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Abstract

JA-AN LIN: Statistical Methods for Imaging Genetic Data
(Under the direction of Dr. Hongtu Zhu )

More and more large-scale imaging genetic studies are being widely conducted to

collect a rich set of imaging, genetic, and clinical data in order to detect suscepti-

bility genes for complexly inherited diseases including common mental disorders (e.g.,

schizophrenia) and neurodegenerative disorders, among many others. However, the de-

velopment of statistical and computational methods for the joint analysis of complex

imaging phenotypes, genetic data, and clinical data has fallen seriously behind the tech-

nological advances. The aim this work is to develop three statistical approaches called

Projection Regression Method (PRM) and functional mixed effects model (FMEM) for

the joint analysis of high-dimensional imaging data with a set of genetic markers. In

PRM, it generalizes a statistical method based on the principal component of heritability

for association analysis in genetic studies of complex multivariate phenotypes. The key

components of the PRM include an estimation procedure for extracting several principal

directions of multivariate phenotypes relating to covariates and a test procedure based

on wild-bootstrap method for testing for the association between the weighted multi-

variate phenotype and explanatory variables. Simulation studies and an imaging genetic

dataset are used to examine the finite sample performance of the PRM. In FMEM, to

accommodate the correlation structure of the marker set, we model the genetic effects as

population-shared random effects with a common variance component (VC), whereas to

accommodate spatial feature in imaging data, we spatially model varying associations

between imaging measures in a three-dimensional (3D) volume (or 2D surface) with a

set of covariates and the genetic random effects. We develop a two-stage estimation
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procedure to spatially and adaptively estimate the varying coefficient functions, while

preserving its edges among different piecewise-smooth regions. To test hypothesis of

interest, we provide two test statistics with well-controlled type I error and better power

comparing to traditional voxel-based approach. Simulation studies and a real data anal-

ysis of the AlzheimerâĂŹs Disease Neuroimage Initiative (ADNI) show that FMEM

significantly outperforms voxel-based approaches in terms of identification of activation

regions.
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Chapter 1

Introduction

1.1 Literature Review

Many studies have been collecting/collected multivariate phenotypes in order to investi-

gate their relationship with some explanatory variables of interest. For example, multi-

variate imaging phenotypes have been widely collected to characterize brain structures

and their functions [Knickmeyer et al., 2008; Lenroot and Giedd, 2006]. Such multi-

variate imaging phenotypes include diffusion tensor, deformation tensors of deformation

field, the hemodynamic response function of functional magnetic resonance images, and

the spherical harmonic boundary description of subcortical structures, among many

others [Zhu et al., 2007; Styner et al., 2004; Friston, 2007; Huettel et al., 2004; Tay-

lor and Worsley, 2008; Worsley et al., 2004]. Statistical analysis of these multivariate

imaging phenotypes with explanatory variables eventually leads to a better understand-

ing of the progression of neuropsychiatric and neurodegenerative diseases or the normal

brain development/aging [Styner et al., 2003, 2004; Friston, 2007; Huettel et al., 2004;

Taylor and Worsley, 2008; Worsley et al., 2004]. Among the studies, there is a large

amount focusing on the whole brain MR images as the multivariate phenotypes and

the genomic data as covariate of interest. Due to the features of ultra-high dimension

and complex noise structure in both imaging and genetic data, statistical analyses usu-

ally take candidate-phenotype/candidate-genotype, candidate-phenotype/genome-wide

[Potkin et al., 2009] and phenotype-wide/candidate-genomes [Braskie and et al, 2011].



There are six commonly used approaches to delineate the association between the phe-

notypes and genotypes.

1.1.1 Multivariate Linear Model

A standard statistical approach to this problem is to fit a multivariate linear model

(MLM) to the multivariate phenotype with the candidate genotypes. The mathematical

form of the MLM is usually formulated as

Yn×q = Xn×pBp×q + En×q, (1.1)

where n is the total number of subjects, p is the number of covariates including geno-

types, q is the dimension of phenotype, each row of the matrices Y,X and E are the

phenotype, covariates and random errors for a subject, respectively. With the normality

and independence assumption, to test the effect of a single covariate to the whole pheno-

type, typically Hotelling’s T 2 has been used to test hypotheses of interest [Chung et al.,

2010; Taylor and Worsley, 2008; Worsley et al., 2004]. Suppose the null hypothesis is

formulated as H0 : Cq×1B = b0, where b0 is a constant. The Hotelling’s T 2 statistic is

calculated as

T 2 =
n− p− q + 1

(n− p)q
(CB̂− b0)T ̂Cov(CB)

−1

(CB̂− b0), (1.2)

and it distributes as F-distribution with the numerator degree of freedom q and the

denominator degree of freedom n−p− q+1. Since MLM involves estimating the covari-

ance matrix of all individual phenotypes, the dimension of the multivariate phenotype

is relatively smaller than the sample size.
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1.1.2 Component-wise Method

An alternative approach is to fit a marginal linear model and calculate a test statistic

for each component of the multivariate phenotype. Then it combines all tests with

their associated p−values to test an overall hypothesis across all individual phenotypes

and adjusting for multiple comparison [Heller et al., 2007; Lazar et al., 2002]. The

commonly used adjustment are Bonferroni correction, false discovery rate (FDR) and

random field theory (RFT) if the multivariate phenotype is a whole brain image. The

Bonferroni correction controls for over all familywise error rate. The FDR controls the

expected portion of falsely discovered p-values. Random field theory gives a threshold

considering the spatial correlation of the image by involving the imaging smoothness and

image size, to cut of p-values.Besides the potential estimation bias due to ignorance of

the potential correlation among all individual phenotypes, Bonferroni correction suffers

from low statistical power and FDR has inflated type I errors

1.1.3 Principle Component Analysis

Another approach is to directly reduce the dimension of the multivariate phenotype by

using dimension reduction techniques, such as principal component analysis (PCA). The

procedure of principle component analysis starts with constructing a low dimensional

space formed by the eigenvectors of multivariate phenotype and projecting the original

data to this low dimensional space. Then the projected pheotype is fitted a MLM with

the covariates of interest[Formisano et al., 2008; Teipel et al., 2007; Rowe and Hoffmann,

2006; Kherif et al., 2002]. This method does not properly account for the variation of

covariates and their association with the individual phenotypes while projection. Thus

it results in low statistical power while examining the phenotype-genotype association.

3



1.1.4 Partial Least Square Regression

Partial least squares regression (PLSR) is another statistical method that finds a linear

regression model by projecting the multivariate phenotype and the explanatory variables

to a new and smaller space [Chun and Keles, 2010; Krishnan et al., 2011]. Conceptu-

ally, PLSR is trying to find the multidimensional direction in the phenotype space that

explains the maximum variance direction in the phenotype space. Suppose we have

a MLM model for the multivariate phenotype and covariates of interest with the no-

tations following (1.1). The PLSR is implemented by extracting factors from both X

and Y such that covariance between the extracted factors is maximized. Pratically, the

following underlying model is assumed:

X = TP T + E (1.3)

Y = UQT + F, (1.4)

where T and U are two n × l matrices representing the scores similar to the PCs in

PCA framework and P and Q are the loadings in the similar context. E and F are

unexplained part. PLSR tries to achieve its goal by maximizing the covariance between

T and U . However, this method focuses on prediction and classification, instead of

investigating the association between the multivariate phenotype and the covariates of

interest.

1.1.5 Sparse Reduced Rank Regression

An alternative method to implement the genome-wide/phenotype-wide association study

is sparse reduced rank regression method (sRRR) [Vounou et al., 2010]. It is a multi-

variate modeling of high-dimensional imaging responses which enforces sparsity in the

regression coefficients such that the model performs simultaneous genotype and phe-

notype selection. The reduced-rank regression model (RRR) models the simultaneous

4



dependence of the phenotype on the genotype such that

Y = XB = XWA+ E (1.5)

where the notation follows (1.1), W is the p×r matrix of regression coefficients for the p

genotypes, and A is the r× q matrix of regression coefficients for the q phenotype, both

of full rank r. The factorization of the regression coefficient matrix B = WA comes from

imposing a reduced rank condition on C, namely that rank(C) is r ≤ min(p, q). To find

out the regulating genotypes to the phenotype, the sRRR model further involves a L1

penalty on each column of regression coefficients. Although it may successfully identify

the activation voxels, it still does not account for the spatial correlation in phenotypes

as well as the LD structure in genotypes only the representing genotype will be selected

by L1 penalty instead of a group of regulation genotypes. The other drawback of this

approach is its incapableness of performing hypothesis testing.

1.1.6 Least Square Kernel Machine Method

Another group of approaches use lease square kernel machine to accommodate the LD

structure of a group of genes when investigating the relationship between imaging phe-

notype and a group of genetic information. In Liu et al. [2007], they assume for the i-th

subject, the univariate response of interest yi can be modeled by

yi = xTi β + h(zi) + ei, (1.6)

where xiis the p-dimension covariate of interest of the i-th subject; β is p by 1 vector of

regression coefficient; zi is a L by 1 vector of genetic variation for the i-th subject; h(zi)

is an unknown centered smoothed function modeling by a kernel lying in the reproducing

kernel space HK generated by a kernel function K(•, •); and the errors ei are assumed

to be independent and follow N(0, σ2). The regression coefficients β and the function

5



h(•) are estimated via maximizing the scaled penalized likelihood function

J(h, β) = −0.5
n∑
i=1

yi − xiβ − h(zi)− 0.5λ‖h‖2
HK

(1.7)

By assuming the function h(•) in the space HK generating by K(•, •), h(•) can be

represented as

h(•) =
n∑
i=1

αiK(•, zi), (1.8)

where α = (α1, · · · , αn)T are unknown parameters. The representing form leads the

objective function (1.7) becomes

J(h, β) = −0.5
n∑
i=1

yi − xiβ − h(zi)− 0.5λαTKα, (1.9)

where K is a n by n matrix with the (i, j)-th element as K(zi, zj). The normal equation

to solve the parameters β and α of (1.9) is the same as the linear mixed model

y = Xβ + h+ e, (1.10)

when solving for β and h where β is a p by 1 vector of regression coefficient, h is

an n by 1 vector of random effects with distribution N(0, τK), and e ∼ N(0, σ2I).

With this connection between (1.8) and (1.10), it is sufficient to test the integrated

effect of genetic variation to the response of interest y by testing the null hypothesis

H0 : τ = 0 using sophisticatedly developed linear mixed model theory. Moreover, this

model enables considering the LD structure among a group of genetic variation even

when the dimension is high. In Ge and et al [2012], it applies LSKM to structure imaging

responses that they repeatedly fit the model (1.6) for each voxel following with testing

the null hypothesis H0 : τ = 0 for overall genetic effect and then apply random field

theory (RFT) on p-value map to accommodate imaging spatial structure and multiple

comparison adjustment.
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1.2 Introduction to our approach

There is a trend in imaging genetics which utilizes phenotype-wide and genome-wide

approaches [Hibar and et al, 2011; Shen et al., 2010; Stein et al., 2010; Ge and et al,

2012]. The standard approach is to repeatedly fit statistical models for each voxel by each

genome or gene. Besides computational burden , there are some other limitations. First,

the p-values of significant genomes at each nearby voxel may have different order, which

makes the biological interpretation complicated. Second, some imaging measures are

affected by the interaction between genomes rather than a single genome, which results

in missing identification of such genomes. Last, the spatial coherence and spatially

contiguous region of activation are not considered in voxel-wise approach thus causing

statistical power loss.

Based on the limitations described above, we proposed the following three meth-

ods. The first method is called the projection regression model (PRM), which is a

new statistical framework, called the projection regression model (PRM). The PRM

includes simultaneous selection, estimation, and testing in a general regression setting.

We develop an estimation procedure for estimating the optimal weights of the multi-

variate response in the PRM, while properly accounting for the space of explanatory

variables. Particularly, the PRM can accommodate the case that the sample size is

relatively smaller than the dimension of the multivariate phenotype. We also propose

a test procedure based on a wild-bootstrap method, which leads to a single p−value

to test for the association between the projected weighted multivariate phenotype and

the covariates of interest, such as genetic markers. This test procedure controls the

overall type I error, while avoiding the use of an inefficient sample splitting method

[Mukhopadhyay et al., 2010; Yang et al., 2010]. Simulation studies are carried out to

compare the PRM with several commonly used methods for the multivariate phenotype

in terms of both the type I and II error rates. The second proposed method is called

functional mixed effects model (FMEM). Specifically, to accommodate the LD structure
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of a group of genetic markers, we model the genetic effects as population-shared random

effects with a common variance component (VC), whereas to accommodate spatial fea-

ture in imaging data, we spatially model varying associations between imaging measures

in a three-dimensional (3D) volume (or 2D surface) with a set of covariates and the ge-

netic random effects. Moreover, we assume that the varying associations are piecewise

smooth functions with unknown edges and jumps across voxels. We develop a two-stage

estimation procedure to spatially and adaptively estimate the varying coefficient func-

tions. Each stage of the estimation procedure includes a multiscale adaptive estimation

and testing procedure to independently estimate each varying coefficient function, while

preserving its edges among different piecewise-smooth regions. Simulation studies and

real data analysis show that FMEM significantly outperforms voxel-wide approaches in

terms of both type I and II error rates. However, with wild-bootstrap method in hy-

pothesis testing , the computation is intensive for FMEM. In our third work, we enhance

the computational method by revising the weighted likelihood ratio test to the weighted

score test which gives comparable statistical power to identify activation regions with

more efficient computation. In the weighted likelihood ratio test, the statistical power is

enhanced by providing more accurate estimation of VC which results in smaller variance

of test statistic. However, the rationale in weighted score test is different that the detail

is described in later section.

The rest of this section is organized as follows. Chaper 2 will describe the proposed

methods PRM and the result. 2.1 introduces the PRM and its associated estimation

and testing procedure. In 2.2, we conduct simulation studies with a known ground

truth to examine the finite sample performance of the PRM and several other statistical

methods. 2.2 also illustrates an application of PRM in an imaging genetic data set. The

detail result of simulation studies and data analysis are given in Appendix. Chapter 3,

we describe the proposed model FMEM In detail, the model and its adaptive estimation

procedure is in 3.1. The performance of FMEM is evaluated by simulation studies

8



and real data analysis in 3.2 The analysis result of applying voxel-based method on

the same real data is also given. The supporting information of simulation result and

real data analysis are in Appendix; detailed derivation of the exact null distribution

to test the variance component in FMEM is given in Appendix. The rationale and

detailed methodology of weighted score test for FMEM is in 4.1. In 4.2, we evaluate

the performance of weighted score test of FMEM by simulation studies and a real data

analysis with ADNI. In Chaper 5, we give our discussion and conclusion.
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Chapter 2

Projection Regression Method

2.1 Methods

Suppose that we observe a q× 1 multivariate phenotype yi = (yi1, . . . , yiq)
T and a p× 1

vector of covariates of interest xi = (xi1, . . . , xip)
T for i = 1, . . . , N . We consider a

commonly used MLM as follows:

Y = XB + E, or yi = BTxi + ei, (2.1)

where Y is an N × q matrix formed by the q× 1 multivariate phenotype of each subject

in each row, X is an N × p matrix consisting of the p × 1 vector of covariates of each

subject in each row, and B = (βjl) is a p× q matrix, in which βjl represents the effect of

the j−th covariate on the l−th response. Moreover, E is an N × q matrix representing

the random errors and eTi is the i−th row of E with zero mean and covariance matrix

VR. Assuming that xi and ei are independent, the covariance of yi is given by

Cov(yi) = VQ + VR = BTCov(xi)B + VR, (2.2)

where VQ represents the variation coming from the covariates of interest.

Most scientific questions require the comparison across two (or more) diagnostic

groups and the association of the genetic marker for each component of yi. Such ques-



tions can often be formulated as linear hypotheses of B as follows:

H0 : CB = B0 v.s. H1 : CB 6= B0, (2.3)

where C is a r × p matrix of full row rank and B0 is a p× q vector of constants.

