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ABSTRACT 

 
 

Leslie C. Freeman: A Role for the NLR Family Members NLRC4 and NLRP3 in Astrocytic 
Inflammasome Activation and Astrogliosis  
(Under the direction of Jenny P.Y. Ting) 

 
 

The inflammasome is implicated in many inflammatory diseases but has been primarily 

studied in the macrophage-myeloid lineage.   Here we demonstrate a physiologic role for 

nucleotide-binding domain, leucine-rich repeat, CARD domain containing 4 (NLRC4) in brain 

astrocytes. NLRC4 has been primarily studied in the context of gram-negative bacteria, where it 

is required for the maturation of pro-caspase-1 to active caspase-1. We show the heightened 

expression of NLRC4 protein in astrocytes in a cuprizone model of neuroinflammation and 

demyelination as well as human multiple sclerotic brains. Similar to macrophages, NLRC4 in 

astrocytes is required for inflammasome activation by its known agonist, flagellin.  

 However, NLRC4 in astrocytes also mediate inflammasome activation in response to 

lysophosphatidylcholine (LPC), an inflammatory molecule associated with neurologic disorders.  

In addition to NLRC4, astrocytic NLRP3 is required for inflammasome activation by LPC.  Two 

biochemical assays show the interaction of NLRC4 with NLRP3, suggesting the possibility of a 

NLRC4-NLRP3 co-inflammasome.  
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To study the physiologic relevance of NLRC4 in the brain, Nlrc4-/- mice showed a 

pronounced delay in astrogliosis, a partial reduction in microglial accumulation, mature 

oligodendrocyte numbers and demyelination during neuroinflammation and demyelination. 

These results revealed an in vivo role for NLRC4 in a neurologic disease model that is not due to 

a bacterial infection. 
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Chapter 1: The pathogenic role of the inflammasome in neurodegenerative diseases1 

1.1 Introduction to Inflammasomes and Neuroinflammation 

  Nucleotide-binding leucine-rich repeat containing (NLR) also known as NOD-like 

receptors are a class of cytosolic sensors or receptors that respond to a variety of  pathogen 

associated molecular patterns (PAMPs) which are associated with various microbes as well as 

damage-associated molecular patterns (DAMPs) which are produced during tissue injury. There 

are more than 20 NLR genes in humans and more than 30 in mice. The structure of NLRs 

consists of a tripartite domain containing a variable N-terminal effector domain, a central 

nucleotide binding domain, and a C-terminal domain consisting of variable leucine rich repeats. 

NLRs are classified into various sub-groups each with their own unique responses to PAMPs and 

DAMPs(Davis, Roberts, et al., 2011).    

One of the most extensively studied classes of NLRs is the inflammasome forming 

NLRs. Upon sensing DAMPs and PAMPs these NLRs mediate the release of pro-inflammatory 

cytokines IL-1β and IL-18. These NLRs include NLRP1, NLRP3, NLRC4, NLRC5, NLRP6, 

NLRP7, NLRP12. IL-1β and IL-18 can also be formed by the non-NLR inflammasome receptor 

known as AIM2.   

                                                 
1 Portions of this chapter have been adapted and modified from Freeman LC, Ting JP. The pathogenic role of the 
inflammasome in neurodegenerative diseases. J Neurochem. 2015. Epub 2015/06/30. doi: 10.1111/jnc.13217 
pmid:26119245 © 2015 International Society for Neurochemistry, J Neurochem. (2015) 10.111/jnc.13217 
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The signal specificity and functional roles of NLRP1, NLRC4, AIM2, and in particular 

NLRP3 have been well characterized (Amer et al., 2006; Cirelli et al., 2014; Dostert & Petrilli, 

2008; Duncan et al., 2007; Faustin & Reed, 2013; Fernandes-Alnemri, Yu, Datta, Wu, & 

Alnemri, 2009; Hornung et al., 2009; Kummer et al., 2007; Martinon, 2010; Miao et al., 2006; 

Munoz-Planillo et al., 2013)  
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The signal specificity and functional roles of other inflammasome forming NLRs have 

yet to be fully elucidated. Upon sensing a PAMP or DAMP an NLR forms a multimeric protein 

complex known as the inflammasome through the association of the adaptor protein PYCARD 

(also known as ASC (apoptosis-associated speck-like protein containing a C-terminal caspase 

recruitment domain [CARD]). This initiates the cleavage of pro-caspase-1 into its active and 

mature form caspase-1. Recently, elegant biochemical, structural, electron microscopic and 

functional analyses have shown that ASC serves as an enucleating or as polymerizing template 

which associates with  multiple copies of  other components of the inflammasome to form a fibril 

or prion-like multimeric, stacked structure (Cai et al., 2014).  Active caspase-1 is then able to 

cleave the immature forms of IL-1β and IL-18 into their mature forms. In recent years mouse 

model studies of inflammatory diseases and genome-wide association studies (GWAS) have 

implicated the inflammasome in the pathogenesis of various inflammatory diseases ranging from 

inflammatory bowel disease to asthma(Chaput, Sander, Suttorp, & Opitz, 2013; Davis et al., 

2014).    

IL-1β is known to cause the proliferation of macrophages, and neuroinflammatory cells 

such as microglia and astrocytes (Feder & Laskin, 1994). These cells are recruited to the site of 

injury or inflammation within the central nervous system. This represents one of the initial 

signature events during neuroinflammation and a hallmark of pathogenesis associated with 

various neurodegenerative diseases. Regulation of IL-1β and IL-18 may play a role in attenuating 

and or balancing the innate immune response during neuroinflammation.       
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As the inflammasome mediates the release of IL-1β and IL-18 both of which can trigger a 

cascade of secondary inflammatory events in neuroinflammation, the inflammasome represents a 

potential critical mediator of neuroinflammation and a potential therapeutic target of 

neurodegenerative diseases. Recent studies have begun to validate the pathogenic role of the 

inflammasome in neurodegenerative diseases. This review will focus primarily on emerging 

evidence suggesting that NLRP1, NLRP3, NLRC4 and AIM2 may play a pathogenic role in 

neuroinflammatory diseases such as Alzheimer’s disease (AD), traumatic brain injury (TBI), and 

multiple sclerosis (MS).  MS is mischaracterized as neuroinflammatory disease and should be 

classified as a neurodegenerative disease.  MS can be characterized as neurodegenerative in 

nature with damage to tissue such as the blood brain barrier. The inflammation associated with 

MS may be an indirect effect of tissue injury and not a cause of it. Studies have shown that 

demyelination and oligodendrocyte death in MS can occur in the absence of inflammatory cells  

such as T cells.(Lucchinetti et al., 2000).   
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1.2 The Inflammasome and Alzheimer’s Disease and Disease Models 

Alzheimer’s disease (AD) is characterized as a neurodegenerative progressive disease 

and is the leading cause of dementia. The disease typically affects people 65 years and older. 

Symptoms associated with the disease include a progressive decline in cognitive function. The 

pathogenesis of this disease is believed to be the result of a continual accumulation of amyloid-β 

peptide deposits that form within senile plaques. These senile plaques lead to the disruption of 

synaptic activity and eventually neuronal death. Other pathogenic markers associated with this 

disease include the formation of neurofibrillary tangles(Weiner & Frenkel, 2006). Although this 

is the recognized pathology of AD within the field, there still are unknown pathogenic factors 

that may contribute to the etiology of this disease.  

Over the years there has been evidence to suggest that the cytokines IL-1β and IL-18 may 

contribute to the pathogenesis of AD (Blum-Degen et al., 1995; Bossu et al., 2007; Ojala et al., 

2009). Other evidence has suggested that microglia may play a key role in initiating AD 

pathology (Vehmas, Kawas, Stewart, & Troncoso, 2003). Microglia are known to be recruited to 

the site of these senile plaques and secrete IL-1β (Griffin et al., 1989; Meyer-Luehmann et al., 

2008). Figure 1.1 summarizes the proposed roles of the inflammasome in AD or AD disease 

models. 
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One of the initial studies looked to characterize the microglia at these senile plaques and 

assess if IL-1β secretion was inflammasome dependent. Incubation of microglia with fibrillar 

amyloid-β (Aβ) peptide resulted in IL-1β release, caspase-1 activation, and the formation of ASC 

complexes.  When fibrillar Aβ was injected into Asc-/- and Casp1-/- mice there was a significant 

decrease in microglial accumulation in the brain compared to wild-type mice. These findings 

suggests that IL-1β and inflammasome associated proteins influence microglial recruitment at 

the site of senile plaques in AD. In a subsequent study it was shown that APP/PS1/Nlrp3-/- mice 

showed less caspase-1 cleavage, and less amyloid-β deposits, and enhanced phagocytosis of 

amyloid-β compared to APP/PS1 mice. This study provided evidence that NLRP3 has an in vivo 

and exacerbating role in the pathogenesis of AD (Heneka et al., 2013).  

There has been accumulating evidence to suggest that NLRP3 plays a role in AD and that 

it responds to molecules associated with AD such as fibrillar amyloid-β (Halle et al., 2008; 

Heneka, Golenbock, & Latz, 2015; Heneka et al., 2013). The role of the NLRP3 inflammasome 

in the pathogenesis of AD was further supported by the demonstration that antibodies directed 

towards NLRP3 co precipitated the inflammasome complex from protein preparations of 

amyloid- β stimulated glial cultures. Conversely in these cultures, it was observed that 

NLRP10’s association with ASC decreased upon stimulation with amyloid compared to 

untreated cultures. 
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In comparison NLRP10 showed a strong association with ASC in naïve glial cells  

(Murphy, Grehan, & Lynch, 2014). NLRP10 is known to inhibit ASC and IL-1β in cell lines. 

However assessment of its in vivo contribution to IL-1β activity using NLRP10 null mouse lines 

is complicated because experiments were carried out using mice of mixed genetic background. 

(Krishnaswamy et al., 2015; Y. Wang et al., 2004). The decrease in NLRP10 association with 

ASC under amyloid stimulation in rat glial cells was believed to be due to cathepsin mediated 

degradation. The findings from this study suggest that NLRP10 may act as a negative regulator 

of NLRP3 inflammasome activation prior to sensing amyloid-β peptides.  Studies of clean 

NLRP10-deficient mice are needed to verify these results in vivo.   

The pathogenic role of NLRP3 in AD is established but this is not the only NLR that has 

been suggested to have a pathogenic role in AD. Mutations within the NLRP1 gene may 

contribute in combination with other known Alzheimer related genes (such as APP and PS1) to 

the etiology of AD (Pontillo, Catamo, Arosio, Mari, & Crovella, 2012). NLRP1 is known to be 

highly expressed in the human brain, specifically within neurons and oligodendrocytes (Kummer 

et al., 2007). This was confirmed with the use of anti- NLRP1 monoclonal antibodies. 

AD has been characterized as a progressive neurodegenerative disease resulting in 

cognitive deficits over time.  The inheritance of mutations in genes such as amyloid precursor 

protein (APP), presenilin 1 (PS1) have been linked to the pathogenesis of AD and symptoms 

associated with the disease(Weiner & Frenkel, 2006).  
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APPswe/PS1 mice contain mutated human transgenes for APP and PS1 both which are 

under the control of a Thy1 promoter. At 6 weeks of age APPswe/PS1 begin to develop AD 

associated pathologies such as amyloid deposits within the brain, and the presence of 

phosphorylated tau protein. Within 3-4 months of age these AD pathologies accumulate in 

APPswe/PS1 mice resulting in a progressive cognitive decline with age.   A recent study showed 

that aged APPswe/PS1d1 mice displayed elevated NLRP1 expression. When NLRP1 si-RNA 

was injected into APPswe/PS1d1 mice, there was reduced caspase-1 activation, pyroptosis, and 

improved cognitive function compared to APPswe/PS1d1 mice injected with control si-

RNA(Tan et al., 2014).   

Studies have suggested that IPAF may also contribute to the pathogenesis of AD through 

its activation by palmitate, a saturated fatty acid.  In one study, the inhibition of IPAF (also 

known as NLRC4) expression in palmitate treated primary rat astrocytes led to decreased IL-1β 

secretion as well as the reduction of amyloid-β42 in primary neurons that were incubated with 

conditioned media from palmitate treated astrocytes. Palmitate has been shown to induce IL-1β 

secretion in rat astrocytes resulting in AD-like properties in primary neurons(Liu, Martin, & 

Chan, 2013).  In this study it was also observed that there was elevated expression levels of IPAF 

and ASC in the post-mortem brain tissue of patients with sporadic AD (Liu & Chan, 2014).The 

authors of this study suggest that palmitate, a saturated fatty acid that is potentially linked to AD 

pathogenesis, may stimulate IPAF/NLRC4 expression in astrocytes(Geekiyanage, Upadhye, & 

Chan, 2013).  
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They suggested that NLRC4 may be linked to AD pathogenesis.NLRP1 and NLRC4 

have also been suggested to play a role in AD as well, but in order to fully elucidate their 

functional role, NLRC4 and NLRP1 deficient mice will need to be tested in AD mouse models 

(Liu & Chan, 2014; Pontillo et al., 2012; Tan et al., 2014).  

These aforementioned studies suggest that inflammasome activation correlate with the 

progression of AD. However inflammasome activation is not always linked to more disease 

severity, as one study has found that mice with a transgenic Il1b gene displayed chronic IL-1β 

expression and increased immune cell infiltration in the hippocampus, but this was not 

accompanied by enhanced neurodegeneration (Shaftel et al., 2007).  Another study showed that 

sustained IL-1β overexpression actually resulted in reduced amyloid plaques but increased tau 

phosphorylation (Ghosh et al., 2013). This underscores the complexity of targeting neuro-

immune interactions for therapies  
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Figure 1.1   The  role of the Inflammasome in Alzheimer’s disease (AD). 
Amyloid-β is known to trigger the activation of NLRP3. The exact trigger for NLRP1 in AD is 
not known but it may possible that potassium effluxes which trigger NLRP1 (as well as NLRP3) 
could occur during AD pathogenesis and in the process trigger NLRP1 activation. Recently it 
was suggested that palmitate, a saturated fatty acid may play a role in activating NLRC4 during 
AD. These potential triggers may possibly activate NLRP3, NLRP1 and NLRC4 during AD but 
have yet to be confirmed (dashed lines). NLRC4 can associate with pro-caspase-1. NLRP1 and 
NLRP3 associate with the adaptor protein ASC. ASC initiates the cleavage of pro-caspase-1 into 
the mature form of caspase-1, which cleaves pro-IL-1β and pro-IL-18 into their mature forms of 
IL-1β and IL-18, which have been implicated in the pathogenesis of Alzheimer’s disease. 
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1.3 The Inflammasome and Traumatic Brain Injury 

Traumatic brain injury (TBI) can be characterized as physical force such as a bump or 

blow to the brain resulting in injury which disrupts the normal function of the brain. Symptoms 

associated with TBI include dizziness, cognitive deficits, and most commonly headaches. Post 

TBI symptoms include memory impairments and behavioral changes (Riggio, 2011). Some 

symptoms may be temporary and resolve, however some may last for years. TBI can range from 

being mild (such as a concussion) to severe depending on the extent of physical damage to the 

brain.  Physical damage to the brain in TBI initiates a primary insult followed by a secondary 

cascade of events. A primary insult results in direct neuronal loss and necrotic death (Lozano et 

al., 2015).  The secondary cascade of events that occurs after primary insult can be characterized 

as neuroinflammatory responses such as the recruitment of microglia and astrocytes to the site of 

injury, oxidative stress, mitochondrial dysfunction, blood brain barrier disruption and cytokine 

production (Chodobski, Zink, & Szmydynger-Chodobska, 2011; Dasuri, Zhang, & Keller, 2013; 

Mbye, Singh, Sullivan, Springer, & Hall, 2008).  Figure 1.2 shows the proposed roles of the 

inflammasome in TBI or TBI related disease models. 
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As with other neurological diseases IL-1β and IL-18 have been associated with the 

pathogenesis of TBI (McClain, Cohen, Ott, Dinarello, & Young, 1987; Yatsiv et al., 2002). In 

one study , mice that received an anti-ASC antibody intracerebroventricularly  immediately after 

TBI showed a decrease in contusion volume compared to vehicle treated mice(de Rivero Vaccari 

et al., 2009).  

The clinical relevance of NLRP1 in TBI is supported by the observation of elevated 

levels of   NLRP1 in the cerebrospinal fluid (CSF) of TBI patients that were predicted to have a 

poor or unfavorable outcome. Lower expression of ASC and caspase-1 was associated with 

patients that had a favorable outcome (S. Adamczak et al., 2012). This was verified with the use 

of monoclonal antibodies against ASC, NLRP1 and caspase-1 in the CSF of TBI patients. 

NLRP1 is expressed in neuronal tissue and represents an ideal inflammasome to study in TBI. 

NLRP3 may also serve as an ideal candidate therapeutic target in TBI as a multitude of signals 

such as ATP and oxidative stress are released during TBI and may activate NLRP3.  

 DAMPs such as oxidative stress and ATP are known to be released during the secondary 

cascade of events in TBI (Cristofori et al., 2005).  These DAMPs may trigger NLRP3 activation. 

This pathway of inflammasome activation is supported by a study in which there were elevated 

levels of NLRP3, ASC and increased IL-1β release was observed in TBI- injured rat brains (H. 

D. Liu et al., 2013). Besides the generation of reactive oxygen species (ROS) in TBI, other 

studies suggested that there may be a correlation between elevated circulating plasma DNA and 

severe TBI (Campello Yurgel et al., 2007).  
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AIM2 is a cytosolic sensor of dsDNA (Hornung et al., 2009). AIM2 may contribute to the 

pathogenesis of TBI, as suggested in the study reporting that poly (deoxyadenylic-

deoxythimidylic acid sodium salt (poly (dA: DT) stimulated embryonic cortical neurons led to 

neuronal pyroptosis (S. E. Adamczak et al., 2014).  It was also observed that rat embryonic 

cortical neurons that were co-cultured with CSF from TBI patients showed significantly elevated 

levels of AIM2 and cleaved caspase-1 compared to neurons cultured with CSF from control 

patients (S. E. Adamczak et al., 2014). Whether increased AIM2 expression was a result of 

inflammatory activators such as dead cell debris or if AIM2 expression itself impacts disease 

outcome was not ascertained in this study.  

 In a recent study, NLRP1 was found within the exosomes derived from the CSF of spinal 

cord injury (SCI) and TBI patients(de Rivero Vaccari et al., 2015).  In this study administration 

of ASC-targeting si-RNA in exosomes to primary rat cortical neurons resulted in decreased ASC 

expression. Although the study examined protein expression and saw a correlation between 

elevated inflammasome protein expression and unfavorable TBI pathology, the potential 

functional roles that inflammasome components may play in TBI remain to be directly 

elucidated.  
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 Figure 1.2: The role of the Inflammasome in traumatic brain injury (TBI). 

Traumatic brain injury (TBI) is initiated by a physical force exerted to the head. This results in a 
primary insult with the immediate injury and death of neurons. The primary insult is followed by 
a secondary cascade of events following neuroinflammation such as mitochondrial dysfunction, 
the production of reactive oxygen species (ROS), potassium effluxes and the release of 
circulating DNA. While these DAMPs all have the potential to activate NLRP3, NLRP1 and 
AIM2 in various systems, their contribution to the pathogenesis of TBI has yet to be confirmed 
(dashed lines).NLRP3, NLRP1 and AIM2 associate with the adaptor protein ASC, which 
initiates the cleavage of pro-caspase-1 to the mature form of caspase-1 which cleaves pro-IL-1β 
and pro-IL-18 into their mature forms of IL-1β and IL-18. NLRP3, NLRP1, AIM2, IL-1β and 
IL-18 have been implicated in the pathogenesis of traumatic brain injury. 
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1.4 The inflammasome and cerebral ischemic stroke  

A cerebral ischemic stroke occurs when blood flow to the brain is interrupted by the 

blockage of a cerebral artery(Fann et al., 2013). The brain requires a constant supply of oxygen 

and nutrients (such as glucose) through the delivery of blood to meet its high metabolic demands.  

A loss of blood flow to the brain through a stroke leads to neuronal death, as well as triggering a 

secondary cascade of events including oxidative stress, production of ROS, and mitochondrial 

dysfunction (Sims & Muyderman, 2010). This secondary cascade of cytotoxic events in stroke is 

further compounded by reperfusion injury. Reperfusion injury occurs when blood is reintroduced 

to infarcted areas bringing with it an influx of oxidative stress, ROS and other DAMPs. These 

DAMPS which are released during ischemic stroke may play a role in activating various NLRS 

during the inflammatory process following a stroke.  IL-1β and IL-18 have been found to play a 

role in ischemic stroke (Boutin et al., 2001; L. Yang et al., 2010). This evidence combined with 

the known release of DAMPs during cerebral ischemia suggests that the inflammasome may play 

a role in cerebral ischemia.  

  In one of the initial studies to assess the role of the inflammasome in cerebral ischemia it 

was observed that cerebral ischemic induced mice that were intracranially injected into the right 

ventricle with the anti-NLRP1 antibody showed a reduction in cleaved caspase-1, cleaved IL-1β 

as well as a modest reduction in infracted area and volume (Abulafia et al., 2009).  
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In a subsequent study, the pathogenic role of NLRP1 and NLRP3 were assessed in 

murine models of ischemic stroke and in stroke patients. NLRP1 and NLRP3 were shown to be 

elevated in postmortem brain tissues from stroke patients (Fann et al., 2013). The authors of this 

study used intravenous immunoglobulin (IVIg), a immunomodulatory therapeutic that showed 

beneficial effects in previous stroke studies  and saw that it decreased the expression of 

inflammasome- associated proteins such as NLRP1, NLRP3 in post cerebral ischemia in mice 

(Widiapradja et al., 2012). 

In another study a plant extract known as chrysophanol was used after induced cerebral 

ischemia in mice which resulted in a reduction in infarcted areas as well as a reduction in NLRP3 

expression (Zhang et al., 2014). In a subsequent study NLRP3 deficient mice were under 

cerebral ischemic conditions which involved the occlusion of the middle cerebral artery which 

resulted in a decrease in cerebral infarctions, and neurological deficits compared to WT mice (F. 

Yang et al., 2014). Recent evidence showed that Aim2-/- and Nlrc4-/-  mice had reduced cerebral 

ischemic injury (Denes et al., 2015).  
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The findings from the aforementioned studies suggest that the inflammasome plays a 

pathogenic role in cerebral ischemic stroke. It is not surprising that AIM2 and NLRP3 contribute 

to the pathogenesis of stroke as signals released during stroke (oxidative stress and DNA) are 

recognized by these inflammasomes. The neuronal expression of NLRP-1 makes it an ideal 

inflammasome to study in stroke but its functional role in ischemia will need to be ascertained 

with the use of Nlrp1-/- mice. The recent study  suggesting that NLRC4 may play a role in stroke 

is intriguing as its specificity towards signals has been restricted to pathogens and thus its 

activation in stroke will need to be further explored(Denes et al., 2015). 
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Figure 1. 3 The role of the inflammasome during cerebral ischemic stroke.  

Cerebral ischemic stroke is caused by the occlusion of a major artery. This results in neuronal 
injury or death. Following vessel occlusion a secondary cascade of events occurs including 
mitochondrial dysfunction, the production of reactive oxygen species (ROS), potassium effluxes 
and the release of circulating DNA. These events can trigger the activation of NLRP3, NLRP1, 
AIM2, and possibly NLRC4. NLRC4 can associate with pro-caspase-1. NLRP1, NLRP3 and 
AIM2 associate with the adaptor protein ASC. ASC initiates the cleavage of pro-caspase-1 to the 
mature form of caspase-1 which cleaves pro-IL-1β and IL-18 into their mature forms of IL-1β 
and IL-18 implicated in the pathogenesis of cerebral ischemic stroke. 

 
 
 
 
 
 
 
 
 
 
 

 

 



 

19 
 

1.5 The inflammasome and multiple sclerosis (MS).  

 

Multiple Sclerosis (MS) is a neuroinflammatory demyelinating disease that affects 1.5 

million people worldwide (Bhat & Steinman, 2009). MS is a heterogeneous disease in which the 

pathology, onset of the disease and progression, can vary  depending on multiple forms of MS 

such as relapse remitting (RR) MS caused by the autoimmune inflammatory responses against 

the central nervous system (CNS) myelin proteins, and primary progressive (PP)MS, 

characterized by oligodendrocyte apoptosis and demyelination (Denic et al., 2011). Although 

previous studies have suggested a T cell based pathology in RRMS , additional hallmarks of 

RRMS include blood brain barrier disruption, demyelination, oligodendrocytic and neuronal loss 

(Steinman, 2008).  Although the etiology of the disease remains unknown, clinical studies have 

suggested that elevated expression of caspase-1, IL-1β and IL-18 may be associated with the 

susceptibility, progression, and severity of MS clinical course (Balashov, Rottman, Weiner, & 

Hancock, 1999; Karni, Koldzic, Bharanidharan, Khoury, & Weiner, 2002; Losy & Niezgoda, 

2001; Mann et al., 2002).  IL-1β is known to promote the differentiation of naïve CD4+ T cells 

into a subset of Th17 T cells (Sato, Martinez, Omura, & Tsunoda, 2011; Shaw, McDermott, & 

Kanneganti, 2011). IL-18 was originally identified as the IFNγ-inducing factor and is able to act 

in a synergistic fashion with IL-12 to promote the differentiation of naïve CD4+ T cells into Th1 

T cells (Shaw et al., 2011). Both Th1 and Th17 T cells have been implicated in the pathology of 

RRMS.    
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Previous studies using MS animal models have shown that the presence of 

inflammasome-associated proteins such as ASC, caspase-1, IL-β , and IL-18 may play an 

exacerbating role in the pathogenesis of MS (Furlan et al., 1999; Lalor et al., 2011; Shaw et al., 

2010). Growing evidence has suggested that NLRP3 may contribute to the pathogenesis of 

PPMS by accelerating demyelination in the cuprizone model which is a T cell-independent 

model of demyelination, but also in the classical T cell dependent RRMS model by enhancing 

Th1 and Th17 responses, and inducing the migration of T cells into the CNS which has been 

shown by Gris and also confirmed in later studies(Gris et al., 2010; Inoue, Williams, Gunn, & 

Shinohara, 2012; Jha et al., 2010).  

New data have emerged suggesting that NLRP3 may play an inhibitory role in current 

RRMS therapeutics such as IFN-β.  IFN-β represents one of the first lines of therapeutics used to 

treat RRMS. Its efficacy in the treatment of patients is moderate. This may in part be due to the 

heterogeneity of MS. The therapeutic mechanism of IFN-β has not been fully elucidated. Recent 

evidence has suggested that IFN-β may be able to provide therapeutic benefits by dampening the 

NLRP3 and NLRP1 inflammasome pathways and by inhibiting IL-1β production (Guarda et al., 

2011).  
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More recently, it has been suggested that the efficacy of IFN-β therapy in the EAE model 

is NLRP3 dependent, and mice without NLRP3 do not benefit from IFN-β treatment (Inoue et 

al., 2012). Recently clinical evidence was reported suggesting that responsive MS patients 

treated with IFN-β therapy had elevated NLRP3 and IL-1β expression while non-responsive 

patients didn’t suggesting that NLRP3 may play a role in the efficacy of IFN-β therapy in MS 

patients, although the precise mechanism of this involvement is unclear (Malhotra et al., 2015). 

In a subsequent study a small molecule, MCC950, was identified as an NLRP3 antagonist of IL-

1β secretion. MCC950 was found to inhibit NLRP3 activity and attenuate EAE activity (Coll et 

al., 2015). To date amongst the inflammasomes, NLRP3 appears to play the strongest pathogenic 

role in MS. Other inflammasome forming NLRs such as NLRP1 may play a role in MS but their 

functional role will need to be further elucidated. Figure 1.4 shows the proposed roles of the 

inflammasome in MS disease or MS-related disease models. 
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Figure 1.4.  The role of the Inflammasome in multiple sclerosis (MS). 

