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ABSTRACT

Kyla A.L. Collins: Data-Driven Computational Modeling of the State and Architecture of the Breast
Cancer Kinome

(Under the direction of Gary L. Johnson and Shawn M. Gomez)

The complex signaling in the kinome provides a unique insight into breast cancer, which is

heterogeneous with many disease states or subtypes. The kinome has been implicated in many

cancers and is highly targeted by inhibitor therapies because of its importance in cell proliferation and

differentiation. High-throughput data sets using proteomics help characterize the kinome and allow

quantification of the baseline and perturbed states of the kinome. These high-throughput experimental

methods allow for quantification of kinases that are not well-studied, or are understudied.

In this thesis, I employ machine-learning techniques to distinguish between breast cancer

subtypes using a functional proteomics data set and to demonstrate that the state of the kinome looks

different in proteomic and sequencing data sets. Characterized, as well as understudied, kinases

are identified as important features in stratifying unperturbed breast cancer subtypes. In addition,

both understudied and characterized kinases respond dynamically across breast cancer subtypes in

response to kinase inhibitor therapy treatment. Further, I developed computational methodologies

to characterize the architecture of the kinome network and an optimization method for choosing

effective combination therapies for cancer treatment. Public protein-protein interaction databases

are compiled to create the comprehensive kinome network, consisting of only kinase to kinase

interactions. The comprehensive kinome network is clustered to identify functional modules, or

subnetworks, and some of these subnetworks are significantly enrichment for understudied and

targeted kinases. In addition, the optimization proposed here provides a computational framework

for choosing effective sets of inhibitors to use concurrently, i.e. combination therapies.
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CHAPTER 1

INTRODUCTION

1.1 Breast Cancer Subtypes: Diagnosis, Prognosis, and Treatment

Breast cancer is a highly heterogeneous disease that is divided into subtypes [1, 2, 3]. These

subtypes were discovered using classical experimental methods in combination with molecular

profiling. Historically, breast cancer has been divided into subtypes using histology, gene expression

(microarrays, next-generation sequencing), and mutations in the genome [4]. Breast cancer subtypes

are separated into two major groups: HER2-enriched/Luminal and Triple-Negative. These major

groups have different receptor statuses with respect to three different receptors (estrogen receptor:

ER, progesterone receptor: PR, Human Epidermal Growth Factor Receptor 2: HER2) and clinical

prognosis [4, 5, 6, 7].

The Luminal A and B subtypes are the most prevalent types (approximately 70%) of breast

cancer in the general population [4, 7]. These tumors are derived from the luminal cells on the inner

lining of the mammary ducts in the breast, hence their name [7]. Tumors in these subtypes can be

ER- and/or PR-positive but are usually HER2-negative [4, 7]. Of all of the breast cancer subtypes,

Luminal tumors have the best prognosis, highest survival, and lowest recurrence rates [4]. These

tumors are generally driven by the PI3K/AKT/MTOR pathway [7, 8, 9].

The HER2-enriched subtype accounts for approximately 15% of all breast cancers [4]. These

tumors are ER- and PR-negative but are positive for HER2. Treatment efficacy with chemotherapy

greatly increased with the use of HER2 inhibitors. Current standard of care for this tumor type in-

volves treatment with a combination of chemotherapy and trastuzumab (Herceptin), a HER2/ERBB2

inhibitor [10].

Triple-negative breast cancer is a particularly aggressive group of subtypes that tends to have

poorer prognosis [4]. This group is divided into two different subtypes: Basal-like and Claudin-low

[11]. Both Basal-like and Claudin-low subtypes cannot be treated with hormone therapy due to
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their negative receptor status and targeted therapies have yet to be FDA approved for these specific

subtypes [12]. The tumors are ER-, PR-, and (mostly) HER2-negative and are derived from the basal

cells on the outer lining of the mammary ducts [4, 5, 6].

While these subtype classifications have helped tremendously in the identification of this hetero-

geneous disease, treatment based on these data have fallen short [3, 7, 13, 14]. The drug therapies

designed to treat this set of diseases largely target the kinome, namely at the level of post-translational

modifications. The direct changes occurring in the cell after treatment with targeted therapies are

happening down stream of gene expression changes in the cell. These targeted therapies are mostly

composed of kinase inhibitors, drugs that inhibit the activity of particular kinases in cancer cells.

Studies of the level at which these therapies are acting in cells are very limited but can provide

unique insights into establishing effective therapies for each breast cancer subtype and, eventually,

individual patients.

1.2 Kinases and Their Role in Cancer

Protein kinases are key components of cellular signaling pathways, mediating a vast array of

cellular processes. With over 500 members, this family forms a core component of intracellular

signaling by interacting with each other as well as other proteins to form a network of interactions.

While still poorly understood, dysregulation of this network of kinases, or the kinome, is implicated

in many diseases, with cancer perhaps being the prototypical example. For instance, key kinases

have been labeled oncogenic due to their aberrant regulation [15]. Similarly, protein kinases are drug

targets of great interest, with numerous clinical trials underway and several kinase inhibitors already

having been approved for use in clinical therapies [16]. While kinase inhibitors have been shown

to be effective for certain cancers, some of the cancers treated circumvent the therapies through

“reprogramming” [17].

Rich systems exist downstream and upstream of well-known kinases, e.g. networks of ser-

ine/threonine and tyrosine kinases, many of which are understudied and untargeted by chemical

probes. Kinases deemed understudied or untargeted are crucial in these signaling networks and

help to mediate a cell’s response to a drug therapy or therapies [18]. Lack of information regarding

function, interactions with other proteins, etc. for a particular kinase does not dictate how important a
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particular kinase is in the signaling network. Understanding how network perturbation can reestablish

normal behavior or cell death is essential for the development of potential new therapeutic targets

and cancer treatment strategies.

1.3 Methods for Quantifying Kinase Function

While its importance is recognized, our understanding of the architecture and dynamics of the

kinome in cancer and in response to therapy is severely limited. This is in part due to the difficulty of

experimentally characterizing its behavior. Traditional experimental techniques typically allow for

only a small fraction of the entire kinome to be studied at any given time (∼5-10%) [17]. The most

common experimental method for quantifying the levels of proteins in cell lysates is via Western

blotting [19]. This method requires the use of specific antibodies that bind to particular forms of

proteins if any posttranslational modifications are to be detected. One of the major drawbacks of

this method is that each protein of interest must have a specific antibody, which may not exist, to be

able to quantify its levels in the cell lysate [19]. Additionally, each lane on the gel for this method is

used for a single protein, making this method very labor intensive (or impossible) when trying to

analyze more than a handful of proteins [19]. Another method for quantifying protein levels is the

‘Reverse-phase’ Protein lysate microarray Assay (RPA), which is a method similar to gene expression

microarrays but for proteins [20]. This method allows many proteins to be quantified at once, which

is an improvement on the Western blot, but still requires the use of specific antibodies to pull down

proteins of different forms, similar to the Western blot [20].

Gary Johnson’s lab has developed a technology, Multiplexed Inhibitor Beads coupled with Mass

Spectrometry (MIB/MS), that allows for a global capture of kinases that bind to the beads in a sample.

In the MIB/MS method, kinase inhibitors, which bind preferentially to functional forms of kinases,

are bound to sepharose beads. Cell lysates are run over the beads to preferentially pull down the

functional kinase forms in the sample. The beads are washed off and the proteins remaining are

run on LC-MS/MS to determine the species of the proteins that bound to the MIBs [17, 21]. The

outcome of one of these runs allows for a global snapshot (over 85%) of the cell’s functional kinome,

which means we can analyze any changes in posttranslational modifications to kinases.
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While the MIB/MS technology gives the opportunity to get a global view of the functional

kinome, it does have some aspects that should be considered when analyzing and interpreting data

from it. The MIBs take advantage of the affinity of the proteins to the kinase inhibitors that are

bound to the beads to pull down the functional kinases in the cells. This does preferentially pull

down functional kinases in the lysate but other proteins do compete for binding to the beads. Because

of this, the final quantification of the levels of functional kinases is directly affected by the other

types of proteins in the cell lysate. Another consideration is the competition for binding to the beads

among just the kinases. The beads with varying kinase inhibitors, each having its own binding profile

across the kinases, are pooled together. Each kinase inhibitor has a different affinity to each of the

kinases in the lysate so the kinases compete with each other to bind to the beads to be in the final

quantification. While these aspects do need to be considered when interpreting the quantification

using this technology, it is important to note that all biological quantifications are biased in some

way but that does not make them useless in providing biological insight.

1.4 Clinical Treatment

Current clinical treatments using single therapeutic agents are not very effective across the breast

cancer subtypes due to poor drug targets or cancer tissue/cells reprogramming [22]. Polypharma-

cology and drug combinations are fields with high potential to address these issues. Many drug

combinations are currently in clinical trials to test their efficacy over their individual components

and a few have been successful already [23, 24]. Drug combinations differ from polypharmacology

because they are a set of drugs administered together, not a single agent with multiple targets [25, 26].

Currently, there is no systematic way to select inhibitors to compose effective combination therapies

(the use of multiple kinase inhibitors together) [7, 27]. Serial treatment of drugs has repeatedly led to

failure but initial treatment with multiple drug therapies at the same time can do significantly better

[22].
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1.5 Computational Methodologies Used to Find Patterns in High – Throughput Data in Can-

cer

Computational approaches for characterizing and analyzing intracellular mechanisms in cancer

have a strong history, particularly with regard to gene expression. The identification of specific

gene expression profiles from microarray data has been used to discriminate breast cancer subtypes

using unsupervised clustering with correlations to potential response to treatment [28, 29]. These

approaches are particularly strong with breast cancer subtypes that have genetic mutations specifically

tied to changes in gene expression [28, 29]. However, several breast cancer subtypes are not well

characterized by these gene expression signatures because the difference between cancerous cells and

normal tissue is in the activation levels of multiple kinases rather than changes in gene expression

[29]. Current inhibitor therapies largely rely on alteration of protein kinase activity rather than kinase

expression. Thus, understanding the activity state of the kinome is critical for both cancer subtype

characterization and understanding systematic effects of inhibitors. There is a great need to develop

approaches for defining the kinome through gene expression profiles and kinase activation data.

Many computational methods (supervised and unsupervised) exist for analyzing large data sets like

these.

Principal Component Analysis (PCA) is a dimension-reduction method commonly used in

the analysis of high-dimensional data sets [30]. PCA projects data onto a lower dimension space

for classification and interpretation. PCA ranks the principal components based on the amount of

variance accounted for in the data by a particular component. The first principal component (PC) will

account for the most variation in the data set, the second component will account for the next highest

amount of variation, and so on. In addition to PCA, regression methods can be used to determine

which features (i.e. proteins/kinases, genes) are important for describing the variation in the data set

[31, 32].

To better understand what kinase activities discriminate between subtypes, a variety of feature

ranking approaches are available [33]. Generally, the metrics generated by such approaches measure

how much information a particular feature adds to a classification that discriminates between two

classes. The features that provide the most information to distinguish the two classes in question will

be ranked at the top.
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To classify as well as investigate how many features are needed to distinguish subtypes, Support

Vector Machine (SVM), a kernel-based machine-learning methodology that determines the separation

of subtypes based on features in a data set, can be used [34]. This thesis will primarily focus on

kinases as features. SVM can be utilized in combination with a “leave-one-out cross-validation”

(LOOCV) strategy to assess precision, sensitivity, and specificity metrics for the classifier [35, 36].

This SVM can be trained on data and tested on any future samples collected.

1.6 Network Clustering Methods for Characterizing the Architecture of the Kinome

Many types of network clustering algorithms exist and the types of algorithms encompass both

deterministic and nondeterministic algorithms [37]. The work presented here will focus on two

algorithms, FastGreedy (deterministic) and SpinGlass (nondeterministic). Because FastGreedy is a

deterministic algorithm, the results of clustering a network will always be the same. This algorithm

takes a bottom-up approach by starting with individual nodes (subnetworks) and merging them

based on finding the subnetwork configuration that gives the maximal modularity score for all

subnetworks [38]. SpinGlass is a nondeterministic algorithm developed originally in statistical

physics for clustering nodes on a lattice. This algorithm is also a bottom-up approach but, unlike

FastGreedy, the result of running this algorithm on the same network can vary from run to run

because seed nodes are randomly chosen at the beginning of a run [39, 40, 41].

1.7 Existing Mathematical Frameworks for Choosing Combination Therapies

The concept of intelligently choosing individual agents to combine to make an effective combina-

tion therapy is not new. A variety of studies to this effect have been done within the last few decades.

The experimental data informing these decisions has recently grown to the point of computational

usefulness on a large scale [42]. Choosing drug combinations is experimentally intractable. The

FDA has approved over 1500 compounds; therefore, to test all of these drugs individually in all

biological indications would be experimentally and logistically challenging even before the added

complexity of drug combinations [43, 44, 45]. Some experimental design work has helped to reduce

time and money spent on experiments needed to search the possible drug combinations [43]. Unsu-

6



pervised clustering of high-dimensional data has helped identify important genes/proteins in cancer,

in particular [46].

In addition to unsupervised clustering of data, some methods exist to predict effective com-

bination therapies for specific contexts [47]. Most methods focus on a small number of proteins

(usually a pathway). In these methods, a single therapy is selected and pathway information is used

to decide on a therapy to add to the original treatment [3, 22]. Many computational methodologies

have been developed to help address this problem that use a variety of quantitative techniques. These

techniques include quantifying individual drugs and drug combinations using synergy measures (i.e.

combination indices) [48, 49, 50], pathway modeling using Ordinary Differential Equations (ODEs)

or logic modeling [51, 52], network analyses [53, 54], and optimization [55, 56].

One shortcoming of previous methods is the exclusion of drug information regarding absorption,

distribution, metabolism, and excretion (ADME) processes when combining drugs [42]. This does

rely on experimental data to inform the computational methods, which can slow down computational

assistance, but this information is critical when combining drugs for patient use. Another factor

that has not been incorporated into existing computational methodologies is off-target effects of

drug treatments [42]. [56] does incorporate some of these shortcomings of other methods by using

optimization to minimize off-targets and, to an extent, adverse drug effects but fails to incorporate

other clinically relevant aspects of using certain drugs (i.e. monetary cost, side effect information,

etc.).

1.8 Outlook on Utilizing Computational Approaches Clinically to Aide in Diagnosis and

Treatment of Cancers

Prediction Analysis of Microarray 50 (PAM50) is an example of computational work that is

being applied in the clinic for diagnosis of the breast cancer subtypes [57]. While PAM50 is a step in

the correct direction, this diagnostic tool does little to provide information regarding which treatment

would be most effective. PAM50 performs well to be able to distinguish the Luminal A and B

subtypes in patients but has trouble detecting accurately TNBC tumors [58]. This is largely due to

the fact that Basal-like and Claudin-low tumors are truly different diseases from the Luminal/HER2-

enriched subtypes [58]. Additionally, heterogeneity within the same class of tumors between patients,
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not to mention inter-tumor heterogeneity within one patient or intra-tumor heterogeneity, makes it

difficult to determine a generalized effective therapy for a particular class of tumors. Personalized

medicine is the next “big” therapeutic approach for treating a variety of cancer types.

