Oceanic cooling recorded in shells spanning the Medieval Climate Anomaly in the subtropical eastern North Atlantic Ocean

Wesley G. Parker a,1, * , Yurena Yanes a , Eduardo Mesa Hernández b , Donna Surge c

a University of Cincinnati, Cincinnati, OH, USA
b Universidad de La Laguna, San Cristobal de La Laguna, Canary Islands, Spain
c University of North Carolina, Chapel Hill, NC, USA

ABSTRACT

The Medieval Climate Anomaly (MCA; 900–1300 AD) was the most recent period of pre-industrial climatic warming in the northern hemisphere, and thus estimations of MCA signals can illuminate possible impacts of anthropogenic climate change. Current high-resolution MCA climate signals are restricted to mid- and high-latitude regions, which confounds inferences of how the MCA impacted some global/hemispheric climate mechanisms (e.g. North Atlantic Oscillation; NAO). To address this knowledge gap, we estimate seasonally-resolved sea surface temperatures (SSTs) from the oxygen isotope composition (δ18O) of serially sampled Phorcus atratus shells from archaeological sites spanning the MCA in the Canary Islands. Twelve archaeological and six modern P. atratus shells were analyzed, and archaeological shells were dated using carbonate-target radiocarbon dating. SSTs were estimated using the published aragonite-water equilibrium fractionation equation. Modern shells showed a mean SST of 20.0 ± 1.5 °C, with a seasonal amplitude of 5.3 ± 0.9 °C. Archaeological shells exhibited a mean SST of 18.2 ± 0.7 °C, with a mean seasonal amplitude of 5.5 ± 1.0 °C. Thus, shells that span the MCA in the Canary Islands recorded SSTs that were significantly cooler than the modern (P < .05), contrasting with warming estimates and model predictions elsewhere in the Northern Hemisphere. We propose that the observed cooling resulted from increased upwelling in NW Africa due to a strengthening of the prevailing westerlies and coastal winds along the African shoreline. The intensified upwelling scenario during the MCA is partially supported by in-situ carbon isotope data (δ13C) retrieved from the archaeological shells, which was compared to the δ13C values of modern shells and dissolved inorganic carbon in the ambient seawater. These results are consistent with other low-latitude temperature/precipitation anomalies associated with a positive NAO mode, suggesting a transition to a positive NAO index during the middle and late MCA that possibly extended later into the 13th century AD.

1. Introduction

Global hydrological and atmospheric circulation patterns fluctuate through time due to the confluence of natural forcing mechanisms like Earth’s orbit, volcanic forces, and solar irradiance (Berger, 2013; Crowley, 2000; Friis-Christensen and Lassen, 1991). These climatic variations result in cyclic periods of warming and cooling that can have dramatic impacts on the temperature ranges and precipitation patterns that support terrestrial and marine ecosystems, as well as the human societies that rely upon them (Cullen et al., 2000; Douglas et al., 2015; Harley et al., 2006; Mann et al., 2009). Changes in these patterns can lead to resource scarcity that can eventually drive ecosystem and societal collapse (Bellard et al., 2012; Harley et al., 2006; Mann, 2007; Patz et al., 2005).
As Earth enters a phase of anthropogenic global warming, studies of how past climate changes impacted ecosystems and environments are increasingly critical to improve predictions of future climate change, its driving forcing mechanisms, and its long-term impacts on the biosphere (Jones and Mann, 2004). The majority of published paleoclimate data of the recent past is resolved to a single-season, annual scale or coarser resolution, whereas few year-round, seasonally-resolved records have been published, and are particularly scarce in low-latitude regions. High-resolution paleotemperature proxies that track both winter and summer temperatures are especially useful for investigating climatic mechanisms that vary seasonally throughout the year, like the North Atlantic Oscillation (NAO).

The NAO is a major atmospheric forcing mechanism that dictates prevailing wind strength and precipitation distribution across the North Atlantic Basin, including in North America, Europe, and the Middle East/North Africa region (Drinkwater et al., 2003; García Herrera et al., 2001; Hurrell et al., 2003; Kushnir and Wallace, 1989; NOAA, 2018; Tröet et al., 2009). The NAO is defined by the relative difference in atmospheric pressure (at sea-level) between the Azores high-pressure and the Icelandic low-pressure system, which is in turn forced by differential radiative forcing between the tropical (Azores) and polar (Icelandic) latitudes. This meridional pressure gradient is known as the “NAO north-south dipole.” The NAO varies seasonally as changes in temperature drive air pressure differentials. Thus, resolved sea surface temperature (SST) profiles (which are linked to the pressure of overlying airmasses) can contribute to a broader understanding of how NAO dynamics have changed over the past two millennia, and how this may relate to established climatic intervals, such as the Medieval Climate Anomaly (MCA; 900–1300 AD).

Current knowledge of the MCA indicates that this was a period of global climate reorganization, with pronounced warming in the high-latitude North Atlantic (Lamb, 1965; Mann et al., 2009), increased cool-season precipitation in the British Isles (Lamb, 1965), warming and drying in California (LaMarche, 1974), cooling and reduced winter precipitation in Central Asia (Graham et al., 2011; Mann et al., 2009), and cooler SSTs in the central and Eastern Equatorial Pacific (Cobb et al., 2003; Rein et al., 2004). This global-scale climate reorganization has been connected to circulation pattern changes in the Indo-Pacific warm pool, strengthening of the El Nino/Southern Oscillation phenomenon, variation in the NAO, and strengthening of the North Atlantic meridional overturning circulation (Cronin et al., 2010; Graham et al., 2011; Surge and Barrett, 2012; Wanamaker et al., 2012).

Multiproxy approaches for assessing decadal-to-centennial-scale variations in temperature during the MCA were compiled by Mann et al. (2009), and were subsequently used to model spatially resolved large-scale relative changes in temperature. This climate model is both compelling and robust but is derived from annually to decadal resolved proxy datasets and lacks sufficient proxy data from the tropical to subtropical North Atlantic region. Accordingly, this model presents limitations regarding the prediction of the NAO mode during the MCA. To rectify these knowledge gaps, this study presents high-resolution SST profiles derived from the Canary Islands—located within the subtropical latitudes of the North-eastern Atlantic Ocean—to illuminate the climate signals of the MCA at the high-pressure endmember of the NAO dipole.

The Canary Islands of Spain are a subtropical archipelago in the Northeast Atlantic near the coast of Morocco. The islands hosted aboriginal populations prior to their annexation by the Spanish, and this aboriginal population generated marine shell-rich deposits (shell middens) across the islands. The temporal origin of Canarian shell middens spans the entire length of aboriginal inhabitation in the archipelago (2500 BP to 700 BP) and includes middens dated to the MCA (Maca-Meyer et al., 2004; Parker et al., 2018). Additionally, these middens include shells from the edible gastropod Phorcas atratus Wood, 1828, which has been shown to reliably track year-round SSTs due to the precipitation of its shell in oxygen isotope equilibrium with ambient seawater (Mesa Hernández, 2008, 2006; Parker et al., 2018, 2017; WoRMS Editorial Board, 2018). Thus, the objective of the present study is to use high-resolution, reconstructed SST profiles derived from the oxygen isotope ratios (δ18O) from P. atratus shells to assess mean annual and seasonal SSTs during the MCA in the Canary Islands, Spain, and compare them to modern SSTs in the region.

This research is driven by the following hypotheses: 1) the seasonal amplitude of SST will be slightly larger during the MCA compared to the modern, following the results of Surge and Barrett (2012) in the high-latitude Orkney archipelago of Scotland; and 2) that mean annual SSTs will be analogous (within analytical error) to modern SSTs, as was predicted by the climate model produced by Mann et al. (2009). Additionally, we present time-series of stable carbon isotope ratios (δ13C) for each shell to investigate possible changes in upwelling in the study area through time and to screen for possible metabolic isotope effects (Swart, 1983). Our study presents the first high-resolution SST profile for the MCA in the subtropical Northeast Atlantic and contributes to ongoing research regarding NAO dynamics in the North Atlantic by providing SST profiles during the MCA near the Azores high-pressure endmember of the NAO dipole.

