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ABSTRACT

DAVID C. WEBB: A Two-Dimensional Dirac System and Envelope Solutions to the Nonlinear
Schrödinger Equation

(Under the direction of Jeremy Marzuola)

In studying the cubic nonlinear Schrödinger (NLS) equation with hexagonal lattice potential,

Ablowitz, Nixon, and Zhu [1] and Fefferman and Weinstein [31] have used ansatz solutions of a

periodic, cubic NLS equation to derive two similar two-dimensional Dirac equations with cubic

nonlinearity.

Chapters 1 and 2 of this thesis deal with solutions and lifespans of solutions for the linear

and nonlinear Dirac equations. We establish local and almost global existence results as well as

ill-posedness below the critical regularity, Ḣ1/2. We leave as an open question whether solutions

blow up in finite time or if a global existence result can be found.

The third chapter modifies the machinery of [32] and [31] to explore an open question posed

by Fefferman and Weinstein, [31]. We prove that an envelope of solutions to the slowly modulated

Dirac equation provides a good approximation for solutions to the nonlinear Schrödinger equation

with hexagonal lattice. The NLS solution is shown to exist for long times with the nonlinear Dirac

dynamics affecting the solution on any constant timescale. The same timescale is also proven for

an ansatz envelope proposed by Ablowitz, Nixon, and Zhu. The timescale is also extended in an

intermediate regime by slightly weakening the nonlinearity of the governing Dirac equation.

The final chapter discusses future work focusing on some numerical simulations for the Dirac

and Schrödinger equations.
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CHAPTER 0

Introduction

The majority of this dissertation will be given over to studying the behavior of solutions to a

particular two-dimensional system of Dirac equations with a cubic nonlinearity,

i∂tu−(∂x − i∂y)v = |u|2u

i∂tv+(∂x + i∂y)u = |v|2v
(0.1)

with initial data u(0,x) = f(x), v(0,x) = g(x). We will denote U =

u
v

 a solution to the

equation. This equation will be written in several alternate forms throughout this dissertation.

The most common will be by defining the differential operator P as follows:

(0.2) P

u
v

 =

 i∂t −∂x + i∂y

∂x + i∂y i∂t

u
v

 =

|u|2u
|v|2v

 .

We also will define the function F . When studying the linear equation, F will merely be the

inhomogeneity

F (t, x, y) =

F1(t, x, y)

F2(t, x, y)

 .

When studying the nonlinear equation F will be the nonlinearity

F (u, v) =

|u|2u
|v|2v

 .

Thus the Dirac system can be written in the condensed form PU = F .

To get another way we will represent the equation we define the operator

P̃ =

 i∂t ∂x − i∂y

−∂x − i∂y i∂t

 .

1



This operator is important because P̃P = −2Id where 2 is the wave equation operator. Thus we

can act on the Dirac equation by P̃ to get−2u
−2v

 =

 i∂t ∂x − i∂y

−∂x − i∂y i∂t

F1

F2


=

i∂tF1 + ∂xF2 − i∂yF2

i∂tF2 − ∂xF1 − i∂yF1


(0.3)

with initial data U(0,x) =

f(x)

g(x)

 and Ut(0,x) =

−i|f |2f − igx − gy
−i|g|2g + ifx − fy

.

Thus solutions to the Dirac equation will also solve the above wave equation. We will see later

that the fundamental solution operator to the Dirac equation has many similarities to the wave

equation solution operator. Considering both of these facts, the large body of research in wave

equations becomes immediately useful.

We will also work with the similar Dirac equation derived in [31] by Fefferman and Weinstein:

∂tu+ λ#

(
∂x + i∂y

)
v = −ig

(
β1|u|2 + 2β2|v|2

)
u

∂tv + λ#

(
∂x − i∂y

)
u = −ig

(
2β2|u|2 + β1|v|2

)
v

(0.4)

where λ#, βj , and g are constants defined in [31]. Throughout Chapters 1 and 2 we work primarily

with (0.1) as it will be easier to deal with notationally. However, the arguments will apply identically

to (0.4). In Chapter 3 we will work more closely with Equation 0.4 as it works more readily with

the machinery used in that chapter.

0.1. Motivation for the Equation. The above Dirac equation is derived from optical physics

in Ablowitz, Nixon, Zhu [1] as well as in Ablowitz, Zhu [2]. They are studying the behavior of light

passing through the material optical graphene, which is an optical material with a hexagonal lattice.

In particular they are studying what happens when the wavelength of light used corresponds to

certain coordinates (called diabolical points) of the lattice.

They begin by using the nonlinear Schrödinger (NLS) equation,

(0.5) iΨt + ∆Ψ− V (x)Ψ + σ|Ψ|2Ψ = 0,

to model the behavior of light passing through an optical medium. As optical graphene has a

hexagonal lattice they use the honeycomb lattice potential V (x) = V0|eik0b1·x + eik0b2·x + eik0b3·x|

2



where b1 = (0, 1),b2 = (−
√

3
2 ,−

1
2),b3 = (

√
3

2 ,−
1
2) represent the nearest neighbors to any particular

node on the lattice.

Ablowitz, Nixon, and Zhu [1] create an ansatz for the NLS for which solutions to the Dirac

system serve as an appropriate envelope within the ansatz, (0.1). However, it is important to note

that their derivation of the Dirac system is not mathematically rigorous. It is a reasonable guess

for a model to describe a behavior of optical graphene. Part of our exploration of this Dirac system

will be to determine how well this model matches the experimental and numerical data as well as

investigating on what time scales the model may be a good fit.

In [1] the authors ran numerical simulations inputting Gaussian initial data into the Schrödinger

equation. In their simulations there appear to be 3 major qualities we see in the solution. While the

solutions do not appear to be perfectly rotationally invariant, it does seem that |Ψ(r, θ1)| ∼ |Ψ(r, θ2)|

for any choice of θi. In other words, r appears to have a much greater impact on the size of the

solution than does θ. Also, the solution appears to decay as you move away from the light cone.

Most interesting is the fact that for their choice of initial data it appears that the solution has

finite speed of propagation. This last result is quite notable as the Schrödinger equation is known

to have infinite propagation speed.

The authors also ran numerical simulations for the derived linear Dirac system. In one of these

simulations they input initial data that is Gaussian in one coordinate and zero in the other. This

result also shows decay away from the light cone and finite speed of propagation. However, it also

appears that |U | is perfectly rotationally invariant showing some variance from the Schrödinger

model. In another simulation, both components of the initial data were Gaussian. In this case, the

decay off the light cone and finite propagation speed still appear, but the rotational invariance has

disappeared completely. Not all of these numerical results are particularly notable. However, we

include them here as we will analyticaly confirm these observations in Chapter 1.

The numerical simulations seem to indicate that the Dirac model is a reasonable yet imperfect

model for the system considering the radial symmetry exhibited by the Dirac solutions which is

not fully present in solutions to the Schrödinger equation. However, we will include a small error

term in the ansatz solutions to account for the small discrepancy. In the Linear Results section

of this dissertation we will analytically approach rotational invariance, decay away from the light

cone, and finite speed of propagation to confirm the numerical results seen for the Dirac equation.

3



In the nonlinear section we will consider several function spaces and determine on what time scale

solutions to the Dirac equation will exist in those spaces.

The Dirac equation derived by Fefferman and Weinstein, (0.4), is found by working with an

ansatz solution to the periodic potential Schrödinger equation (0.5). They scale unknown functions

u and v by a small constant, δ, and show that the error term in the ansatz can be held small on a

large timescale if u and v are components of the solution to the Dirac equation (0.4).

Their choice of ansatz is motivated by their work in [32] in which they prove a similar result

for the corresponding linear Schrödinger and Dirac equations. Their work in [31] poses an open

question using the solutions to (0.4) as ansatz envelopes for solutions to the NLS equation. They

discuss some of the key changes and steps of the proof, but they do not actually provide a full

proof for the ansatz solution nor do they give a timescale for the ansatz. In Chapter 3, we will

modify the ansatz proposed by Fefferman and Weinstein and prove a timescale for which the ansatz

solutions hold. We will also adapt the argument to an ansatz proposed by Ablowitz and Zhu, [2],

which is more complicated because of different time and space scalings in their ansatz and certain

assumptions they make, in particular that the potential is tight binding.

0.2. Background. As we have already shown that results pertaining to the wave equation are

relevant to the Dirac equation in question we will begin by looking at established results for the

wave equation particularly with cubic nonlinearity in two dimensions.

The case of the cubic wave equation in two dimensions is quite interesting. Li, Zhou showed in

[78] that small data global solutions exist for all nonlinearities of power greater than three. Also,

there are several examples, [3], [57] , [84] of cubic nonlinearities that result in nonexistence of

global solutions even in small data. For a general cubic nonlinearity the existence time has only

been shown to have a lower bound T∗ ≥ cε−6 with ε the size of the initial data, [77].

Almost global results have been obtained where ε represents the size of the initial data. Kovalyov

[54] proved a timescale of T∗ ≥ exp (cε−2) for a class of nonlinearities that only depend on first

and second derivatives of the solution. Li, Zhou [77] proved the same timescale by assuming

∂3
uF (0, 0, 0) = ∂4

uF (0, 0, 0) = 0 where F (u,Du,DxDu) is the nonlinearity. Katayama [47] dropped

the assumption ∂4
uF (0, 0, 0) = 0 and proved the timescale T∗ ≥ ε−18. However, he also proved

another almost global result for when the nonlinearity satisfies an almost-null condition.

There are also global existence results for the cubic nonlinearity. Godin [37] proved small

data global existence for when the nonlinearity has quadratic and cubic parts which both satisfy
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a null condition, and Katayama, [46] proved the same when only assuming the cubic part of the

nonlinearity satisfies a null condition. In [48] Katayama proved a small data global result for a

weaker null condition analagous to that of Alinhac [6] for three dimensions. Hoshiga [40] was able

to prove a small data global existence result for a class of nonlinearity that does not satisfy a null

condition. Also important to mention is the work of Alinhac [5] where he proves small data global

existence for a large class of cubic derivative nonlinearities which satisfy two null conditions.

In general there is not as much literature studying the Dirac equation (massive or massless), and

only a small amount of that literature deals with the two-dimensional case. In the one-dimensional

case Pelinovsky [67] was able to prove small data global existence in H1 for the massive Dirac

equation with cubic nonlinearity. His proof relies on conservation laws for the equation and shows

that a time dependent upper bound for the equation may continually grow but always remains

finite.

In the three-dimensional case Escobedo and Vega [27] prove local well-posedness for the massive

cubic Dirac equation in H1+. This result was extended to small data global well-posedness by

Machihara, Nakanishi, and Ozawa, [62], in the same space. Machihara, Nakamura, Nakanishi,

and Ozawa, [61], were able to improve the regularity of the global result to H1. Also in three

dimensions Bejenaru and Herr [16] proved a small data global result for the massive equation with

a different cubic nonlinearity in the space H1 relying on the endpoint Strichartz estimates for the

Klein-Gordon equation.

In the two-dimensional case Pecher [66] was able to show local well-posedness in H
1
2

+ for a

massive Dirac equation with a nonlinearity satisfying a null form. In a recent article Bejenaru and

Herr [17] have improved this to small data global existence for the critical space H
1
2 by once again

using the endpoint Strichartz estimates for the Klein-Gordon equation. Bournaveas and Candy

[20] have been able to prove a similar small data global result in Ḣ
1
2 for a cubic, massless equation

with a null form.
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CHAPTER 1

Linear Results

1.1. Basic Results.

1.1.1. Solution Operator. Before we can move on to more interesting results, we need to first

establish the solution operator of the Dirac equation. This will be found by applying the Fourier

Transform to the equation, diagonalizing the resulting operator, exponentiating the diagonalized

operator, reverting to the undiagonalized form, and applying the Inverse Fourier Transform. As

the title of this sections implies, the results of this section are very basic. Because everything in

this paper relies on these basic results, we cover this initial section in great detail in the interest of

thoroughness.

By applying the Fourier Transform to the homogeneous equation, we get

i∂tû−(iξ1 + ξ2)v̂ = 0

i∂tv̂+(iξ1 − ξ2)û = 0.
(1.1)

Defining z = ξ2 + iξ1 We can rewrite this as

(1.2) i∂t

û
v̂

 =

0 z

z̄ 0

û
v̂

 := Ĥ

û
v̂

 .

Notice that to do this we have assumed z 6= 0. In the case z = 0 we also have ξ = 0 and the

equation reduces to an ordinary differential equation with solution U = (f, g) which is what we get

if we replace ξ = 0 in the solution operator we find below.

Now we can find the solution operator in Fourier Space, eitĤ, by diagonalizing Ĥ. We find

eigenvectors of Ĥ to be p1 =

 z

|z|

 and p2 =

 z

−|z|

 . Thus to diagonalize Ĥ we conjugate it by

(1.3) A =

 z z

|z| −|z|

 .
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Thus

DĤ = A−1ĤA

=

|z| 0

0 −|z|

 .
(1.4)

Now, since DĤ is a diagonal matrix, it is easy to compute

(1.5) e−itDĤ =

e−it|z| 0

0 eit|z|

 .

Then conjugating backwards results in

e−itĤ = Ae−itDĤA−1

=

 cos(t|z|) iz
|z| sin(t|z|)

iz̄
|z| sin(t|z|) cos(t|z|)

 .
(1.6)

Thus we have the solution operator

û
v̂

 = e−itĤ

f̂
ĝ

 . By applying the inverse Fourier

Transform we find u
v

 = F−1

cos(t|z|)f̂ + iz
|z| sin(t|z|)ĝ

iz̄
|z| sin(t|z|)f̂ + cos(t|z|)ĝ

 .(1.7)

Then noting that |z| = |ξ| we substitute into the above equation giving the solution operator

(1.8)

u
v

 = F−1

( cos(t|ξ|)f̂
)

+
(−ξ1+iξ2

|ξ| sin(t|ξ|)ĝ
)

( ξ1+iξ2
|ξ| sin(t|ξ|)f̂

)
+
(

cos(t|ξ|)ĝ
)
 .

1.1.2. Global Well-Posedness. In this section we will prove global well-posedness for the in-

homogeneous linear equation. Having already found the solution operator for the homogeneous

equation we will use Duhamel’s principle to find the solution to the inhomogeneous equation. Then

we will express an upper bound of the Sobolev norm of this solution in terms of the Sobolev norms

of the initial conditions f, g and the inhomogeneities F1, F2. Global well-posedness will easily follow

from this inequality.
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1.1.2.1. Solving the inhomogeneous equation. The solution of the homogeneous equation has been

found to be

(1.9) U =

u
v

 = F−1

cos(t|ξ|)f̂ + −ξ1+iξ2
|ξ| sin(t|ξ|)ĝ

ξ1+iξ2
|ξ| sin(t|ξ|)f̂ + cos(t|ξ|)ĝ

 .

Duhamel’s principle tells us that the solution to the inhomogeneous case with zero initial con-

ditions is in fact an integral of the solution to the homogeneous case with initial conditions equal

to the original inhomogeneity. In other words, the solution to

i∂tu−(∂x − i∂y)v = F1(t, x, y)

i∂tv+(∂x + i∂y)u = F2(t, x, y)
(1.10)

with u(0, x, y) = v(0, x, y) = 0 is given by

(1.11)

u
v

 = −i
∫ t

0
F−1

cos[(t− τ)|ξ|]F̂1(τ, ξ) + −ξ1+iξ2
|ξ| sin[(t− τ)|ξ|]F̂2(τ, ξ)

ξ1+iξ2
|ξ| sin[(t− τ)|ξ|]F̂1(τ, ξ) + cos[(t− τ)|ξ|]F̂2(τ, ξ)

 dτ.

The solution for the inhomogeneous equation with nonzero initial data is merely the sum of the

solutions to the two above cases:

U =

u
v

 = F−1

cos(t|ξ|)f̂ + −ξ1+iξ2
|ξ| sin(t|ξ|)ĝ

ξ1+iξ2
|ξ| sin(t|ξ|)f̂ + cos(t|ξ|)ĝ


+F−1

−i ∫ t0 ( cos[(t− τ)|ξ|]F̂1(τ) + −ξ1+iξ2
|ξ| sin[(t− τ)|ξ|]F̂2(τ)

)
dτ

−i
∫ t

0

( ξ1+iξ2
|ξ| sin[(t− τ)|ξ|]F̂1(τ) + cos[(t− τ)|ξ|]F̂2(τ)

)
dτ

 .

(1.12)

1.1.2.2. Bounding the Solution. Assume that f, g ∈ S and F1, F2 ∈ C∞([0,∞],S). Then we can

drop the inverse Fourier transform inside the L2 norm without changing the value. Then, by

applying the triangle inequality we can see that

‖u‖L2 ≤
∥∥cos(t|ξ|)f̂

∥∥
L2 +

∥∥∥−ξ1 + iξ2

|ξ|
sin(t|ξ|)ĝ

∥∥∥
L2

+

∫ t

0

∥∥cos[(t− τ)|ξ|]F̂1(τ, ξ)
∥∥
L2 +

∥∥∥−ξ1 + iξ2

|ξ|
sin[(t− τ)|ξ|]F̂2(τ, ξ)

∥∥∥
L2
dτ.

(1.13)

Then we note that |cos(t|ξ|)|, |sin(t|ξ|)|, |−ξ1+iξ2
|ξ| | ≤ 1, and the above immediately becomes

(1.14) ‖u‖L2 ≤ ‖f̂‖L2 + ‖ĝ‖L2 +

∫ t

0

(∥∥F̂1(τ, ·)
∥∥
L2 +

∥∥F̂2(τ, ·)
∥∥
L2

)
dτ.
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Once again since in Schwartz space the L2 norm of a function is the same as the L2 norm of its

Fourier transform, this becomes

(1.15) ‖u‖L2 ≤ ‖f‖L2 + ‖g‖L2 +

∫ t

0

(∥∥F1(τ, ·)
∥∥
L2 +

∥∥F2(τ, ·)
∥∥
L2

)
dτ.

The exact same bound is found for ‖v‖L2 with the same procedure leading to the bounds

‖U‖L2 ≤ C
(
‖f‖L2 + ‖g‖L2 +

∫ t

0
(‖F1(τ)‖L2 + ‖F2(τ)‖L2)dτ

)
‖U‖Hs ≤ C

(
‖f‖Hs + ‖g‖Hs +

∫ t

0
(‖F1(τ)‖Hs + ‖F2(τ)‖Hs)dτ

)(1.16)

where the Hs norms are possibly infinite because we have not assumed initial data and inhomo-

geneities in the appropriate spaces.

1.1.2.3. Global Well-Posedness in Hs. Now assume that f, g ∈ Hs and F1, F2 ∈ L1([0,∞], Hs).

Because of the density of S in Hs we can choose sequences fj , gj ∈ S and F1,j , F2,j ∈ L1([0,∞],S)

such that as j →∞ each converges to its obvious limit. In other words,

‖fj − f‖Hs → 0, ‖gj − g‖Hs → 0, ‖F1,j − F1‖Hs → 0, ‖F2,j − F2‖Hs → 0.

We will denote Uj to be the corresponding solutions to the Dirac equation with initial data fj , gj

and inhomogeneity F1,j , F2,j . Then the work we have done for Schwarz initial data gives us

(1.17) ‖Uj − Uk‖Hs . ‖fj − fk‖Hs + ‖gj − gk‖Hs +

∫ t

0
‖F1,j − F1,k‖Hs + ‖F2,j − F2,k‖Hsdτ.

Thus the sequence Uj is Cauchy in the Banach Space Hs, and hence converges to some U . But

Uj → U in the distributional sense as well. Thus PUj → PU where P is our differential operator.

But

(1.18) PUj =

F1,j

F2,j

→
F1

F2

 .

Thus PU =

F1

F2

 meaning U is solves the Dirac equation.
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Since the bound for ‖Uj‖Hs holds for every j, the same bound holds for the limit, ‖U‖Hs . Thus

we have

‖U‖Hs ≤ C
(
‖f‖Hs + ‖g‖Hs +

∫ t

0
(‖F1(τ)‖Hs + ‖F2(τ)‖Hs)dτ

)
≤ C

(
‖f‖Hs + ‖g‖Hs + ‖F1(τ)‖L1

tH
s
x

+ ‖F2(τ)‖L1
tH

s
x

)(1.19)

for f, g ∈ Hs and F1, F2 ∈ L1([0,∞], Hs).

Since f, g ∈ Hs and F1, F2 ∈ L1([0,∞], Hs), Inequality (1.19) immediately shows that U ∈ Hs

since ‖U‖Hs has a uniform bound for all time.

For uniqueness since we are in the linear case it is sufficient to show that when f = g = F1 =

F2 = 0 then U must also be 0. This is trivial from (1.19).

To show that the solution depends continuously on initial data let us assume U∗ is the solution

for initial data f∗ and g∗ with the same inhomogeneity as the equation for U . Then

(1.20) ‖U − U∗‖Hs ≤ C
(
‖f − f∗‖Hs + ‖g − g∗‖Hs

)
which is the desired statement.

1.2. Analytic Support of Numerical and Experimental Observations. The purpose

of this section is to support some of the qualitative observations made by the numerical work in

[1]. The subsection on Gaussian initial data supports the radial symmetry seen in [1], but is not

strictly applicable to the later work in this dissertation. The subsection establishing decay away

from the light cone is interesting as it quantifies the Huygens-like behavior seen in [1], but, once

again, we do not make further use of it. The finite speed of propagation is vital for several of the

nonlinear results in Chapters 2 and 3.

1.2.1. Gaussian Initial Data. The experimental and numerical work done in [1] features radially

symmetric initial data. Therefore we will analyze what happens when a Gaussian initial condition

is input into the homogeneous linear Dirac equation. When discussing rotational invariance we will

be working with the homogeneous Dirac equation

i∂tu−(∂x − i∂y)v = 0

i∂tv+(∂x + i∂y)u = 0.
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One important property of the Gaussian function that we will use regularly is that the Fourier

transform of a Gaussian, e−k1|x|
2
, is a different Gaussian, e−k2|ξ|

2
. For the sake of simplicity we will

just normalize the coefficient k1 = 1, k2 = k.

1.2.1.1. The Magnitude of the Solution. We will now assume that f = e−|x|
2

and g = 0. Then

substituting in the initial conditions we find that

u(x, t) =F−1
(

cos(t|ξ|)e−k|ξ|2
)

:=ψ1(x, t)

v(x, t) =(−i∂x + ∂y)F−1

(
1

|ξ|
sin(t|ξ|)e−k|ξ|2

)
:=(−i∂x + ∂y)ψ2(x, t).

(1.21)

Now we consider the absolute value of our solution, |U | =
√
|u|2 + |v|2. Defining ψ1, ψ2 as above

we notice that both are inverse Fourier transforms of even, real-valued functions and are thus real

valued. Thus the real and imaginary parts of u and v are easy to calculate, and we find |u|2 = ψ2
1

and |v|2 = ψ2
2,x + ψ2

2,y. Thus

(1.22) |U | = (ψ2
1 + ψ2

2,x + ψ2
2,y)

1/2.

It is important to note that ψ2 was defined as the sine term of the solution after the ξ1, ξ2 have

been pulled outside of the Inverse Fourier Transform as derivatives.

1.2.1.2. Rotational Invariance. Now we must stop and show that ψ1(x, t) and ψ2(x, t) are both

rotationally invariant.

In order to do this we will first convert both into polar coordinates. Then, by doing a carefully

chosen change of variables we can eliminate the dependence on θ in the equations. Once there is

no dependence on θ, it is trivial to say the function is rotationally invariant.

We first show this for ψ1,

ψ1(x, t) = C

∫
eix·ξ cos(t|ξ|)e−k|ξ|2dξ

ψ1(r, θ, t) = C

∫
ei(r cos(θ)ξ1+r sin(θ)ξ2) cos(t|ξ|)e−k|ξ|2dξ

= C

∫
ei[r(ξ1 cos θ+ξ2 sin θ)] cos(t|ξ|)e−k|ξ|2dξ.

(1.23)
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Then we do a simple change of variables rotating ξ by −θ, η1 = ξ1 cos θ + ξ2 sin θ and η2 =

−ξ1 sin θ + ξ2 cos θ. Thus |η| = |ξ| and dη = dξ.

ψ1(r, θ, t) = C

∫
eirη1 cos(t|η|)e−k|η|2dη.(1.24)

We can now see that ψ1 has no dependence on θ and is therefore rotationally invariant. Also we

can proceed similarly doing the same change of variables to show that ψ2 is rotationally invariant.

ψ2(x, t) = C

∫
eix·ξ sin(t|ξ|)|ξ|−1e−k|ξ|

2
dξ

ψ2(r, θ, t) = C

∫
ei(r cos(θ)ξ1+r sin(θ)ξ2) sin(t|ξ|)|ξ|−1e−k|ξ|

2
dξ

= C

∫
ei[r(ξ1 cos θ+ξ2 sin θ)] sin(t|ξ|)|ξ|−1e−k|ξ|

2
dξ

= C

∫
eirη1 sin(t|η|)|η|−1e−k|η|

2
dη.

(1.25)

Here we now see that ψ2 is also rotationally invariant since it has no dependence on θ.

Now, we will rewrite (1.22) using the identity ψ2
2,x + ψ2

2,y = ψ2
2,r + 1

r2
ψ2

2,θ. However, in our case

ψ2 is rotationally invariant, so ψ2,θ = 0. Thus, |U | =
√
ψ2

1 + ψ2
2,r, and there is no dependence on θ.

Thus we have confirmed that with the above Gaussian and zero initial conditions the solution to

the linear Dirac problem maintains rotational invariance.

It is important to note that the above argument does not hold if the initial data f, g are both

Gaussian. In fact, if we assume that f and g are both Gaussian, then the above will verify that

the solutions do not have radial symmetry, as indicated in the numerical work of [1].

1.2.2. Decay Away from the Light Cone. For the wave equation in odd spatial dimensions

Huygens’ Principle holds stating that the value of the solution at a point (x, t) depends only on

the values of the initial condition on ∂B(x, t). In other words, solutions at a point are determined

by the values of the initial data on a light cone centered at that point.

As we are working with a Dirac equation in 2 dimensions we do not expect this to hold. However,

in the experimental and numerical work done in [1], the solutions appear to be concentrated near

the light cone. In this section we analytically support that observation.

We will appeal to the Klainerman-Sobolev inequality originally developed by Klainerman in

[52]. We will use the inequality as stated in [47]:
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Lemma 1.2.1 (Klainerman-Sobolev Inequality).

(1.26) (1 + t+ |x|)
1
2 (1 +

∣∣t− |x|∣∣) 1
2 |v(t,x)| ≤ C‖v(t, ·)‖2,2

for any function v with finite right-hand side.

However, we need to define the norm on the right-hand side. To do this we introduce the

following vector fields: Γ0 = t∂t + x∂x + y∂y,Ω01 = t∂x + x∂t,Ω02 = t∂y + y∂t,Ω12 = x∂y −

y∂x, ∂t, ∂x, ∂y. We index these vector fields by Γ = {Γi}6i=0. We discuss these more thoroughly in

the Almost Global section in Chapter 2. For now we just need to define

|v(t,x)|s =
∑
|α|≤s

|Γαv(t,x)|

‖v(t, ·)‖s,p =
∥∥|v(t, ·)|s

∥∥
Lp
.

(1.27)

Using the Klainerman-Sobolev inequality, we can immediately state that for U , a solution to

(0.1), we have

|U(t,x)| ≤ (1 + t+ |x|)−
1
2 (1 +

∣∣t− |x|∣∣)− 1
2 ‖U(t, ·)‖2,2

≤ (1 +
∣∣t− |x|∣∣)− 1

2 ‖U(t, ·)‖2,2.
(1.28)

If the norm on the right-hand side is finite, then we see that there is decay away from the light

cone. However, this statement is vacuous if the norm on the right-hand side is not finite.

For the linear, inhomogeneous Dirac equation it is a quick result that the norm on the right-

hand side is finite. If U solves the linear, inhomogeneous Dirac equation, then U also solves the

linear, inhomogeneous wave equation (0.3). As we mention more carefully in Section 2.3, each of

these vector fields commutes well with the wave equation operator, 2, (except for Γ0 which gives

an extra copy of 2 when commuting with 2). Thus, ‖U(t, ·)‖2,2 can be bounded:

(1.29) ‖U(t, ·)‖2,2 ≤ C
(
‖f‖2,2 + ‖g‖2,2 +

∫ t

0
(‖F1(τ)‖2,2 + ‖F2(τ)‖2,2)dτ

)
.

As long as we restrict the initial data to be in the 2,2-norm space and the inhomogeneities to be

L1 in time and be in the 2,2-norm space in space, then the right-hand side will stay finite. This

analytically confirms the decay off the light cone seen in [1].

Even for the nonlinear Dirac equation, one consequence of our result from Section 2.3 will be

that ‖U(t, ·)‖2,2 remains finite on an exponential time scale if the initial data is small enough and
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compactly supported. Thus for the nonlinear Dirac equation, we technically only prove decay off

the light cone for small enough initial data with compact support (since that is when we are able to

prove that the norm above is finite). However, Ablowitz, Nixon, and Zhu run their simulations for a

short enough time scale (t = 10.8) that this gives us reasonable analytical support for the qualitative

observations made in [1] even in the nonlinear case (in addition to confirming the observation for

the linear case).

1.2.3. Finite Propagation Speed. In this section we will show that the Dirac equation has

finite speed of propagation (FPS).

As we have already shown in the introduction, solutions to the Dirac equation also solve a

particular wave equation. As it is well known that the wave equation has finite speed of propagation,

this property easily transmits to the Dirac equation.

1.2.3.1. The Homogeneous Case. If we assume U is a solution to the homogeneous Dirac equation,

then we can simply apply the operator P̃ to the equation to conclude

(1.30)

−2u
−2v

 =

−2 0

0 −2

u
v

 = P̃P

u
v

 = P̃ · 0 = 0.

Thus U also solves the homogeneous wave equation.

Among many places, a proof for finite propagation speed of the wave equation is given in [28].

It states that if u solves the wave equation and u = ut = 0 on B(x0, t0)×{t = 0}, then u = 0 within

the backward light cone C = {(x, t) | 0 ≤ t ≤ t0, |x− x0| ≤ t0− t}. This is equivalent to saying that

if u0 is compactly supported on K, then for any time t > 0 we have that u(·, t) is supported on

B(K, t), all the points within a distance, t, from the support, K.

Thus u, v both have finite propagation speed when they are solutions to the homogeneous Dirac

problem.

1.2.3.2. The Inhomogeneous Case. To solve the inhomogeneous case we must look back at how we

found the inhomogeneous solution. Namely, we must use Duhamel’s Formula again. We already

have FPS for solutions to the homogeneous case with nonzero initial conditions. Therefore if we

can show FPS for solutions to the inhomogeneous case with zero initial conditions we will be done

since the general solution is merely the sum of the two.
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Thus we are looking for a solution to

(1.31) P

u
v

 =

F1

F2

 , u0 = v0 = 0.

Using Duhamel we first let u(x, t; τ) be a solution to

(1.32) P

u(x, t; τ)

v(x, t; τ)

 =

0

0

 on R2 × (τ,∞)

with initial conditions

(1.33)

u(x, t; τ)

v(x, t; τ)

 =

F1(x, t; τ)

F2(x, t; τ)

 on R2 × {t = τ}.

Then by Duhamel’s Formula the solution to (1.31) is merely u(x, t) = i
∫ t

0 u(x, t; τ)dτ and

similarly for v. This can be solved out further (which is done in the above section for Global

Well-Posedness), but for the purposes of showing FPS this is all we need.

Notice that (1.32) is a homogeneous equation where the starting point is now t = τ instead of

t = 0. Thus F1(τ) having compact support on Kτ implies that u(x, t; τ) has compact support on

B(Kτ , t− τ).

Now we will consider the case when F1(τ) has compact support, Kτ , for all τ. Then u(x, t) =

i
∫ t

0 u(x, t; τ)dτ is supported on the union of the balls, B(Kτ , t− τ). Notice that

∪tτ=0B (Kτ , t− τ) ⊂ B
(
∪tτ=0Kτ , t

)
.