Due to the amount of data that needs to be collected and analyzed, computational approaches

will allow for the identification of effective therapies on a patient-by-patient basis. Covering the

entire realm of possible therapeutics (and all combinations thereof) by simply performing more

experiments with many different therapies (and combinations of therapies) is not feasible. Using

computational and modeling methods to explore the possible therapeutics for a given tumor class is

much more feasible and can guide experiments to the most likely effective options for therapy.

1.9 Thesis Contributions

In this work, I use computational methods to assess the state of the kinome before and after

inhibitor treatment, to characterize the architecture of the kinome network, and to choose effective

combination therapies. Chapter 2 uses machine-learning techniques to identify functional kinase

profiles that are important in distinguishing breast cancer subtypes. Chapter 3 presents a method

for clustering the kinome network into functional modules (subnetworks) and results of enrich-

ment analyses in the identified subnetworks. In Chapter 4, an optimization method for choosing

combination therapies based on relevant biological information is proposed. Overall, this work

provides quantitative characterization of the kinome and its importance in breast cancer diagnosis

and treatment.
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CHAPTER 2

PROTEOMIC ANALYSIS DEFINES KINASE TAXONOMIES SPECFIC FOR SUBTYPES
OF BREAST CANCER

2.1 Introduction

Breast cancer has two primary subtypes that includes luminal A and B as well as the majority of

HER2+ breast cancers and triple negative breast cancer (TNBC) that can be divided into basal-like

and claudin-low [1]. Interestingly, basal-like breast cancer using molecular taxonomies is as different

from luminal and HER2+ breast cancers as lung cancer, leading to the proposal that basal-like breast

cancers are in fact a unique disease [59, 60]. Estrogen and progesterone receptor dependence and

HER2 addiction define vulnerabilities in luminal/HER2+ breast cancers. However, in basal-like and

claudin-low triple negative breast cancer, there are no oncogenic drivers that define a vulnerability

that can be therapeutically targeted.

Even with the growing databases of genomic information for breast cancers, it is often still

unclear how molecular taxonomies translate to phenotype. Additional methods characterizing

proteomic taxonomies are needed to understand signaling networks, particularly of protein kinases

due to their druggability. Important for this analysis of the breast cancer kinome is a characterization

of understudied kinases, representing nearly half of the kinome and lacking essential functional

characterization as well as molecular tools for their manipulation and study [18]. These understudied

kinases need to be functionally integrated into kinase networks for a global understanding of kinome

dynamics to be achieved both at baseline and in response to perturbation.

To this end, we have developed methods using multiplexed inhibitor beads (MIBs) coupled

with mass spectrometry (MIB/MS) that have the ability to bind and identify a large percentage of

kinases in the human kinome [17, 21]. By RNA-seq, most cell lines express 350 or so kinases

and our MIB-binding profiling captures a significant percentage of the expressed kinome [61]. In

the current study we have compiled the baseline kinase MIB-binding profile using MIB/MS for
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15 cell lines across breast cancer subtypes in addition to patient tumors. Using feature selection

methodologies, it was possible to define kinase taxonomies for breast cancers based on the MIB/MS

profile of 50 kinases among the kinases captured by MIB/MS that includes understudied protein

kinases, lipid and metabolic kinases. Using the baseline MIB-binding state in a machine-learning

framework further allows accurate classification of breast cancer in both cell lines and primary

tumors. Kinases identified within these distinguishing profiles are distributed throughout the kinome,

representing multiple subnetworks with a significant representation of understudied kinases. The

findings demonstrate that determining the functional kinome based on MIB-binding has prognostic

value in defining the integration of signaling networks that is not currently possible using genomic

strategies.

2.2 Results

2.2.1 Multiplexed Kinase Inhibitor Beads capture kinases from every subfamily and

provide a means to assay understudied kinases

Multiplexed kinase inhibitor beads (MIBs) are a set of Sepharose beads each with a specific

covalently-attached kinase inhibitor [17, 62]. Coupling MIB gravity-flow affinity chromatography

with mass spectrometry (MIB/MS) provides the ability to capture and identify kinases from whole

cell lysates on a kinome scale. Binding of kinases is dependent on the functional expression of the

kinase and affinity for the different immobilized inhibitors. To determine the inhibitor bead selective

distribution of bound kinases, we assayed kinase capture by six different inhibitors individually

covalently coupled to Sepharose beads [21, 62]: CTx-0294885, VI-16832, PP58, Purvalanol B, and

two custom synthesized molecules, UNC-8088A and UNC-2147A. Four cell lines representative

of breast cancer subtypes: HCC1806 (basal-like), SUM159 (claudin-low), MCF7 (luminal), and

SKBR-3 (HER2-enriched) were used for analysis (Figure 2.1A). Of these, CTx-0294885 (CTx)

and VI-16832 (VI) captured the most total kinases (265 and 254, respectively) and the most unique

kinases (32 and 29, respectively). The other four beads bound a lesser number of kinases (PP58,

194 kinases; Purvalanol B, 164; UNC-8088A, 162; UNC-2147A, 130, Figure 2.1B). Although

UNC-8088A binds the fewest unique kinases (only five), these include the atypical bromodomain

and extraterminal (BET) domain-containing family of chromatin readers BRD2, -3, and -4 [63].
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Hierarchical clustering of identified kinase peptides shows each bead binds a unique set of kinases

and UNC-2147A displays the most distinct binding profile selectively enriching the AGC kinases

(Figure 2.1C).

Understudied kinases make up a large proportion of kinases captured across the inhibitor beads,

ranging from 23-34% of all kinases captured for any individual bead (Figure 2.1D). Understudied

kinases [18] represent approximately 40% (Table S2) of the expressed kinome. Characteristics of

understudied kinases includes: i) integration of the protein kinase in signaling networks is poorly

defined, ii) function and/or regulation is poorly defined, iii) activation loop phospho-antibodies and/or

IHC grade antibodies may not exist, iv) lack of selective chemical tools for use in characterization of

function (e.g., small molecule inhibitors), v) RNAi and CRISPR/Cas9 for knockout/altered expression

and cDNAs for overexpression may be primary tools, vi) kinase knockout or altered expression may

not provide readily assayable phenotypes (e.g., growth, migration, apoptosis or in vivo function in

mouse organ physiology).

Across all MIB/MS runs, 381 kinases in total were identified. Of these, 35 are metabolic and

lipid kinases, 346 are protein kinases of which 142 can be considered understudied (41% of protein

kinases identified) (Figure 2.1E). The overall distribution of kinases bound indicates CTx and VI

are clearly pan-kinase inhibitors (Figure 2.1F, circle size proportional to number of unique peptides

identified per kinase). Purvalanol B also binds kinases across families but to a lesser extent. PP58 has

some preference for tyrosine kinases (TKs), and UNC-8088A has preference for TKs, CMGC, and

atypical kinases over other families. UNC-2147A, designed for interaction with the binding pocket

of AKT, has a strong affinity for AGC kinases lacking in most of the other five kinase inhibitors.

CTx, VI, and PP58 have a strong affinity for the PRKDC (DNA-PK) not seen with the other three

inhibitors. All inhibitor beads display high affinity for many understudied kinases (green circles and

text). The most-highly captured understudied kinases across the four cell lines were GAK, SLK,

MRCKB, AAK1, TBK1, and NEK9.

Kinases known to be oncogenic drivers in general and/or nodal signaling kinases display an-

ticipated MIB-binding profiles across the different breast cancer subtype cell lines (Figure 2.1G).

For example, SKBR3 (luminal HER2+) and MCF7 (luminal) cells have abundant AKT1/2 MIB-

binding. Other well-characterized kinases are highly represented in a specific cell line, such as EGFR

and FAK1 in HCC1806, EPHA2 and UFO (AXL) in SUM159, IGF1R and KS6B1 (p70 S6K) in
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MCF7, and HER2/ERBB2 and TGFBR1 in SKBR-3 cells. Several understudied kinases also show

high selectivity in functional MIB-binding including CDK13, DMPK, SIK3 and TESK1 in MCF7

and CLK4, CDK14 and NLK in SUM159 cells (Figure 2.1H). Figure 2.1I shows kinases whose

MIB-binding is greatest in each of the four cell lines, proportional to the number of unique peptides

identified. Unsupervised hierarchical clustering illustrates the differences in MIB-binding throughout

the kinome for each cell line (Figure 2.1J). These findings indicate the four cell lines display a unique

MIB/MS binding profile for both well-characterized and understudied kinases.

2.2.2 Integrating understudied and well-characterized kinases by kinome proteomic

profiling defines breast cancer subtypes

We characterized the baseline kinome of 15 breast cancer cell lines representing the four major

breast cancer subtypes defined by gene expression profiles [1]. Cell lysates were passed over an

affinity column composed of the six kinase inhibitor beads and processed for LC-MS/MS (Figure

2.2A). Using label-free peptide quantitation measurements a total of 360 kinases were identified

having at least 3 unique peptides. Claudin-low and basal-like cells (TNBC) are readily distinguished

from HER2-enriched/luminal cells by MIB profiling of the cellular kinomes shown by consensus

clustering in Figure 2.2B. The basal-like HER2-amplified cell line HCC1954 clusters with basal-like

lines by kinome profile and is thus separated from the luminal HER2+ lines. Interestingly, the

SKBR-3 HER2-enriched cell line shows an intermediate clustering between HCC1954 and other

HER2+/luminal cell lines, and a previous report demonstrated SKBR-3 patterns as basal-like in

functional RNAi screens [64]. Hierarchical clustering of kinases further separated cell lines with

the claudin-low phenotype, SUM159, MDA-MB-231 and MDA-MB-468 (basal-like), showing the

greatest difference from other cell lines (Figure 2.2C). SUM229 cells have two subpopulations, a

basal-like EpCAM positive/E-cadherin positive (SUM229pos) and a claudin-low EpCAM negative/E-

cadherin negative population (SUM229neg). The two populations are genomically similar by exome

sequencing, but differ epigenetically [65] and cluster together based on their kinome MIB-binding

profile (Figure 2.2C).

Principal components analysis (PCA) of baseline MIB-binding kinase profiles revealed sig-

nificant differences between subtypes within the first principal component, clearly separating

triple-negative from HER2-enriched and luminal cell lines (Figure 2.2D). Further separation of
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the triple-negative group into claudin-low and basal subtypes is also readily achieved. Appreciable

separation of HER2-enriched cell lines from luminal cell lines is observed in the second principal

component, as is that of the basal-like/HER2-amplified cell lines from the basal-like and claudin-low

lines. A loadings plot, which defines relationships between MIB-binding for each kinase, highlights

those kinases with significant variation within subtypes, with numerous understudied kinases being

apparent (Figure 2.2E). Examples of understudied kinases with differences in MIB-binding among

cell lines include ADCK1, PKN3, STK17A and TESK1. Similarly, well-characterized kinases known

for their relevance in breast cancer are observed, such as ERBB2, EPHA1, MET and TGFBR2.

Supervised differential expression analysis of MIB-captured kinases from claudin-low/basal-

like (TNBC) versus HER2/luminal cell lines defined several statistically significant differences

(Figure 2.2F). Multiple Ephrin receptors (EPHA2/A7/B2) and members of the TGF-beta superfamily

(TGFBR2, ACVR1) are among the kinases most associated with TNBC while ERBB3 and RET

are over-represented in HER2+ and luminal cell lines. Many understudied kinases display higher

MIB-binding in HER2+/luminal cells, including DMPK, ADCK1, and TESK1. Individual plots

for selected kinases are shown in Figure 2.2G, showing distinctive patterns of MIB-binding across

subtypes.

2.2.3 Kinase MIB-binding activity is independent from mRNA expression level

Our results clearly demonstrate that kinase MIB-binding displays strong variation across breast

cancer subtypes. Global gene expression measurements have similarly shown subtype-specific

dynamics, with expression of selected gene sets being utilized in subtype determination and diagnosis

[59, 66, 67]. We compared baseline RNA-seq measurements with corresponding MIB-capture

of protein kinases to assess the relationship between transcript abundance and functional kinome

behavior. Comparison of kinase transcript expression with MIB-binding using label-free quantitation

of kinase peptide abundance for each subtype showed relatively low correspondence, with correlation

coefficients of 0.25 or below, implying that less than 7% of the observed variation between MIB-

binding and RNA abundance in breast cancer subtypes is explained through this relationship (Figure

2.3A–D). These results are consistent with earlier work that found the average correlation between

gene expression and protein abundance in TCGA colorectal cancer samples to be approximately 0.47,

with a lesser correlation of 0.23 when comparing gene expression and protein variation [68]. The low
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correlation between RNA-seq and MIB-binding suggests that the use of MIB/MS provides a picture

of kinome behavior complementary to that provided through expression measures. In particular, these

results support the potentially significant role of post-translational and transcriptional regulation in

kinome dynamics [69, 70]. The relationship between these two measures is shown as a scatter plot

for cell lines representing the basal subtype in Figure 2.3A (left panel), with the Z-scores for both

read count and MIB-binding plotted on the x- and y-axes, respectively, and further emphasize the

lack of strong correlation between these two measures of kinase behavior. Kinases along the gray line

(y=x) represent those where transcript expression directly corresponds to MIB-binding (i.e. a unit

increase in expression corresponds to a unit increase in MIB-binding). A point above the gray line

in the scatter plot indicates a kinase that has more MIB-binding than expected given the expression

level of that kinase in that subtype; these kinases are referred to as “functionally dominant” for

their increased MIB-binding relative to transcript expression. Examples of functionally dominant

kinases in the basal-like subtype are KCC2A, HCK, and EPHA5; in the claudin-low subtype KCC2A,

MK10, and FGFR2; in the HER2-enriched subtype KCC2A, HCK, and EPHB1; and in the luminal

subtype KCC2A, HCK, and FYN. Similarly, points below the gray line indicate kinases that have less

MIB-binding than expected given the expression level of that kinase and are labeled as “expression

dominant” kinases. Examples of expression dominant kinases include KPYM, TIF1B and K6PL.

The significant number of both functionally and expression dominant kinases common across several

subtypes is readily detected by MIB/MS and suggests a post-transcriptional regulation of different

kinases likely related to differential covalent regulatory modifications and protein stability. Such

proteomic behavioral properties can not be detected by RNA-seq. In addition, recombinant kinases

often used to profile on-target/off-target inhibitor profiles are not representative of endogenous

kinases in cell lysates that have associated regulatory subunits and post-translational modifications

[71, 72]. These data describing endogenous kinases captured in cell lysates by MIBs provides

an integrated perspective, with both understudied and well-characterized kinases having similar

functional versus expression dominant properties as well as demonstrating the potential for common

mechanisms of regulation. Furthermore, the properties of a subset of characterized and understudied

kinases suggest the dynamic regulation of a subset of the kinome not previously detected using other

methods.

14



In contrast to the lack of correlation between expression and MIB-binding of specific kinases,

there are a significant subset of kinases that show a high MIB-mRNA correlation across cell lines,

including some having a correlation value greater than 0.8. These include ERBB2, expressed at

high levels in HER2+ breast cancer, as well as PDPK1 and several other kinases such as PKN1 and

others (Figure 2.3E), consistent with these kinases having transcriptional regulation as an important

component of their overall functional output. Similar to the low correlation observed in Figure

2.3A-D, the distribution of the Pearson correlation coefficients of all kinases across all 15 cell lines

shows a low correspondence between MIB-binding and RNA-seq (Figure 2.3F), with the mean

correlation being 0.2. As also observed in Figure 2.3G there are a number of kinases that are only

observed with one of the applied methods, MIB/MS or RNA-seq. This discrepancy is partly due to the

50+ RSEM read threshold used here as a positive identification in RNA-seq, potentially missing very

lowly expressed kinases. Similarly, kinases not observed with MIB/MS but identified in RNA-seq

may be missed due to being in an inactive, nonfunctional state and/or failure of chosen inhibitors to

bind these kinases with adequate affinity. Pseudokinases that do not bind ATP will generally not be

captured by MIBs.