2. Background information

2.1. Climatic and oceanographic context

The Canary Islands are a volcanic, oceanic archipelago located near the western coast of Morocco in NW Africa, between 27°37’ and 29°25’ N and 13°20’ and 18°10’ W (Fig. 1A). The Canary Islands sit astride the Canary Current, a cold, south-flowing eastern boundary current that originates from the Gulf Stream and propagates southward along the Western European and North African coastlines, bringing cool water and humid air masses to the archipelago (García Herrera et al., 2001). The archipelago is also located immediately adjacent to the NW African coastline, a region of perpetual upwelling that brings cold, nutrient-rich water to the surface (Barton et al., 1998; Villanueva Guimerans and Ruiz Canavate, 1994). This results in an east-west SST temperature gradient across the archipelago, with the eastern islands experiencing an annual average SST of ~18.5 °C, while the western islands experience SSTs that are ~2 °C warmer (Villanueva Guimerans and Ruiz Canavate, 1994). The overall climate in the archipelago is classified as a subtropical oceanic climate, with low-moderate rainfall (200–700 mm/yr) and mild air temperatures year-round (15–28 °C) (García Herrera et al., 2001). The Canary Islands are also influenced by the poleward limits of the Hadley cell, the nearby Azores anticyclone (high-pressure system), and the northermmost extension of the Intertropical Convergence Zone (Barton et al., 1998; García Herrera et al., 2001; Marzol, 2008; Navarro-Pérez and Barton, 2001; Sperling et al., 2004).

The focal island in the presented research—Tenerife—is located in the geographic center of the archipelago (28°17’ N, 16°37’ W) and is the largest island by land area (2030 km²) and elevation (3718 m) (Ancochea et al., 2003; García Herrera et al., 2001). Average annual precipitation is low across the island (~225 mm/yr); however, local precipitation varies dramatically by geospatial location (from 90 to 300 mm/yr) (Bueno and Carta, 2006; Otto et al., 2006; Sperling et al., 2004). Fairly stable precipitation and temperature regimes provided ideal circumstances for the aboriginal settlement of the
island that occurred prior to Spanish arrival in the 15th century.

2.2. Archaeological context

The aboriginal population of the archipelago arrived by boat approximately 2500 years BP (defined as years before 1950 AD), and are descended from NW African Berber peoples, although mtDNA studies have established genetic lineages that can be traced back to Mediterranean Europe, Southwest Asia, and Sub-Saharan Africa (Fregel et al., 2009; Maca-Meyer et al., 2004; Pinto et al., 1996; Rando et al., 1999). The aboriginal population arrived first on the eastern islands before propagating westward across the archipelago (Flores et al., 2001; Mercer, 1980). After initial dispersal, there was little interisland communication, as evidenced

Fig. 1. A) The Canary Islands relative to the coast of NW Africa. Focal regions of Tenerife island are denoted by red and blue boxes. B) The Buenavista del Norte Archaeological Province of NW Tenerife from which all archaeological shells were retrieved for this study. The field sites (Las Fuentes and Cueva Arenas III) are denoted by yellow stars. C) The modern locality of Puertito de Güímar (denoted by a yellow star), on the southeast coast of Tenerife, from which all modern specimens were retrieved in 2012. D) A photograph of the entrance to the Las Fuentes site. E) A photograph of the entrance to the Cueva de Arenas III site. F) Top left: a dorsal view of a modern specimen of *Phorcus atratus* with the apex visible. Bottom right: a basal view of a modern specimen of *P. atratus* with the aperture visible. G) A side view of an archaeological specimen of *P. atratus* with the outer calcite layer removed and aragonite aliquots removed at 1 mm intervals. The red arrow denotes sampling direction from shell margin toward the apex. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
by: 1) a lack of seafaring vessels in the archaeological record; 2) distinctly different cultures, social hierarchy structures, and agricultural practices between islands; and 3) mtDNA analyses that established little genetic mixing between populations on different islands (Arroyo-de-la-Rosa et al., 2009; Fregel et al., 2009; Maca-Meyer et al., 2004; Mercer, 1980). The aboriginal communities that lived on Tenerife are known collectively as the “Guanches”, and they had one of the largest, most complex, and hierarchical social systems in the Canary Islands (Arroyo-de-la-Rosa et al., 2010, 2009; Maca-Meyer et al., 2004). The island hosted an estimate of 15,000–20,000 inhabitants at its peak population prior to Spanish conquest, and the population was reliant on an agricultural and goat-farming economy, complemented by marine protein sources (Arroyo-de-la-Rosa et al., 2010; Allenderheide et al., 1992).

This reliance on marine protein sources, most notably marine gastropods of the genera Patella and Phorcus, resulted in widely-distributed shell middens, which are large accumulations of shell material that were collected for gastronomic purposes and then discarded after the meat was removed from the shell (Mesa Hernández, 2006). Canarian shell middens are populated by multiple taxa of edible gastropods, including Patella candei d’Orbigny, 1840 (formerly Patella crenata), Phorcus atratus (formerly Osilinus atratus), and Patella laevigata Linnaeus 1767 (formerly Thais haemastoma) (Mesa Hernández, 2008, 2006; Parker et al., 2018; WoRMS Editorial Board, 2018). These middens are located along coastal bluffs, sea cliffs, beaches, rock shelters, and caves, and often exhibit high-quality preservation due to shelter from the destructive influences of wave and wind energy (Andrus, 2011; Mesa Hernández, 2008, 2006).

Tenerife’s shell middens are particularly useful for studying the MCA because δ18O values retrieved from Phorcus atratus shells have been shown to be a reliable indicator of paleotemperature (Parker et al., 2017). Moreover, some middens have been radiocarbon dated to confirm that the temporal origin of the shells corresponds to the MCA (Parker et al., 2018). Previously, archaeological research in the archipelago suggested that shell middens were deposited as part of one-time, discrete harvesting events, and would display negligible age-mixing (Mesa Hernández, 2008, 2006; Navarro Mederos et al., 2001). Recently, however, work has shown that some middens may display some degree of age-mixing beyond the boundary of analytical uncertainty, and thus all shell material retrieved for paleoclimate analysis should be individually radiocarbon dated to properly constrain its temporal origins (Parker et al., 2019). Consequently, each shell used in this study has been individually radiocarbon dated to verify MCA origin.

2.3. Ecology of Phorcus atratus

Phorcus atratus (Fig. 1F) is a species of prosobranch gastropod that commonly inhabits the rocky intertidal region of the Macaronesian archipelagos (including the Canary Islands). They are slow-moving to stationary browsers that consume algal film (Granado and Caballero, 2001). The shell has an imperforate conical shell with eroded apical whorls and is composed of pearlescent aragonite (interior) and purple-black calcite (exterior) (Colonese et al., 2009; Prendergast et al., 2013). In the Canary Islands, Ph. atratus are commonly known as “burgados”, or the “topshell” gastropod, due to the likeness of the shell to a spinning top. Fully grown shells of Ph. atratus display 5–6 whorls, with 2 carinae on the ultimate whorl and an oblique aperture. The central columella height ranges between 17 and 23 cm, while the total diameter ranges between 16 and 19 mm (Tryon, 1889). A recent publication confirmed that shells of Ph. atratus from the Canary Islands grow continuously throughout the year and that the oxygen isotope composition of the interior aragonitic layer is precipitated in isotopic equilibrium with the ambient seawater with a negligible vital effect (Parker et al., 2017). Their finding was evidenced by the presence of both winter and summer seasons in δ18O time-series, and by comparing estimated and instrumentally observed SSTs in modern shells. That publication also reports that Ph. atratus has a lifespan between 1 and 2 years. The inner aragonitic layer is preferentially selected for sampling because growth lines are more identifiable in the aragonite layer. See Parker et al. (2017) for additional details regarding the utility of Ph. atratus as a paleoclimate proxy.

