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We consider C∞ generic immersions of the projective plane into the 3-sphere. Pinkall has
shown that every immersion of the projective plane is homotopic through immersions to
Boy’s immersion, or its mirror. There is another lesser-known immersion of the projective
plane with self-intersection set equivalent to Boy’s but whose image is not homeomorphic
to Boy’s. We show that any C∞ generic immersion of the projective plane whose self-
intersection set in the 3-sphere is connected and has a single triple point is ambiently
isotopic to precisely one of these two models, or their mirrors. We further show that
any generic immersion of the projective plane with one triple point can be obtained by a
sequence of toral and spherical surgical modifications of these models. Finally we present
some simple applications of the theorem regarding discrete ambient automorphism groups;
image-homology of immersions with one triple point; and almost tight ambient isotopy
classes.

© 2009 Elsevier B.V. All rights reserved.

In this paper we consider C∞ generic immersions of the projective plane into the 3-sphere, i : P
2 → S

3. Pinkall [14] has
shown that every immersion of the projective plane is isotopic to Boy’s immersion ib+ , or its mirror ib− = R ◦ ib+ where
R is a reflection. The image of ib± intersects itself on a C∞ immersed circle in S

3. The image of this circle intersects itself
at a unique triple point, creating a bouquet of three unlinked, unknotted loops in S

3. There are three disks in P
2 whose

images under ib± are embedded and whose boundaries are precisely these three loops. Apery [1] described an isotopy of
Boy’s immersion that produces an immersion i g+ : P

2 → S
3 whose self-intersection set is equivalent to Boy’s but one of the

three loops does not bound such an image disk. Hence the preimages of the self-intersection curves for ib± versus i g± must
be topologically distinct. This paper exploits this structural difference to prove: If i : P

2 → S
3 is a C∞ generic immersion whose

self-intersection set in S
3 is connected and has a single triple point then i is ambiently isotopic to ib± or ig± (Theorem 4.3). That

is to say, if the self-intersection set is connected and has only one triple point then this set must be a bouquet of three
unlinked, unknotted, C0 closed curves, and the projective plane can be “sewn into” this set in essentially two distinct ways.
Theorem 4.3 is a refinement of Apery’s classification of immersions of P

2 [2]. As an application we can present any generic
immersion of P

2 with one triple point as ib± or i g± modified by a sequence of toral and spherical surgeries (Theorem 5.2).
Recall that two immersions i0, i1 are equivalent (i0 ≡ i1) if there exist C∞ diffeomorphisms Φ of S

3, and φ of P
2 such

that i1 = Φ ◦ i0 ◦ φ. They are isotopic if there exists a homotopy through C∞ immersions it , t ∈ [0,1], connecting the given
immersions. They are ambiently isotopic if there exist homotopies φt ,Φt , t ∈ [0,1], Φ0 = id, through C∞ diffeomorphisms
of P

2 and S
3 respectively such that it = Φ ◦ i0 ◦ φ connects i0 ≡ i0 ◦ φ0 and i1 ≡ Φ1 ◦ i1 ◦ φ1. Note that the reference to φt
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is usually omitted in the definition of ambient isotopy. However we will use the implicit intrinsic isotopy φt of P
2 to follow

changes in the preimage of the self-intersection set (Section 4).
Section 1 contains smoothly immersed models for ib± and i g± . In the tradition of Boy’s seminal work, these are presented

descriptively as the level curves of a non-degenerate height function [5]. We also reconstruct the preimage of the self-
intersection set which amplifies the difference in ib and i g . In contrast, the differences in the level curve morphologies are
so subtle as to seem insignificant. (It is likely that i g has been unwittingly constructed many times, e.g. [12].) In Sections 2
and 3 we describe restrictions on the self-intersection set and its preimage for a generic immersion. These preimages
then provide us with an (essentially cellular) “immersion-adapted” decomposition of P

2. Section 3 contains an analysis of
adapted decompositions which significantly reduce the possible configurations for the self-intersection set in the image. In
Section 4 we describe the C∞(α, T )-deformation of a given immersion which bifurcates a triple point to a pair of pinch
points (i.e. Whitney umbrellas). This is a combination of standard Morin–Roseman moves [17]. The resulting non-immersive
mapping j : P

2 → S
3 is ambiently isotopic to the crosscap mapping of the projective plane whose image is the “sphere with

a crosscap”. This mapping j : P
2 → S

3 is unique up to ambient isotopy. (There are two such ambient isotopy classes in R
3.)

Since the (α, T )-deformation has localized support in P
2 and is “reversible”, Theorem 4.3 will follow from a classification

of distinct passages from a given immersion to the crosscap mapping j. The paper closes with simple applications of the
theorem: discrete ambient automorphism groups; image-homology of immersions with one triple point; and almost tight
ambient isotopy classes.

