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ABSTRACT 

 
CAITLIN RUSHLOW: EXHUMATION OF THE SOUTHERN PYRENEAN FOLD-

THRUST BELT FROM OROGENIC GROWTH TO DECAY 
(Under the direction of Dr. Jason Barnes) 

 
 

 We quantify the spatiotemporal patterns of exhumation across the southern fold-

thrust belt (FTB) margin with apatite fission track (AFT) thermochronology and compare 

the results with existing deformation, exhumation, and sedimentation chronologies. 

Eighteen bedrock samples record exhumation ~90 to 10 Ma. Rocks from the range core 

(Axial Zone) record rapid exhumation that progresses east to west and north to south 

consistent with patterns of tectonically-driven uplift. Sediments shed into piggyback 

basins retain a detrital exhumation signal. Samples from other FTB structures record in 

situ exhumation, suggesting sedimentary burial of sufficient magnitudes to reset the AFT 

system. A major exhumation phase occurs at the boundary between the thick- and thin-

skinned portions of the FTB wedge at 25-20 Ma. We suggest that this exhumation 

records uplift from sediment overloading the outboard FTB structures and/or wetter 

climate conditions. A final exhumation phase between ~20-10 Ma may be a response to 

base level lowering. 
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I.  INTRODUCTION 

 Tectonic and surfaces processes play important roles in the development of linked 

thrust belt-foreland basin systems. This is particularly true as they shift from active 

shortening to post-orogenic decay [Allen, 2008]. Critical wedge theory suggests that 

mountain belts accommodate shortening by developing a characteristic wedge-shaped 

form that prefers an equilibrium (critical) state defined by the mean topographic gradient 

and the basal decollement (taper) [Chapple, 1978]. Deformation, erosion, and 

sedimentation redistribute mass within the evolving wedge, influencing the topographic 

and structural expression of convergent tectonics [Davis et al., 1983; Dahlen et al., 

1984]. Numerical and analog models support critical wedge theory, demonstrating that 

the rates of surface processes affect crustal deformation from the scale of an entire range 

[Beaumont et al., 1992; Mugnier et al., 1997] to a single structure [Storti and McClay, 

1995; Simpson, 2006; Stockmal et al., 2007]. Therefore, quantifying the history of 

deformation, erosion, and sedimentation is important for understanding orogen evolution. 

 Continental collision zones develop bivergent deforming wedge geometries with 

dual foreland basins flanking a central range interior [e.g., Argand, 1916; Suppe, 1987; 

Brandon and Vance, 1992; Muñoz, 1992]. These mountain belts tend towards asymmetry 

across strike, forming a wider pro-wedge over the under-thrusting plate and a narrower 

retro-wedge over the overriding plate [Willett et al., 1993; Sinclair et al., 2005].  

Orographic focusing of precipitation [Willett, 1999], oblique convergence [Whitchurch et 

al., 2011], and crustal heterogeneities [Beaumont et al., 2000] can perturb the 

deformation field and distribution of mass within an orogen, generating further 

asymmetry along and across strike. After orogenesis ceases, processes such as isostatic 
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rebound [Gilchrist et al. 1994] and drainage basin reorganization [Garcia-Castellanos et 

al., 2003] can continue to alter the orogenic system. Fold-thrust belts (FTBs) play major 

roles in how wedges accommodate shortening and adjust their state in response to 

changing perturbations [Chapple, 1978]. At the wedge margin, the common thin-skinned 

portion of the FTB occupies a key position that is characterized by localized uplift on 

thrust fault-driven hanging walls and deposition both within the wedge in piggyback 

basins and in the adjacent, flexure-driven subsiding foreland basin during active 

orogenesis [DeCelles and Giles, 1996]. Thus, FTB margins are ideal locations to 

investigate the interaction between surface processes and tectonics because they occupy 

the transition between hinterlands dominated by uplift and erosion and mountain belt 

margins, characterized by more localized uplift and increasing components of sediment 

deposition that progressively reduce relief towards the foreland. 

 The doubly-vergent Pyrenean orogenic wedge formed from Late Cretaceous to 

Early Miocene (~80-20 Ma) continental collision of Iberia and Eurasia (Figure 1) [Sibuet 

et al., 2004] and accommodated moderate and variable shortening magnitudes (<165-80 

km) along strike [Muñoz, 1992; Vergés et al., 1995; Teixell, 1998; Beaumont et al., 

2000]. Existing datasets quantify the erosional exhumation in the range interior, the Axial 

Zone, and suggest that spatiotemporal variations in surface mass flux across the wedge 

and into the adjacent basins strongly impacted the development and architecture of the 

range [e.g. Morris et al., 1998; Fitzgerald et al., 1999; Sinclair et al., 2005; Whitchurch 

et al., 2011; Fillon and van der Beek, 2012]. In particular, the closure and abrupt 

reopening of the southern Ebro foreland basin is thought to play a major role in syn- and 

post-orogenic Pyrenean development [Coney et al., 1996]. Although the history of 
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deformation and sedimentation within and adjacent to the southern FTB wedge is well 

constrained [e.g. Burbank et al., 1992a; Hogan and Burbank, 1996; Vergés and Burbank, 

1996; Rahl et al., 2011], the relationship with exhumation on the thin-skinned portion of 

the wedge remains poorly quantified. Zircon fission track samples from the southern 

Pyrenees have an inherited exhumation signal from the range interior [Filleaudeau et al., 

2011; Whitchurch et al., 2011], but pilot apatite (U-Th)/He data from the region is reset 

[Fillon et al., 2010]. This hints that lower temperature thermochronometers, such as 

fission tracks and (U-Th)/He in apatite, may be reset and record in situ (non-detrital) 

exhumation associated with cooling post-deposition. 

