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ABSTRACT 

JAEDA COUTINHO-BUDD:  Membrane Deformation and Lipid Signaling: Functions of 
srGAP Family Proteins and PI(4,5)P2 

(Under the direction of Franck Polleux, Ph.D., and Mark Zylka, Ph.D.) 

 

 The plasma membrane plays a structural and functional role in the life of a cell.  Not 

only does it aid in encapsulating the intracellular contents to separate one cell from the next, 

but it also serves as an achor for the actin cytoskeleton scaffold, as well as a home base for 

lipids that serve as messengers in a number of downstream signaling pathways.  Given the 

importance of these aspects in cellular regulation, variations in the plasma membrane could 

lead to vast consequences in cellular function.  This work explores plasma membrane 

alterations in two ways: 1) investigating membrane deformation by the slit-robo GTPase 

Activating Protein (srGAP) proteins of the Bin/Amphiphysin/Rvs (BAR) superfamily, and 2) 

reducing the levels of phosphatidylinositol (4-5)-bisphosphate (PI(4,5)P2) using chemical 

dimerization.  The work presented in this thesis demonstrates that srGAP2 can induce 

neurite outgrowth and branching, and inhibit migration of cortical pyramidal neurons, through 

the ability of its N-terminal F-BAR domain to induce filopodia-like protrusions.  srGAP2 is 

more potent at inducing protrusions than srGAP1 or srGAP3 in non-neuronal cells, an 

activity mimicked by their respective F-BAR domains.  This work also explores the ways in 

which the F-BARs of srGAP proteins vary in their regulation of membrane dynamics.  

Finally, this work investigates the feasibility of using rapamycin-inducible translocation of the 

yeast 5-phosphatase to deplete PI(4,5)P2 in vivo. 
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CHAPTER 1 

General Introduction 

 

1.1 Cortical development  

 Formation of functional neuronal circuits involves the coordinated migration of 

neurons to their final location, the subsequent generation of a single axon and multiple 

dendrites and finally the formatin of functional synaptic contacts (Barnes and Polleux, 

2009).  To achieve these complex steps, neurons undergo substantial changes in 

morphology, involving both cytoskeletal and membrane remodeling (Luo, 2002; Noctor et 

al., 2004; Oshima et al., 2007). The developing cerebral cortex is a prime example of the 

intricacy and dynamics of these morphological changes.   

 The cerebral cortex is a laminar structure, consisting of six layers that can be 

defined by molecular markers (Molyneaux et al. 2007; Arnold et al., 2008; Gupta et al. 

2002).  In early murine development, between embryonic day 10 (E10) and E11.5, post-

mitotic neurons undergo somal translocation from the ventricular zone to give rise to the 

preplate, which is then split into the marginal zone and the subplate.  Around E12.5, the 

first projection neurons are born and begin to migrate to the cortical plate (Molyneaux et al., 

2007).  The cortex forms in an inside-out fashion, so this first wave of migrating neurons will 

become deep layer VI neurons, with each subsequent layer migrating past its predecessor, 

until reaching the reelin-producing Cajal-Retzius cells located in the marginal zone (Ogawa 

et al., 1995).  These waves of migration continue throughout embryonic development, 

culminating around E18 (Gupta et al., 2002; Barnes and Polleux, 2008), and are tightly 



 

2 

regulated in well-defined steps (Fig. 1.1A).  Cortical neurons, born through asymmetric 

divisions of radial glial cells (RGC), transition through a multipolar morphology 

characterized by short, immature neurites that protrude from the cell body to dynamically 

sense the surrounding environment.  These neurons then attach to a RGC, which serves 

as a scaffold for their migration.  At this stage, neurons are characterized by the presence 

of a single, polarized leading process, and a trailing process at the rear. Recent evidence 

shows that the trailing process of radially migrating pyramidal neurons extends rapidly to 

become the axon (Ayala et al., 2007; Luo, 2002). Upon reaching their final destination at 

the cortical plate (CP), the leading process becomes the apical dendrite and will undergo 

tremendous branching, and formation of dendritic spines during early postnatal 

development (Barnes and Polleux, 2009).  

 

1.2 Neuronal morphology and neurite outgrowth 

 One of the early predominant models used to study neuronal differentiation is based 

on examining the morphological changes that occur in dissociated neurons in vitro (Luo, 

2002; Dotti et al., 1988).  Dissociated neurons provide the advantage of high-resolution 

imaging, and the ability to obtain information about cell-autonomous effects of neuronal 

morphology that is difficult to visualize in vivo.  Dissociated cortical neurons develop 

through well-defined stages, from rounded immature neurons with extensive lamellipodia 

and filopodia (stage 1), to fully mature neurons with dendritic spines (Kwiatkowski et al., 

2007; Barnes and Polleux, 2009).  Early development of neurons in culture involves three 

stages, in which neurons progress from a pancake-like morphology in stage 1, to the 

emergence of immature neurites in stage 2, to stage 3 with its specified axon and dendrites 

(Fig. 1.1B).  Neurons can go on to achieve more mature morphologies in culture as well, 

including the development of dendritic spines, and even the formation of connections 

between neurons.  The majority of the genes known to regulate cortical migration and 
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morphogenesis rely on the ability to regulate actin and microtubule dynamics (Ayala et al., 

2007; Gupta et al., 2002). 

 The basis of neurite initiation, outgrowth, and branching is rooted in the ability of the 

cytoskeleton to undergo dynamic changes. Small Rho GTPases, such as RhoA, Rac1, and 

Cdc42, play an important role in modulating the cytoskeletal transformations that take place 

during neuronal morphogenesis (Threadgill et al., 1997).  These small GTPases switch 

between an activated state when bound to guanine triphosphate (GTP), and inactivated 

state when bound to guanine diphosphate (GDP).  The GTP-GDP cycle is regulated by and 

Guanine nucleotide exchange factors (GEFs) to activate the proteins, and GTPase 

activating proteins (GAPs) to cause inactivation.  The classic view of cytoskeletal 

modulation by these three major GTPases is that Rac1 leads to lamellopodial protrusions 

through the formation of branched actin networks, Cdc42 regulates filopodia formation by 

the formation of filamentus actin bundles, and RhoA induces actin depolymerization (Hall, 

1994). All three of these GTPases have been shown to be important regulators in 

cytoskeletal rearrangement during neurite outgrowth (Threadgill et al., 1997; Ng and Luo, 

2004). 

 While several actin structures contribute to the dynamic remodeling of neurites, 

bundled filamentous actin present in filopodia seems to be particularly important for neurite 

initiation and branching (Gupta et al., 2002; Gupton and Gertler, 2007; Luo, 2002; Matilla 

and Lappalainen, 2008; Dent et al., 2007).  Two studies from the same lab demonstrated 

the importance of filopodia in neurite initiation using multiple methods of inhibiting filopodia 

formation.  Dent et al. (2007) found that treatment of cytochalasin D, a toxin that caps actin 

and potently inhibits actin polymerization, resulted in the depolymerization of the actin 

cytoskeleton and subsequent lack of bundled actin filaments, leading to an inhibition of 

neurite initiation.  Moreover, this study visualized the emergence of neurites from single 

filopodia using time-lapse microscopy.  Dent et al. (2007) and Kwiatkowski et al. (2007) 
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further demonstrated the dependence of neurite outgrowth on filopodia using neurons from 

mmeevv mice that lack all three murine actin anti-capper proteins: mammalian enabled 

(Mena), vasodilator stimulated phosphoprotein (VASP), and Ena-VASP like (EVL).  

Ena/VASP are potent inducers of filopodia, and their triple knockout in cortical neurons 

resulted in loss of filopodia and failed neurite initiation, both in vitro and in vivo.  

Interestingly, loss of Ena/VASP proteins also resulted in cortical lamination defects (Bear et 

al., 2002; Goh et al, 2002; Kwiatkowski et al., 2007), suggesting a complex functional 

relationship between filopodia formation, neurite initiation, and neuronal migration. 

 

1.3 BAR SUPERFAMILY: Proteins that coordinate membrane deformation with actin 

cytoskeleton dynamics 

 An emerging field is providing novel insights into a family of proteins that directly 

bind and deform cellular membranes. In addition to inducing membrane curvature, 

members of the Bin/Amphyphysin/Rvs (BAR) superfamily of proteins link the membrane to 

the actin cytoskeleton, either directly (Yamagishi et al., 2004; Lee et al., 2007) or indirectly 

(Tsujita et al., 2006; Suetsugu et al., 2006; Scita et al., 2008), to become multifaceted 

regulators of cell morphology and function.  However, this interaction is not necessary for 

cellular membrane deformation, as it has also been shown that membrane deformation 

induced by these proteins can preclude the emergence of F-actin bundles (Yang et al., 

2009).  

1.3.1 Bin/Amphyphysin/Rvs domain-containing proteins, the founding subfamily 

 The Bin Amphyphysin Rvs (BAR) domain superfamily of proteins can be subdivided 

into three main groups based on protein structure: BAR/N-BARs (Fig. 1.3A), F-BARs (Fig. 

1.3B), and I-BARs (Fig. 1.3C) (Frost et al., 2007). The founding subgroup of this family 

contains the canonical BAR domains, characterized by three antiparallel alpha-helices on 

each monomer, which form a homodimer with another BAR domain (Peter et al., 2004). 



 

5 

The six alpha-helices, making up the BAR domain homodimer, form a banana-shaped 

structure with positive amino acids located on the concave surface, allowing the BAR 

domain to directly bind negatively-charged, PI(4,5)P2-containing membrane via 

electrostatic interactions (Fig. 1.3D).  These dimeric proteins have been shown to 

oligomerize to invaginate membrane into the cell to create tubular networks (Itoh et al., 

2005; Shimada et al., 2007). A specialized subset of the BAR domain, the N-BAR domain, 

contains an N-terminal amphipathic alpha-helix that directly inserts into the membrane, 

increasing membrane curvature (Itoh et al., 2006). Many of these BAR and N-BAR 

proteins, such as amphiphysin and endophilin, have been implicated in membrane 

deformation relating to synaptic vesicle formation (Di Paolo et al., 2002; Schuske et al., 

2003).  

1.3.2 F-BAR domains, the elongated BAR domain  

 The second subfamily is the Fer-CIP4 Homology (FCH) BAR (F-BAR) domain-

containing proteins (Fig. 1.3B). F-BAR domains are characterized by the presence of an 

FCH domain followed by a Coiled-coil (CC) domain, which were predicted (based on 

secondary structure homology) to fold in a similar way to BAR domains (Frost et al., 2007). 

These F-BAR domains contain five alpha helices, in contrast to the three that comprise a 

canonical BAR domains. The crystallization of F-BAR dimers demonstrates increased 

length and more shallow curvature of the banana-shaped F-BAR homodimer, resulting in 

larger-diameter membrane tubes (Fig. 1.3D) (Henne et al., 2007). The ability of many BAR 

and F-BAR containing proteins to bind dynamin, a GTP-ase with membrane pinching 

ability, via their SH3 domains, suggest that these proteins function in vivo to regulate 

endocytosis by deforming membrane inward until it is pinched into a vesicle by dynamin 

(Takei et al., 1999; Itoh et al., 2005). Surprisingly, F-BAR domains can deform purified 

lipids in the absence of other proteins. The structural basis for the ability of F-BAR domain 

to induce membrane tubules has been studied by combining protein structural information 
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(Shimada et al., 2007) and cryo-electron microscopy (cryo-EM; Frost et al., 2008). These 

studies reveal that individual F-BAR dimers can bind end-to-end to form long ‘string-like’ 

oligomers, which also display a lateral binding interface to form a ‘wall-like’ structure 

reminiscent of the structure adopted by septins (reviewed in Kinoshita, 2006).  Like the 

BAR domain proteins, F-BAR domain proteins, Syndapins and FBP17, have been 

implicated in endocytosis of synaptic vesicles (Qualmann et al., 1999; Koch et al., 2011; 

Rodal et al., 2008; Wu et al., 2010).  Most of these F-BAR proteins have been found to be 

important in presynaptic vesicle recycling; however, formin binding protein 17 

(FBP17/Toca-2), one of the canonical members of this BAR domain subclass, has been 

shown to play a role in formation of synaptic spines. Wakita et al. (2011) demonstrated that 

shRNA-mediated knockdown of endogenous FBP17 results in reduced spine density in 

cultured hippocampal rat neurons.  Interestingly, a very similar protein, cdc42-interacting 

protein 4 (CIP4/Toca-3), has been shown to inhibit neurite formation by inducing 

lamellipodial protrusions (Saengsawang et al., 2012).  Both of these proteins are related to 

the transducer of cdc42-dependent actin assembly 1 (Toca-1), which has been shown to 

suppress neurite outgrowth in PC12 cells (Kakimoto et al., 2006), presumably through its 

membrane-invaginating activity.  These conclusions were later complicated when it was 

shown that Toca-1 induces neurites in N1E115 neuroblastoma cells through its ability to 

induce filopodia by complex formation with N-WASP (Bu et al., 2009).  This Toca-1-induced 

filopodia formation was blocked with inhibitors of endocytosis, suggesting a complex link 

between filopodia and endocytosis.  

1.3.3 Inverse BAR domains form filopodia-like protrusions 

 The last class of characterized BAR domains is the inverse BAR (I-BAR) domains 

(Fig. 1.3C). Like BAR domains, I-BAR domains contain three antiparallel alpha helices; 

however, I-BAR domains are less curved than BAR and F-BAR domains, and have 

membrane-binding, positive amino acids located on their convex surfaces (Fig. 1.3D) 
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(Millard et al., 2005), hence the name “Inverse-BAR.”  Accordingly, in contrast to the 

canonical BAR and F-BAR domains, I-BAR domains induce filopodia-like membrane 

protrusions in vivo and in vitro (Millard et al., 2005; Matilla et al., 2007; Saarikangas et al., 

2008; Saarikangas et al., 2009), and have actually been shown to inhibit endocytosis 

(Quinones et al., 2010). The exact structural mechanism underlying I-BAR-induced 

protrusive activity is currently unknown, but thought to differ from the oligomerization-based 

tubulation characterizing F-BAR domains (Saarikangas et al., 2009). Although these I-BAR 

domain-containing proteins have been long thought of as inducers of membrane protrusion, 

a relatively new I-BAR domain protein, Pinkbar, has been shown to induce the formation of 

planar membrane structures (Pykäläinen et al., 2011).  It is likely that the functions of many 

of the BAR superfamily proteins will differ from their original functionalities. 

 

1.4 srGAP family of F-BAR proteins 

 While canonical F-BAR domains of certain family members such as Toca-1, FBP17, 

and CIP4 are known to invaginate membrane (Itoh and Camilli, 2006), there are known F-

BAR proteins that induce filopodia-like membrane protrusions. Proteins such as GAS7 and 

PSTPIP2 (MAYP) were shown to induce filopodia formation prior to their characterization 

as F-BAR domain-containing proteins (Chitu et al., 2005; She et al., 2002). The function of 

approximately 25 predicted F-BAR proteins in the human genome remain to be identified. 

One such poorly characterized family of F-BAR domain-containing proteins is the slit-robo 

GTPase Activating Proteins (srGAPs).  

 srGAP1, srGAP2, and srGAP3 (also called Wave Related Protein, WRP, and 

Mental disorder related GTPase Activating Protein, or MEGAP) were identified as 

interactors of Robo, the receptor for the chemorepulsive cue, Slit (Wong et al., 2001). 

These proteins share a predicted N-terminal F-BAR domain, a central RhoGAP domain, 

and a C-terminal Src Homology 3 (SH3) domain (Fig. 1.3B). RhoGAP domains bind and 
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inactivate small GTPases by increasing their intrinsically slow rate of GTP hydrolysis 

(Schutes and Der, 2006). srGAP1 specifically binds and inactivates Cdc42 and RhoA 

(Wong et al., 2001), while srGAP3 is specific for Rac1 (Soderling et al., 2002). The 

orthologue to mammalian srGAP proteins in C. elegans, SRGP-1, has been shown to 

regulate cell-cell junctions and engulfment of apoptotic cells through its regulation of Rac1 

(Zaidel-Bar et al. 2011; Neukomm et al., 2011). SH3 domains are polyproline-binding motifs 

that mediate protein-protein interactions. In addition to Robo, the SH3 domain of srGAP2 

has been shown to bind to actin-related proteins such as Wiscott-Aldrich Syndrome protein 

(WASP), WASP interacting protein (WIP), Diaphanous homologous protein 1 (mDia1) 

(Linkermann et al., 2009), formin-like 1 (FMNL-1, Mason et al., 2011), and Palladin (Okada 

et al., 2011). The SH3 domain of srGAP3 has been shown to bind the Wasp family 

member, WAVE-1 (Soderling et al., 2002) and lamellipodin (Endris et al., 2011) to regulate 

Rac-dependent cellular protrusions.   

 In Chapter 2, we propose a model of autoinhibition for srGAP2, and hypothesize 

that the SH3 domain of srGAP2 is the key to unlocking its filopodia-inducing activity.  It is 

possible that SH3 binding to one or more of these proteins releases the autoinhibition, 

allowing the F-BAR domains to dimerize, and induce protrusions.  Subsequent work 

involving the crystal structure of Syndapin I (Rao et al., 2010) demonstrates that the SH3 

domain of Syndapin I directly binds its F-BAR domain, leading to autoinhibition.  

Furthermore, this autoinhibition can be released by binding of the SH3 domain to dynamin 

1.  Alternatively, Guo et al. (2010) found that protein arginine methyltransferase 5 (PRMT5) 

binds srGAP2 in its N-terminus, and methylates arginine 927 in the C-terminus of srGAP2.  

The authors show that the methylation mutant, srGAP2R927A, fails to undergo dimerization, 

and does not induce membrane deformation or cell migration.  They hypothesize that this 

methylation is responsible for releasing srGAP2 from its autoinhibited state.  It is possible 

that both mechanisms are at play in the release of srGAP2 autoinhibition.  
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 Like many RhoGAP proteins, the srGAP family members have also been shown to 

regulate cell morphology and migration (Yang et al., 2006; Soderling et al., 2002; Soderling 

et al., 2007; Vogt et al., 2007; Endris et al., 2011; Carlson et al., 2011; Zaidel-Bar et al., 

2011).  Recently, the expression pattern of srGAP1, 2, and 3 was examined throughout the 

developing central nervous system, although the spatial and temporal patterns differ 

between the three (Bacon et al., 2009). srGAP2 and srGAP3 are present in the cerebral 

cortex throughout late embryonic development, suggesting a similar role for these proteins 

in regulation of morphology and migration of cortical neurons. srGAP1 expression emerges 

postnatally, suggesting that it has an alternative role in neuronal function. Recent work has 

revealed the presence of srGAP1 and srGAP3 in large diameter neurons of adult DRG, 

with almost complete absence of srGAP2 (Chen et al., 2012).  Interestingly, only srGAP3 

increased in expression after spaired nerve injury, further suggesting separate functions for 

the three srGAP proteins. 

 However, until recently (including work in chapters 2 and 3), little was known about 

the F-BAR domains of these proteins.  Work from the Polleux lab (Guerrier et al, 2009; 

Chapter 2) was the first to identify the F-BAR of srGAP2 as an inducer of outward 

membrane protrusions.  The formation of these filopodia-like protrusions led to decreased 

cortical migration, and increased neurite formation in dissociated cortical neurons.  

Subsequently, srGAP3 has also been shown to regulate neuronal protrusions, specifically 

spine density and shape (Carlson et al., 2011).  Loss of srGAP3 reduces the density of 

spines in hippocampal and cortical neurons, as well as counter-intuitively reducing the 

number of mature, mushroom-shaped spines.  Interestingly, heterozygous loss of srGAP3 

increases the number of thin spines.  Recent work from the Polleux lab has found similar 

results regarding the regulation of spine shape with srGAP2.  More interestingly, this work 

shows that a human-specific, duplicated portion of the srGAP2 F-BAR domain (srGAP2p12) 

can act as a dominant negative, and recapitulate the srGAP2 loss-of-function phenotype 
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(Charrier at al., In Press); however, in this work both loss of srGAP2 and inhibition by 

srGAP2p12 lead to increased spine density.  These neuronal results for srGAP2 and 

srGAP3 are particularly exciting given that both have been implicated in forms of brain-

related disorders.  Loss of srGAP3 is known to play a role in 3p deletion syndrome (Endris 

et al., 2002), a form of mental retardation, and recent work has revealed a role for srGAP2 

in early infantile epileptic encephalopathy (Saitsu et al., 2011).  Although these proteins are 

quite similar, there are subtle differences in their function, which are explored more 

thoroughly in Chapter 3; however, it is currently unclear as to whether these differences 

arise from their interactions with the actin cytoskeleton, the plasma membrane, or both. 

 

1.5 PI(4,5)P2-mediated interactions between the plasma membrane and actin 

cytoskeleton  

 The BAR superfamily proteins are known to bind electrostatically to negatively-

charged lipids, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and 

phosphatidylserine (PS), embedded in the plasma membrane (Takei et al., 1998; Itoh and 

De Camilli, 2006). Some of these family members not only bind to negatively-charged 

phospholipids, but have been shown to cluster PI(4,5)P2 specifically, such as the I-BAR of 

IRSp53 (Saarikangas et al., 2009). Although IRSp53 can interact with the actin 

cytoskeleton both directly (Yamagishi et al., 2006) and indirectly (Scita et al., 2008), 

PI(4,5)P2 also has been found to interact with actin filaments to modulate cytoskeletal 

activity through a variety of other actin-associated proteins, such as cofilin (Ojala et al., 

2001), vinculin (Huttelmaier et al., 1998), talin (Martel et al., 2001), gelsonin (Yu et al., 

1992; Azuma et al., 2000), neuronal Wiskott-Aldrich syndrome protein (N-WASP; Miki et 

al., 1996), (Fig 1.3).  

 High concentrations of PI(4,5)P2 often lead to actin polymerization, whereas 

depolymerization typically occurs in areas of low PI(4,5)P2.  PI(4,5)P2 binds cofilin to inhibit 
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its actin-severing activity, thereby blocking actin depolymerization (Ojala et al., 2001).  

PI(4,5)P2 also inhibits gelsolin, a capping protein with actin-severing activity.  PI(4,5)P first 

interferes with gelsolin’s ability to bind actin, thereby uncapping actin filaments, and 

secondly inhibits its actin-severing activity (Yu et al., 1992).  Binding to PI(4,5)P2 is able to 

relieve the autoinhibition of many of these actin-interacting proteins, such as N-WASP, 

talin, and vinculin.  Talin links membrane-bound adhesion proteins like β-1 integrins to the 

actin cytoskeletal in a PI(4,5)P2-dependent manner (Martel et al., 2001). The same 

regulation allows talin to bind vinculin (Gilmore and Burridge, 1996), which also links 

proteins to actin, as well as binds VASP proteins (Huttelmaier et al. 1998).  Upon 

electrostatic binding to PI(4,5)P2, N-WASP intermolecular binding is inhibited, opening up 

the protein and revealing other protein-binding domains (Miki et al., 1996); N-WASP can 

also be activated by the binding of cdc42 to its cdc42/rac-interactive binding (CRIB) domain 

(Symons et al., 1996).  Once open, the verprolin-homology domain/cofilin-homology 

domain/and acidic domain (VCA) binds a G-actin monomer and actin-related protein 2/3 

(ARP2/3) to induce actin nucleation and the formation of branched actin networks.  

Activated N-WASP can also bind and insert profilin-actin complexes into actin polymers to 

enhance actin polymerization.  The proline-rich region binds SH3-containing proteins, such 

as the F-BAR and I-BAR containing proteins Toca-1 (Takano et al., 2008) and IRSp53 (Lim 

et al., 2008), respectively.  Both of these proteins also interact directly with small Rho 

GTPases, adding more complexity to the relationship between PI(4,5)P2 and actin-

interacting proteins.  It is likely that many of the other SH3-containing BAR superfamily 

proteins could interact with N-WASP as well. 

  Additionally, one of the major kinase classes responsible for the production of 

PI(4,5)P2, PIP5KI, interacts strongly with multiple regulators of the actin cytoskeleton (Fig 

1.3; see section 1.6 for more information about PI kinases).  Activation and localization of 

PIP5KI proteins is at least partially dependent upon the small GTPases Cdc42 (Weernink 
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et al., 2004), Rho (Chong et al., 1994), Rac (Halstead et al., 2010), and Arf6 (Honda et al., 

1999).   Cdc42 has been shown biochemically to stimulate PIP5K-induced production of 

PI(4,5)P2 (Weernink et al., 2004); however, to my knowledge no functional analysis of 

cdc42 and PIP5K has been performed, suggesting a possible indirect activation through 

another GTPase.  PIP5KIα binds Rho in a GTP-dependent manner, and complexes with 

Rho-dependent seronine-threonine kinase (ROCK) to activating downstream pathways to 

induce actin stress fiber formation (Yamamoto et al., 2001).  Rac1 has been shown to 

recruit PIP5KIβ to the plasma membrane and induce neurite retraction in N1E115 

neuroblastoma cells and cerebellar granule neurons (Halstead et al., 2001).  The authors 

identified the rac1-binding residue in PIP5KIβ, and mutated the corresponding, highly-

conserved glutamate residue in PIPK5Iα and PIP5KIγ.  All three wildtype isoforms induced 

neurite retraction in N1E115 cells, however, the glutamate mutations abolished both neurite 

retraction and membrane-localization in all three isoforms.  Another important GTPase is 

Arf6, which has been shown to recruit PIP5Ks to the plasma membrane and lead to 

membrane ruffles, actin comet formation, as well as regulate vesicle trafficking (reviewed in 

Funakoshi et al., 2011).     

 Clearly PI(4,5)P2 plays an important role in regulating morphological changes due to 

membrane deformation and rearrangement of the actin cytoskeleton. Additionally, PI(4,5)P2 

acts as a guidepost for other non-cytoskeletal-related proteins, serves as a second 

messenger in intracellular signaling pathways, and operates as modulator of ion channel 

activity.  PI(4,5)P2 is paramount in cellular biology. 

 

1.6 PI(4,5)P2 is a critical regulator of cellular function  

 PI(4,5)P2 is the most abundant phosphoinositide (PI) present in the plasma 

membrane (reviewed in Saarikangas et al., 2010). There are eight different mammalian PI 
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species that interconvert through the local positioning of phosphates around the inositol 

ring of the lipid headgroup. PI(4,5)P2 can be synthesized through addition of a phosphate to 

position 5 of the inositol ring of phosphatidylinositol 4-phosphate (PI(4)P) or the position 4 

of phosphatidylinositol 5-phosphate (PI(5)P), or the removal of the phosphate at position 3 

of phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3).  PI(4,5)P2 can also be 

downregulated by the removal of a phosphate from either positions 4 or 5.  

Phosphoinositide anabolism and catabolism are regulated by lipid kinases and 

phosphatases, respectively, which are specific for each phosphate location in the inositol 

ring (Fig. 1.4) (reviewed in Liu and Bankaitis, 2010).   

 Conversion between PI species is carefully regulated by these kinases and 

phosphatases in order to maintain the appropriate phospholipid balance necessary for 

proper cellular function.  For example, loss of PIP5Kγ, a kinase that converts PI(4)P to 

PI(4,5)P2, results in neural tube closure defects (Wang et al., 2007), defects in synaptic 

transmission through inhibited endocytosis, and eventually perinatal death (Di Paolo et al., 

2004).  Interestingly, mice lacking synaptojanin, a 5-phosphatase domain-containing 

protein that reduces PI(4,5)P2 to PI(4)P, also die just after birth (Kim et al, 2002).  

Synaptojanin knockout mice have an overabundance of PI(4,5)P2, leading to poor synaptic 

transmission due to an accumulation of clathrin coated vesicles in their presynaptic 

terminals. In contrast, overexpression of synaptojanin, due to trisomy of the synaptojanin 1 

gene, has been linked to the cognitive impairments associated with Down’s syndrome 

(Voronov et al., 2008).  Loss of a similar protein, the Oculocerebrorenal Lowe syndrome 

(OCRL) 5-phosphatase, also leads to mental retardation, among other abnormalities such 

as insufficient kidney absorption and hypotonia (Lowe et al., 1952).   

 These diseases arising from altered PI(4,5)P2 regulation suggest that PI(4,5)P2 is a 

critical regulator of cellular function in vivo; however, both synaptojanin 1 and OCRL act on 

multiple phosphoinositides, not just PI(4,5)P2.  To deplete PI(4,5)P2 in experimental 
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settings, the yeast 5-phosphatase, Inositol polyphosphate 5-phosphatase (Inp54p) is often 

used given its simple domain structure.  Inp54p lacks the additional protein domains 

commonly found in other 5-phosphatase family members (Stefan et al., 2002), resulting in a 

constitutively-active 5-phosphatase domain (Várnai et al., 2006; Nebl et al., 2000).  

Removal of the C-terminal 13 amino acids disrupts the tether to endoplasmic reticulum, 

resulting in a cytoplasmic 5-phosphatase that is more amenable to manipulation for 

experimental reduction in PI(4,5)P2 (Wiradjaja et al., 2000). 

1.6.1 PI(4,5)P2 aids in subcellular protein localization  

 Many proteins have been identified that contain domains or motifs to specifically 

target proteins to PI(4,5)P2 (Heo et al., 2006). This can be visualized using one of these 

protein domains, the pleckstrin homology (PH) domain of phospholipase C ∂1 (PLC∂1), 

which has become a biosensor for PI(4,5)P2 abundance at the plasma membrane.  When 

high levels of PI(4,5)P2 are present, fluorescently-tagged versions of this PH domain can be 

seen at the plasma membrane.  When PI(4,5)P2 levels are low, the domain is found in the 

cytoplasm.  These PI(4,5)P2-binding domains often occur in cytoplasmic proteins, which are 

translocated to the plasma membrane upon interaction with PI(4,5)P2; therefore, the 

amount of available PI(4,5)P2 at the membrane regulates the amount of translocation, and 

ultimately the extent of protein activity at the plasma membrane. Consequently, fluctuations 

in the amount of PI(4,5)P2 at the plasma membrane create differential effects in a number 

of cellular responses due to PI(4,5)P2-binding, with implications in vivo ranging from 

phototransduction (Huang et al., 2004), to bipolar disorder (Soares et al., 2000; Soares et 

al., 2001), to regulation of pain sensitivity (Sowa et al., 2010).  

1.6.2 PI(4,5)P2 acts as a second messenger 

 In addition to its role in regulating the actin cytoskeleton and protein binding, 

PI(4,5)P2 can be cleaved by phospholipase C (PLC) into diacylglycerol (DAG) and inositol 

1,4,5-triphosphate (IP3) that act as second messengers in cell signaling cascades (Fig. 
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1.5A) (Berridge et al., 1983).  DAG remains at the plasma membrane to activate protein 

kinase C (PKC), and IP3 travels to the endoplasmic reticulum to bind IP3 receptors and 

stimulate the release of intracellular calcium. Multiple isoforms of PLC exist, and are 

activated by different stimuli.  PLCβ-induced cleavage of PI(4,5)P2 is predominantly evoked 

by the activation of Gαq-coupled G-protein coupled receptors (GPCRs), whereas receptor 

tyrosine kinase (RTK) activation by nerve growth factor (NGF) leads to PLCγ activity 

(Rebecchi and Pentyala, 2000).  Both of these subtypes respond to high levels of 

intracellular calcium (Ca2+), but the third major class, PLC∂, is the most sensitive to 

fluctuations in Ca2+ levels (Allen et al., 1997).  Regardless of the route of activation, all 

three of these isoforms have the ability to hydrolyze PI(4,5)P2 and activate downstream 

signaling. 

1.6.3 PI(4,5)P2 regulates ion channel function 

 The levels of PI(4,5)P2 not only regulate protein localization and intracellular 

signaling cascades, but they can directly affect the function and activity of ion channels.  