1. The models

1.1. Three critical point models

The objective of this section is to present simple concrete constructions of C∞ immersions of P
2 into S

3 for subsequent
reference. As in Boy’s original work, these are presented descriptively as a sequence of planar level curves of a linear height
function h : R

3 ⊆ S
3 → R whose value, or “height”, increases as one moves “upward”. It was Boy’s insight that, given such

a family of level curves, one can construct an essentially unique immersion. For an introduction to this technique, we
recommend [12] Fig. 1, where the reader will find a view of Boy’s immersion very much like our Fig. 1.1. For more on the
subtleties of this methodology as well as details on techniques, we refer the reader to the literature [6,8,13].

The models presented in ib+ (Fig. 1.1) and i g− (Fig. 1.2) illustrate the main ingredients in the proof of Theorem 4.3. We
have chosen ib+ and i g− for ease of visual comparison. (See the remark at the end of this section for a definition of the
± designation.) In the center of each of Figs. 1.1 and 1.2 is a sequence of curves representing the structural changes in level
curves with three critical points labeled mx, s and mn. These levels are interpolated by standard generic moves found in the
literature cited above. The interpolated collection is arranged so as to roughly correspond to the appropriate height in the
surface to the right.

The caps immediately above the minimum height and below the maximum are the same in ib+ and i g− , and are topo-
logically the same as in Fig. 5.1. Descending from the maximum height notice that the only difference in ib+ and i g− is
that the inward-pointing loop in the level curve, which is generated by the saddle point, travels in two distinct ways (as
indicated by the arrows) until it points “outward”. In these models, it is the loops’ distinct ways of travel which correspond
to the different twist in the loop of double points lying between the maximum height and the triple point. Locally, one can
visualize the surface as a tube attached to the surface along a curve of double points (dotted curve), passing through the
surface at the triple point. (Compare with Boy’s Figs. 15, 17a, 17b [3].)

The bold curve in the left side of each figure is the preimage of the self-intersection set in the standard plane model
for P

2. This preimage is also known as the double decker set: the closure of the preimage of the double point set [7].

Fig. 1.1. Boy’s surface ib+ .
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Fig. 1.2. ig− immersion.

Consider the loop in the self-intersection set S1 which lies between the maximum height and the triple point height.
In the ib+ -model it is filled in by a disk (facing the viewer) in the surface. However in the i g− -model, the saddle-defined
orifice is surrounded by this loop, and hence there is no filling-disk facing the viewer. The only other possibility is that
such a disk would be hidden behind the surface but upon inspection such a disk would extend below the triple point and
hence its boundary would interact with the other loops in S1. Thus it cannot be filled in by the image of a disk. In both
cases, the remaining loops in S1 are clearly filled in by such disks. The disk bounded by the small loop is hidden from any
viewpoint, whereas the other loop bounds a disk facing the viewer. These disks are much more transparent when examining
the preimage of S1.

We will denote the preimage of S1 (the double decker set) by D ⊆ P
2. The following paragraph indicates how the

homotopy type of D can be inferred from the level curve decomposition. At the left of Figs. 1.1 and 1.2, we use the disk
model of P

2 (that is, the disk with antipodal points identified). The height levels in the preimage are drawn as hyperbola-
like curves in the disk, and the critical levels, mx and mn, correspond to pairs of antipodal points. To see that the bold
curves in the disk models correspond to D (which in both cases is a C∞ immersed non-imbedded curve), observe that the
induced height function on S1 will have six non-degenerate critical points, with heights h1,h2, . . . ,h6, where D must be
tangent to the level curves in P

2. We have implicitly assumed that these critical points are not at the height of the triple
point or the saddle point. Descending from the mx height to h6, there are no such tangencies; at h6 there is one; and
between h6 and h5 the level curves transversely intersect D precisely four times. Continuing in this fashion produces the
level set decomposition for D (presented on the left of Figs. 1.1 and 1.2).

Our strategy for proving Theorem 4.3, as detailed in Section 3, is to construct a decomposition of P
2 adapted to the

double-point set of a given immersion and then use topological restrictions to show that it must be diffeomorphic to one
of the above two models. The desired ambient isotopy is constructed in Section 4.

The ± designation on these models for ib± and i g± is determined as follows. A collar neighborhood of the immersed
circle of double points is a Möbius band with either a left-handed or right-handed twist (that is, the crossing number of a
projection of the boundary curve is negative or positive) [14,16]. The + sign indicates a right-handed (positive) twist and
the – sign a left-handed (negative) twist.

1.2. Z2 rotationally symmetric models in S
3

In this section we will change the level curve decomposition above to construct alternative models for ib± and i g± which
have 2-fold rotational symmetry about a great circle axis in an equatorial S

2. On the complement of a 3-ball at ∞ in S
3

the immersions are given by the level curves in Figs. 1.3 and 1.4 respectively, where the equatorial S
2 is represented by the

plane of symmetry and the great circle axis of rotation is represented by a vertical line (whose intersection with various
levels is shown as black dots down the center in the right-hand portion of the figure). Note that the viewer’s line of sight is
orthogonal to the equatorial plane of symmetry so all of the cusps in the contour curve must lie on the axis of symmetry.