2.2.4 Kinome profiles accurately define tumor biopsies

Cumulatively, our data show measurement of kinases by MIB capture allows integration of a

significant fraction of the expressed kinome, including both understudied and well-characterized

kinases. MIB-binding profiles define a taxonomy of breast cancer determined by the functional

behavior of protein kinases. This functional taxonomy is used below to define subnetworks within

the kinome that integrates understudied and well-characterized kinases that is not possible using

transcriptome data.

Given both the variation in kinase MIB-binding profiles observed across subtypes, as well as their

differing information content when compared to RNA expression measurements, we sought to better

understand which kinases were key nodes in the subtype-selective baseline breast cancer kinome. To

address this question we investigated the MIB-binding behavior of kinases across all four subtypes.

We predicted three major classes of kinases: 1) those that show variation in MIB-binding across

all subtypes, 2) those that exhibit more limited subtype-specific behaviors, and 3) kinases that have

nominal distinguishing behavior. Standard application of PCA identifies those kinases displaying
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the greatest variation across all samples (“pan-subtype kinases”; Figure 2.2E) and thus we used a

feature selection approach based on the Bhattacharyya distance [73] to determine subtype-specific

kinases that are highly distinguishing/informative for a single cancer subtype (see Methods). The

combined set of the 50 most informative kinases is shown in Figure 2.4A, with column ordering

based on similarity of the kinome profile and recapitulating similarity between claudin-low and basal

subtypes as well as HER2-enriched and luminal. The HER2+ cell line that profiles as basal-like

(HCC1954, in purple) is displayed separately. Recognized cancer-related kinases are again observed

in this set, including ERBB2, FGFR2, PTK6, RAF1 and RON (MST1R) as well as 22 understudied

kinases. Using the 50 most informative pan- and subtype-specific kinases in Figure 2.4A, we

assessed their effectiveness in subtype identification using a support vector machine (SVM) classifier

along with leave-one-out cross-validation. We found that the ability to classify a cell line’s subtype

from measurement of these kinases was highly accurate, with perfect precision and specificity for

claudin-low and basal subtypes (Table 2.2).

The kinases shown in Figure 2.4A have the greatest variation within and across subtypes and

are representative of each of the major subfamilies of kinases in addition to three metabolic kinases

captured by MIBs (Figure 2.4B). Under the assumption that TNBC (represented by basal/claudin-

low cell lines) and HER2/luminal breast cancer are separate diseases, we again used unsupervised

feature selection of MIB/MS data to identify kinases that distinguish TNBC (basal/claudin-low)

from HER2/luminal breast cancer [73]. As shown in Figure 2.4C, obvious differences in the kinome

profiles of TNBC and HER2/luminal are observed, demonstrating the unique functional phenotypic

features of the kinome in the two different breast cancers. Sixteen understudied kinases showed

strong variance between TNBC and HER2/luminal breast cancer, with higher-ranked understudied

kinases being DAPK3, ADCK1, MRCKA (CDC42BPA), STK17A, DMPK and VRK2.

Using the kinases chosen from feature selection in Figure 2.4C, we evaluated the ability to use

MIB-binding profiles to define subtypes of human HER2+ needle biopsies and TNBC breast tumors

(Figure 2.4D & E). Diagnostic needle biopsies of 2 patient tumors (2 HER2+) having ~1 mg of total

protein were processed using MIB enrichment. With just 1 mg of tumor lysate protein, the total

number of kinases purified from each biopsy ranged from ~200 to 275. Utilizing the kinases in

Figure 2.4C in a SVM classifier, it was possible to clearly identify HER2+ and TNBC primary patient

tumors. As with cell lines, application of PCA to MIB-binding profiles showed a clear separation
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between TNBC tumors and HER2+ tumors (Figure 2.4F). Kinases driving the variation within the

data included ERBB2 as expected and several understudied kinases including TESK1 and DMPK

(Figure 2.4G). Thus, the MIB-binding activity of as few as 50 kinases is sufficient to discriminate the

functional phenotypic nature of the kinome in breast cancer.

2.2.5 A functional interaction network of MIB-binding kinases

To determine the basic architecture of the kinome using MIB-bound kinases, we compiled

protein interaction and phosphorylation data from multiple data sources (HIPPIE, HPRD, I2D, Phos-

phoSitePlus, Reactome; see Methods) and established a functional interaction network among 246 of

the 254 kinases commonly identified in the panel of 15 breast cancer cell lines. Spectral clustering

of this network further enabled the identification of 16 subnetworks (Figure 2.5A). Understudied

kinases (green glyphs) are widely distributed across all the major subnetworks, demonstrating these

poorly characterized kinases are integrated into subnetworks with well-characterized kinases. The 50

distinguishing kinases identified for cell lines in Figure 2.4A (triangle glyphs) were also distributed

throughout the network and associated subnetworks. The scope of subnetwork coverage by these

kinases suggests that their predictive value in our subtype classification comes from their distribution

across many subnetworks, providing an overall estimate of the state of many functional processes

simultaneously. Example subnetworks with enriched GO terms for the innate immune response

(subnetwork 1) and cell division and mitosis (subnetwork 2) are shown in Figures 2.5B and 2.5C,

respectively.

2.2.6 Kinome MIB-binding profile and response to drug perturbation

To assess how the baseline kinome and associated understudied kinases change in their functional

MIB-binding profile in response to targeted drug perturbation, we exposed four cell lines to three

subtype-relevant kinase inhibitors: SUM159 and HCC1806 with trametinib (a MEK1/2 inhibitor);

SKBR3 with lapatinib (a HER2/EGFR inhibitor); and MCF7 with buparlisib (a PI3K inhibitor).

The four inhibitors each strongly inhibited growth of the treated cell line (Figure 2.6A). We have

previously shown that the kinome is dynamic and rapidly adapts to targeted perturbation by kinase

inhibitors [17, 21]. This adaptive response is readily observed by changes in the MIB-binding profiles

for each drug treatment (Figure 2.6B), with SUM159 cells showing the strongest dynamic response
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to drug perturbation relative to the other cell lines, but each line clearly shows an adaptive response

of the kinome measured by MIB-binding profiles. Figure 2.6C shows the kinases that are unique to

each subtype defined in Figure 2.2C (Table 2.3).

Scatter plots of the SUM159 and HCC1806 dataset defines specific kinases and kinome sub-

networks that drive the adaptive response to MEK1/2 inhibition that are represented by both un-

derstudied and well-characterized kinases (Figure 2.6D). Understudied (i.e. NEK2 and PASK) and

well-characterized (i.e. DDR1 and EPHA4) kinases respond differently in the two subtypes (basal-

like and claudin-low) when they are treated with the same kinase inhibitor (trametinib). The kinases

in the subnetworks defined in Figure 2.5 also respond uniquely in the basal-like and claudin-low

subtypes when treated with trametinib (Figure 2.6E). The adaptive kinome response measured by dy-

namic changes in MIB-binding profiles is more clearly seen when specific subnetworks are analyzed

(Figure 2.6F). The global response of the seven largest subnetworks to these drug perturbations is

shown with their functional annotation as estimated from Gene Ontology terms and KEGG pathway

enrichment shown on the x-axis and MIB-binding response reported on the y-axis as a mean across

all cell lines and drugs. Subnetworks have heterogeneous responses, with some subnetworks being

fairly coordinated in response and others having kinase members acting in a more strongly divergent

manner. For instance, subnetwork 3 (SN3) is enriched with many kinases relevant to cytoskele-

ton, adhesion and motility and has many of its members strongly up-regulated in response to drug

perturbation. In comparison, SN2, involved in cell cycle and cell division, contains both strongly

up-regulated and down-regulated kinases, with the largest responses being loss of MIB-binding,

consistent with the inhibition of cell growth. Understudied kinases (green labels in Figure 2.6F) often

display large responses to drug treatment within a given subnetwork, demonstrating these kinases

actively contribute to adaptive kinome reprogramming in response to targeted kinase inhibition.

Similarly, a more detailed look at targeted inhibition of specific subnetworks for each of the cell

lines shows the dynamic response of the kinome to be highly dependent on the drug, subtype and

subnetwork context (Figure 2.6G, Table 2.4). More broadly, the response of kinases in subnetworks

is consistent with a unique functional regulation of the kinome in cancer subtypes and in response to

different perturbations.

18



2.3 Discussion

While the creation of molecular taxonomies has established the existence of subtypes in many

tissue-specific cancers, how these taxonomies can be leveraged to characterize phenotype or to guide

the development of targeted therapeutics remains unclear. A complication for improving therapeutic

intervention with targeted kinase inhibitors in cancer is the extensive number of understudied kinases,

whose poor characterization presents significant challenges to understanding their role in emergent

processes such as adaptive bypass reprogramming and resistance to kinase inhibitors. Despite such

challenges, understudied kinases do have the potential as novel drug targets once their functional

integration into signaling networks is more clearly determined. Methods generally have been lacking

to capture kinases, both well-characterized and understudied, to define the functional kinome en

masse. Characterization of kinase MIB-binding in tumor cell lysates has proven to be a powerful

technique for characterizing functional architectures of the kinome that provides the capability to

identify prognostic signatures and differential response to perturbations such as targeted kinase

inhibition, as well as better establishing the integration and function of understudied kinases. This is

clearly seen in the 50 kinase profile distinguishing TNBC from HER2+/luminal breast cancer with

many of the 50 kinases representing understudied kinases.

The highest weighted understudied kinases distinguishing TNBC from HER2+/luminal breast

cancer include ADCK1 (AarF Domain Containing Kinase whose function is unclear), DAPK3

(Death-associated protein kinase thought to be involved in apoptosis), DMPK (Dystrophia myotonica

protein kinase whose function is not well-defined), MRCKA (Myotonic dystrophy kinase-related

CDC42 binding protein kinase alpha that may signal CDC42 control of the actin cytoskeleton

and is related to DMPK), STK17A (Serine/threonine kinase 17A has apoptosis-inducing activity

and is a member of the DAP kinase-related family), TLK2 (Tousled-like kinase 2 is involved

in chromatin assembly and possibly DNA repair) and VRK2 (Vaccinia-related kinase 2 that is

believed to regulate apoptosis and cell growth). Screening of the cBioPortal for Cancer Genomics

(http://www.cbioportal.org/public-portal/) indicates amplification of MRCKA (CDC42BPA) in 13-

25% of invasive breast cancer while TLK2 is amplified in 10% of invasive breast cancer and 25%

of adenoid cystic breast cancer. ADCK1, DAPK3, DMPK, STK17A and VRK2 were found to be

similarly amplified in other cancers including prostate adenocarcinoma, uterine carcinosarcoma and
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pancreatic adenocarcinoma. Prominent MIB-binding signatures combined with potential increased

expression in tumors suggests these understudied kinases have important functions for the tumor cell

phenotype that have not been characterized to date.

The dynamic nature of the kinome is clearly captured in the kinase MIB-binding profiles

characterizing baseline versus post-drug treated cells. This adaptive reprogramming of the kinome is

involved in the epigenetic development of resistance to kinase inhibitors [74]. We have proposed that

blocking this adaptive reprogramming is important clinically for making single kinase inhibitors more

durable [21]. Pre- and post-drug treatment MIB/MS analysis allows for the quantitative measure of

kinome adaptive responses and the rapid screening of combinations of kinase or epigenetic inhibitors

that would block the adaptive behavior of the kinome [17, 21, 74]. This analysis can be done in

preclinical models as well as patient trials where biopsy accessible tumor specimens are available.

We have been able to capture more than 200 kinases with as little as 300 µg of tumor biopsy protein.

Thus, MIBs provide a proteomic approach to characterize the functional state and dynamics of the

kinome and thus define therapeutic response and targetable adaptive resistance networks. Importantly,

MIBs capture both well-characterized and understudied kinases for a comprehensive measure of the

functional kinome.

2.4 Materials and Methods

2.4.1 MIB affinity chromatography

Broad spectrum Type I kinase inhibitors (CTx-0294885, VI-16832, PP58, Purvalanol B, UNC-

2147A, and UNC-8088A) were custom-synthesized with hydrocarbon linkers and terminal amine

groups and covalently attached to ECH-activated Sepharose beads as previously described [21].

Cells were rinsed in PBS and processed in lysis buffer (50 mM HEPES, 150 mM NaCl, 0.5% Triton

X-100, 1 mM EDTA, 1 mM EGTA, at pH 7.5 containing 10 mM NaF, 2.5 mM NaVO4, cOmplete

protease Inhibitor Cocktail (Roche), and 1% Phosphatase Inhibitor Cocktails 2 and 3 (Sigma)).

Tumor biopsies obtained from UNC Tissue Procurement were manually homogenized with a chilled

mortar and pestle in lysis buffer. For individual bead profiling (Figure 2.1), 2mg of total protein

was gravity-flowed over 100uL of each bead. For Figure 2.2 (cell lines), 5mg of total protein lysate

and for Figure 2.4 (human tumor biopsies), 1mg of total protein was gravity-flowed over a mixture
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of the six kinase inhibitor-linked beads (175µL total beads). Beads were washed with at least 30

volumes of high salt (1M NaCl) and low salt (150mM NaCl) lysis buffer, then 500µL of low salt

lysis buffer containing 0.1% SDS. Bound proteins were eluted by boiling with 0.5% SDS and 1%

β-mercaptoethanol in 100mM Tris-HCl, pH 6.8, 2X 15 minutes, treated with DTT (5mM, 25min

at 60°C) and Iodoacetamide (20mM, 30min in the dark at RT), and spin-concentrated to 100µL

(Millipore Amicon Ultra-4, 10K cutoff) before Methanol/Chloroform precipitation. Proteins were

trypsinized overnight at 37°C and then dried down in a speed-vac. Peptides were cleaned with C-18

spin columns (Pierce).

2.4.2 Mass Spectrometry and Analysis

Peptides were resuspended in 2% ACN and 0.1% Formic Acid. For Figure 2.1 (bead profiling)

20% of each sample was injected onto a Thermo Easy-Spray 75µm x 15cm C-18 column using

an Easy nLC-1000 in technical triplicate and separated on a 150 min gradient (5-40% ACN). For

Figures 2.2 and 2.4 (cell lines and tumor biopsies), 40% of the final peptide suspension was injected

onto an Easy-Spray 75µm x 25cm C-18 column and separated on a 300min gradient (cell lines) or a

180min gradient (tumor biopsies). For all runs, ESI parameters: 3e6 AGC MS1, 80ms MS1 max

inject time, 1e5 AGC MS2, 100ms MS2 max inject time, 20 loop count, 1.8 m/z isolation window,

45s dynamic exclusion. Spectra were searched against the Uniprot/Swiss-Prot database with Sequest

HT on Proteome Discoverer software (Figures 2.1 and 2.2) or MaxQuant (Figure 2.4). Only peptides

with medium or greater confidence (5% FDR) were considered for quantitation, and only kinases

having 3 or more unique peptides were considered for further analysis. Heat maps were generated

using GENE-E software (BROAD institute). Kinome trees were generated using Kinome Render

(http://bcb.med.usherbrooke.ca/kinomerender.php) [75].