The first reported case of PI(4,5)P2-dependent ion channel modulation came from 

Hilgemann and Ball (1996).  Using an inside-out membrane patch, the authors found that a 

sodium-calcium (Na+-Ca2+) exchanger and ATP-inhibited potassium (K+) channel currents 

decayed over time in these isolated membrane patches; however, currents could be 

restored with the addition of PI(4,5)P2 or components that facilitated in PI(4,5)P2 assembly.  

Rescue of channel current was blocked with the addition of PLC.  In other words, these 

channels require a basal level of PI(4,5)P2 in order to function (Fig. 1.5B).  These findings 

have since been corroborated with a variety of other Na+, K+, Ca2+, and non-selective cation 

channels (Suh and Hill, 2005).  

 PI-binding regions of these ion channels have been identified based on 

mutagenesis to areas enriched in basic amino acids in inward rectifying K+ channels (Lopes 

et al., 2002), voltage-gated K+ channels KCNQ (Zhang et al., 2003), and sensory 
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tranduction channels (Brauchi et al, 2007; Prescott and Julius, 2003; Ufret-Vincenty et al., 

2011).  These mutations might not be direct PI(4,5)P2 binding sites; they might instead alter 

the conformation of the protein so that it can no longer interact with PI(4,5)P2.  Suh and 

Hille (2008) put forth two models of PI recognition: 1) electrostatic binding of clustered 

basic residues merely attract the protein to the negatively-charged lipids, and 2) the 

arrangement of basic charges that come together after protein folding create a precise PI 

binding pocket.  Both of these models could explain PI specificity based on either the 

spacing of the basic amino acids along the protein sequence, or the arrangement of the 

basic residues in this binding pocket.  However, without a crystal structure, it is difficult to 

determine the mechanism of interaction.  Crystal structures of membrane-bound proteins 

are difficult to determine, however, one group has recently crystallized the inward rectifying 

K+ channel, Kir2.2, in the presence of short-chain PI(4,5)P2, and shown a direct interaction 

of the ion channel and PI(4,5)P2 (Fig. 1.5B).  Hansen et al. (2011) found that one PI(4,5)P2 

binds each of the four protein subunits of Kir2.2, between the transmembrane and 

cytoplasmic domains, inducing a conformational change in the channel that results in 

increased channel activity.  It is possible that a similar mechanism exists for the PI(4,5)P2 

regulation of other ion channels as well. 

1.6.3.i PI(4,5)P2 regulation of TRPV1 

 One non-selective cation channel that has been shown to interact with PI(4,5)P2 is 

the sensory transduction channel, transient receptor potential vanilloid 1 (TRPV1).  TRPV1 

responds to acid (H+), chemical ligands such as capsaicin, and noxious thermal stimuli 

above 42º C, and TRPV1-null mice show sensory deficits to each of these stimuli (Caterina 

et al., 2000).  The role of PI(4,5)P2 in TRPV1 activation has been more controversial over 

the years.  The first studies to report its PI(4,5)P2 dependence suggested that TRPV1 was 

inhibited by PI(4,5)P2 (Chuang et al., 2001; Prescott and Julius, 2003); however, it has 

since come to light that TRPV1 is bi-modally regulated by PI(4,5)P2 levels (Lukacs et al., 



 

17 

2007). In the presence of low concentrations of capsaicin (10-100 nM) or subtle changes in 

temperature, PI(4,5)P2 depletion increases TRPV1 currents, and production of PI(4,5)P2 

inhibits these currents.  The authors also found that this inhibitory effect is most likely not 

due to PI(4,5)P2 directly, as similar results were not seen with excised membrane patches, 

suggesting this inhibition is due to interaction between PI(4,5)P2 with other cellular proteins.  

More recently, however, Klein et al. (2008) reported that depletion of PI(4,5)P2 inhibited 

TRPV1 activity at both high and low concentrations.  Moreover, they report that while 

PI(4,5)P2 is not the only PI to activate TRPV1, it is the most physiologically relevant player 

in both membrane patches and intact cells. 

 Recently, PI(4,5)P2 depletion downstream of the G-coupled Adenosine receptor, 

A1R, has been shown to reduce thermal sensitivity through TRPV1, and chronic 

sensitization through pronociceptive GPCRs in mice in vivo (Sowa et al., 2010).  The 

authors found that Prostatic Acid Phosphatase (PAP), an ectonucleotidase that reduces 

adenosine monophosphate (AMP) to adenosine, reduces PI(4,5)P2 levels through A1R 

activation.  PAP knockout mice have increased levels of endogenous PI(4,5)P2, and the 

authors have previously shown these mice have increased sensitivity to nociceptive stimuli 

(Zylka et al., 2008).  Intrathecal injection of secretory PAP (S-PAP) reduces PI(4,5)P2 

levels, and inhibits both thermal sensation through TRPV1, and thermal and mechanical 

sensitization due to inflammation and nerve injury in wildtype animals. In contrast, injection 

of PI(4,5)P2 intensifies thermal hypersensitivity and mechanical allodynia with nerve injury 

models and with pronociceptive stimulation.  While many of the previously discussed 

reports have shown that PI(4,5)P2 is an important modulator of TRPV1, this work 

demonstrates that PI(4,5)P2 is necessary for pain sensitization in vivo.   Moreover, the 

authors demonstrated a role in both acute and chronic pain models; however, manipulation 

of PI(4,5)P2 in this work was still indirect.  A specific genetic reduction in vivo would be a 

more direct method to study the role of PI(4,5)P2 in nociceptive sensitization.  
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1.7 Rapamycin-induced depletion of PI(4,5)P2 

 A variety of methods have been used to reduce PI(4,5)P2 signaling, such as 

activation of PLC, application of PI 4-kinase inhibitors, overexpression of PI(4,5)P2-binding 

proteins or antibodies, or the expression of PI 5-phosphatases.  While these methods are 

effective, they can have off-target effects, do not always allow for temporal control of 

manipulation, and are difficult to implement in vivo.  Recently, two groups simultaneously 

developed a temporally-controlled method of PI(4,5)P2 depletion using a chemically-

induced dimerization system (Várnai et al., 2006; Suh et al., 2006). 

 Protein function often relies on the proximity of its effector.  In other words, even an 

active protein is ineffective if it can’t reach its target.  Nature has developed ways of 

targeting proteins to their location of interest, either with specific codes like nuclear 

localization signals embedded within their sequences (Dingwall et al., 1982), or 

electrostatic binding as discussed for BAR domains and other PI(4,5)P2-binding proteins.  

Some proteins have the ability to bind with multiple proteins, but only do so in the presence 

of certain chemicals.  For instance, the immunosuppressant FK506 Binding Protein 12 

(FKBP12) binds multiple drugs, two of which are FK506 and rapamycin.  When FKBP12 is 

bound to FK506, it inactivates the phosphatase calcineurin; however, in the presence of 

rapamycin, FKBP forms a complex with the mammalian target of rapamycin (mTOR) 

through its FBKP rapamycin binding (FRB) domain (Crabtree and Schreiber, 1996).  These 

FKBP binding interactions subsequently initiate two dinstinct signaling pathways.   

 Many groups of have taken advantage of the rapamycin-induced dimerization by 

fusing proteins of interest to the FKBP or FRB domains: after treatment with rapamycin, 

these proteins domains dimerize, transporting any fused proteins with them.  Applications 

for this use ranges from regulating GPCR signaling (Putyrski et al., 2011) to specifically 

controlling synaptic transmission (Karpova et al., 2005).  Suh et al. (2006) and Várnai et al. 

(2006) developed this system to inducibly deplete PI(4,5)P2 by expressing the FRB domain 
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at the plasma membrane, and an FKBP-fused 5-phosphatase in the cytoplasm.  Upon 

addition of rapamycin, the FKBP-phosphatase fusion translocates to the plasma membrane 

due to dimerization with the FRB domain.  The enhanced proximity of the lipid 5-

phosphatase to its target in the plasma membrane allows for the rapid reduction of 

PI(4,5)P2 to PI(4)P (Fig. 1.6).  Overexpression of constitutively active 5-phosphatases 

causes the loss of membrane-cytoskeletal adhesion, leading to increased membrane 

blebbing (Raucher et al., 2000), and long-term depletion of PI(4,5)P2 can lead to activation 

of the apoptotic cell death pathway (Azuma et al., 2000; Mejillano et al., 2001).  This 

inducible model of PI(4,5)P2 depletion has the advantage over constitutive expression of 5-

phosphatases because it allows for temporal control, and reduces the risk of complications 

due to overexpression side-effects. 

 Currently, there are no known methods to deplete PI(4,5)P2 in vivo.  Given that the 

FRB and FKBP components of this system are genetically encoded, it is possible to 

implement this inducible system in vivo with the addition of rapamycin.  Natural rapamycin 

will interact with the endogenous mTOR pathway; however, it is possible to utilize mutated 

FRB domains that interact with rapamycin analogs (rapalogs; Stankunas et al., 2003; Bayle 

et al., 2006).  These rapalogs do not interact with endogenous mTOR, but still function to 

induce dimerization between mutated FRB and FKBP.  One FRB mutation that seemed 

promising for use in vivo given its interaction with the rapalog, C20-marap, consists of three 

amino acid mutations: K2095P, T2098L, and W2101F (Bayle et al., 2006).  In order to 

acutely deplete PI(4,5)P2 to determine its affects on thermal sensitization in vivo, this 

system needs to be targeted to heat-sensing neurons. 

 

1.8 Nociceptive neuronal subsets of the dorsal root ganglia 

 The sensory neuronal population of dorsal root ganglia (DRG) is heterogeneous, 

consisting of at least twenty-five different subtypes. Of these, there are approximately 
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twelve subtypes of nociceptive, or pain-sensing neurons (Neacsu and Flonta, 2006), that 

can be broken down into two main groups: A∂ and C fibers (reviewed in Julius and 

Bausbam, 2001). A∂ fibers are lightly myelinated neurons of medium diameter that respond 

to mechanical, thermal, and chemical stimuli, with a thermal threshold of ~53°C (type I) and 

~43°C (type II).  C fibers are small diameter, unmyelinated neurons that sense mechanical, 

thermal, and chemical stimuli, in addition to innocuous temperature and itch. The thermal 

threshold of C fibers is approximately 43°C. C fibers can be further broken down into two 

neuronal subtypes based on their molecular markers and stimuli-evoked response: 

peptidergic and nonpeptidergic (Cavanaugh et al., 2009). Peptidergic neurons express 

substance P (SP), the nerve growth factor (NGF) receptor TrkA, as well as calcitonin gene 

related protein (CGRP), while peptidergic neurons are marked by proteins such as PAP 

and Mrgprd (Fig. 1.7).  Cavanaugh et al. (2009) showed that acute ablation of TRPV1-

expressing neurons using the TRPV1 ligand, capsaicin, eliminated heat sensitivity within 

the parameters of the behavioral tests. In contrast, inducible ablation of non-peptidergic 

neurons using diphtheria toxin (DTX) application to mice expressing the human diphtheria 

toxin receptor in the Mrgprd locus causes a significant reduction in mechanical sensitivity.  

As demonstrated by Cavanaugh et al. (2009), these subtypes of nociceptive DRG neurons 

can be genetically targeted, and the effectiveness of targeting can be verified molecularly 

or by specific behavioral responses.  TRPV1 is expressed in a portion of A∂, peptidergic, 

and non-peptidergic nociceptive subtypes; however, 50% of CGRP-expressing neurons 

express TRPV1, making these neurons adequate genetic targets for the manipulation of 

heat-sensing neurons in vivo. 

 

1.9 Overview and rational of aims explored in this thesis 

 The plasma membrane plays a structural and functional role in the life of a cell.  Not 

only does it aid in encapsulating the intracellular contents to separate one cell from the 
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next, but it also serves as an achor for the actin cytoskeleton scaffold, as well as a home 

base for lipids that serve as messengers in a number of downstream signaling pathways.  

Given the importance of these aspects in cellular regulation, variations in the plasma 

membrane could lead to vast consequences in cellular function.  The overall aim of my 

dissertation was to study how perturbations to the plasma membrane affect cellular 

responses.   

 1.9.1. Do changes in plasma membrane curvature and its neighboring actin 

cytoskeleton affect cortical neuronal development? Immense morphological changes 

take place during neuronal development.  As neurons mature, the cell must extend multiple 

neurite that eventually become the axon and dendrites.  In order to construct these 

neuronal processes, the outer membrane and internal components must be constructed, 

rearranged, and added at a relatively rapid pace compared to a cell at rest; therefore, it is 

possible that membrane-deforming proteins play a role in the changes occurring during this 

period of rapid outgrowth.  srGAP2 is a member of the BAR superfamily of membrane-

deforming proteins; however, it has internal domains that facilitate interaction with both the 

plasma membrane, the actin cytoskeleton, and other cellular proteins.  Previously 

characterized F-BAR domains had only been shown to regulate membrane invagination 

and endocytosis.  In Chapter 2, I present work demonstrating that the membrane-deforming 

F-BAR domain of srGAP2 is sufficient to induce filopodia-like protrusions, and subsequently 

regulate neuronal development in vitro and in vivo.  

 1.9.2 Are the F-BAR domains of srGAP1, srGAP2, and srGAP3 functionally 

distinct?  Most previous reports and reviews have grouped the srGAP proteins into one 

functionally indistinct subfamily of the BAR-containing proteins; however, previous to the 

work in chapter 3, only a handful of reports looked into the functions of any of the proteins, 

and fewer focused on the F-BAR domains themselves.  Furthermore, the only direct 

comparisons between the three had looked into mRNA localization throughout the CNS at 
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different developmental timepoints (Bacon et al., 2009) and the original paper suggesting 

that all three srGAP proteins bound the Robo receptor (Wong et al., 2001).  In chapter 3, I 

demonstrate that the three F-BAR domains of the srGAP proteins are not functionally 

identical.  The F-BAR of srGAP2 (F-BAR(2)) is a more potent filopodia inducer than F-

BAR(1) or F-BAR(3) in non-neuronal cells; however, F-BAR(3) functions more similarly to 

F-BAR(2) in cortical neurons.  F-BAR(1) seems to function to restrict membrane-

deformation and protrusions.  Moreover, this work demonstrates that the F-BARs of srGAP 

proteins can interact to more intricately regulate membrane deformation and cellular 

morphology. 

 1.9.3 Do alterations in the lipid composition of the plasma membrane regulate 

cellular function in vivo?  PI(4,5)P2, the most prominent phosphoinositide isoform in the 

plasma membrane, interacts directly with many members of the BAR superfamily of 

proteins, as well as the actin cytoskeleton and other actin-related proteins.  In addition to its 

cytoskeletal scaffolding role, PI(4,5)P2 acts as a second messenger in an abundance of 

cellular signaling pathways. Additionally, PI(4,5)P2 regulates the activity of many ion 

channels, such as TRPV1, a key player in thermosensation of noxious temperatures.  As 

discussed in chapter 4, we sought to reduce PI(4,5)P2 in heat-sensing neurons in vivo 

using the rapamycin-induced dimerization system in order to reduce pain sensitization and 

chronic pain.  Although we successfully adapted and expressed the rapamycin-induced 

PI(4,5)P2 depletion system in vivo, we were unable to induce translocation.  Chapter 4 

illuminates some of the challenges and obstacles that arose along the way. 

 

Overall, this work provides novel insights into the ways that physical and molecular 

manipulations of the plasma membrane alter cellular function.
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1.9 Figures and legends 

 

 

Figure 1.1. Cortical neuron development in vivo and in vitro 
A) Radial glial cells divide asymmetrically (1) to produce a daughter radial glial cell (RGC) 
and a multipolar neuronal precursor cell that explores its surroundings looking for a path to 
migrate (2).  This multipolar cell then polarizes, with a leading process towards the pial 
surface and a trailing process towards the ventricle (3).  This cell attaches to a RGC (4) and 
migrates to the cortical plate, while extending its trailing process (5).  Once the migrating 
neurons reach their target, they detach from the RGC and form an apical dendrite from its 
previous leading process (6) that will go on to mature into a highly arborized dentritic tree 
with dendritic spines. B) Dissociated cortical progenitors in vitro proceed through specific 
morphological transitions.  Stage 1 neurons are flat cells with filopodia and lamellipodia 
protrusions.  Stage 2 neurons have extended short, immature neurites.  At stage 3, one 
neurite is molecularly distinct and has extended beyond the other neurites, specifying the 
axon. (Modified from Barnes and Polleux, 2009, Annu Rev Neurosci). 
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Figure 1.2. BAR superfamily proteins  
(A-C) Domain organization of members of the Bin/Amphiphysin/Rvs (BAR) domain-
containing superfamily of proteins. A) The founding subgroup, the BAR-containing proteins. 
B) Select members of the F-BAR domain-containing subgroup.  F-BARs are elongated 
FCH-BAR domain that share similar sequence and helical domain secondary structure with 
BAR domains. C) Members of the inverse BAR (I-BAR) subfamily.  In addition to BAR 
domains, many domains are common amongs the BAR domain-containing members, such 
as RhoGAP domains and SH3 domains.  Many of these common additional domains aid in 
cytoskeletal rearrangement or protein-protein binding. Membrane-binding domains: BAR, 
F-BAR, I-BAR, and pleckstrin homology (PH).  Small Rho GTPase binding domains: 
RhoGAP and HR1, and Cdc42/Rac1 Interactive Binding (CRIB).  Domains that aid in 
protein-protein interaction: src homology 3 (SH3), WW (2 highly-conserved tryptophan 
residues), Wiscott-Aldrich syndrome homology 2 (WH2), and WH2-like (WH2-l).  D) 
Crystalized dimers of F-BAR and BAR/N-BAR dimers are banana-shaped structures with 
positive amino acids (+) located on their concave surfaces.  Inverse BAR (I-BAR) dimers 
are less curved, with phospholipid-binding positive amino acids on their convex surface. F-
BAR and BAR/N-BAR domains oligomerize and bind membrane via electrostatic charge 
from the concave surface.  These end to end oligomers form in a corkscrew fashion, 
invaginating membrane into the cell. Conversely, I-BAR domains protrude membrane, 
inducing filopodia-like structures.  The mechanism for I-BAR-induced protrusions is 
currently unknown. (Fig 1.2D is modified from Scita et al., 2008, with permission from 
Trends Cell Biol) 
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Figure 1.3. PI(4,5)P2-mediated actin regulation through actin-related proteins 
Small GTPases activate and mediate localization of the PI(4,5)P2 producing kinase family 
PIP5Ks.  High levels of PI(4,5)P2 lead to actin polymerization through activation of actin 
polymerizing proteins, and inhibition of actin depolymerizing proteins.  See text in section 
1.5 for additional details. 
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Figure 1.4. PI(4,5)P2 metabolism 
Interconversion between phosphoinositide species occurs with the addition and removal of 
phosphates (black circles) to certain positions of the inositol ring headgroup of the lipid by 
specific kinases and phosphatases, respectively.  PI(4)P5K adds a phosphate group to the 
5 position of PI(4)P to create PI(4,5)P2, which can be reversed by PI 5-phosphatases such 
as the mammalian Synaptojanin or the yeast Inp54p.  PI(4,5)P2 can also be formed by the 
addition of a phosphate to the 4th position of the inositol ring by PI(5)P4K.  There is 
currently no identified enzyme to reduce PI(4,5)P2 to PI(5)P; however, bacterial IpgD can  
cause this reduction, resulting in decreased membrane-cytoskeletal adhesion.  Formation 
of PI(4,5)P2 can also occur in the opposite direction, from the removal of the 3-position 
phosphate of PI(3,4,5)P3.  Likewise, PI(4,5)P2 can be converted to PI(3,4,5)P3 with the 
addition of a phosphate to position 3 with PI3K.  These kinases and phosphatases must 
remain in balance in order for proper lipid signaling.  
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Figure 1.5. PI(4,5)P2 signaling and ion channel regulation   
A-B) PI(4,5)P2 (signified by lipid with black ball) is cleaved by phospholipase C (PLC) into 
inositol triphosphate (IP3) and DAG.  DAG remains at the membrane to activate protein 
kinase C (PKC), and IP3 goes on to stimulate the IP3 receptor (IP3R) in the endoplasmic 
reticulum (seafoam green structure) and release intracellular calcium stores. B) When 
PI(4,5)P2 is abundant at the plasma membrane, ion channels like TRPV1 (red channel) 
allow influx of ions.  This channel current is inhibited by the reduction of PI(4,5)P2 due to 
PLC activity.  PLC activation can occur through G-protein (green α and βγ subunits) 
activation due to activation of a G-protein coupled receptor (GPCR, blue channel) by a 
ligand (yellow circle) like adenosine, or through Ca2+ binding.  C) The proposed mechanism 
for PI(4,5)P2 ion channel regulation is due to conformational changes that occur between 
PI(4,5)P2-bound and –unbound states.  The inward rectifying potassium channel, Kir2.2, 
was crystallized in the presence of PI(4,5)P2.  Each of the 4 channel subunits bound to one 
molecule of PI(4,5)P2, with the hydrophobic acyl chains binding to the transmembrane 
domain and the phophorylated head group binding to cytoplasmic domain of the subunit.  
The conformational change induced by PI(4,5)P2 binding is proposed to open the channel 
pore to allow ions to flow through. (Fig. 1.5C is modified from Hansen et al. (2011), with 
permission from Nature.)  
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Figure 1.6. Schematic of rapamycin-induced depletion of PI(4,5)P2 from the plasma 
membrane 
Prior to rapamycin treatment, the FRB domain of mTOR is tagged to the plasma membrane 
with the membrane-targetting motif of GAP43, and the FKBP-Inp54p fusion protein is 
cytoplasmically localized.  The PH domain of PLC∂1 acts as a biosensor, and binds 
PI(4,5)P2 in the plasma membrane.  After rapamycin treatment, the FKBP domain 
dimerizes with the FRB domain, translocating the FKBP-Inp54p fusion protein to the 
plasma membrane, where the Inp54p phosphatase reduces PI(4,5)P2 to PI(4)P, releasing 
the PH domain to the cytoplasm. 
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Figure 1.7. Subtypes of nociceptive neurons in the DRG  
A) Dorsal root ganglia (DRG) contain multiple neuronal subtypes that project to different 
areas of the dorsal horn in the spinal cord.  A∂ fibers (blue) are lightly myelinated, high 
threshold neurons that synapse onto laminae I and IV of the dorsal horn.  C-fibers are 
small, unmyelinated nociceptive neurons.  C-fibers can be divided into peptidergic (C(P) in 
red) and non-peptidergic (C(NP) in green) neurons.  C(P) neurons project to lamina I, while 
C(NP) neurons synapse in lamina II. B) Nociceptive neurons can be distinguished by size 
and molecular markers. A∂ fibers are medium diameter neurons that express neurofilament 
200 (NF200). C(P) neurons can be distinguished from C(NP) neurons by the expression of 
calcitonin gene related peptide (CGRP), substance P (SP), and the NGF receptor tyrosine 
receptor kinase A (TrkA), whereas C(NP) neurons bind isolectin-B4 (IB4), the GPCR 
Mrgprd, and the ectonucleotidase prostatic acid phosphatase (PAP).  Many of these 
markers show partial overlap between subtypes.  
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CHAPTER 2 

 
The F-BAR Domain of srGAP2 Induces Membrane Protrusions Required for Neuronal 

Migration and Morphogenesis1 
 

2.1 INTRODUCTION 

 During brain development, neural progenitor proliferation, neuronal migration, and 

differentiation require considerable changes in cell shape involving coordinated cytoskeletal 

and membrane remodeling (Ayala et al., 2007; Luo, 2002). Neuronal migration involves the 

coordinated extension and adhesion of the leading process (LP) along the radial glial 

scaffold with the forward translocation of the nucleus, which requires regulation of 

centrosome and microtubule dynamics by proteins such as Lis1, Doublecortin, and Nudel 

among others (Ayala et al., 2007; Higginbotham and Gleeson, 2007; Lambert de Rouvroit 

and Goffinet, 2001). However, little is known about the molecular mechanisms underlying 

membrane dynamics during neuronal migration and morphogenesis. 

 The basis of neurite initiation, outgrowth, and branching is rooted in the ability of the 

actin and microtubule cytoskeleton to undergo dynamic changes (Gupton and Gertler, 

2007; Luo, 2002; Mattila and Lappalainen, 2008). Filopodia have been shown to play a role 

in neurite initiation (Dent et al., 2007; Kwiatkowski et al., 2007), growth cone dynamics 

(Burnette et al., 2007; Gallo and Letourneau, 2004), neurite outgrowth (Luo, 2002), and 
                                                
1 Sabrice Guerrier, Jaeda Coutinho-Budd, Takayuki Sassa, Aurelie Gresset, Nicole Vincent Jordan, 
Keng Chen, Wei-lin Jin, Adam Frost, and Franck Polleux (2009) srGAP2 regulates neuronal 
migration and morphogenesis through the ability of its F-BAR domain to induce membrane 
protrusions. Cell 138, 990-1004. 
 I have obtained the rights to include this work in my thesis.  My contribution focused on the 
structure/function analysis of srGAP2 in COS7 cells and dissociated neurons, as well as biochemical 
analysis (Figures 2.3, 2.4, 2.S1, 2.S4, 2.S5, 2.S7, 2.S12, and 2.S13).  I worked closely with the first 
author throughout my involvement with the project, contributed to scientific discussion, and assisted 
with layout and proofreading of the manuscript. 
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branching (Dent et al., 2004; Gallo and Letourneau, 1998). Downregulation of the actin 

anti-cappers ENA/VASP proteins, which are potent inducers of filopodia, resulted in failed 

neurite initiation and also in defects in cortical lamination (Kwiatkowski et al., 2007), 

suggesting a functional relationship between filopodia formation, neurite initiation, and 

neuronal migration. 

 Classically, filopodia formation is thought to be primarily dependent on proteins that 

regulate actin polymerization at the barbed end of actin filaments and proteins bundling F-

actin (Gupton and Gertler, 2007). Interestingly, the BAR superfamily member IRSp53 has 

been shown to induce filopodia through membrane deformation independently of its F-actin 

bundling activity (Lim et al., 2008; Mattila et al., 2007; Saarikangas et al., 2009). The BAR 

domain superfamily contains three main groups: (1) the Bin/Amphiphysin/Rvs (BAR) 

domain subfamily (Itoh and De Camilli, 2006), (2) the Fes-Cip4 homology BAR (also called 

F-BAR or EFC) domain subfamily (Itoh et al., 2005; Tsujita et al., 2006; reviewed in Frost et 

al., 2009), and (3) the I-BAR subfamily (reviewed in Scita et al., 2008). Structural analysis 

of three F-BAR domains demonstrated that these domains are elongated homodimers 

characterized by a shallow curvature formed by the antiparallel interaction of two α-helical 

coiled coils (Henne et al., 2007; Shimada et al., 2007). In addition to sharing the general 

fold and quaternary organization of the BAR domain superfamily, F-BAR domains share 

functional properties with ‘‘classical’’ BAR domains, most notably the ability to bind and 

deform membranes in vitro and in living cells (Frost et al., 2008; Itoh et al., 2005; Kakimoto 

et al., 2006; Shimada et al., 2007). However, to date, the in vivo functions of F-BAR 

domain-containing proteins are largely unknown (Frost et al., 2009). 

 Here we identify slit-robo GTPase activating protein (srGAP2) as a regulator of 

neuronal migration and morphogenesis through the unexpected ability of its N-terminal F-

BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-
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BAR domains. Our results highlight the functional importance of proteins directly regulating 

membrane deformation for proper neuronal migration and axon-dendrite morphogenesis. 

 

2.2 RESULTS 

2.2.1 Expression of srGAP2 in the developing cortex 

 To begin our study of the role of srGAP2 in cortical development, we first examined 

its pattern of expression. srGAP1–3 have recently been reported to be expressed 

throughout the cortex during and after radial migration (Bacon et al., 2009; Mattar et al., 

2004; Yao et al., 2008). Our analysis confirmed that srGAP2 mRNA is expressed 

throughout the developing cortex and is found both in proliferative zones (ventricular zone 

[VZ] and subventricular zone [SVZ]) at embryonic day 13 (E13) and E15 and in postmitotic 

regions (cortical plate [CP]) at E15 and postnatal day 1 (P1) (Figure 1A). In order to 

determine the pattern of srGAP2 protein expression, we used a polyclonal antibody raised 

against the C terminus of srGAP2 (Figures 1B and 1C; Yao et al., 2008).  srGAP2 protein 

is expressed throughout cortical development culminating at P1 corresponding to the peak 

of neuronal migration in the cortex. Its expression is maintained at P15 and reduced, but 

still present, in adult cortex (Figure 1C). 

 Immunofluorescent staining for srGAP2 shows that it is ubiquitously expressed in 

the cortical wall (Figure 1D) being found both in Nestin-positive neuronal progenitors in the 

VZ (Figures 1H–1J) and MAP2-positive postmitotic neurons in the CP (Figures 1E–1G).  

At the subcellular level, endogenous srGAP2 is found at the cell periphery (Figures 1K–

1M, arrows) and was often localized along F-actin-rich filopodia-like protrusions (arrowhead 

in Figures 1K–1P) in acutely dissociated E15 cortical neurons. 

2.2.2 Full-length srGAP2 and its F-BAR domain induce filopodia formation 

 Overexpression of F-BAR domain-containing proteins such as FBP17 or CIP4 have 

been shown to cause membrane invagination and tubulation in cell lines (Itoh et al., 2005; 
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Tsujita et al., 2006). Surprisingly, expression of srGAP2 did not induce any membrane 

invaginations, but instead induced filopodia formation (see Figures S1D–S1F and S1P 

available online). This effect requires its F-BAR domain since deletion of the F-BAR domain 

(srGAP2ΔF-BAR-EGFP) does not induce filopodia formation in COS7 cells (Figures S1G–S1I 

and S1P). 

 Interestingly, unlike the F-BAR domains of FBP17 and CIP4 (Itoh et al., 2005), 

expression of the F-BAR domain of srGAP2 did not inhibit endocytosis, as assessed using 

Alexa546-Transferrin uptake assay (Figure S2). Furthermore, expression of the isolated F-

BAR domain fused to EGFP induced filopodia formation similar to full-length srGAP2 

(Figures S1J, S1K, and S1P). Of note, the F-BAR domain is a potent membrane-targeting 

motif (Figure S1J). These data suggest that the F-BAR domain of srGAP2 is necessary 

and sufficient for membrane localization and the induction of filopodia-like membrane 

protrusions. 

 In order to distinguish the membrane-targeting function of the F-BAR domain from 

its membrane deformation activity, we identified a small truncation of the last C-terminal 49 

amino acids (F-BARΔ49) (Figure S3A and Supplemental Experimental Procedures for 

details). Expression of F-BARΔ49-EGFP results in significant membrane targeting (Figure 

S4) but fails to induce filopodia in COS7 cells (Figures S1M–S1P). We do not currently 

know the structural basis for the inability of this truncation to elicit filopodia, but we can at 

least exclude two possibilities: (1) instability of the F-BARΔ49 protein since it expresses at a 

level comparable to full-length srGAP2 or its F-BAR domain in cells (Figure S5) and (2) this 

truncation does not disrupt its dimerization properties since F-BARD∆49 can dimerize with F-

BAR or full-length srGAP2 (data not shown). Interestingly, these 49 amino acids reside in 

an extension specific to the srGAP subfamily (α6–8; Figure S3A) that is C-terminal to the 

minimal, predicted F-BAR domain (amino acids 1–358; Itoh et al., 2005) (Figure S3B). 

Indeed, we were unable to obtain stable protein expression of this minimal predicted F-BAR 
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domain (amino acids 1–358) in mammalian cells or bacteria (data not shown). Furthermore, 

as shown for other F-BAR domains (Frost et al., 2008; Itoh et al., 2005; Kakimoto et al., 

2006; Shimada et al., 2007), srGAP2 forms a stable dimer in solution as assessed by light 

scattering assays (Figure S3C), and deletion of the Fes-Cip4 homology (FCH) domain 

(green box in Figure S3A), which represents a significant portion of the dimerization 

interface, abolishes the ability of srGAP2 to induce filopodia in COS7 cells (data not 

shown). Altogether, these data suggest that all eight predicted α-helices are likely to be 

required for formation of the functional F-BAR domain of srGAP2. 