We consider a projection of yi via a q × k weight matrix W and create a k × 1

projection vector WTyi such that k << q. Then, we propose a projection regression

model (PRM) given by

WTyi = βTwxi + εi, (2.4)

where βw is a p × k regression coefficient matrix and εi is the random vector with

Cov(εi) = Σi. The PRM (2.4) is a heteroscedastic multivariate linear model. When

k = 1 and Σi = Σ for all i, PRM reduces to the pseudo-phenotype model considered in

[Amos et al., 1990, Amos and Laing, 1993, Ott and Rabinowitz, 1999, Lange et al., 2004,

Klei et al., 2008]. A direct connection between models (2.1) and (2.4) is that model (2.1)

can be rewritten as

WTyi = βTwxi + εi = (BW)Txi + WTei. (2.5)

Therefore, if W in (2.4) were known, then one would directly perform an appropriate

hypothesis test to address specific research hypotheses as follows:

H0W : Cβw = b0 v.s. H1W : Cβw 6= b0, (2.6)

where b0 is an r × k vector of constants. Based on model (2.5), the null hypothesis of

(2.6) can be written as Cβw = CBW = B0W = b0.

Let C1 be a (p− r)× p matrix such that

rank[CT CT
1 ] = p and CCT

1 = 0. (2.7)
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Let D = [CT CT
1 ]T be a p × p matrix and x̃i = (x̃Ti1, x̃

T
i2) = D−Txi be a p × 1 vector,

where x̃i1 and x̃i2 are, respectively, the r× 1 and (p− r)× 1 subvectors of x̃i. We define

B̃ = [B̃T
1 B̃T

2 ]T to be B̃ = DB or B = D−1B̃. We consider B̃ = [B̃T
1 B̃T

2 ]T , where B̃1

and B̃2 are, respectively, the first r rows and the last p− r rows of B. Therefore, model

(2.5) can be rewritten as

WTyi = (D−1B̃W)Txi + WTei = WT B̃T
1 x̃i1 + WT B̃T

2 x̃i2 + WTei. (2.8)

The next issue is to determine an optimal q×k matrix W under some certain criteria.

In PCH [Ott and Rabinowitz, 1999; Lange et al., 2004; Klei et al., 2008], the heritability

ratio is defined by

h(w) =
wTVQw

wTCov(yi)w
=

wTVQw

wTVQw + wTVRw
. (2.9)

The heritability ratio characterizes the ratio of the variation from the genetic biomarkers

xi to the total variation of responses yi. Maximizing h(w) leads to the optimal W.

Instead of directly using the heritability ratio h(w), we consider a generalized ‘heri-

tability’ ratio H(w) for a given q × 1 vector w as follows:

H(w) =
wT B̃T

1 Cov(x̃i1)B̃1w

wTVRw
. (2.10)

The H(w) can be interpreted as the ratio of the variance of wT B̃T
1 x̃i1 relative to that of

wTei under the null hypothesis. We require that the optimal W enhances the power of

detecting the association between WTyi and xi for the null hypothesis (2.6). Thus, we

need to find a W to project the data into a space containing the most information on

the null hypothesis of (2.3). Let ΣX = Cov(x). It can be shown that H̃(w) reduces to

H̃(w) =
wTBTCT (D−TΣXD−1)(1,1)CBw

wTVRw
, (2.11)

12



where (D−TΣXD−1)(1,1) is the upper r× r submatrix of D−TΣXD−1. When C = [Ir 0],

H̃(w) reduces to the ratio of wTBT
1 (ΣX)(1,1)B1w to wTVRw, in which (ΣX)(1,1) is the

upper r × r submatrix of ΣX .

When VR is positive definite, maximizing (2.11) is equivalent to maximizing

H̃(w) =
wTLL−1BTCT (D−TΣXD−1)(1,1)CB(L−1)TLTw

wTLLTw
, (2.12)

where L is the lower triangular matrix obtained from the Cholesky decomposition of

VR = LLT . Letting VC,X = L−1BTCT (D−TΣXD−1)(1,1)CB(L−1)T . Let v be the eigen-

vector corresponding to the largest eigenvalue of the matrix VC,X , then (2.11) is max-

imized when LT ŵ equals v. Hence, (2.12) is maximized when ŵ equals L−Tv. If q is

relatively small compared to N , based on (2.11), we take the q × k matrix W in (2.4)

by choosing the largest k sparse eigenvectors of VC,X using PCA. However, when q is

relatively large compared to N , calculating L−T and the eigenvectors of VC,X can be

challenging, which makes the optimal weight matrix W very unstable.

2.1.1 Estimation Procedure for Optimal Weights

We develop an estimation procedure for estimating the optimal weights. This procedure

consists of three major steps: (i) a pre-screening process for eliminating ‘unrelated’ mea-

sures; (ii) a shrinkage procedure for approximating VC,X and VR; and (iii) a sparse prin-

cipal component analysis (SPCA) procedure for calculating the eigenvalue-eigenvector

pairs of VC,X . Each step is implemented as follows.

The pre-screening procedure is to rank individual phenotypes according to marginal

utility and eliminate ‘unrelated’ phenotypes when q is relatively large relative to N , say

q ≥ N/3. This procedure is to mimic various screening methods, such as sure indepen-

dence screening (SIS), for discarding covariates in high-dimensional linear models [Fan

and Lv, 2010]. In Step 1, we fit q marginal linear regression models to individual pheno-
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types and the covariates of interest. In Step 2, we calculate the corresponding Wald-type

test statistics under the same null hypothesis (2.6), and the respective p-values from a

chi-square distribution with degrees of freedom r for each individual phenotype. In Step

3, after ordering the q p-values from the smallest to the largest, we only select the phe-

notypes with the first q∗ = [q/log(q)] + 1 if q ≤ N , or the first q∗ = [N/log(N)] + 1 if

q > N , where [x] represents the largest integer smaller than x. Thus, we set the weights

for those unselected individual phenotypes to be zero, or equivalently, we consider a

reduced response vector, denoted as y∗i = (ỹi1, . . . , ỹiq∗)
T or Y∗.

The shrinkage procedure is to approximate VC,X and VR as follows. In Step 1,

we refit the multivariate linear regression in (2.1) with the selected individual phe-

notypes in y∗i as responses conditional on X. Let B∗ be the regression parameter

matrix for the selected individual phenotypes. We estimate B∗ by its least square

estimator, denoted by B̂∗, which equals B̂∗ = (XTX)−1XTY∗. In Step 2, we esti-

mate Cov(X) by using its empirical estimator, denoted by Σ̂X , and then approximate

VB = BTCT (D−TΣXD−1)(1,1)CB by V̂B = B̂∗TCT (D−TΣXD−1)(1,1)CB̂∗. In Step 3,

we calculate a shrinkage estimate of VR by following Ledoit and Wolf [2004]. Let CE

be the sample covariance matrix of Ê∗ = (rjk) = Y∗ − XB̂∗, µE = q−1tr(CE) and

ρ = min(1, N−2
∑N

i=1 tr[(êiê
T
i − CE)2]/tr[(CE − µEIq)

2]), in which êi = y∗i − B̂∗Txi. Fi-

nally, we approximate VR and VC,X by using V̂R,S = ρµEIq+(1−ρ)CE and L̂−1V̂B(L̂−T ),

respectively. We use V̂R,S mainly due to its computational efficiency and relatively nice

properties [Ledoit and Wolf, 2004].

The SPCA procedure is to estimate the sparse eigenvectors and eigenvalues of V̂R,S

by following Zou et al. [2006] as follows. The key idea of this SPCA process is to

transform the eigenvalue-eigenvector problem into an elastic net problem [Zou et al.,

2006], which can be solved neatly. We include the key steps here for completion. In

Step 1, we choose a value of k so that the proportion of variance explained is greater

than a certain threshold, such as 80% percent to truncate the eigenvalues. Then, we
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calculate the loadings of the first k ordinary principal components of V̂R,S, denoted as

α. In Step 2, given a fixed α, we solve the following naive elastic net problem: for

j = 1, . . . , k,

γ̂j = argmin
γ∗

γ∗T (V̂R,S + λ2,j)γ
∗ − 2αTj V̂R,Sγ

∗ + λ1,j | γ∗ |1, (2.13)

where | · |1 denotes the L1 norm. Moreover, λ1,j and λ2,j are tuning parameters and

selected simultaneously by using a BIC-type selection criterion [Leng and Wang, 2009].

We calculate the BIC-type criterion given by

BIC = (αj − γ̂j)T V̂R,S(αj − γ̂j) + df(λ1,j ,λ2,j) ×
log(q∗)

q∗
, (2.14)

where df(λ1,j ,λ2,j) is the number of nonzero coefficients in γ̂j. In Step 3, for each fixed γ̂j,

we calculate the singular value decomposition of V̂R,S γ̂j = UDV T , and then we update

αj = UV T for j = 1, . . . , k. In Step 4, we repeat steps 2-3, until γ converges. In Step 5,

we normalize γ, and then set v̂j = γj/| γj | for j = 1, . . . , k. The optimal weight wj is

estimated by using ŵj = (L̂−T )v̂j for j = 1, . . . , k and W = [w1, . . . ,wk].

Finally, to further reduce the dimension of the pre-screened Y∗, we apply the SPCA

procedure repeatedly to estimate W by selecting ‘related’ individual phenotypes sug-

gested from the estimated weight matrix W obtained from the previous iteration. Specif-

ically, we eliminate the responses corresponding to the zero rows in the sparse weight

matrix W obtained from the SPCA procedure in order to reduce the screened response

vector Y∗ to an even smaller dimension. Subsequently, we rerun the shrinkage and

SPCA procedures on the new Y∗ to calculate the new weight matrix W. This itera-

tion process of weight estimation can be processed iteratively until W converges. Our

simulation studies show that in most cases, the process converges in only two iterations.
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2.1.2 Test Procedure for Testing Hypotheses

We develop several statistics of testing H0W against H1W for the PRM (2.4) as follows.

Given the estimated weight matrix W, we can calculate the ordinary least squares

estimate of βw, given by β̂w = (
∑N

i=1 xix
T
i )−1

∑N
i=1 xiy

T
i W. Subsequently, to calculate

a statistic for testing H0W against H1W , we calculate a k× k matrix, denoted by TN , as

follows:

TN = (Cβ̂w − b0)TΣ−1

Ω̃
(Cβ̂w − b0), (2.15)

where ΣΩ̃ is a consistent estimate of the covariance matrix of Cβ̂w − b0 given by

ΣΩ̃ = C(XTX)−1

N∑
i=1

a2
ixiε̃

T
i ε̃ix

T
i (XTX)−1CT . (2.16)

Moreover, ai = 1/{1−xTi (XTX)−1xi} and ε̃i = WTyi− β̃Twxi, where β̃w is the restricted

least squares (RLS) estimate of β under H0, and is given by

β̃w = β̂w − (XTX)−1CT [C(XTX)−1CT ]−1(Cβ̂w − b0). (2.17)

When k = 1, TN is a Wald-type (or Hotelling’s T 2) test statistic. When k > 1, we define

three test statistics based on the functionals of TN as follows:

WN = det(TN), TrN = trace(TN), and RoyN = max(eig(TN)), (2.18)

where det, trace, and eig denote the determinant, trace and eigenvalues of a symmetric

matrix, respectively. When k = 1, all these statistics reduce to TN . For simplicity, we

focus on TrN throughout the paper.

We present a wild bootstrap method to improve the finite sample performance of

the test statistic TrN in (2.18) in testing the null hypothesis H0. First, we fit model

(2.1) under the null hypothesis (2.3) and calculate the estimated multivariate regression

16



coefficients under (2.3), denoted by B̂∗, with corresponding residuals êi = yi − B̂T
∗ xi

for i = 1, . . . , N . Then, we generate G bootstrap samples {(z(g)
i ,xi) : i = 1, . . . , N} as

follows:

z
(g)
i = B̂T

∗ xi + η
(g)
i êi for i = 1, . . . , N, (2.19)

where η
(g)
i are independently and identically distributed as a distribution d, in which d

is chosen as

η
(g)
i =

 1, with probability 0.5,

−1, with probability 0.5.
(2.20)

For each generated wild-bootstrap sample, we repeat the estimation procedure for esti-

mating the optimal weights and the calculation of the test statistic Tr
(g)
N . Subsequently,

the p-value of TrN is computed as
∑G

g=1 1(Tr
(g)
N ≥ TrN)/G, where 1(·) is an indicator

function.

2.1.3 Summary

We summarize the key steps of the PRM as follows:

Step (i). Fit q marginal linear regression models with the univariate dependent

variable as each single phenotype and the independent variables as the covariates

of interest.

Step (ii). Calculate q Wald-type test statistics under the same null hypothesis

(2.6) and their corresponding p-values.

Step (iii). Select the responses with the smallest [ q
log(q)+1

] = q∗ (or [ n
log(n)+1

] = q∗

if n ≤ q) p-values and establish the shrunken response space Y∗;

Step (iv). Apply SPCA to estimate the weight W based on Y∗;

Step (v). Project Y to WTY and regress WTY by X;

Step (vi). Calculate the Wald-type test statistic TrN ;

17



Step (vii). Generate G bootstrap samples and repeat Steps (i) to (vi) for each

bootstrap sample;

Step (viii). Approximate the p-value of TrN .

2.2 Results

2.2.1 Simulation Studies

We carried out two scenarios of simulation studies to examine the finite-sample perfor-

mance of the PRM. The simulation studies were designed to establish the association

between a relatively high-dimensional phenotype with a commonly used genetic marker

(e.g., SNP), while adjusting for age and other environmental factors. The first scenario

focuses on that q is relatively smaller than the sample size N . The second scenario

focuses on that q is comparable to the sample size N .

We set q and then simulated the multivariate phenotype according to model (1).

The random errors were simulated from a multivariate normal distribution with mean 0

and covariance matrix with diagonal elements equal to 1. For the off-diagonal elements

in the covariance matrix, we categorized each component of the multivariate phenotype

into three categories: high correlation (0.6), medium correlation (0.3), and very low

correlation (0.1) with the corresponding number of components (1, 1, q − 2) in each

category. Specifically, we set the correlation between the first and second random errors

as 0.6, those between the first random error and all others to be 0.3, and others to be

0.1. In the covariate matrix, we included a SNP, a diagnostic status as a binary variable

with probability 0.5, and 3 additional continuous covariates. We simulated the additive

SNP effect under different minor allele frequencies (MAFs). We simulated the three

additional continuous covariates from a multivariate normal distribution with mean 0,

standard deviation 1, and equal correlation 0.3. Our hypothesis of interest is to test the

SNP effect on the multivariate phenotype. We set the number of the repetitions to be
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150 and the number of wild bootstrap samples to be 250.

Scenario I

In the first scenario, we set the sample size N to be 150 and the MAF to be 0.5. The q

were chosen to be 5, 10, 20, 30, 80 and 100, respectively. The first five individual phe-

notypes were associated with the SNP, whose coefficients were independently generated

from a normal distribution with mean 0.15 and variance 0.05, and the 5th phenotype

was also associated with disease status with regression coefficient being 0.5. We applied

both the PRM and Hotelling’s T 2 test to each simulated dataset in order to examine

the type I and II error rates under the 5% significance level. Inspecting Figure 1 reveals

that the type I errors are well controlled for both methods. Moreover, as q increases,

the power in detecting the SNP effect decreases faster for Hotelling’s T 2 test compared

with the PRM.

Scenario II

In the second scenario, we set q to be 50, 100, 150 and 200, respectively, and the

sample size N to be 150, 200, 250 and 300, respectively. We generated the additive SNP

effect under 6 different MAFs, which are 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.

We considered two scenarios of the SNP effect. In the first scenario, only the first

individual phenotype is associated with the SNP effect with regression coefficient being

0.5 and the second individual phenotype is associated with the disease status effect with

regression coefficient being 0.5. Other individual phenotypes are not associated with any

covariate. The second scenario is that the first 10 individual phenotypes are associated

with the SNP. We generated the corresponding regression coefficients independently

from a normal distribution with mean 0.5 and standard deviation 0.15. Moreover, we
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set the regression coefficient for the diagnosis status to be 0.5 for the 10th individual

phenotype and all other regression coefficients to be zero.

We applied the PRM to the simulated data sets and compared it with two other methods

including a component wise method (CWM) and a principal components regression

(PCR) using a 5% significance level. The CWM method fits a single linear regression to

each individual phenotype with the same set of covariates and uses the false discovery

rate (FDR) to test the additive SNP effect. The PCR method extracts the first three

principal components of the multivariate phenotype by using the PCA and then fits a

multivariate linear model to the extracted principal components with the same set of

covariates. The Hotelling’s T 2 test is not considered here since it is invalid for q > N .

We observe that the type I error rates are well controlled and more stable in the PRM,

compared to the CWM and PCR methods (Figures 2 and 3). When the SNP effect is

sparse, the powers of the PRM are generally higher than the CWM method, particularly

for SNPs with small MAF and it is uniformly better than the PCR method (Figures

4 and 5). As expected, increasing either the sample size N or the MAF enhances the

statistical power in detecting the SNP effect, whereas increasing the number of responses

q reduces the power in detecting the SNP effect. When more SNPs show impact on the

phenotypes, PRM is still comparable to CWM and better then PCR when the MAF is

small (Figures 6 and 7). With increasing MAF, all three methods perform equally well.

