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ABSTRACT 

 

DANIEL O. KORALEK:  A Prospective Study of Polyunsaturated Fat Intake and 

Prostate Cancer 

(Under the direction of Dr. Jane C. Schroeder) 

 

 

 While the burden of prostate cancer is high, few well-established risk factors 

exist.  Recent efforts have focused on elucidating the role of diet in prostate 

carcinogenesis, including the roles of individual fatty acids.  Evidence has been 

inconsistent for the relations between specific fatty acids and prostate cancer risk.  

However, recent evidence suggests that high intakes of alpha-linolenic acid may 

increase prostate cancer risk while high intakes of longer chain omega-3 fatty acids 

may reduce prostate cancer risk.  We investigated the relations between incident 

prostate cancer and intakes of specific polyunsaturated fatty acids and their ratios 

within the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer 

Screening Trial and in the National Institutes of Health-AARP Diet and Health 

Study, two large prospective cohort studies of diet and cancer.  Cox proportional 

hazards models were used to estimate hazard ratios and their 95% confidence 

intervals.  In the PLCO population, we found that intake of linoleic acid, the most 

common !-6 fatty acid, was inversely associated with total prostate cancer 

(multivariable-adjusted hazard ratio (HR) for a 4g increment of intake = 0.94; 95% 
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confidence interval (CI)= 0.89 – 1.00).  Dietary intakes of !-3 fatty acids were 

positively associated with low-grade prostate cancer (HR for a 0.1g increment of 

intake = 1.04; 95% CI = 0.99 – 1.09) and trans fatty acid intakes were positively 

associated with high-grade disease (HR for a 2g increment of intake of total trans 

fatty acids = 1.07; 95% CI = 0.96 – 1.19). In the NIH-AARP population, we found that 

intakes of long-chain !-3 fatty acids were positively associated with total prostate 

cancer (MV-adjusted HR comparing C5 to C1 = 1.07; 95% CI = 1.02 – 1.12) and 

inversely associated with fatal tumors (MV-adjusted HR for a 0.1g increment of 

intake = 0.87; 95% CI = 0.78 – 0.98). Total TFA intake was inversely associated with 

high-stage disease (MV-adjusted HR for a 2g increment of intake total TFA = 0.95; 

95% CI = 0.89 – 1.02) and TFA 16:1 intake was positively associated with fatal 

disease (MV-adjusted HR for a 0.04g increment of intake = 1.07; 95% CI = 0.97 – 

1.18).  More research, involving additional prospective studies using instruments 

with better estimation of PUFA intakes may be used to clarify the role that dietary 

intakes of these highly interrelated fatty acids may play in prostate carcinogenesis 

and suggest avenues for primary prevention through the identification of modifiable 

risk factors for this high burden disease in men.
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DEDICATION 

 “We are at the very beginning of time for the human race. It is not 

unreasonable that we grapple with problems. But there are tens of thousands of 

years in the future. Our responsibility is to do what we can, learn what we can, 

improve the solutions, and pass them on.” 

 - Richard Feynman  
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CHAPTER I 

REVIEW OF THE LITERATURE 

A.  Introduction and Historical Background 

Prostate cancer is the most common cancer and second leading cause of 

cancer-related death among men in the United States, accounting for 218,890 new 

cases and 27,050 deaths in 2007(1).  In 2002, the age-standardized incidence rate of 

prostate cancer in the United States was 124.8 cases/100,000 men and the age-

standardized morality rate was 15.8 deaths/100,000 men (both rates standardized to 

the 2002 World population)(2).  Age-standardized prostate cancer incidence has 

trended upwards over the past three decades, with a sharp peak after the 

widespread implementation of Prostate Specific Antigen (PSA) testing (Figure 1)(3). 

Age-standardized prostate cancer mortality continued to increase with a similar 

trend when PSA testing was introduced, but has shown a small, but steady, decline 

during the past decade (Figure 2)(4), suggesting that the introduction of PSA 

screening mainly diagnosed latent tumors that were unlikely to impact mortality.  

While prostate cancer incidence and mortality vary by race, trends over the past few 

decades do not differ substantially by race. 

 While the burden of prostate cancer is high, there are few established risk 

factors(5). The most widely accepted risk factors for prostate cancer are non-

modifiable, including age, race, and family history of prostate cancer(5).  A study of
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more than 44,000 pairs of twins in Denmark, Finland, and Sweden suggested that 

42% (95% confidence interval, CI, = 29 – 50) of prostate cancer risk can be attributed 

to inherited risk factors(6), but only a small number of genes have been associated 

with prostate cancer, including the androgen receptor gene and Cytochrome P17(7).  

Increasing prostate cancer incidence and mortality among Japanese men that have 

migrated to the United States(8, 9) and increasing rates of prostate cancer within 

Asian countries (that traditionally have low rates of prostate cancer) suggest that 

lifestyle factors such as diet and physical activity may contribute substantially to the 

risk of prostate cancer(10).  Studies of lifestyle factors including diet (total energy 

intake, fat intake, and the intake of micronutrient intakes including lycopene and 

other antioxidants), physical activity, comorbid conditions (e.g. diabetes), and body 

size have generated conflicting findings(7).   

 Autopsy studies have suggested that nearly 30% of men aged 30 – 40 and 65% 

of men aged 60 – 70 have small cancers of the prostate(11). However, while the 

lifetime risk of prostate cancer is high, many tumors may be slow-growing cancers 

with little potential to cause clinically relevant disease or death.  On the other hand, 

the risk of prostate cancer mortality increases with tumor grade and stage at 

diagnosis(12).  Therefore, aggressive prostate cancer may be a greater public health 

concern than total prostate cancer, and many epidemiologic studies have estimated 

associations separately for case-subtypes characterized by stage, grade, and/or 

mortality(7). 

B.  Review of the Literature 

Because studies of total fat intake have been inconclusive, recent efforts have 

focused on the role of specific types of fat in prostate carcinogenesis(13).  Of 
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particular interest are the roles that polyunsaturated fatty acids (PUFAs) may play.  

Due to a combination of changes in livestock feeding routines, emphasizing grains, 

and the perceived health benefit of using cooking oils high in PUFAs, PUFA 

consumption has increased substantially in the United States(14).  Coupled with the 

perceived health benefits of PUFAs and negative health effects of saturated fat 

consumption, processed food producers have increased the use of artificially 

produced trans fats (TFAs), which are now thought to confer potential negative 

effects on a variety of health outcomes(15).  A number of epidemiologic studies have 

attempted to elucidate relations between specific polyunsaturated and trans fatty 

acids and prostate cancer, although the evidence has been relatively inconsistent.   

B.1.  Polyunsaturated Fatty Acids  

 Fatty acids are a primary building block of phospholipids and glycolipids, 

two important classes of biological molecules, that modify proteins (to form 

glycoproteins), generate energy within cells, and are metabolized to form hormones 

and other intracellular messengers(16).  All fatty acids consist of a long hydrocarbon 

chain bound to a carboxyl (-C(=O))OH) group(16, 17).  Fatty acids are essential to 

normal biologic function and are divided into three broad classes, according to the 

degree of saturation of the hydrocarbon chain(16, 17); saturated, monounsaturated, 

and polyunsaturated fatty acids (PUFAs). Naturally occurring monounsaturated 

fatty acids include a single double cis carbon-carbon bond in the hydrocarbon chain, 

and naturally occurring PUFAs include at least two double cis carbon-carbon bonds 

in the hydrocarbon chain(16, 17), although a limited amount of conversion of some 

double bonds to the trans conformation may occur in ruminants(18).  Fatty acids 

required for normal cellular function and which cannot be synthesized by the body 
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are classified as essential fatty acids(19) and must be supplied through diet.  

Furthermore, unsaturated fatty acids may be chemically modified through chemical 

means, such as the partial hydrogenation of vegetable oils, or in limited quantities 

through natural processes in the cow gut, to include carbon-carbon double bonds in 

the trans-fatty acids (TFA)(20).  Fatty acids can be identified by two numbers 

indicating the length of the hydrocarbon chain and the number of double bonds 

found within the chain (Table 1).  For example, a fatty acid labeled “18:0” has a 

hydrocarbon chain with 18 carbon atoms and no carbon-carbon double bonds, while 

a fatty acid labeled “18:2” also has 18 carbon atoms, but would include two carbon-

carbon double bonds.   

 PUFA intake has been a recent focus of research because of the potential 

benefits that this class of fatty acids, or specific types of PUFAs, may have on health 

outcomes, including cardiovascular disease and cancer(14, 21, 22).  PUFAs account 

for approximately 7% of total energy intake and 20% of energy intake from fats 

among adults in the United States(14).  PUFAs are most generally sub-classified by 

the location of the first double bond, counting from the methyl group end (the !-

end).  The majority of naturally occurring polyunsaturated fatty acids have double 

bonds in the third or sixth position (!-3 and !-6, respectively)(14).   

Major !-3 fatty acids include "-linolenic acid (ALA; 18:3), eicosapentaenoic 

acid (EPA; 20:5), docosahexaenoic acid (DHA; 22:6), and docosapentaenoic acid 

(DPA; 22:5)().  Major !-6 fatty acids include linoleic acid (LA; 18:2) and arachidonic 

acid (AA; 20:4).  The !-6 fatty acid LA is the most common PUFA in the US diet, 

accounting for approximately 87% of energy from PUFAs, while ALA is the most 

common !-3 fatty acid and second most common PUFA, accounting for 
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approximately 10% of energy from PUFAs(14).  DHA and EPA, two of the so-called 

“fish fats,” get a great deal of publicity even though they account for less than 2% of 

energy from PUFAs(14). Most !-3 fatty acids consumed in the US are from 

terrestrial sources, including vegetable seeds and oils, however the long-chain !-3 

fatty acids, DHA and EPA are most commonly found in fatty fish that obtain these 

fatty acids by consuming algae and other microscopic organisms(14). The most 

common dietary sources of DHA and EPA are fatty fish such as salmon and 

tuna(14).  It is important to note that although intake of the !-3 fatty acid ALA has 

increased substantially in recent decades in the US(23) there also has been an 

increase in the ratio of !-6 to !-3 fatty acids(14). This shift in the ratio of dietary !-6 

to !-3 fatty acids consumed in the US has been influenced by increased consumption 

of modern vegetable oils and the increased use of grains for livestock production, 

which favors oils rich in !-6 fatty acids (such as safflower and sunflower oils) and 

oils rich in ALA (such as canola oil)(14).   

Metabolism of the major PUFAs is highly interrelated (Figure 3)(19).  Because 

humans lack the sufficient enzymes to introduce necessary double bonds into 

hydrocarbon chains, both ALA and LA are essential fatty acids(14).  ALA can be 

converted into EPA and DHA in limited quantities(24).  However, because ALA and 

LA metabolic pathways compete for the same enzymes, this interconversion is 

limited by both the amounts of !-3 fatty acids consumed and by the ratio of !-6 to 

!-3 fatty acids(24).  DPA can be formed as a metabolic intermediary between EPA 

and DHA(14).   
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B.2. Potential Mechanisms for Prostate Carcinogenesis 

 A number of mechanisms have been proposed to explain potential relations 

between polyunsaturated fat intake and prostate cancer risk(19). For example, fatty 

acids may modulate prostate carcinogenesis through the modification of membrane 

phospholipid composition(25), by increasing lipid peroxidation(26), by modulating 

cell signaling activity(27-29) or cytokine production(30), and by interfering with 

androgen activity(31). Some of these mechanisms support a greater role of !-3 fatty 

acids and their metabolic byproducts on carcinogenesis, while others support a 

greater role for !-6 fatty acids; therefore evidence of both positive and negative 

effects of each class of fatty acids may be consistent with roles through different 

carcinogenic mechanisms.   

Perhaps, the strongest hypothesis for the role of dietary intakes of PUFAs in 

prostate carcinogenesis concerns the effects of intakes on the production of 

metabolic intermediates relevant to pathogenesis.  As previously noted, ALA and 

LA, the primary !-3 and !-6 PUFAs in the diet, compete for the same metabolic 

enzymes that are used produce EPA and AA, respectively (Figure 3)(19).  Therefore, 

increased concentrations of LA relative to ALA will limit conversion of ALA to EPA 

and DHA and increase conversion of LA of AA.   EPA and AA subsequently 

compete for the same metabolic enzymes (Cyclooxygenases; COXs and 

Lipoxygenases; LOXs) that are used to form prostaglandins (PGs) and other 

eicosanoids(19).  In addition, high dietary intakes of !-3 fatty acids increase their 

incorporation into cell membrane phospholipids, partially displacing AA, which 

decreases AA-derived eicosanoid production(32).   
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 Hypotheses regarding fatty acids and inflammation suggest a greater 

carcinogenic potential of !-6 fatty acids and their intermediates.  Specifically, AA-

derived eicosanoids, including prostaglandin E2, have been shown to stimulate 

prostate tumor growth in both prostate tumor cell lines(33) and animal models(34, 

35) and long-chain !-6 fatty acids (LA) have been shown to enhance growth of 

human prostate tumor cell lines(36).  In addition, AA has been shown to up-regulate 

COX-2 and COX-1(37), which may increase inflammation-mediated carcinogenesis, 

while !-3 fatty acids have been shown to suppress COX-2(38-40). 

 Potential carcinogenic mechanisms related to oxidative stress suggest a 

negative effect of the !-3 fatty acid ALA that may be indirectly related to LA-

mediated inhibition of ALA metabolism to DHA and EPA.  In particular, ALA has 

been shown to enhance #-oxidation(41), a process which generates hydrogen 

peroxide and which may explain why ALA has greater potential to create oxidative 

damage, and therefore increased tumorgensis, than either DHA or EPA.  Animal 

and cell culture studies suggest that individual !-3 fatty acids, particularly EPA and 

DHA, may inhibit prostate carcinogenesis(19).  Both DHA and EPA have been 

shown to inhibit tumor cell growth in both animal models and cell lines derived 

from human prostate tumors(42).  A study of mice fed linseed oil (containing about 

50% ALA) showed decreases in prostate tumor DHA levels, but increases in EPA 

levels, compared with mice fed corn oil(36), suggesting that DHA biosynthesis may 

be down regulated by high concentrations of ALA(43). In the study of mice fed 

linseed oil or corn oil rich in LA there was no evidence that prostate tumor growth 

was prevented with the high ALA diet(36).  In a separate study, rats fed perilla oil 
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(another oil rich in ALA) did not show a reduction in chemically induced prostate 

tumorgensis as compared with rats fed corn oil(44). 

One in vitro study showed that ALA increased growth of the TSU, LNCaP, 

and PC-3 prostate tumor cell lines(45).  However, two studies using DU-145 cells 

found that ALA increased apoptosis at physiological ALA concentrations(46) and 

suppressed cell proliferation(47).  This latter study also showed that urokinase-type 

plasimongen activator, an important protease enzyme thought to enhance 

carcinogenesis, production was inhibited by ALA(47).  A fourth study found that 

ALA decreased androgen receptor capacity and increased estrogen receptor capacity 

in the DU-145 cell line(48), suggesting that ALA may modulate steroid hormone 

receptor binding.  These apparent inconsistencies may be due to variations in cell 

growth conditions and/or differences in the concentrations of ALA and types of 

serum used in the cell culture medium(49). 

Mechanisms for associations between trans fatty acid (TFA) intake and 

prostate cancer are less clear.  One study found that cis-9, trans-11 conjugated 

linoleic acid, a naturally occurring trans-fat, inhibited the progression of the cell 

cycle from the G1 to S phase of DU-145 cell lines, a potential beneficial effect on 

tumor progression(50).  Similarly, tumor necrosis factor (TNF)-" inhibited apoptosis 

was increased in LNCaP cell lines exposed to this same isomer(51).  Hydrogenated 

fats, the source of the majority of trans-fatty acids in the diet, have been shown to 

increase production of inflammatory cytokines(15) and other markers of 

inflammation(52) in humans.  Additionally, a recent study found that serum 

concentrations of trans-fatty acids were associated with increased systemic 

inflammation(53).  Therefore, TFAs, particularly from artificially hydrogenated fats 
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and oils, may increase prostate cancer risk through a systemic inflammatory 

response.   

B.3.  Total Polyunsaturated Fatty Acid, Total !-3 Fatty Acid, and Total !-6 Fatty 

Acid Intakes and Prostate Cancer 

 Overall, the evidence has been fairly inconclusive for an association between 

total PUFA intake and prostate cancer risk (Table 2).  One prospective cohort(54) 

and two case-control(55, 56) studies found an increased risk of prostate cancer with 

increased dietary intake of PUFAs, while two case-control studies found an inverse 

association(57, 58), and two cohort(59, 60) and six case-control (61-66) studies found 

no association.  Newcomer, et al. reported that !-3 fatty acid intake was not 

associated with prostate cancer risk, but high !-6 fatty acid intake increased risk (OR 

comparing the 4th quintile of !-6 fatty acid intake to the 1st quintile = 2.3; 95% CI = 

1.0 – 5.4)(67).  Harvei, et al. conducted a nested-case control study of serum 

phospholipids concentrations of blood bank donors and found no association 

between prostate cancer and concentrations of total PUFAs or !-3 fatty acids, but a 

small inverse association with !-6 fatty acid concentrations(68).  In an analysis of the 

Multiethnic Cohort (MEC), Park, et al. found reported that total PUFA intake and 

total !-6 FA intake were not associated with either total or advanced prostate 

cancer(60).  However, they found a slightly reduced risk of advanced prostate cancer 

with increased intake of total !-3 FA (RR comparing the 5th to 1st quintiles = 0.90; 

95% CI  0.76 – 1.08)(60).  In an analysis of the Carotene and Retinol Efficacy Trial 

(CARET), Neuhouser, et al. found substantially stronger positive associations 

between total PUFA and total !-6 FA intakes and prostate cancer among men with a 
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family history of prostate cancer than among men with no family history of prostate 

cancer(59) 

Because studies of general fatty acid consumption, or classes of fatty acids, 

and prostate cancer have yielded inconclusive findings, and the fact that evidence 

suggests that specific fatty acids may act through different mechanisms, recent 

efforts have focused on studying the relations between specific fatty acids and 

prostate cancer. 

B.4.  Linoleic Acid and Arachidonic Acid and Prostate Cancer 

As with studies of total PUFAs and prostate cancer, studies of the !-6 fatty 

acid LA have been inconclusive (Table 3). Two case-control studies found an 

increase in prostate cancer risk with increased dietary intake of LA(63, 65), while one 

case-cohort(58) and one case-control(69) study found an inverse association, and two 

case-control(57, 66) and one cohort(70) study found no associations. A case-control 

study in Australia found no association between AA intake and prostate cancer 

risk(66).  Furthermore, in an analysis of the Health Professionals Follow-up Study, 

Giovannucci, et al. reported a stronger inverse association between dietary intake of 

LA and advanced prostate cancer than with total prostate cancer (RRs comparing 

the 5th quintile with the 1st quintile = 0.64 and 0.88; 95% CIs = 0.32 – 1.32 and 0.55 – 

1.43, respectively)(71).  A later follow-up of the same population found that the early 

inverse association was attenuated to null for total prostate cancer, and to a RR of 

0.80 (0.52 – 1.24) for advanced prostate cancer (72). There are limited data on AA 

intake and prostate cancer risk as AA is only a minor contributor to dietary fatty 

acid intakes.  However, the case-cohort study by Schuurman, et al. also found a 

slight positive association between AA intake and prostate cancer risk(58).  In 
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addition, Leitzmann, et al. also found no association between dietary intake of AA 

and total or advanced prostate cancer(72).   

A case-control study nested within the Alpha-Tocopherol and Beta Carotene 

Trial (ATBC) found an inverse association between prostate cancer and serum 

concentrations of LA and positive associations between prostate cancer and both 

serum concentrations and dietary intakes of AA(70).  One case-control study nested 

within the Physician’s Health Study (PHS) (73) found an inverse association 

between plasma cholesterol ester concentrations of LA, but not AA, and prostate 

cancer risk, while two other case-control studies found positive associations between 

erythrocyte membrane(67, 74) and adipose tissue(74) concentrations of LA.  In a 

case-control nested within the PHS, Chavarro, et al. reported that whole blood 

concentrations of LA were associated with a reduced risk of prostate cancer, 

regardless of aggressiveness (as measured by stage, grade, and a combination of the 

two), but concentrations of AA were associated with increased risk of aggressive 

prostate cancer(75). 

B.5.  Alpha-linolenic Acid and Prostate Cancer 

 Studies of intake of the !-3 fatty acid ALA and prostate cancer generally 

support a positive association (Table 4).  Three case-control(57, 69, 76) studies found 

a positive association between ALA intake and prostate cancer risk. The 

Giovannucci, et al. analysis(71) of the Health Professionals Follow-up Study found a 

positive association (RR comparing the 5th quintile to the 1st quintile of ALA intake = 

3.43; 95% CI = 1.67 – 7.04) with advanced prostate cancer, but not total prostate 

cancer.  An analysis including greater follow-up time had similar, but slightly 

attenuated findings(72).  These results are compatible with the hypothesis that ALA 
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may have weaker effects for localized prostate tumors than advanced tumors.  One 

case-cohort study(58) found an inverse association between prostate cancer risk and 

ALA intake (RR comparing the 5th quintile to the 1st quintile = 0.76, 95% CI = 0.66 – 

1.04) and one case-control study(66) one cohort study(60) also found a modest 

inverse association between ALA intake and prostate cancer risk.  Leitzmann, et al. 

found divergent effects for ALA intake and organ-confined and advanced prostate 

cancers, suggesting that ALA may act to promote tumor progression(72).   

We conducted an analysis of prostate cancer and ALA intake from specific 

food sources in the screening arm of the Prostate, Lung, Colorectal, and Ovarian 

Cancer Screening Trial(49).  ALA was not associated with total (RR comparing 5th to 

1st quintile of ALA intake = 0.94; 95% CI = 0.81 – 1.09) or advanced prostate cancer 

risk (either by stage or grade).  We also did not find any associations between 

prostate cancer risk and ALA intake from any specific food source.   

Six case control studies(67, 68, 70, 73-75) evaluated ALA biomarkers, rather 

than dietary intake of ALA, and prostate cancer risk.  A case-control study nested 

within the PHS found that increased plasma cholesterol concentrations of ALA were 

associated with increased prostate cancer risk(73).  Of the four case-control 

studies(67, 68, 70, 74) that investigated serum concentrations of ALA and prostate 

cancer, three found positive associations(67, 68, 77).  Godley, et al. also investigated 

the association between ALA concentrations in adipose tissue and prostate cancer; 

they found a slightly stronger positive association with prostate cancer risk than 

their analysis of erythrocyte membrane concentrations of ALA(74).  Erythrocyte 

membrane concentrations of fatty acids may be more reflective of short-term dietary 

intakes of fatty acids and may not reflect long-term intakes measured by dietary 

assessments.  In their analysis of ATBC data, Mannisto, et al. found no association 
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between prostate cancer risk and either serum concentrations of ALA or dietary 

intake of ALA(70).  In their analysis of PHS data, Chavarro, et al. reported stronger 

positive associations between high blood concentrations of ALA and non-aggressive 

prostate cancers (either by stage or a combination of stage and grade), but similar 

positive associations for low and high grade tumors(75). 

B.6.  Docosahexaenoic Acid and Eicosapentaenoic Acid and Prostate Cancer

 Studies dietary intakes of the long chain !-3 fatty acids DHA and EPA and 

prostate cancer generally suggest no associations (Table 5).  One case-control(62) and 

one cohort study(60) found no associations between dietary intakes of DHA and 

EPA and either local or distant prostate cancer while another(66) found an inverse 

association between EPA intake and prostate cancer (OR = 0.8; 95% CI = 0.6 – 1.11) 

and no association between DHA intake and prostate cancer. One case-cohort 

study(58) found no association between dietary intakes of either EPA or DHA and 

prostate cancer risk, while another(76) found that DHA and EPA consumption was 

inversely associated with prostate cancer risk (OR comparing the 4th quartile of 

consumption to the 1st = 0.70; 95% CI = 0.51 – 0.97).  The initial analysis of the Health 

Professionals Follow-up Study(71)  found no association between prostate cancer 

risk and DHA and EPA intake. However, the follow-up analysis by Leitzmann, et al. 

(72) suggests that DHA and EPA intakes may be inversely associated with prostate 

cancer risk, particularly with advanced cases.  The analysis of DHA and EPA dietary 

intakes in ATBC found possible positive associations between dietary intakes of 

both EPA and DHA and prostate cancer risk. 

Studies of biomarkers of DHA and EPA have more consistently been 

supportive of an inverse association between DHA and EPA and prostate cancer risk 
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than studies of dietary intakes (Table 5).  This may partially be the result of 

interconversion of ALA to these long-chain !-3 fatty acids since serum 

concentrations of DHA and EPA are determined by both dietary consumption of 

these fatty acids and their formation via ALA metabolism, which may, in turn, be 

influenced by consumption and metabolism of other PUFAs.  One case-control 

study nested within the PHS(73) found that serum cholesterol ester concentrations 

of EPA had a modest inverse association with prostate cancer risk (OR comparing 

the 4th quartile with the 1st = 0.87; 95% CI = 0.41 – 1.82).  Godley, et al.(74) found that 

erythrocyte membrane concentrations of both EPA and DHA and adipose tissue 

concentrations of EPA were inversely associated with prostate cancer risk while 

adipose tissue concentrations of DHA were not associated with prostate cancer risk.  

A nested case-control study by Harvei, et al.(68) found that serum concentrations of 

DPA were inversely associated with prostate cancer risk while serum concentrations 

of EPA and DHA were not.  A case-control study by Newcomer, et al.(67) found no 

associations between erythrocyte membrane concentrations of EPA and DHA and 

prostate cancer risk while another case-control study(78) found inverse associations 

between erythrocyte membrane concentrations of both EPA and DHA and total and 

advanced prostate cancer.  The case-control study nested within the ATBC study 

found an inverse association between serum concentrations of DHA, but not EPA, 

and prostate cancer risk(70). The more recent analysis of PHS data(75) generally 

found inverse associations between EPA, DHA, and DPA concentrations and 

prostate cancer regardless of grade, but found no associations with high stage 

tumors.  However, it is important to note that because the metabolism of fatty acids 

are dependent on one another (Figure 3), serum and tissue concentrations of fatty 
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acids may not be indicative of dietary intakes.  They may also not be as 

representative of long-term intakes of these fatty acids as dietary assessment 

methods. 

B.7.  Trans-fatty Acids and Prostate Cancer 

 Few studies have investigated relations between TFA intake and prostate 

cancer risk (Table 6).  One case-cohort study(58) found no association between total 

TFA intake and prostate cancer risk while a case-control study in Australia (66) 

found a modest positive association between dietary intake of the fatty acid 16:1 

TFAs and prostate cancer (RR = 1.2; 95% CI = 0.9 – 1.6) and no associations between 

18:1 and 18:2 TFAs.  Liu, et al. published a case-control study(79) and found positive 

associations between advanced cancer and intakes of 16:1, 18:1, 18:2 and total TFAs 

among Caucasians, but the suggestion of inverse associations among African 

Americans.  Intriguingly, they found that a functional mutant of the RNASEL gene 

modified this association among Caucasians while the mutation alone was not 

associated with prostate cancer risk.  In their analysis of CARET data(59), 

Neuhouser, et al, found that total TFA intake was positively associated with prostate 

cancer risk among men with a family history of prostate cancer, but not among men 

without a family history. 

 A single nested-case control study(80) investigated the associations between 

serum concentrations of specific TFAs and prostate cancer risk and found modest 

positive associations between prostate cancer and serum concentrations of most of 

the 18:1 and 18:2 TFAs and no associations with the 16:1 TFAs.  
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B.8. Ratios of Polyunsaturated Fatty Acids and Prostate Cancer 

As discussed previously, the mechanisms for which PUFA intake may 

modulate prostate carcinogenesis are highly interrelated(19).  For example, it is 

known that conversion of ALA to DHA and EPA is inefficient(81) and is modulated 

by dietary intakes of ALA as well as concentrations of DHA and EPA(19).  

Furthermore, it is hypothesized that competition for metabolic enzymes that 

synthesize AA from LA and DHA and EPA from ALA may influence the 

concentrations of these long-chain metabolites and their influence on prostate cancer 

risk(19).  Furthermore, because the long-chain !-3 and !-6 fatty acids compete for 

the same enzymes (and act in opposite directions on prostate cancer risk), the 

relative amounts of these classes of fatty acids may be more influential on prostate 

cancer risk than the absolute intakes(19).   

Few studies have reported associations between ratios of PUFAs and prostate 

cancer (Table 7).  A nested case-control study of serum concentrations of fatty acids 

and prostate cancer by Harvei, et al.(68) generally found inverse associations 

between increasing ratios of !-6 fatty acids to !-3 fatty acids and prostate cancer 

risk.  In their analysis of PHS data(75), Chavarro, et al. found a modest inverse 

association between the ratio of serum concentrations of !-6 fatty acids to !-3 fatty 

acids and a modest positive association between the ratio of serum concentrations of 

AA to EPA.  In their analysis of the MEC study, Park, et al.(60) found no associations 

between high ratios of dietary intakes of !-6 fatty acids to !-3 fatty acids and total or 

advanced prostate cancer.  Hedelin, et al.(76) found positive associations between 

the ratios of dietary intakes of !-6 fatty acids to !-3 fatty acids and !-6 fatty acids to 

DHA + EPA (results presented are inverse associations for the reciprocal ratios).  In 
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their analysis of the Health Professionals Follow-up Study, Leitzmann et al.(72) 

found no association between the ratios of dietary intakes of LA to ALA and a 

positive association between the ratio of LA to EPA and DHA (RR comparing the 5th 

quintile to the 1st quintile = 1.14; 95% CI = 0.98 – 1.33). They also found an inverse 

association between the ratio of LA to ALA and advanced prostate cancer and a 

positive association between the ratio of LA to EPA and DHA and advanced 

prostate cancer.  Most likely, these results are driven by the associations between 

prostate cancer and ALA, EPA, and DHA, detailed previously.   

B.9.  Summary of the Prior Literature 

A number of studies have investigated associations between prostate cancer 

and either dietary intakes or biological levels of PUFAs and results are somewhat 

conflicting.  In general, studies support positive associations between ALA and 

prostate cancer risk and inverse associations with DHA and EPA.  However, it is 

important to note that the majority of studies are retrospective in nature and may be 

limited by differential recall of diet based on case status, changes in diet as a result 

of their cancer diagnosis, or in the case of biomarker studies, changes in biological 

concentrations of fatty acids as a result of the cancer, although biomarker measures 

of PUFAs have been shown to correlate fairly well with dietary intakes(77). 