This yields FPS as long as ∪Kτ is bounded. However, this is trivial as it is just a union over a

compact interval of compact sets. Notice also that v and F2(τ) are treated the same way.

In particular, for F1(τ) compactly supported on Kτ for each τ, We have that u(x, t) is supported

on B(∪tτ=0Kτ , t), which is a bounded set.

1.3. Strichartz Estimates. Strichartz estimates are used to bound the mixed space-time

(Strichartz) norm (and potentially the Sobolev norm) of the solution by Sobolev norms of the initial

data and a Strichartz norm of the inhomogeneities. They can give a broad range of Strichartz spaces

on the right-hand side of the inequality giving the potential to bootstrap more optimal estimates

than might otherwise be achieved.
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We prove the following Strichartz estimates to allow us to get an improved local existence result

for solutions to the nonlinear equation when working with Strichartz spaces. However, neither

the Strichartz estimates nor the Strichartz space local existence result are needed in proving the

main result in Chapter 3. Thus, these Strichartz estimates are mainly included for the sake of

completeness and are found by making modifications to the wave equation Strichartz estimates.

It is also important to note that we will be reducing the solution operator to the half-wave

operator. Thus, the Strichartz estimates are essentially the same as the well known Strichartz

estimates for the wave equation with some modifications of the gap condition. Although originaly

developed by Strichartz in [75], we will primarily make use of the proof in Lawrie, [56], to influence

the overall strategy of the proof. In particular, his proof will work for the desired estimates with

the addition of a Lemma from Stein, [73], and carefully tracking how the difference in the inho-

mogeneous terms of the fundamental solution changes the gap condition. Also of use in motivating

this section were Sogge, [72], and Selberg, [70]. Strichartz estimates for the wave equation were

also proved in [35, 50, 51, 59].

We will work with the inhomogeneous Dirac equation

i∂tu−(∂x − i∂y)v = n(t, x, y)

i∂tv+(∂x + i∂y)u = m(t, x, y)
(1.34)

with initial data u(0, ·) = f(·) and v(0, ·) = g(·) and inhomogeneities n and m.

1.3.1. Statement of Desired Strichartz Estimate. Before getting started we must discuss

what particular mixed space-time norms will work for the Strichartz estimates. To do so we define

the following:

Definition 1. We say that the pair (q, r) is wave admissible if

(1.35) 2 ≤ q ≤ ∞, 2 ≤ r <∞ and
2

q
≤ n− 1

2

(
1− 2

r

)
.

In particular, since our Dirac equation is in 2 dimensions, wave admissible means

(1.36)
2

q
≤ 1

2
− 1

r
.

In particular, we notice that this further restricts q > 4.
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We will assume that (q, r) and (q̃, r̃) are both wave admissible. We define ST = [0, T ] × R2.

Then we claim the following Strichartz Estimates for the above Dirac equation:

Theorem 1.3.1. Let (q, r) be wave admissible. Assuming that U solves Equation 1.34 with

f, g ∈ Ḣs(R2) and n = m = 0 (i.e. the homogeneous equation), then

(1.37) ‖U‖LqtLrx(ST ) . ‖f‖Ḣs + ‖g‖Ḣs

where s, q, r satisfy 2
r + 1

q = 1− s.

Notice that it suffices to prove this estimate for u (since the proof for v will be identical), and

it is trivial to distribute using the triangle inequality and reduce to the half-wave operator

‖u‖LqtLrx ≤
∥∥∥F−1

(
eit|ξ|f̂

)∥∥∥
LqtL

r
x

+

∥∥∥∥F−1

(
−ξ1 + iξ2

|ξ|
eit|ξ|ĝ

)∥∥∥∥
LqtL

r
x

.(1.38)

We also state the desired Strichartz estimates for the inhomogeneous equation.

Theorem 1.3.2. Let (q, r) and (q̃, r̃) both be wave admissible. Assuming that U solves Equation

1.34 with f, g ∈ Ḣs(R2) and n,m ∈ Lq̃
′

t L
r̃′
x (ST ), then

(1.39) ‖U‖LqtLrx(ST ) . ‖f‖Ḣs + ‖g‖Ḣs + ‖n‖
Lq̃
′
t L

r̃′
x (ST )

+ ‖m‖
Lq̃
′
t L

r̃′
x (ST )

where s, q, r, q̃, r̃ satisfy the gap condition 2
r + 1

q = 1− s = 2
r̃′ + 1

q̃′ − 1.

Again, it suffices to prove this estimate for u (since the proof for v will be identical), and it is

trivial to distribute using the triangle inequality and reduce to the half-wave operator

‖u‖LqtLrx ≤
∥∥∥F−1

(
eit|ξ|f̂

)∥∥∥LqtLrx +

∥∥∥∥F−1

(
−ξ1 + iξ2

|ξ|
eit|ξ|ĝ

)∥∥∥∥
LqtL

r
x

+

∥∥∥∥∫ t

0
F−1

(
ei(t−τ)|ξ|n̂(τ)

)
dτ

∥∥∥∥
LqtL

r
x

+

∥∥∥∥∫ t

0
F−1

(
−ξ1 + iξ2

|ξ|
ei(t−τ)|ξ|m̂(τ)

)
dτ

∥∥∥∥
LqtL

r
x

.

(1.40)

However, the proof for Theorem 1.3.1 will already establish the needed bounds for both homoge-

neous terms. Thus, we only need to find bounds for the last two terms on the right-hand side of

(1.40).

In the proof we will show how the gap condition is the proper scaling for the estimate on the

regularity term to work out. This will be the primary (if small) difference between these Strichartz
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estimates and the Strichartz estimates for the wave equation. The other being using a lemma from

[73] to deal with the −ξ1+iξ2
|ξ| multipliers in the second and fourth terms.

However, the gap condition in Theorem 1.3.2 along with wave admissability reduces to q =

q̃ = ∞ and r = r̃ = 2 which is just the L2 energy inequality for the equation. Thus, on its

own, Theorem 1.3.2 is essentially trivial. We include it to show how the standard wave equation

Strichartz arguments apply for the Dirac equation. We also include it so that we may introduce

regularity on the right-hand side of the inequality (while using only minor modifications to the

proof) to widen the condition governing the allowable pairs in the estimate. In order to do so we

introduce the following theorem

Theorem 1.3.3. Let (q, r) and (q̃, r̃) both be wave admissible. Assuming that U solves Equation

1.34 with f, g ∈ Ḣs(R2) and n,m ∈ Lq̃
′

t L
r̃′
x (ST ), then

(1.41) ‖U‖LqtLrx(ST ) . ‖f‖Ḣs + ‖g‖Ḣs + ‖n‖
Lq̃
′
t Ẇ

s,r̃′
x (ST )

+ ‖m‖
Lq̃
′
t Ẇ

s,r̃′
x (ST )

and s satisfies the condition 2
r + 1

q = 1− s = 2
r̃′ + 1

q̃′ − 1− s.

After the proofs, we will show that Theorem 1.3.3 can be extended to the near endpoint case

q > 4, r =∞ by appealing to a result of Fang and Wang, [29].

1.3.2. Proving the Strichartz Estimates.

1.3.2.1. Proof of Theorem 1.3.1. For the homogeneous estimates we rely entirely on the proof pro-

vided in Lawrie, [56], with the addition of a minor modification to deal with the Fourier multiplier

in the second term.

Lawrie uses the following pointwise estimate lemma

Lemma 1.3.4. Let f ∈ S be such that supp(̂f) ⊂ {1
2 ≤ |ξ| ≤ 2}. Then,∥∥∥e±it√−∆f

∥∥∥
L∞x
≤ C〈t〉−

n−1
2 ‖f‖L1∥∥∥e±it√−∆f

∥∥∥
L2
≤ ‖f‖L2 .

(1.42)

Lawrie uses these estimates and the standard TT ∗ argument to prove that

(1.43)
∥∥∥e±it√−∆f

∥∥∥
LqtL

r
x

≤ C‖f‖Ḣs
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for any f such that supp(̂f) ⊂ {1
2 ≤ |ξ| ≤ 2}. Using the restriction, 2

r + 1
q = 1− s, he then extends

the inequality to the case where supp(f̂) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.

He then extends the result to f without any assumption on the support of f̂ by using a

Littlewood-Paley expansion

(1.44)
∥∥∥e±it√−∆f

∥∥∥2

LqtL
r
x

≤
∑
j

‖Fj‖2LqtLrx

where Fj is e±it
√
−∆f frequency localized on the diadic intervals {2j−1 ≤ |ξ| ≤ 2j+1}. In other

words, Fj = ψ̂j ∗ e±it
√
−∆f where {ψj}∞j=1 is a diadic partition of unity. Since each Fj is frequency

localized on {2j−1 ≤ |ξ| ≤ 2j+1} he can apply (1.43) to get

(1.45)
∥∥∥e±it√−∆f

∥∥∥2

LqtL
r
x

≤ C
∑
j

‖ψ̂j ∗ f‖2Ḣs .

Using Littlewood-Paley theory again, he shows

(1.46)
∑
j

‖ψ̂j ∗ f‖2Ḣs ≤ ‖f‖2Ḣs

and thus

(1.47)
∥∥∥e±it√−∆f

∥∥∥
LqtL

r
x

≤ C‖f‖Ḣs

giving the desired bound for the first term of (1.38).

To prove the desired bound for the second term of (1.38) we recognize that we can rewrite it as

(1.48)

∥∥∥∥e±it√−∆

(
F−1−ξ1 + iξ2

|ξ|
ĝ

)∥∥∥∥
LqtL

r
x

.

Replacing f in (1.47) by F−1−ξ1+iξ2
|ξ| ĝ immediately gives us

(1.49)

∥∥∥∥e±it√−∆

(
F−1−ξ1 + iξ2

|ξ|
ĝ

)∥∥∥∥
LqtL

r
x

≤ C
∥∥∥∥F−1−ξ1 + iξ2

|ξ|
ĝ

∥∥∥∥
Ḣs

.

Using the fact that
∣∣∣−ξ1+iξ2
|ξ|

∣∣∣ = 1 and that the norm on the right-hand side is an L2-based norm

we see that the norm on the right-hand side is equal to ‖g‖Ḣs . Thus we have the desired estimate

for the second term of (1.38)

(1.50)

∥∥∥∥e±it√−∆

(
F−1−ξ1 + iξ2

|ξ|
ĝ

)∥∥∥∥
LqtL

r
x

≤ C ‖g‖Ḣs .
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This concludes the proof for Theorem 1.3.1.

1.3.2.2. Proof of Theorem 1.3.2. As mentioned after the statement of the theorem, the desired

bounds for the first two terms of (1.40) are established by the proof for Theorem 1.3.1. Thus we

only need to prove the desired bounds for the third and fourth terms of (1.40). We can rewrite the

third term as

(1.51)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆n(·, τ)dτ

∥∥∥∥
LqtL

r
x

.

Looking back at the proof in [56] we find a result stating that for any n such that supp(n̂) ⊂

{1
2 ≤ |ξ| ≤ 2} and wave admissable pairs (q, r) and (q̃, r̃) we have the bound

(1.52)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆n(·, τ)dτ

∥∥∥∥
LqtL

r
x

≤ C‖n‖
Lq̃
′
t L

r̃′
x
.

Lawrie proceeds to extend this to prove the bound for the inhomogeneous term of the wave equation

in the case where supp(n̂) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1} by using the gap condition for the wave equation.

However, since the inhomogeneous term of the fundamental solution is different than that of the

wave equation, his result does not immediately hold in this case. Instead, we mimic his proof on

page 23 of [56] to get the desired result when supp(n̂) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.

Remembering that {ψj} is a diadic partition of unity we expand∫ t

0
e±i(t−τ)

√
−∆n(·, τ)dτ =

∑
j∈Z

∫ ∫
ei(±(t−τ)|ξ|+x·ξ)ψj(ξ)n̂(ξ, τ)dξdτ

:=
∑
j∈Z

Kj(n).

(1.53)

Rewriting ψj(ξ) = ψ0(2−jξ) and performing some changes of variables we get

Kj(n)(x, t) =

∫ ∫
ei(±(t−τ)|ξ|+x·ξ)ψ0(2−jξ)n̂(ξ, τ)dξdτ

=

∫ ∫
ei(±(2jt−2jτ)|ξ|+2jx·ξ)ψ0(ξ)22jn̂(2jξ, τ)dξdτ

= 2−j
∫ ∫

ei(±(2jt−τ)|ξ|+2jx·ξ)ψ0(ξ)22jn̂(2jξ, 2−jτ)dξdτ

= 2−j
∫ ∫

ei(±(2jt−τ)|ξ|+2jx·ξ)ψ0(ξ)n̂2−j (ξ, τ)dξdτ

= 2−jK0(n2−j )(2
jx, 2jt)

(1.54)
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where n2−j (x, t) = n(2−jx, 2−jt). In the equivalent steps for the inhomogeneous term of the wave

equation there would be an additional factor, 2−j , resulting from the change of variables and the

|ξ|−1 present in the inhomogeneous term of the fundamental solution of the wave equation.

Taking the norm of Kj(n), scaling the variables, and applying (1.52) we get

‖Kj(n)‖LqtLrx = 2
j(−1− 1

q
− 2
r

) ‖K0(n2−j )‖LqtLrx

≤ C2
j(−1− 1

q
− 2
r

) ‖n2−j‖Lq̃′t Lr̃′x

= C2
j(−1− 1

q
− 2
r

+ 1
q̃′+

2
r̃′ ) ‖n‖

Lq̃
′
t L

r̃′
x

= C ‖n‖
Lq̃
′
t L

r̃′
x

(by the gap condition).

(1.55)

This means that if we take a more general n without assuption on the supp(n̂), then

(1.56)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆
(
ψ̂j(·) ∗ n(·, τ)

)
dτ

∥∥∥∥
LqtL

r
x

≤ C
∥∥∥ψ̂j ∗ n∥∥∥

Lq̃
′
t L

r̃′
x

where have to use the gap condition.

Then we define Nj :=
∫ t

0 e
±i(t−τ)

√
−∆
(
ψ̂j(·) ∗ n(·, τ)

)
dτ to allow us to write our Littlewood-

Paley expansion:

(1.57)

∫ t

0
e±i(t−τ)

√
−∆n̂(·, τ)dτ =

∑
j∈N

Nj(·, t).

Taking the square of the norm of both sides and applying the Minkowski triangle inequality we get

(1.58)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆n̂(·, τ)dτ

∥∥∥∥2

LqtL
r
x

≤
∑
j

‖Nj(·, t)‖2LqtLrx

where we note that we do not require any restrictions on supp(n̂).

Then we can apply (1.56) and Littlewood-Paley again to get∑
j

‖Nj(·, t)‖2LqtLrx ≤ C
∑
j

∥∥∥ψ̂j ∗ n∥∥∥2

Lq̃
′
t L

r̃′
x

≤ C ‖n‖2
Lq̃
′
t L

r̃′
x

.

(1.59)

Combining (1.58) and (1.59) we get the desired result for the third term of (1.40),

(1.60)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆n̂(·, τ)dτ

∥∥∥∥
LqtL

r
x

≤ C ‖n‖
Lq̃
′
t L

r̃′
x
.
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The fourth term of (1.40) is simple to deal with using (1.60) and a lemma from Stein, [73]. We

notice that the fourth term of (1.40) can be written as

(1.61)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆F−1

(
−ξ1 + iξ2

|ξ|
m̂(·, τ)

)
dτ

∥∥∥∥2

LqtL
r
x

.

Applying (1.60) to the above immediately gives us∥∥∥∥∥
∫ t

0
e±i(t−τ)

√
−∆F−1

(
−ξ1 + iξ2

|ξ|
m̂(·, τ)

)
dτ

∥∥∥∥∥
LqtL

r
x

≤ C
∥∥∥∥F−1

(
−ξ1 + iξ2

|ξ|
m̂(·, τ)

)∥∥∥∥
Lq̃
′
t L

r̃′
x

.

(1.62)

However, this is easily dealt with. According to Stein [73], if Λf := F−1
(
m(ξ)f̂(ξ)

)
such that

m is a multiplier satisfying ∣∣∣∣( ∂

∂ξ

)α
m(ξ)

∣∣∣∣ ≤ Cα|ξ|−α
for all multiindices α, then Λ mapping Lp to Lp for some p implies Λ also maps Lp

∗
to Lp

∗
for all

1 < p∗ ≤ p.

A quick calculation verifies that m(ξ) := (−ξ1 + iξ2)/|ξ| satisfies this condition. We note that

(−ξ1 + iξ2)/|ξ| will be invariant in Lq
′

t since it is independent of t. Also we see that this Λ maps

L2
x → L2

x since L2 is invariant under F ,F−1 and |(−ξ1 + iξ2)/|ξ|| = 1. Thus we have that

(1.63)

∥∥∥∥F−1

(
−ξ1 + iξ2

|ξ|
m

)∥∥∥∥
Lq̃
′
t L

r̃′
x

. ‖m‖
Lq̃
′
t L

r̃′
x

since 1 < r′ ≤ 2. Then combining (1.62) and (1.63) we get the desired estimate for the final term

of (1.40).

Therefore we have the desired result for Theorem 1.3.2:

(1.64) ‖U‖LqtLrx(ST ) . ‖f‖Ḣs + ‖g‖Ḣs + ‖n‖
Lq̃
′
t L

r̃′
x (ST )

+ ‖m‖
Lq̃
′
t L

r̃′
x (ST )

.

1.3.2.3. Proof of Theorem 1.3.3. The proof for this theorem is identical to the proof of Theorem

1.3.2 except for the scaling considerations necessitating the gap condition. Clearly the homogeneous

terms behave identically because they are unchanged. For the inhomogeneous terms the main

change is that the norm Lr̃
′
x is changed to Ẇ s,r̃′

x wherever it appears. This results in an extra factor

of |ξ|s on the Fourier side of each of the associated integrals.
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In the case of (1.52) when supp(n̂) ⊂ {1
2 ≤ |ξ| ≤ 2} this doesn’t change anything because

|ξ| ≈ 1.

In (1.55), the second line would have an extra factor, |ξ|s, on the Fourier side, and in (1.55),

|ξ| ≈ 2j . Thus, the factor in the third line, 2
j(−1− 1

q
− 2
r

+ 1
q̃′+

2
r̃′ ), would become 2

j(−1− 1
q
− 2
r

+ 1
q̃′+

2
r̃′+s).

Then, the condition on s in Theorem 1.3.3 would give the same result as (1.55) (except for using

the Ẇ s,r̃′
x norm).

The rest of the proof proceeds identically giving us the desired result for Theorem 1.3.3.

1.3.3. Extending to r = ∞. Motivated by the work of Fang and Wang [29], we will show that

Theorem 1.3.3 can be extended to the Strichartz space LqtL
∞
x when q > 4. This is not trivial

because the proof of the Strichartz estimates required a Littlewood-Paley decomposition, and the

inequalities used in the decomposition do not hold in L∞x . We will have to use some other technique

to find a bound for the L∞x norm.

The main step of extending to LqtL
∞
x is done by the following generalized Gagliardo-Nirenberg

inequality

Lemma 1.3.5. Let a, c ∈ (1,∞), κ, µ ∈ (0, n) and κa < n < µc, then

‖f‖L∞ . ‖Dκf‖θLa‖Dµf‖1−θLc

where θ =
(µ
n −

1
c

)
/
(µ
n −

1
c + 1

a −
κ
n

)
.

The lemma is proven by Escobedo and Vega in [27].

To apply this to our desired Strichartz estimates n = 2 and we will let a = 2, κ = s = 1 − 1
q ,

and µ = 3
2c + 1

4 −
1
q . Notice that as long as c is large then n < µc (this would not be possible if

q = 4). Then we choose c large enough so that the pair ((1− θ)q, c) is admissable.

We will define a new operator, T , by

(1.65) T f(t, x) =

∫
eix·ξ+it|ξ|f̂(ξ)dξ = F−1

(
eit|ξ|f̂(ξ)

)
.

For ease of notation we will represent T f = eitDf . When combined with the Strichartz estimates

already established this will allow us to find a useful bound.
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We recognize that the first term in (1.40) is T f , and

‖T f‖LqtL∞x .
(
‖DseitDf‖θL2

x
‖DµeitDf‖1−θLcx

)
Lqt

. ‖eitDDsf‖θL∞t L2
x
‖eitDDµf‖1−θ

L
q(1−θ)
t Lcx

. ‖Dsf‖θL2‖Dµf‖1−θ
Ḣs−µ

. ‖f‖Ḣs

(1.66)

where the third line comes from the already established Strichartz estimates for wave admissable

pairs.

By an easy calculation we can determine that T ∗F =
∫
F−1

(
e−iτ |ξ|F̂ (t, ξ)

)
dτ and T T ∗F =∫

F−1
(
ei(t−τ)|ξ|F̂ (t, ξ)

)
dτ . In other words, the third term from (1.40) is T T ∗n with the time

integration restricted to [0, T ].

A similar calculation to (1.66) shows that

(1.67) ‖T T ∗n‖LqtL∞x . ‖n‖Lq̃′t Ẇ s,r̃′
x

where the gap condition and the previously established inhomogeneous Strichartz estimates are

used to get the third line just as was done in (1.66).

Then applying the Christ-Kiselev lemma, [24], gives the desired bound for the third term in

(1.40):

(1.68)

∥∥∥∥∫ t

0
e±i(t−τ)

√
−∆n̂(·, τ)dτ

∥∥∥∥
LqtL

∞
x

≤ C ‖n‖
Lq̃
′
t Ẇ

s,r̃′
x

.

This just leaves the second and fourth term in (1.40) which have the fraction multiplier in

them. However, the multiplier can be handled exactly as it was in the proof of the above Strichartz

estimates. For the second term we eliminate the −ξ1+iξ2
|ξ| factor using the L2 invariance of F and

F−1. In the fourth term we eliminate the −ξ1+iξ2
|ξ| by using the lemma from [73].

Thus we are able to extend the Strichartz estimates in Theorem 1.3.3 from only wave admissable

pairs (q, r) with r 6=∞ to allowing r =∞ as long as q > 4.

1.3.4. Conclusion of Strichartz Estimates. Thus by extending the allowable range of q, r in

Theorem 1.3.1 we have established the Strichartz estimates

(1.69) ‖U‖LqtLrx(ST ) . ‖f‖Ḣs + ‖g‖Ḣs + ‖n‖
Lq̃
′
t Ẇ

s,r̃′
x (ST )

+ ‖m‖
Lq̃
′
t Ẇ

s,r̃′
x (ST )
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for 4 < q, q̃ ≤ ∞, 2 ≤ r ≤ ∞, 2 ≤ r̃ < ∞ with 2/q ≤ 1/2 − 1/r, 2/q̃ ≤ 1/2 − 1/̃r, and the condition,

2
r + 1

q = 1− s = 2
r̃′ + 1

q̃′ − 1− s.

In our application of these Strichartz estimates to local existence in Chapter 2 we will make

the choices r =∞, q̃ =∞, and r̃ = 2. Thus we can use

(1.70) ‖U‖LqtL∞x (ST ) . ‖f‖Ḣs + ‖g‖Ḣs + ‖n‖L1
t Ḣ

s
x(ST ) + ‖m‖L1

t Ḣ
s
x(ST )

where q > 4 can be as close to 4 as desired and s = 1− 1
q .
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CHAPTER 2

Nonlinear Results

2.1. Remarks on Conservation Laws, Scaling, and Criticality. Before exploring more

advanced results for the nonlinear Dirac equation we first look at a few quick results for the nonlinear

equation.

2.1.1. Nonlinear Conservation Laws. In this section we will use multiplier methods to establish

some basic conservation laws for the system PU = CF (U) where we let C = 0 denote the linear

homogeneous case and C = 1 denote the nonlinear case. Note, we only show this for Dirac equation

derived by Ablowitz, Nixon, and Zhu, [1], as Fefferman and Weinstein establish conserved quantities

for the equation they derived in [31]. We also assume U is a solution in a functions space with

good decay at infinity such as S(R2), L2(R2), or Hs(R2).

These laws will be Conservation of Mass/Charge

(2.1)

∫
|u|2 + |v|2dxdy,

Conservation of Hamiltonian

(2.2)

∫
2<(v̄ux)− 2=(v̄uy)−

C

2

(
|u|4 + |v|4

)
dxdy,

and Conservation of Momentum,

(2.3)

∫
=(ūux + v̄vx)dxdy.

2.1.1.1. Finding Conservation of Mass. To find the Law for Conservation of Mass (or Charge)

consider the product ū
v̄

 ·
iut − (vx − ivy)

ivt + (ux + iuy)

 = C

ū
v̄

 ·
|u|2u
|v|2v

 .
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Expanding the dot product we get:

C(|u|4 + |v|4) = iūut − ūvx + iūvy + iv̄vt + v̄ux + iv̄uy

iC(|u|4 + |v|4) + ūut + v̄vt = i(v̄ux − ūvx)− (ūvy + v̄uy).
(2.4)

Taking the Real Component of both sides and applying the product rule we get

<(ūut + v̄vt) = −=
(
∂x(v̄u)

)
−<

(
∂y(ūv)

)
.(2.5)

Notice the contribution of the nonlinearity vanishes in this step since |u|4 + |v|4 is purely real.

We also note the trivial identity ∂t(|u|2 + |v|2) = 2<(ūut + v̄vt).

Thus we get,

∂t
1

2

∫
|u|2 + |v|2dxdy =

∫
−=
(
∂x(v̄u)

)
−<

(
∂y(ūv)

)
dxdy

= −
∫
∂x
(
=(v̄u)

)
dxdy −

∫
∂y
(
<(ūv)

)
dydx

= 0

(2.6)

where the final equality is achieved by the Fundamental Theorem of Calculus and decay assumptions

of solutions u, v at infinity. This proves the Conservation of Mass stated above.

It is interesting to note that since the contribution from the nonlinearity vanishes during the

proof this is the same conservation law for the purely linear problem.

2.1.1.2. Finding Conservation of Hamiltonian. To find the Law for Conservation of Hamiltonian

consider the following

∫ ūt
v̄t

 ·
iut − (vx − ivy)

ivt + (ux + iuy)

 dxdy = C

∫ ūt
v̄t

 ·
|u|2u
|v|2v

 .

Expanding the dot product of the left side we get

∫
i|ut|2 − ūtvx + iūtvy + i|vt|2 + v̄tux + iv̄tuydxdy.(2.7)
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Adding the above equation to its complex conjugate gives∫
−(ūtvx + utv̄x) + i(ūtvy − utv̄y) + (v̄tux + vtūx) + i(v̄tuy − vtūy)dxdy

=

∫
−2<(ūtvx)− 2=(ūtvy) + 2<(v̄tux)− 2=(v̄tuy)dxdy

=

∫
2<(v̄tux + uxtv̄)− 2=(v̄tuy + uytv̄)dxdy

= ∂t

∫
2<(v̄ux)− 2=(v̄uy)dxdy.

(2.8)

Doing the same with the right side of the equation gives us

C

∫
|u|2uūt + |u|2ūut + |v|2vv̄t + |v|2v̄vtdxdy

=
C

2
∂t

∫
|u|4 + |v|4dxdy.

(2.9)

Putting the two sides back together we get

∂t

∫
2<(v̄ux)− 2=(v̄uy)dxdy =

C

2
∂t

∫
|u|4 + |v|4dxdy

0 = ∂t

(∫
2<(v̄ux)− 2=(v̄uy)−

C

2

(
|u|4 + |v|4

)
dxdy

)(2.10)

yielding the desired Conservation of Hamiltonian.

2.1.1.3. Finding Conservation of Momentum. To find the Law for Conservation of Momentum we

define the operators ∂− = ∂x − i∂y and ∂+ = ∂x + i∂y. Then we consider the following

∫ ∂∗−ū
∂∗+v̄

 ·
iut − (vx − ivy)

ivt + (ux + iuy)

 dxdy = C

∫ ∂∗−ū
∂∗+v̄

 ·
|u|2u
|v|2v

 dxdy.

A quick calculation verifies that ∂∗− = −∂+ and ∂∗+ = −∂−. By expanding the dot product we get:

C

∫
−u2ūūx − iu2ūūy − v2v̄v̄x + iv2v̄v̄ydxdy

=

∫
(−iūxut + ūxvx − iūxvy + ūyvt + iūyvx + ūyvy

− iv̄xvt − v̄xux − iv̄xuy − v̄yvt + iv̄yux − v̄yuy)dxdy.

(2.11)

Doing the same with

∫ ∂∗−u
∂∗+v

 ·
−iūt − (v̄x + iv̄y)

−iv̄t + (ūx − iūy)

 dxdy = C

∫ ∂∗−u
∂∗+v

 ·
|u|2ū
|v|2v̄

 dxdy
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gives us

C

∫
−ū2uux − iū2uuy − v̄2vvx + iv̄2vvydxdy

=

∫
(iuxūt + uxv̄x + iuxv̄y − uyv̄t + iuyv̄x − uyv̄y

+ ivxv̄t − vxūx + ivxūy + vyv̄t + ivyūx + vyūy)dxdy.

(2.12)

Adding (2.11) and (2.12) as well as the conjugate of both equations we get

−C
∫

2(u2ūūx + ū2uux) + 2(v2v̄v̄x + v̄2vvx)dxdy

= 2i

∫
(ūtux − utūx) + (v̄tvx − vtv̄x) + (ūyvx − vyūx) + (v̄yux − uyv̄x)

= 2i

∫
i=(ūtux + ūtux) + i=(v̄tvx + v̄tvx)

+ (ūyvx − vyūx) + (v̄yux − uyv̄x)dxdy.

(2.13)

We note here that ∂x(u2ū2) = 2(u2ūūx + ū2uux), and likewise for v. Thus the integral on the

left-hand side of the equation vanishes by the Fundamental Theorem of Calculus. On the left-hand

side, integrating by parts selectively and taking a complex conjugate inside each = then yields

0 = 2i

∫
i=(ūtux + uxtū) + i=(v̄tvx + vxtv̄)

+ (ūyvx + vxyū) + (v̄yux + uxyv̄)dxdy

= 2i

∫
i∂t=(ūux) + i∂t=(v̄vx) + ∂y(ūvx) + ∂y(v̄ux)dxdy

= −2∂t

∫
=(ūux + v̄vx)dxdy

(2.14)

which implies the desired Conservation of Momentum.

2.1.2. Scaling of Solutions to Nonlinear Equation. We will also take a brief look at scaling

solutions to the equation to determine an allowable scaling and investigate the effect that scaling

has on the L2 norm.

2.1.2.1. Finding an allowable scaling. Assuming U = (u, v) is a solution we define Ũ = λαU(λβ1t, λβ2x, λβ3y).

Thus, if Ũ is also a solution we have

iλα+β1ut(#)− λα+β2vx(#) + iλα+β3vy(#) = λ3α|u(#)|2u(#)(2.15)

where # denotes (λβ1t, λβ2x, λβ3y).
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However, since u is a solution this becomes

iλα+β1ut(#)− λα+β2vx(#) + iλα+β3vy(#) = λ3α
(
iut(#)− vx(#) + ivy(#)

)
= λ3αiut(#)− λ3αvx(#) + iλ3αvy(#).

(2.16)

Thus we determine that β1 = β2 = β3 = 2α. Therefore, we will set α = 1
2 and work with the

allowable scaling

Ũ = λ
1
2U(λt, λx, λy).

2.1.2.2. How Scaling Affects the L∞t L
2
x Norm of Solutions. We start with Ũ as determined in the

above section, and we consider its L2 norm. However for the sake of simplicity we will actually just

consider the L2 norm of ũ.

‖ũ‖L∞t L2
x

= sup
t

(∫
|ũ|2
) 1

2

= λ
1
2 sup

t

(∫ ∫
|u(λt, λx, λy)|2dxdy

) 1
2

= λ
1
2 sup

t

(∫ ∫
λ−2|u(λt, q, r)|2dqdr

) 1
2

= λ−
1
2 ‖u‖L∞t L2

x
.