2.2.2 A neonatal study

The data set is from a neonatal study to assess the impact of common SNPs in putative

psychiatric genes on early age brain development. The study recruited 237 pregnant

women in their second trimester, who were free from abnormalities on fetal ultrasounds

and major medical illness. Each subject had one time visit with a T1-weighted medical

resonance image (MRI), demographic and genetic information assessment. The MRI
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images were collected with a Siemens head-only 3T scanner using a 3D spoiled gradient

(FLASH TR/TE/Flip Angle 15/7msec/25Âř) with spatial resolution 1 x 1 x 1 mm3

voxel size. There are 47 regions of interest defined from the T1-weighted images by

non-linear warping of a parcellation atlas template [Gilmore et al., 2007; Knickmeyer

et al., 2008]. The demographic information includes gender, gestational age at birth in

days, age after birth in days and intracranial volume (ICV) of the infants. There are

128 male and 109 female infants with average gestational age 264.0 (SD ±18.91), age

after birth in days of 30.2 (SD ±17.80) and ICV 481799.9 (SD ±61528.96). Moreover,

9 genetic variants expressed in SNPs from 6 genes were collected and genotyped by

Genome Quebec using Sequenom iPLEX Gold Genotyping Technology.

We applied our PRM method to multivariate phenotype including the volumes of

47 regions of interest (ROIs) with covariates of interest including gender, gestational

age, age after birth, ICV and the 9 SNPs with an additive effect. Each hypothesis

tests a single SNP effect, while adjusting for other covariates including demographic

information and other SNPs. We list the 9 SNPs with their corresponding genes and

respective p-values in Table 1.

The results show that the SNPs rs6675281 and rs35753505 have a significant impact

on early age brain development with p-values of 0.016 and 0.0136, respectively. This

agrees with the existing literature. Specifically, DISC1 was known to be associated with

mental illness, such as schizoprenia and bipolar disorder, and NRG1 was known to relate

to brain tissue volume [Mata et al., 2009].

We also applied the PCR and CWM methods to the same data set with the same

set of covariates for comparison. In the PCR application, the first three principal com-

ponents of the 47 ROIs, which explain 74.4% of the variation, are regressed on the same

group of covariates of interest and the same null hypotheses were tested for each SNP by

Hotelling’s T2 test at the 0.05 significance level. None of the 9 SNPs were found to be

significant for brain volume development. The details of the test results are given in the
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supplementary document. When analyzing the same data set by CWM with multiple

comparisons adjusted by FDR, none of the 9 SNPs are detected to be significant for the

47 ROIs at the same testing level.

2.2.3 Tables and Figures
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Figure 2.1: The comparison results of the PRM and Hotelling’s T 2 test based on
N = 150 and MAF=0.5: the type I error (the left panel) and power (the right panel).
The upper and middle dashed lines in the left panel correspond to 0.05 and 0.025,
respectively; and the upper and middle dashed lines in the right panel represent 0.5 and
0.25, respectively.
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Figure 2.2: The type I error comparison results of the PRM, CWM, and PCR meth-
ods based on different sample sizes (150, 200, 250 and 300) and different minor allele
frequencies (0.05, 0.1 and 0.2). The horizontal axis of each plot is the number of phe-
notypes q and the vertical axis is the type I error rate. The upper and middle dashed
lines are 0.1 and 0.05, respectively.
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Figure 2.3: The type I error comparison results of the PRM, CWM, and PCR methods
based on different sample sizes (150, 200, 250 and 300) and different minor allele fre-
quencies (0.3, 0.4 and 0.5). The horizontal axis of each plot is the number of phenotypes
q and the vertical axis is the type I error rate. The upper and middle dashed lines are
0.1 and 0.05, respectively.
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Figure 2.4: The power comparison results of the PRM, CWM, and PCR methods for
the first scenario of sparse SNP effect based on different sample sizes (150, 200, 250 and
300) and different minor allele frequencies (0.05, 0.1 and 0.2). The horizontal axis of
each plot is the number of phenotypes q and the vertical axis is the power. The dashed
line represents a power of 50%.
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Figure 2.5: The power comparison results of the PRM, CWM, and PCR methods for
the first scenario of sparse SNP effect based on different sample sizes (150, 200, 250 and
300) and different minor allele frequencies (0.3, 0.4 and 0.5). The horizontal axis of
each plot is the number of phenotypes q and the vertical axis is the power. The dashed
line represents a power of 50%.
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Figure 2.6: The power comparison results of the PRM, CWM, and PCR methods
for multiple SNP effects based on different sample sizes (150, 200, 250 and 300) and
different minor allele frequencies (0.05, 0.1 and 0.2). The horizontal axis of each plot
is the number of phenotypes q and the vertical axis is the power. The upper and lower
dashed lines represent the powers of 75% and 50%, respectively.
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Figure 2.7: The power comparison results of the PRM, CWM, and PCR methods for
the second scenario of multiple SNP effects based on different sample sizes (150, 200,
250 and 300) and different minor allele frequencies (0.3, 0.4 and 0.5). The horizontal
axis of each plot is the number of phenotypes q and the vertical axis is the power. The
upper and lower dashed lines represent the powers of 75% and 50%, respectively.
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Table 2.1: Selected SNPs with the corresponding genes and result for testing a single
SNP effect while adjusting for demographic information and other SNPs

Gene Abbreviation SNP P-value

Catechol-O-methyltransferase COMT rs4680 0.88

Disrupted-in-schizophrenia-1 DISC1 rs821616 0.75

rs6675281 0.016

Neuregulin 1 NRG1 rs35753505 0.0136

rs6994992 0.51

Estrogen Receptor Alpha ESR1 rs9340799 0.44

rs2234693 0.57

Brain-derived Neurotrophic Factor BDNF rs6265 0.60

Glutamate Decarboxylase 1 GAD1 (GAD67) rs2270335 0.39
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Chapter 3

Functional Mixed Effects Model - FMEM

3.1 Methods

Suppose that we observe imaging measures, clinical variables, and genetic markers from

n unrelated subjects. Let V be the whole brain and v be a voxel in V . For each individual

i (i = 1, . . . , n), a NV ×1 vector consisting of imaging measures is observed and denoted

by Yi = {yi(v) : v ∈ V}. For notational simplicity, we only consider univariate image

measure and thus, NV equals the number of voxels in V . Moreover, a K × 1 vector

of clinical covariates xi = (xi1, · · · , xiK)T and an G × 1 vector gi = (gi1, · · · , giG)T for

genetic data are also collected for each individual. For instance, imaging measures can

be the shape representation of the surfaces of cortical or subcortical structures [Chung

et al., 2008; Zhu et al., 2007], and genetic makers can be various polymorphism types,

such as single nucleotide polymorphisms (SNPs), block substitutions, and copy number

variants [Liu et al., 2007; Tzeng and Zhang, 2007; Wang and Chen, 2012].

Our FMEM consists of a mixed effects model (MEM) at each voxel and a jumping

surface model (JSM) for varying coefficient functions across the brain. First, at each

voxel v in V , MEM is given by

yi(v) = xTi β(v) + h(gi; v) + ei(v) = xTi β(v) + zTi γ(v) + ei(v) for i = 1, · · · , n, (3.1)

where β(v) = (β1(v), · · · , βK(v))T is a K × 1 vector, the h(· ; v)s are unknown functions

corresponding to the genetic effects, γ(v) = (γ1(v), · · · , γL(v))T is an L × 1 vector for



genetic random effects, zi is a pre-specified L× 1 vector of functions of gi, and ei(v) is

the measurement error. We assume that ei(v) ∼ N(0, σe(v)2), γ(v) ∼ N(0, σ2
γ(v)Γ), and

{ei(v) : v ∈ V} are independent across i and independent of γ(v) for all v ∈ V , where Γ

is an L× L identity matrix. Without loss of generality, we assume Γ = IL.

Model (3.1) can be regarded as an alternative representation of variance component

models used in the literature [Liu et al., 2007; Tzeng and Zhang, 2007; Kang et al.,

2010; Wang and Chen, 2012]. For instance, for the kernel machine framework [Liu

et al., 2007], we can directly represent h(gi; v) as the random weighted sum of a set

of L orthonormal basis functions by using the Karhunen Loeve expansion. For a given

voxel v, the covariance between two individuals i and j are σ2
γ(v)zTi zj. Moreover, for

two different voxels v and v′ in V , we assume Cov(γ(v), γ(v′)) = σγ(v)σγ(v
′)ργ(v, v

′)IL

and Cov(ei(v), ei(v
′)) = σe(v)σe(v

′)ρe(v, v
′), where ργ(v, v

′) and ρe(v, v
′), respectively,

characterize the spatial correlation between the genetic random effects and that between

the measurement errors. Therefore, for any two voxels v and v′, the covariance structure

of yi(v) is given by

Σy,i(v, v
′) = Cov(yi(v), yi(v

′)) = σγ(v)σγ(v
′)ργ(v, v

′)zTi zi + σe(v)σe(v
′)ρe(v, v

′). (3.2)

We propose JSM for the genetic varying coefficient function {σ2
γ(v) : v ∈ V} and

the fixed effect varying coefficient functions {βj(v) : v ∈ V} for j = 1, . . . , K. It is

common that imaging data {yi(v) : v ∈ V} can be regarded as a noisy version of a

piecewise-smooth function of v ∈ V with the possible existence of jumps or edges. In

many neuroimaging datasets, those jumps or edges often reflect the functional and/or

structural changes, such as white matter (WM) and grey matter (GM), across the brain.

Therefore, the varying coefficient functions in model (3.1) may inherit the piecewise-

smooth features from imaging data. Furthermore, it is more reasonable to assume

that different varying coefficient functions have different jumps or edges, since different
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covariates may play different roles in characterizing the piecewise-smooth pattern of the

imaging data.

3.1.1 Two-stage Estimation Procedure

We propose a two-stage estimation procedure to estimate all varying coefficient functions

and test their effects on imaging phenotypes. The key ideas of each stage are given as

follows:

Stage (I). Spatially and adaptively estimate {σ2
γ(v) : v ∈ V} and test the null

hypothesis σ2
γ(v) = 0 across all voxels.

Stage (II). Directly apply the multiscale adaptive regression models (MARM) in

[Li et al., 2011] to spatially and adaptively estimate β = {β(v) : v ∈ V} and then

test associated hypotheses.

Since our primary interest lies in the genetic effect, we focus on Stage (I) and omit Stage

(II) for the sake of space.

Stage I

The first stage consists of three major steps as follows:

Step (I.1). Calculate the restricted maximum likelihood (REML) estimator of

η(v) = (σ2
γ(v), σ2

e(v)) across all voxels v ∈ V .

Step (I.2). Spatially and adaptively re-estimate {σ2
γ(v) : v ∈ V } by incorporating

information from neighboring voxels.

Step (I.3). Construct weighted likelihood ratio statistics and derive their approx-

imate distributions to test the null hypothesis of H0(v) : σ2
γ(v) = 0 across all

voxels.
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In Step (I.1), we calculate the REML estimator of η(v) across voxels. Let Z =

(z1, · · · , zn) be an L × n matrix, Y(v) = (y1(v), · · · , yn(v))T be an n × 1 vector, and

X = (x1, · · · ,xn) be a p × n matrix. There exists an (n − p) × n matrix Kx such that

KxX
T = 0 and rank(Kx) = n− p. A MEM for Y∗(v) = KxY(v) is given by

Y∗(v) = KxZ
Tγ(v) +KxE(v), (3.3)

where E(v) = (e1(v), · · · , en(v))T . Based on the distributional assumptions in (3.1), we

have Y∗(v) ∼ N(0,ΣY ∗(v)), where ΣY ∗(v) = σ2
γ(v)KxZ

TZKT
x + σ2

e(v)KxK
T
x . Thus, at

each voxel v, the REML estimate of η̂(v), denoted by η̂(v), is to maximize the REML

function given by

`REML(Y∗(v)|Z, η(v)) = −0.5 log |ΣY ∗(v)| − 0.5Y∗(v)TΣY ∗(v)−1Y∗(v). (3.4)

Since our primary interest lies on σ2
γ(v), we fix σ2

e(v) as σ̂2
e(v) from here on.

In Step (I.2), we construct a weighted REML function to estimate σ2
γ(v) by incorpo-

rating the spatial information in a neighborhood B(v, h) for each voxel v with a specific

radius h as follows:

LREML(σ2
γ(v)|Y∗, B(v, h)) =

∑
v′∈B(v,h)

ωγ(v, v
′;h)`REML(Y∗(v′)|Z, σ2

γ(v), σ̂2
e(v
′)), (3.5)

where ωγ(v, v
′;h) is a weight function of voxels v, v′, and the radius h. Then, we max-

imize LREML(σ2
γ(v)|Y∗, B(v, h)) to calculate the weighted REML estimator of σ2

γ(v),

denoted by σ̂2
γ(v, h). The weight function ωγ(v, v

′;h) measures the data similarity be-

tween the two voxels v and v′ such that
∑

v′∈B(v,h) ωγ(v, v
′;h) = 1 and ωγ(v, v

′;h) ≥ 0.

A large value of ωγ(v, v
′;h) means that the information contained in the voxels v and v′

is very similar, whereas ωγ(v, v
′;h) ≈ 0 indicates that the data in voxel v′ do not have

too much information for σγ(v). The adaptive weight ωγ(v, v
′;h) plays a critical role in
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preventing over-smoothing estimation of σ2
γ(v) and preserving the edges of significant

regions of {σ2
γ(v) : v ∈ V}.

In Step (I.3), to assess the synthetic genetic effect on imaging phenotype across all

voxels, we formulate it as testing the following null and alternative hypotheses:

H0,γ(v) : σ2
γ(v) = 0 v.s. H1,γ(v) : σ2

γ(v) > 0. (3.6)

We test (3.6) by using the weighted REML ratio statistic defined by

RLRTσ2
γ
(v) = 2{LREML(σ̂2

γ(v) | Y∗, B(v, h))− LREML(0 | Y∗, B(v, h))}. (3.7)

Since all the subjects share the same random effect γ(v), the standard asymptotic re-

sults in Stram and Lee [1994] are invalid and can perform very poorly even for the

unweighted REML ratio statistics for testing random effects in model (3.1) [Crainiceanu

and Ruppert, 2004]. However, we provide an exact null distribution for RLRTσ2
γ
(v)

below.

Step (I.2): Adaptive Estimation of σ2
γ(v)

Following the adaptive estimation (AET) procedure proposed in [Polzehl and Spokoiny,

2000; Li et al., 2011], we adaptively determine {ωγ(v, v′;h) : v, v′ ∈ V} and then cal-

culate σ̂γ(v;h) as h increases from h0 = 0 to a predetermined value hS = r0. A path
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diagram of AET is given as follows:

h0 = 0 < h1 < · · · < hS = r0

B(v, h0) = {v} ⊂ B(v, h1) ⊂ · · · ⊂ B(v, hS)

⇓ ⇓ ↗ · · · ↗ ⇓

{σ̂2
γ(v) : v ∈ V} ⇒ ωγ(v, v

′;h1) · · · ωγ(v, v
′;hS = r0)

⇓ ↗ · · · ↗ ⇓

{σ̂2
γ(v;h1) : v ∈ V} · · · {σ̂2

γ(v;hS) : v ∈ V}.

The key idea of AET is to build a sequence of nested spheres B(v, hs) for h0 = 0 < h1 <

· · · < hS = r0 at each voxel v ∈ V and then sequentially determine σ̂γ(v, v
′;hs) for all

v′ ∈ B(v, hs) based on {σ̂2
γ(v
′, hs−1) : v′ ∈ B(v, hs)} for all v ∈ V and s = 1, . . . , S. Since

the tuning parameters of AET have been described in details in [Polzehl and Spokoiny,

2000; Li et al., 2011], we do not include them here for the sake of brevity.

The three key steps of AET, including weights adaptation, estimation, and termina-

tion checking, are presented as follows.