In this study apatite fission track (AFT) thermochronology is used to quantify the 

spatiotemporal patterns of exhumation across an undocumented portion of the southern 

Pyrenean wedge. We compare this new exhumation record of the thin-skinned FTB 

margin with existing data from the range interior. Because sediment shed from the 

interior became incorporated into piggyback basins within the thin-skinned FTB, we 

differentiate between a detrital and a reset exhumation signal in sedimentary bedrock by 

comparing exhumation and deposition timing. The temperature sensitivity and spatial 

distribution of AFT data reveal that the Pyrenean orogenic wedge responded to crustal 

shortening through the processes of hinterland exhumation, erosion, basin sedimentation, 

and re-exhumation in response to deformation-driven uplift. We suggest that (a) most 

exhumation of the Pyrenean FTB appears to be related to taper adjustment by the 

orogenic wedge, although a post-orogenic base level lowering event may have excavated 

some areas and (b) climate may play an underappreciated role in the late stages of 

orogenesis. 
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II.  GEOLOGIC SETTING 

 In the Early Cretaceous (~125 Ma), the Iberian plate rotated counterclockwise and 

began converging northwards with Europe (Figure 1) [Sibuet et al., 2004]. Partial 

subduction of the Iberian lithosphere under the European plate and inversion of pre-

existing extensional faults accommodated shortening along this plate boundary [Vergés et 

al., 2002]. Major Pyrenean mountain building lasted from the Late Cretaceous to Early 

Miocene (~80-20 Ma) [Sinclair et al., 2005], forming a wedge with a central Axial Zone 

and flanking thrust belt-foreland basin systems (Figure 2) [Muñoz, 1992]. Beginning at 

36 Ma [Costa et al., 2009], the southern Ebro foreland basin became closed, losing 

connection with the Atlantic and causing sediments shed from the exhuming Pyrenees to 

fill the basin and even bury the southern flank of the FTB to elevations of ~2.6 km 

[Coney et al., 1996; Fillon and van der Beek, 2012]. Fluvial excavation of the southern 

FTB followed Ebro Basin capture by the Mediterranean 13-8.5 Ma [Garcia-Castellanos 

et al., 2003; Arche et al., 2010]. Rifting related to the opening of the Valencia Trough 

caused uplift of the southeastern margin of the Ebro Basin and eastern Pyrenees during 

the Neogene and Quaternary (<23 Ma) [Lewis et al., 2000]. 

 Pyrenean thrust belt structure, deformation timing, and spatial variations in 

shortening are well documented and relevant to the results of this study. Seismic 

reflection, balanced cross sections, and geodynamic models indicate maximum 

shortening of ~165-147 km in the central Pyrenees along the ECORS transect (Figure 

2B) [Beaumont et al., 2000; Muñoz, 1992]. Shortening decreases away from ECORS, 

with minimum estimates of ~125 km across the eastern Pyrenees [Vergés et al., 1995] 
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and 80 km across the western Pyrenees [Teixell, 1998]. The ECORS deep reflection 

seismic survey shows that the Axial Zone basement rocks are deformed into a crustal-

scale duplex structure [Muñoz, 1992]. The uppermost thrust sheet of the duplex forms the 

Nogueres Zone that acts as the backstop for the southern, thin-skinned portion of the 

FTB. To the east, the structural equivalent is the Freser antiformal stack (Figure 3) 

[Burbank et al., 1992b]. The thin-skinned portion of the FTB is widest in the central 

Pyrenees and consists of the Boixols, Montsec, and Sierres Marginales thrust sheets from 

north to south (Figure 2B, 3). Deformation across the central and eastern thin-skinned 

FTB lasted from the Late Cretaceous to Oligocene (~85-24 Ma). The south-central thrust 

sheets form an imbricate fan system that generally propagated southwards towards the 

foreland (Figures 2, 3) [Vergés and Muñoz, 1990], but some north-vergent and out-of-

sequence thrusting is evident from cross-cutting stratigraphic relationships [e.g., Burbank 

et al., 1992a; Meigs et al., 1996; Meigs and Burbank, 1997, Ramos et al., 2002]. In the 

eastern Pyrenees, the Vallfogona Thrust marks the southern boundary of the Cadi and 

Pedraforca thrust sheets [Vergés et al., 2002]. Magnetostratigraphy and fault gouge 

dating constrain thrust sheet development in the eastern Pyrenees to a narrower time 

frame than the south-central Pyrenees, from ~54-37 Ma [Burbank et al. 1992b, Capote et 

al., 2002, Haines, 2008]. 

 Existing thermochronometer data quantify the broadest exhumation patterns 

across the Pyrenees (Figure 3). Paired zircon U-Pb geochronology and fission track 

thermochronology in the southern thrust belt-foreland basin found that convergence, 

shortening, and exhumation accelerated during the Late Cretaceous (~80 Ma) 

[Filleaudeau et al., 2011] and that oblique convergence caused topography to develop 
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diachronously along strike, from east to west between the Late Cretaceous and Miocene 

(~80-20 Ma) (Figure 1) [Whitchurch et al., 2011]. Axial Zone Hercynian plutons 

exhumed most rapidly ~35-30 Ma in both the east [Morris et al., 1998] and the south 

[Fitzgerald et al., 1999], followed by slower exhumation starting at 30 Ma. The reduced 

exhumation from 30 Ma is attributed to base level change in the Ebro foreland basin, 

where syntectonic sediment infill reduced local relief [Beamud et al., 2010]. ECORS 

transect thermochronometer data and discrete element modeling show an asymmetric 

exhumation pattern in the central Pyrenees [Fitzgerald et al., 1999; Sinclair et al., 2005]: 

exhumation migrated from north to south in response to the propagation of deformation 

and erosion across the pro-wedge. This asymmetric pattern caused orogenesis in the 

Pyrenees to end with syntectonic sediment blanketing of the southern range margin, 

pushing deformation from the FTB front back towards the pro-wedge hinterland, 

enhancing topography and accelerating erosion ~20 Ma in the Nogueres Zone [Sinclair et 

al., 2005]. Remnants of this sediment blanket preserved in syntectonic basins on the 

southern thrust sheets record rapid cooling at ~50-40 Ma and ~30-25 Ma associated with 

source region exhumation in the Axial Zone [Beamud et al., 2010; Rahl et al., 2011]. 