2.2.3 The F-BAR domain of srGAP2 deforms membrane like an I-BAR domain 

 The ability of srGAP2 or its F-BAR domain to induce filopodia in COS7 cells is 

reminiscent of the activity of the structurally related I-BAR domain-containing proteins 

(Mattila et al., 2007; Millard et al., 2007; Saarikangas et al., 2009; Scita et al., 2008). 

Interestingly, F-actin depolymerization prevents the dynamics and formation of new 

filopodia, but does not affect the maintenance of pre-existing filopodia induced by the I-BAR 

domains of IRSp53 or MIM (Mattila et al., 2007). We found the same results for the F-BAR 

domain of srGAP2 (Figures 2A–2C), while cells treated with cytochalasin D were depleted 

of F-actin. Strikingly, this treatment had no effect on membrane localization of the F-BAR 

domain or on the maintenance of filopodia-like protrusions (Figures 2D–2F). F-BAR-

induced filopodia were highly dynamic in COS7 cells (Figures 2G–2J and Movie S1). 

Treatment with cytochalasin D significantly impaired the extension and retraction of F-BAR-

induced filopodia (Figures 2K–2N and Movie S2), suggesting that F-actin is required for 

the dynamics of these protrusions. 

 In order to directly test the membrane deformation properties of the F-BAR domain 

of srGAP2, we incubated purified F-BAR domain with preformed liposomes. As visualized 

by negative stain transmission electron microscopy, this did not result in liposome outward 

tubulation as has been reported for other F-BAR domains (see Figure S5B). Rather, the F-



 

35 

BAR domain of srGAP2 induced an inward dimpling or ‘‘scalloping’’ of the liposome surface 

(Figures 2O and 2P), which is reminiscent of the activity of I-BAR domains in the same 

conditions (Suetsugu et al., 2006), suggesting that the F-BAR domain of srGAP2 can 

induce ‘‘inverse’’ membrane tubulation. 

 These results suggested the possibility that if the purified F-BAR domain of srGAP2 

could be exposed to the inside surface of liposomes, then protrusive tubules would form 

(Figure 2Q). To test this hypothesis, mixtures of the F-BAR domain with intact, large 

unilamellar vesicles (LUVs) were briefly sonicated, which presumably resulted in transient 

pore formation in liposomes and introduction of the recombinant F-BAR inside LUVs. 

Following a wash, liposomes were fixed, negatively stained, and imaged using transmission 

electron microscopy. As predicted by the I-BAR model, this resulted in numerous long 

tubular extensions emerging from LUVs (Figure 2R), which is in stark contrast with control 

sonicated liposomes not incubated with recombinant protein (Figure S6A). Consistent with 

the dimensions of tubules induced by other members of the F-BAR and I-BAR families 

(Frost et al., 2008; Mattila et al., 2007), the srGAP2 F-BAR-induced tubules were 83 nm ± 

15 nm (average ± SD, n = 38) in diameter. Importantly, at higher magnification, the tubules 

observed by negative staining electron microscopy after sonication do not have an obvious 

protein coat surrounding the liposomes (Figure 2R). This is in contrast with tubules induced 

by other F-BAR and BAR domains that coat the outer surface of the tubule (Figure S6B; 

Frost et al., 2008; Shimada et al., 2007). Together, these results suggest that unlike 

previously characterized F-BAR domains, the F-BAR domain of srGAP2 functions as an I-

BAR domain (Mattila et al., 2007; Suetsugu et al., 2006).  

2.2.4 srGAP2 regulates neurite formation and branching through the ability of its F-

BAR domain to form filopodia 

 We next tested the function of srGAP2 in neuronal morphogenesis by designing 

short hairpin interfering RNA (shRNA) in order to acutely knock down srGAP2 expression 
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(Figure 3A). We found that srGAP2 knockdown in E15 cortical neurons led to a significant 

decrease in both axonal (Figures 3C, 3D, and 3F) and dendritic branching after 5 days in 

vitro (DIV) (Figures 3G, 3H, and 3J). Both of these effects were rescued by cotransfection 

of a shRNA-resistant form of srGAP2 (srGAP2*; Figures 3B, 3E, 3F, 3I, and 3J), 

demonstrating that this is not an off-target effect.  The fact that srGAP2 knockdown 

reduced branching in cortical neurons, a process previously shown to require filopodia 

formation (Dent et al., 2004; Gallo and Letourneau, 1998), suggests that srGAP2 may 

promote neurite branching through its ability to induce filopodia in neurons. 

 To test this hypothesis, we performed a structure/function analysis using 

electroporation of E15 cortical progenitors with various srGAP2 constructs followed by 

dissociation and culture, which induces rapid differentiation. First, we restricted our analysis 

to stage 1 neurons (Dotti et al., 1988), when immature postmitotic neurons produce a 

significant number of filopodia-like protrusions (Dent et al., 2007; Kwiatkowski et al., 2007). 

Our analysis shows that expression of full-length srGAP2 induced a significant increase in 

filopodia-like protrusions in stage 1 cortical neurons compared to control EGFP (Figures 

4A–4C and 4F). This effect requires the F-BAR domain since deletion of the F-BAR domain 

(srGAP2ΔF-BAR) significantly reduced the ability of srGAP2 to induce filopodia in stage 1 

neurons (Figures 4C and 4F). As in COS7 cells, expression of the F-BAR domain alone 

potently induces formation of F-actin-rich filopodia (Figures 4D and 4F). Again, the effect 

of the F-BAR domain requires its membrane deformation properties, and not simply its 

membrane targeting property since expression of F-BARΔ49 does not induce filopodia in 

stage 1 cortical neurons (Figures 4E and 4F), and instead induces large lamellipodia 

(arrowhead in Figure 4E). These data suggest that srGAP2, through its F-BAR domain, 

induces filopodia in cortical neurons as shown in COS7 cells. 

 We then analyzed stage 2 neurons, i.e., prior to the emergence of a single axon 

(Dotti et al., 1988), in order to test if srGAP2 and its F-BAR domain were sufficient to 
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promote the transition between filopodia and elongating neurites defined by the presence of 

bundled microtubules (see also Figure S7 for isolated βIII-tubulin signal). Both full-length 

srGAP2 and the F-BAR domain significantly increased the total number of primary neurites 

emerging from the cell body (Figures 4G–4K) as well as the number of primary neurite 

branches (Figure 4L). Expression of srGAP2ΔF-BAR as well as F-BARΔ49 fails to increase 

primary neurite number and neurite branching compared to control (Figures 4J–4L). 

2.2.5 Reduction of srGAP2 expression promotes neuronal migration 

 To determine the function of srGAP2 during cortical development, we introduced 

our shRNA constructs directed against srGAP2 (Dha2 and Dha5; Figure 3A) into radial 

glial progenitors at E15 using ex vivo cortical electroporation coupled with organotypic slice 

culture (Hand et al., 2005). Interestingly, after 3 days in culture, at a time point when few 

control shRNA electroporated neurons have already migrated (Figures 5A, 5C, and 5D), 

slices expressing srGAP2 shRNA showed a significant increase in the percentage of 

neurons that have reached the dense CP and a corresponding decreased percentage of 

neurons in the intermediate zone (IZ) (Figures 5B–5D), suggesting that reduction of 

srGAP2 expression accelerated radial migration. To test this directly, we used time-lapse 

confocal microscopy to visualize neurons coexpressing nuclear EGFP (to ease cell 

tracking) and control shRNA (Figures 5E–5H and Movie S3) or srGAP2 shRNA (Figures 

5E–5L and Movie S4) in slice culture. We found that srGAP2 shRNA-expressing neurons 

migrated 25% faster than those expressing control shRNA (Figure 5M), suggesting that 

reduction of srGAP2 increased the actual rate of cell translocation. 

 Excessive LP branching in migrating cortical neurons can inhibit neuronal migration 

(Gupta et al., 2003; Ohshima et al., 2007). Indeed, the LP of srGAP2 knockdown neurons 

in layers 5/6 was significantly less branched compared to control shRNA neurons (Figures 

5N–5P). These data suggest that srGAP2 may negatively regulate the rate of radial 

migration by promoting LP branching and dynamics. 
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2.2.6 The F-BAR domain is necessary and sufficient for srGAP2-mediated inhibition 

of radial migration 

 We hypothesized that overexpression of srGAP2 or its F-BAR domain should be 

sufficient to block migration by increasing filopodia formation and LP dynamics. Indeed, 

overexpression of srGAP2 severely inhibited radial migration compared to control 

EGFP-expressing slices electroporated at E15 and cultured for 5 DIV (Figures 6E–6H). We 

quantified radial migration by determining the ratio of neurons in the dense CP (where 

pyramidal neurons complete migration) and in the IZ, where they initiate radial migration 

(see Figure S8 for definition of cytoarchitecture). This CP/IZ ratio (Figure 6U) is 

significantly decreased by srGAP2 overexpression (Figures 6E–6H) when compared to 

control EGFP-expressing neurons (Figures 6A–6D), demonstrating that srGAP2 

overexpression inhibits neuronal migration. Expression of srGAP2ΔF-BAR did not significantly 

reduce the CP/IZ ratio compared to EGFP control (Figures 6I–6L and 6U) and is 

significantly different from the ratio measured by srGAP2 overexpression (Figure 6U), 

suggesting that the F-BAR domain is partially required for srGAP2’s ability to inhibit 

migration. Moreover, expression of the F-BAR domain alone was sufficient to reduce 

neuronal migration to the same extent as srGAP2 while expression of F-BARΔ49 had no 

effect on the ability of neurons to migrate (Figures 6M–6U), suggesting that the ability of 

the F-BAR domain to induce filopodia is required for the ability of srGAP2 to inhibit 

neuronal migration. 

2.2.7 srGAP2 inhibits migration by increasing leading process dynamics and 

branching 

 The accumulation of neurons expressing srGAP2 or its F-BAR domain in the IZ 

suggested that the neurons might be partially blocked in the multipolar to unipolar transition 

(Noctor et al., 2004). Indeed quantification of the percentage of multipolar cells (cells 

displaying three or more neurites) in the IZ of slices electroporated with srGAP2 or the F-
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BAR domain revealed a significant increase in the percentage of neurons with multiple 

processes emerging from the cell body compared to control (Figure 6V). This is consistent 

with the ability of srGAP2 to induce filopodia and neurite initiation/branching in dissociated 

neurons (see Figure 4). 

 Our time-lapse confocal microscopy analysis shows that control neurons in the IZ 

form a stable LP upon initiating radial migration (green arrowheads in Figure 6W and 

Movie S5) and undergo efficient cell body translocation (green arrows in Figure 6W and 

Movie S5). In contrast, neurons overexpressing srGAP2 or the F-BAR domain alone do not 

undergo cell body translocation (red arrows in Figures 6X and 6Y and Movies S6 and S7), 

and instead form multiple processes that are highly dynamic and unstable (red arrowheads 

in Figures 6X and 6Y and Movies S6 and S7). The plasma membrane of these cells 

appears highly dynamic showing large, transient protrusions (green arrowheads in Figure 

6X). While many neurons accumulate in the IZ, some did manage to translocate into layers 

5/6 (Figures 6E–6H and 6M–6P), where expression of srGAP2 or its F-BAR domain 

significantly increases LP branching compared to EGFP control (Figure 6Z and Figures 

7A–7C). Together, these data suggest that srGAP2 increases neurite initiation and 

branching through the ability of its F-BAR domain to induce filopodia, which in turn 

negatively regulates neuronal migration. 

 Finally, to ensure that the ability of srGAP2 expression to inhibit migration was not 

due to an indirect effect of srGAP2 expression on progenitor cell cycle exit, we designed a 

vector allowing us to express srGAP2 in early postmitotic neurons using the 2.2 kB NeuroD 

promoter (Figure S9A). NeuroD is a bHLH transcription factor and a direct transcriptional 

target of Ngn2 (Hand et al., 2005; Heng et al., 2008), thereby inducing cDNA expression in 

intermediate progenitors and early postmitotic neurons in the subventricular zones and IZ 

(Figures S10E–S10H) but not by Nestin+ radial glial progenitors in the VZ as obtained by 

the chicken β-actin promoter (Figures S10A–S10D). Furthermore, the level of protein 
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expression in neurons obtained with this promoter is significantly lower than using the 

chicken β-actin promoter (data not shown; Heng et al., 2008). Expression of srGAP2 using 

this NeuroD promoter significantly reduced the number of cells reaching the CP compared 

to control (Figures S9B–S9J). 

2.2.8 srGAP2 partially requires Iis RhoGAP and SH3 Domains to inhibit migration 

 We next wanted to determine the contributions of the RhoGAP and SH3 domains to 

srGAP2 function in neuronal migration and morphogenesis. In order to determine the 

substrate specificity of the GAP domain of srGAP2, we purified its GAP domain as a GST 

fusion (Figure S11A). We then performed fluorescencebased GTP hydrolysis assays 

(Figure S11B; Shutes and Der, 2006). The GAP domain of srGAP2 increased the rate of 

GTP hydrolysis on Rac1, but had no effect on RhoA or Cdc42 (Figure S11B) or RhoG 

(data not shown). In addition, full-length srGAP2 strongly interacted with activated Rac1 

(Rac1Q61L) but only weakly interacted with activated Cdc42Q61L (Figure S11C) and activated 

RhoAQ63L (data not shown). These two independent approaches demonstrate that the 

GAP domain of srGAP2 is specific for Rac1. 

 To determine the contribution of the Rac1-GAP domain on srGAP2’s ability to 

regulate neuronal morphogenesis and migration, we engineered a catalytically inactive 

form of srGAP2 (srGAP2R527L). Indeed this mutant was unable to accelerate GTP hydrolysis 

of Rac1 (Figure S11D). Expression of the ‘‘GAP-dead’’ srGAP2R527L was as potent as 

srGAP2 at inducing filopodia-like membrane protrusions in stage 1 cortical neurons 

(compare Figures S12B and S12C; quantified in Figure S12F) and at promoting primary 

neurite initiation (Figures S12H and S12I; quantified in Figure S12L). While this mutation 

was competent to increase neurite initiation, there were significantly fewer (2-fold) 

srGAP2R527L-expressing neurons at stage 2 when compared to srGAP2 (Figure S13). In 

addition, srGAP2R527L displays a reduced ability to induce neurite branching when 
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compared to srGAP2 (Figure S12L), suggesting that the Rac1-GAP activity of srGAP2 

might participate in its function in neurite branching. 

 We tested the contribution of the Rac1-GAP activity of srGAP2 in its ability to inhibit 

neuronal migration by expressing srGAP2R527L in E15 cortical progenitors. This significantly 

inhibited migration compared to control EGFP (Figures S14A–S14D, S14I–S14L, and 

S14U) although not as potently as full-length srGAP2 (Figures S14E–S14H and S14U), 

suggesting that the Rac1-GAP activity of srGAP2 contributes to its ability to inhibit 

migration. In addition, similarly to srGAP2, expression of srGAP2R527L increased the 

percentage of multipolar cells in the IZ (Figure S14V) and increased LP branching of 

radially migrating neurons in layer 5/6 (Figures S14X and 6Z). These data suggest that the 

Rac1-GAP activity may act to modulate protrusion formation induced by the F-BAR domain 

of srGAP2, but is not absolutely required to induce filopodia-like membrane protrusions and 

inhibit neuronal migration. 

 To test the contribution of the SH3 domain of srGAP2, we engineered a mutant to a 

conserved tryptophan residue (srGAP2W765A), which was shown to be required for the ability 

of the SH3 domain of srGAP1 to bind to Robo1 and for the SH3 domain of srGAP3 to bind 

to WAVE-1 (Wong et al., 2001; Li et al., 2006; Soderling et al., 2002). Expression of 

srGAP2W765A, unlike the expression of full-length srGAP2 or its F-BAR domain, did not 

efficiently induce filopodia-like membrane protrusions in stage 1 cortical neurons (Figures 

S12D and S12F) and had a significantly decreased ability to induce primary neurite 

branching compared to full-length srGAP2 (Figures S12J and S12L). Expression of 

srGAP2W765A increased primary neurite initiation, but showed a significantly reduced 

percentage (2-fold) of neurons transitioning from stage 1 to stage 2 compared to srGAP2 

(Figure S13), suggesting that all functional domains of srGAP2 are required for its ability to 

promote the transition from a filopodia to an elongating neurite. 
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 Interestingly, expression of srGAP2W765A had no effect on cortical neuron migration 

(Figures S14M–S14P and S14U), although there was a slight increase in cells with 

multipolar morphology in the IZ compared to EGFP (Figure S14V). The lack of effect of 

srGAP2W765A overexpression on the CP/IZ ratio prompted us to use time-lapse microscopy 

to observe LP dynamics in radially migrating neurons. This analysis revealed that migrating 

neurons expressing srGAP2W765A did not display increased LP branching, but instead 

had a single, stable LP (red arrowheads in Figure S14W and Movie S8) and translocated 

efficiently (green arrowheads in Figure S14W and Movie S8), which is strikingly different 

from neurons overexpressing full-length srGAP2 (Figure 6X). Moreover, analysis of 

neurons in layer 5/6 showed no significant increase in LP branching as demonstrated with 

other constructs containing an F-BAR domain (Figures 6, 7E, and S14X). 

 The fact that srGAP2W765A showed weak filopodia formation compared to full-length 

srGAP2, and no increase in neurite branching suggested that the F-BAR domain might be 

inhibited in srGAP2W765A. By analogy to the mode of activation of other RhoGAP and 

RhoGEF proteins (Eberth et al., 2009; Mitin et al., 2007; Yohe et al., 2007), we 

hypothesized that srGAP2 might normally be in an autoinhibited conformation through 

structural interaction between the N-terminal F-BAR domain and the C-terminal region 

(including the SH3 domain) that is released upon effector binding to its SH3 domain (see 

model in Figure 7G). 

 To test this model, we generated a C-terminal deletion of srGAP2 (srGAP2ΔC-term), 

which deletes the entire C-terminal portion starting from the SH3 domain to the C-terminal 

end.  Expression of srGAP2ΔC-term potently induced filopodia formation in stage 1 neurons 

(Figures S12E and S12F) and neurite outgrowth and branching in stage 2 neurons 

(Figures S12K and S12L). In sharp contrast to srGAP2W765A, expression of srGAP2ΔC-term 

potently inhibited migration (Figures S14Q– S14U) resulting in increased multipolar cells in 

the IZ (Figure S14V) as well as increased LP branching of migrating neurons in layer 5/6 
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similarly to other F-BAR-containing constructs but unlike srGAP2W765A (Figures S14X and 

7F). 

 

2.3 DISCUSSION 

2.3.1 srGAP2 is a novel F-BAR domain-containing protein 

 It is well established that cytoskeletal dynamics produce forces to generate plasma 

membrane protrusions and invaginations; however, recent evidence suggests that many 

membrane-associated proteins directly sculpt and deform biological membranes (Doherty 

and McMahon, 2008). Here we report that srGAP2 regulates neuronal migration as well as 

neurite initiation and branching through the ability of its F-BAR domain to deform 

membranes and form filopodia-like membrane protrusions. This is a surprising finding since 

F-BAR domains have been mostly characterized for their ability to induce membrane 

tubulation and invaginations (Frost et al., 2008; Habermann, 2004; Henne et al., 2007; Itoh 

and De Camilli, 2006; Peter et al., 2004; Shimada et al., 2007). F-BAR domains are 

composed of a series of α-helices forming a strong dimerization motif, which allow the 

homodimers to adopt a quaternary ‘‘banana-like’’ structure (Frost et al., 2008; Henne et al., 

2007; Peter et al., 2004; Shimada et al., 2007). One possibility for how srGAP2’s F-BAR 

domain may induce filopodia-like protrusions is by having a different curvature leading to a 

different surface distribution of positively charged residues than ‘‘canonical’’ F-BAR 

domains. Interestingly, I-BAR domains present in proteins such as IRSp53 or MIM induce 

filopodia, a property linked to the inherent curvature of the I-BAR homodimer and the 

presence of phospholipid-binding residues on the convex side of the homodimers (Lim et 

al., 2008; Mattila et al., 2007; Millard et al., 2007; Saarikangas et al., 2009). 

 We hypothesize that the homodimer formed by the F-BAR domain of srGAP2 

displays a general quaternary structure and charge distribution comparable to I-BAR 

domains. While this can only be proven by structural information, we provide several lines 
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of evidence supporting an I-BAR like behavior: (a) the structural maintenance of filopodia 

induced by the F-BAR domain of srGAP2 is resistant to F-actin depolymerization, (b) 

overexpression of the F-BAR domain of srGAP2 does not inhibit endocytosis, and (c) the F-

BAR domain of srGAP2 induces similar liposome deformations compared to IRSp53 

(Suetsugu et al., 2006). 

 Interestingly, srGAP2 is not the only predicted F-BAR domain-containing protein 

inducing filopodia formation: Gas7 and PSTPIP2 (MAYP) have also been shown to induce 

filopodia in cell lines (Chitu et al., 2005; She et al., 2002). However, these proteins and 

more importantly their predicted F-BAR domains have not been directly tested for their 

ability to deform membranes. Our results suggest that the F-BAR domain subfamily could 

be functionally diverse and that this diversity might be due to subtle structural differences. 

2.3.2 A role for srGAP2 during neuronal development 

 It was recently shown that filopodia were required for neurite initiation in cortical 

neurons (Dent et al., 2007). The absence of effect of srGAP2 knockdown on neurite 

initiation is likely due to the presence of many other proteins involved in filopodia formation, 

such as I-BAR-containing proteins such as IRSp53 or ABBA (Mattila and Lappalainen, 

2008; Saarikangas et al., 2008) or other classes of proteins previously shown to promote 

filopodia formation and neurite initiation through distinct mechanisms (Dent et al., 2007; 

Kwiatkowski et al., 2007). 

 The ability of srGAP2 to promote neurite initiation and branching appears to also be 

important for its regulation of migration (Figure 7H). Knockdown of srGAP2 increased the 

rate of migration and significantly reduced LP complexity and branching (Figure 7H).  This 

could potentially explain the increase in the rate of cell migration, since in fibroblasts, 

reduction of the activity of proteins promoting filopodia formation, such as ENA/VASP 

proteins, increased lamellipodia persistence and increased cell speed (Bear et al., 2000, 

2002). In addition, it was recently shown that loss of ENA/VASP proteins in cortical neurons 
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lead to a more superficial laminar position, which could be due to increased rate of 

migration (Goh et al., 2002; Kwiatkowski et al., 2007). Recent siRNA screens in cancer cell 

lines revealed that downregulation of the srGAP2 homologue srGAP3 also increased the 

rate of cell migration, suggesting that negative regulation of cell migration may be a 

conserved function of the srGAP family (Simpson et al., 2008). 

2.3.3 Regulation of srGAP2: GAP and SH3 domains  

 The BAR superfamily of proteins are involved in a wide range of functions and this 

diversity arises from the different functional domains associated with BAR-like domain (Itoh 

and De Camilli, 2006). We demonstrate that srGAP2 is a Rac1-specific GAP (as previously 

shown for srGAP3) and recent work has highlighted the importance of Rac1 regulation in 

neuronal development (Govek et al., 2005). Mutation of the Rac1/Cdc42 GEF ARHGEF6 

(also called Cool-2 or a-PIX) results in X-linked mental retardation, suggesting the 

importance of properly regulating Rac1 activity during neuronal development (Kutsche et 

al., 2000). Interestingly, the BAR domain-containing protein Oligophrenin-1 as well as the 

F-BAR-containing protein srGAP3 (also called mental retardation GAP or MEGAP) are both 

Rac1-GAPs that have been involved in severe forms of mental retardation (Billuart et al., 

1998; Endris et al., 2002; Govek et al., 2004).  

 Rac1 has also been implicated in regulating radial migration and neurite outgrowth 

(Causeret et al., 2008; Govek et al., 2005; Kawauchi et al., 2003; Konno et al., 2005; 

Yoshizawa et al., 2005). Although not required, the GAP activity of srGAP2 might play a 

role in neurite formation in two ways: (1) local inactivation of Rac1 could result in increased 

Cdc42 activity, which could in turn activate pathways that promote bundled F-actin that are 

required for filopodia formation (Raftopoulou and Hall, 2004), and/or, (2) alternatively, Rac1 

inactivation could lead to increased activation of RhoA (since Rac1 activation has been 

shown to inactivate RhoA [Nimnual et al., 2003]), which in turn could lead to the activation 

of the formin mDia2 and increased actin nucleation (Figure 7G). 
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 A high percentage of F-BAR domain-containing proteins possess SH3 domains 

(Itoh and De Camilli, 2006), which bind to effectors ranging from regulators of endocytosis 

such as dynamin (Itoh and De Camilli, 2006) to regulators of actin polymerization 

(Aspenstrom et al., 2006; Chitu et al., 2005) such as WAVE1 (Soderling et al., 2002). The 

SH3 domain of srGAP2 has been shown to bind the Robo1 receptor (Wong et al., 2001) 

and has also been shown to bind N-WASP (Linkermann et al., 2009), but the functional 

relevance of these interactions has yet to be determined. Our results strongly suggest that 

srGAP2 is autoinhibited at resting state, which is a commonly accepted model of regulation 

of many RhoGEF and RhoGAP proteins (Rossman et al., 2005) and the BAR domain-

containing proteins GRAF and Oligophrenin-1 (Eberth et al., 2009). Future experiments will 

test if this autoinhibition can be released by effector binding to the SH3 domain exposing 

the F-BAR domain to facilitate membrane protrusion (Figure 7G). 

 

2.4 EXPERIMENTAL PROCEDURES 

2.4.1 Animals 

 Mice were used according to a protocol approved by the Institutional Animal Care 

and Use Committee at the University of North Carolina-Chapel Hill and in accordance with 

National Institutes of Health guidelines. Time-pregnant females were maintained in a 12 hr 

light/dark cycle and obtained by overnight breeding with males of the same strain. Noon 

following breeding is considered as E0.5. 

2.4.2 Protein purification 

 srGAP2 (amino acids 1–785) and F-BAR (amino acids 22–501) were cloned into 

pLIC vectors and expressed in Escherichia coli BL21 (DE3) cells. Proteins were then 

purified on a Ni2+ affinity column. Proteins were further purified by cation exchange 

chromatography, using a Source S column, and concentrated in 20 mM Tris buffer (pH 8), 

150 mM NaCl, 1 mM DTT, and 5% glycerol. GAP (amino acids 502–676) and GAPR527L 
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domain of srGAP2 was cloned into pGex-4T3 (Amersham). Recombinant GST fusion 

proteins were then purified using glutathione sepharose and resuspended in 20mMTris 

buffer (pH 8), 150 mM NaCl, 1 mM DTT, and 5% glycerol. 

2.4.3 In vitro GAP assay 

 In vitro fluorescent-based GAP assay was performed as described previously 

(Shutes and Der, 2006).  

2.4.4 Liposome preparation, liposome tubulation assays, and electron microscopy 

 Folch Fraction I Brain Lipid Extract from bovine brain (B1502) in chloroform was 

obtained from Sigma-Aldrich and used without further purification (see Supplemental 

Experimental Procedures for details; Itoh et al., 2005). The liposomes described above 

were first subjected to ten cycles of freeze-thaw, and then used immediately or stored in 

aliquots at -80º C. The liposomes were then equilibrated at RT for 1 hr before adding 

protein (either FBP17 F-BAR domain or srGAP2 F-BAR) at a lipid/protein ratio of 2:1 

mass/mass and final concentrations of 0.2 mg/ml (lipid) and 0.1 mg/ml (protein). The 

tubulation reaction was incubated for 30 min at room temperature before negative staining, 

as described below. In order to introduce the recombinant purified F-BAR into the 

liposomes, 250 ml of the tubulation reaction was subjected to 5 s of bath sonication at room 

temperature immediately after adding protein. After sonication, the sample was allowed to 

incubate for another 30 min before negative staining and processed for electron 

microscopy as described in the Supplemental Experimental Procedures (see also Frost et 

al., 2008). 

2.4.5 Ex vivo Cortical electroporation and primary cortical neuron cultures 

 Mouse cortical progenitors were electroporated ex vivo at E15 as described 

previously (Hand et al., 2005). Following electroporation, cerebral hemispheres were either 

(1) dissected, enzymatically dissociated with papain, and plated on poly-L-lysine and 

Laminin-coated glass coverslips as described previously (Polleux and Ghosh, 2002); or (2) 
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sliced using a LEICA VT1000S vibratome and cultured organotypically as described 

previously (Hand et al., 2005; see Supplemental Experimental Procedures for details).  

Sequence alignments, shRNA and cDNA constructs and neuronal cultures, and confocal 

microscopy are detailed in the Supplemental Experimental Procedures. 

 

2.5 SUPPLEMENTAL EXPERIMENTAL PROCEDURES  

2.5.1 Sequence alignments 

 Sequence alignments for srGAPs were obtained using MUSCLE (Edgar, 2004). 

Human srGAP2 (gi|48427907|sp|O75044.2) Mouse srGAP2 (image:BC030547), Human 

srGAP1 (NP_065813.1), Mouse srGAP1 (NP_001074506.1), Human srGAP3 

(NP_055665.1), Mouse srGAP3 (NP_536696.4), Xenopus srGAP (NP_001087899.1), C. 

elegans (NP_502179.1). Secondary structure was obtained for srGAP2 using hhpred 

(Soding et al., 2005) (http://toolkit.tuebingen.mpg.de/hhpred), Bioinfobank Metaserver 

(http://meta.bioinfo.pl) and PromaS3D (Pei et al., 2008) 

(http://prodata.swmed.edu/promals3d/promals3d.php). Structural alignments srGAP2 and 

F-BAR domains were obtained using hhpred (Soding et al., 2005), Bioinfobank Metaserver 

and PromalS3D (Pei et al., 2008). Mouse FBP17 (NP_062279.1), Mouse Syndapin1 

(CAQ52060.1), Mouse FCHo2 (NP_766179.1), Mouse PSTPIP2 (CAJ18516.1), Mouse Fer 

(AAB18988.1). 

2.5.2 shRNA design and validation 

 shRNA sequences were obtained from Dharmacon Dha2 Sense (5’- GAT CCA ATG 

GAC TAC TCT CGA AAC TTC AAG AGA GTT TCG AGA GTA GTC CAT TTC TTT TTT 

GGA AA-3’) Dha2 Antisense (AGC TTT TCC AAA AAA GAA ATG GAC TAC TCT CGA 

AAC TCT CTT GAA GTT TCG AGA GTA GTC CAT TG) and Dha5 Sense (5’- GAT CCG 

CTA TCT GCT GAA TTA AAT CTT CAA GAG AGA TTT AAT TCA GCA GAT AGG ATT 

TTT TGG AAA-3’) Dha5 Anti-sense (AGC TTT TCC AAA AAA TCC TAT CTG CTG AAT 



 

49 

TAA ATC TCT CTT GAA GAT TTA ATT CAG CAG ATA GCG). These constructs were 

cloned into pSilencer 2.1 (ambion). These shRNA were subsequently cotransfected with 

srGAP2-EGFP into COS7 cells ((shRNA 1.5µg) and srGAP2-EGFP (.5µg)). Lysates were 

collected 48hrs. After transfection and level of knockdown was determined by western blot 

using rabbit anti-GFP (Molecular Probes). 