• In the weights adaption step (i), we select a series {hs = csh : s = 1, · · · , S} of radii

with ch ∈ (1, 2), say ch = 1.125. We then set s = 1 and h1 = ch. The adaptive

weights are given by

ωγ(v, v
′;hs) = Kloc(||v − v′||2/hs)Kst(Dγ(v, v

′;hs−1)/Cn), (3.8)

where Kloc(u) = (1 − u)+ and Kst(u) = min(1, 2(1 − u2))+ according to previous

experience in the literature [Li et al., 2011], and || · ||2 denotes the Euclidean

norm of a vector (or a matrix). Moreover, Dγ(v, v
′;hs−1) is set as {σ̂2

γ(v;hs−1) −

σ̂2
γ(v
′;hs−1)}2/ ̂var[σ2

γ(v)], where ̂var[σ2
γ(v)] is estimated by using the inverse of the

Fisher information matrix of (σ2
γ(v), σ2

e(v)) from the likelihood function (3.4) with

h = h0. Then these quantities are fixed for subsequent updates of h. Following
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Li et al. [2011], we choose Cn = n1/3χ2(1)0.5 for Dγ(v, v
′;hs−1) defined in (4.13),

where χ2(1)0.5 is the 0.5-percentile of the χ2(1) distribution. The adaptive weight

Kst(Dγ(v, v
′;hs−1)/Cn) downweights the role of a voxel v′ ∈ B(v, hs) in

LREML(σ2
γ(v)|Y∗, B(v, hs)) (3.9)

if Dγ(v, v
′;hs−1) is large. The weight Kloc(||v − v′||2/hs) gives less weight to the

voxel v′ ∈ B(v, hs), whose location is far from the voxel v.

• In the estimation step (ii), for each v ∈ V and for the radius hs, we calculate

σ̂γ(v;hs) by maximizing LREML(σ2
γ(v)|Y∗, B(v, h)) defined in equation (3.5) given

ωγ(v, v
′;hs).

• In the termination checking step (iii), after the S0−th iteration, we calculate a

stopping criterion based on a distance between σ̂2
γ(v;hS0) and σ̂2

γ(v;hs) given by

D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) = {σ̂2

γ(v;hS0)− σ̂2
γ(v;hs)}2 ̂var[σ2

γ(v)]
−1

(3.10)

for s > S0. Then, we compare D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) with a benchmark, denoted

by C̃(s), for s > S0. If D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) > C̃(s), then we set σ̂2

γ(v) =

σ̂2
γ(v, hs−1) = and the estimation for this voxel v is terminated. If s = S and

D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) ≤ C̃(s), σ̂2

γ(v) is set as σ̂2
γ(v, hS) and the estimation process

terminates. The algorithm stops when the estimation is finished for all v in V . If

s ≤ S0 or D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) ≤ C̃(s) for s < S0 ≤ S − 1, then we go back

to the weights adaptation step (i) with an increased radius h = hs+1 = cs+1
h .

Throughout the paper, we set S0 = 2, C̃(s) = χ2(p)0.7/(s−1), and S = 10.

Note that C̃(s) is a decreasing function in s which makes the stopping criteria more and

more stringent when the radius increases in order to prevent from over-smoothing.
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Step (I.3): Testing H0,γ(v) : σ2
γ(v) = 0

We perform the hypothesis testing in (3.6) by using the testing statistics RLRTσ2
γ
(v)

and the corresponding p-values. Let Ω = KxZ
TZKT

x = UD0U
T be the spectral decom-

position of Ω such that D0 = diag(d1, · · · , dn−p) is the diagonal matrix of eigenvalues dk

and U is an (n− p)× (n− p) orthonormal matrix. Without loss of generality, we choose

Kx such that KxK
T
x = In−p. We obtain the following theorem, whose proof is included

in the appendix.

Theorem 1. Under model (3.1), RLRTn(v) can be written as

RLRTn(v)= sup
λ(v)≥0

{
∑

v′∈B(v,h)

ω(v, v′;h)D(v′;λ(v)/σ2
e(v
′))}, (3.11)

where λ(v) = σ2
γ(v) and D(v′; t) is given by

σ−2
e (v′)Y∗T (v′)Udiag

(
td1

1 + td1

, · · · , tdn−p
1 + tdn−p

)
UTY∗(v′)−

n−p∑
l=1

log(1 + tdl). (3.12)

Moreover, under the null hypothesis H0,γ(v), we have

D(v′; t)
D
=

n−p∑
l=1

δ2
l (v
′)tdl

1 + tdl
−

n−p∑
l=1

log(1 + tdl), (3.13)

where
D
= means equality in distribution and the δl(v) are i.i.d N(0, 1) random variables.

Although Theorem 1 provides an efficient way of approximating the null distribution

of RLRTn(v), a complex issue arises from the complex spatial correlations among the

δ2
l (v
′) across voxels v′ ∈ B(v, h). One approach for dealing with such an issue is to

estimate the spatial correlation for any pair of voxels, which can be computationally

intensive. To avoid calculating spatial correlations, we develop a wild bootstrap method

to efficiently simulate the null finite sample distribution of RLRTn(v). The detailed

37



steps of this bootstrap method are presented in Appendix. After the p-values for all

voxels v ∈ V are computed, either a false discovery rate (FDR) method or random field

theory (RFT) is applied to correct for multiple comparisons [Ge and et al, 2012].

3.2 Results

3.2.1 Simulation Studies

We simulated data at all NV = 5, 808 voxels on a 44 × 44 × 3 phantom image. Each

z-slice contains the same effect regions. At each voxel, we simulated the univariate

imaging measure according to model (3.1) with β(v) = (β0(v), β1(v), β2(v), β3(v))T and

xi = (1, xi1, xi2, xi3)T . Moreover, the covariates xi1, xi2, and xi3 were generated from a

Gaussian distribution with mean 40 and standard deviation 10, a Bernoulli distribution

with success probability 0.5, and a Bernoulli distribution with success probability 0.3,

respectively. These three covariates were designed to mimic the common clinical vari-

ables age, gender, and disease status. For a slice of a phantom image, the effect areas

for β0(v) were divided into 16 regions with 4 different values ranging from 0.02 to 0.08,

increasing by 0.02 (Figure 8(a)); for β1(v), the effect regions were divided into 25 regions

ranging from 10−2.5 to 10−12.5, decreasing by a rate of 10−2.5 (Figure 8(b)); for β2(v), the

whole space was separated into 3 regions with values 0, 0.05, and 0.1 (Figure 8(c)); the

effect area of β3(v) on a slice of phantom image was divided into 9 regions with values

ranging from 0 to 0.1, increasing by differences of 0.025 (Figure 8(d)).

The genetic information was simulated according to the SNP data obtained from

the public accessible data of the Alzheimer’s Disease Neuroimage Initiative (ADNI).

It is an ongoing longitudinal study with primary purpose of exploring the genetic and

neuroimaing information associated with late-onset Alzheimer’s disease (LOAD). The

study recruited elderly subjects older than 65 years of age consisting about 400 subjects

with mild cognitive impairment (MCI), about 200 subjects with Alzheimer (AD), and

around 200 healthy controls. Each subject was followed for at least 3 years. During
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the study period, the subjects were assessed with magnetic resonance imaging (MRI)

measures and psychiatric evaluation to determine the diagnosis status at each time

point. The genetic information was also collected from each subject at baseline and it

is genotyped by the Illumina 610 Quad array with more than 620,000 single nucleotide

polymorphysm (SNPs). More information of ADNI is provided in the real data analysis

result Section 3.2. We simulated the genetic information based on the two following

scenarios.

• Scenario I. To preserve the linkage disequilibrium among SNPs, we utilize all of

the SNPs on chromosome 1 from 197 Caucasian controls to generate the genetic

effect. After eliminating the SNPs with minor allele frequency (MAF) less than

5%, there were 31554 out of 45627 SNPs left. Then we randomly chose 20 SNPs

and 100 subjects among the 197 healthy controls as the simulated genetic data zi

in (3.1). In this case, n = 100. If any of these 20 SNPs have MAF less than 5%,

the genetic data was resampled until all of the 20 SNPs have MAF ≥ 5%.

• Scenario II. To evaluate the performance of FMEM in the case of high LD, we

selected the SNPs from the same gene in the second scenario. Searching the SNPs

on the gene PICALM, which is found to be relevant to Alzheimer’s disease in many

studies [Harold et al., 2009] using the gene list “glist-hg18” provided by PLINK,

there were 23 SNPs on PICALM with MAF larger than 5%. After eliminating

the missing values, there are 176 healthy controls with complete genotype data at

these 23 SNPs. We randomly selected 7 SNPs from 75 healthy controls to be zi

in (3.1). Although there is strong LD among these 7 SNPs, no SNP has perfect

correlation (1 or -1) with any other SNP in these 75 subjects. In this case, n equals

75.

In both scenarios, the SNP effects were assumed to be additive. The γ(v) was

generated from a multivariate Gaussian distribution with mean zero and covariance
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matrix σ2
γ(v)IL. Different σ2

γ(v) values, which represent different signal-to-noise ratios,

were chosen to examine the performance of our method at different signal-to-noise ratios

and also to test whether FMEM can perform well for different shapes. See Figure 9 (b)

and Figure 9 (e) for Scenarios I and II. Moreover, we overlay some of the effect areas

of β3(v) and σ2
γ(v) in order to account for the fact that the brain phenotype is an

intermediate expression of disease progression. The {σ2
γ(v) : v ∈ V} of the effect regions

in Scenario I were ranging from 0.005 to 0.025, increasing by 0.0025, whereas the {σ2
γ(v) :

v ∈ V} of effect regions in Scenario II were ranging from 0.005 to 0.045, increasing by

0.005. The random error ei(v) was independently distributed as a univariate Gaussian

distribution with mean 0 and standard deviation 3 for all voxels. We set the number of

bootstrap samples M and the number of repetitions to be 200.

Tables 2 and 3 summarize the estimation results of σ2
γ(v) obtained from FMEM and

traditional voxel-wise method for both scenarios. It includes the average absolute value

of the bias, the root mean square (RMS), standard deviation (SD), and the ratio of RMS

over SD. The difference between estimation of RMS and SD is that RMS is estimated

using the empirical mean and SD is calculated using theoretical mean. As shown in both

tables, FMEM outperforms voxel-wise method with respect to smaller estimation bias

which leads to more accurate hypothesis testing conclusion. Note that compared with

voxel-wise method, the RMSs and SDs are also smaller for FMEM. This indicates much

more stable estimation.

We tested the hypotheses H0 : σ2
γ(v) = 0 and H1 : σ2

γ(v) 6= 0 for all voxels in V based

on both FEFM and voxel-wise method and evaluated their performance in cluster-based

thresholding [M. Silver and ADNI, 2011]. Specifically, we first thresholded the p-values

for all voxels in V by using an initial p-value 0.01 suggested by M. Silver and ADNI [2011]

to identify clusters of contiguous supra-threshold voxels. Then, the thresholded clusters

were matched with the 9 separated activated areas in Figure 9 (b) or 9 (e). If a specific

thresholded cluster overlaps with at least one voxel in any of the 9 effect regions, we call
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such cluster as a ”true positive”. In contrast, if a specific thresholded cluster does not

overlap with any voxels of the 9 effect regions, we call the cluster a “false positive”. We

summarized the hypothesis testing results by the average dice overlap ratio (DOR), the

average number of false positive clusters, and the average size in the number of voxels

of false positive clusters. DOR is the ratio between the number of true positive clusters

over the true number of effect areas, which is 9 in this simulation setting. Thus, the

higher DOR means the higher the probability of detecting true effect regions. As shown

in Tables 4 and 5, if we set the cluster size threshold at 1 voxel, FMEM has smaller DOR

and smaller number of false positive clusters compared with voxel-wise method. When

the cluster size threshold increases to 10 voxels, FMEM has a similar DOR value as that

of the no threshold case, whereas the DOR of the voxel-wise approach reduces by about

20%. Table 6 summarizes the number of significant voxels identified by the two methods

in each effect region of Scenarios I and II In Table 6, FMEM identifies less voxels in

the non-effect regions, while detecting more voxels in effect regions in both scenarios.

Finally, we conclude that FMEM outperforms voxel-wise method in both detecting true

effect regions and controlling the false positive error rate.

3.2.2 ADNI Data Analysis

The aim of this ADNI data analysis is to use FMEM to identify brain regions affected

by candidate genes, thereby hoping to shed light on the pathological interactions be-

tween these causal genes and brain function. The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharma-

ceutical companies and non-profit organizations, as a $60 million, 5- year public-private

partnership. The primary goal of ADNI has been to test whether serial magnetic reso-

nance imaging (MRI), positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the pro-
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gression of mild cognitive impairment (MCI) and early AlzheimerâĂŹs disease (AD).

Determination of sensitive and specific markers of very early AD progression is intended

to aid researchers and clinicians to develop new treatments and monitor their effective-

ness, as well as lessen the time and cost of clinical trials. The Principal Investigator of

this initiative is Michael W. Weiner, MD, VA Medical Center and University of Cali-

fornia âĂŞ San Francisco. ADNI is the result of efforts of many co-investigators from a

broad range of academic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date

these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in

the research, consisting of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each group is specified in the

protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1

and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information,

see www.adni− info.org.

The data we employed to evaluate the performance of FMEM was from the first

phase (ADNI), which was conducted mainly to search for the causal SNPs associated

with the progression of Alzheimer’s disease and to establish an alternative diagnosis

standard using MRI brain images. About 800 subjects with age older than 65 were

recruited and followed at least 3 years. The 800 subjects included 200 healthy controls,

400 subjects with different levels of mild cognitive impairment (MCI), and 200 subjects

with Alzheimer’s disease (AD). Besides the SNPs and the T1 weighted MRI imaging

measurements, the subjects were assessed with demographic information and psychiatric

examination scores to determine the diagnosis status at each scheduled visit.

The T1-weighted MRI images were preprocessed by standard image processing steps

including AC (anterior commissure) and -PC (posterior commissure) correction, bias

field correction, skull-stripping, intensity inhomogeneity correction, cerebellum removal,
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segmentation, and nonlinear registration. After segmentation, the brain was segmented

into four different tissues: grey matter (GM), white matter (WM), ventricle (VN),

and cerebrospinal fluid (CSF). We quantified the local volumetric group differences by

generating RAVENS maps [Davatzikos et al., 2001] for the whole brain and each of the

segmented tissue type (GM, WM, VN, and CSF) respectively, using the deformation

field we obtained during registration. RAVENS methodology is based on a volume-

preserving spatial transformation, which ensures that no volumetric information is lost

during the process of spatial normalization, since this process changes an individual′s

brain morphology to conform it to the morphology of the Jacob template.

We are interested in detecting meaningful brain regions of interest that are associ-

ated with several candidate genes. We included only the subjects whose diagnosis status

were healthy control and Alzheimer’s disease at the baseline and had no status change

during the study period. After screening, the total number of subjects we included was

372 (195 HCs and 177 ADs). The clinical covariates of interest included in our anal-

ysis were gender, baseline age, square of baseline age, handedness, education, baseline

intracranial volume, and the risk of APOE. Specifically, the handedness was treated as

a binary variable, the education information was the self-reported years of education by

the subjects, and the risk of APOE is assumed to be additive. In detail, the risk of

APOE for a subject was 3 if he/she carries ε4 at both alleles; it was 2 if he/she carries

ε3 and ε4 in two alleles, the risk would be considered 0 if the two APOE alleles were

the combination of ε2 and ε3, and other combination of APOE alleles are assumed to

have risk 1.

Many genes have been reported to be causal in the progression of Alzheimer’s disease.

We selected three candidate causal genes including CR1 on chromosome 1, CD2AP on

chromosome 6, and PICALM on chromosome 11 due to their strong association with the

progression of Alzheimer’s disease [Harold et al., 2009; Naj et al., 2011; Lambert et al.,

2009]. Specifically, PICALM encodes the protein phosphatidylinositol-binding clathrin
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assembly and is highly correlated with the emergence of late-on-set AD, which is possibly

due to the perturbation at synapse triggering its function change [Harold et al., 2009].

The gene CD2AP encodes the CD2-asscociated protein and involves in the process of

cell membrane, including endocytosis, that plays critical roles in neurodegeneration and

Aβ clearance from the brain [Naj et al., 2011]. The gene CR1 encodes complement

component (3b/4b) receptor 1 and the pathways involving CR1 are involved in the AD

process, specifically in clearance of Aβ peptides which is the primary composition of

amyloid plaques [Lambert et al., 2009].

We first matched the SNPs in ADNI with the gene list “glist-hg18” provided by

PLINK [Purcell and et al, 2007] and were able to locate 16, 15, and 23 SNPs on the se-

lected CR1, CD2AP, and PICALM genes, respectively. All these SNPs pass the quality

control procedure with MAF > 5% and the Hardy Weinberg Equilibrium (HWE) test

p-value> 0.01. The MAFs of SNPs of the selected genes vary from 0.1 to 0.5 and are

presented in the supplementary document. After deleting missing values, there are 335,

299 and 328 subjects corresponding to the CR1, CD2AP, and PICALM genes, respec-

tively, and their associated demographic information is presented in the supplementary

document.

