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ABSTRACT 

 

LEILA FAMILY: Associations between genetic polymorphisms in DNA bypass polymerases 

and base excision repair genes with the risk of breast cancer 

(Under the direction of Andrew F. Olshan)  

 

  Mutations in BRCA1, a DNA repair gene, have been associated with a lifetime increased 

risk of breast cancer (1). Therefore, researchers hypothesized there may be other DNA repair 

genes associated with breast cancer risk. However thus far, studies of common low-penetrant 

DNA repair SNPs have not yielded consistent results. In this proposed study, we hypothesized 

one or more of the following mechanisms may explain the lack of main SNP effects:  combined 

SNP effects, modification by race or breast cancer subtype, and functional redundancy. To 

evaluate these hypotheses, we used genotype data from the Carolina Breast Cancer Study (1,972 

cases and 1,776 controls) to investigate race-specific, subtype-specific, and combined SNP 

associations using unconditional logistic regression in two DNA damage pathways, base excision 

repair (BER) and translesion synthesis (TLS).  For BER, we evaluated the association between 

31 single-nucleotide polymorphisms (SNPs) in 15 genes and breast cancer risk. SKAT, a 

pathway-based analytic method, was used to evaluate the combined SNP effects within the BER 

pathway. Among Whites, our results showed a significant positive association for NEIL2 

rs1534862 and a significant inverse association for PCNA rs17352.  Among African Americans, 

we found a suggestive positive association for UNG rs3219275 and an inverse association for 

NEIL2 rs8191613. Tumor subtype analysis showed that NEIL2 rs1534862 was associated with 

luminal and HER2+/ER- subtypes. SKAT analysis showed no significant combined effects 

between SNPs. For DNA bypass polymerases, we evaluated the association between 22 single-
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nucleotide polymorphisms (SNPs) in 7 bypass polymerase genes and breast cancer risk. We 

found similar increased odds ratios for breast cancer with three POLQ SNPs (rs487848, 

rs532411, rs3218634), which were also in high LD in both races. Furthermore, analysis by 

specific tumor subtypes showed all three SNPs were associated with increased risk of luminal 

breast cancer.  These significant findings need to be replicated independently in other studies. 

Overall, our results did not indicate associations with breast cancer, which may concur with the 

theory that our cells possess an intricate system of functionally redundant DNA repair 

mechanisms in order to avoid the catastrophic effects of genomic instability.  
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CHAPTER 1. REVIEW OF THE LITERATURE 

1.1 Introduction 

 

In the past few decades, there have been significant strides in breast cancer research in 

both etiology and treatment. Breast cancer is one of the most investigated types of cancer in the 

US, garnering a large proportion of both private and public cancer research funding as well as 

media attention. Consequently, the results spawned from these research efforts have afforded 

many women new treatment and prevention options improving overall survival from breast 

cancer, with an estimated 3 million survivors in the United States (2). 

1.2 Definition of breast cancer  

The term “breast cancer” refers to a malignant tumor that has developed from cells in the 

breast. There are two main types of breast cancer: ductal carcinoma and lobular carcinoma.  

Most breast cancers are categorized as ductal carcinomas; that is they originate from the ducts, 

the passages that transfer milk from the lobule to the nipple. Lobular carcinoma originates from 

the lobules, the milk-producing glands.  A less frequent type of breast cancer can begin in the 

stromal tissues, which include the fatty and fibrous connective tissues of the breast (2) (Figure 1) 

Breast cancer can be further classified as invasive or noninvasive. Invasive cancer has 

spread from the milk duct or lobule to other tissues in the breast. Noninvasive or in situ cancers 

are confined within the ducts or lobules and named accordingly, ductal carcinoma in situ (DCIS) 

and  lobular carcinoma in situ (LCIS).The majority of in situ breast cancers are DCIS, which 
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accounted for about 83% of in situ cases diagnosed during 2004-2008. Lobular carcinoma in situ 

(LCIS) is a marker for an increased risk of invasive cancer in the same or both breasts (2).  

1.3 Epidemiology of breast cancer 

1.3.1 Breast cancer incidence   

 

Breast cancer is the most commonly diagnosed (non-skin) cancer in women in the United 

States, representing 29% of all female cancer cases (3). According to the American Cancer 

Society (ACS) 2013 Cancer Statistics Report, there will be an estimated 232,340 new cases of 

invasive and 64,640 new cases of carcinoma in situ this year (3). In North Carolina, there will be 

an estimated 7,090 new cases of female breast cancer in 2013 (3). In 2012, the age-adjusted 

incidence rate for breast cancer in the United States was 124.3 per 100,000 women per year. 

These rates are based on cases diagnosed during 2005-2009 from 18 SEER geographic areas (4). 

At a population level, women have a 12% risk (1 in 8) of developing breast cancer in the course 

of their lifetime.   

After increasing for more than two decades, female breast cancer incidence rates began to 

slowly decrease in 2000, and then dropped abruptly by about 7% from 2002 to 2003. This large 

decrease was thought to be due to the decline in use of hormone replacement therapy (HRT) after 

menopause that occurred after the Women's Health Initiative ended their clinical trial early. The 

preliminary data showed that the risks of HRT may outweigh their benefits. The study linked the 

use of hormone therapy to an increased risk of breast cancer and heart disease (5). In the past 

couple of years, breast cancer incidence rates have stabilized (3). 

Age-adjusted breast cancer incidence rates (per 100,000) also vary by race. White women 

are at the highest risk of breast cancer (122.3) followed by African Americans (116.1). Asians 

and American Indian women have the lowest risks, 84.9 and 89.2 respectively (3). In North 
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Carolina, the incidence rates (per 100,000) are slightly higher for Whites and moderately higher 

for African-Americans compared to the national average (124.5 and 122.3 respectively) (3). 

According to data from 18 SEER geographic regions, while incidence is similar for 

premenopausal White and African-African women, after menopause the incidence rates diverge, 

and postmenopausal White women have substantially higher incidence compared to 

postmenopausal African-American women (4) (Figure 2). 

1.3.2 Breast cancer mortality 

Although breast cancer mortality has declined by 30% in the past 25 years, it is still the 

second leading cause of cancer mortality in the United States after lung cancer for women 

(2).The ACS estimates 39,620 deaths due to breast cancer in 2013. Breast cancer accounts for 

about 3% of all-cause mortality and 14% of all cancer deaths in the US (2). At the state level, 

there will be an estimated 1,260 deaths from breast cancer in North Carolina in the year 2013. 

Death rates from breast cancer have been declining in the past few decades especially in 

premenopausal women. These decreases are believed to be the result of earlier detection through 

screening and increased awareness, as well as improved treatment.     

 There are differences in survival by both age and race. Although the mortality gap has 

lessened over the past several years, African-American women have higher mortality rates from 

breast cancer compared to White women, especially for younger women, despite the fact that 

Whites have a higher incidence (4) (Figure 2). Understanding this survival paradox is the first 

step in helping to improve breast cancer survival among younger African American women. 

1.3.3 Non-genetic risk factors of breast cancer 

 

In the past two decades, there have been a multitude of epidemiological studies 

evaluating the risk factors for breast cancer, primarily among postmenopausal White women.  
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Many of these individual studies yielded inconsistent results due to small sample size. The 

Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC) was established to 

aggregate data from multiple studies (10,000s of cases and controls) for a number of putative risk 

factors such as menarche and menopause, abortion, breastfeeding, alcohol and tobacco, and 

family history (6-10). Results from the Collaborative Group studies have provided conclusive 

evidence for several hormone-related factors such as nulliparity, older age at first birth, younger 

age at menarche and older age at menopause, long-term use of HRT being associated with 

increased risk of breast cancer (11-14). Lifestyle factors such as moderate alcohol use and 

postmenopausal weight gain have also been established to be positively associated with risk 

while physical activity has been associated with an inverse association (9, 11-19).The strongest 

risk factors are older age and personal family history; the latter which is correlated with genetic 

factors.  

1.3.3.1 Non-genetic risk factors of breast cancer by race 

 

Results from past breast cancer research studies may not provide a fully representative 

story. Most of this research relied on data collected from postmenopausal White women. In the 

past, it was difficult to examine risk factors in other racial/ethnic groups, since many studies did 

have enough power to evaluate breast cancer by race. Recent studies consisting of larger, more 

diverse cohorts of women have allowed researchers to re-evaluate these “well-established” risk 

factors by race (20, 21). These studies have identified several risk factors that may differ by race. 

For example, the effects of body mass index (BMI) may vary by race. While higher BMI in post-

menopausal White women may increase breast cancer risk, in African-American women of any 

age BMI may act as a protective factor (22). While increasing parity and early age at first birth 

are considered protective factors in White women, these factors may have the opposite effect in 
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African-American women.  Multi-parity was associated with increased risk of breast cancer 

among younger African-American women (for 3 or 4 pregnancies: OR =1.5, 95% (CI): 0.9, 2.6; 

for 5 or more pregnancies: OR = 1.4, 95% CI: 0.6, 3.1), but not among younger White women 

with the same number of pregnancies (20). 

1.3.4 Genetic risk factors of breast cancer 

Family history, one of the strongest risk factors for breast cancer, is linked to inherited 

genetic susceptibility.  About 20 - 30% of women with breast cancer have a family history of the 

disease. Having one first-degree relative (i.e. mother, sister) may increase risk by two-fold while 

having two first-degree relative may increase risk by as much as three-fold (10, 23, 24). In the 

CGHFBC cohort, risk ratios for breast cancer increased significantly with increasing numbers of 

affected first-degree relatives compared with women who had no affected relatives (p<0.0001) 

(10). However a recent study reported no significant differences by the number of affected first-

degree or second-degree family history (24).  Overall, only 2.5% of breast cancer cases were 

found to be attributable to a positive family history (23). 

In 1990, BRCA1 was identified as one of the first breast cancer susceptibility genes 

followed by the discovery of BRCA2 (1, 25).  BRCA1 and BRCA2 genes are frequently mutated 

in familial breast and ovarian cancers. Women who carry these mutations have a lifetime 

increased risk of developing breast cancer (10). The average cumulative risks of breast cancer 

among BRCA1 and BRCA 2 carriers by age 70 are 65% (95% CI: 44-78%) and 45% (95% CI: 

31-56%) respectively (26). However, BRCA1 and BRCA2 mutations are estimated to account for 

only 5-10% of all breast cancers and 15-20% of familial cases (27, 28). Several moderate 

penetrant genes such as ATM, CHEK2, PTEN, and TP53 that predispose patients to genetic 

syndromes such ataxia telangiectasia, Li-Fraumeni, and Cowden’s syndrome have also been 
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consistently associated with higher risk of breast cancer (28, 29). Recent studies have identified 

BRIP1 and PALB2 as two novel breast cancer susceptibility markers involved in DNA repair (30, 

31).  Many of these genes are involved in the regulation of DNA repair and checkpoint signaling 

(28). 

It has been proposed that there are other common low-penetrant genes that may modify 

breast cancer risk in BRCA1/2 carriers.  Antoniou and others established the Consortium of 

Investigators on Modifiers of BRCA1/2 (CIMBA), a large research collaborative between 40 

study centers in 22 countries to investigate potential modifiers in this high risk subgroup. Results 

from these studies demonstrated that common variants in LSP1 and ZNF365 as well as several 

susceptibility loci, 2q35, 8q24, 12p11, 12q24, 9p21, 9q31.2, were associated with breast cancer 

in BRCA1 and/or BRCA2 carriers (32-40)  

With the completion of the Human Genome Project in 2003 (41), researchers were 

enabled to use this cache of comprehensive genome-wide data to evaluate associations that were 

not possible with candidate gene studies. Large collaboration efforts such as Cancer Genetic 

Markers of Susceptibility (CGEMS) and Breast Cancer Association Consortium (BCAC) 

increased sample size and hence power in genome-wide association studies (GWAS). As a 

result, since the advent of GWAS, several breast cancer susceptibility markers from genetic 

association studies have been replicated and several novel susceptibility markers have been 

identified (42-47). While GWAS have enhanced our current understanding of breast cancer 

susceptibility genes and loci, these known genetic factors still only account for about 28% of the 

inherited causes of the disease (28). 
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1.3.4.1 Genetic risk factors of breast cancer by race 

 

In addition, genetic risk factors may vary by race. Compared to White women with breast 

cancer, African American cases are less likely to have a BRCA1 mutation (48). Furthermore, 

recent results from GWAS suggest that susceptibility loci may differ by race. Initially, many 

GWAS loci such as TERT-CLPM1L were identified in populations of European descent (33, 47, 

49). However, Zheng 2012 failed to replicate this positive association in women of African 

descent (50). In addition, GWAS studies have shown modification by race for various breast 

cancer susceptibility loci (51).  

1.4 Heterogeneity of breast cancer 

 

Research from the past decade has shown that breast cancer is a complex and 

heterogenous disease involving multiple pathways and a combination of genetic and non-genetic 

risk factors. There is evidence of heterogeneity by both hormone receptor status and more 

recently by intrinsic tumor subtype.  Historically, breast cancer tumors are classified based on 

their hormone receptor status (i.e. estrogen receptor (ER) and progesterone receptor (PR)) and 

HER2 status mainly to guide clinical treatment options (52). Endocrine therapies such as 

aromatase inhibitors were used for hormone receptor positive (ER+ and PR+) tumors, while 

therapeutics such as Herceptin were used for tumors overexpressing HER2 (52). Tumors that 

were negative for all three of these markers were classified as triple-negative and were not 

candidates for endocrine therapy targeted treatments. Several studies show risk profile 

differences between hormone-positive vs. hormone-negative tumors (53, 54).  A Carolina Breast 

Cancer Study (CBCS) report showed that several hormone-related factors were associated with 

stronger increased risks for ER+PR+ than for ER-PR- breast cancer; including early age at 

menarche,  nulliparity/late age at first full-term pregnancy or a high body mass index (BMI) 
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among postmenopausal women and high waist to hip ratio (WHR) among premenopausal 

women.  Conversely, family history and medical radiation exposure were associated with ER-

/PR- tumors (53). Prospective data from the Nurses’ Health Study confirmed significant 

differences by ER/PR status for age, menopausal status, postmenopausal BMI, adverse effect of 

first pregnancy, and past use of postmenopausal hormones (54). Additionally, risk factors 

profiles may vary by HER2/neu status. A CBCS report showed that early age at menarche, 

higher WHR, and family history of breast or ovarian cancer were associated with increased odds 

ratios (ORs) for both HER2/neu+ and HER2/neu- breast cancers while breastfeeding for more 

than a year was inversely associated (53). 

  Recent technological developments in microarray analysis have led to the molecular 

subtyping of breast cancer tumors to further discern breast cancer heterogeneity. Perou et al. used 

cDNA microarrays to measure the gene expression of more than 1700 genes. A hierarchical 

clustering algorithm identified four different patterns of gene expression in in vitro human breast 

cells and tumors: ER+/luminal, basal-like, HER2+/ER-, and normal (55, 56). In a second study 

with more samples, Perou et al. further dichotomized luminal tumors into luminal A and luminal 

B (56). In addition, Sorlie et al. was able to define these molecular types using a set of only 534 

genes (57). Nielsen et al. used immunohistochemistry to categorize molecular profiles based on a 

panel of four antibodies (ER, EGRF/HER1, HER2, and cytokeratin 5/6) and found that this 

method was equivalent to the gene expression technique (58). Carey further updated IHC 

subtype definitions to include PR status as well as dichotomize HER2 status into HER2+ or 

HER2- (59). Therefore, breast cancer tumors were classified into 4 distinct molecular subtypes: 

luminal A (ER+ and/or PR+, HER2-), luminal B (ER+ and/or PR+/HER2+), HER2+/ER- (ER-, 



 

9 

 

PR-, HER2+), basal-like (ER-, PR-, HER2-, CK 5/6+ and/or EGFR+) and an unclassified 

category (59). 

1.4.1 Non-genetic risk factors of breast cancer by subtype 

More recently, molecular profiling of breast cancer tumors has enabled researchers to 

evaluate risk factors based on these “intrinsic” subtypes. Several studies have observed 

differences in the associations between breast cancer risk factors and subtypes of breast cancer. 

Basal-like subtype may have a different risk factor profiles compared to the luminal A subtype 

(22, 60-65).  Compared to the luminal A subtype, basal-like cases were also more likely to have 

younger age at menarche (62), younger age at first full-term pregnancy(22, 62, 66), higher parity 

(22, 62, 66, 67)  were less likely to breastfeed (22, 62, 64, 66, 67). While long term breastfeeding 

(>6 months) was inversely associated with breast cancer across subtypes, the protective effect 

was strongest for basal-like tumors (68). In addition to reproductive factors, obesity or elevated 

BMI was also associated with increased risk of basal-like breast cancer and luminal B cancers 

compared to luminal A cases, especially for premenopausal women (22, 62, 64, 66, 68). Many 

studies also reported that family history may play a bigger role for women with basal-like tumors 

compared to other subtypes, especially for premenopausal women (24, 61, 64, 69).  

 Reports from the CBCS have suggested heterogeneity among in situ tumors, Phillips et 

al. showed that many risk factors for invasive and high grade in situ tumors were similar, but 

differed from risk factors for low or medium grade in situ tumors in both strength and magnitude 

of effects. For example, higher parity showed a strong inverse association with high grade DCIS 

but had a weaker inverse association for low to medium grade DCIS. In addition, ten or more 

years of oral contraceptive showed a positive association with high-grade DCIS and IBC but an 
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inverse association for low to medium DCIS (70). In summary, there may be heterogeneity 

within in situ tumors which needs to be further investigated.  

In addition, basal-like tumors have poorer prognoses compared to luminal tumors (57, 59, 

71). Basal-like tumors showed more aggressive features compared to Luminal A, including 

higher mitotic index (P < 0.0001), higher grade (P < 0.0001), and a higher frequency of p53 

mutations (P < 0.001)(57). In situ basal-like cancers also shared similar poor clinical outcomes 

with invasive cases (72) 

Several studies have shown that basal-like tumors occur at a higher incidence among 

African-Americans compared to whites (71, 73, 74). In a study of Ghanaian women, African-

American and white women from the US, proportion of African ancestry was significantly 

associated with triple-negative tumors. Ghanaians had the highest prevalence of triple-negative 

tumors (82.2%), followed by African Americans (32.8%) and White Americans(10.2%) (75).  

1.4.2 Genetic risk factors of breast cancer by subtype 

 

Carriers of BRCA1 mutations are at higher risk of developing basal-like tumors (76-81). 

It has been estimated that 80-90% of cancers in BRCA1 mutation carriers are of basal-like 

subtype (81). Furthermore, the prevalence of BRCA1 mutation carriers in triple-negative tumors 

was approximately 20% and 11%, respectively, in two studies (79, 80). Therefore, loss of 

BRCA1 function may have an etiological role in the development of the basal-like phenotype. 

Expression microarray analyses have also indicated similarities in gene expression between 

BRCA1 cancers and sporadic basal-like cancers (82).  BRCA1-mutated and basal-like tumors 

share many similar characteristics including higher levels of genomic instability compared to 

ER+ or luminal tumors. Compared to other subtypes, basal-like tumors have the highest levels of 

genomic instability as represented by greater number of insertions, deletions and copy number 
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alterations.  At least three studies reported loss of 5q and gain of 10p in basal-like cancers (83-

85). Van Loo et al. showed that basal-like tumors were associated with low ploidy, high 

frequency of loss of heterozygosity (LOH), and the highest frequency of copy number events 

when compared to the other subtypes (86). There are also a higher number of chromosomal 

rearrangements and aneuploidy increase in defective DNA repair genes. These results provide 

evidence for both deficient DNA repair genes and basal-like breast cancer being associated with 

genomic instability.  

Recently identified breast cancer susceptibility loci in GWAS (CASP8, FGFR2, TNRC9, 

MAP3K1, LSP1, 8q24, 2q35, 5p12, 16q12) may also vary by tumor characteristics such as 

hormonal status or intrinsic subtype. Susceptibility loci in FGFR2, TNRC9, 8q24, 2q35, and 

5p12, 9q13.2 had stronger associations for estrogen receptor-positive (ER+) disease than 

estrogen receptor-negative (ER-) disease (51, 87-89). Two candidate loci in CASP8 (rs1045485, 

rs17468277) and TGFB1 (rs1982073), were strongly associated with the risk of PR- tumors and 

16q12 and 2q35 were associated with basal-like subtype (87). 

A common variant at the TERT-CLPTM1L locus was also found to be associated with 

estrogen receptor-negative breast cancer (90). Of note, this locus was not replicated in women 

with African ancestry (91). In a recent population-based case-control study, Domagala et al. 

found several CHEK2 mutations associated with different molecular subtypes of breast cancer. 

Truncating mutations were associated with luminal B, and I157T CHEK2 mutation was 

associated with luminal A. (92, 93). The GWAS discovery of a novel locus 19p13 was shown to 

both modify risk of breast cancer in BRCA1 mutation carriers as well as in hormone receptor 

negative and triple negative cases in the general population (32, 33, 43). In the CIMBA study, 

analyses based on tumor histopathology showed that 19p13 variants were associated with ER- 
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breast cancer for both BRCA1/2 mutation carriers (32, 33). Results from the Breast Cancer 

Association Consortium (BCAC) further showed that 19p13 was associated with triple negative 

subtype (43).  MERIT40 interacts with BRCA1 and plays a role in the repair of double-strand 

break in the HR pathway. These results provide evidence that DNA repair may vary by breast 

cancer tumor subtype.  

1.4.3 Summary of breast cancer risk factors 

Breast cancer is a multifactorial disease, which results from the combined effect of 

genetic and non-genetic risk factors that can vary by both race and subtype. Linkage association 

studies were the first to hint at a genetic component underlying familial breast cancer. 

Furthermore, women with a first degree family history of breast cancer were found to be at 

almost twice the risk as women without a family history (10).  Therefore, a positive family 

history of breast cancer may serve as a surrogate for shared genetic variation (94).  