(2.17)

An identical argument gives the same result for v. Thus it must also be true that ‖Ũ‖L2 =

λ−
1
2 ‖U‖L2 .

Thus, since scaling a solution U with parameter λ results in the L2 norm being multiplied by

a negative power of λ we can conclude that the cubic nonlinearity is mass supercritical.

Note that the same scaling works for the Dirac nonlinearity found by Fefferman and Weinstein,

[31]. The only difference in the proof is there are two nonlinear terms instead of one.

2.2. Local Existence. In this section we will establish some local existence results for the cubic

Dirac equation. The first being in a simple energy space using an energy estimate, and the second

using a Strichartz space to allow us to use the Strichartz estimates to bootstrap the result into a

longer existence time. For both of these results we write out the proof for the Ablowitz, Nixon, and

Zhu, [1], Dirac equation as the nonlinearity is notationally easier to work with. However, the proof

for the Fefferman and Weinstein, [31], Dirac equation differs only in the fact that the nonlinearity

has two cubic terms which will have factors of both u and v, not necessarily only one of them.
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As the fundamental solution of the Dirac equation, (0.1), is very similar to that for the wave

equation (and in fact reduces to linear combinations of the half-wave operator), we use standard

wave equation techniques to prove local existence for the Dirac equation. In particular, the methods

we use for these proofs are motivated by Lindblad and Sogge, [59], as well as Sogge, [72]. One can

find local existence for even quasilinear wave equations dating back to Hughes, Kato, and Marsden,

[41], and Kato, [49].

2.2.1. An Energy Existence Result. In this section we will establish some energy estimates

and an existence result in the space XE = C([0, T ], Hs(R2)) where s > 1. In other words the case

when s > n/2, and therefore Hs is an algebra.

We claim the following energy estimate

Theorem 2.2.1. Given U a solution to the linear Dirac equation with initial conditions f =

u(0, ·), g = v(0, ·) and inhomogeneities F1, F2 we have the energy estimates

(2.18) ‖U(t, ·)‖Hs ≤ Es +

∫ t

0
‖F1(τ)‖Hs + ‖F2(τ)‖Hsdτ

and also

(2.19) ‖U‖XE ≤ Es + T (‖F1‖XE + ‖F2‖XE )

where s > 1 and Es = ‖f‖Hs + ‖g‖Hs

Proof. It suffices to prove the estimate for u instead of U . Consider ‖F−1 cos(t|ξ|)f̂‖Hs .

We start by rewriting as an L2 norm∥∥F−1 cos(t|ξ|)f̂
∥∥
Hs =

∥∥F−1(1 + |ξ|2)
s/2 cos(t|ξ|)f̂

∥∥
L2

=
∥∥(1 + |ξ|2)

s/2 cos(t|ξ|)f̂
∥∥
L2

≤
∥∥(1 + |ξ|2)

s/2f̂
∥∥
L2

=
∥∥F−1(1 + |ξ|2)

s/2f̂
∥∥
L2

= ‖f‖Hs .

(2.20)

Notice that the sine term works the exact same way since
∣∣−ξ1+iξ2
|ξ|

∣∣ = 1 and the inhomogeneous

terms work out the same way because ‖
∫

(·)dτ‖Hs ≤
∫
‖·‖Hsdτ . This proves (2.18).
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To prove (2.19) we notice that the norm on C[0, T ] is the sup norm. Thus taking the sup of t

over [0, T ] in (2.18) yields (2.19). 2

Now that we have an energy estimate we will define our Picard Iteration. We start by defining

U−1 = 0. Then iteratively we will define

PUj+1 =

|uj |2uj
|vj |2vj


where P is the operator in our Dirac Equation (0.2).

First we need to show that this sequence is well defined in XE . Trivially U−1 ∈ XE , and we

will assume that Uj ∈ XE by induction. Then applying the energy estimate to Uj+1 we get

‖Uj+1(t, ·)‖Hs ≤ Es +

∫ t

0

∥∥|uj(τ, ·)|2uj(τ, ·)∥∥Hs + ‖|vj(τ, ·)|2vj(τ, ·)
∥∥
Hsdτ.

However, for s > n
2 we have Hs ⊂ L∞ and therefore Hs is an algebra. Thus it is closed under

multiplication and we get

‖Uj+1(t, ·)‖Hs ≤ Es +

∫ t

0
C‖uj(τ, ·)‖3Hs + ‖vj(τ, ·)‖3Hsdτ

≤ Es +

∫ t

0
C‖Uj(τ, ·)‖3Hs

where the constant, C, comes from the Sobolev embedding Hs(R2) ⊂ L∞(R2) for s > 1.

Taking the supremum in time results in

(2.21) ‖Uj+1‖XE ≤ C
(
Es + T‖Uj‖3XE

)
.

Thus the sequence is well defined in XE .

To show that the sequence converges we will prove that it is uniformly bounded and Cauchy.

We define R = 2CEs and assume inductively that ‖Uj‖XE ≤ R. Now we want to show

‖Uj+1‖XE ≤ R. Plugging in the bound for Uj into (2.21) we get

‖Uj+1‖XE ≤ C
(
Es + TR3

)
= C

(
Es + T (8C3E3

s )
)
.

(2.22)
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Now we make our local in time assumption and restrict T < (16C3E2
s )−1. This gives us

‖Uj+1‖XE ≤ C
(
Es +

1

2
Es

)
≤ R.

(2.23)

Thus the sequence is uniformly bounded by R.

Now, to show the sequence is Cauchy we will notice that Uj+1 − Uj solves the equation with

zero initial conditions and inhomogeneities |uj |2uj −|uj−1|2uj−1 and |vj |2vj −|vj−1|2vj−1. Thus we

can apply the energy inequality

‖Uj+1 − Uj‖Hs ≤
∫ t

0

∥∥|uj |2uj − |uj−1|2uj−1

∥∥
Hs +

∥∥|vj |2vj − |vj−1|2vj−1

∥∥
Hsdτ

≤C
∫ t

0
‖uj − uj−1‖Hs

(
‖uj‖2Hs + ‖uj−1‖2Hs

)
+ ‖vj − vj−1‖Hs

(
‖vj‖2Hs + ‖vj−1‖2Hs

)
dτ

≤C
∫ t

0
(‖uj − uj−1‖Hs + ‖vj − vj−1‖Hs)

(
‖Uj‖2Hs + ‖Uj−1‖2Hs

)
dτ

≤2CR2

∫ t

0
‖uj − uj−1‖Hs + ‖vj − vj−1‖Hsdτ

=8C3E2
s

∫ t

0
‖uj − uj−1‖Hs + ‖vj − vj−1‖Hsdτ.

(2.24)

Taking the supremum in t gives

‖Uj+1 − Uj‖XE ≤ 8C3E2
sT (‖uj − uj−1‖XE + ‖vj − vj−1‖XE )

≤ 1

2
(‖uj − uj−1‖XE + ‖vj − vj−1‖XE )

=
1

2
‖Uj − Uj−1‖XE .

(2.25)

Thus the sequence (uj)
∞
j=−1 is Cauchy and uniformly bounded. Therefore the sequence converges

in XE .

Now we claim that |uj |2uj → |u|2u. To see this observe∥∥|uj |2uj − |u|2u∥∥Hs ≤ C‖uj − u‖Hs

(
‖uj‖2Hs + ‖u‖2Hs

)
≤ 2CR2‖uj − u‖Hs

(2.26)
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and thus

∥∥|uj |2uj − |u|2u∥∥XE ≤ 2CR2‖uj − u‖XE .(2.27)

Since R is a uniform constant the right side must converge to zero. Thus |uj |2uj → |u|2u. Likewise

we see that |vj |2vj → |v|2v.

Thus we conclude that Uj → U and F (Uj) → F (U). However, since Uj → U in XE it also

converges distributionally and we conclude that PUj → PU . But PUj = F (Uj−1) → F (U). By

uniqueness of the limit we conclude that PU = F (U). Thus U is a local solution in XE , and the

time scale has order of ε−2 where ε is the size of the initial conditions since our only assumption

on time was T < (16C3E2
s )−1.

We also want to show that the solution, U , depends continuously on the initial data. To do

that, consider U a solution to (0.1) with initial data u(0) = f and v(0) = g. Likewise, consider

U∗ a solution to (0.1) with initial data u∗0 = f∗ and v∗0 = g∗. Then U − U∗ solves the same Dirac

equation except with nonlinearities |u|2u− |u∗|2u∗ and |v|2v − |v∗|2v∗ and initial data f − f∗ and

g − g∗.

Applying the energy estimate we get

‖U − U∗‖XE ≤ ‖f − f
∗‖Hs+‖g − g∗‖Hs +

∫ t

0

(∥∥|u|2u− |u∗|2u∗∥∥
Hs

+
∥∥|v|2v − |v∗|2v∗∥∥

Hs

)
dτ.

(2.28)

Proceeding similarly to (2.24) and (2.25) we get that

∫ t

0

(∥∥|u|2u− |u∗|2u∗∥∥
Hs +

∥∥|v|2v − |v∗|2v∗∥∥
Hs

)
dτ ≤ 1

2
‖U − U∗‖XE(2.29)

by expanding the difference of cubes, applying the uniform bound, and applying the time bound.

Thus we have

‖U − U∗‖XE ≤‖f − f
∗‖Hs + ‖g − g∗‖Hs +

1

2
‖U − U∗‖XE

1

2
‖U − U∗‖XE ≤‖f − f

∗‖Hs + ‖g − g∗‖Hs .

(2.30)

This proves that the solutions depend continuously on the initial data.

It is also easy to show uniqueness of solutions using the argument above as we did for global

existence of the linear problem in Chapter 1.
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We include this elementary result even though the next subsection proves a stronger local

existence result because in Chapter 3 we only need to use existence of the Dirac equation in Hs

spaces with s > 1.

2.2.2. Improvement Using Bootstrap Space. Now we will prove a local existence result for

a lower regularity space (H1) with an extended time scale (approaching ε−4) by using a bootstrap

space instead of just energy. We will be using the space X = CtH
1
x∩L

q
tL
∞
x where q > 4. Restricting

q > 4 is necessary for our method as it will allow us to use the Strichartz estimates, (1.70), with

the L∞ norm in space.

We use the same Picard Iteration as before with f and g the initial conditions.

First we need to show that this sequence is well defined in X. Trivially U−1 ∈ X, and we will

assume that Uj ∈ X by induction. We start by expanding out

‖Uj+1‖X ≤ ‖Uj+1‖L∞H1 + ‖Uj+1‖LqL∞

= ‖Uj+1‖L∞L2 + ‖DUj+1‖L∞L2 + ‖Uj+1‖LqL∞ .
(2.31)

Then we notice that L∞L2 and LqL∞ are allowable norms for the Strichartz estimates. For the

pair (∞, 2) we can just use the Strichartz estimate from Theorem 1.3.2 with q = q̃ =∞, r = r̃ = 2,

and s = 0. For the pair (q,∞) we use Theorem 1.3.3 with r =∞, q̃ =∞, r̃ = 2, and s = 1− 1
q where

q > 4 is close to 4. Notice we will freely use the fact that Hs ⊂ Ḣs and Hs ⊂ Ht for s > t to move

from homogeneous Sobolev spaces to inhomogeneous Sobolev spaces and to larger inhomogeneous

Sobolev spaces.
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Since s, the regularity required by the Strichartz pairs, is less than 1 for each of these pairs,

letting E1 be the H1 norm of the initial conditions, we get

‖Uj+1‖X . E1 +
∥∥|uj |2uj∥∥L1L2 +

∥∥D (|uj |2uj)∥∥L1L2 +
∥∥|uj |2uj∥∥

L1Ḣ
1− 1

q

+
∥∥|vj |2vj∥∥L1L2 +

∥∥D (|vj |2vj)∥∥L1L2 +
∥∥|vj |2vj∥∥

L1Ḣ
1− 1

q

. E1 + ‖uj‖2L4L∞‖uj‖L2L2 + ‖uj‖2L4L∞‖Duj‖L2L2

+ ‖uj‖2L4L∞‖D
1− 1

q uj‖L2L2

+ ‖vj‖2L4L∞‖vj‖L2L2 + ‖vj‖2L4L∞‖Dvj‖L2L2

+ ‖vj‖2L4L∞‖D
1− 1

q vj‖L2L2

. E1 + ‖uj‖2L4L∞‖uj‖L2H1 + ‖vj‖2L4L∞‖vj‖L2H1

. E1 +
(
T
q−4
4q ‖uj‖LqL∞

)2
T

1
2 ‖uj‖L∞H1

+
(
T
q−4
4q ‖vj‖LqL∞

)2
T

1
2 ‖vj‖L∞H1

= E1 + T
q−2
q
(
‖uj‖2LqL∞‖uj‖L∞H1 + ‖vj‖2LqL∞‖vj‖L∞H1

)
. E1 + T

q−2
q ‖Uj‖3X

(2.32)

where the second inequality requires Proposition 3.1 in Christ and Weinstein, [23], to deal with

the fractional derivatives. The proposition states for α ∈ (0, 1)

(2.33) ‖DαF (u)‖Lr ≤ C‖F ′(u)‖Lp‖Dαu‖Lq for r−1 = p−1 + q−1.

Thus we conclude

(2.34) ‖Uj+1‖X ≤ C
(
E1 + T

q−2
q ‖Uj‖3X

)
,

and the sequence is well defined. To show that the sequence converges we will prove that it is

uniformly bounded and Cauchy.

We define R = 2CE1 and assume inductively that ‖Uj‖X ≤ R. Once again u−1 = 0 and

trivially has this bound. Now we want to show ‖Uj+1‖X ≤ R. Making our local in time assumption,
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T
q−2
q < (16C3E2

1)−1, and plugging in the bound for Uj into (2.34) we get

‖Uj+1‖X ≤ C
(
E1 + T

q−2
q R3

)
= C

(
E1 + T

q−2
q (8C3E3

1)
)

≤ C
(
E1 +

1

2
E1

)
≤ R.

(2.35)

Thus the sequence is uniformly bounded by R.

Now, to show the sequence is Cauchy we will notice that Uj+1 − Uj solves the equation with

zero initial conditions and inhomogeneities |uj |2uj−|uj−1|2uj−1 and |vj |2vj−|vj−1|2vj−1. Factoring

out the cubic terms, distributing the derivative, and applying Hölder’s Inequality we get

‖Uj+1 − Uj‖X .
∥∥|uj |2uj − |uj−1|2uj−1

∥∥
L1L2 +

∥∥D1(|uj |2uj − |uj−1|2uj−1)
∥∥
L1L2

+
∥∥|uj |2uj − |uj−1|2uj−1

∥∥
L1Ḣ

1− 1
q

+
∥∥|vj |2vj − |vj−1|2vj−1

∥∥
L1L2

+
∥∥D1(|vj |2vj − |vj−1|2vj−1)

∥∥
L1L2 +

∥∥|vj |2vj − |vj−1|2vj−1

∥∥
L1Ḣ

1− 1
q

.‖uj − uj−1‖L2L2

(
‖uj‖2L4L∞ + ‖uj−1‖2L4L∞

)
+‖uj−uj−1‖L2Ḣ1

(
‖uj‖2L4L∞ + ‖uj−1‖2L4L∞

)
+‖uj−uj−1‖L4L∞

(
‖uj‖L4L∞‖uj‖L2Ḣ1 + ‖uj−1‖L4L∞‖uj−1‖L2Ḣ1

)
+‖uj−uj−1‖

L2Ḣ
1− 1

q

(
‖uj‖2L4L∞ + ‖uj−1‖2L4L∞

)
+‖uj−uj−1‖L4L∞

(
‖uj‖L4L∞‖uj‖

L2Ḣ
1− 1

q
+ ‖uj−1‖L4L∞‖uj−1‖

L2Ḣ
1− 1

q

)
+ the equivalent terms for v

.T
q−2
q ‖Uj − Uj−1‖X(‖Uj‖2X + ‖Uj−1‖2X).

(2.36)

Applying the uniform bound we get

‖Uj+1 − Uj‖X ≤ C2R2T
q−2
q ‖Uj − Uj−1‖X

= 8C3E2
1T

q−2
q ‖Uj − Uj−1‖X

≤ 1

2
‖Uj − Uj−1‖X .

(2.37)

Thus the sequence (Uj)
∞
j=−1 is Cauchy and uniformly bounded. Therefore the sequence converges

to some U ∈ X. Note that the same uniform bound will hold for U .
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Now we claim that |Uj |2Uj → |U |2U. Proceeding similarly to (2.36), but starting on the right-

hand side of the first line we get∥∥|Uj |2Uj − |U |2U∥∥L1H1 ≤ C‖Uj − U‖X
(
‖Uj‖2X + ‖U‖2X

)
≤ 2CR2T

1
2 ‖Uj − U‖X .

(2.38)

Since R is a uniform constant the right side must converge to zero. Thus |Uj |2Uj → |U |2U.

Thus we conclude that Uj → U and F (Uj) → F (U). However, since Uj → U in X it also

converges distributionally and we conclude that PUj → PU . But PUj = F (Uj−1) → F (U). By

uniqueness of the limit we conclude that PU = F (U) and thus U is a solution in X.

The improvement in proven lifespan compared to the purely energy case comes from the fact

that we bound T
q−2
q < (16C3E2

1)−1 instead of T < (16C3E2
1)−1. Thus we can extend our existence

time close to ε−4 by choosing q very close to 4.

While the result using Strichartz estimates does provide a better timescale for solutions to the

Dirac equation and in a lower regularity space, in the proof of the main result in Chapter 3 we will

just make use of the results for the purely energy-based local existence. In fact, we will only make

use of the fact that the C([0, T ], Hs(R2)) norm is bounded for any finite time, T , as long as the

initial data is chosen small enough.

2.3. Almost Global Existence. In this section we will prove an almost global existence result

for initial data u(0,x) = εf(x) and v(0,x) = εg(x). We write the equation in the form PU =|u|2u
|v|2v

 where P is the appropriate differential operator. Then by acting on the equation with the

operator P̃ we find that P̃P = −2Id and we get−2u
−2v

 =

 i∂t ∂x − i∂y

−∂x − i∂y i∂t

|u|2u
|v|2v


=

i∂t(|u|2u) + ∂x(|v|2v)− i∂y(|v|2v)

i∂t(|v|2v)− ∂x(|u|2u)− i∂y(|u|2u)


(2.39)

with initial data U(0,x) = ε

f(x)

g(x)

 and Ut(0,x) = ε

−iε2|f |2f − igx − gy
−iε2|g|2g + ifx − fy

.
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For ease of notation we will define m(x), n(x) such that Ut(0,x) := ε

m(x)

n(x)

.

We assume f, g ∈ C∞0 (R2) and ε is small, and thus m,n will also be in C∞0 (R2). We will also

define R such the compact support of the initial data is within a ball around the origin of radius,

R.

We will be looking for solutions to the indicated 2-D wave equation which we will see is a system

of equations analogous to one of the equations studied by Katayama [47]. Thus we will approach

the problem by using vector fields to get some useful estimates.

As in the last section, we give the detailed proof for the Dirac equation with the notation-

ally simpler nonlinearity given in [1]. If we instead used the equation derived by Fefferman and

Weinstein, PU =

β1|u|u2 + 2β2|v|2u

2β2|u|2v + β1|v|2v

, the right-hand side of (2.39) would become

(2.40)

i∂t(β1|u|2u+ 2β2|v|2u) + ∂x(2β2|u|2v + β1|v|2v)− i∂y(2β2|u|2v + β1|v|2v)

i∂t(2β2|u|2v + β1|v|2v)− ∂x(β1|u|u2 + 2β2|v|2u)− i∂y(β1|u|u2 + 2β2|v|2u)

 .

We will make a remark at the key point in the proof where this nonlinearity would cause a difference.

Theorem 2.3.1. Given U a solution to (2.39) with the above assumptions and maximal lifespan,

T ∗, there exists ε0 and c such that T ∗ ≥ exp(cε−2) for all ε ≤ ε0.

Our argument for the proof stems from Theorem 1.2 in [47] where the same lifespan is proven for

a class of wave equations in divergence form (plus a nonlinear part satisfying a null form). Katayama

mentions that his lifespan is sharp as certain examples are known which contradict having a longer

lifespan. However, at this point we have not concluded that the lifespan in Theorem 2.39 is sharp

as we have not yet been able to prove that this equation is one such example.

2.3.1. The Vector Fields. We introduce the following vector fields: Γ0 = t∂t +x∂x + y∂y,Ω01 =

t∂x + x∂t,Ω02 = t∂y + y∂t,Ω12 = x∂y − y∂x, ∂t, ∂x, ∂y. We index these vector fields by Γ = {Γi}6i=0.

In actual practice we will frequently be using ΓiId, but as this behaves identically to Γi on its own

this does not give any problems. It is well known that 2 commutes with all of these vector fields

except [2,Γ0] = 22. Thus 2Γαu = Γ̃α2u where Γ̃ is just Γ with Γ0 + 2 instead of Γ0 and α is just

multi-index notation. Also the commutator of any two vector fields is just a linear combination of

the vector fields.
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We also use the notation

|v(t,x)|s =
∑
|α|≤s

|Γαv(t,x)|

‖v(t, ·)‖s,p =
∥∥|v(t, ·)|s

∥∥
Lp
.

(2.41)

Now we list some Lemmas from Katayama that we will need. Note that in all these cases we

are working with n = 2

We start with the Klainerman-Sobolev inequality originally from [52]. However, we use the

form of it written in [47]:

Lemma 2.3.2 (Klainerman-Sobolev Inequality).

(2.42) (1 + t+ |x|)
1
2 (1 +

∣∣t− |x|∣∣) 1
2 |v(t,x)| ≤ C‖v(t, ·)‖2,2

for any function v with finite right-hand side.

The following decay estimate is proven in Glassey [36] (Lemma 1) among other places.

Lemma 2.3.3. Let f, g ∈ C∞0 (R2) both supported within the ball of radius R. If v is a smooth

solution to 2v = 0 with v(0,x) = f(x) and vt(0,x) = g(x) then

(2.43) |v(t,x)| ≤ CR(1 + t+ |x|)−
1
2 (1 +

∣∣t− |x|∣∣)− 1
2 (‖f‖W 1,1 + ‖g‖L1).

We also have an estimate for an equation in divergence form proved by Katayama in [45] for the

two dimensional case. His proof is based on Lindblad, [58], where it is proven in three dimensions.

Lemma 2.3.4. Let v be a smooth solution to

(2.44) 2v(t,x) =

2∑
a=0

∂aΦa(t,x)

with zero initial data and the support of Φa(t, ·) contained in the ball of radius t + R for any a or

t. Then for any integer s ≥ 0 we have

(2.45) ‖v(t, ·)‖s,2 ≤ Cs
∫ t

0

2∑
a=0

‖Φa(τ, ·)‖s,2dτ + Cs,R
√

log(2 + t)
2∑

a=0

‖Φa(0, ·)‖W s,1 .

Also, for ease of notation we define

(2.46) W0(t,x) = (1 + t+ |x|)−
1
2 (1 +

∣∣t− |x|∣∣)− 1
2 .
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It will also be useful to define

(2.47) W−(t,x) = (1 +
∣∣t− |x|∣∣)− 1

2 .

2.3.2. Almost Global Existence. We define an energy

(2.48) E(T ) = sup
0≤t<T

(
sup
x
{W0(t,x)−1|U(t,x)|2}+ ‖U(t, ·)‖4,2

)
.

Since ε is small we can assume E(0)� 1.

It is worth mentioning here that our definition of the energy, (2.48), is the primary departure

from [47]. Compared to the energy he defines, our energy has a different number of vector fields

on the two terms and does not have an additional derivative inside the 4, 2-norm. However, having

defined a similar energy, the fact that we can write our equation as a wave equation system in

divergence form allows us to use the arguments in [47]. We are also able to use a simpler version

of some of his arguments because we have a semilinear equation and because we do not need to do

the more complicated arguements showing that ‖DU‖4,2 is bounded nicely. After having figured

out the proper energy to use, (2.48), the main difficulty compared to the work in [47] is the fact

that we will have more components to deal with when writing out our bounds.

Rewriting the equation we get

(2.49) 2U =

2∑
a=0

∂aF
(a)(U)

with F (0)(U) =

−i|u|2u
−i|v|2v

, F (1)(U) =

−|v|2v
|u|2u

, and F (2)(U) =

i|v|2v
i|u|2u

.

Remark 1. This is where we see the difference in how we would handle the Fefferman and

Weinstein nonlinearity. Each F (a) would simply be made of two terms instead of one, and the

upcoming expansions of the cubic terms would be notationally more complicated (as there would

be additional terms with mixed u and v factors) but strategically the same.

We also note that within this section we are working with complex-valued functions U and

F (a)(U). However, throughout the proof, it will be trivial to replace each with its complex conjugate

because we proceed by finding upper bounds for Lebesgue norms and vector field norms, (2.41),

of these functions. Since each of these norms involves taking an absolute value, the conjugate will

trivially have the same bound.
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Lemma 2.3.5. For U a solution to (2.39), the energy, E(T ) satisfies

(2.50) E(T ) ≤ C
(
ε+

√
log(2 + T )ε3 + log(2 + T )E(T )3

)
.

Proof. We split up U into two parts U = V +W with

(2.51) 2V =
2∑

a=0

∂aF
(a)(U)

with zero initial data and

2W = 0

W (0, ·) =

f
g

 Wt(0, ·) =

m
n

(2.52)

Finding the appropriate bound for W is very simple since we can just apply Lemma 2.3.3 to

get

(2.53) W0(t,x)−1‖W (t, ·)‖2,∞ ≤ CRε

where ε represents the size of the initial data.

The bound for V will take some more work. We apply Lemma 2.3.4 to Equation (2.51) to get

(2.54) ‖V ‖4,2 ≤ C
∫ t

0

2∑
a=0

‖F (a)(τ, ·)‖4,2dτ + CR
√

log(2 + t)
2∑

a=0

‖F (a)(0, ·)‖W 4,1 .

Now we state an inequality which is easily verified by just tracking how the vector fields can

be distributed among the factors

|F (a)|4 ≤ C|u|22|u|4 + C|v|22|v|4.

Applying this estimate we get

‖F (a)(τ, ·)‖4,2 .
∥∥|u|22|u|4∥∥L2 +

∥∥|v|22|v|4∥∥L2

=
∥∥W−2
− |u|22W 2

−|u|4
∥∥
L2 +

∥∥W−2
− |v|22W 2

−|v|4
∥∥
L2

≤
∥∥W−1
− |u|2

∥∥2

L∞

∥∥W 2
−|u|4

∥∥
L2

+
∥∥W−1
− |v|2

∥∥2

L∞

∥∥W 2
−|v|4

∥∥
L2 .

(2.55)
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We can immediately get

‖W−1
− |u|2‖L∞ ≤ (1 + τ)−

1
2E(T )

and likewise for v.

For the other factor notice that W 2
− ≤ 1 which means

‖W 2
−|u|4‖L2 ≤ ‖u‖4,2 ≤ E(T )

and likewise for v.

Combining both of these we get

(2.56) ‖F (a)(τ, ·)‖4,2 ≤ C(1 + τ)−1E(T )3.

Also, the ‖F (a)(0, ·)‖W 4,1 in (2.54) is bounded by ε3 since we are just evaluating the norms of

the initial conditions.

Thus we have

(2.57) ‖V (t, ·)‖4,2 ≤ CR
(√

log(2 + t)ε3 + log(2 + t)E(T )3
)
.

When we also apply Klainerman’s Inequality we get

(2.58) W0(t,x)−1‖V (t, ·)‖2,∞ ≤ CR
(√

log(2 + t)ε3 + log(2 + t)E(T )3
)
.

Combining our estimates for V and W we get

(2.59) W0(t,x)−1|U(t,x)|2 ≤ CR
(
ε+

√
log(2 + t)ε3 + log(2 + t)E(T )3

)
.

Now we establish a bound for ‖U(t, ·)‖4,2 by using the L2 energy inequality for the wave equation

and the fact that the vector fields commute with 2.

‖U(t, ·)‖4,2 ≤ C‖U(0, ·)‖4,2 + C

∫ t

0

∥∥∥∥ 2∑
a=0

F (a)(U(τ, ·))
∥∥∥∥

4,2

dτ

≤ C‖U(0, ·)‖4,2 + C

∫ t

0

2∑
a=0

∥∥∥∥F (a)(U(τ, ·))
∥∥∥∥

4,2

dτ

≤ C‖U(0, ·)‖4,2 + C

∫ t

0
(1 + τ)−1E(T )3dτ

(2.60)

where the last line follows from (2.56).
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By evaluating the integral we immediately get

‖U(t, ·)‖4,2 ≤ Cε+ C log(2 + t)E(T )3.(2.61)

Then, combining our bounds for both terms of the energy we get the desired

(2.62) E(T ) ≤ CR
(
ε+

√
log(2 + T )ε3 + log(2 + T )E(T )3

)
.

2

We define a Picard iteration by U−1 = 0 and

(2.63) 2Uj+1 =
2∑

a=0

∂aF
(a)(Uj).

We also denote Ej(T ) to be the energy E(T ) of the jth Picard iterate. The same proof for Lemma

2.3.5 also immediately proves the inequality

(2.64) Ej+1(T ) ≤ CR
(
ε+

√
log(2 + T )ε3 + log(2 + T )Ej(T )3

)
.

We note that the constant, CR, depends only on the size of the support of the initial data and does

not change for different values of j.

As E−1(T ) = 0, we fix CR = C and notice that E0 ≤ 2Cε for small enough initial data, and we

assume inductively that Ej(T ) ≤ 2Cε. Then we get

(2.65) Ej+1(T ) ≤ C
(
ε+ log(2 + T )ε3 + log(2 + T )8C3ε3

)
.

If log(2 + T ) ≤ 1
1+8C3 ε

−2 then Ej+1(T ) ≤ 2Cε. Thus the sequence {Ej(T )} is uniformly bounded.

In other words ‖Uj‖E(T ) is uniformly bounded where ‖·‖E(T ) indicates the norm defined by the

energy, E(T ).

To show that the sequence Uj is Cauchy we consider ‖Uj+1−Uj‖E(T ). We notice that Uj+1−Uj

solves (2.63) with zero initial data and F (a)(Uj − Uj−1) := F (a)(Uj) − F (a)(Uj−1). Following the
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same proof as Lemma 2.3.5 and factoring the difference of cubes we arrive at

‖Uj+1 − Uj‖E(T ) ≤ C log(2 + T )‖Uj − Uj−1‖E(T )

(
‖Uj‖2E(T ) + ‖Uj−1‖2E(T )

)
≤ C log(2 + T )‖Uj − Uj−1‖E(T )

(
Ej(T )2 + Ej−1(T )2

)
≤ 8C3ε2 log(2 + T )‖Uj − Uj−1‖E(T )

≤ 8C3ε2

1 + 8C3ε2
‖Uj − Uj−1‖E(T ).

(2.66)

Since 8C3ε2

1+8C3ε2
< 1, this implies that the sequence Uj is Cauchy.

Since Uj is Cauchy and uniformly bounded, it must converge to some U . It is also easy to

conclude that the limit, U , must be a solution to (2.39).

To summarize, for small enough initial data of size ε, we have shown that there exists k such

that for any T + 2 ≤ ekε
−2

there exists a solution to (2.39) at least up to time, T . Thus, if T ∗

is the maximal lifespan for such solutions, there also exists a c such that T ∗ ≥ ecε
−2

. This proves

Theorem 2.3.1.

2.4. Ill-Posedness Below Ḣ
1
2 . We have already established local well-posedness for the equa-

tion in an H1 space. In this section we demonstrate ill-posedness in Ḣs for s < 1
2 by construction of

initial data that will result in a contradiction to local well-posedness as we iterate through successive

approximations.

We have the fundamental solution to the corresponding inhomogeneous linear problem

Û = Tt

f̂
ĝ

+ i

∫ t

0
Tt−τ

F̂1(τ)

F̂2(τ)

 dτ(2.67)

where

Tt =

 cos(t|ξ|) −ξ1+iξ2
|ξ| sin(t|ξ|)

ξ1+iξ2
|ξ| sin(t|ξ|) cos(t|ξ|)

 :=

L1(t, ξ) L2(t, ξ)

L3(t, ξ) L1(t, ξ)

 ,

the initial data is U(0, ·) =

f
g

, and F1, F2 are the components of the inhomogeneity. Also note

for future simplification that L3 = −L̄2.