One difficulty that arises in comparing studies of diet is that dietary 

assessments vary in their ability to measure complete dietary intakes(82) which 

makes it difficult to compare categories of intake across studies that use different 

assessment methods.  Therefore, most studies compare ranked intakes (e.g. 

comparing quintiles of intake). For example, in a validation substudy among male 

participants in the NIH-AARP Diet and Health Study, the correlation between 
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PUFA intakes from food frequency questionnaire and diet record was 0.47 and 0.53 

after energy intake was adjusted for(83).  However, neither assessment method is 

perfect.  Not only are there differences in assessment by method, but also different 

instruments within the same approach can provide different estimates.  Subar, et al. 

found in a comparison of the Block, Willet, and NIH Diet History Questionnaire 

(DHQ) that adjustment for energy intake increased the comparability of the three 

food frequency questionnaires(84).  We know, for example, that the dietary 

assessment used in the screening arm of the PLCO Screening Trial did not include 

items on the types of cooking oils used.  Because vegetable oils are large sources of 

ALA in the diet, our intake data is expected to be lower than that generated by a 

food frequency questionnaire (FFQ) that did inquire about cooking oils.  A further 

discussion of the comparability of the two food frequency questionnaires used in the 

proposed dissertation research can be found in the methods chapter.   

Furthermore categories of nutrient intakes by quantile may not be directly 

comparable across studies as absolute intakes of nutrients in studies may vary across 

different populations.  For example, if the distributions of intakes in two populations 

differ substantially, individuals who would have been classified in the 5th quintile of 

intake in one population might be equivalent to individuals in the fourth quintile of 

another study (based on absolute intakes).    

 Data from prostate tumor cell lines which has demonstrated that PUFAs can 

modulate tumor cell replication and growth, supporting the hypothesis that PUFAs 

act later in carcinogenesis(19).   As such, studies that have investigated relations 

between PUFAs or TFAs and prostate cancer and had sufficient case numbers to 

stratify by prostate cancer aggressiveness (or mortality) have tended to find stronger 

associations with more aggressive disease.    
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Given that PUFA intakes may act to promote tumor growth(19) and that 

screening is believed to have increased the detection of slow growing tumors(3, 4) 

recent studies have focused on elucidating relations between PUFA intake and more 

aggressive or fatal prostate cancers(49, 72). Furthermore, studies with sufficient 

power (49, 72, 79) have stratified analyses by both potential biological modifiers (e.g. 

the COX inhibiting non-steroidal anti-inflammatory drugs, NSAIDs) and other 

purported risk factors for prostate cancer (e.g. race). 

 While biological levels of PUFAs may be more related to biologic 

mechanisms, dietary intakes are more relevant in terms of primary prevention as 

biological concentrations are modifiable through dietary intakes.  Godley, et al. 

found correlations between erythrocyte membrane concentrations and FFQ 

estimates of EPA and DHA consumption of 0.44 and 0.41, respectively and between 

adipose tissue concentrations and FFQ estimates of 0.38 and 0.32, respectively(77).  

These correlations are similar to estimates of the correlations between erythrocyte 

membrane and adipose tissue concentrations of these same PUFAs(77).   Biological 

concentrations are only modifiable as a function of dietary intakes.  

Few large prospective studies have comprehensively examined relations 

between dietary intakes of specific PUFAs and their ratios, and prostate cancer risk. 

The majority of studies, including our prior analysis of ALA intake in the PLCO 

study, has focused on one subset of PUFAs (e.g. long-chain !-3 fatty acids) and have 

not thoroughly investigated the entire set of interrelated nutrients and prostate 

cancer risk.  Few studies have investigated dietary intakes of TFAs.   

We extended our original analysis of ALA intake in PLCO and used these 

two large, well-designed prospective studies of diet and prostate cancer to 

investigate these relations.  Results of this study may be used to help understand 
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how not only individual polyunsaturated fatty acids may influence prostate cancer 

risk, but also the role that ratios of these fatty acids may influence risk.  

Furthermore, this study provides additional data on potential negative health effects 

of trans fatty acids.   



 

 

CHAPTER II 

STATEMENT OF SPECIFIC AIMS 

A.  Specific Aims 

 Although prostate cancer is the most common cancer and second leading 

cause of cancer-related death among men in the United States(1), few established 

risk factors exist(85). The most widely accepted risk factors for prostate cancer are 

non-modifiable, including race and family history of prostate cancer(85).  However, 

wide geographic variation in prostate cancer incidence and mortality rates suggests 

an etiologic role for lifestyle factors(85). Evidence has supported a role for 

environmental factors associated with a western lifestyle in prostate cancer 

etiology(85).  Studies of dietary consumption of fats and prostate cancer have been 

inconclusive(86).  Recent interest has focused on consumption of specific fatty acids 

in association with prostate cancer risk(13, 21, 87).  Increases in polyunsaturated fat 

intakes in the western diet, particularly in !-linolenic acid (ALA) and linoleic acid 

(LA), the most common omega-3 (!-3) and omega-6 (!-6) fatty acids(14), 

respectively, have correlated with increases in prostate cancer incidence, even prior 

to the widespread introduction of prostate specific antigen (PSA) testing.  A number 

of epidemiologic studies have investigated the relations between total 

polyunsaturated fat intake(54-57, 61-65, 88), and intakes or biological concentrations 

of linoleic acid (LA, 18:2, !-6) (57, 63, 65, 67-74, 88, 89),
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!-linolenic acid (ALA, 18:3, !-3), and docosahexaenoic acid (DHA, 22:6, !-3) and 

eicosapentaenoic acid (EPA, 22:5, !-3) (62, 67, 68, 70-74, 88-90).  Although results of 

these studies have been inconclusive, they generally suggest a modest inverse 

association between long-chain !-3 fatty acids (DHA and EPA) and prostate cancer, 

and modest positive associations between the short chain !-6 and !-3 fatty acids 

(LA and ALA, respectively) and prostate cancer.   These associations are biologically 

plausible as LA is metabolized to arachidonic acid (AA, 20:4, !-6) by the same 

enzymes that synthesize EPA and DHA from ALA(19). Eicosanoids formed as 

metabolites of AA, including prostaglandins and thromboxanes, have been 

implicated in prostate growth and inflammation(19). Furthermore, ALA has been 

shown to have the ability to increase oxidative damage, potentially promoting 

carcinogenesis(19).  Because of this enzymatic competition, it is thought that the 

ratio of !-6 to !-3 fatty acid consumption may be more important than the absolute 

intakes of specific PUFAs(19). An additional strong hypothesis suggests that EPA 

and DHA may inhibit prostate carcinogenesis by competing for a second set of 

enzymes, such as COX-2, that are used to form eicosanoids from AA(19).  Few 

studies have reported on relations between trans-fatty acids (TFAs) and prostate 

cancer(58, 66, 79, 80), but data suggest that there may be a positive association.  A 

positive association is plausible as TFAs from partially hydrogenated have been 

hypothesized to increase an inflammatory response(15, 52, 53). 

 We proposed to estimate the associations between prostate cancer incidence 

and 1) specific polyunsaturated fat intakes, 2) ratios of polyunsaturated fatty acid 

intakes, and 3) trans fatty acid intakes by conducting separate cohort(91) analyses of 

men enrolled in the screening arm of the PLCO Cancer Screening Trial(92, 93) and of 
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in the National Institutes of Health (NIH) – AARP (formerly the American 

Association of Retired Persons) Diet and Health Study(94).   

Specific aims of this study were to: 

1. Estimate associations between prostate cancer incidence and dietary intakes 

of !-3 and !-6 fatty acids (ALA, DHA, DPA, LA, and AA) and their ratios 

and dietary intakes of trans-fatty acids (TFAs) among men in the screening 

arm of the PLCO trial. 

2. Assess the degree to which these associations are modified by race, body 

mass index (BMI), which may affect fatty acid metabolism, total energy 

intake, and non-steroidal anti-inflammatory drug (NSAID) use. 

3. Evaluate these associations separately for prostate cancer cases classified 

according to stage and grade. 

4. Estimate the associations between prostate cancer incidence and dietary 

intakes of !-3 and !-6 fatty acids (ALA, DHA, DPA, LA, and AA) and their 

ratios and dietary intakes of TFAs among men in the NIH-AARP Diet and 

Health Study. 

5. Assess the degree to which these associations are modified by race, BMI, and 

NSAID use. 

6. Evaluate these associations separately for advanced and fatal prostate cancer 

cases. 

Study aims one, two, and three were addressed through analyses of data 

collected through the baseline PLCO questionnaires and screening visit, expanding 

upon our previous analysis of ALA intake and prostate cancer(49).  The PLCO 

Cancer Screening Trial is a multi-site clinical trial, that enrolled participants at 10 
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sites throughout the United States (Birmingham, AL, Denver, CO, Detroit, MI, 

Honolulu, HI, Marshfield, WI, Minneapolis, MN, Pittsburgh, PA, Salt Lake City, UT, 

St. Louis, MO, and Washington, DC)(93).  Participants were recruited from the 

general populations by advertisements, direct mailings, and other means(93).  The 

PLCO screening arm enrolled 38,350 men between the ages of 55 and 74 years from 

1993 through 2001 and will follow-up men for a variety of endpoints, including 

prostate cancer, for at least 13 years(93).  All men were free of cancer at baseline.  To 

date, nearly 1,900 prostate cancer cases have been ascertained, including 285 tumor 

classified as “advanced” (clinical stage greater than or equal to T3b, N1, or M1)(49).  

Because we have precise data on time-to-event, associations were estimated using 

Cox proportional hazards models(95) using age as the underlying time metric(96).  

Furthermore, the proportional hazards model is free of distributional assumptions 

and only relies on the proportional hazards assumption being held.  To estimate 

effects between nutrients and tumor stage and/or grade, we fit separate models for 

each outcome of interest.   

Aims four, five, and six were addressed through analyses of data collected 

from the baseline questionnaires of the NIH-AARP Diet and Health Study(94).  The 

NIH-AARP Diet and Health Study enrolled 340,148 men aged 50-71 years between 

1995 and 1996 in six states (CA, FL, PA, NJ, NC, and LA) and two metropolitan areas 

(Atlanta, GA and Detroit, MI)(94).  Participants were recruited through direct 

mailings to AARP members and will be followed-up for at least 10 years for a 

variety of endpoints, including prostate cancer(94).  More than 10,000 prostate 

cancer cases have been ascertained through the first five years of follow-up 

(2000)(50). Associations will be estimated using Cox proportional hazards 

models(95) using age as the underlying time metric(96).  To estimate effects between 
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nutrients and tumor stage and/or fatality, we fit separate models for each outcome 

of interest. Study results may be used to help clarify the role that dietary intakes of 

specific polyunsaturated fats in prostate carcinogenesis and suggest avenues for 

primary prevention through the identification of modifiable risk factors for this high 

burden disease in men. 

B.  Hypotheses and Rationale 

 Hypotheses and rationales for each aim of the proposed study are: 

Aim 1:  ALA intake will not be related to either total or advanced prostate cancer as 

our prior analysis of ALA and prostate cancer in PLCO yielded null findings and 

only approximately 20 additional cases have been ascertained through additional 

case-ascertainment during the same follow-up period.  However, modest changes in 

the effect sizes may occur after additional control for intakes of other PUFAs.  DHA 

and EPA intake will be associated with a reduced risk of prostate cancer, 

particularly among advanced cases, as the majority of prior studies have found an 

inverse association with increased DHA and EPA and one may expect a stronger 

effect with advanced cases given the hypothesis that DHA and EPA may have 

antiproliferative effects.  LA intake, and to a lesser extent AA intake, will be 

associated with a small increase in prostate cancer risk, consistent with the prior 

literature.  Because of the null findings for ALA intake in PLCO, we expect that the 

ratio of LA/ALA intake will most likely have a modest positive association given 

the similarities in the PLCO population with the study of these ratios in the 

Physician’s Health Study.  A high ratio of LA to DHA + EPA intake will be 

associated with an increased risk of prostate cancer given that we expect LA, and its 

proximate metabolite AA, to competitively inhibit the beneficial eicosanoid and 
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prostaglandin synthesis from DHA and EPA.  Due to the interrelated metabolism of 

these PUFAs, a more thorough investigation of the associations of ALA along with 

other PUFAs may shed greater insight into the true relations with prostate cancer.   

Aim 2:  Because NSAID use may be of too small a dose relative to intake, and self-

reported use may not accurately reflect true use over the etiologically relevant time 

period, and NSAID use (and NSAIDs COX inhibitory properties) did not previously 

modify our relations between ALA intake and prostate cancer, we do not expect that 

it will modify our associations.  However, it is possible that these associations will 

differ with the other individual fatty acids.  Similarly, neither BMI nor race strongly 

modified risk in our previous analysis, and will be unlikely to modify the current 

associations.  In general, prior studies have either been underpowered to conduct 

stratified analyses or have not reported substantial effect measure modification by 

other known risk factors for prostate cancer.  In order to remain consistent with the 

literature, we will evaluate modification by other purported risk factors for prostate 

cancer. 

Aim 3:  If associations are present in PLCO, we may expect that they would be 

stronger for advanced prostate cancer cases (either high stage or grade or a 

combination of the two).  We did not see any associations with ALA intake and 

advanced prostate cancer in PLCO.  We did not, however, comprehensively analyze 

the role that other PUFAs, and their ratios, had on prostate cancer incidence.  

However, associations in studies that investigated advanced prostate cancer 

separately tended to be stronger than those with total cases.  Furthermore, these 

associations are plausible considering some of the proposed mechanisms for 

relations between PUFAs and prostate cancer risk, such as lycopene intake, smoking 

history, and NSAID use.   
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Aim 4:  Considering the body of literature, we would expect that ALA intake will be 

associated with prostate cancer risk in the AARP cohort, particularly with advanced 

and fatal cases of prostate cancer.  The AARP study used an enhanced dietary 

questionnaire that may better distinguish variability in dietary PUFA intakes, in 

similar populations.  Similarly, we expect that DHA and EPA intake will be 

associated with a reduced risk of prostate cancer.  Consistent with the body of 

literature, we would expect that the ratio of LA to DHA + EPA will be positively 

associated with prostate cancer risk and the ratio of LA to ALA intake will not be 

associated with prostate cancer risk.   

Aim 5:  As with the PLCO population, we do not expect substantial modification 

between PUFA intakes and prostate cancer by NSAID use, race, or BMI.  In order to 

remain consistent with the literature, we will evaluate modification by other 

purported risk factors for prostate cancer.  

Aim 6:  As with PLCO, we expect that associations will be stronger with advanced 

(defined by stage) prostate cancers and, in the case of AARP, with fatal cases of 

prostate cancer. 

 

 



 

 

CHAPTER III 

METHODS 

A.  Overview of Methods 

 We prospectively investigated relations between prostate cancer and dietary 

intakes of PUFAs within two large cohort studies, the screening arm of the Prostate, 

Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial(97) and the NIH-

AARP Diet and Health Study (AARP)(94).  Diet was assessed at baseline in both 

cohorts using semi-quantitative food frequency questionnaires (FFQs). Additional 

data on potential confounders and effect measure modifiers were collected at 

baseline through extensive background questionnaires.  We used a second risk 

factor questionnaire to collect additional data on potential covariates from AARP 

participants approximately six months after enrollment.  In addition, it was possible 

to treat screening behavior as a time-varying covariate during follow-up of 

participants in PLCO, allowing for differential adherence to the PLCO screening 

protocol (i.e. as our analyses of the PLCO data is not a comparison with the trial 

control group, we will not use “intention to treat” analyses).  We estimated hazard 

ratios and 95% confidence intervals for associations using Cox Proportional Hazards 

models(95) and presented both age-adjusted and multivariable-adjusted results.   
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B.  Study Design 

B.1.  The Screening Arm of the PLCO Cancer Screening Trial 

B.1.a.  Study Population 

 The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial is a multi-

site (Birmingham, AL, Denver, CO, Detroit, MI, Honolulu, HI, Marshfield, WI, 

Minneapolis, MN, Pittsburgh, PA, Salt Lake city, UT, St. Louis, MO, and 

Washington, DC; Figure 4) clinical trial sponsored by the National Cancer Institute 

(NCI) that was designed to test the effectiveness of screening for these four cancers 

and to identify early markers and etiologic determinants of cancer(93).  Participants 

were recruited from the general population through direct mailings, advertisements, 

and other means and were enrolled between November 1993 and June 2001(98).  A 

total of 38,350 men (Table 8) between the ages of 55 and 74 years were enrolled into 

the screening arm of the trial.  Men in the screening arm of the PLCO trial were 

screened annually, beginning at baseline and continuing through year 5, by prostate 

specific antigen (PSA) test and were also screened annually through year 3, by 

digital rectal exam (DRE).  Study participants provided written informed consent.  

The institutional review boards of the NCI and the ten participating screening 

centers approved the study.  Current analyses were exempted from institutional 

review board review at the University of North Carolina as the research was 

deemed “non-human subject research.” 

 Men were excluded from our analyses if they had a prior history of cancer 

other than non-melanoma skin cancer (n= 791), did not undergo an initial screen (n 
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= 2,471), underwent an initial screen but did not have subsequent contact (n = 1,458), 

did not complete the baseline or dietary questionnaire (n = 7,493), reported an 

energy intake in the top or bottom 1% of the reported energy intake distribution (n = 

634), or completed their baseline after 30 September, 2002 (n = 71).  After exclusions, 

29,592 men were eligible for our proposed analyses.  The men in the final analytic 

cohort do not differ substantially from those men excluded from analysis with 

respect to age, level of education, smoking status, and family history of prostate 

cancer(49).  For these analyses, men were followed-up from completion of the 

baseline questionnaire until the date of diagnosis, death, date of last questionnaire 

return, or the end of the study period (30 September, 2002), whichever date came 

first. 

B.1.b.  Exposure Assessment 

 At baseline, participants completed a self-administered semi-quantitative 137-

item food frequency questionnaire (FFQ) (DQX; 

http://www.cancer.gov/prevention/plco/DQX.pdf), which inquired about usual 

diet over the year prior to completing the questionnaire.  The DQX is a grid based 

FFQ which asked for frequency of consumption for all 137 food items and the usual 

portion size for 77 items.  Gram weights per portion size (small, medium, large) 

were estimated using data from two 24-hour diet recalls administered in the 1994-

1996 Continuing Survey of Food Intake by Individuals (CSFII)(99).  For TFA intakes, 

gram weights were estimated using data from the Nutrition Data System for 

Research (NDSR; http://www.ncc.umn.edu/products/databasenutrients.html), 

also estimated from dietary intakes during the same period as completion of the 

baseline FFQs(99, 100).  Food items, assumptions for estimating nutrients and food 
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groups, and the wording used for the DQX incorporated elements of both 

database(99) and cognitive(101, 102) research.  The DQX was not validated in this 

population, however both the Block and Willett FFQs from which the DQX was 

based have been validated in similar populations(84).  No data is available for PUFA 

intakes from supplements such as flax seed or fish-oil capsules. 

Food items relevant to PUFA intake that were specifically queried for 

included fried fish, tuna (including tuna salad and tuna casserole), shellfish 

(including shrimp, crab, and lobster), and other fish (either broiled or baked).  

However, the questionnaire did not inquire about specific fats typically used for 

frying, sautéing, or baking.  Responses to the individual food items were converted 

to average daily intakes of specific fatty acids, including ALA, LA, DHA, DPA, EPA, 

and AA.  Average daily intakes of each fatty acid were then combined in order to 

estimate the total daily intake of each of these fatty acids.   

B.1.c.  Outcome Assessment 

As part of the PLCO trial, men will be followed-up for cancer mortality for a 

minimum of 13 years from randomization(92).  However, for the purposes of these 

etiologic analyses, men were followed-up through September 30, 2002.  Men found 

to have either a PSA value greater than 4 ng/ml or an abnormal DRE during a 

PLCO screening visit were referred to their usual medical care providers for further 

diagnostic evaluation.  Furthermore, participants were asked to report any diagnosis 

of prostate cancer during the prior year on each annual questionnaire.  Medical 

records were obtained and abstracted for men who had a suspect prostate cancer 

screen or who reported prostate cancer on their annual questionnaire to confirm the 

diagnosis and obtain clinical tumor stage(103) and grade data.  Death certificates, 
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autopsy data, and supporting medical/pathologic records were used to confirm the 

diagnosis and stage and grade information for participants who were reported as 

deceased by next of kin or the study center directly.  Additionally, the National 

Death Index (NDI) was used to increase completeness of the data.  Only confirmed 

prostate cancer cases will be included in our analysis(97).  Due to the ongoing nature 

of the PLCO Cancer Screening Trial, prostate cancer mortality data is unavailable for 

these analyses.  Through September of 2002, nearly 1,900 incident prostate cancer 

cases have been ascertained(49).  Case ascertainment is believed to be virtually 

complete.  Men were undergoing a standardized screening regimen and death 

certificate, autopsy data, and supporting medical/pathologic records were used to 

confirm diagnosis, including tumor stage and grade.  Gleason grades are based on 

biopsy or prostatectomy Gleason scores, whichever value was greater.   

B.1.d.  Covariate Assessment 

 In addition to the DQX, PLCO screening arm participants completed an 

extensive background questionnaire, including questions on body size (current and 

age 25), physical activity (past year), smoking history (lifetime), medical history 

(lifetime), NSAID use (past year), and family history of prostate cancer(93).  As part 

of the screening trial, updated data is available on screening behavior throughout 

the active screening portion of follow-up.   
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B.2.  The NIH-AARP Diet and Health Study 

B.2.a.  Study Population 

 The NIH-AARP Diet and Health Study is a prospective cohort study 

designed to investigate relations between diet and a variety of health outcomes(94).  

Between 1995 and 1996, 3.5 million current members of the AARP, aged 50 – 71 who 

resided in one of six US states (CA, FL, PA, NC, NJ, and LA) or one of two 

metropolitan areas (Atlanta, GA and Detroit, MI) were invited to join the study 

(Figure 5).   Over 500,000 individuals returned the initial mailed questionnaire, 

including 340,148 men (Table 9).  A supplementary risk factor questionnaire was 

subsequently mailed to respondents during the latter half of 1996.  The institutional 

review board of the NCI has approved the NIH-AARP Diet and Health Study. 

Current analyses were exempted from institutional review board review at the 

University of North Carolina as the research was deemed “non-human subject 

research.” 

 Men were excluded if they had submitted a second baseline questionnaire (n 

= 103), died or moved out of the study area prior to baseline (n = 373), chose to 

withdraw from the study (n = 1), had a questionnaire completed by a proxy (n = 

14,495), had been previously diagnosed with a cancer other than non-melanoma skin 

cancer (n = 27,269), or had extreme values (greater than twice the interquartile range 

for the box-cox transformed energy intake; < 415 and > 6,144 kcal/day) for total 

energy consumption (n = 2,509), height (n = 1,456), weight (n = 402), or BMI (n = 

174).  After exclusions, 288,956 men remained in the final analytic cohort, including 

178,705 (62%) men who had data available from the supplementary questionnaire.  

Due to the passive nature of follow-up in AARP, men were followed-up from 
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completion of the baseline questionnaire until the date of diagnosis, death, or end of 

the study period.  Because detailed data is unavailable for men who have moved out 

of the study area, there was no censoring for this event.   

B.2.b.  Exposure Assessment 

 At baseline, participants completed a grid-based version of the Diet History 

Questionnaire (DHQ; http://riskfactor.cancer.gov/DHQ/)(94).  The DHQ queried 

participants on the frequency of consumption and typical portion size of 124 food 

items during the past year prior to completion of the survey.  The DHQ included an 

additional 21 questions on consumption of low-fat foods and food preparation 

practices, including types of oils and fats used(94).  Like the DQX, the DHQ nutrient 

database is based on national dietary data from the CSFII(99) and NDSR(99, 100). 

A separate calibration sub-study was conducted within the AARP 

cohort(104). Of the 2,053 cohort participants enrolled into the calibration sub-study, 

1,986 provided two separate 24-hour dietary recalls (approximately 1-month apart), 

while the rest provided a single 24-hour recall.  All 2,053 sub-study participants 

received a second DHQ in October of 1996, of which 1,415 were returned.  PUFA 

intakes were fairly well correlated with 24-hour dietary recalls, particularly after 

nutrients were adjusted for energy intake (r = 0.53)(83).  No data is available on 

PUFA intakes from supplements, such as flax seed or fish-oil capsules. 

As with dietary assessment in PLCO, average daily nutrient intakes for 

specific food items were estimated by multiplying the average daily consumption of 

each food item by the nutrient content of the item.  The average daily intake of each 

nutrient was then estimated by summing the average daily intakes for each of the 

food items.   
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Like the DQX, the DHQ inquired about fish consumption, including 

consumption of tuna (including tuna salad and casserole), fried fish, and other types 

of seafood.  However, the DHQ also queried participants on the types of fats and 

oils used in cooking, which are common sources of PUFAs in the diet.   

B.2.c.  Outcome Assessment 

 Identification of incident prostate cancer cases in the AARP cohort has been 

conducted through passive follow-up(105, 106) via linkage of the NIH-AARP cohort 

database with state cancer registries in the eight participating states(107).  The AARP 

cohort database has been matched to the National Change of Address (NCOA) 

database maintained by the US Postal Service(105) and additional information on 

address changes has been obtained through direct reporting by study participants in 

follow-up questionnaires and through data received through US Postal Service 

processing of undeliverable mail(105).  Within three years of follow-up, 98% of 

AARP cohort members either remained at the same address or relocated within one 

of the eight AARP states(107) and it has been estimated that over 95% of the cohort 

met these same criteria over the first five years of follow-up.  Therefore, the 

overwhelming majority of participants remained in follow-up for ascertainment of 

prostate cancer.   

The registries in the eight AARP states are estimated to be 95% complete 

within two years of cancer diagnosis for all cancer outcomes and have been certified 

by the North American Association of Central Cancer Registries for meeting the 

highest standard data quality.  Furthermore, the cohort was linked to the NDI to 

ascertain date and specific cause of death.  A validation sub-study was conducted 

among 12,000 cohort members(105).  Using medical record confirmation of self-
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reported cancer incidence, approximately 90% of all incident caners were validly 

identified using the registry-based approach(105), potentially the result of 

incomplete registry linkage and delayed reporting of cases to the registries. Clinical 

or pathological tumor stage data(103) was obtained from registry data.  However, 

Gleason grade is unavailable for incident cases of prostate cancer in the AARP 

cohort.  Furthermore, data released in time for the analysis to be completed will 

have further linkage to cancer registries in Arizona, Texas, and Nevada, the three 

states in which the largest number of AARP participants have relocated to outside of 

the eight AARP states and follow-up was extended for incidence through 2003 and 

for cause-specific mortality through 2005. 

B.2.d.  Covariate Assessment 

 The baseline AARP questionnaire included questions on body size (current), 

physical activity (past year), family history of cancer (ever), and smoking history 

(lifetime).  The supplementary risk factor questionnaire included questions on 

dietary intakes of selected foods ten-years earlier and during adolescence, as well as 

questions on cancer screening (including both DRE and PSA testing, past five years) 

and family medical history (lifetime).   
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C.  Methods 

C.1.  Classification of Nutrient Intakes and Methods for Energy Adjustment 

 We considered both continuous and categorical (quintiles, based on the 

distribution of nutrient intakes among the non-cases) classifications of nutrient 

exposures, including dietary intakes of ALA, LA, AA, EPA, DHA, and the sum of 

EPA and DHA.  Furthermore, we considered the intakes of major classes of trans-

fatty acids (TFAs; trans-16:1, trans-18:1, and trans-18:2), separately and in 

combination, when correlations were sufficiently weak as to preclude colinearity. 

Additionally we used splines to explore potential dose-response curves(106).     

 We used three different approaches to control for energy intake in our 

analyses(82): a standard model including unadjusted nutrient intakes and terms for 

energy intake, the residual method, and the nutrient energy-density method.   

Briefly, standard models included term(s) for the nutrient whose effect is 

being modeled (categorical or transformed continuous), energy intake (categorical or 

transformed continuous), and any covariates used.  

 For the residual method(82), we first log-transformed the nutrient intake for 

each individual.  We then regressed the log-transformed nutrient on total energy 

intake or log-transformed energy intake, whichever one had the most linear 

relationship (simple linear regression), and calculated the residual between each 

individual’s actual nutrient intake and the predicted nutrient intake given his 

energy intake.  The residual nutrient intake was then added to the estimated 

nutrient intake at the mean energy intake of the study population in order to place 

the log-transformed, adjusted nutrient intake into a more readily interpretable scale.  

These values were then exponentiated to generate the energy-adjusted nutrient 
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intakes.  When energy intake is also strongly correlated with the outcome, but not a 

substantial intermediate, it is said to be appropriate to include terms for energy 

intake into the final models(82). 

 For nutrient energy-density models(82) we calculated the percentage of total 

energy consumed that is accounted for by each nutrient (Density variable = kcal 

from macronutrient / total kcal).  Models incorporating these nutrient density 

variables also included terms for total energy intake. 

 In addition to estimating effects of individual fatty acid intakes, we separately 

estimated effects of ratios of !-6 to !-3 fatty acid intakes, including the ratios of 

AA+LA:ALA+DHA+EPA, LA:ALA, and LA:EPA+DHA+DPA as categorical and 

continuous exposures. 

C.2.  Classification of Covariates 

C.2.a.  PLCO 

 As discussed previously, at baseline, PLCO screening arm participants 

completed an extensive background questionnaire at baseline(93).  As with nutrient 

intakes, we evaluated the use of both categorical and continuous variables for use as 

covariates in our multivariable models.  Potential covariates we considered included 

age (in days; time-varying beginning at baseline), self-reported current BMI, family 

history of prostate cancer (any blood relative, yes/no), history of diabetes (yes/no), 

smoking (current/former/ever pipe or cigars/never; categorizations that were 

selected from a variety of combinations evaluated during our previous analyses of 

PLCO data), total energy intake (kcal/day), daily red meat consumption (g/day), 

lycopene intake (µg/day), supplemental vitamin E use (IU/day), regular aspirin 
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and/or ibuprofen use (never/<2 tablets/week/2+ tablets/week), physical activity 

(hours of “vigorous exercise”/week), and race (white/African American/Asian or 

Pacific Islander/Other).  Furthermore, detailed screening behavior is available for 

participants during the first five years of enrollment in the PLCO trial, including the 

date of DRE and PSA blood draw.  Because follow-up data is available for screening 

history, total numbers of screens were treated as a time-varying covariate in our 

models.  We evaluated patterns of missing data to determine the best method of 

accounting for this.  Missing values for these covariates were estimated using 

multiple imputation methods based on known values of covariates used in our 

analysis(108, 109).  In the case of PLCO data, the only covariate that was missing in a 

substantial number of individuals was BMI.    