NLRP3 and NLRP1 have been implicated in the pathogenesis of MS. NLRP3 and NLRP1 
associate with the adaptor protein ASC. ASC initiates the cleavage of pro-caspase-1 into the 
mature form of caspase-1 which cleaves pro-IL-1β and pro- IL-18 into their mature forms of IL-
1β and IL-18. IL-1β is known to drive the proliferation of microglia and astrocytes which are 
cells that represent hallmarks of neuroinflammation (such as astrogliosis and microglial 
accumulation). IL-1β in combination with cytokines such as IL-6, IL-21 or IL-23 drive the 
differentiation of naïve CD4+ T cells into Th17 T cells. IL-18 (also known as the IFN-γ inducing 
factor) in combination with IL-12 drives the differentiation of naïve CD4+ T cells into Th1 T 
cells. Microglia, astrocytes, Th1 and Th17 T cells have all been implicated in the pathogenesis of 
MS. 
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1.6 The inflammasome and Parkinson’s disease 

 
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the 

damage or death of dopaminergic neurons within the substantia nigra pars compacta as well as 

the formation of Lewy bodies which contain protein inclusions such as α-synuclein within the 

cytoplasm of cells. Symptoms associated with PD include bradykinesia (slowness of movement), 

rigidity, tremors and postural instability (Dickson, 2012; Lee, Bae, & Lee, 2014). Non PD 

symptoms include constipation, sleep disorders and dysosmia ( an impaired ability to 

smell)(Langston, 2006).  

The etiology of PD is not known but various genes such as PARK1, PARK2, PINK1, 

LRRK2 and DJ-1 have been strongly linked to the pathology of PD (Maries, Dass, Collier, 

Kordower, & Steece-Collier, 2003; Schapira, 2009). Point mutations in the PARK gene affect 

encoding of the α-synuclein protein.  Mutations of other genes such as PARK2, PINK1, LRRK2 

and DJ-1 affect the encoding and function of their respective proteins such as the ubiquitin E3 

ligase known as parkin and kinases, all of which have been suggested to contribute to the 

pathology of PD and have been linked to either familial or sporadic PD(Obeso et al., 2010). 

Evidence over the years has emerged suggesting that IL-1β and IL-18 may be linked to the 

pathology of PD.  
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Although the etiology of PD is not known, the protein α-synuclein has been strongly 

implicated in contributing to the pathology of PD. Mutations at the genetic level and misfolding 

at the protein level have led to the abnormal function of this protein, which eventually leads to 

the formation of protein aggregates and cytoplasmic inclusions of this protein resulting in the 

formation of Lewy bodies which are associated with the pathology of PD.  

Recent studies have suggested that the α-synuclein may activate the inflammasome 

(Codolo et al., 2013). In this study it was shown that incubation of  fibrillar α-synuclein with 

monocytes led to the activation and release of IL-1β,  as well as the increased transcriptional 

expression of NLRP3 (and to a lesser extent NLRP1) in a time dependent manner. It was also 

shown that phagocytosis of fibrillar α-synuclein is required for IL-1β release.  Other factors 

besides α-synuclein have been linked to the pathology of PD.  Over the years there has been 

evidence to suggest that metabolic disorders may be linked to inflammation (Robbins, Wen, & 

Ting, 2014). Metabolic factors such as diet and cholesterol have been implicated in the 

pathogenesis of neuroinflammation and neurodegenerative diseases such as Alzheimer’s disease 

(Thirumangalakudi et al., 2008; Tu et al., 2011).  
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In a recent study it was suggested that metabolic disorders such as type 2 diabetes (T2D) 

may contribute to the pathogenesis of PD (L. Wang et al., 2014). In this study using ob/ob and 

db/db mice which are mice that have genetic mutations that lead to a disease that resembles T2D, 

the ob/ob and db/db mice had elevated expression of NLRP3, IL-1β, caspase-1, monomeric and 

oligomeric α-synuclein in the midbrain and pancreas of ob/ob and db/db mice compared to WT 

mice. The authors also observed that upon administration of the PD mimetic  drug 1-methyl -4-

phenyl-1,2,3,6-tetrahydrophine (MPTP) there were more microglia and astrocytes present  in  

db/db mice compared to WT mice and there was also less injury associated with the TH+ 

dopaminergic neurons of  WT mice compared to db/db mice. Overall the findings from these 

studies suggest that metabolic associated inflammation may contribute to the pathology of PD.  

The previously mentioned studies suggests that potential pathological  contributors to PD 

such as metabolic disorders such as T2D and altered expression or primary structure of a-

synuclein alter the risk for PD by augmenting the activity of the NLRP3 inflammasome (Codolo 

et al., 2013; L. Wang et al., 2014). As mentioned earlier, the etiology of PD remains to be 

defined. Regardless of the exact cause of PD pathogenesis, one of the immediate effects of PD 

pathogenesis is the loss of dopamine production due to damage caused by the progressive 

destruction of dopaminergic neurons within the substantia nigra. This results in motor 

dysfunctions such as rigidity and tremors. 
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Many therapeutics have been developed for the treatment  of PD such as levo dopa, while 

other drugs such as monoamine oxidase (MAO) inhibitors have been developed to limit 

dopamine metabolism in order to increase dopamine reuptake after its release (Schapira, 

2009).Dopamine plays a critical role in regulating the sympathetic nervous system as well as 

regulating cytokine production and inflammation(Beck et al., 2004). Recently it was shown that 

dopamine inhibits the NLRP3 inflammasome (Yan et al., 2015). In this study it was shown that 

LPS primed bone-marrow derived macrophages (BMDMs) that were pre-treated with dopamine 

and then stimulated with known NLRP3 agonists (such as nigericin, alum and ATP) resulted in 

inhibition of IL-1β secretion. The authors of this study also showed that dopamine was able to 

inhibit NLRP3 dependent IL-1β secretion through the dopamine receptor DRD1. Dopamine 

binding of DRD1 inhibited NLRP3 dependent IL-1β secretion by initiating the degradation of 

NLRP3 via cyclic AMP(cAMP). cAMP was able to bind to NLRP3 and promote its 

ubiquitination and degradation through the recruitment of the E3 ubiquitin ligase, MARCH7. 

This was confirmed by mass-spectrometry studies. Figure 1.5 summarizes the proposed roles of 

the inflammasome in PD and PD disease models.  
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Recent studies have suggested that the inflammasome may play a role in the pathogenesis 

of various neurological diseases such as AD, TBI, stroke and MS but findings suggesting that the 

inflammasome may contribute to the pathogenesis of  PD have been limited(S. E. Adamczak et 

al., 2014; Denes et al., 2015; Gris et al., 2010; Halle et al., 2008) . Previous studies have 

suggested that IL-1β and IL-18 may be associated with the pathology of PD (McGeer, Yasojima, 

& McGeer, 2002; Xu et al., 2011).The recent studies carried out by Codolo, Wang, Yan et al.  

have provided insight into the potential role that inflammasomes may play in the pathogenesis of 

PD. The recent findings provided by Codolo et al. suggest that NLRP3 may be able to be 

activated by α-synuclein. NLRP3 is known to sense a wide variety of signals and it is capable of 

sensing particulates and protein aggregates, so it is feasible that NLRP3 is capable of sensing α-

synuclein (Dostert & Petrilli, 2008; Heneka et al., 2013; Martinon, Petrilli, Mayor, Tardivel, & 

Tschopp, 2006). In this study α-synuclein stimulation was shown to induce NLRP3 dependent 

IL-1b secretion by monocytes. However, a similar response to a-synuclein by neuroinflammatory 

cell types such as microglia and astrocytes, cells capable of phagocytizing α-synuclein was not 

demonstrated. In the study carried out by Wang et al., it was shown that with the use of ob/ob 

and db/db mice they suggest that expression of α-synuclein and NLRP3 activation occurs in the 

midbrain and the pancreas of these mice suggesting that metabolic inflammation may contribute 

to the dopamine neuronal degeneration observed in mice. It may be interesting to see if other 

metabolic defects or disorders can contribute to the pathology of PD in a similar fashion.     
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Finally in the study carried out by Yan et al. it was shown that NLRP3 activation is 

inhibited by the neurotransmitter dopamine. In PD it is known that dopamine metabolism leads 

to ROS production, and oxidative stress, all of which have been shown to activate the NLRP3 

inflammasome(Martinon, 2010; Zhou, Tardivel, Thorens, Choi, & Tschopp, 2010).  Since 

dopamine is capable of inhibiting NLRP3 activation it would be interesting to see if dopamine 

may be acting as a feed back loop at the neurological and systemic level. Since PD is known to 

result in a loss of dopamine production, it would also be interesting to see if NLRP3 is 

upregulated during Parkinson’s disease.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

29 
 

 
 

 
 

Figure 1.5.  The role of the Inflammasome in Parkinson’s disease (PD). (A) α-synuclein has 
been strongly linked to the pathogenesis of PD. Recently it was shown that incubation of fibrillar 
α-synuclein in monocytes led to the increase in expression of NLRP3 (and less so in NLRP1) as 
well as the secretion of IL-1β suggesting that α-synuclein  may trigger the NLRP3 
inflammasome. α-synuclein has been known to be phagocytized by other cell types such as 
macrophages, astrocytes, and microglia but it is not known if phagocytosis in these cell types 
leads to IL-1β secretion or if it is inflammasome dependent (dashed lines).(B)  Dopamine upon 
release from pre-synaptic  neurons binds to postsynaptic neurons, and excess dopamine is taken 
up and recycled by DAT , the dopamine transporter. When dopamine re-enters neurons through 
channels it can be metabolized leading to the production of mitochondrial dysfunction and ROS 
production both of which have been characterized as triggers of NLRP3 inflammasome 
activation. As a consequence of the destruction of dopaminergic neurons in PD there is a 
decrease in the release of dopamine.  Recently it was shown that dopamine is capable of 
inhibiting NLRP3 activation.  Upon dopamine release, dopamine binds to DRD1. This G-protein 
coupled receptor (GPCR) is bound to the effector protein adenyl cyclase which mediates the 
release of cyclic AMP (cAMP). Dopamine causes activation of this receptor which leads to the 
release of cAMP, which binds to NLRP3 targeting it for ubiquitination. Upon ubiquitination of 
NLRP3, MARCH7 binds to and degrades NLRP3 inhibiting its ability to form an inflammasome 
and initiate the release of IL-1β and IL-18. 
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1.7 Conclusions 

Each neurodegenerative disease has its unique pathogenesis and etiology, although the 

inflammasome has been implicated in several neurodegenerative diseases.  This review focused 

on Alzheimer’s disease, traumatic brain injury and multiple sclerosis, cerebral ischemic stroke, 

and Parkinson’s disease.  AD is a progressive neurodegenerative disease in which amyloid-β 

accumulation leads to the formation of senile plaques and eventually dementia. TBI is a 

neurodegenerative disease in which physical force results in trauma of the brain. The initial 

trauma results in immediate neuronal injury and death but triggers a secondary cascade of events 

such as ROS production, and oxidative stress, which further exacerbate neuroinflammation. 

Cerebral ischemic stroke occurs when blood flow to the brain is interrupted by the blockage of a 

cerebral artery. A loss of blood flow to the brain results in the loss of neurons as well as 

triggering a secondary cascade of events such as ROS production, mitochondrial dysfunction and 

oxidative stress. MS is considered to be a T cell mediated demyelinating disease which results in 

the demyelination and death of neurons. PD is a progressive neurodegenerative disease in which 

there is damage or death of neurons within the substantia nigra pars compacta as well as well as 

the formation of Lewy bodies which contain cytoplasmic protein inclusions such as α-synuclein.     
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 The cytokines IL-1β and IL-18 have been implicated in the pathogenesis of these 

different diseases or disease models. These cytokines are critical in the proliferation of neuro-

immunoreactive cell types such as microglia and astrocytes which respond immediately to 

neuronal injury and death which occur in all three diseases. The excessive processing of IL-1β 

and IL-18 by inflammasome forming protein complexes can lead to excess production of IL-1β 

and IL-18 cytokines which can impact AD, TBI, cerebral ischemic stroke, MS, and PD 

pathology. Figure1.6 summarizes the importance of regulating IL-1β and IL-18 and the impact of 

dysregulation on AD, cerebral ischemic stroke, TBI MS and PD pathology. Excess IL-1β 

production can lead to an over accumulation of microglia at the site of senile plaques in AD and 

in PD  resulting in neuronal injury and death which contribute to neurological deficits and 

dementia associated with AD and PD. Depending on the extent of the TBI, the 

neuroinflammation may resolve on its own: however excess or unresolved neuroinflammation 

including excessive production of IL-1β may lead to the proliferation of microglia, macrophages 

and astrocytes at the site of TBI and cerebral ischemic stroke. These neuroinflammatory cells can 

cause further neuronal injury and death besides the neuronal injury that was caused by the 

primary insult. IL-1β and IL-18 drive the differentiation of naïve CD4+ T cells into Th17 and 

Th1 T cells which can cause the demyelination and death of neurons in MS.   
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 Inflammasome forming proteins such as AIM2, NLRP1, NLRP3, and NLRC4 play a 

critical role in mediating the release of the cytokines IL-1β and IL-18 and thus represent 

potential therapeutic targets. These studies have provided insight into the pathogenic role that 

NLRP3, NLRC4, NLRP1, and AIM2 may play in neurodegenerative diseases. Table 1.1 

summarizes the implicated pathogenic role of various inflammasome forming proteins in 

neurodegenerative diseases. There are more than nine known inflammasome forming proteins, 

but only 4 have been well characterized. It is likely that other inflammasome forming proteins 

also play roles during the initial neuroinflammatory stages of these diseases. There is also an 

added complexity in that the pathogenesis of these diseases may involve more than one 

inflammasome forming protein in response to a multitude of signals (such as ROS production, 

oxidative stress and DNA release), which occur concurrently during neuroinflammation.  The 

confirmation that inflammasomes functionally contribute to the neurodegenerative process, the 

identification of other inflammasome-forming NLRs that are involved in neurodegenerative 

pathogenesis and the design of therapeutics targeting these molecules should be of great interest 

to researchers. 

 
 
 
 
 
 
 
 
 
 

 
 
 



 

33 
 

 
 
Figure 1.6: Regulation of the cytokines IL-1β and IL-18 may impact neurodegenerative 

disease pathology.  As mentioned earlier, upon sensing insults (such as ROS, oxidative stress, or 
released DNA) during neuroinflammation, the inflammasome complex may form consisting of 
an NLR or non-NLR protein which results in the release of IL-1β and IL-18. IL-1β is known to 
drive the recruitment and proliferation of macrophages, microglia and astrocytes during 
neuroinflammation. IL-18 and IL-1β are known to work in combination with other cytokines to 
drive the differentiation of naïve CD4+ T cells into Th17 and Th1 T cells which can cause the 
demyelination and death of neurons during multiple sclerosis. Dysregulation of the processing 
and release of IL-1β and IL-18 may lead to the overproduction of these cytokines which will 
result in  excessive proliferation and recruitment  of these cell types which eventually lead to 
neuronal injury and or death which can exacerbate(as indicated by the red arrows) the various 
pathologies of  neurodegenerative diseases such as Alzheimer’s disease (a disease in which the 
accumulation of amyloid-β results in the formation of senile plaques resulting in dementia), 
traumatic brain injury(a neurodegenerative disease triggered by physical injury resulting in 
cognitive deficits) cerebral ischemic stroke (a neurodegenerative disease triggered by loss of  
blood flow to the brain due to a  blockage of a cerebral artery resulting in neuronal injury)   
multiple sclerosis (a T cell mediated demyelinating autoimmune disease resulting in paralysis) 
and Parkinson’s disease (progressive neurodegenerative disease in which there is death of 
neurons within the substantia nigra pars compacta as well as well as the formation of Lewy 
bodies which contain cytoplasmic protein inclusions such as α-synuclein).                                                                     
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Table 1.1 Table of Neurodegenerative diseases and the inflammasome forming proteins 

that are associated with them. 

Each highlighted column is represents the pathology of each neurodegenerative disease, whether 
or not IL-1β or IL-18 is associated with the pathology, the inflammasomes that have been  
implicated in each of the neurodegenerative diseases and the cell types that have been implicated 
in the pathology of each of the diseases.  Although these diseases are heterogeneous in their 
pathology, they are all associated with neuronal injury/death, mitochondrial dysfunction, and the 
production of ROS. 
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Section 1.8 Introduction to PKC subfamilies  

The binding of seven transmembrane heterotrimeric G-protein coupled receptors 

(GPCRs) by various agonists such as histamine, epinephrine, and serotonin results in the 

dissociation of the Gαq subunit, allowing it to bind to the effector protein phospholipase C.  

Phospholipase C in turn becomes activated and triggers the downstream release of second 

messengers such as diacylglycerol (DAG) and intracellular Ca2+ (Nishizuka, 1992; Pettitt et al., 

1997). These downstream signaling molecules bind to and activate the serine threonine kinase 

known as Protein Kinase C (PKC). PKC-δ exists as one of the twelve PKC isoforms that can be 

subdivided into three subfamilies based on the ability of these isoforms to respond to Ca2+ or 

DAG. The subfamilies are comprised of (a) the conventional which consists of PKC isoforms 

such as α, βI and βII, and γ that respond to Ca2+ and DAG, (b) the novel which consists of PKC 

isoforms such as the δ, ε, θ and η that respond to DAG but not Ca2+, and (c) the atypical which 

consists of the PKC isoforms such as the PKC-ζ and PKM- ζ and ι/λ that are unresponsive to 

either Ca2+ or DAG.  The differences in responsiveness to DAG and Ca2+ amongst the various 

PKC subfamilies are due to differences in the functionality and structure of the C1 and C2 

domains that allow for binding of DAG and Ca2+ (Basu & Pal, 2010)  (See Figure 1.7).  
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 Figure 1.7 The PKC subfamilies.   

 Stimulated G-protein coupled receptors result in the release of downstream signaling molecules 
such as diacylglycerol (DAG) and Ca2+ which are capable of binding to   Protein Kinase C 
(PKC), a serine threonine kinase. The 12 PKC isoforms each subdivided into 3 subclasses based 
on  their ability to sense and to respond to agonists such as diacylglycerol (DAG) and Ca2+ .This 
variation between isoenzymes is due to the absence or presence of C1A and C1B domains which 
allow for DAG binding, and the C2 domain which allows for Ca2+ binding . The PKC 
subfamilies include the conventional (α, βI, βII, γ ) which are  capable of sensing and responding 
to  both DAG and Ca2+, the novel (δ, ε, θ, η,) which responds to DAG but not Ca2+, and the 
atypical (PKC-ζ and PKM- ζ and ι/λ).   All three subfamilies contain a kinase domain essential 
for PKC mediated phosphorylation of downstream targets as well as a pseudo-substrate domain 
which inhibits activation of the kinase domain.  
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Although there are multiple PKC isoforms  this chapter will focus on PKC-δ as recent studies 

have suggested that it plays a critical role in the activation of the NLRC4 inflammasome, the 

details of which will be further explored in chapter four . The cellular and biological function of 

PKC-δ varies depending upon the cell type and its associated disease state. The role of PKC-δ 

has been linked to a multitude of diseases ranging from cardiovascular disease to diabetes 

(Cantley et al., 2011; Chen et al., 2001) (Wallerstedt, Smith, & Andersson, 2010).   

The use of PKCδ-/-   in murine cancer models has suggested that PKC-δ may function as a 

tumor promoter in transformed cells that are K-ras dependent (Symonds et al., 2011).   Besides 

acting as a potential tumor suppressor in certain cell types PKC-δ has been suggested to promote 

apoptosis (Perletti & Terrian, 2006). In a recent study it was shown that inducing γ-irradiation in 

vivo in PKCδ-/-  mice resulted in decreased apoptosis compared to WT mice suggesting that PKC-

δ may play a pro-apoptotic role(Humphries et al., 2006). PKC-δ has also been suggested to play 

a pathogenic role in the development of cardiovascular disease (See section 1.9). In a recent 

study, when using vein graft procedures on PKCδ-/-   and WT mice, it was observed that PKCδ-/-   

mice had more arteriosclerotic lesions in their vein grafts compared to WT mice(Leitges et al., 

2001). This suggests that PKC-δ may play a protective role in cardiovascular diseases, although 

other reports suggest PKC-δ may play an exacerbating role in cardiovascular disease (Inagaki, 

Hahn, Dorn, & Mochly-Rosen, 2003).  
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This chapter will focus mainly on the role of PKC-δ in cardiac ischemia and cancer, as its 

roles in these diseases have been well defined while its function in other diseases is emerging 

(see Figure 1.8). 

 

 

Figure 1.8 Biological and cellular roles of PKC-δ. 

The serine threonine kinase PKC-δ has a multitude of biological roles depending on the cellular 
context.  In cardiovascular disease (shown in the red box) previous studies have suggested that 
PKC- δ may promote damage and apoptosis in cardiac ischemia and may promote reperfusion 
injury. In certain cancers (shown in the yellow box) such as colorectal cancer and breast cancer it 
has been suggested that PKC-δ activation may limit cell proliferation and cell migration. In the 
immune system (shown in the blue box) PKC- δ has been shown to inhibit B cell proliferation 
and IL-6 transcription. 
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 1.9 The role of PKC-δ during cardiovascular disease.  

 Cardiac ischemia occurs when blood flow to a coronary artery becomes blocked. This 

blockage results in the injury and death of cardiomyocytes. In order to minimize further injury 

and death of cardiomyocytes due to a blocked artery, blood must be reintroduced through 

reperfusion. This however causes further damage to the ischemic area (Arslan, de Kleijn, & 

Pasterkamp, 2011). In cardiac ischemia, PKC-δ activity has been suggested to have a deleterious 

effect (Murriel & Mochly-Rosen, 2003). This is supported by a recent study where it was found 

that administration of a PKC-δ inhibitor (peptide δV1-1) prior to reperfusion induced injury in 

rat hearts resulted in improved cardiac function and reduced infarct areas compared to vehicle 

treated controls(Inagaki, Hahn, et al., 2003) . In this same study, PKC-ε exhibited a protective 

effect during cardiac ischemia. This was observed with the use of a PKC-ε activator (peptide 

ψεRACK) which when administered prior to ischemic or reperfusion induced injury resulted in 

improved cardiac function. In another study which focused solely on reperfusion induced injury, 

it was shown that the use of the PKC-δ inhibitor in an animal model of cardiac ischemic resulted 

in improved cardiac function, reduced infarct area, reduced heart tissue associated death and 

damage (Inagaki, Chen, et al., 2003). Together these studies suggest that PKC-δ may have a 

deleterious effect in cardiac ischemia and that it may be possible that PKC-δ has a pro-apoptotic 

function. Furthermore this supports the idea that inhibition of PKC-δ may limit its ability to 

promote apoptosis of cardiomyocytes during cardiac ischemia.  
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 1.10 The role of PKC-δ during cancer.  

The functional role of PKC-δ during cancer varies depending on the cancer cell type. 

Multiple studies have suggested that PKC-δ acts as a tumor suppressor in various cell lines (Levy 

et al., 1993; Lu et al., 1997) For example, a number of studies suggest that PKC-δ acts as a tumor 

suppressor in colon cancer (McGarrity & Peiffer, 1994; Sakanoue et al., 1991). Many of these 

are based on the level of expression of the enzyme in normal and tumor tissue.  In one study the 

activity of PKC-δ was decreased in colorectal cell carcinomas in comparison to colon tissue from 

healthy patients(Kopp et al., 1991).  

  This finding was supported by a subsequent study, PKC-δ activity was found to be 

decreased in colorectal cell carcinomas (Levy et al., 1993). It was also observed that the PKC-α 

and PKC-β levels of expression in human colorectal cancers remained unchanged compared to 

normal colon tissue, however the mRNA expression of PKC-δ was decreased in colorectal cell 

carcinomas in comparison  to normal colon tissue. This correlative data suggests that there is 

decreased expression of PKC-δ in cancerous tissue relative to normal tissue, and adding support 

to the notion that PKC-δ may act as a tumor suppressor.  Other findings have provided similar 

evidence that PKC-δ may be a tumor suppressor, with the fact that the decrease in the expression 

of PKC- δ was associated with the growth and proliferation of anchorage independent cell 

growth in rat fibroblasts (Lu et al., 1997).  In this study the tumor-promoting phorbol ester 12- 

O-tetradecanoylphorbol-13-acetate (TPA) was found to stimulate anchorage independent cell 

growth in rat fibroblasts over expressing the c-Src proto-oncogene.  These TPA stimulated rat 

fibroblasts also showed decreased protein expression of PKC-δ.   
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When a TPA antagonist such as Bryostatin-1 was used prior to TPA stimulation of rat 

fibroblasts there was a decrease in anchorage independent cell growth in the rat fibroblasts but 

also no observed decrease in protein expression of PKC-δ.  

Besides the characteristic of uncontrolled cell proliferation in cancer cells, another 

characteristic associated with cancer is the ability of cancer cells to migrate leading to the 

dissemination of malignant tumors(Crusz & Balkwill, 2015). In one study it was observed that 

PKC-δ played a role in suppressing cell migration(Jackson et al., 2005). In this study,the authors 

looked at cancer cell lines with varying levels of cell motility and PKC-δ expression. In this 

study it was shown that breast cancer cell lines such as BT-549, which had low levels of PKC-δ 

expression, migrated well, while another breast cancer cell line known as the MCF-7 cell line, 

which had high levels of PKC-δ expression, migrated poorly. When BT-549 cells were 

transfected with PKC-δ, the motility of the cells was reduced by 50%.  Conversely when the 

MCF-7 cells were transfected with a PKC-δ dominant negative mutant it was observed that there 

was an increase in the level of cell migration. Finally it was shown that mouse embryonic 

fibroblasts that were isolated from PKC-δ-/- mice had elevated cell motility compared to WT 

mice. These correlative data suggest that the decrease in expression and/or activity of PKC-δ 

correlates with the presence of certain types of tumors as well as the proliferation and migration 

of cells (Jackson et al., 2005; Kopp et al., 1991; Lu et al., 1997; McGarrity & Peiffer, 1994; 

Sakanoue et al., 1991).  
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Although these findings suggest a role for PKC-δ in reducing cellular migration, other 

findings suggest that in other cancer cell lines PKC-δ may act as a tumor promoter. In one in vivo 

tumor growth study, the overexpression of PKC-δ in pancreatic cancer cells led to increased 

tumor growth(Mauro et al., 2010).  

In another study the overexpression of PKC- δ in murine melanoma cells in vivo also led 

to increased tumor growth(La Porta & Comolli, 2000). Thus, the biological role and function of 

PKC-δ may vary depending on the disease state, (such as cardiac ischemia or cancer) and cell 

types (such as pancreatic carcinomas and colorectal carcinomas).  
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1.11 The role of PKC-δ in immunology. 

In addition to playing a role in diseases such as cancer and cardiovascular disease, recent 

studies have begun to explore the role of PKC-δ in the field of immunology. Correlative data in 

cancer studies have shown that the lack of expression of PKC-δ in various cancer cells is 

associated with increased proliferation and migration while certain cancerous cells which have 

high levels of PKC-δ expression show low proliferation and migration (Jackson et al., 2005; 

Kopp et al., 1991; McGarrity & Peiffer, 1994; Sakanoue et al., 1991). While the migratory and 

proliferative role of PKC-δ in cancer has been well established, the role of PKC-δ in 

immunology has only recently been explored.  