The taxonomic nomenclature of Phorcus atratus, other species of the genus Phorcus, and their geographical distributions in the Canary Islands are the subject of ongoing debate. Recent scientific evidence suggests that Ph. atratus in the Canary Islands may have been historically misidentified, and that Canarian shell middens from Tenerife Island may be dominated by Phorcus sauciatus Koch, 1845 (Macías, 2017). In the present study, however, we will use the most broadly used taxonomic name Phorcus atratus for simplicity.

3. Methods and materials

3.1. Field collection

Phorcus atratus shells were collected from two archaeological sites and one modern site on Tenerife. Archaeological sites are located in the Buenavista del Norte Archaeological Province in the northwest corner of the island (Fig. 1B). This province hosts more than 50 shell middens believed to span the entire temporal range of human occupation on the islands. Two sites were selected due to sample availability and preservation, as well as documented archaeological context: Las Fuentes (Fig. 1D) and Cueva de Arenas III (Fig. 1E). Archaeological shells (N = 12) were collected in spatial and stratigraphic order using the following established archaeological excavation techniques. The sites were divided into 1m by 1m quadrats and stratigraphic layers were characterized where applicable, following standard archaeological procedures at the time (Galván et al., 1999). Las Fuentes was divided into two stratigraphic levels, while Arenas III was divided into three stratigraphic levels. New ages generated in the present work indicate material retrieved from contiguous archaeological layers within a site are chronologically equivalent within radiocarbon analytical error. In-situ bulk shell samples were collected from selected quadrats, following the direction of the field archaeologists. Defined stratigraphic layers within each quadrat were excavated independently and placed into different plastic bags properly labeled and transferred to the University of Cincinnati for laboratory preparation and analysis.

Modern specimens (N = 6) were collected from the harbor at Puertito de Güímar on the southern coast of Tenerife (Fig. 1C) during February, July, and November 2012. We chose this site because of its abundant shell material. The organisms were alive at the time of the collection, and thus their collection date corresponds to the date of death (see Parker et al. (2017) for additional details). The entire island of Tenerife falls within one isotherm and exhibits an east-west SST gradient of less than 0.5 °C throughout the year (30-year mean COBE SST dataset, Japan Meteorological Agency, 2006). Accordingly, it is reasonable to assume that modern shells from Puertito de Güímar record analogous temperatures to modern shells from the western margin of the island and are therefore reliable indicators of the island-wide SST.

Seawater samples were also collected at 15-day intervals between 2011 and 2012 at Puertito de Güímar. Samples were filtered in the field through a 0.2 μm paper filter and poured into 12 ml glass vials. Vials were sealed after adding a small aliquot of HgCl2 to
3.2. Preparation of shell material

Archaeological and modern shells were sampled in the same manner. At the University of Cincinnati, all shells were measured along X, Y, and Z directions and then mechanically cleaned using soft bristled brushes to remove detrital contaminants. Shells were then placed into a J.P. Selecta Ultrasonic bath (Model 3000865) to dislodge internal contaminants. They were sonicated for 4 min, cleaned again with soft bristled brushes, rinsed with deionized water, and set to dry for 24 h at 25 °C. The mineralogical composition of the inner (aragonite) and outer (calcite) layers of the shells was confirmed before and after aliquot acquisition through the combination of Raman spectroscopy, scanning electron microscopy, and X-ray diffraction.

Carbonate aliquots for δ18Oshell analysis were extracted using the methodology outlined in Parker et al. (2017), derived from Mannino et al. (2007), Colonese et al. (2009), and Prendergast et al. (2013). After cleaning, the outer calcite layer of the shell was removed using a Dremel® 4000 variable speed rotary tool with an abrasive wheel attachment to expose the underlying aragonite for sampling (Fig. 1G). Aragonite aliquots were drilled using the Dremel® 4000 with a 0.5 mm high speed cutter attachment. The shell margin—corresponding to the final growth prior to organism death—was drilled first. Subsequent aliquots were removed at ~1 mm intervals perpendicular to the direction of growth, culminating near the protoconch (Fig. 1G). Previous research on P. atratus indicates that 1 mm of growth along shell ontogeny corresponds to a temporal resolution of 2–4 weeks (Parker et al., 2017). Thus, it can be expected that this sampling resolution is sufficient to constrain sub-monthly fluctuations of δ18Oshell Values.

Each sample was measured at the Light Stable Isotope Mass Spectrometry Lab in the Department of Geological Sciences at the University of Florida (UF) to determine δ18Oshell and δ13Cshell Values. Remaining shell material of each archaeological shell was sent for carbonate-target radiocarbon analysis at the University of California-Irvine (UCI).

3.3. Stable isotope analysis

Samples were analyzed at UF using a Finnigan-MAT 252 Isotope Ratio Mass Spectrometer coupled with a Kiel III automated carbonate preparation device. Approximately 40–50 μg of carbonate powder was digested in 100% H3PO4 (Specific Gravity = 1.92) at 70 °C for 10 min and the resultant CO2 gas was mass analyzed. Results are presented in standard delta notation (δ18O and δ13C) relative to Vienna Pee Dee Belemnite (VPDB). Isotope standards NBS 19 (δ18O = −2.20‰ VPDB; δ13C = 1.95‰ VPDB) and NBS 18 (δ18O = −23.01‰ VPDB; δ13C = −5.01‰ VPDB) were measured repeatedly to calibrate and calculate analytical and experimental precision. Analytical precision was better than ±0.1‰, based on repeated measurements of samples and standards throughout the runs.

Seawater samples were analyzed at the University of Kentucky for δ18O and δ13CDIC values using a Picarro device and a GasBench II peripheral device interfaced with a Thermo Scientific DeltaV Isotope Ratio Mass Spectrometer, respectively. The δ18Oseawater values presented in this research are published, along with the δ18Oseawater analysis procedures, in Parker et al. (2017). The analytical uncertainty for δ18Oseawater analyses was ±0.1‰, and values are reported in per mil units relative to the VSMOW standard.

The seawater δ13CDIC analyses presented in this research were conducted following standard procedures. Accordingly, 3–4 ml aliquots of seawater were transferred to 12 ml septum-capped extainer vials with a He atmosphere. A few drops of 100% H3PO4 (phosphoric acid) were then added to convert DIC into gaseous CO2. The generated CO2 in the headspace was mass analyzed using a continuous flow helium carrier stream in the IRMS via a GasBench II peripheral device. Analytical precision was better than ±0.2‰ based on repeated measurements of samples, in-house DIC reference standards, and reference gasses throughout the runs. Values are reported in per mil units relative to the VPDB standard.

3.4. Calculating sea surface temperature

Sea surface temperatures derived from δ18Oshell values were calculated using the aragonite-water equilibrium equation:

\[T(\degree C) = 20.6 - 4.34 \times (\delta^{18}O_{\text{arag}} - \delta^{18}O_{\text{seawater}}) \]

where \(\delta^{18}O_{\text{arag}} \) is the δ18O value of aragonitic shell relative to the VPDB standard and \(\delta^{18}O_{\text{seawater}} \) is the δ18O value of the seawater relative to VSMOW minus a correction factor to accommodate the difference between the VPDB and VSMOW scales (Grossman and Ku, 1986). The VPDB-VSMOW correction factor utilized in this report is 0.27‰, as defined by Confiunti et al. (1995). We used a constant \(\delta^{18}O_{\text{seawater}} \) value of 0.8‰ (VSMOW), as was previously reported in Parker et al. (2017) because it does not vary significantly through seasons in the Canary Islands. Moreover, published research suggests that \(\delta^{18}O_{\text{seawater}} \) values vary from 0.8‰ by up to ±0.2‰ through the first several hundred meters of the water column (Wilke et al., 2009). Additional discussion of variability in \(\delta^{18}O_{\text{seawater}} \) values are presented in Section 5.1 of this paper.

Analytical precision of ~0.1‰ results in possible error of ±0.4 °C based on the slope of Equation (1).