In a 3-ball at ∞, these immersions agree with the equatorial S
2 and the level curves extend to define an isolated

singularity of index 2 (bipole singularity). Since the remaining level curve singularities have index +1 at the local maxi-
mum and −1 at the two saddles, both level curve morphologies represent immersions of the projective plane.a Descending
from ∞, a dome forms in both models, and then two saddles. Notice, however, that the saddles form “inside” vs. “outside”
the dome. In contrast to the “loop movement” of the 3-critical-point models (Figs. 1.1, 1.2), on the symmetric models these
“saddle locations” provide a distinguishing feature.
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Fig. 1.3. Symmetric ib immersion.

The two loops of S1 (bold and dotted in the right of Figs. 1.3, 1.4) which lie below the triple point are clearly spanned
by immersed disks. The spanning disk in the vertical loop is clearly spanned by an immersed disk in Fig. 1.3. However in
Fig. 1.4 the two saddle points obstruct such a disk.

2. The self-intersection set

Our methods can be described as C0-cellular topology motivated by, and adapted to, the C∞ generic setting. Thus we will
typically present C1 models for our C∞ objects and assume that the models have been perturbed to be C∞ . Let i : P

2 → S
3

denote a generic immersion of the projective plane into the 3-sphere, and let S = i(P2). Then S1 ⊂ S ⊂ S
3 is a stratification

where S1 is the (1-dimensional) self-intersection set of the immersion. Let D = i−1(S1), and note that the immersion is
injective when restricted to P

2 − D . We will assume that S1 is connected and contains exactly one triple point T , hence
S1 − T as a 1-chain consists of three loops (β,γ and δ) of double points each of which begins and ends at T , where they
fail to immerse (since the tangents of a loop do not line up at T ). The preimages of β,γ and δ are pairs of C∞ imbedded
arcs with disjoint interiors: i−1(β) = β1 ∪ β2, i−1(γ ) = γ1 ∪ γ2, i−1(δ) = δ1 ∪ δ2. The preimage of the triple point T consists
of three points: T1, T2, T3. Thus D is a collection of (at most three) C∞ imbedded closed curves in P

2, with each pair
intersecting (transversely) precisely at T1, T2 or T3. The three possible configurations of S1 (viewed as abstract 1-chains
containing designated immersed cycles) are shown in Figs. 2.2–2.4 below. A neighborhood V of the triple point T in S is
shown in Fig. 2.1. Label the “opposite” ends of the double point arcs in V by z±, y±, x± respectively. We will refer to the
remaining pairs as “adjacent” ends. For example, x+ is adjacent to y± and z± .

A priori, the self-intersection set S1, as an abstract 1-chain, must consist of one, two or three immersed closed curves
which may become knotted when realized as a self-intersection set in S

3. Specifically, the cases (illustrated in Figs. 2.2–2.4)
are as follows:
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Fig. 1.4. Symmetric ig immersion.

Fig. 2.1.

Case I. Three immersed loops in S1 passing through T The loops are obtained from V by connecting z+ to z− , x+ to x− , and
y+ to y− .

Case II. Two immersed loops in S1 passing through T One loop is obtained by connecting the + and − ends of one axis, say z+
to z− . The other loop is a figure-eight obtained by connecting x+ to either y+ or y− , and x− to the remaining end.

Case III. S1 consists of a single immersed circle The circle is obtained by connecting x+ to y− , y+ to z− , and z+ to x− .

We will refer to these standard 1-chain configurations in Section 3, where we construct the immersion-adapted decom-
positions of P

2, and use them to eliminate Cases I and II from occurring in an immersion of P
2 with one triple point.
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Fig. 2.2.

Fig. 2.3.

Fig. 2.4.

3. Immersion-adapted decompositions of PPP
2

Throughout this section, we are given a C∞ generic immersion i : P
2 → S

3 satisfying the hypotheses of Theorem 4.3 (the
self-intersection set in S

3 is connected and has a single triple point). We now show that Cases I and II of Section 2 cannot
occur as the self-intersection set of such an immersion, and that Case III yields two precisely two adapted decompositions
up to a diffeomorphism of P

2. We begin by describing some general restrictions on connecting ends of the neighborhood V
(Fig. 2.1). Note that the connections could insert twists in V when realized in S

3.

Lemma 3.1. If opposite ends of V are connected then this connection must have an odd number of quarter-twists. If adjacent ends are
connected, then this connection must have an even (possibly 0) number of quarter-twists.

Proof. Recall that S − S1 admits a normal vector field in S
3, i.e., S − S1 has a consistent transverse orientation in the sense

of [3,12]. (Essentially, the complement of S can be divided into two families according to whether geodesic rays from a fixed
point in the complement meet S in an even number or an odd number of points. One family can then be designated as the
positive side of S .) The lemma is a restatement of conditions on connected ends so as to admit such a vector field. �
Corollary 3.2. If opposite ends of V are connected to create an immersed loop in S1 , then the preimage of the loop is the core of a
Möbius band in P

2 .
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Fig. 3.1.

Fig. 3.2.