1.5 Variation in DNA repair capacity 

The discovery of mutations in BRCA1 in the early 1990s offered insight into the genetic 

etiology of familial breast cancer. Carriers of BRCA 1/2 mutations were found to have deficient 

DNA repair capacity (DRC) compared to normal controls (95). Experimental studies showed that 

the near complete loss of DNA repair capacity can lead to genetic instability and a high risk of 

developing cancer (96). However the prevalence of BRCA1 mutations and mutations in other 

moderate to high penetrant DNA repair genes such as BRCA2, ATM, CHEK2, PTEN, BRIP1, and 

PALP2 are rare in the general population and only explain 15-20% of genetic susceptibility to 

breast cancer (25, 97-99).  
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1.5.1 Low-penetrant common DNA repair variation in breast cancer  

 

The polygenic model of cancer was proposed to explain the missing heritability (100, 

101). Under this model, a combination of multiple low penetrance genes would contribute to 

overall genetic risk. There is increasing evidence that mild reductions in DNA repair capacity, 

assumed to be the consequence of common genetic variation, can also affect breast cancer 

susceptibility. The extensive variation in the coding regions of DNA repair genes and the large 

number of genes in each DNA pathway results in complex genotypes with potential to impact 

cancer risk in the general population (94, 102). In our proposed study, we focused our 

investigation on these variants in common, low-penetrant DNA repair variants to evaluate their 

potential association with breast cancer.   

1.6 DNA damage responses   

 

The combination of endogenous and exogenous sources of DNA damage can result in as 

many as one million DNA lesions per cell per day (103).  Endogenous sources include 

replication errors and spontaneous reactions, while exogenous sources of DNA damage include 

X-rays, oxygen radicals, alkylating agents, UV light, polycyclic aromatic hydrocarbons (PAHs), 

IR, and anti-tumor agents. Unrepaired DNA damage can result in gene mutations such as point 

mutations, deletions and insertions as well as chromosomal alterations such as chromosomal 

rearrangements and aneuploidy. In order to maintain genomic stability, organisms have evolved 

a complex series of damage repair responses to process DNA damage in a timely and efficient 

manner including 1) apoptosis, 2) checkpoint signaling 3) DNA repair and 4) damage tolerance 

(Figure 3). The proposed study will focus on the latter two mechanisms, specifically base 

excision repair and translesion synthesis. 



 

14 

 

1.6.1 Overview of DNA repair  

 

DNA repair mechanisms protect somatic cells from mutations in tumor suppressor genes 

and oncogenes that can lead to cancer initiation and progression. Over the course of evolution, 

cells have evolved several DNA repair pathways for repairing distinct types of DNA damage. 

Specialized DNA repair pathways include direct reversal repair, mismatch repair (MMR), base 

excision repair (BER), nucleotide excision repair (NER), and recombinational repair 

(homologous recombination (HR) and non-homologous end-joining (NHEJ) (104). Figure 4 

summarizes the source of DNA damage, the ensuing DNA lesion, and the DNA repair pathway 

used to repair the lesion. Functional DNA repair plays an important role in tumor suppression. 

There have been dozens of epidemiological studies examining common variation in multiple 

DNA repair pathway. The focus of this study will be on single nucleotide polymorphisms (SNPs) 

in the BER pathway.   

1.6.2 Overview of base excision repair (BER)  

 

Base excision repair (BER) is the fundamental pathway responsible for the repair of 

damaged DNA bases induced by various sources of endogenous and exogenous damage. BER is 

specialized to repair non-bulky DNA base lesions such as base adducts and abasic sites caused 

by deamination, alkylation, or oxidation.  The repair process consists of five enzymatic steps: 1) 

cleavage of the sugar-phosphate chain, 2) excision of the abasic (AP) site, 3) removal of the 

remaining sugar-phosphate chain, 4) DNA synthesis, and 5) ligation (105). Table 1 summarizes 

BER genes and their functions in DNA repair.   

To date, there are at least 11 known human DNA glycosylases.  DNA glycosylases play 

an important role in the initial recognition of a lesion and recruitment to the site of the damage 

(106). Different glycosylases are specialized for different lesions and some glycosylases may 
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recognize more than one substrate (Table 2).  DNA glycosylases initiate repair by releasing the 

modified/damaged base out of the double helix and cleaving the N-glycosidic bond of the 

damaged base, resulting in an apurinic/ apyrimidinic (AP) site. The location and type of the AP 

site can also be determining factors on which glycosylase is recruited to the site (107, 108). If the 

AP site was created by a glycosylase that does not possess AP lyase activity (UNG, SMUG1, 

TDG, MPG, MDB4, MYH), or NTH1 and OGG1, repair of the AP site is APE1-dependent. A 

newly discovered family of glycosylases (NEIL1, NEIL2, and NEIL3) was shown to efficiently 

repair AP site independently from APE1 (107, 109, 110).  

The repair of AP sites is crucial since they can interrupt normal DNA replication, and 

become a threat to genomic integrity.  APE1 or a member of the NEIL family converts the lesion 

into a single-strand break (SSB). The SSB requires removal of the altered 3′-terminal groups 

prior to ligation.  After removal of obstructive termini, replacement of the excised nucleotide can 

be completed either via short-patch where a single nucleotide is replaced or long-patch BER 

where 2-10 new nucleotides are synthesized (111). Choice of pathway depends on several 

different factors including the type of lesion, the cell cycle stage, and whether the cell is 

terminally differentiated or actively dividing (112).  The short-patch pathway requires a different 

set of genes from the long-patch pathway (111, 113). The main distinction is whether the abasic 

sugar is oxidized or reduced, which dictates if POLB is involved (short-patch) or not (long-

patch) (114). 

 Finally, the posttranslational modification of proteins is mediated by poly (ADP ribose) 

polymerases (PARPs). Members of the PARP family (PARP1, PARP2, and PARP3) catalyze the 

transfer and polymerization of ADP ribose (115). RFC1 loads the PCNA clamp onto DNA, 
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thereby recruiting DNA polymerases to the site of DNA synthesis to the 3’ end of primer, 

promoting DNA synthesis (116, 117). 

1.6.2.1 Base excision repair and breast cancer 

 

It has been proposed that base excision repair may be involved in tumor suppression 

(118, 119).  Experimental studies have demonstrated that deletion of certain BER genes is 

associated with an increased mutation rate in a variety of organisms, and hypothesize that this 

loss could contribute to the development of cancer in humans (105). In addition, several dozen 

case-control genetic association studies have been conducted (Table 3).The following section 

summarizes the experimental and epidemiologic literature for the association between base 

excision repair and breast cancer.  

 

1.6.2.1.1 UNG  

 

While no variants have been associated with breast cancer, two novel SNPs (UNG 

Arg88Cys and UNG Gly143Arg) have been identified using mutational analysis in colorectal 

cancer and glioblastoma cell lines, respectively (106, 120). In an in vivo study, knockout of the 

UNG gene led to carcinogenesis in mice. Older (>18 months) UNG knockout mice developed B 

cell lymphomas compared with only 1.3% of control animals (121).  

1.6.2.1.2  SMUG1  

 

In a 2011 Western New York Exposures and Breast Cancer (WEB) report (1,077 cases, 

1,910 matched controls),  two polymorphisms in the SMUG1 promoter region (rs2029166 and 

rs7296239) were found to moderately effect the risk of breast cancer in heterozygotes (OR=1.3, 
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95% CI: 1.1-1.5)(122). Another study examined the association between SMUG1 variants and 

uracil blood concentration in 431 participants from the Boston Puerto Rican Health Study and 

found a significant association with the SNPs studied. Increased level of uracil misincorporation 

may induce mutagenic lesions and possibly lead to increased cancer risk (123).  

1.6.2.1.3 MBD 

 

Frameshift mutations in MBD4 have been associated with gastrointestinal cancers in two 

Asian study populations (124, 125). The Glu346Lys polymorphism has been associated with 

lung, esophageal, and gastrointestinal cancers (125-127). To our knowledge, there are no 

experimental or epidemiologic studies investigating genetic variants of MBD4/MED1 with breast 

cancer risk.  

1.6.2.1.4 MPG  

 

Based on the literature, there are no known experimental or epidemiologic studies 

associating genetic variants of MPG with breast cancer risk. Three laboratory studies reported 

altered expression of MPG in human gonad cells and astrocytic tumors (128-130). 

1.6.2.1.5 MYH/MUYTH  

 

Mutations in the MUYTH gene result in MAP (MUTYH-associated polyposis) a heritable 

predisposition to colorectal tumors (131, 132). While a Dutch study initially reported increased 

mutation frequency of several MUTYH SNPs among women of families with HBCC (Hereditary 

Breast and Colon Cancer) (133), a validation study failed to replicate these results in a larger 

case-control study (132). In a Chinese case-control study (545 cases, 545 controls), there were no 

associations with breast cancer overall, but the dominant model for AluYb8 insertion was 
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significantly associated with increased risk of early-onset breast cancer (<55 years old) 

OR=1.51: 95% CI: 1.09-208) (134).  

 

1.6.2.1.6 TDG  

 

Polymorphisms G199S and V367M are the most common genetic polymorphisms in 

human TDG. A recent Polish study revealed a possible association with these TDG 

polymorphisms and lung cancer however these results may be biased due to small sample size 

(135). Further studies are needed to fully understand the relationship between TDG and cancer.  

1.6.2.1.7 OGG1  

 

Functional lab evidence has suggested that rs1052133 (S326C) in OGG1 may be 

associated with decreased DNA glycosylase activity in the repair of 8-oxoG, a mutagenic 

byproduct of exposure to reactive oxygen (136). However, the results from epidemiological 

studies have been less conclusive. At least six independent epidemiologic studies have evaluated 

the association between the S326C polymorphism with breast cancer risk (137-142). Two reports 

suggested an increased risk for S326C (137, 138) while two reports failed to find any significant 

association (141, 143). An earlier review by Goode had identified S326C as being associated 

with increased breast risk (144), however two recent meta-analyses were not able to replicate this 

finding (145, 146). In a review of 14 functional studies and 19 epidemiological studies, Weiss et 

al. found no significant association between the OGG1 polymorphism and breast cancer (146). A 

recent case-control study in China (518 cases, 777 controls) showed two functional variations in 

5'-UTR of OGG1 gene were significantly associated with the risk of breast cancer (OR=2.0 95% 

CI: 1.0-3.9 and OR=2.4 95% CI: 1.2-5.0) (147).  
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1.6.2.1.8 NEIL1  

 

In experimental studies, NEIL1 have been shown to interact with other BER genes 

including POLB, LIG3, and PCNA (109, 148). In an in vitro study, NEIL1 downregulation 

enhanced spontaneous mutation by three-fold in Chinese hamster and human cell lines (149). To 

our knowledge, no epidemiologic studies have been conducted. 

1.6.2.1.9 NEIL2  

 

NEIL2 was shown to interact with POLB and LIG3 (109, 110, 150). Variant risk 

genotypes in NEIL2 have been associated with increased risk in SCCOOP (head and neck 

cancers) and lung cancers (151, 152). In an in vivo study, NEIL2 expression was significantly 

reduced by over 50% in the presence of 2 SNPs (rs74800505 and rs8191518) which were in 

significant LD (153).  NEIL2 rs6982453 was associated with a significantly protective effect in 

breast cancer in the Multiethnic Cohort Study (OR=0.86, 95% CI: 0.79-0.94, p<0.001) (154). 

1.6.2.1.10 APE1  

 

A number of functional polymorphisms have been identified in APE1 with the most 

commonly studied SNP being APE1 Asp148Glu (155). This polymorphism has been associated 

with risk of bladder, lung, prostate and gastric cancers (156-159). Overexpression of APE1 has 

been linked to chemotherapy and radiation therapy resistance (160). However the epidemiologic 

evidence for APE1 and risk of breast cancer is inconclusive. While two case-control studies 

reported a borderline significant protective association for carriers of heterozygous variant 

(Asp/Glu) in Thai and White American women respectively (138, 161), two other reports found 

null associations for African American and White American women respectively (143, 161). A 

meta-analysis of 8 studies did not reveal any significant association for APE1 Asp148Glu for any 
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genetic models (162). However, a recent lab study has linked deregulation of APE1 acetylation 

to triple negative breast cancer (163). 

1.6.2.1.11 POLB  

 

DNA polymerase beta or POLB has been shown to be overexpressed in several cancers 

(164-166). Seven germline mutations (P242R, E295K, G231D, K289M, E232K, T233I) have 

been identified in POLB (167). In an in vitro study, Yamtich et al. 2012 found that expression of 

these variant germline SNPs could be related to increased cancer susceptibility following 

treatment with an alkylating agent (165). Gieseking also identified two POLB SNPs (E232K and 

T233I) to be associated with lower fidelity when processing undamaged DNA, which may lead 

to mutagenesis (168).Estimates of somatic mutations in Pol β range from 15% to 75% of tumors 

in various types of cancer (169, 170). Functional analyses have implicated many of these variants 

in cancer etiology and/or progression (170-173). An in vivo study showed that overexpression of 

POLB variants in mouse cells resulted in cellular transformation. Furthermore, knockout of 

POLB caused embryonic lethality. While there have been no positive associations between 

POLB and breast cancer, there have been multiple reports suggesting POLB involvement in lung 

and colorectal cancers in other epidemiological studies (174-176)  

1.6.2.1.12 XRCC1  

While the majority of studies did not find any significant associations (177-183), the 

XRCC1 Arg399Gln polymorphism was associated with a protective effect in one report (184) 

and an increased risk in seven other reports (105, 138, 139, 185-188). We suspect that these 

significant positive findings were mostly false positives due to study design and low power 

issues. Several of these studies had smaller sample sizes which may not have had adequate 

power to detect modest SNP effects. This was evidenced by wide confidence intervals or high 
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CLR indicating imprecise estimates in several studies (138, 139, 186, 187, 189, 190). In addition, 

results may be biased due to selection of controls (i.e. hospital-based controls (189) or cases (i.e. 

cases selected for family history) (184). Alternatively, since the majority of significant findings 

were from studies in Asian populations, there is the possibility of effect modification by Asian 

race/ethnicity. At least four independent meta-analyses of XRCC1 Arg399Gln have provided 

evidence for this theory (143, 191-193). Additionally, two U.S.-based population-based case-

controls studies found no overall associations, but showed subgroup effects for African-

American and postmenopausal women in the CBCS and WEB study, respectively (92, 137). 

While no significant associations were observed in premenopausal women, postmenopausal 

women with any Gln variant had increased risk of breast cancer (OR = 1.24; 95% CI: 1.01-1.51) 

(137). Duell found a similar increased risk for African-Americans in the CBCS (OR=1.5 95% 

CI: 1.1-2.3) (92). 

Two reports found an increased risk for at least one variant of XRCC1 Arg194Trp (161, 

189), while another report did not (92).  In a meta-analysis of 11 studies including both White 

and Asian populations, Zhang found no association between Arg194Trp and breast cancer risk 

(143). 

The majority of these studies reported no association with XRCC1 Arg280His with the 

exception of one population-based case-control study of women from Cyprus. Loizidou et al. 

found homozygous carriers of XRCC1 280His to have an increased risk of breast cancer 

(OR=4.7; 95% CI: 1.0-21.7, P=0.03). Although this study contained 1,109 cases and 1,177 

controls, a highly imprecise estimate was reported (194). The authors reported that this SNP 

failed HWE (p<0.05) which may indicate genotyping error. Meta-analyses of XRCC1 Arg280His 

have yielded conflicting results. While Hung did not find any association between cancer risk 
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and the XRCC1 Arg280His SNP, two other meta-analyses reported an overall increase risk of 

cancer for the variant genotypes (His/His + Arg/His) compared with the wild-type homozygote 

genotype (Arg/Arg) (191, 195). 

1.6.2.1.13 LIG3  

 

Knockout of LIG3 are embryonic lethal in mice (196). However, to our knowledge, there 

are no known LIG3 SNPs that have been studied for association with cancer in the epidemiologic 

study literature (114). 

1.6.2.1.14 FEN1  

 

FEN1 was significantly upregulated and aberrant expression was associated with 

promoter hypomethylation in breast cancer cells in a gene expression study of 241 matched pairs 

of cancer and normal tissues (197).  

1.6.2.1.15 PARP1  

 

PARP1 has been shown to inhibit DNA repair in both the short and long patch pathways 

(198, 199). Conversely, cells deficient in PARP1 show increased rates of repair (198). Bieche 

and colleagues reported overexpression of PARP1 and low genomic instability in a study of 

breast cancer cells (200). In another study, inhibition of PARP1 was shown in tumors from 

BRCA mutation carriers (201). However, a recent meta-analysis of 8 studies did not show an 

association between PARP1 V762A and breast cancer (162).  

In a lab-based study, PARP1-deficient cells were assessed for their capacity to repair AP 

sites induced by uracil or 8-oxoguanine. For both DNA lesions, PARP1-deficient cells were 

about half as efficient as wild-type cells for short-patch repair synthesis, and were highly 
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inefficient in the long-patch repair pathway. Inefficient BER occurred when both PARP1 and 

POLB were absent (199).  

In a subset of Nurses’ Health Study II cohort (NHS II), Han 2009 found PARP1 

rs10915985 to be significantly associated with premenopausal breast cancer in the additive 

model (OR=1.31, 95% CI: 1.04-1.64), however this SNP was not genotyped in CBCS (202).  

1.6.2.1.16 PCNA 

 

Several yeast models have associated PCNA mutations with cancer and genomic 

instability (203). In addition, Ma and colleagues sequenced the coding region and adjacent 

noncoding region of PCNA in 60 individuals and identified 9 sequence variants, including 7 

SNPs which were located in introns involved in the control of PCNA gene expression.  Results 

from the analyses showed no associations with melanoma, breast cancer or lung cancer 

compared with healthy controls (204). 

1.6.2.1.17 RFC1  

  

Experimental studies in have shown RFC1 to function in both DNA replication and 

repair, specifically NER (116, 205).  Replication factor C (RFC) is a five-subunit DNA 

polymerase accessory protein that functions as a structure-specific, DNA-dependent 

ATPase. RFC acts as a sensor in the DNA damage checkpoint pathway and plays a role in DNA 

synthesis. To our knowledge, we are not aware of any epidemiologic studies examing RFC1 

variants. 

1.6.2.2 Critique and Summary of BER literature 

 

Despite the strong associations of BRCA1 and BRCA2 and moderate penetrant genes such 

as CHEK, PALB, and ATM with breast cancer risk, the risks conferred by individual low 
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penetrant BER genes for breast cancer have been underwhelming and attempts to understand the 

contribution of low penetrant SNPs has been challenging. To date, there have been dozens of 

population-based case-control genetic studies, including the Carolina Breast Cancer Study 

(CBCS), that have investigated the association between common genetic variation in BER genes 

(XRCC1, OGG1, APE1, NEIL1 and NEIL2) and breast cancer risk  (92, 143, 182, 184, 189, 206-

208). Most studies examined BER SNPs in the XRCC1, APE1, and OGG1 genes. While the 

majority of studies of White women showed no significant associations with XRCC1 SNPs 

(rs1799782, rs25489, and rs25487), several studies in non-White populations indicated potential 

effect modification by race/ethnicity for rs25487, Arg399Gln.The evidence for OGG1 

Ser326Cys and APE1 Asp148Glu polymorphism and breast cancer risk was null to weak (137, 

138, 141-143). Additionally, findings from other BER SNPs studies have been inconclusive.  

This failure to reveal significant associations between individual BER SNPs and breast 

cancer is not surprising, given that carcinogenesis is a multistep, multi-genic process. Therefore 

it is plausible that any one single genetic polymorphism would not have a dramatic effect on 

cancer risk. Interaction between multiple common low-penetrant SNPs may be needed to 

produce a significant effect. The polygenic model of cancer posits that although the risks 

conferred by an individual locus are small, some risks may act multiplicatively or additively. In 

this model, each variant is only one of the many genetic and environmental causal factors, each 

of which are neither necessary nor sufficient to individually cause the disease. Therefore, 

accumulation of mutations may be more important than a single SNP mutation (209).  

 Supporting evidence for the polygenic or multi-SNP effect in DNA repair is abundant. 

Despite not finding main effects, many DNA repair studies have found significant multi-SNP 

effects. As an example, Harlid et al. 2012 examined the individual and joint effects between 10 
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GWAS-validated breast cancer SNPs in a large European biobank-based study (3,584 cases, 

5063 controls) and found a highly significant trend for increasing breast cancer risk with 

increasing number of previously validated risk alleles (p-trend 5.6 x 10
-20

) and for the maximum 

versus the minimum number of risk alleles (OR=1.84, 95% CI: 1.59-2.14) (210). 

 Recent studies have used hierarchical modeling and other multi-SNP methods to evaluate 

cancer risk at a gene or pathway level in various cancers (158, 211, 212). For breast cancer, two 

reports from the Cancer Genetic Markers of Susceptibility (CGEMS) Project, a study nested 

within the Nurses’ Health Study, evaluated the combined effects of low-penetrant SNPs in 

multiple DNA repair pathways using Admixture Maximum Likelihood (AML) and Kernel 

machine tests (202, 213). Han 2009 found several significant main effects for SNPs in PARP1, 

NEIL2, APE1, and POLD for premenopausal women (p<0.05)(202), while a second report failed 

to replicate any of this findings in postmenopausal women (213). 

Another potential theory relates to the functional redundancy of genes to maintain 

genomic stability. For example, in mouse models, knockouts of core BER proteins such as 

XRCC1, POLB, APE1, and FEN1 all result in embryonic lethality (214-217). Furthermore, the 

coding regions of PCNA and FEN1 are highly conserved (204). On the other hand, for DNA 

glycosylases with multiple redundant pathways, there are no obvious phenotypes in nullizygous 

mice lacking a single oxidative DNA glycosylase. Studies of double knockout mice have shown 

they are prone to tumorigenesis.  Chan et al. showed that targeted deletion of NTH and NEIL1 

resulted in mice with a higher frequency of lung and liver tumors compared to single knockout 

mice (218). In another experimental study, knockout of MYH or OGG1 individually showed very 

little effect, however MYH/OGG1 double mutant mice showed high susceptibility to tumor 
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formation (219). These studies suggest functional redundancy of DNA glycosylases and 

highlight the integral role of BER genes to preserve genomic integrity. 

1.6.3 Overview of DNA tolerance   

 

The process of maintaining accurate DNA replication is essential to the genomic stability 

of all cells. In the event that DNA damage should escape repair surveillance prior to initiation of 

DNA replication, organisms have evolved a series of tolerance mechanisms for allowing 

replication and cell division to process.   