2.4.1. Choice of Initial Data. Motivated by [21] we choose ĝ = 0, and define f by

(2.68) f̂ =
1

N s+1
χ2N≤|ξ|≤3Nχ|θ|≤δ
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where N is a large parameter and δ > 0 is small. Thus our initial data is already frequency localized

and, in particular, exists only in a narrow, high frequency sector. We will frequently abuse notation

by letting f also refer to the vector

f
0

 .

Proceeding along the usual iteration with this initial data doing the first iteration we find

(2.69) Û0(t, ξ) = Tt

f̂
0

 =

 cos(t|ξ|)f̂
ξ1+iξ2
|ξ| sin(t|ξ|)f̂

 :=

û1

v̂1

 .

Thus the second iteration gives

(2.70) Û1(t, ξ) =

L1(t, ξ)f̂

L3(t, ξ)f̂

+ i

∫ t

0
Tt−τ

 ̂|u1|2u1(τ, ξ)

̂|v1|2v1(τ, ξ)

 dτ.

We notice that the cubic Duhamel term is in fact A3(f) defined in Section 3 of Bejenaru and Tao

[18] (since the iterate, u1, is defined in terms of f). Using the notation of [18] we define the spaces

D = Ḣs and S = CtḢ
s. Theorem 3 of Bejenaru and Tao states that if the equation is well-posed

and f ∈ BD(0, ε) := {f ∈ Ḣs : ‖f‖Ḣs < ε} for ε small with A3 : D → S, then

(2.71) ‖A3(f)‖CtḢs ≤ C‖f‖3Ḣs .

We will prove a contradictory lower bound on ‖A3(f)‖CtḢs .

2.4.2. Establishing a Lower Bound. We now work to establish a lower bound to

(2.72) A3 = i

∫ t

0
Tt−τ

 ̂|u1|2u1(τ, ξ)

̂|v1|2v1(τ, ξ)

 dτ.

We can use the convolution theorem to expand ̂|u1|2u1 = û1 ∗ ˆ̄u1 ∗ û1 and likewise for the second

component. Doing this inside of A3 we get

A3 = i

∫ t

0

∫
Tt−τ

û1(τ, σ)ˆ̄u1(τ, ξ − η)û1(τ, η − σ)

v̂1(τ, σ)ˆ̄v1(τ, ξ − η)v̂1(τ, η − σ)

 dσdηdτ

:=

B3

C3

 .

(2.73)
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Trivially we know ‖A3‖CtḢs ≥ ‖B3‖CtḢs . Thus we will only consider its first component

B3 = i

∫ t

0

∫
L1(t− τ, ξ)û1(τ, σ)ˆ̄u1(τ, ξ − η)û1(τ, η − σ)

+ L2(t− τ, ξ)v̂1(τ, σ)ˆ̄v1(τ, ξ − η)v̂1(τ, η − σ)dσdηdτ.

(2.74)

Plugging in the definition of u1 and v1 (and changing the order of complex conjugation and the

Fourier transform in the middle factor) we get

B3 = i

∫ t

0

∫ (
L1(t− τ, ξ)L1(τ, σ)L1(τ, ξ − η)L1(τ, η − σ)f̂(σ)f̂(η − ξ)f̂(η − σ)

−L2(t− τ, ξ)L3(τ, σ)L2(τ, η − ξ)L3(τ, η − σ)f̂(σ)f̂(η − ξ)f̂(η − σ)

)
dσdηdτ.

(2.75)

Now we want to determine what ξ looks like in the support of f̂(σ)f̂(η−ξ)f̂(η−σ). Considering

the fact that ξ = σ+(η−σ)−(η−ξ) the triangle inequality gives us that |ξ| ≤ 9N. We also want to

establish a lower bound for |ξ|. To do this let us assume that δ is small enough such that cos(θ) > 7
8

for all |θ| ≤ δ. Thus the x-component of σ and η − σ, are at least 2N(7
8) while the x-component of

η−ξ is at most 3N. We determine the x-component of ξ is at least 2N(7
8)+2N(7

8)−3N = N
2 . Thus

1
2N ≤ |ξ| ≤ 9N. Thus in the support for the integrand we have that |ξ|, |σ|, |ξ − η|, |η − σ| ∼ N.

Now we will also assume that we are only considering a very small timescale, t < 1
100N , and

establish some useful bounds for each Li.

For the following inequalities we assume ω is one of our frequency variables. Then our restriction

on time gives us the following inequalities

L1(t, ω) = cos(t|ω|) ≥ cos

(
1

100N
|ω|
)
>

3

4

|L2(t, ω)| =
∣∣∣∣−ω1 + iω2

|ω|
sin(t|ω|)

∣∣∣∣ ≤ ∣∣∣∣sin( 1

100N
|ω|
)∣∣∣∣ < 1

4

|L3(t, ω)| =
∣∣∣∣ω1 + iω2

|ω|
sin(t|ω|)

∣∣∣∣ ≤ ∣∣∣∣sin( 1

100N
|ω|
)∣∣∣∣ < 1

4
.

(2.76)

The same bounds hold if we replace t by t− τ since it will still be less than 1
100N .

Now we rewrite the integrand of B3 as (W1 −W2)f̂(σ)f̂(η − ξ)f̂(η − σ) where

W1 = L1(t− τ, ξ)L1(τ, σ)L1(τ, ξ − η)L1(τ, η − σ)

and

W2 = L2(t− τ, ξ)L3(τ, σ)L2(τ, η − ξ)L3(τ, η − σ).
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Then |W1| ≥ (3
4)4 and |W2| ≤ (1

4)4. This implies that

(2.77)
∣∣∣(W1 −W2)f̂(σ)f̂(η − ξ)f̂(η − σ)

∣∣∣ > 5

16
|f̂(σ)||f̂(η − ξ)||f̂(η − σ)|.

Now let us work out a series of inequalities

‖A3‖CtḢs ≥ ‖B3‖CtḢs

& sup
[0,T ]

∥∥∥∥|ξ|s ∫ t

0

∫
|f̂(τ, σ)||f̂(τ, η − ξ)||f̂(τ, η − σ)|dσdηdτ

∥∥∥∥
L2

&

∥∥∥∥∥N s

∫ 1
100N

0
N−3s−3(N2δ)2χ2N≤|ξ|≤3Ndτ

∥∥∥∥∥
L2

& N sN−1N−3s−3(N2δ)2(Nδ
1
2 )

= N−2s+1δ
5
2 .

(2.78)

Notice that we used the fact that f is supported on a sector of a circle with radius, N , and angle,

δ, thus the size of its support is effectively N2δ.

Thus we finish the section with the conclusion that

(2.79) ‖A3(f)‖CtḢs & N−2s+1δ
5
2 .

2.4.3. The Contradiction. From [18] we know that if the problem is well-posed then ‖A3(g)‖CtḢs ≤

C‖g‖3
Ḣs for arbitrary initial data, g. However for our initial data f it is simple to calculate

‖f‖3
Ḣs ∼ δ

3
2 .

Thus if we assume our problem is well-posed we have

(2.80) ‖A3(g)‖CtḢs . δ
3
2 .

However, if we choose our small parameter δ = N−ε equation (2.79) gives us

(2.81) ‖A3‖CtḢs & N−2s+1−εδ
3
2 .

Considering N can be as large as we want this is a contradiction to (2.80) if −2s+ 1− ε > 0. Thus

we obtain a contradiction to well-posedness whenever s < 1
2 .

2.4.4. Extending to Another Nonlinearity. It is also worthwhile to see if this argument can

extend to other cubic nonlinearities. Here we look at a particular nonlinearity which is known to
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satisfy a null condition, −〈γU,U〉γU where γ =

1 0

0 −1

 . Thus the nonlinearity can be written

−|u|2u+ |v|2u

|u|2v − |v|2v

 .

This is an example of the class of nonlinearities given in Pecher [66], among other places, of the

particle-model Dirac equation. It is proved in [66] that the massive cubic Dirac equation with this

nonlinearity is well-posed in Hs for s > 1/2 which is the optimal regularity up to the endpoint. Thus

this section verifies the ill-posedness below the regularity, 1
2 , as discussed in [66]. We include this

to demonstrate how initial data of this type could prove ill-posedness for more cubic nonlinearities.

The argument is almost identical to our previous nonlinearity. The only difference is that there

will be four terms to deal with instead of merely two terms.

When we expand out the Duhamel term with this nonlinearity we end up defining

(2.82) A3 = i

∫ t

0
Tt−τ

−̂|u1|2u1(τ, ξ) + ̂|v1|2u1(τ, ξ)

̂|u1|2v1(τ, ξ)− ̂|v1|2v1(τ, ξ)

 dτ.

When we pick out only the first component as before we get

B3 = i

∫ t

0

∫
− L1(t− τ, ξ)û1(τ, σ)ˆ̄u1(τ, ξ − η)û1(τ, η − σ)

+ L1(t− τ, ξ)v̂1(τ, σ)ˆ̄v1(τ, ξ − η)û1(τ, η − σ)

+ L2(t− τ, ξ)û1(τ, σ)ˆ̄u1(τ, ξ − η)v̂1(τ, η − σ)

− L2(t− τ, ξ)v̂1(τ, σ)ˆ̄v1(τ, ξ − η)v̂1(τ, η − σ)dσdηdτ.

(2.83)

Substituting in for u1, v1 as before we get

B3 = i

∫ t

0

∫ (
− L1(t− τ, ξ)L1(τ, σ)L1(τ, ξ − η)L1(τ, η − σ)

− L1(t− τ, ξ)L3(τ, σ)L2(τ, ξ − η)L1(τ, η − σ)

+ L2(t− τ, ξ)L1(τ, σ)L1(τ, η − ξ)L3(τ, η − σ)

+ L2(t− τ, ξ)L3(τ, σ)L2(τ, η − ξ)L3(τ, η − σ)
)

f̂(σ)f̂(η − ξ)f̂(η − σ)dσdηdτ.

(2.84)

49



Keeping the same restriction as before on t we also have the same bounds for Li. Also using

the trivial bound L1 ≤ 1 we get that the integrand of B3 is greater than

(
(3/4)4 − (1/4)2 − (1/4)2 − (1/4)4)

)
f̂(σ)f̂(η − ξ)f̂(η − σ) =

3

16
f̂(σ)f̂(η − ξ)f̂(η − σ).

The rest of the proof works out identically because we have a lower bound for B3 which differs

only by a constant from the case of the previous nonlinearity.

2.5. Discussion of Global Existence Versus Blow-Up. In this section we do not prove

any results but discuss several techniques and results dealing with global existence or finite time

blow-up for Dirac and wave equations and how they do (or do not) apply for the Dirac equations,

(0.1) and (0.4). We first look at two particular null conditions and discuss why they does not apply

to either of our nonlinearities.

Next we investigate the spacetime resonance sets of (0.1) to see if there is compelling evidence

for the existence of some other null structure which could lead to global existence [34]. We see that

there is not the necessary cancellation within each of the spacetime resonance sets to indicate such

an undiscovered null structure.

We conclude this section by investigating whether we can use any ordinary differential equation

(ODE) blow-up techniques to prove that the solution does blow-up in finite time. However, we are

unable to reformulate (0.1) in terms of an ODE, and thus the techniques are not helpful.

2.5.1. Lack of the Null Form. In studying the Dirac and wave literature we find many examples

of nonlinearities which fail to have a null condition and blowup in finite time [37, 47, 54, 77, 57,

58, 67, 81, 84] as well as nonlinearities which satisfy a null condition and have global existence

[16, 17, 20, 40, 48, 45, 46, 53, 62, 61, 66, 67]. We start by trying to determine whether (0.1)

satisies any of these known null conditions.

We first consider the existence (or nonexistence) of the null form when written as the wave

equation. When we consider the null condition of Klainerman, [53], in two dimensions we get the

following definition.

Definition 2. The nonlinearity, N(u,Du,DxDu), satisfies the null condition ifN(a, b(Xi)i=0,1,2, c(XjXi)j=1,2,i=0,1,2) =

0 for all a, b, c ∈ R2 and null vectors X = (X0, X1, X2) (i.e. X2
0 −X2

1 −X2
2 = 0 or X on the light

cone).
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When plugging in a null vector X into the nonlinearity of the wave equation formulation we

get −3ia2
1b1X0 − 3a2

2b2X1 + 3ia2
2b2X2. Clearly plugging in X2

0 = X2
1 + X2

2 does not result in this

quantity vanishing. Thus, the equation does not satisfy the Klainerman null condition. It works

out similarly if we use the nonlinearity in (0.4)

However, the purpose of the null form is to establish a decay estimate for the bilinear or

trilinear forms in the nonlinearity that is superior to what can be obtained from a generic bilinear

or trilinear form. Thus it is possible to have null form behavior even without satisfying the particular

Klainerman null condition. To see an example of this we look at the Dirac equations studied in

[16, 17, 20, 62, 61, 66, 67] all of which have a null form which is used to achieve their global

results. The nonlinearities are similar to 〈βU,U〉βU where β =

1 0

0 −1

 where the change in sign

from β results in some cancellation preventing the solutions from blowing up. In our nonlinearity

each component is a monomial so there is no obvious cancellation to keep the solutions finite as

time goes to infinity.

To look at this in more detail we look at Bejenaru and Herr [16, 17]. They work with the

massive Dirac equation with the nonlinearity 〈ψ, βψ〉βψ. They prove global existence for their

Dirac equation by projecting to the eigenspaces of the operator with projection Π±. They define

Π±ψ = ψ± and use the identity

(2.85) Π±(D)β = βΠ∓(D)∓ 〈D〉−1

where 〈D〉 has the symbol
√
|ξ|2 + 1.

They expand out 〈ψ, βψ〉 in the nonlinearity by using ψ = ψ+ + ψ− and Π±ψ± = ψ± to get

〈ψ, βψ〉 = 〈Π+(D)ψ+, βΠ+(D)ψ+〉+ 〈Π−(D)ψ−, βΠ−(D)ψ−〉

+ 〈Π+(D)ψ+, βΠ−(D)ψ−〉+ 〈Π−(D)ψ−, βΠ+(D)ψ+〉.
(2.86)

The nonlinearity being written in vector form with an inner product is essential in their proof

of the null form as it will allow the projection operators to move between sides of the inner product.

Without loss of generality we investigate the first term above and look at it on the Fourier side

〈Π+(ξ)ψ̂+(ξ), βΠ+(η)ψ̂+(η)〉. Using the identity mentioned above and writing as a bilinear form
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Bejenaru and Herr show

〈Π+(ξ)ψ̂1(ξ),βΠ+(η)ψ̂2(η)〉

= 〈Π+(ξ)ψ̂1(ξ),Π−(η)βψ̂2(η)〉 − 〈Π+(ξ)ψ̂2(ξ),
1

〈η〉
ψ̂2(η)〉

= 〈Π−(η)Π+(ξ)ψ̂1(ξ), βψ̂2(η)〉 − 〈Π+(ξ)ψ̂1(ξ),
1

〈η〉
ψ̂2(η)〉.

(2.87)

They further use a lemma stating that Π+(ξ)Π−(η) = O(∠(ξ, η))+O(〈ξ〉−1+〈η〉−1). Thus except for

the presence of O(∠(ξ, η)) the right-hand side of the bilinear equality can have a O(〈ξ〉−1 + 〈η〉−1)

factored out of both terms. However, it is known that the strongest potential contribution to

blowup of a solution is when ∠(ξ, η) ≈ 0. To make use of this we can separate into the regions

where |∠(ξ, η)| > ε and |∠(ξ, η)| ≤ ε for ε small. When |∠(ξ, η)| > ε we do not need extra decay,

and when |∠(ξ, η)| ≤ ε the immediately above equality results in an extra 〈ξ〉−1 + 〈η〉−1 decay.

This null structure cannot be found in the Dirac equation we study. The primary issue is the

fact that the nonlinearity cannot be written in vector form and must be written in component form.

If we expand out the |u|2 in the first component as Bejenaru and Herr expanded out 〈ψ, βψ〉 we

only get

(2.88) |u|2 = |u+|2 + |u−|2 + u+ū− + ū+u−.

We cannot even write u+ = Π+u+ since Π+ must act on a vector. Even more so, we cannot even

define u± directly with the projection operator. We have to define u± as the first component of

Π±U . So, there is no way to find a null form by manipulating the projection operators since the

projection operators cannot even be directly introduced to the equations. Even more telling is

that the null form in other articles essentially reduces to an estimate bounding the product of two

projection operators by the angle between Fourier variables [20].

Also of interest is the work of Fefferman and Weinstein [31]. They start with the same nonlinear

Schrödinger equation as Ablowitz, Nixon, and Zhu [1] but use a different derivation to arrive at

a similar Dirac equation ((0.4) instead of (0.1)). The primary difference in the Fefferman and

Weinstein Dirac equation is that the nonlinearity, F , is replaced by F (U) =

(β1|u|2 + 2β2|v|2)u

(2β2|u|2 + β1|v|2)v


where β1, β2 are nonnegative constants. Following the same steps as above for the Ablowitz, Nixon,

and Zhu nonlinearity we are able to conclude that the Fefferman-Weinstein nonlinearity also does
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not meet the Klainerman null condition or the null condition discussed by Bejenaru and Herr,

[16, 17].

Next we rewrite the nonlinearity by factoring out β1 resulting in F (U) = β1

(|u|2 + k|v|2)u

(k|u|2 + |v|2)v


where k = 2β2/β1. By expanding k|u|2 = −|u|2 + (k + 1)|u|2 (and similarly for v) the nonlinearity

can be written as

1

β1
F (U) = 〈βU,U〉βU + (k + 1)

|v|2u
|u|2v

 .

However, by substituting |v|2u = |u|2u − 〈βU,U〉u (and similarly for |u|2v) we see the Fefferman-

Weinstein nonlinearity can be written

(2.89)
1

β1
F (U) = −k〈βU,U〉βU + (k + 1)

|u|2u
|v|2v

 .

This is significant as Bournaveas and Candy [20] show that the nonlinearity F (U) = 〈βU,U〉βU

has null structure and that the two-dimensional massless Dirac equation with this nonlinearity has

small data global existence. Thus the Fefferman-Weinstein nonlinearity can be broken down into a

nonlinearity which has null structure for which small data global existence results have been shown

and another component which has the same structure as our nonlinearity coming from Ablowitz,

Nixon, and Zhu.

2.5.2. Resonances of the Equation. There is also a link between the existence of a null form

and the behavior of the resonant sets of an equation. In general, there are ways to find good decay

estimates as long as you are away from the intersection of space resonances and time resonances.

One technique explained by Germain [34] tells you to integrate by parts in the time or space

variables, as appropriate, similarly to the stationary phase method. The contribution to blowup

will normally occur on the set of spacetime resonances (the intersection). Essentially, cancellation

within each of the spacetime resonance sets can indicate the presence of some null form which could

be used to prove global existence.

In order to determine the resonance sets we will start by looking at the profile of U instead,

which we can define by

(2.90) Ĝ(t, ξ) =

G1

G2

 =

 cos(t|ξ|) m1(ξ) sin(t|ξ|)

m2(ξ) sin(t|ξ|) cos(t|ξ|)

−1

Û
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where m1 = −ξ1+iξ2
|ξ| and m2 = ξ1+iξ2

|ξ| . Thus we find that

(2.91) Ĝ(t, ξ) = Û(0, ξ) + i

∫ t

0

 cos(s|ξ|) −m1(ξ) sin(s|ξ|)

−m2(ξ) sin(s|ξ|) cos(s|ξ|)

 ̂|u|2u(s)

̂|v|2v(s)

 ds.

Next we take advantage of the fact that ̂|u|2u(s) = ûūu(s) = û(s) ? ˆ̄u(s) ? û(s). Expanding out

the convolution we get

Ĝ(t, ξ) = Û(0, ξ) + i

∫ t

0

∫  cos(s|ξ|) −m1(ξ) sin(s|ξ|)

−m2(ξ) sin(s|ξ|) cos(s|ξ|)


×

û(s, σ)ˆ̄u(s, ξ − η)û(s, η − σ)

v̂(s, σ)ˆ̄v(s, ξ − η)v̂(s, η − σ)

 dσdηds.

(2.92)

Although to write the equation fully as a profile we want to replace u, v by the components

G1, G2. To do this we note

Û(t, ξ) =

 cos(t|ξ|) m1(ξ) sin(t|ξ|)

m2(ξ) sin(t|ξ|) cos(t|ξ|)

 Ĝ(t, ξ)

û
v̂

 (t, ξ) =

cos(t|ξ|)G1(ξ) +m1(ξ) sin(t|ξ|)G2(ξ)

m2(ξ) sin(t|ξ|)G1(ξ) + cos(t|ξ|)G2(ξ)

 .

(2.93)

By expanding the sin(t|ξ|) and cos(t|ξ|) in terms of the half-wave operator using and fully

expanding out the matrix multiplication the integrand becomes a linear combination of terms of

the form

(2.94) eis(±|ξ|±|ξ−η|±|η−σ|±|σ|)[mi(ξ)mi(ξ − η)mi(η − σ)mi(σ)]Ĝj(σ)Ĝj(η − σ) ˆ̄Gj(ξ − η)

where j = 1, 2, i = 0, 1, 2, m0 is uniformly 1, and all the subscripts are independent of each other.

In fact, every combination of ± is attained in the half-wave term. However it is sufficient to consider

only the cases with −|ξ|.

Thus we have the phase function ϕ = ϕ±,±,± = −|ξ| ± |ξ − η| ± |η − σ| ± |σ|
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First we will consider the set of space resonances of the phase, S. To do that we need to take

the σ and η derivatives of ϕ. Thus we get

∂σϕ·,±,± = ∓ η − σ
|η − σ|

± σ

|σ|

∂ηϕ±,±,· = ∓
ξ − η
|ξ − η|

± η − σ
|η − σ|

.

(2.95)

The set of space resonances is where ϕσ = ϕη = 0. Setting the above equations equal to 0 we

conclude for each phase function ϕ±,±,± the set of space resonances will require that σ, η, ξ are all

collinear. In other words S = {η = aσ, ξ = bσ}, and each particular phase function has its own

restrictions on a, b based on whether σ, η − σ, and ξ − η have the same or opposite directions.

For example, let us consider ϕ+,+,+. On its set of space resonances η−σ
|η−σ| = σ

|σ| and ξ−η
|ξ−η| = η−σ

|η−σ| .

In other words, σ, η − σ, ξ − η are all collinear AND have the same direction. Thus |η| > |σ| and

|ξ| > |η| meaning b > a > 1.

The restrictions on a, b for the other phase functions are included in the table below.

The set of time resonances, T , is very easy to find since it is merely when ϕ = 0. We also

include those in the table.

To find the set of spacetime resonances, R, we merely plug in η = aσ and ξ = bσ into the

restriction for the time resonances.

Phase S = {η = aσ, ξ = bσ} T R

ϕ+,+,+ b > a > 1 |ξ| = |ξ − η|+ |η − σ|+ |σ| S

ϕ+,+,− b < a < 1 |ξ|+ |σ| = |ξ − η|+ |η − σ| b ≤ 0, a < 1

ϕ−,+,+ a > 1, b |ξ|+ |ξ − η| = |η − σ|+ |σ| a > 1, b > 0

ϕ+,−,+ a < 1, b |ξ|+ |η − σ| = |ξ − η|+ |σ| S

ϕ−,−,− b > a > 1 ξ = η = σ = 0 ξ = η = σ = 0

ϕ−,−,+ b < a < 1 |ξ|+ |ξ − η|+ |η − σ| = |σ| 0 ≤ b < a < 1

ϕ+,−,− a > 1, b |ξ|+ |η − σ|+ |σ| = |ξ − η| b ≤ 0, a > 1

ϕ−,+,− a < 1, b |ξ|+ |ξ − η|+ |σ| = |η − σ| a < b ≤ 0

When we look at these resonance sets we see that for ϕ+,+,−, ϕ+,−,− and ϕ−,+,− one of the

vectors ξ, σ, η points in the opposite direction of the others This could allow for cancellation and

the existence of a null form. However, for ϕ+,+,+, ϕ−,+,+ and ϕ−,−,+ the vectors ξ, σ, η all point in
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the same direction. We also note that in ϕ+,+,+ and ϕ−,+,+ at least one of a, b is bounded greater

than 1. Thus, on those resonance sets, no null structure is particularly evident. Also, for ϕ+,−,+

the vectors will sometimes point in the same direction and sometimes have one in the opposite

direction. Since the resonant sets for the different phases sometimes lie in the same direction and

sometimes in the opposite direction it is impossible for cancellation to occur in each of the sets.

This lack of cancellation within each of the spacetime resonance sets fails to indicate the presence

of a null form. It is important to note that this does not mean the absence of a null form. This

merely means that we lack additional evidence for the existence of an, as of yet, undiscovered null

form.

2.5.3. Blowup in the Quadratic Three-Dimensional Dirac Equation. Just as the cubic

nonlinearity is critical in two space dimensions for the Dirac equation, so is the quadratic nonlin-

earity critical in three space dimensions. Tzvetkov in [81] provides a blowup solution for just such

a Dirac equation. He is working with the Dirac equation Dψ = F (ψ) where D = i
∑
γµ∂µ and γµ

are the Dirac matrices. In his blowup result, Tzvetkov essentially assumes F (ψ) = |ψ|γ0ψ.

The presence of the Dirac matrix in the nonlinearity is essential to his proof as he begins the

proof of his blowup result by multiplying each side of the Dirac equation by −γ0ψ. Along with

assuming compact support of the initial data this allowed him to determine

(2.96) ∂t

∫
x≤t+R

|ψ(t,x)|2dx =

∫
x≤t+R

|ψ(t,x)|3dx

where R is the bound on the support of the initial data. We note that this is possible because

Tzvetkov’s equation does not conserve mass. The essential element (which is lacking in our two-

dimensional Dirac equation) is the positivity of the integrand on the right-hand side. By applying

Hölder to the above inequality Tzvetkov gets

(2.97) ∂t

∫
R3

|ψ(t,x)|2dx ≥ c(t+R)−
3/2

(∫
R3

|ψ(t,x)|2dx
) 3

2

.

When defining y(t) = ‖ψ‖L2 this becomes the ODE

(2.98) y′ ≥ cy3/2

(t+R)3/2
.
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The solution to this ODE blows up in finite time assuming R < c2y0. Thus by picking the support

of the initial data to be small enough, Tzvetkov showed that the solution of the Dirac equation

blows up in finite time.

The proof used by Tzvetkov fails to work for our Dirac equation as we cannot get copies of an

appropriate y on both sides of the inequality. The positivity Tzvetkov got in the right-hand side of

(2.96) allowed him to use Hölder’s inequality to get a copy of y on the right-hand side. However,

with the particular structure of our nonlinearity that positivity does not exist on the right-hand side

while simultaneously having the left-hand side result in a pure time derivative. Another issue with

using this approach in our equation is the fact that for our equation the L2 norm is a conserved

quantity. Thus ∂t
∫
|U |2dx = 0 immediately. I have tried working with introducing multipliers,

∂t
∫
m(x)|U |2dx, which would avoid the problem of the conservation law. However, none of these

have resulted in a right-hand side that can be tied back into an ODE.

Another reason Tzvetkov’s work fails to apply in our case is that his Dirac operator is not the

same as ours. Tzvetkov’s equation does not have L2 conservation as can be seen in (2.96). The

lack of conservation dramatically changes the dynamics of the system. However, it is still useful to

consider how ODE blow-up techniques might be applied.

Concluding this section, to this point, we lack sufficient evidence to indicate that solutions to

the Dirac equation, (0.1), either blow up in finite time or have some kind of global existence result.

This is left as an open question.
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CHAPTER 3

Application to the Schrödinger Ansatz

Now we will use the results discovered for solutions to the nonlinear Dirac system to examine

how these yield solutions to the nonlinear Schrödinger equation from which it is was derived.

Primarily in this thesis we have concerned ourselves with the particular form of the Dirac equation

derived by Ablowitz, Nixon, and Zhu [1]. However, for this section we will mainly be working

with the formulation derived by Fefferman and Weinstein [31]. Fefferman and Weinstein derive

their formulation for the nonlinear Dirac equation by assuming an ansatz solution for the cubic

nonlinear Schrödinger equation with periodic lattice potential. The ansatz they use takes a linear

combination of components of solutions to the Dirac system multiplied by eigenfunctions of the

periodic Schrödinger operator along with an error term. In [32], they do the same for the linear

Schrödinger equation with periodic lattice and rigorously prove that the error term, η, is small on a

large timescale. In [31], Fefferman and Weinstein plug in the ansatz to derive a differential equation

describing the behavior of η. Using the linear behavior of η (and setting aside the nonlinearity in

η) they use a similar process as they used in [32] to determine the nonlinear Dirac equation that

allows them to cancel out resonant interactions allowing η to remain small. However, they do not

include the rigorous detail as they did in [32], and their argument does not yet account for the

nonlinear behavior of η.

In this section, we will provide the rigorous details similar to those used in [32] with an emphasis

on where the proofs differ as well as provide a bootstrapping argument to account for the nonlinear

behavior of η. This will result in a smaller timescale than Fefferman and Weinstein had in [32] for

the linear Schrödinger equation but more restriction on the actual size of η.

For ease of reference, during the course of this section we will switch to the notation used in

[31, 32].
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In Fefferman Weinstein [31] they seek solutions to the nonlinear Schrödinger/Groff-Pitaevskii

equation, NLS-GP, (or just NLS for simplicity)

(3.1) i∂tψ = (−∆ + V (x))ψ + g|ψ|2ψ

of the form

(3.2) ψδ(x, t) =

δ1/2
2∑
j=1

αj(X, T )Φj(x) + ηδ(x, t)

 e−iµ∗t

with initial data

(3.3) ψδ(x, 0) = δ1/2
2∑
j=1

αj(X, 0)Φj(x)

where α = (αj)
2
j=1 is an unknown slowly modulating function, Φ1,Φ2, V (x), and µ∗ to be defined

in the upcoming section, ηδ is the error term (normally written simply as η), and X = δx, T = δt.

3.1. Survey of the Relevant Floquet-Bloch Theory. Before proceeding any further, as

in [32] and [9], we list some of the needed results from Floquet-Bloch theory.

We consider the lattice, Λ, created by the span of the vectors

(3.4) v1 = a

√3
2

1
2

 , v2 = a

√3
2

−1
2

 , a > 0.

The honeycomb structure we consider is formed by the union of two sub-lattices created by applying

integer multiples of vi to the starting points A,B chosen such that the result is invariant under

rotations by 2π/3. We also consider the dual lattice, Λ∗, formed by the vectors

(3.5) k1 = b

 1
2
√

3
2

 , k2 = a

 1
2

−
√

3
2

 , q =
4π

a
√

3
.

The fundamental period cell of the lattice is given by

(3.6) Ω = {θ1v1 + θ2v2 : 0 ≤ θj ≤ 1}.

We also make a choice of the fundamental unit cell of the dual lattice centered at K := 1
3(k1+k2)

which we call the Brillouin zone, Bh. It is shown in [32] that K is actually a Dirac point (which

we will define shortly).
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We call a function, f , Λ-periodic if f(x + v) = f(x) for all x ∈ R2 and v ∈ Λ and denote

f ∈ L2
per,Λ. We also call a function k-pseudo periodic if f(x + v) = eik·vf(x) for all x ∈ R2 and

v ∈ Λ and denote f ∈ L2
k,Λ. If the choice of lattice is clear, then the Λ is dropped from the notation.

We also define precisely our potential function, V (x).

Definition 3. Let V ∈ C∞(R2 → R). We call V a honeycomb lattice potential if there exists

x0 ∈ R2 such that Vx0(x) = V (x− x0) has the following properties:

(1) Vx0 is Λ-periodic.