Proof. Without loss of generality, we may assume z+ is connected to z− by an arc ε in S1. Let C denote a “cross”: {(x, y) ∈
[−1,1] × [−1,1] | xy = 0}. A tubular neighborhood of ε in S is homeomorphic to C × I , where I = [0,1]. By Lemma 3.1,
there must be an odd number of quarter-twists in C × I as it connects z+ to z− in S

3. This defines an immersion of the
Möbius band M into S so that the core circle c double covers the loop. Hence, the preimage must be a loop in P

2 with a
neighborhood homeomorphic to a Möbius band. �

Now we begin the analysis which will eliminate all but one of the three possible 1-chain configurations presented in
Section 2. We will denote the intersection of S in S

3 with a tubular neighborhood of S1 by V̂ . This should be thought of
as V (Fig. 2.1) with its ends appropriately identified.

Proposition 3.3. Case I, in which S1 consists of three immersed, imbedded transverse components through T , cannot be realized as
the self-intersection set of i in S

3 .

Proof. Let β , γ , and δ be the components of S1. By Corollary 3.2, the preimage of each component (i.e., the concatenations
β1β2, γ1γ2, or δ1δ2) is an orientation-reversing loop in P

2 double-covering its image loop. Further each preimage intersects
precisely at two of the three preimages of T . That is, D is homeomorphic to the configuration shown in the plane model
of P

2 in Fig. 3.1.
The complement of a collar neighborhood of D consists of four disks: E , F , G , H . The corresponding neighborhood V̂

of S1 in S must be as in Fig. 3.2. Each edge is labeled according to the disk it bounds in P
2 and end identifications are

dictated by the labels on the boundary curves of the four disks. There may be additional full 360◦-degree twists along any
of the loops, but this does not affect the labeling of the edges of V̂ .

Since each edge of V̂ bounds an imbedded disk in S , it is unknotted in S
3. We claim that each of the loops β , γ and

δ is also unknotted. Suppose β is knotted; then it has a locally knotted arc in S
3 − V̂ . However then an edge of V̂ would

also have a locally knotted arc, and hence is a composite knot. Additivity of the genus [18] would then imply that this edge
cannot be the unknot, a contradiction.

Therefore β is unknotted and hence bounds a disk Δ in S
3. Put Δ in general position so that S meets Δ transversely.

The set S ∩ Δ is a graph. Each interior vertex, where Δ is transverse to S1, is 4-valent. Further, from Fig. 3.2, we note that
at each such intersection with S1, the four faces emanating from the vertex have distinct labels (E , F , G , or H).
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Fig. 3.3.

There must be at least two arcs of intersection with S that meet the boundary of Δ: one resulting from the intersection
of Δ with the “xy”-plane through T in Fig. 3.3, and the other from the necessary twist along the “z”-axis. Without loss of
generality, we can take those arcs to be labeled G and H .

First, assume these are the only arcs of S ∩ Δ meeting the boundary of Δ. This is equivalent to assuming there are no
360◦-degree twists in the loop β . Let K be the subgraph of S ∩ int Δ connected to these two arcs. The vertices of K arise
from intersections with S1. Suppose there are m such vertices. Counting the number of edges emanating from each vertex
of K, we get

e = number of edges coming from intersection with face E = m/2,

f = number of edges coming from intersection with face F = m/2,

g = number of edges coming from intersection with face G = (m + 1)/2,

h = number of edges coming from intersection with face H = (m + 1)/2.

But e = m/2 implies that m is even, while g = (m + 1)/2 implies m is odd. Therefore this case cannot occur.
Now suppose there are some 360◦-degree twists along β . Each such twist adds four additional edges of K meeting the

boundary of Δ, one with each of the four face labels. Hence each such twist adds 1 to the numerator of each of e, f , g
and h, and the parity problem persists.

We conclude that Case I, in which S1 is diffeomorphic to three immersed loops through T , cannot occur. �
It is interesting to note that this case can occur in S

3/Q where Q is the quaternionic group of order 8 [6].

Proposition 3.4. Case II, in which S1 consists of two loops, one immersed and imbedded and one immersed but not imbedded, cannot
be realized as the self-intersection set of i in S

3 .

Proof. One of the smooth loops in S1 is obtained by connecting the positive and negative ends of one axis, say z+ to z− .
Call this loop δ. The other smooth loop is a figure-eight obtained by say connecting x+ to y+ (call this arc β) and x− to y−
(call this arc γ ). The preimage D is homeomorphic to the 1-chain shown in Fig. 3.4.

Corollary 3.2 implies that the preimage of δ (labeled δ1δ2 in the figure) is an orientation-reversing loop with a Möbius
band neighborhood which double-covers δ. The complement of this Möbius band in P

2 is a disk. Up to diffeomorphism, the
only way the above 1-chain can be imbedded in P

2 is as shown in Fig. 3.5 (i.e., there is only one way to imbed the Möbius
band, hence δ1δ2, and the imbedding of the remainder of the 1-chain is determined). The figure-eight component lies in
one of the three complementary disk faces.