The first step in DNA replication involves the unwinding of DNA at the origin. The 

replication fork is a structure that forms within the nucleus during DNA replication. It is created 

by helicases, which break the hydrogen bonds holding the two DNA strands together. The 

resulting structure has two branches, each one made up of a single strand of DNA. These two 

strands serve as the template for the leading and lagging strands, which will be created as DNA 

polymerases match complementary nucleotides to the templates. The leading strand is 

synthesized continuously in the direction of replication fork, 5’ to 3’, while the lagging strand is 

synthesized in small pieces (Okazaki fragments) backward from the overall direction of 

replication (220, 221). Several DNA polymerases are involved in DNA replication.  DNA 

polymerase alpha initiates DNA synthesis on both the leading and lagging strands providing an 

RNA primer and synthesizing approximately 20-30 bases of DNA. Pol epsilon (POLE) and pol 

delta (POLD2) elongate these primers created by pol alpha (222). PCNA is the sliding clamp for 

POLD1 and POLE (223). POLD1 and POLE also possess proofreading 3’-5’ exonuclease 

activity that is important in preventing mutations. 

DNA replicative polymerases, such as pol alpha, pol epsilon (POLE), and pol delta 

(POLD) which carry out the bulk of DNA synthesis, have evolved to be very precise and 

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3146/
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efficient, with an estimated error rate of 1 in 10 billion base pairs (224). Despite this high 

fidelity, a replication error may generate a one-sided double-strand break (DSB) or degrade to a 

full DSB if it not repaired prior to initiation of DNA replication (225, 226). In order to resume 

DNA replication at a stalled replication fork, two damage tolerance mechanisms have been 

proposed; template switching in homologous recombination (HR) and translesion synthesis 

(TLS) (227).  Posttranslational modification of PCNA by ubiquitin may play a role in 

determining which DNA repair tolerance mechanism to employ. Studies showed that the mono-

ubiquitylation of PCNA may activate translesion synthesis by damage-tolerant DNA 

polymerases, while poly-ubiquitylation of PCNA may activate error-free pathway involving 

template switching in HR (228-231). During template switching in HR, although normal 

synthesis of DNA is blocked by a lesion on one of the template strands, synthesis on the 

undamaged template strands can continue to a limited extent. The newly synthesized daughter 

strand is used as the template, hence the term “template switching”. If template switching is 

unsuccessful, translesion synthesis is activated to bypass the lesion (119, 222, 227). 

1.6.4 Overview of translesion synthesis (TLS)  

 

The focus of this study will be on the second DNA tolerance mechanism: translesion 

synthesis (TLS). Translesion synthesis is conducted by a specialized type of DNA polymerases. 

Aptly named, bypass polymerases do not directly repair the damage, but rather bypass or tolerate 

the damage to prevent replication fork stalling. Unlike replicative polymerases, bypass 

polymerases lack 3' to 5' exonuclease (proofreading) activity and are able resume replication 

without an undamaged template (232, 233). However, this also contributes to their low fidelity 

and potential mis-incorporation of nucleotides (234).  
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 Evidence from experimental studies shows bypass polymerases as being both efficient 

and mutagenic. The ability of DNA bypass polymerases to bypass DNA lesions was first 

described in yeast. Nelson and colleagues found that REV3L (pol zeta) successfully mediated the 

bypass of UV-induced thymine-thymine cyclobutane pyrimidine dimers (TT-CPDs) and REV1 

was able to insert deoxycytidine monophosphate (dCMPs) opposite abasic sites (235, 236). 

These findings were subsequently followed by the discovery of UV lesion bypass activity of 

human pol-eta, which was shown to be defective in a group of xeroderma pigmentosum (XP) 

patients (237, 238).    

 Reduced fidelity of DNA bypass polymerases may be dependent on a number of factors 

including physical structure, location within the cell cycle, and type of lesion. All DNA 

polymerases possess a “right hand-like” structure, which share three common domains (palm, 

thumb, and little fingers). However, differences in the active sites between family members may 

contribute to the low fidelity of these proteins (239-241). The discovery of the crystal structures 

of several Y-family DNA polymerases have implicated that more open active sites may be the 

reason for the error propensity of low-fidelity polymerases (242).  

The level of fidelity of bypass polymerases has also been shown to be lesion specific. 

Different lesions are bypassed in an efficient or mutagenic manner depending on the bypass 

polymerases involved (Table 4). Experimental studies have suggested the “two-step two-

polymerase model”, in which one bypass polymerase initiates insertion while a second extends 

past the lesion (243) For example, members of the Y family DNA bypass polymerases (POLH, 

POLI, POLK) bypasses the lesion while pol zeta (REV3L) allows the cell to continue replication 

past the lesion (233, 243, 244). In a yeast cell line study, AP sites were bypassed by POLH with 

assistance from REV3 for DNA extension (245). Another study provided evidence for a similar 
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process between POLI and REV3L (233). In an in vitro study conducted by Seki et al., although 

POLQ was unable to bypass a cyclobutane pyrimidine dimer or a (6-4) photoproduct alone, 

when combined with POLI it could successfully insert a base opposite a UV-induced (6-4) 

photoproduct and complete bypass (246). The experimental evidence reveals a comprehensive 

system of functionally redundant genes that are specialized to bypass several types of DNA 

lesions.  

1.6.4.1 DNA bypass polymerases and cancer 

  

As opposed to the extensive literature on DNA repair genes and mechanisms and cancer, 

less is known about bypass polymerases and their potential role in cancer. To date, there have 

been at least 15 different DNA polymerases identified in humans, which are specialized for 

replication, repair or the tolerance of DNA damage. The focus of the second aim of this study 

will be on DNA bypass polymerases, POLI, POLH, REV1, POLL, POLM and REV3L. Given 

their intrinsic nature of reduced fidelity and mutagenic potential in the repair of certain DNA 

lesions, several DNA bypass polymerases are suspected to be involved in cancer risk. It has been 

proposed that point mutations may arise from the error-generating activities of DNA bypass 

polymerases which may lead to carcinogenesis. However, a second perspective considers 

efficient bypass polymerases as maintaining genomic integrity. That is, DNA bypass 

polymerases may defend against chromosome instability in cells. At least one DNA bypass 

polymerase, REV3L (pol zeta), has been identified as a suppressor of spontaneous tumorigenesis 

(247). 
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1.6.4.1.1 POLH  

 

POLH is a member of the Y Family that encodes the protein pol eta. The identification of 

mutations in POLH in xeroderma pigmentosum (XP) cells marked one of the first links between 

bypass polymerases and cancer (248, 249). Other studies have also confirmed that the loss of 

functional POLH increases sensitivity to UV radiation and also increases the risk of xeroderma 

pigmentosum, a rare type of skin cancer (225, 250). McGregor and colleagues reported that the 

frequency of UV-radiation induced mutations in the XPV cells was significantly higher than 

those in normal cells (251). Using a knockdown approach, Albertella et al. showed that inhibited 

expression of POLH was associated with a 3.6 fold increased mutation frequency when 

compared to control cells (250). Glick et al. failed to find POLH mutations in XP patients (252).  

However, as a result of functional redundancy in TLS, XPV patients that are unable to bypass 

across CPD due to a mutated POLH gene may be able to bypass the lesion through an alternate 

but more error-prone mechanism using POLI or POLK for insertion and REV3 for extension 

around the CPD (243).  

Mutations in POLH may also cause arrest of DNA replication at sites of DNA damage 

(225, 233, 238). Cleaver et al. demonstrated that XP variants cells lacking POLH exhibited 

stalling at the S phase checkpoint following UV damage (225). POLH physically interacts with 

PCNA-binding motifs at oxidative DNA damage sites (230).Two independent studies found 

somatic POLH mutation (G153D) in 2-9% of breast tumors (253) 
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1.6.4.1.2 POLI  

 

POLI is another member of the Y family DNA bypass polymerases that encodes the 

protein pol iota. It may be associated with increased spontaneous mutagenesis during DNA 

replication. In an in vitro study of breast cancer cells, Yang and colleagues found that POLI 

expression was elevated and correlated with a significant decrease in DNA synthesis fidelity 

(254).  

1.6.4.1.3 REV1 

 

While REV1 has restricted DNA polymerase activity, its main function is to serve as a 

scaffolding protein that recruits and coordinates other DNA bypass polymerases (POLI, POLH, 

POLK, REV3L) to the site of the lesion (255-257). In addition, REV1 is able to insert 

deoxycytidine monophosphate (dCMPs) opposite abasic sites (255).  

REV1 has been implicated in cancer in several experimental and epidemiologic studies. 

Lawrence et al. showed that REV1 contributed to 98% of all base pair substitution errors and 

90% of frameshift mutations induced by UV damage in yeast cells (258). A few studies have 

also linked mutations in REV1 to lung and cervical cancer (259). REV1 mutants show decreased 

spontaneous and induced mutagenesis by DNA-damaging agents. In an in vitro study, Clark et 

al. demonstrated that reduced levels of REV1 were associated with a 75% reduction in UV-

induced mutations (260). 

1.6.4.1.4 POLQ  

 

             POLQ is a member of the A Family that encodes the protein polymerase theta. The high 

error rate for POLQ is closely related to Family Y polymerases (238).   Most recently, POLQ has 
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been implicated in breast cancer. In a study conducted by Lemee 2010, levels of POLQ were 

upregulated in breast cancer cells (261). Another study also found elevated levels of POLQ 

expression compared to normal cells (222). Higgins et al. linked this overexpression of POLQ to 

poor prognosis in early breast cancer patients (262). Recently, POLQ was implicated as being 

involved in BER. POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage 

induced by H2O2 (263).   

1.6.4.1.5 REV3L 

 

REV3L or pol zeta is a member of the B family. The ability to bypass DNA lesions was 

first discovered in yeast when REV3 was shown to bypass UV-induced thymine-thymine 

cyclobutane pyrimidine dimers (TT-CPD)(264). Deletion mutation or loss of REV3 may enhance 

spontaneous tumorigenesis (247, 265).  In a mouse model, Wittschieben and colleagues showed 

that REV3L-deficient cells had enhanced tumorigenesis in mammary cells (247). In another lab-

based study, Stone et al. compared wildtype and mutated REV3 and found that yeast strains with 

the variant allele were more prone to mutagenic bypass (266). These results corroborate the role 

of REV3L as an inhibitor of spontaneous tumorigenesis. 

1.6.4.1.6 POLL  

  

POLL is a member of the X Family that encodes the protein polymerase lambda. POLL is 

thought to have dual functions in TLS and BER (267-269). POLL shares homology with POLB 

(270, 271) which may explain its role as a backup polymerase for POLB.  Auofouchi 2000 

showed that mRNA expression of POLL is downregulated when treated with DNA damaging 

agents such as UV light or H2O2. A novel nonsynonymous SNP (Arg438Trp) was shown to have 
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reduced base substitution fidelity in in vitro activity assays and increased mutation frequency in 

mammalian cells (272).   

1.6.4.2 Critique and summary of bypass polymerase literature 

 

While other DNA repair pathway genes have been studied extensively in breast cancer, 

the focus on DNA bypass polymerases is relatively recent. The discovery of germline mutations 

in POLH in patients with Xeroderma pigmentosum (XP), a rare form of skin cancer, was the first 

evidence that bypass polymerases may be involved in human cancer (249). However, the 

literature on bypass polymerases and breast cancer is sparse. We identified four experimental 

studies (166, 254, 261, 273) and two epidemiologic reports from the NHS (Nurses’ Health 

Study) (202, 213). In an in vitro study of breast cancer cells, Yang et al. reported elevated POLI 

expression (254).  Wang et al. found POLB overexpression in several cancer cell lines and 

tumors (166).  Finally, POLQ overexpression in tumors was associated with poor prognosis of 

breast cancer (261, 273).  

1.6 Conclusions  
 

The overall BER DNA repair literature does not provide conclusive evidence for single 

common genetic polymorphisms (SNPs) as contributing to breast cancer risk. However, we 

propose there are several potential explanations for the observed lack of significant main SNP 

effects in BER. First, many genetic association studies may have been underpowered to detect 

modest effects in common low-penetrant SNPs, yielding false positive results. Second, several 

studies showed increasing risk with increasing number of SNPs or combined SNP effects, which 

may concur with the polygenic model. Third, several studies suggested subgroup effects by 
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race/ethnicity. Finally, other redundant DNA damage response mechanisms may be involved in 

maintaining genomic stability.  

Researchers have identified at least 15 different DNA polymerases in humans which are 

essential for DNA replication, DNA repair and the tolerance of DNA damage. DNA bypass 

polymerases are key players in translesion synthesis (TLS) that serve as a backup if other DNA 

repair mechanisms fail. While bypass polymerases do not directly repair the damage, they 

tolerate or bypass the damage and prevent replication fork stalling, sparing the cell from going 

into apoptosis or DNA damage induced mutagenesis. Both in vitro and in vivo studies have 

shown that DNA bypass polymerases can efficiently bypass lesions that were not properly 

repaired by the classical DNA repair pathways. However, these bypass polymerases may also 

induce mutations due to their low fidelity. To further clarify their roles, we propose investigating 

the role of these bypass polymerases in breast cancer. 

Although we have identified many of the genetic and environmental risk factors of breast 

cancer, there are still other (genetic) factors yet to be identified to account for the missing 

heritability of the disease. In this proposed study, we seek to identify SNPs in DNA damage 

response pathways that may be associated with breast cancer and breast cancer subtype. We 

propose a candidate pathway approach to evaluating the SNPs effects of bypass polymerases in 

breast cancer. These bypass polymerase genes have yet to be fully explored in epidemiological 

studies of breast cancer. Only two recent reports from the NHS II have explored the association 

between DNA bypass polymerases SNPs within breast cancer (202, 213). Therefore, additional 

studies exploring these associations are needed. This current study proposes using data from the 

Carolina Breast Cancer Study, a large racially diverse study population of women with breast 

cancer, to further elucidate the role of bypass polymerases genes and base excision repair genes 
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in breast cancer by race and subtype. We will also conduct pathway-based analyses to assess 

combined SNP effects. 
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Table 1. Functions of BER genes 

 
 

 

DNA glycolyases Type of base damage Function References

Monofunctional glycolyases

UNG Deamination removes uracil from DNA Broderick 2006, Moon 1998, Nilsen 2003

TDG Deamination removes thymine moieties from G/T 

mismatches, C/T and T/T mismatches, 

removes uracil and 5-bromouracil from 

mismatches with G

Visnas 2008, Hardeland 2001

SMUG1 Deamination removes uracil from DNA Marian 2011, Chanson 2009

MBD4 Deamination U or T opposite G at CpG sequence Yamada 2002, Song 2009, Hao 2004, Miao 

2008

MPG Alkylation alkylated bases, 3-methyadenine (3-meA), 

methylguanine, etheno A and guanine, 8-

oxoG

Kim 2002, Kim 2003

MYH Oxidation removes As that are mispaired with G, C, or 

oxo-G

Dallosso 2008, Out 2012, Wasielewski 2010, 

Rennert 2012, Beiner 2009, Zhu 2011

Bifunctional Glycolyases

OGG1 Oxidation 8-oxoG opposite C Tani 1998. Roberts 2011, Sangrarang 2009, 

Sterpone 2010, Rossner 2006, Goode 2002

NEIL1 Oxidation removes oxidized pymidines, 8-oxoG Das 2006, Dou 2008, Maiti 2008

NEIL2 Oxidation removes oxidized pymidines, oxidized 

cytosine

Das 2006, Conlon 2005, Dey 2012, Zhai 2008, 

Kinslow 2008, Haiman 2008

Other BER genes Class/Type

APE1 (APEX1) AP endonuclease Recognizes and cleaves the phosphodiester 

bond 5' attached to the AP site

Agachan 2009, Kuasne 2011, Popanda 2004, 

Canbay 2010, Zawahit 2009, Smith 2008, 

Sangrarang 2008, Zhang 2006, Poletto 2012

PARP1 (ADRPT1) Modifies nuclear protein by poly-ADP-

ribosylation

Allinson 2003, Dantzer 2002, Bieche 1996, 

Fong 2009

PARP3 (ADRPT2) Modifies nuclear protein by poly-ADP-

ribosylation

Matsutani 2002

POLB DNA polymerase Gap filling enzyme in short-patch BER Lang 2007, Yamtich 2012, Wang 1995, 

Makridakis 2012, Starcevic 2004, Dalal 2005, 

Donigan 2012, Kazma 2012, Nemec 2012

LIG3 Ligase Catalyzes the nick-sealing step in short-

patch BER along with cofactor XRCCI

Puebla-Osorio 2006

XRCC1 Ligase central scaffolding protein binding LIG3, 

DNA polymerase B, and PARP

Chacko 2005, Smith 2008, Sangrarang 2008, 

Silva 2007, Sterpone 2010, Mitra 2008, 

Hussein 2012  Ali 2008

PCNA scaffolding protein senses DNA strand breaks and initiates DNA 

damage signaling (Scheiber), 

posttranslational modification by ubquitin

Malkas 2006, Ma 2000

RFC1 large subunit of 

replication factor C

 binds to the 3' end of primers and promotes 

synthesis of both strands

Overmeer 2010, Fotedar 1996

FEN1 endonuclease removes 5' flap in long patch BER Singh 2008



 

37 

 

Table 2. DNA Glycosylases 

 

 

`

List of BER Glycosylases and associated substrate(s)

Glycosylase Damaged base type Substrates, Base released

UNG Deamination Uracil, U:G, U:A, 5-FU

TDG Deamination U:G,, Etheno C:G, T: G

SMUG1 Deamination Uracil, U: A, U: G

MBD4 Deamination Uracil or T

MPG Alkylation 3-MeA, 7-MeA, 3-MeG, 7-MeG

MYH Oxidation A:G, A: 8-oxoG

OGG1 Oxidation 8-oxoG: C, faPyG

NTH1 Oxidation Tg, Cg, 5ohC

NEIL1 Oxidation 8-oxoG

NEIL2 Oxidation 8-oxoG

NEIL3* Oxidation oxidized purines
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Table 3. Associations between BER genes and breast cancer risk 

  

OR (95% CI) OR (95% CI)

Gene/SNP Study Year Country Study Population Cases Controls Arg/Gln Gln/Gln

XRCC1 Brewster 2006 United States All 321 321 1.5 (0.9-2.0) 1.1 (0.7-1.8)

rs25487 Chacko 2005 India Asian 123 123 2.0 (1.2-3.6) 2.7 (1.1-6.6)

Costa 2007 Portugal European 285 442 0.5 (0.4-0.8)

Deligezer 2004 Turkey Asian 151 133 0.9 (0.5-1.5) 1.3 (0.6-2.6)

Duell 2001 United States Black 253 266 1.5 (1.1-2.3) 2.1 (0.6-7.3)

Duell 2001 United States Caucasian 386 381 1.1 (0.8-1.5) 0.8 (0.5-1.3)

Dulfloth 2005 Brazil Mixed 86 120 1.1 (0.7-1.8) 1.7 (0.7-4.2)

Figueiredo 2004 Canada Caucasian 402 402 0.9 (0.7-1.2) 0.9 (0.6-1.4)

Forsti 2004 Finland All 223 298 1.1 (0.8-1.6) 0.9 (0.5-1.7)

Hussein 2012 Egypt Caucasian 100 100 1.7 (0.9-3.1) 1.6 (0.6-4.1)

Kim 2002 Korea Asian 205 205 0.8 (0.5-1.2) 2.4 (1.2-4.7)

Lozidou 2008 Greece Caucasian 1,109 1177 0.6 (0.8-1.1) 0.9 (0.7-1.2)

Metsola 2005 Finland Caucasian 483 482 1.2 (0.9-1.7) 1.4 (0.8-2.3)

Mitra 2008 India Asian 155 235 0.9 (0.6-1.5) 2.9 (1.7-5.1)

Moullan 2003 France Caucasian 254 312 0.9 (0.6-1.3) 1.0 (0.6-1.6)

Pachkowski 2006 United States Caucasian 1,281 1,137 1.1 (0.9-1.3) 1.0 (0.8-1.3)

Pachkowski 2006 United States Black 786 681 1.1 (0.9-1.5) 1.8 (0.8-3.8)

Patel 2005 United States All 502 502 1.0 (0.7-1.4) 1.3 (0.8-2.0)

Roberts 2011 United States premenopausal 1,099 1,945 0.9 (0.6-1.2) 0.8 (0.6-1.2)

Roberts 2011 United States postmenopausal 1,099 1,945 1.2 (1.0-1.5) 1.3 (0.9-1.8)

Sangrajrang 2008 Thailand Asian 507 425 1.2 (0.9-1.6) 1.8 (0.9-3.3)

Shen 2005 United States All 1,067 1110 1.1 (0.9-1.3) 1.0 (0.7-1.3)

Shu 2003 China Asian 1,088 1182 1.0 (0.8-1.1) 1.2 (0.9-1.7)

Smitha 2003 United States Caucasian 253 268 1.0 (0.7-1.5) 1.1 (0.6-2.0)

Smithb 2003 United States Caucasian 162 302 0.7 (0.4-1.2) 1.1 (0.5-2.7)

Smith 2008 United States Caucasian 336 416 1.0 (0.7-1.4) 0.9 (0.6-1.5)

Smith 2008 United States Black 63 78 1.1 (0.4-2.9) 2.1 (0.09-52.2)

Sterpone 2010 Italy Caucasian 43 31 4.8 (1.6-14.8) 4.4 (1.1-17.1)

Thyagarajan 2006 United States Caucasian 460 324 1.3 (0.8-2.0) 0.9 (0.5-1.7)

Zhai 2006 China Asian 523 639 0.8 (0.6-1.1) 1.0 (0.6-1.7)

Zhang 2006 Poland Caucasian 1995 2296 1.1 (1.0-1.3) 1.1 (0.9-1.4)

Zhang 2006 United States Caucasian 3368 2880 1.1 (0.9-1.2) 0.9 (0.8-1.1)

His/His + Arg/His**

XRCC1 Chacko 2005 India Asian 123 123 0.6 (0.3-1.0)

rs25489 Lozidou 2008 Greece Caucasian 1109 1177 4.7 (1.0-21.7)

Metsola 2005 Finland Caucasian 483 482 1.2 (0.8-1.7)

Pachkowski 2006 United States Caucasian 1281 1137 1.2 (0.9-1.6)

Pachkowski 2006 United States Black 786 681 1.3 (0.8-2.0)

Sangrajrang 2008 Thailand Asian 507 425 1.3 (0.9-1.9)

Smith 2008 United States Caucasian 336 416 0.7 (0.4-1.2)

Smith 2008 United States Black 63 78 0.7 (0.1-3.0)

Zhang 2006 United States Caucasian 1898 1514 1.1 (0.8-1.4)

**dominant model, not enough homozygous variants to do general/codominant model, referent genotype: Arg/Arg
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Study Year Country Study Population Cases Controls Arg/Trp + Trp/Trp**