In a recent study it was shown that B cells isolated from PKC-δ-/- mice had increased 

proliferation compared to WT mice (Miyamoto et al., 2002). It was also found that PKC-δ-/- mice 

exhibited greater levels of IL-6 transcription compared to WT mice under stimulation. Finally in 

this same study it was shown that PKC-δ-/- mice had higher levels of immunoglobulins such as 

IgG1 and IgA compared to WT mice suggesting that PKC-δ-/- mice are more susceptible to 

autoimmunity and lupus-like symptoms.  

In a subsequent study which further explored the immune role of PKC-δ, T cells from 

lupus patients that were PMA stimulated were shown to have decreased ERK activation and 

phosphorylated PKC-δ compared to healthy patients (Gorelik, Fang, Wu, Sawalha, & 

Richardson, 2007).  In T cells that were stimulated with hyrdralazine (a lupus-syndrome- 

inducing medication) there was a decrease in ERK activation and phosphorylated PKC-δ.  These 

two studies suggest that impaired PKC-δ function may contribute to autoimmunity.  
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 This conclusion is more firmly supported with the use of a double transgenic T cell 

specific and dominant negative PKC-δ strain which when induced by doxycycline, expressed a 

non-functional PKC-δ protein and later exhibited lupus-like symptoms such as elevated 

autoantibodies (Gorelik, Sawalha, Patel, Johnson, & Richardson, 2015).    

Although it has been established that PKC-δ has anti-proliferative properties in cancer 

these studies suggest that the ability of PKC-δ to regulate proliferation may not just apply to 

cancer but may extend to immunology as well. The proliferation of B cells and the development 

of autoimmunity due to the absence or impairment of PKC-δ may not be caused directly by the 

impaired function or absence of the kinase but by the ability of the kinase to regulate down 

stream cytokines such as IL-6 which are known to mediate the proliferation of immune cells and 

can skew the immune system towards an autoimmune state (Moudgil & Choubey, 2011; O'Shea, 

Ma, & Lipsky, 2002).   

The role of PKC-δ in determining cytokine levels has also been linked to the 

transcriptional activation of cytokines. The transcription factor NF-κB is known to be important 

for the activation of genes such as IL-1β, IL-6, and TNF-α.  Previous studies have suggested that   

PKC-δ may be able to regulate the activation of NF-κB.  In this study it was shown that under 

conditions of oxidative stress PKC- δ became activated. Once activated it phosphorylated and 

activated a serine threonine kinase known as protein kinase D (PKD) which in turn was then able 

to facilitate NF-κB signaling.   Conversely, other studies have shown that cytokines such as IL-

1β activates PKC-δ activity in pancreatic beta cells (Cantley et al., 2011; Carpenter, Cordery, & 

Biden, 2001) .  
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The secretion of IL-1β and IL-18 are tightly regulated by the inflammasome(Davis, Wen, 

& Ting, 2011). The inflammasome forming NLR, NLRC4 is known to respond to bacterial 

products such as bacterial flagellin and rod (Franchi et al., 2006). A recent study showed that 

PKC-δ was critical to the activation of NLRC4 and its response to its specific agonists leading to 

the release of IL-1β.  When murine macrophages were stimulated with NLRC4 specific bacteria 

such as Salmonella typhimurium, phosphorylation occurred at the serine residue 533 (Ser533) of 

NLRC4. It was later shown in this study that the phosphorylation of NLRC4 was critical for its 

activation upon stimulation with its known agonists. This was confirmed by reconstituting 

immortalized Nlrc4-/- progenitor macrophages with WT NLRC4 or the NLRC4 phosphorylation 

mutant Ser533A, and then infecting macrophages with S.typhimurium.   

Upon infection of S.typhimurium., Nlrc4-/- progenitor macrophages with WT NLRC4 

showed expected  levels of IL-1β release, however Nlrc4-/- progenitor macrophages with mutant 

Ser533A showed a dramatic attenuation in IL-1β release suggesting that NLRC4 533A 

phosphorylation prior to its stimulation was critical to its activation. Mass-spectrometry 

identified PKC-δ as the kinase upstream of NLRC4 that was critical for its activation. This was 

confirmed with the use of PKC-δ inhibitors such as rottlerin to treat WT BMMs prior to S. 

typhimurium infection which reduced IL-1β release.  It was later shown that PKC-δ-/- 

macrophages stimulated with S. typhimurium led to attenuation in IL-1β release which was 

similar to what was observed in Nlrc4-/- BMMs.  
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Unlike other inflammasome forming NLRs, such as NLRP3 and NLRP1, the ability of 

NLRC4 to respond to various signals has been restricted to pathogens such as S. typhimurium. 

The recent finding suggesting that PKC-δ activates NLRC4 is intriguing in that although the 

repertoire of DAMPs and PAMPs that are found to activate NLRC4 is limited, the activation of 

NLRC4 is PKC-δ dependent. In contrast to NLRC4, PKC-δ is capable of responding to a variety 

of cellular signals such as DNA damage, ROS and oxidative stress (Basu & Pal, 2010; Poole, 

Pula, Hers, Crosby, & Jones, 2004). These cellular signals are recognized as DAMPS in 

neuroinflammation which are known to trigger AIM2, NLRP3 and NLRP1 mediated IL-1β and 

IL-18 release (Dasuri et al., 2013). It may be possible that these DAMPs are activating PKC-δ 

which then activate NLRC4 leading to the release of IL-1β. In summary, the known proliferative 

and migratory functions of PKC-δ in addition to its phosphorylation of NLRC4 are fascinating 

and may provide insight into why Nlrc4-/- mice have less astrogliosis and microglial 

accumulation in the cuprizone model.  

These issues regarding a role of NLRC4 in neuroinflammation and the potential 

biological role that PKC-δ may have on NLRC4 during neuroinflammation will be further 

discussed in chapter. 3. 
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Chapter 2: A role for the NLR family members NLRC4 and NLRP3 in astrocytic 

inflammasome activation and astrogliosis2 

Section 2.1 Overview  

The inflammasome is implicated in many inflammatory diseases but has been primarily 

studied in the macrophage-myeloid lineage.   Here we demonstrate a physiologic role for 

nucleotide-binding domain, leucine-rich repeat, CARD domain containing 4 (NLRC4) in brain 

astrocytes. NLRC4 has been primarily studied in the context of gram-negative bacteria, where it 

is required for the maturation of pro-caspase-1 to active caspase-1. We show the heightened 

expression of NLRC4 protein in astrocytes in a cuprizone model of neuroinflammation and 

demyelination as well as human multiple sclerotic brains. Similar to macrophages, NLRC4 in 

astrocytes is required for inflammasome activation by its known agonist, flagellin.  However, 

NLRC4 in astrocytes also mediates inflammasome activation in response to 

lysophosphatidylcholine (LPC), a proinflammatory molecule associated with neurologic 

disorders.  In addition to NLRC4, astrocytic NLRP3 is required for inflammasome activation by 

LPC.  Two biochemical assays show the interaction of NLRC4 with NLRP3, suggesting the 

possibility of a NLRC4-NLRP3 co-inflammasome.  To study the physiologic relevance of 

NLRC4 in the brain, Nlrc4-/- mice showed a pronounced delay in astrogliosis, a partial reduction 

                                                 

2 This chapter is part of a manuscript that was submitted to the Journal of Experimental Medicine 
on 5 February 2015: Freeman LC, Jha S, Guo H, Wei X, Chen X,  Ting JP. A role for the NLR 
family members NLRC4 and NLRP3 in astrocytic inflammasome activation and astrogliosis 
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in microglial accumulation, mature oligodendrocyte numbers and demyelination during 

neuroinflammation and demyelination. These results revealed an in vivo role for NLRC4 in a 

neurologic disease model.
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Section 2.2   

Introduction  

Neuroinflammation contributes to the pathogenesis of  multiple sclerosis (MS), stroke, 

traumatic brain injury, Parkinson’s disease and Alzheimer’s disease (Kigerl, de Rivero Vaccari, 

Dietrich, Popovich, & Keane, 2014); (Heneka, O'Banion, Terwel, & Kummer, 2010; Rivest, 

2009; Wyss-Coray, 2006). Such inflammatory response is generally referred to as sterile 

inflammation, since microbial pathogens are not typically involved but rather the response is 

directed as damage- or danger-associated inflammatory inducers, and it is linked to a plethora of 

inflammatory disorders within and outside of the central nervous system (CNS)(Rock, Latz, 

Ontiveros, & Kono, 2010).  The nucleotide-binding, leucine rich repeat containing(NLR, also 

known as NOD-like receptors) proteins have emerged as a key family of pathogen-associated 

molecular patterns (PAMPs) generated by intracellular pathogen and damage-associated 

molecular patterns (DAMPs) produced by non-microbial inflammatory response (Broderick, De 

Nardo, Franklin, Hoffman, & Latz, 2015; Strowig, Henao-Mejia, Elinav, & Flavell, 2012; Ting, 

Kastner, & Hoffman, 2006). There are more than 20 NLR genes in humans and over 30 in mice.  

NLR genes encode cytoplasmic proteins with a tripartite domain structure. This tripartite 

structure consists of a variable N terminal effector domain, a central nucleotide binding domain 

(NBD) and a variable number of C terminal leucine rich repeats (LRRs). The initial 

characterization of NLRs showed that many are expressed in cells that contributed to innate 

immunity such as monocytes, polymorphonuclear cells, macrophages and dendritic cells.                                                       
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A subfamily of NLR proteins mediate the activation of caspase-1, which is referred to as 

inflammasome activation (Martinon, Burns, & Tschopp, 2002).  The inflammasome is initiated 

by the sensing of a number of stimuli, mediated (Khare et al., 2012) through a variety of NLR 

proteins (e.g., NLRP1(Boyden & Dietrich, 2006), NLRP3(Kanneganti et al., 2006; Mariathasan 

et al., 2006; Martinon et al., 2006; Sutterwala et al., 2006), NLRP6 (Anand et al., 2012), NLRP7, 

NLRP12(Vladimer et al., 2012), NLRC4 (Zhao et al., 2011), NLRC5 (Davis, Roberts, et al., 

2011; Triantafilou, Kar, van Kuppeveld, & Triantafilou, 2013) and NAIP (Kofoed & Vance, 

2011; Zhao et al., 2011)) or non-NLR proteins (e.g., AIM2 (Hornung et al., 2009).   Genetic 

mutations in a key family member, NLRP3, lead to several autoinflammatory disorders 

collectively referred to as the cryopyrin-associated periodic syndromes (CAPS) (Ting et al., 

2006).  The association of mutations in inflammasome NLR genes with autoinflammatory 

diseases underscores an important function of these genes in inflammation in humans  

NLR family, Caspase Recruitment domain containing 4 (NLRC4, initially named Ipaf) 

(Poyet et al., 2001) protein is a cytosolic sensor of flagellin, flagellated pathogens such as 

Salmonella typhimurium (Franchi et al., 2006; Mariathasan et al., 2004; Miao et al., 2006), 

Legionella pneumophila(Amer et al., 2006)  and the type III secretory system (T3SS) from gram 

negative pathogens such as S. typhimurium, Burkholderia pseudomallei, Escherichia coli, 

Shigella flexneri (T. Suzuki et al., 2007) and Pseudomonas aeruginosa(Sutterwala et al., 2007). 
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Initial characterization of NLRC4 in human tissues and cell lines demonstrated its direct 

association with the CARD domain of procaspase-1 through CARD-CARD interactions (Geddes 

et al., 2001; Poyet et al., 2001). This interaction can cause autocatalytic processing of 

procaspase-1 to caspase-1 (Poyet et al., 2001). Activated caspase-1 can in turn cleave over 70 

substrates including the proinflammatory cytokine interleukin-1 beta (IL-1β) and IL-18 (Keller, 

Ruegg, Werner, & Beer, 2008; Shao, Yeretssian, Doiron, Hussain, & Saleh, 2007). A 

constitutively active NLRC4 could cause autocatalytic processing of procaspase-1 leading to 

caspase-1 dependent apoptosis in transfected cells (Poyet et al., 2001). When an Nlrc4 gene 

deletion strain was produced, the physiologic relevance of this protein was affirmed in caspase-1 

activation and IL-1β release caused by S. typhimurium but not by the combination of ATP and 

LPS (Mariathasan et al., 2004).  Since the NLRP3 inflammasome was later found to be activated 

by ATP and LPS, these results showed that NLRP3 and NLRC4 are activated by different 

activators.   Recent data indicate that the NAIP proteins recognize microbial pathogens and then 

recruit NLRC4 proteins to form a multimeric inflammasome.  Specifically, NAIP1 and NAIP2 

recognize bacterial type 3 secretory system rod and needle proteins, whereas NAIP5 and NAIP 6 

recognize bacterial flagellin.  Both sets of NAIP proteins interact with the NLRC4 

inflammasome in response to their respective bacterial ligands (Halff et al., 2012; Kofoed & 

Vance, 2011; Rayamajhi, Zak, Chavarria-Smith, Vance, & Miao, 2013; J. Yang, Zhao, Shi, & 

Shao, 2013; Zhao et al., 2011). 
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While the role of NLRC4 in bacterial sensing is well-established, the role of NLRC4 in 

sterile inflammation where the inflammatory source is not microbial remains under studied. In 

fact NLRC4 is frequently used as a negative control in studies of NLRP3 inflammasome 

function.  An exception is the study of experimental colitis, where it has been found that NLRC4 

provides a protective effect, although this finding is not uniformly found and may be attributed to 

the different microbiome makeup at different institutes or different strains of Nlrc4-/- mice used 

in the studies (Allen et al., 2010; Carvalho et al., 2012; Hu et al., 2010).   Colitis is not 

considered as sterile inflammation, since inflammation associated with colitis is thought to be 

significantly impacted by the gut microbiome (Bauer, Duewell, Lehr, Endres, & Schnurr, 2012; 

Elinav et al., 2011). 

Inflammation of the central nervous system is increasingly recognized as a key factor in a 

plethora of neurologic diseases, prominent among these are demyelinating diseases where 

neuroinflammation is believed to exacerbate disease severity.  Neuroinflammation may be 

attributed to lymphocytes and macrophage-myeloid cells associated with the immune system, as 

well as microglia and astrocytes within the brain parenchyma (Carson, 2002; Dong & 

Benveniste, 2001).  Extensive studies have linked the NLRP3 inflammasome to neurologic 

disorders such as multiple sclerosis and Alzheimer’s disease (Halle et al., 2008; Heneka et al., 

2013),while AIM2 and NLRP1 have been linked to traumatic brain injury(S. E. Adamczak et al., 

2014; de Rivero Vaccari et al., 2009).  However NLRC4 has not been studied in these contexts.  
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 In this study we find intense NLRC4 expression during neuroinflammation especially in 

the astrocyte population and show a role for NLRC4 in the activation of astrocytes in culture and 

in the cuprizone mouse model of neuroinflammation and demyelination.  The cuprizone model is 

an ideal model to study the role of the innate immune system of the CNS in neuroinflammation 

and demyelination as the neurotoxicant, cuprizone, leads to robust microglial and astrocyte 

activation and accumulation in major myelinated nerve tracts such as the corpus callosum and 

cerebellar peduncles (Matsushima & Morell, 2001), followed by the death of oligodendrocytes 

and demyelination (Liu et al., 2010). The disease model exhibits type III and IV MS 

neuropathology characterized by microglial accumulation and astrogliosis in the absence of T 

cell infiltrates (Lucchinetti et al., 2000).  Demyelination and neuroinflammation are easily 

induced by administering cuprizone through the chow and the disease follows a predictable time 

course along with a reproducible pathology.   

 Previously, we showed that the main inflammasome NLR, NLRP3, played a role in this 

model system by exacerbating disease outcome.  This report shows that the NLRC4 protein is 

highly expressed in astrocytes, and to a lesser extent in microglial cells in the cuprizone model of 

neuroinflammation and demyelination.  
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  In parallel, NLRC4 is also elevated predominantly in astrocytes and to a lesser extent in 

microglia in brain sections from multiple sclerosis patients. An analysis of NLRC4 in cultured 

astrocytes demonstrated its specific activation by a known agonist, flagellin, as well as a neuro-

derived proinflammatory inducer, lysophosphatidylcholine (LPC, also known as lysolecithin).  

Previous work has shown that LPC is associated with neurologic diseases and can activate IL-1β 

production in microglia (Stock, Schilling, Schwab, & Eder, 2006).  This work shows that LPC 

can activate the inflammasome and induce IL-1β production in astrocytes and macrophages in a 

NLRC4- and NLRP3-dependent manner.  Finally we find that NLRC4 contributes significantly 

to the astrogliosis process, and its deletion resulted in reduced astrogliosis during 

neuroinflammation in mice.   
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Section 2.3  

Results 

 2.3.1 Nlrc4 expression in the cuprizone model of demyelination 

Previous reports have shown that the Nlrc4 RNA is expressed in mouse brain (Poyet et 

al., 2001).  Since RNA expression does not always correlate with enhanced protein expression, 

we assessed if NLRC4 protein is expressed in the brain and the impact of NLRC4 expression on 

neurologic disease.  We tested NLRC4 protein expression in the cuprizone model at peak 

inflammatory cell accumulation, demyelination and mature oligodendrocyte death (Arnett et al., 

2001; Hiremath et al., 1998). 

Brains of C57BL/6 mice that have been treated with cuprizone for four weeks were 

examined for NLRC4 expression by immunohistochemistry using anti-NLRC4 antibody.  As a 

specificity control, we show that NLRC4 expression is detected in the brain of wildtype mice (1 

week cuprizone treated), but not identically-treated Nlrc4-/- mice (Fig.2.1A).  The protein is 

strongly expressed by astrocytes (GFAP+) and modestly expressed by microglia (RCA+) at the 

corpus callosum after 4 weeks of cuprizone induced demyelination in Wild type (WT) C57BL/6 

mice (Figure 2. 1B). NLRC4 is not expressed at detectable levels by NeuN+ neurons and 

CNPase+ oligodendrocytes (Supplementary Figure 2.1).   
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Figure 2.1.  Expression of NLRC4 protein in the CNS. 

A. WT mice brains were examined for NLRC4 expression by immunohistochemistry using an 
antibody against mouse NLRC4.  NLRC4 expression (red) was detected after 1 week of 
cuprizone induced demyelination in WT but not in Nlrc4-/- mice. B. The corpus callosum from 4 
week cuprizone treated wild type animals were stained with anti-NLRC4 (green in the upper 
panel and red in the lower panel), RCA (red) was used to detect microglia, and GFAP (green) to 
detect astrocytes at the corpus callosum.  DAPI was used to label nuclei (blue).  Overlay showing 
yellow indicates colocalization of NLRC4 with the cell-specific biomarkers. 
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2.3.2   NLRC4 expression in multiple sclerosis and normal human brain  

To examine the clinical relevance of these studies, we analyzed tissues with MS lesions 

and samples without MS plaques kindly provided by the University of California Los Angeles 

(UCLA) Human Brain and spinal fluid resource center (HBSFRC).  The clinical synopsis of 

three controls and three MS samples utilized for this study is listed in Table 2.1. The three MS 

patients had MS lesions pathologically characterized as chronic active MS lesions, and exhibited 

demyelination and two had gliosis. Normal control brain tissues were devoid of inflammatory 

lesions and did not display CNS neuropathology. 

 

Table 2.1. Clinical synopsis of control and MS brains. The MS and control brain tissues were 
obtained from the University of California Los Angeles (UCLA) human brain and spinal fluid 
resource center (HBSFRC). The clinical pathology of patients is described in the table.  Each 
brain was evaluated by neuropathologists at UCLA.  Brain tissue from 3 MS cases were 
examined along with 3 control brains from cases without MS. In all cases the tissue was taken 
from MS lesions as shown in Supplementary Figure 2. 
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  The plaque location in samples from MS brains where the samples were taken are shown 

in Supplementary Figure 2.2. The three samples on the left were diagnosed with MS, while the 

three on the right (labeled “Normal”) were not.  Analysis of MS tissue shows the NLRC4 

expression is greatly elevated in the lesion where extensive astrogliosis is apparent (Figure 2.2 

A).  An overlay of anti-NLRC4 and anti-GFAP staining indicates a significant NLRC4 

expression by astrocytes.  Microglial accumulation is also evident although fewer RCA+ 

microglia cells were detected (compared the mid panels of Figure 2.2 A and 2.2 B).  An overlay 

of anti-NLRC4 and RCA stain showed few NLRC4+RCA+ cells.   

 

Figure 2.2 Expression of NLRC4 in human brain tissue from multiple sclerosis patients 

and control individuals.  Three chronic MS and three normal brain tissues were obtained from 
the University of California Los Angeles (UCLA) human brain and spinal fluid resource center 
(HBSFRC). Tissue was paraffin embedded and sectioned into 5μm sections. The demyelinating 
lesions were stained for NLRC4 using an antibody against human NLRC4 (αNLRC4).. Regions 
enriched for astrocytes (GFAP+) also show significant NLRC4 in MS brain tissue as shown in 
the overlay (yellow). The lesion edge is towards the left side. Note the prominent staining for 
activated astrocytes. B. Microglia (RCA+) stained regions show less overlap with NLRC4. 
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A quantitation of the data by the NIH Image J program and summary of these findings 

are shown in Table 2. 2 The MS samples show greatly enhanced NLRC4 expression in the 

plaque and white matter, and to a lesser extent in the gray matter, while normal controls (such as 

normal appearing white matter (NAWM) and normal appearing grey matter (NAGM) do not 

express detectable NLRC4.  Astrocytes express the highest amount of NLRC4, while microglial 

cells also express the protein.  Neurons and oligodendrocytes do not express detectable levels.  

These findings agree with findings in mice described earlier.   

 

Table 2.2 Distribution of reactivity for NLRC4 in multiple sclerosis lesions in the samples 

described in Table 1.  Immunofluorescence in tissue sections was quantified by the NIH ImageJ 
software (Schneider, Rasband, & Eliceiri). The images were unstacked. Each image was split 
into channels, threshold was set and then signal was measured. The numbers represent mean 
values from the output results table. 
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2.3.3 Astrocytic NLRC4 displays the same specificity for flagellin as macrophage NLRC4.   

NLRC4 in bone marrow-derived macrophages (BMDM) is known to respond to pathogen 

associated molecular patterns (PAMPs) such as bacterial flagellin, and type III secretion system 

(Franchi et al., 2010; Miao et al., 2006)(Franchi et al., 2006; Ma, Boone, & Lodolce, 2000; Miao 

et al., 2010).  WT control and Nlrc4-/- BMDM produced similar levels of IL-1β in response to the 

known NLRP3 stimulus, LPS+ATP, which should not be affected by the absence of Nlrc4.  By 

contrast, IL-1β response to LPS and flagellin was ablated in the Nlrc4-/- BMDM as expected 

(Fig. 2.3A). Nlrp3-/- and WT BMDM showed no statistical difference in IL-1β production in 

response to LPS and flagellin, but response to LPS and ATP was ablated in the former (Fig.2. 

3B).  We next assessed if astrocytic NLRC4 displayed the same specificity as BMDM NLRC4.  

In order to examine this, primary astrocytes were isolated from Nlrc4-/- and WT newborn mice 

using an established protocol(McCarthy & de Vellis, 1980).  These astrocytes were pretreated 

with LPS, (which is a common inducer of signal 1 of inflammasome activation that induces the 

transcription and translation of inflammasome components, such as pro-IL-1β, and pro-caspase 

1), transfected with S. typhimurium flagellin and then IL-1β release was measured. 

Stimulation of flagellin alone in WT, Nlrc4-/- and Nlrp3-/- astrocytes and BMMS was not 

found to stimulate IL-1β release as shown in figures 2.3 A-D. These findings have been observed 

and reported in other studies (Franchi et al., 2006). Salmonella infection of BMMS could have 

been used as a method to introduce flagellin intracellularly as it has been reported in other 

studies (Franchi et al., 2006).   Flagellin was transfected into both WT, Nlrc4-/- and Nlrp3-/- 

astrocytes and BMMS. The purpose of which was to test if NLRC4 still retained its functional 

specificity towards flagellin since NLRP3 doesn’t respond to flagellin.  Nlrp3-/- astrocytes and 

BMMS   were used as a negative control in these experiments.  
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             WT astrocytes were transfected with increasing concentrations of flagellin, there was a 

dose-dependent increase in IL-1β release.  By contrast, Nlrc4-/- astrocytes showed little IL-1β 

release and no increase in IL-1β release when transfected with increasing concentrations of 

flagellin (Fig. 2.3C).   As observed with Nlrp3-/- BMDM, (Fig. 2.3B) when Nlrp3-/- astrocytes 

were transfected with increasing amounts of flagellin there was no difference in IL-1β compared 

to WT BMDM (Fig. 2.3D).   Again, response to LPS+ATP was ablated in Nlrp3-/- but not in 

Nlrc4-/- astrocytes (Figs. 2.3C and D).  These results show that similar to BMDM, NLRC4 in 

astrocytes is required for inflammasome activation by flagellin while NLRP3 in astrocytes is 

required for the LPS+ATP response.    
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Figure 2.3.  Astrocytic NLRC4 displays the same specificity for flagellin as macrophage 

NLRC4.  Each experimental condition per experiment was carried out in triplicate in a 96 well 
plate in this figure.  A. WT and Nlrc4-/ - bone-marrow derived macrophages (BMDM) were LPS 
primed (400 ng/ml) for 4hrs and transfected with the transfecting reagent, DOTAP, and 25 ng, 50 
ng or 100 ng of  S. Typhimurium flagellin for 1hr before IL-1β was collected from supernatant. 
WT and Nlrc4-/ - LPS primed BMDMs were also stimulated with 5µM ATP, as a positive control 
for inflammasome activation.  Cells were transfected with DOTAP alone or stimulated with 
flagellin alone without LPS as a negative control. This experiment is representative of two 
independent experiments. B. WT and Nlrp3-/ - BMDMs were LPS primed (400 ng/ml) for 4hrs 
and transfected with 25 ng, 50 ng or 100 ng of S. typhimurium flagellin for 1hr before IL-1β was 
collected from supernatant. WT and Nlrp3-/- LPS primed BMDMs were also stimulated with 5 
μM ATP, as a positive control, and transfected with DOTAP alone or stimulated with flagellin  
alone as a negative control. This experiment is representative of two independent experiments.  
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C. WT and Nlrc4-/ - primary murine astrocytes were LPS primed (400 ng/ml) for 4hrs and 
transfected with 50 ng, 100 ng or 200 ng of S. typhimurium flagellin for 1hr before IL-1β was 
collected from supernatant. LPS primed primary murine WT and Nlrc4-/- astrocytes were also 
stimulated with 5 µM ATP, as a positive control, and transfected with DOTAP alone or 
stimulated with flagellin alone as a negative control. This experiment is representative of three 
independent experiments. Nine-twelve murine pups (0-2days old) were used per genotype for 
each experiment in C and D. D. WT and Nlrp3-/ - primary murine astrocytes were LPS primed 
(400 ng/ml) for 4hrs and transfected with 50 ng, 100 ng or 200 ng of S. typhimurium flagellin for 
1 hr before IL-1β was collected from supernatant. LPS primed primary murine WT and Nlrp3-/- 
astrocytes were also stimulated with 5µM ATP, as a positive control, and transfected with 
DOTAP alone or stimulated with flagellin alone as a negative control.  This experiment is 
representative of two independent experiments. All graphs indicate means; error bars denote 
SEM. P-values less than 0.5 (* represents P<0.05, **P<0.01, and ***P<0.001) were considered 
statistically significant.  
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2.3.4 NLRC4 and NLRP3 mediate lysophosphatidylcholine induced IL-1β release from 

mouse primary macrophages. 