Samples from the lowest elevations in the piggyback basins record partial fission track 

annealing <10 Ma, contemporaneous with fluvial excavation following Ebro Basin 

capture by the Mediterranean [Beamud et al., 2010]. Finally, thermokinematic modeling 

of the Axial Zone low-temperature thermochronology data suggests that the sediment 

cover filled in the existing topography of the southern Pyrenees to elevations of ~2.6 km 

[Fillon and van der Beek, 2012]. 
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III.  APATITE FISSION TRACK THERMOCHRONOLOGY 

Overview 

 Apatite fission track (AFT) thermochronology uses the formation and 

temperature-dependent retention of damage trails called fission tracks that accumulate in 

apatite grains from the fission decay of 238U to reconstruct the cooling history of rocks in 

the uppermost crust [Fleischer et al., 1975; Gallagher et al., 1998]. Apatite grains retain 

fission tracks at temperatures below an effective closure temperature, dependent on 

composition (~110-120°C for fluorapatite) and cooling rate [Ketcham et al., 1999]. In 

general, an AFT age, measured from the ratio of parent to daughter (238U : fission tracks) 

concentrations, represents the time since the grain cooled from below its closure 

temperature [Dodson, 1973]. Fission tracks form with lengths of 14.5-16 µm [Gleadow et 

al., 1986], but shorten (anneal) at temperatures within a partial annealing zone (PAZ) that 

occurs over a temperature window ~60°C below closure [e.g. Gallagher et al., 1998]. 

Many apatite grains (~20-40) are analyzed in a sample, thus providing a 

distribution of fission track lengths and ages. The length distribution preserves a record of 

the thermal history of a sample as it cools below its closure temperature and through the 

PAZ [Gleadow et al., 1986]. Summing the individual grain ages within each sample 

yields a pooled age [Donelick et al., 2005]. A chi-squared test (χ2) assesses the sample 

grain age variability [Galbraith, 1981]. A P(χ2) > 5% indicates minor grain age 

variability, and these samples are called concordant. A concordant sample pooled age 

represents the last time it cooled from closure temperature [Brandon et al., 1998; 

Galbraith, 1981; Green, 1981]. A P(χ2) < 5% indicates significant grain age variability, 

or discordance, and the pooled age is considered less meaningful [e.g., Green, 1981]. 
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Discordance may result from multiple component ages or heterogeneous mineral 

properties, especially in sedimentary rocks that can have multiple sediment sources 

[Tagami and O'Sullivan, 2005]. Fission track diameter (Dpar) is a measure of grain 

solubility and a proxy for composition and thus is commonly measured to distinguish 

these properties [Burtner et al., 1994; Ketcham et al., 1999]. Applying a combination of 

component age analysis and thermal modeling is the most useful technique for 

determining the thermal history of discordant samples [Barnes et al., 2006; Barnes et al., 

2008]. 

Sample Collection and Analysis 

We collected bedrock samples from four across-strike transects of the central-

eastern Spanish Pyrenees to determine the regional exhumation patterns across the 

southern FTB margin (Figure 3). These transects follow the balanced cross sections of 

Vergés [1999]. We targeted the major FTB structures, including the Cadi, Montsec, and 

Sierras Marginales thrust sheets, the Nogueres Zone, the Oliana anticline, and the Freser 

antiformal stack. We sampled Permian, Triassic, and Cretaceous sandstones and Eocene 

turbidites, sandstones, and conglomerates. We also sampled a Paleozoic schist north of 

the Freser antiformal stack and the Mount Louis-Andorra pluton exposed in the Axial 

Zone. We used standard techniques to isolate apatite grains and measure fission track 

ages, lengths, and Dpar values (Appendix A).  The fission track ages were determined 

using the laser ablation method (LA-ICP-MS) [Donelick et al., 2005; Hasebe et al., 

2004]. 
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Grain Age Analysis and Thermal Modeling 

 We applied both grain age analysis and thermal modeling to aid in interpretation 

of the AFT data (see details in Appendices B and C). For all discordant samples (P(χ2) < 

5%), we used binomial peak-fitting [Galbraith and Green, 1990] to identify the 

statistically significant age components with the software RadialPlotter [Vermeesch, 

2008]. We classified sample grain-age distributions to assess the cooling history as (c.f. 

Brandon et al. [1998]): reset (R), mixed reset (MR), partially reset (PR), or detrital (D). R 

and MR samples have one or more component ages that are younger than the bedrock 

formation age. A PR sample contains component ages both younger and older than the 

sample formation age. D samples have one or more component ages that are older than 

sample formation age. In sedimentary samples, a D sample implies source region cooling, 

R and MR suggest in situ cooling, and a PR sample some mixture of both. 

We used the thermal modeling software HeFTy [Ehlers, 2005; Ketcham, 2005] to 

constrain sample cooling histories consistent with the measured FT age, length, and Dpar 

data. We simulated geologic processes such as formation, exhumation, burial, and re-

exhumation (Figure 3 inset) by progressively incorporating time-temperature constraints 

on inverse models for each sample (see details Appendix B). We report time-temperature 

path envelopes that encompass the common merit values of 0.5 (good model fits) and 

0.05 (acceptable model fits) from a Kuiper statistical test [Ketcham, 2005]. Because the 

study area was unaffected by Cenozoic volcanism or extension [e.g., Vergés et al., 2002], 

we attribute recent thermochronometer-recorded cooling to erosional exhumation. 
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IV.  RESULTS 

Overview 

 We report AFT data for 18 bedrock samples from Cambrian through Eocene 

sandstones, conglomerates, schists, and granodiorites exposed across the southern Axial 

Zone and FTB of the Spanish Pyrenees (Figure 3). Sample grain age and track length 

yields range from maximum (40 ages, 200+ track lengths) to very poor (3 ages, 5 track 

lengths) with most (14 of 18) samples possessing robust results (>10 ages and track 

lengths). Sample pooled ages range from Late Cretaceous to Early Miocene (76.8-20.1 