XRCC1 Brewster 2006 United States All 321 321 1.2 (0.7-1.8)

rs1799782 Chacko 2005 India Asian 123 123 2.0 (1.1-3.5)

Deligezer 2004 Turkish Asian 151 133 0.5 (0.2-1.2)

Duell 2001 United States Black 161 166 0.7 (0.4-1.2)

Duell 2001 United States Caucasian 251 234 0.7 (0.3-1.4)

Forsti 2004 Finland All 223 298 1.3 (0.6-2.6)

Kim 2002 Korea Asian 205 205 1.1 (0.7-1.6)

Lozidou 2008 Greece Caucasian 1109 1177 1.0 (0.8-1.3)

Mitra 2008 India Asian 155 235 0.4 (0.2-0.7)

Moullan 2003 France Caucasian 254 312 1.0 (0.6-1.7)

Pachkowski2006 United States Caucasian 1281 1137 0.9 (0.7-1.2)

Pachkowski2006 United States Black 786 681 1.0 (0.7-1.3)

Patel 2005 United States All 502 502 0.6 (0.4-0.1.0)

Roberts 2011 United States premenopausal 1099 1945 0.9 (0.7-1.3)

Roberts 2011 United States postmenopausal 1099 1945 1.2 (1.0-1.5)

Sangrajrang2008 Thailand Asian 507 425 1.1 (0.8-1.4)

Shen 2005 United States All 1067 1110 0.9 (0.7-1.2)

Silva 2007 Portugal Caucasian 241 457 2.0 (1.2-3.3)

Smitha 2003 United States Caucasian 253 268 1.6 (0.9-2.9)

Smithb 2003 United States Caucasian 162 302 2.0 (0.9-4.6)

Smith 2008 United States Caucasian 336 416 1.2 (0.7-2.0)

Smith 2008 United States Black 63 78 0.4 (0.1-1.7)

Sterpone 2010 Italy Caucasian 43 31 1.8 (0.4-7.7)

Thyagarajan2006 United States Caucasian 460 324 1.2 (0.8-1.9)

Zhang 2006 United States Caucasian 1898 1514 0.9 (0.8-1.2)

**dominant model

Asp/Glu Glu/Glu

APE1 Sangrajrang2008 Thailand Asian 507 425 0.6 (0.4-0.9) 0.9 (0.7-1.3)

rs1130409 Smith 2008 United States Caucasian 336 416 0.7 (0.5-0.9) 0.8 (0.5-1.2)

Smith 2008 United States Black 63 78 1.0 (0.4-2.4) 0.9 (0.3-3.0)

Zhang 2006 United States Caucasian 1898 1514 1.0 (0.9-1.2) 1.0 (0.8-1.3)

Cys/Cys Ser/Cys

OGG1 Choi 2003 Korea Asian 475 500 1.0 (0.8-1.4) 1.3 (0.9-1.9)

rs1052133 Roberts 2011 United States premenopausal 1099 1945 1.0 (0.7-1.4) 1.2 (0.5-2.5)

Roberts 2011 United States postmenopausal 1099 1945 1.0 (0.8-1.2) 1.2 (0.8-1.9)

Sangrajrang2008 Thailand Asian 507 425 1.4 (1.0-2.1) 1.0 (0.7-1.3)

Sterpone 2010 Italy Caucasian 43 31 1.4 (0.5-3.6) 0.8 (0.1-6.7)

Vogel 2003 Denmark Caucasian 452 434 0.8 (0.6-1.1) 1.0 (0.5-1.9)

Zhang 2006 United States Caucasian 1898 1514 1.0 (0.8-1.2) 1.0 (0.7-1.4)

Val/Ala Ala/Ala

PARP1 Zhai 2006 China Asian 523 639 0.9 (0.6-1.2) 0.9 (0.6-1.3)

rs1136410 Smith 2008 United States Caucasian 336 416 0.7 (0.5-0.9) 0.7 (0.3-1.9)

Smith 2008 United States Black 63 78 4.6 (0.9-23.1)

Zhang 2006 United States Caucasian 1898 1514 1.0 (0.9-1.2) 0.9 (0.6-1.4)
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Table 4. Efficient and Mutagenic Bypass of DNA Lesions 

  

Type of Lesion Mode of formation Efficient Bypass Mutagenic Bypass

Endogenous

AP site Hydrolytic depurination POL alpha (Avkin 2002) POLB (Blanca 2004, Efrati 1997)

POLD (Avkin 2002) POLK (Ohashi 2000)

POLE (Avkin 2002) POLH (Masutani 2000)

POLH (Choi 2010) POLL (Maga 2002, Blanca 2004)

POLD/PNCA (Choi 2010) POLM (Zhang 2002)

POLB (Gieseking 2011) REV1 + POLH (Choi 2010)

POLQ (Seki 2004) POLI + POLH (Choi 2010)

8-oxo-G Guanine oxidation POLK (Haracska 2002) POLK (Irimia 2009, Zhang 2000)

POLH (Maga 2007)

POLD (Avkin 2002)

POLM (Zhang 2002)

POLI (Zhang 2001, Vaisman 2001)

POLL (Maga 2007, vanLoon 2010)

Thymine Glycol pyrimidine oxidation POLK (Fischhaber 2002) POLQ (Seki 2004, Arana 2008)

POLN (Takata 2006) POLN (Takata 2006)

POLB (Belousova 2010) POLM (Kusumoto 2002)

POLL (Belousova 2010)

POLK + REV3 (Yoon 2010)

Exogenous

[6-4] photoproduct UV light POLB (Servant 2002) POLB (Servant 2002)

POLH + REV3 (Johnson 2001) POLI + POLQ (Seki 2008)

POLI + REV3 (Johnson 2000) REV1 (Zhang 2002)

X+REV3 (Yoon 2010) REV3 (Guo 2001)

POLQ (Seki 2008)

cyclobutane 

pyrimidine dimer 

(CPD)

POLB (Servant 2002) POLI+REV3 (Ziv 2009, Vaisman 

2003)

POLH (McCulloch 2008, Masutani 

1999, Albertella 2005, Hendel 2008, 

Broyde 2010)

POLK+REV3 (Ziv 2009)

POLM + REV3 (Zhang 2002)

platinum DNA 

adducts

POLH + REV3 (Bassett 2002, 

Sharma 2012, Chaney 2005)

POLB (Bassett 2002)

Benzo[a]pyrene-

guanine (BP-G)

POLK (Zhang 2002, Ohashi 2000, 

Avkin 2004, Suzuki 2002)

POLK + REV3 (Sharma 2012, Lin 

2006)

REV3 (Johnson 2000) POLH + REV3 (Shachar 2009, 

Goodman 2002)

POLM (Zhang 2002)

cis-syn TT dimer POLK + REV3 (Haracska 2002)

POLM (Zhang 2002)

POLH (Broyde 2010) POLH (McCulloch 2008)
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Figure 1. Breast Anatomy 
Source: www.homeopathynow.com 
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Figure 2. Breast cancer incidence and mortality by race and age  
 

Sources: Incidence: North American Central Cancer Registeries, 2009. Mortality: National 

Center for Health Statistics. 
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Figure 3. DNA Damage Responses 
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Figure 4. Sources of DNA Damage and associated lesion and repair pathway genes 

(Adapted from Wood 2005) 
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Figure 5. Short-patch vs. long-patch BER 
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CHAPTER 2. METHODS 

2.1 Specific Aims 

 

The American Cancer Society estimates 226,870 new cases of invasive breast cancer and 

64,640 new cases of carcinoma of the breast in situ, which will represent 29% of all female 

cancer cases in the United States in 2012 (3).  Previous studies have identified both non-genetic 

and genetic risk factors for breast cancer. Among the most well-known genetic factors are 

mutations in BRCA1, a DNA repair susceptibility marker. It has been hypothesized that deficient 

DNA repair due to mutations in BRCA1 may contribute to increased breast cancer risk. However, 

BRCA1 mutations are rare and together with BRCA2 only account for 5-10% of all breast cancer 

and 15-20% of familial cancers, leaving a large proportion of breast cancer without a known 

genetic component. Consequently, other genes including DNA repair genes in multiple DNA 

repair pathways have been investigated for their association with breast cancer incidence. DNA 

repair is one of several DNA damage response mechanisms that have evolved to respond to 

ubiquitous DNA damage and base excision repair, is one such repair pathway. Other non-repair 

DNA tolerance mechanisms such as TLS (translesion synthesis) may also play a role in breast 

cancer. The impact of genetic variation in BER and TLS pathways will be evaluated using 

genotyped data from the Carolina Breast Cancer Study (CBCS), a large population-based case-

control study. To assess the individual and combined effects of DNA repair and DNA tolerance, 

adjusted unconditional logical regression models will be used to estimate odds ratios and 95% 

confidence intervals.  
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The specific aims of this study are as follows: 

Specific Aim 1:  To estimate the association between breast cancer risk and genetic variation in 

base excision repair genes (BER).  

A) To assess the race-specific effects of SNPs in BER genes on breast cancer risk, odds 

ratios (ORs) and 95% confidence intervals (CI) will be estimated using unconditional 

logistic regression, adjusting for ancestry informative markers (AIMs) and offset 

term. 

B) To assess the subtype-specific effects of  SNPs in BER genes on breast cancer risk, 

odds ratios (ORs) and 95% confidence intervals (CI) will be estimated for SNPs using 

unconditional logistic regression, comparing cases of each subtype (combined 

luminal, HER2+/ER-, and basal-like) to all controls.   

C) To assess the combined pathway effects of SNPs within the base excision repair 

pathway on breast cancer risk (SNP-set Kernel Association Test (SKAT) will be used 

to estimate global p values for 2 SNPs sets (White and African American).  

 

Specific Aim 2:  To estimate the association between breast cancer risk and genetic variation in 

DNA bypass polymerase genes.  

A) To assess the race-specific effects of SNPs in bypass polymerase genes on breast 

cancer risk, odds ratios (ORs) and 95% confidence intervals (CI) will be estimated 

using unconditional logistic regression, adjusting for ancestry informative markers 

(AIMs) and offset term. 
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B) To assess the subtype-specific effects of  SNPs in XX bypass polymerase genes on 

breast cancer risk, odds ratios (ORs) and 95% confidence intervals (CI) will be 

estimated for SNPs using unconditional logistic regression, comparing cases of each 

subtype (combined luminal, HER2+/ER-, and basal-like) to all controls.   

C) To assess the combined pathway effects of SNPs within the DNA bypass polymerase 

genes on breast cancer risk (SNP-set Kernel Association Test (SKAT) will be used to 

estimate global p values for 2 SNPs sets (White and African-American).  
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2.2 Study population: Carolina Breast Cancer Study (CBCS) 

 

To accomplish these specific research aims, we will utilize genotype data from extant 

DNA extracted from blood samples from Phase I (1993-1996) and Phase II (1996-2001) of the 

Carolina Breast Cancer Study (CBCS). Study design and methods have been described 

extensively in (274, 275). CBCS is a large population-based case-control study that incorporates 

both randomized recruitment to oversample understudied populations such as younger and 

African-American women as well as rapid case ascertainment system which allows access to 

state reported data in a time efficient manner In addition, as a part of the study, biologic samples 

were collected which allowed for the DNA extraction and genotyping of various putative breast 

cancer genes, including DNA repair and bypass polymerase genes. CBCS also collected tumor 

tissue samples from participants which allowed for tumor subtyping via immunohistochemistry 

(IHC) as a surrogate for gene expression.  

2.2.1 Case ascertainment  

 

 Case eligibility was determined using the following criteria: female, between the ages 20 

and 74 years at the time of diagnosis, living within the 24 county study area in North Carolina, 

primary diagnosis of an invasive breast cancer between May 1, 1993 and September 30, 1995 

(Phase I enrollment) or primary diagnosis of an invasive or in situ breast cancer between May 1, 

1996 and September 30, 2001 (Phase II enrollment).  

 Eligible cases were identified from the Rapid Case Ascertainment program within the 

North Carolina Central Cancer Registry (NCCCR). By law, all breast cancer cases in North 

Carolina (invasive and in situ) are reportable to the North Carolina Center Cancer Registry 
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(NCCCR). Hospitals are required to send timely reports to the registry for all newly diagnosed 

cases, while physicians are required to report cancer cases that are not diagnosed in the hospital 

(276). With some cases of breast cancer that are rapidly fatal, timeliness of reporting can be 

critical. To ensure that cases were reported in a timely manner, CBCS collaborated with CCR to 

develop and implement a rapid case ascertainment system (RCA) (277). The CCR closely 

coordinated with hospital registries and were given an incentive to forward pathology reports to 

CCR as soon as they were received. Therefore, CBCS received expedited reports from CCR 

usually within a month of the diagnosis.  Cases were invited to participate in the study based on 

the county of residence during their time of diagnosis, which included 24 central and eastern 

North Carolina (Figure 6). In addition, participants were required to live in the same county as 

they did at the time of their diagnosis.  

2.2.2 Control ascertainment 

 

Controls for the study were also female residents of North Carolina residing in one of the 

24 study counties. Controls ages 20-64 at study entry were selected from the North Carolina 

Department of Motor Vehicle (DMV), while controls ages 65-74 were selected from the U.S. 

Health Care Financing Administration (Medicare) records. Controls represented the pool of 

women ages 20-74 living in the 24-county study region without a previous diagnosis of invasive 

or in situ breast cancer at the time of selection into the study. Controls were also matched to 

cases based on 5-year age categories and self-reported race (African-American and White). 

2.2.3 Randomized recruitment 

 

As an alternative to frequency matching, "randomized recruitment" or probability 

matching individually randomizes subjects to be recruited or not based on available screening 
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variables and disease status (278). In CBCS, these screening variables were the participant’s race 

and age abstracted from pathology reports for cases and DMV and Medicare records for controls. 

This information was used to ensure that the sampling probabilities were approximately equal 

across race and age categories. These sampling probabilities were different for invasive cases in 

Phases 1 and 2. Table 5 shows the sampling probabilities for invasive cancers in both phases of 

the study, stratified by age and race. In phase II of the study, 100% of the in situ cases were 

sampled. To increase power, African-American cases and all cases younger than 50 years old 

were oversampled. Controls were probabilistic matched to cases by race and five year age group. 

To account for this “biased” sampling design, race and age was adjusted for in all logistic 

regression models using an offset term. The offset term is defined as the natural log of the ratio 

of the sampling probability for a case in the specific age-race strata to the sampling probability 

for a control in the same age-race strata (i.e. a non-black case aged 30-34 will have same offset 

term as non-black control aged 30-34, despite different sampling probabilities). Therefore, each 

CBCS participant will have their own offset term based on their race and age category.  

2.2.4 Subject recruitment and enrollment 

 

After receiving identifying information from NCCCR about a potential study participant, 

the participant’s treating physician was sent a letter requesting permission to contact their 

patient. If physician permission was obtained, cases were sent a study brochure and a letter 

inviting them to participate. Physician consent was not obtained for 7% of eligible cases. If 

physician consent was obtained, a CBCS recruiter contacted the potential study case via 

telephone to assess interest and study eligibility.   

Contact rates was defined as the percentage of women who were identified as potential 

study participants with whom contact was achieved (279). While contact information was readily 
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available for cases, contact information (i.e. telephone numbers) were not provided from DMV 

or HCFA records and a variety of strategies were employed to contact eligible controls (280). 

Contact rates were 98% for cases (3,292 out of 3,360) and 83% for controls (3,706 out of 4,465).   

Cooperation rates were defined as the number of completed interviews divided by the 

number of women who were successfully contacted and eligible. Cooperation rates differed by 

case status (79% for cases and 71% for controls). In addition, the age/race specific cooperation 

rate ranged from 72% for older African-American women to 84% for young white women.   If 

the study recruitment specialist confirmed the woman met all eligibility criteria and verbally 

agreed to participate in the study, an at-home interview with a trained study nurse was scheduled.  

The overall response rate was defined as the number of completed interviews divided by 

the number of potentially eligible women selected for the study. Overall response rates for both 

phases of the study were 77% for cases and 57% for controls.  Total enrollment included 1,803 

invasive cases and 1,564 matched controls, and 508 in situ cases and 458 matched controls. 

Among cases, older African-Americans had the lowest overall response rate (70.8%) while 

younger Whites had the highest overall response rate (82.7%). Among controls, younger 

African-Americans had the lowest overall response rates (47.8%) while older Whites had the 

highest (77.9%).  African-American in situ cases and controls were also were less likely to be 

selected into the study. 

2.2.5 Baseline study interview  

 

Prior to beginning the interview, a written signed informed consent was obtained.  The 

subjects were required to initial a special section describing potential genetic research on their 

samples. The consent also assured participants that their blood samples would be used only for 

research purposes and safeguards were in place to ensure their confidentiality. Any questions or 
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concerns were addressed by the study nurse and participants were assured that their participation 

was voluntary. In addition, participants were given medical record release forms and HIPAA 

forms to sign allowing CBCS to obtain pathology reports and formalin-fixed paraffin-embedded 

(FFPE) tumor blocks.  The tumor tissue blocks were used to both confirmed diagnosis by a 

pathologist as well as to conduct IHC subtyping. FFPE tumor blocks were obtained and 

successfully sectioned for 80% of cases and immunochemistry was completed for 62% of cases 

(281). 

The baseline interview consisted of a nurse-administered questionnaire consisting of 

known and suspected breast cancer risk factors such as family history, personal medical history, 

occupational history, and exposure to known reproductive and lifestyle factors. In addition, 

participants completed a self-administered quality of life survey, and height, weight, waist 

circumstance, and hip circumstance were measured by the study nurse.  

At the end of the interview, the nurse interviewer collected a 30 mL blood sample. 

Whites were more likely to provide blood samples than African-Americans. There were no 

significant differences in other risk factors for those who provide a biological sample and those 

who did not (281, 282). Women who refused the blood sample were given the option of 

providing a buccal cell sample using mouthwash or having their blood drawn at their physician’s 

office to be sent into the study. If the biologic sample was collected at the interview site, the 

study nurse transported the sample back to the laboratory at UNC to be processed. DNA was 

extracted from peripheral blood lymphocytes using an automated ABI-DNA extractor in the 

UNC Tissue Procurement Facility and stored at    .  Blood samples were collected and DNA 

successfully extracted from peripheral blood lymphocytes on 89% of cases and 90% of controls. 
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2.3 Exposure assessment 

2.3.1 CBCS SNP selection 

 

Single nucleotide polymorphisms or SNPs are the most common type of genetic 

variation. It is estimated that there are 100,000-300-000 nonsynonymous coding SNPs in 

humans, representing 1% of all SNPs. The other 99% of SNPs include intronic (63%), 

untranslated regions (11%), synonymous (1%), locus regions (24%), splice site (<1%) and 

uncoding variants (<1%). A SNP occurs when a single nucleotide at a particular DNA location 

differs between members of a population and occurs at a frequency greater than 1% in the 

general population (283). In this study, a candidate gene approach was utilized to select SNPs in 

the BER and TLS pathways. The candidate gene approach focuses on associations between 

genetic variation within pre-specified genes of interest (i.e. DNA repair pathway genes) and 

phenotype (i.e. breast cancer). This is in contrast to genome-wide association studies (GWAS) 

which scan the entire genome for common genetic variation. Candidate genes are most often 

selected for study based on a priori knowledge of the gene’s biological functional impact on the 

trait or disease in question. The candidate gene approach is hypothesis-based, relying on prior 

functional SNP data from laboratory studies or computer simulations (284, 285). Identifying 

potential functional SNPs may help to define a biological mechanism through which genotype is 

causally associated with breast cancer (286). A functional SNP is defined as a polymorphism in a 

codon that leads to an amino acid change that alters gene product and function and case-control 

status (287, 288). 

Two publicly available SNP databases, the Single Nucleotide Polymorphism Database 

(dbSNP) and SNP500Cancer, were used to select 1,536 SNPs for CBCS. Preference was given to 

non-synonymous and promoter SNPs in genes that have been implicated in one or more cancers 
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(289). SNPs in the CBCS were selected based on the following criteria: gene previously 

identified in the base excision DNA repair or bypass polymerase pathway; experimental 

evidence (In vitro/in vivo/in silico studies) demonstrating functional effect; non-synonymous 

missense coding variants, upstream regulatory regions, splice variants, or 5'UTR variants, and at 

least 5% minor allele frequency in African-American or White populations. 

2.3.2 Genotyping analysis 

 

A total of 1,536 SNPs which passed all four Illumina reviews were selected in each 

pathway to be genotyped. There were 284 SNPs chosen in DNA repair pathways, including 59 

SNPs in BER and 30 SNPs in bypass polymerase genes (Table 6, Table 7). SNPs were 

genotyped from biological samples collected at the time of baseline interview. High-throughput 

genotyping of selected SNPs was conducted at the Mammalian Genotyping Core Facility at the 

University of North Carolina at Chapel Hill using the Illumina high-multiplex GoldenGate 

Genotyping Assay with Sentrix Array matrix. This process has been documented in detail 

previously by (290). Briefly, the GoldenGate Assay queries genomic DNA with three 

oligonucleotide probes for each locus and creates DNA fragments that can be amplified by 

standard PCR methods using universal primers (290).The oligo mix contains two allele-specific 

and one locus-specific probe. The 3′ ends of the two alternative allele specific probes are 

complementary to two universal primers, U1 and U2, with the 5′ end complementary to the 3′ 

end of the locus. Each probe sequence terminates at the SNP that is to be assayed with an allele 

specific base. The third probe, the locus specific probe, is complementary to the genomic DNA. 

DNA polymerase is added to close the gap between the allele specific and the locus specific 

probes and the paired fragments are ligated together. The probe fragments are then separated 

from the genomic DNA and PCR results in a single strand hybridized to the BeadArray (290, 
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291). The genotype of an individual at a SNP is thus determined by comparing the relative 

hybridization intensities of the two probling sequences (Teo 2012). Large-scale genotyping 

depends on automated strategies (i.e. genotype calling) to translate the hybridization intensities 

for the two alleles at each SNP into a categorical genotype call.  

2.3.3 Genotyping quality control 

 

CBCS investigators utilized several quality control measures to measure and improve 

overall data accuracy. Upon arrival, all samples were labeled with a unique bar code with the 

BSP identifier, type of contained material, volume, concentration, date of creation, and locked in 

a secure storage facility. Case and control samples were randomly distributed on the panel. 