We next assessed if NLRC4 has a functional role during inflammasome activation by 

biologic molecules associated with CNS disease. Lysophosphatidylcholine (LPC, also known as 

lysolecithin) is a major component of low density lipoprotein. Under normal physiological 

conditions LPC is generated by hydrolysis of phosphotidylcholine (PC) via phospholipase A2 

(PLA2) (Schilling, Lehmann, Ruckert, & Eder, 2004). This is rapidly metabolized or 

reacetylated. However, under pathological conditions there is increased activity of PLA2 leading 

to accumulation of LPC in the tissue. Such an increase in PLA2 activity is seen in multiple 

sclerosis, ischemia, epilepsy, Alzheimer’s disease, schizophrenia and spinal cord 

injury(Farooqui, Ong, & Horrocks, 2006). LPC is known to cause glial activation resulting in the 

transcription of proinflammatory cytokines (Sheikh & Nagai, 2010). 

            LPC is also known as an inflammatory inducer and can activate immune cells, however 

the underlying mechanism has not been extensively investigate(Kabarowski, Xu, & Witte, 2002). 

With respect to cytokines, LPC is known to activate microglia and lead to IL-1β release in a 

P2X7R independent mechanism (Schilling et al., 2004; Stock et al., 2006). Moreover PLA2 is 

known to contribute to demyelination and immune cell accumulation in Wallerian degeneration.  

LPC can lead to enhanced demyelination in brain spheroid cultures (Vereyken, Fluitsma, Bolijn, 

Dijkstra, & Teunissen, 2009)  which is also known to cause demyelination in several animal 

models (Shikishima, Mizuno, Kawai, & Matsuzaki, 1985; Waxman, Kocsis, & Nitta, 1979).  

Brain spheroid cultures are single cell suspensions of embryonic day 15 rodent brain cells that 

reaggregate under constant rotation.      
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            To assess if LPC could activate the inflammasome, we initially isolated BMDM from 

WT mice due to their ease of isolation, and stimulated these cells with lipopolysaccharide (LPS) 

followed by LPC and quantitated IL-1β release by ELISA.  In all of these experiments, cells 

were pretreated with LPS, which is a well-documented and common inducer of signal 1 of 

inflammasome activation that induces the transcription and translation of inflammasome 

components, such as pro-IL-1β, procaspase-1 and NLRP3.  After LPS pre-treatment, LPC was 

supplied as signal 2 which normally leads to caspase-1 and IL-1β maturation, followed by 

release of the cytokine.  A combination of LPS and LPC caused significant IL-1β release in 

BMDM (Figure 2.4A).  

           To assess the NLR gene that might be linked with LPC induced inflammasome, BMDM 

were isolated from WT and gene deleted mice. There was a decrease in IL-1β release in Nlrc4-/- 

BMDM as compared to WT controls (Figure2.4B), while deletion of Nlrp3 had a smaller effect. 

These results indicate that both NLRC4 and NLRP3 mediate inflammasome activation by LPC 

in BMDM. 
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Figure 2.4.  NLRC4 and NLRP3 mediate lysophosphatidylcholine induced IL-1β from 

mouse primary macrophages.  A. WT BMDMs were LPS primed (1µg/ml) overnight and were 
stimulated with 15, 30 and 45μM concentrations of LPC for 1hr before IL-1β was collected from 
supernatant.  B. WT, Nlrp3-/-, and Nlrc4-/-  BMDMs were LPS primed (1µg/ml) overnight and 
were stimulated with  30 and 45μM concentrations of  LPC for 1hr before IL-1β was collected 
from supernatant. Each experimental condition in this figure was carried out in duplicate in a 96 
well dish. This experiment is representative of two independent experiments (or independent 
cultures). All graphs indicate means; error bars denote standard deviation. P-values less than 0.05 
(* P<0.05, ** P<0.01, and ***P<0.001) were considered statistically significant. 
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2.3.5 LPC-mediated release of IL-1β in astrocytes is Nlrc4 and Nlrp3 dependent 

           The previous experiments showed that LPC can activate the inflammasome in BMDM, 

we next examined if LPC can also activate astrocyte-derived inflammasome. To establish 

inflammasome activation by LPC in astrocytes, we investigated if LPC stimulation would result 

in the release of IL-1β release in WT murine astrocytes.  When increasing concentrations of LPC 

were added to WT astrocytes there was a dose-dependent increase of IL-1β released (Figure 

2.5A).  Furthermore, when WT astrocytes were stimulated with LPC for 4 hrs as compared to 

2hrs, there was a greater amount of IL-1β released with the longer treatment. This suggests that 

LPC acted to stimulate IL-1β release in astrocytes in a concentration and time dependent manner.  

We next investigated if NLRC4 mediates LPC stimulation of inflammasome activation. Upon 

4hr of LPC stimulation, there was an observed increase in IL-1β release in WT astrocytes, while 

IL-1β released from Nlrc4-/- astrocytes was attenuated compared to WT astrocytes (Figure 2.5B).  

Additionally, Nlrp3-/- astrocytes also showed reduced IL-1β release in response to LPC (Figure 

2.5C). 

            These data agree with the data generated in BMDM, although the impact of NLRC4 or 

NLRP3 on LPC-induced IL-1β production in astrocytes was more complete than in BMDM.  

This indicates that in contrast to flagellin induced inflammasome which only requires NLRC4 

and ATP induced inflammasome which only requires NLRP3, LPC induced inflammasome 

requires both NLRC4 and NLRP3. 
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Figure 2.5.  NLRC4 and NLRP3 mediate lysophosphatidylcholine induced IL-1β from 

primary astrocytes.  Each experimental condition in this Figure was carried out in duplicate in a 
96 well plate, and 9-12 murine pups/genotype (0-2days old) were used for each experiment.  A. 

WT astrocytes were LPS primed (1ug/ml) overnight and incubated with 50, 100 and 200 µM of 
LPC for 2 or 4 hrs as indicated before IL-1β was collected from supernatant. This experiment is 
representative of three independent experiments. B. WT and Nlrc4-/ - astrocytes were treated as 
described in Fig. 5A and assayed for IL-1β secretion. This experiment is representative of three 
independent experiments. C. WT and Nlrp3-/ - astrocytes were treated as described in Fig. 5A and 
assayed for IL-1β secretion.   This experiment is representative of two independent experiments. 
All graphs indicate means; error bars denote SEM. P-values less than 0.05 (* P<0.05, **P<0.01, 
and  ***P<0.001 ) were considered statistically significant. The viability of the cultures was not 
measured at the time of these experiments but will need to be carried out in future studies.  
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2.3.6 NLRC4 and NLRP3 associate in a biochemical assay.   

            Since the inflammasome is a large macromolecular complex, and the above mentioned 

data indicate that both NLRP3 and NLRC4 are functionally required for inflammasome 

activation by LPC, we investigated if NLRP3 and NLRC4 can biochemically interact by two 

approaches.  Since these assays required large amounts of cells that could be easily transfected, 

such biochemical experiments were not feasible with primary cells.  First, we examined the co-

immunoprecipitation of NLRP3 with NLRC4 in an overexpression system.  HA tagged NLRP3 

(NLRP3-HA), V5 tagged NLRC4 (NLRC4-V5), or NLRP3-HA plus NLRC4-V5 were 

overexpressed in 293T cells.  NLRP3-HA was precipitated by HA antibody conjugated agarose 

beads.  NLRC4-V5 was co-immunoprecipitated with NLRP3-HA from 293T cells co-expressing 

NLRP3-HA and NLRC4-V5, but not from cells expressing only NLRC4-V5 (Figure 2.6A).  This 

indicates NLRP3 and NLRC4 form a complex in the overexpression condition.  Second, we 

performed mass spectrometry analysis to identify the association of endogenous NLRP3 with 

other proteins in an unbiased fashion.  The THP-1 macrophage cell line was used since it has 

been used extensively to study the inflammasome.  NLRP3 was pulled down by anti-NLRP3 

antibody but not by control IgG from THP-1 cell lysate (Figure 2.6B).  Eluted proteins were 

separated by SDS-PAGE followed by high-performance liquid chromatography tandem-mass 

spectrometry (LC-MS/MS) (Figure 2.6C).  Fifteen unique peptides that matched NLRP3 with ion 

score of >57 from MaxQuant search engine were identified in one slice of the gel indicating that 

the antibody did precipitate NLRP3 (Table 2.3).   
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            Twelve unique peptides that matched NLRC4 with ion score of >44 were also identified.  

This indicates with high confidence (FDR < 1%) that these peptides represent NLRC4 and  

were pulled down with the anti-NLRP3 antibodies. By contrast, no other inflammasome NLR 

proteins were co-immunoprecipitated (not shown).  These data indicate that NLRP3 and NLRC4 

associate with each other.   A recent paper has found the co-localization of endogenous NLRC4 

and NLRP3 proteins in Salmonella infected cells as detected by microscopy.  These authors 

proposed formation of an NLRP3/NLRC4 inflammasome in response to bacteria.  This is 

consistent with our functional study showing that Nlrc4 and Nlrp3 genes are both required for 

inflammasome induced by LPC, and the biochemical data of NLRP3/NLRC4 interaction.   

 

Figure 2.6.  NLRC4 and NLRP3 associate in a biochemical assay.  A. HA-tagged NLRP3 
was co-transfected with either empty vector or V5-tagged NLRC4 into 293T cells. Cells were 
lysed and immunoprecipitation was performed by the antibody against HA. Immunoprecipitated 
proteins were blotted for either NLRP3-HA or NLRC4-V5 as indicated.  B. 5×108 THP-1 cells 
were used for immunoprecipitation by either control IgG or an antibody against NLRP3. 
Immunoprecipitated proteins were blotted for NLRP3 as indicated.  C. Immunoprecipitated 
proteins were separated by SDS-PAGE; the gel was continuously sliced in the area from 70 kD 
to 140 kD for further LC-MS/MS analyses, the results of which are shown in Table 2. 3.  
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Table 2.3 Identification of NLRC4-derived peptides in NLRP3 immunoprecipitant 

identified by an unbiased mass spectrometric approach.  NLRP3 protein in THP-1 cells were 
immunoprecipitated with anti-NLRP3 antibody shown in Fig. 6B and the gel region bracketed in 
Fig.6C were subjected to LC-MS/MS.  Among the immunoprecipitated peptides, NLRP3-
derived peptides were found as expected (upper table).  In addition, twelve peptides that matched 
the NLRC4 protein were also found (lower table) to be co-immunoprecipitated by the anti-
NLRP3 antibody 
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2.3.7 Astrogliosis is delayed in Nlrc4-/- mice 

The in vitro system indicates that NLRC4 and NLRP3 in astrocytes mediate 

inflammasome activation by flagellin and LPC.  In parallel with the in vitro studies, we also 

assessed if Nlrc4 played a role in the cuprizone model of neuroinflammation and demyelination.  

This model comprises of feeding mice with a chow mixed with the neurotoxicant, cuprizone 

(0.2%), which results in a CNS disease model comprised of astrogliosis, microglial activation 

followed by oligodendrocyte cell death and demyelination.  The role of NLRP3 in this model is 

already established as a previous study from our group showed that NLRP3 exacerbates this 

disease model (Jha et al., 2010) We first examined astrogliosis in control and Nlrc4-/- mice 

(Figure2.7A-B). The astrocyte population at the corpus callosum was studied by glial fibrillary 

acidic protein (GFAP) staining, which constitutes a marker of astrocyte activation. Age-matched 

untreated (0 Wk) Nlrc4 -/- mice and C57BL/6 WT controls showed no difference in number of 

astrocytes at the corpus callosum (Figure 2.7b, P=0.5 at 0 Wks), indicating that the basal level of 

astrocytes is not affected by the deletion of Nlrc4.  

At 3 and 4 weeks of cuprizone treatment there was progressive and significant reduction 

in astrogliosis in the Nlrc4-/- mice compared to control mice (Figure 2.7B, P=0.045 at 3 Wks and 

P=0.00009 at 4 Wks). These results indicate that NLRC4 exacerbates astrogliosis in the CNS 

during demyelination.  
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Figure 2.7 Role of NLRC4 in astrogliosis. Nlrc4-/- mice exhibit reduced astrogliosis when 
compared to age-matched WT controls as measured by GFAP+ cell population at the corpus 
callosum after 3 and 4wks of cuprizone treatment. A. GFAP (green) was used to detect astrocyte 
accumulation in the corpus callosum.  DAPI was used to label nuclei (blue). B. Quantitation of 
astrogliosis showed significantly reduced astrocytes at the midline corpus callosum in Nlrc4-/- 
mice (open bars) after 3 and 4 weeks of cuprizone treatment (P=0.5 at 0Wks, P=0.045 at 3wks, 
P=0.00009 at 4wks and P=0.35 at 5 wks). *P< 0.05, **P<0.01, ***P<0.005; error bars, s.e.m. 
Cell counts are averages of between 4 to 11 mice for each genotype, per time point.  
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2.3.8 Accumulation of microglia/macrophages is delayed in Nlrc4-/- mice 

The cuprizone model is characterized by demyelination-induced secondary inflammatory 

changes, which are, in contrast to primary CNS inflammation, which is not a significant 

component in the human MS lesion pathology.  It is thought that accumulation of microglia and 

astrocytes are secondary to the toxin-induced demyelination. 

 To explore if NLRC4 has a role during cuprizone-induced neuroinflammation, we 

examined microglial accumulation in Nlrc4-/- mice (Figure 2.8A, B). Microglia are resident 

immune cells of the CNS that can release cytokines and chemokines and also help phagocytose 

dead cells, cellular debris and invading pathogens (Hanisch & Kettenmann, 2007; Napoli & 

Neumann, 2009). The microglia populations at the corpus callosum were quantified by Ricinus 

communis agglutinin-1 (RCA-1) lectin staining (Figure2.8A). Age-matched untreated (0 Wk) 

Nlrc4 -/- mice and C57BL/6 WT controls showed no difference in numbers of microglia at the 

corpus callosum, indicating that Nlrc4 does not affect the microglial accumulation in non-disease 

mice (Figure 2.8B, P=0.72 at 0wk). At 3 weeks of cuprizone treatment there was progressive and 

significant reduction in microglial accumulation in Nlrc4 -/- mice relative to WT controls, while 

at 4 weeks, the difference was modest but still statistically significant (Figure. 2.8B, P=0.002 at 3 

wks and P=0.029 at 4 wks). These results indicate that NLRC4 contributes to microglia 

accumulation at the corpus callosum during demyelination.  
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Figure 2.8.  Role of NLRC4 in microglial accumulation. A.Nlrc4-/- mice exhibit reduced 
microglial accumulation as compared to age-matched WT controls. Microglial cells were 
measured by RCA+ staining at the corpus callosum after 3 and 4wks of cuprizone treatment. 
RCA (red) was used to detect microglial accumulation in the corpus callosum.  DAPI was used 
to label nuclei (blue). B. Quantitation of microglial accumulation showed reduced microglia  at 
the midline corpus callosum in Nlrc4-/- mice (open bars) after 3 and 4 weeks of cuprizone 
treatment (P=0.72 at 0wks, P=0.002 at 3 wks and P=0.029 at 4wks ).  *P< 0.05, **P<0.01, 
***P<0.005; error bars, s.e.m. Cell counts are averages of between 4 to 11 mice for each 
genotype per time point. 
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2.3.9 Demyelination is delayed in cuprizone-treated Nlrc4-/- mice  

In the cuprizone model, overt loss of myelination follows astrogliosis and microglial 

accumulation (Matsushima & Morell, 2001).  A previous study showed that loss of 

oligodendrocytes, which are the myelin-producing cells of the CNS, was attenuated in the Nlrp3-

/- mice (Jha et al., 2010).  To assess if NLRC4 plays a role in demyelination, Nlrc4-/- mice along 

with age matched C57BL/6 control (WT) mice were treated with cuprizone.  Representative 

scoring of the extent of demyelination as measured by Luxol fast blue-periodic acid Schiff (LFB-

PAS) staining is shown in Figure2.9A-B. Slides were read by three blinded readers on a scale of 

0 (no demyelination) to 3 (complete demyelination). WT mice showed significant demyelination 

while Nlrc4 -/- mice showed a significant reduction in demyelination compared to WT controls. 
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Figure 2.9.  Role of NLRC4 in demyelination. A. Nlrc4-/- mice (open circles) show delayed 
demyelination as compared to WT controls (filled circles). Each slide was scored by 3 
independent blinded readers on a score of 0 (no demyelination) to 3 (complete demyelination). 
All scores are restricted to the midline corpus callosum (boxed area). B. Demyelination was 
quantitated by Luxol fast blue (LFB) staining. Each circle represents the averaged observed LFB 
score from three readers for one mouse. The mean value of each data set is depicted by a red 
line. Evaluation was performed using 4 to 11 mice for each genotype per time point. 
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2.4 Discussion  

Astrocytes are the most abundant cell types in the CNS, and are increasingly appreciated 

for their wide, regulatory impact on CNS homeostasis and function.  Astrocytes perform multiple 

and diverse roles in the CNS, including the maintenance of extracellular ionic balance, 

promotion of neuronal survival, formation of synapses and maintenance of the blood brain 

barrier (Molofsky et al., 2012). They also provide nutrients such as glucose to neurons and play a 

key role in the repair and scarring process in the brain. Activated astrocytes are major contributor 

to neuroinflammation and important in synapse formation.  With respect to the inflammasome 

genes, astrocytes express the MHC class II transactivator (CIITA) (Collawn & Benveniste, 1999; 

Stuve et al., 2002), NOD1 and NOD2 and the inflammasome adaptor protein ASC (de Rivero 

Vaccari, Lotocki, Marcillo, Dietrich, & Keane, 2008). NLRC4 mRNA is abundant in the adult 

mouse brain (Poyet et al., 2001) and is elevated in brain tissues from Alzheimer’s patients, and 

suggested to mediate palmitate-induced inflammasome activation in astrocytic cultures (Liu & 

Chan, 2014).  Two independent studies reported the heightened expression of NLRC4 in 

inflammation in Kawasaki disease (Ikeda et al., 2009)  and atopic dermatitis (Macaluso et al., 

2007). Utilizing peripheral blood mononuclear cells from patients, these authors demonstrated 

increased gene expression of NLRC4 in patients relative to healthy controls, leading the authors 

to suggest a role for NLRC4 in these inflammatory diseases.  
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Our previous studies with mice deficient in another NLR family member NLRP3  

(Nlrp3-/-) in addition to caspase-1(casp1-/-), IL-1β (IL-1β-/-) and IL-18 (IL-18-/-) deficient mice in 

the cuprizone model showed a NLRP3-dependent mechanism which leads to demyelination and 

the loss of mature oligodendrocytes. Moreover, our results in Nlrp3-/- mice showed that NLRP3 

deficiency delayed but did not completely obviate demyelination and neuroinflammation. 

Possible sources during CNS inflammation that may act as NLRP3 ligands include ATP, K+ 

effluxes and ROS production(Riggio, 2011). These results raised the possible involvement of 

other compensatory NLR proteins during neuroinflammation and demyelination.  This previous 

work did not analyze the cell type that expresses NLRP3 protein as a specific antibody to this 

protein has not been available. 

Here, we provide evidence that the NLRC4 protein is strongly expressed by astrocytes 

and to a lesser extent by microglia during neuroinflammation.  Expression of glial NLRC4 was 

enhanced in mouse brain undergoing the cuprizone model and human brain from MS patients.  

As inflammasome in astrocytes is understudied, the importance of this study lies in the 

functional delineation that NLRC4 mediates inflammasome activation in astrocytes by bacterial 

PAMP and by LPC, the latter is typically proinflammatory and increased in neurologic diseases.  

The importance of NLRC4 in the CNS is further supported by the findings that Nlrc4-/- mice 

exhibit reduced astrogliosis and microglial accumulation.  This study did not analyze microglia 

in culture, since highly enriched cultures of microglia are difficult to obtain.  However, the study 

of macrophages did show a similar specificity of NLRC4 activation by flagellin and LPC.    
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Different inflammasome NLRs are known to display specificity for agonists/ligands.  For 

example, NLRP3 mediates macrophage response to a host of distinct molecular structures 

including nucleic acids, ATP, pore-forming toxins and crystals, while NLRC4 mediates 

responses to bacterial flagellin and T3SS components.  However in addition to the specificity 

displayed by inflammasomes, we initially proposed the model wherein NLRs may be able to 

mix-and-match, thus increasing its repertoire of PAMP recognition(Ting & Davis, 2005).  

Indeed, a few pairs of NLRs have been found to display common specificity.   

For example, the NAIP2-NLRC4 complex physically associates with a T3SS molecule, 

while NAIP5-NLRC4 associates with flagellin (Halff et al., 2012; Kofoed & Vance, 2011; Zhao 

et al., 2011).   Although NLRP3 and NLRC4 display distinct specificities, they are both required 

for inflammasome activation by Salmonella (Broz, von Moltke, Jones, Vance, & Monack, 2010), 

and more recently endogenous NLRP3 and NLRC4 have been co-localized in cells upon 

Salmonella infection (Man, Hopkins, et al., 2014).  In our study, we find that NLRP3 and 

NLRC4 are both required for inflammasome activation by LPC in macrophages as well as 

astrocytes.  Furthermore, NLRP3 and NLRC4 can associate with each other by two different 

biochemical approaches.  Unlike Salmonella which has multiple PAMPs and thus might be a 

complex system to dissect, our study utilized a more simplified system comprised of LPC, and 

the results support the possibility that NLRP3 and NLRC4 mediate inflammasome activation to 

the same agonist, suggesting that they might work cooperatively. 
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In summary, this work provides direct evidence for the functional importance of NLRC4 

in astrocytic inflammasome, and further shows that NLRC4 and NLRP3 mediate inflammasome 

activation by a neuro-derived DAMP, LPC. Considering the expanding importance of astrocytes 

in neurologic homeostasis and disease states, these findings have broad implications for 

understanding a plethora of neurologic disorders where neuroinflammation is found to play a 

role.    
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2.5 Materials and Methods 

Mice   

            Nlrc4 -/- mice on the C57BL/6 background were kindly provided by Dr. Vishva Dixit 

(Genentech). Nlrp3 -/- mice backcrossed on the C57BL/6 background have been previously  

described (Jha et al., 2010)  C57BL/6 mice were purchased from Jackson Research Labs (Bar 

Harbor, ME), and maintained at the UNC facility.  All mice were 8-10 weeks old prior to start of 

treatment.  All mice were allowed to acclimate to the facility for 1-2 weeks prior to cuprizone 

treatment. C57BL/6   and Nlrc4 -/- mouse lines were bred and maintained for future experiments 

and treatments as needed.  All animal procedures conducted were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina at Chapel Hill.  

Cuprizone treatment  

            Eight to ten week old male mice were fed 0.2% (w/w) cuprizone [oxalic 

bis(cyclohexylidenehydrazide)] (Sigma Aldrich, St. Louis, MI) mixed into ground chow ad 

libidum for 6 weeks to induce progressive demyelination. Untreated control mice were 

maintained on a diet of normal pellet chow. During cuprizone treatment mice showed lethargic 

movement, ~10% weight loss, ruffled hair and altered gait as described earlier (Arnett et al., 

2002; Franco-Pons, Torrente, Colomina, & Vilella, 2007).  
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Tissue preparation 

             Mice were deeply anesthetized and intracardially perfused with phosphate-buffered 

saline (PBS) followed by 4% paraformaldehyde (PFA). Brains were removed, post fixed in PFA, 

and embedded in paraffin. 5-µm coronal sections were cut at the fornix region of the corpus 

callosum. For frozen sections, mice were perfused and post fixed as described earlier (Arnett et 

al., 2001). Brains were allowed to sink in 30% sucrose in PBS and snap frozen on dry ice in 

OCT. 5µm and 20µm coronal sections were cut at the fornix region of the corpus callosum for 

immunohistochemistry (IHC). All analyses were restricted to the mid-line corpus callosum as 

described previously (Plant et al., 2007).  

Human brain tissue samples  

            The MS and control tissue were obtained from the University of California Los Angeles 

(UCLA) human brain and spinal fluid resource center (HBSFRC). The clinical pathology of 

patients is available (Table 1) and the material is evaluated by neuropathologists at UCLA 

HBSFRC. Brain tissue from 3 MS cases were examined along with 3 control brains from cases 

without MS. In case of the MS brains 3 different samples were obtained from each brain 

including the normal appearing white matter (NAWM), normal appearing gray matter (NAGM), 

and plaque. In case of the control brains, 2 samples were obtained from each brain: the normal 

appearing white matter (NAWM) and normal appearing gray matter (NAGM). In all cases the 

tissue was taken from region around or at the corpus callosum (Supplementary figure 2).  
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The brains were obtained in 4% paraformaldehyde and subsequently embedded in paraffin and 

sectioned into 5-µm coronal sections. 

Histologic Staining 

            To examine demyelination, paraffin sections were rehydrated through a graded series of 

alcohol washes and stained with Luxol fast blue-periodic acid-Schiff’s base (LFB-PAS; Sigma, 

St. Louis, MI) as described previously(Arnett et al., 2002). Sections were read by three double-

blinded readers and graded on a scale from 0 (no demyelination) to 3 (complete demyelination). 

Higher scores indicate greater pathology. For detection of Microglia/macrophages the sections 

were rehydrated and permeabilized with 0.1% Triton/PBS for 20 min at room temperature and 

then incubated with Ricinus communis agglutinin-1 (RCA-1) lectin (1:500, Vector) at 37 °C for 

1hr. Only RCA-1+ cells with observable 4', 6’-diamidino-2-phenylindole (DAPI) stained nucleus 

were included in the quantification.  

Immunohistochemistry (IHC) 

            IHC was performed on 5- m paraffin embedded sections that were deparaffinized and 

rehydrated through alcohols as described earlier. To detect astrocytes sections were incubated 

with 5% normal goat serum in 0.1% triton-PBS for 20 min at room temperature. Subsequently, 

the sections were washed and incubated with rabbit anti-cow monoclonal antibody (1:100, 

DAKO) and goat-anti-rabbit-fluorescein conjugated secondary antibody (1:100, Vector). For the 

detection of NLRC4, the sections were permeabilized with 0.1% Triton/PBS for 10 min and 

incubated with rabbit anti mouse  

 

 

  



 

85 
 

NLRC4 antibody (1:100, Imgenex) overnight at 4°C. After washing the sections with PBS the 

primary antibody was detected by incubation with a goat- anti- rabbit-Alexa fluor 488 

conjugated antibody (Molecular probes) for 1hr at RT. Immunopositive cells with an observable 

DAPI stained nucleus were counted blindly twice. Cell counts are averages of at least 9 and up to 

14 mice per time point. 

Imaging 

            All cell counts were taken from the mid-line of the corpus callosum, confined to an area 

of 0.033 mm2 taken with a 50X oil immersion objective. An Olympus BX-40 upright microscope 

with camera (Optronics engineering) and Scion image acquisition software was used for taking 

images of the mouse brains. An Olympus BX-61 upright microscope with Bright Field, Dark 

Field, DIC and Epi-fluorescence capability with Improvision’s Velocity software, Hammatsu 

ORCA RC camera and QImaging RETIGA 4000R color camera was used for imaging of human 

brain tissue.  Immunofluorescence in tissue sections was quantified by the NIH ImageJ software. 

Primary cell culture 

            Primary mouse glial cultures were generated from mice brains as described previously 

with slight modifications(McCarthy & de Vellis, 1980). 3-4 brains from neonatal mice (1-2 days 

old) were used for each flask (T75 flasks, Corning, USA). The tissue was briefly triturated and 

processed with the Worthington papain dissociation kit according to manufacturer’s instructions 

(Worthington Biochemical Corporation, Lakewood, NJ, USA). 
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Cells obtained as a result of tissue processing were resuspended in DMEM containing 

10% fetal bovine serum. (FBS, Hyclone, Logan, UT, USA), 100 µg/ml streptomycin and 50 

units/ml Penicillin and were plated in a flask described above. These cultures were maintained in 

a 5% CO2 humidified incubator at 37°C for 2-3 weeks. Media was changed every 2-3 days. 