Thus the complement of a collar neighborhood of D in P
2 would have six boundary components. We will now show this

cannot occur. Notice that, since the figure-eight component lies in a disk in P
2, there can be no twists realized in its collar

neighborhood. Hence when we connected the ends of V to create V̂ , the only twisting along β or γ must be 360◦ twists,
and 360◦ twists do not affect the number of boundary components of V̂ . Similarly, although we know there must be at
least one quarter-twist along δ, any additional 360◦ twist has no effect on the number of boundary components. Counting
the number of boundary components in V̂ with a quarter-twist along δ, we see there can be only four, not six as shown in
Fig. 3.5. Thus Case II cannot be realized. �
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Fig. 3.4.

Fig. 3.5.

Fig. 3.6.

Proposition 3.5. Case III, in which i(D) = S1 consists of one immersed cycle, the preimage D has precisely two possible configurations
up to diffeomorphism of P

2 (Figs. 3.8 and 3.9), each of which is realizable as the self-intersection set of an immersion satisfying the
hypotheses of Theorem 4.3.

Proof. Without loss of generality (up to a reflection in S
3), we may assume that the immersed cycle is created by identify-

ing x+ to y− , y+ to z− , and z+ to x− . In this case D is homeomorphic to the 1-chain N shown in Fig. 3.6.
At least one loop in this 1-chain must be homotopically non-trivial in P

2. Otherwise the complement of N contains a
Möbius band and hence there would be an imbedded Möbius band in S − S1, contradicting transverse orientability as in
the proof of Lemma 3.1. So either

Case B: the loop β2γ2δ2 in N is homotopically non-trivial or
Case G: at least one of the loops β1, γ1, or δ1 is homotopically non-trivial.

To show there are the only two possible ways to realize Cases B and G, note that the preimage in P
2 of the neigh-

borhood V of the triple point T consists of three components, each homeomorphic to a neighborhood of one of the three
preimages of T , as shown in Fig. 3.7. Information about how the ends of these components are identified will allow us to
reconstruct D as a subset of P

2.
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Fig. 3.7.

Fig. 3.8. Case (B).

Fig. 3.9. Case (G).

Fig. 3.10.

Case B. Without loss of generality, assume the loop β2γ2δ2 in N is essential in P
2. The complement of this loop is a

disk so the loops β1, γ1, and δ1 must bound disks in P
2. Their image loops β,γ , δ bound imbedded disks in S , hence we

have the ends of V connected with orientations as shown at the left in Fig. 3.8. That is to say the collar neighborhood
of D is created by connecting the ends of the components of i−1(V ) in Fig. 3.7 according to the specified connection rules,
which in turn determines how the set D must imbed in P

2. Notice that, since the complement of β2γ2δ2 is a disk, up to
diffeomorphism there is only one way to imbed the Möbius band, and hence β2γ2δ2. The imbedding of the remainder of
the 1-chain is determined and there is no choice as to how the rest of D imbeds in P

2 (Fig. 3.8).
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Fig. 3.11.

Fig. 4.1.

Case G. Without loss of generality, assume β1 is homotopically essential in P
2. As in Case 1, we argue that γ1, δ1 bound

disks in P
2, hence γ and δ again bound imbedded disks in S . The imbedding of D in P

2 and a collar neighborhood of D
are shown in Fig. 3.9. The resulting connections rules for V are also shown. Note that the axis-orientation of V is the same
as in Fig. 2.1.

Both of the above are realizable in S
3, as they are diffeomorphic to D for ib+ and i g+ as indicated in Figs. 1.1 and 1.2 in

Section 1. Stages of the construction of (B) are well known (e.g., Figs. 1.5, 1.6 [8]). Stages of the construction of less known
Case (G) are illustrated in Fig. 3.10. The surface in Fig. 3.11, with one disk and a neighborhood of the self-intersection set
removed, is ambiently isotopic to i g . For more of Mellnik’s CAD renderings and animations of ib and i g , see the link at
www.math.unc.edu/Faculty/seg. �
4. Proof of the main theorem

It remains to be shown that any immersion i with D = i−1(S1) diffeomorphic to Case (B) or (G) is ambiently isotopic
to ib± or i g± . Since we want to follow the creation, destruction and movement of the pinch points in the image and
preimage, we now define the notion of a deformation arc. See Figs. 4.2–4.4 for illustrations of the procedure described
below.

First we use these preimages to construct an (α,T)-deformation jt : P
2 → S

3, t ∈ [0,1], where j0 = i, and where j1 = j
is the non-immersive crosscap mapping whose image is the “sphere with a crosscap” (see [12], Section 3 for an explicit
parametrization). The mapping j has an arc of double points terminating in a pair of pinch points, P1 and P2, and no
triple points. The preimage of the arc of double points is an non-trivial curve D ′ marked by the preimages of the pinch
points (also denoted P1 and P2) as in Fig. 4.1. The map j is unique up to ambient isotopy (i.e. a neighborhood of D ′ has
image diffeomorphic to the dehomogenized Plucker conoid [9] intersected with a 3-ball and, in S

3, there is only one way
to attach an imbedded disk to its boundary). The (α, T )-deformation will determine a deformation arc in P

2 which joins
the preimages of the pinch points and transversely intersects D ′ − {P1, P2} in exactly one point. This deformation process
is reversible; that is, given such a deformation arc for D ′ in P

2, there is a deformation jt such that j0 is an immersion with
exactly one triple point, and j0 is unique up to ambient isotopy.

http://www.math.unc.edu/Faculty/seg
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Fig. 4.2.