Systematic bias can arise if cases and controls are genotyped separately, since different error 

rates or genotyping success rates may lead to falsely different allele frequencies. In addition, 

blind duplicate samples, and negative and positive lab controls were used. A 4% (169 out of 

3,857) random subsample of genotypes was repeated for each locus to test concordance with the 

original sample.  Replicates that did not show greater than 99.5% concordance were excluded 

(291).  Six subjects (3 cases and 3 controls) were excluded due to issues in non-blind DNA 

samples.  

In addition, there were several potential sources of pre-genotyping error such as poor 

assay design and post-genotyping error such as low call rates, low signal intensity, 

indistinguishable genotype clusters. Departures from Hardy-Weinberg equilibrium may also 

indicate genotyping error. To assess these errors, individual call rates were examined, and there 

was careful inspection of assay intensity data and genotype clustering images. 103 samples with 

a call rate <95% were excluded.   

Out of 1,536 SNPs, 163 (11%) SNPs were excluded due to genotyping error.  Out of 



 

57 

 

2,311 cases and 2,022 controls enrolled in CBCS, 2,045 (88%) cases and 1,818 controls (90%) 

submitted a DNA biological sample. After all exclusions, a total of 1,972(85%) enrolled cases 

and 1,776(88%) enrolled controls were successfully genotyped (Figure 8).  

2.4 Outcome Assessment 

 

Diagnosis of invasive or in situ breast cancer from the pathology reports were confirmed 

via medical records. Centralized review of pathology was conducted for all cases using original 

or recut H&E sections (292). Details on the quality control procedures for tumor blocks are 

outlined in Dressler 1999 (293). A total of 1,845 cases had tumor tissue available.  

2.4.1 Ascertainment of intrinsic subtype markers  

 

Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples were available for 80% 

of invasive cases and sent to the UNC Immunohistochemistry Core Laboratory to be sectioned 

and subtyped (22, 59, 72). Since gene expression analysis using DNA microarray technology 

was not possible on FFPE samples at the time, immunohistochemistry markers were used as a 

surrogate method to subtype the tumors (58). 

A total of 1,424 (77% of available tumor blocks) were successfully subtyped and 

classified into one of five “intrinsic” subtype groups:  luminal A (ER+ and/or PR+, HER2-), 

luminal B (ER+ and/or PR+, HER2+), HER2+/ER- (ER-, PR-, HER2+), and basal-like (ER-, PR-

, HER2-, HER1+ and/or CK 5/6+), with those negative for all 5 markers considered 

‘unclassified’ (59)(Figure 8). 

Estrogen and progesterone status was abstracted from medical records for 80% of cases. 

For the remaining 20% of cases, ER and PR IHC assays were conducted using stored tumor 

tissue. Tumors with more than 5% of cells showing nuclei-specific staining were considered 
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receptor positive (53). A 10% random sample of ER+ and ER- tumors reported in medical 

reports were tested in the lab to evaluate concordance between the two data sources. There was a 

kappa statistic of 0.62 between the medical records and the lab data based on a previous CBCS 

report (281). HER2 status was detected using the CB11 monoclonal antibody.  A case was 

considered HER2 positive if at least 10% of observed cells showed signs of staining. This 

method had high concordance (81%) with PCR-based measures of HER2 gene expression (293). 

EGFR (HER1) and CK 5/6 assays were defined as being positively expressed if the tumor 

displayed any signs of staining (58). Table 8 shows the distribution of subtypes by race. 

For the current study, we classified tumors as either luminal (ER+ and/or PR+; n=788), 

basal-like (ER-, PR-, HER2-, CK 5/6+ and/or EGFR+; n=199) or HER2+/ER- (n=94). We 

excluded ‘unclassified’ tumors from further analysis due to their uncertain status. The major 

distinction between the two luminal subtypes are their proliferation signatures, measured by the 

expression of CCNB1, MKI67, and MYBL2 (49). HER2 expression only identifies about 30% of 

luminal B tumors.  In the current study, we did not have information about these proliferation 

markers and therefore combined Luminal A and B tumors into a single ‘luminal’ category (48, 

49) (Figure 11). Additionally, most other studies do not have subtype data available and only 

have estrogen receptor status data. Therefore, we conducted an additional exploratory analysis 

using estrogen receptor (ER) status to evaluate comparability to “intrinsic” subtype results. We 

found that ER positive effects were concordant with luminal subtype results; while ER negative 

(ER-) effects correlated with those of basal-like and HER2+/ER- subtypes (Table 15). There 

were no differences between CBCS cases with and without subtyping data in terms of age, 

menopausal status, or family history. 
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2.4.2 IHC for in situ cases 

 

Phase 2 of the CBCS also included women diagnosed with ductal carcinoma in situ breast 

cancer (DCIS), lobular carcinoma in situ (LCIS), and mixed DCIS and LCIS (72). Tumor tissue 

was collected from 79% of in situ cases and sent to the UNC Immunohistochemistry Core 

Laboratory for subtyping (22). IHC subtyping procedures were slightly modified for in situ 

tumors due to availability of tumor samples. ER positive tumors were defined as having an 

Allred score >2 with nuclear staining.  PR status was not determined independently due to the 

high correlation between ER and PR positivity (294). However a recent study suggested that IHC 

of PR could add prognostic value and identified cases with better outcomes (295). HER2 positive 

tumors were defined as having more than 10% of cells stained greater than 3 using DAB 

chromogen or greater than 2 or 3 using SG chromogen. As for CK 5/6 and EGFR in invasive 

cases, tissue with staining of 1+ or greater was defined as positive for expression (72). 

DCIS was the most common subgroup of in situ breast cancer and was defined in the CBCS by 

microinvasion of less than or equal to 2mm (296). 

Of the 2,311 cases enrolled into the study, 1,220 (53%) cases had both complete subtype 

and genotyped data (Figure 8). The subtype distribution of those with genotyped data is very 

similar to the subtype distribution of all CBCS participants (22). 

2.5 Covariate Assessment 

2.5.1 Traditional Confounding 

 

 Confounders are “factors (exposures, interventions, treatments) that explain or produce 

all or part of the difference between the measure of association and the measure of effect that 

would be obtained with a counterfactual ideal”(288). Confounding has also been described as a 

mixing of two or more effects. The bias caused by traditional confounding in conventional 
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epidemiological studies typically does not apply to genetic epidemiological studies. Potential 

non-genetic confounders (i.e. reproductive factors) can be associated with the outcome (i.e. 

breast cancer) but they are unlikely to be related to the genotype (Figure 9), especially with the 

genes under investigation in this project.  If they are an intermediate variable between genotype 

and breast cancer, adjusting for these covariates could induce bias. 

2.5.2 Confounding by ancestry (population stratification)  

 

While traditional confounders may not be relevant in genetic association studies, there is 

the possibility for confounding by race/ancestry or population stratification. Population 

stratification or may occur if one or more subpopulations have a higher prevalence of an allele 

and a higher risk of disease (283). According to Barnholtz-Sloan, two criteria must be fulfilled in 

order for population stratification to exist. First, the frequency of the marker gene of interest 

must vary significantly by race/ethnicity and second, the background disease prevalence must 

also vary significantly by race/ethnicity (297) (Figure 11). Therefore, population stratification 

refers to differences in allele frequencies between cases and controls due to systematic 

differences in ancestry rather than association of genes with disease (298). 

Population stratification may be a possible source of bias among admixed groups such as 

African-Americans and Latinos (299). Several studies of African populations have indicated that 

levels and patterns of LD in these populations differ from those in non-African populations due 

to admixture with other African and non-African populations.  LD block size tends to be shorter 

in individuals of African ancestry and longer in Caucasians due to genetic drift and 

recombination (298, 300). Barnholtz-Sloan also argues that “classifying individuals into classes 

that represent heterogeneous racial/ethnic groups may also misclassify a person’s actual ancestral 

background and limit assessment of variation within racial/ethnic groups that is relevant for 
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understanding disease risk or outcome (297). Therefore estimation of individual ancestry should 

better capture the variation in ancestry within a subpopulation and account for residual 

confounding. These arguments validated the necessity of controlling for admixture in race-

stratified analysis in the current study. 

There have been several analytic approaches proposed to control for population 

stratification in genetic association studies.  The two most common methods for estimating 

individual ancestry are using maximum likelihood estimates (MLE) or a structural association 

approach (301, 302). Structured association can use markers pre-selected to differ between 

ancestral populations (AIMs) or random genetic markers (297). STRUCTURE, a structured 

association program, uses Bayesian Markov Chain Monte Carlo method to estimate allele 

frequencies in subpopulations and individual ancestry proportions (302).  

In addition, the genomic control method, proposed by Devlin and Roeder, calculates a 

variance inflation factor for a set of random, unlinked SNPs across the genome, and adjusts all 

SNP association tests by the inflation factor (303). Genomic control makes the assumption that 

the variance inflation is constant across all loci being tested. If this assumption is violated, 

overadjustment or underadjustment of variance may occur for different loci, which may result in 

reduced power to detect risk alleles. Marchini argues hat using too few markers for genomic 

control could lead to false positives, while using too many markers could lead to decreased 

power (304). 

Finally, a principal components method has been touted as a method to assess population 

stratification. This method uses genotype data to estimate axes of variation that can be 

interpreted as describing continuous ancestral heterogeneity within a group of individuals (305). 

These axes of variation are defined as the top eigenvectors of a covariance matrix between 
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individuals in the study population that was formed using genotype information from random 

markers or AIMs. One of the main advantages of the principal components method is that it is 

more efficient in determining population structure using a large number of markers (i.e for 

GWAS). However the principal component methods can have a higher rate of type I error when 

the number of markers is low and may not be appropriate for a study such as CBCS (305). 

 

In this proposed study, we will use the MLE methods proposed by Barnholtz-Sloan 

(297).  Estimates of genetic ancestry will be derived from genotyped AIMs, which are unlinked 

markers found throughout the genome that show large allele frequency differences between 

ancestral populations (297).In CBCS, a set of 144 ancestry informative markers (AIMs) were 

selected to maximize the differences or δ in allele frequencies between African-Americans and 

White participants in the YRI and CEU HapMap data respectively (306) (Table 9). Proportions 

of ancestry for each ancestral population should sum to 1 since there are only two ancestral 

populations used for this study (301) Initially, a set of 200 AIM SNPs were selected from the 

panel of 5,400 AIMs identified at UC Davis Rowe Program representing four genetically diverse 

populations: two West African populations, European Americans, and African Americans. 158 

(79%) passed the initial Illumina review and a subset of those SNPs (144 or 91%) were 

successfully genotyped. This set of SNPs provides nearly uniform coverage of the genome. 

Among African-American CBCS participants, the median proportion of European ancestry was 

0.19 (average= 0.22), with most women in the 0 to 0.50 range. In Whites, most women had 

between 80% and 100% European ancestry, with a median proportion of 0.94 (average = 0.93) 

(307). 
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2.6 Statistical Analysis 

2.6.1 Assessment of Hardy-Weinberg Equilibrium 

 

The Hardy-Weinberg Equilibrium (HWE) states that “under certain assumptions, the 

genotype and allele frequencies in a large, randomly mating population remain stable over 

generations and that there is a fixed relationship between allele and genotype frequencies” (283).  

 

   ∑
       

  

 
   , with 1 degree of freedom (df) 

Deviations from HWE will be measured through a Pearson’s chi-square test with the null 

hypothesis assuming that alleles are chosen randomly and that the observed genotype proportions 

match the expected genotype proportions (p
2
, 2pq, q

2
). However this goodness of fit test is 

sensitive to small sample size or rare allele frequencies and an exact test will be performed in 

these scenarios (308).   

There are several reasons that a SNP may deviate from HWE among controls, including 

genotyping error, chance, failure of HWE assumptions (i.e. random mating), population 

stratification, and even a true genetic disease association. Examining deviations from HWE 

among cases is not performed since this may reflect a true mutation and cannot be distinguished 

from genotyping error. Barring chance and assuming the other conditions under HWE to be 

minimal, any SNP with a p-value less than 0.05 will be considered in violation of HWE due to 

genotyping errors and excluded from further analyses.  

 

2.6.2 Genetic Model Specification 

 

There are several genetic model choices available to test whether a specific SNP is 

associated to breast cancer (309). If there is no prior information about mode of inheritance of 
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the variant, an additive or general (co-dominant) genetic model can be used to estimate having 

one or two copies of the variant. The additive model makes an additional assumption that the 

relationship between the log ORs is linear. For the additive model, genotypes are coded as an 

ordinal variable (‘0’ for no risk alleles, ‘1’ for a single copy of risk allele, and ‘2’ for both copies 

of the minor allele). This model generates two ORs, one comparing homozygote variant to 

homozygous wildtype (referent) and one comparing the heterozygote to the homozygous 

wildtype (referent). The additive model uses a 2 df test, while the dominant model uses a 1 df 

test. The dominant model assumes that one copy of the variant allele increases risk. Since many 

of our selected SNPs had non-polymorphic or rare homozygous variants, we used a dominant 

model for all SNPs. We combined the homozygous variant and heterozygous genotypes and 

compared them to the homozygous wildtype genotype to obtain a single effect estimate and 

corresponding 95% confidence intervals.  

2.6.3 Race-specific effects 

 

 We explored whether the effects of BER and TLS SNPs vary by race. Race was coded as 

a dichotomous variable, 0 for White and 1 for African-American, based on participant’s self-

reported race. Less than 2% of participants self-identified as another race and will be excluded 

from the analysis.  

Unconditional binary logistic regression will be used to estimate odds ratios (ORs) and 

95% confidence intervals (CIs) to capture race-specific effects of base excision genes (Specific 

Aim 1B) and DNA bypass polymerases (Specific Aim 2B)  with breast cancer, adjusted for age, 

proportion African ancestry, and offset term using  SAS version 9.3 (SAS Institute, Cary, NC) . 

The following binary model was used:  

 Logit [D=1|X=x] = α + β1X1 + β2 age + β3 ancestry + offset 
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where D represents the outcome of interest (invasive or in situ breast cancer) coded 

dichotomously as 0 for control and 1 for case, α represents the model intercept, β1 is equal to the 

log OR for the effect of each additional copy of the variant alleles and  x1 is equal to the number 

of copies of the variant allele. The offset term is designed to adjust for selection bias induced by 

randomized recrutiment sampling method. Each CBCS participant will have a value for the 

variable CBCSOFF (offset term).  

2.6.4 Subtype-specific effects  

Specific Aims 1B and 2B will assess potential heterogeneity of SNP effects across strata 

of breast cancer subtype. “Intrinsic” subtypes have been classified into 5 different categories: 

luminal A, luminal B, HER2+/ER-, basal-like, and unclassifed. However, different markers 

continue to emerge in defining subtypes and there are no universally accepted classifications of 

breast cancer subtype across studies. The major distinction between the two luminal subtypes are 

their proliferation signatures, measured by the expression of CCNB1, MKI67, and MYBL2 

(49). HER2 expression only identifies about 30% of luminal B tumors.  In the current study, we 

did not have information about these proliferation markers and therefore will combine luminal A 

and B tumors into a single ‘luminal’ category (48, 49). Furthermore, Leong et al. describe 

methodological issues in using IHC to detect HER2 expression (310). A recent study comparing 

concordance of PAM50 with IHC showed that ER positivity by IHC was strongly associated 

with luminal (A and B) subtypes (92%) (311). Therefore, we will conduct  a case-control 

analysis estimating three ORs:  luminal cases compared to controls,  HER2+/ER- cases 

compared to controls, and basal-like cases compared to controls. 
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2.6.4 Correction for multiple testing 

 

Conducting multiple tests in genetic association studies may increase the likelihood of 

obtaining false positives. A false positive occurs when a test statistic suggests that the null 

hypothesis should be rejected even though it is true.  We considered two different methods that 

control for the type 1 error rate. The Bonferroni method controls the family-wise error rate or the 

probability of at least one false positive. This method is computationally simple, dividing the p-

value cutoff (usually alpha= 0.05) by the number of tests conducted. While the Bonferroni 

correction method may be overly conservative for studies with thousands of multiple 

comparisons such as GWAS, it has been shown to be robust for up to a few hundred tests and 

easy to calculate (312). Furthermore, it is important to control the false negative rate. The false 

discovery rate or FDR has been touted a less conservative alternative to the Bonferroni method 

(313).  In FDR, p-values of each SNP are ranked, and all SNPs except the largest are corrected 

by multiplying by the total number of SNPs being tests divided by the p-value’s rank. Therefore, 

the FDR is the proportion of the rejected null hypotheses which were incorrectly rejected, or a 

type II error. FDR can be estimated using PROC MULTITEST in SAS (314). Ideally, it is 

important to balance both types of error. In this study, we will use FDR to adjust for multiple 

comparisons. 

However, both the Bonferroni and FDR make the independence assumption which may be 

violated if SNPs are found to be correlated (in high LD). LD refers to the non-random 

association between two alleles at two loci on a chromosome in a natural breeding population 

(283).Two SNPs are in LD if they are inherited together more often than expected by chance 

(285). There are several methods that measure linkage disequilbirum between SNPs including D’ 

and r
2
 (209, 315). The r

2
 statistic or correlation coefficient squared is a measure of how well the 
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identity of one allele at a polymorphic locus predicts the identity of the allele at another 

polymorphic locus. An r
2
=1.0 indicates that the examined loci are in “perfect LD” (209). The 

measure r
2
 is complementary to D’. r

2
 is equal to D

2
 divided by the product of the allele 

frequencies at the two loci. The absolute value of D’ is determined by dividing D by its 

maximum possible value, given the allele frequencies at the two loci. If D’=1, then SNPs are in 

complete LD. Values of D’<1 indicate that the complete LD has been disrupted. D’ values <1 

can be biased in small sample, therefore only D’ values close to one provide a useful 

information.  R
2
 has a more inituitive interpretation and will be used to evaluate potential LD in 

this study.  

2.6.5 Combined within-pathway effects 

 

When the number of susceptibility loci is small, the logistic regression model is an 

appropriate method for evaluating SNP-SNP interactions; however when there are multiple loci 

and interactions, the classical modeling approach may lack power due to high dimensionality of 

the data. There are several statistical methods available to reduce the dimensionality of the data 

and detect higher-order statistical interactions such as Monte Carlo methods, hierarchical 

modeling, machine learning, MDR, classification trees, and recursive partitioning (316-326) A 

common approach is to test the individual significance of each SNP, using the most significant p 

value as the p value for all the SNPs, then adjusting for multiple comparisons (327). However 

this test will have low power if the individual SNP are not in high LD with the causal variant. 

Omnibus tests for multiple SNPs or haplotypes allow for simultaneous analysis of all SNPs, but 

are based on a large number of degrees of freedom. To reduce the number of degrees of freedom, 

several approaches have used U-statstics, which summarizes the genomic similarity (genotype) 

to phenotype similarity (disease status) (328-331) . Kernel regression methods are closely related 
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to U-statistics in that they convert genomic information for a pair of individuals to a kernel score 

representing either similarity or dissimilarity, creating a positive semidefinite matrix when 

applied to all pairs of the individuals (332).  

In this proposed study, we will use a logistic kernel machine test (LKMT) as proposed by 

Wu to evaluate the combined effects of SNP in two biologically driven pathways (BER and 

TLS) using the software package SKAT(SNP-set Kernel Association Test) package in R. This 

pathway-based method combines machine learning and kernel regression models. First, a set of 

“different but correlated SNPs are grouped based on prior biological knowledge” to create a 

SNP-set. The formation of SNP-sets harnesses the LD between SNPs to increase power (328). 

This prior biological knowledge could be based on several potential correlations between SNPs, 

including physical proximity to a gene, evolutionarily conserved regions, and SNPs within a 

haplotype block (333). For the purposes of this study, we will group our SNPs based on 

established DNA repair pathways (BER and TLS). This will allow us to assess the combined 

effects of a panel of predetermined SNPs that interact in the same pathway.  

The second step evaluates the association between each SNP and breast cancer using 

logistic kernel-machine-based multi-locus test. This test combines the logistic kernel-machine 

testing approach of Liu (334) with the kernel framework suggested by Kwee (335). The LKMT 

uses a semi-definite kernel function to represent the influence of all SNPs in the SNP set. The 

choice of kernel changes the underlying basis for the nonparametric function defining the 

relationship between case-control status and the SNPs in the SNP-set. Choosing an appropriate 

kernel will increase power of the study. There are several choices for kernel type including 

linear, Gaussian, Identical-by-state (IBS), and weighted IBS (330, 333). In this study, we will use 
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a linear kernel since we are assuming a log linear model. The probability of being a case depends 

on the SNPs only through the function h(Z) therefore H0=h(z)=0. If the focus is hypothesis 

testing, the null hypothesis is h(Z)=0. Using a variance component score test, we will get an 

estimate for testing the global null hypothesis equals zero (333). A significant score test indicates 

that combined effects exist between SNPs. The estimate derived from this pathway-based test is 

a global p value representing the combined effect of individual SNPs in the BER and DNA 

bypass polymerases (TLS) pathways. Therefore, it may not be possible to estimate the 

interactions between pairs or sets of individual SNPs or distinguish which SNP is actually 

driving the association, if a significant association is found. Also, it is not possible to capture 

multi-SNP or epistatic effects among SNPs in separate SNP sets.   

This method has a number of advantages over other multi-SNP methods (330, 331, 336). 

There is no need for a parametric model a priori which allows for estimation of joint and 

nonlinear effects. While Schaid’s method makes the assumption that all variants have the same 

direction of effect, this method allows for flexibility in the functional relationship between the 

SNPs in a SNP set and the outcome. (330). Additionally, similar to hierarchical modeling, 

kernel-based machine learning logistic regression reduces the number of hypothesis being tested, 

which lowers the significance threshold and increases power. This is especially relevant for 

SNPs which have moderate or low individual effects. In summary, the advantages of this method 

are the reduced numbers of hypothesis being tested, improved power when SNP have modest 

effects, and model flexibility to account for non-linear effects. In addition, one of the most 

important features of this model is that it can simultaneously account for covariates, which is a 

limitation of most other similar methods (333). 
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2.7 Power calculations 

 

QUANTO Version 1.2.4 was used for power calculations (337). The study had a fixed 

sample size of 3,748 genotyped cases and controls with a control-case ratio of 0.90 (1,972 cases 

and 1,776 controls). For Whites, the overall sample size was 2,346 (1,229 cases and 1,117 

controls) with a control-case ratio of 0.91.  For African-Americans, the overall sample size was 

1,400 (742 cases and 658 controls) with a control-case ratio of 0.89. For luminal subtype 

calculations, the overall sample size was 2,571 (795 luminal cases vs. 1,776 controls) with a 

control-case ratio of 2.23. For basal-like subtype calculations, the overall sample size was 1,976 

(200 basal-like vs. 1,776 controls) with a control-case ratio of 8.88. For HER2+/ER- subtype 

calculations, the overall sample size was 1,870 (94 HER2+/ER- cases vs. 1,776 controls) with a 

control-case ratio of 18.9.We anticipated that the estimates for HER2+/ER- and basal-like 

subtype tumors will be less precise than those for luminal subtype tumors due to sample size 

limitations. Based on the previous literature of genetic association studies of DNA repair and 

breast cancer, we estimated effects ranging from OR=1.0 to OR=2.0. Tests for statistical 

significance were two-sided with an alpha level of 0.05. Given our sample sizes, assuming 80% 

power, we can detect minimum ORs of 1.2-1.4 depending on the MAF in Whites, 1.3-1.6 in 

African-Americans, and 1.5-1.9 for luminal subtype (Figures 12-16). 