Ma) with mean track lengths from 15.12 to 12.85 µm implying fast to moderate cooling 

through the PAZ (Table 1). The pooled ages, identical within error to the more commonly 

reported central ages (Appendix C), suggest that all samples experienced enough 

exhumation during Pyrenean orogenesis to reset the AFT system. However, since most 

samples are discordant, we used thermal modeling and grain age analysis to evaluate this 

simple interpretation. No correlation between Dpar and either track length or grain age 

within any of our samples indicates that sample discordance does not result from variable 

kinetic properties but instead likely reflects multiple age populations, although U loss 

could also play a role [Brandon et al., 1998; Ketcham et al., 1999]. All samples except 

one (WT1) have low mean Dpar values (<1.6 µm), suggesting they contain thermally-

sensitive fluorine-rich apatite [Carlson et al., 1999] with fission tracks that survive 

heating to ~100ºC and partially anneal between 100-40ºC (Figures 4-7) [Reiners and 

Brandon, 2006]. 
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Below, we summarize our results along the four FTB transects from east to west 

in the direction of increased shortening [Vergés et al. 2002], followed by the Andorra-

Mount Louis pluton in the Axial Zone. Samples are numbered from south to north and 

representative thermal model results are shown in Figures 4-7. We focus on the timing of 

most recent rapid cooling history of each sample based on the statistically good thermal 

model fits [Ketcham, 2005]. 

Eastern Transect (ET) 

 We report results from three samples along the eastern transect (Figure 4). Two 

samples (ET1, ET2) are from Late Cretaceous-Paleocene sandstone units of the 

Garumnian Formation exposed in the Freser antiformal stack. They have pooled ages of 

23-20 Ma and moderate mean track lengths (13.8-14.7 µm). Both samples are discordant 

and considered partially reset. Modeling indicates that sample ET1 cooled rapidly 

through 100°C between 25-20 Ma, whereas sample ET2 produced no model fits. Sample 

ET3 is from quartz-rich schist exposed on the hanging wall of the Ribes-Camprodon 

fault, north of the Freser antiformal stack. This sample has poor data quality (8 grains, 35 

track lengths) with modeling that suggests rapid cooling began from ~90°C 38-18 Ma. 

Central-Eastern Transect (CET) 

 We analyzed two samples from the Cadi thrust sheet south and north of the 

Pedraforca thrust sheet along the central-eastern transect (Figure 5). Sample CET1 is 

from the middle Eocene Campdevanol Formation on the Vallfogona thrust hanging wall. 

It has a pooled age of 30 ± 4.6 Ma and a mean track length of 13.01 ± 2.96 µm. CET1 is 

reset and slowly cooling through PAZ temperatures after 38-24 Ma. The northern sample 

(CET2) is from the lower Triassic Buntsandstein Formation [Gradstein et al. 2004] and 
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has a pooled age of 23.7 ± 2.2 Ma and a mean track length of 13.6 µm. The age 

components this sample is mixed reset and acceptable thermal model fits indicate recent 

cooling through ~110°C 27-21 Ma. 

Central-Western Transect (CWT) 

 We analyzed four samples along the central-western transect (Figure 6). Sample 

CWT1 is from the southern limb of the Oliana anticline and has a pooled age of 43.6 ± 

3.6 Ma and mean track length of 14.24 ± 3.1 µm. This sample is partially reset and 

cooled rapidly through PAZ temperatures ~18-16 Ma. Sample CWT2 is from the 

Cretaceous-aged sandstone of the Garumnian Formation and has a pooled age of 26.7 ± 

7.2 Ma and mean track length of 13.25 ± 2.88 µm. Modeling suggests this sample cooled 

from ~90°C between 34-15 Ma. Samples CWT3 and CWT4 are from Triassic and 

Permian sandstones in the footwall of the Boixols back thrust and have similar pooled 

ages (27.6-28.7 Ma) and mean track lengths and (14.1-14.2 µm). Both samples are reset. 

Sample CWT3 cooled below 90°C between 25-24 Ma. CWT4 is less constrained, but 

cooling rapidly between 36 and 18 Ma.  

Western Transect (WT) 

 We report seven samples on the western transect (WT), which is equivalent to the 

ECORS profile (Figures 2, 7). The southernmost sample (WT1) is from the Triassic 

Keuper Formation exposed in the Sierras Marginales thrust sheet hanging wall. This 

sample is concordant, but because it has poor FT data quality (3 ages, 16 track lengths), 

permissible model paths define a broad time period (64-32 Ma) for rapid cooling from 

closure temperatures. Sample WT2 is also from the Triassic Keuper Formation exposed 

on the Montsec thrust sheet. This mixed reset sample has a pooled age of 44.2 ± 8.4 Ma, 
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a mean track length of 14.67 ± 3.38 µm, and rapidly cooled 18-13 Ma from ~100°C. 

Sample WT3 is from the Cretaceous Marbore sandstone on the Montsec thrust sheet. It is 

partially reset and cooled slowly through the PAZ 90-45 Ma. Samples WT4-6 form an 

~500 m elevation transect within the Graus-Tremp Basin on the Montsec thrust sheet. 

They have pooled ages of 47.7-59.5 Ma and mean track lengths that increase up section, 

suggesting that the lower elevation samples from the profile spent more time in PAZ 

temperatures. WT4, a mixed reset sample from the Late Cretaceous-Paleocene 

Garumnian Formation at the profile base, began cooling 61-37 Ma. WT5, a detrital 

sample from Eocene sandstone in the middle of the profile, began cooling 71-53 Ma. 

Partially reset sample WT6, from the highest elevation, rapidly cooled from above PAZ 

temperatures between 52-41 Ma. Thermal models of WT5 and WT4 indicate slower 

cooling through PAZ temperatures. Finally, the northernmost sample (WT7) is from a 

Triassic sandstone in the Nogueres Zone and is mixed reset. WT7 cooled rapidly through 

closure temperatures 29-23 Ma. 