Microglial cells growing on top of the confluent astrocyte monolayer were detached by shaking 

at 100rpm for 3.5 h at 37°C. Confluent astrocyte layer was detached from the flask using 0.2 g/L 

EDTA in phosphate-buffered saline (Versene, Gibco, USA), cells were counted and re-plated as 

required.  

Flagellin transfection of astrocytes   

            Primary glial cultures were harvested from a pool of brains of 0-2 day old neonatal 

mouse pups as previously described(McCarthy & de Vellis, 1980). After 2-3 weeks astrocytes 

were then replated in a 96 well dish plate at a density of 50,000 cells per well.  Astrocytes were 

primed with 400ng/ml lipopolysaccharide (LPS) in DMEM containing 10% Fetal Bovine Serum 

(FBS) for 4 hours. Prior to transfection, wells were rinsed with PBS 2-3 times in order to remove 

any serum.  Astrocytes were then DOTAP-transfected with Salmonella Typhimurium (S. 

Typhimurium) flagellin in serum free DMEM media for 1hr at concentrations of  200ng per well, 

100ng per well, 50ng per well, 25ng per well 12.5ng per well and 6.5ng per well. Supernatants 

from each of the wells were collected and then measured for the mouse cytokine IL-1β using the 

B.D. OptEIA ELISA kit according to the manufacturer’s instructions.  
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LPC stimulation of astrocytes  

            Astrocytes were replated at a density of 50,000 cells per well in a 96 well dish plate. 

Astrocytes were then primed with 1μg/ml LPS in DMEM containing 10% FBS overnight. Prior 

to lysophosphotidylcholine (LPC) stimulation, wells were rinsed with PBS 2-3 times. Wells were 

then stimulated with pre-warmed serum free DMEM (370C) containing LPC concentrations of 

200μM, 100μM, 50μM for 2 and 4 hrs. Supernatants from each of the wells were collected and 

then measured for the mouse cytokine IL-1 β. 

Immunoprecipitation 

293T cells seeded in the 6-well plate a day before were transfected with pCDNA-

NLRP3-HA (1 µg), pCDNA-NLRC4-V5 (1 µg) or pCDNA-NLRP3-HA (1 µg) plus pCDNA-

NLRC4-V5 (1 µg) by lipofectamine 2000.  At 24 hours after transfection, cells were lysed in 

NP-40 buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, and 1% NP-40) at 4 °C with rotation for 

30 minutes.   Cell lysates were centrifuged at 16,000×g for 30 minutes to remove any debris.  20 

µl of HA antibody conjugated agarose beads (E6779, Sigma-Aldrich) were added into each cell 

lysate to precipitate NLRP3-HA complex.  After 4 hours rotation at 4 °C, precipitant was washed 

by lysis buffer 5 times with 5 minutes rotation each time.  The immunoblot was performed by 

using antibody against HA (no. 2999, Cell Signaling Technology) or V5 (PA1-32392 Thermo 

Fisher Scientific).  β-actin was used as the loading control.   
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For endogenous immunoprecipitation, 5×108 THP-1 cells were lyzed by 10 ml of NP-40 

buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, and 1% NP-40) at 4 °C with rotation for 30 

minutes.  The cell lysates were precleared by 100 µl of Protein G Sepharose (17-0618-01, GE 

Healthcare) at 4 °C with rotation for 1 hour and immunoprecipitation was performed by using 20 

µg of antibody against of NLRP3 (AG-20B-0014-C100, Adipogen) or isotype control IgG plus 

60 µl of Protein G Sepharose at 4 °C with rotation overnight.  Partial of the precipitant was 

subjected to immunoblot for detection of NLRP3 by anti-NLRP3 antibody.  The left of 

precipitant was subjected to SDS-PAGE and coomassie blue staining. The gel was continuously 

sliced in the area  

from 70 kD to 140 kD for further ultra-high performance liquid chromatography and mass 

spectrometry analyses. 

In-gel Digestion 

            The protein bands for each biological sample were cut into approximately 2 mm thick 

slices. Each gel slice was cut into smaller pieces. After de-staining with acetonitrile (ACN), 

slices were incubated in 25 mM ammonium bicarbonate (ABC) containing 20 pg/mL of 

sequencing-grade trypsin overnight at 37ºC. Tryptic peptides were extracted from the gel slices 

by two washes with 50% ACN. The ACN washes were added to the ABC wash in the fresh tube. 

Digested peptides were stored at -80 ºC until lyophilization. 
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Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) 

 The dried peptide samples were resuspended in LC buffer A (0.1% formic acid in water) 

prior to HPLC separation. Mass spectrometry analyses were performed using an LTQ Orbitrap 

Velos (Thermo Scientific, Bremen, Germany) coupled with a nanoLC-Ultra system (Eksigent, 

Dublin, CA) and a column packed in-house (C18, 75 m×15 cm, 200 Å, 3 µm, Magic AQ 

beads). A linear gradient was run from 100% buffer A (0.1% formic acid) to 40% buffer B (0.1% 

formic acid in acetonitrile). Survey scans were performed in the Orbitrap analyzer at a resolution 

of 60,000 in CID mode with normalized collision energy of 35% and activation Q 0.25. All the 

raw files acquired from the LTQ Orbitrap were processed through MaxQuant software suite 

2.2.1. (Max Planck Institute, Germany) with most default settings, and searched against the 

human UniProtKB database. Trypsin was chosen as the enzyme, and a maximum of 2 missed 

cleavage sites was allowed. Oxidation (M) was set as a variable modification. Peptide and 

MS/MS tolerances were set to 6 ppm and 0.5 Da, respectively. The false discovery rate (FDR) 

was estimated by MaxQuant software on both the protein and peptide levels. Only hits at less 

than a 1% FDR were accepted. 

Statistical Analysis 

            For the in vivo animal studies, data are expressed as mean s.e.m. Unpaired Student's t 

tests were used to statistically evaluate significant differences. Differences were considered 

statistically significant if P < 0.05. For the ELISA data, statistical analysis was carried out with 

GraphPad Prism 5.0. All data are shown as mean + s.d.   
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Comparisons between time points, groups and various concentrations were analyzed by repeated-

measurements analysis of variance with Bonferroni post-tests. In all tests, p-values of less than 

.05 (*p<0.05, **p<0.01, and ***p<0.001) were considered statistically significant. 

 

2.6  Supplementary Figures 

 

Supplementary Figure 2.1. NLRC4 is not expressed by mouse oligodendrocytes and 

neurons in vivo. This figure shows negligible expression of NLRC4 in regions showing neurons 
(NeuN, green) and oligodendrocytes (CNPase, red). DAPI was used to label nuclei (blue). 
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Supplementary Figure 2.2 Sample location of normal and MS patient brain tissues. Brain 
tissue from 3 MS cases and 3 control brains from cases without MS. In case of the MS brains, 3 
different samples were obtained from each brain including the normal appearing white matter 
(NAWM), normal appearing gray matter (NAGM), and plaque. In case of the control brains, 2 
samples were obtained from each brain: the normal appearing white matter (NAWM) and normal 
appearing gray matter (NAGM). In all cases the tissue was taken from region around or at the 
corpus callosum. The brains were obtained in 4% paraformaldehyde and subsequently embedded 
in paraffin and sectioned into 5-µm coronal sections. Images supplied by UCLA HBSFRC 
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Chapter 3: A potential role for PKC-δ during Neuroinflammation. 

 

3.1 Introduction 

Lysophosphatidylcholine (LPC) is a phospholipid that is produced by the hydrolysis of 

phosphotidylcholine (PC) by the enzyme phospholipase A2(Kabarowski et al., 2002).   Previous 

studies have begun indicate a potential contribution of LPC to neuroinflammation. LPC has been 

shown to promote glial activation in astrocytes and induce IL-1β release by microglia. 

 Intracranial injections of LPC has been shown to induce focal demyelination(Waxman et al., 

1979). We recently showed that NLRC4 mediates IL-1β release by mouse primary macrophages 

(See Figure 2.4) and mouse primary astrocytes (see Figure 2.5).  

  Unlike the other inflammasome forming NLRs such as NLRP3 which can respond to a 

multitude of various PAMPs and DAMPS, to date the only danger signal which clearly has been 

shown to lead to NLRC4 activation is S.typhimurium. A recent study showed that PKC-δ was 

critical to the activation of NLRC4 and its response to its specific agonists leading to the release 

of IL-1β, However, other studies using non-flagellated bacteria such as Shigella failed to identify 

a role for  PKC- δ in  NLRC4 activation(Qu et al., 2012; S. Suzuki et al., 2014)
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PKC-δ is one of twelve serine threonine kinases that are capable of responding to 

diacylglycerol which is produced by the activation of heterotrimeric G-protein coupled 

receptors(Nishizuka, 1992; Pettitt et al., 1997). The biological role of PKC-δ varies depending on 

the disease state and the cellular context.  In cardiovascular disease PKC-δ may promote damage 

and apoptosis of cells, while in certain cancers PKC-δ has been shown to inhibit cell 

proliferation and migration (Arslan et al., 2011; Kopp et al., 1991; Murriel & Mochly-Rosen, 

2003). 

            We carried out studies to see if the ability of NLRC4 to mediate LPC stimulated IL-1β 

release may be PKC-δ dependent.  Prior to LPC stimulation of WT BMMs, WT BMMs were 

treated with a PKC-δ selective inhibitor known as rottlerin and a non selective PKC-δ inhibitor 

known as K252a prior to LPC stimulation. Previously, these inhibitors were shown to inhibit 

phosphorylation of NLRC4 prior to S.typhimurium infection in WT BMMs resulting in 

attenuated IL-1β release (Qu et al., 2012).    Immunoblot analysis of LPC stimulated WT BMMs 

showed that LPC stimulation led to an increase in the phosphorylation of PKC-δ in a dose 

dependent manner. As expected pretreatment of these cells with rottlerin showed that 

phosphorylation of PKC-δ was inhibited however this was not observed with the inhibitor 

K252a. K252a is a non-selective PKC-δ inhibitor. Although it has been reported to inhibit the 

ability of PKC- δ to phosphorylate NLRC4 this may be due to off target effects(Qu et al., 

2012(Qu et al., 2012).  LPC is known to be elevated in neuroinflammatory diseases such as TBI 

and stroke(Farooqui et al., 2006). We wanted to measure LPC to see if it was elevated in our 

own mouse model of neuroinflammation known as the cuprizone model. We observed the 

presence of LPC in cuprizone treated brains of WT and Nlrc4-/- mice.  
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PKC-δ has been suggested to have a neuroinflammatory role in cell types such as 

astrocytes and microglia (Burguillos et al., 2011; Hsieh, Wu, & Yang, 2008). We wanted to 

assess whether PKC-δ protein expression was affected in the cuprizone model. Finally we saw 

that the protein expression levels of PKC-δ decreased in the cuprizone treated brains of WT mice 

with increasing exposure to cuprizone treatment.    

3.2 Results   

 

3.2.1 PKC-δ selective inhibitors inhibit LPC mediated IL-1β release in WT BMMs.  

 

We have shown that NLRC4 is required for optimal LPC induced IL-1β release in 

macrophages and astrocytes (see figures 2.4 and 2.5). Recently PKC-δ has been shown to play a 

critical role in the activation and phosphorylation of NLRC4 prior to its activation by agonists 

such as S.typhimurium and the secretion of IL-1β (Qu et al., 2012). In this study it was observed 

that the use of PKC-δ selective inhibitors such as rottlerin and the non-selective PKC-δ inhibitor 

K252a inhibited phosphorylation of PKC-δ and that this led to a dramatic attenuation in IL-1β 

release in infected BMMs. This suggests that phosphorylation of NLRC4 is critical for its 

activation prior to sensing S.typhimurium.  In this study, we assessed the effect of PKC-δ 

inhibition on LPC mediated IL-1β release in WT BMMs.  WT BMMs were LPS primed 

overnight (400ng/mL) and pretreated with rottlerin, K252a or vehicle ( DMSO) 30 minutes to 

1hr  prior to exposing cells to 25, 50 100  and 200 μM concentrations  of LPC. (Figure 3.1)  LPC 

treated WT BMMs showed elevated levels of IL-1β in a dose dependent manner.  By contrast, 

rottlerin and K252a treated WT BMMs showed no detectable levels of IL-1β release except at a 

high cytotoxic 400μM concentration of LPC.  
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Figure 3.1.  The effects of PKC-δ inhibitors on LPC stimulated IL-1β release in WT 

BMMs. WT BMMs were LPS primed (400ng/ml) overnight and pretreated with Rottlerin, 
(10μM) K252a, (10μM) or DMSO as a vehicle control (10μM) 30 minutes prior to LPC 
stimulation at concentrations of 25, 50, 100, 200μM for 3 hours before collection of supernatant 
for assessment of IL-1β secretion by an ELISA assay.   
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3.2.2 LPC stimulation of WT BMMs results in phosphorylation of PKC-δ. 

 

The previous data (figure 3.1) showed that IL-1β produced by LPC stimulated WT 

BMMS was reduced in the presence of PKC delta inhibitors such as rottlerin and K252a. 

Although we have shown that LPC mediates the release of IL-1β in WT BMMs, (Figure 2.4) we 

assessed if LPC stimulation of WT BMMs could phosphorylate and activate PKC-δ. We also 

wanted to verify that PKC-delta phosphorylation was inhibited with the use of inhibitors such as 

rottlerin and K252a under LPC stimulation in WT BMMs. Lysates were collected from WT 

BMMs exposed to various concentrations of LPC Cultures were either pretreated with DMSO 

(vehicle), or treated with either rottlerin and K252a .Levels of naïve and phosphorylated PKC-δ  

were determined by western blot (Figure 3.2).  

Increasing the amounts of LPC used to stimulate the BMMs (lanes 4-8) resulted in an 

increase in the intensity of the band corresponding to phosphorylation of PKC-δ.   As expected 

pretreatment of LPC stimulated WT BMMs with the non-selective PKC-δ inhibitor K252a (lanes 

9-12) did not affect phosphorylation of PKC-δ.  In contrast rottlerin pretreatment of LPC 

stimulated WT BMMS resulted in attenuated phosphorylation of PKC-δ up until 200 μM of LPC 

stimulation in WT BMMs.  Although LPS was shown to lead to phosphosphorylation of PKC-δ 

(lane 2). LPS alone has not been shown to phosphorylate NLRC4 (Qu et al., 2012).  This 

Immunoblot was only done once and will need to be repeated to confirm the results.  
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Figure 3.2 Immunoblot of p-PKC-δ and PKC-δ after LPC stimulation in the presence and 

absence of PKC-δ inhibitors. WT BMMs were LPS primed (400ng/ml) overnight and 
pretreated with K252a, (10μM) Rottlerin, (10μM) or DMSO as a vehicle control (10μM) 30 
minutes prior to LPC stimulation at concentrations of 25,50,100, 200μM for 1 hour and lysates 
were immunoblotted for phosphorylated PKC-δ and total PKC-δ. 
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3.2.3 LPC measurement of cuprizone treated brains in WT and Nlrc4-/- mice.  

 
LPC has also been shown to be elevated in neuroinflammatory diseases such as traumatic 

brain injury and ischemia(Farooqui et al., 2006). LPC has also been shown to activate glial cells 

such as astrocytes and microglia (Schilling et al., 2004; Sheikh et al., 2009) Our previous data in 

Chapter 2 used the cuprizone model to show that Nlrc4-/- mice had delayed astrogliosis and 

microglial accumulation in the corpus callosum compared to WT mice (see Figures 2.7 and 2.8)   

The cuprizone model represents a neuroinflammatory model, while LPC is found in 

neurodegenerative conditions. Thus we wanted to assess whether there were differences in the 

levels of LPC in the cuprizone treated brains of WT and Nlrc4-/- mice.  Such a finding may 

provide insight as to why Nlrc4-/- mice have delayed astrogliosis and microglial accumulation 

compared to WT mice.   

Untreated (0wks), 3week and 5week cuprizone treated brains from WT and Nlrc4-/- mice 

were homogenized and lysates were collected and analyzed for amounts of LPC by an LPC 

ELISA (Figure 3.3).  There were detectable levels of LPC in untreated (0 week) 3 week and 5 

week cuprizone treated brains of WT and Nlrc4-/- mice. There was however no statistical 

difference in LPC levels of WT and Nlrc4-/- brains at 0, 3, and 5 weeks of cuprizone treatment.  

At the 5 week time point, LPC in the Nlrc4-/- brain was reduced, and more samples may be 

necessary to reach statistical significance. 
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Figure 3.3. LPC measurement of cuprizone treated brains in WT and Nlrc4-/- mice   

0wk (untreated), 3wk, and 5wk cuprizone treated brains from WT and Nlrc4-/- mice were 
homogenized and lysates were obtained and assayed for LPC by ELISA. Each representative 
group consisted of 3 mice (n=3). 
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3.2.4  PKC-δ gene expression in mouse tissues.  

 

Although PKC-δ has been shown to play a role in suppressing or promoting the migration 

of cells in cancer and cardiovascular disease it’s role in neuroinflammation has only begun to 

emerge (Hsieh et al., 2008; Jackson et al., 2005) (Lu et al., 1997).  Using a scratch model assay 

which can induce a neuroinflammatory state, PKC-δ has been shown to promote microglial 

activation and astrogliosis (Burguillos et al., 2011). Using the BIOGPS gene portal site which 

allowed for gene analysis of PKC-δ amongst various murine tissues (Figure. 3.4), elevated PKC-

δ expression was found in multiple tissues such as the stomach and lung and in cell types such as 

bone marrow derived macrophages.  Additionally elevated expression of PKC-δ was found in 

brain tissues such as the hippocampus, dorsal root ganglion and in cell types such as microglia 

(highlighted in red and orange.)  Expression data posted on the BIOGPS gene portal site was 

determined by affymetrix chips which were used to measure fluorescence intensity. The intensity 

values were summarized using various data processing algorithms such as the grcma algorithm.  

 
 

 
 
 
 



 

101 
 

 
Figure 3.4 Gene Atlas of PKC-δ expression of in various tissues in mice.  

This table was obtained from the gene atlas website BIO GPS 
(http://biogps.org/#goto=genereport&id=733756).  This atlas shows the gene expression of PKC-
δ in various mouse tissues. Highlighted in red is the PKC-δ gene expression in brain tissue. 
Highlighted in orange is the PKC-δ gene expression in microglia.  
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3.2.5. PKC-δ protein expression decreases in cuprizone treated brains with increasing 

cuprizone exposure.  

The elevated gene expression of PKC-δ in the brain and microglia ( as shown in the 

BIOGPS gene portal atlas) and the ability of PKC-δ  to promote the activation of 

neuroinflammatory cell types such as microglia and the migration of astrocytes suggests a 

possible role for this kinase in the pathogenesis of MS like diseases.  We therefore determined 

whether PKC-δ phosphorylation in the brain varied with exposure to cuprizone. Brains from wild 

type untreated animals (0wk), and animals that were fed cuprizone for 2.5 week, 3week, 4week 

or 5weeks were homogenized and lysates prepared for analysis by western for the presence of 

phosphorylated PKC- δ.  Phosphorylated PKC-δ could not be detected under these experimental 

conditions in untreated, 2.5 week, 3week, 4week and 5week cuprizone treated brains of WT 

mice. However there was a gradual decrease in total PKC-δ levels with increasing cuprizone 

exposure. These results are contradictory to what we were expecting, hence repetitions of this 

experiment are necessary to assess the validity of the study.  
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Figure 3.5. Immunoblot of phosphorylated and total PKC-delta expression during 

cuprizone treatment.  Brains from untreated (0 wk) C57BL/6 mice and mice that were treated 
with cuprizone for 2.5 wk, 3 wk, 4 wk or 5 wk were homogenized  and lysates were  obtained 
and immunoblotted for  phosphorylated PKC-δ and total PKC-δ.   
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3.3 Discussion  

 

LPC is a phospholipid that has been found to be elevated in the human brain in 

neuroinflammatory diseases such as traumatic brain injury and stroke, and it has been shown to 

activate astrocytes and stimulate the release of IL-1β in microglia and macrophages(Farooqui et 

al., 2006; Sheikh et al., 2009; Stock et al., 2006).   We recently showed that LPC stimulation of 

LPS primed BMMs and astrocytes resulted in an attenuation of IL-1β in Nlrc4-/- BMMs and 

astrocytes compared to WT controls.  We further showed that this process is dependent on 

caspase-1. This suggests that NLRC4 may mediate LPC stimulated IL-1β release in an 

inflammasome dependent manner (see Figure 2.4 and 2.5). This finding is novel in that the 

ability of NLRC4 to respond to an agonist has been restricted to bacterial pathogens such as 

S.typhimurium. A recent report showed that phosphorylation of NLRC4 by the serine threonine 

kinase PKC-δ is critical for its activation by bacterial pathogens to secrete IL-1β (Qu et al., 

2012).  The exact mechanism by which NLRC4 responds to LPC stimulation in BMMs and 

astrocytes is not well known.  

A goal of our studies was to determine if LPC stimulated IL-1β release also involves the 

phosphorylation and activation of PKC-δ. We report that LPC stimulation of WT BMMs resulted 

in increased phosphorylation of PKC-δ in a dose dependent manner (Figure 3.2).  LPC is known 

to generate high levels of ROS production and oxidative stress. ROS and oxidative stress have 

been shown to lead to the phosphorylation and activation of PKC-δ and this may explain why 

increased LPC concentrations phosphorylate PKC-δ in a dose dependent manner (Emoto et al., 

1995).  
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We also observed that the use of PKC-δ selective inhibitors such as rottlerin and K252a 

prior to LPC stimulation of WT BMMS resulted in an attenuation of IL-1β release (Figure 3.1) 

and a decrease in the phosphorylation of PKC-δ (Figure 3.2).  

Our previous data showed that Nlrc4-/- mice had delayed demyelination, astrogliosis and 

microglial accumulation in the cuprizone model compared to WT mice (See Figures 2.7 and 2.8). 

LPC has been found to be elevated during neuroinflammatory states such as stroke and ischemia 

(Farooqui et al., 2006). We wanted to assess if LPC was produced in the brains of WT and Nlrc4-

/- mice during cuprizone treatment and if there were comparable differences in the level of LPC 

produced between WT and Nlrc4-/- mice.  

Our results showed that LPC was produced in the both the untreated and cuprizone 

treated brains of  WT and Nlrc4-/- mice, however there was no statistical difference in LPC 

production between WT and Nlrc4-/- mice at 3 and 5 weeks of cuprizone treatment. At the 5 week 

time point, the brain from Nlrc4-/- mice produced less LPC, but this difference did not reach 

statistical significance.  The lack of statistical significance may have been due to the limited 

sample size for each representative group (n=3) and the variability in individual biological 

samples. There may be comparable differences in LPC production between WT and Nlrc4-/- mice 

during cuprizone treatment but future studies will need to include a larger sample size for each of 

the representative groups. Since NLRC4 mediates the release of IL-1β it would be of interest to 

see if there are different levels of IL-1β production between WT and Nlrc4-/- mice during 

cuprizone treatment. Future studies will include an assessment of IL-1β production in the brains 

of WT and Nlrc4-/- mice during cuprizone treatment. 
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PKC-δ is known to play a role in either suppressing or promoting the proliferation of 

cells depending on the type of cell and the disease state (Perletti & Terrian, 2006).  Accessing 

gene atlas portals such as BIOGPS showed that PKC-δ was highly expressed in the brain tissue 

of mice and in neuroinflammatory cells such as microglia. In biological processes such as 

neuroinflammation PKC-δ is known to activate microglia and promote the migration of 

astrocytes.  We wanted to see if PKC-δ was phosphorylated and activated during cuprizone 

treatment in WT mice. PKC-δ was not phosphorylated during any weeks of cuprizone treatment.  

This may be due to a technical issue with the preparation of the tissue samples or the 

phosphorylated PKC-δ antibody and difficulty with lysing brain tissue for use in immunoblot 

analysis. Additional analysis will be needed for a more significant outcome.  Although 

phosphorylated PKC-δ was not present in brains isolated from cuprizone treated mice, there was 

a gradual decrease in the total PKC-δ protein expression with increasing cuprizone exposure.  

However the assay did not provide information regarding the cellular origin of the PKC-δ 

protein. It is difficult to assess whether the loss of PKC-δ protein expression may promote or 

inhibit the proliferation of astrocytes and microglia in the cuprizone model. Future experiments 

may involve the use of PKC-δ-/- mice in the cuprizone model of neuroinflammation.  Future 

studies may also include immnoblotting for phosphorylated NLRC4 during cuprizone treatment 

to see if NLRC4 activation occurs during cuprizone treatment and also to assess if the loss of 

PKC-δ protein expression affects phosphorylation of NLRC4. The potential role of PKC-δ in 

neuroinflammation and in the cuprizone model (see Figure 4.1) will be further explored in 

chapter 4. 
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3.4 Materials and Methods 

 

Reagents 

Rottlerin was purchased from Enzo Life sciences (350-075-M010).  LPC was from 

Sigma (L5424-25MG).  LPS-EB Ultra Pure was from InvivoGen (tlrl-3pelps). 

Mice   

Nlrc4 -/- mice on the C57BL/6 background were kindly provided by Dr. Vishva Dixit 

(Genentech). Nlrp3 -/- mice backcrossed on the C57BL/6 background have been previously  

described (Jha et al., 2010)  C57BL/6 mice were purchased from Jackson Research Labs (Bar 

Harbor, ME), and maintained at the UNC facility.  All mice were 8-10 weeks old prior to start of 

treatment.  All mice were allowed to acclimate to the facility for 1-2 weeks prior to cuprizone 

treatment. C57BL/6   and Nlrc4 -/- mouse lines were bred and maintained for future experiments 

and treatments as needed.  All animal procedures conducted were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina at Chapel Hill.  
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Cuprizone treatment  

Eight to ten week old male mice were fed 0.2% (w/w) cuprizone [oxalic 

bis(cyclohexylidenehydrazide)] (Sigma Aldrich, St. Louis, MI) mixed into ground chow ad 

libidum for 5 weeks to induce progressive demyelination. Untreated control mice were 

maintained on a diet of normal pellet chow. During cuprizone treatment mice showed lethargic 

movement, ~10% weight loss, ruffled hair and altered gait as described earlier (Arnett et al., 

2002; Franco-Pons et al., 2007).  

LPC stimulation of WT BMMs  

BMMs were replated at a density of 100,000 cells per well in a 96 well dish plate. BMMs 

were then primed with 400ng/ml LPS in DMEM containing 10% FBS for 4 hrs. BMMs were 

then pretreated with either Rottlerin (10μM) or vehicle for 30 minutes prior to LPC stimulation 

for 1hr. 

Statistical Analysis  

Statistical analysis was carried out with GraphPad Prism 5.0. All data are shown as mean 

+ s.d.  Comparisons between time points, groups and various concentrations were analyzed by 

repeated-measurements analysis of variance with Bonferroni post-tests. In all tests, p-values of 

less than .05 ( *p<0.05, **p<0.01,  and ***p<0.001) were considered statistically significant. 
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Chapter 4: Overview/Discussion of Findings 

4.1 The current role of NLRs in neuroinflammation 

NLRs are a class of cytosolic sensing proteins that are critical in responding to pathogens 

and tissue damage associated markers. A subset of NLRs known as the inflammasome forming 

NLRs mediates the release of IL-1β and IL-18.   