Fig. 4.3.

Fig. 4.4.

The (α, T )-deformation will be locally supported and can be defined for any generic immersion i with an “α-loop” in S1
which contains a triple point T (i.e., a loop in S1 which is the boundary of an imbedded disk i(Δ) in S , and this boundary
contains T ). In this setting, the loop has two preimages, α1 and α2. One, say α1, is a loop through T1 in i−1(T ) which
bounds a disk in P

2. The other, α2, is an arc in P
2 joining the other two preimages of T (call them T2 and T3). Let β and δ

denote the other arcs entering and leaving i−1(T ). Locally, in P
2, we have Fig. 4.2.

The deformation jt will have support on a neighborhood of α2 where it has local representation jt(u, v) = (u, v2, v3 −
v(u2 + 2t − 1)) = (x, y, z) with α2 represented by the unit interval on the v-axis and i(Δ) lies in the x = 0 plane. The image
is as in Fig. 4.3.

During the (α, T )-deformation, the preimage of the self-intersection set changes as follows: as t approaches 1
2 , the

α-loop contracts to the point T and then disappears. The jt -preimage of its double-point set changes as follows: as t
approaches 1

2 , α1 and α2 shrink to points; at t = 1
2 , βi and γi all join; and for t > 1

2 , β1 and β2 join at the preimage of one
pinch point; γ1 and γ2 at the other. Compare Figs. 4.2 and 4.4.

With the following two propositions we will have a proof of Theorem 4.3.

Proposition 4.1. For each immersion ib± and ig± , there exists an (α, T )-deformation taking the immersion to the crosscap mapping.

Proof. Note that composing an immersion with a diffeomorphism of S
3 does not change the preimage of the self-

intersection set so we need only prove the + cases.
The loop labeled γ in the proof of Proposition 3.5 is an α-loop. Since S1 is a single immersed circle, the (α, T )-

deformation constructed on γ transforms S1 into an arc of double points, with each end terminating in a pinch point. In
each case, we trace the deformation path in the preimage for use later. The preimage deformations are shown in Fig. 4.5,
where the deformation arcs are indicated by a dashed curve. The grey dot indicates the point at which the α-loop (γ1)

vanished. In each case, the deformation results in the double-point set D ′ for the crosscap mapping, but with distinct
deformation arcs. �

Define an allowable deformation arc in the preimage of the crosscap map j to be an arc joining the pinch point preim-
ages and crossing D ′ transversely exactly once. We will say two deformation arcs are equivalent if one can be homotoped
in P

2 to the other staying within the class of allowable deformation arcs.

Proposition 4.2. Any allowable deformation arc for the crosscap mapping is equivalent to one of the deformation arcs in Proposi-
tion 4.1, or its mirror image.
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Proof. Let Δ̃ be the standard planar model for P
2, i.e., a disk with its boundary identified by the antipodal map. Let

the horizontal diameter of Δ̃ be the preimage D ′ of the self-intersection set for the crosscap mapping j. Orient the self-
intersection set and give D ′ the inherited orientation. Denote the pinch point preimages by P1 and P2 with P1 being the
point with inward oriented segments on either side. There is an induced orientation on the deformation path μ going
from P1 to P2. (See Fig. 4.1.) There are exactly four homotopy classes of deformation arcs joining P1 and P2.

i. As μ leaves P1 it enters the upper half-disk, crosses D ′ to the left of P1 and then joins P2 in the lower half-disk of Δ̃

without crossing the boundary of Δ̃.
ii. As μ leaves P1 it enters the lower half-disk, crosses D ′ to the left of P1 and then crosses the boundary of Δ̃ before

joining P2. Note that this is equivalent to μ entering the upper half-disk, crossing D ′ to the right of P1 and then joining
P2 without crossing the boundary of Δ̃.

iii. As μ leaves P1 it enters the lower half-disk, crosses D ′ to the left of P1 and then joins P2 in the upper half-disk of Δ̃

without crossing the boundary of Δ̃. This is the mirror image of case i.
iv. As μ leaves P1 it enters the lower half-disk, crosses D ′ to the left of P1 and then crosses the boundary of Δ̃ before

joining P2. This case is equivalent to the mirror of case ii.

These cases are illustrated in Fig. 4.6. This completes the classification of deformation arcs. �
Thus up to diffeomorphism of P

2 there are but two possible homotopy classes of admissible (α, T )-deformation arcs
for the crosscap mapping. It follows that the ± designation in ib± and i g± cannot be inferred from D in P

2 since the
composition of an immersion with a reflection of S

3 has no effect on the preimage.

Theorem 4.3. If i : P
2 → S

3 is a C∞ immersion with transverse self-intersection, whose self-intersection set in S
3 is connected and

has a single triple point then i is ambiently isotopic to ib± or ig± .