3.5. Radiocarbon analysis

All archaeological shells were radiocarbon dated using the rapid and more affordable carbonate-target methodology at the W.M. Keck AMS laboratory at the University of California, Irvine, following published procedures outlined online at (dos Santos et al., 2018) and in Bush et al. (2013). In this procedure, 0.3 mg of powdered shell material from each aliquot is mixed with 5 mg unbaked pure Nb (Alfa Aesar #40510, ~325 mesh, 99.99%). This mixture is poured directly into the aluminum cathode target and pressed for AMS measurement (Bush et al., 2013). Samples processed in this laboratory using traditional graphite-target methodology have exhibited 0.3% precision and 55,000 yr backgrounds, while AMS dates retrieved via paired carbonate-target and graphite-target methods are statistically indistinguishable from the conventional method (P > .05) for samples under 10,000 years old (Bush et al., 2013; Culleton et al., 2006; dos Santos et al., 2018; Kowalowski et al., 2017; New et al., 2019). AMS data are reported in 14C age (years BP), and the data were corrected for 13C fractionation per the conventions of Stuiver and Polach (1977).

Radiocarbon dates were calibrated with CALIB 7.1 (Stuiver et al., 2020), using the Marine13 calibration curve. Shells of P. atratus precipitate their shells from multiple carbon sources, most significantly carbon available in the seawater, and thus apparent radiocarbon ages must be corrected for the marine reservoir effect (Poulain et al., 2010; Stuiver et al., 1986; Stuiver and Polach, 1977). The local deviation from the time dependent model calibration curve (ΔR) was determined to be 135 ± 103 yrs, using data from the Marine Reservoir Correction Database (Stuiver et al., 2020). The ΔR was calculated using the geographic proximity to studies of...
reservoir effects by Ndeye (2008) and Monges Soares (1993) in nearby Senegal and Iberia, respectively. Calibrated ages are reported using the 2-sigma (2σ; 95.4% probability) age range.

3.6. Data analysis

SST time-series were calculated for each shell by plotting estimated SST data against distance from shell margin, which serves as a proxy for time. Only the final year of growth for each shell was used for statistical and comparative purposes, and thus maximum, minimum, and mean estimated SSTs are representative only of the final full year of the organism’s life. The last year of shell growth was prioritized because all analyzed shells showed lifespans greater than one year, but most were shorter than two years. Thus, most shell time-series include some partial-year data. We elected to exclude the partial years to facilitate direct comparisons between shells, focusing on the last one-year records that are present in all analyzed specimens. The final growth year was highlighted by visually defining one full sinusoidal profile in the SST time-series, thus ensuring that a full annual cycle was included. For shells with unclear sinusoidal trends (TAR(III)-9, T-Modern-2, T-Modern-3), one year of growth was estimated using the average distance (in mm) along ontogeny from shells with visible sinusoidal profiles. Carbon isotope time-series were also generated for each shell. As δ13Cshell values do not typically vary seasonally, the same demarcation of a year is applied to both SST and δ13C time-series derived from the same shell.

Aggregated comparisons of estimated seawater temperature recorded in modern and archaeological shells and δ13C data are presented in the discussion using violin plots. Violin plots combine a box plot and a density trace/smoothed histogram to display the range and structure of data (Hintze and Nelson, 1998). They display the center (median), spread (range), asymmetry (inter quartile range), and outliers in both the carbon and oxygen dataset, while simultaneously overlaying a density trace/smoothed histogram to permit interpretation of data distribution (e.g., uniform, bimodal, normal). The presented violin plots were generated using the vioplot package in RStudio (Adler and Kelly, 2018; R Core Team, 2017).

The white dot in the center of each violin plot is the median value for each site, while the black rectangle surrounding the white dot represents the interquartile range (IQR) of the data. The vertical length of the black line inside the plot represents the extent of the upper and lower adjacent values (Q1 – 1.5 × IQR or Q3 + 1.5 × IQR), while the total vertical length of the violin represents the total range of data (inclusive of outliers). The contours of the violins represent the relative distribution of the data, with larger horizontal length representative of higher data density (Adler and Kelly, 2018; Hintze and Nelson, 1998).

Table 1 Carbonate-target radiocarbon results.

<table>
<thead>
<tr>
<th>Shell ID</th>
<th>Locality</th>
<th>Level</th>
<th>Radiocarbon Age</th>
<th>2σ Median Probability Range</th>
<th>Median Probability Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yrs. BP</td>
<td>±</td>
<td>(Cal. Yrs. AD)</td>
<td>(Cal. Yrs. AD)</td>
</tr>
<tr>
<td>TLF-1A</td>
<td>Las Fuentes</td>
<td>L1</td>
<td>1205 ± 40</td>
<td>1090–1470</td>
<td>1310</td>
</tr>
<tr>
<td>TLF-1B</td>
<td>Las Fuentes</td>
<td>L1</td>
<td>1160 ± 40</td>
<td>1140–1520</td>
<td>1350</td>
</tr>
<tr>
<td>TLF-9A</td>
<td>Las Fuentes</td>
<td>L1</td>
<td>1340 ± 40</td>
<td>970–1410</td>
<td>1190</td>
</tr>
<tr>
<td>TLF-9B</td>
<td>Las Fuentes</td>
<td>L1</td>
<td>1210 ± 40</td>
<td>1080–1470</td>
<td>1300</td>
</tr>
<tr>
<td>TLF-9C</td>
<td>Las Fuentes</td>
<td>L1</td>
<td>1390 ± 50</td>
<td>900–1340</td>
<td>1140</td>
</tr>
<tr>
<td>TLF-16</td>
<td>Las Fuentes</td>
<td>L2</td>
<td>1435 ± 45</td>
<td>870–1310</td>
<td>1100</td>
</tr>
<tr>
<td>TLF-23</td>
<td>Las Fuentes</td>
<td>L2</td>
<td>1420 ± 25</td>
<td>900–1310</td>
<td>1120</td>
</tr>
<tr>
<td>TAR(III)-9</td>
<td>Cueva de Arenas (III)</td>
<td>L2</td>
<td>1805 ± 15</td>
<td>970–1430</td>
<td>1220</td>
</tr>
<tr>
<td>TAR(III)-25</td>
<td>Cueva de Arenas (III)</td>
<td>L2</td>
<td>1340 ± 15</td>
<td>1000–1390</td>
<td>1190</td>
</tr>
<tr>
<td>TAR(III)-27</td>
<td>Cueva de Arenas (III)</td>
<td>L2</td>
<td>1275 ± 45</td>
<td>1040–1430</td>
<td>1240</td>
</tr>
<tr>
<td>TAR(III)-30</td>
<td>Cueva de Arenas (III)</td>
<td>L2</td>
<td>1275 ± 45</td>
<td>1040–1430</td>
<td>1240</td>
</tr>
<tr>
<td>TAR(III)-33</td>
<td>Cueva de Arenas (III)</td>
<td>L2</td>
<td>1455 ± 45</td>
<td>840–1300</td>
<td>1090</td>
</tr>
</tbody>
</table>

Modern and ancient shell SST and δ13C data were not normally distributed (Shapiro-wilk test, P > .05). Thus, the non-parametric Wilcoxon rank-sum test was employed to assess the difference between modern and ancient SST and δ13C data.

4. Results

4.1. Radiocarbon ages

Radiocarbon ages are presented in Table 1. The oldest shell (specimen TAR(III)-33) has a 2σ probability range of 840–1300 cal yrs AD and was retrieved from Level 2 of Arenas III. The youngest shell (specimen TLF-9B) has a 2σ probability range of 1140–1520 cal yrs AD and was retrieved from Level 1 of Las Fuentes. The average upper (lower) boundary of the 2σ probability age range for shells from Las Fuentes is 1400 (990) cal yrs AD and for Cueva de Arenas III is 1400 (980) cal yrs AD. All shells analyzed in this study exhibit 2σ probability ranges that significantly overlap with the MCA (i.e., between 900 and 1300 AD); however, only one shell—TAR(III)-33—has an upper age boundary that does not exceed the upper limit of the MCA. Thus, this paper assumes that all shells are representative of the MCA, but more conservative age constraints reveal that 11 of the 12 shells could have grown 0–220 years after the MCA. Tighter age control is not possible using these shells because of the high (135 ± 103) ΔR value used in the 14C calibration, resulting in large 2σ probability age ranges for all shells.