2.4.3 RNA-seq

Total RNA was spin column purified using RNeasy Plus Mini kit (Qiagen). Library construction

was performed at the UNC Lineberger Comprehensive Cancer Center Genomics Core and the se-

quencing at the UNC High-Throughput Sequencing Facility. mRNA-Seq libraries were constructed

with 1 µg total RNA using the Illumina TruSeqTMRNA Sample Prep Kit according to the manufac-

turer’s protocol. 50-cycled single-end sequencing runs with multiplexing were produced using an
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Illumina HiSeq2000. CASAVA 1.8.2 generated bases and assessed sequence quality. The QC-passed

reads were aligned to the hg19 human reference genome using MapSplice and the alignment profile

was determined by Picard Tools v1.64 [76]. Aligned reads were sorted and indexed using SAM-

tools, and then translated to transcriptome coordinates and filtered for indels, large inserts, and zero

mapping quality using UBU v1.0. Transcript abundance estimates for each sample were determined

using an Expectation-Maximization algorithm [77]. Publicly available data from [78, 79] were also

processed using this computational method.

2.4.4 Data analysis

Hierarchical clustering, Principal Components Analysis (PCA), and feature selection were

performed in MATLAB. PCA is a commonly-used data analysis and dimension-reduction technique

that transforms variables into a set of linearly uncorrelated principal components [80]. Application

of PCA also provides the ability to assign a weight to each feature (kinase) in the data set that can be

used as a relative measure of its ability to distinguish subtypes. To identify kinases that dominate

individual PCs, kinases having weights in the 90th-percentile (i.e. those weighted in the top 10% of

weights) per PC were selected from the first three PCs and used in downstream classification tasks.

Feature selection using the Bhattacharyya distance was also used as a secondary mechanism for

ranking kinases in terms of their ability to distinguish subtypes [73]. Pairwise classification between

subtypes (e.g. basal-like subtype from all others, claudin-low from all others, etc) was iteratively

performed to identify the most informative features.

Kinases identified through feature ranking and PCA are combined to create a list of the most

distinguishing kinases in MIB-binding across the breast cancer subtypes. Subtype-specific signature

kinases are defined as the top 5% of the highest ranking kinases found using the Bhattacharyya

feature ranking coefficient for each subtype are compiled for the overall list. Pan-subtype signature

kinases are defined as the most heavily weighted kinases (top 10%) from the first three PCs are used.

Subtype-specific signature kinases are compiled from each of the breast cancer subtypes then the

global signature kinases are added (in order from most heavily weighted to less heavily weighted)

starting with PC1 kinases then moving to PC2 then to PC3 until a maximum of 50 kinases is reached

to make up the list of distinguishing kinases. A total of 50 kinases was chosen as classification

accuracy of the breast cancer subtypes plateaued at this level (Figure 2.7).
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2.4.5 Comparison of MIB-binding to transcript abundance

The Z-score is calculated by sample based on the average log2 value per kinase and using the

standard deviation of all kinases for a given sample; the samples within a particular subtype are then

averaged (Figure 2.3 A–D). The Pearson correlation calculated by subtype (Figure 2.3 A–D) is the

correlation between the MIB-binding profile to the RNA transcript levels within a single subtype.

The Pearson correlation of individual kinases (Figure 2.3F) is calculated for each kinase across the

15 cell lines (not distinguished by subtype) between MIB-binding and RNA transcript levels. The

correlation calculated by subtype (Figure 2.3 A–D) is the correlation between MIB-binding and RNA

transcript levels to see how the profiles of each data type correlate between MIB-binding and RNA.

The correlation calculated for each kinase is a correlation across cell lines to determine how a kinase

correlates across all cell lines analyzed here.

2.4.6 Prediction of subtypes

Classification of subtype based on a previously unobserved kinome signature was performed

using a Support Vector Machine (SVM). The SVM is a commonly used machine learning technique

used in supervised classification, and thus requires a training set on which to learn parameters that

can then be applied towards prediction of previously unobserved data [34]. The SVM used here was

trained on the 50 distinguishing kinases previously identified. Performance of the SVM was analyzed

using leave-one-out cross validation, where training is performed on all samples except for one and

a classification prediction being carried out for the left-out sample. Predictions are made in this

way for every sample and final sensitivity, specificity, and precision are calculated on classification

performance across all samples. Human tumors are classified into one of the major groups (TNBC or

HER2+/Luminal) or as “other” using the SVM trained on the 50 distinguishing kinases identified

from breast cancer cell line samples.

2.4.7 Network Analysis

Protein-protein interaction information was compiled from multiple public data sources for the

254 kinases analyzed in this data set and included, the Human Integrated Protein-Protein Interaction

rEference (HIPPIE) (updated 9/1/2015; [81]), Human Protein Reference Database (HPRD Release 9;
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[82]), Interlogous Interaction Database (I2D version 2.9; [83, 84]), PhosphoSitePlus (phosphosite.org

- downloaded 10/15/2015; [85]) and Reactome protein-protein interactions (downloaded 12/15/2015;

[86]). The union of all interactions between the 254 kinases was used to form a single network that

was then clustered into communities/subnetworks with the spectral method in Mathematica (ver

10.3).
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Table 2.1: Understudied kinases.
AAK1 CDKL4 MAP3K15 NEK8 PRPF4B STK36
AATK CIT MAP3K2 NEK9 PXK STK38

ADCK1 CLK1 MAP3K3 NIM1 RIOK1 STK38L
ADCK2 CLK2 MAP3K4 NLK RIOK2 STK40
ADCK3 CLK3 MAP3K5 NPR1 RIPK4 STRADA
ADCK4 CLK4 MAP3K8 NPR2 RNASEL STRADB
ADCK5 DAPK1 MAP4K1 NRBP1 SBK1 TAOK1
ALPK1 DAPK2 MAP4K2 NRBP2 SBK2 TAOK2
ALPK2 DAPK3 MAP4K3 NRK SCYL1 TAOK3
ALPK3 DMPK MAP4K5 NUAK1 SCYL2 TBCK
AMHR2 DSTYK MAST1 NUAK2 SCYL3 TESK1
ANKK1 DYRK1A MAST2 OBSCN SGK071 TESK2
BCKDK DYRK1B MAST3 OXSR1 SGK110 TEX14
BMP2K DYRK2 MAST4 PASK SGK196 TLK1
BRD2 DYRK3 MASTL PBK SGK223 TLK2
BRD3 DYRK4 MATK PDIK1L SGK494 TNIK
BRD4 EEF2K MELK PDK1 SIK1 TNNI3K

BRSK1 ERN1 MINK1 PDK2 SIK2 TP53RK
BRSK2 ERN2 MKNK1 PDK3 SIK3 TRIB1
CASK GAK MKNK2 PDK4 SLK TRIB2

CDC42BPA GSG2 MLKL PEAK1 SNRK TRIB3
CDC42BPB GUCY2D MOK PHKG1 SPEG TRIM24

CDC7 GUCY2F MST4 PHKG2 SRMS TRIM28
CDK10 HIPK1 MYLK PIK3R4 SRPK1 TRIO

CDK11A HIPK2 MYLK2 PIM1 SRPK2 TRPM6
CDK12 HIPK3 MYLK3 PIM2 SRPK3 TRPM7
CDK13 HIPK4 MYLK4 PIM3 STK10 TSSK1B
CDK14 HUNK MYO3A PINK1 STK16 TSSK2
CDK15 ICK MYO3B PKDCC STK17A TSSK3
CDK16 INSRR NEK1 PKMYT1 STK17B TSSK4
CDK17 KALRN NEK10 PKN1 STK24 TSSK6
CDK18 LMTK2 NEK11 PKN2 STK25 TTK
CDK19 LMTK3 NEK2 PKN3 STK31 TTN
CDK20 LRRK1 NEK3 PRKCI STK32A TXK
CDK7 LRRK2 NEK4 PRKG1 STK32B UHMK1

CDKL1 MAK NEK5 PRKG2 STK32C VRK1
CDKL2 MAP3K1 NEK6 PRKX STK33 VRK2
CDKL3 MAP3K14 NEK7 PRKY STK35 WNK4

Table 2.2: Specificity, sensitivity, and precision across subtypes in Leave-one-out Cross Validation.
Specificity Sensitivity Precision

Basal-like 0.9615 1 0.8571
Claudin-low 1 0.8333 1

HER2-enriched 0.9545 0.9 0.9
Luminal 1 1 1
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Table 2.3: Uniquely bound kinases to MIBs by breast cancer subtype.
Subtype Uniquely Bound Kinases

Basal-like DAPK2, DUSTY, MAST1, MAST2, NEK11, NRK
Claudin-low ADCK4, BRD2, CD11A, CTRO, HIPK3, KPCG, M3K7,

MK07, MYLK, NEK4, NEK6, NEK7, PAK7, PASK, PGFRA,
SGK1, STK33, STK39, UHMK1

HER2-enriched CDKL3, CSKP, DDR2, ERBB2, HXK1, JAK3, K6PF, KPCB
M3K13, MAK, PCKGM, RIPK3, TESK2, TRIO

Luminal BLK, ERBB4, INSRR, KAPCG, LRRK2, M3K10, MK15, VGFR3

Figure 2.1: Assessment of multiplexed kinase inhibitor beads (MIBs) for kinase capture across
breast cancer subtypes. (A) Experimental design to assess performance of six kinase inhibitor beads.
(B) Combined data from all four cell lines assayed shows CTx-0294885 binds the most number
of kinases. Number of kinases captured uniquely by each bead is shown in red. (C) Euclidean
hierarchical clustering kinase peptides bound by the six beads shows each bead enriches for a distinct
set of kinases. UNC-2147A displays the most unique binding profile. (D) A large proportion of
kinases captured by MIBs (23-24%) are understudied or poorly characterized (green). (E) 381
kinases were identified across all four cell lines, including 346 protein kinases and 35 metabolic
kinases. Of these protein kinases, 142 are understudied (green). (F) Chemical structures and kinase-
binding of each inhibitor bead across the kinome. Circle size is proportional to the number of unique
peptides identified per kinase. PRKDC (DNA-PK) is over-represented in VI-16832 and PP58 (large
circle under Atypical protein kinases). Most beads capture kinases across families but UNC-2147
preferentially enriches for AGC family kinases. Shown to the right of each kinome tree are the 15
most-highly captured kinases for each bead. Green circles and text signify understudied kinases. (G)
Comparison of relative binding of characterized kinases across breast cancer cell lines/subtypes. (H)
Comparison of relative binding of understudied kinases across breast cancer cell lines/subtypes. (I)
Each cell line representing the different breast cancer subtypes displays a unique kinome profile.
Only kinases with the greatest number of peptides identified in particular cell line are shown. Circle
size is proportional to the number of peptides identified. (J) Hierarchical clustering of peptides
identified for each kinase (rows) across the cell lines (columns) cluster triple-negative cell lines
(SUM159, HCC1806) together and indicates HER2-positive SKBR3 cells have the most distinct
kinome profile.
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Table 2.4: Subnetworks in kinome.
Subnetwork Kinases

SN1 M3K5, M3K6, MK14, VRK2, IRAK1, M3K11, MP2K4, MP2K1, M3K1,
MK10, KS6A5, MK09, DYR1B, M3K3, MK08, MP2K3, M4K4, M3K4,

MP2K5, RIPK2, IRAK4, KC1G1, KC1G2, MP2K6, TAOK2, MK11,
MLTK, M4K3, M3K2, PKN1, MK13

SN2 CDK1, STK3, CDK2, WEE1, AURKB, PLK1, CDK8, AAK1, CDK3,
CDK6, CDK7, GWL, LATS1, MK06, NEK2, NEK9, PLK4, CDK13,
CDK12, NEK3, CDK16, CDK18, CDK19, E2AK1, STK38, STK10

SN3 EPHA1, EPHA3, EPHA4, EPHB2, EPHB3, EPHB6, MET, YES,
ACK1, LYN, RON, ROCK1, EPHB4, CDK17, EPHA2, CDK4, DDR1,

PI42C, DAPK3, ROCK2, STK16, LIMK2
SN4 ABL2, EGFR, FYN, JAK1, BRAF, PTK6, TBK1, FGRF1, FGFR2,

FGFR3, KSYK, FRK, TGFR2, M3KL4, IGF1R, TYK2, FER, KT3K,
TEC, FAK2, PKN3

SN5 AAPK1, AAPK2, MARK4, PK3C3, SIK1, SIK2, SIK3, STRAA, TIF1B,
KAPCB, CHK2, KPCD2, DYR1A, KAPCA, K6PP, KC1A, KC1D,

KC1E, KKCC2
SN6 BUB1, GSK3B, PDPK1, TTK, KS6A2, MK01, KS6A1, KS6A3, KS6A6,

KS6B1, PMYT1, MK03, TLK2, INSR, KS6Z4, E2AK2, KCC2B, TNIK
SN7 PI3R4, SRPK2, AKT1, AKT2, CHK1, CLK2, CSK21, FYV1, IKKA, P4K2B,