2.5.3 Constructs 

 All constructs were cloned into pCIG2 vector (Hand et al., 2005), which contains a 

(cDNA)-IRESEGFP under the control of a CMV-enhancer/chicken-β-actin promoter. 

srGAP2 (IMAGE clone# BC030457) was first mutagenized using Quickchange (Stratagene) 

to repair a point mutation at position 596 to avoid premature stop in transcription. srGAP2 

was then subcloned into pEGFP-N1 (Clontech). The entire srGAP2-EGFP cassette was 

then subcloned into pCIG2 replacing the IRES-EGFP resulting in pCIG2::srGAP2-EGFP. 

srGAP2 was also cloned into pNeuroD-EGFP vector. All subsequent constructs were 

cloned similarly. F-BAR (aa1-501), srGAP2ΔF-BAR (aa502-1045), srGAP2ΔFCH (aa121-1045). 

srGAP2R527L, srGAP2W765A, srGAP2ΔCterm, and srGAP2* (dha5 shRNA resistant, base pairs 

mutation T898C, A900G, and C904T) were generated by mutagenesis using Quickchange 

(Stratagene). F-BARΔ49 was generated by fusing amino acids (1-452) of human srGAP2 

(accession number NM_015326) to the c-terminus of clone BC112927. This clone is a 

partial human duplication of the F-BAR of srGAP2 present in Chromosome 1p12 and 

encoding only the first nine exons (out of twenty-two in the original full length human 

srGAP2 (Sassa and Polleux, unpublished results). The first nine exons present in the 1p12 

duplication encode for the F-BAR with the last 49 amino acids of the C-terminus are 

deleted, hence the name F-BARΔ49 due to a splicing defect (Sassa and Polleux, 

unpublished results). This splicing defect also results in the addition of seven additional 

amino acids to the deleted C-terminus that are not normally present in the F-BAR of 

srGAP2, as they arise from intronic sequence. 
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2.5.4 COS7 cell culture, transfections, staining and filopodia measurements 

 COS7 cells were cultured in DMEM + 10%FBS 2mM L-glutamine and 

penicillin/streptomycin. For transfections, cells were plated in 6 well dishes and 

lipofectamine 2000 (4µl) was mixed with 2µg of DNA in Opti-mem and added to cells for 

3hrs. After 3hrs, serum-free media was replaced with DMEM + 10%FBS and cells were 

cultured for 24hrs. After 24hrs, cells were trypsanized and replated on polyl-lysine coated 

coverslips and cultured for an additional 24hrs. Cells were then fixed using 4% 

paraformaldehyde. Cells were then washed 3 times in PBS, then blocked/permeablized in 

0.3% triton-X 100 in PBS + 5% BSA (PBS-T) for 20 minutes. Cells were then incubated 

with alexa-546 phalloidin (1:200) in PBS-T overnight. Finally, cells were then washed 3 

times in PBS-T and mounted. 

 To determine filopodia number, cells were imaged using LEICA TCS SL confocal 

microscope, 63x/1.4NA oil immersion objective. 2x zoomed images were taken of 

representative cells from each construct. Images were then imported to NIH ImageJ. Using 

the segmented line tool, a perimeter was drawn around the cells. The presence of filopodia 

was determined by counting the number of consecutive pixels on the line drawn around the 

cell perimeter and normalized by dividing the total number of filopodia by the cell perimeter 

(filopodia/microns).  For cytochalasin D treatments, COS7 cells were transfected with F-

BAR-EGFP and cultured for 48 hrs. Cells were then treated with 400 µM cytochalasin D for 

30 minutes. To observe the presence of F-actin, cells were fixed and stained with 

phalloidin. To observe dynamics, control, untreated cells were imaged for 10 minutes 

(picture taken every 10 seconds) and cytochalasin D treated cells were imaged for 27 

minutes (picture taken every minute).   

 For transferrin uptake assay, COS7 cells were serum starved for one hour at 4 

degrees in the presence of alexa-647 transferrin. Cells were then warmed to 37 degrees to 

allow uptake of transferrin and fixed and treated as described above. 
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2.5.5 Ex vivo Cortical electroporation and primary cultures 

 Mouse cortical progenitors were electroporated ex vivo at embryonic day (E) E15 as 

described (Hand et al., 2005). Briefly, cDNA constructs in overexpression experiments (1 

µg/µl) were injected into the lateral ventricle of each embryo and electroporated using an 

ECM 830 electroporator (BTX) with four 100 ms pulses separated by 100 ms intervals at 

25V. Following electroporation, cerebral cortices were dissected and enzymatically 

dissociated as described previously (Polleux and Ghosh, 2002).  

 1.25x105 cells were plated onto glass coverslips coated with poly-L-lysine and 

laminin and cultured in serum-free media (Basal Medium Eagle containing both B27 and 

N2 supplements, L-Glutamine and Penicillin/Streptomycin) and fixed in 4% 

paraformaldehyde for immunohistochemistry. For shRNA rescue experiments in 

dissociation a mixture (shRNA 1.5 µg/µl) and srGAP2-EGFP* (0.5 µg/µl) was injected into 

lateral ventricle. For slice cultures, embryonic brains were electroporated and dissected as 

described above. The brains were then embedded in 3% low temperature gelling agarose 

and 250 µm-thick vibratome sections were cut using a LEICA VT1000S vibratome and 

placed on poly-Lysine/ laminin coated transwell inserts and cultured organotypically using 

an air interface protocol (Polleux and Ghosh, 2002). shRNA expressing slices were 

cultured for 3 days in vitro and cDNA expressing sections were cultured for 5 days in vitro. 

2.5.6 Time lapse confocal microscopy of cortical sections 

 Using a Leica TCS-SL confocal microscope (mounted on a DM-IRE2 inverted 

microscope stand) and equipped with a X-Y motorized Märzhäuser stage, time-lapse 

confocal microscopy was performed by imaging multiple Z-stacks at pre-selected positions 

on a given set of electroporated slices as described previously (Hand et al, 2005). Slices 

were cultured on confocal inserts (Millipore, 5mm height) and imaged using a long distance 

20x/0.4 NA objective. For shRNA expressing sections, pictures were taken at a frequency 
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of 1 picture every 12 minutes for 4hrs. In the case of srGAP2 overexpression experiments, 

sections were imaged every 16 minutes for a maximum of 10hrs 24 minutes. 

2.5.7 Dissociated cortical neuron culture 

 Cultured neurons and brain sections were stained as described previously (Ghosh 

and Polleux 2002).  The following antibodies were used chicken anti-GFP (Upstate), mouse 

anti-Tuj1 (β-III tubulin) (Sigma), mouse anti-nestin (BD Bioscience), mouse anti-MAP2 (a/b 

isoforms; AP20 Sigma), rabbit anti-srGAP2 (gift of Gong Ju, Shanghai JiaoTong University; 

(Yao et al., 2008)), and F-actin was labeled using alexa-546 phalloidin (Sigma). All images 

were captured using a LEICA TCS SL confocal microscope. For staining of endogenous 

srGAP2 in acutely dissociated neurons, cells were fixed in 4% paraformaldehyde for 30 

minutes. The cells were then washed with PBS three times. They were then permeabilized 

with .05% triton-x 100 for 20 minutes and washed again in PBS. They were then incubated 

in blocking buffer (5% bovine serum albumin (BSA) in PBS) for 30 minutes and incubated 

with srGAP2-A2 antibody (1:200 in .2% BSA in PBS) overnight. For F-actin staining, 

phalloidin was added at 1:200. Cells were subsequently washed in 0.2% BSA in PBS and 

the appropriate Alexaconjugated secondary antibodies (Molecular Probes 1:2000) for 30 

minutes. Cells were then washed in PBS and slides were mounted. 

2.5.8 Quantification of neuron migration and neurite branching 

 For shRNA treated slices, the extent of cell migration was analyzed as described 

previously (Hand et al., 2005). In cDNA expressing sections, migration was assayed to 

different ways: (1) high magnification pictures were taken of the cortical plate and IZ and 

we quantified the ratio of cells/µm2 CP/ cells/µm2 in the IZ; (2) For branching 

measurements, high magnification images were obtained of neurons migrating in layer 5/6 

in various conditions. Number of branches protruding from the leading process were 

counted. For cell speed measurements in shRNA treated slices, nuclei position was tracked 

manually during each frame using NIH ImageJ. Cell speed was calculated using Microsoft 
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Excel and speed was reported in micron/hr. Neurite branching was quantified using NIH 

ImageJ. 

2.5.9 In situ hybridization 

 In situ hybridization was performed as previously described (Mattar et al., 2004). 

2.5.10 Liposome preparation 

 Folch Fraction I Brain Lipid Extract from bovine brain (B1502) in chloroform was 

obtained from Sigma-Aldrich (St. Louis, MO) and used without further purification. 10 mg of 

total lipid were added to a glass vial and dried at room temperature under streaming argon 

while vortexing in order to form a thin lipid film around the tube surface. The lipids were re-

dissolved in absolute hexane, dried under argon again while vortexing, and then dessicated 

in vacuo for >2 hours to remove the last traces of chloroform. The dried lipid film was then 

pre-hydrated at RT with water-saturated N2 for 2 minutes until the film became transparent. 

Buffer (50 mM KCl/10 mM HEPES/1 mM DTT, pH 7.4) was added to the hydrated lipid film 

to a final lipid concentration of 2 mg/ml. The vial was sealed under argon and incubated at 

RT for 2 h, and then gently rocked overnight to disperse the lipids into solution. 

2.5.11 Electron microscopy 

 Continuous carbon-coated Cu-grids were glow discharged in room air according to 

standard protocols. 4 µl of sample were added and allowed to sit for ~10 seconds before 

being blotted onto filter paper. The grid surface was then immediately stained with freshly 

prepared (<15 minutes) 0.8% uranyl formate. Images were acquired using a Philips Tecnai 

F12 microscope operating at 120 kV using nominal magnifications of 29-50,000x, and 

defocus values of –15,000 to –22,000 Å. Images were recorded on a Gatan 1K CCD. 

Image analyses, including tubule diameter measurements, were performed with NIH 

ImageJ. 
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2.6 FIGURES AND LEGENDS 

 
 

Figure 2.1. srGAP2 is expressed in neuronal progenitors and postmitotic neurons 
and localizes to sites of membrane protrusion 
(A) In situ hybridization for srGAP2 in developing cortex at E13, E15, and P1. (B) Domain 
organization of srGAP2, which contains an F-BAR domain, a RhoGAP, and a SH3 domain 
from N- to C-terminal ends (1–1045 amino acids, predicted molecular weight of 118 kDa). 
The red bar indicates the localization of the antigen (A2; amino acids 873–890) used to 
affinity purify the srGAP2-specific polyclonal antibody to the C terminus of srGAP2. (C) 
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Western blot for srGAP2 protein levels during cortical development at the indicated time 
points (E15, P1, P15, and Adult) obtained by SDS-PAGE and immunoblotting with A2-
rabbit polyclonal antibody. (D–J) Immunofluorescence staining of srGAP2 protein 
expression on fixed coronal sections of E15 mouse cortex. srGAP2 protein colocalizes 
(arrowheads) with MAP2 (postmitotic neuron marker) in the CP (D–F) and also colocalizes 
with Nestin (arrowheads) (neuronal precursor marker) in the VZ (G–I). (K–P) 
Immunofluorescence staining of srGAP2 protein in early dissociated cortical neuron 
cultures (E15 + 24 hr in vitro [hiv]). srGAP2 protein is found close to the plasma membrane 
of immature cortical neurons (arrow in K–M) and to F-actin-rich filopodia (stained with 
Alexa546-phalloidin; arrowheads in K–P). 
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Figure 2.2 F-BAR-induced filopodia required F-Actin for their dynamic formation but 
not for their structural maintenance 
(A–C) COS7 cell expressing the F-BAR-EGFP fusion protein not treated with cytochalasin 
D (control). Note the cortical localization of the F-BAR domain and the numerous F-actin-
rich filopodia (phalloidin in B and C). (D–F) COS7 cell expressing the F-BAR-EGFP fusion 
protein incubated with 400 mM cytochalasin D for 30 min. Note that the complete loss of F-
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actin (phalloidin) (E) had no effect on the localization of the F-BAR domain or on the 
structure of the F-BAR-mediated protrusions. (G–J) Time series showing the dynamics of 
F-BAR-EGFP-induced filopodia in COS7 cells. Time 0, 5, and 10 min are pseudocolored in 
red, green, and blue, respectively. Note that there is little colocalization of filopodia at the 
cell periphery (J). This is in stark contrast to COS7 cells expressing F-BAR-EGFP treated 
with cytochalasin D (30 min) (K–N), where the protrusions remain static and do not grow or 
retract for the same period of time shown in control cells. (O) Schema depicting tubulation 
assay in (P). (P) F-BAR domain of srGAP2 added to preformed liposomes. Note the inward 
dimpling or ‘‘scalloping’’ of the liposome surface. (Q) Schema depicting tubulation assay in 
(R) where F-BAR domain of srGAP2 was added to liposomes after extrusion. This results in 
a fraction of the F-BAR domain resident inside the liposome. Note the formation of tubule 
protrusion from the liposome. (R) High magnification of liposome/F-BAR mixture after 
sonication. Note the absence of striations or an obvious protein coat on the lipid tubule, a 
hallmark of canonical F-BAR tubulation. These tubules are 83 nm ± 15 nm (average ± SD, 
n = 38) after being partially flattened by the negative staining procedure. 
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Figure 2.3. Knockdown of srGAP2 in cortical neurons reduces axonal and dendritic 
branching 
(A) Western blot probed with anti-GFP and anti-actin antibodies from COS7 cells 
cotransfected with either control shRNA plus srGAP2-EGFP (lane 1), srGAP2 shRNA plus 
srGAP2-EGFP (Dha2, lane 2), or srGAP2 shRNA plus srGAP2-EGFP (Dha5, lane3). (B) 
Western blot probed with anti-GFP and anti-actin antibodies from COS7 cells cotransfected 
with either control shRNA plus srGAP2-EGFP (lane 1), srGAP2 shRNA plus srGAP2-EGFP 
(lane 2), a mutated form of srGAP2*-EGFP (resistant to srGAP2 shRNA) plus control 
shRNA (lane 3), or srGAP2*-EGFP plus srGAP2 shRNA (lane 4). srGAP2 shRNA 
significantly knocks down srGAP2 expression compared to control shRNA, which can be 
rescued by expression of srGAP2*-EGFP (compare lanes 3 and 4). (C–E and G–I) E15 
dissociated cortical neurons were cultured for 5 days after ex vivo cortical electroporation 
(EVCE) with control shRNA, srGAP2 shRNA, or srGAP2 shRNA + srGAP2*-EGFP. Control 
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shRNA-transfected neurons display frequent primary branches from the axon (arrowheads 
in B) and the primary dendrite (arrowheads in F). Both effects were markedly reduced in 
srGAP2 shRNA-transfected neurons (D and H) and rescued by cotransfection of srGAP2 
shRNA with srGAP2*-EGFP (E and I).  (F) Quantification of the number of branches from 
the longest neurite (axon) as shown in (C)–(E). (J) Quantification of the number of primary 
dendritic branches as shown in (G)–(I). Control shRNA, n = 42 cells; srGAP2 shRNA, n = 
95; srGAP2*-EGFP + srGAP2 shRNA, n = 39. Cells were taken from three independent 
experiments and analyzed blind to the treatment. Mann-Whitney Test: *p < 0.05; **p < 0.01; 
***p < 0.001. 
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Figure 2.4. srGAP2 promotes filopodia formation and neurite outgrowth in an F-BAR-
dependent manner 
(A–E) Stage 1 cortical neurons expressing various srGAP2 constructs. All cells are stained 
with neuron-specific βIII-tubulin (blue) to reveal presence of microtubules (see also Figure 
S7) and phalloidin (red) to visualize F-actin. (F) Quantification of filopodia normalized per 
cell perimeter in all conditions. EGFP, n = 20 cells; srGAP2-EGFP, n = 21; srGAP2ΔF-BAR-
EGFP, n = 20; F-BAR-EGFP, n = 20; F-BARΔ49-EGFP, n = 20. Cells were taken from three 
independent experiments and analyzed blind to the treatment. (G–K) Stage 2 cortical 
neurons expressing various srGAP2 constructs. All cells are stained with βIII-tubulin (blue) 
and phalloidin (red) as in panels (A)–(F). Arrows point to primary neurites. (L) 
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Quantification of neurite number normalized per cell perimeter in all conditions and primary 
branch number per neurite. Note srGAP2 and F-BAR are potent inducers of neurite 
outgrowth while srGAP2ΔF-BAR and F-BARΔ49 are not. Mann-Whitney test: *p < 0.05; **p < 
0.01; ***p < 0.001. Green stars indicates comparison to EGFP and blue stars indicates 
comparison to srGAP2-EGFP. 
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Figure 2.5. Knockdown of srGAP2 promotes neuronal migration and reduces LP 
branching 
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(A) E15 cortical slices cultured for 3 days after electroporation with EGFP + control shRNA. 
Slices were stained with anti-Nestin antibody revealing radial glial scaffold and Draq5 to 
illustrate cytoarchitecture. (B) E15 cortical slices cultured for 3 days after electroporation 
with EGFP + Dha2 (B, top panel) or Dha5 (B, lower panel). Slices were stained with anti-
Nestin antibody, revealing radial glial scaffold and Draq5 to illustrate cytoarchitecture. (C 
and D) Quantification of cell distribution for slices expressing control shRNA (blue bars) and 
two independent srGAP2 shRNA (red in C and D for dha2 and dha5, respectively). (E–L) 
E15 cortical slices cultured for 2 days ex vivo after electroporation with nuclear EGFP 
(3NLS) along with control shRNA (E–H) or srGAP2 shRNA (I–L) were imaged using time-
lapse confocal microscopy. Neurons transfected with srGAP2 shRNA undergo faster 
translocation within 4 hr (I–L; and no colocalization in L) than control shRNA-transfected 
neurons. (M) Quantification of effects of srGAP2 knockdown on cell speed. Neurons with 
reduced level of srGAP2 (shRNA) migrated approximately 25% faster (6.91 mm/hr 
compared to 5.59 mm/hr) compared to control shRNA-transfected neurons. Control shRNA, 
n = 95 cells; srGAP2 shRNA, n = 84. Cells were taken from three independent 
experiments. Mann-Whitney test: *p < 0.05; **p < 0.01; ***p < 0.001. (N–O) High 
magnification images (N) and reconstructions (O) of control shRNA (left panel) or srGAP2 
shRNA (right panel) expressing neurons in layers 5/6. Arrowheads point to LP tips. (P) 
Quantification of the LP branch number in control shRNA or srGAP2 shRNA expressing 
neurons. Control shRNA, n = 19 cells; srGAP2 shRNA, n = 17 cells. Cells were taken from 
three independent experiments. Mann-Whitney test: *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 2.6. srGAP2-mediated inhibition of migration requires F-BAR-mediated 
membrane deformation 
(A–T) E15 cortical slices cultured for 5 days after coelectroporation of monomeric red 
fluorescence protein (mRFP for cytoplasmic filing) together with EGFP (A–D), full-length 
srGAP2-EGFP (E–H), srGAP2ΔF-BAR-EGFP (I–L), F-BAR-EGFP (M–P), and F-BARΔ49-
EGFP fusion proteins (Q–T). (U) Quantification of CP/IZ ratio. EGFP, n = 13 slices; 
srGAP2-EGFP, n = 14 slices; srGAP2ΔF-BAR-EGFP, n = 8 slices; F-BAR-EGFP, n = 10 
slices; F-BARΔ49-EGFP, n = 6 slice. Slices were taken from four different experiments and 
CP/IZ ratio was analyzed using Mann-Whitney test: *p < 0.05; **p < 0.01; ***p < 0.001. 
Green stars indicate comparison to EGFP and blue stars indicate comparison to srGAP2-
EGFP. (V) Quantification of percentage of cells with multipolar morphology in EGFP, 
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srGAP2-EGFP, or F-BAR-EGFP transfected slices. Multipolar cells were defined as cells 
possessing three or more processes. EGFP, n = 66 cells; srGAP2-EGFP, n = 42; F-BAR-
EGFP, n = 57. Cells were taken from three different experiments and analyzed using 
Fisher’s exact test: *p < 0.05; **p < 0.01; ***p < 0.001. (W–Y) Individual frames using time-
lapse confocal microscopy of E15 cortical slices cultured for 3 days after electroporation 
with EGFP, srGAP2-EGFP, or F-BAR-EGFP (cotransfected with Venus plasmid). Arrows 
indicate LP and arrowheads indicate the cell body. (Z) Quantification of LP branch number 
from cells expressing EGFP, srGAP2-EGFP, or F-BAR-EGFP in layer 5/6. EGFP, n = 17 
cells; srGAP2-EGFP, n = 21 cells; F-BAR-EGFP, n = 9 cells. Cells were taken from three 
independent slices. Mann-Whitney test: *p < 0.05; **p < 0.01; ***p < 0.001. Green stars 
indicate comparison to EGFP and blue stars indicate comparison to srGAP2-EGFP. 
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Figure 2.7. Model for srGAP2-regulated membrane protrusion in neuronal migration 
(A–F) Representative images of optically isolated neurons translocating radially through 
layer 5/6 following electroporation at E15 (+5 DIV) with indicated srGAP2 constructs 
containing an F-BAR domain. (G and H) Hypothetical model of the molecular mechanisms 
underlying srGAP2 function in membrane protrusion during neuronal migration and 
morphogenesis (G). Summary of srGAP2 effects on neuronal migration and 
morphogenesis during cortical development (H). See text for details. 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 
 

Figure 2.S1. srGAP2 induces filopodia formation in a F-BAR-dependent manner in 
COS7 cells 
(A-C) COS7 cell expressing EGFP counter stained with phalloidin for F-actin (red). 
(D-F) COS7 cell expressing srGAP2-EGFP fusion protein for F-actin-rich filopodia 
(arrowheads in D-F). (G-I) Expression of srGAP2ΔF-BAR-EGFP fusion protein does not 
promote filopodia formation. (J-L) Expression of the F-BAR-EGFP fusion protein is 
sufficient to promote filopodia formation in COS7 cells. Note the significant increase in 
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membrane targeting to the extreme periphery of the cell (J-L) and induces the formation of 
long F-actin rich protrusions (J-L) like full-length srGAP2. Thus expression of the F-BAR 
domain of srGAP2 is sufficient to induce filopodia. Moreover this activity is not simply 
dependent on localization to the plasma membrane since expression F-BARΔ49-EGFP (M-
O), which localized nicely to the plasma membrane, did not cause a significant increase in 
filopodia. (P) Quantification of the effects described in A-O. (EGFP, n=41 cells; srGAP2-
EGFP, n=52 cells; srGAP2ΔF-BAR-EGFP, n=21 cells; F-BAR-EGFP, n=21 cells; F-BARΔ49-
EGFP, n= 15 cells. Cells were taken from 3 independent experiments and analyzed using 
Mann-Whitney Test * p<0.05, ** p<0.01, *** p<0.001. Green color indicates comparison to 
EGFP and blue color indicates comparison to srGAP2-EGFP and orange indicated 
comparison to F-BAR-EGFP). 
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Figure 2.S2. Expression of the F-BAR domain of srGAP2 in COS7 cells does not 
inhibit endocytosis 
(A-D) COS7 cells expressing the F-BAR-EGFP fusion protein were incubated with Alexa 
647-conjugated transferrin then fixed and permeabilized and stained with Alexa546-
phalloidin to label Factin (B). This transferrin-uptake assay reveals no significant difference 
in the level of endocytosis between F-BAR-EGFP-expressing cells (white arrowheads in D) 
and untransfected cells (blue arrowheads in D). (E-H) COS7 cells expressing 
Dynamin2K44A-EGFP (dominant negative) were used as a positive control for inhibition of 
endocytosis as these cells were unable to endocytose transferrin (white arrowheads in H). 
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Figure 2.S3. Structural alignment of the predicted F-BAR domain of srGAP2 
(A) Sequence alignment of the srGAP family of molecules from various species. Residues 
labeled in white on black background are identical. Red residues represent groups of 
conserved amino acids.  srGAP2-specific insertion is boxed in red. Predicted alpha-helices 
are depicted as red bars (secondary structure prediction was obtained using hhpred 
(Soding et al., 2005) (http://toolkit.tuebingen.mpg.de/hhpred) and Bioinfobank metaserver 
(http://meta.bioinfo.pl). The FBAR domain is defined by the alpha helices 2-4. However, 
three additional alpha-helices are predicted C-terminal of the ‘minimal’ F-BAR domain and 
precede the GAP domain. (B) Structural alignment of mouse srGAP2 with representative 
mouse F-BAR domains was performed using PromalS3D (Pei et al., 2008) 
(http://prodata.swmed.edu/promals3d/promals3d.php) and hhpred. Residues colored white 
on black background are identical between sequences. Red residues represent conserved 
groups of amino acids. Red stars depict amino acids shown to reside at the dimer interface. 
Green boxes represent FCH domain as defined by SMART (http://smart.emblheidelberg. 
de/). Purple boxes represent predicted coiled coil. Red box identifies srGAP specific 
insertion. (C) Top panel: purified full-length srGAP2 protein (aa 1-786 containing F-BAR, 
GAP and SH3 domains) (300 µg) was loaded onto a Superose 6 column and separated by 
size exclusion chromatography. Lower panel: expanded view of the light scattering curve 
(red) in brackets, with the predicted molar mass depicted in cyan. The molecular weight of 
srGAP2 in solution was determined to be 175.8 kDa by fitting the molar mass curve to a 
linear function using Astra software. 
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Figure 2.S4. Localization of srGAP2-EGFP, F-BAR-EGFP and F-BARΔ49-EGFP fusion 
proteins in COS7 cells (A-D’) and stage 1 E15 cortical neurons (E-H’; see text for 
detail). Note that in both cell types, the F-BAR-EGFP and the F-BARΔ49-EGFP are enriched 
at the plasma membrane (red arrows). (I) Histogram of the optical density of EGFP signal 
for the four constructs examined as a function of distance from the edge of Stage 1 cortical 
neurons. The optical density for each EGFP fusion protein is normalized to the signal 
obtained for EGFP only, in order to normalize for variation of cytoplasmic volume. 
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Figure 2.S5. Proper expression of srGAP2-EGFP, F-BAR-EGFP and F-BARΔ49-EGFP 
fusion proteins in COS7 cells 
COS7 cells were transfected with the indicated constructs and lyzed at 48h after 
transfection following a dual lysis procedure: co-immunoprecipitation buffer was made up of 
50mM Tris-Cl (pH 7.4), 15mM EGTA, 100mM NaCl, 0.1% Triton-X, and then protease 
inhibitor, DTT (1mM), and PMSF (1mM). The insoluble portion of that (including the triton-
insoluble protein fraction associated with membrane) was then subjected to a modified 
RIPA buffer: 50 mM Tris pH 7.4, 0.5% Na Deoxycholate, 0.2% SDS, 1 mM EDTA, 150mM 
NaCl, plus PMSF (1mM) and protease inhibitors. Proteins from the modified RIPA buffer 
soluble fraction were then separated by SDS-PAGE and blots were probed with anti-EGFP 
antibody (upper blot) or anti-actin antibody (lower blot). Note that each of these three 
constructs are expressed as a band at the expected molecular weight (indicated below the 
actin blot) although on this type of pre-casted gradient gels, proteins tend to migrate at a 
higher apparent MW. 
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Figure 2.S6. Control FBP17 F-BAR tubulates liposome 
(A) Normal morphology of control liposomes following sonication but without incubation 
with any recombinant protein. (B) The recombinant purified F-BAR domain of FBP17 
incubated with preformed liposomes induces long tubulation (arrowheads). 
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Figure 2.S7. Neurites induced by different srGAP2 constructs contain microtubules 
Compilation of all the images shown for Stage 2 E15 cortical neurons in Figure 4 and 
Suppl. Figure 12 showing the βIII-tubulin signal (left panel) and the corresponding merged 
image with EGFP. The arrows indicate the presence of microtubules in all the neurites that 
were counted as ‘primary’ neurites emerging from the cell body. 