4.2. Stable isotope time-series of modern shells and seawater

Oxygen and stable carbon isotope ratios for the modern shells and estimated SSTs from the last year of shell growth (one full seasonal cycle) are summarized in Table 2. Raw data are presented in supplementary table S1. The δ18O values retrieved from one of the modern shells (specimen Pho-1) were previously published in Parker et al. (2017). This study presents new δ13Cshell data from Pho-1 along with δ18O and δ13C time-series extracted from five new shells. Modern shell-derived SST estimations are plotted in Fig. 2, while observed δ13Cshell values are plotted in Fig. 3.

The maximum and minimum δ18Oshell values from modern shells are 1.7‰ (Pho-1) and –0.2‰ (T-Modern-3), respectively. The calculated minimum and maximum temperature ranges from 15.5 to 23.8°C. The mean δ18Oshell value from milled samples (N = 172) is 0.7 ± 0.3‰, which corresponds to an estimated SST of 20.0 ± 1.5°C. The mean seasonality range (i.e., the difference between the coldest and warmest temperature within a full year of growth) is 5.3 ± 0.9°C. The largest seasonal amplitude (6.5°C) is observed in specimen T-Modern-1, while the smallest seasonal amplitude (4.6°C) is observed in T-Modern-5. Four of the modern
shells exhibit clearly visible quasi-sinusoidal profiles along the shell’s growth axis. In contrast, two modern shells (specimens T-Modern-2 and T-Modern-3) display flatter δ¹⁸O time-series with more reduced seasonal variability (Fig. 2). The variability among δ¹⁸O shell profiles retrieved from shells of the same age is the focus of ongoing research. Possible explanations for these apparent inconsistencies among shells include organism-specific physiological effects (e.g. deformities within individual shells) or small-scale differences in the organism’s environment during growth (e.g. unusually cold or warm water). To minimize the effect of this discrepancy and obtain a representative average environmental signal we chose to analyze at least five (5) shells per archaeological site. The observed agreement between calculated SSTs from modern shells and instrumentally recorded SSTs reinforces that this approach appears appropriate. Hence, we argue that the calculated SSTs from groups of shells of the same age-group should be representative of the environment in which they grew.

The δ¹³Cshell data from most of the modern shells does not

<table>
<thead>
<tr>
<th>Sample ID</th>
<th># of milled samples included in final year</th>
<th>δ¹⁸O (% VPDB)</th>
<th>Temperature (°C)</th>
<th>δ¹³C (% VPDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Modern-1</td>
<td>26</td>
<td>1.6</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>T-Modern-2</td>
<td>28</td>
<td>1.0</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>T-Modern-3</td>
<td>28</td>
<td>0.9</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>T-Modern-4</td>
<td>28</td>
<td>1.4</td>
<td>-0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>T-Modern-5</td>
<td>28</td>
<td>1.7</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Pho-1</td>
<td>34</td>
<td>1.3</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Modern Means</td>
<td></td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* Shell Pho-1 was previously reported in Parker et al. (2017).

Table 2
Summary (minimum, maximum, mean, and standard deviation) of δ¹⁸O, Temperature (°C), and δ¹³C from the final year of growth for each modern Phorcus atratus shell. SST calculation error = ±0.4 °C, δ¹⁸Oshell and δ¹³Cshell analytical error = ±0.1‰.

Fig. 2. Calculated SST from live-collected shells retrieved from the rocky intertidal coast in the Canary Islands during 2012. The light gray box depicts the last year of growth, including summer and winter SSTs. Horizontal dashed lines indicate the range of instrumentally measured modern SSTs (18–23 °C) from Parker et al. (2017). The dark gray error envelope around the data corresponds to the range of analytical error (±0.4 °C).
exhibit a seasonal variation along the shell’s growth axis (Fig. 3). Specimen T-modern-4 shows greater deviation around the median value than the other shell records. The maximum and minimum $\delta^{13}C_{\text{shell}}$ values are 1.6‰ (specimen T-Modern-3) and -2.7‰ (specimen T-Modern-4), respectively. The mean $\delta^{13}C_{\text{shell}}$ value from all modern shells combined is 0.1 ± 0.7‰.

The $\delta^{13}C_{\text{DIC}}$ values from seawater are summarized in Table 3. The mean $\delta^{13}C_{\text{DIC}}$ value in the southeast coast of Tenerife is 0.9 ± 0.2‰, ranging from 0.7‰ to 1.2‰. Values show little variability around their means, and do not exhibit any clear seasonal signals.

4.3. Stable isotope time-series of archaeological shells

Oxygen and carbon stable isotope ratios for the archaeological shells and estimated SSTs of the last year of growth (one full seasonal cycle) are summarized in Table 4. Raw isotopic data and SST estimates are reported in supplementary tables S2 and S3. Calculated SSTs are graphically represented in Fig. 4. The maximum and minimum $\delta^{18}O$ values are 2.3‰ (specimen TLF-23) and 0.2‰ (specimen TLF-16), respectively. The calculated maximum and minimum temperature ranges from 13.1 °C to 21.9 °C. The mean $\delta^{18}O$ value for final-growth-year milled samples from archaeological shells (N = 309) is 1.1 ± 0.2‰ and corresponds to a temperature of 18.2 ± 0.7 °C. Most shells exhibit a quasi-sinusoidal trend of $\delta^{18}O_{\text{shell}}$ values. Calculated temperatures along shell main growth
Table 4
Summary (minimum, maximum, mean, and standard deviation) of δ^{18}Oshell values, temperature ($^\circ$C), and δ^{13}Cshell values from the final year of growth for each archaeological Phorcus atratus shell. SST calculation error ± 0.4 °C, δ^{18}Oshell and δ^{13}Cshell analytical error ± 0.1‰.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Level</th>
<th># of milled samples included in final year</th>
<th>δ^{18}O (% VPDB)</th>
<th>Temperature ($^\circ$C)</th>
<th>δ^{13}C (% VPDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Mean</td>
</tr>
<tr>
<td>TLF-1A</td>
<td>L1</td>
<td>22</td>
<td>1.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>TLF-1B</td>
<td>L1</td>
<td>25</td>
<td>1.7</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>TLF-9A</td>
<td>L1</td>
<td>20</td>
<td>1.7</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>TLF-9B</td>
<td>L1</td>
<td>35</td>
<td>1.6</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>TLF-9C</td>
<td>L1</td>
<td>23</td>
<td>1.6</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>TLF-16</td>
<td>L2</td>
<td>24</td>
<td>1.7</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>TLF-23</td>
<td>L2</td>
<td>22</td>
<td>2.2</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>TAR(III)-9</td>
<td>L2</td>
<td>23</td>
<td>1.5</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>TAR(III)-25</td>
<td>L2</td>
<td>27</td>
<td>2.0</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>TAR(III)-27</td>
<td>L2</td>
<td>34</td>
<td>1.8</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>TAR(III)-30</td>
<td>L2</td>
<td>30</td>
<td>1.7</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>TAR(III)-33</td>
<td>L2</td>
<td>25</td>
<td>1.7</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>MCA Means</td>
<td></td>
<td></td>
<td>1.7</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Standard Deviations (±)</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 4. Calculated SST from shells retrieved from archaeological sites spanning the MCA in the Canary Islands. The light gray box depicts the last year of growth, including summer and winter SSTs. Horizontal dashed lines indicate the range of instrumentally measured modern SSTs (18–23 °C) from Parker et al. (2017). The dark gray error envelope around the data corresponds to the range of analytical error (±0.4 °C).
Both the oxygen and carbon isotope ratios due to the preferential uptake of lighter isotopes. In this scenario, carbon isotopes would be expected to covary with oxygen (McConnaughey, 1989a). Because the carbon and oxygen isotope ratios of our shells do not covary, the effects of kinetic isotope effects are considered negligible in this study.