PKN2, PRPK, CLK3, MINK1, TLK1, TNK1
SN8 MARK3, RAF1, KPYM, KPCD, GSK3A, AKT3, ARAF, KPCA, MP2K2,

DMPK, KPCD3, NEK1, NLK
SN9 MTOR, PRKDC, ACVR1, CDK14, IKKB, OXSR1, TFGR1, CSK22,

CDK9, RIOK2, E2AK4, SG196, STK35
SN10 CSK, CDK5, EPHA5, EPHA7, HCK, SRC, AGK, GAK, CHKA,

EPHB1, M4K5
SN11 MARK1, MARK2, STK11, TAOK1, STK24, MST4, ERN1, TAOK3,

MELK, STK25, ST38L
SN12 ABL1, BMP2K, CDKL5, KPCD1, CLK1, CLK4, PI42A, PAK4
SN13 ERBB2, FAK1, KCC2A, FGFR4, SRPK1, KCC2D, KCC2G, PHKG2
SN14 BMR1A, ACV1B, AVR2A, BMPR2, LIMK1, MRCKA
SN15 ILK, K6PL, IKKE, PDXK, SLK, PI4KA
SN16 PI51C, PI42B, PI51A
SN17 TESK1
SN18 CHKB
SN19 MRCKB
SN20 MRCKG
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Figure 2.2: MIB/MS kinome profiling assigns breast cancer cell lines to functional subtypes. (A)
Individual samples run across 6-bead composition with LC-MS/MS analysis. (B) Heat map of
correlation between MIB/MS samples for cell lines analyzed. Color bars indicated the subtype of
each cell line (blue: basal-like, red: claudin-low, pink: HER2-enriched, black: luminal, purple:
basal-like/HER2amp). White in the heat map indicates a low correlation between samples, while red
shows higher correlation. Rows and columns are hierarchically clustered. (C) Heat map of MIB/MS
average for each of the 15 cell lines analyzed. Rows are kinases; columns are MIB/MS cell line
averages. Color bar for columns indicates the subtype associated to each cell line. Each column
is an average of 2 or 3 MIB/MS samples, depending on the cell line. Colors in the heat map are
relative by row minimum (blue) and maximum (red). A total of 254 kinases passed filtering (see
Methods). Rows and columns are hierarchically clustered using Euclidean distance and average
linkage. (D) Principal Component Analysis (PCA) on the entire MIB/MS data set. PC1 and PC2
account for 14.0% and 10.3% of the variance in the data set, respectively. A total of 32 samples
across the fours subtypes are represented by their subtype (red circle: claudin-low, blue square: basal-
like, pink upward triangle: HER2-enriched, black right-pointing triangle: luminal, purple square:
basal-like/HER2amp). (E) PCA on the MIB/MS data set to show highly variable kinases across the
samples. Characterized and understudied kinases are shown in black and green, respectively. PC1
and PC2 account for 44.0% and 7.83% of the variance in the data set, respectively. (F) Volcano
plot showing characterized (black) and understudied (green) kinases that are significantly (p<0.05)
different between the Luminal/HER2-enriched and TNBC (basal-like/claudin-low) cell line samples
in the MIB/MS data set. (G) Profiles of selected characterized (top row) and understudied (bottom
row) kinases across breast cancer subtypes.
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Figure 2.3: Overall MIB-binding and mRNA expression levels are not correlated. (A–D) Comparison
of baseline normalized MIB/MS (y-axis) intensities and baseline normalized mRNA (x-axis) counts
in cell lines for representing each of the four subtypes (A: basal-like, B: claudin-low, C: HER2-
enriched, D: luminal). The grey line indicates a 1-to-1 relationship between normalized MIB/MS and
RNA levels. Above the line indicates Function Dominance, while below the line indicates Expression
Dominance. Correlation between the MIB/MS and RNA levels were basal-like: 0.03, claudin-low:
0.25, HER2-enriched: 0.18, and luminal: 0.16. (E) Representative raw profiles of ERBB2, PKN1,
PDPK1, and MARK2 in MIB/MS intensity (orange bars) and mRNA RSEM counts (bue bars), which
are both highly correlated between the two data sets (correlation >0.8). A table of 32 kinases that
have a correlation greater than 0.7 across the four subtypes is also shown (bottom). (F) Frequency
distribution of Pearson’s correlation coefficient across all cell lines in MIB/MS and RNA-seq for
each of the 254 kinases. (G) KinomeTrees for MIB-binding (left), RNA expression (middle), and
the overlap between the two data sets (right) for the HCC1806 (basal-like) cell line. In the overlap,
yellow indicates where the two data sets overlap.
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Figure 2.4: Baseline kinome of cell lines and tumors across breast cancer subtypes. (A) Compilation
of subtype specific and pan-subtype kinases chosen from feature selection and PCA, respectively.
All data is log2 normalized and autoscaled by sample, with heat map colors indicating low (blue)
to high (red) MIB-binding. Column color bar indicates subtype (red: claudin-low, blue: basal-like,
pink: HER2-enriched, black: luminal, purple: basal-like/HER2amp; Understudied kinases are
denoted by *). Global maximum and minimum color assignment. (B) KinomeTree with the 50
distinguishing features from (A) are denoted. Black circles denote characterized kinases, while green
circles represent understudied kinases. (C) Kinases chosen from feature selection when comparing
Luminal/HER2-enriched cell line samples against basal-like/claudin-low (TNBC) cell line samples.
Kinases are ordered from top to bottom in the same ordering as from the feature selection (most
heavily weighted kinases are at the top of the heat map). All data is log2 normalized and autoscaled
by sample, with heat map colors consistent with those in (A) (Understudied kinases are denoted by
*). Global maximum and minimum color assignment. (D) Heat map of Luminal/HER2-enriched
cell line average (HER2+/Luminal column; black in “Sample Type” column color bar) across the
kinases shown in (C) with two tumor samples (teal in “Sample Type” column color bar). Data is log2
normalized and autoscaled by samples, as previously noted. Yellow in the “Classification” column
bar shows which samples are classified correctly as Luminal/HER2-enriched by the SVM using the
kinases from (C). Blue in the heat map indicates a low MIB-binding, red indicates high MIB-binding,
and grey (in the tumor samples only) indicates that a kinase was not detected by MIBs in the tumor
sample. Global maximum and minimum color assignment. (E) Heat map of TNBC cell line average
(TNBC column; black in “Sample Type” column color bar) across the kinases shown in (C) with five
tumor samples (teal in “Sample Type” column color bar). Data is log2 normalized and autoscaled by
samples, as previously noted. Yellow in the “Classification” column color bar shows which samples
are classified correctly as TNBC by the SVM using the kinases from (C). Dark red in “Classification”
indicates that the tumor sample was incorrectly classified (not classified as TNBC) by the SVM
using the kinases identified in (C). Color scheme in the heat map is consistent with that described
in (D). Global maximum and minimum color assignment. (F) PCA scores plot of tumor samples
with PC1 and PC2 accounting for 58.4% and 16.1% of variance, respectively. TNBC tumors are blue
and HER2-enriched tumors are pink. (G) PCA loadings plot of tumor samples with PC1 and PC2
accounting for 71.5% and 16.5% of variance, respectively. Black points are characterized kinases
and green points denote understudied kinases.
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Figure 2.5: Subnetworks in the functional kinome. (A) Compiled and clustered protein-protein
interaction network from public data sources of the 254 kinases analyzed in the MIB/MS cell line data
set. Green nodes represent understudied kinases, while grey and blue nodes represent characterized
kinases. Triangles are kinases that are also in the distinguishing features found in Figure 2.4A. (B)
The largest subnetwork in (A) that contains understudied (10 kinases; 34.5%) and distinguishing (2
kinases; 6.9%) kinases. This subnetwork is enriched for the GO term “Innate Immune Response”.
(C) The second largest subnetwork within (A) that contains 12 (41.4%) understudied and 6 (20.7%)
distinguishing kinases and is enriched for “Cell Cycle”, “Cell Division”, and “Mitosis” GO terms.
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Figure 2.6: Kinome drug response overall and by subnetwork. (A) Growth curves for HCC1806 +
Trametinib, SUM159 + Trametinib, SKBR3 + Lapatinib, and MCF7 + BKM120. All curves were
done at two different doses. (B) Repsonse of kinome in representative cell lines across four subtypes
of breast cancer (claudin-low: SUM159, basal-like: HCC1806, HER2-enriched: SKBR3, luminal:
MCF7) when treated with the indicated kinase inhibitor. Distribution of the kinome response on
the log2-scale is shown for each cell line/subtype; each point represents a kinase. (C) KinomeTree
showing the kinases that are uniquely captured in each of the subtypes in the baseline data set. Blue
circles denote kinases bound to the MIBs only in basal-like samples. Similarly, red circles represent
claudin-low, pink circles represent HER2-enriched, and black circles represent luminal uniquely
bound kinases. (D) Scatter plot of the response of the basal-like vs. claudin-low cell lines to treatment
with 100nM Trametinib. All values are fold change to untreated cells and log2-transformed. Kinase
points are colored black for characterized and green for understudied. (E) Scatter plot of the response
of the basal-like vs. claudin-low cell lines to treatment with 100nM Trametinib (same as in (D)).
Kinases are colored by subnetwork assigned to each kinase from Figure 2.5. (F) Subnetwork response
to drug perturbation showing mean fold change across the four representative cell lines (SUM159,
HCC1806, SKBR3, and MCF7) for the top 7 subnetworks identified from Figure 2.5. Characterized
and understudied kinases in each subnetwork are labeled in black and green, respectively. The color
of each circle indicates the mean fold change (red=high/above 0, blue=low/below 0), while the area
of the circle denotes the standard deviation of the fold changes across the representative cell lines.
(G) Distribution of the kinome response in the three subnetworks (SN1, SN7, and SN13) on the
log2-scale is show for each cell line/subtype.

Figure 2.7: Sensitivity, specificity, and precision across subtypes to determine number of features
needed for classification. (A) Basal-like, (B) Claudin-low, (C) HER2-enriched, and (D) Luminal.
Open circles represent specificity, filled triangles sensitivity, and filled squares precision for each
panel.

37



CHAPTER 3

CHARACTERIZATION OF THE ARCHITECTURE OF UNDERSTUDIED AND TARGETED
SUBNETWORKS WITHIN THE KINOME

3.1 Introduction

The network of kinases and their interactions with each other, or the kinome, has importance in

cancer diagnosis, treatment, and resistance due to its role in mediating cellular signals and cell-fate

decisions [87]. While their importance is recognized, functions of many kinases are not known (i.e.

“understudied”) [18]. Aberrant regulation of kinases is a known factor in the progression of cells

toward a cancer phenotype [15]. Being able to target these proteins, and their interactions with each

other, is important in the study of cancer and its treatment.

The ability to target the kinome with small molecules (or kinase inhibitors) has been studied but

not all kinases have small molecules that can bind to them (i.e. “undertargeted”) [18]. While it would

be ideal to be able to target each kinase directly, this is not always possible due to physical properties

of the proteins [88]. Indirectly targeting kinases in the kinome requires knowledge of the interactions

a kinase has to perform its functions. Due to the size of the kinome, computational approaches or

methodologies need to be used to identify functional modules within the network to determine which

groups of kinases closely interact with each other. Previous computational methods have clustered

networks in general but the focus is generally on the entire proteome, not the kinome interaction

network, when applied to a biological context [41, 89, 90].

Our focus on the kinome provides a unique perspective of cancer biology. The goal of this

work is to define the human kinome interaction network from public databases, to characterize the

architecture of this network, and to determine enriched biological functions. Here, we present a

method for clustering the kinome interaction network into subnetworks and analyzing enrichment of

function, understudied kinases, and targeted kinases within these subnetworks.
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3.2 Biological Data

3.2.1 Kinome Network Databases

Human protein interactions from Molecular INTeraction Database (MINT) [91], BioGRID

[92], Database of Interacting Proteins (DIP) [93], Human Protein Reference Database (HPRD) [82],

Interologous Interaction Database (I2D) [94], Reactome [86, 95], Human Integrated Protein-Protein

Interaction rEference (HIPPIE) [81], and PhosphoSite [85] were compiled to create the Kinome

Interaction Network (KIN). Only kinase-kinase interactions were considered for the KIN, duplicate

edges were only counted one time, and self-loops/self-self interactions are allowed. For example,

if the connection between ERBB2 and EGFR appeared in HPRD and PhosphoSite, the connection

between these two kinases would only appear once in the final network. All compiled interactions

are undirected since the direction of interaction may not always be specified in the databases. The

compiled KIN contains 453 kinases and 3690 interactions (including the 355 self-self interactions).

3.2.2 Inhibitor Databases

Kinase inhibitor target information is used from the KinomeSCAN assay in the LINCS database.

This database tested 144 kinase inhibitors and over 380 kinases [96]. The KinomeSCAN assay

measures the amount of binding between purified kinases and inhibitor compounds relative to a

control sample with no inhibitor compound added. The data provided by this assay comes in two

forms: percent inhibition and Kd. Percent inhibition shows, for each kinase tested, how much of the

kinase is inhibited relative to control. The Kd values in this database indicate the binding dissociation

constant between the inhibitor and each kinase tested. For all of the inhibitors tested in this database,

the concentrations were high so a very strict threshold for indicating on- or off-targets of the drugs is

used (>90% inhibition orKd <1µM ). For this characterization, inhibitor targets (on- and off-targets)

are all treated equally. This means that if a specific inhibitor is designed to inhibit/bind to ERBB2 but

it also inhibits/binds to EGFR, then ERBB2 and EGFR are both considered targets of that inhibitor.
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3.2.3 Defining Understudied and Targeted Kinases and Subnetworks in the Kinome

Understudied kinases are defined using the criteria discussed in Chapter 2. Targeted kinases are

specifically defined using the LINCS data in section 3.2.2. A kinase is considered “targeted” if there

is at least one drug that significantly binds to it and/or inhibits its function. Conversely, a kinase

is labeled “untargeted” if there are no inhibitors that bind to it or inhibit its function, as defined in

section 3.2.2.

3.3 Methods

3.3.1 Subnetwork Identification

A network constructed using publicly available data is clustered using the IGraph package in R

to find subnetworks in the overall network [97]. Many methods exist for clustering networks into

modules, or subnetworks. Specifically, the FastGreedy and SpinGlass algorithms from the IGraph

R package [97] and the MCODE clustering algorithm (also an R package, “ProNet”) [90, 98] are

discussed here. Many network clustering algorithms exist and have been explored previously but

these three are chosen for this specific context to handle an undirected, unweighted network [99].

The MCODE and FastGreedy algorithms are deterministic, meaning the clustering of a network

is the same every time. The MCODE algorithm is one standard way to cluster networks and has been

implemented in many software packages (R and Cytoscape, for example) [90]. This algorithm is

deterministic but does have many parameters that can be adjusted to fit the particular network being

clustered [90].

FastGreedy is a bottom-up algorithm, meaning all nodes start as individual clusters, that uses a

modularity score to determine whether or not clusters should be merged [38]. When the modularity

score is higher for the network when two clusters are merged than when they are separate, the two

clusters are merged. This process is repeated until the modularity score cannot be improved by

merging clusters. This algorithm has detection limitations that do not allow it to detect smaller

subnetworks [38]. The outline of this method is shown in Figure 3.1(A).

The SpinGlass algorithm clusters the curated network using a model based in statistical physics

[39, 40, 41]. Each node starts in its own subnetwork (or spin state) and subnetworks are collapsed

40



together based on the connections (i.e. edges) between the two subnetworks being analyzed. This

clustering method is nondeterministic, which means that each run of the SpinGlass algorithm will

provide a slightly different clustering of the same network. The reason for varying results after each

run is due to the fact that the SpinGlass algorithm randomly chooses seed nodes to begin collapsing

subnetworks, as seen in Figure 3.1(B) [40]. As shown in Figure 3.1(B), to provide a more accurate

clustering of the network, a consensus network is compiled by running the SpinGlass algorithm 1000

times and determining which kinases cluster together over 90% of the time. If two kinases cluster

together over 90% of the time, the kinases are assigned to the same cluster.

3.3.2 Comparison of Subnetwork Identification Across Algorithms

To assess the similarity of various network clustering algorithms, multiple metrics are calculated

between all pairs of algorithms (FastGreedy to consensus SpinGlass, FastGreedy to MCODE, and

consensus SpinGlass to MCODE). The metrics used here are Variation of Information (VI) [100], Nor-

malized Mutual Information (NMI) [101], Split-Join Distance (SJD) [102], and Unadjusted/Adjusted

Rand Index (URI/ARI) [103].

VI is the amount of information lost and gained when going from one clustering to another and

is always positive [100]. The VI metric describes what is different between two clusterings, so a

smaller value of VI indicates a similar clustering and vice versa. NMI is a similarity measure based

on a mutual information score, normalized based on the sizes of the clusters, and is bounded between

0 and 1. A value of 0 indicates no mutual information in the clustering while a value closer to 1

indicates that the information in the two clusterings is very similar [101]. The SJD is a measure

that shows how many “moves” are needed to go from one clustering to another, where a single

“move” consists of splitting off a single element off of one cluster and then either attaching it to

another cluster or starting a new cluster. A large value of SJD indicates that there are many “moves”

required to achieve the same clustering, which means the clusterings are not very similar [102]. The

URI and ARI are similarity measures based on how much the clusterings agree and disagree. The

difference between URI and ARI is that ARI adjusts for the expected overlap based on the sizes of

the clusters. The URI is bounded between 0 and 1 but the ARI can be negative if the similarity is less

than expected [103].
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3.3.3 Statistical Assessment of Understudied and Targeted Subnetworks in the KIN

Functional support for the KIN is defined by statistically significant (p <0.05) GO terms

(“GO biological process complete”) found using the online PANTHER tool [104]. The statistical

significance is determined with a modified background of only the 453 kinases in the compiled

KIN to determine enrichment of GO terms for each subnetwork. The p-values are also corrected in

PANTHER for multiple testing with the Bonferroni correction [104].