C.2.b.  AARP 

 As discussed previously, AARP participants completed a baseline 

questionnaire along with a subsequent risk-factor questionnaire(94).  Potential 

covariates included age, BMI, physical activity (number of times per week 

participating in vigorous physical activity), race (white/black/other), smoking 

history (never/former/current), education (<12 years/high school graduate/some 

college/at least a college degree), family history of prostate cancer (yes/no), history 

of diabetes (yes/no), at least one PSA test in past three years (yes/no), at least one 

DRE in past three years (yes/no), total energy intake (kcal/day), red meat intake 

(g/day), lycopene intake (µg/day), vitamin E intake (mg/day), regular NSAID 

(aspirin and/or ibuprofen) use (yes/no), and calcium intake (mg/day). If necessary 

and appropriate, missing values for these covariates were estimated using multiple 

imputation methods based on known values of covariates used in our analysis(108, 
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109).  Subjects who completed the supplemental risk factor questionnaire do not 

differ substantially from subjects who did not with respect to many of the covariates 

under investigation.  However, we compared estimates from the entire cohort with 

those in each group as well as evaluated confounding and effect measure 

modification by factors queried on the supplemental risk factor questionnaire 

among men for whom that data is available.   

C.3.  Statistical Analysis 

C.3.a.  PLCO and AARP 

We first presented descriptive statistics for the study populations, including 

distribution of covariates by major exposure categories (means for continuous 

covariates, proportions for categorical covariates).  Additionally, we described 

patterns of missing data for covariates.   

Because we had individual level data on time to event, we used Cox 

proportional hazards models(95, 110) to estimate age-adjusted and multivariable-

adjusted hazard ratios (HRs) and 95% confidence intervals (95% CIs) using STATA 

10.0 (STATACorp, College Station, TX).  A strength of the proportional hazards 

model is that it is free of distributional assumptions and only relies on the 

assumption that the hazards for each of the exposure levels are proportional over 

the entire observation period(110).   Because age is a stronger risk factor for prostate 

cancer than time in study, we used age as the underlying time metric in our 

models(96).  Additionally, we generated correlation tables of the non-energy-

adjusted and energy-adjusted fatty acid intakes to determine the degree to which 

colinearity existed when including multiple fatty acid intakes in the same model. 
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 We constructed causal diagrams, including features of directed acyclic graphs 

(DAGs; Figure 6) to help identify potential confounding relationships between these 

covariates and the dietary polyunsaturated fat-prostate cancer relationship and 

determine potential adjustment sets(111). Potential confounders were included in 

multivariable models as appropriate to each main exposure being examined and we 

assessed the degree to which covariates acted as confounders by estimating the 

change in the ratio of precision and bias(112-114). Briefly, after adding a covariate to 

the model, we calculated the ratio of the change in variance of the point estimate for 

the main exposure divided by the change in the parameter estimate for the point 

estimate (on the log-scale). A large value for this ratio indicates relatively decreased 

precision with little change in the point estimate, and indicates that the covariate 

should not remain included in the model as a potential confounder.  Due to the 

substantial statistical power afforded by the large sample sizes, we considered 

keeping covariates that did not appear to change the parameter estimates if they also 

did not reduce the precision of our estimates using the same diagnostic criteria as 

above.  Furthermore, to maintain consistency with study guidelines, we include 

standard covariates for studies of diet and prostate cancer within PLCO and AARP, 

as appropriate, so long as substantial precision was not lost (using the method 

described previously).  Both age-adjusted and multivariable-adjusted effect 

estimates (HRs and 95%CIs) were presented.  

 While we modeled intakes of each fatty acid separately, there may be some 

concern that a given fatty acid intake may have acted as a proxy for another.  Given 

that correlations between specific fatty acid intakes were reasonably weak, we 

modeled all fatty acid intakes simultaneously, to generate the fatty acid-specific 

associations. 
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 We tested whether the proportional hazards assumption had been violated in 

each model by visual inspection(110), by adding a time interaction with each 

covariate(110), and by the method of Grambsch and Therneau (a test of the linearity 

of the Schoenfeld residuals)(115).  In cases where the proportional hazards 

assumption was violated, measures were be taken to relax the assumption, such as 

adding an interaction between the exposure and time into the model(110). 

We assessed multiplicative interactions (hazard ratio modification) by 

including multiplicative interaction terms in our proportional hazards models and 

comparing the stratum-specific HRs and 95% CIs and additive interactions (risk 

difference modification) by estimating the interaction contrast ratio (ICR)(116, 117) 

as both simulations by Li, et al.(118) and our own simulation studies (data not 

published) suggest that the ICR is a more robust assessment of additive interactions 

within proportional hazards models than either the attributable proportion due to 

additive interaction (AP) or the synergy index (S).  We examined additive and 

multiplicative interaction by calculating the difference between the actual and 

expected interactions (based on a common-reference category)(91).  Covariates 

considered as effect measure modifiers included age at baseline (categorized being 

below or above the population median), BMI (overweight+/not overweight), race 

(white/black/other), state of residence/PLCO study center, and family history of 

prostate cancer (yes/no).  Note, that while BMI is technically on the pathway 

between individual polyunsaturated fatty acids (Figure 6), individual fatty acids do 

not provide for a substantial amount of total energy intake (e.g. LA, which 

comprises approximately 88% of PUFA intake, only accounts for approximately 5% 

of total energy intake in these populations (Table 10) and those individuals with 

lower intakes of certain types of PUFAs would likely be replacing this energy from 
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energy from other sources.  Thus, any bias induced, should have been fairly minimal 

and offset by the potential advantages gained by assessing BMI as a confounder 

and/or effect measure modifier.   

 Certain covariates, particularly total energy intake, physical activity, and 

body size, may have been misclassified.  To assess the degree to which exposure 

misclassification may have biased our results, we conducted sensitivity analyses(91).  

Briefly, the potentially misclassified exposures were reclassified given hypothetical 

misclassification rates (sensitivity and specificity) and hazard ratios were estimated 

using the reclassified covariates.  These new estimates were then used to evaluate 

the degree to which effect estimates may have been biased due to misclassification 

of these covariates by providing bounds to how far the point estimates may have 

changed given reasonable estimates for how misclassified the data could have been.  

To investigate the degree to which subclinical manifestations of undiagnosed 

prostate cancer may have affected our estimates by altering dietary behaviors, we 

conducted a sub-analysis whereby we removed all subjects who were lost to follow-

up or diagnosed with incident prostate cancer within one year of entry into the 

study.  While this period is short relative to tumor progression, it removed latent 

tumors that were diagnosed as the result of a first screen in the PLCO population.   

C.3.b.  PLCO-specific statistical analysis 

 Person-time of follow-up for each participant was calculated from the time of 

randomization into the screening arm until the date of last questionnaire return, 

date of diagnosis, date of death, or the end of the study period (30 September 2002), 

whichever occurred first.  Due to active study participation and linkage of the PLCO 

population to local cancer registries and the NDI, it is unlikely that a substantial 
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number of men were lost to follow-up with regards to prostate cancer diagnosis.  To 

control for adherence to the prostate cancer screening regimen, we used a time-

varying covariate equal to the number of prostate cancer screens that an individual 

had completed at a given time point in the proportional hazards model.   

 Due to the ongoing nature of the PLCO trial, information was not available 

on prostate cancer mortality in this cohort.   However, confirmed clinical or 

pathological stage and grade information (whichever grade was higher if both are 

available will be used) was available for virtually all prostate cancer cases.  We 

considered as separate end points all prostate cancer cases, regionally invasive or 

metastatic cases (" T3b, N1, or M1), organ-confined cases or cases with minimal 

extraprostatic extension (T1b – T3a and N0M0), cases with high Gleason sum (" 7), 

and cases with low Gleason sum (<7).  Additionally, we considered advanced 

(meeting either the high stage or high Gleason criteria) and non-advanced (meeting 

neither criteria) cases.  All additional assessed outcomes were evaluated in separate 

models.   

C.3.c.  AARP-specific statistical analysis  

 Person-time of follow-up accrued from the date of return of the baseline 

questionnaire until the date of prostate cancer diagnosis, death, or the end of the 

study period (31 December, 2003).  As discussed previously, the passive 

ascertainment methods used in AARP resulted in incomplete case ascertainment.  

However, it is unlikely that loss to follow-up was associated with dietary fatty acid 

intake.  Approximately 60% of eligible AARP participants completed the 

supplementary risk factor questionnaire, which is the source of PSA and DRE 

screening information.  We investigated the degree to which participants who 
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completed both questionnaires differ from participants who completed only the 

baseline questionnaire and we compared the complete cohort estimates with 

estimates confined to participants who completed both questionnaires.   

 We considered separate endpoints of total prostate cancer cases, fatal cases 

(including cases identified through registry data that subsequently died from 

prostate cancer after the study period, between 2003 and 2005, localized or organ-

confined cases (Stage T1a – T2b and N0 M0), and men with extraprostatic disease 

(Stage T3 or T4, N1 or M1).  A separate set of sensitivity analyses were conducted by 

excluding T1a cancers from the localized disease group and T3a cancers from the 

extraprostatic disease group. All additional assessed outcomes were evaluated in 

separate models.  Because it has been estimated that approximately 11% of incident 

cancer cases will be missed through the cancer registry ascertainment 

procedure(107), we conducted sensitivity analyses to determine the degree to which 

misclassification of this nature may have biased our estimates (in a similar manner 

to the methods used for misclassification of exposure).   

D.  Power Estimation 

 We estimated statistical power for Cox proportional hazards models using 

Power Analysis and Sample Size (PASS) 2005 (NCSS, Kaysville, UT) which uses the 

methods developed by Schoenfeld(119) and Hsieh and Lavori(120). 

 We estimated power to detect main effects, at an alpha of 0.05, for the PLCO 

population, assuming a total sample size of 29,000 men, with a known overall case 

rate of approximately 6.5%, under two different assumptions regarding correlations 

between our main exposure and covariates (Table 12).  We had excellent power to 

detect modest (HR = 1.2) associations comparing any given quintile of exposure.  
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These estimates correlate well with empirical evidence from our prior study of ALA 

intake and prostate cancer risk in the PLCO population(49). 

We estimated power to detect main effects, comparing men classified into one 

quintile of exposure with those classified into another, at an alpha of 0.05, for the 

AARP population, assuming a total sample size of 287,760 men, with a known 

overall case rate of 3.5%, and the same categorization and correlation parameters as 

with our estimates for the PLCO population (Table 13).  We had good power to 

detect modest associations (HRs = 1.2) within the AARP population.   



 

 

CHAPTER IV 

RESULTS 

A.  Paper 1:  Analysis among males participants in the screening arm of the Prostate, 

Lung, Colorectal, and Ovarian Cancer Screening Trial 

A.1.  Abstract 

Epidemiologic research on dietary fats and prostate cancer has increasingly focused 

on the role of specific types of fat in prostate carcinogenesis, including 

polyunsaturated (PUFAs) and trans fatty acids that may act through distinct 

mechanisms.  We extended our previous analysis of !-linolenic acid intake and 

prostate cancer among men in the screening arm of the Prostate, Lung, Colorectal, 

and Ovarian Cancer Screening Trial, a cohort of 29,594 men enrolled between 1993 

and 2001 in ten study centers across the United States, to evaluate associations 

between prostate cancer and baseline dietary intakes of polyunsaturated fatty acids 

and their ratios, and dietary intakes of trans fatty acids.  Over an average of 5.1 years 

of follow-up we ascertained 1,914 incident cases of prostate cancer, of which 698 

were high-grade (Gleason sum " 7).  Intake of linoleic acid, the most common #-6 

fatty acid, was inversely associated with total prostate cancer (multivariable-

adjusted hazard ratio (HR) for a 4g increment of intake = 0.94; 95% confidence 

interval (CI)= 0.89 – 1.00).  Dietary intakes of #-3 fatty acids were positively 

associated with low-grade prostate cancer (HR for a 0.1g increment of intake = 1.04;  
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95% CI = 0.99 – 1.09) and trans fatty acid intakes were positively associated with 

high-grade disease (HR for a 2g increment of intake of total trans fatty acids = 1.07; 

95% CI = 0.96 – 1.19). In this study, estimated associations with specific fatty acids 

appeared to vary by stage and grade. Because the metabolism of the major 

polyunsaturated fatty acids is highly interrelated, more research is warranted to 

understand the roles that these nutrients play in prostate carcinogenesis, potentially 

elucidating further avenues for primary prevention and molecular targets for 

pharmacological intervention. 

A.2.  Introduction 

The role of specific types of fatty acids in prostate carcinogenesis, particularly 

the polyunsaturated fatty acids (PUFAs), has been an active area of epidemiologic 

research.  PUFA consumption has increased substantially in the United States over 

the past few decades due to a combination of increased PUFA content of animal 

products (resulting from changes in animal feeding practices) and increased use of 

cooking oils high in PUFAs (e.g. canola oil)(14).  In addition, the use artificially 

hydrogenated trans fats (TFAs) in processed foods had increased until recent 

concerns about potential negative effects on a variety of health outcomes prompted 

reductions(15).   

PUFAs include !-3 fatty acids such as !-linolenic acid (ALA; 18:3), 

eicosapentaenoic acid (EPA; 20:5), docosahexaenoic acid (DHA; 22:6), and 

docosapentaenoic acid (DPA; 22:5) and !-6 fatty acids such as linoleic acid (LA; 18:2) 

and arachidonic acid (AA; 20:4).  LA is the most common PUFA in the US diet, 

accounting for approximately 87% of energy from PUFAs, while ALA is the most 
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common !-3 fatty acid and second most common PUFA, accounting for 

approximately 10% of energy from PUFAs(14).   

Major PUFAs act through competing pathways to modulate prostaglandin 

synthesis, potentially affecting inflammation-mediated carcinogenesis(19).  

Metabolism of the major PUFAs is highly interrelated (Figure 3).  The short-chain !-

3 fatty acid ALA can be converted into the long-chain !-3 fatty acids EPA and DHA 

in limited quantities(24), particularly when concentrations of EPA and DHA are low, 

and DPA can be formed as a metabolic intermediate between EPA and DHA(14).  

Metabolic enzymes involved in the ALA to EPA conversion are also involved in the 

conversion of the !-6 fatty acid LA to AA.  Consequently, ALA metabolism is 

limited both by the amounts of !-3 fatty acids consumed and by the ratio of !-6 to 

!-3 fatty acids in the diet(24). Prostaglandins and eicosanoids formed from EPA by 

cycoloxygenase (COX) and lipoxygenase (LOX) enzymes have been associated with 

decreased growth rates in prostate cancer cell lines and animal models, while 

prostaglandins and eicosanoids derived from AA via the same COX and LOX 

enzymes have been associated with increased cell line and tumor growth rates(19). 

ALA has also been shown to increase prostate tumor growth in animal models 

through other mechanisms(41); therefore, associations between prostate cancer and 

ALA might differ from associations with the ALA-derived long-chain !-3 fatty acids 

EPA, DPA, and DHA. 

Results of studies that have investigated associations between prostate cancer 

and either dietary intakes or biological concentrations of PUFAs are somewhat 

inconsistent(49, 54-78, 121).  Many(57, 65, 67-71, 73-76), but not all(49, 58, 60, 63, 66), 

have reported positive associations between prostate cancer and ALA and most(58, 
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60, 62, 66-68, 71-76, 78), but not all(70), reported null to inverse associations with 

DHA and EPA.  However, many previous studies have important potential 

limitations.  For example, most studies have been retrospective with regards to case 

status and may have been subject to differential recall of diet, post-diagnostic 

changes in diet among cases.  In studies in which dietary intake is based on 

biomarker levels, changes in biological concentrations of fatty acids that may have 

been a consequence of disease or treatment.  Furthermore, all studies of that include 

self-reported dietary instruments suffer from some degree of measurement error.   

TFAs have been shown to increase production of cytokines(15) and increase 

systemic inflammation(52, 53) in clinical crossover studies, and have therefore been 

hypothesized to increase prostate cancer risk through inflammatory mechanisms, 

similar to mechanisms proposed to explain associations between TFAs and 

cardiovascular disease (19, 122).  Limited epidemiologic data exist on relations 

between TFAs and prostate cancer(58, 59, 66, 79, 80) and results are somewhat 

conflicting, but the majority of studies have reported positive associations between 

prostate cancer incidence and high intakes of TFAs.   

Previously, we evaluated relations between dietary intakes of ALA and 

prostate cancer among male participants in the screening arm of the Prostate, Lung, 

Colorectal, and Ovarian (PLCO) Cancer Screening Trial, and found no association 

between ALA intake and total prostate cancer(49).  The current analysis extends this 

work by comprehensively examining longitudinal associations between prostate 

cancer, all of the major PUFAs, and TFAs.   In addition, because dietary fats may 

differentially influence aggressive and indolent tumors(62, 71, 123-126), we analyzed 

high-grade tumors and combined high stage or high-grade tumors as separate 

endpoints, in addition to estimating associations with all incident cases combined.   
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A.3.  Materials and Methods 

A.3.a.  Study Population 

The PLCO Cancer Screening Trial is a multi-site (Birmingham, AL, Denver, CO, 

Detroit, MI, Honolulu, HI, Marshfield, WI, Minneapolis, MN, Pittsburgh, PA, Salt 

Lake city, UT, St. Louis, MO, and Washington, DC) clinical trial sponsored by the 

National Cancer Institute (NCI) that was designed to test the effectiveness of 

screening for prostate, lung, colorectal, and ovarian cancers, and to identify early 

markers and etiologic determinants of major cancers(93).  Details on the study 

design have been published previously(92, 93).  Briefly, participants were recruited 

from the general population through direct mailings, advertisements and other 

methods(93) and enrolled between November 1993 and June 2001.  The screening 

arm of the PLCO trial included 38,350 men between the ages of 55 and 74 years who 

received a digital rectal exam (DRE) and prostate specific antigen (PSA) test at 

baseline followed by annual DREs (through year 3) and PSA tests (through year 5).  

Study participants provided written informed consent, and institutional review 

boards of the NCI and the ten participating screening centers approved the study. 

 At randomization, study participants completed a self-administered baseline 

questionnaire that asked about medical history, socio-demographic factors, and 

health-related behaviors (such as smoking history, personal and familial history of 

cancer).  Usual dietary intake was assessed using a 137-item food frequency 

questionnaire (FFQ) with a referent period of “the past year”(127).  In addition, 

participants were asked to complete annual update questionnaires that inquired 

about any cancer diagnosed by a health care provider during the prior year.   
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 Men were excluded from the current analysis if they had a prior history of 

cancer other than non-melanoma skin cancer (n= 791), did not undergo an initial 

PSA and DRE screen (n = 2,471), underwent an initial screen but did not have 

subsequent contact (n = 1,458), did not complete the baseline or dietary 

questionnaire (n = 7,493), reported an energy intake in the top or bottom 1% of the 

reported energy intake distribution (roughly 5,500 and 750 kcal/day, respectively, 

which were values considered to be implausible) (n = 634), or completed their 

baseline screen after 30 September, 2002 (n = 71).  After exclusions, 29,594 men 

remained in our final analytic cohort.  These men were similar to those excluded 

with respect to age, level of education, smoking status, and family history of 

prostate cancer. 

A.3.b.  Dietary Assessment 

At baseline, participants completed the Diet Health Questionnaire (DQX), a grid-

based self-administered semi-quantitative FFQ similar to the Block and Willett 

FFQs. The DQX inquired about usual diet over the prior year, including frequency 

of consumption of 137 food items and the usual portion size for 77 items(127).  Gram 

weights of PUFA intakes per portion size (small, medium, large) were estimated 

using data from two 24-hour diet recalls administered in the 1994-1996 Continuing 

Survey of Food Intake by Individuals (CSFII),(99) and TFA intakes were estimated 

using data from the Nutrition Data System for Research (NDSR; 

http://www.ncc.umn.edu/products/databasenutrients.html, for dietary intakes 

during the same period as completion of the baseline FFQs)(99, 100).  The DQX was 

not validated in the PLCO population, but is comparable to other frequently used 

FFQs which have been validated in similar populations(84). 
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Food items relevant to PUFA intake that were specifically queried for 

included fried fish, tuna (including tuna salad and tuna casserole), shellfish 

(including shrimp, crab, and lobster), and other fish (either broiled or baked).  

However, the questionnaire did not inquire about specific fats used for frying, 

sautéing, or baking.  Responses to the individual food items were converted to 

average daily intakes of specific fatty acids, including AA, LA, EPA, DPA, DHA, 

and major TFAs (trans-16:1, 18:1, and 18:2).  Average daily intakes of individual 

fatty acids were combined to estimate the total daily intakes of !-6 fatty acids (AA 

and LA), long-chain !-3 fatty acids (EPA, DPA and DHA, referred to as ‘fish fats’), 

total !-3 fatty acids (ALA plus fish fats), and total TFAs (sum of trans-16:1, 18:1, and 

18:2). 

A.3.c.  Covariate Assessment 

At baseline, PLCO screening arm participants completed an extensive 

background questionnaire, including questions on body size (current and age 25), 

physical activity (past year), smoking history (lifetime), medical history (lifetime), 

aspirin use (past year), and family history of prostate cancer(93).  Data on screening 

behavior throughout the active screening portion of follow-up were also available. 

A.3.d.  Case Ascertainment 

This analysis includes follow-up data through September 30, 2002.  Men with 

a serum PSA greater than 4 ng/ml or an abnormal DRE at a PLCO screening visit 

were referred to their usual medical care provider for further evaluation, and 

participants were asked to report prostate cancer diagnoses during the prior year on 

each annual update questionnaire. Medical records were obtained and abstracted for 
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men who had an abnormal PLCO screening exam or who reported prostate cancer 

on an annual update questionnaire to establish or confirm diagnoses and obtain 

clinical tumor stage(103) and grade data.  Death certificates, autopsy data, pathology 

reports and supporting medical records were used to obtain diagnosis, stage and 

grade information for participants who were reported as deceased by next of kin or 

by the study center directly.  The National Death Index (NDI) was used to increase 

completeness of case ascertainment and tumor pathology data.  Only prostate cancer 

cases confirmed by medical record review were included in our analyses(97).  In 

addition to estimating associations with all prostate cancers, we estimated 

associations separately with high- and low-grade tumors (Gleason sum ! 7 and <7, 

respectively) and combined high-stage or high-grade (Stage ! T3b, N1, or M1 or 

Gleason sum ! 7) tumors as separate endpoints.  Due to the ongoing nature of the 

screening trial, data are not currently available on prostate cancer mortality. 

A.3.e.  Statistical Analysis 

Person-time for each participant accrued from the time of randomization into the 

screening arm until the date of his last questionnaire return, date of prostate cancer 

diagnosis, date of death, or the end date of the study period (30 September 2002), 

whichever occurred first.  Age-adjusted and multivariable-adjusted relative risks 

(hazard ratios, HRs) and 95% confidence intervals (95% CIs) were estimated using 

Cox proportional hazards regression (Stata/MP 10.0, StataCorp, College Station, TX) 

with age as the underlying time metric(95, 96).  We adjusted nutrient values for total 

energy intake using the residual method(82) and categorized adjusted nutrient 

intakes into five levels that were comparably spaced along the range of intakes for 

each nutrient.  Additionally, we adjusted for total energy intake by modeling raw 
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nutrient intakes and energy intakes simultaneously, and by modeling the ratio of the 

specific nutrient to total energy intake (i.e. using the nutrient density method). We 

used directed acyclic graphs to identify confounders(111), including covariates 

associated with prostate cancer and fatty acid intakes in our study population, and 

confounders identified from previous reports.  Standard multivariable-adjusted 

(MV) models included study center (nine indicator variables), race (white, African 

American, Asian/Pacific Islander, other), and baseline data on family history of 

prostate cancer (yes, no), diabetes (yes, no), smoking history (never, current, former, 

pipe/cigar), body mass index (BMI; categorized as < 20, 20 - < 25, 25 - < 30, ! 30 

kg/m2), hours of vigorous physical activity (0, 1, 2, 3, ! 4 h/week), aspirin use 

(never, < 2 tablets/week, ! 2 tablets/week), vitamin E supplement use (0, 1 – 30, 31 – 

400, > 400 IU/day), total energy intake (5 categories), lycopene intake (5 categories) 

and the total number of screens since baseline (as a time varying categorical 

variable).  Education (as a proxy for socioeconomic status) and alcohol intake 

(potentially related to inflammation) were also confounders based on our analysis of 

directed acyclic graphs, but were excluded from final models because they had a 

negligible impact on effect estimates.  Missing data for BMI (~1% of subjects) were 

imputed using the multiple imputation by chained equations method(128-130) 

implemented by the ‘ICE’ procedure in Stata(131-133).  Additionally, we 

simultaneously modeled the major PUFAs (AA, LA, ALA, and Fish fats) in a 

separate multivariable-adjusted model.  Ratios of PUFA intakes were estimated by 

dividing residually adjusted nutrients by each other (e.g. LA:ALA ratio = energy-

adjusted LA intake/energy-adjusted ALA intake) and categorized into five levels 

that were comparably spaced along the range of observed values for each ratio.  We 

modeled the main exposure as a continuous variable and estimated the hazard ratio 
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for an increment of change of exposure equal to the inter-quartile range (rounded to 

one significant figure) for that covariate to estimate the linear trend.  Our overall 

interpretation was based on both the categorical and continuous effect estimates, but 

less weight was given to continuous estimates when categorical estimates were 

inconsistent with a linear trend.  

 We evaluated potential effect measure modification by race, BMI, total energy 

intake, aspirin use, alcohol use, education, and family history of prostate cancer, 

covariates which may either modulate inflammatory pathways (e.g. alcohol intake) 

or metabolism of fatty acids (e.g. modulation of prostaglandin synthesis by 

inhibition of the COX pathways by aspirin intake).   Multiplicative interaction (HR 

modification) was assessed by evaluating the magnitude of the ratios of HRs across 

strata of the modifier (via exponentiation of interaction terms)(134) and departures 

from additive hazards were assessed using the interaction contrast ratio (ICR)(116, 

118). 

A.4.  Results 

During the follow-up period we ascertained 1,914 incident cases of prostate 

cancer in our population of 29,594 men, including 698 cases that were Gleason sum 7 

or higher (37% of all cases).  Polyunsaturated fatty acids contributed approximately 

6.5% of total energy intake and 20% of energy intake from fat in the PLCO 

population (Table 15), consistent with estimates of PUFA intake in the US(14). 

Ratios of #-6 to #-3 fatty acids, LA to ALA, and LA to fish fats (EPA, DPA and DHA 

combined) were also consistent with expectations.  Energy-adjusted intakes of the 

long-chain #-3 fatty acids (EPA, DPA, and DHA) were correlated (Pearson 

correlation coefficients ranging from 0.92 – 0.99) as were intakes of EPA and LA, but 
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correlations between other PUFAs were relatively weak.  Pearson correlation 

coefficients for individual TFAs ranged from 0.34 – 0.93 (data not shown).   

Background characteristics of the study cohort are described in Table 16.  

PLCO participants were 63 years old on average at baseline (range 55 – 70 years) and 

were overwhelmingly white (~91%). Data were nearly complete for all covariates.  

Baseline BMI, the covariate most likely to be missing, was available for more than 

99% of observations. Estimates from complete case models (data not shown) were 

similar to those from models with imputed BMI.   

There was an inverse association between total prostate cancer and LA intake 

for all categories of intake above the reference (MV-adjusted HR for a 4g increment 

of intake = 0.94; 95% CI = 0.89 – 1.00) (Table 17), but no clear associations between 

total prostate cancer and intakes of other individual PUFAs or ratios of PUFAs.  

Trans fatty acid intakes also were not associated with total prostate cancer. 

Low grade prostate cancer (Gleason sum < 7, Table 18) was inversely 

associated with LA intake  (MV-adjusted HR for a 4g increment of intake = 0.89; 

95%CI = 0.82 – 0.96), ALA intake (MV-adjusted HR for a 0.3g increment of 

consumption = 0.97; 95% CI = 0.91 – 1.04), #-6:#-3 and LA:ALA ratios (MV-adjusted 

HR for a 5 unit increment of the ratio of LA:ALA = 0.83; 95% CI = 0.73 – 0.94), and 

intakes of individual TFA (MV-adjusted HR for a 2g increment of consumption = 

0.93; 95% CI  0.86 – 1.01).  Low-grade prostate cancer was positively associated with 

long-chain #-3 fatty acid intake (“fish fats”) across all categories of consumption 

above the reference (MV-adjusted HR for a 0.1g increment of consumption = 1.04; 

95% CI = 0.99 – 1.09).   



 

58 

High-grade prostate cancer (Gleason sum ! 7, Table 19) was not clearly 

associated with intakes of individual PUFAs but was positively associated with the 

LA:ALA ratio for all categories above the reference (e.g., MV-adjusted HR 

comparing C5 to C1 = 1.20; 95% CI = 0.75 – 1.90); however, confidence limits were 

wide for all high-grade HR estimates relative to estimates for total and low grade 

prostate cancer.   High-grade prostate cancer was positively associated with total 

and individual TFA intakes (MV-adjusted HR for a 0.04g increment of consumption 

of TFA 16:1 = 1.10; 95%CI = 1.01 – 1.20).   

We confirmed that the proportional hazards assumption was met for all 

models using the method of Grambsch and Therneau(115), which tests departure 

from linearity of Schoenfeld residuals. The magnitude and precision of our 

multivariable-adjusted associations did not differ substantially (changes in estimates 

of HRs and CIs " ± 0.02) from age-adjusted estimates, and effect estimates shown for 

individual PUFAs were comparable to estimates from models that included the 

major PUFAs simultaneously.  Results for intakes that were energy adjusted using 

the residual method were comparable to estimates that were directly adjusted for 

total energy intake, or adjusted using the nutrient density method (data not shown).  