 

76 

 

 
 
Figure 2.S8. Definition of layers in slices following dorsal electroporation and 
organotypic culture 
(A-D) E15 cortical slices cultured for 5 days after electroporation with EGFP were fixed and 
stained with CTIP2 (layer 5/6 marker) as well as Draq 5 in order to reveal the 
cytoarchitecture. We use this laminar definition throughout the paper: dense Cortical Plate 
(dCP) defined as the densely packed, most immature neurons that migrated to the top of 
the cortical plate below the cell sparse marginal zone (MZ) and above CTIP2+ layer 5 
neurons. The intermediate zone is defined by the low packing density visualized by Draq5 
located under layer 5/6 and which contains neurons initiating radial migration. 
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Figure 2.S9. Expression of srGAP2 in post mitotic neurons inhibits radial migration 
(A) In situ hybridization of NeuroD mRNA in the developing neocortex of an E15 mouse 
embryo. NeuroD is expressed at the SVZ/IZ border but not in the VZ. Schematic 
representation of the construct used to express EGFP-fusion proteins under the control of 
the 2.2kB promoter region of NeuroD, which drives cDNA expression exclusively in post-
mitotic neurons. (B-I) E15 cortical slice cultured for 5 days after transfection with pNeuroD-
EGFP or pNeuroD-srGAP2-EGFP. EGFP expressing neurons migrate nicely to the cortical 
plate (B-E). In contrast, srGAP2-EGFP expressing neurons migrate poorly to the cortical 
plate (F-I). Slices were stained with anti-nestin to reveal the radial glial scaffold and Draq5 
to illustrate the cytoarchitecture. (J) Quantification of B-G showing that a greater proportion 
of neurons reach the cortical plate in control (EGFP transfected) conditions than in srGAP2 
transfected neurons (note decrease proportion of cells in CP and increase proportion in IZ 
(denoted by arrows) when compared to control). (EGFP n= 7 slices and srGAP2 n= 5 
slice). 
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Figure 2.S10. 2.2kD NeuroD promoter drives gene expression in non-radial glial 
intermediate progenitors 24 hours after electroporation 
(A-D) E15 cortices were electroporated chicken-β-actin driven Venus construct sliced and 
cultured for 24 hrs. After 24 hrs venus positive cells were also positive for anti-nestin (radial 
glia marker, green arrow heads in A, red arrowheads in B and white arrow heads in D). 
Also note the long radial glial like morphology of cells. (F-H) In contrast NeuroD drive EGFP 
expression in non-radial glial intermediate progenitors that are Nestin-negative, supporting 
the idea that the NeuroD promoter drives expression in intermediate progenitors and early 
postmitotic neurons in the SVZ/IZ but not in radial glial progenitors in the VZ. 
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Figure 2.S11. The RhoGAP domain of srGAP2 is specific for Rac1 
(A) GST-purification of the wild-type GAP and GAPR527L forms of the RhoGAP domain of 
srGAP2. Coumassie-stained gel showing the yield recombinant proteins obtained before 
and after induction (lanes 1-2 and 5-6) in bacteria as well as before and after glutathione-
elution of GST-GAP (lanes 3-4) and GST-GAPR527L (lanes 7-8). The boxed areas 
correspond to the purified recombinant proteins used for the subsequent GTP hydrolysis 
assays in panel B-C. (B) Fluorescent-based GTP hydrolysis assay as a function of time 
(seconds) for 2 µM purified Rac1, Cdc42, RhoA in the presence or absence of 100 nM of 
the recombinant GAP-domain of srGAP2. Note that the GAP domain of srGAP2 only 
accelerates the rate of GTP hydrolysis of Rac1 but not Cdc42 or RhoA. (C) Same as B 
except that 2 µM purified Rac1 is incubated alone or in the presence of 100 nM of 
recombinant wild-type GAP domain or GAPR527L. Note that this point mutation abolishes the 
accelerating effect of the GAP domain on Rac1 GTP hydrolysis. (D) GST pulldown of 
srGAP2-EGFP from COS7 cells using constitutively active forms of Rac1 (Rac1Q61L) or 
Cdc42 (Cdc42Q61L). GST-RacQ61L pulls down significantly higher amounts of srGAP2 
compared to GST-Cdc42Q61L confirming that this is a Rac1-specific GAP. 
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Figure 2.S12. The GAP and SH3 domains participate in srGAP2’s ability to promote 
filopodia formation in neurons 
(A-E) Stage 1 cortical neurons expressing various srGAP2 constructs. All cells are stained 
with β-III tubulin to indicate that it is a neuron and phalloidin to visualize F-actin. 
Control stage 1 neurons (EGFP (A)) normally display filopodia at cell periphery. However 
expression of srGAP2-EGFP (B) significantly increased the number of filopodia. Mutation of 
the GAP domain (srGAP2R527L-EGFP (B)) did not appear to affect the ability of srGAP2 to 
make filopodia but did appear to increase lamellapodia formation. The SH3 domain mutant 
(srGAP2W765A-EGFP (D)) completely abrogated srGAPs ability to induce filopodia formation 
while deletion of the c-terminus (E) (including the SH3 domain, srGAP2ΔCterm-EGFP) was 
able to induce filopodia. (F) Quantification of A-E. (EGFP n= 20 cells; srGAP2-EGFP n= 21 
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cells; srGAP2R527L-EGFP n= 21 cells; srGAP2W765A-EGFP n= 21 cells; srGAP2ΔCterm-EGFP 
n=20 cells. Cells were taken from 3 different experiments and analyzed using Mann-
Whitney Test * p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to EGFP 
and blue color indicates comparison to srGAP2-EGFP). (G-K) Stage 2 cortical neurons 
expressing various srGAP2 constructs. All cells are stained with β-III tubulin to indicate that 
it is a neuron and phalloidin to visualize F-actin. As shown previously expression of srGAP2 
(H) caused increase neurites initiation and branching compared to EGFP (G) expressing 
neurons at stage 2. Expression of srGAP2R527L-EGFP (I); srGAP2W765A-EGFP (J); and 
srGAP2ΔCterm-EGFP (K) all caused increased neurite initiation. While, srGAP2ΔCterm-EGFP 
expression caused significant increases in neurite branching (K), srGAP2W765A-EGFP 
expression (I) had no effect. Expression of srGAP2R527L-EGFP did cause an increase in 
neurite branching, but not as significant as srGAP2. (L) Quantification of G-K. (EGFP n= 20 
cells; srGAP2-EGFP n= 21 cells; srGAP2R527L-EGFP n= 22 cells; srGAP2W765A-EGFP n= 21 
cells; srGAP2ΔCterm-EGFP n=23 cells. Cells were taken from 3 independent experiments 
and analyzed using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001). 
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Figure 2.S13. srGAP2 expressing cells accumulate in Stage 2 
Analysis of the percentage of cells that accumulate at Stage 2 after transfection of various 
srGAP2 constructs. (n>80 neurons in each conditions). 
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Figure 2.S14. The GAP and SH3 domains participate in srGAP2’s ability to inhibit 
migration 
(A-T) E15 cortical slices cultured for 5 days after electroporation with various srGAP2 
constructs and mRFP. Slices were stained with Draq5 in order to demonstrate 
cytoarchitecture. As shown previously srGAP2 expressing neurons migrate very poorly to 
the cortical plate (E-H) Impairment of the GAP activity of srGAP2 (srGAP2R527L) inhibits 
migration albeit not to the degree of full-length srGAP2 (I-L). Moreover, mutation of the SH3 
domain (srGAP2W765A) (M-P) had no effect on the ability of neurons to migrate, in that it 
does not inhibit migration like full-length srGAP2. However, expression of the c-terminal 
deletion of srGAP2 (srGAP2ΔCterm-EGFP) does impair migration (Q-T).  (U) Quantification of 
effects displayed in A-L. (EGFP, n= 13 slices; srGAP2-EGFP n= 14 slices;  srGAP2R527L-
EGFP n= 11 slices; srGAP2W765A-EGFP n= 8 slices; srGAP2ΔCterm-EGFP n= 6 slices. Slices 
were taken from 4 independent experiments and analyzed using Mann-Whitney Test * 
p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to EGFP and blue color 
indicates comparison to srGAP2-EGFP). (V) Quantification of percentage of cells with 
multipolar morphology in EGFP, srGAP2, or F-BAR transfected slices. Multipolar cells were 
defined as cells possessing > 3 processes. (EGFP n= 66 cells; srGAP2-EGFP n= 42 cells; 
srGAP2R527L-EGFP n= 47 cells; srGAP2W765A-EGFP n= 52 cells; srGAP2ΔCterm-EGFP n= 50 
cells. Cells were taken from 3 independent experiments and analyzed using Mann-Whitney 
Test * p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to EGFP and blue 
color indicates comparison to srGAP2-EGFP). (W) Time-series of E15 cortical slices 
cultured for 3 days after electroporation with srGAP2W765A-EGFP (coelectroporated with 
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venus plasmid). These neurons showed a unipolar morphology with a single unbranched  
leading process (red arrowhead) and translocated very efficiently (green arrowhead). (X) 
Quantification of leading process branching from cells expressing EGFP, srGAP2-EGFP, 
srGAP2R527L-EGFP, srGAP2W765A-EGFP, or srGAP2ΔCterm-EGFP in layer 5/6. (EGFP n= 17 
cells; srGAP2-EGFP n= 21 cells; srGAP2R527L-EGFP n= 18 cells; srGAP2W765A-EGFP n= 26 
cells; srGAP2ΔCterm-EGFP n= 18 cells. Cells were taken from 3 independent experiments 
and analyzed using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001. Green color 
indicates comparison to EGFP and blue color indicates comparison to srGAP2-EGFP). 
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CHAPTER 3 

The F-BAR domains from srGAP1, srGAP2, and srGAP3 differentially regulate 
membrane deformation1 

 
 
3.1 INTRODUCTION 

 The plasma membrane and actin cytoskeleton work in concert to create, maintain, 

and modify cell shape (Raucher et al., 2000; Sheetz and Dai, 1996). The coordination of 

plasma membrane deformation and actin polymerization is critical for cellular processes 

including chemotaxis, endocytosis, polarity and cytokinesis (Ford et al., 2002; Frost et al., 

2007; Han et al., 2006; Janetopoulis et al., 2005; Martin-Belmont et al., 2007; Vallis et al., 

1999). The actin cytoskeleton can be linked to the plasma membrane through a diverse 

array of actin-binding proteins that interact directly with phosphoinositides, frequently 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), present in the inner leaflet of the plasma 

membrane, such as the Wiscott Aldrich Syndrome Protein (WASP)-family (Miki et al., 1996; 

Oikawa et al., 2004), Actin Depolymerizing Factor (ADF)/cofilins (Zhao et al., 2010), and 

the small Rho-like GTPases (Yoshida et al., 2009). Alternatively, this link to the actin 

cytoskeleton can occur through scaffolding proteins that contain specific phospholipid-

binding motifs, such as Pleckstrin Homology (PH) domains found in proteins like 

Phospholipase C (PLC), Dynamin (Flesch et al., 2005; Harlan et al., 2004; Vallis et al., 

                                                
1 Jaeda Coutinho-Budd, Vladimir Ghukasyan, Mark J. Zylka, and Franck Polleux (2012) The F-BAR 
domains from srGAP1, srGAP2, and srGAP3 differentially regulate membrane deformation. J Cell 
Sci, In press. 
 According to the Journal of Cell Science’s rights and permissions policy, “authors may 
reproduce the article, in whole or in part, in any printed book (including a thesis) of which they are 
author, provided the original article is properly and fully attributed.” My contribution to this work 
includes direct involvement in all figures, with the exception of supplemental Figure 4, which was put 
together by Franck Polleux.  Vladimir Ghukasyan performed the FRAP imaging and data analysis in 
Figure 3.4. 
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1999), or Bin/Amphiphysin/Rvs (BAR) domain-containing proteins (reviewed in Itoh and De 

Camilli, 2006; Tsujita et al., 2006). Over the past decade, emerging evidence suggests that 

in many instances F-Actin dynamics must be coupled with the function of membrane-

deforming proteins. This coupling plays an instructive role in the localization and the type of 

membrane deformations observed in cells, such as lamellipodia and filopodia protrusions 

during endocytosis or phagocytosis (Doherty and McMahon, 2008; Itoh and De Camilli, 

2006; Martin-Belmont et al., 2007).  

 One of the largest families of membrane-deforming proteins is the BAR proteins 

superfamily. Proteins of the BAR superfamily are recognized for their ability to sense and/or 

generate membrane deformation (Doherty and McMahon, 2008). BAR domains are 

membrane-binding modules, consisting of a series of three to five alpha-helices, that form a 

large dimerization interface to create banana-shaped quaternary structures.  These 

homodimeric BAR-domains bind cellular membranes through electrostatic charge 

interaction between their positively-charged amino acids (arginine and lysine) and 

negatively charged phospholipids, such as PI(4,5)P2 and phosphatidylserine (PS) 

(Saarikangas et al., 2009). BAR domain-containing proteins often contain multiple other 

domains, including the actin-binding domain WH2, GTPase activing protein (GAP) and 

guanine nucleotide exchange factor (GEF) domains, and src homology 3 (SH3) domains, 

lending to the interplay between cellular membranes and the actin cytoskeleton. The BAR 

superfamily has been segregated into subfamilies, based on structural and functional data 

(Itoh and De Camilli, 2006). N-BAR domains, such as those found in Amphiphysin and 

Endophilin, contain a N-terminal amphipathic helix that inserts into the lipid bilayer, aiding in 

their membrane-deforming properties (Masuda et al., 2006; Peter et al., 2004). BAR 

domains induce membrane invaginations, and function in endocytosis. F-BAR domains 

were recognized more recently through secondary structure prediction of the congruence of 

a Fes-CIP4 Homology (FCH) domain and a coiled-coil domain in its C-terminal (Henne et 
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al., 2007; Itoh et al., 2005; Shimada et al., 2007; Tsujita et al., 2006). Recently, several 

structures of F-BAR domains were solved, revealing an elongated dimer with more shallow 

curvature than the BAR domains (Shimada et al., 2007; Wang et al., 2009; Yoshida et al., 

2009). Like BAR proteins, F-BAR domain-containing proteins, such as Formin Binding 

Protein 17 (FBP17) and FCH only 1 and 2 (FCHo1/2) induce membrane invaginations and 

play a role in the endocytic process (reviewed in Doherty and McMahon, 2008). A third 

class called Inverse BAR (I-BAR) domain-containing proteins such as Insulin Receptor 

tyrosine kinase substrate p53 (IRSp53) and Missing-in-Metastasis (MIM) induce membrane 

protrusions instead of invaginations (Mattila et al., 2007; Suetsugu et al., 2006; Yamagishi 

et al., 2004). However, this simple structure/function dichotomy, that BAR/N-BAR/F-BAR 

domains induce membrane invagination and tubulation, while I-BAR domain induce 

filopodial protrusions, has been recently challenged by results showing that the predicted F-

BAR domain of slit-robo GTPase Activation Protein 2 (srGAP2) (Guerrier et al., 2009) and 

syndapins (Dharmalingam et al., 2009) can induce filopodia-like membrane protrusion and, 

thereby, regulate neuronal morphogenesis. 

 srGAP2 is a member of the srGAP family of proteins, which consists of three other 

members: srGAP1, srGAP3 (WRP/Megap), and ArhGAP4 (which has been renamed 

srGAP4 based on its domain organization and homology with srGAP1-3; MGI:2159577). 

srGAP proteins all contain a predicted N-terminal F-BAR domain, a central Rho-GAP 

domain, and a C-terminal SH3 domain (Carlson et al., 2011; Wong et al., 2001). The family 

was named based on the fact that the C-terminal SH3 domain binds the intracellular 

domain of the Roundabout receptor (Robo), the receptor for the axon guidance cue, Slit 

(Wong et al., 2001). Although each family member contains a GAP domain, there are 

differences in GTPase hydrolysis activity between the proteins. The RhoGAP domain of 

srGAP1 has been shown to promote GTP hydrolysis of cdc42 and RhoA, depending on the 

concentration of Slit1 (Wong et al., 2001), while the GAP domains of srGAP2 and srGAP3 
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are both specific for Rac1 (Guerrier et al., 2009; Soderling et al., 2002), and ArhGAP4 can 

act on both cdc42 and Rac1 (Vogt et al., 2007). All four family members display spatially 

and temporally distinct patterns of expression in the central nervous systems (Bacon et al., 

2009; Foletta et al., 2002), and have been shown to regulate cell migration and neuronal 

morphology in mammalian cells (Guerrier et al., 2009; Soderling et al., 2002; Vogt et al., 

2007; Wong et al., 2001; Yang et al., 2006), a function that seems evolutionary conserved 

in invertebrates (Zaidel-Bar et al. 2010). srGAP3 has been implicated in a severe form of 

mental retardation, the 3p- syndrome, giving srGAP3 the alternate name of Mental-Disorder 

Associated GAP Protein (MEGAP) (Endris et al., 2002). srGAP2 has also recently been 

implicated in a severe neurodevelopmental syndrome causing early infantile epileptic 

encephalopathy and profound psychomotor delay (Saitsu et al. 2011). These human 

genetic data strongly suggest that srGAP2 and srGAP3 play a critical role during human 

brain development. 

 We recently found that the function of SRGAP2 in both neuronal migration and 

morphogenesis is largely mediated through the ability of its F-BAR domain to induce 

filopodia (Guerrier et al., 2009). However, the functional properties of the predicted F-BAR 

domains of the remaining srGAP family members has yet to be determined; furthermore, 

the molecular mechanisms underlying their function during filopodia formation are only 

starting to be examined in detail (Carlson and Soderling, 2009).  

 In the present study, we focused our analysis on the function of the other F-BAR 

domains present in srGAP1, srGAP2, and srGAP3. Our results reveal a surprising degree 

of diversity in the ability of these three closely-related F-BAR domains to induce filopodia-

like membrane protrusions in non-neuronal and neuronal cells. Our study provides novel 

insights into the molecular mechanisms underlying the membrane deformation properties of 

this subclass of F-BAR domains during cell morphogenesis. 
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3.2 RESULTS 

3.2.1. The srGAP family of proteins, through their respective F-BAR domains, exhibit 

different abilities to induce filopodia in non-neuronal cells 

 Recently, the F-BAR domain of srGAP2 (F-BAR(2)) has been implicated in the 

regulation of neuronal migration and morphogenesis due to its ability to induce filopodia 

and neurite branching (Guerrier et al., 2009). srGAP2 is one of four srGAP family proteins, 

although ArhGAP4/srGAP4 diverges in sequence from the rest of the family (Fig. 3.S1A,B); 

therefore, we restricted our analysis to the F-BAR domains of srGAP1, srGAP2, and 

srGAP3. While the F-BAR domains of srGAP1, srGAP2, and srGAP3 share approximately 

85% amino-acid identity (Fig. 3.S1C-D), the molecular properties of the F-BAR domains of 

srGAP1 (F-BAR(1)) and srGAP3 (F-BAR(3)) are still poorly understood. To first compare 

the functions of these closely-related proteins, we transfected plasmids expressing full-

length srGAPs, or their respective F-BAR domains fused in their C-terminal end to 

enhanced green fluorescent protein (EGFP) into COS7 cells (Fig. 3.1A-H”). Full-length 

srGAP1 (Fig. 3.1B-B”,I,J) and srGAP3 (Fig. 3.1D-D”,I,J) induce more filopodia than EGFP 

alone (Fig. 3.1A-A’’,I,J), but are both significantly less potent than full-length srGAP2 (Fig. 

3.1C-C”,I,J). A similar trend is found with expression of each respective F-BAR domain 

(Fig. 3.1E-G”). Therefore, both srGAP2 and its F-BAR(2) domain are more potent at 

inducing filopodia than srGAP3 and srGAP1, or their F-BAR domains (Fig. 3.1I,J) 

respectively. Additionally, both srGAP2 and F-BAR(2) induced significantly longer filopodia 

than the other srGAP family members or their F-BAR domains (Fig. 3.1K). There is no 

significant difference in filopodia number or length between each srGAP proteins and their 

respective F-BAR domain. These data illustrate that despite such closely related 

sequences, the members of the srGAP family of proteins are functionally distinct with 

regard to their ability to induce filopodia. 

3.2.2 srGAP proteins can interact through their F-BAR domains 
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 It has previously been shown that BAR, N-BAR, F-BAR and I-BAR domains 

homodimerize to form curved structures necessary for membrane deformation and 

tubulation (Henne et al., 2007; Shimada et al., 2007; Wang et al., 2009; Frost et al., 2008). 

We have previously shown using biochemical and biophysical approaches that the F-BAR 

domain of srGAP2 forms homodimers (Guerrier et al., 2009). Based on their high degree of 

conservation, we hypothesized that the F-BAR domains of the srGAP family proteins have 

the ability to heterodimerize, in addition to homodimerize. To test for interaction between F-

BAR domains, combinations of myc-tagged and GFP-tagged srGAPs were co-transfected 

into COS7 cells and immunoprecipitated with a GFP antibody (Fig. 3.2A). Western blots 

were probed for myc, revealing interactions between all three paired combinations of full-

length srGAP proteins. This interaction occurred through the respective F-BAR domains, 

and not through indirect interaction through SH3 domain binding, as indicated by co-

immunoprecipitation of RFP-tagged F-BAR(2) with GFP-tagged F-BAR1/3 (Fig. 3.2B). This 

result suggests that all three F-BAR domains are structurally conserved and are capable of 

heterodimerization or oligomerization. 

3.2.3 The F-BAR domains of different srGAP proteins localize to distinct regions of 

filopodia 

 In order to test for cooperative function of these three different F-BAR domains, 

GFP-tagged F-BAR(1) or F-BAR(3) were co-transfected into COS7 cells along with mRFP-

tagged F-BAR(2) (Fig. 3.3A-C’’). Surprisingly, co-expression of either F-BAR(1) (Fig. 3.3A-

A”) or F-BAR(3) (Fig. 3.3C-C”) with F-BAR(2) exhibited a synergistic effect towards 

filopodia induction when compared to equivalent expression of F-BAR(2)-GFP and F-

BAR(2)-mRFP (Fig. 3.3B-B”; quantified in Fig. 3.3D). Live-imaging of co-transfected COS7 

cells revealed differences in filopodial dynamics with different F-BAR combinations: 

filopodia containing GFP- and RFP-tagged F-BAR(2) or the combination of F-BAR(2)-RFP 

and F-BAR(3)-GFP extend faster than filopodia containing F-BAR(2)-RFP and F-BAR(1)-
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GFP (Fig. 3.3E).  

 We noticed that when co-expressed, these F-BARs domains showed distinct 

distribution along the filopodia. In order to quantify F-BAR distribution within the filopodia of 

COS7 cells, a line was drawn from the base to the tip of the filopodia to measure the 

fluorescence intensity of both the GFP- and mRFP-tagged signals. This quantification 

reveals significant differences in F-BAR distribution into the filopodia (Fig. 3.3F-H, 

quantified in Fig. 3.3I). In both instances F-BAR(2) extended to the tip of the filopodia, while 

the expression of F-BAR(1) or F-BAR(3) strongly decreased before reaching the tip. These 

results suggest (i) that the F-BAR domains of srGAP1-3 display synergistic effects towards 

filopodia induction and filopodia growth, and (ii) that these three F-BAR domains have 

distinct intra-filopodial localization when co-expressed.  These data, combined with the 

interaction data, further suggest that the three F-BAR domains can form distinct complexes 

inside a filopodium to intricately regulate the induction and maintenance of membrane 

protrusions. 

3.2.4 Molecular dynamics of the F-BAR Domains of srGAP1-3  

 Canonical F-BAR domain homodimers can form end-to-end oligomers that adopt a 

‘coiled’ quaternary structure, which interacts with the plasma membrane (Shimada et al., 

2007). These ‘coils’ are also stabilized by interactions between the sides of the F-BAR 

homodimers occurring between adjacent turns of the ‘coil’ in proteins such as FBP17 (Frost 

et al., 2008). The exact structural mechanism underlying I-BAR-mediated membrane 

tubulation in filopodia is currently unknown, but has been shown to require the ability of I-

BAR domains to interact with the negatively-charged lipids via the convex surface, as well 

as insertion of an amphipathic helix into the inner leaflet of the plasma membrane 

(Saarikangas et al., 2009).  Additionally, the I-BAR domains of IRSp53 (Millard et al., 2005), 

IRTKS (Millard et al., 2007), and MIM (Lee et al., 2007) have been suggested to directly 

bind actin.  We hypothesized that part of the functional differences observed between the 
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ability of the three srGAP F-BAR domains to induce filopodia might be due to differences in 

their subcellular trafficking properties along the plasma membrane or the actin 

cytoskeleton, which can be assessed by quantifying their molecular dynamics using 

fluorescence recovery after photobleaching (FRAP). 

 Following photobleaching, the fluorescence recovery (FR) plateaus at a certain 

percentage of the initial fluorescence, which represents the fraction of the protein that is 

mobile (mobile fraction). We also measured the time required to recover 50% of the 

fluorescence of the mobile fraction (t1/2), which indicates the speed of the mobile fraction 

(i.e. how quickly F-BAR domains assemble and traffic along the plasma membrane). We 

made three types of comparisons for both FR and t1/2: (1) comparing all three F-BAR 

domains and the PH domain of PLC∂1, (2) comparing the molecular dynamics of these 

domains in filopodia versus along the plasma membrane, and (3) comparing the molecular 

dynamics of these domains in control cells versus cells treated with cytochalasin-D in order 

to induce F-actin depolymerization. 

 These quantitative analyses reveal that F-BAR(2) displays a significantly higher 

mobile fraction, and shorter t1/2 than F-BAR(1), in filopodia (Fig. 3.4B-C) and at the plasma 

membrane (Fig. 3.4D-E) while F-BAR(3) displays commonalities to both of the other F-BAR 

domains, depending on the context.  In filopodia, the mobile fraction of F-BAR(3) matches 

that of F-BAR(2) in untreated cells, whereas the mobile fraction of F-BAR(3) matches that 

of F-BAR(1) at the peripheral membrane; however, depolymerization of the actin 

cytoskeleton with cytochalasin-D reduces the mobile fraction coefficient of F-BAR(3) to that 

of F-BAR(1) in filopodia, and raises the mobile fraction coefficient of F-BAR(3) at the 

membrane. Additionally, these experiments revealed that the speed of F-BAR mobility 

relies on an intact F-actin cytoskeleton, since depolymerization of F-Actin by cytochalasin-D 

treatment significantly increased t1/2 for all three F-BAR domains, both in filopodia and at 

the plasma membrane (Fig. 3.4C,E).  Given the direct interaction of actin with the plasma 
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membrane (Raucher et al., 2000), it is possible that the effects of cytochalasin-D treatment 

on F-BAR domain mobility at the membrane are due to indirect effects on lipid diffusion 

rates.  To rule out this possibility, we performed the same FRAP experiments with the PH 

domain of PLC∂1, which specifically binds PI(4,5)P2. This analysis revealed two interesting 

differences in the molecular dynamics of F-BAR and PH domains. First, the PH domain 

displays significantly faster molecular dynamics (both increased mobile fraction and 

decreased t1/2). Second, Cytochalasin-D-mediated actin depolymerization did not affect the 

mobile fraction coefficient or t1/2 of the PH domain either inside filopodia or at the plasma 

membrane (Fig. 3.4).  These results reveal two important new features regarding the 

molecular dynamics of these F-BAR domains in filopodia: (i) the molecular dynamics 

correlate well with the efficiency of each F-BAR domain to induce filopodia (i.e. F-

BAR(2)>F-BAR(3)>F-BAR(1)), and (ii) the rate of intracellular mobility of the F-BAR 

domains is partially-dependent on F-actin.  

3.2.5 Lipid specificity varies between the F-BARs of srGAP proteins 

 All BAR-like domains, including F-BAR and I-BAR domains, bind to the plasma 

membrane through electrostatic interactions to negatively charged phospholipids, such as 

PI(4,5)P2 (Itoh et al., 2005; Mattila et al., 2007; Peter et al., 2004; Saarikangas et al., 2009), 

and/or the presence of an amphipatic helix (wedge loop) directly inserting into the 

phospholipid bilayer (Saarikangas et al., 2009; Wang et al., 2009). Membrane-binding 

proteins can be removed from the membrane in a variety of ways, such as exposure to salt 

solutions (e.g. weaker interactions can be disrupted by lower salt concentrations). Different 

lipids compositions can also be separated using different detergent solutions (London and 

Brown, 2000).  Western blots of lysates expressing F-BAR(1), F-BAR(2), and F-BAR(3) 

reveal different affinity for triton-insoluble lipids and proteins.  To test this, cells were lysed 

in a two-step process, first with a low-stringency triton-X-containing buffer, then the 

supernatent was removed, and the insoluble pellet was subjected to a higher-stringency 
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modified RIPA buffer and sonicated.  Molecular components of the triton-insoluble fraction 

contain lipids found in lipid rafts, which are highly enriched for cholesterols and 

sphingolipids (London and Brown, 2000), as well as phosphatidylethanolamine (PE), 

phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) 

(Rouquette-Jazdanian et al., 2002).  F-BAR(1) and F-BAR(3) have a 32-fold and 7.4-fold 

higher affinity for the triton-insoluble fraction, respectively, while F-BAR(2) is reduced to 

0.6-fold that found in the triton-soluble fraction (Fig. 3.5A).    

 Recently, Carlson et al. (2011) reported that F-BAR(3) relies on PI(4,5)P2 for its 

membrane-binding. Membrane localization was reduced with the coexpression of the 

PI(4,5)P2-specific 5-phosphatase, Inp54p; however, constitutive Inp54p expression has 

been shown to negatively effect cell morphology and health, causing cell rounding and a 

loss of protrusions (Raucher et al., 2000). Although recombinant F-BAR(2) domain binds 

PI(4,5)P2, it also binds several negatively-charged phosphoinositides, as well as PS (Fig. 

3.5B and Suppl. Fig 3.3).  

 Given the high degree of homology between F-BAR(2) and F-BAR(3), and that 

PI(4,5)P2 is the most abundant form of phosphorylated PI at the plasma membrane of many 

mammalian cells (Mitchell et al., 1986; Tran et al., 1993), we next tested if PI(4,5)P2 is 

required for the maintenance of F-BAR localization to the plasma membrane in situ by 

employing an acute, rapamycin-inducible method of depleting PI(4,5)P2 from the membrane 

(Varnai et al., 2006). This method allows for temporal control of PI(4,5)P2 depletion and can 

avoid some of the consequences of constitutive PI(4,5)P2 depletion (Raucher et al., 2000). 

Briefly, addition of rapamycin induces binding of the membrane-targeted FKBP-rapamycin-

binding (FRB) domain to the FK506 binding protein (FKBP) domain, thereby recruiting 

Venus-FKBP-Inp54p, a PI(4,5)P2-specific 5-phosphatase, to the plasma membrane where 

it dephosphorylates PI(4,5)P2 into PI(4)P (Varnai et al., 2006) (Fig. 3.5C-U). Prior to 

rapamycin treatment, the FRB domain (Fig. 3.5D,J,P) and PH domain of PLD∂1 (Fig. 
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3.5F), F-BAR(2) (Fig. 3.5L), and F-BAR(3) (Fig. 3.5R) are localized to the plasma 

membrane, while the FKBP12-Inp54p fusion (Fig. 3.5E,K,Q) is in the cytoplasm. Upon 

rapamycin treatment, the FKBP12 domain binds the FRB domain, translocating the 

phosphatase to the membrane (Fig. 3.5H,N,T). The depletion of PI(4,5)P2 results in the 

translocation of the PI(4,5)P2 binding partner, the PH domain of PLC∂1, from the plasma 

membrane to the cytoplasm (Fig. 3.5I); however, PI(4,5)P2 depletion is not enough to 

remove F-BAR(2) from the plasma membrane (Fig. 3.5O), as it remains bound after 

rapamycin treatment. In contrast, F-BAR(3) is significantly reduced at the plasma 

membrane following rapamycin treatment (Fig. 3.5U).  These results strongly argue that F-

BAR(2) and F-BAR(3) display different requirement for PI(4,5)P2 for their membrane 

localization, and in particular, that F-BAR(2) relies on other negatively-charged 

phosphoinositides or other mechanisms for its membrane localization. 

3.2.6 F-BAR(1) constrains cellular protrusions in cortical neurons, whereas F-BAR(2) 

and F-BAR(3) induce protrusions 

 We have previously shown that the activation of full-length srGAP2 varies between 

COS7 cells and cortical neurons (Guerrier et al., 2009); therefore, we wanted to compare 

the activities of these three F-BAR domains in cortical neurons. Mouse embryos were 

harvested and subjected to ex utero electroporation following injection of plasmid DNA into 

the lateral ventricles at Embryonic day 15.5 (E15.5) (described in Hand et al., 2005). Dorsal 

telencephalic progenitors were immediately dissociated, plated. At 24 hours in vitro (24 

hiv), these immature neurons display high levels of lamelipodial and filopodial dynamics 

(Stage 1), processes that precede and are required for neurite initiation (Guerrier et al., 

2009; Dent et al., 2007). The activities of the F-BAR domains of srGAPs diverge between 

COS7 cells and primary cortical neurons, most strikingly for srGAP1. Neurons 

electroporated with each of the three F-BAR domains contain more filopodia than control 

GFP-containing neurons (Fig. 3.6A-D, quantified in 3.6E); however, F-BAR(1) localizes 
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very distinctly to areas of the plasma membrane that lack protrusions (arrowhead in Fig. 

3.6B), whereas F-BAR(2) and F-BAR(3) localize to sites of filopodial and lamellipodial 

protrusions (Fig. 3.6C,D). Quantification reveals that areas of the plasma membrane where 

F-BAR(1) is found contains significantly less filopodia than areas of the plasma membrane 

that lack F-BAR(1), and vice versa for F-BAR(2) and FBAR(3) (Fig. 3.6F). The trend is the 

same for F-BAR(1) and F-BAR(2) in lamellipodial protrusions, but reversed for F-BAR(3) 

(Fig. 3.6G). 

 To confirm these static analyses, we performed time-lapse confocal imaging of 

GFP-tagged F-BARs co-electroporated with F-Actin probe (LifeAct-mRFPruby; Riedl et al., 

2008) into E15.5 cortical neuronal progenitors, then plated and cultured the neurons for 

24hiv (Fig. 3.7). As we hypothesized, F-BAR(1) inhibits membrane protrusions and/or 

stabilizes plasma membrane. Strikingly, in neurons expressing F-BAR(1)-EGFP, filopodia-

like F-actin-rich protrusions were only observed where F-BAR(1) is not present (Fig. 3.7B-

F). F-BAR(2) coats the majority of the membrane, and induces the extension and retraction 

of neuronal F-actin rich filopodia (Fig. 3.7J-R); however, little to no ruffling activity occurred 

in the presence of F-BAR(2)-coated membrane. F-BAR(3) appears to have an intermediate 

phenotype between F-BAR(1) and F-BAR(2) in neurons. It induces a comparable number 

of filopodia to F-BAR(2), yet as seen for F-BAR(1), it is more often found in areas that do 

not contain lamellipodia (Fig. 3.5D-F). Analysis of membrane dynamics reveals both 

filopodia protrusions and ruffling activity coinciding with F-BAR(3) (Fig. 3.7S-AA). Taken 

together, these results demonstrate that in immature cortical neurons, F-BAR(1) restricts 

membrane protrusions and dynamics, while F-BAR(2) and F-BAR(3) domains induce 

filopodia protrusions through their membrane-deformation properties. 

 

3.3 DISCUSSION 

 The functional characterization of BAR domain-containing proteins has expanded 
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quite rapidly over the past few years. Recently, Guerrier et al. (2009) found that the F-BAR 

domain of srGAP2 shares the functional properties of I-BAR domain activity, such as those 

contained in IRSp53 and Missing in Metastasis (MIM) (Mattila et al., 2007; Millard et al., 

2007; Saarikangas et al., 2009) by inducing membrane protrusions, rather than making 

invaginations as observed with canonical F-BAR proteins (Frost et al., 2007; Itoh et al., 

2005). Recent reports (Carlson et al., 2011) and reviews (Heath and Insall, 2008) 

describing the subclasses of F-BAR domain-containing proteins categorize srGAP family 

members into one functionally uniform subgroup; however, our work demonstrates discrete 

roles and intricate differences between each srGAP family members. 