(2) Vx0(−x) = Vx0(x)

(3) Vx0 is invariant under the 2π/3 rotation matrix, R.

From now on we will assume that V is such a potential.

We define the operator H = −∆ + V (x) and consider the k-pseudo periodic Floquet-Bloch

eigenvalue problem,

HΦ(y; k) = µ(k)Φ(y; k) x ∈ R2

Φ(y + v; k) = eik·vΦ(y; k) v ∈ Λ.
(3.7)

The above problem has a discrete, real-valued spectrum given by:

(3.8) µ1(k) ≤ µ2(k) ≤ µ3(k) ≤ . . .

along with their associated solutions, Φj(x,k) for j ∈ N. It is also known that µb(k) ≈ b for large

b uniformly for k ∈ Bh. The solutions, Φj , are referred to as Bloch modes, and the graphs of

µj(k) within the dual unit cell are call dispersion surfaces. Furthermore, the Bloch modes, Φj , are

orthonormal to each other and are bounded.

Fefferman and Weinstein [32] also gives us a useful way to write the Hs norm in terms of

Floquet-Bloch theory:

(3.9) ‖f‖2H2(R2) ≈
∑
b≥1

(1 + b2)
s
2

∫
Bh
|f̃b|2 dk.

We now define what we mean by a Dirac point

Definition 4. Let V be a smooth honeycomb lattice potential. We call K ∈ Bh a Dirac point

if there exists an integer m1 ≥ 1, a real number µ∗, and λ, δ > 0 such that:

60



(1) µ∗ is a degenerate eigenvalue of H with K-pseudo periodic boundary conditions.

(2) dim Nullspace (H − µ∗) = 2.

(3) Nullspace (H − µ∗) = span{Φ1(x),Φ2(x)} where Φ1 ∈ L2
K,τ and Φ2(x) = Φ1(−x) (where

the τ indicates that RΦ1 = τΦ1 where τ = ei2π/3).

(4) There exists Lipschitz functions µ±,

µm1(k) = µ−(k), µm1+1(k) = µ+(k), µ±(K) = µ∗,

and E±(k), defined for |k−K| < δ, and (k)-pseudo periodic eigenfunctions ofH, Φ±(x,k),

with corresponding eigenvalues µ±(k) such that

µ+(k)− µ∗ = +λ|k−K|(1 + E+(k))

µ−(k)− µ∗ = −λ|k−K|(1 + E−(k))
(3.10)

where |E±| ≤ C|k−K| for some C > 0.

Fefferman and Weinstein, [32], define the constant

(3.11) λ# :=
∑
m∈S

c(m)2

1

i

 · (K∗ +m1k1 +m2k2)

where S ⊂ Z2, c(m) are the Fourier coefficients of Φ1(x), and K∗ is a vertex of Bh. They prove

that if Conditions 1, 2, and 3 above are met and λ = |λ#| 6= 0, then Condition 4 is also met.

Fefferman and Weinstein [32] also prove the existence of Dirac points for the operator, H, and

that the µ± actually correspond to the two lowest lying dispersion surface, µ1(k) and µ2(k) along

with the corresponding Bloch modes Φ1,Φ2 equaling Φ± respectively. It is also shown by Fefferman

and Weinstein that the intersection of µ±(k) at the Dirac point K is the only intersection between

these two dispersion surfaces and there are no intersections between these two and any higher lying

dispersion surfaces.

Another fact about the dispersion surfaces that we need from Fefferman and Weinstein is that

there exists κ1, C1 such that for all k ∈ Bh satisfying |k−K| < κ1 and all b /∈ {+,−} we have

|µb(k)− µ∗| ≥ C1. In this chapter, κ1 always refers to this choice of κ1.

We also define the functions p±(x; k) as in [32]

(3.12) Φ±(x; k) = eik·xp±(x; k), 〈pa(·; k), pb(·; k)〉 = δab, a, b ∈ {+,−}.
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Letting K be a Dirac point, defining κ = k−K, and assuming that |κ| is small, we can describe

the behavior of Φ± near a Dirac point by

(3.13) p±(x; k) =
1√
2

κ1 + iκ2

|κ|
p1(x)± 1√

2
p2(x) +OH2(R2/Ω)(|κ|)

where

(3.14) p1(x) = e−iK∗·xΦ1(x), p2(x) = e−iK∗·xΦ2(x).

3.2. Further Preliminaries. In [31], Fefferman and Weinstein consider the nonlinear Schrödinger

equation

(3.15) i∂tψ = (−∆ + V (x))ψ + |ψ|2ψ

with ansatz

(3.16) ψ(x, t) =

δ 1
2

2∑
j=1

αj(δx, δt)Φj(x) + ηδ(x, t)

 e−iµ∗t

By following a similar procedure to [32] (but without the rigorous justification), Fefferman and

Weinstein plug in the ansatz (3.16) into (3.15) and use the linear behavior of the resulting equation

in ηδ to conclude that in order for the ansatz to solve (3.15) the functions, α, must solve

∂tα1 = −λ#(∂x1 + i∂x2)α2 − ig
(
β1|α1|2 + 2β2|α2|2

)
α1

∂tα2 = −λ#(∂x1 − i∂x2)α1 − ig
(
2β2|α1|2 + β1|α2|2

)
α2

(3.17)

where β1, and β2 are finite constants defined as integrals of the Bloch modes Φ1,Φ2. We discovered

that some of the Floquet-Bloch machinery given in [32] fails to give the needed bounds with this

ansatz (although the governing Dirac equation is correct). We will have to make use of a multiscale

ansatz to adjust for this.

In [2], Ablowitz and Zhu derive a similar Dirac equation in the tight-binding setting. Here,

we introduce the nonlinear Schrödinger equation and ansatz of Ablowitz and Zhu to the analytic

framework of Fefferman and Weinstein. The Schrödinger equation can be written as

(3.18) i∂tψ = (−∆ + V (x))ψ + δ|ψ|2ψ

62



with an ansatz of the form

(3.19) ψδ(x, t) =

 2∑
j=1

αj(δ
1−ax, δt)Φj(x) + ηδ(x, t)

 e−iµ∗t

with initial data

(3.20) ψδ(x, 0) =
2∑
j=1

αj(δ
1−ax, 0)Φj(x)

where 0 < a < 1. Also, they assume α is a solution to a slightly different Dirac equation than the

one that we have more directly dealt with in the rest of this section.

In other words, Ablowitz and Zhu use a δ factor on the Schrödinger nonlinearity to create

decay instead of on the amplitude of the ansatz, and they also use a different scaling between the

space variable and the time variable within the ansatz. This is done because they work in the tight

binding setting when the λ# from Fefferman and Weinstein gets close to 0.

Another relevant piece of work to discuss is by Arbunich and Sparber, [9]. In that work, they

use a different framework and approach the NLS from a macroscopic reference trying to find an

ansatz solution to the equation,

(3.21) iδ∂tΨ
δ = −δ2∆Ψδ + V

(x

δ

)
Ψδ ± δ|Ψδ|2Ψδ,

which is equivalent to (3.1) with g = 1 once adjusted for the different reference scaling. Arbunich

and Sparber perform a multiscale expansion for their ansatz. The first order expansion they use

is the same as the ansatz proposed by Fefferman and Weinstein in [31] where α is a solution of

(3.17). They also use a second order expansion giving another amplitude, β, which is defined by a

formally similar Dirac equation which is both massive and linear in β. They use some of the results

from [32] to arrive at their main theorem which states their multiscale ansatz solution is accurate

to an order of δ2 on any constant timescale for which the nonlinear Dirac solutions hold.

We will use the refined Fourier analysis from [32] along with the multiscale expansion strategy

used in [9] to show that we only need to project off of a smaller component within the multiscale

expansion than is done in [9].

We consider solutions of the nonlinear Schrödinger equation

(3.22) i∂tψ = (−∆ + V (x))ψ + |ψ|2ψ
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with an ansatz of the form

ψ(x, t) =

(
δ

1
2

2∑
j=1

αj(δx, δt)Φj(x) + δ
3
2

2∑
j=1

βj(δx, δt)Φj(x)

+ δ
3
2α⊥(x, t) + ηδ(x, t)

)
e−iµ∗t

(3.23)

with initial data

(3.24) ψ(x, 0) = δ
1
2

2∑
j=1

αj(δx, 0)Φj(x) + δ
3
2

2∑
j=1

βj(δx, 0)Φj(x) + δ
3
2α⊥(x, 0)

where, similarly to in [31], α will be assumed to be a solution to the Dirac equation

∂tα1 = −λ#(∂x1 + i∂x2)α2 − i
(
β1|α1|2 + 2β2|α2|2

)
α1

∂tα2 = −λ#(∂x1 − i∂x2)α1 − i
(
2β2|α1|2 + β1|α2|2

)
α2

(3.25)

where we assume |λ#| � 0 (which is true when we assume V is not a tight binding potential).

Before we can define exactly what α⊥ is we need to define

(3.26)

γ1(x, t) = i∂tα1(x, t), Ψ1(x) = Φ1(x)

γ2(x, t) = i∂tα2(x, t), Ψ2(x) = Φ2(x)

γ3(x, t) = 2∇α1(x, t), Ψ3(x) = ∇Φ1(x)

γ4(x, t) = 2∇α2(x, t), Ψ4(x) = ∇Φ2(x)

and γ5,Ψ5 . . . γ13,Ψ13 are a reindexing of
∑

j,k,l αjαkαlΦjΦkΦl. For example, γ5 = α1α1α1 and

Ψ5 = Φ1Φ1Φ1. Although for ease of use we will ignore the summation and work with the general

(3.27) γ5(x, t) = αj(x, t)αk(x, t)αl(x, t), Ψ5(x) = Φj(x)Φk(x)Φl(x)

similar to Einstein notation. We also define Pr(x) = e−iK∗·xΨr(x).

Now we can define

α⊥(x, t) := (P∗ − 1)(H − µ∗)−1(P∗ − 1)(α⊥,D + α⊥,D
c
),

α⊥,D =
∑
{+,−}

∫
Bh

(
Φ±(x; k)

∑
r

δ−2γ̂r

(
k−K

δ
, δt

)∫
Ω
p±(y,k)Pr(k)dy

)
dk

α⊥,D
c

=
∑

b/∈{+,−}

∫
Bh
χ(|k−K| < κ1)

〈
Φb(·; k),

∑
r

γr(δ·, δt)Ψr(·)
〉
L2(R2)

Φb(x; k)dk

(3.28)

64



where P∗ is the projection onto the eigenspace of µ∗. We know that α⊥ is well defined because we

have projected away from the degenerate eigenspace of µ∗ implying the solvability of (H − µ∗)f =

(P∗ − 1)(α⊥,D + α⊥,D
c
) (for proof see Theorem 4.2.1 in Kuchment, [55]). We note that this choice

of α⊥ is equivalent to the perpendicular component of the multiscale expansion in [9] when it is

carefully localized to certain regions (to be shown in the proof). In other words, when compared to

[9], we will use α⊥ to cancel out fewer terms of our expansion and instead rely on the Floquet-Bloch

theory in [32] to show that the remaining terms are well behaved.

We will also assume that β is a solution to the forced, inhomogeneous Dirac equation

∂tβ1 = −λ#(∂x1 + i∂x2)β2 + i∆α1 + i〈Φ1, ∂Tα
⊥〉L2(Ω)

∂tβ2 = −λ#(∂x1 − i∂x2)β1 + i∆α2 + i〈Φ2, ∂Tα
⊥〉L2(Ω).

(3.29)
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Before stating the main theorem of this section we fully expand the ansatz (3.23) into the NLS

equation (3.22) to get

i∂tη − (H − µ∗)η =

− δ
3
2

( 2∑
j=1

i∂TαjΦj + 2
2∑
j=1

∇Xαj · ∇xΦj −
2∑

j,k,l=1

αjαkαlΦjΦkΦl + (H − µ∗)α⊥
)

− δ
5
2

( 2∑
j=1

i∂TβjΦj + 2

2∑
j=1

∇Xβj · ∇xΦj +

2∑
j=1

∆αjΦj +

2∑
j=1

∂Tα
⊥
)

+ δ
(

2η
2∑

j,k=1

αjαkΦjΦk + η
2∑

j,k=1

αjαkΦjΦk

)

+ δ
1
2

(
2|η|2

2∑
j=1

αjΦj + (η)2
2∑
j=1

αjΦj

)
+ |η|2 η

+ δ
5
2

(
2

2∑
j,k,l=1

αjαkβlΦjΦkΦl +
2∑

j,k,l=1

αjαkβlΦjΦkΦl

)

+ δ2
( 2∑
j,k,l=1

αjβkζlΦjΦk +

2∑
j,k,l=1

αjβkζlΦjΦk +

2∑
j,k,l=1

αjβkζ lΦjΦk

)

+ δ
3
2

(
2

2∑
j,k,l=1

βjζkζ lΦj +
2∑

j,k,l=1

βkζkζlΦk

)

+ δ
7
2

(
2

2∑
j,k,l=1

βjβkαlΦjΦkΦl +

2∑
j,k,l=1

βjβkαlΦjΦkΦl

)

+ δ3
(

2
2∑

j,k,l=1

βjβkζlΦjΦk +
2∑

j,k,l=1

βjβkζ lΦjΦk

)

+ δ
9
2

(
3

2∑
j,k,l=1

βjβkβlΦjΦkΦl

)
.

(3.30)

where ζ1 = η, ζ2 = δ
3
2α⊥, η(x, 0) = 0, each αj and βj are evaluated at (δx, δt), and each Φj is

evaluated at (x).

Now we state the main theorem of this section:

Theorem 3.2.1. Assume that α is a solution to (3.25) and β is a solution to (3.29) with zero

initial data. Consider the NLS equation (3.22) where V is a honeycomb lattice potential. Fix

A0 > 12. Assume initial conditions, ψ0, of the form (3.24) where α(·, 0) ∈ Hs for large s and has

compact support. Then for any ρ > 0 there exists δ0 such that there is a unique solution to (3.22)
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of the form (3.23) with

(3.31) sup
0≤ t≤ ρ δ−1

‖ηδ(x, t)‖H2(R2) = O(δ), for δ → 0

for all δ ≤ δ0.

We note that the constant implied by O only depends on ρ, A0, the size of the initial data, and

the size of the support of the initial data.

Remark 2. As we discuss in the first paragraph of the proof, the envelopes, α are only evaluated

in time up to the constant time, ρ. This means we are implicitely assuming that ρ is within the

lifespan of the Dirac solutions, α. If we assume the size of the initial data is small enough that the

almost global results hold, then that allows ρ to be exponentially large. Otherwise we are limited

by the local existence lifespans discussed in Chapter 2.

Remark 3. Using the same argument as we use in the upcoming proof, we were unable to prove

the equivalent theorem without the multiscale expansion. In particular, we could not prove the

theorem without an α⊥ which cancels out potentially harmful interactions near the Dirac point on

the µ∗-eigenspace. In other words we were unable to show that nonlinearity cannot pump energy

from the first two Bloch modes into other neighboring Bloch modes. By using α⊥ we are able to

prove that this potentially harmful pumping of energy to other Blochs would have to come from

the components eliminated by α⊥.

3.3. Beginning the Proof. We start by considering the lifespan of solutions to the Dirac

equation. Within the ansatz, α is evaluated at δt, and by assumption in Theorem 3.2.1 we have

t ≤ ρδ−1. Thus the time values for which α is evaluated stay less than δρδ−1 = ρ. We will choose

the value T ∗ = ρ to serve as an upper bound on the Dirac lifespan. Thus, solutions to the Dirac

equation, α, only have finite time, ρ, to grow, and ‖α‖Hs is bounded by some constant, C, depending

only on the size of the initial data, the uniform time bound, ρ, and the regularity, s (within the

proof we will be using A0 to define the regularity, so the s dependence will be replaced by A0).

Next, we clearly define a Picard iteration for η. In doing so we will also use the notation X = δx

and T = δt. We define η0 = 0, and instead of working with the Picard iteration of η in the form a
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differential equation we use the integral equation corresponding to (3.30) and define

iηn+1(·, t) =

− δ
3
2

2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
i∂Tαj(δ·, δs)Φj + 2∇Xαj(δ·, δs) · ∇xΦj

−
2∑

k,l=1

αj(δ·, δs)αk(δ·, δs)αl(δ·, δs)ΦjΦkΦl + (H − µ∗)α⊥(x, t)

)
ds

− δ
5
2

2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
i∂Tβj(δ·, δs)Φj + 2∇Xβj(δ·, δs) · ∇xΦj

−∆Xαj(δ·, δs)Φj − ∂Tα⊥
)
ds

+ δ

2∑
j,k=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2ηn(·, s)αj(δ·, δs)αk(δ·, δs)ΦjΦk

+ ηn(·, s)αj(δ·, δs)αk(δ·, δs)ΦjΦk

)
ds

+ δ
1
2

2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2|ηn(·, s)|2αj(δ·, δs)Φj

+ ηn(·, s)2αj(δ·, δs)Φj

)
ds

+

∫ t

0
e−i(H−µ∗)(t−s)|ηn(·, s)|2 ηn(·, s)ds+ Lower order terms

:= −A1 −A2 +A3,n+1 +A4,n+1 +A5,n+1 + Lower order terms.

(3.32)

The first two terms of (3.32) are independent of η and will be handled very similarly to Fefferman

and Weinstein’s handling of the linear Schrödinger equation in [32]. The more significant changes

from their method will be more thoroughly explained and typically arise from the fact that for

solutions to the nonlinear Dirac equation | ˆα(ξ, t)| 6= | ˆα(ξ, 0)|.

The final three terms listed in (3.32) are dependent on ηn and are actually quite easy to deal

with. We will show the H2 norms of these terms can be conveniently bounded.

The lower order terms which are not listed have sufficient decay that simply using the closure

of H2(R2) under multiplication and scaling the H2 norm gives the needed bounds. These bounds

are left out in the proof, but follow as simple corollaries to how we deal with the η dependent terms

listed.
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The terms, A1 and A2 appear in each ηn but since there is no η dependence in those terms

they are handled identically each time. However, the terms A3,n+1, A4,n+1, and A5,n+1 depend

on the previous iterations of ηn and have to be handled differently. We will bound ‖ηn‖H2(R2) by

induction.

3.4. Bounding the η Independent Terms. An important departure from the proof in [32]

is due to the fact that ‖α(x, t)‖Hs 6= ‖α(x, 0)‖Hs when α is a solution for the nonlinear Dirac

equation (equality of the two quantities is needed in the proof for the linear problem in [32]).

However, the digression is very brief as ‖α(x, 0)‖Hs merely serves the role of a finite bound. To find

another bound to take its place we notice that ‖αj‖C([0,t],Hs(R2)) is bounded by ‖αj‖C([0,T ∗],Hs(R2)).

Within the proof we will find that the A0 fixed in the statement of the theorem gives us sufficient

regularity. Thus ‖αj‖C([0,T ∗],HA0 (R2)) will replace the role of ‖α(x, 0)‖Hs as a uniform bound in our

proof and is itself bounded by a constant dependent on ρ and A0.

For the term A1 we seek to show that

‖A1‖H2 ≤ C1(δ
1
2 + δ

3
2 t).

We can consider the term A1 as the solution to the initial value problem

i∂tf(x, t)− (H − µ∗)f(x, t) = δ
3
2

(∑
r

γr(δx, δt)Ψr(x) + (H − µ0)α⊥(x, t)

)

f(x, 0) = 0

(3.33)

where we remember the definition

(3.34)

γ1(x, t) = i∂tα1(x, t), Ψ1(x) = Φ1(x)

γ2(x, t) = i∂tα2(x, t), Ψ2(x) = Φ2(x)

γ3(x, t) = 2∇α1(x, t), Ψ3(x) = ∇Φ1(x)

γ4(x, t) = 2∇α2(x, t), Ψ4(x) = ∇Φ2(x)

γ5(x, t) = αj(x, t)αk(x, t)αl(x, t), Ψ5(x) = Φj(x)Φk(x)Φl(x).

Lemma 3.4.1. For solutions, f , to (3.33) we can write

f(x, t) =
∑
b

∫
Bh
f̃b(k, t)Φb(x; k)dk + (P∗ − 1)

∑
{+,−}

∫
Bh
α̃⊥,D(k, t)Φ±(x; k)dk

+ (P∗ − 1)
∑

b/∈{+,−}

∫
Bh
α̃⊥,D

c
(k, t)Φb(x; k)dk

(3.35)
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where the summation is finite because we have projected onto the µ∗-eigenspace and

f̃b = −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)〈Φb(·; k),

∑
r

γr(δ·, δs)Ψr(·)〉L2(R2)ds.

α̃⊥,D = −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)

∑
r

δ−2γ̂r

(
k−K

δ
, δs

)∫
Ω
p±(y,k)Pr(k)dyds

α̃⊥,D
c

= −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)χ(|k−K| < κ1)

×
〈

Φb(·; k),
∑
r

γr(δ·, δt)Ψr(·)
〉
L2(R2)

ds.

(3.36)

Note that typically, solutions, f , can be broken up along the summation into frequency com-

ponents µ+(Bh), µ−(Bh) which intersect at the degenerate eigenvalue µ∗, and all other frequency

components:

fD(x, t) =
∑

b∈{+,−}

∫
Bh
f̃b(k, t)Φb(x; k)dk

fDc(x, t) =
∑

b6∈{+,−}

∫
Bh
f̃b(k, t)Φb(x; k)dk

α⊥D(x, t) = (P∗ − 1)
∑
{+,−}

∫
Bh
α̃⊥,D(k, t)Φ±(x; k)dk

α⊥Dc(x, t) = (P∗ − 1)
∑

b/∈{+,−}

∫
Bh
α̃⊥,D

c
(k, t)Φb(x; k)dk

(3.37)

where fD(x, t) and α⊥D(x, t) are summed over the same components but kept seperate in the nota-

tion, and the same is true for fDc and α⊥Dc . We also note that α⊥Dc is already projected off of the

µ∗-eigenspace. Thus the (P∗ − 1) within the definition of α⊥Dc can just be replaced by (−1).

Note that µb(k) and Φ(x,k) are functions of k ∈ Bh, the Brillouin zone. When we just write

µb and Φ(x) we are assuming that k = K where K is a Dirac point.

Before we begin estimating fD we further decompose into frequencies pieces which are close to

and far from the Dirac point, K:

fD(x, t) =
∑

b∈{+,−}

∫
Bh
χ
(
|k−K| < δτ

)
f̃b(k, t)Φb(x; k)dk

+
∑

b∈{+,−}

∫
Bh
χ
(
δτ ≤ |k−K|

)
f̃b(k, t)Φb(x; k)dk

:=fI,D(x, t) + fII,D(x, t)

(3.38)
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where we choose 3
4 < τ < A0−3

A0
. We also decompose

α⊥D(x, t) =(P∗ − 1)
∑

b∈{+,−}

∫
Bh
χ
(
|k−K| < δτ

)
α̃⊥,D(k, t)Φb(x; k)dk

+ (P∗ − 1)
∑

b∈{+,−}

∫
Bh
χ
(
δτ ≤ |k−K|

)
α̃⊥,D(k, t)Φb(x; k)dk

:=α⊥I,D(x, t) + α⊥II,D(x, t).

(3.39)

Next we state a lemma which is proven without the α⊥ terms in Fefferman and Weinstein

(Equation 7.7 in [32]) relying on (3.9) and the fact that fD is only a summation over finitely many

b, in particular b = ±.

Lemma 3.4.2. For f defined and decomposed as above we have that

‖f(·, t)‖2H2(R2) ≈‖fI,D(·, t) + α⊥I,D(·, t)‖2L2(R2) + ‖fII,D(·, t) + α⊥II,D(·, t)‖2L2(R2)

+ ‖fDc(·, t) + α⊥Dc(x, t)‖2H2(R2).
(3.40)

The proof relies on (3.9) and the fact that fD has only two spectral bands to sum over in order

to now have L2 norms on the FD terms on the right-hand side. Since α⊥D also only has two spectral

bands to sum over, the proof is no different here.

The last thing we need before handling the two terms separately is Proposition 7.1 from [32]:

Proposition 3.4.3. Let Γ(x, t) be a Schwartz class function of x, varying smoothly in t. De-

note, Γ̂(ξ, t) its Fourier transform with respect to x. Let Ψ(x) = eiK·xP(x) where P(x + v) = P(x)

when v is a lattice point, and Φb(x; k) = eik·xp(x; k) where p(x + v; k) = p(x; k) when v is a lattice

point. Then,

〈Φb(·; k),Γ(δ·, δs)Ψ(·)〉L2(R2) =∫
Ω
pb(y; k)

[
δ−2

∑
m∈Z2

eim·yΓ̂

(
m1k1 +m2k2 + (k−K)

δ
, δs

)]
P(y)dy.

(3.41)

The assumption of Γ being Schwartz class can be relaxed (as done in [32]) as long as the Fourier

transform and inverse Fourier transform of Γ are defined.

3.4.1. Estimation of ‖fI,D(·, t) + α⊥I,D(·, t)‖L2(R2). In this part, we will prove that

‖fI,D(·, t) + α⊥I,D(·, t)‖L2(R2) . δ
5
2 t.
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As in [32] we get

‖fI,D(·, t) + α⊥I,D(·, t)‖2L2(R2) ≤
∑

b∈{+,−}

∫
Bh
χ
(
|k−K| < δτ

)
|f̃b(k, t)|2dk

+
∑

b∈{+,−}

∫
Bh
χ
(
|k−K| < δτ

)
|(P∗ − 1)α̃⊥,D(k, t)|dk

(3.42)

where, as before,

f̃± = −δ
3
2

∫ t

0
e−i(µ±(k)−µ∗)(t−s)〈Φ±(·; k),

∑
r

γr(δ·, δs)Ψr(·)〉L2(R2)ds

α̃⊥,D = −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)

∑
r

δ−2γ̂r

(
k−K

δ
, δs

)∫
Ω
p±(y,k)Pr(k)dyds.

(3.43)

Now we can use Proposition 3.4.3 to expand the inner product, and further separate the sum-

mation by pulling out the m = 0 term:

〈Φ±(·;k),
∑
r

γr(δ·, δs)Ψr(·)〉L2(R2)

=δ−2
∑
r

γ̂r

((k−K)

δ
, δs
)∫

Ω
p±(y,k)Pr(y)dy

+
∑
r

∫
Ω
δ−2Er,δc

(y

δ
, δs; k

)
p±(y,k)Pr(y)dy

:=
∑
r

f1,r +
∑
r

f2,r

(3.44)

where

(3.45) Er,δ

(y

δ
, δs; k

)
=

∑
m∈Z2\{(0,0)}

eim·yγ̂r

(
m1k1 +m2k2 + (k−K)

δ
, δs

)
.

Let us stop for a moment and denote f1,r
I,D to be the (

∑
r f1,r)-component of fI,D. We can

notice that (P∗− 1)f1,r
I,D = α⊥I,D. Most importantly, this implies that f1,r

I,D +α⊥I,D = P∗(f
1,r
I,D). Thus,

moving forward we will absorb the α⊥I,D term into the f1,r
I,D term and just work with P∗(

∑
r f1,r)

instead of
∑

r f1,r. In other words, the addition of the α⊥I,D term allows us to work with only the

projection of
∑

r f1,r onto the µ∗-eigenspace.

Now we state and prove a proposition replacing Proposition 7.2 in [32] which does not hold

directly when α a solution to the nonlinear Dirac equation (instead of the linear Dirac equation).
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Proposition 3.4.4. Let γr be as previously defined in (3.26). Then:

(1) For all κ ∈ R2 and 0 < A ≤ A0 we have

(3.46) |γ̂r(κ, t)| . |κ|−A

(2) For all k ∈ Bh such that |k−K| < δτ and 2 < A ≤ A0 we have

(3.47) |Er,δ
(
δ−1y, δt; k

)
| . δA

where t ≤ ρδ−1.

Proof. Notice first that the i∂tαj terms can be written as a linear combination of the 2∂xiαj

and αjαkαl terms. Thus we need only prove the proposition for γr = ∂xαj and γr = αjαkαl.

Case 1:
(
γr = ∂xαj

)
. We take the absolute value of γ̂r and integrate by parts on the Fourier

side, using H2 ⊂ L∞, to get

|γ̂r(κ, t)| = |∂̂xαj(κ, t)|

≤ 1

|κ|A
‖ ̂∂A+1

x αj‖C([0,T ∗],L∞(R2))

=
1

|κ|A
sup

0≤t≤T ∗
‖ ̂∂A+1

x αj(·, t)‖L∞(R2)

.
1

|κ|A
sup

0≤t≤T ∗
‖ ̂∂A+1

x αj(·, t)‖H2(R2).

(3.48)

Now we need to state a brief lemma taking advantage of the finite speed of propagation for the

Dirac solution and the compact support of the initial data.

Lemma 3.4.5. Let f be a function such that f(x) = 0 for all |x| ≥M. Then,

‖f̂‖H2(R2) .M
2‖f‖L2(R2).
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Proof. Without loss of generality we can let M > 1. We expand

‖f̂‖H2(R2) =‖f̂‖L2(R2) +

2∑
i=1

‖∂ξi f̂‖L2(R2) +

2∑
i,j

‖∂ξi∂ξj f̂‖L2(R2)

=‖f‖L2(R2) +
2∑
i=1

‖xif‖L2(R2) +
2∑
i,j

‖xixjf‖L2(R2)

≤‖f‖L2(R2) + 2M‖f‖L2(R2) + 4M2‖f‖L2(R2)

.M2‖f‖L2(R2).

(3.49)

This concludes the lemma. 2

From the section in Chapter 1 on Finite Propagation Speed we know that the support of α(x, t)

is determined by the support of the initial conditions and the time, t, that the support has had to

grow. Thus for each time t we get

|γ̂r(κ, t)| .
1

|κ|A
sup

0≤t≤T ∗
M2
t ‖∂A+1

x αj(·, t)‖L2(R2)(3.50)

where Mt can grow as t grows.

However, for all t ≤ T ∗, we know that Mt ≤ MT ∗ . Thus, instead of using the variable-time

bound, M2
t , we can use the uniform bound, M2

T ∗ , which can be absorbed by the . as follows,

|γ̂r(κ, t)| .
1

|κ|A
sup

0≤t≤T ∗
‖∂A+1

x αj(·, t)‖L2(R2)

≤ 1

|κ|A
sup

0≤t≤T ∗
‖α(·, t)‖HA+1(R2),

(3.51)

concluding Case 1 for the proof.

Case 2:
(
γr = αjαkαl

)
. Following the same steps as Case 1 we get

|γ̂r(κ, t)| = |α̂jαkαl(κ, t)|

.
1

|κ|A
sup

0≤t≤T
‖
(
αjαkαl

)
(·, t)‖HA(R2).

(3.52)

Since Hm(R2) is an algebra for m > 1 we get that ‖αjαkαl‖HA(R2) . ‖α‖3HA(R2)
.

Thus we have completed the proof for Part 1 of the theorem.

The proof for Part 2 is identical to that in the proof of Proposition 7.2 in [32] except for

substituting our decay estimate from Part 1 instead of their decay estimate. 2
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We notice that the proof does require use of the size of the support of α. However, since T ∗ is an

upper bound on the existence time of α(·, t) and solutions, α, have finite speed of propagation, we

really only need the size of the support of α(·, 0), which is assumed to be compact in the statement

of the theorem. Thus the constant implied by . in the lemma truly is a constant.

Applying Proposition 3.4.4 (with A = A0) to the formula for f2,r immediately gives us

(3.53) |f2,r| . δA0−2.

Since A0 ≥ 12 we get that f2,r has a contribution to ‖fI,D‖L2 of size δ
5
2

The term f1,r requires a fair amount of extra work. In fact, we actually bound the sum,
∑
f1,r,

because individually they do not give particularly useful bounds. In fact, as we discussed earlier,

we are working with P∗(
∑
f1,r), the projection onto the µ∗-eigenspace. We will see that P∗(

∑
f1,r)

gives zero contribution to ‖fI,D‖L2 . However, in order for the argument to more readily adapt to

our term, A2, we will not yet simplify the projection.