Results were also comparable to those shown when we restricted the analysis to 

cases diagnosed after one year of follow-up.  Sub-group analyses based on tumor 

stage or tumor stage and grade together did not differ appreciably from those for 

case-subtypes defined by grade only. Observed estimates from models that included 

interaction terms were comparable to those expected for both additive and 

multiplicative risks for joint exposures to PUFAs and race, family history of prostate 

cancer, BMI, total energy intake, alcohol intake, education, and aspirin use as 

potential effect measure modifiers.  
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A.5.  Discussion 

The results of our prospective study suggest that consumption of  LA may be 

inversely associated with prostate cancer, particularly low-grade disease. Ratios of 

#-6: #-3 fatty acids were also inversely associated with low-grade disease, and to a 

lesser extent with total prostate cancer.  Intakes of #-3 fatty acids did not appear to 

be associated with total or high-grade prostate cancer, but had small positive 

associations with low-grade prostate cancer.  Of the PUFAs examined, only TFAs 

appeared to be associated with high-grade disease.   

We did not find an association between AA and total prostate cancer, 

consistent with the Health Professionals Follow-up Study(HPFS)(72) and a case-

control study in Australia(66), but not with the findings of the Netherlands Cohort 

Study(58) or a nested case-control study of blood bank donors(68) that reported 

slight positive associations.  We also found no association between AA and high-

grade prostate cancer, in contrast with a case-control study nested within the 

Physicians Health Study (PHS)(75) which reported that whole blood AA 

concentrations were associated with aggressive prostate cancer but not non-

aggressive cases.  

Our finding of a possible inverse association between LA and total and low-

grade prostate cancer but not high-grade prostate cancer is consistent with some 

published studies, but not others.  For example, Giovannucci, et al.(71) found a 

stronger inverse association between dietary intake of LA and advanced prostate 

cancer than with total prostate cancer in an analysis of the HPFS, whereas 

Leitzmann, et al.(72) reported no association between LA intake and total prostate 
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cancer but an inverse association with advanced disease in a subsequent analysis of 

the HPFS with longer follow-up(72).    

 Our findings for ALA intake, which suggest no association with total or high-

grade prostate cancer but an inverse association with low-grade disease, are 

comparable to one prospective study (70) and four case-control studies (135-138) 

among Caucasian men that observed no relation between dietary or tissue ALA and 

total or advanced prostate cancer, and are consistent with our earlier analysis of 

ALA intake in PLCO(49).   However, other case-control and cohort studies have 

reported inverse (58, 60, 66) or positive(57, 69, 76) associations between ALA intake 

and prostate cancer.  In addition, three(67, 68, 77) of four case-control studies(67, 68, 

70, 74) that investigated serum concentrations of ALA and prostate cancer found 

positive associations, while Mannisto, et al.(70) reported no association. In their 

analysis of PHS data, Chavarro, et al. reported strong positive associations between 

blood concentrations of ALA and non-aggressive prostate cancers (low stage or low 

stage and grade) and positive associations with low and high-grade tumors(75). 

 Our findings for long-chain #-3 fatty acid intakes (i.e. the “fish fats” EPA, 

DPA, and DHA), which suggest no associations with total or high-grade prostate 

cancer but a weak positive association with low-grade disease, are largely 

compatible with the prior literature which has suggests that EPA and DHA are not 

associated with prostate cancer(58, 60, 62, 71).  A more recent analysis of HPFS 

data(71), suggested that DHA and EPA intake may be inversely associated with 

prostate cancer, particularly with advanced cases (high stage or fatal), while an 

analysis of data from the Alpha-Tocopherol, Beta-Carotene Trial(70) suggested that 

EPA and DHA intakes may be associated with elevated risk of prostate cancer.  

Studies of serum and adipose tissue concentrations of long-chain #-3 fatty acids 
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generally support inverse associations with prostate cancer(67, 68, 70, 73-75, 78). 

This apparent discrepancy between studies of dietary intakes and biological 

concentrations of fish fats may partially be the result of metabolic interconversion of 

ALA to long-chain !-3 fatty acids since serum concentrations of DHA and EPA are 

determined both by dietary consumption and their formation via ALA metabolism, 

which may, in turn, be influenced by consumption and metabolism of other 

PUFAs(19). 

 Our results for ratios of !-6 to !-3 PUFAs, which suggest inverse associations 

with total and low-grade prostate cancer but no associations with high-grade 

disease, are similar to results from two nested-case control studies(68, 75) that found 

modest inverse associations between prostate cancer and ratios of serum 

concentrations of major PUFAs, and with an analysis of the Multiethnic Cohort 

(MEC)(60), which, like the current analysis, found no association between ratios of 

PUFAs and advanced prostate cancer.  However the HPFS and the MEC found no 

association between these ratios and total prostate cancer, while a Swedish case-

control study(76) reported positive associations with total prostate cancer.  Our 

finding of inverse associations between the LA:ALA ratio specifically and total or 

low-grade but not high-grade prostate cancer also differ from for an analysis of the 

HPFS(72) which found no association with total prostate cancer but an inverse 

association with advanced prostate cancer.  

 Intakes of total or individual TFAs were not associated with total prostate 

cancer overall, but were positively associated with high-grade disease.  A previous 

case-control study(58) also found no association between TFA intakes and total 

prostate cancer, while another case-control study(79) reported positive associations 
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with advanced (high stage, high-grade, or high total PSA) prostate cancer.  Another 

case-control study(66) found a modest positive association between total prostate 

cancer and intakes of trans-16:1, but not trans-18:1 and trans-18:2.  Neuhouser, et 

al.(59) found that total TFA intake was positively associated with prostate cancer 

among men with a family history of prostate cancer, but not men without a family 

history.   

Potential causal mechanisms for associations between trans fatty acid (TFA) 

intake and prostate cancer are not clear, but TFAs are hypothesized to increase 

inflammation-mediated carcinogenesis(59, 66, 79). A number of studies, including 

some randomized trials, have found that high TFA consumption is associated with 

elevated levels of markers of inflammation such as C-reactive protein(15, 52).  In a 

randomized crossover study, Baer, et al. found that increased consumption of TFAs 

relative to unsaturated fatty acids increased inflammatory markers, particularly C-

reactive protein(52). A recent study of heart patients found that serum 

concentrations of trans-fatty acids were associated with increased systemic 

inflammation(53). Therefore, TFAs may increase advanced prostate cancer risk 

through a systemic inflammatory response. 

Our study had a number of strengths.  We used data from a large, well-

designed prospective study to comprehensively estimate associations between 

prostate cancer and intakes of major PUFAs and TFAs.  PUFA intakes (as a fraction 

of total energy intake and energy from fat) among men in our study were similar to 

estimated intakes for men in the United States as a whole.  The entire PLCO study 

benefits from the fact that the study population has undergone standardized 

screening examinations for prostate cancer, which will reduce the effect of detection 

bias on our analyses relative to observational population-based studies.  
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Furthermore, adjudicated data were available on both prostate cancer stage and 

grade.  The study population enrolled men from sites across the United States.  

There are some limitations to our analysis of the PLCO population.  There is 

published evidence of a “healthy volunteer effect” in the PLCO population(139), but 

this limitation is shared by most epidemiologic studies that require active 

participation.  In addition, the proportion of minority participants was low, 

potentially limiting our ability to generalize our findings to the US as a whole.  We 

also know that in this study population, family history of prostate cancer was 

reported less often than expected (0.52 times the expected rate based on SEER data), 

and that African Americans reported family history of cancer less frequently than 

whites(140), potentially limiting our ability to control for this potentially important 

covariate as either a confounder or effect measure modifier. Diet was only assessed 

for the year prior to enrollment, which was fairly late in life; although adult diets are 

fairly stable, it is possible that estimated nutrient intakes did not represent those 

during the etiologically relevant time period for this slow-developing disease(82).  

Estimated PUFA intakes do not account for supplement use, and data on fish 

consumption and cooking oil use were limited, which may have affected our 

estimates of long-chain #-3 fatty acid intakes.  We do know, however, that the 

databases(99, 100) used to estimate nutrient intakes were generated at a comparable 

time period to enrollment in the PLCO Cancer Screening Trial.  Therefore our 

estimates of nutrient intakes for specific food items fairly accurately represented the 

nutrient contents at baseline.  Because of the relatively late age at entry into the 

study (~63 years at baseline), we may have missed early onset forms of prostate 

cancer that may be more aggressive or clinically relevant.  In theory, controlling for 

prostate cancer screening behavior, which may be a proxy measure of information 
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quality, may induce information bias; however, the magnitude of any such bias 

would have been negligible given the minimal effect of adjustment on our effect 

measure estimates. Finally, we did not have data on prostate cancer mortality, but 

did estimate associations with high-grade prostate cancer, which is strongly 

associated with disease progression, recurrence, and mortality(141). 

It may clarify the public health relevance of our results to place them in the 

context of the absolute risk of prostate cancer.  Recent SEER data indicate that the 

five-year probability of developing prostate cancer for 60 year-old men is 

approximately 3%(3, 4).  Therefore, a hazard ratio of 1.10 for prostate cancer in 

association with high versus low consumption of fish fats suggests an increase in the 

absolute risk of prostate cancer from 3% to 3.3%, a risk difference of only 0.3%.  This 

risk difference suggests that it would be necessary to switch 333 men from the 

highest category of intake of fish fats to the lowest category to reduce the number of 

cases of prostate cancer per 100,000 men by one. 

In summary, we found evidence of a weak inverse association between total 

prostate cancer and dietary intake of LA among men enrolled in the screening arm 

of the PLCO Cancer Screening Trial, and positive associations between dietary 

intakes of #-3 fatty acids and low-grade prostate cancer. Positive associations 

between TFAs and high-grade prostate cancer may have greater public health 

significance than associations between PUFAs and total or low-grade prostate cancer 

since grade is strongly associated with mortality.  Because of the highly interrelated 

nature of the major PUFAs, more research exploring associations between the total 

set of major PUFAs and aggressive or fatal prostate cancer are warranted.   
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B.  Paper 2:  Analysis among male participants in the National Institutes of Health-

AARP Diet and Health Study 

B.1.  Abstract 

We recently reported on associations between intakes of polyunsaturated (PUFAs) 

and trans-fatty acids (TFAs) and prostate cancer among male participants in the 

screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.  

Due to limitations in dietary assessment in that population along with the lack of 

data on prostate cancer mortality, an outcome of potentially greater public health 

significance, we analyzed similar relations among male participants in the National 

Institutes of Health-AARP Diet and Health Study, a cohort of 288,956 men residing 

in one of six states or two metropolitan areas in the United States in 1996 and 

followed-up for prostate cancer incidence through the end of 2003.  Cox 

proportional hazards models were used to estimate hazard ratios (HRs) and 95% 

confidence intervals (95% CIs).  During the follow-up period, we identified 17,095 

cases of prostate cancer, 1,891 of which were advanced tumors and through the end 

of 2005 we identified 427 fatal cases of prostate cancer.  We found that intakes of 

long-chain #-3 fatty acids were positively associated with total prostate cancer (MV-

adjusted HR comparing C5 to C1 = 1.07; 95% CI = 1.02 – 1.12) and inversely 

associated with fatal tumors (MV-adjusted HR for a 0.1g increment of intake = 0.87; 

95% CI = 0.78 – 0.98). Total TFA intake was inversely associated with high-stage 
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disease (MV-adjusted HR for a 2g increment of intake total TFA = 0.95; 95% CI = 

0.89 – 1.02) and TFA 16:1 intake was positively associated with fatal disease (MV-

adjusted HR for a 0.04g increment of intake = 1.07; 95% CI = 0.97 – 1.18).  Because of 

limitations in our study, more research may be warranted to understand 

associations between these highly interrelated nutrients and prostate cancer, 

potentially identifying further targets for pharmacological intervention and targets 

for primary prevention. 

B.2.  Introduction 

We recently reported our findings on associations between dietary intakes of 

polyunsaturated fatty acids (PUFAs) and trans-fatty acids (TFAs) and prostate 

cancer among male participants in the screening arm of the Prostate, Lung, 

Colorectal, and Ovarian (PLCO) Cancer Screening Trial(142).  Briefly, we found an 

inverse association between total and low-grade prostate cancer and dietary intake 

of linoleic acid (LA), the most common #-6 fatty acid in the U.S. diet(14), and 

positive associations between high-grade (Gleason sum ! 7) prostate cancer and 

dietary intakes of TFAs.   Here we report the results of a similar study we conducted 

among participants in the NIH-AARP Diet and Health Study(94).   

The major classes of PUFAs are !-3 fatty acids, including !-linolenic acid 

(ALA; 18:3), eicosapentaenoic acid (EPA; 20:5), docosahexaenoic acid (DHA; 22:6), 

and docosapentaenoic acid (DPA; 22:5), and !-6 fatty acids, including linoleic acid 

(LA; 18:2) and arachidonic acid (AA; 20:4).  LA accounts for approximately 87% of 

energy from PUFAs, while ALA accounts for approximately 10% of energy from 

PUFAs(14).   
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Metabolism of the major PUFAs is highly interrelated.  For example, the 

short-chain !-3 fatty acid ALA can be converted into the long-chain !-3 fatty acids 

EPA, DPA, and DHA in limited quantities(24), particularly when dietary intakes of 

EPA and DHA are low(14). Metabolic enzymes that help convert ALA to EPA are 

also involved in the conversion from the !-6 fatty acid LA to AA.  Consequently, 

ALA metabolism is limited both by the absolute dietary intakes of !-3 fatty acids 

and by the relative dietary intakes of !-6 to !-3 fatty acids (i.e. the ratio of !-6 to !-3 

fatty acids)(24). PUFAs, whether consumed in the diet or formed through metabolic 

conversion, act through competing pathways to modulate prostaglandin synthesis, 

which may be relevant to inflammation-mediated carcinogenesis(19).  

Prostaglandins and eicosanoids formed from EPA by the enzymatic action of 

cycoloxygenases (COX) and lipoxygenases (LOX) have been associated with 

decreased prostate tumor growth in human prostate cancer cell lines and animal 

models, while prostaglandins and eicosanoids derived from AA via the same COX 

and LOX enzymes have been associated with increased prostate tumor growth(19). 

In addition, ALA has been shown to increase prostate tumor growth in animal 

models through mechanisms that are independent of the metabolism of ALA to long 

chain !-3 fatty acids, and the subsequent production of EPA-derived 

eicosanoids(41).  Therefore, associations between prostate cancer and dietary ALA 

may be independent of associations with dietary intakes of the long-chain !-3 fatty 

acids EPA, DPA, and DHA. 

Results of studies that have investigated associations between prostate cancer 

and either dietary intakes or biological concentrations of PUFAs have yielded 

inconsistent findings(54-78, 121, 142), but many studies have found positive 
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associations between prostate cancer and ALA(57, 67-69, 76, 77) and null to inverse 

associations with DHA and EPA(67, 68, 70, 71, 73-75, 78).  

Trans-fatty acids, which are artificially formed through the partial 

hydrogenation of vegetable oils, have been hypothesized to increase prostate cancer 

risk through inflammatory mechanisms, similar to those hypothesized to explain 

relations with cardiovascular disease(19, 122).  TFAs have been shown in clinical 

crossover studies to increase production of cytokines(15) and to increase systemic 

inflammation(52, 53).  Limited epidemiologic data exist on associations between 

TFAs and prostate cancer(58, 59, 66, 79, 80, 142) and although the results are 

somewhat conflicting, the majority of studies have reported that high TFA 

consumption is positively associated with prostate cancer.  We noted a positive 

association between TFA intakes and high-grade prostate cancer, but not with 

incident prostate cancer, in our previous analysis of data from the screening arm of 

the PLCO Cancer Screening Trial(142). 

The goal of the current study was to investigate relations between dietary 

intakes of PUFAs and TFAs and incident prostate cancer, prostate cancer with 

extraprostatic extension at diagnosis, and fatal prostate cancer in the NIH-AARP 

Diet and Health Study cohort (94). The NIH-AARP Diet and Health Study offered 

some additional advantages; namely the ability to investigate relations with fatal 

prostate cancer and potentially greater ability to ascertain PUFA intake due to the 

fact that cooking oil (a substantial source of PUFAs in the diet) use, was inquired 

about.   Outcome subtypes and data collection instruments differ somewhat from 

those used in our study of dietary PUFAs and TFAs in association with total and 

high-grade prostate cancer in PLCO Cancer Screening Trial participants, but 
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comparable analytic approaches were used to facilitate comparisons between the 

two study cohorts.   

B.3.  Materials and Methods 

B.3.a.  Study Population 

The NIH-AARP Diet and Health Study is a prospective cohort study 

designed to investigate relations between diet and a variety of health outcomes(94).  

Between 1995 and 1996, 3.5 million current AARP members, aged 50 – 71 who 

resided in one of six US states (CA, FL, PA, NC, NJ, and LA) or one of two 

metropolitan areas (Atlanta, GA and Detroit, MI) were invited to participate in the 

study.   Over 500,000 individuals returned the initial mailed questionnaire, including 

340,148 men.  A supplementary risk factor questionnaire (RFQ) was mailed to these 

respondents during the latter half of 1996.   

 Men were excluded from the current analysis if they submitted more than 

one baseline questionnaire (n = 103, died or moved out of the study area prior to 

baseline (n = 373), chose to withdraw from the study (n = 1), had a questionnaire 

completed by a proxy (n = 14,495), or had been previously diagnosed with a cancer 

other than non-melanoma skin cancer (n = 27,269).  Men were also excluded if they 

reported extreme values for total energy consumption (greater than twice the 

interquartile range for the box-cox transformed energy intake (< 415 and > 6,144 

kcal/day), n = 2,509), height (< 1.22 m and > 2.41 m) (n = 1,456), or weight (< 0.90 kg 

and > 450 kg)(n= 402) or if their derived body mass index (BMI; kg/m2 based on 

self-reported weight and height) was implausible (< 0.28 and > 151) (n = 174).  After 

exclusions, 288,956 men remained in the final analytic cohort, including 178,705 

(62%) men for whom data were available from the RFQ.  Men were followed-up 
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from completion of the baseline questionnaire until the date of a prostate or other 

malignant cancer diagnosis (other than a non-melanoma skin cancer), death from 

any cause, or the end of the study period.  

The Special Studies Institutional Review Board of the U.S. National Cancer 

Institute approved the NIH-AARP Diet and Health Study.  Current analyses were 

exempted from institutional review board review at the University of North 

Carolina. 

B.3.b.  Dietary Assessment 

At baseline, participants completed a grid-based version of the Diet History 

Questionnaire (DHQ; http://riskfactor.cancer.gov/DHQ/)(94).  The DHQ queried 

participants on the frequency of consumption and typical portion size of 124 food 

items during the prior 12 months.  The DHQ also included an additional 21 

questions on consumption of low-fat foods and food preparation practices, 

including types of oils and fats used in cooking, which are common sources of 

PUFAs in the diet(94). The DHQ inquired about fish consumption, including 

consumption of tuna (including tuna salad and casserole), fried fish, and other types 

of seafood that are important sources of PUFAs. Data were not available on PUFA 

supplement use, including flax seed or fish-oil supplements. 

A separate calibration sub-study based on 24-hour recalls was conducted 

among 2,053 participants in the NIH-AARP cohort(104) including 1,986 who 

completed two separate 24-hour dietary recalls (approximately one-month apart) 

and 1,415 who completed and returned a second DHQ in late 1996.  PUFA intakes 

were correlated with 24-hour dietary recalls, particularly after nutrients were 
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adjusted for energy intake (r = 0.47 when not adjusted for energy intake and 0.53 

when adjusted) (143).  

Gram weights per portion size (small, medium, large) for a given food item 

were estimated using data from two 24-hour diet recalls administered in the 1994-

1996 Continuing Survey of Food Intake by Individuals (CSFII)(99).  For TFA intakes, 

gram weights were estimated using data from the Nutrition Data System for 

Research (NDSR; http://www.ncc.umn.edu/products/databasenutrients.html) for 

the same time period, which overlapped with baseline data collection for the 

cohort(99, 100).  Average daily nutrient intakes of specific fatty acids (including 

ALA, LA, DHA, DPA, EPA, and AA) and specific TFAs  (trans- 16:1, 18:1, and 18:2) 

were estimated by multiplying the average daily consumption of each food item by 

its estimated nutrient content and summing the average nutrient intakes from each 

food item.   

B.3.c.  Covariate Assessment 

The baseline NIH-AARP study questionnaire included questions on body size 

(current), physical activity (past year), family history of cancer (ever), and smoking 

history (lifetime).  The supplementary RFQ included questions on cancer screening 

(including both digital rectal exam, DRE, and prostate specific antigen, PSA, testing, 

past five years) and family medical history (lifetime).   

B.3.d.  Case Ascertainment 

Identification of incident prostate cancer cases in the NIH-AARP cohort has been 

conducted through passive follow-up(105, 106) via linkage of the NIH-AARP cohort 

database with state cancer registries in the participating states(107). Cancers other 
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than prostate cancer were also ascertained since men were censored at the time of 

any malignant cancer diagnosis (other than non-melanoma skin cancer). 

Furthermore, the cohort was linked to the NDI to ascertain date and specific cause of 

death, identify fatal prostate cancer cases and determine a censoring date for men 

who died of other causes. Clinical or pathological tumor stage(103) were obtained 

from cancer registry data.  

Cancer registries in the eight NIH-AARP states have been certified by the 

North American Association of Central Cancer Registries for meeting the highest 

standard data quality and are estimated to ascertain 95% of cancer cases within two 

years of cancer diagnosis.  Based on medical record confirmation of self-reported 

cancer incidence in a validation sub-study of 12,000 cohort members, approximately 

90% of all incident cancers were correctly identified using the registry-based 

approach(105).  Failure to ascertain all cancers may be the result of incomplete 

registry linkage, delayed reporting of cases to the registries, and movement of 

participants outside of the areas covered by the study area cancer registries.  

Changes in residence were monitored by linkage of the NIH-AARP cohort database 

to the US Postal Service’s National Change of Address (NCOA) database(105), and 

additional information was obtained through direct reporting by study participants 

in follow-up questionnaires, and through data received through US Postal Service 

processing of undeliverable mail(105).  Within three years of follow-up, 98% of NIH-

AARP cohort members either remained at the same address or relocated within one 

of the eight NIH-AARP study states(107), and it has been estimated that over 95% of 

the cohort met these same criteria over the first five years of follow-up.  Therefore, 

the overwhelming majority of participants remained in follow-up for ascertainment 

of prostate cancer.  Furthermore, linkage was recently extended to include cancer 
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registries in Arizona, Texas, and Nevada, where NIH-AARP study participants were 

most likely to have relocated to when moving out of the study area, increasing the 

completeness of case ascertainment. 

B.3.e.  Statistical Analysis 

We used Cox proportional hazards models(95, 110) to estimate age-adjusted 

and multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (95% 

CIs) using STATA 10.0 (STATACorp, College Station, TX). Person-time of follow-up 

for incident prostate cancer analyses accrued from the date of return of the baseline 

questionnaire until the date of prostate cancer diagnosis, date of any other 

malignant cancer diagnosis, date of death from any cause, or the end of the study 

period (31 December, 2003).  Person-time of follow-up for fatal prostate cancer 

analyses accrued from the date of return of the baseline questionnaire until the date 

of death or the end of the study period (31 December, 2005).  For subanalyses among 

participants who completed the supplementary RFQ, person-time accrued from the 

date of return of the RFQ. 

 We adjusted for total energy intake, using the residual method(82).  We log-

transformed the nutrient intake for each individual.  We then regressed the log-

transformed nutrient on log-transformed energy intake (simple linear regression), 

and calculated the residual between each individual’s actual nutrient intake and the 

predicted nutrient intake given his energy intake.  In order to place the log-

transformed adjusted nutrient intake into a more readily interpretable scale, we 

added the residual nutrient intake to the estimated nutrient intake at the mean 

energy intake of the study population and then exponentiated the resulting values 

to generate the energy-adjusted nutrient intakes.   
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We considered both continuous and categorical classifications of nutrient 

exposures, including dietary intakes of ALA, LA, AA, EPA, DHA, and the sum of 

EPA and DHA. In addition to estimating effects of individual fatty acid intakes, we 

separately estimated effects of ratios of -6 to -3 fatty acid intakes, including the 

ratios of AA+LA:ALA+DHA+EPA, LA:ALA, and LA:EPA+DHA+DPA, as 

categorical and continuous exposures. Ratios of intakes of PUFAs were estimated by 

dividing the residually adjusted nutrients by each other (e.g. ratio LA:ALA = 

energy-adjusted LA intake/energy-adjusted ALA intake) and ratios were 

categorized based on distributions in the total study population. Furthermore, we 

considered the intakes of major classes of trans-fatty acids (TFAs; trans-16:1, trans-

18:1, and trans-18:2) separately, as well as total TFA intake. 

To maintain consistency with our prior analysis in the PLCO cohort, we used 

the same cutpoints for categorizing energy-adjusted nutrient intakes(142). Briefly, 

we generated five separate evenly spaced categories (C1 – C5) by creating cutpoints 

near the bottom and top 10-15% of the PLCO population and divided the range of 

exposures between those two points into three groups that were evenly spaced 

along the range of intakes.  

We estimated linear trends by modeling the main exposure as a continuous 

variable and estimating the hazard ratio for an increment of intake equal to the inter-

quartile range (rounded to one significant figure) for that nutrient (or nutrient ratio) 

within the PLCO population. We interpreted categorical and continuous effect 

estimates together, when categorical estimates were consistent with a linear trend.  

Where the two results appeared to be contradictory, we further explored the 

associations by using both flexible spline models and by subsetting the data into 

smaller categories to determine whether the continuous linear trend estimates 
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appeared to be a useful summary of the underlying dose-response relation, or 

should be discounted relative to the categorical estimates when interpreting the 

overall results.   

 Confounders were identified based on analysis of directed acyclic graphs 

(DAGs)(111), which included covariates reported or hypothesized to be associated 

with prostate cancer in the prior literature. Specifically, we evaluated age (implicit in 

the model), BMI, physical activity (number of times per week participating in 

vigorous physical activity), race (white/black/other), smoking history 

(never/former/current), education (<12 years/high school graduate/some 

college/at least a college degree), family history of prostate cancer (yes/no), history 

of diabetes (yes/no), total energy intake (kcal/day), red meat intake (g/day), 

lycopene intake (µg/day), vitamin E intake (mg/day),calcium intake (mg/day), and 

state of residence. Missing data for BMI and race were imputed using the multiple 

imputation by chained equations method(128-130) implemented by the ‘ICE’ 

procedure in Stata(131-133).   Confounders identified in or analysis of DAGs that did 

not alter the effect estimates substantially (e.g. differences in HRs of ± 0.02) and were 

not controlled for in our prior analysis of the PLCO cohort, such as education, were 

not included in our final multivariable-adjusted models.  Furthermore, we 

conducted subanalyses among participants who completed the supplementary RFQ 

to additionally control for a history of at least one DRE in the past three years 

(yes/no) and regular NSAID (aspirin and/or ibuprofen) use (yes/no).    

We considered separate endpoints of incident prostate cancer cases, fatal 

cases (deaths with prostate cancer listed as the underlying cause, including cases 

identified through registry data that subsequently died from prostate cancer after 
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the incident cancer study period, between 2003 and 2005, localized or organ-

confined cases (Stage T1a – T2b and N0M0), and men with advanced or 

extraprostatic disease (Stage T3 or T4, N1 or M0). Fatal cases of prostate cancer that 

occurred during the incident prostate cancer analysis period, were included as 

incident cases and as advanced tumors. 

 We evaluated potential effect measure modification by race, body mass index, 

total energy intake, aspirin use, prostate cancer screening (DRE and PSA) history, 

and family history of prostate cancer.   Multiplicative interaction (HR modification) 

was assessed by evaluating interaction terms and departures from additive hazards 

were assessed using the interaction contrast ratio (ICR)(116, 118).   

We tested whether the proportional hazards assumption was met for all 

models using the method of Grambsch and Therneau(115), which tests departure 

from linearity of Schoenfeld residuals.  Sensitivity analyses were conducted to place 

bounds on the potential effect of bias on our estimates. 

B.4.  Results 

There were 17,095 incident cases of prostate cancer over approximately 2,000,000 

person-years of follow-up, of which 1,891 were advanced tumors (T3 or T4, N1 or 

M1) and 427 were fatal cases of prostate cancer over approximately 2,600,000 

person-years of follow-up.  Polyunsaturated fatty acids contributed 22.6% of energy 

from fats and 7.5% of total energy intake in the NIH-AARP study population (Table 

20), consistent with estimated intakes in the PLCO population and with national 

estimates for the United States(14, 142).  As expected, energy-adjusted intakes of 

individual long-chain  #-3 fatty acids (EPA, DPA, and DHA; “marine fatty acids”) 
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were positively correlated with each other (Pearson correlation coefficients ranging 

from 0.81 – 0.94)(Table 20).   

 Baseline characteristics of male participants in the NIH-AARP cohort were 

fairly similar to those of male participants in the screening arm of the PLCO Cancer 

Screening Trial (Table 21). Participants were overwhelmingly white (~94%) with a 

mean age of 62 years at baseline. Participants in this cohort reported lower average 

total energy intakes, and correspondingly lower intakes of specific nutrients 

compared with the PLCO study cohort. This is not unexpected, as the NIH-AARP 

DHQ included fewer food items than the PLCO FFQ.  NIH-AARP study participants 

were also more likely than PLCO participants to report a positive family history of 

prostate cancer (13.5 vs. 8.0%) and were less likely to report a history of diabetes (7.3 

vs. 8.5%).   

 Subjects who completed the supplemental RFQ did not differ substantially 

from subjects who did not with respect to many of the covariates under 

investigation. Adjusting for screening history and NSAID use, which were only 

ascertained for participants who had completed the RFQ, had little impact on effect 

estimates within this subset of cohort participants; therefore, final models did not 

include adjustment for these factors.  