A hypergeometric test is used to assess (over- or under-) enrichment of understudied (or targeted)

kinases in each subnetwork identified using methods discussed previously (p <0.05). An assumption

for this statistical test is that the labeling of a kinase as understudied or targeted is independent from

the network architecture compiled from the public databases.

3.4 Biological Assumptions

This method takes advantage of a biologic assumption. The assumption is that the KIN functions

with modules (or subnetworks) that have closely related nodes. The modules are found using the

consensus clusters from running a clustering algorithm (SpinGlass) many times. The identified

subnetworks rely on accuracy (and completeness) of the mined data that informs the underlying

network connections.

3.5 Results & Discussion

3.5.1 Clustering the KIN

Figure 3.2 shows the clustering of the same network (n = 453, m = 3960) with three different

algorithms (Figure 3.2(A) MCODE, 3.2(B) FastGreedy, and 3.2(C) consensus SpinGlass) discussed

in the Methods section. Visually these clustering results look different and Table 3.1 provides a

table of metrics to quantify the similarities and differences among the three algorithms. MCODE

does not perform well on this network and the various metrics in Table 3.1 quantitatively support

the dissimilarity between the MCODE clusters and those found by the FastGreedy or consensus

SpinGlass algorithms. MCODE compared to FastGreedy and SpinGlass have an ARI of 0.03 and

0.02, respectively. This means that the clustering found by MCODE and the clustering found by
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FastGreedy (or SpinGlass) are no more similar than expected by chance. Similarly, the SJD distances

for these two comparisons are 351 (MCODE to FastGreedy) and 358 (MCODE to SpinGlass),

meaning that a node would have to be removed from a cluster and joined to another cluster around

350 times to make the clusterings the same. One reason for this poor performance may be due to

the highly interconnected clusters within this network. MCODE may not be able to detect smaller

clusters of highly connected nodes in a very dense network.

With a VIM of 1.50, ARI of 0.55, and NMI of 0.64, the FastGreedy and consensus SpinGlass

algorithms are similar in their final clustering results. The consensus SpinGlass algorithm does

detect more clusters (or subnetworks) that contain fewer kinases than the FastGreedy algorithm. As

discussed in the Methods section, the FastGreedy algorithm is known to have a detection limit with

smaller cluster sizes in networks.

While the SpinGlass algorithm is not deterministic and can, therefore, have varied clustering

results, the consensus SpinGlass algorithm combines the results of many runs of the SpinGlass

algorithm to provide a clustering that is more comprehensive. The SpinGlass algorithm does not have

the detection limitation that the FastGreedy algorithm does but the consensus algorithm provides a

similar clustering while still detecting smaller subnetworks in the overall network.

3.5.2 Functional Annotation of Subnetworks in the KIN

Tables 3.2 and 3.3 list the statistically significant GO biological processes terms as determined

by PANTHER, as described in Methods. Some of the clusters between the two algorithm results have

overlapping significant GO terms (for example, FastGreedy cluster 1 and consensus SpinGlass cluster

1 both have “Positive regulation of NF-kappaB transcription factor activity”, among others). In Table

3.2, it is clear that some of the clusters are large and, therefore, have fairly diverse significant terms

(clusters 2 and 3, for example). The statistically significant GO terms for the consensus SpinGlass

algorithm results (Table 3.3) are more specific than those for the FastGreedy algorithm results (Table

3.2).

The significant terms for the consensus SpinGlass algorithm (Table 3.3) are more focused due to

the smaller size of most of the clusters. In particular, clusters 1, 2, 3, 9, and 10 have very focused

functions. Cluster 9 has significant functions related to bone formation, osteoblast differentiation, and

signaling pathways that are directly related to bone formation. Similarly, cluster 10 is focused on ion
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transport and pancreatic cell function. These examples show that the consensus SpinGlass algorithm

identify meaningful groups of kinases in the KIN and is corroborated with GO term enrichment.

3.5.3 Understudied Kinase Enrichment in Subnetworks in the KIN

Figure 3.3 shows the clustering of (A) FastGreedy and (B) consensus SpinGlass with understud-

ied labels as node shape (understudied: triangles, characterized: circles). Given the results from

the previous sections, the statistical results for the consensus SpinGlass algorithm are the only ones

presented here. Table 3.4 shows the hypergeometric p-values for understudied subnetworks from

consensus SpinGlass clustering. The subnetworks can be over- or under-enriched for understudied

kinases and these are noted in Table 3.4 next to the significant p-values (<0.05). Consensus SpinGlass

subnetworks 2, 3, and 4 are under-enriched for understudied kinases, meaning they are enriched for

characterized kinases. These three clusters (2, 3, and 4) are larger, containing 51, 45, and 64 kinases,

respectively, and are all enriched in GO functional annotations (Table 3.3).

Subnetworks 6 and 13 are over-enriched for understudied kinases so these subnetworks are

understudied. Subnetwork 6 is the largest subnetwork in the consensus SpinGlass results with

144 kinases and 68 of these being understudied. This subnetwork is enriched for GO functional

annotations that mostly revolve around cell cycle processes and cell growth (Table 3.3). Subnetwork

13 contains four understudied kinases: TTN, NEK9, NEK6, and NEK7. Not much is known about

these kinases and, unfortunately but not unexpectedly, this subnetwork is not enriched for GO

functional annotations.

3.5.4 Targeted Kinase Enrichment in Subnetworks in the KIN

The number of inhibitors that target each node in Figure 3.3 is indicated by node color (blue =

zero inhibitors, purple = moderate number of inhibitors, red = high number of inhibitors). Table 3.4

also show the p-values for the targeted subnetworks from the consensus SpinGlass clustering. Again,

these subnetworks can be over- or under-enriched for targeted kinases and this is noted in Table 3.4

next to the significant p-values (<0.05).

Under-enriched subnetworks for targeted kinases (i.e. undertargeted subnetworks) for the con-

sensus SpinGlass clustering are subnetworks 6, 21, and 23. Subnetworks 6 and 23 are undertargeted

but are enriched for GO functional annotations (Table 3.3), while subnetwork 21 is not enriched for
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functional annotations. The subnetworks that are over-enriched for targeted kinases are subnetworks

1 and 4 so they are overtargeted subnetworks. Both of these subnetworks are enriched for GO

functional annotations (Table 3.3), which is expected.

3.5.5 Integration of Functional Annotation with Understudied and Targeted Enrich-

ment

The consensus SpinGlass clusters 6 and 13 are over-enriched for understudied kinases (i.e. they

are “understudied subnetworks”), while clusters 2, 3, and 4 are under-enriched for understudied

kinases (i.e. these clusters are “characterized subnetworks”). Clusters 1 and 4 from the consensus Sp-

inGlass algorithm results are over-enriched for targeted kinases (i.e. they are “targeted subnetworks”)

and clusters 6, 21, and 23 are under-enriched for targeted kinases (i.e. they are “undertargeted

subnetworks”). An important point to note is that the majority of the KIN (besides clusters 2, 3, and

4) has understudied kinases distributed throughout the network.

In particular, clusters 4 and 6 have interesting enrichment results. Subnetwork 4 is significantly

under-enriched for understudied kinases AND significantly over-enriched for targeted kinases, which

means this subnetwork is significantly characterized and targeted (Table 3.4). Conversely, the

kinases in subnetwork 6 are significantly over-enriched for understudied kinases AND significantly

under-enriched for targeted kinases, meaning this subnetwork is significantly understudied and

undertargeted (Table 3.4). The results for these two subnetworks suggest an inverse correlation

between a kinase being understudied and targeted. This inverse relationship is expected because

inhibitors are typically designed to targeted specific proteins and we tend to know a lot about intended

targets. For example, inhibitors are designed to target MEK1/2 because of its role in regulating cell

division.

3.6 Conclusions

This work provides a comprehensive KIN that has been compiled from 8 different protein

interaction databases. We cluster this comprehensive network into functional modules/clusters, or

subnetworks, using a consensus SpinGlass algorithm. The functional subnetworks identified in the

KIN have a statistically significant enrichment for GO biological processes that are functionally
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Table 3.1: Comparison of clustering methods (FastGreedy, SpinGlass, and MCODE) using variation
of information (VI), split-join distance (SJD), unadjusted rand index (URI), adjusted rand index
(ARI), and normalized mutual information (NMI).

Unadj. Adj. Norm.
Variation Split-Join Rand Rand Mutual
Of Infor. Distance Index Index Infor.
(VIM) (SJD) (URI) (ARI) (NMI)

FastGreedy SpinGlass 1.50 228 0.85 0.55 0.64
FastGreedy MCODE 2.07 351 0.39 0.03 0.06
SpinGlass MCODE 2.58 358 0.34 0.02 0.07

specific. We also presented a characterization of the understudied and targeted kinases in relation

to the architecture of the KIN. We found there are specific subnetworks that are significantly

understudied/characterized and those that are significantly (under)targeted.

The value this work provides to the biological field is that it can help elucidate functions of

understudied kinases in the KIN where there are statistically significant GO biological process terms.

Additionally, this work can direct kinase inhibitor development to provide potential subnetworks that

need more study.
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Table 3.2: Significantly Enriched GO Biological Processes in FastGreedy Clusters.
FastGreedy

Cluster GO biological process complete
Activation of MAP kinase activity

1 JNK cascade
Regulation of NF-kappaB transcription factor activity
Posttranscriptional regulation of gene expression
Cell division
Regulation of cell cycle
Immune system process
Positive regulation of multicellular organismal process
Regulation of immune response

2 Cell migration
Positive regulation of hydrolase activity
Transmembrane receptor protein kinase signaling pathway
Animal organ morphogenesis
MAPK cascade
Regulation of GTPase activity
Positive regulation of PI3K signaling
Ephrin receptor signaling pathway
Positive regulation of GTPase activity
Leukocyte migration
Single organism cell adhesion
Angiogenesis
Regulation of actin filament-based process
Regulation of leukocyte activation
Regulation of ERK1/2 cascade
Innate immune response

3 Positive regulation of cell migration
Tube development
Chemotaxis
Cell morphogenesis involved in differentiation
Regulation of cell adhesion
Cellular response to endogenous stimulus
Positive regulation of cell proliferation
Positive regulation of developmental process
Regulation of anatomical structure morphogenesis
Tissue development
Regulation of multicellular organismal development
Animal organ development

7 Wnt signaling pathway, planar cell polarity pathway
8 Regulation of PI3K signaling

Cellular macromolecule metabolic process
Inositol phosphate biosynthetic process

11 Biological regulation
Cellular macromolecule metabolic process

15 CDP-choline pathway
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Table 3.3: Significantly Enriched GO Biological Processes in SpinGlass Clusters.
SpinGlass

Cluster GO biological process complete
Nucleotide-binding oligomerization domain containing signaling pathway
Activation of JUN kinase activity

1 Activation of MAPKK activity
Toll-like receptor signaling pathway
Positive regulation of NF-kappaB transcription factor activity
Platelet activation

2 Posttranscriptional regulation of gene expression
Intracellular signal transduction

3 Ephrin receptor signaling pathway
Regulation of cell projection organization
Positive regulation of PI3K signaling
Positive regulation of GTPase activity
Leukocyte migration
Innate immune response

4 Regulation of ERK1/2 cascade
Transmembrane receptor protein tyrosine kinase signaling pathway
Positive regulation of cell migration
Positive regulation of cell proliferation
Cell differentiation
Mitotic cell cycle process
Regulation of cell cycle process
Regulation of immune response
Positive regulation of hydrolase activity

6 Positive regulation of MAP kinase activity
Cell migration
MAPK cascade
Cellular response to growth factor stimulus
Transmembrane receptor protein tyrosine kinase signaling pathway
Animal organ morphogenesis
Activin receptor signaling pathway
Positive regulation of bone mineralization
Positive regulation of pathway-restricted SMAD protein phosphorylation

9 BMP signaling pathway
Positive regulation of osteoblast differentiation
Artery development
Regionalization
Positive regulation of ion transmembrane transporter activity

10 Negative regulation of pancreatic juice secretion
Regulation of sodium ion transmembrane transporter activity
Negative regulation of sodium ion transport
Inositol phosphate biosynthetic process

23 Biological regulation
Cellular macromolecule metabolic process
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Table 3.4: Enrichment for understudied and targeted kinases in the KIN clustered with the consensus
SpinGlass algorithm. P-values are calculated from the hypergeometric distribution, where the
population size (N) is 453 (total number of kinases in the KIN); the number of “successes” (M) in
the KIN are 164 and 327 for understudied and targeted kinases, respectively; the sample size (s) is
the number of kinases in the cluster; and the number of observed “successes” (k) is the number of
understudied or targeted kinases in a particular subnetwork.

Total Number Number
Cluster Number Understudied P-value Targeted P-value
Number (s) (k) Understudied (k) Targeted

1 51 19 0.491 42 0.056 (over)
2 51 10 5.4e-3 (under) 33 0.136
3 45 10 0.026 (under) 34 0.368
4 64 9 2.47e-5 (under) 57 4.6e-4 (over)
5 4 3 0.137 2 0.310
6 144 68 6.8e-4 (over) 96 0.048 (under)
8 6 4 0.129 4 0.532
9 22 10 0.240 19 0.096
10 6 2 0.623 3 0.215
11 4 2 0.459 4 0.270
12 2 0 0.406 2 0.521
13 4 4 0.017 (over) 3 0.690
15 2 2 0.131 2 0.521
16 2 0 0.406 2 0.521
17 3 1 0.702 2 0.625
18 2 2 0.131 2 0.521
19 2 1 0.594 2 0.521
21 5 2 0.595 0 0.002 (under)
22 2 0 0.406 2 0.521
23 6 0 0.066 0 4.2e-4 (under)
24 2 2 0.131 1 0.479
25 2 2 0.131 1 0.479
33 2 1 0.362 2 0.521
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Figure 3.1: Methods for clustering networks into modules, or subnetworks. (A) 1. The FastGreedy
algorithm starts with all nodes as individual clusters. 2. Clusters are merged based on modularity
(Q) scores (Q =

∑
eij − a2i ) for all clusters in the network. 3. This process is continued until the

modularity for all clusters cannot be improved by merging clusters. Colors of nodes in the network
indicate cluster identity. (B) 1. The SpinGlass algorithm is initialized many times (1000) separately
on the same network. For each run, the algorithm chooses seed nodes randomly (red nodes). 2. The
SpinGlass algorithm is run for each set of seed nodes chosen. Node color indicates cluster identify,
as in (A). 3. Consensus clusters are defined by incorporating all variations in cluster identification
from step 2.
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Figure 3.2: Results for Clustering Kinome into Subnetworks. Clustering of network (n = 453, m =
3690) using (A) MCODE, (B) FastGreedy, and (C) consensus SpinGlass algorithms.