For each selected gene, we fitted FMEM (3.1) with z coded as the numbers of minor

alleles to detect its associated significant brain regions of interest (ROIs). For compar-

ison, we fitted the same model by using the classical voxel-wise method to analyze the

same data sets. To formally detect significant ROIs, by following Ge and et al [2012],

we used a cluster-form of threshold of 0.1% with a minimum voxel clustering value of 50

voxels. FMEM is able to to detect 45, 45, and 27 significant clusters for CR1, CD2AP,

and PICALM, respectively, whereas the standard voxel-wise method can only identify

6, 14, and 2 significant clusters for CR1, CD2AP, and PICALM, respectively. Then,

we overlapped these significant clusters with the 96 predefined ROIs in the Jacob tem-

plate and were able to detect several predefined ROIs for each cluster. As shown in the
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supplementary document, we were able to detect several major ROIs, such as the hip-

pocampus, the putamen, and the fusiform. The hippocampus is known to be associated

with memory and cognition. The fusiform is associated with color recognition, word and

body recognition and the putamen is associated with motor skills. Figure 11 shows the

− log10(p) map of several selected slices with significant clusters for testing the genetic

effect of CD2AP on RAVEN images identified by FMEM.

3.2.3 Tables and Figures

(a)	   (b)	   (c)	   (d)	  

0.1	  

0	  

0.4	  

0	  

0.1	  

0	  

0.3	  

0	  

Figure 3.1: Simulation setting: (a) True image of β0; (b) true image of β1, in which the
colors represent the values of β1(v)× 104; (c) true image of β2; and (d) true image of β3.
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Figure 3.2: Simulation results for estimation accuracy: Scenario I : (a) estimated σ2
γ(v)

by using voxel-wise approach; (b) true σ2
γ(v) image; and (c) estimated σ2

γ(v) by using
FMEM. Scenario II : (d) estimated σ2

γ(v) by using voxel-wise approach; (e) true σ2
γ(v)

image; (f) estimated σ2
γ(v) by using FMEM. Signal to noise ratio (SNR) images for (g)

Scenario I and (h) Scenario II

.
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(a)	   (b)	   (c)	   (d)	  

1	  

0	  

Figure 3.3: Simulation results for testing the genetic effect: Scenario I: the rejection rate
image at a selected slice by using (a) voxel-wise approach and (b) FMEM ; Scenario II:
the rejection rate image by using (c) voxel-wise approach and (d) FMEM.

Figure 3.4: ADNI data analysis: the − log10(p) map of testing the genetic effect of
CD2AP on RAVEN images by using FMEM from 12 selected slices.
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Table 3.1: The estimation results of σ2
γ(v) in Scenario I using FMEM and voxel-wise

method in terms of average absolute value of bias (BIAS), root mean squares (RMS),
standard deviation (SD), and the ratio between RMS and SD (RE).

FEFM Voxel-based

σ2
γ(v) |BIAS| RMS SD RE |BIAS| RMS SD RE

0 0.001 0.002 0.002 1 0.007 0.005 0.005 1

0.005 2.36e-06 0.003 0.003 1 0.005 0.005 0.005 1

0.0075 0.0005 0.003 0.003 1 0.005 0.006 0.006 1

0.01 0.001 0.004 0.004 1 0.006 0.008 0.008 1

0.0125 0.001 0.004 0.004 1 0.006 0.008 0.008 1

0.015 0.002 0.005 0.005 1 0.008 0.010 0.010 1

0.0175 0.003 0.005 0.005 1 0.008 0.010 0.010 1

0.020 0.002 0.006 0.006 1 0.010 0.012 0.012 1

0.0225 0.003 0.006 0.006 1 0.010 0.013 0.013 1

0.025 0.004 0.006 0.006 1 0.010 0.014 0.014 1
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Table 3.2: The estimation results of σ2
γ(v) in Scenario II by using FMEM and voxel-wise

method in terms of average absolute value of bias (BIAS), root mean squares (RMS),
standard deviation (SD), and the ratio between RMS and SD (RE).

FEFM Voxel-based

σ2
γ(v) |BIAS| RMS SD RE |BIAS| RMS SD RE

0 0.002 0.003 0.003 1 0.003 0.008 0.008 1

0.005 0.0001 0.004 0.004 1 0.007 0.126 0.126 1

0.010 0.001 0.006 0.006 1 0.011 0.016 0.016 1

0.015 0.002 0.008 0.008 1 0.014 0.020 0.02 1

0.020 0.002 0.010 0.010 1 0.024 0.017 0.017 1

0.025 0.003 0.020 0.020 1 0.020 0.029 0.029 1

0.030 0.005 0.013 0.013 1 0.023 0.032 0.032 1

0.035 0.004 0.014 0.014 1 0.026 0.035 0.035 1

0.040 0.015 0.006 0.006 1 0.028 0.040 0.040 1

0.045 0.007 0.016 0.016 1 0.031 0.040 0.040 1

Table 3.3: The dice overlap ratio (DOR), average number of false positive cluster, and
average size of false positive cluster for Scenario I with different cluster size thresholds.

FEFM Voxel-based

Threshold Mean SD Mean SD

Voxel Size = 1

DOR 0.94 0.05 0.99 0.02

False Positive Cluster Number 1.88 6.12 21.30 12.29

False Positive Cluster Size 1.03 0.04 1.06 0.06

Voxel Size = 10

DOR 0.91 0.04 0.83 0.10

False Positive Cluster Number 0 0 0 0

False Positive Cluster Size NA NA NA NA
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Table 3.4: The dice overlap ratio (DOR), average number of false positive cluster, and
average size of false positive cluster for Scenario II with different cluster size thresholds.

FEFM Voxel-based

Threshold Mean SD Mean SD

Voxel Size = 1

DOR 0.86 0.06 0.996 0.02

False Positive Cluster Number 1.35 4.85 15.45 12.92

False Positive Cluster Size 1.07 0.08 1.05 0.07

Voxel Size = 10

DOR 0.85 0.07 0.78 0.11

False Positive Cluster Number 0 0 0 0

False Positive Cluster Size NA NA NA NA
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Table 3.5: The global power calculation of number of significant voxels detected by
voxel-wise approach and FMEM in both scenarios.
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Chapter 4

Score Test for Functional Mixed Effects Model

4.1 Method

4.1.1 Weighted Score Test Statistic

Suppose we observe imaging measures, clinical variables, and genetic markers from n

unrelated subjects. Let V be a selected brain region and v be a voxel in V . For each

individual i (i = 1, 2...., n), we observe an NV × 1 vector of imaging measures, denoted

by Yi = {yi(v) : v ∈ V}, a K × 1 vector of clinical covariates xi = (xi1, · · · , xiK)T ,

and an L × 1 vector zi = (zi1, · · · , ziL)T for genetic data. For notational simplicity,

only univariate image measure is considered here, and thus NV equals to the number of

points in V .

At each voxel v in V , yi(v) can be modeled as a linear mixed effects model given by

yi(v) = xTi β(v) + zTi γ(v) + ei(v) for i = 1, · · · , n, (4.1)

where β(v) = (β1(v), · · · , βK(v))T is a K × 1 vector, γ(v) = (γ1(v), · · · , γL(v))T is an

L× 1 vector of genetic random effects, and ei(v) is the measurement error. We assume

that ei(v) ∼ N(0, σe(v)2), γ(v) ∼ N(0, σ2
γ(v)IL), and {ei(v) : v ∈ V} are independent

across i and independent of γ(v) for all v ∈ V , where IL is an L×L identity matrix. Let

ΣY (v) = σ2
γ(v)ZTZ + σ2

e(v)In be the marginal variance of Y(v) = (y1(v), · · · , yn(v))T ,

where Z = (z1, · · · , zn) is an L × n matrix. Moreover, we define the projection matrix



of model (4.1) to be

PX(v) = ΣY (v)−1 − ΣY (v)−1X(XTΣY (v)−1X)−1XTΣY (v)−1,

where X = (x1, · · · ,xn) is a p × n matrix. When σγ(v) = 0, σ2
e(v)PX(v) reduces to

LX = In −X(XTX)−1XT . The REML log-likelihood function of η(v) = (σ2
γ(v), σ2

e(v)),

denoted by `REML(Y∗(v)|Z, η(v)), is given by

`REML(η(v); Y(v)) = −0.5 log |ΣY (v)| − 0.5 log |XTΣY (v)−1X| − 0.5Y(v)TPX(v)Y(v).

(4.2)

To investigate the genetic effect on imaging phenotype, we test

H0,γ : σ2
γ(v) = 0 v.s. H1,γ : σ2

γ(v) > 0. (4.3)

The regular score test for (4.3) is given by

Uσ2
γ
(v|σ̂2

e(v)) =
∂`REML(σ2

γ(v)|Y)

∂σ2
γ(v)

∣∣∣∣
σ2
γ(v)=0

, (4.4)

where σ̂2
e(v) is the estimate of σ2

e(v) under the null hypothesis. Let ΩX = LXZTZLTX ,

then we have

Uσ2
γ
(v|σ̂2

e) = 0.5{σ̂−4
e (v)Y(v)TΩXY(v)− tr(ΩX)σ̂−2

e (v)}. (4.5)

Since the major variation of Uσ2
γ

comes from the first term on the right hand side of

(4.5), by following Tzeng and Zhang [2007], we obtain a regular score test as

SCσ2
γ
(v|σ̂2

e) = 0.5{σ̂−4
e (v)Y(v)TΩXY(v)}. (4.6)

To motivate our new test statistic, we give a scratch of our idea. Let aj be a constant
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and Aj be a random variable for j = 1, . . . , J such that aj ≥ 0 and
∑J

j=1 aj = 1, where

J is a positive integer. It is also assumed that under both H0,γ and H1,γ, Ajs have the

same first and second order moments. Therefore, for any j, the variance of Aj is not

smaller than the variance of the weighted sum
∑J

j=1 ajAj, since we have

V ar(
J∑
j=1

ajAj) =
J∑
j=1

a2
jV ar(Aj) +

j=J,k=J∑
j 6=k

ajakCov(Aj, Ak)

≤
J∑
j=1

a2
jV ar(Aj) +

j=J,k=J∑
j 6=k

ajakV ar(Aj) = V ar(Aj). (4.7)

Under certain regularity conditions, it follows from the central limit theorem that

Aj − E0(Aj)√
V ar(Aj)

+
E0(Aj)− E(Aj)√

V ar(Aj)

d→ N(0, 1), (4.8)∑J
j=1 ajAj − E0(

∑J
j=1 ajAj)√

V ar(
∑J

j=1 ajAj)
+
E0(
∑J

j=1 ajAj)− E(
∑J

j=1 ajAj)√
V ar(

∑J
j=1 ajAj)

=

∑J
j=1 ajAj − E0(Aj)√
V ar(

∑J
j=1 ajAj)

+
E0(Aj)− E(Aj)√
V ar(

∑J
j=1 ajAj)

d→ N(0, 1), (4.9)

where
d→ denotes convergence in distribution and E0(·) denotes the expectation taken

with respect to the null hypothesis H0,γ. Thus, it follows from (4.7) that

|E0(Aj)− E(Aj)|√
Var(Aj)

≤ |E0(Aj)− E(Aj)|√
Var(

∑J
j=1 ajAj)

for any j, (4.10)

which yields that the weighted test statistic
∑J

j=1 ajAj is statistically more powerful

than Aj.

Given the functional feature of imaging data, imaging data often consists of several

homogeneous regions and imaging data within each homogeneous region have similar

distributional properties, such as first and second moments. Based on this observation,

we propose a weighted score test statistic with smaller variance as a modification for
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(4.6) as follows:

WSCσ2
γ
(v | σ̂2

e , h) = 0.5
∑

v′∈B(v,hv)

ω(v, v′;hv){σ̂−4
e (v′)Y(v′)TΩXY(v′)}, (4.11)

where ω(v, v′;hv) is an nonnegative weight function of v, v′, and hv for characterizing

the similarity between voxels v and v′, B(v, hv) is a ball with center at voxel v and radius

hv, and
∑

v′∈B(v,hv) ω(v, v′;hv) = 1.

4.1.2 Adaptive Estimation for Weight and Neighborhood

Given a voxel v, the adaptive weight ω(v, v′;hv) and radius hv should reflect the similarity

of genetic effect between voxel v and its neighboring voxel v′. Therefore, to properly

determine the weight for each neighboring voxel and the radius hv in (4.11) under the

joint parameter space of null hypothesis and alternative hypothesis {σ2
γ(v) : σγ(v)2 ≥ 0},

we follow the adaptive estimation procedure developed in Chapter 3. The key steps of

FMEM are given as follows:

Step (E.1). Calculate the restricted maximum likelihood (REML) estimator of

η(v) = (σ2
γ(v), σ2

e(v)) across all voxels v ∈ V .

Step (E.2). Spatially and adaptively re-estimate {σ2
γ(v) : v ∈ V } by incorporating

information from neighboring voxels.

Step (E.1): Regular Estimation of σ2
γ(v) and σ2

e(v)

In Step (E.1), we calculate the REML estimator of η(v) across voxels via the REML

function in (4.2). At each voxel v, the REML estimate of η̂(v), denoted by η̂(v), is to

maximize `REML(η(v); Y(v)). Since our primary interest focuses on σ2
γ(v), σ2

e(v) is fixed

as σ̂2
e(v) for all voxels from now on.
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Step (E.2): Adaptive Estimation of σ2
γ(v)

In Step (E.2), a weighted REML function for estimating σ2
γ(v) is constructed as

follows:

LREML(σ2
γ(v)|Y∗, B(v, h)) =

∑
v′∈B(v,h)

ωγ(v, v
′;h)`REML(Y∗(v′)|Z, σ2

γ(v), σ̂2
e(v
′)). (4.12)

Following the adaptive estimation (AET) procedure proposed in [Polzehl and Spokoiny,

2000; Li et al., 2011], we adaptively determine {ωγ(v, v′;h) : v, v′ ∈ V} and then calculate

σ̂γ(v;h) as h increases from h0 = 0 to a predetermined value hS = r0. The key idea of

AET is to build a sequence of nested spheres B(v, hs) for h0 = 0 < h1 < · · · < hS = r0 at

each voxel v ∈ V and then sequentially estimate σ̂γ(v, v
′;hs) for all v′ ∈ B(v, hs) based

on {σ̂2
γ(v
′, hs−1) : v′ ∈ B(v, hs)} for all v ∈ V and s = 1, . . . , S. Since the parameters of

AET have been described in details in [Polzehl and Spokoiny, 2000; Li et al., 2011], we

do not include them here for the sake of simplicity.

The three key steps of AET, including weights adaptation, estimation, and termina-

tion checking are presented as follows.

• In the weights adaption step (i), we prefix a series {hs = csh : s = 1, · · · , S} of

radii with ch ∈ (1, 2), say ch = 1.15. We then set s = 1 and h1 = ch. In the weight

adaptation step, the adaptive weights are given by

ωγ(v, v
′;hs) = Kloc(||v − v′||2/hs)Kst(Dγ(v, v

′;hs−1)/Cn), (4.13)

where || · ||2 denotes the Euclidean norm of a vector (or a matrix), Kloc(u) =

(1 − u)0.5
+ and Kst(u) = exp(−u

2
)1(0 < u < 5), in which 1(·) is an indica-

tor function. The selection of kernel function has been discussed in the litera-
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ture [Tabelow et al., 2006; Li et al., 2011]. Moreover, Dγ(v, v
′;hs−1) is set as

{σ̂2
γ(v;hs−1) − σ̂2

γ(v
′;hs−1)}2/ ̂var[σ2

γ(v)], where ̂var[σ2
γ(v)] is estimated by using

the inverse of Fisher information matrix of (σ2
γ(v), σ2

e(v)) from the likelihood func-

tion (4.2) as h = h0. Then they are fixed for subsequent update of h. Fol-

lowing Li et al. [2011], we choose Cn = n1/3χ2(1)0.5 for Dγ(v, v
′;hs−1) defined

in (4.13), where χ2(1)0.5 is the 0.5-percentile of the χ2(1) distribution. The adap-

tive weight Kst(Dγ(v, v
′;hs−1)/Cn) downweights the role of a voxel v′ ∈ B(v, hs) in

LREML(σ2
γ(v)|Y∗, B(v, hs)) if Dγ(v, v

′;hs−1) is large. The weight Kloc(||v−v′||2/hs)

gives less weight to the voxel v′ ∈ B(v, hs), whose location is far from the voxel v.