 We found no clear associations between dietary intakes of AA, LA, and ALA 

and incident prostate cancer (Table 22).  We noted evidence of positive associations 

between dietary intakes of individual and combined long-chain #-3 fatty acids 

(“marine fatty acids”) and incident prostate cancer for intake categories above the 

reference level.  However, continuous (linear) trend estimates indicated a flat dose-

response with increasing intakes, and further categorical analyses with marine fatty 

acid consumption divided into smaller categories and modeling exposures using 
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flexible splines confirmed that linear trend estimates were driven by a small number 

of non-case observations at extreme levels of intake.  We found no associations 

between  ratios of PUFAs and incident prostate cancer.  However, we found inverse 

linear trends for the ratios of #-6: #-3 and LA:ALA.  Flexible spline analysis further 

confirmed that an inverse continuous trend estimate for the ratio of LA:ALA was 

driven by high leverage data points at extreme values of the ratios and by the large 

increments used for the estimates based on the interquartile range for this ratio in 

the PLCO population.  Furthermore, we found no associations between intake of 

total TFA, or individual TFAs, and incident prostate cancer.   

 AA intake was positively associated with advanced prostate cancer (MV-

adjusted HR for a 0.05g increment of intake = 1.04; 95% CI = 0.99 – 1.10) (Table 23). 

LA was inversely associated with advanced cancer for all categories of intake (MV-

adjusted HR comparing C5 to C1 = 0.91; 95% CI = 0.77 – 1.08); however, there was a 

flat linear dose-response between LA intake and advanced disease.  Further 

analysis, in which LA intake was divided into smaller categories and using flexible 

splines suggests that linear trend estimates were biased by values at extreme levels 

of LA intake.  EPA intake was inversely associated with advanced cancer (MV-

adjusted HR for 0.03g of intake = 0.97; 95% CI = 0.94 – 1.02) and that DHA intake 

was positively associated at all levels of intake relative to the lowest level of intake 

with advanced cancer.  Again our finding of no linear-dose response for this 

exposure was apparently driven by estimates at extremely high levels of DHA 

intake.  Similarly, we found that total marine fatty acid consumption was positively 

associated with advanced prostate cancer.  Ratios of #-6:#-3 fatty acids and LA:ALA 

were positively associated with advanced prostate cancer at most levels of intake 
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relative to the lowest level of these ratios, although we found inverse linear dose-

responses (MV-adjusted HR for a 2-unit change in the ratio of #-6:#-3 fatty acids = 

0.95; 95% CI = 0.91 – 1.00); MV-adjusted HR for a 5-unit change in the ratio of 

LA:ALA = 0.95; 95% CI = 0.88 – 1.02).  Further exploration of these associations 

using flexible splines and further subsetting of the categories suggest that these 

inverse trends are driven by the combination of strong associations in the second 

category of the ratios and inverse associations at very high levels of these ratios.  We 

found no association between the ratio of LA:marine fatty acids and advanced 

prostate cancer. Total TFA intake was inversely associated with advanced prostate 

cancer (MV-adjusted HR for a 2g increment of intake = 0.95; 95% CI = 0.89 – 1.02), an 

association that appeared to be driven by intakes of TFA 18:1 and 18:2; in contrast, 

TFA 16:1 appeared to be positively associated with advanced prostate cancer.  

 Fatal prostate cancer was inversely associated with LA intake, although the 

slope of the continuous was relatively flat (Table 24).  Similar to our analysis of 

advanced disease, high leverage data points contributed to apparently discrepant 

estimates for linear trends.  Total and individual intakes of marine fatty acids were 

inversely associated with fatal prostate cancer (MV-adjusted HR for a 0.1g increment 

of intake of total marine fatty acids = 0.87; 95% CI = 0.78 – 0.98).  The ratio of 

LA:ALA was inversely associated with fatal prostate cancer, but the ratio of 

LA:marine fatty acids was positively associated with fatal cancer.  Fatal prostate 

cancer was also positively associated with TFA 16:1 (MV-adjusted HR for a 0.04g 

increment of intake = 1.07; 95% CI = 0.97 – 1.18), but not with other specific TFAs or 

total TFAs. 

Multivariable-adjusted estimates were comparable to our age-adjusted 

estimates(data not shown), as were models that controlled for additional 



 

80 

confounders such as education and red meat intake.  Simultaneous modeling of 

individual PUFAs did not result in substantially different estimates.  We did not 

find evidence of hazard ratio modification either on the additive or multiplicative 

scale.  All models met the proportional hazards assumption. 

B.5.  Discussion 

In this large cohort study, dietary intakes of most PUFAs and TFAs were not 

associated with incident prostate cancer, although intakes of long-chain #-3 fatty 

acids (“marine fatty acids”) is positively associated with incident cancer.  However, 

consumption of large amounts of AA was positively associated with advanced 

disease while total TFA intake was inversely associated with advanced disease.  

Furthermore, the ratio of LA:ALA was inversely associated with advanced prostate 

cancer.  Conversely, we found that consumption of large amounts of long-chain #-3 

fatty acids (“marine fatty acids”) and LA was inversely associated with fatal prostate 

cancer and intake of TFA 16:1 was associated with an increased risk of fatal prostate 

cancer, although estimates for categorical associations with fatal prostate cancer 

were imprecise. 

 Our results for dietary intakes of fatty acids and incident disease are largely 

comparable to our prior analysis of fat consumption and prostate cancer among 

male participants in the screening arm of the PLCO Cancer Screening Trial(142).  

However, in the PLCO analysis, LA intake was inversely associated with incident 

disease (MV-adjusted HR for a 4g increment of LA intake = 0.89; 95% CI = 0.82 – 

0.96), but not in the present study.  

 We did not have sufficient data on tumor grade to evaluate associations with 

tumors defined by grade, but we were able to estimate associations with advanced 
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stage and fatal prostate cancers.  In our prior analyses, we found that only TFA 

intakes were positively associated with high-grade disease among PLCO study 

participants.  In the NIH-AARP study population, TFA intakes were inversely 

associated with high stage disease, but were positively associated with fatal disease, 

particularly for TFA 16:1.  Unlike our PLCO analyses, we found evidence of an 

inverse association between consumption of marine fatty acids and LA and fatal 

disease and a positive association between AA intake and advanced (high stage) 

disease.   

Our findings for AA intake are largely compatible with our analysis of !-6 

fatty acids and prostate cancer in PLCO(142), a case-control study conducted in 

Australia(66) and an analysis of the Health Professionals Follow-up Study 

(HPFS)(72) which found no associations between AA intake and incident prostate 

cancer.  Our results for LA intake and incident prostate cancer were also similar to 

our earlier analysis (MV-adjusted HR for a 4g increment of LA intake = 0.94; 95% CI 

= 0.89 – 1.00)(142). Like two analyses of the HPFS(71, 72), we found that LA intake 

may be inversely associated with aggressive disease.   

Consistent with our prior analyses of ALA in PLCO(49, 142)  and a number of 

other studies (70, 135-138), we did not find associations between ALA intake and 

incident or advanced prostate cancer  However, they were inconsistent with several 

other studies that reported either positive(57, 69, 76) or inverse(58, 60, 66) 

associations between intakes of ALA and prostate cancer.  

Our findings of inverse associations between long-chain #-3 fatty acids and  

fatal prostate cancer are largely compatible with a recent study in the HPFS, which 

found that DHA and EPA intake may be inversely associated with advanced 
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(defined as high stage or fatal) prostate cancer(72). Animal and cell culture studies 

suggest that individual !-3 fatty acids, particularly EPA and DHA, may inhibit 

prostate carcinogenesis(19).   

Both DHA and EPA have been shown to inhibit tumor cell growth in both 

animal models and cell lines derived from human prostate tumors(42).  Relative to 

DHA or EPA, ALA may have greater potential to create oxidative damage which 

could contribute to prostate cancer tumorgenesis(41).  Also, while animal and cell 

cultures suggest that long-chain #-3 fatty acids may inhibit carcinogenesis(19), other 

studies have suggested that ALA does not prevent prostate tumor growth(36, 42-44), 

supporting the notion that ALA may modulate prostate cancer growth through 

mechanisms independent of its metabolism to EPA and DHA. 

As with our analysis of men in the screening arm of the PLCO study, we 

found no evidence of an association between TFA intakes and incident prostate 

cancer.  However, we found conflicting evidence when we stratified cases by 

aggressiveness.  Specifically, intakes of TFAs were inversely associated with high 

stage disease, but some TFAs were positively associated with fatal disease, a result 

consistent with our finding of a positive association between high-grade disease in 

the PLCO cohort.  However, our estimates are fairly imprecise, and it is important to 

note that we used the same cutpoints for categorization as we did in PLCO.  Because 

these estimates were based on a different questionnaires, estimated intakes for the 

same individual would be expected to vary.  One case-control study(58) reported no 

association between TFA intake and incident prostate cancer, while another(79) 

found a positive association with aggressive (high stage, high grade, or high total 

PSA) disease.  Intriguingly, another case-control study(66) found no association 
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between incident prostate cancer and intakes of trans-18:1 and trans-18:2, but a 

positive association with intake of trans-16:1, similar to our findings for fatal 

prostate cancer.    

It has been hypothesized that TFAs may increase prostate cancer risk through 

inflammation-mediated carcinogenesis(15, 52).  A number of clinical crossover 

studies of TFA supplementation have found that TFA intake is associated with 

increased markers of systemic inflammation, including C-reactive protein(15, 52, 53). 

This study has a number of strengths.  It is one of the few studies to 

comprehensively examine relations between prostate cancer and intakes of the most 

common PUFAs and TFAs and it was conducted within a well-designed, large 

prospective cohort study.  As with men in the screening arm of the PLCO trial, men 

in the NIH-AARP study consumed amounts of the major PUFAs as a fraction of 

energy from fat and total energy intake that were similar to estimated intakes for 

men in the United States. Intakes of TFAs as a fraction of total energy intake were 

slightly lower in the NIH-AARP study population than in the PLCO population, but 

it is unclear whether this reflects true differences in consumption or measurement 

error due to differences in specific food items queried for by the two FFQs or 

differences in assumptions used to calculate nutrient contents of similar food items. 

In addition, the FFQ used in the NIH-AARP study included a question on usual 

cooking oil used, potentially providing a better estimate of dietary intakes of PUFAs.  

This FFQ was developed using cognitive research to help identify and correct 

deficiencies in prior dietary assessments including comprehension of food items, 

poor ordering of food items, and difficulties in averaging intakes of seasonal foods 

and multiple foods included in a single line item.  (84, 101)Furthermore, unlike our 
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prior analyses in PLCO, we had the ability to investigate associations with fatal 

prostate cancer, potentially the most clinically relevant form of the disease.   

We know that there are some limitations to our current analysis.  Case 

ascertainment is entirely passive.  A validation sub-study found that approximately 

89% of cancer cases were ascertained(105), although ascertainment could potentially 

be lower for prostate cancer.  Because there is no reason to suspect that diet is 

associated with the likelihood of a diagnosed case being reported to the cancer 

registry, there is no reason to suspect that this misclassification should be 

differential with respect to exposure status, resulting most likely in a bias towards 

the null.  Furthermore, it is highly unlikely that we falsely identified men without 

prostate cancer as cases through this method.  A sensitivity analysis or our 

estimates, randomly assigning positive case status to 2,000, assuming that 

ascertainment is not associated with fatty acid intakes, of the non-cases (~10% of the 

number of cases ascertained during follow-up) and rerunning the analyses, suggests 

that the amount of bias that this would introduce in our analysis is limited, but 

would bias estimates towards the null.  This type of case ascertainment also limited 

our ability to obtain tumor grade data and information. Like the PLCO population, 

the NIH-AARP study recruited participants in a broad range of U.S. states; however, 

generalizability may be limited to individuals with similar sociodemographic 

characteristics to the study population, which was predominantly white and of 

higher socio-economic status than the United States population as a whole.  

Similarly, we assessed diet at a single point, which was relatively late in life, which 

may not have captured diet at the etiologically relevant time period.  Limited data 

were available on specific types of fish consumed and no data were available on fish 

oil or flaxseed supplements; consequently, we may have underestimated #-3 fatty 
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acid intakes.  Furthermore, we noted a wide variation in intakes of some nutrients 

(in some instances, the standard deviation equaling in the mean), which may have 

contributed to additional imprecision in our effect estimates.   

While we have estimated relative risks of prostate cancer in relation to dietary 

intakes of PUFAs and TFAs, it may be more relevant to consider the absolute impact 

that consumption of these nutrients may have.  According to SEER data(3, 4), the 5-

year probability of developing prostate cancer beginning at age 60 (the closest 5-year 

increment to the mean age of entry into the NIH-AARP Diet and Health Study) is 

approximately 3%.  Given, an HR for prostate cancer of 1.18 for consuming an 

amount of AA that would place one in the highest category of AA intake compared 

with the lowest, one would increase the absolute 5-year risk of prostate cancer from 

3 to 3.54%.  This risk difference is equivalent to the requirement that185 men switch 

from the highest to lowest category of AA consumption in order to reduce the 

number of cases of prostate cancer per 100,000 men by one. 

In summary, we found no evidence of associations between intakes of most 

PUFAs or TFAs and incident prostate cancer. We found that long-chain #-3 fatty 

acids (“marine fatty acids”) were positively associated with incident cancer.  We 

found that long-chain #-3 fatty acids were inversely associated with fatal prostate 

cancer and that TFA intakes were inversely associated with high-stage disease and 

positively associated with fatal prostate cancer. 

Other large prospective studies that include younger men and that also 

capture a more complete estimation of fish consumption and supplement use are 

warranted to further elucidate the roles that these highly interrelated nutrients may 

play in prostate carcinogenesis.   
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CHAPTER V 

DISCUSSION 

 A.  Summary of Findings 

 We investigated relations between intakes of major PUFAs, their ratios, and 

TFAs and prostate cancer in two large prospective cohort studies, the screening arm 

of the PLCO Cancer Screening Trial and the NIH-AARP Diet and Health Study.  

Among men in the PLCO study, we found that intake of LA, the most 

common #-6 fatty acid in the diet, was inversely associated with total prostate 

cancer (MV-adjusted HR for a 4g increment of intake = 0.94; 95% CI = 0.89 – 1.00).  

Intakes of the long-chain # -3 fatty acids (EPA, DPA, and DHA) were positively 

associated with low-grade (Gleason sum < 7) prostate cancer (MV-adjusted HR for a 

0.1g increment of intake = 1.04; 95% CI = 0.99 – 1.09), while TFA intakes were 

positively associated with high-grade disease (MV-adjusted HR for a 2g increment 

of total TFA intake = 1.07; 95% CI = 0.96 – 1.19).  We found no other associations 

between PUFAs or their ratios and TFAs and total, low-grade, or high-grade 

prostate cancer. 

Among men in the NIH-AARP Diet and Health Study, we found that intakes 

of long-chain #-3 fatty acids were positively associated with total prostate cancer 

(MV-adjusted HR comparing C5 to C1 = 1.07; 95% CI = 1.02 – 1.12) and inversely 

associated with fatal disease (MV-adjusted HR for a 0.1g increment of intake = 0.87;
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95% CI = 0.78 – 0.98).  We also found that total TFA intake was inversely associated 

with high-stage disease (MV-adjusted HR for a 2g increment of intake total TFA = 

0.95; 95% CI = 0.89 – 1.02) and TFA 16:1 intake was positively associated with fatal 

disease (MV-adjusted HR for a 0.04g increment of intake = 1.07; 95% CI = 0.97 – 

1.18). 

B.  Synthesis of Results of the Two Studies 

 In general, we found no associations between intakes of individual PUFAs, 

their ratios, or individual TFAs and total or advanced (based on tumor stage, grade, 

or fatality) prostate cancer.  However, in the PLCO population we found an inverse 

association between intake of LA and total prostate cancer, an association we did not 

see in the NIH-AARP study population.  We found apparent divergent associations 

between intakes of long-chain !-3 fatty acids and prostate cancer; a positive 

association with low-grade disease in the PLCO population, positive association 

with total prostate cancer in the NIH-AARP study population, and an inverse 

association with fatal cancer in the NIH-AARP study population.  We also found 

apparent differences between associations with TFAs and prostate cancer; a positive 

association between TFA intake and high-grade prostate cancer in the PLCO 

population and inverse association with advanced prostate cancer in the NIH-AARP 

Diet and Health Study (although intake of TFA 16:1 was positively associated with 

fatal disease in the NIH-AARP study population).   

 A number of explanations may account for these apparent discrepancies 

between the two study populations and from our initial hypotheses.  First, it is 

possible that the true associations differ due to differences in the study populations.  

Furthermore, due to the fact that true associations between dietary risk factors for 
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prostate cancer are of low magnitude and that there is a high likelihood of non-

differential misclassification of exposure in prospective, with respect to disease 

status, studies of diet, it is not surprising that results may be attenuated towards a 

null value of 1.0.  While both study populations are large, and power substantial (an 

indicator of relative precision; Table 12 and Table 13), it becomes difficult to 

determine whether small estimates are true representations of the actual association 

or simply given added weight due to increased precision.  That said, while the two 

study populations were fairly similar, differences in both assessment of diet and 

ascertainment of case status may help account for differences in our findings for the 

two study populations. 

 As discussed briefly previously, there are a number of differences between 

the dietary assessments used in the PLCO study and the NIH-AARP study.  In the 

PLCO population, we used the DQX to assess average dietary intake of food items 

during the year prior to enrollment in the study.  The DQX was based on both the 

Willett and Block FFQs, two frequently used and validated dietary instruments(127).  

However, Subar, et al.  found, through cognitive interviewing, that there are 

substantial limitations to the traditional approaches used in these FFQs(84, 101).  

These include the fact that participants had difficulty averaging intakes of multiple 

food items that were listed for a single line-item (e.g. a single line item on the DQX 

included “Meatloaf, burritos, tacos (beef only)”), difficulty averaging intakes of 

seasonal foods (such as fruits and vegetables), difficulty understanding what foods 

would be included in a single line-item, and difficulties arising from the poor 

ordering of food items (e.g. not realizing until the end of the FFQ that a specific food 

belonged in one of the last line-items rather than one that occurred near the 

beginning of the FFQ)(84, 101).  The DHQ was developed to attempt to correct these 
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deficiencies and produce a more accurate estimate of nutrient intakes than older 

FFQs.  Subar, et al. did note that the DHQ performed better than either the Block or 

Willett FFQs, although energy-adjustment of nutrients helped attenuate some of 

these differences(84).   

Additionally, the DHQ specifically inquired about usual fats and oils used in 

cooking, which could help differentiate intakes of PUFAs as fats and oils provide a 

substantial amount of fatty acids in the diet(14).  Along with questions on whether 

butter and margarine is used on bread (and corresponding frequency) and whether 

mayonnaise is consumed, the DHQ included a set of questions on fats and oils used 

in cooking.  First, the DHQ queries on the use of butter or margarine (and type of 

margarine used such as diet tub-based margarine) and the frequency of use in 

cooking.  For frying and sautéing, the DHQ inquired about whether margarine, 

butter, lard, vegetable shortening (e.g. “Crisco”), spray oil, or oil was used (allowing 

the respondent to select as many choices as used).  For those respondents who 

selected oil, the DHQ queried on the specific type of oil used (allowing for multiple 

responses (“don’t know,” corn, olive, safflower, sunflower, canola, and other).  

Because different types of fats and shortening contain different amounts of trans- 

and polyunsaturated fatty acids, the additional questions used in the DHQ may help 

differentiate specific fatty acid consumption more readily than the DQX and,  

therefore, the DHQ may provide for a better assessment of nutrient intakes than the 

DQX used in the PLCO study.   

Both studies used similar methods for estimating nutrient intakes for given 

food items and both studies were limited in their assessment of types of fish 

consumed, potentially limiting our ability to measure intakes of long-chain !-3 fatty 



 

 

acids.  Neither the DHQ nor the DQX are able to distinguish intakes of fatty fish (e.g. 

salmon, sword fish) from less fatty-fish (e.g. catfish, cod).  Therefore, consumers of 

large amounts of fatty fish will have reported intakes of long-chain !-3 fatty acids 

similar to those for consumers of less fatty fish within strata of total fish 

consumption.  And consumers of large amounts of non-fatty fish will have elevated 

estimates of long-chain !-3 fatty acids.  Most likely this would have biased our 

estimates towards null.  Neither FFQ included questions on fish oil 

supplementation.  Kris-Etherton, et al. reported that in 1998 it was estimated that 

yearly per capita EPA and DHA intake from fish oil supplements was 

approximately 0.6 – 0.9 mg/person(14), suggesting that during the time period of 

these two studies, fish oil supplementation would contribute negligibly to total 

intakes of long-chain !-3 fatty acid consumption, although we might expect that 

members of these two cohorts may be more likely to have taken supplements than 

the average man.  No data on correlations for specific fatty acids estimated by the 

DQX or DHQ and those estimated by other methods (such as 24-hour diet recall) 

were not available, although correlations for total PUFA intake were fairly strong for 

the DHQ in a validation substudy conducted within the NIH-AARP study 

population(143).  Some have claimed that 24-hour diet recalls or diet diaries 

administered over a range of days may serve as appropriate alloyed gold standards 

to correct for systematic and random error in nutrient estimates from FFQ data by 

providing for unbiased correction of the FFQ estimates(144-147).  It is assumed that 

there is no correlated systematic error between both measurements(146) and that the 

major sources of within and between person variation are averaged out through the 

use of large population samples, variation in seasonal coverage, and a large span of 
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coverage for each individual(147).  However, it may be reasonable to assume that 

some amount of correlated systematic error may also exist in diet recall or diet 

diaries(144).  For example, an individual might underreport intakes of foods 

considered unhealthy on both an FFQ and a diet recall.  Adjustment for total energy 

intake(82, 84) was used to help correct for systematic measurement error.  It should 

also be noted, that even if absolute intakes were not measured accurately, variation 

in intakes may have been, and caution must be used in interpreting associations for 

given differences in reported intake as reflective of the association for an equal 

difference in true intake of that nutrient.  We would, however, hypothesize that the 

DHQ provides a more accurate estimate of average daily intake of nutrients than the 

DQX.  In order to facilitate comparison of associations between the two studies, we 

used the same cutpoints for the categorization of exposures, but as reported total 

energy intake varied across the two studies, this may not provide for a completely 

accurate comparison.   

 There were substantial differences in case ascertainment between the two 

study populations.  The PLCO population was fairly uniformly screened for prostate 

caner using regular PSA tests and DREs, whereas the NIH-AARP study population 

did not undergo a standardized screening regimen, although approximately 90% of 

men who responded to the supplementary RFQ had undergone at least one DRE or 

PSA during the five years prior to completion of the RFQ.  More importantly, self-

reported diagnoses of prostate cancer were confirmed through standardized 

procedures, including medical record review for both tumor stage and grade data.  

We did not, however, have data on prostate cancer mortality in this cohort due to 

the ongoing nature of the screening trial and associations with fatal prostate cancer 

may have the greatest public health significance as localized prostate cancer has 
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nearly 100% 5-year survival(3, 4).  In contrast, case ascertainment in the NIH-AARP 

Diet and Health Study was entirely passive.  Linkage to cancer registries and the 

NDI was used to identify prostate cancer incidence, mortality, and tumor stage data.  

It was estimated that approximately 89% of cases were successfully ascertained 

using these methods(105).  It may be more difficult to compare results on prostate 

cancer aggressiveness between the two studies due to the differences in data 

collected for tumor aggressiveness.  Additionally, some differences between 

associations for advanced and fatal disease within the NIH-AARP study population 

may be accounted for by the additional two years of follow-up time available for the 

mortality analysis.  These limitations in outcome data may, in part, mitigate some of 

the strengths of a nearly 10-fold larger study population and more accurate 

estimates of dietary intakes of fatty acids.   

C.  Strengths and Limitations 

The completed study had a number of strengths.  It included analyses of two 

of the few large, well-designed prospective studies of PUFA intake and prostate 

cancer risk.  We have the additional benefit of having been able to leverage two 

different studies to investigate these relations.   

The PLCO study benefited from the fact that the entire population has 

undergone standardized screening practices, reducing the effect of detection bias on 

our analyses.  Furthermore, prostate cancer ascertainment was of high quality and 

data was available on both prostate cancer stage and grade.  The study population 

included sites across the United States and efforts had been made to recruit 

minorities(148).  While minority participation was not as great as had been hoped, 

the incidence of prostate cancer during follow-up among African American 

participants was substantially higher than among whites (~10% vs. ~6%).  In 
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addition, we had extensive data on potential covariates, aiding in our ability to 

control for potential confounding factors and effect measure modifiers. 

There are some limitations to our analysis of the PLCO population.  There is 

published evidence of a “healthy volunteer effect” in the PLCO population(139), 

potentially limiting our ability to generalize our findings to the US or World 

population. However, this limitation is not unique to our population and is a  

limitation for most other epidemiologic studies.  We also know that in this study 

population, family history of cancer was underreported more frequently among 

males and African Americans(140), potentially limiting the utility of this potentially 

important confounder.  Diet was only assessed once in this population, and it was 

assessed fairly late in life.  It is possible that the assessed diet does not represent diet 

during the etiologically relevant time period for this slow-developing disease.  

Because of the relatively late age at entry into the study (~63 years at baseline), we 

may have missed some of the more aggressive, early onset forms of prostate cancer.  

Finally, due to the ongoing nature of the PLCO Cancer Screening Trial, we did not 

have data on prostate cancer mortality, which limited our ability to investigate all 

aspects of prostate cancer aggressiveness.  Additionally, there may be some concern 

that controlling for screening behavior may be more of a control of information 

quality, rather than confounding by screening behavior and may have induced bias 

into our estimates.     

 As with the PLCO population, the NIH-AARP population provided some 

strengths in investigating relations between diet and prostate cancer.  The NIH-

AARP population is the largest prospective study of diet and health and as such we 

had increased power to detect modest associations over other studies.  However, 

this increased power may have been mitigated somewhat by the fact that case 
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ascertainment was largely passive and likely missed a substantial number of 

prostate cancer cases(105).  While there is no published data on participants in 

AARP being healthier than average, it is reasonable to assume that AARP suffers 

from a similar “healthy participant effects” as PLCO.  The FFQ used in the AARP 

cohort (DHQ) may have provided a better assessment of dietary intakes of some of 

the PUFAs than that used in PLCO (DQX).  Unlike the PLCO population, we had 

data on prostate cancer mortality in the AARP cohort.  However, data was not 

available on prostate cancer grade, further mitigating the potential benefits of 

having had increased power.  The age at entry into the study was somewhat 

younger, potentially increasing the incidence of aggressive tumors while decreasing 

the incidence of asymptomatic cases.   

 Like PLCO, there are some additional limitations to the AARP cohort.  

Extensive screening data was only available on approximately 60% of the study 

population.  Because the entire population will not have undergone routine prostate 

cancer screening, detection of asymptomatic prostate tumors will likely have been 

reduced, decreasing the incidence of prostate cancer in this population relative to 

PLCO.  Like PLCO, the AARP cohort was limited by a single dietary assessment.  

However, the DHQ may have provided a better assessment of PUFA intake than the 

DQX used in PLCO.  Like the PLCO population, while the AARP cohort recruited 

participants in a broad range of U.S. states, generalizability may be limited to 

individuals with similar sociodemographic characteristics to the study population. 

 As discussed previously, different instruments for the same type of dietary 

assessment method can produce different absolute estimates of nutrient intakes.  For 

example, the DQX used in PLCO generally had higher estimates for most of the 

exposures of interest in the proposed study(Table 10).  These differences may be 
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accounted for by a combination of the fact that the DQX estimates a higher total 

energy intake on average (2,397.7 kcal/day) than the DHQ does (2,012.2 kcal/day) 

as well as differences in certain specific food items (e.g. in AARP respondents were 

queried on specific types of cooking oils used).   

 Treatment of variables for dietary exposure in statistical models can be a 

difficult process.  First and foremost, dietary assessment is an error-prone endeavor.  

This mismeasurement, combined with a lack of a priori knowledge of the shape of 

the dose-response curve for the associations between a nutrient and given outcome 

make it difficult to model associations with continuous covariates.  Categorization 

based on evenly spaced quantiles can potentially induce bias(91).  We included 

additional categorization schemes for our exposures based on the results of spline 

analyses of the data(106).  Additional concern existed for the potential to introduce 

bias through the large number of men excluded from our analyses based on study 

protocols.  We compared known characteristics of excluded men with those in the 

included analyses to qualitatively evaluate the degree to which the two populations 

(excluded/included) differed.   

D.  Public Health Significance of Findings 

 We did not find substantial associations between PUFAs,  their ratios, or 

TFAs and prostate cancer in either the PLCO or NIH-AARP study populations. 

Typical associations found would require the movement of more than 300 men from 

low to high intake of a specific fatty acid in order to decrease or increase (depending 

on the direction of the association) 1 case per 100,000 men. However, we consistently 

found that intake of ALA was not associated with prostate cancer regardless of 

aggressiveness. This may be due to the fact that the potential increased risk of 
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prostate cancer due to oxidative stress may be balanced by the potential benefits 

afforded by the conversion of ALA to the longer-chain !-3 fatty acid metabolite(19).  

Our evidence does suggest that high intakes of at least some TFAs is positively 

associated with more advanced prostate cancer.  This provides additional evidence 

that TFA intake may have negative health effects.   

E.  Conclusions 

Both the PLCO and AARP populations provided a unique opportunity to 

investigate relations between PUFA intake and prostate cancer risk.  Each study has 

unique strengths that may help provide insights into these associations.  By 

conducting both sets of analyses simultaneously, we had a unique opportunity to 

compare the findings from these two large cohorts.  Overall, we did not report many 

strong associations between dietary intakes of unsaturated fatty acids and prostate 

cancer and those associations that we did report were not consistent across both 

studies.   

Limitations in our ability to assess fish consumption and the lack of data on 

fish oil and flaxseed supplementation may account for some deficiencies in our 

ability to estimate fatty acid consumption.  One of the most important 

improvements in understanding these complex relations is to generate better 

estimates of PUFA and TFA intakes.  As mentioned previously, the food items 

included in the DQX and DHQ did not separate fatty and non-fatty fish species.  

Future studies should include broad categories of these types of fish separately 

(giving common examples for the fatty fish).  Furthermore, neither questionnaire 

included items on fish or flaxseed supplementation.  While fish oil supplementation 

was relatively rare during the mid 1990s(14), it is likely more common now and can 
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shift an individual’s consumption of these fatty acids substantially.  In order to 

further elucidate the associations involving these highly interrelated fatty acids, it 

may be worthwhile to collect serum or adipose tissue and conduct a nested-case 

control or case-cohort study within a large prospective study which has collected the 

proposed dietary and supplement data(77). 