The shells of *P. atratus* are bimineralic, and therefore precipitate their shells using two calcium carbonate polymorphs, an outer calcite layer and an inner aragonite layer (Parker et al., 2017). Different polymorphs of calcium carbonate exhibit distinctive water-carbonate fractionation factors, and thus different paleothermometry equations are proposed (e.g. the water-aragonite equation by Grossman and Ku, 1986, or the water-calcite equation by Friedman and O’Neil, 1977). In the shells of *P. atratus*, the outer calcite layer was carefully removed and only the inner aragonite layer was sampled. Accordingly, the influence of calcite on the δ18O values should be insignificant. The sampled material was confirmed to be aragonite through the use of x-ray diffraction and Raman spectroscopy. Additionally, no secondary crystal overgrowth was detected via scanning electron microscopy. Consequently, recrystallization or secondary overgrowth are also unlikely to have influenced the δ18Oshell values.

Variations in δ18O values of the ambient seawater influence shell δ18O values and could explain the isotopic offset between the MCA and modern δ18Oshell values. Changes in δ18Oseawater values may occur due to: 1) changes in the global ocean δ18O values; 2) seasonal variability of local δ18Oseawater values as a result of evaporation and precipitation; and 3) the vertical movement of water masses through the water column (e.g. during upwelling or downwelling). The average global ocean δ18O value is not expected to have been significantly different between the MCA and today. Previous research indicates that large variations in global δ18Oseawater values are generally influenced by changes in ice volume and occur over centennial to millennial timescales that greatly eclipse the temporal scope of the MCA (Thornalley et al., 2009). While some research has found that more rapid variations in seawater δ18O values have occurred due to catastrophic, largescale events such as the 8.2kyr event (e.g. Estrella-Martínez et al., 2019a), the MCA has not been shown to be one of these events. Accordingly, as there has been no significant global glaciation between the MCA and the present, it is assumed that the modern global seawater δ18O values are analogous to those of the MCA.

Local and seasonal changes in δ18Oseawater values are also not expected to have shifted significantly between MCA and today. Evaporation and precipitation show small variations throughout the year in the coastal regions of the Canary Islands (Agencia Estatal de Meteorología, 2020). Parker et al. (2017) found that, while modern seawater δ18O values in the Canary Islands ranged from 0.6 to 1.0‰ over the course of a year, δ18Oseawater values did not show a distinctive seasonal trend. They reported an average value of 0.8 ± 0.1‰ which was representative of the year-round δ18Oseawater values in the modern Canary Islands. Accordingly, 0.8‰ was the δ18Oseawater value used in the aragonite-water fractionation equation in this study. Furthermore, oxygen isotope records from land snail shells indicates that the hydroclimate of the Canary Islands was largely stable over the past 5000 years (Yanes et al., 2011). Thus, we assume minor variations in evaporation and precipitation throughout the year during the MCA, comparable to the modern coastal sites in the modern Canary Islands.

Varietal movement of water masses with differing δ18O values could occur as a result of upwelling and downwelling. Wilke et al. (2009) measured δ18Oseawater values of modern foraminifera through the water column in the Canary Islands basin between 0 and 500m water depth. They reported δ18Oseawater values between 1.0‰ (surface waters) and 0.6‰ (500m water depth), with an average
value across the water column of 0.83 ± 0.19‰. Consequently, it is possible that vertically displaced water masses could be characterized by a δ18O signal that deviates by up to ±0.2‰ from the assumed value of 0.8‰ used in the SST calculations in this research. This accounts for a potential error envelope of ±0.8 °C around the reconstructed MCA temperatures. To compare the influence of differing δ18Owater values on the reconstructed SSTs from each archaeological site we generated additional violin plots as seen in Fig. 8. To verify the statistical validity of the differing offset between modern and ancient reconstructed SSTs we conducted additional Wilcoxon Rank-Sum tests. For these additional tests, we recalculated estimated SSTs from the archaeological shells using the endmember δ18Owater values (0.6‰ and 1.0‰) and then compared them to the estimated modern SSTs (calculated using the observed δ18Owater value of 0.8‰ from Parker et al., 2017). The modern and ancient reconstructed SSTs are significantly different (Wilcoxon Rank-Sum test, P < .05), even considering the ±0.2‰ uncertainty envelope surrounding the ancient δ18Owater value. Consequently, we can reasonably infer that the increased δ18Oshell values observed during shells spanning the MCA are directly attributable to a cooling of the ambient seawater by 1.0–2.6 °C, as the other potential impacts on δ18Oshell values (e.g. isotope effects, seasonality) are negligible in this case study.

Carbon isotope ratios are also influenced by multiple biochemical and physical processes, including (1) kinetic isotope effects; (2) metabolic isotope effects; (3) reproduction; and (4) δ13CDIC values of the ambient seawater. Of these, kinetic isotope effects are unlikely to be a significant factor influencing δ13Cshell values because there is no clear covarying relationship between δ13C and δ18O values. Metabolic isotope effects occur when the shell uptakes respired carbon dioxide during the shell building process or in response to changes in pH, which results in a decrease in δ13C values (McConnaughey, 1989b; McConnaughey and Gillikin, 2008; Swart, 1983). However, the amount of respired carbon utilized during calcification has been shown to remain consistent within a taxon (Fritz and Poplawski, 1974; Griffin and Druffel, 1989; Grossman, 1984; Paull et al., 1989; Spero and Lea, 1993). Thus, as modern shells are not expected to incorporate more respired carbon than their MCA counterparts, carbon isotope variations derived from...
Impacts the last-year shell growth cycle (Parker et al., 2017). Consequently, it is presumed that neither kinetic nor metabolic isotope effects, or reproduction, account for the 2.5‰ enrichment of 13C in archaeological shells compared to modern ones. Thus, the 13Cshell values of Phorcus atratus from the Canary Islands are assumed to be primarily influenced by the 13CDIC of the ambient seawater (McConnaughey and Gillickin, 2008).

No previous research has assessed the relationship between 13CDIC and 13Cshell values in P. atratus from the Canaries. This works presents modern seawater 13CDIC values and 13Cshell values to assess the linkages between DIC and shell carbon isotope budget. While this research does not present a comprehensive calibration of the carbon isotope systematics, here we present the first empirical dataset of 13CDIC and 13Cshell values useful for a preliminary assessment. Data suggest that shells of P. atratus may underrepresent seawater 13CDIC by ~0.7‰, pointing to a potential vital effect in the carbon isotope ratios of the shell. This offset was calculated by comparing mean modern 13Cshell values (0.1 ± 0.7‰) with mean modern seawater 13CDIC values (0.9 ± 0.2‰). Surficial seawater 13CDIC values measured in the Canary Islands are consistent with data reported by eGEOTraces cruise GA03_e (Sclitzer, 2018). This cruise measured surface water 13CDIC values that ranged from 0.6 to 1.1‰ between 27 and 29°N in the NE Atlantic Basin, approximately 500 km west of the Canary Islands (Quay and Wu, 2015). The magnitude of the offset in the carbon isotope ratios of seawater DIC and the shell is expected to remain consistent within the taxon, as has been shown in other mollusc species (e.g. Fenger et al., 2007; Land et al., 1977; Wefer and Berger, 1991). Accordingly, observed offsets in the carbon isotope ratios between the shell and seawater DIC are suspected to be constant for modern and MCA measured specimens.

5.2. Sea surface cooling during the MCA

Neither of the driving hypotheses of this research are supported by the empirical data: 1) seasonal amplitude of SST will be larger during the MCA compared to modern; and 2) mean annual SSTs will be similar to (within analytical error) today. The first hypothesis is not supported because both archaeological and modern shells exhibit a mean intra-annual SST range close to 5.5 °C, indicating no significant difference in seasonal amplitude beyond analytical uncertainty. The second hypothesis is not supported because the mean SST from archaeological (MCA) shells (18.2 ± 0.7 °C) is ~2 °C lower than the mean SST from modern shells (20.0 ± 1.5 °C), in contrast to model predictions by Mann et al. (2009). Measured shells indicate that both summer and winter SSTs in the Canary Islands were reduced during the MCA when compared to today.