Andorra-Mount Louis Pluton 

 Two Axial Zone granodiorite samples from the Andorra-Mount Louis pluton have 

similar pooled ages (24.2-22.8 Ma), mean track lengths (14.2-13.6 µm), and Dpar values 

(1.4 µm). Both samples began to cool rapidly 25-20 Ma. 

 

V. DISCUSSION 

AFT Cooling and Wedge-Top Deposition 

 We determine whether AFT cooling on the southern FTB margin records an 

inherited exhumation signal from Axial Zone or in situ exhumation by comparing the 
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timing of exhumation with wedge top deposition (Figure 8). This comparison yields two 

distinct subsets within our data: (1) exhumation contemporaneous with deposition and (2) 

exhumation post-dating deposition. Case 1 indicates an inherited cooling signal, present 

in sedimentary units where the apatite grains were not fully reset by post-depositional 

burial and instead retain a record of cooling associated with their earlier erosion from the 

Axial Zone source region (red stars, Figures 3-8). This is the case for four of our five 

samples from the Montsec thrust sheet, including all of the Graus-Tremp Basin samples 

(Figure 8). There is a similar inherited signal in granitic cobbles from related syntectonic 

basins preserved on the Montsec and Boixols thrust sheets and Nogueres Zone (blue 

stars, Figure 3, 8) [Beamud et al., 2010; Rahl et al., 2011]. The only other location that 

retains a source region exhumation signal is the leading edge of the Sierras Marginales 

thrust sheet. All other samples from the southern FTB structures fit the second case 

because they experienced in situ exhumation great enough to reset the AFT system post-

deposition. While the possible exhumation timing of our Sierras Marginales sample is 

broad, if we refine it to the deposition age, it records a detrital signal of the rapid 

exhumation in response to antiformal stacking in the southern Axial Zone at ~30 Ma. 

Interpreted Exhumation History 

 The Late Eocene was a time of abrupt change in the southern Pyrenees. Thrusting 

and duplex formation rapidly exhumed the south-central Axial Zone ~35 Ma [Muñoz, 

1992; Morris et al., 1998; Fitzgerald et al., 1999; Beaumont et al., 2000; Sinclair et al., 

2005]. Ebro foreland basin closure [Burbank et al., 1992a; Verges and Burbank, 1996] 

caused drainage system reorientation from dominantly orogen parallel to orogen 

transverse (Figure 9) [Whitchurch et al., 2011]. The only AFT data on the thin-skinned 
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portion of the FTB recording pre-35 Ma exhumation are syntectonic piggyback basin 

sediments (white rimmed symbols, Figures 3-8). In the Axial Zone, the AFT data with a 

pre-35 Ma exhumation signal are clustered towards the north and east (Figure 3, 9A).  

 The overall distribution of pre-35 Ma exhumation reflects the patterns of along- and 

across-strike tectonic development during Pyrenean orogenesis (Figure 9A). Exhumation 

started in the eastern Pyrenees in response to oblique convergence driving uplift and 

topographic growth (Figure 1). Exhumation subsequently decreased in the eastern 

Pyrenees, preserving a record of older exhumation as uplift shifted along strike to the 

central Pyrenees during the Early to Middle Eocene ~55-40 Ma [Whitchurch et al., 2011]. 

While exhumation in the central Pyrenees began before 35 Ma, asymmetric convergence 

between the pro-wedge and retro-wedge drove exhumation southward over time [Sinclair 

et al., 2005], removing most of the pre-35 Ma signal from the southern Axial Zone. 

Subsidence within the Graus-Tremp Basin and equivalent syntectonic basins generated 

enough accommodation space to preserve the earlier erosion signal in detrital apatites 

from the Axial Zone source region [this study; see also Beamud et al., 2010; Rahl et al., 

2011], a signal that is not present anywhere else on the thin-skinned FTB. In this way, the 

hinterland and thin-skinned FTB components of the orogenic wedge functioned together 

to redistribute mass during shortening in response to plate convergence. 

Exhumation Magnitudes 

 We estimate exhumation magnitude on the FTB based on whether AFT sample 

ages are reset after deposition in our samples. Exhumation magnitudes are calculated 

assuming a paleogeothermal gradient of ~30°C/km [after Beamud et al., 2010], a closure 

temperature of 100ºC, and a 20ºC surface temperature. The data suggest exhumation 
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magnitudes did not exceed ~2.7 km in the interior of the Montsec thrust sheet or on the 

Sierras Marginales hanging wall (samples WT2-5, 7). This is consistent with structural 

data that estimate 0.5-1 km of material has been removed from the top of the Graus-

Tremp basin since 28 Ma [Meigs and Burbank, 1997]. Our results also suggest that 

syntectonic sediment shed off the eroding Axial Zone, estimated from inverse thermo-

kinematic modeling to reach elevations of ~2.6 km during the Late Eocene-Early 

Oligocene (~40-30 Ma) [Fillon and van der Beek, 2012], likely did not exceed ~3 km 

elevation. If the syntectonic infill exceeded this elevation, Miocene fluvial excavation 

may have reset the lowest elevation sample from the Sierras Marginales thrust sheet 

(WT1, 285 m elevation). 

Tectonics, Climate, and Exhumation 

 The majority of AFT thermochronometer-recorded cooling from the southern 

Pyrenean FTB resulted from in situ exhumation (star-filled circles, Figures 3-9). This 

exhumation occurred after 35 Ma, despite deformation in the thin-skinned portion of the 

FTB beginning at least 65 Ma [Ardevol et al., 2000]. We assess whether the in situ 

exhumation is related to near-surface deformation by comparison with exposed 

stratigraphic relationships and 40Ar/39Ar fault gouge dating in the southern Pyrenees [e.g. 