2.8 Limitations 

 

2.8.1 Exposure (genotype) misclassification 

 

There is the potential for exposure misclassification due to genotyping errors in the 

laboratory. However, several measures were in place to minimize genotyping errors. In the 

overall study, blind duplicates of 169 samples were assayed to measure the reproducibility and 
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no SNPs were excluded. Assay intensity data and genotype cluster images were reviewed for all 

SNPs. Out of 2,039 cases and 1,818 controls, 103 subjects (64 cases and 39 controls) and 204 

samples had low call rates (<95%) for SNPs and were therefore excluded.   

In the current study, a total of 8 SNPs were excluded due to low signal intensity or 

indistinguishable genotype clusters. In addition, tests of Hardy-Weinberg equilibrium were 

conducted. Four SNPs in the BER pathway failed HWE and were excluded from subsequent 

analyses. Overall, there were 3,748 or 97% of enrolled participants (1,972 cases and 1,776 

controls) with successfully genotyped data. A comparison of participants with and without 

genotyped data did not show significant differences (data not shown).    

2.8.2 Outcome (phenotype) misclassification 

 

CBCS had detailed subtype data on tumors from a majority of cases (62%) allowing a 

unique investigation of the genetics of specific breast cancer subtypes. However, cases with 

subtype data were more likely to be African American and to have a later stage at diagnosis, 

which may bias estimates for SNPs related to race or disease aggressiveness (22). However, 

there were no significant differences for age, menopausal status, or family history between 

CBCS cases with and without subtyping data. 

In phase 2 of the CBCS, in situ cancers were enrolled in the study. There has been some 

debate to whether in situ cases should be included along with the invasive cases. Millikan argues 

that identifying risk factors in in situ tumors that occur during an earlier or intermediate stage of 

cancer progression may be informative for developing new preventive and treatment measures 

(74). Furthermore, studies have shown that in situ and invasive tumors share similar risk factor 

profiles and clinical features with effects in the same direction, albeit with varying magnitude of 

effects (70, 72, 338, 339).  
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Due to a lack of fresh frozen tissue samples, gene expression microarray analysis in 

CBCS phase 1 and 2 was not feasible and IHC was used as a proxy method in Phase 1 and 2 to 

subtype tumors. Several studies have evaluated the concordance between IHC and gene 

expression. While studies showed good correlation for ER and HER2 IHC markers with gene 

expression, there has been some debate on the lack of sensitivity for staining CK 5/6 in 

identifying basal-like cancers using IHC methods (58, 296). 

The definitions for “intrinsic” molecular subtypes are constantly evolving. We have yet 

to develop a standardized definition for the molecular subtypes. Therefore, comparability 

between study results may be compromised. In many studies, triple negative is used as a proxy 

for basal-like tumors. While approximately 70% of triple-negative breast cancers express basal 

markers, the remaining 30% are grouped together as unclassified (66). Cheang identified 

differences in prognostic values between basal-type and triple-negative cancers, with basal-like 

phenotype as a better prognostic predictor than triple-negative phenotype (340).Therefore, It is 

important to distinguish between triple-negative and basal-like subtypes (341). ER/PR status was 

successfully abstracted from medical records for 80% of cases. For the remaining 20% of cases, 

this data was obtained using IHC methods if tissue was available (281).  

2.8.3 Covariate misclassification 

 

CBCS participants self-reported their race during the baseline interview. Participants who 

self-reported race as other than White or African-American were excluded due to small sample 

size (2%). Barnholtz-Sloan 2005 reported that adjusting for individual European ancestry 

provided a better fit to the data compared with adjusting for self-reported race only 

(301).Therefore, all models in the study will be adjusted by AIMs to control for residual 

confounding by race (i.e. population stratification).  
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2.8.4 Selection bias  

 

The parent study made an intentional effort to oversample African-Americans into the 

study.  Younger African-American women have been traditionally understudied in breast cancer 

research therefore special efforts were made to include study counties with high proportions of 

African American women living in rural areas. There are also statistical advantages to 

randomized recruitment. Potential sampling bias from randomized recruitment was adjusted 

using an offset term in the analysis (278). Despite randomized design and intensive recruitment 

efforts, African-American women were less likely to be enrolled in the study compared to 

Whites. Among cases, older African-Americans had the lowest overall response rate (70.8%) 

while younger Whites had the highest overall response rate (82.7%). Among controls, younger 

African-Americans had the lowest overall response rates (47.8%) while older Whites had the 

highest (77.9%).  African-American in situ cases and controls were also were less likely to be 

selected into the study. 

The final data set included 1,809 white women (55%) compared to 1,505 African-

American women (45%). This could potentially have implications for power in detecting effects 

in African-Americans. Comparing MAFs in CBCS controls stratified by race to MAFs in public 

databases (i.e. HapMap) would be one method to assess potential selection bias. 

2.8.5 Missing data  

 

Out of total of 4,333 enrolled participants,  2,045 (88%) of cases and 1,818 (90%) 

controls provided a DNA sample at interview leaving 272 cases and 204 controls either had 

insufficient DNA for genotyping or did not have a sample for genotyping. There were 

differences between by race and case status for those who were genotyped successfully and those 

who were not. African-Americans and cases were less likely to have genotyped data (281). 
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However, there were no differences between genotyped and non-genotyped participants for age, 

race, and family history. In addition, 47% of enrolled cases did not have IHC data available for 

subtyping, but there were no differences between those with and without subtype information 

(307). 

There were a few novel bypass polymerase SNPs that were identified after CBCS 

completed its genotyping phase and as a result are not included in the analysis. Two recently 

identified bypass polymerases (POLK and POLN) were not genotyped in CBCS. Of significance, 

several SNPs in POLK (rs3213801, rs5744533, rs3756558) have been found to be significantly 

associated with pre-menopausal breast risk (p<0.05) (202) and interact with other Y family 

members (243, 255). 

In addition, although we had measured data on environmental/lifestyle risk factors, no 

gene x environment interactions were tested. This was after consideration of low power to detect 

interaction effects in the current study.  

2.9 Strengths of the study 

 

The innovative study design of integrating population-based epidemiology with genetic 

and molecular data is one of the main strengths of the study (275). The molecular subtyping of 

tumors has revealed new insights into the heterogeneity of breast cancer (22, 59, 72, 307).  In 

addition, the use of population-based controls representing women from the same geographic 

region strengthens the external validity of the study. The 24 study counties were selected to 

represent a larger African-American and rural population (281). In addition, CBCS took the 

initiative to collaborate with hospital registrars in the state to design the Rapid Case 

Ascertainment System, a system designed to minimize the delay in contacting cancer patients 

who may be otherwise been lost to study participation due to death or relocation.  
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 Another benefit of randomized recruitment was the oversampling of younger and 

African-American women to allow better representation of these two understudied subgroups 

(277). Probability matching increases the relative sample size for younger African-Americans. 

There are also advantages over traditional matching techniques such as frequency matching 

including the simultaneous recruitment of cases and controls in a more time efficient manner. 

Another advantage is the ability to estimate effects associated with matching factors with better 

precision than under random sampling (278).   

CBCS included a racially diverse study population that allowed for results to be stratified 

by race. Several CBCS studies have been able to report significant race-specific effects, which is 

important due to the differences in genetic architecture among those with African descent (342, 

343). . As mentioned above, LD block size tends to be shorter in admixed populations such as 

African-Americans due to genetic drift and recombination.  

Despite finding no significant main effects, a CBCS report found a XRCC1 SNP to be 

associated with African-American race.(92). Another CBCS report found several SNPs in NER 

genes to be associated with an increased risk in African Americans (344). Many earlier studies 

lacked the power to obtain precise estimates for African-Americans. Similarly, this proposed 

study will have the power to report race-specific estimates.  

This is one of the first studies to look at the effects of bypass polymerases on breast 

cancer risk. To date, only two other reports from the NHS II cohort have evaluated bypass 

polymerase SNPs in breast cancer (202, 213) .  
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2.10 Public health significance  

  

 The results of this proposed study may enhance our understanding of the complex 

biological processes involved in the development of breast carcinogenesis. The role of bypass 

polymerases in breast cancer has not been fully elucidated and this proposed study will be one of 

the first to further examine this association. Ultimately these results may inform future research 

on DNA bypass polymerases as potential targeted preventative strategies and therapies for breast 

cancer, especially for women with basal-like tumors that are resistant to traditional 

chemotherapy (345, 346). Furthermore, the CBCS dataset allows for the evaluation of both race-

specific and subtype-specific associations. Since younger African-Americans carry a 

disproportionate burden of basal-like disease, the results derived from this study will be directly 

generalizable to this high-risk subgroup. In the future, the hope is that cancer therapies can be 

selected based on genomic profiles that identify tumor subtypes and other biological markers 

(347).  
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Figure 6. Carolina Breast Cancer Study Area (Phase 1 and 2) 
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Table 5. CBCS Sampling Probabilities 

 

Phase I invasive cases Age <50 Age ≥ 50 

African American  100% 75% 

White 67% 20% 

Phase II invasive cases   

African American 100% 100% 

White 50% 20% 
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Table 6. Base Excision Repair SNPs 

 

Gene

Type of 

variant

Original SNP 

set selected

Failed Pre-

genotyping

Failed Post-

genotyping

Successfully 

Genotyped

Allele Not 

Polymorphic
Failed HWE 

Included in 

Final Analyis

XRCC1 Arg194Trp rs1799782 rs1799782 rs1799782

Arg280His rs25489 rs25489 rs25489

Arg399Gln rs25487 rs25487 rs25487

N576T rs2307177 rs2307177 

V72A rs25496 rs25496 rs25496 (W) rs25496 (AA)

3'UTR rs2682558 rs2682558 rs2682558

T304A rs25490 rs25490 

5'UTR rs3213245 rs3213245 

APE1 Asp148Glu rs3136820 rs3136820 rs3136820

5'UTR rs1760944 rs1760944 

Q51H rs1048945 rs1048945 rs1048945 (AA) rs1048945 (W)

OGG1 Ser326Cys rs1052133 rs1052133 rs1052133

A85S rs17050550 rs17050550 

R229Q rs1805373 rs1805373 rs1805373 (W) rs1805373 (AA)

MUTYH Gln324His rs3219489 rs3219489 rs3219489

R507Q rs3219497 rs3219497 rs3219497 (W) rs3219497 (AA)

V8M rs3219484 rs3219484 rs3219484 

MBD4 splice rs140696 rs140696 rs140696

E346K rs140693 rs140693

S342P rs2307289 rs2307289 rs2307289 (W) rs2307289 (AA)

A/T/ S 273 rs10342 rs10342 

MPG 5'UTR rs710079 rs710079 

rs3176380 rs3176380

rs2234890 rs2234890 

rs710080 rs 710080 rs710080

NTHL1 D239Y rs3087468 rs3087468 rs3087468 

TDG G199S rs4135113 rs4135113 rs4135113 

(AA)V367L rs2888805 rs2888805 

5'UTR rs4135038 rs4135038

UNG 3'UTR rs1018784 rs1018784 

3'UTR rs3219275 rs3219275 rs3219275 (W) rs3219275 (AA)

7
9
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POLB Splice rs2307155 rs2307155 

P 242 R rs3136797 rs3136797 rs3136797 (AA) rs3136797 (W)

LIG3 R 867 H rs3136025 rs3136025 rs3136025 (W) rs3136025 (AA)

5'UTR rs12945428 rs12945428 

3'UTR rs4796030 rs4796030 rs4796030 

NEIL1 D 252 N rs5745926 rs5745926 rs5745926 (W) rs5745926 (AA)

NEIL2 R 103 W rs8191612 rs8191612 

R 103 Q rs8191613 rs8191613 rs8191613

R 257 L rs8191664 rs8191664 rs8191664 (AA) rs8191664 (W)

3'UTR rs1534862 rs1534862 rs1534862

SMUG1 3'UTR rs3136391 rs3136391 rs3136391 (W) rs3136391 (AA)

5'UTR rs3087404 rs3087404 rs3087404

POLE2 L 458 V rs34574266 rs34574266 

PCNA intron rs25406 rs25406 rs25406

intron rs17352 rs17352 rs17352

splice rs17349 rs17349 rs17349

3'UTR rs3626 rs3626 

RFC1 splice rs17288820 rs17288820 rs17288820 (W) rs17288820 (AA)

I 598 V rs2066791 rs2066791 rs2066791 (W) rs2066791 (AA)

5'UTR rs17287851 rs17287851 rs17287851 (W) rs17287851 (AA)

FEN1 5'UTR rs412334 rs412334 rs412334

3'UTR rs4246215 rs4246215 

PARP1 K 123 R rs1805407 rs1805407

V 762 A rs1136410 rs1136410 rs1136410

A 188 T rs1805409 rs1805409 rs1805409

5'UTR rs907187 rs907187 

PARP3 S 92 N rs34224216 rs34224216 rs34224216

Q 270 R rs323870 rs323870 rs323870

Table 6. continued

8
0
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Table 7. Bypass polymerase SNPs 

Gene
Type of 

variant
Original SNP 

set selected

Failed Pre-

genotyping

Failed Post-

genotyping

Successfully 

Genotyped

Allele Not 

Polymorphic Failed HWE 

Included in 

Final Analyis

POLH T 329 I rs 35675573 rs 35675573 rs 35675573

M 647 L rs 6941583 rs 6941583 

M 595 V rs 9333555 rs 9333555 rs 9333555

3'UTR rs 6899628 rs 6899628 rs 6899628

upstream rs 9333500 rs 9333500 

POLI H 449 R rs 3730823 rs 3730823 rs 3730823

F 507 S rs 3218786 rs 3218786 rs 3218786

A 706 T rs 8305  rs 8305  rs 8305  

POLL R 438 W rs 3730477 rs 3730477 rs 3730477

splice rs 3730475 rs 3730475 rs 3730475

T 221 P rs 3730463 rs 3730463 rs 3730463

POLM V 246 F rs 28382653 rs 28382653 rs 28382653

G 220 A rs 28382644 rs 28382644 rs 28382644

E 107 D rs 28382635 rs 28382635 rs 28382635

POLQ A 581 V rs 487848 rs 487848 rs 487848

H 1201 R rs 3218651 rs 3218651 rs 3218651

A 2304 V rs 532411 rs 532411 rs 532411

Q 2513 R rs 1381057 rs 1381057 rs 1381057

L 2538 V rs 3218634 rs 3218634 rs 3218634

R 1953 Q rs 3218637 rs 3218637 rs 3218637

T 982 R rs 3218649 rs 3218649 rs 3218649

R 66 I rs 702017 rs 702017 rs 702017

REV1L V 138 M rs 3087403 rs 3087403 rs 3087403

F 257 S rs 3087386 rs 3087386 rs 3087386

N 373 S rs 3087399 rs 3087399 rs 3087399

REV3L Y 1078 C rs 458017 rs 458017 rs 458017

S 1142 L rs 3218600 rs 3218600 

T 11461 I rs 462779 rs 462779 

P 1713 S rs 17539651 rs 17539651 rs 17539651

V 2986 I rs 3204953 rs 3204953 

8
1
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Figure 7. Enrolled cases with genotyped data 

 

  

Contact rate: 3292/3360=98% Contact rate: 3706/4465=83.0%

Cooperation rate: 2412/3042=79.3% Cooperation rate: 2243/3164=70.9%

Overall response rate: 2412/3110=77.6% Overall response rate: 2243/3923=57.2%

CBCS Cases CBCS Controls

3360 Sampled 4465 Sampled

220 MD Refusals

221 Ineligible 441 Ineligible

39 Deceased 101 Deceased

68 Unlocatable 759 Unlocatable

2811 Eligible 3164 Eligible

410 cases refused 921 controls refused 

133 mini surveys 255 mini surveys

2279 Enrolled 1988  Enrolled

260 Did not provide 

DNA sample

40  Did not provide 

DNA sample

2019 with DNA 

sample

1948 with DNA 

sample

201 Insufficient DNA/

Failed genotyping QC Failed genotyping QC

1946 successfully 

genotyped

1747 successfully 

genotyped

736 No tumor tissue/

Subtype incomplete

1210 successfully 

subtyped

73 Insufficient DNA/
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Table 8. Subtype distribution by race 

 

 

Tumor Subtype 
White 

 N (%) 

African-American  

N (%) 

Luminal (n= 788) 601(70.9) 332 (57.0) 

Basal-like (n=199) 

 

103(12.2) 122 (21.0) 

 

HER2+/ER- (n=94) 68 (8.1) 48 (8.3) 

 

Unclassified (n=129) 71 (8.4) 79 (13.6) 

      

Total N=1210 843 581 
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Figure 8. Enrolled cases with complete IHC and genotyped data

Reason for exclusion

Submitted tumor tissue (N=1845) No tissue provided (N=466)

No subtype data available (N=752)

Luminal A Luminal B HER2+/ER- Basal-like Unclassified

N=796 N=137 N=116 N=225 N=150 Not successfully genotyped (N=204)

Complete IHC and genotyped data (N=1220)

Luminal A Luminal B HER2+/ER- Basal-like Unclassified

N=679 N=116 N=94 N=200 N=131

Sent for IHC analysis (N=1424)

2311 cases enrolled
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      From O’Brien 2013 

 

Figure 9. Directed Acyclic Graph (DAG) 
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Figure 10. Confounding by ancestry 

From Walchoder 2000



 

 

 

Table 9. Set of 144 Ancestry Informative Markers (AIMs) 

rs12094678 rs11264110 rs10908312* rs7161* rs6666101 rs7512316 rs4659762 rs12129648 rs798443 rs12612040 rs1508061 rs7575147* 

rs3755446 rs10195705 rs1257010 rs4149436 rs17049450 rs17261772 rs1117382 rs1372115 rs12692701 rs1982235 rs7424137 rs12997060 

rs10202705 rs3791896 rs11901793 rs155409* rs1303629 rs13318432 rs2660769 rs1462309 rs6414248 rs1256197 rs13080353* rs6765491 

rs9849733 rs833282 rs4859147 rs6820509 rs2687427 rs9306906 rs4619931 rs12640848 rs7689609 rs10028057* rs6535244 rs385194 

rs1372894 rs316598 rs13169284 rs16891982 rs10056388 rs13173738 rs10041728 rs33957 rs1917028 rs1380014 rs13178470 rs6556352 

rs857440 rs2451563 rs10806263 rs6937164 rs4896780* rs10952147 rs7810554 rs7788641 rs17520733 rs10254729 rs10255169 rs344454 

rs4602918 rs4143633 rs1870571 rs12676654 rs13261248 rs9297712 rs7021690 rs10124991 rs1415723 rs3861709 rs10962612* rs1885167*

rs2777804 rs1412521 rs870272 rs2488465 rs1335826 rs9416972 rs1733731 rs2184033 rs4529792 rs503677 rs9416026 rs11000419 

rs1911999 rs1125217* rs7107482 rs11607932 rs7111814 rs11223503 rs2416791 rs1490728 rs10842753 rs7134682 rs328744 rs3759171 

rs2596793 rs645510 rs9525462 rs9543532 rs4885162 rs9530646 rs6491743 rs1477921 rs222674 rs2246695 rs710052 rs12900552 

rs1470608 rs12900262 rs4489979 rs7086 rs4923940 rs12594483 rs567357 rs735480 rs1426654* rs17269594 rs6494466 rs9806307 

rs4506877 rs4350528 rs9923864 rs7187359 rs12926237 rs11150219 rs7189172 rs1862819 rs4792105 rs12945601 rs1043809 rs2593595 

rs4793237 rs228768 rs11652805 rs4789070 rs897351 rs8113143 rs1991818 rs1011643 rs2426515 rs6023376 rs4811651* rs2075902 

rs4823460 

*SNPs which failed genotyping (i.e. weak signal intensity or in distinguishable genotype clusters)8
7
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Figure 11. Classification schema for tumor subtypes 
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Figure 12. Power curves for African Americans  

 

Assumptions: Additive genetic model: two-sided α=0.05; Control to Case Ratio:  

0.89 P(Breast Ca at baseline)=0.01 
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Figure 13. Power curves for Whites 

 

Assumptions: Additive genetic model, two-sided α=0.05; Control to Case Ratio: 

0.91; P(Breast Ca at baseline)=0.01 
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Figure 14. Power curves for luminal vs. controls 
 

Assumptions: Additive genetic model, two-sided α=0.05; Control to Case Ratio: 2.2 

P(Breast Ca at baseline)=0.01 
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Figure 15. Power curves for Basal-like vs controls 
 

Assumptions: Additive genetic model, two-sided α=0.05; Control to Case Ratio: 8.8 

P(Breast Ca at baseline)=0.01 
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Figure 16. Power curves for HER2+/ER- vs controls 

 

Assumptions: Additive genetic model, two-sided α=0.05; Control to Case Ratio:18.8  

P(Breast Ca at baseline)=0.01 
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CHAPTER 3.  SINGLE NUCLEOTIDE POLYMORPHISMS IN BASE EXCISION 

REPAIR PATHWAY GENES AND ASSOCIATION WITH BREAST CANCER AND 

BREAST CANCER SUBTYPES AMONG AFRICAN AMERICANS AND WHITES 

 

3.1 Introduction 

 

 The role of DNA repair in the initiation and progression of cancer has been the subject of 

much investigation, both experimental and epidemiologic.  Evidence has supported the role of 

deficient DNA repair as biologically relevant for breast tumorigenesis, including rare and highly 

penetrant mutations in BRCA1, a tumor suppressor gene that plays an essential role in the 

promotion and regulation of DNA repair (348). However, BRCA1 mutations and rare variants of 

other genes appear to only account for 15-20% of suspected genetic predisposition to breast 

cancer, leaving the majority of genetic risk of breast cancer unexplained (349).   