A recent publication by Lüning et al. (2017) synthesizes data from 50 publications reporting MCA signals from 44 localities across Africa and Arabia, presenting data from terrestrial and marine proxy records at annual- to multiannual resolution. In the location closest to the Canary Islands (Morocco), Lüning et al. (2017) compiled data from 10 publications featuring 9 proxy datasets. The terrestrial records come from a north-south transect through central Morocco, and the marine records are retrieved from two offshore clusters, two records from the Mediterranean Basin and three from the Cape Chir upwelling system along the North Atlantic coastline. All terrestrial proxies and the two marine records located in the Mediterranean Basin indicate temperatures during the MCA that were slightly warmer than the present. In contrast, the marine records from the Atlantic coastline depict cooling trends (Lüning et al., 2017; McGregor et al., 2007; Morley et al., 2011) consistent with the data presented herein. The Atlantic records indicate cooling temperatures at the sea surface and bottom waters, which
McGregor et al. (2007) attributed an intensification of the Cape Ghir upwelling cell.

The Cape Ghir upwelling system, located along the western Moroccan coastline, is one of the most persistent (year-round) upwelling zones along the African continent. Upwelling systems are often characterized by highly productive ecosystems fed by nutrient-rich bottom water drawn to the surface as a result of alongshore winds that force offshore Ekman transport of surface waters. Thus, changing wind patterns like the strengthening of the prevailing westerlies can result in the intensification of coastal upwelling as a result of enhanced flow within the subtropical gyre (Bakun, 1990; Desbiolles et al., 2014; Sydeman et al., 2014). In NW Africa, McGregor et al. (2007) argue that a rising contrast between terrestrial and oceanic surface temperatures drove stronger alongshore winds during the MCA, increasing the strength of the offshore upwelling system and subsequently cooling the entire water column. Their argument is supported by a concurrent rise in calcium deposition in one of their ocean sediment cores, interpreted as an increase in marine productivity and subsequent proliferation of calcium carbonate-bearing organisms (Lüning et al., 2017; McGregor et al., 2009, 2007). It is possible, therefore, that the depressed MCA SSTs presented in this study indicate that the zone of perpetual upwelling along the NW African coast expanded during the MCA, bringing colder, nutrient-rich water as far west as the Canary Islands (13°W). Some research (e.g. McGregor et al., 2007) suggests that increased upwelling can be connected to changes in hemispheric-scale wind patterns, such as the strengthened westerly winds associated with the positive mode of the North Atlantic Oscillation (see Section 5.3 of this manuscript for additional discussion).

Previous studies have also observed an upwelling filament extending from the African coastline to SE Gran Canaria (150 km SE of the field sites in NW Tenerife) which actively exported upwelled water—characterized by low temperatures and high organic matter—seaward even in the absence of upwelling-favorable conditions in the Canary Islands (Barton et al., 2000, 1998; García-Muñoz et al., 2005). Specifically, Barton and al. (1998) reported that the filament manifested in SE Gran Canaria as a narrow tongue of seawater characterized by SSTs between 21.5 and 22 °C. This tongue surrounded a slightly warmer core but was still ~1 °C cooler than the surrounding seawater. Thus, it is possible that an intensification of the Cape Ghir upwelling zone could have brought colder water to the surface and could have transported it farther from the African continent in a filament that facilitated the oceanic cooling observed in Tenerife. Alternatively, it is possible the winds that drove enhanced coastal upwelling in NW Africa also drove smaller-scale, local upwelling along the north and west coast of Tenerife. Both of these scenarios adequately explain a ~2 °C decrease in SSTs during the MCA, but additional research would be necessary to discriminate between the presented scenarios.

Additional support for the upwelling scenario derives from our carbon isotope ratio datasets. The δ13Cshell values reflect an enrichment in 13C during the MCA when compared to the modern, which is likely representative of changing δ13CDIC values of the ambient seawater. Several environmental factors control the seawater δ13CDIC values including the oceanic Suess effect and the δ13C values associated with nutrient-rich upwelled water and primary productivity. The first of these, the oceanic Suess effect, occurs in the modern oceans as a result of the anthropogenic burning of fossil fuels which release 12C-depleted CO2 into the atmosphere, resulting in lower atmospheric δ13C values (Keeling, 1979). In turn, the lowered δ13C values of atmospheric CO2 is exchanged with oceanic surface waters, resulting in the lowering of modern δ13CDIC values (Böhm et al., 1996; Druffel and Suess, 1983; Keeling, 1979). Several studies have quantified the oceanic Suess effect in seawater and biomineralized materials (e.g. scleractinian corals, bivalves, foraminifera) at a variety of localities (e.g. South China Sea, Atlantic Ocean, Southern Ocean) (Butler et al., 2009; Deng et al., 2017; King and Howard, 2004; Swart et al., 2010). These studies document that the Suess effect accounts for a 0.8–1.7‰ depression of modern (post-AD, 1900) seawater δ13CDIC values. While the magnitude of the oceanic Suess effect has not been quantified in the Canary Islands, Swart et al. (2010) comprehensively analyzed the oceanic Suess effect in both the Atlantic and Pacific basins. They reported that the magnitude of the oceanic Suess effect was greater in the Atlantic basin due to the relatively high rates of atmospheric recharge of CO2 into surface waters when compared to the Pacific. Between 1900 and 2000, Swart et al. (2010) reported that the δ13CDIC values of Atlantic surface waters were lowered by approximately ~1‰. They also reported that, across the same 100 years, the δ13C values of Atlantic scleractinians dropped by a similar magnitude—approximately 0.75‰—at a rate of ~0.0074 ± 0.0006‰ yr⁻¹ (Swart et al., 2010). Estrella-Martinez et al. (2014) found that in the North Atlantic basin the rate of change for the oceanic Suess effect was variable through time, but observed a net ~1.5‰ reduction in δ13Cshell values in the bivalve Arctica islandica between 1850 and 2000 AD. The oceanic Suess effect is also more pronounced in subtropical latitudes due to the increased ventilation of the surface waters within the subtropical gyres (Eide et al., 2017; Swart et al., 2010). Considering the presented rate of change by Swart et al. (2010) for the Atlantic Basin, the δ13CDIC values of modern seawater in the Canary Islands could be reduced by ~10–15‰ when compared to pre-1900 values. In the present study, we adopted the most conservative estimates and assume that up to 1.5‰ of modern δ13Cshell values are attributable to the oceanic Suess effect. Interestingly, after taking into account a 1.5‰ decrease related to the Suess effect, MCA δ13Cshell values remain ~1‰ higher than modern shells, suggesting that changes in oceanic upwelling and primary productivity must also play a role.

Coastal upwelling brings nutrient-rich water from the deep ocean to the surface, and this inflowing water is isotopically depleted in 13C due to the oxidation of organic matter (Bakun, 1990; Kroopnick, 1974; Sharp, 2017). Thus, the δ13CDIC value of water in upwelling zones is continuously replaced with water characterized by more negative values. The upwelled water, rich in nutrients such as nitrogen and phosphorus, can also lead to high primary productivity in the photic zone. Photosynthetic organisms (i.e. phytoplankton) preferentially uptake 12C during metabolic processes, thus enriching the remaining ambient seawater DIC with respect to 13C (Sharp, 2017; Steens et al., 1992). Accordingly, upwelling and primary productivity have opposing effects on the δ13CDIC value of seawater, but typically occur in conjunction with one another. The skeletons of calcium carbonate-bearing organisms utilize ambient δ13CDIC during calcification, and accordingly δ13Cshell values may provide insight into the relative dominance of these two factors (Poulain et al., 2010).