• In the estimation step (ii), for each v ∈ V and the radius hs, we calculate the

σ̂γ(v;hs) by maximizing LREML(σ2
γ(v)|Y∗, B(v, hs)) defined in equation (4.12) given

ωγ(v, v
′;hs)s’.

• In the termination checking step (iii), after the S0−th iteration, we start to cal-

culate a stopping criterion based on a distance between σ̂2
γ(v;hS0) and σ̂2

γ(v;hs)

given by

D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) = {σ̂2

γ(v;hS0)− σ̂2
γ(v;hs)}2 ̂var[σ2

γ(v)]
−1

(4.14)

for s > S0. Then, we compare D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) with a benchmark, denoted

by C̃(s), for s > S0. If D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) > C̃(s), then we set σ̂2

γ(v, hs−1) =

σ̂2
γ(v), w(v, v′;hv) = w(v, v′;hs−1) and hv = hs−1; and the estimation for this voxel

v is terminated. If s = S and D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) ≤ C̃(s), σ̂2

γ(v), w(v, v′;hv)

and hv are set as σ̂2
γ(v, hS), w(v, v′;hS) and hS, respectively, and the estimation

process terminates. Once the estimations for all v in V are finished, we then stop.

If s ≤ S0 or D(σ̂2
γ(v;hS0), σ̂

2
γ(v;hs)) ≤ C̃(s) for s < S0 ≤ S−1, then we go back to

the weights adaptation step (i) with increased radius h = hs+1 = cs+1
h . Throughout

the paper, we set S0 = 2, C̃(s) = χ2(p)0.7/(s−1), and S = 10.
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4.1.3 p-value Calculation based on Gamma Approximation

After determining all weights and the radius at each voxel v ∈ V , we plug them into

the weighted score test (4.11). For σ2
e(v) in (4.11), we use its REML estimate σ̂2

e(v) =

Y(v)TLXY(v)/(n− p) under the null hypothesis. Following Tzeng and Zhang [2007], we

approximate the distribution of the test statistic (4.11) by a Gamma(av, bv) distribution.

To estimate the parameters av and bv, we use the method of moment (MoM) to match

(av, bv) with the first two moments of (4.11) under the null hypothesis. The first moment

of EH0,γ (WSCσ2
γ
(v | σ̂2

e , h)) is given by

ÊH0,γ (WSCσ2
γ
(v | σ̂2

e , h)) = 0.5 tr(ΩX)
∑

v′∈B(v,hv)

ω(v, v′;hv)σ
2
e(v
′) ≡ Êv. (4.15)

For the purpose of simplicity and computational efficiency, we assume the correlation be-

tween the voxels v′ and v′′ to be ρv′,v′′ and estimate it by using ρ̂v′,v′′ = YT (v′)LXYT (v′′)/(σ̂e(v
′)σ̂e(v

′′)(n− p)).

Therefore, under the null hypothesis, we have

Cov(Yv′,v′′) =

 σ2
e(v
′)In ρv′,v′′σe(v

′)σe(v
′′)In

ρv′,v′′σe(v
′)σe(v

′′)In σ2
e(v
′′)In

 . (4.16)

Furthermore, it follows from [Bao and Ullah, 2010] that the second moment EH0,γ (WSCσ2
γ
(v |

σ2
e , h))2 is given by

ÊH0,γ{WSCσ2
γ
(v | σ2

e , h)2} = 0.25 tr(ΩX)2{
∑

v′∈B(v,hv)

ω2(v, v′;hv)σ
−4
e (v′)}

+ 0.5 tr(Ω2
X){

∑
v′∈B(v,hv)

ω2(v, v′;hv)σ
−4
e (v′) +

∑
v′ 6=v”

ω(v, v′;hv)ω(v, v”;hv)σ
−2
e (v′)σ−2

e (v′′)ρ2
v′,v′′}

= V arH0,γ (WSCσ2
γ
(v | σ̂2

e , h)) + {ÊH0,γ (WSCσ2
γ
(v | σ̂2

e , h))}2 ≡ Ŝ2
v + Ê2

v . (4.17)
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The derivation of (4.17) is provided in Appendix. Thus, it follows from (4.15) and (4.17)

that

âv =
Êv

2

Ŝ2
v

and b̂v =
Ŝv

2

Êv
. (4.18)

Based on Gamma(âv, b̂v), we can approximate the p-value of WSCσ2
γ
(v | σ2

e , h) at each

voxel in V . Subsequently, one may perform False Discovery Rate (FDR) method or

Random Field Theory (RFT) to account for multiple comparisons.

4.2 Results

4.2.1 Simulation Studies

We simulated data at all NV = 5, 808 voxels on a 44 × 44 × 3 phantom image. Each

z-slice contains the same effect regions. At each voxel, we simulated the univariate

imaging measure according to model (4.1) with β(v) = (β0(v), β1(v), β2(v), β3(v))T and

xi = (1, xi1, xi2, xi3)T . Moreover, the covariates xi1, xi2, and xi3 were generated from a

Gaussian distribution with mean 40 and standard deviation 10, a Bernoulli distribution

with success probability 0.5, and a Bernoulli distribution with success probability 0.3,

respectively. These three covariates were designed to mimic the common clinical vari-

ables age, gender, and disease status. For a slice of a phantom image, the effect areas

for β0(v) were divided into 16 regions with 4 different values ranging from 0.02 to 0.08,

increasing by 0.02 (Figure 8(a) as in previous section); for β1(v), the effect regions were

divided into 25 regions ranging from 10−2.5 to 10−12.5, decreasing by a rate of 10−2.5

(Figure 8(b)); for β2(v), the whole space was separated into 3 regions with values 0,

0.05, and 0.1 (Figure 8(c)); the effect area of β3(v) on a slice of phantom image was

divided into 9 regions with values ranging from 0 to 0.1, increasing by differences of

0.025 (Figure 8(d)).

The genetic information was simulated according to the SNP data obtained from

the public accessible data of the Alzheimer’s Disease Neuroimage Initiative (ADNI).
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It is an ongoing longitudinal study with primary purpose of exploring the genetic and

neuroimaing information associated with late-onset Alzheimer’s disease (LOAD). The

study recruited elderly subjects older than 65 years of age consisting about 400 subjects

with mild cognitive impairment (MCI), about 200 subjects with Alzheimer (AD), and

around 200 healthy controls. Each subject was followed for at least 3 years. During

the study period, the subjects were assessed with magnetic resonance imaging (MRI)

measures and psychiatric evaluation to determine the diagnosis status at each time

point. The genetic information was also collected from each subject at baseline and it

is genotyped by the Illumina 610 Quad array with more than 620,000 single nucleotide

polymorphysm (SNPs). More information of ADNI is provided in the real data analysis

result Section 3.2. We simulated the genetic information based on the two following

scenarios.

• Scenario I. To preserve the linkage disequilibrium among SNPs, we utilize all of

the SNPs on chromosome 1 from 197 Caucasian controls to generate the genetic

effect. After eliminating the SNPs with minor allele frequency (MAF) less than

5%, there were 31554 out of 45627 SNPs left. Then we randomly chose 20 SNPs

and 100 subjects among the 197 healthy controls as the simulated genetic data zi

in (4.1). In this case, n = 100. If any of these 20 SNPs have MAF less than 5%,

the genetic data was resampled until all of the 20 SNPs have MAF ≥ 5%.

• Scenario II. To evaluate the performance of weighted score test in the case of high

LD, we selected the SNPs from the same gene in the second scenario. Searching the

SNPs on the gene PICALM, which is found to be relevant to Alzheimer’s disease

in many studies [Harold et al., 2009] using the gene list “glist-hg18” provided by

PLINK, there were 23 SNPs on PICALM with MAF larger than 5%. After elimi-

nating the missing values, there are 176 healthy controls with complete genotype

data at these 23 SNPs. We randomly selected 7 SNPs from 75 healthy controls

to be zi in (4.1). Although there is strong LD among these 7 SNPs, no SNP has
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perfect correlation (1 or -1) with any other SNP in these 75 subjects. In this case,

n equals 75.

In both scenarios, the SNP effects were assumed to be additive. The γ(v) was

generated from a multivariate Gaussian distribution with mean zero and covariance

matrix σ2
γ(v)IL. Different σ2

γ(v) values, which represent different signal-to-noise ratios,

were chosen to examine the performance of our method at different signal-to-noise ratios

and also to test whether weighted score test we proposed can perform well for different

shapes. See Figure 12 (a) and Figure 12 (b) for Scenarios I and II. Moreover, we overlay

some of the effect areas of β3(v) and σ2
γ(v) in order to account for the fact that the brain

phenotype is an intermediate expression of disease progression. The {σ2
γ(v) : v ∈ V} of

the effect regions in Scenario I were ranging from 0.005 to 0.025, increasing by 0.0025,

whereas the {σ2
γ(v) : v ∈ V} of effect regions in Scenario II were ranging from 0.005 to

0.045, increasing by 0.005. The random error ei(v) was independently distributed as a

univariate standard Gaussian distribution for all voxels. The sample slice from a sample

dataset of signal-to-noise ratio for both scenarios are shown in Figure 12(c) and 12(d).

We tested the hypotheses H0 : σ2
γ(v) = 0 and H1 : σ2

γ(v) 6= 0 for all voxels in V based

on both weighted score test in (4.11) and regular score test (4.6). The computational

time of a sample dataset in Scenario II using a 2.4 GHz single CPU machine with 48

GB memory is 1380.2 seconds while implementing the complete weight estimation and

hypothesis testing procedure for all 5808 voxels; whereas it is 4591.3 seconds under the

same computing conditions for 15% of voxels using likelihood ratio test described in

Chapter 3. The finite sample performance is also evaluated using cluster-based thresh-

olding M. Silver and ADNI [2011]. Specifically, we first thresholded the p-values for all

voxels in V by using an initial p-value 0.01 suggested by M. Silver and ADNI [2011] to

identify clusters of contiguous supra-threshold voxels. Then, the thresholded clusters

were matched with the 9 separated activated areas in Figure 12(a) or 12(b). If a specific

thresholded cluster overlaps with at least one voxel in any of the 9 effect regions, we call
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such cluster as a ”true positive”. In contrast, if a specific thresholded cluster does not

overlap with any voxels of the 9 effect regions, we call the cluster a “false positive”. We

summarized the hypothesis testing results by the average dice overlap ratio (DOR), the

average number of false positive clusters, and the average size in the number of voxels

of false positive clusters. DOR is the ratio between the number of true positive clusters

over the true number of effect areas, which is 9 in this simulation setting. Thus, the

higher DOR means the higher the probability of detecting true effect regions. As shown

in Tables 7 and 8, if we set the cluster size threshold at 1 voxel, Weighted score test

has smaller DOR and smaller number of false positive clusters compared with voxel-wise

method. When the cluster size threshold increases to 10 voxels, weighted score test has

a similar DOR value as that of the no threshold case, whereas the DOR of the voxel-wise

approach reduces by about 20%. Table 9 summarizes the number of significant voxels

identified by the two methods in each effect region of Scenarios I and II In Table 9,

weighted score test detects more voxels in effect regions in both scenarios while main-

taining reasonable rate of false positive detection of null voxels. Finally, we conclude

that weighted score test outperforms voxel-wise method in both detecting true effect

regions and controlling the false positive error rate.

4.2.2 ADNI Data Analysis

The aim of this ADNI data analysis is to use FMEM to identify brain regions affected

by candidate genes, thereby hoping to shed light on the pathological interactions be-

tween these causal genes and brain function. The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharma-

ceutical companies and non-profit organizations, as a $60 million, 5- year public-private

partnership. The primary goal of ADNI has been to test whether serial magnetic reso-

nance imaging (MRI), positron emission tomography (PET), other biological markers,
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and clinical and neuropsychological assessment can be combined to measure the pro-

gression of mild cognitive impairment (MCI) and early AlzheimerâĂŹs disease (AD).

Determination of sensitive and specific markers of very early AD progression is intended

to aid researchers and clinicians to develop new treatments and monitor their effective-

ness, as well as lessen the time and cost of clinical trials. The Principal Investigator of

this initiative is Michael W. Weiner, MD, VA Medical Center and University of Cali-

fornia âĂŞ San Francisco. ADNI is the result of efforts of many co-investigators from a

broad range of academic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date

these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in

the research, consisting of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each group is specified in the

protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1

and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information,

see www.adni− info.org.

The data we employed to evaluate the performance of FMEM was from the first

phase (ADNI), which was conducted mainly to search for the causal SNPs associated

with the progression of Alzheimer’s disease and to establish an alternative diagnosis

standard using MRI brain images. About 800 subjects with age older than 65 were

recruited and followed at least 3 years. The 800 subjects included 200 healthy controls,

400 subjects with different levels of mild cognitive impairment (MCI), and 200 subjects

with Alzheimer’s disease (AD). Besides the SNPs and the T1 weighted MRI imaging

measurements, the subjects were assessed with demographic information and psychiatric

examination scores to determine the diagnosis status at each scheduled visit.

The T1-weighted MRI images were preprocessed by standard image processing steps

including AC (anterior commissure) and -PC (posterior commissure) correction, bias
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field correction, skull-stripping, intensity inhomogeneity correction, cerebellum removal,

segmentation, and nonlinear registration. After segmentation, the brain was segmented

into four different tissues: grey matter (GM), white matter (WM), ventricle (VN),

and cerebrospinal fluid (CSF). We quantified the local volumetric group differences by

generating RAVENS maps [Davatzikos et al., 2001] for the whole brain and each of the

segmented tissue type (GM, WM, VN, and CSF) respectively, using the deformation

field we obtained during registration. RAVENS methodology is based on a volume-

preserving spatial transformation, which ensures that no volumetric information is lost

during the process of spatial normalization, since this process changes an individual′s

brain morphology to conform it to the morphology of the Jacob template.

We are interested in detecting meaningful brain regions of interest that are associated

with several candidate genes. We included only the subjects whose diagnosis status were

healthy control and Alzheimer’s disease at the baseline and had no status change during

the study period. After screening, the total number of subjects we included was 206 (107

HCs and 99 ADs). The clinical covariates of interest included in our analysis were gender,

baseline age, square of baseline age, handedness, education, baseline intracranial volume,

and the risk of APOE. Specifically, the handedness was treated as a binary variable, the

education information was the self-reported years of education by the subjects, and the

risk of APOE is assumed to be additive. In detail, the risk of APOE for a subject was

3 if he/she carries ε4 at both alleles; it was 2 if he/she carries ε3 and ε4 in two alleles,

the risk would be considered 0 if the two APOE alleles were the combination of ε2 and

ε3, and other combination of APOE alleles are assumed to have risk 1.

Many genes have been reported to be causal in the progression of Alzheimer’s disease,

especially to the area of hippocampus which plays an important role of consolidation of

information from short-term memory and long-term memory. We selected the candidate

causal gene TOMM40 on chromosome 19 [Potkin et al., 2009] which encodes the protein

”Translocase of Outer Mitochondrial Membrane 40 homolog (yeast)” and is shown to be
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associated with the increasing risk of late-onset Alzheimer’s disease. We first matched

the SNPs in ADNI with the gene list “glist-hg18” provided by PLINK [Purcell and et al,

2007] and were able to locate 3 SNPs on TOMM40, including rs157580, rs2075650 and

rs8106922. All these SNPs pass the quality control procedure with MAF > 5% and

the Hardy Weinberg Equilibrium (HWE) test p-value> 0.01. The MAFs of rs157580,

rs2075650 and rs8106922 are around 0.35, 0.24 and 0.33. The associated demographic

information is presented in the Table 10.

For the gene, we computed WSC in (4.11) and its approximated p-values for each

voxel with z coded as the numbers of minor alleles to detect its associated significant

brain regions of interest (ROIs). For comparison, we also computed regular score test in

(4.6) to analyze the same dataset. To formally detect significant ROIs, following Ge and

et al [2012], we used a cluster-form of threshold of 0.1% with a minimum voxel clustering

value of 50 voxels. Weighted score test is able to to detect the brain region of right insula

with the cluster size 95 voxels for TOMM40, after overlapping the significant cluster

with the 96 predefined ROIs in the Jacob template; whereas the standard voxel-wise

method cannot identify any brain regions. The brain regions of insulae are believed to

be involved in consciousness and play a role in diverse functions usually linked to emotion

or the regulation of the body’s homeostasis. These functions include perception, motor

control, self-awareness, cognitive functioning, and interpersonal experience. Figure 14

shows the − log10(p) map of several selected slices with significant clusters for testing

the genetic effect of TOMM40 on RAVEN images identified by weighted score test.