In Fefferman and Weinstein, [32], the summation is only 4 terms. Conveniently those 4 terms

behave very similarly. When working in the region |k−K| < δτ , Equation 7.25 in [32] states

γ̂r

(k−K

δ
, δs
)
· 〈p±(·; k),Pr(·)〉L2(Ω)

=
1√
2

κ1 + iκ2

|κ|
〈Φ1, γ̂r

(κ
δ
, δs
)
·Ψr〉L2(Ω) ±

1√
2
〈Φ2, γ̂r

(κ
δ
, δs
)
·Ψr〉L2(Ω)

+O
(
|κ| · ‖α0‖W 2,1(R2)

)
.

(3.54)

However, this used the L∞ preservation of α̂ which we do not have in the nonlinear case. To

get the W 2,1 norm in the final term they used∣∣∣∣γ̂r(k−K

δ
, δs
)∣∣∣∣ =

∣∣∣∣γ̂r(k−K

δ
, 0
)∣∣∣∣ . ‖α0‖W 2,1 .

We can adjust for this problem by instead using H2 ⊂ L∞ just as we did in Proposition 3.4.4 only

without using integration by parts to get κ decay. This results in:

(3.55)

∣∣∣∣γ̂r(k−K

δ
, δs
)∣∣∣∣ . 1

for γr = 2∂xiαj and for γr = αjαkαl. So, |γ̂r| is shown to uniformly bounded because of the time

constraint in Theorem 3.2.1.
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Thus, following [31], for the nonlinear equation we get

γ̂r

(k−K

δ
, δs
)
· 〈p±(·; k),Pr(·)〉L2(Ω) =

1√
2

κ1 + iκ2

|κ|
〈Φ1, γ̂r

(κ
δ
, δs
)
·Ψr〉L2(Ω) ±

1√
2
〈Φ2, γ̂r

(κ
δ
, δs
)
·Ψr〉L2(Ω)

+O
(
|κ|
)

(3.56)

where we use κ = k−K. At this point we can note that the term O
(
|κ|
)

is actually 0 because

we are projecting onto the µ∗-eigenspace and the contributions to that term come from the other

eigenspaces.

As these inner products are fully expanded in Proposition 7.3 of [32] for 1 ≤ r ≤ 4, we explore

the case when r = 5. For most choices of j, k, and l the inner products 〈Φ1, γ̂5

(
κ
δc , δ

cs
)
·Ψ5〉L2(Ω) and

〈Φ2, γ̂5

(
κ
δc , δ

cs
)
·Ψ5〉L2(Ω) will disappear. We first note that in this inner product the inputs of γ̂r

are not in Ω. Thus we can pull out γ̂5 to get 〈Φ1, γ̂5

(
κ
δc , δ

cs
)
·Ψ5〉L2(Ω) = γ̂5

(
κ
δc , δ

cs
)
〈Φ1,Ψ5〉L2(Ω).

Several inner products 〈Φ1,ΦjΦkΦl〉L2(Ω) disappear as follows:

〈Φ1,Φ1Φ1Φ2〉L2(Ω) =

∫
Ω

Φ1(x) · Φ1(x)Φ1(x)Φ2(x)dx

=

∫
RΩ

ωΦ1(y) · ωΦ1(y) · ωΦ1(y) · ω̄Φ2(y)dy

= ω2

∫
Ω

Φ1(x) · Φ1(x)Φ1(x)Φ2(x)dx

= ω2〈Φ1,Φ1Φ1Φ2〉L2(Ω)

(3.57)

where ω in the second line is from a rotation a third of the way around the fundamental period

cell of the lattice. Thus the inner product 〈Φ1,Φ1Φ1Φ2〉L2(Ω) must be 0. It works out similarly for

several other choices of j, k, l. These disappearing inner products are discussed at the end of page

9 in [31]. The only inner products which don’t disappear in this manner are as follows,

(3.58)

〈Φ1, α̂1α1α1 · Φ1Φ1Φ1〉 = β1|α1|2α1 〈Φ2, α̂2α2α2 · Φ2Φ2Φ2〉 = β1|α2|2α2

〈Φ1, α̂2α1α2 · Φ2Φ1Φ2〉 = β2|α2|2α1 〈Φ2, α̂2α1α1 · Φ2Φ1Φ1〉 = β2|α1|2α2

〈Φ1, α̂1α2α2 · Φ1Φ2Φ2〉 = β2|α2|2α1 〈Φ2, α̂1α2α1 · Φ1Φ2Φ1〉 = β2|α1|2α2

where β1 =
∫

Ω|Φ1(x)|4dx =
∫

Ω|Φ2(x)|4dx and β2 =
∫

Ω|Φ1(x)|2|Φ2(x)|2dx.
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Now we can actually perform the summation over r. Summing the first 4 terms as done in [32]

and adding in the 6 above inner products we get:∑
r

γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
∂̂tα1 + λ#

(
∂̂x1α2 + i∂̂x2α2

)
+ i
(
β1

̂|α1|2α1 + 2β2
̂|α2|2α1

)](κ
δ
, δs
)

± i√
2

[
∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
+ i
(
2β2

̂|α1|2α2 + β1
̂|α2|2α2

)](κ
δ
, δs
)
.

(3.59)

This is where the specific formulation of the Dirac equation, (3.25), most obviously comes into play.

Note that since α is a solution to the nonlinear Dirac equation we have ∂̂tα1 +λ#

(
∂̂x1α2 +i∂̂x2α2

)
+

i
(
β1

̂|α1|2α1 + 2β2
̂|α2|2α1

)
= 0 and ∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
+ i
(
2β2

̂|α1|2α2 + β1
̂|α2|2α2

)
= 0.

Thus

(3.60)
∑
r

γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉 = 0,

and by substituting the above equality into the definition of f1,r, (3.44), we get

(3.61)
∑
r

f1,r = 0.

Substituting (3.61) and (3.53) into the definition for f̃I,D, (3.38), we get

(3.62) f̃I,D(k, t) = 0 +O
(
δ

5
2 |t| · χ(|κ| < δτ )

)
,

and we have the desired bound:

(3.63) ‖fI,D + α⊥I,D(·, t)‖2L2 = O(δ
5
2 t).

3.4.2. Estimation of ‖fII,D(·, t) + α⊥II,D(·, t)‖L2(R2). Recalling the definition of fII,D we get

‖fII,D(·, t) + α⊥II,D(·, t)‖2L2(R2) =
∑

b∈{+,−}

∫
Bh
χ
(
|k−K| ≥ δτ

)
|f̃b(k, t)|2dk

+
∑

b∈{+,−}

∫
Bh
χ
(
|k−K| ≥ δτ

)
|(P∗ − 1)α̃⊥,D(k, t)|dk

(3.64)
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where

f̃± = −δ
3
2

∫ t

0
e−i(µ±(k)−µ∗)(t−s)〈Φ±(·; k),

∑
r

γr(δ·, δs)Ψr(·)〉L2(R2)ds

α̃⊥,D = −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)

∑
r

δ−2γ̂r

(
k−K

δ
, δs

)∫
Ω
p±(y,k)Pr(k)dyds.

(3.65)

However, as we saw in (3.44) and the paragraph immediately following, (P∗ − 1)α̃⊥,D is a

projection of a component of f̃±. Thus the second term of the right-hand side of (3.64) is bounded

by the first term, and we only need to find a bound for the first term.

Applying Proposition 3.4.3 to the inner product we get

〈Φ±(·; k), γr(δ·, δs)Ψr(·)〉L2(R2) =

∫
Ω
p±(y; k)

δ−2
∑
m∈Z2

eim·yγ̂r

(
m1k1 +m2k2 + (k−K)

δ
, δs

)Pr(y)dy.
(3.66)

We will make use of Lemma 7.4 in [32]:

Lemma 3.4.6. Let k ∈ Bh and assume |k−K| ≥ δτ . Then, there exists a constant, c1, such

that for all m = (m1,m2) ∈ Z2

(3.67) |m1k1 +m2k2 + (k−K)| ≥ c1δ
τ (1 + |m|) .

Applying Proposition 3.4.4 (with A = A0) along with the above Lemma gives us∣∣∣∣∣δ−2
∑
m∈Z2

eim·yγ̂r

(
m1k1 +m2k2 + (k−K)

δ
, δs

)∣∣∣∣∣
≤ C

∑
m∈Z2

1

(1 + |m|)A0
δ−2(δ1−τ )A0 .

(3.68)

Since A0 > 12 > 2 the summation converges, and we get

(3.69) |f̃±(k, t)| ≤ C|t|δ−
1
2 (δ1−τ )A0 .

Since τ < A0−3
A0

we get

(3.70) ‖fII,D(·, t) + α⊥II,D(·, t)‖L2(R2) = O(δ
5
2 t).
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3.4.3. Estimation of ‖fDc(·, t) + α⊥Dc(·, t)‖H2(R2). First, we recall the definitions:

fDc(x, t) =
∑

b6∈{+,−}

∫
Bh
f̃b(k, t)Φb(x; k)dk

α⊥Dc(x, t) = −
∑

b/∈{+,−}

∫
Bh
α̃⊥,D

c
(k, t)Φb(x; k)dk

(3.71)

where

f̃b = −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)〈Φb(·; k),

∑
r

γr(δ·, δs)Ψr(·)〉L2(R2)ds

α̃⊥,D
c

= −δ
3
2

∫ t

0
e−i(µb(k)−µ∗)(t−s)χ(|k−K| < κ1)

×
〈

Φb(·; k),
∑
r

γr(δ·, δt)Ψr(·)
〉
L2(R2)

ds.

(3.72)

We decompose fDc as we did fD to get

fDc(x, t) =
∑

b6∈{+,−}

∫
Bh
χ
(
|k−K| < κ1

)
f̃b(k, t)Φb(x; k)dk

+
∑

b6∈{+,−}

∫
Bh
χ
(
|k−K| ≥ κ1

)
f̃b(k, t)Φb(x; k)dk

:=fI,Dc(x, t) + fII,Dc(x, t).

(3.73)

At this point we notice that fI,Dc = −α⊥Dc . Thus, those two terms cancel out and we only

need to bound the term fII,Dc . However, in order to show why we needed this component of α⊥

to cancel out fI,Dc , we will continue for now as if there was not an α⊥Dc term to cancel it out. On

its own, the term fI,Dc would give the most restrictive bounds of our expansion and thus limit the

lifespan. Also, we include this part as the argument is needed when bounding the A2 terms since

there is not a term present to cancel out the corresponding gI,Dc component.

3.4.3.1. Estimation of ‖fI,Dc(·, t)‖H2(R2). Once again, following the proof in [32], we use (3.9) to

get

(3.74) ‖fI,Dc(·, t)‖2H2(R2) ≈
∑

b 6∈{+,−}

(1 + |b|)2

∫
k∈Bh:|k−K|<κ1

|f̃b(k, t)|2dk
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along with the equilavent of Equation 7.50 in [32],

|f̃b(k, t)| . δ
3
2

∣∣∣〈Φb(·; k),
∑
r

γr(δ·, 0)Ψr(·)
〉
L2(R2)

∣∣∣
+ δ

5
2 · t max

0≤s≤T

∣∣∣〈Φb(·; k),
∑
r

∂Tγr(δ·, δs)Ψr(·)
〉
L2(R2)

∣∣∣,(3.75)

and the equivalent of Equation 7.53 in [32],∣∣∣〈Φb(·; k),
∑
r

∂Tγr(δ·, δs)Ψr(·)
〉
L2(R2)

∣∣∣
. (1 + |b|)−M

∑
m

‖γ∗m(δ·, δs)‖H2M+1(R2)

(3.76)

where we can let M = 2 and where γ∗r is the same as γr except for one additional term to account for

the fifth order α term now present because of the additional time derivative term being expanded

as spatial derivative terms and cubic terms. We also note that the integration by parts in (3.75)

did require us to use the fact that |µb(k) − µ∗| is uniformly bounded below for b 6= ± when k is

close enough to the Dirac point, K. (This is true even in the upcoming tight binding setting in

Section 3.8)

Scaling by δ, substituting M = 2, and using H5 is an algebra we get

(3.77)
∣∣∣〈Φb(·; k),

∑
r

∂Tγr(δ·, δs)Ψr(·)
〉
L2(R2)

∣∣∣ . (1 + |b|)−2δ−1.

Plugging this bound into (3.75) we get

(3.78) |f̃b(k, t)|2 . (1 + |b|)−4(δ1 + δ3 · t2).

Now, substituting into (3.74) we have

‖fI,Dc(·, t)‖H2(R2) ≈
( ∑
b 6∈{+,−}

(1 + |b|)−2
) 1

2
(δ

1
2 + δ

3
2 t)

. (δ
1
2 + δ

3
2 t)

(3.79)

where the summation converges because of our choice, M = 2.

Thus we would have the desired bound

(3.80) ‖fI,Dc(·, t)‖H2(R2) = O(δ
1
2 + δ

3
2 t).
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However as we discussed right before this subsection, fI,Dc is entirely cancelled out by α⊥Dc .

Thus we actually get the contribution

(3.81) ‖fI,Dc(·, t) + α⊥Dc(·, t)‖H2(R2) = 0.

3.4.3.2. Estimation of ‖fII,Dc(·, t)‖H2(R2). As above, we get

(3.82) ‖fII,Dc(·, t)‖2H2(R2) ≈
∑

b6∈{+,−}

(1 + |b|)2

∫
k∈Bh:|k−K|>κ1

|f̃b(k, t)|2dk.

Substituting in (3.72) we find∫
Bh
χ (|k−K| ≥ κ1) |f̃b(k, t)|2dk

≤δ3t2 max
0≤s≤t

∫
Bh
χ (|k−K| ≥ κ1)

∣∣∣∣∣∑
r

〈Φb(·; k), γr(δ·, δs)Ψr(·)〉L2(R2)

∣∣∣∣∣
2

dk.

(3.83)

As is done on page 281 of [32], we choose C̃ > 0 such that C̃+H is strictly positive. We also let

a1, . . . , ajmax , b1, b2 ∈ Z2
+ such that 2jmax +

∑jmax
j=1 |aj |+ |b1|+ |b2| ≤ 2M where M is a nonnegative

integer, and
∑̃

indicates the sum over all such a1, . . . , ajmax , b1, b2. Within the inner product we

integrate by parts and proceed as in [32] to get

〈Φb(·; k), γr(δ·, δs)Ψr(·)〉L2(R2)

=
1(

C̃ + µb(k)
)M ∑̃

a,b1,b2

δ|b1|〈Φb(·; k),Πjmax
j=1 ∂

aj
x V (·)∂b1Xγr(δ·, δs)∂

b2
x Ψr(·)〉L2(R2).

(3.84)

From here we proceed similarly to how we bounded fII,D. By choosing Γ(X, T ) = ∂b1Xνr(δx, δs)

and Ψ(x) = Πjmax
j=1 ∂

aj
x V (x)∂b2x Ψr(x) we are able to apply Proposition 3.4.3 as done by Fefferman and

Weinstein. We know that there is a constant c > 0 such that |m1k1 +m2k2 +(k−K)| ≥ c(1+ |m|)

since we are in the region |k−K| ≥ κ1. Now we can apply Proposition 3.4.7 and bound the inner

product

(3.85)
∣∣∣〈Φb(·; k),Πjmax

j=1 ∂
aj
x V (·)∂b1Xγr(δ·, δs)∂

b2
x Ψr(·)〉L2(R2)

∣∣∣ . δA0−2
∑
m∈Z2

1

(1 + |m|)A0

where the summation converges because A0 > 12.
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Using the fact that µb(k) ≈ b for large b uniformly in k ∈ Bh we substitute (3.83), (3.84), and

(3.85) into (3.82) to get

(3.86) ‖fII,Dc(·, t)‖2H2(R2) . δ
3t2δ2A0−4

∑
b

(1 + b)2−2M .

Choosing M = 2 (and thus we were integrating by parts twice in (3.84)) allows the summation to

converge. Remembering that A0 > 12, we see that we have at least a factor, δ23, on the right-hand

side. Thus we have

(3.87) ‖fII,Dc(·, t)‖H2(R2) = O(δ
23
2 t).

Substituting (3.63), (3.70), (3.73), (3.81), and (3.87) into (3.40) we get the desired result for

A1:

(3.88) ‖A1‖H2 ≤ C1δ
5
2 t.

3.4.4. Estimating the β term, A2. Similar to before, we can consider the term A2 as the solution

to the initial value problem

i∂tg(x, t)− (H − µ∗)g(x, t) = δ
5
2

∑
r

Wrνr(δx, δt)Ψr(x)

g(x, 0) = 0

(3.89)

where we define

(3.90)

ν1(x, t) = i∂tβ1(x, t), Ψ1(x) = Φ1(x)

ν2(x, t) = i∂tβ2(x, t), Ψ2(x) = Φ2(x)

ν3(x, t) = 2∇β1(x, t), Ψ3(x) = ∇Φ1(x)

ν4(x, t) = 2∇β2(x, t), Ψ4(x) = ∇Φ2(x)

ν5(x, t) = ∆αj(x, t), Ψ5(x) = Φj(x)

ν6(x, t) = i∂2
t α

!
j(x, t), Ψ6(x) = Φj(x)

ν7(x, t) = 2∂t∇α!
j(x, t), Ψ7(x) = ∇Φj(x)

ν8(x, t) = ∂t

(
α!
j(x, t)α

!
k(x, t)α

!
l(x, t)

)
, Ψ8(x) = Φj(x)Φk(x)Φl(x),

and Wr = 1 for 1 ≤ r ≤ 5 and Wr = (1 − P∗)(H − µ∗)−1(1 − P∗) for 6 ≤ r ≤ 8. We note that

(1−P∗)(H−µ∗)−1(1−P∗) is a bounded operator since it is projected away from the µ∗-eigenspace
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(Kuchment [55] Section 4.2). Thus any uniform bound we find for
∑

r νr(δx, δt)Ψr(x) will be

equivalent to a bound for
∑

rWrνr(δx, δt)Ψr(x) modulo a bounding constant depending on the

bound of the operator Wr. For that reason we suppress the Wr moving forward. Notice, that

for ν6, ν7 and ν8 we introduce an exponent, “!”, to indicate that those three terms are the time

derivative applied to the appropriately localized components of ∂tαj ,∇αj , and αjαkαl as indicated

in the definition of α⊥, (3.28), and the expansions seen throughout the proof of the bound for A1.

This does not affect finding upper bounds for ν6, ν7, and ν8 because the size of a component is

trivially bounded by the size of the whole; it only ensures that the appropriate terms vanish in the

full expansion of the term, g1,r.

This expansion is more intimidating than the case was for A1. However, it will be handled in

a similar fashion. Also note, that ‖β‖HA0 is uniformly bounded just as ‖α‖HA0 is because of the

uniform time bound T ∗ = ρ.

We remind ourselves the statement of (3.40) rewritten in terms of g and without the terms of

α⊥:

‖g(·, t)‖2H2(R2) ≈ ‖gI,D(·, t)‖2L2(R2) + ‖gII,D(·, t)‖2L2(R2) + ‖gDc(·, t)‖2H2(R2).(3.91)

Note that in this section we are defining gI,D, gII,d, g1,r, g2,r and gDc equivalently to their f coun-

terparts in proving the bound for A1 (but with a factor δ
5
2 instead of δ

3
2 ).

Proposition 3.4.3 still holds as nothing in it was unique to the case of A1, and Proposition 3.4.4

can be easily modified as follows:

Proposition 3.4.7. Let νr be as previously defined in (3.90). Then:

(1) For all κ ∈ R2 and 0 < A ≤ A0 we have

(3.92) |ν̂r(κ, t)| . |κ|−A.

(2) For all k ∈ Bh such that |k−K| < δτ and 2 < A ≤ A0 we have

(3.93) |Er,δ
(
δ−1y, δt; k

)
| . δA

where t ≤ ρδ−1 and the γ̂ within the definition of Er,δ has been replaced by ν̂.
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The proof of this proposition is a simple corollary of the proof of Proposition 3.4.4. In that

proof we wrote the ∂tα terms as a linear combination of the spatial derivative terms and the cubic

terms. This time we have two time derivatives to expand, but we still get a uniform bound.

Just as before Proposition 3.4.7 applied to the formula for g2,r immediately gives

(3.94) |g2,r| . δA0−2,

and g2,r has a contribution to ‖gI,D‖L2 of size bounded by δ
5
2 .

Also as before, we expand the inner product within the definition of
∑

r g1,r to get

ν̂r

(k−K

δ
, δs
)
· 〈p±(·; k),Pr(·)〉L2(Ω) =

1√
2

κ1 + iκ2

|κ|
〈Φ1, ν̂r

(κ
δ
, δs
)
·Ψr〉L2(Ω) ±

1√
2
〈Φ2, ν̂r

(κ
δ
, δs
)
·Ψr〉L2(Ω)

+O
(
|κ|
)
.

(3.95)

The difference here is that the term O
(
|κ|
)

does not disappear because we are not projected onto

the µ∗-eigenspace.

Expanding the resultant inner product as before we get∑
r

ν̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
∂̂tβ1 + λ#

(
∂̂x1β2 + i∂̂x2β2

)
− ∆̂α1 − ̂〈Φ1, ∂Tα⊥〉L2(Ω)

](κ
δ
, δs
)

± i√
2

[
∂̂tβ2 + λ#

(
∂̂x1β1 − i∂̂x2β1

)
− ∆̂α2 − ̂〈Φ2, ∂Tα⊥〉L2(Ω)

](κ
δ
, δs
)

+O (|κ|) .

(3.96)

Since β solves (3.29) the first two terms disappear and we are left with

(3.97)
∑
r

ν̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉 = O (|κ|) ,

and by substituting the above equality into the definition of g1,r we get

(3.98)
∑
r

g1,r = O
(
δ−2|κ|χ(|κ| < δτ )

)
.
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Substituting (3.98) and (3.94) into the definition for g̃I,D we get

(3.99) g̃I,D(k, t) = O
(
δ

1
2 |t| · |κ| · χ(|κ| < δτ )

)
+O

(
δ

5
2 |t| · χ(|κ| < δτ )

)
Similarly to [32], the first term in (3.62) gives a contribution to ‖fI,D‖2L2 bounded by

(3.100) δt2
∫
Bh
|k−K|2 χ

(
|k−K| < δτ

)
dk . δ1t2δ4τ = t2δ4τ+1.

Since τ > 3
4 we get δ4τ+1 < δ4. Thus we have the desired bound

(3.101) ‖gI,D‖L2 = O(δ2t).

The bound for gII,D proceeds identically to the bound for fII,D other than using Proposition

3.4.7 instead of Proposition 3.4.4. Thus we have the bound

(3.102) ‖gII,D‖L2 = O(δ
5
2 t)

3.4.5. Estimation of ‖gDc(·, t)‖H2(R2). The proof for finding the bounds for ‖gDc(·, t)‖H2(R2) is

identical to the one for ‖fDc(·, t)‖H2(R2) other than using Proposition 3.4.7 instead of Proposition

3.4.4, starting with different powers of δ, and the fact that there is not an α⊥Dc to cancel out the

gI,Dc term. Following the same proof gives us the desired bounds

‖gI,Dc(·, t)‖H2(R2) = O(δ
3
2 + δ

5
2 t)

‖gII,Dc(·, t)‖H2(R2) = O(δ
25
2 t).

(3.103)

and

Using Equations (3.91), (3.101), (3.102), and (3.103) we get the desired result for term A2,

(3.104) ‖A2‖H2 = O(δ
3
2 + δ2t).

Looking back at our bounds for ‖A1‖H2 and ‖A2‖H2 we can rewrite them as

‖A1‖H2 ≤ C1ρδ
3
2

‖A2‖H2 ≤ C2ρδ
(3.105)

where have substituted our time upper bound, t ≤ ρδ−1.
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3.5. Bounding the η Dependent Terms. We remind ourselves of the definition of the terms

dependent on η:

A3,n+1 = δ
2∑

j,k=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2ηn(·, s)αj(δ·, δs)αk(δ·, δs)Φj(·)Φk(·)

+ ηn(·, s)αj(δ·, δs)αk(δ·, δs)Φj(·)Φk(·)
)
ds

(3.106)

A4,n+1 = δ
1
2

2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2|ηn(·, s)|2αj(δ·, δs)Φj(·)

+ ηn(·, s)2αj(δ·, δs)Φj(·)
)
ds

(3.107)

A5,n+1 =

∫ t

0
e−i(H−µ∗)(t−s)|ηn(·, s)|2 ηn(·, s)ds.(3.108)

3.5.1. Estimating ‖A3,n+1(·, t)‖H2(R2). In finding our estimate for ‖A3,n+1(·, t)‖H2(R2) we start

by taking the H2 norm of both sides and applying the Minkowski triangle inequality to get

‖A3,n+1(·, t)‖H2(R2) ≤ δ
∫ t

0

2∑
j,k=1

2‖ηn(·, s)αj(δ·, δs)αk(δ·, δs)‖H2(R2)

+ ‖ηn(·, s)αj(δ·, δs)αk(δ·, δs)‖H2(R2)ds

(3.109)

where we got rid of the Φj terms via Hölder’s inequality and the boundedness of Φj .

In order to better estimate the H2 norms on the right-hand side of the equation we need a

simple lemma.

Lemma 3.5.1. Given two-dimensional functions f, g, and h we can bound

(3.110) ‖f · g · h‖H2 . ‖f‖H2‖g‖W 2,∞‖h‖W 2,∞

The proof is simple. The derivatives on the product, f · g · h, are distributed via the product

rule, and Hölder’s inequality is applied.

We apply Lemma 3.5.1 to (3.109) to get

‖A3,n+1(·, t)‖H2(R2) . δt sup
0≤s≤t

‖ηn(·, s)‖H2(R2)‖α(δ·, δs)‖2W 2,∞ .(3.111)
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We move forward by noticing that ‖∂mx α(δ·, δs)‖L∞ = δ|m|‖∂mx α(·, δs)‖L∞ where m is a multiindex

with 0 ≤ |m| ≤ 2. Since δ|m| ≤ 1 we get ‖α(δ·, δs)‖W 2,∞ . ‖α(·, δs)‖W 2,∞ . Next we can use the

Sobolev embedding H2(R2) ⊂ L∞(R2) to get ‖α(·, δs)‖W 2,∞ . ‖α(·, δs)‖H4 .

Noticing that ‖α(·, δs)‖H4 ≤ ‖α(·, δs)‖HA0 ≤ C we can estimate

‖A3,n+1(·, t)‖H2(R2) ≤ C3δ

∫ t

0
‖ηn(·, s)‖H2(R2)ds.(3.112)

3.5.2. Estimating ‖A4,n+1(·, t)‖H2(R2). In finding our estimate for ‖A4,n+1(·, t)‖H2(R2) we start

the same way as the previous subsection, by taking the H2 norm of both sides and applying the

Minkowski triangle inequality to get

‖A4,n+1(·, t)‖H2(R2) = δ
1
2

∫ t

0

2∑
j=1

2‖|ηn(·, s)|2αj(δ·, δs)‖H2(R2)

+ ‖ηn(·, s)2αj(δ·, δs)‖H2(R2)ds.

(3.113)

First we use the fact that H2(R2) is an algebra to estimate the first term inside the summation

(3.114) ‖|ηn(·, s)|2αj(δ·, δs)‖H2(R2) . ‖ηn(·, s)‖H2(R2)‖ηn(·, s)αj(δ·, δs)‖H2(R2).

Notice that the second term inside the summation behaves similarly. We then apply Lemma 3.5.1

with f(·) = ηn(·, s), g(·) = αj(δ·, δs), and h(·) = 1 to the second factor to get

(3.115) ‖ηn(·, s)2αj(δ·, δs)‖H2(R2) . ‖ηn(·, s)‖2H2(R2)‖αj(δ·, δs)‖W 2,∞ .

As before ‖α(δ·, δs)‖W 2,∞ ≤ ‖α(·, δs)‖H4 ≤ ‖α(·, δs)‖HA0 ≤ C. Substituting in to (3.113) we get

(3.116) ‖A4,n+1(·, t)‖H2(R2) ≤ C4δ
1
2

∫ t

0
‖ηn(·, s)‖2H2(R2)ds.

3.5.3. Estimating ‖A5,n+1(·, t)‖H2(R2). We take the H2 norm of both sides, apply the triangle

inequality, and use the fact that H2(R2) is an algebra to get

(3.117) ‖A5,n+1(·, t)‖H2(R2) ≤ C5

∫ t

0
‖ηn(·, s)‖3H2(R2)ds.
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3.6. Bootstrapping η to Existence. Using the bounds we have now proven, we substitute

(3.105), (3.112), (3.116), and (3.117) into the H2 norm of the Picard iteration (3.32) to get

‖ηn+1(·, t)‖H2 ≤ Cρδ + C

∫ t

0
δ‖ηn(·, s)‖H2(R2) + δ

1
2 ‖ηn(·, s)‖2H2(R2)

+ ‖ηn(·, s)‖3H2(R2)ds

(3.118)

where we have defined C = 2
5

max
m=1
{Cm}.

Now we will prove Theorem 3.2.1 using the bootstrapping principle. We define the function

φ(T ) = sup
0≤ t≤T

‖η(·, t)‖H2(R2). Now we define the hypothesis statement, H(T ), and the conclusion

statement, C(T ).

• The statement, H(T ), is “there exists δ0 such that φ(T ) < 2Ce2Cρρδ for all δ < δ0.”

• The statement, C(T ), is “there exists δ0 such that φ(T ) < Ce2Cρρδ for all δ < δ0.”

We begin by showing there is a time T ∈ [0, ρδ−1] such that H(T ) is true. To do that we first

need the following proposition.

Proposition 3.6.1. There exists δ0 such that for each step of the Picard iteration, ηn(x, t), we

have

(3.119) sup
0≤ t≤ 1

‖ηn(·, t)‖H2(R2) < 2Cρδ

for all δ ≤ δ0.

Proof. We prove the proposition by induction. To prove the base case observe that

sup
0≤ t≤ 1

‖η1(·, t)‖H2(R2) ≤Cρδ.(3.120)

This proves the base case.

Now we assume that the proposition holds for ηn and will show that it must also hold for ηn+1.

We pick δ0 < (2C + 4C2ρ+ 8C3ρ2)−1 and restrict δ ≤ δ0. Substituting in the inductive hypothesis

into (3.118) we get

sup
0≤ t≤ 1

‖ηn+1(·, t)‖H2(R2) ≤ Cρδ + C

∫ 1

0
δ(2Cρδ) + δ

1
2 (2Cρδ)2 + (2Cρδ)3ds

≤ Cρδ + Cρδ
(
2C + 4C2ρ+ 8C3ρ2

)
δ

< 2Cρδ since δ ≤ δ0.

(3.121)
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This proves the proposition. 2

Notice this shows that the sequence (ηn)∞n=1 is uniformly bounded when t ≤ 1 and δ ≤ δ0. If

the sequence is also Cauchy, then it must converge.

To show the sequence is Cauchy we observe

(3.122) ηn+1(·, t)− ηn(·, t) = (A3,n+1 −A3,n) + (A4,n+1 −A4,n) + (A5,n+1 −A5,n)

since A1 −A1 = A2 −A2 = 0.

Substituting in the definitions (3.106), (3.107), and (3.108) we get

|A3,n+1(·, t)−A3,n(·, t)| ≤ 3δ
2∑

j,k=1

∫ t

0

∣∣∣(ηn(·, s)− ηn−1(·, s))

× αj(δ·, δs)αk(δ·, δs)Φj(·)Φk(·)
∣∣∣ds

|A4,n+1(·, t)−A4,n(·, t)| ≤ 3δ
1
2

2∑
j=1

∫ t

0

∣∣∣(ηn(·, s)2 − ηn−1(·, s)2
)

× αj(δ·, δs)Φj(·)
∣∣∣ds

|A5,n+1(·, t−A5,n(·, t)| ≤
∫ t

0

∣∣∣(ηn(·, s)3 − ηn−1(·, s)3
)∣∣∣ds.