A large, well-designed prospective study including more detailed questions 

on fish consumption and supplement use may be warranted to further assess 

relations between PUFA and TFA intakes and prostate cancer.   

 

 



 

99 

Appendix 1 

Tables 

Table 1.  Major polyunsaturated fatty acids, their abbreviations, numerical 

notations, and structures. 

Fatty Acid Name Abbr. Num* Structure 

!-3 

Alpha-linolenic ALA 18:3 O

HO  

Eicosapentaenoic EPA 20:5 O

HO  

Docosapentaenoic DPA 22:5 O

HO  

Docosahexaenoic  DHA 22:6 O

HO  

!-6 

Linoleic LA 18:2 O

HO  

Arachidonic AA 20:4 O

HO  

*The first number corresponds to the length of the hydrocarbon chain while the second number 

corresponds to the number of double bonds in the hydrocarbon chain. 
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Table 2.  Selected results from prior studies of total polyunsaturated fatty acids and prostate cancer. 

Author, Year Country Type of Study Population Comparison Results 
Andersson, et al., 1996 Sweden Case-Control 522 cases/536 population-

based controls 
Q4 vs. Q1 For total prostate cancer: age-

adjusted OR = 1.27 (0.92 – 1.82) 
and age- and energy adjusted 
OR = 0.98 (0.70 – 1.38) 
For advanced prostate cancer: 
ORs = 1.26 (0.83 – 1.93) and 0.96 
(0.65 – 1.43) 

Ghadirian, et al. , 1996 Canada Case-Control 232 cases/231 population-
based controls 

Q4 vs. Q1 Multivariate OR = 1.46 (0.74 – 
2.87) 

Key, et al., 1997 UK Case-Control 328 cases/328 practice-based 
controls 

T3 vs. T1 OR = 0.94 (0.64 – 1.38 

Kristal, et al., 2002 US Case-Control 605 cases/592 population-
based controls 

Q5 vs. Q1 (% energy 
from PUFA) 

OR (Local) = 0.91 (0.58 – 1.43), 
OR (Regional/Distant) = 1.17 
(0.64 – 2.12) 

Meyer, et al., 1997 Canada Case-Control 215 cases/593 population-
based controls 

Q4 vs. Q1 OR = 1.10 (0.60 – 1.99) 

Ramon, et al., 2000 Spain Case-Control 217 cases/217 hospital-
based controls/217 
population-based controls 

Q4 vs. Q1 OR = 0.85 (0.54 – 1.3) 

Rohan, et al., 1995 Canada Case-Control 207 cases/207 populations-
based controls 

Q4 vs. Q1 OR = 1.17 (0.66 – 2.08) 

Schuurman, et al., 1999 The 
Netherlands 

Case-Cohort (from 
a prospective 
cohort) 

Subcohort of 1,688 men/642 
incident cases (full cohort of 
582,279 men) 

Q5 vs. Q1 RR = 0.78 (0.56 – 1.10) 

Tzonou, et al., 1999 Greece Case-Control 320 cases/246 hospital-
based controls 

1SD of intake among 
controls 

OR = 1.79 (1.13 – 2.84) 

Veierod, et al., 1997 Norway Prospective Cohort 25,708 men/72 incident 
cases 

Q5 vs. Q1 IRR = 1.4 (0.6 – 3.0) 

Harvei, et al., 1997 Norway Nested Case-
Control (blood 
bank donors) 

141 cases/141 population-
based controls 

Q4 vs. Q1 (serum 
phospholipids) 

OR = 1.1 (0.6  2.1) 
OR (!-6) = 0.7 (0.3 – 1.3) 
OR (!-3) = 1.1 (0.6 – 2.1) 

Newcomer, et al., 2001 US Case-Control 67 cases/156 population-
based controls 

Q4 vs. Q1 (erythrocyte 
membrane 
phospholipids) 

OR (!-3) = 1.1 (0.5 – 2.5) 
OR (!-6) = 2.3 (1.0 – 5.4) 

Hodge, et al., 2004 Australia Case-Control 964 cases/911 frequency 
matched controls  

Q5 vs. Q1 OR = 1.0 (0.7 – 1.3) 
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Park, et al., 2007 US (MEC) Cohort 82,483 men/4,404 incident 
cases 

Q5 vs. Q1 For total prostate cancer:  
RR (PUFA) = 1.01 (0.91 – 1.11) 
RR (!-3) = 0.95 (0.86 – 1.05) 
RR (!-6) = 1.03 (0.93 – 1.14) 
For advanced prostate cancer: 
RR (PUFA) = 1.01 (0.84 – 1.23 
RR (!-3) = 0.90 (0.76 – 1.08) 
RR (!-6) = 1.04 (0.86 – 1.27) 

Hedelin, et al., 2006 Sweden Case-Control 1,499 cases/1,130 frequency 
matched controls 

Q4 vs. Q1 OR (!-3) = 1.25 (0.88 – 1.78) 
OR (!-6) = 1.36 (1.01 – 1.84) 

Neuhouser, et al., 2007 US 
(CARET) 

Prospective Cohort 12,000 men/890 incident 
cases 

Q4 vs. Q1 All: 
RR (PUFA) = 1.17 (0.88 – 1.32) 
RR (!-6) = 1.19 (0.90 – 1.58) 
Positive family history: 
RR (PUFA) = 2.47 (0.96 – 6.37) 
RR (!-6) = 2.61 (1.01 – 6.72) 
Negative family history: 
RR (PUFA) = 1.13 (0.84 – 1.51) 
RR (!-6) = 1.14 (0.86 – 1.52) 
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Table 3.  Selected results from prior studies of linoleic acid and arachidonic acid and prostate cancer. 

Author, Year Country Type of Study Population Comparison Results 
Andersson, et al., 1996 Sweden Case-Control 522 cases/536 population-

based controls 
Q4 vs. Q1 For total prostate cancer: Age-

adjusted OR = 1.38 (0.96 – 1.97) and 
age- and energy-adjusted OR = 1.19 
(0.84 – 1.68). 
For advanced prostate cancer: ORs = 
1.8 (0.97 – 2.25) and 1.19 (0.79 – 1.77) 

Meyer, et al., 1997 Canada Case-Control 215 cases/593 population-
based controls 

Q4 vs. Q1Pr OR = 1.57 (0.85 – 2.93) 

Ramon, et al., 2000 Spain Case-Control 217 cases/217 hospital-
based controls/217 
population-based controls 

Q4 vs. Q1 OR = 0.92 (0.64 – 1.3) 

Schuurman, et al., 1999 The 
Netherlands 

Case-Cohort (from 
a prospective 
cohort) 

Subcohort of 1,688 men/642 
incident cases (full cohort of 
582,279 men) 

Q5 vs. Q1 RR = 0.78 (0.56 – 1.09) 
(for AA, RR = 1.20 (0.87 – 1.66)) 

De Stefani, et al., 2000 Uruguay Case-Control 217 cases/431hospital-based 
controls 

Q4 vs. Q1 OR = 0.69 (0.39 – 1.19) 

Gann, et al., 1994 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

120 cases/120 population-
based controls 

Q4 vs. Q1 (plasma 
cholesterol ester) 

OR = 0.62 (0.30 – 1.30) 
(for AA, OR = 1.36 (0.63 – 2.90) 

Giovannucci, et al., 1993 US (HPFS) Prospective Cohort 47,885 men/279 incident 
cases (126 advanced cases) 

Q5 vs. Q1 RR = 0.88 (0.55 – 1.43) 
RR (advanced) =  0.64 (0.32 – 1.32) 

Godley, et al., 1996 US Case-Control 89 cases/38 clinic-based 
controls 

Q4 vs. Q1 (erythrocyte 
membran and adipose 
tissue) 

OR (eryth) = 3.54 (1.0 – 12.53) 
OR (adip) = 2.47 (0.66 – 9.26) 

Harvei, et al., 1997 Norway Nested Case-
Control (blood 
bank donors) 

141 cases/141 population-
based controls 

Q4 vs. Q1 (serum 
phospholipids) 

OR = 2.0 (0.4 – 1.2) 
OR (AA) = 0.8 (0.4 – 1.5) 

Mannisto, et al., 2003 Finalnd 
(ATBC) 

Nested Case-
Control (from 
prospective cohort) 

198 cases/198 population-
based controls (29,133 men 
in cohort) 

Q4 vs. Q1 (serum fatty 
acid and FFQ) 

OR (serum) = 0.77 (0.43 – 1.39) 
OR (serum, AA) = 1.39 (0.79 – 2.44) 
OR (FFQ) = 0.92 (0.54 – 1.59) 
OR (FFQ, AA) = 1.31 (0.77 – 2.21) 

Newcomer, et al., 2001 US Case-Control 67 cases/156 population-
based controls 

Q4 vs. Q1 (erythrocyte 
membrane 
phospholipids) 

OR = 2.1 (0.9 – 4.8) 
OR (AA) = 0.9 (0.4 – 2.3) 

Leitzmann, et al., 2004 US Prospective Cohort 
(NPFS) 

47,866 men/2,965 incident 
cases (448 advanced cases) 

Q5 vs. Q1 RR = 1.06 (0.89 – 1.26) 
RR (advanced) = 0.80 (0.52 – 1.24) 
RR (AA) = 1.08 (0.94 – 1.25) 
RR (AA, adv.) = 1.11 (0.78 – 1.59) 

Hodge, et al., 2004 Australia Case-Control 964 cases/911 frequency 
matched controls  

Q5 vs. Q1 OR = 1.0 (0.7 – 1.3) 
OR (AA) = 1.0 (0.7 – 1.4) 
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Chavarro, et al., 2007 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

476 cases/476 matched 
controls 

Q5 vs. Q1 (whole 
blood) 

For total: 
OR (LA) = 0.62 (0.41 – 0.95) 
OR (AA) = 1.09 (0.72 – 1.64) 
For localized: 
OR (LA) = 0.55 (0.32 – 0.94) 
OR (AA) = 0.68 (0.40 – 1.15) 
For advanced: 
OR (LA) = 0.67 (0.28 – 1.58) 
OR (AA) = 2.45 (1.02 – 5.09) 
For Gleason < 7: 
OR (LA) = 0.79 (0.44 – 1.43) 
OR (AA) = 0.98 (0.55 – 1.74) 
For Gleason ! 7: 
OR (LA) = 0.38 (0.17 – 086) 
OR (AA) = 1.43 (0.61 – 3.32) 
For non-aggressive: 
OR (LA) = 0.61 (0.33 – 1.16) 
OR (AA) = 0.83 (0.45 – 1.54) 
For aggressive: 
OR (LA) = 0.52 (0.28 – 0.95) 
OR (AA) = 1.25 (0.69 – 2.28) 
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Table 4.  Selected results from prior studies of alpha-linolenic acid and prostate cancer. 

Author, Year Country Type of Study Population Comparison Results 
Andersson, et al., 1996 Sweden Case-Control 522 cases/536 population-

based controls 
Q4 vs. Q1 For total prostate cancer:  Age-

adjusted OR = 1.23 (0.86 – 1.74) and 
age- and energy-adjusted OR = 0.93 
(0.65 – 1.32) 
For advanced prostate cancer:  ORs = 
1.21 (0.80 – 1.82) and 0.82 (0.54 – 1.23) 

Meyer, et al., 1997 Canada Case-Control 215 cases/593 population-
based controls 

Q4 vs. Q1  OR = 0.98 (0.54 – 1.78) 

Ramon, et al., 2000 Spain Case-Control 217 cases/217 hospital-
based controls/217 
population-based controls 

Q4 vs. Q1  OR = 3.1 (2.2 – 4.7) 

Schuurman, et al., 1999 The 
Netherlands 

Case-Cohort (from 
a prospective 
cohort) 

Subcohort of 1,688 men/642 
incident cases (full cohort of 
582,279 men) 

Q5 vs. Q1  RR = 0.76 (0.66 – 1.04) 

De Stefani, et al., 2000 Uruguay Case-Control 217 cases/431hospital-based 
controls 

Q4 vs. Q1  OR = 3.91 (1.50 – 10.1) 

Gann, et al., 1994 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

120 cases/120 population-
based controls 

Q4 vs. Q1 (plasma 
cholesterol ester) 

 OR = 2.14 (0.93 – 4.93) 

Giovannucci, et al., 1993 US (HPFS) Prospective Cohort 47,885 men/279 incident 
cases (126 advanced cases) 

Q5 vs. Q1  RR = 1.25 (0.82 – 1.92) 
 RR (advanced) = 3.43 (1.67 – 7.04) 

Godley, et al., 1996 US Case-Control 89 cases/38 clinic-based 
controls 

Q4 vs. Q1 (erythrocyte 
membrane and adipose 
tissue) 

 OR (eryth) = 1.69 (0.54 – 5.26) 
 OR (adip) = 2.73 (0.70 – 10.61) 

Harvei, et al., 1997 Norway Nested Case-
Control (blood 
bank donors) 

141 cases/141 population-
based controls 

Q4 vs. Q1 (serum 
phospholipids) 

 OR = 2.0 (1.1 – 3.6) 

Mannisto, et al., 2003 Finalnd 
(ATBC) 

Nested Case-
Control (from 
prospective cohort) 

198 cases/198 population-
based controls (29,133 men 
in cohort) 

Q4 vs. Q1 (serum fatty 
acid and FFQ) 

 OR (serum) = 0.97 (0.54 – 1.75) 
 OR (FFQ) = 1.31 (0.77 – 2.21) 

Newcomer, et al., 2001 US Case-Control 67 cases/156 population-
based controls 

Q4 vs. Q1 (erythrocyte 
membrane 
phospholipids) 

 OR = 2.6 (1.1 – 5.8) 

Leitzmann, et al., 2004 US Prospective Cohort 
(NPFS) 

47,866 men/2,965 incident 
cases (448 advanced cases) 

Q5 vs. Q1  RR = 1.09 (0.93 – 1.26) 
 RR (advanced) = 1.98 (1.34 – 2.93) 

Koralek, et al., 2006 US Prospective Cohort 
(PLCO) 

29,592 men/1,898 incident 
cases (285 advanced) 

Q5 vs. Q1 (T3 vs. T1)  RR = 0.94 (0.81 – 1.09) 
 

Hodge, et al., 2004 Australia Case-Control 964 cases/911 frequency 
matched controls  

Q5 vs. Q1 OR = 0.8 (0.6 – 1.0) 
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Park, et al., 2007 US (MEC) Cohort 82,483 men/4,404 incident 
cases 

Q5 vs. Q1 RR (total) = 0.92 (0.84 – 1.02) 
RR (advanced) = 0.89 (0.74 – 1.06) 

Hedelin, et al., 2006 Sweden Case-Control 1,499 cases/1,130 frequency 
matched controls 

Q4 vs. Q1 OR = 1.35 (0.99 – 1.84) 

Chavarro, et al., 2007 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

476 cases/476 matched 
controls 

Q5 vs. Q1 (whole 
blood) 

For total: 
OR = 1.31 (0.89 – 1.95) 
For localized: 
OR = 1.66 (1.02 – 2.71) 
For advanced: 
OR = 1.04 (0.45 – 2.38) 
For Gleason < 7: 
OR = 1.56 (0.90 – 2.71) 
For Gleason ! 7: 
OR = 1.49 (0.67 – 3.27) 
For non-aggressive: 
OR = 1.73 (0.98 – 3.07) 
For aggressive: 
OR = 1.14 (0.64 – 2.03) 
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Table 5.  Selected results from prior studies of docosahexaenoic acid and eicosapentaenoic acid and prostate cancer. 

Author, Year Country Type of Study Population Comparison Results 
Kristal, et al., 2002 US Case-Control 605 cases/592 population-

based controls 
Q5 vs. Q1  OR (local) = 1.05 (0.68 – 1.63),  OR 

(Regional/distant) = 0.84 (0.44 – 1.58) 
Schuurman, et al., 1999 The 

Netherlands 
Case-Cohort (from 
a prospective 
cohort) 

Subcohort of 1,688 men/642 
incident cases (full cohort of 
582,279 men) 

Q5 vs. Q1  RR for EPA = 1.00 (0.73 – 1.35) 
 RR for DHA = 1.03 (0.75 – 1.40) 

Gann, et al., 1994 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

120 cases/120 population-
based controls 

Q4 vs. Q1 (plasma 
cholesterol ester) 

 OR (EPA only) = 0.87 (0.41 – 1.82) 

Giovannucci, et al., 1993 US (HPFS) Prospective Cohort 47,885 men/279 incident 
cases (126 advanced cases) 

Q5 vs. Q1  RR (advanced) = 0.90 (0.51 – 1.61) 

Godley, et al., 1996 US Case-Control 89 cases/38 clinic-based 
controls 

Q4 vs. Q1 
(erythrocyte 
membrane and 
adipose tissue) 

 OR (eryth, EPA) = 0.74 (0.23 – 2.33) 
 OR (adip, EPA) = 0.54 (0.18 – 1.62) 
 OR (eryth, DHA) = 0.36 (0.10 – 1.27) 
 OR (adip, DHA) = 1.11 (0.30 – 4.14) 

Harvei, et al., 1997 Norway Nested Case-
Control (blood 
bank donors) 

141 cases/141 population-
based controls 

Q4 vs. Q1 (serum 
phospholipids) 

 OR (EPA) = 1.2 (0.6 – 2.1) 
 OR (DPA = 0.7 (0.3 – 1.3) 
 OR (DHA) = 1.0 (0.5 – 1.8) 

Mannisto, et al., 2003 Finalnd 
(ATBC) 

Nested Case-
Control (from 
prospective cohort) 

198 cases/198 population-
based controls (29,133 men 
in cohort) 

Q4 vs. Q1 (serum 
fatty acid and FFQ) 

 OR (Serum, EPA) = 1.12 (0.61 – 2.04) 
 OR (Serum, DHA) = 0.71 (0.40 – 1.26) 
 OR (FFQ, EPA) = 1.22 (0.68 – 2.20) 
 OR (FFQ, DHA) = 1.31 (0.74 – 2.32) 

Newcomer, et al., 2001 US Case-Control 67 cases/156 population-
based controls 

Q4 vs. Q1 
(erythrocyte 
membrane 
phospholipids) 

OR (EPA) = 1.3 (0.6 – 3.0) 
OR (DHA) = 10. (0.4 – 2.3) 

Leitzmann, et al., 2004 US Prospective Cohort 
(NPFS) 

47,866 men/2,965 incident 
cases (448 advanced cases) 

Q5 vs. Q1 OR (EPA) = 0.88 (0.76 – 1.01) 
OR (DHA) = 0.89 (0.78 – 1.04) 
OR (EPA + DHA) = 0.89 (0.77 – 1.04) 
OR (EPA, advanced) = 0.82 (0.58 – 1.17) 
OR (DHA, advanced) = 0.71 (0.49 – 1.08) 
OR (EPA + DHA, advanced) = 0.74 (0.49 – 
1.08) 

Norrish, et al., 1999 New Zealand Case-Control 317 cases/480 population-
based controls 

Q4 vs. Q1 
(erythrocyte 
phospholipids) 

OR (EPA) = 0.59 (0.37 – 0.95) 
OR (EPA, advanced) = 0.54 (0.31 – 0.96) 
OR (DHA) = 0.73 (0.45 – 1.18) 
OR (DHA, advanced) = 0.66 (0.39 – 1.13) 

Hodge, et al., 2004 Australia Case-Control 964 cases/911 frequency 
matched controls  

Q5 vs. Q1 OR (EPA) = 0.8 (0.6 – 1.1) 
OR (DHA) = 1.0 (0.7 – 1.4) 
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Park, et al., 2007 US (MEC) Cohort 82,483 men/4,404 incident 
cases 

Q5 vs. Q1 Total prostate cancer: 
RR (EPA) = 1.01 (0.91 – 1.13) 
RR (DHA) = 0.99 (0.89 – 1.09) 
Advanced prostate cancer: 
RR (EPA) = 1.05 (0.86 – 1.28) 
RR (DHA) = 1.07 (0.88 – 1.30) 

Hedelin, et al., 2006 Sweden Case-Control 1,499 cases/1,130 frequency 
matched controls 

Q4 vs. Q1 OR (EPA + DHA) = 0.70 (0.51 – 0.97) 

Chavarro, et al., 2007 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

476 cases/476 matched 
controls 

Q5 vs. Q1 (whole 
blood) 

For total:   
OR (EPA) = 0.57 (0.36 – 0.92) 
OR (DPA) = 0.60 (0.38 – 0.93) 
OR (DHA) = 0.60 (0.39 – 0.93) 
OR (EPA+DPA+DHA) = 0.59 (0.38 – 0.93) 
For localized: 
OR (EPA) = 0.46 (0.24 – 0.86) 
OR (DPA) = 0.46 (0.26 – 0.83) 
OR (DHA) = 0.53 (0.30 – 0.94) 
OR (EPA+DPA+DHA) = 0.52 (0.28 – 0.94) 
For advanced: 
OR (EPA) = 1.27 (0.49 – 3.29) 
OR (DPA) = 0.72 (0.30 – 1.73) 
OR (DHA) = 0.98 (0.39 – 2.50) 
OR (EPA+DPA+DHA) = 1.03 (0.41 – 2.63) 
For Gleason < 7: 
OR (EPA) = 0.57 (0.28 – 1.11) 
OR (DPA) = 0.72 (0.39 – 1.32) 
OR (DHA) = 0.64 (0.35 – 1.17 
OR (EPA+DPA+DHA) = 0.58 (0.31 – 1.10) 
For Gleason ! 7: 
OR (EPA) = 0.42 (0.15 – 1.14) 
OR (DPA) = 0.30 (0.12 – 0.80) 
OR (DHA) = 0.53 (0.21 – 1.31) 
OR (EPA+DPA+DHA) = 0.63 (0.26 – 1.55)  
For non-aggressive: 
OR (EPA) = 0.58 (0.28 – 1.17) 
OR (DPA) = 0.62 (0.32 – 1.21) 
OR (DHA) = 0.64 (0.33 – 1.24) 
OR (EPA+DPA+DHA) = 0.61 (0.31 – 1.20) 
For aggressive: 
OR (EPA) = 0.61 (0.30 – 1.25) 
OR (DPA) = 0.42 (0.21 – 0.83) 
OR (DHA) = 0.53 (0.26 – 1.05) 
OR (EPA+DPA+DHA) = 0.45 (0.27 – 1.13) 
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Table 6.  Selected results from prior studies of trans-fatty acids and prostate cancer 

Author, Year Country Type of Study Population Comparison Results 
Schuurman, et al., 1999 The 

Netherlands 
Case-Cohort (from 
a prospective 
cohort) 

Subcohort of 1,688 men/642 
incident cases (full cohort of 
582,279 men) 

Q5 vs. Q1 RR (total TFA)= 0.99 (0.70 – 1.40) 

Hodge, et al., 2004 Australia Case-Control 964 cases/911 frequency 
matched controls  

Q5 vs. Q1 OR (16:1 trans (t)) = 1.2 (0.9 – 1.6) 
OR (18:1 t) = 0.9 (0.6 – 1.2) 
OR (18:2 t) = 1.0 (0.7 – 1.4) 

Liu, et al., 2007 US Case-Control 506 cases (advanced)/506 
matched controls 

Q4 vs. Q1 Caucasians 
 OR (16:1 t) = 2.05 (1.23 – 3.42) 
 OR (18:1 t) = 2.95 (1.71 – 5.09) 
 OR (18:2 t) = 2.84 (1.57 – 5.14) 
 OR (total TFA) = 2.77 (1.60 – 4.79) 
African Americans 
 OR (16:1 t) = 0.60 (0.18 – 2.03) 
 OR (18:1 t) = 0.64 (0.16 – 2.50) 
 OR (18:2 t) = 0.31 (0.07 – 1.37) 
 OR (total TFA) = 0.43 (0.10 – 1.78) 

King, et al., 2005 US Nested Case-
Control (CARET) 

272 cases/426 matched 
controls 

Q4 vs. Q1 
(serum 
concentrations) 

OR (16:1/"9t) = 0.71 (0.44 – 1.15) 
OR (16:1/"7t) = 0.98 (0.59 – 1.62) 
OR (18:1/"8t) = 1.38 (0.86 – 2.22) 
OR (18:1/"9t) = 1.39 (0.87 – 2.23) 
OR (18:1/"10t) = 1.41 (0.87 – 2.28) 
OR (18:1/"11t) = 1.69 (1.03 – 2.77) 
OR (18:1/"12t) = 1.53 (0.94 – 2.50) 
OR (18:2/"9c,12t) = 1.79 (1.02 – 3.15) 
OR (18:2/"9t,12c) = 1.31 (0.80 – 2.12) 
OR(18:2/"9t,"12t) = 1.19 (0.76 – 1.87)  

Neuhouser, et al., 2007 US (CARET) Prospective Cohort 12,000 men/890 incident 
cases 

Q4 vs. Q1 All: 
OR (total TFA) = 1.51 (0.48 – 4.69) 
Positive family history: 
OR (total TFA) = 1.46 (0.61 – 3.47) 
Negative family history: 
OR (total TFA) = 1.06 (0.81 – 1.39) 
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Table 7. Selected results from prior studies of ratios of polyunsaturated fatty acids and prostate cancer. 

Author, Year Country Type of Study Population Comparison Results 
Harvei, et al., 1997 Norway Nested Case-

Control (blood 
bank donors) 

141 cases/141 population-
based controls 

Q4 vs. Q1 (serum 
phospholipids) 

 OR (PUFA/saturated) = 1.8 (0.9 – 3.6) 
 OR (!-6/!-3) = 0.8 (0.4 – 1.6) 
 OR (LA/EPA) = 0.8 (0.4 – 1.6) 
 OR (LA/ALA) = 0.3 (0.2 – 0.8) 
 OR (AA/EPA) = 0.8 (0.4 – 1.3) 

Leitzmann, et al., 2004 US Prospective Cohort 
(NPFS) 

47,866 men/2,965 incident 
cases (448 advanced cases) 

Q5 vs. Q1  OR (LA/ALA) = 1.00 (0.89 – 1.14) 
 OR (LA/EPA + DHA) = 1.14 (0.98 – 
1.33) 
 OR (LA/ALA, advanced) = 0.62 (0.45 – 
0.86) 
 OR (LA/EPA + DHA, advanced) = 1.38 
(0.94 – 2.04) 

Park, et al., 2007 US (MEC) Cohort 82,483 men/4,404 incident 
cases 

Q5 vs. Q1 RR (!-6/!-3, total) = 1.04 (0.95 – 1.15) 
RR (!-6/!-3, adv) = 1.10 (0.92 – 1.13) 

Hedelin, et al., 2006 Sweden Case-Control 1,499 cases/1,130 frequency 
matched controls 

Q4 vs. Q1 OR (!-3/!-6) = 0.71 (0.55 – 0.92) 
OR (DHA+EPA/!-6) =0.66 (0.51 – 0.84) 

Chavarro, et al., 2007 US (PHS) Nested Case-
Control (from a 
prospective cohort) 

476 cases/476 matched 
controls 

Q5 vs. Q1 (whole 
blood) 

OR (!-6/!-3) = 0.80 (0.54 – 1.19) 
OR (AA/EPA) = 1.30 (0.80 – 2.11) 
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Table 8.  Selected baseline characteristics (SD) of men in the screening arm of the PLCO Trial. 

Quintile Fatty 
Acid Covariate 1 2 3 4 5 
ALA       
 Age at baseline 62.7 (5.3) 62.8 (5.3) 62.8 (5.3) 62.7 (5.2) 62.6 (5.3) 
 Current BMI 27.0 (3.9) 27.5 (4.0) 27.5 (4.1) 27.8 (4.2) 28.0 (4.6) 
 Total energy intake 

(kcal/day) 2,316.9 (860.5) 2,303.3 (821.7) 2,341.3 (844.7) 2,383.3 (865.5) 2,353,6 (856.5) 
 Family history of 

prostate cancer (%) 7.8 8.6 8.3 8.3 8.3 
 History of diabetes (%) 5.9 7.5 8.3 8.8 11.8 
LA       
 Age at baseline 63.2 (5.3) 62.9 (5.3) 62.6 (5.3) 62.4 (5.2) 62.3 (5.2) 
 Current BMI 27.1 (4.0) 27.4 (4.0) 27.6 (4.1) 27.8 (4.2) 28.0 (4.4) 
 Total energy intake 

(kcal/day) 2,333.7 (878.6) 2,318.0 (817.1) 2,315.6 (831.4) 2,353.7 (840.2) 2,377.6 (881.0) 
 Family history of 

prostate cancer (%) 8.0 8.0 8.4 8.1 8.7 
 History of diabetes (%) 6.1 7.8 7.4 9.1 11.8 
TFA       
 Age at baseline 62.8 (5.4) 62.8 (5.3) 62.7 (5.3) 62.7 (5.2) 62.5 (5.2) 
 Current BMI 26.8 (4.0) 27.3 (4.1) 27.7 (4.1) 27.9 (4.2) 28.1 (4.3) 
 Total energy intake 

(kcal/day) 2,316.6 (850.4) 2,320.8 (830.2) 2,3477.8 (840.7) 2,364.2 (850.1) 2,349.1 (878.9) 
 Family history of 

prostate cancer (%) 7.9 8.0 8.6 8.5 8.3 
 History of diabetes (%) 7.0 7.9 8.2 9.1 10.2 
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Table 9.  Selected baseline characteristics (SD) of male participants in the NIH-AARP Diet and Health Study. 