Proof. The theorem follows from Propositions 3.3–3.5 and 4.1–4.2 as follows. For any such immersion i, choose a collar
neighborhood of the immersed circle of double points which is a Möbius strip with either a left-handed or a right-handed
twist. Without loss of generality we will assume that i corresponds to a right-handed twist and will show that it is ambi-
ently isotopic to ib+ or i g+ . The choice of ib+ or i g+ is determined by the preimage of the self-intersection set of i, which
must correspond to one of the two configurations in Proposition 3.5. Hence there is an α-loop upon which we can con-
struct an (α, T )-deformation jt taking i to the crosscap mapping. We may assume that at t = 1

2 the mapping j1/2 bifurcates
as in Fig. 4.3. By Proposition 4.2, the deformation arc for this homotopy is equivalent to the deformation arc (i) or (ii) of
Fig. 4.6. Now construct j+t for ib+ or i g+ as appropriate; i.e., if the deformation arc is equivalent to (i), construct an (α, T )-
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deformation for i g+ , and similarly for (ii). Since, for t in [0, 1
2 ), jt and j+t can be represented by ambient isotopies and there

exists a diffeomorphism Φ+ of S
3 with j1/2 = Φ+ ◦ j+1/2, a localized surgery modification of the concatenation of jt and

Φ+ ◦ j+t , t ∈ [0, 1
2 ], produces the desired ambient isotopy. �

5. Applications

We close the paper with applications of Theorem 4.3 to the following topics in the differential topology of submanifolds:
discrete ambient automorphism groups; image-homology of immersions with one triple point; and almost tight ambient
isotopy classes.

5.1. Finite ambient automorphism groups

Here we will distinguish immersions equivalent to ib± or i g± by the groups of orientation-preserving diffeomorphisms
of S

3 which leave invariant their image surfaces. At one extreme, any vector field on S
3 which is tangent to the stratification

T ⊆ S1 ⊆ S defines a flow which preserves S . At the other extreme, it has been shown that the only possible ambient
isometry group of a generically immersed projective plane in Euclidean 3-space is cyclic of order 3 [10]. The definition
below extracts desirable features of flow automorphisms and geometric symmetries.

Given an immersion i : P
2 → S

3 and a finite group Σ , we define a i-invariant automorphism action by Σ to be an
injective group homomorphism Λ :Σ → Diff +(S3) which preserves S = i(P2). That is to say, for all σ in Σ , the associated
diffeomorphism Λ(σ) = Φσ : S

3 → S
3 maps S to itself. It follows that the stratification T ⊂ S1 ⊂ S ⊂ S

3 must also be
preserved: Φσ (T ) = T , Φσ (S1) = S1. We say the action is T-faithful if the homomorphism induced by the differentials
at the fixed triple point T , Λ∗ : GL(T T S

3,R), Σ∗(σ ) = Φσ∗ : T T S
3 → T T S

3 is also injective. Such an action is maximal if
Λ(Σ) ⊆ Λ′(Σ ′) ⊆ Diff +(S3) implies Σ = Σ ′ . Let Symn denote the symmetric group on n letters.

Corollary 5.1. The immersions ib± admit a maximal T -faithful Sym3-action, and the immersions ig± admit a maximal T -faithful
Sym2-action.
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Proof. Given i = ib± or i g± , choose a parametrization of the circle of self-intersection points S1. This defines three cyclically-
ordered unit tangent vectors (v1, v2, v3) in the tangent space of S

3 at T . Let [v1], [v2], [v3] be three corresponding points
in the projectivization of T T (S3). Note that since every σ in Σ has finite order, it follows that, if σ 
= id, then Φσ∗ cannot fix
these three points. Hence, for any σ in Σ , Φσ∗ is determined by the induced permutation of [v1], [v2], [v3]. It follows that
the largest possible faithful group is Sym3. However in the case of i g± , the loop of S1 with a half-twist must be invariant
under any i g± -invariant automorphism, hence the corresponding pair of points in the projectivization must be interchanged
by Φσ∗ and the largest possible group is Sym2.

We need only construct the required actions. This should be clear from Boy’s 3-fold symmetric model and the 2-fold
symmetric models in Section 1. More formally, we have the following constructions for Λ.

For i = ib± there is an ambient diffeomorphism Φ with Φ ◦ i given by Boy’s 3-fold symmetric model. Pulling back the
120◦-rotation over this diffeomorphism Rot3 ◦ Φ−1 = ρ3 defines a Z3 action on i generated by ρ3. The differential at T ,
(ρ3)∗ , “rotates” the points [v1], [v2], [v3]. Similarly denote the 2-fold symmetric model of ib± shown in Fig. 1.3 of Section 1
by Φ̃ ◦ i and pull back the 180◦-rotation over the diffeomorphism Φ̃ to define a Z2 action on i generated by Rot2 ◦ Φ̃−1 = ρ2.
The differential at T , (ρ2)∗, exchanges two of the points [v1], [v2], [v3], leaving the third fixed. The action Λ of Sym3 is
now defined by all (compositional) words on the symbols ρ2 and ρ3. Similarly for i g± the 2-fold symmetric model in
Fig. 1.4 of Section 1 gives rise to an action of Sym2. �

As a consequence of [10] and Corollary 5.1, we have that no immersion into Euclidean 3-space with non-trivial geometric
symmetry can be equivalent to i g± , and no immersion into S

3 with order 3 symmetry can be equivalent to i g± .