 While the F-BAR domains of the srGAP family are all able to induce filopodia-like 

membrane protrusions to a greater extent than in control conditions, the degree to which 

these three domains induce such structures greatly varies. F-BAR(2) is much more potent 

at inducing protrusions than either F-BAR(1) or F-BAR(3) in COS7 cells, and F-BAR(1) 

actively restricts protrusive activity in cortical neurons. It is interesting to note that COS7 

cells do not express endogenous srGAP1/2/3 proteins (Fig. 3.S1E), while cortical neurons 

express all three srGAP proteins in various combinations throughout development in vitro 

and in vivo (Fig. 3.S1G, Bacon et al., 2009).  Bacon et al. (2009) demonstrated that 

srGAP3 mRNA appears to be the most highly expressed among srGAPs in the cortex at 

early developmental time points, followed closely by srGAP2, whereas srGAP1 is not 

significantly expressed until postnatal ages. We find similar expression levels in dissociated 

cortical neurons (Fig. 3.S1G).  Interestingly, srGAP2 protein increases within a few days in 

culture, whereas srGAP3 remains relatively stable.  However, immunohistochemical 

analysis of srGAP2 and srGAP3 in cortical neurons reveals no distinguishable difference in 

endogenous subcellular localization, with both proteins producing punctate staining 

throughout the cell body and protrusions (data not shown; Guerrier et al., 2009; Endris et 

al., 2011). Our data argue that the F-BAR domain expression may interact with 
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endogenous forms of these srGAP proteins, possibly explaining the different effects of 

these proteins when expressed in COS7 cells vs. cortical neurons.  Given the high 

expression of endogenous srGAP3 in cortical neurons, this interaction could particularly 

explain the differences seen with F-BAR(3).  In addition to differential expression of srGAP 

proteins between COS7 cells and neurons, cortical neurons display extensive filopodia 

dynamics during neurite initiation (Dent et al., 2007) as well as during spine formation 

(Yoshihara et al., 2009), whereas COS7 cells rarely display spontaneous filopodia 

formation (Fig. 3.1A-A”). These differences in native cytoskeleton composition and 

dynamics, as well as variance of membrane and cytoskeletal-related proteins, might also 

help to explain the differences we observed between F-BAR activities in these two cell 

types. 

 Recent analysis of srGAP3 (also called WAVE-1 Related Protein, WRP, and 

MEGAP) has shown that its F-BAR domain is involved in filopodia induction preceding 

spine morphogenesis (Carlson et al., 2011). However, the authors suggested that the F-

BAR domain of srGAP3 is targeted to the plasma membrane through its ability to bind to 

PI(4,5)P2 and PI(3,4,5)P3. Our analysis shows a strikingly different pattern of phospholipid 

binding for the F-BAR domain of srGAP2, which seems to bind very broadly to negatively 

charged phospholipids, including six out of seven existing phosphoinositides, as well as 

phosphatidyl-serine (PS).  In their analysis of the binding of F-BAR(3) to the membrane, 

Carlson et al. (2011) used a constitutively active PI(4,5)P2 phosphatase, Inp54p, to reduce 

PI(4,5)P2 levels at the plasma membrane; however, constitutive Inp54p expression leads to 

changes in cell shape due to PI(4,5)P2-mediated alterations in the actin cytoskeleton from 

reduced interaction between the actin network and the plasma membrane (Raucher et al., 

2000). Given the close interaction of many BAR-containing proteins with the cytoskeleton 

as well as with the plasma membrane, we wanted to look at the effects of acute PI(4,5)P2 

depletion on F-BAR membrane-binding. Our results demonstrate that acute depletion of 
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PI(4,5)P2 has no effect on the targeting of F-BAR(2) to the plasma membrane, however it 

does affect F-BAR(3) localization. We did not find co-expression alone to be effective 

enough to reduce localization of F-BAR(3) (data not shown); however, the difference 

between the ability to induce translocation upon acute, inducible PI(4,5)P2 depletion is 

clearly compatible with the lack of binding specificity of F-BAR(2) to PI(4,5)P2, and 

suggests that the F-BAR domain of srGAP2 could bind to the plasma membrane through 

other negatively charged phospholipids, including PS.  An interesting possibility exists that 

these proteins need the electrostatic charge interaction primarily for initial binding, and 

subsequently localization occurs through hydrophic interaction such as the insertion of an 

amphipathic helix seen in N-BAR (Itoh and Camilli, 2006) and I-BAR domains (Saarikangas 

et al., 2009).  While the F-BAR domain of srGAP3 does translocate after PI(4,5)P2 

depletion, the effect is less specific and more variable than with the PH domain of PLC∂1.  

This variation, as well as the lack of translocation with F-BAR(2), could be accounted for by 

the broad lipid specificity, a physical insertion into the plasma membrane, or both. 

 Alternatively, F-BARs of the srGAP family could be tuned to differentially bind to a 

specific range of membrane curvature found at the plasma membrane, as previously shown 

for other BAR and F-BAR domains (Frost et al., 2007; Zhao et al., 2011). This could further 

explain the differential localization between the srGAP F-BAR domains within filopodial 

protrusions, where curvature varies along the base, neck, and tip of a filopodium. The 

molecular mechanisms underlying the differences in phospholipid-binding specificity 

between F-BAR(2) and F-BAR(3) are currently unknown, but might involve differences in 

electrostatic positive charge distribution (lysine and arginine residues) at the surface of 

these two F-BAR dimers; however, the structures of these F-BAR domains have yet to be 

solved, therefore, further experiments will be necessary to identify the precise molecular 

basis for these differences. 

 The molecular basis for self-assembly of this class of F-BAR domains is currently 
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unknown, however shorter F-BAR domains present in proteins such as FBP17, have been 

shown to interact through both ‘end-to-end’ interactions as well as ‘side-to-side’ interactions 

of individual dimers. These oligomers form a corkscrew-like helix that binds and tubulates 

membranes (Frost et al., 2008; Shimada et al., 2007; Wang et al., 2009). Based on 

combinations of in vitro cryo-EM, structural and bio-informatics modeling analysis, it was 

found that F-BAR and I-BAR proteins are able to form molecular assemblies inducing 

specific membrane topologies, ranging from membrane tubules to shallow membrane 

curvature (Frost et al., 2008; Wang et al., 2009), and even to planar membrane sheets 

(Pykäläinen et al., 2011). However, the mechanisms underlying F-BAR domain assembly in 

cells and the way they control membrane deformation and dynamics is currently unknown, 

and warrants further investigation. Our data show for the first time that the F-BAR domains 

of srGAP proteins display differential function and dynamics in both cell lines and primary 

neurons. These F-BAR domains display different lipid binding properties, as well as a clear 

F-actin-dependence for their intracellular mobility (Fig. 3.S4). Our data raises the possibility 

that F-BAR(1) and F-BAR(3), which have lower mobile fraction coefficients than F-BAR(2) 

in various conditions, could have a stronger association with the plasma membrane, and 

therefore aid in membrane stabilization, as opposed to membrane deformation. Our time-

lapse data in neurons supports this hypothesis by revealing reduced membrane protrusions 

where F-BAR(1) is present at the plasma membrane, as well as reduced filopodial 

dynamics in transfected COS7 cells. Our results also point to the fact that the F-BAR 

domains of three srGAP proteins are able to interact and possibly heterodimerize, and that 

these three F-BAR domains act synergistically towards filopodia formation (Figs 3.2, 3.3, 

3.S4). Overall, our results point to the unique function of the srGAP family of proteins, 

through their F-BAR domains, in inducing and regulating filopodia-like protrusions in 

neuronal and non-neuronal cells due to their ability to control membrane deformation. 
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3.4 MATERIALS AND METHODS 

3.4.1 Plasmid constructs and sequence alignments 

 All srGAP constructs were cloned into a modified pCIG2 vector (Guerrier et al., 

2009) with the IRES removed for GFP-, RFP-, or Myc-tagged C-terminal fusions. Lifeact-

pRuby was subcloned from EGFP-N1 into the modified pCIG2 construct, using XhoI/NotI 

cut sites. srGAP constructs contain the following proteins and F-BAR truncations: human 

fulllength srGAP1(NP_065813.1), srGAP2(NP_056141.2), srGAP3(NP_001028289.1), or 

F-BAR truncations F-BAR(1) (AA 1-516), F-BAR(2) (AA 1-501), F-BAR(3) (AA 1-492). 

Constructs for rapamycin-induced PI(4,5)P2 depletion, with the exception of F-BAR(2)-RFP 

and F-BAR(3)-RFP described above, were obtained from Tamas Balla (NICHD, Bethesda, 

MD USA) and Tobias Meyer (Stanford, Stanford, CA USA) and cloned into pcDNA3.1 by 

Sam Snider (Zylka Lab, UNC-Chapel Hill, NC USA). Protein phylogenetic tree prediction 

was created using GeneBee TreeTop (http://www.genebee.msu.su/). Amino acid 

conservation percentage determined by NCBI Blast tool. Sequence alignment was created 

using MultAlign (Corpet,1988). 

3.4.2 Cell culture 

 COS7 and HEK293 cells were plated onto poly-d-lysine (Sigma P0899) and 

maintained in Delbucco’s Modified Eagle’s Medium (DMEM, Sigma D6046) supplemented 

with 10% FBS (Foundation 900-108) and 1x Penicillin-Streptomycin (Pen/Strep, Gibco 

15070-063). Cell culture transfections were performed twenty-four hours post plating, using 

Lipofectamine 2000 (Invitrogen 11668) according to manufacturer’s instructions. Fixed cells 

were treated with 4% paraformaldehyde for 20 minutes, washed in PBS, permeablized in 

0.05% triton-X-100 in PBS, washed, and then blocked in 5% BSA (Sigma A6003) for 20 

minutes. COS7 cells were then incubated with primary antibody [(anti-myc antibody 1:500, 

Cell Signaling 2276), (anti-GFP antibody 1:1000, Aves GFP-1020) or (anti-RFP antibody 

1:1000, Invitrogen R10367)] in PBS with 0.2% BSA and 10% Normal Goat Serum overnight 
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at 4ºC. Cells were washed in PBS and incubated with secondary anditbody [(goat anti-

chicken Alexafluor-488 (1:1000, Invitrogen A11039), goat anti-rabbit Alexafluor-546 

(1:1000, Invitrogen A11035), Alexafluor-546 phalloidin (1:200, Invitrogen A22283), 

Alexafluor-647 phalloidin (1:200, Invitrogen A22287), or DRAQ5 (1:10000, Fisher 

NC9165029)] for two hours at room temperature.  Finally, cells were then washed in PBS 

and mounted with Biomedia Mounting Media (Fisher NC9034735). 

 Primary neuronal cultures were plated onto poly-d-lysine/laminin (Sigma L2020) and 

maintained for 24 hours in Neurobasal-A (Invitrogen 10888-022) supplemented with 1x 

Pen/Strep, L-glutamine (Gibco 25030-081), 1x B-27 (Gibco 17504044), and N2 (Gemini 

400-163). Cortical neurons were transfected prior to dissociation via ex vivo electroporation 

at E15.5, according to Hand et al., (2005). Neurons were fixed for 10 min at 24 hours after 

plating, using a 1% glutaraldehyde solution in PHEM buffer (pH 6.9; 60 mM PIPES, 25mM 

HEPES, 10 mM EGTA, and 2 mM MgCl2) to preserve cytoskeletal integrity (Kaech et al., 

1997). The rest of the staining protocol is the same as used for COS7 cells, with the 

primary antibodies anti-GFP (Invitrogen A11122) and anti-Tubulin (Covance MMS-435P-

100), and secondary antibodies goat anti-rabbit Alexafluor-488 (Invitrogen 11034), 

Alexafluor-546 phalloidin, and goat anti-mouse Alexafluor-647 (Invitrogen A21235). 

 To determine filopodia number, fixed cells were imaged using LEICA TCS SL 

confocal microscope, 63x/1.4NA oil immersion objective. 2x zoomed images were taken of 

representative cells from each construct. Images were then imported to NIH ImageJ. Using 

the line tool, a perimeter was drawn around the cells. The presence of filopodia was 

determined by counting the number of consecutive pixels on the line drawn around the cell 

perimeter and normalized by dividing the total number of filopodia by the cell perimeter 

(filopodia/microns). Protein extension into filopodia was determined using NIH ImageJ 

software to draw a line from the base to the tip of the filopodium, and measure fluorescence 

intensity of each fluorescence channel. 



 

103 

3.4.3 Live cell imaging 

 Live cell imaging of COS7 cells, HEK293 cells, and neuronal cultures were imaged 

using Leica TCS confocal microscope with either 20x objective, or 63x/1.4NA oil immersion 

objective, with 37 ºC stage warmer. COS7 cells were imaged in their culture media at 12 

second intervals. The path of filopodial tips was traced over time using NIH ImageJ 

software to obtain quantification of filopodial dynamics (µm/min). Culture media was 

removed from HEK cells prior to imaging, and replaced with 37ºC Hank’s Balanced Salt 

Solution (HBSS, Gibco 14025) supplemented with 0.24% HEPES (Fisher BP310), 0.2% 

dextrose (Fisher D16), and 0.1% BSA (Sigma A6003). Images were taken before and after 

1 µM rapamycin (Calbiochem 553212) in supplemented HBSS solution was added to the 

cells. Membrane to cytoplasm ratio in pre- and post-ramapycin-treated cells was measured 

in HEK cells expressing all three constructs, using NIH ImageJ software. Neuronal cultures 

were imaged in their culture media, at 12-second intervals. 

 Live cell imaging for FRAP experiments was performed with a PLAPO 60x/1.42 

objective (Olympus, Inc.) on an Olympus FV1000 confocal microscope, equipped with a 

plastic cage incubator (Presicion Plastics, Inc., MA, USA) maintained at 37 ºC with 5% CO2 

and 60% humidity to prevent media evaporation. To measure fast fluorescence 

dynamics in single filopodia images of 256x256 pixels were taken at 36x zoom with pixel 

dwell time of 2 µs. A rectangular shape bleach area of a fixed width (~0.4 µm) was drawn 

across the filopodia or a membrane region, 20 prebleach frames acquired with a 488 

excitation laser (multiline Argon laser) attenuated to 0.7% to minimize photobleaching of 

the sample, followed by 300 ms bleaching with the same laser operated at full power. The 

recovery was then measured at the speed of ~0.5 s/frame with the 488 laser, operated at 

the same 0.7% transmission as for the prebleaching acquisition. For cytochalasin-D 

treatments, COS7 cells were transfected with F-BAR constructs and cultured for 48 hrs. 

Cells were then treated with 200 µM cytochalasin D (Sigma C2873) for 1 hour prior to 
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imaging. To observe the presence of F-actin, cells were fixed post-imaging and stained with 

phalloidin as previously stated. Fluorescence intensity curve from FRAP imaging was then 

analyzed with the Igor Pro 6.12A (Wavemetrics, Inc.) using the K_FRAPcalc v9 procedure 

developed by Dr. Kota Miura (EMBL). 

3.4.4 Biochemistry 

 Western blots were run from COS7 cells transfected with either tagged F-BAR, or 

full-length srGAP constructs, treated with Ripa Buffer (50 mM Tris, pH 7.4, 1% Triton-X-

100, 0.25% Sodium Deoxycholate, 0.1% SDS, 1 mM EDTA, 150 mM NaCl, 1x Complete 

Protease Inhibitor Cocktail (1x, Roche), 1mM PMSF) 24 hours post transfection. Lysates 

were run through 4-12% NuPage gels (Invitrogen NP0321) and transferred to PVDF 

membrane (Amersham RPN303F), which was then blocked with 5% dry milk (Carnation) in 

TBS-T. Primary [(anti-srGAP1 1:1000, Abcam ab57504), (anti-srGAP2 A2 and anti-srGAP3 

A1 1:1000, gifts from Wei-Lin Jin lab, Univ. Shangai), (anti-GFP 1:1000, Invitrogen 

A11122), and (anti-Actin 1:5000, Millipore MAB 1501)], and secondary antibodies [(donkey 

anti-rabbit IRDye 800, Li-cor Biosciences 926-32213) or (donkey anti-mouse IRDye 680, 

Licor Biosciences 926-32222)] were incubated in 3% dry milk in TBS-T. 

Co-immunoprecipitations were obtained from double-transfected cells, treated with co-

immunoprecipitation buffer (50mM Tris-Cl pH 7.4, 15 mM EGTA, 100 mM NaCl, 0.1% 

Triton-X 100, protease inhibitor, 1 mM DTT, and 1mM PMSF) 24 hours after transfection. 

Incubations and washes were performed in the same buffer. 10% of lysis volume was 

collected prior to antibody incubations for input controls. The rest of the co-

immunoprecipitation lysis was subjected to the immunoprecipitation antibody [(1 µg anti-

GFP, Invitrogen A11122, or 1 µg anti-IgG control antibody)] bound to protein A/G beads 

(Santa Cruz 2003), washed, and dissociated with SDS Loading Buffer at 95ºC.  The two-

step lysis buffer to analyze triton-soluble and triton-insoluble fractions were first subjected 

to the co-immunoprecipitation buffer described above.  The lysates were then centrifuged 
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at 15000 rpm for 20 minutes.  The supernatent was removed and used for the triton-soluble 

fraction.  The insoluble pellet was then subjected to a modified RIPA buffer (50 mM Tris pH 

7.4, 0.5% Na Deoxycholate, 0.2% SDS, 1 mM EDTA, 150mM NaCl, 1mM PMSF, and 1x 

protease inhibitor), sonicated briefly, and spun at 15000 rpm for 10 minutes.  The 

supernatent was removed and used for the triton-insoluble fraction. Western blots were run 

as described before, using anti-GFP, anti-RFP, or anti-Myc primary antibodies, and anti-

mouse and anti-rabbit antidbodies described above. Western blots were imaged on the LI-

COR Odyssey Infrared Imaging System. 

 Immobilized lipids were spotted onto PIP Strip membranes (Molecular Probes 

P23750) and treated according to manufacturer’s instructions. Briefly, the PIP Strip 

membrane was blocked with 3% BSA/TBS-T (Sigma A6003), incubated with 0.5 µg/ml 

purified F-BAR(2) (AA 1-480, purified by Holger Sondermann’s lab, Cornell University, 

Ithaca, NY, USA) in 3% BSA/TBS-T for 1 hour at room temperature, washed in TBS-T, 

incubated with primary antibody (anti-srGAP2 A1 1:1000, gift from Wei Lin Jin, Shanghai 

Univ., China), washed in TBS-T, incubated with secondary antibody (goat anti-rabbit 

IRDye800), washed, and developed using the LI-COR Odyssey Infrared Imaging System. 
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3.5 FIGURE LEGENDS 

 

 

Figure 3.1. srGAP2 induces significantly more filopodia than srGAP1 or srGAP3. 
(A-H”) COS7 cells expressing EGFP only (A’A’’), EGFP-tagged full-length srGAP1 (B-B’’), 
srGAP2 (C-C’’) or srGAP3 (DD’’), or their respective F-BAR domains (E-H’’) were 
counterstained with phalloidin for F-actin (A’-H’) in red. (I-J). Quantification of the effects 
described in A-H” (n>25 cells). (K) srGAP2 and its F-BAR domain (F-BAR(2)) induce 
significantly longer filopodia than full-length srGAP1, srGAP3, or their respective F-BAR 
domains (n>200 filopodia; p<0.0001). Quantifications were taken from at least three 
independent experiments and analyzed using non-parametric Mann-Whitney Test. Black 
asterisks indicate comparison to EGFP and red asterisks indicate comparison to srGAP2-
EGFP or F-BAR(2)-EGFP. 
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Figure 3.2. srGAP proteins interact through their F-BAR domains. 
(A) Combinations of EGFP- and myc-tagged full-length srGAP proteins were co-expressed 
in COS7 cells, immunoprecipiated (IP) with anti-GFP, and immunoblotted (IB) with anti-
myc. Single-transfected control lysates demonstrate the specificity of the rabbit anti-EGFP 
and mouse anti-myc antibodies. Every combination of the three srGAP proteins was able to 
co-immunoprecipitate. (B) EGFP-tagged F-BARs(1-3) were co-expressed with mRFP-
tagged F-BAR(2) in COS7 cells. Cells lysates were incubated and immunoprecipitated with 
either rabbit anti-IgG control antibody or rabbit anti-EGFP antibody, and immunoblotted for 
either rabbit anti-RFP antibody or mouse anti-GFP antibody. All three EGFP-tagged F-BAR 
domains co-immunoprecipitated with F-BAR(2)-mRFP. 
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Figure 3.3. Synergy between F-BAR domains towards filopodia induction 
(A-C”) Coexpression of F-BAR(1)-GFP and F-BAR(2)-mRFP (A-A”), F-BAR(2)-GFP and F-
BAR(2)-mRFP (B-B”), and FBAR(2)-mRFP and F-BAR(3)-GFP (C-C”) in COS7 cells. (D) 
Quantification of filopodia density in F-BAR-transfected COS7 cells. Co-transfection of F-
BAR(1)-GFP or F-BAR(3)-GFP with F-BAR(2)-mRFP do not differ in their filopodia 
densities; however, both combinations induce significantly higher filopodia densities than 
any single F-BAR alone (n>25 cells; ***p<0.0001). (E) Quantification of filopodial dynamics 
based on the path traveled by the filopodia tips (n>186 filopodia; ***p<0.0001). F-I) 
Intrafilopodia expression of each F-BAR varies in cotransfected COS7 cells, where F-
BAR(1)-GFP extinguishes before F-BAR(2)-RFP (F), F-BAR(2)-GFP and F-BAR(2)-RFP 
both extend to the filopodial tip (G), and F-BAR(2)-RFP extends beyond F-BAR(3)-GFP 
(H); quantified in (I). n=50 for F-BAR(1)/F-BAR(2); n=75 for F-BAR(2)/FBAR(2); n=83 for F-
BAR(2)/F-BAR(3); ***p<0.0001, red stars compare to F-BAR(2), and blue stars compare to 
F-BAR(3). Quantifications were taken from at least three independent experiments and 
analyzed using Mann-Whitney nonparametric test. 
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Figure 3.4. The three F-BAR domains of srGAP proteins differ in their subcellular 
molecular dynamics. 
(A) FRAP analysis of EGFP-tagged F-BAR(1) (i), F-BAR(2) (ii), F-BAR(3) (iii), and PH 
domain of PLC∂1 (iv) in filopodia protrusions. The same analyses were performed at the 
peripheral membrane of the cell. (B-E) Quantification of the mobile fraction coefficient (B,D) 
and half-time of recovery (t1/2; C,E) in filopodial protrusions (B-C) and at the peripheral 
plasma membrane (D-E).  Cells were either imaged as untreated controls, or treated with 
cytochalasin-D for depolymerization of the actin cytoskeleton. Significance compared to 
untreated controls are marked by asterisks (*), and significance to cytochalasin-treated 
samples is marked with a caret (^).  Signficance is color-coded with black for F-BAR(1), red 
for F-BAR(2), and blue for F-BAR(3). n for each condition is marked below the bottom 
graph for filopodial and membrane, and is the same for mobile fraction and t1/2 at each 
location. */^p<0.05, **/^^p<0.005, ***/^^^p<0.0005   
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Figure 3.5. F-BAR(2) binds multiple negatively-charged phospholipids 
(A) Western blot depicting F-BARs found in two separate fractions, a triton-soluble and 
triton-insoluble.  F-BAR(1) is 32-fold higher expressed in the triton-insoluble fraction, while 
F-BAR(2) is slightly reduced in this fraction (0.6-fold), and F-BAR(3) is more highly 
expressed in the insoluble fraction (7.4-fold). (B) Binding of F-BAR(2) to immobilized 
phospholipids on nitrocellulose membrane (PIP Strip, Molecular Probes). Membrane was 
incubated with recombinant F-BAR(2) (amino acids 1-480) and subsequently 
immunoblotted with an antibody to srGAP2. LPA, lysophosphatidic acid; LPC, 
lysophosphatidylcholine; PE, phosphatidylethanolamine; PC, phosphatidylcholine; SIP, 
sphingosine 1-phosphate; PA, phosphatidic acid; PS, phosphatidylserine. (C) Quantification 
of pixel intensity of membrane to cytoplasmic localization pre- and post-rapamycin 
treatment (n=15-16). (D-U) Representative images of HEK293 cells triple-transfected with 
CFP-FRB, Venus-FKBP12-Inp54p, and RFP-PH domain of PLC∂1 (D-I), F-BAR(2)-RFP (J-
O), or F-BAR(3)-RFP (P-U) both pre- (C-E, I-K, P-R) and post-rapamycin treatment (F-H, L-
N, S-U). Asterisks demonstrate difference between pre- and post-rapamycin membrane to 
cytoplasmic ratios of the same condition. *p<0.05, ***p<0.001  
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Figure 3.6. F-BAR domains of srGAP proteins differ in their ability to induce filopodia 
in cortical neurons. 
(A-D) E15.5 cortical neurons expressing EGFP (A) or EGFP-tagged F-BAR(1) (B), F-
BAR(2) (C), or F-BAR(3) (D) were cultured for 24hours in vitro (hiv) after ex vivo 
electroporation, fixed and stained with F-Actin marker phalloidin (red) . (E) Cells with any of 
the three F-BARs contain more filopodia than GFP alone, though F-BAR(2) and F-BAR(3) 
induce significantly more filopodia than F-BAR(1). (F-G) Quantifications of the percentage 
of plasma membrane in filopodia (F) or lamellipodia (G) that is coated or uncoated with F-
BAR protein. Quantifications were performed on at least three independent cultures and 
analyzed using Mann-Whitney Test (** p<0.01, *** p<0.001; n>20 neurons). Black asterisks 
illustrate comparison against F-BAR(1), while red asterisks indicate difference from F-
BAR(2). 
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Figure 3.7. Real-time imaging of membrane and F-Actin dynamics induced by F-BAR 
domains in cortical neurons 
E15.5 cortical neurons expressing the F-Actin probe LifeAct-mRFPruby (red) and GFP-
tagged F-BAR(1) (A-I), F-BAR(2) (J-R), or F-BAR(3) (S-AA) following ex vivo 
electroporation and 24h in dissociated culture. GFP and mRuby channels are shown 
separately for ease of visualization (see also MovieS1-3). Images from time series taken at 
0, 148, and 296 seconds are pseudocolored in red, green, and blue, respectively. White 
overlay in merge panel indicates limited spatial dynamics throughout the movie. (A) Whole-
cell image of F-BAR(1)-EGFP- and LifeAct-mRFPruby-co-expressing cortical neuron. (B-I) 
F-BAR(1)-coated membrane shows little to no spatial dynamics (B-E); however, dynamic 
neuritic protrusions can be visualized with LifeAct-mRFPruby at sites of ‘breaks’ in F-
BAR(1)-GFP coated plasma membrane (F-I). (J) Whole-cell image of F-BAR(2)-EGFP and 
LifeAct-mRFPruby co-expressing neuron. (K-R) F-BAR(2)-coated membrane displays rapid 
extension and retraction of filopodia protrusions (K-N), although F-Actin dynamics are 
largely confined to the area within the F-BAR(2)-coated membrane (O-R). (S) Whole-cell 
image of F-BAR(3)-EGFP and LifeAct-mRFPruby co-expressing cortical neuron. (T-AA) F-
BAR(3)-GFP-coated membrane presents numerous sites of filopodia-like membrane 
dynamics (arrowhead in T-AA). 
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3.6 SUPPLEMENTARY FIGURE LEGENDS 
 

 
Figure 3.S1. Conservation and alignments of the srGAP family of proteins 
(A-B) Phylogenetic tree illustrating the evolutionary conservation of human full-length 
srGAP1(NP_065813.1), srGAP2 (NP_056141.2), srGAP3 (NP_001028289.1), and 
srGAP4/ArhGAP4 (NP_001158213.1) (A), and F-BAR(1) (AA 1-516), F-BAR(2) (AA 1-501), 
F-BAR(3) (AA 1-492), and F-BAR(4) (AA 1-557). (B). (C) Domain structure of human full-
length srGAP1, srGAP2, and srGAP3. Percentages indicate conserved amino acids in the 
sequence of each domain of srGAP1 and srGAP3, compared to the same domain in 
srGAP2. (D) Sequence alignment of F-BARs (1-3). Red asterisks point out a sequence 
specific insertion (AA 197-207) in srGAP2, and red carets denote an insertion (AA493-516) 
in srGAP1. (E-F) Expression of srGAP1-myc, srGAP-GFP, and srGAP3-6xmyc fusion 
proteins (E) and F-BAR-GFP fusion proteins (F) to illustrate proper expression and 
detection of srGAP proteins. The commercially available anti-srGAP1 antibody recognizes 
all three full-length proteins, and therefore was not used for the remainder of the study. 
Untagged srGAP protein bands appear at the same molecular weight in Western blot (data 
not shown). (G) srGAP2 levels in E15.5 cortical neurons cultured for 2 and 4 days in vitro.   
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Figure 3.S2. The F-Actin network is disrupted after cytochalasin-D treatment. 
(A-A”) Control COS7 cell used for FRAP experiments. This cell, transfected with F-BAR(2), 
displays a normal, intact Factin network when stained with phalloidin. (B-B”) Validation of 
F-Actin depolymerization after cytochalasin-D treatment in a COS7 cell used in FRAP 
experiments. 
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Figure 3.S3. Dose-dependent binding of F-BAR(2) to various phosphoinositides. 
(A) PIP array showing lipid-binding specificity of recombinant F-BAR(2) for different 
concentrations of  phosphorylated phosphatidylinositol (PI). (B) Quantification reveals that 
F-BAR(2) strongly binds to singly-phosphorlated species of PI, has intermediate 
association with PI(4,5)P2 and PI, and low affinity for PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P2 
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Figure 3.S4. Model of the functional properties of the F-BAR domains of three srGAP 
family members. 
See text for details. 
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CHAPTER 4 

Rapamycin-induced depletion of PI(4,5)P2 is effective in cell lines, but not in dorsal 
root ganglia neurons in vitro or in vivo1 

 
 
 

4.1 INTRODUCTION  

 Transgenic and knockout mice are useful models for studying the role of genes and 

proteins in vivo; however, constitutive alterations can often lead to off-target effects, as 

many transgenic lines are embryonic or postnatal lethal (Volpicelli-Daley et al., 2010; Kühn 

and Schwenk, 2002).  Conditional transgenic and knockout mice have overcome a lot of 

these problems by targeting the genetic alterations to specific regions or developmental 

timepoints (Kühn and Schwenk, 2002); however, conditional genetic manipulations rely on 

relatively slow changes in transcription. 

 Pharmacological manipulation in cellular signaling is faster than genetic alterations, 

yet often leads to many off-target effects due to non-selective activation of entire signaling 

pathways.  One approach that has been growing in popularity is to take advantage of the 

dimerization-inducing activity of the natural product, rapamycin.  Rapamycin induces the 

dimerization of two naturally occurring protein domains: the FKBP domain of FKBP12, and 

the FRB domain of mTOR (Crabtree and Screiber, 1996). Tagging a protein of interest to 

one of these domains allows for precise spatial and temporal control of cellular signaling 

                                                
1 Jaeda C. Coutinho-Budd, Sam B. Snider, Brendan J. Fitzpatrick, Mark J. Zylka. (2012) Rapamycin-
induced depletion of PI(4,5)P2 is effective in cell lines, but not in dorsal root ganglia neurons in vitro 
or in vivo. In preparation. 
 My direct contribution to this work includes everything in Figures 4.1 through 4.5, and 
indirectly to Figure 4.6.  I did not clone the constructs into pcDNA3.1(+) (Sam Snider), design or 
construct the knockin mice (Sam Snider and Mark Zylka), nor test the mice in behavioral paradigms 
(Brendan Fitzpatrick). 
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when the two proteins are co-expressed in the same cell and treated with rapamycin.  For 

example, this system has been used to activate cell surface receptors to control cell growth 

(Jin et al., 2000) or induce cell death (Spencer et al., 1996), regulate protein localization to 

alter lipid composition of cellular membranes (Suh et al., 2006; Várnai et al., 2006), traffic 

proteins to the nucleus (Xu et al., 2010), or induce GPCR signaling (Putyrski et al., 2011).  