Taking the H2(R2) norm and the supremum over our timescale of both sides of (3.122) gives

sup
t≤ 1
‖ηn+1(·, t)− ηn(·, t)‖H2(R2) ≤ sup

t≤ 1
‖A3,n+1 −A3,n‖H2(R2)

+ sup
t≤ 1
‖A4,n+1 −A4,n‖H2(R2)

+ sup
t≤ 1
‖A5,n+1 −A5,n‖H2(R2).

(3.123)

We proceed as we did when bounding the nonlinear terms starting with a similar result to

(3.112)

‖A3,n+1(·, t)−A3,n(·, t)‖H2(R2) ≤ C3δt sup
0≤s≤t

‖ηn(·, s)− ηn−1(·, s)‖H2(R2).(3.124)

89



Taking the supremum over time and using our upper bound for δ ≤ δ0 gives

sup
t≤ 1
‖A3,n+1(·, t)−A3,n(·, t)‖H2(R2) ≤

C

C∗
sup
t≤ 1
‖ηn(·, s)− ηn−1(·, s)‖H2(R2)(3.125)

where C∗ = 2C + 4C2ρ+ 8C3ρ2.

We also get a similar result to (3.116)

‖A4,n+1(·, t)−A4,n(·, t)‖H2(R2) ≤C4δ
1
2 t sup

0≤s≤t
‖ηn(·, s)2 − ηn−1(·, s)2‖H2(R2)

≤ C4δ
1
2 t sup

0≤s≤t
‖ηn(·, s)− ηn−1(·, s)‖H2(R2)

×
(
‖ηn(·, s)‖H2(R2) + ‖ηn−1(·, s)‖H2(R2)

)
,

(3.126)

and taking the supremum over time along with the upper bound for δ ≤ δ0 gives

sup
t≤ 1
‖A4,n+1(·, t)−A4,n(·, t)‖H2(R2)

≤Cδ
1
2 sup
t≤ ρ δ−1

‖ηn(·, s)− ηn−1(·, s)‖H2(R2)

(
4Cρδ

)
≤ 4C2ρδ

3
2 sup
t≤ ρ δ−1

‖ηn(·, s)− ηn−1(·, s)‖H2(R2)

≤ 4C2ρ

C∗
sup

t≤ ρ δ−1

‖ηn(·, s)− ηn−1(·, s)‖H2(R2).

(3.127)

Moving on to the next term we get a similar result to (3.117)

‖A5,n+1(·, t)−A5,n(·, t)‖H2(R2) ≤C5t sup
0≤s≤t

‖ηn(·, s)3 − ηn−1(·, s)3‖H2(R2)

≤ C5t sup
0≤s≤t

‖ηn(·, s)− ηn−1(·, s)‖H2(R2)

×
(
‖ηn(·, s)‖2H2(R2) + ‖ηn−1(·, s)‖2H2(R2)

)
,

(3.128)

and taking the supremum over time along with our upper bound for δ ≤ δ0 gives

sup
t≤ 1
‖A5,n+1(·, t)−A5,n(·, t)‖H2(R2)

≤C sup
t≤ ρ δ−1

‖ηn(·, s)− ηn−1(·, s)‖H2(R2)

(
8C2ρ2δ2

)
≤ 8C3ρ2

C∗
sup

t≤ ρ δ−1

‖ηn(·, s)− ηn−1(·, s)‖H2(R2).

(3.129)
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Finally, substituting (3.125), (3.127), and (3.129) into (3.123) we have

sup
t≤ ρ δ−1

‖ηn+1(·, t)− ηn(·, t)‖H2(R2) ≤
C∗ − C
C∗

sup
t≤ ρ δ−1

‖ηn(·, s)− ηn−1(·, s)‖H2(R2)(3.130)

showing that the sequence is Cauchy.

Since the sequence (ηn) is Cauchy and uniformly bounded, it must converge to a solution, η.

We can also use the fact that

sup
0≤ t≤ 1

‖ηn(·, t)‖H2(R2) ≤ 2Cδ

for each n to conclude that

(3.131) sup
0≤ t≤ 1

‖η(·, t)‖H2(R2) ≤ 2Cδ ≤ 2Ce2Cρδ.

Thus there exists a time, T , in [0, ρδ−1] such that H(T ) is true.

Now we want to show that H(T ) implies C(T ) for any T ∈ [0, ρδ−1]. In other words, we

assume there exists a δ∗0 such that φ(T ) < 2Ce2Cρρδ and show that there exists δ0 such that

φ(T ) < Ce2Cρρδ.

Now we know we can take the limit as n→∞ of (3.118) to get

‖η(·, t)‖H2 ≤ Cρδ + C

∫ t

0
δ‖η(·, s)‖H2(R2) + δ

1
2 ‖η(·, s)‖2H2(R2) + ‖η(·, s)‖3H2(R2)ds(3.132)

Remembering our definition φ(T ) = sup
0≤ t≤T

‖η(·, t)‖H2 , we get

φ(T ) ≤ Cρδ + C

∫ t

0
δφ(T ) + δ

1
2φ(T )2 + φ(T )3ds.(3.133)

Assume there exists a δ∗0 such that φ(T ) < 2Ce2Cρρδ. Restrict δ ≤ δ∗0 . Thus we have

φ(T ) ≤ Cρδ + C

∫ t

0
δφ(T ) + δ

1
2φ(T )(2Ce2Cρρδ) + φ(T )(2Ce2Cρρδ)2ds

= Cρδ + Cδ

∫ t

0

(
1 + 2Ce2Cρρδ

1
2 + 4C2e4Cρρ2δ

)
φ(T )ds.

(3.134)

Now we choose δ0 such that 2Ce2Cρρδ
1
2 + 4C2e4Cρρ2δ < 1 for all δ ≤ δ0. Now we restrict δ ≤ δ0

and get

φ(T ) < Cρδ +

∫ t

0
2Cδφ(T )ds(3.135)
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for all δ ≤ δ0. Applying Gronwall’s inequality gives us

φ(T ) ≤ Cρδe2Cδt

≤ Ce2Cρρδ.
(3.136)

Thus, we have shown that H(T ) implies C(T ).

Lastly we want to show that C(T ) implies H(T ′) for all T ′ on an open neighborhood of T . By

assumption, there exists δ0 such that φ(T ) < Ce2Cρρδ for all δ ≤ δ0. Thus, by continuity, we can

extend T to some T ′ > T such that φ(T ′) < 2Ce2Cρρδ with the same choice of δ0. This T ′ defines

such an open neighborhood.

Thus, by the bootstrapping principle, C(T ) holds for all T ∈ [0, ρδ−1]. This concludes the proof

of Theorem 3.2.1.

This shows that we have existence times t ≤ ρδ−1 for solutions to the nonlinear Schrödinger

equation of the form given by the ansatz. In particular, the timescale of the solutions grows as we

take smaller values of δ. However, when we look at the dynamics of the Dirac solution within the

ansatz, we see that it only has timescale δ(ρδ−1) = ρ. Thus, while the timescale of the Schrödinger

solutions grows as δ → 0, the timescale of the Dirac dynamics stays at the constant, ρ. However,

as stated in Theorem 3.2.1, ρ can be any positive number. Thus this timescale for the nonlinear

Dirac dynamics in the ansatz is the same as was found by Arbunich and Sparber in [9].

3.7. Weakening the Nonlinearity. In Theorem 3.2.1 we proved an ansatz solution for a

growing timescale of the Schrödinger equation (3.22) as similar to one posed in an open question

from [32]. We are able to prove the nonlinear Dirac dynamics exist for up to any constant time.

However, we would like to be able to show the timescale of the nonlinear Dirac dynamics can come

into play for a growing timescale as δ goes to zero. In this section, we will modify the Schrödinger

equation by unbalancing the nonlinear part of the Schrödinger equation. In doing so, we will also

need to unbalance the nonlinearity in the associated Fefferman and Weinstein-type Dirac equation

in the same manner. We will conclude that weakening the nonlinearity slightly will allow us to

lengthen the timescale established previously in this chapter sufficiently that the associated Dirac

dynamics are effective for a growing timescale as well.

To unbalance the nonlinearity we will introduce a factor, δk, onto the nonlinearity of the

Schrödinger equation. This will allow us to allow us to use k as a free variable giving additional

decay on the η-dependent terms of the Picard iteration. For reasons to be shown later, we will
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restrict 0 < k ≤ 1. We seek solutions of

(3.137) i∂tψ = (−∆ + V (x))ψ + δk|ψ|2ψ

with a similar ansatz as for Theorem 3.2.1

ψ(x, t) =

(
δ

1
2

2∑
j=1

αj(δx, δt)Φj(x) + δ
3
2

2∑
j=1

βj(δx, δt)Φj(x)

+ δ
3
2α⊥(x, t) + ηδ(x, t)

)
e−iµ∗t

(3.23)

with initial data

(3.24) ψ(x, 0) = δ
1
2

2∑
j=1

αj(δx, 0)Φj(x) + δ
3
2

2∑
j=1

βj(δx, 0)Φj(x) + δ
3
2α⊥(x, 0).

The only differences ate that we now require the α to be a solutions of the unbalanced, δ-dependent

Dirac equation,

∂tα1 = −λ#(∂x1 + i∂x2)α2 − iδk
(
β1|α1|2 + 2β2|α2|2

)
α1

∂tα2 = −λ#(∂x1 − i∂x2)α1 − iδk
(
2β2|α1|2 + β1|α2|2

)
α2

(3.138)

and before we redefine α⊥ we need to redefine the γr with γ∗r for 1 ≤ 5 as follows.

γ∗1(x, t) = γ1(x, t)

γ∗2(x, t) = γ2(x, t)

γ∗3(x, t) = γ3(x, t)

γ∗4(x, t) = γ4(x, t)

γ∗5(x, t) = δk · γ5(x, t).

(3.139)

Then we redefine α⊥, (3.28), by simply replacing γr with γ∗r within the definition.
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When we expand the ansatz into the modified Schrödinger equation (3.137) we get a very similar

equation for η:

i∂tη−(H − µ∗)η = −δ
3
2

( 2∑
j=1

i∂TαjΦj + 2
2∑
j=1

∇Xαj · ∇xΦj

− δk
2∑

j,k,l=1

αjαkαlΦjΦkΦl + (H − µ∗)α⊥
)

− δ
5
2

( 2∑
j=1

i∂TβjΦj + 2
2∑
j=1

∇Xβj · ∇xΦj +
2∑
j=1

∆αjΦj +
2∑
j=1

∂Tα
⊥
)

+ δ1+k
(

2η

2∑
j,k=1

αjαkΦjΦk + η

2∑
j,k=1

αjαkΦjΦk

)

+ δ
1
2

+k
(

2|η|2
2∑
j=1

αjΦj + (η)2
2∑
j=1

αjΦj

)
+ δk |η|2 η

+ δ
5
2

+k
(

2

2∑
j,k,l=1

αjαkβlΦjΦkΦl +

2∑
j,k,l=1

αjαkβlΦjΦkΦl

)

+ δ2+k
( 2∑
j,k,l=1

αjβkζlΦjΦk +
2∑

j,k,l=1

αjβkζlΦjΦk +
2∑

j,k,l=1

αjβkζ lΦjΦk

)

+ δ
3
2

+k
(

2
2∑

j,k,l=1

βjζkζ lΦj +
2∑

j,k,l=1

βkζkζlΦk

)

+ δ
7
2

+k
(

2

2∑
j,k,l=1

βjβkαlΦjΦkΦl +

2∑
j,k,l=1

βjβkαlΦjΦkΦl

)

+ δ3+k
(

2

2∑
j,k,l=1

βjβkζlΦjΦk +
2∑

j,k,l=1

βjβkζ lΦjΦk

)

+ δ
9
2

+k
(

3

2∑
j,k,l=1

βjβkβlΦjΦkΦl

)
.

(3.140)

where ζ1 = η, ζ2 = δ
3
2α⊥, η(x, 0) = 0, each αj and βj are evaluated at (δx, δt), and each Φj

is evaluated at (x) as before. The difference is that each piece originating from the Schrödinger

nonlinearity now has an additional δk factor.

This leads us to our modification of Theorem 3.2.1 with longer existence times.

Theorem 3.7.1. Assume that α is a solution to (3.138) and β is a solution to (3.29) with

zero initial data and α⊥ defined by as above. Consider the NLS equation (3.137) where V is a

94



honeycomb lattice potential. Fix A0 > 12. Assume initial conditions, ψ0, of the form (3.24) where

α(·, 0) ∈ Hs for s large and has compact support.Restrict 0 < k ≤ 1 and ε > 0 small enough such

that −k
3 + ε < 0. Then there exists δ0 such that

(3.141) sup

0≤ t≤ δ−1− k3 +ε

‖ηδ(x, t)‖H2(R2) ≤ δ
1
2
− k

3

for all δ ≤ δ0.

Similarly to Theorem 3.2.1, we start by defining a Picard iteration for the integral equation for

η:

iηn+1(·, t) =

− δ
3
2

2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
i∂Tαj(δ·, δs)Φj + 2∇Xαj(δ·, δs) · ∇xΦj

− δk
2∑

k,l=1

αj(δ·, δs)αk(δ·, δs)αl(δ·, δs)ΦjΦkΦl + (H − µ∗)α⊥(x, t)

)
ds

− δ
5
2

2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
i∂Tβj(δ·, δs)Φj + 2∇Xβj(δ·, δs) · ∇xΦj

−∆Xαj(δ·, δs)Φj − ∂Tα⊥
)
ds

+ δ1+k
2∑

j,k=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2ηn(·, s)αj(δ·, δs)αk(δ·, δs)ΦjΦk

+ ηn(·, s)αj(δ·, δs)αk(δ·, δs)ΦjΦk

)
ds

+ δ
1
2

+k
2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2|ηn(·, s)|2αj(δ·, δs)Φj

+ ηn(·, s)2αj(δ·, δs)Φj

)
ds

+ δk
∫ t

0
e−i(H−µ∗)(t−s)|ηn(·, s)|2 ηn(·, s)ds+ Lower order terms

:= −A1 −A2 +A3,n+1 +A4,n+1 +A5,n+1 + Lower order terms.

(3.142)

3.7.1. Finding the Corresponding Bounds. If we define α̃(x, t) = δ
k
2 ·α(x, t) we can see that

α being a solution to (3.138) is equivalent to α̃ being a solution to (3.25). If we assume that α(x, 0)

is of size 1, then α̃(x, 0) is of size δ
k
2 . Thus α̃ (and α by extension) has existence time of order δ−k
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by our local existence results. This will give us enough existence time within the ansatz envelope to

choose a T ∗ to serve as a maximal existence time as in the proof of Theorem 3.2.1. Observing that,

within the ansatz, α is evaluated at δt, we can use the timescale assumption in the statement of

Theorem 3.7.1 to find δt ≤ δδ−1−k/3+ε = δ−k/3+ε. Since k
3 − ε ≤ k, for small δ we get δ−k/3+ε ≤ δ−k.

As discussed above, α has a lifespan of order δ−k. This allows us to stay within the lifespan of α,

and we can thus choose T ∗ = δ−k/3+ε to be our uniform time bound.

We want to prove Theorem 3.7.1 by closely mirroring the proof of Theorem 3.2.1. Notice that

A2 is formally identical to A2 other than the small change to the definition of α⊥ and the different

power of δ. Following the same proof as for the bound of ‖A2‖H2(R2) results in the bound

(3.143) ‖A2‖H2(R2) ≤ C2

(
δ

3
2 + δ2t

)
.

Also, notice that formally, Aj,n+1 = δkAj,n+1 for j = 3, 4, 5. Thus we follow the same proof as for

when bounding ‖A3,n+1‖H2(R2), ‖A4,n+1‖H2(R2), and ‖A5,n+1‖H2(R2) to get

‖A3,n+1(·, t)‖H2(R2) ≤ C3δ
1+kt sup

0≤s≤t
‖ηn(·, s)‖H2(R2)(3.144)

‖A4,n+1(·, t)‖H2(R2) ≤ C4δ
1
2

+kt sup
0≤s≤t

‖ηn(·, s)‖2H2(R2)(3.145)

‖A5,n+1(·, t)‖H2(R2) ≤ C5δ
kt sup

0≤s≤t
‖ηn(·, s)‖3H2(R2).(3.146)

This leaves the bound for ‖A1‖H2(R2) where we need to take more care to verify that the proof

can mirror that of Theorem 3.2.1. Similarly to our handling of the term A1, starting with Equation

3.33, we can consider ∞1,n+1 as the solution to the initial value problem

i∂tf(x, t)− (H − µ∗)f(x, t) = δ
3
2

(∑
r

γ∗r (δx, δt)Ψr(x) + (H − µ0)α⊥(x, t)

)

f(x, 0) = 0

(3.147)
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where we have defined

γ∗1(x, t) = γ1(x, t)

γ∗2(x, t) = γ2(x, t)

γ∗3(x, t) = γ3(x, t)

γ∗4(x, t) = γ4(x, t)

γ∗5(x, t) = δk · γ5(x, t)

(3.148)

referencing Equation 3.26.

Clearly, the γ∗j for 1 ≤ r ≤ 4 can be handled just as the corresponding γj ’s are handled in the

proof of Theorem 3.2.1. Since the first four terms are identical to the previous proof, if we can show

that γ∗5 meets all the corresponding bounds of γ5 then the same proof will hold for our δ-modified

case.

The first bound applied to γ5 was Proposition 3.4.4. However, it is very simple to show that

Proposition 3.4.4 still holds in the case of Theorem 3.7.1 (after making the obvious modifications

such as changing the upper bound on t). The bound for the proposition is proven with Equation

3.52. However, simply noticing that

(3.149) |γ∗5 | = δk|γ5| ≤ |γ5|

combined with Equation 3.52 gives us the same bound. Thus Proposition 3.4.4 still holds for this

section. This also tell us the bounds for terms fII,D holds since its merely uses Proposition 3.4.4

to bound γ5.

Other than while bounding P∗(
∑

r f1,r), every other time the term γ∗5 appears can be handled

by simply using the inequality δk ≤ 1.

This just leaves us to deal with P∗(
∑

r f1,r). Proceeding along the same line as in the proof of

Theorem 3.2.1 we encounter the corresponding equation to Equation 3.56,

γ̂∗r

(k−K

δ
, δs
)
· 〈p±(·; k),Pr(·)〉L2(Ω) =

1√
2

κ1 + iκ2

|κ|
〈Φ1, γ̂∗r

(κ
δ
, δs
)
·Ψr〉L2(Ω) ±

1√
2
〈Φ2, γ̂∗r

(κ
δ
, δs
)
·Ψr〉L2(Ω)

+O
(
C0,α|κ|

)
,

(3.150)
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giving us several inner products of the form, 〈Φ, γ̂∗r
(
κ
δ , δs

)
· Ψr〉L2(Ω), with which we have to be

careful. As γ∗r is a scalar we can pull it outside of the inner product. Then just as before, the

terms 1 ≤ r ≤ 4 are expanded in [32] and many of other r = 5 terms vanish due to symmetry

considerations. The remaining terms, analogous to Equation 3.58, are

(3.151)

〈Φ1, δ
kα̂1α1α1Φ1Φ1Φ1〉 = δkβ1|α1|2α1 〈Φ2, δ

kα̂2α2α2Φ2Φ2Φ2〉 = δkβ1|α2|2α2

〈Φ1, δ
kα̂2α1α2Φ2Φ1Φ2〉 = δkβ2|α2|2α1 〈Φ2, δ

kα̂2α1α1Φ2Φ1Φ1〉 = δkβ2|α1|2α2

〈Φ1, δ
kα̂1α2α2Φ1Φ2Φ2〉 = δkβ2|α2|2α1 〈Φ2, δ

kα̂1α2α1Φ1Φ2Φ1〉 = δkβ2|α1|2α2.

Plugging these into the equation corresponding to (3.56) we get the corresponding equation to

Equation 3.59 ∑
r

Γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
∂̂tα1 + λ#

(
∂̂x1α2 + i∂̂x2α2

)
+ iδk

(
β1

̂|α1|2α1 + 2β2
̂|α2|2α1

)](κ
δ
, δs
)

± i√
2

[
∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
+ iδk

(
2β2

̂|α1|2α2 + β1
̂|α2|2α2

)](κ
δ
, δs
)
.

(3.152)

Using the fact that α is now a solution to (3.138), both terms vanish leaving us with the result

(3.153)
∑
r

Γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉 = 0

and

(3.154)
∑
r

f1,r = 0

which is the same as we had in the proof for Theorem 3.2.1. After the proof is completed we will

revisit Equation 3.152 to show that the above two bounds must be replaced by weaker bounds

when α is a solution to the linear Dirac equation, (3.25).

This establishes that we can mirror the proof finding the bounds for A1 giving us

(3.155) ‖A1‖H2 ≤ C1δ
5
2 t.
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3.7.2. Bootstrapping η to a Longer Timescale. We can now substitute (3.155), (3.143),

(3.144), (3.145), and (3.146) into the norm of the Picard iteration (3.142). This gives us the bound

‖ηn+1(·, t)‖H2(R2) ≤Cδ
5
2 t+ C(δ

3
2 + δ2t) + Cδ1+kt sup

0≤s≤t
‖ηn(·, s)‖H2(R2)

+ Cδ
1
2

+kt sup
0≤s≤t

‖ηn(·, s)‖2H2(R2) + Cδkt sup
0≤s≤t

‖ηn(·, s)‖3H2(R2)

(3.156)

where we have defined C =
5

max
m=1
{Cm}.

We will show that this the sequence (ηn)∞j=1 is uniformly bounded and Cauchy. Then we will

know it must converge.

Now we choose δ0 small enough such that δε0 ≤ 1
6C .

Proposition 3.7.2. For each step of the Picard iteration, ηn(x, t), and any δ ≤ δ0 we have

(3.157) sup

0≤ t≤ δ−1− k3 +ε

‖ηn(·, t)‖H2(R2) ≤ δ1− k
3 .

Proof. We prove the proposition by induction. To prove the base case observe that

‖η1(·, t)‖H2(R2) ≤Cδ
5
2 t+ C(δ

3
2 + δ2t)

≤Cδ
3
2
− k

3 δε + Cδ
3
2
−εδε + Cδ1− k

3 δε

≤ 3Cδ
1
2
− k

3 δε

≤ 3Cδ
1
2
− k

3

(
1

6C

)
<δ

1
2
− k

3 .

(3.158)

Thus the base case for Proposition 3.7.2 holds.

99



Now we assume that the proposition holds for ηj and will show that it must also hold for ηn+1.

Substituting the inductive hypothesis into (3.156) we get

‖ηn+1(·, t)‖H2(R2) ≤Cδ
5
2 t+ C(δ

3
2 + δ2t) + Cδ1+kt(δ1− k

3 )

+ Cδ
1
2

+kt(δ1− k
3 )2 + Cδkt(δ1− k

3 )3

≤Cδ
5
2 t+ Cδ

3
2 + Cδ2t+ Cδ2+ 2k

3 t

+ Cδ
5
2

+ k
3 t+ Cδ3t

≤Cδ
3
2
− k

3 δε + Cδ
3
2
−εδε + Cδ1− k

3 δε + Cδ1+ k
3 δε

+ Cδ
3
2 δε + Cδ2− k

3 δε

≤ 6Cδ1− k
3 δε

≤ 6Cδ1− k
3

(
1

6C

)
= δ1− k

3 .

(3.159)

This proves the proposition. 2

Thus the sequence (ηn)∞j=1 is uniformly bounded.

To show the sequence is Cauchy we first remember that we have

(3.160) |Aj,n+1| = δk|Aj,n+1| ≤ |Aj,n+1|

for j = 3, 4, 5. Using this, we can adjust the corresponding section of Theorem 3.2.1.

As before, since the sequence (ηn)∞j=1 is Cauchy and uniformly bounded, it must converge to a

solution, η. We can also use the fact that

sup

0≤ t≤ δ−1− k3 +ε

‖ηn(·, t)‖H2(R2) ≤ δ1− k
3

for each n to conclude that the same bound holds for η:

(3.161) sup

0≤ t≤ δ−1− k3 +ε

‖η(·, t)‖H2(R2) ≤ δ1− k
3 .

This concludes the proof of Theorem 3.7.1

This result means that we are able to obtain a slight increase in the proven lifespan of the ansatz

solutions and the Dirac dynamics when we are willing to unbalance the Dirac equation by making
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the Dirac dynamics mainly linear and using a small nonlinear correction. As we discussed, the

unbalanced Dirac equation will have solutions on a timescale of δ−k whereas we are only showing

that the Dirac dynamics only affect the NLS ansatz on the timescale, δ−
k
3

+ε. We also note that

while this unbalanced formulation does grant an extended timescale, it does so at the cost of having

less control over the size of the error term when compared to Theorem 3.2.1. This intermediate

regime lives somewhere between using the linear Dirac and the balanced nonlinear Dirac equations

and in doing so gives small, measurable changes to both the solution and the timescale for which

the error term is provably small.

3.7.3. Why Does the Linear Dirac Not Suffice? A logical question to ask would be: Why

can we not simply let α be a solution to the linear Dirac equation? In fact, at only one step in the

above section did we use the fact that α is a solution to the nonlinear Dirac instead of the linear

Dirac. That is just after Equation 3.152 (which we duplicate below).∑
r

Γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
∂̂tα1 + λ#

(
∂̂x1α2 + i∂̂x2α2

)
+ igδk

(
β1

̂|α1|2α1 + 2β2
̂|α2|2α1

)](κ
δ
, δs
)

± i√
2

[
∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
+ igδk

(
2β2

̂|α1|2α2 + β1
̂|α2|2α2

)](κ
δ
, δs
)
.

(3.152)

The fact that α was a solution to (3.138) allowed us to completely eliminate both terms of the

right-hand side. If we instead assumed that α was a solution to the linear, homogeneous Dirac

equation we could still eliminate part of those terms, but we would be left with the cubic subterms

within both terms.

However, in general that is not an insurmountable problem. The cubic terms are easily bounded

(as we have bounded many similar terms in the proof above). In fact the (now re-existent) cubic

terms would give us

(3.162)
∑
r

Γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉 = O(δk)
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and

(3.163)
∑
r

f1,r = O
(
δ−2+kχ(|κ| < δτ )

)
.

Thus the term
∑

r f1,r does not have zero contribution to the norm of fI,D. This would replace

Equation 3.62 with

f̃I,D(k, t) = O
(
δ−

1
2

+k · |t| · χ(|κ| < δτ )
)

+O
(
δ

5
2 |t| · χ(|κ| < δτ )

)
.(3.164)

The first term of this equation would give a contribution to ‖fI,D‖2L2 bounded by

δ−1+2kt2
∫
Bh
χ
(
|k−K| < δτ

)
dk . δ−1+2kt2δ2τ = t2δ−1+2k+2τ .(3.165)

Now we use the restrictions k ≤ 1 and τ < 1 to realize that even if we took k = 1 this would

give a contribution to ‖fI,D‖L2 of size δ
1
2

+τ t which is itself greater than δ
1
2

+
A0−3
A0 t. Since we fixed

A0 in the statement of the theorem, this would not even allow the lifespan t ≤ δ−1 so we could not

even achieve constant time Dirac dynamics for the solutions.

Remark 4. By keeping k ≤ 1, (3.165) would result in a contribution to ‖fI,D‖L2 of size strictly

worse than δ
3
2 t. Since this was one of the bounds restricting the bootstrapping, a worse bound

would result in a smaller lifespan for which the bootstrapping would work. Thus the nonlinear Dirac

equation provides a better provable lifespan than does the linear Dirac equation for the ansatz.

3.7.3.1. Why does the linear Dirac equation not suffice in Theorem 3.2.1. This could also lead us

to ask: Why does it not suffice to have α be a solution to the linear Dirac for Theorem 3.2.1?

Let us consider Equation 3.59 from Theorem 3.2.1.∑
r

γ̂r

(κ
δ
, δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
∂̂tα1 + λ#

(
∂̂x1α2 + i∂̂x2α2

)
+ i
(
β1

̂|α1|2α1 + 2β2
̂|α2|2α1

)](κ
δ
, δs
)

± i√
2

[
∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
+ i
(
2β2

̂|α1|2α2 + β1
̂|α2|2α2

)](κ
δ
, δs
)
.

(3.59)
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As above, if we take α to be a solution to the linear Dirac we would get

f̃I,D(k, t) = O
(
δ−

1
2 · |t| · χ(|κ| < δτ )

)
+O

(
δ

5
2 |t| · χ(|κ| < δτ )

)
.(3.166)

The first term of this equation would give a contribution to ‖fI,D‖2L2 (and thus ‖A1‖2L2) bounded

by

δ−1t2
∫
Bh
χ
(
|k−K| < δτ

)
dk . δ−1t2δ2τ = t2δ2τ−1.(3.167)

Thus, since τ < A0−3
A0

< 1, the resulting would be strictly worse than order δ
1
2 t which is significantly

more restrictive than the current bound of order δ
5
2 t. This would result in a dramatically shorter

lifespan for which the bootstrapping could work.

3.8. Tight Binding Regime. In this section we discuss how well the above machinery applies

to the tight binding situation discussed in [2]. As a reminder, in that paper Ablowitz and Zhu

discuss the NLS equation.

(3.168) i∂tψ = (−∆ + V (x))ψ + δ|ψ|2ψ

with ansatz solutions of the form

(3.169) ψδ(x, t) =

 2∑
j=1

αj

(
δ

C
x, δt

)
Φj(x) + ηδ(x, t)

 e−iµ∗t

with initial data

(3.170) ψδ(x, 0) =

2∑
j=1

αj

(
δ

C
x, 0

)
Φj(x)

where V0, the strength of the potential V (x), is very large. This is what we mean by the ”tight

binding” setting. If V0 → ∞ that is what is called the tight binding limit (which is not discussed

in this paper). This section deals with the case where V0 is large but finite.

In the above ansatz, the constant C is the same as that in Equation 15 of Ablowitz and Zhu [2].

This is particularly important to note because when we compare Equation 15 in [2] to Equation

3.1 in [32] we see that C in Ablowitz and Zhu is the same as |λ#| in Fefferman and Weinstein.

Most important about this is that in the appendix of [2] there is a result stating that as V0 gets

large, C is close to V0e
−
√
V0 . In other words, for very strong potentials, V (x), we conclude that
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C = |λ#| gets very small. In particular, for a δ sufficiently small we can pick an a very small such

that δa = C = |λ#|.

We also need a slightly different Dirac equation:

∂tα1 = −
λ#

|λ#|
(∂x1 + i∂x2)α2 − i

(
b1|α1|2 + 2b2|α2|2

)
α1

∂tα2 = −
λ#

|λ#|
(∂x1 − i∂x2)α1 − i

(
2b2|α1|2 + b1|α2|2

)
α2

(3.171)

where the λ# terms have been normalized. We use this normalization of λ# because otherwise

a strong potential, V (x), could unbalance the linear and nonlinear dynamics of the equation.

Normalizing takes care of that potential problem.

However, if we were proceed with the particular ansatz proposed by Ablowitz and Zhu, we would

come across the same problem as we would have done trying to use the exact ansatz proposed by

Fefferman and Weinstein in the non tight binding setting. Thus we will compensate by using a

multiscale expansion similar to what we did in the previous sections.

We create the multiscale ansatz:

ψ(x, t) =

(
2∑
j=1

αj(δ
1−ax, δt)Φj(x) + δ1−2a

2∑
j=1

βj(δ
1−ax, δt)Φj(x)

+ δ1−2aα⊥(x, t) + ηδ(x, t)

)
e−iµ∗t

(3.172)

with initial data

(3.173) ψ(x, 0) =
2∑
j=1

αj(δ
1−ax, 0)Φj(x) + δ1−a

2∑
j=1

βj(δ
1−ax, 0)Φj(x) + δ1−aα⊥(x, 0)

where α will be assumed to be a solution to (3.171).

Again, in order to redefine α⊥ we first need to redefine γr for 1 ≤ r ≤ 5.