 IL-1β and IL-18 initiate neuroinflammatory processes in neuroinflammation such as microglial 

accumulation, and astrogliosis which represent the hallmarks of neruoinflammation and  may 

play a critical role in the initiation of various neuroinflammatory and neurodegenerative diseases 

such as multiple sclerosis (MS), Alzheimer’s disease (AD), traumatic brain injury, (TBI) cerebral 

ischemic stroke (CIS) and Parkinson’s disease (PD)(Blum-Degen et al., 1995; Bossu et al., 2007; 

Feder & Laskin, 1994; Losy & Niezgoda, 2001; Mann et al., 2002; L. Yang et al., 2010). There 

are more than nine inflammasomes but only four have been well characterized which include 

AIM2, NLRP3, NLRP1 and NLRC4.  Each of these inflammasomes respond to a unique or 

specific set of agonists.AIM2 has been characterized as a dsDNA sensor, while NLRP3 and 

NLRP1 are characterized as sensing various PAMPs such as bacterial toxins and DAMPs such as  

ATP, K+ effluxes, and mitochondrial dysfunction  (Hornung et al., 2009; Martinon, 2010; 

Munoz-Planillo et al., 2013)
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ATP, dsDNA release, K+ effluxes, mitochondrial dysfunction, and ROS production are 

known to occur during neuroinflammation and are sensed by NLRP3, NLRP1 and the AIM2 

inflammasomes which mediate IL-1β and IL-18 secretion, suggesting that they may play a role 

in the pathogenesis of various neuroinflammatory diseases such as MS, AD, TBI, PD and CIS, 

and that they may be ideal potential therapeutic targets in neuroinflammation (Dasuri et al., 

2013). 

  Recent studies have already begun to validate the pathogenic role of AIM2, NLRP3 and 

NLRP1 in various neuroinflammatory diseases (S. E. Adamczak et al., 2014; de Rivero Vaccari 

et al., 2009; Denes et al., 2015; Tan, Yu, Jiang, Zhu, & Tan, 2013). However, NLRC4 is an 

inflammasome that is reported to recognize a restricted set of microbial ligands such as bacterial 

flagellin and rods(Vance, 2015). Unlike other inflammasome forming proteins, NLRC4 has not 

been frequently implicated in inflammation caused by non-microbial products, particularly in the 

pathogenesis of neuroinflammation. However our findings along with others have recently begun 

to suggest that NLRC4 may play a role in neuroinflammation (Denes et al., 2015; Liu & Chan, 

2014)
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In a recent study the inhibition of NLRC4 expression in palmitate treated astrocytes led to 

decreased IL-1β secretion as well as the reduction of amyloid-β42 in primary neurons that were 

incubated with conditioned media from palmitate treated astrocytes. In this study it was also 

observed that there was elevated expression levels of NLRC4 and ASC in the post-mortem brain 

tissue of patients with sporadic AD (Liu & Chan, 2014) .The authors of this study suggest that 

palmitate, a saturated fatty acid that is potentially linked to AD pathogenesis, may stimulate 

NLRC4 expression in astrocytes.  

In a subsequent study, using a mouse mode of stroke it was observed that Aim2-/- and 

Nlrc4-/- mice had reduced infarct size and volume as well as improved neurological scores 

compared to WT mice(Denes et al., 2015). This study suggests that NLRC4 and AIM2 may play 

a role in neurological diseases such as cerebral ischemic stroke.  
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4.2 NLRC4 is highly expressed in astrocytes.  

Previous studies have shown that NLRC4 is expressed  in the human brain, however its 

expression in various neuronal cells and under inflammatory conditions in vivo has not been fully 

elucidated(Poyet et al., 2001). We showed that there is heightened NLRC4 protein expression in 

astrocytes in the cuprizone MS animal model of neuroinflammation during 4 weeks of cuprizone 

treatment which represents a chronic stage of MS. (See Figure 2.1).  Some studies suggest that 

NLRC4 expression is low in astrocytes and more likely to be in microglia (Gustin et al., 2015). 

These studies were performed under in vitro conditions with low levels of LPS stimulation 

(10ng/ml) and not in a disease state. Our findings show that NLRC4 is not only heightened in 

astrocytes under a disease state but also in the tissue of human brains from multiple sclerosis.   

Another study has also shown that NLRC4 expression is increased in astrocytes under 

stimulation of palmitate (Liu & Chan, 2014). In this study it was shown that NLRC4 expression 

was increased in the brains of deceased AD patients. Our findings along with others suggest that 

NLRC4 may have a function in astrocytes under chronic neuroinflammatory states.   

   

 

 

 

 

 

 

 

 



 

113 
 

4.3 NLRC4 is required for inflammasome activation by its known agonist (i.e., flagellin).   

Macrophages infected with S. typhimurium showed an NLRC4 dependency which lead to 

IL-1β release (Miao et al., 2010). These are not the only immune cell types that are considered to 

be phagocytic. Microglia are considered resident brain macrophages. They play a role in the 

surveillance of the CNS and the phagocytosis of debris (Vehmas et al., 2003). Recent studies 

have shown that microglia can phagocytize flagellin (Jamilloux et al., 2013). The ability of 

astrocytes to phagocytize flagellin has not been seen before. We found that NLRC4 in astrocytes 

responds to phagocytized flagellin, suggesting that astrocytes respond to flagellin similarly as 

macrophages (see figure 4.1 and 4.2).  

 4.4 NLRC4 and NLRP3 mediate inflammasome activation in response to LPC.  

Lysophosphatidylcholine (LPC) is elevated in brain trauma, cerebral ischemia, and  

stroke (Farooqui et al., 2006). This neuroinflammatory molecule is known to induce 

demyelination (Shikishima et al., 1985). LPC has also been found to increase the neurotoxicity 

of amyloid-β and B-42 peptide, which are found in the affected brain during Alzheimer’s 

disease, (Sheikh, Michikawa, Kim, & Nagai, 2015). Under LPC stimulation in Nlrp3-/- and 

Nlrc4-/- BMMs and astrocytes there was an observed attenuated release of IL-1β in Nlrp3-/- and 

Nlrc4-/- BMMs and astrocytes compared to WT BMMs and astrocytes. These data suggest that 

LPC mediated release of IL-1β is inflammasome dependent (see figure 4.1 and 4.2).  
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To further explore if other components of the inflammasome pathway may affect LPC 

mediated IL-1β release, we have started to examine the role of other inflammasome forming 

proteins in response to LPC by testing Asc-/-, Cas-1-/-, Cas-11-/-, IL-1β-/- and IL-18-/-  BMMs (data 

not shown). 

There were no detectable levels of IL-1β present in IL-1β-/- BMMs as expected.  There 

was an observed attenuated IL-1β release in Asc-/- and Cas-1-/- BMMs but not in Cas-11-/-, and 

IL-18-/- BMMs, suggesting that LPC mediated IL-1β release is not just NLRP3 and NLRC4 

dependent, but ASC and Caspase-1 dependent as well. The attenuated IL-1β release observed in 

Nlrp3-/- and Nlrc4-/- macrophages and astrocytes suggest that NLRP3 and NLRC4 may possibly 

act together in mediating LPC induced IL-1β release.  Future studies will involve LPC 

stimulation of Nlrp3-/-Nlrc4-/- BMMs to test the synergistic effects of LPC stimulation. 

   During the initial onset of neuroinflammatory diseases, neuroinflammation triggers a 

secondary cascade of inflammatory events such as the production of ROS, K+ effluxes, 

mitochondrial dysfunction and the release of DNA during tissue injury. NLRP1 and NLRP3 

respond to K+ effluxes, mitochondrial dysfunction and ROS while AIM2 responds to dsDNA. 

These agonists are all released during tissue injury during neruoinflammation and are very likely 

occurring at the same time. The activation of one or more inflammasome forming proteins 

during stages of inflammation has led to the exploration of potential co-inflammasome 

interactions. Recent studies have suggested that NLRC4 and NLRP3 may interact as a co-

inflammasome as determined by colocalization detected by confocal microscopy (Man, Hopkins, 

et al., 2014). Other studies also support a potential co-inflammasome with  

 

 



 

115 
 

other inflammasome forming proteins such as AIM2 and NLRP3 (Karki et al., 2015).   It is 

possible that during the initial stages of neuroinflammation in the context of the cuprizone 

model, LPC is released during the acute and chronic neuroinflammatory stages and may lead to 

an enhanced NLRP3 and NLRC4 interaction similar to that which was induced by Salmonella 

and reported by Man et al.   

 To address these issues, we have begun to perform studies to examine for the co-

immunoprecipitation of NLRC4 and NLRP3 under LPC stimulation of WT BMMs to determine 

if LPC enhances NLRP3 and NLRC4 interactions. These studies are currently ongoing.  We have 

also generated NLRP3 and NLRC4 double gene deletion mice (Nlrp3-/-/Nlrc4-/-) and have begun 

to carry out LPC stimulation of macrophages, astrocytes and microglia from wild type, Nlrp3-/-, 

Nlrc4-/- and Nlrp3-/-/Nlrc4-/- mice.  Based on the  observation that attenuated LPC mediated IL-1β 

response was observed in both Nlrp3-/- and Nlrc4-/- BMMs compared to WT BMMs, we 

hypothesized that Nlrp3-/-/Nlrc4-/- mice will have a more attenuated  LPC mediated IL-1β 

response compared to Nlrp3-/- and Nlrc4-/-  mice.  Such a result would suggest that NLRC4 and 

NLRP3 work together in an additive or synergistic fashion.  

 To extend these findings to an animal model, Nlrp3-/- mice have been shown to have a 

pronounced delayed demyelination, microglial accumulation and astrogliosis compared to wild 

type mice in the cuprizone model, suggesting that NLRP3 has a pro-inflammatory role in 

neuroinflammation (Jha et al., 2010).  
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Our studies (Chapter 2) showed that Nlrc4 -/- mice have delayed demyelination, 

microglial accumulation and delayed astrogliosis in comparison to wild type mice in the 

cuprizone model. We have begun to test wild type, Nlrp3-/-, Nlrc4-/-, and Nlrp3-/-/Nlrc4-/- mice in 

the cuprizone model.   The hypothesis to be tested is that the Nlrp3-/-/Nlrc4-/- mice will have a 

more attenuated and prolonged delayed neuroinflammatory response compared to Nlrp3-/- and 

Nlrc4-/- mice in the cuprizone model.  

Although there has been an observed attenuation in neuroinflammation in the Nlrc4-/- 

mice in the cuprizone model, this may be potentially due to a decrease in IL-1β. 

IL-1β is known to play a critical role in mediating the proliferation, activation and recruitment of 

microglia and astrocytes at the site of injury in neuroinflammation (Feder & Laskin, 1994). It 

may be that attenuation in IL-1β led to the decrease in microglia and more so in astrocytes in 

Nlrc4-/- mice compared to WT mice during the cuprizone model. IL-1β from the brains of wild 

type and Nlrc4-/- mice can be measured in the cuprizone model if the level is above the level of 

detection. As mentioned  before, DAMPs such as ROS, K+, and dsDNA  are released during 

neuroinflammation leading to the activation of NLRP1, NLRP3 and AIM2  making these 

inflammasome forming proteins potential mediators and contributors to the pathogenesis of 

neuroinflammation. These signals are not known to activate NLRC4 and can not explain why 

there is an observed delayed neuroinflammation and demyelination observed in Nlrc4-/- mice in 

the cuprizone model. 
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4.5 PKC-δ may regulate neuroinflammation through NLRC4 

The kinase PKC-δ has been found to be critical in phosphorylating and activating the 

NLRC4 inflammasome so that it can mediate the release of IL-1β in response to NLRC4 specific 

agonists such as flagellin (Qu et al., 2012). Studies have shown that PKC-δ is capable of 

responding to ROS, and DNA damage (Emoto et al., 1995; Yoshida, Miki, & Kufe, 2002). PKC-

δ has been suggested to regulate the proliferation and migration of various cancer cells (Jackson 

et al., 2005; Lu et al., 1997). It may be possible that PKC-δ is regulating the proliferation of 

astrocytes and microglia during the cuprizone model through NLRC4. Although the role of PKC-

δ has been well defined in cancer and cardiovascular diseases such as ischemia, its role in 

neuroinflammatory diseases is only beginning to emerge. One of our findings suggests that 

NLRC4 is highly expressed in astrocytes and that there is an attenuated proliferation of 

astrocytes during the chronic stage of cuprizone in Nlrc4-/- mice.   
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 NLRC4 is known to recognize intracellular pathogens such as Salmonella (Miao et al., 

2010).Recently a study was carried out involving S.typhimurium infection of BMMs from WT, 

Nlrp3-/-, Nlrc4-/-, Cas-1/11-/-, BMMs. The findings from this study showed that the S. 

typhimurium bacterial burden was higher in Nlrc4-/- BMMs compared to WT BMMs suggesting 

that NLRC4 may be able to restrict S.typhimurium bacterial burden . Using confocal microscopy, 

the investigators observed that upon Salmonella typhimurium infection of WT and Nlrc4-/- 

BMMs there was an observed difference in the cytoskeleton rearrangement of these two groups 

of BMMs. WT BMMs had cell stiffening, while Nlrc4-/- BMMs did not. It was also observed that 

upon Salmonella typhimurium infection of WT and Nlrc4-/- BMMs, that the movement of WT 

BMMs had stopped rapidly, while the movement of NLRC4 BMMs was unaffected, this 

suggests that NLRC4 may protect macrophages against intracellular pathogens through the 

manipulation of the actin cytoskeleton (Man, Ekpenyong, et al., 2014).  

The observed actin cytoskeleton phenotype seen in Nlrc4-/- macrophages is intriguing and 

perhaps the phenotype extends to other cell types as well. It may be possible that the actin 

cytoskeleton phenotype observed in Nlrc4-/- macrophages may be due to PKC-δ. PKC-δ has been 

implicated in the proliferation and migration of various cancer cell lines (Jackson et al., 2005; Lu 

et al., 1997). Astrocytes are glial cells that account for a large percentage of cells within the 

CNS.  Astrocytes carry out many biological functions including regulation of cerebral blood flow 

providing structural support and maintenance of the blood brain barrier (Attwell et al., 2010; 

Sofroniew & Vinters, 2010) 
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In a recent study it has been suggested that astrocyte migration is PKC-δ dependent 

(Hsieh et al., 2008) In this study, using scratch wound migration assays which allow for the 

visual assessment of the migration of cells to the site of injury, astrocytes were pretreated with a 

neuroinflammatory peptide known as bradykinin which led to the increased migration of 

astrocytes compared to untreated astrocytes. This study also showed that upon bradykinin 

stimulation of astrocytes, there was elevated expression of PKC-δ. Pretreatment of bradykinin 

astrocytes with the PKC-δ inhibitor known as rottlerin prior to use of the scratch wound 

migration assay resulted in reduced migration of bradykinin stimulated astrocytes. Transfection 

of astrocytes with a PKC-δ dominant negative mutant also resulted in reduced migration of 

astrocytes upon bradykinin stimulation suggesting that bradykinin stimulated astrocyte migration 

may be PKC-δ dependent. The findings from this study may provide insight into the observed 

decreased astrogliosis of Nlrc4-/- mice compared to WT mice during the chronic stages of 

neuroinflammation in the cuprizone model. It is possible that PKC-δ may affect the recruitment 

or migration of astrocytes to the site of injury or insult in the cuprizone model.  Furthermore, it 

would be of interest to see if there is a potential link of PKC-δ with NLRC4-dependent 

astrogliosis and migration during cuprizone treatment (see Figure4.3) or neuroinflammation in 

general. 
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Besides the potential role that PKC-δ may exert in astrocytes, a recent study has 

suggested that PKC-δ may play a role in microglial activation as well (Burguillos et al., 2011). In 

this study it was shown that LPS stimulated microglial activation led to the cleavage of caspase-3 

resulting in elevated neurotoxicity and possibly microglial activation. Pretreatment of microglial 

cells with rottlerin (a PKC-δ selective inhibitor) resulted in decreased microglial activation and 

neurotoxicity. Conversely, overexpression of PKC-δ in microglia led to elevated microglial 

activation and neurotoxicity, suggesting that microglial activation is PKC-δ dependent. It was 

also shown in this study that pretreatment of LPS stimulated microglia with caspase inhibitors 

also reduced not only microglial activation and caspase-3 cleavage but PKC-δ activity as well 

suggesting that caspase-3 cleavage may activate PKC-δ. One of the recent findings from our 

study showed that Nlrc4-/- mice had reduced microglial activation compared to WT mice in the 

cuprizone model (See figure2.7). In the cuprizone model, the neurotoxicant, cuprizone, triggers 

the death of mature oligodendrocytes through an undefined mechanism (Matsushima & Morell, 

2001). It is possible that the death of mature oligodendrocytes in the cuprizone model is 

accompanied by activated caspase-3. Caspase-3 then activates PKC-δ during the cuprizone 

model which then may lead to the activation of microglia. It is possible that the ability of PKC-δ 

to activate microglia in the cuprizone model is NLRC4 dependent, consistent with reduced 

microglial activation in mice lacking Nlrc4. The recent findings suggesting that microglial 

activation is PKC-δ dependent may explain why Nlrc4-/- mice have less microglial accumulation 

compared to WT mice. This will need to be further explored in future studies.  
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In order to study the potential link between PKC-δ and NLRC4, it would be of interest to 

assess if NLRC4 becomes phosphorylated and activated during cuprizone treatment. To assess 

this, brains from WT mice from 0, 3, 4, and 5 weeks of cuprizone treatment will be isolated, 

sectioned at the corpus callosum, homogenized and supernatants will be immunoblotted for the 

presence of phosphorylated NLRC4. It would also be of interest to place PKC-δ-/- mice in the 

cuprizone model and see if there is an observed similar reduced neruoinflammation in the PKC-

δ-/- mice similar to what was observed in the Nlrc4-/- deficient mice such as reduced astrogliosis 

and microglial accumulation. Another alternative approach would be to treat wild type mice with 

the PKC-δ inhibitor rottlerin and see if this leads to a reduction in microglial accumulation and 

astrogliosis in the cuprizone model.  

It may be possible that PKC-δ could be playing a role in the delayed astrogliosis and 

microglial accumulation observed in Nlrc4-/- mice in the cuprizone model. During the initiation 

of the cuprizone model, neuroinflammation occurs which triggers a secondary cascade of events 

resulting in oxidative stress and DNA damage which could potentially trigger the activation of 

PKC-δ. PKC-δ has been shown to regulate the proliferation and migration of tumors.  It has also 

been shown to play a role in the migration of astrocytes and microglial activation. It may be that 

PKC-δ is responding to agonists such as oxidative stress and DNA damage released during the 

initial neuroinflammatory stages of the cuprizone model and it is  regulating  the proliferation, 

migration, and activation of astrocytes and microglia in the cuprizone model through NLRC4 

(See figure 4.3). 
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Figure 4.1 LPS priming and activation of the NLRC4 inflammasome in macrophages by 

flagellin or LPC results in IL-1β secretion.   
LPS acts a signal one inducer of the inflammasome resulting in the synthesis (or “priming”) of 
pro-IL1β.  This occurs when LPS binds to Toll-like receptor 4 (TLR4) of macrophages triggering 
downstream signaling of NF-κB dependent transcription of the inflammatory gene IL-1β which 
leads to the synthesis of the pro-IL-1β.  A second signal (signal two) such as LPC or flagellin 
activates the NLRC4 inflammasome and mediates the cleavage of pro-IL-18 (not shown) and 
pro-IL-1β into the mature forms of IL-18 (not shown) and IL-1β. This figure is a schematic 
representation of figure 2.4. 
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Figure 4.2 LPS priming and activation of the NLRC4 inflammasome in astrocytes by 

flagellin or LPC results in IL-1β secretion.   
LPS acts a signal one inducer of the inflammasome resulting in the synthesis (or “priming”) of 
pro-IL1β.  This occurs when LPS binds to Toll-like receptor 4 (TLR4) of astrocytes triggering 
downstream signaling of NF-κB dependent transcription of the inflammatory gene IL-1β which 
leads to the synthesis of the pro-IL-1β.  A second signal (signal two) such as LPC or flagellin 
activates the NLRC4 inflammasome and mediates the cleavage of pro-IL-18 (not shown) and 
pro-IL-1β into the mature forms of IL-18 (not shown) and IL-1β. This figure is a schematic 
representation of figure 2.5. 
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Figure 4.3 The potential role of PKC-δ during neuroinflammation in the cuprizone model.  

The administration of the neurotoxicant cuprizone triggers neruoinflammation. During 
neuroinflammation a secondary cascade of events occurs resulting in oxidative stress, DNA 
damage, released LPC and the production of DAG.  DAG, oxidative stress, and DNA damage 
are known to activate PKC-δ which has been shown to promote microglial activation and 
astrocyte migration. PKC-δ has been found to phosphorylate NLRC4 and is critical for its 
activation. Upon phosphorylation of NLRC4 by PKC-δ, the NLRC4 inflammasome mediates the 
cleavage of pro-IL-18 (not shown) and pro-IL-1β into the mature forms of IL-18 (not shown) and 
IL-1β.  IL-1β has been shown to promote the proliferation activation and recruitment of 
astrocytes and microglia to the site of injury within the CNS.  
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4.6 Future Directions  
 

Our findings have shown that Nlrc4-/- mice exhibit delayed astrogliosis and microglial 

accumulation in the cuprizone model.  These findings have also been observed with Nlrp3-/- mice 

in the cuprizone model as well(Jha et al., 2010). The delayed astrogliosis and microglial 

accumulation that Nlrp3-/- mice exhibit in the cuprizone model may be due to potential agonists 

released during neuroinflammation such as ATP, oxidative stress, and mitochondrial dysfunction 

which are known to activate NLRP3 but not NLRC4. The agonists that NLRC4 may respond to 

have been restricted to pathogens such as S.typhimurium.  

LPC has also been shown to induce glial activation and stimulate IL-1β in microglia and 

macrophages (Sheikh et al., 2009).  NLRP3 and NLRC4 mediate IL-1β release. We used Nlrp3-/- 

and Nlrc4-/-  BMMs and astrocytes and observed that an attenuation in IL-1β release in Nlrp3-/- 

and Nlrc4-/-  BMMS and astrocytes compared to WT BMMs and astrocytes. This suggested that 

NLRC4 and NLRP3 mediate LPC induced IL-1β secretion in an inflammasome-dependent 

manner. This also showed that NLRC4 may respond to a potential neuroinflammatory agonist 

such as LPC.   

Although our studies showed that NLRC4 was capable of responding to LPC, it is has 

been reported that the kinase PKC-δ, plays a critical role in phosphorylating and activating 

NLRC4.  We carried out experiments (see chapter 3) to see if whether inhibiting PKC-δ activity 

may inhibit LPC-stimulated release in WT BMMs. Pretreatment of LPC-stimulated WT BMMs 

with  a PKC-δ selective inhibitor such as rottlerin resulted in an attenuation in LPC-mediated IL-

1β secretion in WT BMMs compared to vehicle-treated  WT BMMs (see figure 3.1).  

We also observed that pretreatment of LPC-stimulated WT BMMs with a rottlerin 

inhibitor resulted in an attenuated phosphorylation of PKC-δ compared to vehicle-treated WT 
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BMMS (see figure 3.2). This may suggest that the neuroinflammatory molecule LPC and PKC-δ 

may be potentially linked to the activation of NLRC4.  

PKC-δ has been shown to mediate microglial activation and astrocyte migration.  PKC-δ 

has also been shown to be highly expressed in murine microglia (see Figure 3.4) Astrocytes and 

microglia are known to respond to injury within the CNS. As mentioned before it would be of 

interest to study PKC-δ-/- mice in the cuprizone model for future studies in order to assess what 

effect PKC-δ may have on the proliferation and migration of microglia and astrocytes in an in 

vivo neuroinflammatory model. Other studies may include the use of proliferation assays to 

assess if whether PKC-δ-/-  microglia and astrocytes proliferate faster or slower than WT 

microglia and astrocytes.  The biological role of PKC-δ varies depending on the cell type and 

disease state (Poole et al., 2004). PKC-δ-/- mice have been reported to have increased B cell 

proliferation and develop autoimmunity (Miyamoto et al., 2002). Inactivation of PKC- δ in T 

cells also has led to autoimmunity in mice (Gorelik et al., 2015).The role that PKC- δ may have 

on T cells in a neuroinflammatory setting has not been well studied.   

MS is a complex and heterogeneous disease in which the pathology may or may not be T 

cell based.   CD4 and CD8 T cells have been linked to the pathogenesis of MS (Shaw et al., 

2011) PKC-δ has also been shown to be highly expressed in human CD4 and CD8 T cells (data 

not shown). For future studies, it would be interesting to see if whether PKC-δ-/- mice play a role 

in the T cell pathogenesis of MS. The EAE model represents a useful T cell based MS animal 

model.  Using PKC-δ-/- mice in the EAE model, it would be interesting to see if whether the 

absence of PKC-δ affects T cell migration, activation and infiltration.     

     LPC has been shown to be a potential neuroinflammatory molecule that is elevated in 

human neuroinflammatory diseases such as TBI, AD and stroke (Farooqui et al., 2006) We have 
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shown that both NLRC4 and NLRP3 mediate LPC induced IL-1β secretion in BMMs and 

astrocytes (see figures 2.4 and 2.5) We have also shown that inhibiting PKC-δ activity with the 

use of a PKC-δ selective inhibitor such as rottlerin inhibits LPC induced IL-1β secretion in WT 

BMMs. This suggests that PKC-δ may potentially mediate LPC induced IL-1β secretion. We 

have in vivo data showing NLRC4 mediates microglial accumulation and astrogliosis in an MS 

animal model (see figures 2.7 and 2.8). PKC-δ is known to promote the activation of microglia 

and the migration of astrocytes.  The accumulation of microglia and astrocytes represent 

hallmarks of neuroinflammation and has been known to play a role in diseases such as TBI, 

stroke and PD.   

The data generated here suggests that PKC-δ and NLRC4 may mediate 

neuroinflammatory molecules such as LPC and neuroinflammatory cell types such as astrocytes 

which have been implicated to play a role in the pathogenesis of TBI, AD and stroke. PKC-δ and 

NLRC4 may represent potential therapeutic targets in neuroinflammation. 

 

 

 

 

 

 

 

 

 

 



 

128 
 

 

REFERENCES 

Abulafia, D. P., de Rivero Vaccari, J. P., Lozano, J. D., Lotocki, G., Keane, R. W., & Dietrich, 
W. D. (2009). Inhibition of the inflammasome complex reduces the inflammatory 
response after thromboembolic stroke in mice. J Cereb Blood Flow Metab, 29(3), 534-
544. doi: 10.1038/jcbfm.2008.143 

 
 
Adamczak, S., Dale, G., de Rivero Vaccari, J. P., Bullock, M. R., Dietrich, W. D., & Keane, R. 

W. (2012). Inflammasome proteins in cerebrospinal fluid of brain-injured patients as 
biomarkers of functional outcome: clinical article. J Neurosurg, 117(6), 1119-1125. doi: 
10.3171/2012.9.JNS12815 

 
 
Adamczak, S. E., de Rivero Vaccari, J. P., Dale, G., Brand, F. J., 3rd, Nonner, D., Bullock, M. 

R., . . . Keane, R. W. (2014). Pyroptotic neuronal cell death mediated by the AIM2 
inflammasome. J Cereb Blood Flow Metab, 34(4), 621-629. doi: 10.1038/jcbfm.2013.236 

 
 
Allen, I. C., TeKippe, E. M., Woodford, R. M., Uronis, J. M., Holl, E. K., Rogers, A. B., . . . 

Ting, J. P. (2010). The NLRP3 inflammasome functions as a negative regulator of 
tumorigenesis during colitis-associated cancer. J Exp Med, 207(5), 1045-1056. doi: 
10.1084/jem.20100050 

 
 
Amer, A., Franchi, L., Kanneganti, T. D., Body-Malapel, M., Ozoren, N., Brady, G., . . . Nunez, 

G. (2006). Regulation of Legionella phagosome maturation and infection through 
flagellin and host Ipaf. J Biol Chem, 281(46), 35217-35223.  