Given that these two rapamycin-binding domains exist endogenously, rapamycin treatment 

can have off-target effects, such as lung toxicity (Chhajed et al., 2000) and teratogenicity 

(Hentges et al., 2001), which are unrelated to the dimerization of the exogenous fusion 

proteins of interest.  Fortunately, there are FRB domain mutations that have minimal 

interaction with rapamycin, and instead interact with rapamycin analogs (rapalogs) that do 

not affect the endogenous mTOR pathway (Liberles et al. 1997; Stankunas et al., 2003; 

Bayle et al., 2006).   

 These proteins have been used to design a system for the depletion of 

phosphatidylinositol (4-5)-bisphosphate (PI(4,5)P2) from the plasma membrane within 10-

20 seconds of rapamycin treatment (Fig. 4.1A; Suh et al., 2006; Várnai et al, 2006).  

PI(4,5)P2 acts as second messenger in a variety of signaling pathways (Berridge and Irvine, 

1984; Majerus et al., 1990; McLaughlin et al., 2002), as well as an important modulator of 

many ion channels (Suh and Hille, 2008).  So far, dimerization-induced depletion of 

PI(4,5)P2 has only been utilized in vitro; however, the use of this system in vivo could shed 

light on how alterations in PI(4,5)P2 effect animal physiology and behavior as a whole. 

 PI(4,5)P2 is a modulator of the heat-sensing ion channel, Transient Receptor 

Potential Vanilloid 1 (TRPV1), having both inhibitory and activating effects depending on 

the concentration of PI(4,5)P2 and the TRPV1 agonist, capsaicin (Lukacs et al., 2007; 

Rohacs, et al., 2008).  Recently, Sowa et al. (2010) found that increased PI(4,5)P2 in the 

dorsal root ganglia (DRG) in vivo leads to enhanced thermosensation, while reduced 

PI(4,5)P2 attenuates thermosensation.  Since this previous study used an indirect approach 
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to reduce PI(4,5)P2, we sought to use rapamycin-induced depletion of PI(4,5)P2 in vivo to 

directly test whether PI(4,5)P2 reduction can attenuate thermal hyperalgesia.   

 In the present study, we adapted the rapamycin-induced PI(4,5)P2 depletion system 

for use in vivo by generating two knockin mice.  The first knockin mouse contains Inp54p, a 

yeast PI(4,5)P2-specific 5-phosphatase, fused to the FKBP domain and venus fluorescent 

protein, expressed in the cytoplasm of a subset of heat-sensing DRG neurons.  The second 

ubiquitously expresses a CFP-tagged FRB domain tethered to the plasma membrane.  To 

avoid possible complications of rapamycin in the endogenous system, we used one of the 

FRB mutants, FRBPLF, that interacts with the rapalog, C20-marap (Bayle et al., 2006).  

When these mice are crossed, both components of the rapamycin-induced PI(4,5)P2 

system are expressed in heat-sensing neurons.  However, here we report that we are 

unable to induce translocation of the FKBP-fused phosphatase to the plasma membrane 

upon rapamycin treatment in these DRG neurons in vivo. 

   

4.2 RESULTS 

4.2.1 Rapamycin-induced dimerization is an effective tool for studying biological 

processes in cell lines 

 Rapamycin-induced translocation is an elegant tool that utilizes the dimerization of 

FRB and FKBP domains in order to promote the translocation of one protein to the location 

of the other. Typically, one of these proteins is targeted to a specific cellular location or 

compartment, and the free protein undergoes translocation.  This technique has been used 

in a variety of studies to allow for precise temporal control of biological manipulations, from 

G-protein sequestration (Putyrski et al., 2011) to depletion of PI(4,5)P2 from the plasma 

membrane (Varnai et al., 2006; Suh et al., 2006).   

 Time-sensitive PI(4,5)P2 depletion is one of the most common examples of this 

biological tool.  Commonly, the FRB domain is tagged to the plasma membrane, and a 
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PI(4,5)P2-specific phosphatase domain is fused to the FKBP domain and localized to the 

cytoplasm prior to rapamycin treatment.  Administration of rapamycin promotes 

dimerization of the FRB and FKBP domains, translocating a P(4,5)P2-specific phosphatase, 

to the plasma membrane where it rapidly hydrolyzes PI(4,5)P2.  To visualize PI(4,5)P2 

reduction at the plasma membrane, a fluorescently-tagged PH domain of PLC∂1 is 

expressed simultaneously, acting as a PI(4,5)P2
  biosensor.  When PI(4,5)P2 levels are high 

in the plasma membrane, the PH domain localizes to the plasma membrane.  After 

depletion by the phosphatase, the PH domain no longer has substrate to bind, and is 

therefore released into the cytoplasm (Fig. 4.1A).  We wanted to take advantage of the 

ability to deplete PI(4,5)P2 to study its role in nociceptive signaling in vivo; however, in order 

to implement this system in mouse models, we needed to ensure that our knockin protein 

constructs expressed and functioned as previously reported.  Our constructs recapitulated 

the results of other studies: prior to rapamycin application, the CFP-tagged FRBPLF domain 

localized to the plasma membrane with the membrane-binding motif of GAP43 (Fig. 4.1B-I, 

1C), the Venus-tagged FKBP domain fused to the yeast PI(4,5)P2-specific phosphatase, 

Inp54p, successfully expressed in the cytoplasm (Fig. 4.1B-ii, 1C), and the PH domain of 

PLC∂1 bound to the PI(4,5)P2-rich plasma membrane (Fig. 4.1B-iii, 1C).  After rapamycin, 

there is no change in membrane localization of the FRBPLF domain (Fig. 4,1B-iv, 1C), but 

the Inp54p phosphatase translocated to the plasma membrane (Fig. 4.1B-v, 1C), where it 

successfully depleted PI(4,5)P2 and caused the translocation of the PH domain to the 

cytoplasm (Fig. 4.1B-vi, 1C).  We found these constructs work as expected to deplete 

PI(4,5)P2 in a number of cell lines, including in HEK293 cells (Fig. 1B), Rat1 Fibroblasts, 

Hela Cells, and COS7 cells (data not shown).   

4.2.2 Construction of two mouse lines to study rapamycin-induced PI(4,5)P2 

depletion In thermal sensitivity in vivo 

 To adapt this system for use in vivo, we engineered two separate knockin mouse 
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lines, each expressing half of the translocation machinery.  Dorsal root ganglia (DRG) are 

comprised of genetically distinct subtypes of nociceptive neurons that respond to different 

stimuli, such as thermal (CGRP+ neurons) or mechanical (MrgD/IB4+ neurons) pain 

(Cavanaugh et al., 2009; Wang and Zylka, 2009).  The discrete genetic identities allow for 

specific manipulation of individual pain circuits in vivo.  To test the hypothesis that PI(4,5)P2 

depletion attenuates thermal sensitivity, we targeted the Venus-FKBP-Inp54p construct to 

CGRP-expressing neurons.  Heterozygous and homozygous CGRP-Inp54p mice are viable 

and capable of producing offspring.  Using immunohistochemistry, we found that the venus-

FKBP-Inp54p protein was successfully targeted to CGRP-expressing neurons, colocalizing 

with 87.9% of neurons stained with an anti-CGRP antibody (Fig. 4.2A). In contrast, Venus 

expression was found in 3.7% of an alternative subset of small nociceptive neurons, 

marked by binding of Isolectin B4 (IB4)-binding neurons (Fig. 4.2B), consistent with the 

limited overlap between CGRP and IB4 markers. 

 The Rosa26 locus ubiquitously drives expression in all cell types (Stirling et al., 

2005), including DRG.  This locus was used to express the CFP-tagged FRBPLF domain at 

the plasma membrane, using the double palmitoylated membrane-targeting motif of 

GAP43.  This knockin also uses the CAG promoter to drive expression, rather than the 

endogenous Rosa26 promoter alone.  As expected, the anti-GFP antibody staining 

revealed expression of the CFP-tagged FRBPLF domain at the plasma membrane of 

approximately 99% of DRG neurons (Fig. 4.2C).  As with the CGRP-Inp54p mice, the 

Rosa-FRBPLF heterozygous and homozygous mice are viable and successful breeders.   

4.2.3 Injection of rapamycin does not induce translocaion of Venus-FKBP-Inp54p 

from the cytoplasm to the plasma membrane in DRG neurons 

 Rapamycin has been administered in vivo in animal models, and has been shown to 

have antinociceptive effects (Xu et al., 2011, Géranton et al., 2009).  Moreover, these 

properties have been attributed to a direct effect on DRG neurons when administered 
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intrathecally (Géranton et al., 2009).  Rosa-FRBPLF/CGRP-Inp54p or CGRP-Inp54p 

heterozygous mice received two rounds of two rapamycin injections, one intrathecal (IT) 

injection and one intraperitoneal (IP) injection, to ensure that the DRG could be reached 

from both central and peripheral sources.  All mice tested received the rapamycin 

injections; however, mice lacking the FRBPLF domain at the plasma membrane (CGRP-

Inp54p heterozygotes) were used as no-translocation controls (Fig 4.3A).  Injection of 

rapamycin did not induce obvious translocation of Venus-FKBP-Inp54p from the cytoplasm 

to the plasma membrane in double heterozygous mice (Fig. 4.3B). There is no significant 

difference between membrane to cytoplasmic ratio of venus-FKBP-Inp54p in either the 

control or double heterozygous mice post-rapamycin injection (Fig. 4.3C).  Treatment of 

these neurons with rapamycin in dissociated culture also failed to induced translocation 

(data not shown). 

4.2.4 Expression of Inp54p in CGRP+ neurons leads to basal depletion of PI(4,5)P2 in 

cultured DRG neurons 

 The 5-ptase domain of Inp54p is expected to be constitutively active (Nebl et al., 

2000).  Although the venus-FKBP-Inp54p protein is expressed in the cytoplasm, it is not 

specifically excluded from the plasma membrane, and therefore can likely interact with, and 

hydrolyze, PI(4,5)P2 without rapamycin-induced translocation.  To test this hypothesis, we 

examined basal levels of PI(4,5)P2 in dissociated neurons of CGRP-Inp54p neurons.  Given 

that phosphoinositide concentrations vary with cell type (Insall and Weiner, 2001), we 

wanted to ensure that we focused on CGRP+ neurons in both the venus-FKBP-Inp54p and 

control conditions.  We therefore utilized another mouse line constructed in the lab, which 

expresses farnesylated EGFP in CGRP+ neurons (McCoy et al., manuscript submitted, 

2012).   

 Comparison of PI(4,5)P2 levels using an anti-PI(4,5)P2 antibody revealed a 

reduction in PI(4,5)P2 in the plasma membrane for CGRP-Inp54p neurons compared to 
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CGRP-GFP controls (Fig. 4.4A, quantified in Fig. 4.4B). This led to the hypothesis that 

PI(4,5)P2-regulated signaling would be reduced in these mice as well.  Many studies have 

shown that activity of the noxious heat-sensing channel, TRPV1, is modulated by the levels 

of PI(4,5)P2 at the plasma membrane (Sowa et al., 2010, Lusaks et al., 2007; Rohacs et al., 

2008).   Using calcium mobility as a readout for ligand-evoked response, we treated both 

sets of neurons with the TRPV1 agonist, capsaicin.  As expected from the reduced levels of 

PI(4,5)P2 at the plasma membrane of CGRP-Inp54p neurons, capsaicin-evoked neuronal 

response is reduced in CGRP-Inp54p neurons compared to CGRP-GFP controls (Fig. 

4.4C).   

 To determine if the diminished capsaicin-evoked signaling was due to PI(4,5)P2 

reduction, we sought to replenish PI(4,5)P2 levels in dissociated neurons prior to imaging.  

Pre-incubation with PI(4,5)P2 did not rescue signaling in CGRP-Inp54p neurons compared 

to CGRP-Inp54p neurons treated with carrier alone (Fig. 4.5A).  In contrast, PI(4,5)P2 add-

back significantly decreased signaling.  The decreased signaling and inability to rescue cell 

signaling with PI(4,5)P2 could, therefore, be due to deleterious effects on cell health.  One 

consequence of chronic PI(4,5)P2 depletion is the activation of cleaved caspase-3 (Azuma 

et al., 2000), a marker of apoptosis.  We found that in cultured neurons, Venus-FKBP-

Inp54p-expressing neurons had a higher prevalence of cleaved caspase-3 staining, 

compared to farnesylated GFP-expressing neurons (Fig. 4.5B), with 1.1% of neurons 

expressing cleaved capsase-3 expression in CGRP-GFP neurons (n=44), and 10% in 

CGRP-Inp54p neurons (n=42).  When cultured with NGF to increase CGRP expression, 

and therefore knockin protein expression, this percentage increased to 38.9% in venus-

FKBP-Inp54p-expressing neurons (n=64), but was unchanged in CGRP-GFP control 

neurons (n=46).  However, expression of cleaved caspase-3 was not the same in vivo (Fig. 

4.5C).  DRG sections from perfused animals revealed 9 out of 182 neurons with overlap of 

cleaved caspase-3 expression in CGRP-GFP neurons, and only 2 out of 282 in CGRP-
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Inp54p neurons.  This result suggested that in vivo data might be more telling than results 

from dissociated neurons.   

4.2.5 Expression of Inp54p in CGRP+ neurons does not affect behavior in vivo 

 To directly assess whether the expression of venus-FKBP-Inp54p in CGRP neurons 

would elicit a behavioral phenotype in vivo, we probed CGRP-Inp54p heterozygous mice 

and wildtype littermates for thermal and mechanical sensitivity.  Mice were tested for 

baseline responses, injected with complete Freund’s adjuvant (CFA) into the left hind paw 

to inflame and sensitize the paw, and then tested for nociceptive response on subsequent 

days.  CGRP+ neurons are partially responsible for thermal sensation (Salmon et al., 1999; 

Zhang et al., 2001), so we would expect to see a difference in thermal sensitivity, while 

mechanical sensitivity should remain at wildtype levels.  There was no difference between 

genotypes in the paw size after CFA injection (Fig. 4.6A). Moreover, CGRP-Inp54p 

responses to both mechanical (Fig. 4.6B) and thermal (Fig. 4.6C) pain stimuli matched 

those of wildtype controls before or after CFA sensitization.  These results confirm that 

even if the venus-FKBP-Inp54p construct does reduce PI(4,5)P2 in vivo prior to rapamycin 

treatment, it is not enough to cause a behavioral response.  It will therefore be necessary to 

test double heterozygous mice injected with rapamycin, and repeat with the same 

behavioral assays to assess whether rapamycin can enhance PI(4,5)P2 depletion enough 

to cause reduction in thermosensitivity. 

4.3 DISCUSSION 

 We have successfully constructed viable transgenic mice that express the 

components for rapamycin-inducible PI(4,5)P2 depletion in vivo.  Each mouse expresses its 

respective knockin protein in the correctly targeted neurons; however, the rapamycin-

induction machinery proteins fail to function as intended.  We cannot visualize rapamycin-

induced translocation in vivo, and although we see effects related to PI(4,5)P2 depletion in 

cultured dissociated DRG neurons, these effects do not appear to recapitulate the in vivo 
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environment.   

 In working with cell line transfection of the FRB, FKBP-Inp54p, and PH constructs, it 

became apparent that the ratio between the three proteins varied highly between cells.  

Cells that lacked enough of one component, or had too much of another, failed to undergo 

rapamycin-induced translocation.  In an attempt to configure the chemically induced 

dimerization system for use in a wider variety of organelles, since many of the previously 

used rapamycin-induced dimerization experiments have focused targeting proteins to the 

plasma membrane (Spencer et al., 1996; Jin et al., 2000; Putyrski et al., 2011; Suh et al., 

2006; Várnai et al., 2006) or endosomes (Fili et al., 2006), Komatsu et al. (2010) found that 

slight alterations in these protein ratios would change the extent and effectiveness of 

translocation.  While troubleshooting these experiments, the authors found that each 

organelle varied slightly in its preferred expression ratio necessary to induce proper 

translocation.  Many times, protein stability was one of the key factors for lack of 

effectiveness, and proteins had to be reconstructed in order to optimize this factor. 

 The FRB domain mutation used in our Rosa-FRB mouse consists of three point 

mutations: K2095P, T2098L, and W2101F.  The W2101F mutation is necessary for 

interaction with the rapalog, C20-marap (Bayle et al., 2006), and the T2098L mutation is 

responsible for protein destabilization (Stankunas et al., 2003; Stankunas et al., 2007).  

Moreover, this destabilization is extended to proteins fused to the FRBPLF mutant, such as 

fluorescently-tagged FRBPLF.  This destabilization is reversed within 24 hours of rapamycin 

treatment, as the FKBP-FRBPLF complex stabilizes the FRBPLF protein.  Two possibilities 

arise from this: a) degradation of CFP-FRBPLF interrupts the FRB to FKBP ratio, inhibiting 

translocation, or b) translocation is possible 24 hours after rapamycin or rapalog treatment.  

However, this is not the only factor that might interfere with venus-FKBP-Inp54p 

translocation in our system.  FKBP12 has been shown to depalmitoylate H-Ras at the 

plasma membrane (Ahearn et al., 2011).  The membrane-targeting motif of GAP43 used to 
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anchor FRBPLF to the plasma membrane in our mice consists of two palmitoylated cysteines 

(Cys3 and Cys4).  It is possible that the FKBP domain of FKBP12 tagged to our transgenic 

protein is basally depalmitoylating the CFP-tagged FRBPLF domain throughout gestation 

and the life of the animal, thereby downregulating its expression at the plasma membrane 

and disrupting the proper translocation ratio.  Additionally, we have shown that the Inp54p 

knockin protein has the ability to reduce PI(4,5)P2 levels without rapamycin-induced 

translocation in cultured DRG neurons (Fig. 4.4A-B).  Heo et al. (2006) demonstrated that 

palmitoylation motifs are partially dependent on PI(4,5)P2 for membrane binding.  The 

authors also show a dependence on PI(3,4,5)P2 for proper palmyitoyl-targeting, and we do 

not know the effect of constitutive Inp54p expression on PI(3,4,5)P2 levels in our CGRP-

Inp54p knockin mice.  It is possible that due to a combination of any or all of these factors, 

the ratio of FRBPLF to FKBP is unsuitable for translocation. 

 Few reports of in vivo application of this chemically-induced dimerization system 

exist.  The only transgenic study of rapamycin-induced dimerization in vivo come from 

Stankunas et al. (2003), and in this case they merely focused on dimerization to induce the 

stabilization of cytoplasmically localized FRBPLF-fusion proteins to cytoplasmically localized 

FKBP12.  One study successfully used a similar system for transgenic mice in vivo 

(Karpova et al., 2005), but the authors used a rapamycin-independent FKBP-

homodimerization system, obtained from Clontech.  Furthermore, all experiments involving 

FKBP-FRB dimerization were carried out with short-term electroporation.  It is possible that 

rapamycin-induced heterodimerization is not suitable for in vivo function.   

 Overexpression of Inp54p in neurons is not trivial (personal experience; Angela 

Mabb, personal communication, 2011), and when finally expressed can cause toxic side 

effects  (Scott Soderling, personal communication, 2011).  Its constitutive activation in cell 

lines can lead to loss of cell adhesion, membrane blebbing, and ultimately cell death 

(Raucher et al., 2000; Azuma et al. 2000).  It is possible that the reason we see increased 
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apoptosis in CGRP-Inp54p neurons in culture is that the long-term expression of Inp54p 

compromises neuronal health, which is aggravated further in the dissociation and culture 

process.  It is likely that we do not see markers of cell death in sectioned DRG because of 

environmental factors that compensate for the increased cell stress in the intact animal.  

However, few studies have successfully reported the use of the rapamycin-induced Inp54p 

translocation to deplete PI(4,5)P2 in neurons.  Further studies from one of the original 

groups to describe this rapamycin-induced PI(4,5)P2 depletion (Suh et al., 2006) have 

focused the effect of PI(4,5)P2 depletion on high-voltage calcium channels, Cav1.2 and 

Cav1.3.  Suh et al. (2010) show that diC8-PIP2, a synthetic PI(4,5)P2, can rescue calcium 

current suppression after PI(4,5)P2 depletion in sympathetic neurons.  Interestingly, they 

only report use of the rapamycin-induced Inp54p-mediated depletion of PI(4,5)P2 in cell 

lines.  In contrast, they use a voltage-activated 5-phosphatase to deplete PI(4,5)P2 in 

neurons.  To my knowledge, only one study has used this rapamycin-inducible Inp54p 

method to deplete PI(4,5)P2 in neurons.  Chen et al. (2011) show that GRK5, a G-protein 

couple receptor kinase, promotes the bundling of F-actin in a PI(4,5)P2-dependent manner.  

They arrive at this conclusion by transfecting GRK5, the membrane-associated Lyn-FRB, 

and CFP-Inp54p or its phosphatase-dead mutation, into cultured hippocampal neurons.  

After rapamycin treatment, there is reduced filopodial motility in neurons transfected with 

Inp54p, but not its phosphatase-dead counterpart; however, they do not show 

translocation, nor do they demonstrate these conditions prior to rapamycin treatment.  It is 

possible that there is reduced motility due to expression of the wildtype Inp54p alone.   An 

alternative explanation for the difference between our system and that used by Chen et al. 

(2011), besides the short-term transfection versus lifetime expression, is the use of central 

hippocampal neurons versus our focus on peripheral DRG neurons.  There are known 

differences between central and peripheral neurons, such as the ability to regenerate after 

injury (Fenrich and Gordon, 2004).  It is possible that certain molecular mechanisms allow 
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for the use of rapamycin-induced translocation in neurons of the central nervous system.  

Taken together, it seems that current limitations prevent the application of rapamycin-

induced PI(4,5)P2 depletion in vivo; however, future studies might reveal the molecular 

mechanisms necessary to make this possible. 

 

4.4 MATERIALS AND METHODS 

 All procedures and behavioral experiments involving vertebrate animals were 

approved by the Institutional Animal Care and Use Committee at the University of North 

Carolina at Chapel Hill. 

4.4.1 DNA plasmid constructs 

 Constructs for rapamycin-induced PI(4,5)P2 depletion in HEK293 cells were 

obtained from Ken Mackie (University of Indiana), Tamas Balla (NICHD, Bethesda, MD 

USA) and Tobias Meyer (Stanford, Stanford, CA USA).  The RFP-tagged PH domain of rat 

PLC∂1 was a kind gift from Ken Mackie.  The CFP-tagged FRB domain was tethered to the 

plasma membrane using the first 20 amino acids of the human GAP43, as described in 

Vårnai et al. (2006), was obtained from Tamas Balla, and subcloned cloned into 

pcDNA3.1(+).  The FKBP-Inp54p PI(4,5)P2 phosphatase construct was donated by Tobias 

Meyer, subcloned into pcDNA3.1(+), and modified with a venus fluorescent protein tag. 

4.4.2 Cell culture and live-imaging 

 HEK293 cells were grown on glass bottom cell culture dishes (MatTek; P35G-0-10-

C) in Dulbecco’s Modified Eagle Medium (DMEM, Sigma) supplemented with 10% fetal 

bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin.  Cells were transfected with 

4 µl Lipofectamine 2000 (Invitrogen) and 1 µg total DNA per culture dish in Opti-MEM 

(Gibco) for two hours, at which point media was replaced with the supplemented DMEM.  

After 16-24 hours, supplemented DMEM was replaced with Hank’s Balanced Salt Solution 

(HBSS Gibco 14025, supplemented with 9 mM HEPES, 11 mM D-glucose, 0.1% fatty-acid 
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free BSA, pH 7.3) warmed to 37º C.  After baseline imaging, HBSS was replaced with 

HBSS containing 1 µM rapamycin (Calbiochem).  Each plate was imaged on a Leica TCS 

confocal microscope using a 40x objective, and maintained at 37º C throughout the 

imaging session using a heated stage attachment.  Cells were treated for 10 minutes, at 

which point a final post-rapamycin image was taken.  Membrane to cytoplasm ratio in pre- 

and post-ramapycin-treated cells was measured in cells expressing all three constructs, 

using NIH ImageJ software. 

4.4.3 Generation of FRBPLF-CFP and Venus-FKBP-Inp54p knockin mice 

 The GAP43-FRBPLF-CFP construct containing three point mutations of the FRB 

domain (K2095P, T2098L, and W2101F) was subcloned into the Rosa26 targeting 

construct.  This insert was placed under the control of the CAG promoter, and the entire 

CAG-GAP43-FRBPLF-CFP insert was followed by a self-excising neomycin resistance 

cassette (ACN, Bunting et al., 1999). CGRP targeting was accomplished by 

recombineering of Calca targeting arms from a C57BL/6-derived bacterial artificial 

chromosome (BAC; RP24-136021).  The start codon, located in exon 2, is common to 

CGRPα and calcitonin and was replaced with an AscI site to facilitate cloning.  The Venus-

FKBP-Inp54p construct described above was subcloned into this CGRP targeting 

construct, without an external promoter, but with the ACN cassette. Successful targeting of 

embryonic stem cells (E14) by homologous recombination was identified with Southern blot 

hybridization, using probes that flanked the 5’ and 3’ arms of the targeting constructs, as 

well as an internal neomycin probe.  Chimeric mice were produced by blastocyst injection, 

and mated to C57BL/6 mice to establish the line.  CGRP-GFP mice were generated as 

described in McCoy et al. (Submitted, February 2012), and used as controls. 

 Transgenic mice were identified by PCR amplification of genomic DNA with specific 

primers. CGRP2 (5’ CAGCTCCCTGGCTTTCATCTGC), CGRP (5’ 

AAATGTCGGGGAGTCACAGGC), and EGFP2 (5’ CCGTAGGTCAGGGTGGTCACGAGG) 
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were used to evaluate wildtype and/or knockin bands for CGRP knockin mice.  Internal 

CFP primers (5’ CGATGAGATGTGGCATGAAGG and 5’ 

CCGTCGTCCTTGAAGAAGATGG) were used to detect the presence of the Rosa-FRBPLF-

CFP knockin allele. 

4.4.4 Neuronal dissociation and imaging 

 Male CGRP-Inp54p, Rosa-FRBPLF/CGRP-Inp54p, and CGRP-GFP control mice (3-4 

weeks old) were decapitated without anesthesia, the DRG were dissected into 4º C Hank’s 

Balanced Salt Solution (HBSS; Gibco,14175-095), and dissociated using collagenase (1 

mg/mL; Worthington, CLS1) and dispase (5 mg/mL; Gibco, 17105-041) dissolved in HBSS.  

Neurons were plated in Neurobasal-A medium (Invitrogen, 10888022), supplemented with 

B-27 Supplement (Gibco, 17504-044), L-glutamine (Gibco, 25030-081), and penicillin-

streptomycin (Gibco, 15140-122).  In some cases, 50 ng/ml nerve growth factor (NGF) was 

added to the plating media to enhance CGRP expression.  The neurons were plated onto 

coverslips coated with 0.1 mg/mL poly-D-lysine (Sigma P0899) and 5 µg/mL laminin 

(Sigma, L2020).   

 Rapamycin treatment and imaging for dissociated neuronal cultures was carried out 

identically to the imaging procedures described for HEK293 cells above.  For calcium 

imaging, neurons (24 hours in vitro) were washed with assay buffer (HBSS Gibco 14025, 

supplemented with 9 mM HEPES, 11 mM D-glucose, 0.1% fatty-acid free BSA, pH 7.3) and 

incubated for 1 h with 2 µM Fura2-AM (Invitrogen, F1221) with 0.2% pluronic (Invitrogen 

P3000-MP) in assay buffer in the dark at room temperature.  The neurons were then 

washed with assay buffer and allowed to equilibrate at room temperature for 30 minutes 

prior to imaging.  After a 120 seconds baseline perfusion of assay buffer, 1 µM capsaicin 

was washed onto the neurons for 30 seconds, at which point HBSS perfusion resumed to 

wash off the agonist, followed by treatment of 100 µM KCl to distinguish neurons from other 

cell types present.  PI(4,5)P2 rescue was prepared according to manufacturer instructions 
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(Echelon Bioscience Inc.), and performed by pre-incubating 10 µM carrier and 10 µM 

PI(4,5)P2, or 10 µM carrier alone, for 15 minutes prior to calcium imaging. Images were 

acquired on a Nikon Eclipse Ti microscope (Nikon, Melville, NY).  Venus+ neurons were 

identified by 500 ms exposure with a FITC filter.   

4.4.5 Immunohistochemistry 

 Male mice 4-6 weeks were injected intraperitoneally with pentobarbital, and 

perfused wth 4% PFA in 0.1 M phosphate buffer, pH 7.4.  Lumbar DRG (L2-L6) were 

dissected and post-fixed for 2 hours in 4% PFA. The DRG were subsequently 

cryoprotected in 30% sucrose, 0.1 M phosphate buffer, pH 7.3 at 4° C for 24 h, frozen in 

OCT TissueTek, cryosectioned at 20 µm, mounted on Superfrost Plus slides, and stored at 

-20º C until use.    

 Tissue was rehydrated and washed in PBS to remove OCT embedding compound, 

permeablized and blocked in TBS-Tx (0.05 M Tris, 2.7% NaCl, 0.3% Triton-X 100, pH 7.6) 

containing 10% normal goat serum (NGS) for 1 hr at room temperature.  Sections were 

incubated overnight at 4° C with primary antibodies in TBS-Tx/10%NGS, washed, 

incubated at room temperature for 2 hours with secondary antibodies in TBS-Tx/10%NGS, 

washed, and mounted with Fluorogel (Biomeda).  Primary antibodies used were chicken 

anti-GFP (1:500; Aves Labs, GFP-1020), rabbit anti-CGRP (1:750; Peninsula, T-4032), 

mouse anti-NeuN (1:200, Millipore), and rabbit anti-cleaved caspase-3 (1:200, Cell 

Signaling) in TBS-Tx/10% NGS.  Secondary antibodies include goat anti-chicken Alexafluor 

488 (1:2000, Invitrogen), goat anti-Rabbit Alexafluor 633 (1:2000, Invitrogen), and goat 

anti-mouse Alexafluor 633 (1:2000, Invitrogen). 

 Dissociated neuronal cultures were prepared as described above, and fixed at 24 

hours in vitro with 4% PFA warmed to 37º C for 30 min.  Neurons were washed with TBS to 

remove fixative, and then stained according to the Echelon PIP staining protocol (Echelon 

Bioscience Inc.).  Briefly, cells were blocked with TBS containing 10% NGS for 30 min at 
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37º C, then incubated with primary antibodies (biotinylated mouse anti-PI(4,5)P2 (1:100, 

Echelon Bioscience Inc) and chicken anti-GFP (1:500, Aves Labs), diluted in TBS) at 37º C 

for 1 hour, washed with TBS containing 1% NGS, incubated in secondary antibody 

(Streptavidin AlexaFluor 647 (1:2000, Invitrogen) and goat anti-chicken Alexafluor 488 

(1:2000, Invitrogen)) for 1 hr at 37º C, washed in TBS, and mounted with Fluorogel. 

4.4.6 Drug administration 

 Mice that were either heterozygous for both Rosa-FRBPLF and CGRP-Inp54p, or 

CGRP-Inp54p heterozygous alone, received four injections of rapamycin.  All mice received 

two sets of two injections: one intrathecal injection of 1 nmol rapamycin per 5 µl, and one 

intraperitoneal injection of 5 µg/g.  Each pair of injections was administered two hours 

apart.  Mice were perfused and dissected, as described above, 30 minutes after the second 

round of injections. 