Additionally, the computational time to complete the real data analysis using weighted

likelihood ratio test proposed in previous section Functional Mixed Effect Model under

the same computational condition is around 103.3 hours while it only takes 67 hours

using weighted score test proposed in this section.
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4.2.3 Tables and Figures

(a)	   (b)	  
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Figure 4.1: Simulation setting. True σ2
γ(v) image (a) Scenario I and (b) Scenario II;

signal to noise ratio (SNR) images for (c) Scenario I and (d) Scenario II.

(a)	   (b)	   (c)	   (d)	  

1	  

0	  

Figure 4.2: Simulation results for testing the genetic effect: Scenario I: the rejection
rate image at a selected slice by using (a) regular score test and (b) weighted score test;
Scenario II: the rejection rate image by using (c) regular score test and (d) weighted
score test.

66



Table 4.1: The dice overlap ratio (DOR), average number of false positive cluster, and
average size of false positive cluster for Scenario I with different cluster size thresholds.

FEFM Voxel-based

Threshold Mean SD Mean SD

Voxel Size = 1

DOR 0.94 0.06 0.80 0.08

False Positive Cluster Number 0.135 0.38 0.05 0.22

False Positive Cluster Size 2.08 0.28 2 0

Voxel Size = 10

DOR 0.75 0.07 0.31 0.06

False Positive Cluster Number 0 0 0 0

False Positive Cluster Size NA NA NA NA

Table 4.2: The dice overlap ratio (DOR), average number of false positive cluster, and
average size of false positive cluster for Scenario II with different cluster size thresholds.

FEFM Voxel-based

Threshold Mean SD Mean SD

Voxel Size = 1

DOR 0.998 0.02 0.97 0.05

False Positive Cluster Number 0.62 0.89 0.11 0.31

False Positive Cluster Size 2.49 0.76 2 0

Voxel Size = 10

DOR 0.91 0.06 0.49 0.11

False Positive Cluster Number 0 0 0 0

False Positive Cluster Size NA NA NA NA
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Table 4.3: The global power calculation of number of significant voxels detected by
voxel-wise approach and FMEM in both scenarios.
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Table 4.4: Demographic information of the selected 206 subjects. For the categorical
variables: gender, handedness and risk of APOE, the numbers are the frequencies for
the corresponding groups. For the continuous variables: baseline age, baseline ICV and
years of education, the numbers are the mean (standard deviation) for the corresponding
groups.

Healthy Control Alzheimer’s Disease

Total 107 99

Male (Female) 57 (50) 55(44)

Right (Left) Hand Users 97 (10) 92(7)

Risk of APOE 3 0 21

2 29 37

1 69 38

0 9 3

Baseline Age 75.9 (5.1) 76.1 (7.1)

Baseline ICV 1.269× 106 (1.258× 105) 1.284× 106 (1.524× 105)

Years of Education 16.1 (2.9) 14.6 (3.11)

Figure 4.3: ADNI data analysis: the − log10(p) map of testing the genetic effect of
TOMM40 on RAVEN images by using FMEM from 6 selected slices.
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Chapter 5

Conclusion

For general correlated multivariate phenotype, we have developed the PRM which pro-

vides a more effective analysis for the association delineation between multivariate phe-

notypes and covariates of interest. The proposed methodology is demonstrated in a study

investigating the impact of candidate SNPs on early age brain development. Analysis re-

sults obtained from the PRM successfully identified two previously reported SNPs while

none of them were detected by either CWM or PCR. This phenomenon is consistent

with the results in the simulation studies showing that compared to the two other meth-

ods, the PRM tends to have higher power for detecting the association between high

dimensional phonetypes and the covariates of interest with better type I error control.

Hence we expect that this novel statistical tool will assist scientists in exploring new

findings with more effective and reliable statistical results in the high dimensional data

settings. Future work includes establishing the asymptotic properties of the PRM under

mild conditions, considering ultra-high dimensional phenotypes and genomic data, as

well as extending the PRM to longitudinal and familial studies.

For structure MRI responses, we have developed FMEM with two test statistics -

weighted likelihood ratio test and weighted score test - to carry out an association anal-

ysis between neuroimaging phenotypes and a group of genetic markers, while adjusting

for the clinical variables of interest. We have proposed a multiscale adaptive procedure

with three features: being spatial, being hierarchical, and being adaptive. Moreover,

weighted score test provides a new philosophy with efficient computation of smoothing



the test statistics instead smoothing estimators in most traditional approaches. Our

simulation results have shown substantial gain in parameter estimation precision and

statistical power in detecting true effect ROIs compared with the voxel-wise method.

We expect that FMEM will provide a more efficient tool of exploiting meaningful as-

sociations between brain ROIs and genetic makers. Given different possible etiology of

the selected genes, we believe such information may provide important guidance for per-

sonalized definition of disease status and hence inform the development of personalized

treatment.

User-friendly software to implement the PRM will be available to public for non-profit

purposes on our group website: http://www.bios.unc.edu/research/bias/software.html.
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Appendix I

Additional Results for PRM

Table A1.1: Type I Errors - Part 1

q 50 100 150 200 50 100 150 200
p N=150 N=200

0.05 0.053 0.06 0.027 0.047 0.093 0.06 0.067 0.06
0.1 0.04 0.04 0.02 0.033 0.047 0.06 0.033 0.073
0.2 0.053 0.06 0.053 0.033 0.053 0.06 0.02 0.04

Principle Component
p

0.05 0.06 0.04 0.06 0.027 0.053 0.053 0.047 0.053
0.1 0.087 0.087 0.093 0.067 0.093 0.107 0.087 0.087
0.2 0.132 0.1 0.127 0.113 0.133 0.167 0.127 0.127

Multiple Comparison
p

0.05 0.033 0.04 0.047 0.047 0.073 0.08 0.067 0.087
0.1 0.087 0.067 0.107 0.093 0.12 0.113 0.14 0.113
0.2 0.132 0.16 0.172 0.147 0.153 0.16 0.18 0.153

This table gives the results of the type I error based on the sample sizes N = 150 and 200 for PRM
multiple comparison and principle component methods, with minor allele frequencies 0.05, 0.1 and 0.2
to simulate the distribution of the genetic groups and number of responses q.
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Table A1.2: Type I Errors - Part 2

q 50 100 150 200 50 100 150 200

p N=150 N=200

0.3 0.087 0.02 0.033 0.04 0.027 0.06 0.033 0.093

0.4 0.047 0.04 0.06 0.08 0.067 0.053 0.067 0.06

0.5 0.053 0.053 0.067 0.053 0.067 0.047 0.073 0.04

Principle Component

p

0.3 0.139 0.133 0.147 0.133 0.16 0.173 0.167 0.14

0.4 0.152 0.167 0.153 0.167 0.167 0.2 0.173 0.173

0.5 0.185 0.173 0.173 0.18 0.18 0.207 0.187 0.207

Multiple Comparison

p

0.3 0.219 0.193 0.205 0.173 0.265 0.207 0.258 0.213

0.4 0.265 0.207 0.258 0.213 0.2 0.247 0.247 0.233

0.5 0.298 0.213 0.311 0.253 0.227 0.26 0.313 0.253

The table gives the results of the type I error based on the sample sizes N = 150 and 200 for PRM

multiple comparison and principle component methods, with minor allele frequencies 0.3, 0.4 and 0.5

to simulate the distribution of the genetic group and number of responses q.
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Table A1.3: Type I Errors - Part 3

q 50 100 150 200 50 100 150 200

p N=250 N=300

0.05 0.027 0.04 0.027 0.047 0.033 0.053 0.048 0.052

0.1 0.027 0.067 0.027 0.04 0.027 0.067 0.048 0.048

0.2 0.067 0.067 0.047 0.033 0.053 0.067 0.032 0.068

Principle Component

p

0.05 0.053 0.06 0.033 0.03 0.053 0.06 0.06 0.033

0.1 0.12 0.093 0.047 0.073 0.1 0.107 0.08 0.08

0.2 0.153 0.113 0.093 0.087 0.113 0.153 0.1 0.127

Multiple Comparison

p

0.05 0.06 0.04 0.073 0.053 0.053 0.08 0.06 0.04

0.1 0.107 0.087 0.127 0.093 0.073 0.153 0.1 0.12

0.2 0.153 0.16 0.18 0.153 0.147 0.12 0.16 0.127

The table gives the results of the type I error based on sample sizes N = 250 and 300 for PRM,

multiple comparison and principle component methods, with minor allele frequencies 0.05, 0.1 and 0.2

to simulate the distribution of the genetic group and number of responses q.
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Table A1.4: Type I Errors - Part 4

q 50 100 150 200 50 100 150 200

p N=250 N=300

0.3 0.073 0.047 0.053 0.087 0.073 0.107 0.06 0.04

0.4 0.06 0.027 0.06 0.04 0.093 0.053 0.068 0.044

0.5 0.06 0.033 0.053 0.047 0.107 0.053 0.068 0.032

Principle Component

p

0.3 0.2 0.14 0.113 0.1 0.12 0.167 0.107 0.147

0.4 0.213 0.173 0.14 0.14 0.16 0.213 0.16 0.167

0.5 0.24 0.207 0.193 0.153 0.173 0.22 0.193 0.187

Multiple Comparison

p

0.3 0.213 0.16 0.179 0.18 0.16 0.22 0.233 0.187

0.4 0.245 0.187 0.205 0.213 0.187 0.293 0.253 0.233

0.5 0.264 0.207 0.225 0.247 0.193 0.3 0.28 0.28

The table gives the results of the type I error based on sample sizes N = 250 and 300 for PRM,

multiple comparison and principle component methods, with minor allele frequencies 0.3, 0.4 and 0.5

to simulate the distribution of the genetic group and number of responses q.
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Table A1.5: Power - Part 1

q 50 100 150 200 50 100 150 200

p N=150 N=200

0.05 0.44 0.413 0.293 0.367 0.78 0.67 0.573 0.46

0.1 0.66 0.52 0.467 0.433 0.853 0.807 0.713 0.587

0.2 0.713 0.627 0.53 0.513 0.9 0.887 0.78 0.713

Principle Component

p

0.05 0.087 0.04 0.067 0.027 0.08 0.047 0.043 0.067

0.1 0.113 0.087 0.1 0.093 0.147 0.107 0.107 0.107

0.2 0.173 0.127 0.133 0.147 0.207 0.153 0.153 0.14

Multiple Comparison

p

0.05 0.133 0.093 0.06 0.073 0.2 0.2 0.12 0.133

0.1 0.3 0.273 0.247 0.219 0.44 0.47 0.384 0.38

0.2 0.645 0.553 0.57 0.503 0.788 0.769 0.656 0.709

The table gives the results of the power based on sample sizes N = 150 and 200 for PRM, multiple

comparison and principle component methods, with minor allele frequencies 0.05, 0.1 and 0.2 to

simulate the distribution of the genetic group and number of responses q.
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Table A1.6: Power - Part 2

q 50 100 150 200 50 100 150 200

p N=150 N=200

0.3 0.753 0.707 0.593 0.56 0.94 0.907 0.813 0.773

0.4 0.807 0.72 0.627 0.593 0.967 0.92 0.86 0.813

0.5 0.827 0.727 0.653 0.607 0.967 0.927 0.88 0.8

Principle Component

p

0.3 0.227 0.167 0.18 0.167 0.26 0.187 0.193 0.167

0.4 0.273 0.2 0.193 0.193 0.3 0.227 0.207 0.213

0.5 0.313 0.227 0.213 0.26 0.347 0.257 0.247 0.247

Multiple Comparison

p

0.3 0.834 0.768 0.795 0.695 0.894 0.94 0.848 0.9

0.4 0.94 0.887 0.868 0.788 0.967 0.967 0.907 0.954

0.5 0.96 0.907 0.914 0.868 0.987 0.974 0.968 0.967

The table gives the results of the power of sample sizes N = 150 and 200 for PRM, multiple

comparison and principle component methods, with minor allele frequencies 0.3, 0.4 and 0.5 to

simulate the distribution of the genetic group and number of responses q.
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Table A1.7: Power - Part 3

q 50 100 150 200 50 100 150 200

p N=250 N=300

0.05 0.893 0.86 0.813 0.72 0.967 0.893 0.86 0.847

0.1 0.96 0.947 0.887 0.807 0.987 0.94 0.94 0.913

0.2 0.973 0.993 0.953 0.893 0.993 0.973 0.987 0.98

Principle Component

p

0.05 0.067 0.06 0.033 0.033 0.073 0.073 0.06 0.04

0.1 0.18 0.1 0.073 0.087 0.14 0.107 0.093 0.1

0.2 0.22 0.14 0.133 0.107 0.193 0.2 0.147 0.153

Multiple Comparison

p

0.05 0.268 0.153 0.193 0.14 0.32 0.293 0.225 0.18

0.1 0.533 0.467 0.53 0.353 0.662 0.647 0.523 0.513

0.2 0.914 0.834 0.887 0.775 0.947 0.927 0.94 0.894

The table gives the results of the power of sample sizes N = 250 and 300 for PRM, multiple

comparison and principle component methods, with minor allele frequencies 0.05, 0.1 and 0.2 to

simulate the distribution of the genetic group and number of responses q.
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Table A1.8: Power - Part 4

q 50 100 150 200 50 100 150 200

p N=250 N=300

0.3 0.98 0.98 0.967 0.9 1 0.993 0.993 0.967

0.4 0.987 0.987 0.96 0.927 1 0.993 0.993 0.967

0.5 1 0.987 0.98 0.9 1 0.993 0.993 0.987

Principle Component

p

0.3 0.287 0.207 0.18 0.133 0.247 0.253 0.18 0.2

0.4 0.331 0.26 0.227 0.187 0.32 0.307 0.252 0.24

0.5 0.364 0.3 0.28 0.212 0.371 0.327 0.298 0.267

Multiple Comparison

p

0.3 0.987 0.96 0.947 0.921 1 0.98 0.987 0.973

0.4 0.993 0.986 0.993 0.967 1 1 1 1

0.5 1 1 1 0.993 1 1 1 1

The table gives the results of the power of sample sizes N = 250 and 300 for PRM, multiple

comparison and principle component methods, with minor allele frequencies 0.3, 0.4 and 0.5 to

simulate the distribution of the genetic group and number of responses q.

Table A1.9: P-values from PCA method to analyze neonatal data

SNP P-value SNP P-value SNP P-value

rs4680 0.99 rs821616 0.79 rs6675281 0.95

rs35753505 0.99 rs6994992 0.99 rs9340799 0.79

rs2234693 0.92 rs6265 0.99 rs2270335 0.98
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Appendix II

Supplementary Tables and Additional Results of FMEM

Table A2.1: Descriptive statistics of SNRs for 10 regions of σ2
γ(v) from a simulated

data of scenario I, in which the SNPs are extracted from the chromosome 1 in ADNI.

σ2
γ(v) Number of voxels Mean Standard Deviation Min Max

0 4749 0.124 0.062 0.024 0.412

0.0050 207 0.819 0.572 0.003 2.745

0.0075 135 1.010 0.774 0.006 3.340

0.0100 111 1.123 0.815 0.021 3.714

0.0125 147 1.270 1.014 0.043 4.303

0.0150 75 1.262 1.026 0.025 4.074

0.0175 48 1.334 1.150 0.034 5.930

0.0200 144 1.436 1.060 0.019 3.940

0.0225 111 1.687 1.191 0.036 4.886

0.0250 81 1.877 1.366 0.020 6.674
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Table A2.2: Descriptive statistics of SNRs for 10 regions of σ2
γ(v) from a simulated data

set of scenario II, in which the SNPs are extracted from the gene PICALM in ADNI.