51



Figure 3.3: Understudied and targeted subnetworks in the KIN using the (A) FastGreedy and (B)
consensus SpinGlass algorithms. The shape of each node denotes if the kinase is characterized
(circles) or understudied (triangles). The color of the nodes range from blue to purple to red for zero
inhibitors targeting to moderate number of inhibitors targeting to maximum number of inhibitors
targeting each kinase.
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CHAPTER 4

OPTIMIZATION FRAMEWORK FOR RATIONALLY CHOOSING COMBINATION DRUG
THERAPIES

4.1 Introduction

The success of the kinase inhibitor imatinib for the treatment of chronic myeloid leukemia

has provided a roadmap for the more general use of small-molecule compounds in targeted cancer

therapies [105, 106, 107]. However, while additional anti-cancer compounds continue to be devel-

oped, their therapeutic success has been dampened by the development of drug resistance within

patients. This resistance can occur through multiple mechanisms including enhanced drug efflux

from target cells, altered regulation/over-expression of the drug target, mutations within the target

kinase that reduce binding efficacy, the activation of secondary/compensatory pathways, as well as

other adaptations [108, 109, 110] .These resistance mechanisms can exist within the tumor de novo,

before treatment is given, as well as arise during the course of treatment through selection.

The use of combination therapies has been long recognized as a potential means to overcome

resistance to kinase inhibitors, with modeling efforts beginning to provide support for particular

treatment strategies [16, 26, 27, 109, 111, 112]. In fact, recent modeling of the evolutionary dy-

namics of cancer suggests that if there are any possible mutations that confer resistance, sequential

administration of targeted compounds will always result in failure, while the use of two or more

compounds maintains the opportunity for a successful cure [22].

While the potential value of combination therapies in cancer is recognized, the design of

therapies is poorly developed. Clinically, combinations are commonly identified retrospectively,

through observation of tumor response profiles and up-regulated pathways, which is exactly the

road to sequential treatment discussed previously. High throughput screening methods, though

essential, are confronted with exponential growth with the number of drug combinations, doses,
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cellular/tissue context and other parameters such that these efforts must be limited to a narrower

window of combination possibilities.

In this work, we describe a basic framework for modeling combination therapy as a network

optimization problem. Previously, [56] proposed a similar methodology but lacks incorporation of

practical costs for potential drug therapies. Specifically, we focus on modeling kinase inhibitors

as perturbations that act on the broad network of protein kinases (the kinome) that underlies cell

signaling and broadly regulates cell growth, death and other key processes. Given a desired pattern

of network inhibition and a set of drugs and their targets, this framework provides the optimum

drug combination providing the desired network effect. As part of an optimization framework, this

approach allows for the integration of multiple constraints into the final solution. Example constraints

include the exclusion or inclusion of specific molecular targets or the prevention of (or requirement

for) specific drug combinations. Incorporation of drug dosages and associated side effects, costs

and other practical constraints in treatment can be similarly incorporated through extensions to this

framework. While conceptually simple, this optimization-based approach provides a quantitative and

extendable basis for the rational design of combination therapy regimes.

4.2 Methods

4.2.1 Kinome Network Databases

Data from the Human Protein Reference Database (HPRD) [82], Interologous Interaction

Database (I2D) [94], Reactome [86, 95], Human Integrated Protein-Protein Interaction rEference

(HIPPIE) [81], and PhosphoSite [85] were compiled to create an integrated Kinase Interaction Net-

work (KIN) describing known physical interactions between kinases. Only kinase-kinase interactions

were considered for the KIN and duplicate interactions (edges) were only counted once.

4.2.2 Kinome Subnetwork Identification

We utilized a deterministic community detection method to identify potential modules within

the larger KIN. Specifically, we utilized the FastGreedy algorithm implemented within the IGraph

package in R to cluster the KIN, which was compiled from multiple databases [97, 113]. Using this

algorithm, individual kinases (singletons) are merged into larger communities based on a modularity
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score. Merging is iteratively performed until the modularity of the communities can no longer be

improved [114]. Network plots are rendered using IGraph in Mathematica [115].

4.2.3 Inhibitor Databases

We utilized public data from the Library of Integrated Network-based Cellular Signatures

(LINCS) database to determine which kinases are targeted by a given kinase inhibitor [96]. This

data is based on the KinomeSCAN assay, which utilizes an active site-directed competition binding

assay that measures interactions between the compound and the kinase [116]. As this assay tests

compound binding to over 450 kinases, a comprehensive picture of inhibitor binding is achieved,

including so-called “off-target” binding to kinases that the inhibitor was not originally designed to

target. From LINCS, we utilized data on 144 kinase inhibitors and their binding to over 380 kinases.

We required that inhibitors must induce a greater than 90% inhibition of kinase activity or have a

Kd (binding dissociation constant) of less than 1µM in order for them to be considered a drug that

targets that particular kinase. A listing of inhibitors and their associated kinases is provided in the

software download described later in Methods.

4.2.4 Optimization of Targeted Drug Therapy Combination

In this work, we approach problem of identifying an optimal drug combination as an optimization

problem, a very general schematic of which is shown in Figure 4.1a. In this example, the goal is

to maximize the sum of two variables (x and y) subject to several other constraints. Within these

constraints, a region of acceptable solutions is defined (green region within the figure) upon which

the optimal solution that satisfies the constraints as well as the cost or objective function can be

determined.

For our particular application, the optimization being performed is a binary version of the Diet

Problem, where each network inhibitor fulfills a particular need - the inhibition of one or more

specified kinases [117]. It should be noted that multiple inhibitors are typically able to fulfill a given

need. In addition, each inhibitor will usually also target kinases beyond the list of those specified. A

central premise of this work is the minimization of off-target inhibition (inhibition of kinases that are

not specified by the user); a goal that forms the basis of the cost/objective function used here and

described further below.
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4.2.4.1 Costs and Objective Function for Optimization

As described previously, we wish to minimize the degree of off-target inhibition occuring through

treatment with a given set of drugs. The simplest formulation of this cost is shown in Equation

4.1, where the cost (c) for a given inhibitor (i), ci, is minimized when there are no off-targets and

increases with greater amounts of off-target binding. Again, off-target kinases are simply those not

specifically targeted for inhibition.

ci =
# off-targetsi
# on-targetsi

(4.1)

While we use Equation 4.1 in our objective function, the cost function used can be made

much broader and incorporate numerous other goals. For illustration, Equation 4.2 is an example

of a cost function, defined for each inhibitor, that incorporates side effects (SideEffecti), the

concentration of inhibitor that reduces the response by 50% (IC50i), degree of subnetwork inhibition

(SubNetCoveragei), and patient toxicity concentration ([Toxicity]i) into the optimization.

ci = SideEffecti + SubNetCoveragei + IC50i + [Toxicity]i (4.2)

To define notation for this optimization problem, let xi be the binary value that the optimization

problem is trying to solve for. This means that a xi value of “1” indicates that network inhibitor i

should be used to obtain the optimal solution (i.e. the optimal combination of inhibitors) and a xi

value of “0” indicates that network inhibitor i should not be used in the optimal solution. Also, let ci

be the cost associated with using network inhibitor i. The objective function for this optimization

problem is to minimize the cost of all of the network inhibitors chosen by the solver that maximally

targets the subnetworks. The mathematical representation of this objective function is shown in

Equation 4.3.

min{
∑

i=|drugs|

cixi} (4.3)
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4.2.4.2 Constraints for Optimization: Subnetworks

We further utilize network relationships, defined through physical interactions that exist between

kinases, as potential constraints for the optimization. The definition of subnetworks is particularly

relevant in determining regions over which drugs may have greater (or lesser) inhibition. As an

example, a toy network depicting kinases as nodes and edges representing physical interactions is

shown in Figure 4.1b. These kinases are then clustered into smaller subnetwork groupings where

no singletons exist and all kinases can only belong to a single subnetwork (Figure 4.1c). If we

want to ensure that one or more members of a particular subnetwork is being inhibited, we then

relate inhibitors and their subnetworks as constraints. Looking at Figure 4.1d, if we want to target

subnetwork 2 (SN2 in Figure 4.1d), it is observed that only two drugs (D1 and D2) target members

of this subnetwork. This can then be incorporated as the constraint in Equation 4.4 and indicates that

either inhibitor D1 or D2 or both must be provided in the final solution.

Hit SN2: xD1 + xD2 ≥ 1 (4.4)

To avoid inhibiting members of a given subnetwork, similar constraints as above can be con-

structed. Suppose hitting subnetwork SN2 is not beneficial, with its inhibition associated with

strong toxicity responses. Equation 4.5 is the mathematical representation of the constraint to avoid

inhibition of members of this subnetwork.

Avoid SN2: xD1 + xD2 = 0 (4.5)

4.2.4.3 Constraints for Optimization: Targeting of Specific Nodes

Similar to earlier constraints, a particular node can be guaranteed to be targeted. Suppose we

want to, at a minimum, target node F in Figure 4.1d. This requires that at least one drug targeting F

is provided as part of the solution. D4 and D5 both target node F in this example so either one (or

both) of these drugs should be used so that node F is inhibited. This constraint is mathematically

represented as Equation 4.6.

Hit F: xD4 + xD5 ≥ 1 (4.6)
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Similarly, inhibition of a specific kinase may not be desirable for any number of reasons. As

before, Equation 4.7 provides the constraint needed so as to avoid targeting node A in the network of

Figure 4.1d.

Avoid A: xD1 = 0 (4.7)

4.2.4.4 Constraints for Optimization: Inhibitor Interactions

A variety of other constraints can be incorporated into the determination of an optimum therapy.

Another important constraint commonly encountered within the clinic is the need to take into

consideration drug-drug interactions that can occur, often having significant detrimental effects to

patients. If adverse effects between two network inhibitors are known, we can avoid their combination

as shown in Equation 4.8, where inhibitor D2 and D3 are not to be used together.

Adverse Drug Interaction: xD2 + xD3 ≤ 1 (4.8)

Along these lines, another type of inhibitor constraint is to only allow a certain number of

inhibitors in the final cocktail chosen. Equation 4.9 shows this constraint mathematically, where M

is the maximum number of inhibitors allowed in the final solution.

Limit Number Of Inhibitors Chosen:
∑
i

xi ≤M (4.9)

4.2.4.5 Solving with Linear Programming

We solve the objective function given by Equation 4.3 along with any associated constraints

using linear programming (LP) [118, 119]. More specifically, we utilize the dual simplex method

implemented with branch-and-bound algorithm within Gurobi [120]. As has been described above,

the objective function and all constraints are linear and LP will reliably find optimal solutions to

these problems [121, 122].

58



4.2.5 Access to Software/Code and Example Datasets

The method can be run using code provided at https://github.com/gomezlab/TBD, which also

provides all necessary data sets. R code, which clusters a network into subnetworks and writes the

appropriate files for NeTOPT, is also included. NeTOPT can be run from the MATLAB command

line by running the NeTOPT withExamples.m file in the /src/ directory of the repository. The

subnetwork files for the examples presented here are included in the repository, which means that

NeTOPT can be run without using the R code for the examples presented here. If trying to run using

a new input network, the R code will need to be run before employing NeTOPT in MATLAB.

4.3 Results

We now provide examples of the application of NeTOPT to the identification of drug combina-

tions under several scenarios, including exploring drug combinations currently being investigated in

clinical trials.

4.3.1 Example #1: Targeting MTOR, TESK1 and ERBB2

As a first demonstration of this approach, we apply this methodology to a simple example where

we require that three kinases, MTOR, TESK1, and ERBB2 (located in SN1, SN4, and SN2 in Figure

4.2(a), respectively) are to be targeted by one or more of the drugs in our inventory (data provided in

GitHub repository). In addition to inhibiting these specific targets, we assume that there is an adverse

interaction between the drugs Afatinib and HG99101 such that one cannot be used with the other if

they were to be chosen for the combination therapy. We note that, built into our objective function,

we also want to minimize off-target effects and avoid inhibition of as many other kinases as possible.

With these constraints and the goal of minimizing non-specific targeting codified as the cost

function of Equation 4.1, application of NeTOPT provides a drug combination solution consisting

of Foretinib (a EGFR, ERBB2, and TESK1 inhibitor) and WYE125132 (a MTOR inhibitor). This

solution satisfies all of our constraints while minimizing the number of off-target effects. The degree

to which a kinome subnetwork is targeted as described by percent coverage for each drug is also

shown in Table 4.1 and simultaneously provides a picture of off-target effects. In this example, while

3 kinases were targeted for inhibition, a total of 128 kinases across six subnetworks were inhibited.
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While the results of this simple example could likely be determined by a manual approach, this

problem becomes rapidly intractable as the size of the network/number of targets, size of drug library

(with their on- and off-target profiles), and number/complexity of constraints grows.

4.3.2 Example #2: Subnetwork Targeting

Another simple, but practical example is for the design of combination therapies that maximally

inhibit one subnetwork, while minimizing the inhibition of all other subnetworks. For this example,

we choose to inhibit subnetwork 2 (SN2) as shown Figure 4.2a. Solving for a combination therapy,

we find the set of drugs capable of maximally suppressing this subnetwork that includes A443654,

AZD5438, AZD7762, CGP60474, R406, XMD1499, and XMD1527 (Table 4.2). This combination

is able to target nearly 58% of SN2. However, while minimization of off-target inhibition is specified,

large numbers of kinases are inhibited that lie outside of SN2, highlighting the challenges of obtaining

subnetwork-specific inhibition.

4.3.3 Example #3: HER2+ Breast Cancer

In HER2-enriched breast cancer, treatment with Lapatinib, a HER2/ERBB2 inhibitor, is a

common and effective therapy. However, it has been found that some patients will also have up-

regulation of VEGF in addition to the characteristic amplification of HER2/ERBB2, associated

with poorer clinical outcomes [123]. Similarly, cross-talk between HER2 and VEGF has been

shown to promote tumor growth and angiogenesis, suggesting that inhibition of HER2/ERBB2

along with administration of a VEGFR1/2/3 inhibitor such as Sunitinib or Pazopanib could prove

more efficacious [124]. To test this, a combination of Lapatinib plus Pazopanib or Lapatinib alone

was evaluated in a clinical trial with patients having advanced/metastatic breast cancer [123]. For

the combination, the progressive disease rate (PDR) was found to not be improved relative to

monotherapy and toxicity was higher with the combination, though the response rate (RR) was

increased.

We ran NeTOPT with the general objective of targeting ERBB2/HER2 as well as VEGFR1/2/3

while minimizing off-targets. Optimization indicated that Lapatinib and AC220 were an optimal

combination of kinase inhibitors under the given constraints, with the targeting profile of Lapatinib

+ AC220 and that of Lapatinib + Pazopanib shown in Figure 4.2(b) and (c), respectively. While
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targeting is similar, AC220 does not target two subnetworks that are hit relatively strongly by

Pazopanib and has 73% less off-target binding overall (17 kinases inhibited for Lapatinib + AC220

vs 63 for Lapatinib + Pazopanib). Of note is that the AC220 kinase inhibitor is currently in Phase II

clinical trials to test efficacy and safety for use as a single agent [125].