4.4.7 Behavior 

 Male 3- to 4-month-old CGRP-Inp54p+/- and WT littermate mice were acclimated to 

the testing apparatuses and experimenter for 2 days prior to testing.  The experimenter was 

blind to genotype throughout the experiment.  Baseline thermal and mechanical sensitivity 

were tested using a Hargreaves and Von Frey apparatuses, respectively, prior to 

intraplantar injection with complete Freund’s adjuvant (CFA) into the left hindpaw, and 

behavioral testing on subsequent days, as described previously (Zylka et al., 2008).
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4.5 FIGURES AND LEGENDS 

 

 

 

 
Figure 4.1. Rapamycin-induced translocation effectively allows for PI(4,5)P2 
reduction in HEK293 cells.  
A) Schematic of rapamycin-induced translocation components and mechanism.  Prior to 
rapamycin treatment, the CFP-fused FRBPLF domain of mTOR is tagged to the plasma 
membrane with the membrane-targetting motif of GAP43, and the venus-tagged FKBP-
Inp54p fusion protein is cytoplasmically localized.  The PH domain of PLC∂1 acts as a 
biosensor, and binds PI(4,5)P2 in the plasma membrane.  After rapamycin treatment, the 
FKBP domain dimerizes with the FRBPLF domain, translocating the FKBP-Inp54p fusion 
protein to the plasma membrane, where the Inp54p phosphatase hydrolyzes PI(4,5)P2, 
releasing the PH domain to the cytoplasm. B) Expression in HEK293 cells reveals that 
before rapamycin treatment, the FRBPLF-CFP protein (i), Venus-FKBP-Inp54p fusion (ii), 
and the RFP-tagged PH domain of PLC∂1 (iii) are properly localized.  Application of 
rapamycin causes translocation of the venus-FKBP-Inp54p protein to the plasma 
membrane (v), where the proximity of the yeast phosphatase, Inp54p, hydrolyzes PI(4,5)P2, 
causing a release of the PH domain (vi) to plasma membrane.  C) Quantification of 
translocation in HEK293 cells. **p>0.005 compared to pre-rapamycin condition, n=20 cells. 
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Figure 4.2.  Both knockin mouse lines express the correct protein in the appropriate 
DRG neurons.  
A-B) Venus-FKBP-Inp54p shares 87.9% colocalization with anti-CGRP staining in 
sectioned DRG, but only 3.7% overlap with IB4+ neurons (B).  The Venus-FKBP-Inp54p is 
confined to cell bodies, with little staining in processes. C) FRBPLF-CFP is expressed at the 
plasma membrane of 99% of neurons in the DRG.  FRBPLF-CFP expression is excluded 
from the cytoplasm, and is strong throughout the neuronal processes.  n>500 neurons 
counted from 5 DRG sections from two animals per condition. 
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Figure 4.3. Rapamycin does not induce translocation in double heterozygotic mice in 
vivo.  
A) DRG section from a CGRP-Inp54p heterozygous mouse injected with rapamycin (top), 
and a Rosa-FRBPLF/CGRP-Inp54p double heterozygous mouse injected with rapamycin 
(bottom).  Both mice received two rounds of IP (5 µg/g) and IT (1 nmol/5 µl) injections, 2 
hours apart, and were sacrificed after the second around of injections.  B) Quantification of 
translocation.  There is no difference in the membrane to cytoplasmic ratio of Venus-FKBP-
Inp54p in FRBPLF-expressing neurons compared to neurons lacking FRBPLF-expression. 
FRBPLF domain ratio is included to demonstrate membrane localization. n=neurons per 
condition, included in bar graph. 
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Figure 4.4.  PI(4,5)P2 is depleted in CGRP-Inp54p knockin neurons.   
A) Anti-PI(4,5)P2 staining is reduced in venus-FKBP-Inp54p-expressing neurons compared 
to CGRP-GFP control neurons.  B) Quantification of PI(4,5)P2 antibody staining reveals 
that, on average, PI(4,5)P2 levels are reduced by approximately 50% in CGRP-Inp54p 
dissociated neurons compared to neurons from CGRP-GFP control mice.  C)  
Quantification of 2’ area under the curve (AUC) of a calcium trace of 1 µM capsaicin-treated 
dissociated neurons reveals decreased calcium signaling in CGRP-Inp54p neurons 
compared to CGRP-GFP controls.  n = number of neurons, depicted as white numbers in 
each bar of B and C). ***p<0.0001 
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Figure 4.5.  PI(4,5)P2 add-back does not rescue deficits in calcium signaling in CGRP-
Inp54p neurons. Deficits in calcium signaling are most likely due to poor cell heath 
in vitro.   
A) Addition of 10 µM PI(4,5)P2 does not rescue capsaicin-evoked calcium imaging in 
dissociated CGRP-Inp54p neurons, but in fact, decreases it compared to control treatment 
with carrier alone. n = number of neurons, depicted as white numbers in bar graph. 
*p<0.05.  B) Anti-cleaved caspase-3 staining, a marker for apoptosis, reveals higher 
expression in CGRP-Inp54p dissociated neurons compared to CGRP-GFP controls.  C)  
However, this difference is not found in DRG sections from perfused animals, suggesting 
that cell health is not compromised in these neurons in vivo. 
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Figure 4.6. Expression of Venus-FKBP-Inp54p in heat-sensing CGRP neurons is not 
sufficient for reduced thermal sensitivity in vivo.  
A) CGRP-Inp54p mice show normal inflammatory response to intraplantar injection of CFA.  
B-C) There is no statistical difference in response between CGRP-Inp54p mice and 
wildtype littermates in response to thermal (B) or mechanical (C) stimuli before or after CFA 
sensitization. n = 12 mice per genotype. 
 



 

139 

 
CHAPTER 5 

DISCUSSION 

5.1 Summary of findings 

 Overall, this work focused on how alterations to the plasma membrane result in 

functional changes to the cell as a whole.  These alterations included both physical 

perturbations with membrane-deforming BAR domains for the srGAP family (chapters 2 

and 3), and compositional changes by chemically-inducting the depletion of the 

phospholipid, PI(4,5)P2 (chapter 4).  This work emphasizes the importance of proper 

regulation of the plasma membrane to maintain a functional cell. 

 Chapter 2 focused on the functional consequences of altered plasma membrane 

curvature during cortical neuron development.  Overexpression of srGAP2 in cortical 

neurons induced filopodia-like membrane protrusions, leading to a greater number of 

neurites, as well as enhanced neurite branching. These phenotypes were reduced in 

neurons lacking srGAP2.  In fact, any srGAP2 construct containing a full-length F-BAR 

domain (not srGAP2ΔF-BAR or F-BARΔ49) was sufficient to enhance neurite number. 

Additionally, there was an inverse relationship between filopodia/branching and neuronal 

migration.  Neurons expressing exogenous srGAP2 showed inhibited migration, while 

shRNA-knockdown of srGAP2 resulted in increased migration. Interestingly, a point 

mutation rendering the SH3 domain incapable of binding other proteins was sufficient to 

reduce neurite branching and neuronal migration, while the complete lack of the C-terminus 

of srGAP2 (including the SH3 domain) restored the ability to inhibit neurite branching and 

cortical migration.  These seemingly contradictory results suggested a model of 



 

140 

autoinhibitory regulation of full-length srGAP2, wherein srGAP2 exists in a closed 

conformation until the binding of its SH3 domain to another protein.  This SH3-mediated 

binding could interfere with the intramolecular binding of srGAP2, which would induce a 

conformational change the protein and allow its F-BAR domain to dimerize, bind 

membrane, and induce membrane protrusions.  Overall, this work illustrated that the 

protrusion-inducing activity and functional effects were phenocopied by the F-BAR domain 

alone, suggesting that the F-BAR domain of srGAP2 serves as the driving force behind 

srGAP2 function.   

 The work presented in chapter 3 further explored F-BAR domains of the srGAP 

family by investigating the similarities and differences in membrane-binding and curvature-

induction between the F-BAR domains of srGAP1, srGAP2, and srGAP3 (F-BAR(1), F-

BAR(2), and F-BAR(3), respectively).  Most reviews and reports had previously grouped 

the three srGAP proteins into one functionally indistinct family.  The work in chapter 3 

demonstrated that the srGAP2 more potently induced filopodia-like membrane protrusions 

in non-neuronal cells than srGAP1 or srGAP3.  Moreover, the protrusion formation of the 

three F-BAR domains mimicked their full-length counterparts; therefore, we restricted our 

investigation to the F-BAR domains alone, and delved into their functional and molecular 

differences of these srGAP family F-BAR domains.  As previously described in chapter 2, 

F-BAR(2) potently induces filopodia-like protrusions.  Alternatively, F-BAR(1) and F-BAR(3) 

are much less effective at producing filopodia-like membrane protrusions in non-neuronal 

cells; however the function of F-BAR(3) was more similar to F-BAR(2) in cortical neurons.  

In contrast, F-BAR(1) seemed to restrict membrane dynamics and, therefore, inhibit the 

induction of filopodia-like protrusions.  Moreover, this work revealed that these F-BAR 

domains are capable of interacting, suggesting a collaboration among the three srGAP 

proteins in the regulation of membrane curvature.   

 Chapter 4 deviates from membrane curvature in order to study the effect of altering 
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the lipid composition of the plasma membrane on cellular signaling.  The work presented in 

chapter 4 describes the attempt to deplete PI(4,5)P2 from the plasma membrane of pain-

sensing neurons using rapamycin-induced dimerization in vivo, and puts forth some of the 

challenges encountered in doing so.  Rapamycin-induced PI(4,5)P2 depletion worked well 

in transfected cell lines (Fig. 3.5 and Fig. 4.1), however, our attempt to implement this 

system in vivo was not successful.  While mice expressing the dimerization machinery were 

viable, there was no translocation of the FKBP-fused PI(4,5)P2 phosphatase, Inp54p, upon 

rapamycin treatment.  There are a number of possible explanations for the hindrance of the 

adaptation of this approach in vivo, many of which are discussed in chapter 4.   

 

5.2 srGAP2 in neuronal morphology  

 srGAP2 was the first F-BAR containing protein to show direct involvement in 

neuronal morphogenesis and migration.  Since the publication of the work in chapter 2, 

much more evidence for the role of membrane deformation in neuronal morphology has 

surfaced.  Syndapin I has been linked to neurite outgrowth in the hippocampus; however, in 

contrast to the results of our work with srGAP2, the SH3 domain of syndapin I was found to 

be most important for its activity (Dharmalingam et al., 2009).  Interestingly, the authors put 

forth that its F-BAR domain merely serves as a way to target the SH3 domain to the plasma 

membrane, as membrane-targetted SH3 domain phenocopied the neurite induction seen 

with the full-length protein.  Unlike srGAP2, this activity was not directly due to membrane 

deformation of the F-BAR domain, but rather the ability of syndapin I to bind and activate N-

WASP.  Another F-BAR protein, Toca-1, has been implicated in neurite development 

through its ability to bind N-WASP as well (Kakimoto et al., 2006).  FBP17 has been shown 

to induce spine formation, and while the authors showed that the ability to bind the plasma 

mebrane was necessary for spine formation, they did not show whether this activity could 

be induced by its F-BAR domain alone.  These data suggest that while many F-BAR 
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domain-containing proteins play a role in neurite development, it is not necessarily a direct 

result of membrane deformation.  Recently, srGAP3 has been shown to play a role in spine 

formation, due to the activity of its F-BAR domain (Carlson et al., 2011).  The F-BAR 

domain of srGAP3 was shown to be important for early spinogenesis, and could 

compensate for loss of srGAP3.  Interestingly, knockdown of srGAP3 resulted in reduction 

of mature mushroom-like spines, and an increase in immature filopodia-like spines.  A 

complete loss of srGAP3 in homozygous null animals resulted in reduced spine density in 

both cortical and hippocampal neurons.  The Polleux lab has also found that knowndown of 

srGAP2 led to an increase in immature, filopodia-like protrusions (Charrier et al., Cell, In 

Press); however, in contrast to srGAP3, knockdown of srGAP2 increases spine density.  

These results highlight the need to delve further into the mechanisms that regulate 

differences between the srGAP family proteins. 

5.2.1 Regulation of srGAP2 autoinhibition 

 Perhaps the most intriguing, unanswered question raised from the work in chapter 2 

is: how is srGAP2 autoinhibition regulated?  The model in chapter 2 (Fig. 2.7) proposed a 

mechanism of srGAP2 activation in which the protein is kept in an autoinhibitory state until 

its SH3 domain binds another protein, thereby opening the protein and allowing its F-BAR 

domain to dimerize and induce filopodia-like protrusions.  This model of activation could 

account for how the seemingly ubiquitous expression of srGAP2 within the cell could still 

lead to precisely located activity.  The question remains, however, what are the upstream 

activators of srGAP2? 

 The srGAP family was originally founded as a novel group of Rho GAP proteins that 

bind Robo, the membrane-bound receptor for the secreted chemorepulsive cue, Slit.  Slit 

proteins are known to induce axon branching (Wang et al., 1999) and inhibit neuronal 

migration (Wu et al., 1999), making this protein a likely candidate to regulate srGAP2 

activity.  Other known binding partners that could act as candidates to unlock srGAP2 
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activity include WASP and WASP ineracting protein (WIP), which have been shown to bind 

srGAP2 in T cells (Linkermann et al., 2009), formin-like 1 (FMNL1, Mason et al., 2010), and 

the actin associated scaffolding protein Palladin (Okada et al., 2011).  It is known that a 

similar mechanism occurs with Syndapin I, as the crystal structure of full-length syndapin I  

shows the SH3 domain binding to the F-BAR domain (Rao et al., 2010), so it is likely to be 

a recurring mechanism throughout the BAR family proteins.  Interestingly, while it is likely 

that similar regulation occurs with other srGAP proteins, activation might occur from 

different proteins.  We have found that srGAP3 binds dynamin 2, while srGAP2 does not 

(data not shown).  Even with similar protein domain structure, and even similar function, the 

proteins might be regulated by different proteins, and therefore be activated and take effect 

in separate cellular locations. 

 What are possible intramolecular interactions responsible for autoinhibition of 

srGAP2? One candidate for the mechanism of this autoinhibition is a cluster of negatively 

charged amino acids that flank the SH3 domain: amino acids number 725, 726, and 727 

(D, D, and E, respectively). These negatively charged residues might interact with the 

positive charges in the F-BAR domain, keeping the protein closed and inactive. 

Additionally, identical negative charges before the SH3 domain of two canonical F-BAR-

containing proteins, FBP17 and Toca-1, have been shown to regulate the activity of both 

proteins (Takano et al., 2008). A second potential C-terminal site for intramolecular binding 

is the C-terminal coiled-coil (CC) domain. CC domains have previously been implicated in 

autoinhibition. The CC domains of Myotonic dystrophy kinase-related Cdc42-binding kinase 

(MRCK) interact with the N-terminal kinase domain, thereby blocking dimerization and 

causing autoinhibition (Tan et al., 2001). The C-terminal CC domain of srGAP2 could 

interact with the N-terminal CC domain of the F-BAR, to block dimerization and lead to 

autoinhibtion.  It remains to be determined whether specific interactions are necessary to 

disrupt srGAP2 autoinhibition, or whether any binding partner that can intefere with 
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intramolecular binding is suitable to unlock srGAP2 autoinhibition to expose the F-BAR for 

activation. 

  

5.3 Functional differences between F-BARs of the srGAP protein family 

 While the work discussed in chapter 3 demonstrated functional differences between 

the F-BAR domains of srGAP family proteins, there is still a lot of work to be done 

regarding the molecular mechanisms responsible for these differences.  Some of these 

mechanisms were briefly touched upon in this work, as in differenes between lipid-binding 

specificity, however these open more questions for the field.  Furthermore, although this 

work provides interesting insight into the differences between the filopodia-inducing 

activities and regulation of membrane dynamics of these F-BAR domains, the full-length 

proteins most likely introduce further discrepancies in function of the srGAP proteins. 

 Chapter 3 shows that there is different lipid-binding specificity between F-BAR(2) 

and F-BAR(3), specifically in regards to PI(4,5)P2 and PS.  The best way to address the 

differences in lipid-binding specificity is to use purified with purified lipids of known 

composition.  In collaboration with Holger Sondermann’s lab, we attempted the purification 

of F-BARs 1-3 to elucidate the differences in lipid-binding specific for the work in chapter 3; 

however, due to technical difficulties, they were unable to purify these F-BARs within our 

timeframe.  Ellucidating the differences in lipid-specificity between these F-BAR domains 

could help to explain the differences in localization, and therefore partially explain 

differences in function between the three proteins.  As shown in chapter 3, F-BAR(3) is 

more dependent on PI(4,5)P2 than F-BAR(2).  PI(4,5)P2 is thought to exist in clusters within 

the plasma membrane, similar to lipid rafts, rather than evenly distributed around the 

plasma membrane (Johnson et al., 2008).  Furthermore, these clustered pools of PI(4,5)P2 

are thought to relate strongly to cell morphology and PI(4,5)P2 signaling.  Binding of F-

BAR(3) to these clusters of concentrated PI(4,5)P2 pools could serve to localize srGAP3 to 
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different areas of the plasma membrane than srGAP2, presumably resulting in different 

protein-protein interactions as well.  Additionally, local lipid composition can affect 

membrane curvature (Janmey and Kannunen, 2006), which could result in different binding 

and localization of the F-BAR domains of the srGAP protein family. 

 The results regarding the differences in F-BAR localization within filopodia are quite 

interesting, specifically that F-BAR(2) extends throughout the length of the filopodium, while 

F-BAR(1) and F-BAR(3) stop prematurely (Fig. 3.3).  These results lead to the hypothesis 

that three F-BAR domains could have specificity for different degrees of membrane 

curvature.  The question of whether BAR domain proteins can sense curvature, as well as 

function in membrane-deformation, has been long debated within the field.  If these F-BAR 

domains are able to sense membrane curvature and bind to different degrees of curvature, 

this could account for functional differences between the srGAP proteins.  The tip of a 

filopodium is a highly-curved, concave structure with relation to the cytoplasmic surface of 

the cell, whereas the membrane along the filopodial shaft is much less curved.  In contrast, 

the membrane connecting the base of the filopodium to the peripheral membrane of the cell 

is convex from the perspective of cytoplasmic proteins.  If the degree of membrane 

curvature plays a role in the binding of F-BAR domains of the srGAP family proteins to the 

plasma membrane, then this would account for differential localization between the three 

proteins.  It is especially interesting to note that the F-BAR of srGAP2 was shown to bind 

single-phosphorylated forms of PI more strongly than PI(4,5)P2 when assessed with PIP 

strips and PIP arrays, yet this F-BAR strongly localizes to the plasma membrane where 

these single-phosphorylated PI concentrations are low.  This suggests that more than lipid 

composition is responsible for F-BAR localization, and membrane curvature might is a key 

suspect.  One way to test this hypothesis would be to form liposomes of different sizes by 

forcing purified lipids through porous gradients of varying sizes.  Larger liposomes have 

more shallow curvature, and smaller liposomes have more extreme curvature.  These 
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liposomes could then be mixed purified F-BAR domains or full-length srGAP proteins to 

assess the curvature-specificity range of each protein.  Furthermore, these liposomes could 

be made from different lipid compositions to assess the combination of lipid specificity and 

curvature binding.  Unfortunately, as discussed previously, we currently do not have the 

purified proteins to test. 

 Our data also revealed that these proteins can interact.  While we do not currently 

know whether this occurs through direct binding (possibly through heterodimerization) or 

indirect binding through other proteins, the interaction through formation of a membrane-

deforming complex made up of F-BAR domain-containing proteins with different functions 

is intriguing.  This also raises the possibility that these proteins binding to other BAR 

domain-containing proteins, or other proteins that can affect membrane deformation, to 

intricately regulate membrane and cellular morphology. 

 

5.4 Challenges to rapamycin-inducible PI(4,5)P2 depletion in vivo 

 As discussed in Chapter 4, there are both documented and undocumented 

limitations to using this rapamycin-inducible translocation system to deplete PI(4,5)P2 in 

neurons and in vivo.  These complications might be additive when attempting to use this 

system in neurons in vivo.  Section 5.4.1 further discusses these challenges, as well as 

puts forth ways to test and possibly overcome these obstacles. 

5.4.1 Future directions with the current design 

5.4.1i Behavioral assessent Rosa-FRBPLF/CGRP-Inp54p double heterozygous mice.   

 Although we cannot visualize translocation of venus-FKBP-Inp54p in the double 

heterozygous mice after injection of rapamycin, it is possible that PI(4,5)P2 is depleted upon 

sub-visual levels of translocation.  Unfortunately, this cannot currently be measured directly 

with the two methods of PI(4,5)P2 measurement that we use in the Zylka lab, namely anti-

PI(4,5)P2 antibody (Echelon Bioscience, Inc.) and PI(4,5)P2 Mass Elisa (Echelon 
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Bioscience, Inc.), as these do not appear work in these mice in vivo.  Although we have 

seen a reduction in PI(4,5)P2 using the antibody with dissociated CGRP-Inp54p DRG 

neurons in vitro (Fig. 4.4), the antibody does not cleanly label the plasma membrane in 

DRG tissue (data not shown).  Although troubleshooting this technique has led to better 

staining, it has not yet achieved a strong enough level of staining with a large enough 

dynamic range can be seen to confidently and positively assess PI(4,5)P2 depletion.  In 

contrast to the reduction of PI(4,5)P2 seen in vitro, PI(4,5)P2 mass elisa reveals no 

difference in PI(4,5)P2 levels in lumbar DRG from CGRP-Inp54p mice compared to wildtype 

littermates (data not shown).  Two possibilities for lack of difference arise: 1) there is no 

difference in resting PI(4,5)P2 levels in CGRP-Inp54p neurons in vivo, and 2) any difference 

induced by Inp54p would be drowned out by the large percentage of CGRP/Inp54p-

negative (~70%) neurons in the DRG.  The original hypothesis for the use of rapamycin-

inducible depletion of PI(4,5)P2 by translocation of Inp54p from the cytoplasm to the 

membrane was that Inp54p could only induce its effect after translocation; however, in vitro 

results in neurons (Fig. 4.4) and non-neuronal cell lines (data not shown) suggests that 

there is some basal reduction of PI(4,5)P2 by the cytoplasmic venus-FKBP-Inp54p.  This is 

not too surprising, as expression of cytoplasmic proteins are not secluded from the plasma 

membrane, and therefore will be able to interact with, and reduce, PI(4,5)P2 when the two 

interact.  However, there could compensation that occurs in vivo to rescue this PI(4,5)P2 

depletion.  In terms of the normal PI(4,5)P2 levels assessed by mass elisa, the small 

reduction in PI(4,5)P2 might be drowned out by the other 70% of neurons with wildtype 

levels of PI(4,5)P2.  Furthermore, this assay has a large amount of variation that could 

serve to drown out small changes in this 30% of neurons.  Therefore, behavioral 

assessment might be the best way to assess translocation and PI(4,5)P2 depletion in vivo. 

 Intrathecal (IT) injection of rapamycin has been shown to reduce persistent pain 

sensitivity in Sprague Dawley rats (Géranton et al, 2009; Xu et al., 2011); however, this 
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effect was most potent in myelinated sensory A-fiber DRG neurons, rather than 

unmeylinated nociceptive C-fibers (Géranton et al, 2009).  These results demonstrate that 

1) IT injection of rapamycin can reach and affect DRG neurons in vivo, and 2) rapamycin 

injection affects pain states, therefore the proper controls are crucial for rapamycin-induced 

depletion of PI(4,5)P2 to assess pain behavior.  Therefore, the last experiment to round out 

the current study of rapamycin-induced PI(4,5)P2 depletion in pain sensitivity in vivo, will be 

to assess mechanical and thermal sensitivity (see section 4.4.5, Fig. 4.6) after rapamycin 

injection in Rosa-FRBPLF/CGRP-Inp54p double heterozygous mice compared to CGRP-

Inp54p littermate controls.  The use of the single CGRP-Inp54p heterozygous mice will 

serve as controls for the alleviated pain resulting from rapamycin injection alone.  Given the 

lack of visual translocation, we do not expect to see a difference after rapamycin injection; 

however, this is a critical experiment in assessing the feasibility of rapamycin-induced 

translocation of Inp54p, and subsequent reduction in PI(4,5)P2 and related signaling in vivo. 

5.4.1ii Stabilization of the FRBPLF domain might be necessary for sufficient PI(4,5)P2 

depletion in vivo.   

 Studies by Stankunas et al. (2003, 2007) suggest that FRB domain containing the 

K2095P, T2098L, and W2101F mutations is not stabilized until after prolonged exposure to 

rapamycin, which causes stabilization through complex formation of FKBP-rapamycin-FRB.  

The authors found that stabilization of the FRBPLF-GSK-3β fusion started around 6 hours, 

but full stabilization did not occur until after approximately 24 hours of rapamycin treatment 

(Stankunas et al., 2003).  It is therefore possible that any effects of rapamycin-induced 

translocation between the CFP-FRBPLF and the venus-FKBP-Inp54p will not occur until the 

FRB domain is properly stabilized.  This hypothesis can be tested by injecting rapamycin at 

12 hour intervals for 24 hours (0, 12, and 24 hours), sacrificing the mice, and looking at 

membrane to cytoplasm ratios of venus-FKBP-Inp54p.  Alternatively, this can be done in 

vitro to assess translocation after prolonged rapamycin treatiment of dissociated neurons.  
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Addtionally, this in vitro treatment will allow for assessment of PI(4,5)P2 depletion over time 

using the anti-PI(4,5)P2 antibody.   

 While we do see expression of CFP at the plasma membrane of Rosa-FRBPLF 

heterozygous mice, expression is quite weak, especially for the fact that the protein is 

driven by the strong CAG promotor.  Even if rapamycin treatment can further stabilize the 

FRBPLF domain, the possibility remains, that destabilized FRBPLF at the membrane is 

incapable of binding to cytoplasmic FKBP-Inp54p in sufficient quantities to cause adequate 

stabilization.  Stankunas et al. (2003) expressed the GSK3β-FRBPLF fusion in the 

cytoplasm, and relied on rapamycin-induced binding to endogenous FKBP12 in the 

cytoplasm for stabilization.  If stabilization needs to occur for proper translocation, this 

might be a catch-22 experiment.  Results from cell lines would suggest that this is not the 

issue, but as I have shown, there are clearly differences between cell lines in culture, and 

neurons in vivo. 

5.4.1iii The magic ratio problem 

 As discussed by Komatsu et al. (2010), different FRB- and FKBP-containing 

constructs require different expression ratios to induce translocation.  These ratios can be 

altered by a number of factors, including domain order in the expression constructs, the 

organelle targeted for translocation, etc.  It is possible that different cell types have their 

own magic ratios necessary for rapamycin-induced translocation.  Using the constructs 

expressed in our mice in cell lines, it seemed as though the FRB domain might be the 

limiting factor in translocation.  Unfortunately, the expression in the mouse is fixed, and 

levels cannot be adjusted much in vivo.  However, it is possible to use a Rosa-FRBPLF 

homozygous/CGRP-Inp54p heterozygous mouse to achieve a more optimal protein ratio 

for translocation.  Again, translocation can be assessed in DRG sections after IT injection 

of rapamycin in vivo, or treatment of dissociated neurons in vitro.  Alternatively, dissociated 

neurons can be transfected with an array of different ratios to assess if there is any ratio 
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that will work in these neurons.   

5.4.1iv Rapamycin-induced depletion of PI(4,5)P2 with Inp54p might not work in 

neurons   

 There is a tacit awareness regarding the fact that PI(4,5)P2 depletion with Inp54p 

might not work in neurons.  Personal communication with faculty and postdoctoral fellows 

who have attempted to use either the full rapapmycin-induced PI(4,5)P2 depletion system in 

neurons, or Inp54p contructs alone in neurons, have suggested that the system does not 

work in neurons.  Furthermore, they suggested that neuron health is highly compromised 

after transfection with these constructs.  Cytoplasmic Inp54p has been described as a 

constitutively active 5-phosphatase (Nebl et al., 2000), and chronic PI(4,5)P2 depletion can 

lead to loss of cytoskeletal-membrane adhesion (Raucher et al., 2000), and activated 

apoptotic pathways, assessed by cleaved caspase-3 activation (Azuma et al., 2000; 

Mejillano et al., 2000).  Accordingly, dissociated neurons from our mice expressing the 

venus-FKBP-Inp54p construct have elevated levels of cleaved caspase-3 compared to 

control neurons (Fig. 4.5).  The only use of rapamycin-induced PI(4,5)P2 depletion by 

translocation of Inp54p in neurons was by Chen et al. (2010).  The authors showed that 

transfection of the membrane-tagged FRB domain and FKBP-Inp54p components into 

cultured hippocampal neurons, followed by rapamycin treatment, led to reduced filopodial 

dynamics.  In contrast, rapamycin treatment did not change filopodial dynamics in 

hippocampal neurons transfected with the FRB domain and a phosphatase-dead mutant of 

Inp54p.  However, the authors did not show both conditions prior to rapamycin treatment, 

nor did they visualize any translocation.  It is possible that the effects were not due to 

translocation-induced depletion of PI(4,5)P2, but rather due to leaky effects of expressing 

Inp54p in the neurons.  

 One approach to test this would be to dissociate DRG, and transfect the 

translocation component constructs into cells in culture.  Transfection into dissociated DRG 
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would lead to the expression of these constructs in multiple cell types of the DRG, both 

neuronal and non-neuronal.  After rapamycin treatment, we could assess the extent of 

translocation in all cell types.  It is possible that other cell types could allow for rapamycin-

induced translocation, or be able to better tolerate the expression of Inp54p. Therefore, no 

matter how extensively we troubleshoot Inp54p translocation in these mice, it is possible 

that we just cannot achieve PI(4,5)P2 depletion, or even Inp54p-translocation, in neurons. 

5.4.2 Alternative design and approach to rapamycin-inducible PI(4,5)P2 depletion in 

vivo 

 If destabilization of the FRBPLF domain is the cause of lack of translocation, an easy 

fix would be to redesign the Rosa-FRB mouse with a stable FRB construct.  Stankunas et 

al. (2007) found that the T2098L mutation led to its destabilizing properties, whereas the 

W2101F mutation was responsible for its ability to bind the rapalog, C20-MaRap (Bayle et 

al., 2006).  Therefore, the benefit of C20-MaRap can still be achieved without protein 

destabilization by using a FRBPTF mutation.  However, if the problem is that rapamycin-

induced translocation does not work in neurons, this FRB mutation would not solve the 

problem.  

 An alternative approach would be to take advantage of the destabilizing properties 

of the FRBPLF domain, and redesign the system to make translocation unnecessary.  

Expressing of a fusion protein that targets a FRBPLF-destabilized 5-phoshatase to the 

plasma membrane would still allow for temporal control of PI(4,5)P2 depletion upon 

treatment of rapamycin or C20-MaRap.  In this case, there would be no need for 

expression of an FKBP construct, as rapamycin would induce stabilization with binding of 

endogenous FKBP12, as used by Stankunas et al. (2003).  This would also overcome the 

magic ratio problem because there would be no need for translocation.  Additionally, it 

could be possible to control the amount of destabilization, and therefore level of PI(4,5)P2 

depletion by stabilized Inp54p, by injecting different amounts of rapamycin.  However, if 
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complete destabilization due to FRBPLF fusion does not occur, this fusion would lead to a 

constitutively active Inp54p at the plasma membrane, which could lead to the same cell 

health problems discussed above.  Alternative 5-phosphatases, such as Synaptojanin or 

mammalian Type IV 5-phosphatase, could possibly be more amenable for use in neurons 

than the yeast 5-phosphatase, Inp54p.  Therefore, this design should be extensively tested 

and optimized in neurons before implementation in vivo. 
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