σ2
γ(v) Number of voxels Mean Standard Deviation Min Max

0 4749 0.111 0.055 0.022 0.357

0.005 207 0.189 0.136 0.001 0.699

0.010 135 0.234 0.188 0.001 0.854

0.015 111 0.301 0.246 0.003 1.092

0.020 147 0.349 0.274 0.003 1.307

0.025 75 0.337 0.282 0.004 1.111

0.030 48 0.365 0.257 0.0005 0.996

0.035 144 0.424 0.283 0.003 1.324

0.040 111 0.491 0.443 0.010 1.008

0.045 81 0.500 0.403 0.034 1.909
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Table A2.3: The minor allele frequency (MAF) in % of selected SNPs on TOMM40,
PICALM, CR1 and CD2AP

PICALM

rs618679 22.1 rs2077815 22.6 rs666692 48.9 rs527162 22.1

rs10898427 21.2 rs11234495 24.8 rs664629 37.0 rs680119 40.7

rs510566 22.9 rs10501602 8.8 rs1774523 19.4 rs10501608 17.2

rs10501604 17.4 rs713346 25.2 rs1941375 27.3 rs10792821 21.0

rs475639 48.0 rs669336 18.8 rs677909 31.6 rs642949 37.5

rs7938033 42.7 rs10792820 25.3 rs11234532 10.2

CR1 CD2AP

rs1571344 13.7 rs2025935 31.5 rs9296559 26.9 rs9473121 32.8

rs4310446 18.1 rs11117959 19.3 rs12523687 10.0 rs9395267 10.4

rs10127904 29.4 rs650877 19.9 rs1385741 39.0 rs9296562 40.1

rs3737002 27.5 rs11118131 19.0 rs6458573 32.9 rs13191654 22.4

rs677066 21.9 rs6691117 21.8 rs3818866 26.3 rs9395285 26.6

rs3818361 19.7 rs6701713 19.7 rs6936622 11.0 rs1485780 26.9

rs12734030 17.9 rs12034383 41.0 rs1485781 32.9 rs9349417 26.9

rs1408077 19.1 rs10779339 49.7 rs10948367 26.9
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Table A2.4: Demographic information of the 328 subjects in the dataset investigating
the effects of PICALM. For the categorical variables: gender, handedness and risk of
APOE, the numbers are the frequencies for the corresponding groups. For the continuous
variables: baseline age, baseline ICV and years of education, the numbers are the mean
(standard deviation) for the corresponding groups.

Healthy Contol Alzheimer’s Disease

Total 176 152

Male (Female) 99 (77) 84(68)

Right (Left) Hand Users 163 (13) 142(10)

Risk of APOE 3 2 31

2 41 68

1 111 49

0 22 4

Baseline Age 76.1 (5.1) 75.5 (7.6)

Baseline ICV 1.28× 106 (1.24× 105) 1.27× 106 (1.45× 105)

Years of Education 16.3 (2.7) 14.9 (3.2)
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Table A2.5: Demographic information of the 299 subjects in the dataset investigating
the effects of CD2AP. For the categorical variables: gender, handedness and risk of
APOE, the numbers are the frequencies for the corresponding groups. For the continuous
variables: baseline age, baseline ICV and years of education, the numbers are the mean
(standard deviation) for the corresponding groups.

Healthy Contol Alzheimer’s Disease

Total 155 144

Male (Female) 84 (71) 77(67)

Right (Left) Hand Users 143 (12) 135(9)

Risk of APOE 3 3 38

2 37 64

1 97 49

0 18 3

Baseline Age 76.1 (5.2) 75.1 (7.5)

Baseline ICV 1.27× 106 (1.25× 105) 1.27× 106 (1.46× 105)

Years of Education 16.1 (2.8) 14.7 (3.1)
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Table A2.6: The detailed significant brain regions affected by CD2AP using FMEM.
The regions with the ∗ means the regions are detected by FMEM and voxel-based
method; the regions with the ∗∗ means only detected by voxel-based method; • means
not applicable.

Brain Region Number of Voxels (right) Number of Voxels (left)

right left Superior temporal gryus 167 •

Inferior temporal gryus *369 378

Precentral gryus *170 439

Middle frontal gryus 127 *295

Postcentral gryus 60 183

Insula 53 74

Putamen *200 123

Fusiform 117 306

Inferior parietal but supramarginal and angular gyri 87 •

Angular 433 •

Inferior frontal gyrus - triangular part *180 *79

Inferior occipital gyrus 269 •

Superior frontal gyrus 71 •

Supplementary Motor Area 117 •

Postcentral gryus *104 *183

Superior frontal gyrus and medial 188 159

Anterior cingulate and paracingulate gyri 428 88

Median cingulate and paracingulate gyri 149 *116

Calcarine fissure and surrounding cortex 53 266

Cuneus 151 345

Superior occipital gyrus • 317

Middle occipital gyrus • *144

Precuneus 61 •

Paracentral Lobule 86 •

Pallidum • 58

Caudate • 197

Lingual • *114

Inferior frontal gyrus - opercular part • *78

Inferior occipital gyrus • 133

Middle temporal gyrus • 394

Inferior frontal gyrus - orbital part • 61

Temporal pole: superior temporal gryus **74 •

Temporal pole: middle temporal gryus **61 •
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Table A2.7: The detailed significant brain regions affected by CR1 using FMEM. The
regions with the ∗means the regions are detected by FMEM and voxel-based method; the
regions with the ∗∗ means only detected by voxel-based method; • means not applicable.

Brain Region Number of Voxels (right) Number of Voxels (left)

Superior temporal gryus 167 •

Inferior temporal gryus 150 378

Precentral gyrus 170 *439

Middle frontal gyrus 127 295

Postcentral gryus 60 **65

Insula 53 74

Putamen 200 *123

Fusiform 117 306

Inferior temporal gryus 219 •

Inferior parietal but supramarginal and angular gyri 87 •

Angular 433 •

Inferior frontal gyrus, triangular part 180 *79

Inferior occipital gyrus 269 133

Superior frontal gryus 71 •

Supplementary Motor Area 117 •

Postcentral gryus 104 183

Superior frontal gyrus, medial 188 159

Anterior cingulate and paracingulate gyri 428 88

Median cingulate and paracingulate gyri 209 116

Calcarine fissure and surrounding cortex 53 266

Cuneus 151 345

Superior occipital gyrus • 317

Middle occipital gyrus 144 •

Precuneus 61 •

Paracentral Lobule 86 •

Pallidum 58 •

Caudate • 197

Lingual • 114

Inferior frontal gyrus, opercular part • 78

Middle temporal gryus • *394

Inferior frontal gyrus, orbital part • 61
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Table A2.8: The detailed significant brain regions affected by PICALM using FMEM.
The regions with the ∗ means the regions are detected by FMEM and voxel-based
method; the regions with the ∗∗ means only detected by voxel-based method; • means
not applicable.

Brain Region Number of Voxels (right) Number of Voxels (left)

Inferior frontal gyrus - triangular part 206 •

Inferior frontal gyrus - orbital part 213 •

Insula 363 •

Hippocampus 72 •

ParaHippocampal gyrus 72 **60

Amygdala 68 •

Fusiform 205 •

Putamen 144 •

Superior temporal gyrus 790 •

Temporal pole: superior temporal gryus 472 •

Middle temporal gyrus 441 •

Temporal pole: middle temporal gryus 127 •

Inferior temporal gyrus 402 •

Precentral gryus 519 •

Middle frontal gryus 588 •

Postcentral gryus 404 •

SupraMarginal gryus 350 •

Superior occipital gyrus 72 •

Middle occipital gyrus 834 •

Inferior parietal but supramarginal and angular gyri 239 •

Angular 491 •

Rolandic Operculum 76 •

Inferior frontal gyrus - opercular part 112 •

Superior frontal gyrus - orbital part 75 •

Middle frontal gyrus 375 •

Middle frontal gyrus - orbital part 338 •

Superior frontal gyrus 66 •

Median cingulate and paracingulate gyri • **51
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Appendix III

Proof of (3.11)

It is shown that the REML estimation of covariance is invariant to the choice of Kx

(Searle et al, 1992, Ch.6). Without lost of generality, we may assume KxK
T
x = In−p,

where In−p is an (n−p)×(n−p) identity matrix. Also, since the matrixKxZ
T ILZKT

x = Ω

is semi-positive, there exists an (n − p) × (n − p) orthogonal matrix U and a diagonal

matrix D0 = diag{d1, . . . , dn−p} such that Ω = UD0U
T , where the columns of U are the

eigenvectors of Ω and di, i = 1, · · · , n− p are the corresponding eigenvalues. Under the

null hypothesis σ2
γ(v) = 0, Y∗(v′) is distributed as N(0, σ2

e(v
′)In−p). Therefore, we have

the following results:

• σe(v′)−1UTY∗(v′)
d∼ N(0n−p, In−p) and 1

σe(v′)
√

1+λ(v′)di
uTi Y∗(v′)

d∼ N(0, 1
1+λ(v′)di

),

where ui is the ith eigenvector of Ω. Then, we have

1

σe(v′)
{In−p + λ(v′)D0}−

1
2UTY∗(v′)

d∼ N(0n−p, [In−p + λ(v′)D0]−1). (1)

• The determinant of σ2
e(v
′){In−p + λ(v′)Ω} equals σe(v

′)2(n−p)∏n−p
i=1 {1 + λ(v′)di}.

• Since the actual dimension of Ω is at most L, we have di = 0 for i = L+1, . . . , n−p.

Then, `REML(Y∗(v′) | Z, σ2
e(v
′), σ2

γ(v) > 0) − `REML(Y∗(v′) | Z, σ2
e(v
′), σ2

γ(v) = 0) can

be approximated by

1

2σ2
e(v
′)

(Y∗(v′)TY∗(v′)−Y∗(v′)T{U [In−p + λ(v′)Ω]UT}−1Y∗(v′))− 1

2

L∑
i=1

log(1 + λ(v′)di)

D
=

1

2
{
n−p∑
i=1

z2
i (v
′)−

L∑
i=1

log(1 + λ(v′)di)−
n−p∑
i=1

z2
i (v
′)

1 + λ(v′)di
}

D
=

1

2
{

L∑
i=1

z2
i (v
′)λ(v′)di

1 + λ(v′)di
−

L∑
i=1

log(1 + λ(v′)di)} =
1

2
D(v′), (2)
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where z2
i (v
′)’s are mutually independent for all i = 1, · · ·n− p and normally distributed

with mean 0 and variance 1. Finally, we have

RLRTn(v) = 2 sup
σ2
γ(v)≥0

{LREML(σ2
γ(v) | Y∗, B(v, h))− LREML(0 | Y∗, B(v, h))}

= 2 sup
σ2
γ(v)≥0

∑
v′∈B(v,h)

ω(v, v′, h){`REML(Y∗(v′) | Z, σ̂2
e(v
′), σ2

γ(v) > 0) (3)

− `REML(Y∗(v′) | Z, σ̂2
e(v
′), σ2

γ(v) = 0)}
D
= sup

σ2
γ(v)≥0

{
∑

v′∈B(v,h)

ω(v, v′, h)D(v′)}.

Wild Bootstrap Procedure

Let ΣY ∗(v) = σ2
γ(v)Ω+σ2

e(v)In−p, we transform Y∗(v) into Ỹ∗(v) = UTΣY ∗(v)−1/2Y∗(v)

such that Ỹ∗(v) ∼ N(0, In−p). It follows from Ω = UD0U
T that

Ỹ∗(v) = (ỹ1(v), · · · , ỹn−p(v))T = {σ2
e(v)In−p + σ2

γ(v)D}−1/2UTY∗(v). (4)

We develop a wild bootstrap procedure as follows.

• Step 1. Define a grid 0 = λ1(v) < λ2(v) < · · · < λM(v) of M possible values for

λ(v).

• Step 2. Generate ξ
(s)
l independently from N(0, 1) for l = 1, . . . , n− p.

• Step 3. For every grid point λm(v), calculate an approximation ofD(v′;λm(v)/σ̂2
e(v))

as follows:

D̂(s)(v′;λm(v)/σ̂2
e(v)) =

n−p∑
l=1

ξ
(s)
l {ỹ2

l (v
′)− 1}dlλm(v)/σ̂2

e(v
′) + dlλm(v)/σ̂2

e(v
′)

1 + dlλm(v)/σ̂2
e(v
′)

−
n−p∑
l=1

log(1 + dlλm(v)/σ̂2
e(v
′)). (5)

Remark that (5) is slightly different from (3.12) in terms of random samples gen-
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eration. In (3.12), the samples are generated independently among voxels which

does not take the spatial correlation in imaging measurements into consideration.

To address this limitation, in (5), the samples are generated from original imaging

data instead.

• Step 4. Calculate

RLRT(s)
n (v) = sup

1≤m≤M
{
∑

v′∈B(v,h)

ω(v, v′;h)D̂(s)(v′;λm(v)/σ̂2
e(v
′))}. (6)

• Step 5. Repeat Steps 1-5 for S iterations.

• Step 6. Approximate the p-value of RLRTn(v) based on an approximation given

by

RLRTn(v)
D
≈ a0u0d0, (7)

where u0 ∼ Bernoulli(1−p0) and d0 ∼ χ2
1 are independent random variables, p0 =

P (u0 = 0) and a0 are unknown constants, and
D
≈ denotes an approximate equality

in distribution. Considering computational efficiency, instead of generating many

bootstrap samples, we estimate the parameters a0 and p0 in the approximation (7)

as follows:

â0 =
∑

v′∈B(v,hS)

ω(v, v′;hS)ã0 , p̂0 =
∑

v′∈B(v,hS)

ω(v, v′;hS)p̃0, (8)

where

p̃0 = 1− 3
{
∑S

s=1 RLRT(s)
n (v)}2

S
∑S

s=1 RLRT(s)
n (v)2

and ã0 =

∑S
s=1RLRT

(s)
n (v)

S(1− p̂)
. (9)

Computationally, the above algorithm is quite efficient. First, we only need to com-

pute Ỹ∗(v) once for all voxels. Second, Ω is fixed and thus it is straightforward to
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compute its eigenvalues and eigenfunctions. Third, all σ̂2
e(v) are calculated once at Step

(I.1). Fourth, to choose grid points of λ(v), we setM = 50 and λM(v) = 3 maxv′∈V σ̂
2
γ(v
′).
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Appendix IV

Derivation of Weighted Score Test of FMEM

Let b be a p × 1 multivariate normal random vector with mean µ and covariance

matrix Ip, where Ip is a p× p identity matrix. Then, for two semi-positive matrices B1

and B2, we have

E(bTB1b b
TB2b) = E(bTB1b)E(bTB2b) + 4µTB1B2µ+ 2tr(B1B2). (10)

Let v′ and v′′ are two different voxels in B(v, hv). Stack Y(v′) and Y(v′′) together

into YT
v′.v′′ = (Y(v′),Y(v”))T and we denote Cov(Yv′.v′′) = Σv′,v′′ . Then under the null

hypothesis, we have

Yv′,v′′ ∼ N2n


 X 0n×p

0n×p X


β(v′)

β(v′′)

 , Σv′,v′′

 . (11)

By transforming Yv′,v′′ to Ỹv′,v′′ , we have

Ỹv′,v′′ =

Ỹ(v′)

Ỹ(v′′)

 = Σ−1/2

Y(v′)

Y(v′′)

 ∼ N2n

Σ
−1/2
v′,v′′

 X 0n×p

0n×p X


β(v′)

β(v′′)

 , In
 .

(12)

We choose B1 and B2 as follows:

B1 = Σ
1/2
v′,v′′

In 0n

0n 0n


ΩX 0n

0n 0n


In 0n

0n 0n

Σ
1/2
v′,v′′ , (13)

B2 = Σ
1/2
v′,v′′

0n 0n

0n In


0n 0n

0n ΩX


0n 0n

0n In

Σ
1/2
v′,v′′ , (14)

Therefore, we can obtain YT (v′)ΩXY(v′) = ỸT
v′,v′′B1Ỹ

T
v′,v′′ and YT (v′′)ΩXY(v′′) =
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ỸT
v′,v′′B2Ỹ

T
v′,v′′ . Hence, applying (10) with the fact that ΩXXβ(v) = 0, we have

EH0,γ{(YT (v′)ΩXY(v′))2} = tr(ΩX)2 + 2 tr(Ω2
X) (15)

EH0,γ (Y
T (v′)ΩXY(v′)YT (v′′)ΩXY(v′′)) = tr(B1)tr(B2) + 2 tr(B1B2) = Ψv′,v′′ .(16)

According to the assumption under the null hypothesis that

Cov(Yv′,v′′) =

 σ2
e(v
′)In ρv′,v′′σe(v

′)σe(v
′′)In

ρv′,v′′σe(v
′)σe(v

′′)In σ2
e(v
′′)In

 = Σv′,v′′ , (17)

(16) can be simplified as

Ψv′,v′′ = σ̂2
e(v
′)σ̂2

e(v
′′)tr(ΩX)2 + 2 ρ̂2

v′,v′′σ̂
2
e(v
′)σ̂2

e(v
′′) tr(Ω2

X). (18)

Finally, we can get (4.17) based on the above fact.
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