  DNA repair pathways, including base excision repair (BER), nucleotide excision repair 

(NER), mismatch repair (MMR) and double-strand break repair (DSB), homologous 

recombination (HR) and non-homologous end-joining (NHEJ) have been investigated in 

experimental systems and epidemiologic studies. The BER pathway is primarily responsible for 

the repair of DNA damage induced by X-rays, oxygen radicals, and alkylating agents. BER is 

specialized to repair non-bulky DNA base lesions such as base adducts and abasic sites (105). No 

consistent associations between common genetic variation in BER genes and breast cancer risk 

were observed in previous genetic association studies conducted to date including several meta-

analyses (137-139, 141-143, 145, 146, 162, 177-180, 182-184, 186, 187, 189, 190, 194, 206-208, 

212, 350-355). It is possible that conflicting results among study findings may be explained by 
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heterogeneity of association according to tumor subtype and limited coverage of the BER 

pathway. There may also be different associations by race.   

 We conducted a candidate pathway analysis of BER gene variants using data from the 

Carolina Breast Cancer Study (CBCS). CBCS, a large population-based case-control study with 

a racially diverse study population (40% African American and other non-Whites) and data on 

tumor subtype, offered an important resource to evaluate both subtype and race specific effects.  

Previous CBCS reports examined functional SNPs in XRCC1 (rs1799782, rs25487, and 

rs25489) (92, 208); in this report we had substantial coverage of the candidate SNPs in BER, 

including 15 BER genes and 31 associated SNPs. 

3.2 Materials and Methods 

3.2.1 Study population 
 

The Carolina Breast Cancer Study (CBCS) is a population-based case-control study of 

breast cancer conducted in 24 counties of central and eastern North Carolina and has been 

described previously (275, 356). Briefly, rapid case ascertainment was implemented to identify 

cases from the North Carolina Central Cancer Registry (NCCCR) (277). Eligible cases included 

women ages 20-74, living in the study procurement area during the period of study enrollment, 

diagnosed with a primary invasive breast cancer between 1993 and 1996 (Phase 1) and 1996 and 

2001 (Phase 2). In Phase 2 of the study, in situ cases of breast cancer were also eligible. Eligible 

controls were identified using Department of Motor Vehicles (DMV) records for women under 

age 65 and Health Care Financing Administration lists for women ages 65 and older. Controls 

were frequency matched to cases based on race and age using randomized recruitment to 

oversample African American and younger women (278). This study was approved by the 

Institutional Review Board of the University of North Carolina at Chapel Hill.  
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3.2.2 Baseline Study Visit 

 

Study subjects who met eligibility criteria and provided written informed consent were 

scheduled for an in-home visit that included an interview and specimen collection by a trained 

study nurse. In addition, during the in-home visit breast cancer cases were asked to provide 

permission to obtain medical records and tumor tissue. The nurse-administered interview 

collected information about demographics and known and suspected breast cancer risk factors 

such as family history, personal medical history, occupational history, and reproductive factors. 

At the end of the interview, the nurse interviewer collected a 30 mL blood sample. Blood 

samples were collected from 88% of cases and 90% of controls. Whites were more likely to 

provide blood samples than African Americans (88% vs. 83%), but there were no significant 

differences in other risk factors for those who provided a blood sample and those who did not 

(281, 282). A total of 2,311 cases (894 African American and 1,417 Whites) and 2,022 controls 

(788 African Americans and 1,234 Whites) were successfully enrolled in Phase 1 and 2 of the 

study. This included 862 cases and 790 from Phase 1.  The overall response rates for cases and 

controls were 78% and 57% respectively. Other study response rates have been reported 

previously (281).       

3.2.3 SNP selection and genotyping 

         

 We searched SNP500 (http://snp500cancer.nci.nih.gov) and dbSNP 

(http://www.ncbi.nlm.nih.gov/SNP) databases and selected 58 SNPs in 19 BER genes based on  

in vitro or in silico functional effect in BER or previously published studies in the breast cancer 

literature. These SNPs included non-synonymous missense, regulatory (5’UTR and 3’ UTR), and 

intronic variants (including splice SNPs) with a minor allele frequency (MAF) of at least 5% in 

African Americans or Whites (Table 11).   

http://snp500cancer.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/SNP
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DNA was extracted from peripheral blood lymphocytes by standard methods using an 

automated ABI-DNA extractor (Nuclei Acid Purification System, Applied Biosystems, Foster 

City, CA, USA)  (356). High-throughput genotyping of selected SNPs was conducted as part of a 

larger set of 1536 SNPs by the UNC Mammalian Genotyping Core using Illumina GoldenGate 

assay (Illumina, Inc., San Diego, CA) (290).  Assay intensity data and genotype cluster images 

for all SNPs were reviewed individually. Overall, 1,373 of 1536 (89%) SNPs passed quality 

control. Out of the 41 genotyped BER SNPs, we excluded 4 SNPs for which genotyping resulted 

in poor signal intensity or genotyping clustering, as well as, loci that were non-polymorphic 

overall  (rs1805409 and rs34224216) or in either race (11 SNPs in Whites, 3 SNP in African 

Americans). Among the remaining SNPs, 4 SNPs (rs2682558, rs710080, rs4135113, and 

rs323870) failed Hardy Weinberg Equilibrium (HWE) (p<0.05) and were excluded from further 

analysis (Table 12). Our final analysis included genotyped data for 31 SNPs in the base excision 

pathway in 1972 of 2311 (85%) cases and 1776 of 2022 (88%) controls. In addition 144 ancestry 

informative markers (AIMs) were also genotyped to estimate African and European ancestry 

(281). 

3.2.4 IHC analysis and subtype ascertainment 

 

Immunohistochemical (IHC) markers were used as a surrogate for gene expression based 

subtyping (58). IHC staining and scoring procedures have been explained previously in detail 

(22, 53, 58, 59). Briefly, tumor tissue blocks were used to confirm diagnosis by a pathologist and 

to conduct IHC subtyping. Formalin-fixed paraffin-embedded (FFPE) tumor tissue was available 

80% of cases and immunohistochemistry was completed for 62% of cases. ER/PR status was 

abstracted from medical records for 80% of cases while IHC was used for the remaining 20% of 

cases. The concordance between these two methods was 81% (307). A total of 1424 (77% of 
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available tumor blocks) were successfully subtyped and classified into one of five “intrinsic” 

subtype groups:  luminal A (ER+ and/or PR+, HER2-, luminal B (ER+ and/or PR+, HER2+), 

HER2+/ER- (ER-, PR-, HER2+), and basal-like (ER-, PR-, HER2-, HER1+ and/or CK 5/6+), 

with those negative for all 5 markers considered ‘unclassified’ (59). 

For the current study, we classified tumors as either luminal (ER+ and/or PR+; n=788), 

basal-like (ER-, PR-, HER2-, CK 5/6+ and/or EGFR+; n=199) or HER2+/ER- (n=94). We 

excluded ‘unclassified’ tumors from further analysis due to their uncertain status. The major 

distinction between the two luminal subtypes are their proliferation signatures, measured by the 

expression of CCNB1, MKI67, and MYBL2 (49). HER2 expression only identifies about 30% of 

luminal B tumors.  In the current study, we did not have information about these proliferation 

markers and therefore combined Luminal A and B tumors into a single ‘luminal’ category (48, 

49). Additionally, most other studies do not have subtype data available and only have estrogen 

receptor status data. Therefore, we conducted an additional exploratory analysis using estrogen 

receptor (ER) status to evaluate comparability to “intrinsic” subtype results. We found that ER 

positive effects were concordant with luminal subtype results; while ER negative (ER-) effects 

correlated with those of basal-like and HER2+/ER- subtypes (Table 15). There were no 

differences between CBCS cases with and without subtyping data in terms of age, menopausal 

status, or family history. 

3.2.5 Statistical analysis 

 

We calculated allele and genotype frequencies stratified by case status and self-reported 

race (African American or White). We assessed departure from HWE for each locus by 

comparing expected versus observed genotype frequencies among race-specific (White and 

African American) controls using exact χ2 tests (p<0.05). We calculated pairwise linkage 
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disequilibrium (LD) r
2 

using SAS Genetics (version9.1.3) (SAS Institute, Cary, NC) stratified by 

race (Table 17). 

We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% 

confidence intervals (CIs) for race-stratifed effects of base excision repair SNPs on breast cancer, 

based on the additive model. We coded genotype as an ordinal variable (0, 1, or 2 for the number 

of minor alleles carried by the individual). If the minor allele frequency (MAF) differed by race, 

the more common allele in Whites was used as the referent group for both populations. We 

excluded non-polymorphic SNPs or SNPs with a minor allele frequency of less than 0.05 in 

either race. Less than 2% of participants self-identified as another race and were not included in 

the final analysis. We adjusted for proportion of African ancestry, as measured with a set of 144 

ancestry informative markers (AIMs) (297, 306). Final models were adjusted for age at 

diagnosis, proportion of African ancestry and offset term for the sampling design (278). 

3.2.6 Subtype analyses 

 

We coded breast cancer subtype as a categorical variable with four levels (control, 

luminal, HER2+/ER-, and basal-like).  We used unconditional polytomous regression models to 

estimate ORs and 95% CI for each subtype compared to controls. 

3.2.7 Correction for multiple testing 

 

We used FDR correction for multiple testing, following the method of Benjamini and 

Hochberg (313). The false discovery rate is defined as “the expected proportion of errors among 

the rejected hypotheses” (313). Corrections were based on the number of SNPs tested and were 

performed separately for African American and Whites in the race-stratified analysis and 

separately for luminal, HER2+/ER- and basal-like categories in the subtype analysis. Observed 
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p-values from the additive model were used to determine q-values. The q-value is defined as the 

minimum FDR that can be attained when calling a SNP significant (i.e., expected proportion of 

false positives) (314). Q-values were computed using the software package R. Statistical 

significance was set at q<0.10.  

3.2.8 Pathway-based analysis  

We used SKAT (SNP-set Kernel Association Test) to evaluate the combined effects of 

the genotyped SNPs in the BER pathway (333). A SNP-set refers to a set of related SNPs that are 

grouped based on prior biological knowledge. In the case of the current study, SNP groups were 

defined based on the base excision repair pathway (333).  The formation of SNP-sets harnesses 

the potential correlation between SNPs to increase power (328). We chose a linear kernel since 

we assumed a log linear model. Kernel regression methods convert genomic information for a 

pair of individuals to a kernel score representing either similarity or dissimilarity. When applied 

to all pairs of the individuals, this information formed a positive semi-definite matrix (332). We 

tested the global hypothesis for SNPs in the pathway separately for White and African American 

participants (333).  

3.3 Results 

 

Characteristics of the study population with genotyping data are described in Table 10. 

The distributions of age, proportion of African ancestry, and menopausal status were similar 

between cases and controls. African American cases were more likely to be diagnosed at a later 

stage and were more likely to have tumors that were ER negative. African Americans were more 

likely to be classified as having basal-like tumors compared to Whites (22% vs. 11%). 
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3.3.1 Genotype associations by race 

 

The race-stratified odds ratios for BER SNPs are summarized in Table 13. Across both 

race groups, six SNPs from 4 BER genes (OGG1, NEIL2, PCNA, and UNG) were associated 

with an increased or decreased breast cancer risk under the additive model (p<0.05). Among 

Whites, the results revealed that OGG1 rs1052133 and NEIL2 rs1534862 were significantly 

associated with an increased risk in breast cancer (rs1052133 CG/CC vs. GG, OR= 1.17, 95% 

CI: 1.01-1.36, P = 0.036; rs1534862 CT/TT vs. CC, OR=1.24; 95% CI: 1.07-1.44, P=0.004). 

Two SNPs in PCNA were inversely associated with breast cancer (rs17349 CT/TT vs. CC, 

OR=0.79; 95% CI: 0.64- 0.96, P=0.019; rs17352 AC/CC vs. AA, OR=0.76; 95% CI: 0.63-0.93, 

P=0.007), respectively. Among African Americans, we found another NEIL2 SNP to be 

inversely associated with risk of breast cancer (rs8191613 AG/AA vs. GG, OR=0.72; 95% CI: 

0.52-0.98, P=0.038). UNG rs3219275 was also associated with a significant increased risk of 

breast cancer (rs3219275 AT/AA vs. TT, OR=1.44; 95% CI: 1.01-2.06, P=0.044). After 

adjustment for multiple testing, only 2 SNPs (NEIL2 1534862 and PCNA 17352) remained 

significant (q=0.10). 

3.3.2 Genotype associations by subtype 

 

In the tumor subtype analysis, the NEIL2 SNP (rs1534862) was positively associated 

with luminal and HER2+/ER- breast cancer (rs1534862 CT/TT vs. CC; OR=1.27; 95% CI: 1.06-

1.52; P=0.009 and OR=1.68; 95% CI: 1.09-2.57; P=0.018), respectively (Table 14). We also 

found a significant inverse association between FEN1 SNP (rs412334) and basal-like breast 

cancer (rs412334 AG/AA vs. GG; OR=0.56; 95% CI: 0.35-0.88; P=0.011). The ER+ SNPs 
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correlated with luminal SNPs while ER- SNPs correlated with HER2+/ER- and basal-like SNPs 

(Table 15). However, after FDR adjustment for multiple testing, none of these SNPs remained 

significant (q=0.10).  

3.3.3 Pathway-based analysis 

 

We assessed the global p-value for two different SNP-sets (African American and White) 

using the SNP-set Kernel Association Test (SKAT), adjusted for AIMs, and offset term.  We did 

not find any significant associations. A Kernel machine test of no linear effects yielded a global 

p-value of 0.84 and 0.16 for African Americans, and Whites, respectively (Table 16). 

3.4 Discussion  

 

We found evidence for both race- and subtype -specific associations between BER 

variants and breast cancer risk. Some associations represent new findings. In Whites, 2 SNPs 

were associated with an increased risk (OGG1 rs1052133 and NEIL2 rs1534862) and 2 SNPs in 

high LD (r
2
=0.95) in PCNA (rs17349 and rs17352), had an inverse association (Table 13). In 

African Americans, we found a NEIL2 SNP (rs8191613) to be associated with a reduced risk and 

UNG rs3219725 to be associated with an increased risk. Two previous CBCS studies, based on 

the first study phase (1993-1996) had evaluated the association between XRCC1 SNPs 

(rs1799782, rs25487, and rs25489) and breast cancer risk (92, 208).  Duell et al. found XRCC1 

rs1799782 to be significantly associated with risk among African Americans (92); however we 

were unable to replicate this finding in the current analysis, underscoring the contribution of 

small study size to unstable genetic associations. The current study, that includes participants 

recruited from 1993 to 2001, has increased power, essentially doubling the sample size from 

Phase 1 only.   
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Also contributing to previous discordance in BER-pathway genetic associations, distinct 

tumor subtypes show heterogeneity in their associations with BER SNPs. This subtype- specific 

analysis showed NEIL2 rs1534862 to be associated with luminal and HER2+/ER- subtype. FEN1 

rs41334 was associated with basal-like subtype. Previous studies have indicated that other risk 

factor profiles (both genetic and environmental) may differ by tumor subtype and race and our 

suggestive associations require further investigation (22, 357) 

We identified SNPs in several DNA glycosylases (OGG1, UNG, and NEIL2) as being 

associated with breast cancer. To date, there are 12 known DNA human glycosylases that play an 

important role in the initial recognition and repair of a DNA lesion (106). DNA glycosylates 

initiate repair by releasing the modified/damaged base out of the double helix and cleaving the 

N-glycosidic bond of the damaged base (105). The human 8-oxoguanine DNA glycosylase 

(hOGG1) gene located on chromosome 3p26 in exon 7 encodes the bifunctional glycosylase that 

is primarily responsible for the accurate excision of 7,8-dihydro-8-oxoguanine (8-oxoG) (358). 

8-OxoG, a product of oxidative stress, can cause a G-T transversion during DNA replication if it 

not removed.  OGG1 variants have been shown to be highly mutagenic in mice and in vitro 

studies (219, 359). Additionally, OGG1 rs1052133 has been one of the most studied variants in 

breast cancer genetic association studies. Several initial functional studies showed the OGG1 

variant to be associated with reduced DNA repair activity.  In one such study, Vodicka et al. 

found that the capacity to repair oxidative DNA damage was significantly decreased in 

individuals homozygous for the variant (GG) genotype compared to other genotypes (360). 

Subsequently, functional and epidemiological studies that evaluated the role of OGG1 rs1052133 

with breast cancer risk in White and Asian populations showed inconsistent main results (137, 

139, 141, 143, 145, 361). With the exception of a Thai case-control study that reported a 
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subgroup effect with postmenopausal breast cancer (OR=2.05; 95% CI: 1.14-3.67) (138), all 

other studies yielded effect estimates close to or at the null. In the current study, we also found 

CC genotype to be associated with slightly increased breast cancer risk in Whites, however we 

did not have sufficient sample size to evaluate the OGG1 SNP by premenopausal status. 

While various UNG variants have been shown to be associated with colorectal cancer, 

glioblastoma, B cell lymphoma, and esophageal squamous cell carcinoma, (106, 120) previous 

studies have not identified associations between variants in UNG and breast cancer risk. We are 

the first to report a significant increased risk of breast cancer among African Americans.  UNG is 

a monofunctional glycosylase that is involved in removing uracil from DNA as a result of 

spontaneous deamination (362). This spontaneous deamination reaction occurs during hydrolysis 

of cytosine into uracil. If the uracil is not removed before DNA replication, deamination of 

cytosine can result in a GC to AT transition mutation, which may potentially lead to 

carcinogenesis. Our result for rs3219725, which is located in the 3’UTR of the gene, may 

indicate a novel regulatory SNP associated with breast cancer risk in African Americans; 

however this finding requires replication in a larger group of African Americans.  

NEIL2 is a part of a newly discovered family of monofunctional DNA glycosylases 

(106). Laboratory studies have shown that NEIL2 plays an important role in the repair of 

oxidized bases such as pymidines and cytosines (109, 148). Specifically, this NEIL protein 

cleaves the DNA backbone to generate a single-strand break at the site of the removed base with 

both 3'- and 5'-phosphates (114). NEIL2 was shown to interact with POLB and LIG3 in the short-

patch pathway (109, 110, 150). Variants in NEIL2 have been previously associated with 

increased risk in colorectal, head and neck and lung cancers. One report from the Cancer Genetic 

Markers of Susceptibility (CGEMS) Project noted a pair of SNPs in NEIL2 (rs8191649 and 
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rs8191642) to be significantly associated with premenopausal breast cancer (p<0.02) (202). In 

the current study, we found a non-synonymous missense mutation in NEIL2 to be associated 

with a decreased risk of breast cancer (rs8191613 AG/AA vs. GG; OR=0.72, 95% CI: 0.52-0.98) 

in African Americans. Further, we found NEIL2 rs1534862, located in the 3’UTR of the gene, to 

be associated with an increased risk of breast cancer in Whites and two subtypes (Luminal and 

HER2+/ER). Therefore, these NEIL2 SNPs represent a novel finding in association with breast 

cancer risk by race, and subtype.  

FEN1 and PCNA are both genes involved in the ligation step of BER, specifically the 

long-patch repair pathway (112). While most ligation occurs via the short-patch, long-patch 

repair is activated when polymerase beta lyase activity is unavailable. Specifically, PCNA 

elongates the 3’-OH into the repair gap and FENI1 acts as an endonuclease to remove the 5’ flap. 

We found PCNA rs17349 and 17352 to be associated with a significant decreased risk of breast 

cancer in Whites. These SNPs were also in almost complete LD (r
2
=0.95). Several animal 

models have associated PCNA mutations with cancer and genomic instability (203). A 2000 

study that sequenced 9 coding variants in PCNA (all different that the ones selected herein) 

showed no associations with melanoma, breast cancer or lung cancer in a small group of 60 

individuals compared with healthy controls (204). Furthermore, we found FEN1 rs412334 to be 

associated with both basal-like and ER negative- breast cancer.  A recent study showed 

overexpression and hypomethylation of FEN1 in breast cancer cell lines (197). To our 

knowledge, there are no previous epidemiological studies that evaluated FEN1 SNPs and breast 

cancer risk. 

These findings should be considered in light of strengths and limitations of our study. 

Compared to other genetic association studies of breast cancer, CBCS has a sufficient sample of 
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African Americans. In addition, CBCS has detailed subtype data on tumors from a large 

population-based sample of women allowing a unique investigation of the genetics of specific 

breast cancer subtypes. Stratification of the dataset by subtype does reduce power for some race-

specific and subtype comparisons, especially for HER2+/ER- and basal-like tumors. Phase 3 of 

the CBCS which is underway, uses a case-only design to add 3,000 newly diagnosed breast 

cancer cases with equal numbers for the four race/age subgroups (750 each). Future research in 

Phase 3 will have improved power to clarify these subtype associations.  

We had genotype and subtype data for a large proportion of CBCS participants. 

However, 47% were missing IHC-based subtype data due primarily to unavailable tumor blocks. 

A comparison of subtyped and non-subtyped CBCS cases showed that the subtyped cases were 

not different from the CBCS as a whole with respect to age and menopausal status. However, 

cases with subtype data were more likely to be African American and to have a later stage at 

diagnosis, which may bias estimates for SNPs related to race or disease aggressiveness (22). In 

addition, we cannot rule out the role of false positives. With the exception of two SNPs, the other 

associated SNPs did not remain significant after adjustment for multiple comparisons. It is also 

noteworthy that definitions for luminal breast cancer have evolved since original CBCS IHC 

subtyping methods were published (58). As a result, the CBCS -defined Luminal A and Luminal 

B cases do not capitalize on current subtyping differences that suggest use of PR positivity or Ki-

67 to distinguish the two. Therefore, it is likely that there is heterogeneity within the group of 

luminal breast cancers identified herein. Nonetheless, our subtyping methods here have the 

advantage of excluding tumors that were negative for all markers tested. Only triple negatives 

that were also positive for a basal-like marker are included among basal-like cancers, reducing 

outcome misclassification potential in this important subgroup. To our knowledge, this 
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represents one of the largest collections of African American breast cancer cases with tumor 

subtype classification.   