γ#
1 (x, t) = δa · γ1(x, t)

γ#
2 (x, t) = δa · γ2(x, t)

γ#
3 (x, t) = γ3(x, t)

γ#
4 (x, t) = γ4(x, t)

γ#
5 (x, t) = δa · γ5(x, t)

(3.174)
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referencing (3.26). Then we redefine α⊥, (3.28), by simply replacing γr inside its definition by γ#
r .

We also assume that β solves the forced, linear Dirac equation

∂tβ1 = −
λ#

|λ#|
(∂x1 + i∂x2)β2 + i∆α1 + i〈Φ1, ∂Tα

⊥〉L2(Ω)

∂tβ2 = −
λ#

|λ#|
(∂x1 − i∂x2)β1 + i∆α2 + i〈Φ2, ∂Tα

⊥〉L2(Ω).

(3.175)

In all of these equations by letting δ be small enough and carefully choosing small a we have

replaced C within the ansatz proposed in [2] by δa.

When we expand the ansatz (3.172) into the NLS equation (3.168) we get

i∂tη − (H − µ∗)η = −δ1−a

(
2∑
j=1

iδa∂TαjΦj + 2
2∑
j=1

∇Xαj · ∇xΦj

−
2∑

j,k,l=1

δaαjαkαlΦjΦkΦl + (H − µ∗)α⊥
)

− δ2−3a
( 2∑
j=1

iδa∂TβjΦj + 2
2∑
j=1

∇Xβj · ∇xΦj +
2∑
j=1

δa∆αjΦj +
2∑
j=1

δa∂Tα
⊥
)

+ δ
(

2η

2∑
j,k=1

αjαkΦjΦk + η

2∑
j,k=1

αjαkΦjΦk

)

+ δ
(

2|η|2
2∑
j=1

αjΦj + (η)2
2∑
j=1

αjΦj

)
+ δ|η|2 η

+ δ2−2a
(

2

2∑
j,k,l=1

αjαkβlΦjΦkΦl +

2∑
j,k,l=1

αjαkβlΦjΦkΦl

)

+ δ2−2a
( 2∑
j,k,l=1

αjβkζlΦjΦk +
2∑

j,k,l=1

αjβkζlΦjΦk +
2∑

j,k,l=1

αjβkζ lΦjΦk

)

+ δ2−2a
(

2
2∑

j,k,l=1

βjζkζ lΦj +
2∑

j,k,l=1

βkζkζlΦk

)

+ δ3−4a
(

2

2∑
j,k,l=1

βjβkαlΦjΦkΦl +

2∑
j,k,l=1

βjβkαlΦjΦkΦl

)

+ δ3−4a
(

2

2∑
j,k,l=1

βjβkζlΦjΦk +

2∑
j,k,l=1

βjβkζ lΦjΦk

)

+ δ4−6a
(

3

2∑
j,k,l=1

βjβkβlΦjΦkΦl

)
.

(3.176)
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where ζ1 = η, ζ2 = δ1−2aα⊥, η(x, 0) = 0, each αj and βj are evaluated at (δ1−ax, δt), and each Φj

is evaluated at (x).

Once working with the corresponding integral equation of the upcoming Picard iteration we will

be working with the time evolution operator, e−it(H−µ∗), where H = −∆ + V (x). In the previous

sections we did not need to worry about this because it is already established in [32] that the

operator maps H2 → H2. In other words ‖e−it(H−µ∗)f‖H2 . ‖f‖H2 and the operator easily goes

away in our estimates. We need to be a little careful since we are now assuming that V (x) is very

large. However, by working in Floquet-Bloch terms it is simple to show that e−it(H−µ∗) behaves

just like a phase (and thus effectively of size 1). As discussed in [32] we know from completeness

of the Bloch modes that

(3.177) e−i(H−µ∗)tf =
∑
b

∫
Bh
e−i(µb(k)−µ∗)t〈Φb(·; k), f(·)〉L2(R2)Φb(x,k)dk.

Where the fact that Φb are eigenfunctions of H allows us to turn e−i(H−µ∗)t into e−i(µb(k)−µ∗)t on

the Floquet-Bloch side of the equation. Most importantly, |e−i(µb(k)−µ∗)t| = 1 and we can conclude

that |e−i(H−µ∗)tf | ≈ |f |. Thus we don’t need to worry about the larger size of V within e−it(H−µ∗)

in the tight binding section because it gets automatically dealt with by the Floquet-Bloch theory.

Now we state our modification of Theorem 3.2.1 for the tight binding regime

Theorem 3.8.1. Assume that α is a solution to (3.171) and β is a solution to (3.175) with zero

initial conditions. Fix A0 > 12. Consider the NLS equation (3.168) where V is a honeycomb lattice

potential with V0 very large as described above. Assume initial conditions, ψ0, of the form (3.173)

where α(·, 0) ∈ Hs for large s and has compact support. For all δ define a = aδ =
ln(|λ#|)

ln(δ) . Then

for any ρ > 0 there exists δ0 such that there is a unique solution to (3.168) of the form (3.172) with

(3.178) sup
0≤ t≤ ρ δ−1

‖ηδ(x, t)‖H2(R2) = O(δ
1
2 )

for all δ ≤ δ0.

Note that, as in Theorem 3.2.1, the constant implied by O depends only on ρ, A0, the size of

the initial data, and the size of the support of the initial data.

Of particular importance in this theorem (compared to Theorems 3.2.1 and 3.7.1) is that the

scaling of the spatial and time variables differ. We also need to make the a priori assumption that

δ is small enough relative to |λ#| such that our choice a =
ln(|λ#|)

ln(δ) is also very small.
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Defining the Picard iteration and writing as an integral equation we get

iηn+1(·, t) =

− δ1−a
2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
iδa∂Tαj(δ

1−a·, δs)Φj + 2∇Xαj(δ
1−a·, δs) · ∇xΦj

−
2∑

k,l=1

δaαj(δ
1−a·, δs)αk(δ1−a·, δs)αl(δ1−a·, δs)ΦjΦkΦl

+ (H − µ∗)α⊥(x, t)

)
ds

− δ2−3a
2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
iδa∂Tβj(δ

1−a·, δs)Φj + 2∇Xβj(δ
1−a·, δs) · ∇xΦj

− δa∆Xαj(δ
1−a·, δs)Φj − δa∂Tα⊥

)
ds

+ δ

2∑
j,k=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2ηn(·, s)αj(δ1−a·, δs)αk(δ1−a·, δs)ΦjΦk

+ ηn(·, s)αj(δ1−a·, δs)αk(δ1−a·, δs)ΦjΦk

)
ds

+ δ
2∑
j=1

∫ t

0
e−i(H−µ∗)(t−s)

(
2|ηn(·, s)|2αj(δ1−a·, δs)Φj

+ ηn(·, s)2αj(δ
1−a·, δs)Φj

)
ds

+ δ

∫ t

0
e−i(H−µ∗)(t−s)|ηn(·, s)|2 ηn(·, s)ds+ Lower order terms

:= −B1 −B2 +B3,n+1 +B4,n+1 +B5,n+1 + Lower order terms.

(3.179)

3.8.1. Finding the Corresponding Bounds. Observing that α is evaluated within the ansatz

at δt we can plug in our timescale bound from the statement of the theorem to see that α only gets

evaluated on the timescale δt ≤ δρδ−1 = ρ. Thus our α timescale is actually bounded by ρ just as

in the proof for Theorem 3.2.1.

Following through the proof of Theorem 3.2.1 every step follows exactly the same other than a

few modifications. The most obvious is that we have to be careful about having different powers

of δ present, but that is a trivial (if tedious) modification. The second is that, like we did in the

proof of Theorem 3.7.1, we make use of the fact that δa ≤ 1 to allow the proof to transfer over.

The most technical modification is for the equations corresponding to (3.59) and (3.96).
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The bounds for the η dependent terms follow the exact same argument as in Theorem 3.2.1:

‖B3,n+1(·, t)‖H2(R2) ≤ C3δ

∫ t

0
‖ηn(·, s)‖H2(R2)ds(3.180)

‖B4,n+1(·, t)‖H2(R2) ≤ C4δ

∫ t

0
‖ηn(·, s)‖2H2(R2)ds(3.181)

‖B5,n+1(·, t)‖H2(R2) ≤ C5δ

∫ t

0
‖ηn(·, s)‖3H2(R2)ds.(3.182)

As mentioned above, using the fact that δa ≤ 1, the bounds for ‖B1‖H2 and ‖B2‖H2 follow the

exact same argument is did ‖A1‖H2 and ‖A2‖H2 other than the terms f1,r and g1,r. Paralleling

Equation 3.33, we can consider B1 as the solution to the initial value problem

i∂tf(x, t)− (H − µ∗)f(x, t) = δ1−a

(∑
r

γ#
r (δx, δt)Ψr(x) + (H − µ0)α⊥(x, t)

)

f(x, 0) = 0

(3.183)

where we have defined

γ#
1 (x, t) = δa · γ1(x, t)

γ#
2 (x, t) = δa · γ2(x, t)

γ#
3 (x, t) = γ3(x, t)

γ#
4 (x, t) = γ4(x, t)

γ#
5 (x, t) = δa · γ5(x, t)

(3.184)

referencing (3.26). Also, we can consider B2 as the solution to the initial value problem

i∂tg(x, t)− (H − µ∗)g(x, t) = δ2k−3a
∑
r

ν#
r (δx, δt)Ψr(x)

g(x, 0) = 0

(3.185)
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where we define

ν#
1 (x, t) = δa · ν1(x, t)

ν#
2 (x, t) = δa · ν2(x, t)

ν#
3 (x, t) = ν3(x, t)

ν#
4 (x, t) = ν4(x, t)

ν#
5 (x, t) = δa · ν5(x, t)

ν#
6 (x, t) = δa · ν6(x, t)

ν#
7 (x, t) = ν7(x, t)

ν#
8 (x, t) = δa · ν8(x, t)

(3.186)

referencing (3.90).

When we proceed just as in the proof of Theorem 3.2.1 we arrive at∑
r

γ̂#
r

( κ

δ1−a , δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
δa∂̂tα1 + λ#

(
∂̂x1α2 + i∂̂x2α2

)
+ iδa

(
b1 ̂|α1|2α1 + 2b2 ̂|α2|2α1

)](κ
δ
, δs
)

± i√
2

[
δa∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
+ iδa

(
2b2 ̂|α1|2α2 + b1 ̂|α2|2α2

)](κ
δ
, δs
)

(3.187)

corresponding to (3.59). We also arrive at∑
r

ν̂#
r

( κ

δ1−a , δs
)
· 〈p±(·; k),Pr(·)〉

=
i√
2

κ1 + iκ2

|κ|

[
δa∂̂tα1 + λ#

(
∂̂x1α2 + i∂̂x2α2

)
− δa∆̂α1 − δa ̂〈Φ1, ∂Tα⊥〉L2(Ω)

](κ
δ
, δs
)

± i√
2

[
δa∂̂tα2 + λ#

(
∂̂x1α1 − i∂̂x2α1

)
− δa∆̂α2 − δa ̂〈Φ2, ∂Tα⊥〉L2(Ω)

](κ
δ
, δs
)

+O (|κ|)

(3.188)

corresponding to (3.96).
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However, recalling that δa = |λ#| we are able to factor out a δa from within each set of brackets

leaving
λ#
|λ#| in place of λ# (and likewise for λ#). Thus, considering α solves (3.171) and β solves

(3.175), both terms in (3.187) and the first two terms in (3.188) vanish as happened in (3.59) and

(3.96). From that point the proof continues exactly as in the proof of Theorem 3.2.1 and we get

the bounds

‖B1(·, t)‖H2(R2) ≤ C1ρδ(3.189)

‖B2(·, t)‖H2(R2) ≤ C2ρδ
1
2 .(3.190)

Note that to do this we have assumed that a is very small. This assumption is reasonable because

of our a priori assumption that δ is assumed to be much smaller than |λ#|.

3.8.2. Bootstrapping. Substituting in the bounds we just found, (3.189), (3.190), (3.180), (3.181),

and (3.182) to the Picard iteration we get

‖ηn+1(·, t)‖H2 ≤ Cρδ
1
2 + C

∫ t

0
δ‖ηn(·, s)‖H2(R2) + δ‖ηn(·, s)‖2H2(R2)

+ δ‖ηn(·, s)‖3H2(R2)ds

(3.191)

where C = 2
5

max
m=1
{Cm}.

Just as we did for Theorem 3.2.1, we will prove Theorem 3.8.1 using the bootstrapping principle.

We define the function φ(T ) = sup
0≤ t≤T

‖η(·, t)‖H2(R2). Now we define the hypothesis statement,

H(T ), and the conclusion statement, C(T ).

• The statement, H(T ), is “there exists δ0 such that ψ(T ) < 2Ce2Cρρδ
1
2 for all δ < δ0.”

• The statement, C(T ), is “there exists δ0 such that ψ(T ) < Ce2Cρρδ
1
2 for all δ < δ0.”

With the above hypothesis and conclusion statements the proof is identical to the bootstrapping

proof for Theorem 3.2.1.

Thus we have now proved equivalent results in the tight binding setting using a multiscale

expansion with the scalings suggested in [2] and in the non tight binding setting using a multiscale

expansion with the scalings suggested in [32]. In both of these multiscale expansions we used a

projectino onto a smaller perpendicular component than was done in the multiscale expanions of

[9]. Both of these have the same existence time for the ansatz (growing as δ → 0) and for the

nonlinear Dirac dynamics inside the envelope (up to any constant time, ρ).
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CHAPTER 4

Numerical Simulations and Future Work

This final chapter will be broken into two main parts. The first part will demonstrate a numer-

ical scheme for running simulations on the Schrödinger equation and the Dirac equation. Several

aspects of these numerical simulations will be explored, but none of them will be particularly in

depth. This is mainly meant to establish that we have a numerical scheme with which we can

continue further investigations into the NLS and Dirac equations. The second part will be a brief

discussion of future work that can be done.

4.1. Strang Splitting Methods. We will discuss the theory involved with setting up these

simulations in the first subsection before presenting some of the basic results we have obtained in

the following subsection.

4.1.1. Introduction and Theory. We start by establishing this method for a Schrödinger equa-

tion and Dirac equation which are more general than the specific ones we have used thus far. We

consider the NLS equation

(4.1) iut = (−∆ + V )u+ uf(|u|2)

where f : R→ R and V ∈ L2
per(R2) is a honeycomb lattice potential as in the previous chapter. If

we take f(|u|2) = |u|2 this is precisely the NLS equation discussed in previous chapters.

We also consider the Dirac equation

iut − (∂x − i∂y)v = f1(|u|2, |v|2)u

ivt + (∂x + i∂y)u = f2(|u|2, |v|2)v
(4.2)

where f1, f2 : R2 → R. As above for the NLS equation, a careful choice of f1 and f2 yields both

formulations of the Dirac equation (Ablowitz-Nixon-Zhu and Fefferman-Weinstein) discussed in

previous chapters (if we let λ# = 1).
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Consider i∂t|v|2 = iv̄∂tv + iv∂tv̄. Consider the nonlinear part of (4.1),

(4.3) ivt = vf(|v|2).

Taking the conjugate of (4.3),

(4.4) − iv̄t = v̄f(|v|2),

and substituting for ∂tv and ∂tv̄ everything on the right-hand side cancels, and we are left with

(4.5) i∂t|v|2 = 0.

Thus we see that the amplitude is conserved which will be important for our numerical scheme.

We consider a Strang splitting method for the NLS equation. In other words, we will simulate

(4.1) with a composition of the flows of the differential equations

(4.6) i∂tu = −∆u

and

(4.7) i∂tu =
(
V + f(|u|2)

)
u.

More specifically we will numerically approximate u(tn) where tn = nτ where τ is a step size

greater than 0 and n is the number of steps using the scheme

u−n+1/2 = e
i
2
τ∆un

u+
n+1/2 = e

−iτ
(
V+f(|u−

n+1/2
|2)

)
u−n+1/2

un+1 = e
i
2
τ∆u+

n+1/2.

(4.8)

Because of the amplitude preserving property, we can conclude that this scheme is explicit and

symmetric. The spatial discretization can be handled using a Fourier pseudo-spectral method.

Thus the time flow e
i
2
τ∆ can be calculated well using the fast Fourier transform (FFT). Calculating

the flow for the nonlinear part amounts to changing the phase of the solution at each point of the

mesh.
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The Strang splitting scheme [74] and higher order splitting schemes (e.g. [76, 83]) have been

widely applied to a variety of nonlinear Schrödinger equations, mainly semilinear Schrödinger equa-

tions, modeling monochromatic light in nonlinear optics, Bose-Einstein condensates, as well as en-

velope solutions for surface wave trains in fluids. See for example [7, 8, 11, 12, 13, 14, 15, 22,

30, 38, 43, 64, 65, 68, 71, 82]. In this section we mainly focus on applying the Strang split-

ting method to a particular semilinear Schrödinger equation. However, there are many other time

discretization approaches to solve non-linear evolution equations: Crank-Nicholson type schemes

[69] (also [4], [39] for applications), Magnus expansion approaches [63], [19], exponential time-

differencing schemes [25, 44], implicit-explicit methods [10], the comparison study in [79], and

many others. The question of the convergence of the Strang splitting method has been thoroughly

analyzed [26, 33, 42, 60, 71, 80].

To set up a Strang splitting scheme for the Dirac equation we consider flows of the differential

equations:

iut = (∂x − i∂y)v

ivt = −(∂x + i∂y)u
(4.9)

and

iut = f1(|u|2, |v|2)u

ivt = f2(|u|2, |v|2)v.
(4.10)

Looking back at our fundamental solution operator of the linear Dirac equation in Chapter 1

we can see how the time flow acts for (4.9). Composing these flows as done for the Schrödinger

equation above gives us
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u−n+1/2 = cos
(τ

2

√
−∆

)
un + i

∂x + i∂y
|∂x + i∂y|

sin
(τ

2

√
−∆

)
vn

v−n+1/2 = cos
(τ

2

√
−∆

)
vn + i

∂x − i∂y
|∂x − i∂y|

sin
(τ

2

√
−∆

)
un

u+
n+1/2 = e

−iτf1
(
|u−
n+1/2

|2,|v−
n+1/2

|2
)
u−n+1/2

v+
n+1/2 = e

−iτf2
(
|u−
n+1/2

|2,|v−
n+1/2

|2
)
v−n+1/2

un+1 = cos
(τ

2

√
−∆

)
u+
n+1/2 + i

∂x + i∂y
|∂x + i∂y|

sin
(τ

2

√
−∆

)
v+
n+1/2

vn+1 = cos
(τ

2

√
−∆

)
v+
n+1/2 + i

∂x − i∂y
|∂x − i∂y|

sin
(τ

2

√
−∆

)
u+
n+1/2.

(4.11)

Having set up the Strang splitting for the Dirac equation, it can be numerically calculated in

the same manner as the Schrödinger equation.

4.2. Numerical Results. Now that we have discussed how the method is set up, we will include

some preliminary numerical demonstrations. These will serve to support the analytical results from

previous chapters as well as demonstrate that the method works and can be used for future work.

Throughout this section we will make the choices of f, f1, f2 to match the nonlinearities dis-

cussed in the previous chapters. In particular, we will work with f(x) = x and choose f1, f2 to

match the Ablowitz-Nixon-Zhu type nonlinearity.

4.2.1. Dispersion Surfaces. In order to compute the dispersion surfaces of the problem, we must

first choose a specific potential, V (x). We make the same choice as [1],

(4.12) V (x) = V0|eik0b1·x + eik0b2·x + eik0b3·x|

where b1 = (0, 1),b2 = (−
√

3
2 ,
−1
2 ),b3 = (

√
3

2 ,
−1
2 ), k0 = 32√

3
, and V0 is the lattice intensity. We will

make different choices for V0 to demonstrate the dispersion surfaces in tight binding and non-tight

binding regimes.

Using Floquet-Bloch theory as we did in Chapter 3, we are able to work in a unit cell in

physical space and Fourier space instead of having to use the entire plane. Actually calculating the

dispersion surfaces is done by using the eigs function in MATLAB.

Plots are given of the dispersion surfaces for V0 = 10, 100, and 500 in Figure 4.1. As expected,

in the plots of the first two dispersion surfaces we can see that they touch at exactly two places for
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(a) V0 = 10 (b) V0 = 100 (c) V0 = 500

(d) V0 = 10 (e) V0 = 100 (f) V0 = 500

Figure 4.1. Plots of dispersion surfaces

(a) Plots of the dispersion surfaces for the NLS equation with V0 = 10, 100, 500. The first row plots the
first two dispersion surfaces (corresponding to µ±(k) from Chapter 3). The second row additionally plots
the third dispersion surface.

each choice of V0. This point is the Dirac point, K, discussed in Chapter 3 and [32]. With V0 = 10

(non-tight binding) we see that the first two dispersion surfaces are very close together at many

points in addition to the two points at which they agree. This can lead to much more “leakage”

between Bloch modes in the solution and much more potential for poorly behaved solutions (as is to

be expected in a non-tight binding setting). For V0 = 100, 500 we see that the first two dispersion

surfaces are farther apart (which is to expected as larger values of V0 are more tight binding).

We also see from the plots in the second row that as V0 gets larger, the third dispersion surface

gets farther away from the first two. This further limits the potential for “leakage” between Bloch

modes.

4.2.2. Dirac Experiments. For our preliminary runs performing the Dirac simulations we will

do two experiments. For both of these experiments we will use Gaussian initial data. The first is

to demonstrate that we have radial symmetry when one input is Gaussian and the other zero, but

that we do not have radial symmetry when both are Gaussian (just as it was for the linear equation

in Chapter 1). The second is to explore how the size of the initial data affects the solutions.
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(a) single-Gaussian, t = 0 (b) single-Gaussian, t = 5 (c) single-Gaussian, t = 10

(d) double-Gaussian, t = 0 (e) double-Gaussian, t = 5 (f) double-Gaussian, t = 10

Figure 4.3. Evolution of the Dirac equation

(a) The first row demonstrates the evolution of single-Gaussian initial data. The second row demonstrates
the evolution of double-Gaussian initial data.

4.2.2.1. Radial Symmetry. In [1], Ablowitz, Nixon, and Zhu demonstrate the radial symmetry

properties of the linear Dirac equation. Here we will demonstrate the same radial symmetry results

for the nonlinear Dirac equation.

We consider the case of the single-Gaussian initial data:

(4.13) u0(x) = A(2π)−1e−
1
2

(x2+y2), v0(x) = 0

and the case of the double-Gaussian initial data

(4.14) u0(x) = v0(x) = A(2π)−1e−
1
2

(x2+y2)

where A is the initial data parameter. In this section A is taken small enough that solutions behave

nicely.

We see the results in Figure 4.3. We can clearly see the radial symmetry in the case of the

single-Gaussian initial data. The dynamics appear identical to the results found in [1] for the

linear Dirac. In addition to the radial symmetry, we have conical diffraction and two bright rings

separated by Poggendorff’s dark ring.
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(a) A = 5 (b) A = 25

(c) A = 5 (d) A = 25

Figure 4.5. The effect of larger initial data on the simulation

(a) Results of running the Dirac simulation with single-Gaussian initial data of size A = 5 and A = 25.
Each graph is at t = 10.

The case of double-Gaussian initial data is also very similar to the linear Dirac in [1]. We have

the same behavior as the single-Gaussian case except for the radial symmetry. The introduction of

a second, equal Gaussian to the initial data results in decay on one side of the ring to the extent

that there is a visible ”break” in the ring. Further simulations (not shown here) demonstrate that

having two unequal Gaussians for initial data will still create decay on one side of the ring, but not

to the extent of having a visible ”break” as happens when the initial data are equal.

4.2.2.2. Size of the Initial Data. To explore the effects of different sizes of initial data on the

simulation we choose Gaussian initial data:

(4.15) u0(x) = A(2π)−1e−
1
2

(x2+y2)

where A is the initial data parameter, and v0(x) = 0.

We see the results of these simulations in Figure 4.5. With A = 5 we see that the solution

behaves well. The plots agree with those found in [1] and [2] for the nonlinear Dirac equation.

However, by increasing the size of the initial data to A = 25 we see that much of the dynamics

breaks down. In the two-dimensional plot we see that overall conical diffraction still holds. However,
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(a) Small data (b) Large data

Figure 4.7. Effects of larger, double-Gaussian initial data

the three-dimensional plot shows that the relative growth of the inner and outer ring changes

dramatically, and the radial symmetry observed for A = 5 does not hold for A = 25. By looking at

the z-axis scaling of the plots we notice that the peaks in the three-dimensional plot for the larger

initial data are two orders of magnitude higher than the maximum for the smaller initial data.

That is much more than the difference in the size of the initial data. At this point it is hard to

determine if this is a numerical error or something more to do with solutions of the Dirac problem.

We also run a simulation with equal, double-Gaussian initial data (u0 = v0) and A scaled to

maintain the same overall size.

These results are shown in Figure 4.7. We see that the small data yields a very nice conical

diffraction weighted towards one side of the ring and decaying on the other side of the ring. However,

the large data yields a result with all the problems visible in the single-Gaussian case as well as not

being weighted towards one side of the ring as should be expected from the double-Gaussian case.

4.2.3. Schrödinger Experiments. In simulating solutions for the Schrödinger equation we will

work with initial data like

(4.16) u0(x) = Aδ1/2
2∑
j=1

e−((δx)2+(δy)2)Φj(x)

where A is again a size parameter, Φj are the Bloch modes discussed in Chapter 3, and the δ is

included to match the setup from Chapter 3.

In actuality, the Gaussian is normalized differently to make it behave more nicely in the sim-

ulations. Also, it is difficult to compute the exact Bloch modes Φj . It is much easier to find two
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(a) t = 0 (b) t = 12 (c) t = 25

Figure 4.8. Small data, tight binding NLS evolution

(a) The evolution of the NLS equation, (4.16), displays clear Dirac dynamics with in the tight binding
setting with small initial data (A = 0.007).

linearly independent eigenvectors of the eigenspace and use those. Making different choices of those

eigenvectors is one way to vary the simulations and potentially get better results in future work.

In Chapter 3 we made the assumption that the initial data had compact support. Thus, the

choice of Gaussian is not ideal for matching the simulations to the analytic framework of Chapter

3. However, we chose Gaussian initial data for these initial simulations for sake of simplicity. For

some future work we would like to run simulations involving initial data with compact support as

in Chapter 3.

We do three different simulations in this section. The first one is a small data simulation in

the tight binding setting (V0 = 100) where we observe behavior similar to the Dirac evolution

numerically supporting the results seen in Chapter 3. In the second simulation we increase the size

of the initial data and see the Dirac dynamics break down in the solution. For the final simulation

we work with a very non-tight binding potential (V0 = 10) and see that the Dirac dynamics are

again absent.

4.2.4. Tight Binding Small Data. For this section we choose V0 = 100 and A = 0.007. We run

these simulations up to t = 0.25 with 500 timesteps to ensure high quality images.

The results are seen in Figure 4.8. These results display much of the properties seen in the

Dirac simulations. The Gaussian initial data grows outward forming two concentric rings with a

dark region (Poggendorff’s Dark Ring) between them. Radial symmetry does not quite exist as

we can see that the rings are slightly brighter at the vertices of a hexagon (corresponding to the

locations of the vertices of the lattice). Also, the ring is slightly deformed. Although, based on

the work in [1] we expect that we can get more circular results by changing the initial data or the
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(a) t = 0 (b) t = 12 (c) t = 25

Figure 4.10. Large data, tight binding NLS evolution

(a) The evolution of the NLS equation, (4.16), with tight binding potential (V0 = 100) and large initial data
(A = 1). The Dirac dynamics are still in evidence, but the Schrödinger dynamics have more control over the
evolution.

potential function, V . Overall, the Dirac dynamics are very evident in the results of this run, and

we think that in future work we can obtain results where the Dirac behavior is even more precisely

displayed.

4.2.5. Tight Binding Large Data. For tight binding and large initial data we keep everything

the same as the previous subsection except take A = 1.

The results of this run are displayed in Figure 4.10. We can still see evidence of an inner

and an outer ”ring.” However the rings are now hexagonal as would be expected from Schrödinger

dynamics (not Dirac dynamics). Clearly the lattice potential in the Schrödinger equation has taken

over the dynamics of the evolution and the Dirac dynamics play a much smaller role. As we can

see, a solution seems to exist on this timescale, but it is not governed by the Dirac dynamics as in

the small data case.

Another large data simulation was run with larger data (A = 10). However, that evolution

blew up on an extremely fast time scale indicating either very rapid blow up of solutions or even

non-existence of solutions.

4.2.6. Non-Tight Binding Small Data. To simulate a small initial data run in the non-tight

binding setting we kept A = 0.007, and we ran these simulations up to t = 0.25 with 500 timesteps

to ensure high quality images. The only change was choosing V0 = 10.

The results of the non-tight binding simulation are displayed in Figure 4.12. In this case, we see

that the evolution seems to be entirely controlled by the Schrödinger dynamics. Based on Theorem

3.2.1 this is surprising because we know that the Dirac envelope provides a good ansatz solution
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(a) t = 0 (b) t = 12 (c) t = 25

Figure 4.12. Non-tight binding NLS evolution

(a) The evolution of the NLS equation, (4.16), with non-tight binding potential (V0 = 10) and small initial
data (A = 0.007).

to the Schrödinger equation. We expect that it is possible to obtain the Dirac dynamics in the

non-tight binding setting by changing the initial data and/or the scaling of the equation. Another

possibility is that letting λ# = 1 is a bad assumption numerically, and that constant needs to be

calculated and included in the simulation. However, due to the closeness of the dispersion surfaces

seen in Figure 4.2a, it is possible that these results are consistent with Theorem 3.2.1 based on the

differences in the Bloch modes between the tight binding and non-tight binding settings. This will

be left to future work.

4.3. Conclusions and Future Work. Chapter 1 of this dissertation focused primarily on

establishing some of the basic properties of the linear Dirac system concluding with establishing

Strichartz-type estimates using wave-theory.

Chapter 2 looked at the nonlinear Dirac problem and established several results. We proved

a elementary local existence results in energy space as well as an extended-time, lower regularity

local existence result making use of the Strichartz estimates proved in Chapter 1. We also proved

an almost-global existence by making use of the wave equation form of the Dirac problem. We

also established ill-posedness below the critical regularity space, Ḣ
1
2 , by showing that the solution

is not continuously dependent on the initial data via contradiction. We concluded the chapter by

discussing evidence for blow up of solutions, but leave the proof of a blow up result as future work.

Chapter 3 contains the main theorems of this dissertation. We continue the work of Fefferman

and Weinstein [32] to show that the non linear Schrödinger equation can be well approximated

to any constant time by an ansatz containing an envelope of solutions to the nonlinear Dirac

equation. We extend the machinery modified from Fefferman and Weinstein to the ansatz proposed
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by Ablowitz and Zhu in [2] to also prove the result specifically in the tight binding setting. We

also apply this machinery to the situation where the Dirac equation has a weakened nonlinearity

to extend the time beyond constant time to a timescale growing in δ.

In Chapter 4 we do a few basic numerical simulations to support the results from previous

chapters as well as hint at future work that can be done.

4.3.1. Future Work. Some potential future work has already been mentioned in previous chap-

ters and sections including a finite time blow up result and improved numerical simulations as

discussed previously in this section. Other potential topics of future work could include:

• Studying the lifespan of solutions to the Dirac equation with random initial data.

• Studying nonlinearities of non-local Hartree type as proposed by Arbunich and Sparber,

[9]. In particular trying to apply the machinery from Chapter 3 to those nonlinearities.

• Utilize improved Schrödinger dispersive estimates to obtain longer existence and/or better

error estimates for the Chapter 3 results (either tight binding or non-tight binding)

• More detailed study on the convergence of the numerical schemes used in this chapter. In

particular the scheme used for the Dirac equation.

• Further numerical study of Dirac equations with large initial data.

• Further numerical study of longer existence times for both the Schrödinger and Dirac

schemes with small initial data.

• More quantitative study analyzing the Dirac dynamics in the tight binding, small data

NLS simulation. Directly comparing the NLS simulation with the Dirac simulation results

applied as the envelope discussed in Chapter 3.
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