΔF508 mutation. In these studies, the cells show
an increase in Cl- transport due to manipulation of ClC-2
channels through extracellular pH or by arachidonic acid,
amidation or acid-activated omeprazole [72,73].

Potentiator drugs act to open up the malfunctioning CFTR
channel, thereby promoting better ion and fluid traffick-
ing through epithelia to relieve CF patient symptoms. This
class of drugs is important for those CF mutations that
result in reduced channel activity, but potentiation of
channel activity alone does not solve the trafficking prob-
lems seen with the class II mutants such as ΔF508 CFTR.
Alternatively, corrector molecules can help correct the
folding and trafficking defect of mutant CFTRs, but they
do not necessarily solve the problems of low channel
activity or stability at the plasma membrane. Therefore,
mutations such as F508, which exhibit defects in both
folding and channel activity, will likely require combina-
torial drug approaches.

Genistein [74-77] is a molecule that has been widely used
in research assays as a potentiator of CFTR channel activ-
ity. It is a tyrosine kinase inhibitor but may act by binding
directly to the NBDs of CFTR and stabilizing their dimeri-
zation [78]. However, like other potentiators, genistein
has been shown to have a dual effect where low micromo-
lar concentrations stimulate CFTR chloride currents, but
higher concentrations inhibit CFTR channel activity [79].
CFpot-532 is another potentiator that was recently identi-
fied by Vertex Pharmaceuticals [80,81]; however, the
mechanism of action for this drug is still unknown. The
ability of CFpot-532 to act as a potentiator for mutant
CFTR channels was first demonstrated with temperature-
corrected ΔF508 CFTR expressed in NIH 3T3 cells [81],
and was later confirmed using low temperature rescue in
BHK cells stably expressing ΔF508 CFTR [80]. This drug
has exciting possibilities since studies in the BHK cells
showed that it could also act as a specific corrector for
CFTR and promote the maturation and trafficking of
ΔF508 CFTR (but not that of a mutant P-glycoprotein) to
the plasma membrane [80].

Corrector compounds aid CFTR folding [82], shielding
misfolded CFTR from the UPS, which results in a greater
level of CFTR protein and increased potential that it will
reach the plasma membrane and provide ion channel
activity. Although misfolded, certain CFTR mutants, such
as F508, have residual channel activity if helped to reach
the plasma membrane. It is unclear how corrector mole-
cules function in vivo and further investigations are
required to elucidate their modes of action.

Several classes of small molecule correctors have been
identified, including curcumin [83], compound 9 [84],
VRT-325 [81], CFpot-532 [80], Corr-3a and Corr-4a [82].
Curcumin is an ingredient in curry spice that acts as a cal-
cium-adenosine triphosphatase pump inhibitor, and was
initially identified as a compound that could correct the
folding defect of ΔF508 CFTR in mice [83]. Though curcu-
min has been tested in phase I clinical trials, there is some
controversy surrounding whether it acts as a corrector for
CFTR in biological systems, as these initial results have
not been reproduced by many labs [85-87]. Furthermore,
both curcumin and compound 9 have been reported to be
inactive in ΔF508 HBE cells [81], making them unlikely
therapy candidates for CF patients. The fact that these
drugs were initially identified in model experimental sys-
tems, and that results could not be recapitulated in more
relevant systems such as HBE cells and human patients,
underscores the difficulty of developing small molecule
therapeutics for CF. In terms of the current potential drug
therapies for CF patients, VRT-325 (developed by Vertex
Pharmaceuticals) [81], Corr-3a and Corr-4a (developed
by Verkman and colleagues at University of California,
San Francisco) [82] are excellent candidates. They were
identified by high-throughput screens and function to
increase CFTR protein levels and elevate ion channel activ-
ity. However, these drugs are still in the pre-clinical stage,
and the exact mechanisms by which they function are not
yet elucidated.

Application of Corr-4a or VRT-325 molecules promotes
increased protein levels of ΔF508 CFTR at the plasma
membrane [81,82]. This is presumably because these cor-
rectors increase folding efficiency post-translationally, as
VRT-325 promoted correct folding of mutant CFTR TMDs
[88], thereby reducing ERAD and resulting in greater
export of mutant CFTR to the cell surface [81,82]. It is not
known if these compounds act directly with the CFTR pro-
tein to correct a folding defect, or if they act indirectly
through other proteins or perhaps through modification
of the lipid bilayer itself. However, it is known that none
of these corrector molecules affect CFTR translation
[81,82] and that VRT-325 does not inhibit the UPS [81].
ΔF508 CFTR channel activity was increased by treatment
with VRT-325 in HBE cells from CF patients and Corr-4a
and Corr-3a at 37°C in human airway epithelial [81,82].
However, Corr-3a was unable to sustain ΔF508 CFTR ion
channel function for longer than 24 hours [82]. The ina-
bility of theses correctors to sustain CFTR channel activity
in the long term needs to be considered in terms of their
potential for patient treatment. Promisingly, the activities
of ‘Corr’ correctors are specific for ΔF508 CFTR in HBE
cells and did not affect the CFTR mutants P574H or
N1303K, or the dopamine receptor mutant [82]. How-
ever, the activities of VRT-325 are not specific for CFTR, as
these molecules also increased cell surface expression of
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the cardiac potassium channel hERG mutant G601S,
which causes hereditary human long-QT syndrome type 2
[81]. Overall, the level of correction achieved with these
molecules is currently low, and alternative molecules or
combinations need to be developed that correct CFTR
folding and activity more efficiently and effectively.

Next frontiers
Combinations of molecules for CF treatment are likely to
be the most promising method of elevating CFTR protein
levels and increasing ion channel activity. For example,
the potentiator VRT-532 was able to potentiate ion chan-
nel activity in the CFTR mutants ΔF508 and G551D, infer-
ring its potential as a drug treatment for CF patients in
combination with VRT-325 [81]. In fact, in primary
homozygous ΔF508 CF airway cultures, treatment with
both VRT-325 and VRT-532 increased ΔF508 CFTR matu-
ration and resultant channel activity to levels greater than
observed for each molecule independently [81].

With the identification of new CFTR degradation-associ-
ated QC factors, targeting the UPS system and enhancing
ion channel activity of misfolded mutant CFTR in parallel
is an optimistic avenue for current CF research. Further
investigations are required to develop molecules that are
specific to CFTR and that can sustain their additive effect
on the patient. Many considerations must be taken into
account during the development of new therapeutic mol-
ecules, such as the longevity of their effect, the effective-
ness of their abilities and the specificity of their activity
towards CFTR. The combination of new insights into
CFTR QC factors and the UPS, and the rapid development
of CF drug molecules such as correctors, has the potential
to create therapies that will benefit CF patients.
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