 
 
Anand, P. K., Malireddi, R. K., Lukens, J. R., Vogel, P., Bertin, J., Lamkanfi, M., & Kanneganti, 

T. D. (2012). NLRP6 negatively regulates innate immunity and host defence against 
bacterial pathogens. Nature, 488(7411), 389-393. doi: 10.1038/nature11250 

 
 
Arnett, H. A., Hellendall, R. P., Matsushima, G. K., Suzuki, K., Laubach, V. E., Sherman, P., & 

Ting, J. P. (2002). The protective role of nitric oxide in a neurotoxicant-induced 
demyelinating model. J Immunol, 168(1), 427-433.  

 
 
Arnett, H. A., Mason, J., Marino, M., Suzuki, K., Matsushima, G. K., & Ting, J. P. (2001). TNF 

alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat 

Neurosci, 4(11), 1116-1122.  
 



 

129 
 

 
Arslan, F., de Kleijn, D. P., & Pasterkamp, G. (2011). Innate immune signaling in cardiac 

ischemia. Nat Rev Cardiol, 8(5), 292-300. doi: 10.1038/nrcardio.2011.38 
 
 
Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., Macvicar, B. A., & Newman, E. A. 

(2010). Glial and neuronal control of brain blood flow. Nature, 468(7321), 232-243. doi: 
10.1038/nature09613 

 
 
Balashov, K. E., Rottman, J. B., Weiner, H. L., & Hancock, W. W. (1999). CCR5(+) and 

CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and 
IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A, 96(12), 
6873-6878.  

 
 
Basu, A., & Pal, D. (2010). Two faces of protein kinase Cdelta: the contrasting roles of PKCdelta 

in cell survival and cell death. ScientificWorldJournal, 10, 2272-2284. doi: 
10.1100/tsw.2010.214 

 
 
Bauer, C., Duewell, P., Lehr, H. A., Endres, S., & Schnurr, M. (2012). Protective and 

aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of 
genetic and environmental factors. Dig Dis, 30 Suppl 1, 82-90. doi: 10.1159/000341681 

 
 
Beck, G., Brinkkoetter, P., Hanusch, C., Schulte, J., van Ackern, K., van der Woude, F. J., & 

Yard, B. A. (2004). Clinical review: immunomodulatory effects of dopamine in general 
inflammation. Crit Care, 8(6), 485-491. doi: 10.1186/cc2879 

 
 
Bhat, R., & Steinman, L. (2009). Innate and adaptive autoimmunity directed to the central 

nervous system. Neuron, 64(1), 123-132. doi: 10.1016/j.neuron.2009.09.015 
 
 
Blum-Degen, D., Muller, T., Kuhn, W., Gerlach, M., Przuntek, H., & Riederer, P. (1995). 

Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's 
and de novo Parkinson's disease patients. Neurosci Lett, 202(1-2), 17-20.  

 
 
Bossu, P., Ciaramella, A., Moro, M. L., Bellincampi, L., Bernardini, S., Federici, G., . . . 

Spalletta, G. (2007). Interleukin 18 gene polymorphisms predict risk and outcome of 
Alzheimer's disease. J Neurol Neurosurg Psychiatry, 78(8), 807-811. doi: 
10.1136/jnnp.2006.103242 

 
 



 

130 
 

Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., & Rothwell, N. J. (2001). Role 
of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci, 21(15), 5528-5534.  

 
 
Boyden, E. D., & Dietrich, W. F. (2006). Nalp1b controls mouse macrophage susceptibility to 

anthrax lethal toxin. Nat Genet, 38(2), 240-244.  
 
 
Broderick, L., De Nardo, D., Franklin, B. S., Hoffman, H. M., & Latz, E. (2015). The 

inflammasomes and autoinflammatory syndromes. Annu Rev Pathol, 10, 395-424. doi: 
10.1146/annurev-pathol-012414-040431 

 
 
Broz, P., von Moltke, J., Jones, J. W., Vance, R. E., & Monack, D. M. (2010). Differential 

requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine 
processing. Cell Host Microbe, 8(6), 471-483. doi: 10.1016/j.chom.2010.11.007 

 
 
Burguillos, M. A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., . . 

. Joseph, B. (2011). Caspase signalling controls microglia activation and neurotoxicity. 
Nature, 472(7343), 319-324. doi: 10.1038/nature09788 

 
 
Cai, X., Chen, J., Xu, H., Liu, S., Jiang, Q. X., Halfmann, R., & Chen, Z. J. (2014). Prion-like 

polymerization underlies signal transduction in antiviral immune defense and 
inflammasome activation. Cell, 156(6), 1207-1222. doi: 10.1016/j.cell.2014.01.063 

 
 
Campello Yurgel, V., Ikuta, N., Brondani da Rocha, A., Lunge, V. R., Fett Schneider, R., 

Kazantzi Fonseca, A. S., . . . Regner, A. (2007). Role of plasma DNA as a predictive 
marker of fatal outcome following severe head injury in males. J Neurotrauma, 24(7), 
1172-1181. doi: 10.1089/neu.2006.0160 

 
 
Cantley, J., Boslem, E., Laybutt, D. R., Cordery, D. V., Pearson, G., Carpenter, L., . . . Biden, T. 

J. (2011). Deletion of protein kinase Cdelta in mice modulates stability of inflammatory 
genes and protects against cytokine-stimulated beta cell death in vitro and in vivo. 
Diabetologia, 54(2), 380-389. doi: 10.1007/s00125-010-1962-y 

 
 
Carpenter, L., Cordery, D., & Biden, T. J. (2001). Protein kinase Cdelta activation by 

interleukin-1beta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-
cells. J Biol Chem, 276(7), 5368-5374. doi: 10.1074/jbc.M010036200 

 
 



 

131 
 

Carson, M. J. (2002). Microglia as liaisons between the immune and central nervous systems: 
functional implications for multiple sclerosis. Glia, 40(2), 218-231. doi: 
10.1002/glia.10145 

 
 
Carvalho, F. A., Nalbantoglu, I., Aitken, J. D., Uchiyama, R., Su, Y., Doho, G. H., . . . Gewirtz, 

A. T. (2012). Cytosolic flagellin receptor NLRC4 protects mice against mucosal and 
systemic challenges. Mucosal Immunol, 5(3), 288-298. doi: 10.1038/mi.2012.8 

 
 
Chaput, C., Sander, L. E., Suttorp, N., & Opitz, B. (2013). NOD-Like Receptors in Lung 

Diseases. Front Immunol, 4, 393. doi: 10.3389/fimmu.2013.00393 
 
 
Chen, L., Hahn, H., Wu, G., Chen, C. H., Liron, T., Schechtman, D., . . . Mochly-Rosen, D. 

(2001). Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC 
and epsilon PKC. Proc Natl Acad Sci U S A, 98(20), 11114-11119. doi: 
10.1073/pnas.191369098 

 
 
Chodobski, A., Zink, B. J., & Szmydynger-Chodobska, J. (2011). Blood-brain barrier 

pathophysiology in traumatic brain injury. Transl Stroke Res, 2(4), 492-516. doi: 
10.1007/s12975-011-0125-x 

 
 
Cirelli, K. M., Gorfu, G., Hassan, M. A., Printz, M., Crown, D., Leppla, S. H., . . . Moayeri, M. 

(2014). Inflammasome sensor NLRP1 controls rat macrophage susceptibility to 
Toxoplasma gondii. PLoS Pathog, 10(3), e1003927. doi: 10.1371/journal.ppat.1003927 

 
 
Codolo, G., Plotegher, N., Pozzobon, T., Brucale, M., Tessari, I., Bubacco, L., & de Bernard, M. 

(2013). Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory 
response in synucleinopathies. PLoS One, 8(1), e55375. doi: 
10.1371/journal.pone.0055375 

 
 
Coll, R. C., Robertson, A. A., Chae, J. J., Higgins, S. C., Munoz-Planillo, R., Inserra, M. C., . . . 

O'Neill, L. A. (2015). A small-molecule inhibitor of the NLRP3 inflammasome for the 
treatment of inflammatory diseases. Nat Med. doi: 10.1038/nm.3806 

 
 
Collawn, J. F., & Benveniste, E. N. (1999). Regulation of MHC class II expression in the central 

nervous system. Microbes Infect, 1(11), 893-902.  
 
 



 

132 
 

Cristofori, L., Tavazzi, B., Gambin, R., Vagnozzi, R., Signoretti, S., Amorini, A. M., . . . 
Lazzarino, G. (2005). Biochemical analysis of the cerebrospinal fluid: evidence for 
catastrophic energy failure and oxidative damage preceding brain death in severe head 
injury: a case report. Clin Biochem, 38(1), 97-100. doi: 
10.1016/j.clinbiochem.2004.09.013 

 
 
Crusz, S. M., & Balkwill, F. R. (2015). Inflammation and cancer: advances and new agents. Nat 

Rev Clin Oncol, advance online publication. doi: 10.1038/nrclinonc.2015.105 
 
 
Dasuri, K., Zhang, L., & Keller, J. N. (2013). Oxidative stress, neurodegeneration, and the 

balance of protein degradation and protein synthesis. Free Radic Biol Med, 62, 170-185. 
doi: 10.1016/j.freeradbiomed.2012.09.016 

 
 
Davis, B. K., Philipson, C., Hontecillas, R., Eden, K., Bassaganya-Riera, J., & Allen, I. C. 

(2014). Emerging significance of NLRs in inflammatory bowel disease. Inflamm Bowel 

Dis, 20(12), 2412-2432. doi: 10.1097/MIB.0000000000000151 
 
 
Davis, B. K., Roberts, R. A., Huang, M. T., Willingham, S. B., Conti, B. J., Brickey, W. J., . . . 

Ting, J. P. (2011). Cutting edge: NLRC5-dependent activation of the inflammasome. J 

Immunol, 186(3), 1333-1337. doi: 10.4049/jimmunol.1003111 
 
 
Davis, B. K., Wen, H., & Ting, J. P. (2011). The inflammasome NLRs in immunity, 

inflammation, and associated diseases. Annu Rev Immunol, 29, 707-735. doi: 
10.1146/annurev-immunol-031210-101405 

 
 
de Rivero Vaccari, J. P., Brand, F., 3rd, Adamczak, S., Lee, S. W., Barcena, J. P., Wang, M. Y., . 

. . Keane, R. W. (2015). Exosome-mediated inflammasome signaling after central 
nervous system injury. J Neurochem. doi: 10.1111/jnc.13036 

 
 
de Rivero Vaccari, J. P., Lotocki, G., Alonso, O. F., Bramlett, H. M., Dietrich, W. D., & Keane, 

R. W. (2009). Therapeutic neutralization of the NLRP1 inflammasome reduces the innate 
immune response and improves histopathology after traumatic brain injury. J Cereb 

Blood Flow Metab, 29(7), 1251–1261.  
 
 
de Rivero Vaccari, J. P., Lotocki, G., Marcillo, A. E., Dietrich, W. D., & Keane, R. W. (2008). A 

molecular platform in neurons regulates inflammation after spinal cord injury. J 

Neurosci, 28(13), 3404-3414.  
 



 

133 
 

 
Denes, A., Coutts, G., Lenart, N., Cruickshank, S. M., Pelegrin, P., Skinner, J., . . . Brough, D. 

(2015). AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury 
independently of NLRP3. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1419090112 

 
 
Denic, A., Johnson, A. J., Bieber, A. J., Warrington, A. E., Rodriguez, M., & Pirko, I. (2011). 

The relevance of animal models in multiple sclerosis research. Pathophysiology, 18(1), 
21-29. doi: 10.1016/j.pathophys.2010.04.004 

 
 
Dickson, D. W. (2012). Parkinson's disease and parkinsonism: neuropathology. Cold Spring 

Harb Perspect Med, 2(8). doi: 10.1101/cshperspect.a009258 
 
 
Dong, Y., & Benveniste, E. N. (2001). Immune function of astrocytes. Glia, 36(2), 180-190.  
 
 
Dostert, C., & Petrilli, V. (2008). [Asbestos triggers inflammation by activating the Nalp3 

inflammasome]. Med Sci (Paris), 24(11), 916-918. doi: 10.1051/medsci/20082411916 
 
 
Duncan, J. A., Bergstralh, D. T., Wang, Y., Willingham, S. B., Ye, Z., Zimmermann, A. G., & 

Ting, J. P. (2007). Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP 
binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A, 104(19), 8041-
8046. doi: 10.1073/pnas.0611496104 

 
 
Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., . . . Flavell, R. 

A. (2011). NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for 
Colitis. Cell, 145(5), 745-757. doi: 10.1016/j.cell.2011.04.022 

 
 
Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., . . . et al. 

(1995). Proteolytic activation of protein kinase C delta by an ICE-like protease in 
apoptotic cells. EMBO J, 14(24), 6148-6156.  

 
 
Fann, D. Y., Lee, S. Y., Manzanero, S., Chunduri, P., Sobey, C. G., & Arumugam, T. V. (2013). 

Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev, 12(4), 941-
966. doi: 10.1016/j.arr.2013.09.004 

 
 
Farooqui, A. A., Ong, W. Y., & Horrocks, L. A. (2006). Inhibitors of brain phospholipase A2 

activity: their neuropharmacological effects and therapeutic importance for the treatment 
of neurologic disorders. Pharmacol Rev, 58(3), 591-620. doi: 10.1124/pr.58.3.7 



 

134 
 

 
 
Faustin, B., & Reed, J. C. (2013). Reconstituting the NLRP1 inflammasome in vitro. Methods 

Mol Biol, 1040, 137-152. doi: 10.1007/978-1-62703-523-1_11 
 
 
Feder, L. S., & Laskin, D. L. (1994). Regulation of hepatic endothelial cell and macrophage 

proliferation and nitric oxide production by GM-CSF, M-CSF, and IL-1 beta following 
acute endotoxemia. J Leukoc Biol, 55(4), 507-513.  

 
 
Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J., & Alnemri, E. S. (2009). AIM2 activates the 

inflammasome and cell death in response to cytoplasmic DNA. Nature, 458(7237), 509-
513. doi: 10.1038/nature07710 

 
 
Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T. D., Ozoren, N., Jagirdar, R., . . . 

Nunez, G. (2006). Cytosolic flagellin requires Ipaf for activation of caspase-1 and 
interleukin 1beta in salmonella-infected macrophages. Nat Immunol, 7(6), 576-582. doi: 
10.1038/ni1346 

 
 
Franco-Pons, N., Torrente, M., Colomina, M. T., & Vilella, E. (2007). Behavioral deficits in the 

cuprizone-induced murine model of demyelination/remyelination. Toxicology letters, 

169(3), 205-213.  
 
 
Furlan, R., Filippi, M., Bergami, A., Rocca, M. A., Martinelli, V., Poliani, P. L., . . . Martino, G. 

(1999). Peripheral levels of caspase-1 mRNA correlate with disease activity in patients 
with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry, 67(6), 785-
788.  

 
 
Geddes, B. J., Wang, L., Huang, W. J., Lavellee, M., Manji, G. A., Brown, M., . . . Bertin, J. 

(2001). Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. 
Biochem Biophys Res Commun, 284(1), 77-82.  

 
 
Geekiyanage, H., Upadhye, A., & Chan, C. (2013). Inhibition of serine palmitoyltransferase 

reduces Abeta and tau hyperphosphorylation in a murine model: a safe therapeutic 
strategy for Alzheimer's disease. Neurobiol Aging, 34(8), 2037-2051. doi: 
10.1016/j.neurobiolaging.2013.02.001 

 
 
Ghosh, S., Wu, M. D., Shaftel, S. S., Kyrkanides, S., LaFerla, F. M., Olschowka, J. A., & 

O'Banion, M. K. (2013). Sustained interleukin-1beta overexpression exacerbates tau 



 

135 
 

pathology despite reduced amyloid burden in an Alzheimer's mouse model. J Neurosci, 

33(11), 5053-5064. doi: 10.1523/JNEUROSCI.4361-12.2013 
 
 
Gorelik, G., Fang, J. Y., Wu, A., Sawalha, A. H., & Richardson, B. (2007). Impaired T cell 

protein kinase C delta activation decreases ERK pathway signaling in idiopathic and 
hydralazine-induced lupus. J Immunol, 179(8), 5553-5563.  

 
 
Gorelik, G., Sawalha, A. H., Patel, D., Johnson, K., & Richardson, B. (2015). T cell PKCdelta 

kinase inactivation induces lupus-like autoimmunity in mice. Clin Immunol, 158(2), 193-
203. doi: 10.1016/j.clim.2015.03.017 

 
 
Griffin, W. S., Stanley, L. C., Ling, C., White, L., MacLeod, V., Perrot, L. J., . . . Araoz, C. 

(1989). Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome 
and Alzheimer disease. Proc Natl Acad Sci U S A, 86(19), 7611-7615.  

 
 
Gris, D., Ye, Z., Iocca, H. A., Wen, H., Craven, R. R., Gris, P., . . . Ting, J. P. (2010). NLRP3 

plays a critical role in the development of experimental autoimmune encephalomyelitis 
by mediating Th1 and Th17 responses. J Immunol, 185(2), 974-981. doi: 
10.4049/jimmunol.0904145 

 
 
Guarda, G., Braun, M., Staehli, F., Tardivel, A., Mattmann, C., Forster, I., . . . Tschopp, J. 

(2011). Type I interferon inhibits interleukin-1 production and inflammasome activation. 
Immunity, 34(2), 213-223. doi: 10.1016/j.immuni.2011.02.006 

 
 
Gustin, A., Kirchmeyer, M., Koncina, E., Felten, P., Losciuto, S., Heurtaux, T., . . . Dostert, C. 

(2015). NLRP3 Inflammasome Is Expressed and Functional in Mouse Brain Microglia 
but Not in Astrocytes. PLoS One, 10(6), e0130624. doi: 10.1371/journal.pone.0130624 

 
 
Halff, E. F., Diebolder, C. A., Versteeg, M., Schouten, A., Brondijk, T. H., & Huizinga, E. G. 

(2012). Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct 
interactions with conserved N- and C-terminal regions of flagellin. J Biol Chem, 287(46), 
38460-38472. doi: 10.1074/jbc.M112.393512 

 
 
Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., . . . 

Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune 
response to amyloid-beta. Nat Immunol, 9(8), 857-865.  

 
 



 

136 
 

Hanisch, U. K., & Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in 
the normal and pathologic brain. Nat Neurosci, 10(11), 1387-1394.  

 
 
Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer's disease. 

Nat Immunol, 16(3), 229-236. doi: 10.1038/ni.3102 
 
 
Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Saecker, A., . . . 

Golenbock, D. (2013). NLRP3 is activated in Alzheimer´s disease and contributes to 
pathology in APP/PS1 mice. Nature, 493(7434), 674-678. doi: 10.1038/nature11729 

 
 
Heneka, M. T., O'Banion, M. K., Terwel, D., & Kummer, M. P. (2010). Neuroinflammatory 

processes in Alzheimer's disease. J Neural Transm, 117(8), 919-947. doi: 
10.1007/s00702-010-0438-z 

 
 
Hiremath, M. M., Saito, Y., Knapp, G. W., Ting, J. P., Suzuki, K., & Matsushima, G. K. (1998). 

Microglial/macrophage accumulation during cuprizone-induced demyelination in 
C57BL/6 mice. J Neuroimmunol, 92(1-2), 38-49.  

 
 
Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. R., . . . 

Fitzgerald, K. A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-
activating inflammasome with ASC. Nature, 458(7237), 514-518.  

 
 
Hsieh, H. L., Wu, C. Y., & Yang, C. M. (2008). Bradykinin induces matrix metalloproteinase-9 

expression and cell migration through a PKC-delta-dependent ERK/Elk-1 pathway in 
astrocytes. Glia, 56(6), 619-632. doi: 10.1002/glia.20637 

 
 
Hu, B., Elinav, E., Huber, S., Booth, C. J., Strowig, T., Jin, C., . . . Flavell, R. A. (2010). 

Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. 
Proc Natl Acad Sci U S A, 107(50), 21635-21640. doi: 10.1073/pnas.1016814108 

 
 
Humphries, M. J., Limesand, K. H., Schneider, J. C., Nakayama, K. I., Anderson, S. M., & 

Reyland, M. E. (2006). Suppression of apoptosis in the protein kinase Cdelta null mouse 
in vivo. J Biol Chem, 281(14), 9728-9737. doi: 10.1074/jbc.M507851200 

 
 
Ikeda, K., Yamaguchi, K., Tanaka, T., Mizuno, Y., Hijikata, A., Ohara, O., . . . Hara, T. (2009). 

Unique activation status of peripheral blood mononuclear cells at acute phase of 
Kawasaki disease. Clin Exp Immunol, 160(2), 246-255.  



 

137 
 

 
 
Inagaki, K., Chen, L., Ikeno, F., Lee, F. H., Imahashi, K., Bouley, D. M., . . . Mochly-Rosen, D. 

(2003). Inhibition of delta-protein kinase C protects against reperfusion injury of the 
ischemic heart in vivo. Circulation, 108(19), 2304-2307. doi: 
10.1161/01.CIR.0000101682.24138.36 

 
 
Inagaki, K., Hahn, H. S., Dorn, G. W., 2nd, & Mochly-Rosen, D. (2003). Additive protection of 

the ischemic heart ex vivo by combined treatment with delta-protein kinase C inhibitor 
and epsilon-protein kinase C activator. Circulation, 108(7), 869-875. doi: 
10.1161/01.CIR.0000081943.93653.73 

 
 
Inoue, M., Williams, K. L., Gunn, M. D., & Shinohara, M. L. (2012). NLRP3 inflammasome 

induces chemotactic immune cell migration to the CNS in experimental autoimmune 
encephalomyelitis. Proc Natl Acad Sci U S A, 109(26), 10480-10485. doi: 
10.1073/pnas.1201836109 

 
 
Jackson, D., Zheng, Y., Lyo, D., Shen, Y., Nakayama, K., Nakayama, K. I., . . . Foster, D. A. 

(2005). Suppression of cell migration by protein kinase Cdelta. Oncogene, 24(18), 3067-
3072. doi: 10.1038/sj.onc.1208465 

 
 
Jamilloux, Y., Pierini, R., Querenet, M., Juruj, C., Fauchais, A. L., Jauberteau, M. O., . . . Ader, 

F. (2013). Inflammasome activation restricts Legionella pneumophila replication in 
primary microglial cells through flagellin detection. Glia, 61(4), 539-549. doi: 
10.1002/glia.22454 

 
 
Jha, S., Srivastava, S. Y., Brickey, W. J., Iocca, H., Toews, A., Morrison, J. P., . . . Ting, J. P. 

(2010). The inflammasome sensor, NLRP3, regulates CNS inflammation and 
demyelination via caspase-1 and interleukin-18. J Neurosci, 30(47), 15811-15820. doi: 
10.1523/JNEUROSCI.4088-10.2010 

 
 
Jha, S., Srivastava, S. Y., Brickey, W. J., Iocca, H., Toews, A., Morrison, J. P., . . . Ting, J. P. 

(2010). The Inflammasome Sensor, NLRP3, Regulates CNS Inflammation and 
Demyelination via Caspase-1 and Interleukin-18. J Neurosci, 30(47), 15811-15820.  

 
 
Kabarowski, J. H., Xu, Y., & Witte, O. N. (2002). Lysophosphatidylcholine as a ligand for 

immunoregulation. Biochemical pharmacology, 64(2), 161-167.  
 
 



 

138 
 

Kanneganti, T. D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J. H., Franchi, L., . . . Nunez, 
G. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through 
cryopyrin/Nalp3. Nature, 440(7081), 233-236.  

 
 
Karki, R., Man, S. M., Malireddi, R. K., Gurung, P., Vogel, P., Lamkanfi, M., & Kanneganti, T. 

D. (2015). Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates 
host protection against Aspergillus infection. Cell Host Microbe, 17(3), 357-368. doi: 
10.1016/j.chom.2015.01.006 

 
 
Karni, A., Koldzic, D. N., Bharanidharan, P., Khoury, S. J., & Weiner, H. L. (2002). IL-18 is 

linked to raised IFN-gamma in multiple sclerosis and is induced by activated CD4(+) T 
cells via CD40-CD40 ligand interactions. J Neuroimmunol, 125(1-2), 134-140.  

 
 
Keller, M., Ruegg, A., Werner, S., & Beer, H. D. (2008). Active caspase-1 is a regulator of 

unconventional protein secretion. Cell, 132(5), 818-831.  
 
 
Khare, S., Dorfleutner, A., Bryan, N. B., Yun, C., Radian, A. D., de Almeida, L., . . . Stehlik, C. 

(2012). An NLRP7-containing inflammasome mediates recognition of microbial 
lipopeptides in human macrophages. Immunity, 36(3), 464-476. doi: 
10.1016/j.immuni.2012.02.001 

 
 
Kigerl, K. A., de Rivero Vaccari, J. P., Dietrich, W. D., Popovich, P. G., & Keane, R. W. (2014). 

Pattern recognition receptors and central nervous system repair. Exp Neurol, 258, 5-16. 
doi: 10.1016/j.expneurol.2014.01.001 

 
 
Kofoed, E. M., & Vance, R. E. (2011). Innate immune recognition of bacterial ligands by NAIPs 

determines inflammasome specificity. Nature, 477(7366), 592-595. doi: 
10.1038/nature10394 

 
 
Kopp, R., Noelke, B., Sauter, G., Schildberg, F. W., Paumgartner, G., & Pfeiffer, A. (1991). 

Altered protein kinase C activity in biopsies of human colonic adenomas and carcinomas. 
Cancer Res, 51(1), 205-210.  

 
 
Krishnaswamy, J. K., Singh, A., Gowthaman, U., Wu, R., Gorrepati, P., Sales Nascimento, M., . 

. . Eisenbarth, S. C. (2015). Coincidental loss of DOCK8 function in NLRP10-deficient 
and C3H/HeJ mice results in defective dendritic cell migration. Proc Natl Acad Sci U S 

A, 112(10), 3056-3061. doi: 10.1073/pnas.1501554112 
 



 

139 
 

 
Kummer, J. A., Broekhuizen, R., Everett, H., Agostini, L., Kuijk, L., Martinon, F., . . . Tschopp, 

J. (2007). Inflammasome components NALP 1 and 3 show distinct but separate 
expression profiles in human tissues suggesting a site-specific role in the inflammatory 
response. J Histochem Cytochem, 55(5), 443-452. doi: 10.1369/jhc.6A7101.2006 

 
 
La Porta, C. A., & Comolli, R. (2000). Overexpression of nPKCdelta in BL6 murine melanoma 

cells enhances TGFbeta1 release into the plasma of metastasized animals. Melanoma Res, 

10(6), 527-534.  
 
 
Lalor, S. J., Dungan, L. S., Sutton, C. E., Basdeo, S. A., Fletcher, J. M., & Mills, K. H. (2011). 

Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by 
gammadelta and CD4 T cells that mediate autoimmunity. J Immunol, 186(10), 5738-
5748. doi: 10.4049/jimmunol.1003597 

 
 
Langston, J. W. (2006). The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann 

Neurol, 59(4), 591-596. doi: 10.1002/ana.20834 
 
 
Lee, H.-J., Bae, E.-J., & Lee, S.-J. (2014). Extracellular [alpha]-synuclein[mdash]a novel and 

crucial factor in Lewy body diseases. Nat Rev Neurol, 10(2), 92-98. doi: 
10.1038/nrneurol.2013.275 

 
 
Leitges, M., Mayr, M., Braun, U., Mayr, U., Li, C., Pfister, G., . . . Xu, Q. (2001). Exacerbated 

vein graft arteriosclerosis in protein kinase Cdelta-null mice. J Clin Invest, 108(10), 
1505-1512. doi: 10.1172/JCI12902 

 
 
Levy, M. F., Pocsidio, J., Guillem, J. G., Forde, K., LoGerfo, P., & Weinstein, I. B. (1993). 