Meigs et al., 1996; Rahl et al., 2011]. For example, final motion on the Vallfogona thrust 

in the eastern Pyrenees (Figure 3) generated a progressive unconformity in the 

syntectonic Solsona foreland basin sequence 36-30 Ma [Verges and Burbank, 1996]. Our 

modeling indicates that rapid exhumation occurred contemporaneously on the Vallfogona 

thrust at 34-29 Ma (Figure 5). Therefore, we interpret the rapid exhumation to an 

erosional response to thrust-driven uplift.  
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 In other cases, the recorded rapid exhumation phases occurred after major fault 

motion ceased. Upper Eocene syntectonic conglomerates onlap thrusts in the Nogueres 

Zone and authigenic illite in a minor overturned proximal thrust is ~56 Ma [Rahl et al., 

2011]. Two of our AFT samples cooled rapidly (>20°C/Myr through the PAZ) between 

29-21 Ma in the Nogueres Zone, contemporaneous with AFT-recorded 26-17 Ma rapid 

cooling in nearby Carboniferous volcanic rocks [Sinclair et al., 2005]. Instead of being 

related to earlier thrusting episodes, this Late Oligocene to Early Miocene exhumation 

may represent a response to underplating and antiform growth that generated significant 

erosion and increased sediment flux to the Ebro Basin [Sinclair et al., 2005]. Samples 

from the Freser antiformal stack and from north of the Pedraforca thrust sheet record 

contemporaneous exhumation between 25-20 Ma and 27-21 Ma, respectively. These 

structures occupy a similar structural position to those in the Nogueres Zone at the 

transition between the Axial Zone and southern FTB (Figure 8).  

 Late stage (25-20 Ma) syn-orogenic exhumation in the Pyrenees could be caused by 

either exhumation commensurate with tectonic deformation and stable climate, or 

exhumation coincident with deformation and enhanced by climate change. Antiformal 

stack formation may have occurred synchronously along strike (Figure 9), coevally or 

immediately following the last phase of shortening on the southern thrust sheets after 

~24.7 Ma [Meigs et al., 1996]. Loading by the syntectonic sediment sourced from the 

Axial Zone at this time buried and stabilized the outboard FTB structures [Coney et al., 

1996], possibly causing deformation to shift towards the hinterland [this paper; Jolivet et 

al., 2007]. This would have allowed the orogenic wedge to rebuild taper through 

underplating and thrusting, accommodating the final phase of convergence [Beaumont et 
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al., 2000]. This idea is supported by existing thermochronometer datasets and numerical 

models that suggest uplift from antiformal stacking drove rapid exhumation in the south-

central Pyrenees during the Early Miocene [Sinclair et al., 2005; Gibson et al., 2007; 

Jolivet et al., 2007].  

 Alternatively, a regional or global shift to warmer, wetter conditions could have 

initiated an exhumation pulse in the Axial Zone. Global climate in the Miocene is thought 

to be relatively warm and arid, peaking with the Middle Miocene climatic optimum 

[Zachos et al., 2001]. However, recent investigations into the major element 

geochemistry of Early Miocene paleosols from the north-central Ebro Basin suggest that 

the regional climate was already subhumid to humid, with considerably more 

precipitation than the earlier arid to semiarid climate during the Late Oligocene [Cabrera 

et al., 2002; Hamer et al., 2007]. A shift to wetter, more erosive climate conditions poses 

another explanation for our observation of uniform along-strike exhumation ~25-20 Ma 

at the transition between the Axial Zone and thin-skinned southern FTB in addition to 

synchronous wedge adjustment across a structurally variable FTB. 

Post-Orogenic Exhumation 

 Two samples from the central FTB record the youngest, post-orogenic 

exhumation in the Pyrenees (Figure 9D). Syntectonic conglomerates on the eastern 

margin of the central thrust sheets indicate Montsec thrust motion and folding of the 

Oliana anticline ~40-25 Ma [Burbank et al., 1992a; Vergés and Muñoz, 1990]. Middle 

Eocene syntectonic conglomerates also bracket deformation to younger than ~45 Ma on 

the Montsec thrust west of sample WT2 [Meigs and Burbank, 1997]. However, model 

results show that the Oliana anticline and Montsec thrust sheet hanging wall both 
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experienced rapid exhumation during the Miocene (<23 Ma) (Figures 6, 7). This suggests 

a period of erosion that post-dates active shortening. Several post-orogenic factors could 

be responsible for this exhumation. Basin modeling [Garcia-Castellanos et al., 2003], 

seismic imaging of the Ebro delta [Urgeles et al., 2010], and paleo-topographic signals 

within thermochronometer data [Fillon and van der Beek, 2012] imply that capture of the 

paleo-Ebro River by the Mediterranean Sea (at ~13-8.5 Ma) caused regional base level 

lowering and triggered excavation of the sediment blanket that buried both structures. 

One of our Montsec thrust sheet samples exhumed between 21 and 10 Ma and may 

corroborate these conclusions with direct evidence from the excavated region. However, 

the Oliana anticline exhumation occurred before this base level lowering event at 18-16 

Ma. Thermo-kinematic modeling of thermochronometer data from the Axial Zone ruled 

out climate change as an important factor in the post-orogenic evolution of the Pyrenees 

[Fillon and van der Beek, 2012]. Finally, Late Oligocene-Early Miocene tilting near the 

southeast margin of the Ebro Basin, caused by lithospheric extension and thinning, coeval 

with opening of the Valencia Trough, may also enhance exhumation along large areas 

paralleling the range [Lewis et al., 2000]. More detailed sampling and combined AFT and 

(U-Th)/He dating in apatite (closure temperature ~70ºC [Farley, 2000]) could test if this 

Early Miocene exhumation event is robust. 