Quintile Fatty 
Acid Covariate 1 2 3 4 5 
ALA       
 Age at baseline 62.1 (5.4) 62.0 (5.4) 62.1 (5.4) 62.2 (5.3) 62.3 (5.3) 
 Current BMI 26.6 (4.1) 27.1 (4.1) 27.4 (4.3) 27.5 (4.3) 27.6 (4.5) 
 Total energy intake 

(kcal/day) 1,999.5 (942.7) 1,951.5 (790.3) 2,019.6 (806.6) 2,061.4 (825.2) 2,029.2 (836.4) 
 Family history of 

prostate cancer (%) 9.8 10.3 10.5 10.8 10.6 
 History of diabetes (%) 7.2 8.6 9.8 10.8 12.0 
LA       
 Age at baseline 62.2 (5.4) 62.1 (5.4) 62.1 (5.4) 62.1 (5.3) 62.2 (5.3) 
 Current BMI 26.7 (4.1) 27.1 (4.1) 27.4 (4.3) 27.5 (4.3) 27.7 (4.4) 
 Total energy intake 

(kcal/day) 2,023.7 (952.5) 1,960.1 (798.1) 1,998.4 (798.3) 2,032.7 (807.5) 2,046.3 (844.2) 
 Family history of 

prostate cancer (%) 9.6 10.5 10.4 10.7 10.6 
 History of diabetes (%) 6.8 8.4 9.4 10.5 13.4 
TFA       
 Age at baseline 62.1 (5.3) 62.1 (5.4) 62.0 (5.4) 62.1 (5.4) 62.4 (5.3) 
 Current BMI 26.5 (4.0) 27.1 (4.1) 27.4 (4.3) 27.6 (4.4) 27.7 (4.4) 
 Total energy intake 

(kcal/day) 2,005.5 (933.9) 1,978.4 (804.6) 2,025.2 (824.5) 2,047.9 (831.4) 2,004.2 (811.0) 
 Family history of 

prostate cancer (%) 10.0 10.4 10.4 10.5 10.7 
 History of diabetes (%) 7.1 8.8 9.8 10.7 12.1 
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Table 10.  Comparison of intakes of selected nutrients (SD) in the PLCO and NIH-

AARP studies. 

Nutrient PLCO AARP 
Total Energy (kcal/day) 2,339.7 (850.3) 2,012.2 (842.7) 
ALA (g/day) 1.44 (0.60) 1.40 (0.73) 
EPA* (g/day) 0.044 (0.046) NA 
DPA (g/day) 0.016 (0.016) 0.015 (0.014) 
DHA (g/day) 0.087 (0.078) 0.076 (0.068) 
EPA + DPA + DHA* (g/day) 0.15 (0.14) NA 
LA (g/day) 14.1 (6.5) 13.5 (7.3) 
AA (g/day) 0.12 (0.07) 0.11 (0.07) 
Total TFA (g/day) 6.7 (3.1) 4.8 (2.9) 
TFA 16:1 (g/day) 0.075 (0.053) 0.060 (0.053) 
TFA 18:1 (g/day) 5.9 (2.7) 4.2 (2.9) 
TFA 18:2 (g/day) 0.71 (0.32) 0.52 (0.30) 
Lycopene (µg/day) 11,709.0 (8,514.5) 8,064.9 (8,144.6) 
Calcium (mg/day) 1,165.6 (578.4) 813.1 (472.5) 
Alcohol (g/day) 16.0 (29.2) 16.8 (38.5) 
* Note, that EPA data was not available for AARP at the date of the proposal defense 
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Table 11.  Comparison of the PLCO and NIH-AARP Studies. 

 PLCO AARP 
Sample Size 29,592 men 287,760 men (172,961 with 

second questionnaire) 
Time Period 1993-2001 through 

September 2003 
1996 through 2003 

Setting Subjects residing around 
major medical centers 

Subjects residing in one of 
six states or two 
metropolitan regions 

Age 55 – 74 years at baseline 50 – 71 years at baseline 
Dietary 
Assessment 

137-item FFQ (DQX) 
no information on cooking 
oils 

124-item FFQ (DHQ) 
includes data on cooking oils 

Outcome 
Assessment 

Men with positive screens 
referred for follow-up, self-
report, all confirmed with 
medical chart review, 
linkage to NDI 

Linkage to state cancer 
registries and the NDI 

Outcomes 
Available 

Case status, stage, and grade Case status, stage, prostate 
cancer mortality 

Screening Data Dates of PLCO trial 
screening behavior available 

Self-reported history 
available only for men who 
provided the second 
questionnaire 

 

Table 12.  Power estimates for main effect analyses in the PLCO population. 

Hazard Ratio Sample Size 
R-squared between 
exposure and covariates Power 

1.1 11,600 0 0.56 
1.2 11,600 0 0.98 
1.3 11,600 0 1.00 
1.4 11,600 0 1.00 
1.5 11,600 0 1.00 
1.1 11,600 0.2 0.47 
1.2 11,600 0.2 0.95 
1.3 11,600 0.2 1.00 
1.4 11,600 0.2 1.00 
1.5 11,600 0.2 1.00 
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Table 13.  Power estimates for main effect analyses in the AARP population. 

Hazard Ratio Sample Size 
R-squared between 
exposure and covariates Power 

1.1 115,104 0 0.84 
1.2 115,104 0 1.00 
1.3 115,104 0 1.00 
1.4 115,104 0 1.00 
1.5 115,104 0 1.00 
1.1 115,104 0.2 0.77 
1.2 115,104 0.2 1.00 
1.3 115,104 0.2 1.00 
1.4 115,104 0.2 1.00 
1.5 115,104 0.2 1.00 
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Table 14.  Timeline for Completion of the Dissertation. 

 2007 2008 
Event 
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ry
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Defense of the Proposal        
PLCO Analysis        
PLCO Write-up        
AARP Analysis        
AARP Write-up        
Interim Meeting        
Dissertation Write-up        
Dissertation Defense        
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Table 15. Contributions and correlations of energy-adjusted intakes of major polyunsaturated fatty acids among 29,594 
male participants in the screening arm of the PLCO Cancer Screening Trial in the year prior to randomization. 

 
ALA EPA DPA DHA 

Fish 
Fats* LA AA 

% Energy  0.60 0.02 0.00 0.04 0.06 5.86 0.05 
% Energy from Fat 1.87 0.06 0.02 0.12 0.20 17.88 0.16 

Correlation† Pearson Correlation Coefficients 
ALA 1.       
EPA 0.16 1.      
DPA 0.18 0.92 1.     
DHA 0.19 0.98 0.93 1.    
Fish Fats* 0.18 0.99 0.94 1.00 1.   
LA 0.65 0.94 0.14 0.13 0.11 1.  
AA 0.29 0.36 0.47 0.43 0.42 0.24 1. 
*Fish Fats are the sum of intakes of EPA, DPA, and DHA. 
†Correlations are between residually-adjusted nutrient intakes 
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Table 16. Selected baseline characteristics of 29,594 male participants in the screening 
arm of the PLCO Cancer Screening Trial. 

 
 

Characteristic Cohort 

N 29,594 
Mean Age at Baseline (yrs) (SD) 62.7 (5.3) 
Body Mass Index (kg/m2) (%)*  
  BMI < 20 1.2 
  BMI 20 - < 25 24.9 
  BMI 25 - < 30 50.5 
  BMI ! 30 23.5 
Mean Daily Intake†, g/day (SD)  
  AA  0.12 (0.04) 
  LA  13.11 (3.08) 
  ALA  1.35 (0.27) 
  EPA 0.04 (0.04) 
  DPA  0.02 (0.01) 
  DHA  0.08 (0.07) 
  Total TFA  6.28 (1.50) 
  TFA 16:1  0.07 (0.04) 
  TFA 18:1 5.51 (1.34) 
  TFA 18:2 0.66 (0.15) 
Mean Energy Intake, kcal/day (SD) 2,339.7 (850.3) 
Mean Lycopene Intake †, µg/day (SD) 11,057.9 (6,639.2) 
Mean Supplemental Vit. E, IU/day (SD) 64.8 (108.1) 
Vigorous Exercise (h/week) (SD) 2.3 (1.9) 
Regular Aspirin Use (%)  
  < twice weekly 23.2 
  ! twice weekly 30.7 
Race (%)  
  White 90.7 
  African American 3.3 
  Asian/Pacific Islander 4.0 
  Other (Hispanic/Native American) 1.9 
Family History of Prostate Cancer (%) 8.0 
History of Diabetes (%) 8.5 
Smoking history (%)  
  Never 29.5 
  Current Cigarettes 10.6 
  Former Cigarettes 52.0 
  Ever Pipe/Cigars 7.9 
*BMI was missing in 0.9% of the sample 
 †Nutrient values adjusted for total energy intake 
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Table 17. Hazard ratios and 95% confidence intervals for total prostate cancer in relation to intakes of major 
polyunsaturated fatty acids and trans fatty acids (TFAs) in the screening arm of the PLCO Cancer Screening Trial. 
 

 C1 C2 C3 C4 C5 Trend 

AA        
  Range of  ntakes(g/day) 0.01 – 0.08 0.08 – 0.11 0.11 – 0.14 0.14 – 0.17 0.17 – 0.34 Per 0.05g 
  Number of Cases 394 599 515 233 173  
  MV-adjusted HR* 1. 0.97 (0.85 – 1.11) 1.05 (0.92 – 1.21) 0.92 (0.78 – 1.09) 0.99 (0.82 – 1.20) 1.01 (0.95 – 1.07) 
LA       
  Range of Intakes(g/day) 2.06 – 9.60 9.60 – 12.10 12.10 – 14.60 14.60 – 17.10 17.10 – 38.73 Per 4g 
  Number of Cases 223 584 641 331 135  
  MV-adjusted HR* 1. 0.90 (0.77 – 1.06) 0.89 (0.76 – 1.04) 0.91 (0.76 – 1.08) 0.77 (0.61 – 0.95) 0.94 (0.89 – 1.00) 
ALA       
  Range of Intakes(g/day) 0.21 – 1.10 1.10 – 1.30 1.30 – 1.50 1.50 – 1.70 1.70 – 4.37 Per 0.3g 
  Number of Cases 310 536 595 317 156  
  MV-adjusted HR* 1. 0.90 (0.78 – 1.04) 0.93 (0.81 – 1.08) 0.94 (0.79 – 1.10) 0.92 (0.75 – 1.12) 1.00 (0.95 – 1.06) 
EPA       
  Range of Intakes(g/day) 0.000 – 0.015 0.015 – 0.031 0.031 – 0.048 0.048 – 0.064 0.64 – 0.770 Per 0.03g 
  Number of Cases 337 630 399 226 322  
  MV-adjusted HR* 1. 1.17 (1.02 – 1.34) 1.13 (0.97 – 1.31) 1.13 (0.95 – 1.34) 1.10 (0.94 – 1.29) 1.02 (0.98 – 1.05) 
DPA       
  Range of Intakes(g/day) 0.000 – 0.006 0.006 – 0.012 0.012 – 0.019 0.019 – 0.024 0.024 – 0.218 Per 0.01g 
  Number of Cases 304 681 437 199 293  
  MV-adjusted HR* 1. 1.02 (0.88 – 1.17) 1.00 (0.86 – 1.17) 1.08 (0.89 – 1.29) 0.98 (0.83 – 1.16) 1.02 (0.98 – 1.05) 
DHA       
  Range of Intakes(g/day) 0.00 – 0.03 0.03 – 0.06 0.06 – 0.09 0.09 – 0.12 0.12 – 1.29 Per 0.06g 
  Number of Cases 225 620 481 258 330  
  MV-adjusted HR* 1. 1.07 (0.92 – 1.25) 1.12 (0.95 – 1.32) 1.08 (0.89 – 1.30) 1.06 (0.89 – 1.26) 1.02 (0.98 – 1.06) 
Fish Fats†       
  Range of Intakes(g/day) 0.000 – 0.050 0.050 – 0.088 0.088 – 0.125 0.125 – 0.162 0.163 – 2.257 Per 0.1g 
  Number of Cases 227 467 395 297 528  
  MV-adjusted HR* 1. 1.11 (0.94 – 1.31) 1.11 (0.94 – 1.31) 1.23 (1.03 – 1.47) 1.10 (0.93 – 1.29) 1.02 (0.98 – 1.06) 
!6:!3        
  Range of Intakes 3.66 – 7.20 7.20 – 8.20 8.20 – 9.20 9.20 – 10.20 10.20 – 51.57 Per 2 
  Number of Cases 215 512 574 344 269  
  MV-adjusted HR* 1. 1.07 (0.91 – 1.26) 1.06 (0.90 – 1.24) 1.05 (0.88 – 1.25) 0.86 (0.72 – 1.04) 0.94 (0.89 – 0.99) 
LA:ALA       
  Range of Intakes 2.20 – 6.20 6.20 – 8.70 8.70 – 11.20 11.20 – 12.70 12.70 – 65.85 Per 5 
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 C1 C2 C3 C4 C5 Trend 

  Number of Cases 243 562 499 203 407  
  MV-adjusted HR* 1. 1.08 (0.89 – 1.30) 1.03 (0.83 – 1.29) 0.98 (0.75 – 1.28) 0.84 (0.64 – 1.12) 0.91 (0.83 – 1.00) 
LA: Fish Fats†       
  Range of Intakes 7.8 – 50.0 50.0 – 100.0 100.0 – 150.0 150.0 – 200.0 200.0 – 62,630.6 Per 100 
  Number of Cases 222 583 447 257 405  
  MV-adjusted HR* 1. 0.95 (0.81 – 1.12) 1.00 (0.85 – 1.19) 0.92 (0.76 – 1.11) 0.92 (0.77 – 1.09) 0.96 (0.93 – 1.00) 
Total TFA‡       
  Range of Intakes(g/day) 1.08 – 5.00 5.00 – 6.00 6.00 – 7.00 7.00 – 8.00 8.00 – 15.20 Per 2g 
  Number of Cases 368 521 484 325 216  
  MV-adjusted HR* 1. 1.09 (0.95 – 1.25) 0.95 (0.83 – 1.09) 0.97 (0.83 – 1.13) 1.02 (0.85 – 1.21) 0.98 (0.92 – 1.04) 
TFA 16:1       
  Range of Intakes(g/day) 0.00 – 0.04 0.04 – 0.06 0.06 – 0.08 0.08 – 0.10 0.10 – 0.43 Per 0.04g 
  Number of Cases 410 565 434 236 269  
  MV-adjusted HR* 1. 0.87 (0.76 – 1.00) 0.90 (0.78 – 1.04) 0.94 (0.80 – 1.12) 0.99 (0.83 – 1.16) 1.02 (0.97 – 1.08) 
TFA 18:1       
  Range of Intakes(g/day) 0.94 – 4.50 4.50 – 5.50 5.50 – 6.50 6.50 – 7.50 7.50 – 13.29 Per 2g 
  Number of Cases 430 596 501 263 124  
  MV-adjusted HR* 1. 1.05 (0.92 – 1.19) 0.97 (0.85 – 1.10) 1.00 (0.85 – 1.18) 1.00 (0.81 – 1.23) 0.98 (0.91 – 1.05) 
TFA 18:2       
  Range of Intakes(g/day) 0.10 – 0.52 0.52 – 0.65 0.65 – 0.77 0.78 – 0.90 0.90 – 1.50 Per 0.2g 
  Number of Cases 360 556 599 294 105  
  MV-adjusted HR* 1. 0.98 (0.84 – 1.12) 0.95 (0.83 – 1.10) 0.92 (0.78 – 1.09) 0.99 (0.78 – 1.24) 0.98 (0.92 – 1.04) 
 

*MV-adjusted HRs adjusted for: age at baseline, current body mass index, family history of prostate cancer, history of diabetes, smoking history, 
intakes of total energy, lycopene, and supplemental vitamin E, aspirin use, physical activity, study center, and race plus the number of prostate 
cancer screening exams since baseline (time varying covariate) 
† Fish Fats is the sum of intakes from EPA, DPA, and DHA 
‡ Total TFA is the sum of  intakes from TFA 16:1, TFA 18:1, and TFA 18:2 
§ Nutrient intakes adjusted for total energy intake using the residual method 
** All HRs and 95% CIs estimated using Cox proportional hazards models 
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Table 18. Hazard ratios and 95% confidence intervals for low-grade prostate cancer (Gleason sum < 7)  in relation to 
intakes of major polyunsaturated fatty acids and trans fatty acids (TFAs) in the screening arm of the PLCO Cancer 
Screening Trial. 

 
 C1 C2 C3 C4 C5 Trend 

AA        
  Range of  ntakes(g/day) 0.01 – 0.08 0.08 – 0.11 0.11 – 0.14 0.14 – 0.17 0.17 – 0.61 Per 0.05g 
  Number of Cases 245 390 302 155 90  
  MV-adjusted HR* 1. 1.04 (0.88 – 1.23) 1.00 (0.84 – 1.20) 1.00 (0.81 – 1.24) 0.86 (0.66 – 1.11) 0.96 (0.89 – 1.04) 
LA       
  Range of Intakes(g/day) 2.06 – 9.60 9.60 – 12.10 12.10 – 14.60 14.60 – 17.10 17.10 – 38.73 Per 4g 
  Number of Cases 149 374 399 186 74  
  MV-adjusted HR* 1. 0.87 (0.72 – 1.06) 0.84 (0.69 – 1.02) 0.80 (0.64 – 1.00) 0.62 (0.47 – 0.83) 0.89 (0.82 – 0.96) 
ALA       
  Range of Intakes(g/day) 0.21 – 1.10 1.10 – 1.30 1.30 – 1.50 1.50 – 1.70 1.70 – 4.37 Per 0.3g 
  Number of Cases 209 328 376 172 97  
  MV-adjusted HR* 1. 0.82 (0.69 – 0.98) 0.89 (0.75 – 1.06) 0.78 (0.63 – 0.96) 0.87 (0.68 – 1.11) 0.97 (0.91 – 1.04) 
EPA       
  Range of Intakes(g/day) 0.000 – 0.015 0.015 – 0.031 0.031 – 0.047 0.047 – 0.064 0.064 – 0.770 Per 0.03g 
  Number of Cases 207 374 258 145 198  
  MV-adjusted HR* 1. 1.14 (0.96 – 1.36) 1.19 (0.98 – 1.44) 1.20 (0.97 – 1.50) 1.14 (0.93 – 1.40) 1.04 (0.99 – 1.08) 
DPA       
  Range of Intakes(g/day) 0.000 – 0.006 0.006 – 0.012 0.012 – 0.018 0.019 – 0.024 0.024 – 0.218 Per 0.01g 
  Number of Cases 182 423 265 126 186  
  MV-adjusted HR* 1. 1.05 (0.88 – 1.26) 1.03 (0.84 – 1.24) 1.17 (0.93 – 1.48) 1.07 (0.87 – 1.33) 1.03 (0.98 – 1.07) 
DHA       
  Range of Intakes(g/day) 0.00 – 0.03 0.03 – 0.06 0.06 – 0.09 0.09 – 0.12 0.12 – 1.29 Per 0.06g 
  Number of Cases 134 377 304 156 211  
  MV-adjusted HR* 1. 1.10 (0.90 – 1.35) 1.19 (0.97 – 1.48) 1.12 (0.88 – 1.42) 1.19 (0.95 – 1.49) 1.04 (0.98 – 1.10) 
Fish Fats†       
  Range of Intakes(g/day) 0.000 – 0.050 0.50 – 0.087 0.088 – 0.125 0.125 – 0.162 0.163 – 2.257 Per 0.1g 
  Number of Cases 134 290 241 185 332  
  MV-adjusted HR* 1. 1.17 (0.95 – 1.45) 1.15 (0.92 – 1.43) 1.30 (1.04 – 1.64) 1.21 (0.98 – 1.49) 1.04 (0.99 – 1.09) 
!6:!3        
  Range of Intakes 3.92 – 7.20 7.20 – 8.20 8.20 – 9.20 9.21 – 10.20 10.20 – 51.57 Per 2 
  Number of Cases 144 320 362 194 162  
  MV-adjusted HR* 1. 0.99 (0.81 – 1.21) 0.97 (0.80 – 1.19) 0.87 (0.70 – 1.09) 0.75 (0.60 – 0.95) 0.89 (0.83 – 0.95) 
LA:ALA       
  Range of Intakes 2.19 – 6.20 6.20 – 8.70 8.70 – 11.20 11.20 – 12.70 12.70 – 65.85 Per 5 
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 C1 C2 C3 C4 C5 Trend 

  Number of Cases 158 354 305 128 237  
  MV-adjusted HR* 1. 0.98 (0.78 – 1.24) 0.88 (0.67 – 1.17) 0.85 (0.60 – 1.19) 0.68 (0.48 – 0.97) 0.83 (0.73 – 0.94) 
LA: Fish Fats†       
  Range of Intakes 7.83 – 50.00 50.00 – 99.99 100.00 – 149.99 150.01 – 200.00 200.00 – 62,631 Per 100 
  Number of Cases 145 367 272 152 246  
  MV-adjusted HR* 1. 0.89 (0.74 – 1.09) 0.90 (0.73 – 1.11) 0.80 (0.63 – 1.01) 0.82 (0.66 – 1.02) 0.94 (0.90 – 0.99) 
Total TFA‡       
  Range of Intakes(g/day) 1.08 – 5.00 5.00 – 6.00 6.00 – 7.00 7.00 – 8.00 8.00 – 15.20 Per 2g 
  Number of Cases 240 332 297 185 128  
  MV-adjusted HR* 1. 1.05 (0.88 – 1.24) 0.88 (0.74 – 1.05) 0.84 (0.69 – 1.02) 0.92 (0.73 – 1.15) 0.93 (0.86 – 1.01) 
TFA 16:1       
  Range of Intakes(g/day) 0.00 – 0.04 0.04 – 0.06 0.06 – 0.08 0.08 – 0.10 0.10 – 0.43 Per 0.04g 
  Number of Cases 263 354 261 141 163  
  MV-adjusted HR* 1. 0.81 (0.69 – 0.96) 0.81 (0.68 – 0.97) 0.84 (0.68 – 1.04) 0.87 (0.71 – 1.08) 0.98 (0.91 – 1.05) 
TFA 18:1       
  Range of Intakes(g/day) 0.94 – 4.50 4.50 – 5.50 5.50 – 6.50 6.50 – 7.50 7.50 – 13.29 Per 2g 
  Number of Cases 278 379 302 150 73  
  MV-adjusted HR* 1. 1.02 (0.87 – 1.20) 0.89 (0.75 – 1.05) 0.89 (0.73 – 1.10) 0.90 (0.69 – 1.17) 0.92 (0.84 – 1.01) 
TFA 18:2       
  Range of Intakes(g/day) 0.10 – 0.52 0.53 – 0.65 0.65 – 0.77 0.78 – 0.90 0.90 – 1.50 Per 0.2g 
  Number of Cases 237 349 364 170 62  
  MV-adjusted HR* 1. 0.91 (0.77 – 1.08) 0.85 (0.71 – 1.01) 0.80 (0.65 – 0.98) 0.88 (0.65 – 1.17) 0.94 (0.87 – 1.02) 
*MV-adjusted HRs adjusted for: age at baseline, current body mass index, family history of prostate cancer, history of diabetes, smoking history, 
intakes of total energy, lycopene, and supplemental vitamin E, aspirin use, physical activity, study center, and race plus the number of prostate 
cancer screening exams since baseline (time varying covariate) 
† Fish Fats is the sum of intakes from EPA, DPA, and DHA 
‡ Total TFA is the sum of  intakes from TFA 16:1, TFA 18:1, and TFA 18:2 
§ Nutrient intakes adjusted for total energy intake using the residual method 
** All HRs and 95% CIs estimated using Cox proportional hazards models 
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Table 19. Hazard ratios and 95% confidence intervals for high-grade prostate cancer (Gleason sum ! 7)  in relation to 
intakes of major polyunsaturated fatty acids and trans fatty acids (TFAs) in the screening arm of the PLCO Cancer 
Screening Trial 

 C1 C2 C3 C4 C5 Trend 

AA        
  Range of  ntakes(g/day) 0.01 – 0.08 0.08 – 0.11 0.11 – 0.14 0.14 – 0.17 0.17 – 0.61 Per 0.05g 
  Number of Cases 145 197 202 75 80  
  MV-adjusted HR* 1. 0.84 (0.67 – 1.05) 1.11 (0.88 – 1.38) 0.77 (0.58 – 1.04) 1.20 (0.90 – 1.60) 1.06 (0.97 – 1.16) 
LA       
  Range of Intakes(g/day) 2.06 – 9.60 9.60 – 12.10 12.10 – 14.60 14.60 – 17.10 17.10 – 38.73 Per 4g 
  Number of Cases 72 200 229 139 59  
  MV-adjusted HR* 1. 0.94 (0.71 – 1.24) 0.95 (0.72 – 1.25) 1.09 (0.81 – 1.47) 1.01 (0.71 – 1.44) 1.03 (0.93 – 1.14) 
ALA       
  Range of Intakes(g/day) 0.21 – 1.10 1.10 – 1.30 1.30 – 1.50 1.50 – 1.70 1.70 – 4.37 Per 0.3g 
  Number of Cases 97 197 210 139 56  
  MV-adjusted HR* 1. 1.04 (0.81 – 1.34) 1.02 (0.79 – 1.31) 1.24 (0.94 – 1.62) 1.00 (0.71 – 1.40) 1.05 (0.96 – 1.14) 
EPA       
  Range of Intakes(g/day) 0.000 – 0.015 0.015 – 0.031 0.031 – 0.047 0.048 – 0.064 0.064 – 0.770 Per 0.03g 
  Number of Cases 126 241 135 79 118  
  MV-adjusted HR* 1. 1.20 (0.96 – 1.50) 1.04 (0.81 – 1.34) 1.03 (0.77 – 1.38) 1.03 (0.79 – 1.34) 0.99 (0.93 – 1.05) 
DPA       
  Range of Intakes(g/day) 0.000 – 0.006 0.006 – 0.012 0.012 – 0.018 0.019 – 0.024 0.024 – 0.218 Per 0.01g 
  Number of Cases 116 247 164 69 103  
  MV-adjusted HR* 1. 0.96 (0.76 – 1.21) 0.98 (0.76 – 1.26) 0.94 (0.69 – 1.28) 0.86 (0.65 – 1.14) 1.00 (0.94 – 1.06) 
DHA       
  Range of Intakes(g/day) 0.00 – 0.03 0.03 – 0.06 0.06 – 0.09 0.09 – 0.12 0.12 – 1.29 Per 0.06g 
  Number of Cases 89 230 168 99 113  
  MV-adjusted HR* 1. 1.01 (0.78 – 1.30) 1.00 (0.77 – 1.31) 1.02 (0.76 – 1.38) 0.86 (0.64 – 1.16) 0.98 (0.92 – 1.06) 
Fish Fats†       
  Range of Intakes(g/day) 0.000 – 0.050 0.050 – 0.088 0.088 – 0.125 0.125 – 0.162 0.163 – 2.257 Per 0.1g 
  Number of Cases 90 168 146 108 187  
  MV-adjusted HR* 1. 1.01 (0.77 – 1.32) 1.04 (0.79 – 1.37) 1.14 (0.85 – 1.52) 0.94 (0.72 – 1.22) 0.99 (0.92 – 1.06) 
!6:!3        
  Range of Intakes 3.66 – 7.20 7.20 – 8.20 8.20 – 9.20 9.20 – 10.20 10.20 – 51.57 Per 2 
  Number of Cases 67 182 203 147 100  
  MV-adjusted HR* 1. 1.25 (0.94 – 1.67) 1.25 (0.94 – 1.66) 1.47 (1.09 – 1.98) 1.06 (0.77 – 1.47) 1.00 (0.92 – 1.08) 
LA:ALA       
  Range of Intakes 2.20 – 6.20 6.20 – 8.70 8.70 – 11.20 11.20 – 12.70 12.70 – 65.85 Per 5 
  Number of Cases 80 201 185 71 162  
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 C1 C2 C3 C4 C5 Trend 

  MV-adjusted HR* 1. 1.30 (0.94 – 1.78) 1.34 (0.92 – 1.96) 1.22 (0.78 – 1.91) 1.20 (0.75 – 1.90) 1.03 (0.89 – 1.18) 
LA: Fish Fats†       
  Range of Intakes 7.8 – 50.0 50.0 – 100.0 100.0 – 150.0 150.0 – 200. 200.0 – 62,630.6 Per 100 
  Number of Cases 73 206 168 98 154  
  MV-adjusted HR* 1. 1.07 (0.81 – 1.41) 1.23 (0.92 – 1.63) 1.15 (0.83 – 1.57) 1.12 (0.83 – 1.50) 0.99 (0.93 – 1.04) 
Total TFA‡       
  Range of Intakes(g/day) 1.08 – 5.00 5.00 – 5.99 6.00 – 7.00 7.00 – 8.00 8.00 – 15.20 Per 2g 
  Number of Cases 123 179 175 137 85  
  MV-adjusted HR* 1. 1.16 (0.92 – 1.47) 1.06 (0.84 – 1.35) 1.24 (0.96 – 1.60) 1.21 (0.90 – 1.62) 1.07 (0.96 – 1.19) 
TFA 16:1       
  Range of Intakes(g/day) 0.00 – 0.04 0.04 – 0.06 0.06 – 0.08 0.08 – 0.10 0.10 – 0.43 Per 0.04g 
  Number of Cases 141 200 164 94 100  
  MV-adjusted HR* 1. 0.96 (0.76 – 1.21) 1.05 (0.82 – 1.33) 1.18 (0.89 – 1.56) 1.19 (0.89 – 1.56) 1.10 (1.01 – 1.20) 
TFA 18:1       
  Range of Intakes(g/day) 0.95 – 4.50 4.50 – 5.50 5.50 – 6.50 6.50 – 7.50 7.50 – 13.29 Per 2g 
  Number of Cases 145 207 187 110 50  
  MV-adjusted HR* 1. 1.09 (0.88 – 1.36) 1.10 (0.88 – 1.38) 1.23 (0.95 – 1.60) 1.21 (0.87 – 1.69) 1.07 (0.96 – 1.21) 
TFA 18:2       
  Range of Intakes(g/day) 0.10 – 0.52 0.53 – 0.65 0.65 – 0.77 0.78 – 0.90 0.90 – 1.50 Per 0.2g 
  Number of Cases 118 195 225 119 42  
  MV-adjusted HR* 1. 1.09 (0.86 – 1.38) 1.17 (0.93 – 1.48) 1.18 (0.90 – 1.55) 1.22 (0.84 – 1.79) 1.06 (0.95 – 1.18) 
 

*MV-adjusted HRs adjusted for: age at baseline, current body mass index, family history of prostate cancer, history of diabetes, smoking history, 
intakes of total energy, lycopene, and supplemental vitamin E, aspirin use, physical activity, study center, and race plus the number of prostate 
cancer screening exams since baseline (time varying covariate) 
† Fish Fats is the sum of intakes from EPA, DPA, and DHA 
‡ Total TFA is the sum of  intakes from TFA 16:1, TFA 18:1, and TFA 18:2 
§ Nutrient intakes adjusted for total energy intake using the residual method 
** All HRs and 95% CIs estimated using Cox proportional hazards  models 
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Table 20. Contributions and correlations of energy-adjusted intakes of major polyunsaturated fatty acids among 287,468 
male participants in the NIH-AARP Diet and Health Study. 