5.2. Homology of the image of immersed projective planes with one triple point

In this section, we extend our classification of immersions of P
2 to allow other components of the self-intersection set,

but no additional triple points. Further we compute the Z2-homology of the image set for such an immersion.
Let ĩ : P

2 → S
3 be a C∞ generic immersion with one triple point T and self-intersection set a disjoint union S̃1 = S1 ∪ S ′

1,

where T lies in S1. Pinkall’s quadratic form q : H1(P,Z2) = Z2 → Z4 must have support on D = ĩ−1(S1) and hence must
be trivial on any component D ′ = ĩ−1(S ′

1), [14]. Further a component in D ′ cannot intersect itself since there is only one

triple point whose preimage lies in D , not D ′ . Thus each component of D ′ is a simple closed curve. The map ĩ : D ′ → S ′
1

is 2-to-1 and restricts to an imbedding on each component. The set D ′ then decomposes into two sets of curves: annular
pairs (such that the two preimages of a circle are nested) and disk pairs (such that the two preimage interiors are disjoint).
Since D ′ is finite, there is at least one “deepest” annular pair (i.e. a pair which has no component of D ′ inside the annulus
they bound) or at least one deepest disk pair (with no component of D ′ inside either disk). Since the Pinkall invariant is
0 on any component of D ′ , the image of such an annulus is a C0-embedded torus in ĩ(P2) and the image of such a disk
pair is a C0-imbedded sphere in ĩ(P2). In both cases these non-trivial 2-cycles in H2(ĩ(P2),Z2) can be removed by a simple
surgery modification ĩ′ : P

2 → S
3 which changes ĩ only on a neighborhood of this deepest annular or disk pair. This surgery

reduces the number of components in D ′ .

Theorem 5.2. Let ĩ : P
2 → S

3 be a generic immersion with one triple point and (1 + k) components in the self-intersection set S̃1 ⊆
S̃ ⊆ S

3 . There exists a sequence of spherical or toral surgery modifications ĩ1, ĩ2, . . . , ĩk as described above which terminate with
ĩk ≡ ib± or ig± . Each subsequent modification reduces the first and second Z2-Betti numbers by 1. The Z2-Betti numbers of ĩ(P2) = S̃
are given by β1 = k, β2 = k + 1.

Proof. Each surgery modification removes exactly one non-trivial 2-cycle in S (a sphere or a torus). By the Boy–Izumiya–
Marar formula [11], χ(S̃) = χ(P2) + (# triple points) = 2, hence each surgery must also remove a non-trivial 1-cycle. By
Theorem 4.3, after k of these surgeries, we have ĩk ≡ ib± or i g± . We need only show the first and second Betti numbers
for both ib± and i g± are 0 and 1 respectively. To see this, observe that every 2-cycle must correspond to a union of image
disks in P

2 − D which arise from the immersion-adapted decomposition. Direct inspection of the three-critical-point models
in Section 1 reveals that removing any number of these disks creates a Z2-boundary in the 2-chain, hence the second
homology of the images has exactly one generator. �
5.3. Almost tight ambient isotopy classes

The models of Section 1 reveal that the complements of each of the images of ib± and i g± has two components. Choosing
a point at infinity in each component respectively yields two distinct ambient isotopy classes of immersions into R

3 for each
of the four models in S

3. With simple modifications of the level curves in Section 1, each of the eight classes of immersions
into R

3 can be represented by an immersion with exactly three non-degenerate critical points. An example of such a level
curve modification can be found in [12] where Kuiper sought restrictions on tight mappings.

Recall that an immersion of a compact surface into Euclidean 3-space i : M → R
3 is tight if its total curvature τ (i) =

1 ∫ |K |dA equals β(M), the sum of the Z2-Betti numbers of M . Following Kuiper [4,15], we say an ambient isotopy class
2π M
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of immersions in R
3 is almost tight if, for all ε > 0, there exists a representative immersion whose total curvature lies within

ε of β(M) (i.e., β(M) is the inf of total curvature over this set of immersions). Now if i : M → R
3 is an immersion which

has a non-degenerate height function h : R
3 → R with exactly one max and one min, then

iε = i + 1

ε

(
Grad(h)

)
, ε > 0,

has limε→0 τ (iε) = β(M). Hence the existence of the above eight distinct immersions of P
2 (each with β(P2) = 3 non-

degenerate critical points) implies that the eight associated ambient isotopy classes are each almost tight. Moreover, given a
positive integer n, we can construct generic immersions of the n-fold connected sum i :nP → R

3 ⊆ S
2 using the two types

of ambient connected sum in Fig. 5.1. We can stack these connected sums in the direction of increasing height so that the
resulting immersion will have β(nP) = 2 + n non-degenerate critical points. Thus the various combinations of the two types
of connected sum using ib± and i g± produce a large collection of distinct, almost tight, ambient isotopy classes of immersed
non-orientable surfaces with n triple points.
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