4.3.4 Example #4: Flavopiridol and Leukemia

Flavopiridol is commonly used in the clinic as a cyclin-dependent kinase inhibitor for chronic

lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML)

[126]. While Flavopiridol targets cell-cycle related kinases, recent clinical trials have focused

on trying to assess the effectiveness of inhibiting anti-apoptotic pathways, with inhibitors such

as Imatinib in CML and ABL1+ cancers. In particular, ABL1 and ABL2 have been found to be

up-regulated in these cancer types and, along with PGFRB, are thought to be important for the cancer

cells’ ability to reprogram around certain therapies including Flavopiridol [126].

In this example, we wished to see what other inhibitors are identified in combination with

Flavopiridol when requiring the concomitant inhibition of ABL1, ABL2 and PGFRB due to their

anti-apoptotic function and associated up-regulation. Optimization with these constraints and the

cost function for all drugs being that of Equation 4.1, we found that Flavopiridol and Imatinib were

identified as the inhibitors best able to satisfy the described constraints while minimizing off-target

effects. Imatinib is an already FDA approved drug, while Flavopiridol has completed Phase II trials

[125, 127]. In fact, the combination of Flavopiridol and Imatinib is in Phase I clinical trial for ABL+

leukemias [128]. Designated targets for this drug combination are shown in Figure 4.2(d) as are the

subnetworks targeted. Associated on- and off-targets of these drugs, alone and in combination, are

shown based on the subnetworks targeted in Table 4.4.

We also performed a less constrained prediction where CDK4 and CDK9 were specifically

designated as targets in the optimization, while not requiring Flavopiridol to be the inhibitor for

these kinases. As before, ABL1/2 and PGFRB were also designated as inhibitor targets. Results

of this optimization are shown in Figure 4.2(e) where the designated targets are inhibited by the

identified combination of Imatinib and AT7519. This is further detailed in Table 4.4 that shows a 39%

decrease (56 vs 34 kinases) in the number of kinases targeted in this new combination versus that

using Flavopiridol. The inhibitor AT7519 is currently in Phase I clinical trial for use on its own [125].
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These results suggest that NeTOPT has the potential to improve on current combination therapies

by identifying those, for example, with fewer off-targets and therefore, potentially fewer negative

side-effects within patients.

4.4 Discussion

While significant strides have been made in our understanding of cancer pathogenesis, many

challenges exist in translating this understanding into novel therapeutics that greatly improve patient

outcomes. Resistance to therapies, toxicity effects, and individual patient variation are just a few

hurdles to overcome. This work provides a quantitative way to pursue potential drug combinations

experimentally.

The mathematical framework presented here provides a quantitative, rational methodology for

choosing combination drug therapies for cancer treatment using biological context information. The

optimization method allows for a set of drugs to obtain the optimal solution, not just a pair or a single

drug. The methodology presented here is flexible to be able to consider many types of constraints in

addition to the ones presented here to choose the set of drugs. Notably, constraints directly associated

with kinase function in the PPIN can be written to incorporate these into the final solution. For

example, all nodes associated with a particular KEGG pathway (i.e. MEK/ERK pathway or another

important pathway) or GO annotation (i.e. “apoptosis” or similar) could be added to the “targets” list

as input to NeTOPT. These types of constraints could potentially help choose combinations that can

prevent or reduce reprogramming in cancer tissue.

For this method, inhibitor targets (on- and off-targets) are all treated equally. Targets for each

inhibitor are determined from the KinomeSCAN assay in the LINCS database [96]. This means

that if a specific inhibitor is designed to inhibit/bind to ERBB2 but it also inhibits/binds to EGFR,

then ERBB2 and EGFR are both considered targets of that inhibitor. Another major assumption for

the optimization method involves the cost functions associated with each inhibitor in the LINCS

database. We assume that the cost functions accurately capture the “true” cost of using a drug therapy.

The kinase inhibitors were used at a concentration of 10 µM, which is much higher than most of

the inhibitors’ IC50. This could skew the determination of on- and off-targets determined from this
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dataset but this is only for a proof of concept to test the methodology and the high threshold for

determining inhibition (over 90%) is used to help offset this bias.

Though the current implementation of NeTOPT provides only a non-binary output, extensions

to this approach could incorporate continuous outputs. For instance, while dosage in the form of

IC50 can be incorporated. Currently, NeTOPT can incorporate dosing information, such as IC50,

into the cost associated with using a particular drug but the result of the optimization is a “yes/no”

answer detailing which drugs should be used based on their targeting profiles and costs. A solution

that provides two answers (which drugs and their concentrations) would be ideal but this framework

could easily result in degeneracy of the LP solve and/or multiple optimal solutions. To account for

these issues, further study in the framing of the problem to produce this particular output needs to

happen.

For instance, a recent study found that treatment of HER2-enriched breast cancer with lapatinib

induced a broad response in kinase activity within 48 hours that compensated for the inhibition of

ERBB2 and revealed numerous potential mechanisms for drug resistance [21]. In combination with

lapatinib treatment, targeted inhibition of other induced kinases led to improved growth inhibition,

but the heterogeneity of responses presented significant challenges for the identification of broadly

appropriate drug combinations. In an attempt to make the response to inhibitor more durable, inhibi-

tion of the adaptive kinome response was approached through the suppression of BET-bromodomain

chromatin readers BRD2/3/4 with the small molecule, JQ1.

Combination of lapatinib with JQ1 reduced lapatinib-induced kinome reprogramming and

arrested growth, while either drug alone was unable to do so. In context of the kinome network

utilized as part of NeTOPT, JQ1 kinase targets are found to be exclusively localized to a single

network (SN8), with three of five kinase within this subnetwork (BRD2/3/4) being inhibited (see

Figure 4.2c). JQ1 and other BET-bromodomain inhibitors are currently in a number of human clinical

trials to determine their efficacy and safety in combination with other therapies [129]. While requiring

additional investigation, the design of therapies that specifically target a significant fraction of one

or more well-defined functional subnetworks appears to be a promising approach to combination

therapy design. More generally, computational strategies such as the optimization approach described

here has the potential to provide a useful framework through which the rational design of combination

therapies can be achieved.
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Table 4.1: Subnetwork coverage (percentage) of each drug chosen by optimization method in
Example #1: Targeting MTOR, TESK1 and ERBB2. Bolded percentages represent the subnetworks
of the specific targets for the example presented (MTOR, ERBB2, TESK1).

Foretinib WYE125132 Foretinib +
(149 targets) (3 targets) WYE125132

SN1 23.4% (30 targets) – 23.4% (30 targets)
SN2 13.4% (24 targets) 0.1% (1 target) 14.0% (25 targets)
SN3 51.6% (63 targets) 1.6% (2 targets) 53.2% (65 targets)
SN4 19.1% (4 targets) – 19.1% (4 targets)
SN5 10.0% (1 target) – 10.0% (1 target)
SN6 – – –
SN7 75.0% (3 targets) – 75.0% (3 targets)
SN8 – – –
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Table 4.2: Subnetwork coverage (percentage) of each drug chosen by optimization method (A443654, AZD5438, AZD7762, CGP60474, R406,
XMD1499, XMD1527) for Example #2: Subnetwork Targeting.

A443654 AZD5438 AZD7762 CGP60474 R406 XMD1499 XMD1527 Combination
(81 targets) (127 targets) (189 targets) (11 targets) (221 targets) (17 targets) (53 targets) Of All

SN1 16.4% 20.3% 24.2% 1.6% 32.8% 1.6% 8.6% 50.8%
(21 targets) (26 targets) (31 targets) (2 targets) (42 targets) (2 targets) (11 targets) (65 targets)

SN2 15.6% 24.6% 30.7% 3.9% 29.1% 3.9% 12.3% 57.5%
(28 targets) (44 targets) (55 targets) (7 targets) (52 targets) (7 targets) (22 targets) (103 targets)

SN3 6.6% 17.2% 45.9% – 60.7% – 3.3% 70.5%
(8 targets) (21 targets) (56 targets) (74 targets) (4 targets) (86 targets)

SN4 4.8% 9.5% 19.1% – 28.6% 4.8% 4.8% 33.3%
(1 target) (2 targets) (4 targets) (6 targets) (1 target) (1 target) (7 targets)

SN5 30.0% 30.0% 30.0% 10.0% 30.0% – 20.0% 60.0%
(3 targets) (3 targets) (3 targets) (1 target) (3 targets) (2 targets) (6 targets)

SN6 – – – – – – – –
SN7 50.0% 25.0% – – 25.0% – – 100%

(2 targets) (1 target) (1 target) (4 targets)
SN8 – – – – – – – –
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Table 4.3: Subnetwork coverage (percentage) of each drug chosen by optimization method in
Example #3: HER2+ Breast Cancer. Bolded percentages represent the subnetworks of the specific
targets for the example presented (ERBB2 and VGFR1/2/3).

Lapatinib AC220 Pazopanib Lapatinib Lapatinib +
(7 targets) (17 targets) (49 targets) + AC220 Pazopanib

SN1 0.1% 1.6% 9.4% 2.3% 9.4%
(1 target) (2 targets) (12 targets) (3 targets) (12 targets)

SN2 – 0.1% 5.0% 0.1% 5.0%
(1 target) (9 targets) (1 target) (9 targets)

SN3 2.5% 7.4% 14.8% 9.8% 17.2%
(3 targets) (9 targets) (18 targets) (12 targets) (21 targets)

SN4 – 4.8% 9.5% 4.8% 9.5%
(1 target) (2 targets) (1 target) (2 targets)

SN5 – – 10.0% – 10.0%
(1 target) (1 target)

SN6 – – – – –
SN7 – – 25.0% – 25.0%

(1 target) (1 target)
SN8 – – – – –

Table 4.4: Subnetwork coverage (percentage) of each drug chosen by optimization method in
Example #4: Flavopiridol and Leukemia. Bolded percentages represent the subnetworks of the
specific targets for the example presented (Flavopiridol plus targeting ABL1, ABL2, PGFRB).

Flavopiridol AT7519 Imatinib Flavopiridol AT7519
(58 targets) (30 targets) (13 targets) + Imatinib + Imatinib

SN1 10.2% 1.6% – 10.2% 1.6%
(13 targets) (2 targets) (13 targets) (2 targets)

SN2 13.4% 10.1% 0.1% 14.0% 10.6%
(24 targets) (18 targets) (1 target) (25 targets) (19 targets)

SN3 4.9% – 9.0% 12.3% 9.0%
(6 targets) (11 targets) (15 targets) (11 targets)

SN4 4.8% – 4.8% 9.5% 4.8%
(1 target) (1 target) (2 targets) (1 target)

SN5 10.0% 10.0% – 10.0% 10.0%
(1 target) (1 target) (1 target) (1 target)

SN6 – – – – –
SN7 – – – – –
SN8 – – – – –
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Figure 4.1: (a) Graphical explanation of linear optimization with objective function and constraints.
The mathematical constraints shown represent a biological “rule”. (b) Network depiction of an exam-
ple network. (c) Network of the results of clustering the example network in (b) using FastGreedy.
(d) Network depiction of the relationships of the inhibitors (red triangles–D1 through D5) to the
nodes and subnetworks in the example network.
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Figure 4.2: (a) Graphical depiction of Examples #1 and #2 targets as input for NeTOPT. (b) Targeting
profile of Lapatinib plus Pazopanib with location of the targets noted, from Example #3, in the PPIN.
The color of the circle around a subnetwork indicates how many kinases are targeted by the inhibitor
(dark blue: <10%→ dark red: >50%). (c) Targeting profile of Lapatinib plus AC220 with location
of the targets noted, from Example #3, in the PPIN. Colors of the circles around subnetworks is
the same as in (b). (d) Targeting profile of Flavopiridol + Imatinib with the location of the targets,
from Example #4, in the PPIN. Colors of the circles around subnetworks is the same as in (b). (e)
Targeting profile of AT7519 + Imatinib with the location of the targets, from Example #4, in the
PPIN. Color or the circles around subnetworks are the same as in (b).
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Thesis Contributions

In Chapter 2 of this thesis, functional kinome profiles of characterized and understudied kinases

distinguish breast cancer subtypes. Additionally, the functional profiles provide complementary

information to gene expression levels about the breast cancer subtypes. The kinases that best describe

the separation between the subtypes in the functional kinome are spread throughout the kinome

interaction network, are responsible for a variety of functions in cells, and include characterized and

understudied kinases.

Chapter 3 focuses on characterizing the structure of the kinome and relating the architecture of

the network to biological function. Understudied and undertargeted kinases are very important in

the signaling in the cell. Being understudied or undertargeted does not equal unimportant–it simply

means research has not focused on them thus far. Some subnetworks of kinases are overrepresented

with understudied/targeted kinases, while some are underrepresented in understudied/targeted kinases.

Kinase inhibitors are generally designed for “easy-to-hit” kinases, such as MEK1/2. Some kinases,

like cMyc or Ras, are untargettable and therefore have to be targeted indirectly. Kinase inhibitors hit

across the subnetworks identified but are enriched in some subnetworks in the KIN.

The model presented in Chapter 4 provides a quantitative and unbiased method to choose a set of

drugs to administer when certain targets need to be hit. This allows biologists to set their own target

list to combat reprogramming and incorporate realistic clinical considerations (toxicity, number of

inhibitors in combination therapy, adverse drug interactions, etc.).

5.2 Impact on Cancer Biology

This work contributes computational and quantitative approaches to further the study of kinases,

which are primary targets for many cancer therapeutics, by shedding light on potential functions of
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understudied kinases and identifying undertargeted subnetworks, or groups, of kinases. The potential

to repurpose drugs for new biological/clinical contexts is also an important contribution to cancer

biology.

5.3 Challenges

The lack of comprehensive data set that are completely consistent across data types is a challenge

in quantitative studies, like the ones presented in this thesis. This challenge will be less and less

impactful as the amount of public data, across experimental platforms, increases in the near future.

Another main challenge for this work is the completeness of the biological annotations of protein

functions. Many proteins have very little information (if any) on their biological role, which can

make directing therapeutic development/repurposing challenging. The work presented in this thesis

will help with this challenge to provide some insight into potential biological functions for these

understudied proteins but experimental testing and validation is still needed.

5.4 Future Directions

Further development of analyses and techniques to characterize the understudied kinome should

be explored. Regression methods, such as lasso and elastic net regression, can be used to associate

patterns of MIB binding of characterized kinases to understudied kinases [130, 131]. The char-

acterized kinases that tend to be associated with the functional levels of the understudied kinases

could provide insight into the biological function of the understudied kinase. MIB binding profiles

of cell lines and tumors could be used in conjunction with proteomic data on tumors from public

sources to expand the repertoire of samples [132]. Network clustering of a compiled protein-protein

interaction network (PPIN) can also indicate the function of understudied kinases and could direct

drug studies as well. Similarly, regression methods can help determine which kinases are responsible

for reprogramming after drug treatment, which can inform drug treatment decisions [130, 131].

Extension of the optimization methodology presented in this thesis is also an area for further

study. The output of the current optimization method is binary: 1 for choosing a drug, 0 for not

choosing a drug. It would be ideal to have the output of this method to be continuous instead of

binary. To do this, it would require dosing information for each drug it is possible to choose, which
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is a large experimental undertaking since the drugs would have to be tested in multiple contexts

to make the computational approach feasible. Another expansion of the optimization method

would be to incorporate network and subnetwork information into the input. As more experimental

data is generated to solidify protein-protein interactions and the actions of drugs in the PPIN, the

optimization method will become “smarter” by incorporating different data types to make a more

informed decision about the “best” drugs to include in a combination therapy.
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