  

 

ALA EPA DPA DHA 

Marine 
fatty 
acids* LA AA 

% Energy  0.68 0.02 0.00 0.04 0.06 6.60 0.06 
% Energy from Fat 2.10 0.06 0.02 0.13 0.21 20.07 0.17 

Correlation† Pearson Correlation Coefficients 
ALA 1.       
EPA 0.03 1.      
DPA 0.03 0.83 1.     
DHA 0.07 0.95 0.81 1.    
Marine fatty acids* 0.05 0.98 0.84 0.99 1.   
LA 0.78 0.00 0.03 0.04 0.03 1.  
AA 0.17 0.35 0.50 0.47 0.45 0.20 1. 
*Marine fatty acids are the sum of intakes of EPA, DPA, and DHA. 
†Correlations are between residually-adjusted nutrient intakes 
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Table 21. Selected baseline characteristics of 29,594 male participants in the screening 
arm of the PLCO Cancer Screening Trial and 287,468 male participants in the NIH-
AARP Diet and Health Study  

Characteristic PLCO NIH-AARP 

N 29,594 287,468 
Mean Age at Baseline (yrs) (SD) 62.7 (5.3) 62.0 (5.4) 
Body Mass Index (kg/m2) (%)*   
  BMI < 20 1.2 1.5 
  BMI 20 - < 25 24.9 28.0 
  BMI 25 - < 30 50.5 49.5 
  BMI ! 30 23.5 21.0 
Mean Daily Intake†, g/day (SD)   
  AA  0.12 (0.04) 0.11 (0.05) 
  LA  13.11 (3.08) 12.49 (3.97) 
  ALA  1.35 (0.27) 1.30 (0.41) 
  EPA 0.04 (0.04) 0.03 (0.04) 
  DPA  0.02 (0.01) 0.01 (0.01) 
  DHA  0.08 (0.07) 0.07 (0.06) 
  Total TFA  6.28 (1.50) 4.36 (1.70) 
  TFA 16:1  0.07 (0.04) 0.05 (0.04) 
  TFA 18:1 5.51 (1.34) 3.80 (1.53) 
  TFA 18:2 0.66 (0.15) 0.47 (0.17) 
Mean Energy Intake, kcal/day (SD) 2,339.7 (850.3) 2,013.6 (843.8) 
Mean Lycopene Intake †, µg/day (SD) 11,057.9 (6,639.2) 7,588.5 (6,773.1) 
Mean Supplemental Vit. E, IU/day (SD) 64.8 (108.1) - 
Vigorous Exercise (h/week) (SD) 2.3 (1.9) 2.6 (1.6) 
Regular Aspirin Use (%)   
  < twice weekly 23.2 ‡ 
  ! twice weekly 30.7 ‡ 
Race (%)§   
  White 90.7 93.6 
  African American 3.3 2.7 
  Asian/Pacific Islander 4.0 1.9 
  Other (Hispanic/Native American) 1.9 1.7 
Family History of Prostate Cancer (%) 8.0 13.5 
History of Diabetes (%) 8.5 7.3 
Smoking history (%)   
  Never 29.5 30.7 
  Current Cigarettes 10.6 10.7 
  Former Cigarettes 52.0 58.7 
*BMI was missing in 0.9% of the PLCO population, 1.9% of the AARP population 
 †Nutrient values adjusted for total energy intake 
‡ Only available in the supplementary risk factor questionnaire 
§ Race missing among 1.2% of the AARP population
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Table 22. Hazard ratios and 95% confidence intervals for incident prostate cancer in relation to intakes of major 
polyunsaturated fatty acids and trans fatty acids (TFAs) in the NIH-AARP Diet and Health Study. 

 C1 C2 C3 C4 C5 Trend 

AA        
   Person Years 621,312 564,122 416,655 221,945 182,537  
  Range of  ntakes(g/day) 0.00 – < 0.08 0.08 – < 0.11 0.11 – < 0.14 0.14 – < 0.17 0.17 – < 0.66 Per 0.05g 
  Number of Cases 5,505 4,889 3,535 1,768 1,398  
  MV-adjusted HR* 1. 1.01 (0.97 – 1.06) 1.04 (0.99 – 1.09) 1.00 (0.94– 1.06) 0.99 (0.93 – 1.06) 1.00 (0.98 – 1.02) 
LA       
   Person Years 466,301 531,315 484,338 290,073 234,542  
  Range of Intakes(g/day) 0.33 – < 9.60 9.60 – < 12.10 12.10 – < 14.60 14.60 – < 17.10 17.10 – < 54.87 Per 4g 
  Number of Cases 4,077 4,470 4,146 2,457 1,945  
  MV-adjusted HR* 1. 0.97 (0.93 – 1.02) 0.99 (0.95 – 1.04) 1.00 (0.94 – 1.05) 0.97 (0.92 – 1.03) 1.00 (0.98 – 1.01) 
ALA       
   Person Years 677,554 457,742 360,680 227,783 282,811  
  Range of Intakes(g/day) 0.03 – < 1.10 1.10 – < 1.30 1.30 – < 1.50 1.50 – < 1.70 1.70 – < 7.19 Per 0.3g 
  Number of Cases 5,755 3,940 3,097 1,912 2,391  
  MV-adjusted HR* 1. 1.03 (0.98 – 1.07) 1.03 (0.99 – 1.08) 0.99 (0.94 – 1.05) 1.02 (0.97 – 1.08) 1.00 (0.99 – 1.02) 
EPA       
  Person Years 622,188 624,985 308,850 175,142 275,405  
  Range of Intakes(g/day) 0.00 – < 0.015 0.015 – < 0.031 0.031 – < 0.048 0.048 – < 0.064 0.064 – < 1.16 Per 0.03g 
  Number of Cases 5,071 5,375 2,707 1,497 2,445  
  MV-adjusted HR* 1. 1.06 (1.02 – 1.11) 1.09 (1.04 – 1.15) 1.04 (0.97 – 1.10) 1.07 (1.02 – 1.13) 1.01 (1.00 – 1.02) 
DPA       
   Person Years 505,509 534,595 401,448 202,098 362,919  
  Range of Intakes(g/day) 0.000 – < 0.006 0.006 – < 0.012 0.012 – < 0.018 0.019 – < 0.024 0.024 – < 0.404 Per 0.01g 
  Number of Cases 4,176 4,581 3,450 1,745 3,143  
  MV-adjusted HR* 1. 1.05 (1.01 – 1.11) 1.05 (1.00 – 1.11) 1.06 (1.00 – 1.13) 1.05 (1.00 – 1.11) 1.01 (0.99 – 1.02) 
DHA       
  Person Years 394,487 689,483 412,746 227,008 282,846  
  Range of Intakes(g/day) 0.00 – < 0.03 0.03 – < 0.06 0.06 – < 0.09 0.09 – < 0.12 0.12 – < 1.47 Per 0.06g 
  Number of Cases 3,202 5,949 3,517 2,007 2,420  
  MV-adjusted HR* 1. 1.08 (1.03 – 1.13) 1.09 (1.03 – 1.16) 1.09 (1.03 – 1.16) 1.07 (1.01 – 1.13) 1.01 (0.99 – 1.03) 
Marine fatty acids‡       
   Person Years 415,533 522,297 383,048 227,483 458,209  
  Range of Intakes(g/day) 0.000 – < 0.050 0.050 – < 0.087 0.088 – < 0.125 0.125 – < 0.162 0.162 – < 2.78 Per 0.1g 
  Number of Cases 3,427 4,415 3,358 1,897 3,998  
  MV-adjusted HR* 1. 1.04 (1.00 – 1.10) 1.09 (1.03 – 1.15) 1.04 (0.98 – 1.10) 1.07 (1.02 – 1.12) 1.01 (0.99 – 1.02) 
!6:!3        
   Person Years 274,029 415,369 511,716 379,800 425,656  
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 C1 C2 C3 C4 C5 Trend 

  Range of Intakes 1.86 – < 7.20 7.20 – < 8.20 8.20 – < 9.20 9.20 – < 10.20 10.20 – < 81.82 Per 2 
  Number of Cases 2,390 3,584 4,410 3,252 3,459  
  MV-adjusted HR* 1. 1.02 (0.96 – 1.08) 1.01 (0.96 – 1.07) 1.02 (0.96 – 1.07) 0.96 (0.91 – 1.01) 0.98 (0.96 – 0.99) 
LA:ALA       
   Person Years 304,791 518,072 478,623 202,112 502,972  
  Range of Intakes 1.11 – < 6.20 6.20 – < 8.70 8.70 – < 11.20 11.20 – < 12.70 12.70 – < 115.31 Per 5 
  Number of Cases 2,488 4,374 4,094 1,794 4,345  
  MV-adjusted HR* 1. 0.99 (0.93 – 1.06) 0.98 (0.91 – 1.06) 1.00 (0.92 – 1.09) 0.96 (0.88 – 1.05) 0.97 (0.94 – 0.99) 
LA: Marine fatty acids‡       
   Person Years 230,260 510,237 413,104 273,297 579,672  
  Range of Intakes 2.36 – < 50.00 50.00 – < 100.00 100.00 – < 150.00 150.00 – < 200.00 200.00 –  <529,633 Per 100 
  Number of Cases 2,033 4,448 3,542 2,342 4,730  
  MV-adjusted HR* 1. 1.01 (0.95 – 1.07) 1.00 (0.95 – 1.06) 1.01 (0.94 – 1.07) 0.94 (0.89 – 0.99) 1.00 (1.00 – 1.00) 
Total TFA§       
   Person Years 1,391,765 313,153 163,865 76,547 61,241  
  Range of Intakes(g/day) 0.03 – < 5.00 5.00 – < 6.00 6.00 – < 7.00 7.00 – < 8.00 8.00 – < 27.43 Per 2g 
  Number of Cases 11,834 2,700 1,401 627 533  
  MV-adjusted HR* 1. 1.01 (0.97 – 1.06) 1.01 (0.95 – 1.07) 0.94 (0.86 – 1.02) 0.99 (0.90 – 1.08) 0.99 (0.97 – 1.01) 
TFA 16:1       
   Person Years 899,055 482,564 268,095 153,718 203,138  
  Range of Intakes(g/day) 0.00 – < 0.04 0.04 – < 0.06 0.06 – < 0.08 0.08 – < 0.10 0.10 – < 0.72 Per 0.04g 
  Number of Cases 7,794 4,046 2,245 1,341 1,669  
  MV-adjusted HR* 1. 1.01 (0.97 – 1.06) 1.02 (0.97 – 1.07) 1.06 (1.00 – 1.13) 0.99 (0.94 – 1.05) 1.01 (0.99 – 1.02) 
TFA 18:1       
   Person Years 1,452,688 304,481 143,889 61,249 44,263  
  Range of Intakes(g/day) 0.03 – < 4.50 4.50 – < 5.50 5.50 – < 6.50 6.50 – < 7.50 7.50 – < 25.00 Per 2g 
  Number of Cases 12,364 2,606 1,233 504 388  
  MV-adjusted HR* 1. 1.01 (0.96 – 1.06) 1.00 (0.94 – 1.06) 0.95 (0.87 – 1.05) 0.97 (0.87 – 1.08) 0.99 (0.97 – 1.01) 
TFA 18:2       
   Person Years 1,310,714 424,370 185,895 61,562 24,028  
  Range of Intakes(g/day) 0.00 – < 0.52 0.52 – < 0.65 0.65 – < 0.77 0.78 – < 0.90 0.90 – < 2.34 Per 0.2g 
  Number of Cases 11,208 3,546 1,601 526 214  
  MV-adjusted HR* 1. 0.98 (0.94 – 1.02) 1.00 (0.94 – 1.06) 0.95 (0.87 – 1.05) 0.98 (0.85 – 1.13) 0.99 (0.97 – 1.01) 

 
*MV-adjusted HRs adjusted for: total energy intake, body mass index, family history of prostate cancer, history of diabetes, smoking history, race, 
physical activity, lycopene intake, and state of residence at baseline 
† Marine fatty acids is the sum of intakes from EPA, DPA, and DHA 
‡ Total TFA is the sum of  intakes from TFA 16:1, TFA 18:1, and TFA 18:2 
§ Nutrient intakes adjusted for total energy intake using the residual method 
** All HRs and 95% CIs estimated using Cox proportional hazards models 
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Table 23. Hazard ratios and 95% confidence intervals for advanced prostate cancer in relation to intakes of major 
polyunsaturated fatty acids and trans fatty acids (TFAs) in the NIH-AARP Diet and Health Study. 

 
 C1 C2 C3 C4 C5 Trend 

AA        
   Person Years 602,103 547,099 404,428 215,766 177,900  
  Range of  ntakes(g/day) 0.00 – < 0.08 0.08 – < 0.11 0.11 – < 0.14 0.14 – < 0.17 0.17 – < 0.66 Per 0.05g 
  Number of Cases 568 530 407 202 184  
  MV-adjusted HR* 1. 1.03 (0.91 – 1.17) 1.08 (0.94 – 1.24) 1.04 (0.88 – 1.23) 1.18 (0.99 – 1.41) 1.04 (0.99 – 1.10) 
LA       
   Person Years 452,057 515,518 470,150 281,659 227,911  
  Range of Intakes(g/day) 0.33 – < 9.60 9.60 – < 12.10 12.10 – < 14.60 14.60 – < 17.10 17.10 – < 54.87 Per 4g 
  Number of Cases 448 503 444 276 220  
  MV-adjusted HR* 1. 0.95 (0.83 – 1.08) 0.89 (0.78 – 1.03) 0.96 (0.82 – 1.12) 0.91 (0.77 – 1.08) 0.99 (0.94 – 1.04) 
ALA       
   Person Years 657,281 444,091 349,907 221,230 274,787  
  Range of Intakes(g/day) 0.03 – < 1.10 1.10 – < 1.30 1.30 – < 1.50 1.50 – < 1.70 1.70 – < 7.20 Per 0.3g 
  Number of Cases 605 442 358 205 281  
  MV-adjusted HR* 1. 1.07 (0.94 – 1.22) 1.07 (0.93 – 1.23) 0.97 (0.82 – 1.15) 1.06 (0.91 – 1.23) 1.01 (0.98 – 1.05) 
EPA       
  Person Years 604,708 606,401 299,661 169,861 266,666  
  Range of Intakes(g/day) 0.00 – < 0.015 0.015 – < 0.031 0.031 – < 0.047 0.048 – < 0.064 0.064 – < 1.16 Per 0.03g 
  Number of Cases 584 586 345 155 221  
  MV-adjusted HR* 1. 1.03 (0.91 – 1.17) 1.24 (1.08 – 1.43) 0.98 (0.81 – 1.18) 0.92 (0.78 – 1.08) 0.97 (0.94  - 1.02) 
DPA       
   Person Years 491,213 518,832 389,406 195,880 351,966  
  Range of Intakes(g/day) 0.000 – < 0.006 0.006 – < 0.012 0.012 – < 0.018 0.019 – < 0.024 0.024 – < 0.404 Per 0.01g 
  Number of Cases 468 525 392 180 326  
  MV-adjusted HR* 1. 1.10 (0.95 – 1.27) 1.06 (0.91 – 1.23) 1.01 (0.84 – 1.22) 1.02 (0.87 – 1.19) 0.99 (0.96 – 1.03) 
DHA       
  Person Years 383,316 668,947 400,678 220,014 274,342  
  Range of Intakes(g/day) 0.00 – < 0.03 0.03 – < 0.06 0.06 – < 0.09 0.09 – < 0.12  0.12 – < 1.47 Per 0.06g 
  Number of Cases 340 679 412 228 232  
  MV-adjusted HR* 1. 1.19 (1.04 – 1.37) 1.25 (1.07 – 1.46) 1.23 (1.03 – 1.48) 1.02 (0.85 – 1.22) 0.98 (0.93 – 1.03) 
Marine fatty acids‡       
   Person Years 403,691 506,998 371,598 220,851 444,158  
  Range of Intakes(g/day) 0.000 – < 0.050 0.050 – < 0.087 0.088 – < 0.125 0.125 – < 0.162 0.163 – < 2.782 Per 0.1g 
  Number of Cases 370 511 384 216 410  
  MV-adjusted HR* 1. 1.15 (1.00 – 1.33) 1.21 (1.04 – 1.41) 1.13 (0.95 – 1.36) 1.08 (0.93 – 1.25) 0.98 (0.93 – 1.03) 
!6:!3        
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 C1 C2 C3 C4 C5 Trend 

   Person Years 265,768 402,890 496,621 368,315 413,702  
  Range of Intakes 1.86 – < 7.20 7.20 – < 8.20 8.20 – < 9.20 9.20 – < 10.20 10.20 – < 81,82 Per 2 
  Number of Cases 273 378 529 337 374  
  MV-adjusted HR* 1. 0.90 (0.76 – 1.06) 1.02 (0.87 – 1.19) 0.85 (0.72 – 1.01) 0.87 (0.74 – 1.02) 0.95 (0.91 – 1.00) 
LA:ALA       
   Person Years 296,157 502,970 464,691 195,951 487,527  
  Range of Intakes 1.11 – < 6.20 6.20 – < 8.70 8.70 – < 11.20 11.20 – < 12.70 12.70 – < 115.31 Per 5 
  Number of Cases 268 507 469 193 454  
  MV-adjusted HR* 1. 1.10 (0.91 – 1.33) 1.07 (0.86 – 1.34) 0.99 (0.76 – 1.30) 0.95 (0.73 – 1.24) 0.95 (0.88 – 1.02) 
LA: Marine fatty acids‡       
   Person Years 222,988 494,857 400,953 265,077 563,421  
  Range of Intakes 2.36 – < 50.00 50.00 – < 100.00 100.00 – < 150.00 150.00 – < 200.00 200.00 – < 529,633 Per 100 
  Number of Cases 184 511 399 271 526  
  MV-adjusted HR* 1. 1.17 (0.98 – 1.39) 1.16 (0.96 – 1.38) 1.17 (0.96 – 1.42) 1.01 (0.85 – 1.20) 1.00 (1.00 – 1.00) 
Total TFA§       
   Person Years 1,350,785 303,920 158,874 74,343 59,374  
  Range of Intakes(g/day) 0.03 – < 5.00 5.00 – < 6.00 6.00 – < 7.00 7.00 – < 8.00 8.00 – < 27.43 Per 2g 
  Number of Cases 1,347 292 140 60 52  
  MV-adjusted HR* 1. 0.96 (0.84 – 1.09) 0.84 (0.70 – 1.01) 0.82 (0.63 – 1.07) 0.79 (0.59 – 1.07) 0.95 (0.89 – 1.02) 
TFA 16:1       
   Person Years 872,013 468,451 260,490 148,917 197,424  
  Range of Intakes(g/day) 0.00 – < 0.04 0.04 – < 0.06 0.06 – < 0.08 0.08 – < 0.10 0.10 – < 0.72 Per 0.04g 
  Number of Cases 849 438 267 146 191  
  MV-adjusted HR* 1. 1.02 (0.90 – 1.15) 1.11 (0.96 – 1.29) 1.07 (0.88 – 1.29) 1.09 (0.92 – 1.29) 1.05 (1.00 – 1.10) 
TFA 18:1       
   Person Years 1,409,945 295,480 139,451 59,542 42,877  
  Range of Intakes(g/day) 0.03 – < 4.50 4.50 – < 5.50 5.50 – < 6.50 6.50 – < 7.50 7.50 – < 25.00 Per 2g 
  Number of Cases 1,408 271 118 57 37  
  MV-adjusted HR* 1. 0.89 (0.78 – 1.03) 0.84 (0.69 – 1.02) 0.94 (0.71 – 1.24) 0.75 (0.53 – 1.08) 0.94 (0.88 – 1.00) 
TFA 18:2       
   Person Years 1,272,013 412,000 180,250 59,723 23,309  
  Range of Intakes(g/day) 0.00 – < 0.52 0.53 – < 0.65 0.65 – < 0.77 0.78 – < 0.90 0.90 – < 2.34 Per 0.2g 
  Number of Cases 1,258 402 152 53 26  
  MV-adjusted HR* 1. 0.97 (0.86 – 1.09) 0.85 (0.71 – 1.01) 0.88 (0.66 – 1.18) 0.93 (0.60 – 1.43) 0.96 (0.91 – 1.02) 

 
*MV-adjusted HRs adjusted for: total energy intake, body mass index, family history of prostate cancer, history of diabetes, smoking history, race, 
physical activity, lycopene intake, and state of residence at baseline 
† Marine fatty acids is the sum of intakes from EPA, DPA, and DHA 
‡ Total TFA is the sum of  intakes from TFA 16:1, TFA 18:1, and TFA 18:2 
§ Nutrient intakes adjusted for total energy intake using the residual method 
** All HRs and 95% CIs estimated using Cox proportional hazards models 
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Table 24. Hazard ratios and 95% confidence intervals for fatal prostate cancer in relation to intakes of major 
polyunsaturated fatty acids and trans fatty acids (TFAs) in the NIH-AARP Diet and Health Study. 

 C1 C2 C3 C4 C5 Trend 

AA        
   Person Years 816,263 741,372 547,486 290,663 238,504  
  Range of  ntakes(g/day) 0.00 – < 0.08 0.08 – < 0.11 0.11 – < 0.14 0.14 – < 0.17 0.17 – < 0.66 Per 0.05g 
  Number of Cases 128 127 93 38 41  
  MV-adjusted HR* 1. 1.04 (0.80 – 1.35) 1.09 (0.82 – 1.44) 0.81 (0.55 – 1.20) 1.16 (0.80 – 1.70) 0.99 (0.89 – 1.11) 
LA       
   Person Years 611,767 697,244 636,868 380,975 307,436  
  Range of Intakes(g/day) 0.33 – < 9.60 9.60 – < 12.10 12.10 – < 14.60 14.60 – < 17.10 17.10 – < 54.88 Per 4g 
  Number of Cases 114 99 100 59 55  
  MV-adjusted HR* 1. 0.71 (0.54 – 0.95) 0.80 (0.60 – 1.06) 0.75 (0.54 – 1.05) 0.83 (0.59 – 1.18) 0.97 (0.88 – 1.07) 
ALA       
   Person Years 888,989 601,376 473,872 299,065 370,986  
  Range of Intakes(g/day) 0.03 – < 1.10 1.10 – < 1.30 1.30 – < 1.50 1.50 – < 1.70 1.70 – < 7.19 Per 0.3g 
  Number of Cases 144 90 83 41 69  
  MV-adjusted HR* 1. 0.89 (0.67 – 1.17) 0.97 (0.73 – 1.30) 0.72 (0.49 – 1.04) 1.02 (0.75 – 1.38) 0.99 (0.92 – 1.07) 
EPA       
  Person Years 813,253 820,951 406,527 230,385 363,173  
  Range of Intakes(g/day) 0.000 – < 0.015 0.015 – < 0.031 0.031 – < 0.047 0.048 – < 0.064 0.064 – < 1.16 Per 0.03g 
  Number of Cases 170 120 60 35 42  
  MV-adjusted HR* 1. 0.70 (0.55 – 0.91) 0.72 (0.53 – 0.99) 0.86 (0.59 – 1.25) 0.65 (0.45 – 0.92) 0.89 (0.80 – 0.98) 
DPA       
   Person Years 660,379 702,301 527,965 266,047 477,596  
  Range of Intakes(g/day) 0.000 – < 0.006 0.006 – < 0.012 0.012 – < 0.019 0.019 – < 0.024 0.024 – < 0.404 Per 0.01g 
  Number of Cases 138 121 68 27 73  
  MV-adjusted HR* 1. 0.89 (0.67 – 1.19) 0.65 (0.50 – 0.90) 0.53 (0.33 – 0.83) 0.83 (0.60 – 1.13) 0.92 (0.84 – 1.00) 
DHA       
  Person Years 515,676 905,048 542,097 299,051 372,417  
  Range of Intakes(g/day) 0.00 – < 0.03 0.03 – < 0.06 0.06 – < 0.09 0.09 – < 0.12 0.12 – < 1.47 Per 0.06g 
  Number of Cases 89 167 76 50 45  
  AA-adjusted HR 1. 1.16 (0.88 – 1.53) 0.89 (0.64 – 1.24) 1.10 (0.76 – 1.60) 0.86 (0.58 – 1.25) 0.87 (0.77 – 0.99) 
Marine fatty acids‡       
   Person Years 543,029 685,169 503,853 298,486 603,751  
  Range of Intakes(g/day) 0.000 – < 0.050 0.050 – < 0.088 0.088 – < 0.125 0.125 – < 0.162 0.163 – < 2.782 Per 0.1g 
  Number of Cases 102 137 62 47 79  
  MV-adjusted HR* 1. 1.21 (0.92 – 1.58) 0.72 (0.51 – 1.01) 0.86 (0.59 – 1.26) 0.86 (0.62 – 1.17) 0.87 (0.78 – 0.98) 
!6:!3        
   Person Years 359,957 545,734 671,774 498,742 558,083  
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 C1 C2 C3 C4 C5 Trend 

  Range of Intakes 1.86 – < 7.20 7.20 – < 8.20 8.20 – < 9.20 9.20 – < 10.20 10.20 – < 81,83 Per 2 
  Number of Cases 59 91 109 74 94  
  MV-adjusted HR* 1. 1.08 (0.76 – 1.52) 1.01 (0.72 – 1.41) 0.79 (0.54 – 1.15) 1.09 (0.77 – 1.54) 0.99 (0.90 – 1.09) 
LA:ALA       
   Person Years 398,116 680,391 629,530 266,177 660,075  
  Range of Intakes 1.11 – < 6.20 6.20 – < 8.70 8.70 – < 11.20 11.20 – < 12.70 12.70 – < 115.32 Per 5 
  Number of Cases 79 108 100 40 100  
  MV-adjusted HR* 1. 0.78 (0.54 – 1.14) 0.70 (0.44 – 1.09) 0.64 (0.37 – 1.11) 0.59 (0.34 – 1.02) 1.01 (0.86 – 1.18) 
LA: Marine fatty acids‡       
   Person Years 303,549 671,266 542,894 358,376 758,204  
  Range of Intakes 2.36 – < 50.00 50.00 – < 100.00 100.00 – < 150.00 150.00 – < 200.00 200.00 – < 529,587 Per 100 
  Number of Cases 34 104 81 59 149  
  MV-adjusted HR* 1. 1.23 (0.82 – 1.84) 1.17 (0.77 – 1.78) 1.33 (0.86 – 2.05) 1.43 (0.97 – 2.11) 1.00 (1.00 – 1.00) 
Total TFA§       
   Person Years 1,828,881 411,170 214,454 99,929 79,854  
  Range of Intakes(g/day) 0.03 – < 5.00 5.00 – < 6.00 6.00 – < 7.00 7.00 – < 8.00 8.00 – < 27.43 Per 2g 
  Number of Cases 290 66 37 16 18  
  MV-adjusted HR* 1. 0.92 (0.69 – 1.23) 0.93 (0.64 – 1.35) 0.97 (0.58 – 1.61) 1.10 (0.65 – 1.85) 0.97 (0.86 – 1.09) 
TFA 16:1       
   Person Years 1,182,603 633,242 351,392 201,360 265,691  
  Range of Intakes(g/day) 0.00 – < 0.04 0.04 – < 0.06 0.06 – < 0.08 0.08 – < 0.10 0.10 – < 0.72 Per 0.04g 
  Number of Cases 173 104 61 40 49  
  MV-adjusted HR* 1. 1.12 (0.86 – 1.44) 1.12 (0.82 – 1.53) 1.23 (0.85 – 1.79) 1.19 (0.85 – 1.67) 1.07 (0.97 – 1.18) 
TFA 18:1       
   Person Years 1,908,712 399,809 188,137 79,992 57,638  
  Range of Intakes(g/day) 0.03 – < 4.50 4.50 – < 5.50 5.50 – < 6.50 6.50 – < 7.50 7.50 – < 25.00 Per 2g 
  Number of Cases 304 63 31 18 11  
  MV-adjusted HR* 1. 0.89 (0.66 – 1.19) 0.96 (0.66 – 1.42) 1.28 (0.78 – 2.10) 0.90 (0.46 – 1.76) 0.96 (0.84 – 1.10) 
TFA 18:2       
   Person Years 1,723,622 555,660 243,385 80,357 31,265  
  Range of Intakes(g/day) 0.00 – < 0.52 0.53 – < 0.65 0.5 – < 0.77 0.78 – < 0.90 0.90 – < 2.34 Per 0.2g 
  Number of Cases 267 90 44 21 5  
  MV-adjusted HR* 1. 0.93 (0.72 – 1.20) 1.06 (0.76 – 1.48) 1.40 (0.87 – 2.25) 0.71 (0.26 – 1.92) 0.99 (0.88 – 1.12) 
*MV-adjusted HRs adjusted for: total energy intake, body mass index, family history of prostate cancer, history of diabetes, smoking history, race, 
physical activity, lycopene intake, and state of residence at baseline 
† Marine fatty acids is the sum of intakes from EPA, DPA, and DHA 
‡ Total TFA is the sum of  intakes from TFA 16:1, TFA 18:1, and TFA 18:2 
§ Nutrient intakes adjusted for total energy intake using the residual method 
** All HRs and 95% CIs estimated using Cox proportional hazards models 
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Appendix 2 

Figures 

 

 

Figure 1.  Prostate cancer incidence in the United States from 1975-2003 (from (3)). 

 

Figure 2.  Prostate cancer mortality in the United States from 1975 – 2003 (from(4)) 
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Figure 3.  Mechanistic model for relations between polyunsaturated fatty acids and 

prostate carcinogenesis (adapted from (19)). 

Abbreviations:  AA – Arachidonic Acid, ALA - !-Linolenic Acid, COX – 

Cyclooxygenase, DGLA – Dihomo-"-Linolenic Acid, DHA – Docosahexaenoic Acid, 

DPA – Docosapentaenoic Acid, GLA – "-Linolenic Acid, HEPE – 

Hydroxyeicosapentaenoic Acid, HPETE – Hydroperoxyeicsoatetraenoic Acid, LOX – 

Lipoxygenase, PGG – Prostaglandin G, PLA2 – Phospholipase A2.
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Figure 4.  States represented in the PLCO Cancer Screening Trial. 

 

Figure 5.  States represented in the NIH-AARP Diet and Health Study.  
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Figure 6.  Conceptual diagram, sharing features of a Directed Acyclic Graph, for 

the associations between dietary intakes of major polyunsaturated fatty acids and 

prostate cancer. 
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