In the present study, the δ13C values of archaeological shells display a ~2.5‰ increase when compared to the modern shells, of which ~1‰ can be attributed to the oceanic Suess effect. This finding implies that the increased δ13CDIC values associated with primary productivity narrowly outweighed the decreased δ13C values associated with upwelled waters during the MCA, resulting in a slight overall net increase in δ13CDIC values in the surface waters inhabited by Phorcus atratus. Peeters et al. (2002) encountered an increase of δ13C values in foraminiferal tests from upwelling zones in the Arabian sea, while Tao et al. (2013) reported no significant difference in gastropod shell δ13C values between upwelling and non-upwelling zones along the Pacific coastline of Central America. Accordingly, while it is possible that higher δ13C values of the
sampled *P. atratus* shells reflect high primary productivity associated with upwelling, additional time series analysis of modern and ancient δ¹³C_shell values would be necessary to constrain and test the relative influences of upwelling and primary production on the δ¹³C_shell values of *P. atratus*.

5.3. Implications for the NAO during the MCA

The results of our study indicate a possible increase in the intensity of upwelling in northwest Africa during the middle and late MCA, which in turn suggests a positive mode of the NAO. The NAO is the primary synoptic mode of atmospheric circulation in the North Atlantic, and is driven by the difference in pressure at sea level between the Azores high pressure system and the Icelandic low pressure system (Hurrell et al., 2003; NOAA, 2018). The interaction between these pressure systems impacts the strength and direction of the westerly westerlies (Hurrell et al., 2003). A positive (negative) NAO index is characterized by a greater-than-average (smaller-than-average) pressure differential and strengthened (weakened) westerlies (George and Saunders, 2001; NOAA, 2018). Global winds, such as the prevailing westerlies, exert wind stress on underlying surficial oceanwater and are part of the mechanism (in combination with the Coriolis effect) that drives the generation and sustainment of ocean Gyres including the North Atlantic Sub-tropical Gyre (NASG) (Hassan, 1950). Thus, strengthened prevailing westerlies during years with a positive NAO index are likely to drive an acceleration and strengthening of NASG circulation. A strengthened NASG is also associated with enhanced upwelling in NW Africa due to greater offshore Ekman transport driven by stronger along-shore winds and surface currents (Hagen, 2001). Consequently, enhanced upwelling in NW Africa can be indicative of a positive NAO index. The data presented here from the Canary Islands supports an increase in upwelling strength during the MCA, and thus also indicates the possible presence of a positive mode of the NAO during the MCA.

The relationship between the NAO and upwelling has been studied before; however, there is still much debate regarding the role the NAO may play in the modulation of the upwelling regimes of Europe and Northwest Africa. In support of the NAO/upwelling relationship, McGregor et al. (2007) argue that diminishing NAO indices in the late 20th century, coupled with constant Cape Chir upwelling, indicated a loose connection between the NAO and upwelling in NW Africa. Conversely, Narayan et al. (2010) concluded that the connection between the NAO and upwelling in NW Africa was ambiguous, and there was no conclusive evidence that the NAO impacted NW African upwelling. Additional research lends support for the connection between the NAO and upwelling in Europe and Africa (Bode et al., 2009; deCastro et al., 2008; Lehmann et al., 2002), but all research indicates that coastal upwelling is driven by an interconnected range of factors that are inclusive of, but not limited to, the NAO.

NAO variability is, however, known to be linked to precipitation patterns in Europe and North Africa, and thus the NAO index can be approximated through analysis of precipitation and drought proxies. Trouet et al. (2009) used records retrieved from Scotland and Morocco to establish high- and low-latitude endmember precipitation values for the NAO dipole. The authors concluded that the MCA was characterized by a persistently positive mode of the NAO. They further proposed that atmospheric circulation variance associated with the positive NAO index were likely coupled with La Niña-like conditions. Other studies have correlated La Niña-like conditions with the strengthening of the Atlantic trade winds and subsequent enhancement of upwelling-favorable conditions in the subtropical Atlantic (Roy and Reason, 2001; Trouet et al., 2009).

These interpretations lend support to the interrelationship between NW African upwelling and a positive mode of the NAO.

Several proxy datasets and model results investigating other telltale NAO parameters (e.g., low temperatures in Greenland, warm temperatures in Northeastern Europe) during the MCA do not uniformly support the interpretation of a positive mode of the NAO (Gómez-Navarro and Zorita, 2013; Lehner et al., 2012; Ortega et al., 2014). Of these, Lehner et al. (2012) were unable to reconstruct a persistently positive NAO during the MCA using coupled general circulation models. However, the multi-model approach utilized by Ortega et al. (2014) demonstrated agreement with some of the NAO indices reported by Trouet et al. (2009) but still pointedly disagreed with the positive mode of the NAO during the early and middle MCA. Instead, Ortega et al. (2014) argues that a positive mode of the NAO manifested later, during the 13th and 14th centuries. Therefore, while both Trouet et al. (2009) and Ortega et al. (2014) indicate a transition to a positive NAO index by the latest portion of the MCA, they disagree on the timing of this transition.

Our data also support a shift to a positive NAO phase by the end of the MCA, but the limitations of our chronological data preclude a robust interpretation of the timing of this transition. The 2σ radiocarbon ages for archaeological shells in this study range from 900 to 1520 cal yrs AD, although most shells from both sites have median probability ages between 1090 and 1350 cal yrs AD. Therefore, while most archaeological shells at both sites likely derive from the middle or late MCA, some shells could have grown as late as 1520 AD. However, this knowledge gap in the early MCA is addressed by Surge and Barrett (2012) through the use of SST time-series analysis of *Patella vulgata* from the Orkney archipelago, Scotland. Surge and Barrett (2012) argue that the beginning of the MCA (around 900 AD) was characterized by a negative NAO index, as supported by colder winters and increased seasonality in Scotland. Additionally, they suggest that closer investigation of the data from Trouet et al. (2009) demonstrates lower NAO indices in the earliest part of their record, which is consistent with Surge and Barrett’s (2012) interpretation of a negative NAO index in the early MCA. Their study, combined with our data, the findings of Trouet et al. (2009), and the models generated by Ortega et al. (2014) support a shift of the NAO index from a negative to a positive phase during the middle of the MCA, which then remained consistently positive through the end of the MCA and into the 14th and (possibly) 15th centuries AD. While the timing of this transition is still up for debate, results available to date indicate that the MCA was impacted by the interplay of a wide range of contrasting and compounding climatic phenomena (i.e., Atlantic Oscillation, Atlantic Meridional Overturning Circulation, El Niño-Southern Oscillation) across multiple centuries in the North Atlantic (Cohen and Barlow, 2005; Trouet et al., 2012; Wanamaker et al., 2012).

6. Conclusion

High-resolution δ¹⁸O and δ¹³C time-series spanning the MCA in the subtropical eastern North Atlantic Ocean were retrieved for the first time using serial sampling of radiocarbon-dated *Phorcus atratus* shells preserved in archaeological sites on Tenerife, Canary Islands. Modern shells were also serially sampled, and the oxygen isotope data from both archaeological and modern shells were used to reconstruct paleotemperatures during the MCA. Results indicate that the mean SST from shells spanning the MCA was 18.2 ± 0.7 °C, while SST from modern shells was 20.0 ± 1.5 °C. Observed seasonality was -5.5 ± -1 °C for both modern and archaeological shells. Recorded summer and winter SSTs in the Canary Islands were reduced by -2 °C in shells spanning the MCA compared to...
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by National Science Foundation (NSF) Grant No. 1802153 awarded to Y.Y. and D.S. Additional support was provided by the Paleontological Society (PS) Ellis L. Yochelson Award, Geological Society of America (GSA) Graduate Research Grant Nos. 11303–16 and 11625–17, and a 2016 SEPM Foundation Student Assistant Grant, all awarded to W.P. This material is based upon work supported by the Graduate School Dean’s Dissertation Completion Fellowship at the University of Cincinnati, and the NSF Graduate Research Fellowship Program Grant No. 1610397, both awarded to W.P. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the University of Cincinnati. The authors would like to thank Mallín Blaxall (University of Cincinnati) for her assistance with sample collection, and Drs. Adrianne Lam (SUNY Binghamton) and Aaron Diefendorf (University of Cincinnati) for their constructive intellectual discussions. We would also like to thank three anonymous reviewers whose constructive feedback increased the quality and clarity of this publication.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.quascirev.2020.106635.

Reference