Summary and Comparison with Other Orogens 

We suggest that oblique convergence and orogenic wedge adjustment played an 

important role in the spatiotemporal pattern of exhumation in the Axial Zone and 

southern Pyrenean FTB. However, surface processes such as the distribution and 

magnitude of sediment flux, burial of the FTB margin, foreland drainage basin 
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reorganization, and climate-enhanced erosion modified this pattern. These broad 

components of Pyrenean structural and topographic development are consistent with the 

deformation, erosion, and sedimentation histories of other orogens. For example, stream 

capture can generate hundreds of meters of incision in the tectonically quiescent 

Appalachians [Prince et al. 2011], analogous to the post-orogenic incision that followed 

Ebro Basin capture by the Mediterranean. Duplex development and climate-driven 

erosion are important mechanisms for orogenic wedges to accommodate shortening and 

adjust their taper during mountain building. These mechanisms have been recognized as 

important during the Sevier orogeny in the western US [DeCelles and Mitra, 1995; Mitra 

and Sussman, 1997] as well as within portions of the Himalayas [Bollinger et al., 2006; 

Mitra et al., 2010; Thiede et al., 2005] and the central Andes [McQuarrie and DeCelles, 

2001; McQuarrie et al., 2008].  

 

VI.  CONCLUSIONS 

 This study documents Cenozoic exhumation across the southern flank of the 

Pyrenean orogenic wedge with 18 new bedrock apatite fission track (AFT) samples. 

Comparison between the AFT cooling histories and sample deposition timing 

differentiates between samples that record inherited exhumation from the range interior 

(Axial Zone) or in situ exhumation. The Graus-Tremp syntectonic piggyback basin 

sediments record Axial Zone exhumation ~70-40 Ma, consistent with detrital exhumation 

signals present in AFT samples from other south Pyrenean piggyback basins [Beamud et 

al., 2010; Rahl et al., 2011]. The Sierras Marginales and Montsec thrust sheets record 

Axial Zone exhumation ~90-30 Ma. At these locations on the thin-skinned FTB, the 
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inherited Axial Zone exhumation signal demonstrates that sediment burial and 

subsequent exhumation did not exceed ~3 km. Other thin-skinned FTB structures have 

reset cooling histories, recording in situ exhumation in excess of ~3 km. The Cadi thrust 

sheet exhumed from 34-29 Ma, contemporaneous with its final phase of deformation at 

36-30 Ma. Reset cooling ages from the Oliana anticline and Montsec thrust sheet hanging 

wall reflect post-tectonic exhumation 20-10 Ma, perhaps in response to fluvial incision 

from abrupt foreland base level change and/or regional tilting coeval with Valencia 

Trough extension.  Basement rocks at the transition from the thin-skinned FTB to the 

crustal-scale duplex of the Axial Zone record exhumation along the entire strike of the 

central-eastern FTB at 25-20 Ma. This rapid exhumation post-dates surface-breaking 

faults and may result from (a) antiformal stack development, previously noted in the 

Nogueres Zone of the central Pyrenees [Sinclair et al., 2005] and/or (b) a shift to more 

humid climate conditions in the Early Miocene [Hamer et al., 2007]. If exhumation is in 

response to uplift, deformation retreating from the thrust front to the interior of the 

orogen may relate to loading from erosional debris shed by the Axial Zone that 

accumulated on the southern FTB and foreland basin. 
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FIGURES 

 

 

Figure 1. Kinematically restored plate motions based on paleomagnetic data with Europe 
fixed [Simplified from Sibuet et al., 2004]. Arrows indicate relative plate motion 
directions.  Hachured regions show where compression occurred and dark blue represents 
ocean basin. 
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Figure 2. Geology of northeastern Iberia. (A) Simplified geologic map for the Pyrenees 
and surrounding regions [Modified from Vergés and Burbank, 1996]. Inset shows 
location and regional geographic context: Ap, Apennines; CC, Catalan Coastal Ranges; 
P, Pyrenees. Southern thrust sheets: B, Boixols thrust sheet; C, Cadi thrust sheet; M, 
Montsec thrust sheet; N, Nogueres Zone; P, Pedraforca; SM, Sierras Marginales. VE, 
vertical exaggeration. Red box is the study area and the blue line indicates the ECORS 
seismic profile [Muñoz, 1992]. (B) Crustal scale cross section along the ECORS transect 
(location in A) [modified from Beaumont et al., 2000]. Note the bivergent wedge 
geometry and central duplex vs. marginal thin-skinned FTB structures of the Pyrenees.  
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Figure 3. Topography, geology, and apatite fission track thermochronology data of the 
central-eastern Pyrenees. This synthesis highlights new and published bedrock apatite 
fission track (AFT) data within 10 km of the four transects. Inset shows our sample 
classification scheme, based on thermal model exhumation timing (white or black rim), 
location relative to where the sample most recently exhumed from AFT closure 
temperature (circle, star, or circled star; see discussion text for details), and dataset source 
(red or blue) [Morris et al., 1998; Fitzgerald et al., 1999; Gibson et al., 2007; Jolivet et 
al., 2007; Gunnell et al., 2009; Beamud et al., 2010]. Note that AFT pooled age, shown in 
white boxes alongside the sample number, and exhumation timing are not correspondent 
for discordant samples. WT, western transect; CWT, central western transect; CET, 
central eastern transect; ET, eastern transect. Geologic units generalized from Mapa 
Geologic de Catalunya [2003] and topography is the 30 m ASTER GDEM 
(http://asterweb.jpl.nasa.gov/gdem-‐wist.asp). 
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Figure 4.  Structure of the eastern study transect (ET, location in Figure 3) [simplified 
from Vergés, 1999],  numbered bedrock apatite fission track sample locations (symbol 
description in Figure 3 inset), and selected permissible time-temperature histories 
modeled with HeFTy [Ketcham, 2005]. Thermal envelopes show the range of good (dark 
red) and acceptable (light red) model fits. The white line is the best fit model path. Black 
boxes are modeling constraints (see methods for details). Horizontal gray lines highlight 
the partial annealing zone. Dashed vertical lines represent sample component ages 
determined using RadialPlotter [Vermeesch, 2008] (Appendix C). The track length 
distribution (red bars) and best fit model (line) are shown in the right panels. 
 