Decreased levels of protein kinase C enzyme activity and protein kinase C mRNA in 
primary colon tumors. Dis Colon Rectum, 36(10), 913-921.  

 
 
Liu, H. D., Li, W., Chen, Z. R., Hu, Y. C., Zhang, D. D., Shen, W., . . . Hang, C. H. (2013). 

Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in 
a rat model. Neurochem Res, 38(10), 2072-2083. doi: 10.1007/s11064-013-1115-z 

 
 
Liu, L., Belkadi, A., Darnall, L., Hu, T., Drescher, C., Cotleur, A. C., . . . Ransohoff, R. M. 

(2010). CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: 
relevance to multiple sclerosis. Nat Neurosci, 13(3), 319-326.  

 



 

140 
 

 
Liu, L., & Chan, C. (2014). IPAF inflammasome is involved in interleukin-1beta production 

from astrocytes, induced by palmitate; implications for Alzheimer's Disease. Neurobiol 

Aging, 35(2), 309-321. doi: 10.1016/j.neurobiolaging.2013.08.016 
 
 
Liu, L., Martin, R., & Chan, C. (2013). Palmitate-activated astrocytes via serine 

palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. 
Neurobiol Aging, 34(2), 540-550. doi: 10.1016/j.neurobiolaging.2012.05.017 

 
 
Losy, J., & Niezgoda, A. (2001). IL-18 in patients with multiple sclerosis. Acta Neurol Scand, 

104(3), 171-173.  
 
 
Lozano, D., Gonzales-Portillo, G. S., Acosta, S., de la Pena, I., Tajiri, N., Kaneko, Y., & 

Borlongan, C. V. (2015). Neuroinflammatory responses to traumatic brain injury: 
etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat, 

11, 97-106. doi: 10.2147/ndt.s65815 
 
 
Lu, Z., Hornia, A., Jiang, Y. W., Zang, Q., Ohno, S., & Foster, D. A. (1997). Tumor promotion 

by depleting cells of protein kinase C delta. Mol Cell Biol, 17(6), 3418-3428.  
 
 
Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., & Lassmann, H. (2000). 

Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of 
demyelination. Annals of Neurology, 47(6), 707-717.  

 
 
Ma, A., Boone, D. L., & Lodolce, J. P. (2000). The pleiotropic functions of interleukin 15: not so 

interleukin 2-like after all. J Exp Med, 191(5), 753-756.  
 
 
Macaluso, F., Nothnagel, M., Parwez, Q., Petrasch-Parwez, E., Bechara, F. G., Epplen, J. T., & 

Hoffjan, S. (2007). Polymorphisms in NACHT-LRR (NLR) genes in atopic dermatitis. 
Exp Dermatol, 16(8), 692-698.  

 
 
Malhotra, S., Rio, J., Urcelay, E., Nurtdinov, R., Bustamante, M. F., Fernandez, O., . . . 

Comabella, M. (2015). NLRP3 inflammasome is associated with the response to IFN-
beta in patients with multiple sclerosis. Brain. doi: 10.1093/brain/awu388 

 
 
Man, S. M., Ekpenyong, A., Tourlomousis, P., Achouri, S., Cammarota, E., Hughes, K., . . . 

Bryant, C. E. (2014). Actin polymerization as a key innate immune effector mechanism 



 

141 
 

to control Salmonella infection. Proc Natl Acad Sci U S A, 111(49), 17588-17593. doi: 
10.1073/pnas.1419925111 

 
 
Man, S. M., Hopkins, L. J., Nugent, E., Cox, S., Gluck, I. M., Tourlomousis, P., . . . Bryant, C. E. 

(2014). Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the 
same macromolecular complex. Proc Natl Acad Sci U S A, 111(20), 7403-7408. doi: 
10.1073/pnas.1402911111 

 
 
Mann, C. L., Davies, M. B., Stevenson, V. L., Leary, S. M., Boggild, M. D., Ko Ko, C., . . . 

Hawkins, C. P. (2002). Interleukin 1 genotypes in multiple sclerosis and relationship to 
disease severity. J Neuroimmunol, 129(1-2), 197-204.  

 
 
Mariathasan, S., Newton, K., Monack, D. M., Vucic, D., French, D. M., Lee, W. P., . . . Dixit, V. 

M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and 
Ipaf. Nature, 430(6996), 213-218.  

 
 
Mariathasan, S., Weiss, D. S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., . . . 

Dixit, V. M. (2006). Cryopyrin activates the inflammasome in response to toxins and 
ATP. Nature, 440(7081), 228-232.  

 
 
Maries, E., Dass, B., Collier, T. J., Kordower, J. H., & Steece-Collier, K. (2003). The role of 

alpha-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci, 

4(9), 727-738. doi: 10.1038/nrn1199 
 
 
Martinon, F. (2010). Signaling by ROS drives inflammasome activation. Eur J Immunol, 40(3), 

616-619. doi: 10.1002/eji.200940168 
 
 
Martinon, F., Burns, K., & Tschopp, J. (2002). The inflammasome: a molecular platform 

triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 

10(2), 417-426.  
 
 
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., & Tschopp, J. (2006). Gout-associated uric 

acid crystals activate the NALP3 inflammasome. Nature, 440(7081), 237-241.  
 
 
Matsushima, G. K., & Morell, P. (2001). The neurotoxicant, cuprizone, as a model to study 

demyelination and remyelination in the central nervous system. Brain Pathol, 11(1), 107-
116.  



 

142 
 

 
 
Mauro, L. V., Grossoni, V. C., Urtreger, A. J., Yang, C., Colombo, L. L., Morandi, A., . . . 

Puricelli, L. L. (2010). PKC Delta (PKCdelta) promotes tumoral progression of human 
ductal pancreatic cancer. Pancreas, 39(1), e31-41. doi: 10.1097/MPA.0b013e3181bce796 

 
 
Mbye, L. H., Singh, I. N., Sullivan, P. G., Springer, J. E., & Hall, E. D. (2008). Attenuation of 

acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-
immunosuppressive cyclosporin A analog. Exp Neurol, 209(1), 243-253. doi: 
10.1016/j.expneurol.2007.09.025 

 
 
McCarthy, K. D., & de Vellis, J. (1980). Preparation of separate astroglial and oligodendroglial 

cell cultures from rat cerebral tissue. J Cell Biol, 85(3), 890-902.  
 
 
McClain, C. J., Cohen, D., Ott, L., Dinarello, C. A., & Young, B. (1987). Ventricular fluid 

interleukin-1 activity in patients with head injury. J Lab Clin Med, 110(1), 48-54.  
 
 
McGarrity, T. J., & Peiffer, L. P. (1994). Protein kinase C activity as a potential marker for 

colorectal neoplasia. Dig Dis Sci, 39(3), 458-463.  
 
 
McGeer, P. L., Yasojima, K., & McGeer, E. G. (2002). Association of interleukin-1 beta 

polymorphisms with idiopathic Parkinson's disease. Neurosci Lett, 326(1), 67-69.  
 
 
Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., 

Rozkalne, A., . . . Hyman, B. T. (2008). Rapid appearance and local toxicity of amyloid-
beta plaques in a mouse model of Alzheimer's disease. Nature, 451(7179), 720-724. doi: 
10.1038/nature06616 

 
 
Miao, E. A., Alpuche-Aranda, C. M., Dors, M., Clark, A. E., Bader, M. W., Miller, S. I., & 

Aderem, A. (2006). Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 
1beta via Ipaf. Nat Immunol, 7(6), 569-575.  

 
 
Miao, E. A., Mao, D. P., Yudkovsky, N., Bonneau, R., Lorang, C. G., Warren, S. E., . . . 

Aderem, A. (2010). Innate immune detection of the type III secretion apparatus through 
the NLRC4 inflammasome. Proc Natl Acad Sci U S A, 107(7), 3076-3080. doi: 
10.1073/pnas.0913087107 

 
 



 

143 
 

Miyamoto, A., Nakayama, K., Imaki, H., Hirose, S., Jiang, Y., Abe, M., . . . Nakayama, K. I. 
(2002). Increased proliferation of B cells and auto-immunity in mice lacking protein 
kinase Cdelta. Nature, 416(6883), 865-869. doi: 10.1038/416865a 

 
 
Molofsky, A. V., Krencik, R., Ullian, E. M., Tsai, H. H., Deneen, B., Richardson, W. D., . . . 

Rowitch, D. H. (2012). Astrocytes and disease: a neurodevelopmental perspective. Genes 

Dev, 26(9), 891-907. doi: 10.1101/gad.188326.112 
 
 
Moudgil, K. D., & Choubey, D. (2011). Cytokines in autoimmunity: role in induction, 

regulation, and treatment. J Interferon Cytokine Res, 31(10), 695-703. doi: 
10.1089/jir.2011.0065 

 
 
Munoz-Planillo, R., Kuffa, P., Martinez-Colon, G., Smith, B. L., Rajendiran, T. M., & Nunez, G. 

(2013). K(+) efflux is the common trigger of NLRP3 inflammasome activation by 
bacterial toxins and particulate matter. Immunity, 38(6), 1142-1153. doi: 
10.1016/j.immuni.2013.05.016 

 
 
Murphy, N., Grehan, B., & Lynch, M. A. (2014). Glial uptake of amyloid beta induces NLRP3 

inflammasome formation via cathepsin-dependent degradation of NLRP10. 
Neuromolecular Med, 16(1), 205-215. doi: 10.1007/s12017-013-8274-6 

 
 
Murriel, C. L., & Mochly-Rosen, D. (2003). Opposing roles of delta and epsilonPKC in cardiac 

ischemia and reperfusion: targeting the apoptotic machinery. Arch Biochem Biophys, 

420(2), 246-254.  
 
 
Napoli, I., & Neumann, H. (2009). Microglial clearance function in health and disease. 

Neuroscience, 158(3), 1030-1038.  
 
 
Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of 

protein kinase C. Science, 258(5082), 607-614.  
 
 
O'Shea, J. J., Ma, A., & Lipsky, P. (2002). Cytokines and autoimmunity. Nat Rev Immunol, 2(1), 

37-45. doi: 10.1038/nri702 
 
 
Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M., . 

. . Halliday, G. (2010). Missing pieces in the Parkinson's disease puzzle. Nat Med, 16(6), 
653-661. doi: 10.1038/nm.2165 



 

144 
 

 
 
Ojala, J., Alafuzoff, I., Herukka, S. K., van Groen, T., Tanila, H., & Pirttila, T. (2009). 
Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients. Neurobiol 

Aging, 30(2), 198-209. doi: 10.1016/j.neurobiolaging.2007.06.006 
 
 
Perletti, G., & Terrian, D. M. (2006). Distinctive cellular roles for novel protein kinase C 

isoenzymes. Curr Pharm Des, 12(24), 3117-3133.  
 
 
Pettitt, T. R., Martin, A., Horton, T., Liossis, C., Lord, J. M., & Wakelam, M. J. (1997). 

Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, 
have distinct fatty acid compositions and functions. Phospholipase D-derived 
diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol 

Chem, 272(28), 17354-17359.  
 
 
Plant, S. R., Iocca, H. A., Wang, Y., Thrash, J. C., O'Connor, B. P., Arnett, H. A., . . . Ting, J. P. 

(2007). Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and 
remyelination and successful therapeutic intervention using Lt betaR-Ig protein. J 

Neurosci, 27(28), 7429-7437.  
 
 
Pontillo, A., Catamo, E., Arosio, B., Mari, D., & Crovella, S. (2012). NALP1/NLRP1 genetic 

variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord, 26(3), 277-
281. doi: 10.1097/WAD.0b013e318231a8ac 

 
 
Poole, A. W., Pula, G., Hers, I., Crosby, D., & Jones, M. L. (2004). PKC-interacting proteins: 

from function to pharmacology. Trends Pharmacol Sci, 25(10), 528-535. doi: 
10.1016/j.tips.2004.08.006 

 
 
Poyet, J. L., Srinivasula, S. M., Tnani, M., Razmara, M., Fernandes-Alnemri, T., & Alnemri, E. 

S. (2001). Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J 

Biol Chem, 276(30), 28309-28313.  
 
 
Qu, Y., Misaghi, S., Izrael-Tomasevic, A., Newton, K., Gilmour, L. L., Lamkanfi, M., . . . Dixit, 

V. M. (2012). Phosphorylation of NLRC4 is critical for inflammasome activation. 
Nature, 490(7421), 539-542. doi: 10.1038/nature11429 

 
 



 

145 
 

Rayamajhi, M., Zak, D. E., Chavarria-Smith, J., Vance, R. E., & Miao, E. A. (2013). Cutting 
edge: Mouse NAIP1 detects the type III secretion system needle protein. J Immunol, 

191(8), 3986-3989. doi: 10.4049/jimmunol.1301549 
 
 
Riggio, S. (2011). Traumatic brain injury and its neurobehavioral sequelae. Neurol Clin, 29(1), 

35-47, vii. doi: 10.1016/j.ncl.2010.10.008 
 
 
Rivest, S. (2009). Regulation of innate immune responses in the brain. Nat Rev Immunol, 9(6), 

429-439. doi: 10.1038/nri2565 
 
 
Robbins, G. R., Wen, H., & Ting, J. P. (2014). Inflammasomes and metabolic disorders: old 

genes in modern diseases. Mol Cell, 54(2), 297-308. doi: 10.1016/j.molcel.2014.03.029 
 
 
Rock, K. L., Latz, E., Ontiveros, F., & Kono, H. (2010). The sterile inflammatory response. 

Annu Rev Immunol, 28, 321-342. doi: 10.1146/annurev-immunol-030409-101311 
 
 
Sakanoue, Y., Hatada, T., Kusunoki, M., Yanagi, H., Yamamura, T., & Utsunomiya, J. (1991). 

Protein kinase C activity as marker for colorectal cancer. Int J Cancer, 48(6), 803-806.  
 
 
Sato, F., Martinez, N. E., Omura, S., & Tsunoda, I. (2011). Heterogeneity versus homogeneity of 

multiple sclerosis. Expert Rev Clin Immunol, 7(2), 165-167. doi: 10.1586/eci.11.3 
 
 
Schapira, A. H. (2009). Neurobiology and treatment of Parkinson's disease. Trends Pharmacol 

Sci, 30(1), 41-47. doi: 10.1016/j.tips.2008.10.005 
 
 
Schilling, T., Lehmann, F., Ruckert, B., & Eder, C. (2004). Physiological mechanisms of 

lysophosphatidylcholine-induced de-ramification of murine microglia. The Journal of 

physiology, 557(Pt 1), 105-120.  
 
 
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image 

analysis. Nat Methods, 9(7), 671-675.  
 
 
Shaftel, S. S., Carlson, T. J., Olschowka, J. A., Kyrkanides, S., Matousek, S. B., & O'Banion, M. 

K. (2007). Chronic interleukin-1beta expression in mouse brain leads to leukocyte 
infiltration and neutrophil-independent blood brain barrier permeability without overt 



 

146 
 

neurodegeneration. J Neurosci, 27(35), 9301-9309. doi: 10.1523/JNEUROSCI.1418-
07.2007 

 
 
Shao, W., Yeretssian, G., Doiron, K., Hussain, S. N., & Saleh, M. (2007). The caspase-1 

digestome identifies the glycolysis pathway as a target during infection and septic shock. 
J Biol Chem, 282(50), 36321-36329.  

 
 
Shaw, P. J., Lukens, J. R., Burns, S., Chi, H., McGargill, M. A., & Kanneganti, T. D. (2010). 

Cutting edge: critical role for PYCARD/ASC in the development of experimental 
autoimmune encephalomyelitis. J Immunol, 184(9), 4610-4614. doi: 
10.4049/jimmunol.1000217 

 
 
Shaw, P. J., McDermott, M. F., & Kanneganti, T. D. (2011). Inflammasomes and autoimmunity. 

Trends Mol Med, 17(2), 57-64. doi: 10.1016/j.molmed.2010.11.001 
 
 
Sheikh, A. M., Michikawa, M., Kim, S. U., & Nagai, A. (2015). Lysophosphatidylcholine 

increases the neurotoxicity of Alzheimer's amyloid beta1-42 peptide: Role of oligomer 
formation. Neuroscience, 292, 159-169. doi: 10.1016/j.neuroscience.2015.02.034 

 
 
Sheikh, A. M., & Nagai, A. (2010). Lysophosphatidylcholine modulates fibril formation of 

amyloid beta peptide. FEBS J, 278(4), 634-642. doi: 10.1111/j.1742-4658.2010.07984.x 
 
 
Sheikh, A. M., Nagai, A., Ryu, J. K., McLarnon, J. G., Kim, S. U., & Masuda, J. (2009). 

Lysophosphatidylcholine induces glial cell activation: role of rho kinase. Glia, 57(8), 
898-907. doi: 10.1002/glia.20815 

 
 
Shikishima, K., Mizuno, A., Kawai, K., & Matsuzaki, H. (1985). Focal experimental 

demyelination in monkey optic nerve by lysophosphatidylcholine. Jpn J Ophthalmol, 

29(4), 429-433.  
 
 
Sims, N. R., & Muyderman, H. (2010). Mitochondria, oxidative metabolism and cell death in 

stroke. Biochim Biophys Acta, 1802(1), 80-91. doi: 10.1016/j.bbadis.2009.09.003 
 
 
Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta 

Neuropathol, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 
 
 



 

147 
 

Steinman, L. (2008). Nuanced roles of cytokines in three major human brain disorders. J Clin 

Invest, 118(11), 3557-3563. doi: 10.1172/JCI36532 
 
 
Stock, C., Schilling, T., Schwab, A., & Eder, C. (2006). Lysophosphatidylcholine stimulates IL-

1beta release from microglia via a P2X7 receptor-independent mechanism. Journal of 

immunology (Baltimore, Md.: 1950), 177(12), 8560-8568.  
 
 
Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and 

disease. Nature, 481(7381), 278-286. doi: 10.1038/nature10759 
 
 
Stuve, O., Youssef, S., Slavin, A. J., King, C. L., Patarroyo, J. C., Hirschberg, D. L., . . . Zamvil, 

S. S. (2002). The role of the MHC class II transactivator in class II expression and 
antigen presentation by astrocytes and in susceptibility to central nervous system 
autoimmune disease. J Immunol, 169(12), 6720-6732.  

 
 
Sutterwala, F. S., Mijares, L. A., Li, L., Ogura, Y., Kazmierczak, B. I., & Flavell, R. A. (2007). 

Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 
inflammasome. J Exp Med, 204(13), 3235-3245. doi: 10.1084/jem.20071239 

 
 
Sutterwala, F. S., Ogura, Y., Szczepanik, M., Lara-Tejero, M., Lichtenberger, G. S., Grant, E. P., 

. . . Flavell, R. A. (2006). Critical role for NALP3/CIAS1/Cryopyrin in innate and 
adaptive immunity through its regulation of caspase-1. Immunity, 24(3), 317-327.  

 
 
Suzuki, S., Franchi, L., He, Y., Munoz-Planillo, R., Mimuro, H., Suzuki, T., . . . Nunez, G. 

(2014). Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 
inflammasome activation independently of Pkcdelta. PLoS Pathog, 10(2), e1003926. doi: 
10.1371/journal.ppat.1003926 

 
 
Suzuki, T., Franchi, L., Toma, C., Ashida, H., Ogawa, M., Yoshikawa, Y., . . . Nunez, G. (2007). 

Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and 
ASC in Shigella-infected macrophages. PLoS Pathog, 3(8), e111.  

 
 
Symonds, J. M., Ohm, A. M., Carter, C. J., Heasley, L. E., Boyle, T. A., Franklin, W. A., & 

Reyland, M. E. (2011). Protein kinase C delta is a downstream effector of oncogenic K-
ras in lung tumors. Cancer Res, 71(6), 2087-2097. doi: 10.1158/0008-5472.can-10-1511 

 
 



 

148 
 

Tan, M. S., Tan, L., Jiang, T., Zhu, X. C., Wang, H. F., Jia, C. D., & Yu, J. T. (2014). Amyloid-
beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. 
Cell Death Dis, 5, e1382. doi: 10.1038/cddis.2014.348 

 
 
Tan, M. S., Yu, J. T., Jiang, T., Zhu, X. C., & Tan, L. (2013). The NLRP3 inflammasome in 

Alzheimer's disease. Mol Neurobiol, 48(3), 875-882. doi: 10.1007/s12035-013-8475-x 
 
 
Thirumangalakudi, L., Prakasam, A., Zhang, R., Bimonte-Nelson, H., Sambamurti, K., Kindy, 

M. S., & Bhat, N. R. (2008). High cholesterol-induced neuroinflammation and amyloid 
precursor protein processing correlate with loss of working memory in mice. J 

Neurochem, 106(1), 475-485. doi: 10.1111/j.1471-4159.2008.05415.x 
 
 
Ting, J. P., & Davis, B. K. (2005). CATERPILLER: a novel gene family important in immunity, 

cell death, and diseases. Annu Rev Immunol, 23, 387-414.  
 
 
Ting, J. P., Kastner, D. L., & Hoffman, H. M. (2006). CATERPILLERs, pyrin and hereditary 

immunological disorders. Nature reviews.Immunology, 6(3), 183-195.  
 
 
Triantafilou, K., Kar, S., van Kuppeveld, F. J., & Triantafilou, M. (2013). Rhinovirus-induced 

calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells. Am J Respir Cell 

Mol Biol, 49(6), 923-934. doi: 10.1165/rcmb.2013-0032OC 
 
 
Tu, Y. F., Tsai, Y. S., Wang, L. W., Wu, H. C., Huang, C. C., & Ho, C. J. (2011). Overweight 

worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic 
ischemia in neonatal brain through JNK hyperactivation. J Neuroinflammation, 8, 40. 
doi: 10.1186/1742-2094-8-40 

 
 
Vance, R. E. (2015). The NAIP/NLRC4 inflammasomes. Curr Opin Immunol, 32, 84-89. doi: 

10.1016/j.coi.2015.01.010 
 
 
Vehmas, A. K., Kawas, C. H., Stewart, W. F., & Troncoso, J. C. (2003). Immune reactive cells 

in senile plaques and cognitive decline in Alzheimer's disease. Neurobiol Aging, 24(2), 
321-331.  

 
 
Vereyken, E. J., Fluitsma, D. M., Bolijn, M. J., Dijkstra, C. D., & Teunissen, C. E. (2009). An in 

vitro model for de- and remyelination using lysophosphatidyl choline in rodent whole 
brain spheroid cultures. Glia, 57(12), 1326-1340. doi: 10.1002/glia.20852 



 

149 
 

 
 
Vladimer, G. I., Weng, D., Paquette, S. W., Vanaja, S. K., Rathinam, V. A., Aune, M. H., . . . 

Lien, E. (2012). The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity, 

37(1), 96-107. doi: 10.1016/j.immuni.2012.07.006 
 
 
Wallerstedt, E., Smith, U., & Andersson, C. X. (2010). Protein kinase C-delta is involved in the 

inflammatory effect of IL-6 in mouse adipose cells. Diabetologia, 53(5), 946-954. doi: 
10.1007/s00125-010-1668-1 

 
 
Wang, L., Zhai, Y. Q., Xu, L. L., Qiao, C., Sun, X. L., Ding, J. H., . . . Hu, G. (2014). Metabolic 

inflammation exacerbates dopaminergic neuronal degeneration in response to acute 
MPTP challenge in type 2 diabetes mice. Exp Neurol, 251, 22-29. doi: 
10.1016/j.expneurol.2013.11.001 

 
 
Wang, Y., Hasegawa, M., Imamura, R., Kinoshita, T., Kondo, C., Konaka, K., & Suda, T. 

(2004). PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. 
Int Immunol, 16(6), 777-786. doi: 10.1093/intimm/dxh081 

 
 
Waxman, S. G., Kocsis, J. D., & Nitta, K. C. (1979). Lysophosphatidyl choline-induced focal 

demyelination in the rabbit corpus callosum. Light-microscopic observations. J Neurol 

Sci, 44(1), 45-53.  
 
 
Weiner, H. L., & Frenkel, D. (2006). Immunology and immunotherapy of Alzheimer's disease. 

Nat Rev Immunol, 6(5), 404-416. doi: 10.1038/nri1843 
 
 
Widiapradja, A., Vegh, V., Lok, K. Z., Manzanero, S., Thundyil, J., Gelderblom, M., . . . 

Arumugam, T. V. (2012). Intravenous immunoglobulin protects neurons against amyloid 
beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways. J 

Neurochem, 122(2), 321-332. doi: 10.1111/j.1471-4159.2012.07754.x 
 
 
Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: driving force, bystander or 

beneficial response? Nat Med, 12(9), 1005-1015. doi: 10.1038/nm1484 
 
 
Xu, X., Li, D., He, Q., Gao, J., Chen, B., & Xie, A. (2011). Interleukin-18 promoter 

polymorphisms and risk of Parkinson's disease in a Han Chinese population. Brain Res, 

1381, 90-94. doi: 10.1016/j.brainres.2011.01.025 
 



 

150 
 

 
Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z., & Zhou, R. (2015). Dopamine Controls 

Systemic Inflammation through Inhibition of NLRP3 Inflammasome. Cell, 160(1-2), 62-
73. doi: 10.1016/j.cell.2014.11.047 

 
 
Yang, F., Wang, Z., Wei, X., Han, H., Meng, X., Zhang, Y., . . . Yi, F. (2014). NLRP3 

deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb 

Blood Flow Metab, 34(4), 660-667. doi: 10.1038/jcbfm.2013.242 
 
 
Yang, J., Zhao, Y., Shi, J., & Shao, F. (2013). Human NAIP and mouse NAIP1 recognize 

bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad 

Sci U S A, 110(35), 14408-14413. doi: 10.1073/pnas.1306376110 
 
 
Yang, L., Zhang, Z., Sun, D., Xu, Z., Zhang, X., & Li, L. (2010). The serum interleukin-18 is a 

potential marker for development of post-stroke depression. Neurol Res, 32(4), 340-346. 
doi: 10.1179/016164110X12656393665080 

 
 
Yatsiv, I., Morganti-Kossmann, M. C., Perez, D., Dinarello, C. A., Novick, D., Rubinstein, M., . 

. . Stahel, P. F. (2002). Elevated intracranial IL-18 in humans and mice after traumatic 
brain injury and evidence of neuroprotective effects of IL-18-binding protein after 
experimental closed head injury. J Cereb Blood Flow Metab, 22(8), 971-978. doi: 
10.1097/00004647-200208000-00008 

 
 
Yoshida, K., Miki, Y., & Kufe, D. (2002). Activation of SAPK/JNK signaling by protein kinase 

Cdelta in response to DNA damage. J Biol Chem, 277(50), 48372-48378. doi: 
10.1074/jbc.M205485200 

 
 
Zhang, N., Zhang, X., Liu, X., Wang, H., Xue, J., Yu, J., . . . Wang, X. (2014). Chrysophanol 

inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion 
in mice. Mediators Inflamm, 2014, 370530. doi: 10.1155/2014/370530 

 
 
Zhao, Y., Yang, J., Shi, J., Gong, Y. N., Lu, Q., Xu, H., . . . Shao, F. (2011). The NLRC4 

inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature, 

477(7366), 596-600. doi: 10.1038/nature10510 
 
 
 



 

151 
 

Zhou, R., Tardivel, A., Thorens, B., Choi, I., & Tschopp, J. (2010). Thioredoxin-interacting 
protein links oxidative stress to inflammasome activation. Nat Immunol, 11(2), 136-140. 
doi: 10.1038/ni.1831 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