 

Figure 5.  Structure of the central-eastern transect (CET, location in Figure 3), bedrock 
apatite fission track sample locations, and associated thermal modeling results.  See 
Figure 4 caption for details. 
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Figure 6. Structure of the central-western transect (CWT, location in Figure 3), bedrock 
apatite fission track sample locations, and associated thermal modeling results.  See 
Figure 4 caption for details. 
 

 

Figure 7. Structure of the western transect (WT, location in Figure 3), bedrock apatite 
fission track sample locations, and associated thermal modeling results. Structurally 
equivalent to the ECORS profile. See Figure 4 caption for details. 
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Figure 8. Simplified cross sections [from Vergés, 1999] along the four studied transects 
shown in Figures 3-7 synthesizing existing exhumation and sedimentation timing data 
across the central-eastern Spanish Pyrenees [Beamud et al., 2010; Fitzgerald et al., 1999; 
Gibson et al., 2007; Gunnell et al., 2009; Jolivet et al., 2007; Morris et al., 1998; Rahl et 
al., 2011; Sinclair et al., 2005]. Overlap between timing of rapid cooling and deposition 
means the samples retain an inherited exhumation signal from the Axial Zone source 
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region. Onset of rapid cooling from samples in this study is shown from the acceptable 
(red) and good (dark red) fit thermal model envelopes (e.g., Figures 4-7). Cross sections 
extend southward from the North Pyrenean Fault to the Ebro Basin. See Figure 3 inset for 
sample symbol descriptions. Gray bars highlight the time windows shown in Figure 9. 
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Figure 9. Summary of the syn- to post-orogenic evolution of the central-eastern Spanish 
Pyrenees. The Axial Zone develops diachronously from east to west [Whitchurch et al., 
2011] and north to south in the central Pyrenees [Fitzgerald et al., 1999]. Closure of the 
Ebro Basin ~35 Ma causes syntectonic sediments to bury the southern thrust sheets, 
forcing the wedge to deform internally to rebuild taper and accommodate shortening. 
Fluvial excavation follows when the basin connects with the Mediterranean ~13-8.5 Ma 
[Garcia-Castellanos et al., 2003]. N-S cross sectional view of the structural evolution of 
the southern orogenic wedge and total shortening estimates for the ECORS transect from 
Beaumont et al. [2000]. For the key to AFT sample location symbols, see Figure 3. Axial 
Zone antiformal stack thrust sheets: N-Nogueres, O-Orri, R-Rialp. Southern thrust sheets: 
B-Boixols, M-Montsec, SM-Sierras Marginales. 
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Appendix A:  Analytical Procedures 

All AFT analyses were performed at Apatite to Zircon, Inc. Samples were crushed 

and sieved to sand-sized particles, then apatite grains were isolated using standard 

gravimetric and magnetic mineral separation techniques [Donelick et al., 2005]. Grains 

were mounted in epoxy resin, cured at 90°C for 1 hr, and then polished to expose the 

internal surfaces of the grains. Mounts were then immersed in 5.5N HNO3 for 20 seconds 

at 21°C to reveal natural fission tracks that intersected the polished grain surface. 

Samples were irradiated with 252Cf to facilitate fission track length measurement 

[Donelick and Miller, 1991]. Fission track lengths and crystallographic orientation were 

measured using a digitizing tablet interfaced with a computer at 2000x magnification 

under unpolarized light. Only natural, horizontal, confined fission tracks with clearly 

visible ends were measured. The mean Dpar was determined for each grain by measuring 

up to four etch pit diameters. Fission track grain ages were calculated using a modified 

form of the radioactive decay equation and the ratio of the number of fission tracks 

present to the concentration of 238U measured using laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS) [Donelick et al., 2005; Hasebe et al., 2004]. 

This decay equation includes a zeta calibration factor, which was determined by 

analyzing Durango and Fish Canyon apatite (30.6 ± 0.3 Ma from Cerro de Mercado, 

Durango, Mexico and 27.9 ± 0.7 Ma from the San Juan Mountains, Colorado, USA) at 

the beginning and end of each LA-ICP-MS session for its U:Ca ratio. 
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Appendix B:  Thermal Modeling 

We performed inverse thermal modeling of our AFT data using the software 

HeFTy version 1.7.4 [Ketcham et al. 2005]. We used the multi-kinetic annealing model 

of Ketcham et al. [1999] and included Dpar values. We projected the track lengths to the 

crystallographic c-axis [Donelick et al. 1999] and included 252Cf irradiation. 

We began with an initial, open-ended model open-ended model was performed 

with all sample data as one kinetic population with a starting temperature of (1) 200°C at 

a time that is 50 Ma older than deposition and (2) 20°C at present (after Barnes et al. 

[2006; 2008]). We ran this model to assess how distinct the recent cooling history is 

without bias from user-defined constraints. We then simulated source region exhumation 

and subsequent incorporation of apatite grains into sedimentary bedrock samples by 

forcing the time-temperature paths to travel from depth (200°C) 50 Myr before sample 

deposition to surficial conditions (10-30°C) during deposition, then to reheat (50-180°C) 

between deposition and 1 Ma before returning to the surface (20°C) by the present. By 

comparing the two models, we could confirm that the refined model better constrains the 

same cooling event as the open-ended model, ensuring that we imposed realistic 

modeling parameters that did not remove the intrinsic cooling history. We designated 

each time-temperature cooling path segment to be monotonic for simplicity. For 

maximum flexibility [see Ketcham, 2005] thermal history segments between each 

imposed t-T constraints were designated as episodic style, random spacing, with the 

largest number of vertices (halved 5 times). We enforced a maximum slope of 40ºC/Myr, 

assuming that cooling rates on the FTB structures will be similar to or lower than in the 
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Axial Zone [e.g. Metcalf, 2009]. We ran each inversion with a Monte Carlo search and 

50,000 attempted paths. 
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Appendix C:  RadialPlotter Results 
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