Although we did not find any significant combined effects of SNPs in the BER pathway 

using SKAT, to our knowledge, this is one of the few studies to have used this recent kernel-

based machine learning method to assess pathway effects in cancer (175, 213). We recognize 

that our pathway analysis was limited by the density of SNP coverage across BER pathway 

genes.  Thus SKAT may be better applied to studies that utilize tag-SNP approaches in candidate 

pathways or GWAS.   

In summary, this study adds important new information for the role of BER in breast 

cancer etiology by using tumor tissue to evaluate subtype-specific effects and considers carefully 

selected regulatory and coding SNP-sets in a biologically established DNA repair pathway using 

innovative statistical approaches. After controlling for multiple comparisons, we found two 

SNPs significantly associated with breast cancer in Whites. We identified other suggestive 

associations for breast cancer in SNPs not previously evaluated for their relationship with breast 

cancer incidence.  Larger studies such as the CBCS Phase 3 with improved power for race- and 

subtype-specific analyses and collaborative consortia will help gain further insight into the role 

of genetic variation in the base excision repair pathway and the risk of breast cancer.  
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Table 10. Characteristics of CBCS participants with genotyping data 

 

  
 

Characteristic

N % N % N % N %

Total (N) 742 100.0 1,204 100.0 658 100.0 1,089 100.0

Average age at selection 52 52 52 53

Average proportion of African ancestry 0.78 0.064 0.774 0.066

Menopausal status

   Pre-menopausal 324 41.4 539 30.5 290 59.1 456 62.7

   Post-menopausal 418 58.6 665 69.5 368 40.9 633 37.3

Stage

0
a

88 11.9 349 29.0

1 216 29.1 393 32.6

2 299 40.3 328 27.2

3 76 10.2 68 5.7

4 27 3.6 15 1.3

Missing 36 4.9 51 4.2

Subtype

   Luminal 269 56.3 519 75.6

   HER2+/ER- 38 7.6 56 5.8

   Basal-like 108 22.0 91 10.7

Estrogen Receptor (ER) Status

   Positive 235 49.6 482 68.9

   Negative 251 50.4 242 31.1

a
carcinoma in situ

Cases Controls

African American White African American White

1
0
8
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Table 11. List of successfully genotyped BER SNP in HWE  

 

 

Gene rs# Type of variant
Amino Acid 

Change

Allele 

Change

SIFT 

score
a

XRCC1 rs1799782 missense R194W C/T 0

rs25489 missense R280H A/G 0.05

rs25487 missense Q399R A/G 0.05

rs25496 missense V72A C/T 0.07

APE1 rs1130409 missense D148E G/T 0.09

rs1048945 missense Q51H C/G 0

OGG1 rs1052133 missense S326C C/G 0.05

rs1805373 missense R229Q A/G 0.05

MUTYH rs3219489 missense Q324H C/G 0.4

rs3219497 missense R507Q A/G 0.22

rs3219484 missense V8M A/G 0.02

MBD4 rs140696 splice N/A C/T N/A

rs2307289 missense S342P C/G 0.29

NTHL1 rs3087468 missense D239Y G/T 0

UNG rs3219275 3'UTR N/A A/T N/A

POLB rs3136797 missense P242R C/G 0

LIG3 rs3136025 missense R867H A/G 0.18

rs4796030 3'UTR N/A A/C N/A

NEIL1 rs5745926 missense D252N A/G 0.27

NEIL2 rs8191613 missense R103Q A/G 0.61

rs8191664 missense R257L G/T 0.28

rs1534862 3'UTR N/A C/T N/A

SMUG1 rs3136391 3'UTR N/A C/T N/A

rs3087404 5'UTR N/A A/G N/A

PCNA rs25406 intron N/A C/T N/A

rs17349 splice N/A C/T N/A

RFC1 rs17288820 splice N/A A/G N/A

rs2066791 missense I598V A/G 0.08

rs17287851 5'UTR N/A C/T N/A

FEN1 rs412334 5'UTR N/A A/G N/A

PARP1 rs1136410 missense V762A C/T 0.16
aRanges from 0 to 1. The amino acid substitution is predicted damaging if the score is 

<= 0.05, and tolerated if the score is > 0.05. 
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Table 12. Minor Allele Frequencies (MAFs) of BER variants stratified by race and case status 

 

Gene SNP
a

Minor 

Allele Cases Controls p HWE
b

Minor 

Allele Cases Controls p HWE
b

XRCC1 rs1799782 T 0.063 0.068 0.366 T 0.065 0.067 0.971

XRCC1 rs25489 A 0.049 0.044 0.929 A 0.036 0.027 0.457

XRCC1 rs25487 A 0.365 0.352 0.343 A 0.161 0.146 0.371

XRCC1 rs25496 C 0.000 0.001 N/A C 0.055 0.062 0.300

XRCC1 rs2682558 A 0.210 0.201 0.000 A 0.179 0.181 0.000

APE1 rs3136820 G 0.475 0.481 0.456 G 0.373 0.393 0.708

APE1 rs1048945 C 0.040 0.040 0.810 C 0.010 0.005 N/A

OGG1 rs1052133 C 0.223 0.239 0.629 C 0.167 0.159 0.636

OGG1 rs1805373 A 0.001 0.001 N/A A 0.080 0.084 0.094

MUTYH rs3219489 C 0.244 0.248 0.324 C 0.257 0.262 0.700

MUTYH rs3219497 A 0.000 0.000 N/A A 0.037 0.027 0.421

MUTYH rs3219484 A 0.069 0.069 0.562 A 0.013 0.013 0.737

MBD4 rs140696 T 0.098 0.092 0.645 T 0.201 0.210 0.997

MBD4 rs2307289 C 0.002 0.000 N/A C 0.129 0.110 0.429

MPG rs710080 G 0.014 0.017 0.000 A 0.351 0.354 0.444

TDG rs4135113 A 0.020 0.022 0.457 A 0.158 0.149 0.000

UNG rs3219275 A 0.000 0.001 N/A A 0.055 0.043 0.439

POLB rs3136797 G 0.020 0.020 0.496 G 0.004 0.003 N/A

LIG3 rs3136025 A 0.002 0.001 N/A A 0.090 0.087 0.146

LIG3 rs4796030 A 0.433 0.455 0.498 A 0.133 0.145 0.022

NEIL1 rs5745926 A 0.000 0.001 N/A A 0.018 0.014 0.722

NEIL2 rs8191613 A 0.018 0.017 0.579 A 0.053 0.072 0.336

NEIL2 rs8191664 T 0.018 0.014 0.634 T 0.004 0.003 N/A

NEIL2 rs1534862 T 0.238 0.208 0.020 T 0.327 0.321 0.136

SMUG1 rs3136391 C 0.000 0.000 N/A C 0.049 0.039 0.290

SMUG1 rs3087404 A 0.435 0.436 0.853 G 0.324 0.332 0.532

Whites African Americans
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PCNA rs25406 T 0.408 0.413 0.600 T 0.466 0.452 0.008

PCNA rs17352 C 0.101 0.123 0.505 A 0.435 0.447 0.920

PCNA rs17349 T 0.098 0.116 0.098 T 0.280 0.285 0.101

RFC1 rs17288820 G 0.000 0.000 N/A G 0.019 0.021 0.189

RFC1 rs2066791 G 0.000 0.000 N/A G 0.018 0.017 0.663

RFC1 rs17287851 T 0.000 0.000 N/A T 0.083 0.081 0.481

FEN1 rs412334 A 0.162 0.166 0.808 A 0.032 0.037 0.237

PARP1 rs1136410 C 0.161 0.144 0.688 C 0.047 0.062 0.314

PARP1 rs1805409 A 0.000 0.000 N/A A 0.007 0.011 N/A

PARP3 rs34224216 A 0.000 0.000 N/A A 0.009 0.009 N/A

PARP3 rs323870 G 0.003 0.002 0.000 G 0.168 0.156 0.237

b
P HWE, Hardy-Weinberg equilibrium, p<0.05

N/A indicates non-polymorphic loci or MAF<0.05

a
SNP, single nucleotide polymorphism



 

 

 

 

Table 13. Association of BER variants with breast cancer stratified by race 

 
 

OR (95% CI)b p  valuec q valued OR (95% CI)b p  valuec q valued

Gene SNP Genotypea N % N % N % N %

XRCC1 rs1799782 CC 1057 0.879 947 0.870 1.00 647 0.872 573 0.871 1.00

CT 140 0.116 135 0.124 0.93 (0.71, 1.21) 0.8691 94 0.127 82 0.125 0.93(0.67, 1.30) 0.4699

TT 6 0.005 7 0.006 0.78 (0.24, 2.48) 0.7165 1 0.001 3 0.005 0.37 (0.04, 3.55) 0.4034

CT +TT 146 0.121 142 0.130 0.92 (0.72, 1.18) 0.5133 0.8723 95 0.128 85 0.129 0.90 (0.66, 1.23) 0.5146 0.8078

rs25489 GG 1082 0.902 991 0.913 1.00 689 0.930 623 0.947 1.00

AG 118 0.098 92 0.085 1.25 (0.93, 1.69) 0.9620 51 0.069 34 0.052 1.37 (0.87, 2.17) 0.2239

AA 0 0.000 2 0.002 NA NA 1 0.001 1 0.002 1.11 (0.07, 18.11) 0.9704

AG + AA 118 0.098 94 0.087 1.19 (0.89, 1.60) 0.2507 0.7123 52 0.070 35 0.053 1.34 (0.87, 2.07) 0.1895 0.7727

rs25487 GG 475 0.403 459 0.427 1.00 519 0.706 473 0.726 1.00

AG 548 0.465 476 0.443 1.06 (0.88, 1.29) 0.7979 195 0.265 168 0.258 1.12 (0.87, 1.44) 0.4914

AA 156 0.132 140 0.130 1.08 (0.82, 1.42) 0.7356 21 0.029 11 0.017 1.71 (0.79. 3.69) 0.2201

AG + AA 704 0.597 616 0.573 1.05 (0.92, 1.19) 0.4940 0.8723 216 0.294 179 0.275 1.17 (0.94, 1.46) 0.1533 0.7727

rs25496 TT 1203 0.999 1087 0.998 1.00 666 0.898 577 0.877 1.00

CT 1 0.001 2 0.0018 NA NA 71 0.096 80 0.122 0.80 (0.56, 1.13) 0.0791

CC 0 0.000 0 0.000 NA NA 5 0.007 1 0.002 4.87 (0.55, 42.89) 0.1270

CT +TT 1 0.0008 2 0 NA NA 76 0.102 81 0.123 0.91 (0.66, 1.26) 0.5571 0.8028

APE1 rs3136820 GG 321 0.268 287 0.264 1.00 297 0.402 244 0.371 1.00

GT 617 0.515 556 0.511 1.09 (0.87, 1.36) 0.6621 332 0.449 309 0.470 1.00 (0.73, 1.38) 0.5316

TT 261 0.218 246 0.226 1.08 (0.84, 1.39) 0.7177 110 0.149 104 0.158 1.17 (0.84, 1.62) 0.2069

GT + TT 878 0.7323 802 0.7365 1.04 (0.92, 1.18) 0.5578 0.8723 442 0.598 413 0.629 1.10 (0.94 1.28) 0.2398 0.7727

rs1048945 GG 1107 0.921 1004 0.923 1.00 726 0.980 651 0.989 1.00

CG 94 0.078 82 0.075 1.06 (0.77, 1.47) 0.6820 15 0.020 7 0.011 NA NA

CC 1 0.001 2 0.002 0.67 (0.06, 7.41) 0.7259 0 0.000 0 0.000 NA NA

CG + CC 95 0.079 84 0.0772 1.04 (0.76, 1.43) 0.7991 0.9316 15 0.02 7 0.011 NA NA

OGG1 rs1052133 GG 721 0.602 628 0.577 1.00 516 0.696 463 0.705 1.00

CG 419 0.350 401 0.369 1.19 (0.79, 1.81) 0.9329 203 0.274 179 0.273 0.72 (0.36, 1.44) 0.5032

CC 57 0.048 59 0.054 1.39 (0.93, 2.08) 0.0464 22 0.030 15 0.023 0.67 (0.34, 1.33) 0.2340

CG + CC 476 0.3976 460 0.4228 1.17 (1.01, 1.36) 0.0359 0.1795 225 0.304 194 0.295 0.90 (0.73, 1.11) 0.3217 0.7774

rs1805373 GG 1202 0.998 1086 0.997 1.00 628 0.846 555 0.844 1.00

AG 2 0.002 3 0.003 NA NA 109 0.147 95 0.144 0.94 (0.69. 1.28) 0.3592

AA 0 0.000 0 0.000 NA NA 5 0.007 8 0.012 0.47 (0.14, 1.55) 0.2395

AG + AA 2 0.0017 3 0.0028 NA NA 114 0.154 103 0.157 0.88 (0.66, 1.16) 0.3561 0.7944

Whites African Americans

Cases Controls Cases Controls

1
1
2

 



 

 

 

 

 

OR (95% CI)b p  valuec q valued OR (95% CI)b p  valuec q valued

Gene SNP Genotypea N % N % N % N %

MUTYH rs3219489 GG 689 0.577 608 0.559 1.00 417 0.563 355 0.542 1.00

CG 429 0.359 418 0.385 0.89 (0.74, 1.07) 0.1166 267 0.360 257 0.392 0.93 (0.74, 1.17) 0.2291

CC 77 0.064 61 0.056 1.16 (0.80, 1.69) 0.2670 57 0.077 43 0.066 1.22 (0.79. 1.87) 0.2785

CG +CC 506 0.4234 479 0.4406 0.98 (0.85, 1.13) 0.7842 0.9316 324 0.437 300 0.458 1.02 (0.86, 1.21) 0.8199 0.8729

rs3219497 GG 1203 0.999 1088 0.999 1.00 687 0.926 624 0.948 1.00

AG 1 0.001 1 0.001 NA NA 55 0.074 33 0.050 1.58 (1.00, 2.49) 0.9696

AA 0 0.000 0 0.000 NA NA 0 0.000 1 0.002 NA

AG + AA 1 0.0008 1 0.0009 NA NA 55 0.074 34 0.052 1.47 (0.95, 2.30) 0.0866 0.6612

rs3219484 GG 1042 0.865 942 0.865 1.00 723 0.974 641 0.974 1.00

AG 158 0.131 143 0.131 1.05 (0.81, 1.35) 0.6112 18 0.024 17 0.026 1.04 (0.51, 2.11) 0.9764

AA 4 0.003 4 0.004 0.72 (0.15, 3.35) 0.6538 1 0.001 0 0.000 NA

AG + AA 162 0.1345 147 0.135 1.02 (0.80, 1.31) 0.8503 0.9316 19 0.026 17 0.026 1.07 (0.54, 2.14) 0.8428 0.8729

MBD4 rs140696 CC 976 0.811 896 0.823 1.00 475 0.640 410 0.624 1.00

CT 219 0.182 185 0.170 1.15 (0.91, 1.44) 0.1978 235 0.317 218 0.332 0.92 (0.73, 1.17) 0.7963

TT 9 0.008 8 0.007 0.64 (0.24, 1.76) 0.3215 32 0.043 29 0.044 0.78 (0.45, 1.35) 0.4546

CT +TT 228 0.1894 193 0.1772 1.09 (0.88, 1.34) 0.4525 0.8723 267 0.36 247 0.376 0.91 (0.75 1.10) 0.3143 0.7774

rs2307289 TT 1200 0.997 1088 0.999 1.00 564 0.760 519 0.789 1.00

CT 3 0.003 1 0.001 NA NA 165 0.222 133 0.202 1.13 (0.87, 1.48) 0.6462

CC 1 0.001 0 0.000 NA NA 13 0.018 6 0.009 1.67 (0.80, 4.66) 0.3910

CT +TT 4 0.0033 1 0.0009 NA NA 178 0.24 139 0.211 1.16 (0.91, 1.48) 0.2223 0.7727

UNG rs3219275 TT 1204 1.000 1087 0.998 1.00 662 0.892 604 0.918 1.00

AT 0 0.000 2 0.002 NA NA 78 0.105 52 0.079 1.54 (1.06, 2.24) 0.2644

AA 0 0.000 0 0.000 NA NA 2 0.003 2 0.003 0.70 (0.09, 5.28) 0.5807

AT+AA 0 0 2 0.0018 NA NA 80 0.108 54 0.082 1.44 (1.01, 2.06) 0.0446 0.6467

POLB rs3136797 CC 1156 0.960 1045 0.960 1.00 736 0.992 654 0.994 1.00

CG 48 0.040 44 0.040 0.97 (0.62, 1.51) 0.8850 6 0.008 4 0.006 NA NA

GG 0 0.000 0 0.000 0.00 NA 0 0.000 0 0.000 NA NA

CG + GG 48 0.0399 44 0.0404 0.97 (0.62, 1.51) 0.8850 0.9316 6 0.008 4 0.006 NA NA

LIG3 rs3136025 GG 1200 0.997 1087 0.998 1.00 615 0.829 551 0.837 1.00

AG 4 0.003 2 0.002 NA NA 121 0.163 99 0.151 1.09 (0.81, 1.48) 0.0540

AA 0 0.000 0 0.000 NA NA 6 0.008 8 0.012 0.33 (0.10, 1.09) 0.0587

AG + AA 4 0.0033 2 0.0018 NA NA 127 0.171 107 0.163 0.97 (0.74, 1.27) 0.8067 0.8729

Whites African Americans

Cases Controls Cases Controls

1
1
3

 



 

 

 

 

OR (95% CI)b p  valuec q valued OR (95% CI)b p  valuec q valued

Gene SNP Genotypea N % N % N % N %

rs4796030 CC 379 0.315 329 0.302 1.00 565 0.762 488 0.743 1.00

AC 608 0.505 529 0.486 1.02 (0.83, 1.24) 0.0958 157 0.212 148 0.225 0.90 (0.69, 1.18) 0.7877

AA 217 0.180 231 0.212 0.76 (0.59, 0.98) 0.0142 20 0.027 21 0.032 0.91 (0.48, 1.73) 0.8894

AC + AA 825 0.6852 760 0.6979 0.89 (0.79, 1.01) 0.0645 0.2580 177 0.239 169 0.257 0.92 (0.74, 1.15) 0.4662 0.8078

NEIL1 rs5745926 GG 1203 0.999 1087 0.998 1.00 716 0.965 640 0.973 1.00

AG 1 0.001 2 0.002 NA NA 26 0.035 18 0.027 1.28 (0.68, 2.42) 0.4417

AA 0 0.000 0 0.000 NA NA 0 0.000 0 0.000 NA NA

AG + AA 1 0.0008 2 0.0018 NA NA 26 0.035 18 0.027 1.28 (0.68, 2,42) 0.4417 0.8078

NEIL2 rs8191613 GG 1158 0.963 1053 0.967 1.00 663 0.897 568 0.865 1.00

AG 44 0.037 36 0.033 0.99 (0.62, 1.60) 0.9757 73 0.099 84 0.128 0.72 (0.51, 1.02) 0.9547

AA 0 0.000 0 0.000 NA NA 3 0.004 5 0.008 0.49 (0.11, 2.19) 0.4769

AG + AA 44 0.0366 36 0.0331 0.99 (0.62, 1.60) 0.9757 0.9757 76 0.103 89 0.136 0.72 (0.52, 0.98) 0.0386 0.6467

rs8191664 GG 1160 0.964 1058 0.972 1.00 736 0.992 654 0.994 1.00

GT 44 0.037 31 0.029 1.16 (0.70, 1.91) 0.5670 6 0.008 4 0.006 1.48 (0.41, 5.38) 0.5525

TT 0 0.000 0 0.000 NA NA 0 0.000 0 0.000 NA NA

GT + TT 44 0.0365 31 0.0285 1.16 (0.70, 1.91) 0.5670 0.8723 6 0.008 4 0.006 1.48 (0.41, 5.38) 0.5525 0.8078

rs1534862 CC 691 0.574 695 0.638 1.00 341 0.460 312 0.474 1.00

CT 452 0.376 334 0.307 1.44 (1.20, 1.74) 0.0118 317 0.427 270 0.410 1.07 (0.85, 1.34) 0.5825

TT 60 0.050 60 0.055 1.10 (0.74, 1.63) 0.6581 84 0.113 76 0.116 0.99 (0.69, 1.42) 0.8035

CT +TT 512 0.4256 394 0.3618 1.24 (1.07, 1.44) 0.0038 0.0750 401 0.54 346 0.526 1.02 (0.87, 1.19) 0.8417 0.8729

SMUG1 rs3136391 TT 1204 1.000 1088 1.000 1.00 669 0.904 609 0.926 1.00

CT 0 0.000 0 0.000 NA NA 70 0.095 47 0.071 1.39 (0.94, 2.08) 0.2817

CC 0 0.000 0 0.000 NA NA 1 0.001 2 0.003 0.48 (0.04, 5.47) 0.4689

CT +TT 0 0 0 0 NA NA 71 0.096 49 0.074 1.30 (0.89, 1.90) 0.1727 0.7727

rs3087404 GG 385 0.320 345 0.317 1.00 79 0.107 69 0.105 1.00

AG 590 0.490 538 0.495 0.97 (0.80, 1.19) 0.5883 323 0.435 299 0.454 0.90 (0.72, 1.14) 0.3843

AA 229 0.190 205 0.188 1.05 (0.81, 1.35) 0.6143 340 0.458 290 0.441 1.02 (0.70, 1.48) 0.7083

AG + AA 819 0.6802 743 0.6829 1.02 (0.90, 1.15) 0.8056 0.9316 663 0.894 589 0.895 0.97 (0.82, 1.15) 0.7299 0.8729

PCNA rs25406 CC 419 0.348 368 0.341 1.00 213 0.289 213 0.326 1.00

CT 586 0.487 532 0.493 0.91 (0.75, 1.11) 0.3895 362 0.491 290 0.444 1.27 (0.99, 1.64) 0.0664

TT 198 0.165 180 0.167 0.97 (0.75, 1.26) 0.8812 163 0.221 150 0.230 1.07 (0.79, 1.44) 0.6836

CT +TT 784 0.6517 712 0.6593 0.97 (0.86, 1.10) 0.6515 0.9307 525 0.711 440 0.674 1.05 (0.90, 1.22) 0.5375 0.8078

Whites African Americans

Cases Controls Cases Controls

1
1
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OR (95% CI)b p  valuec q valued OR (95% CI)b p  valuec q valued

Gene SNP Genotypea N % N % N % N %

rs17352 AA 978 0.812 836 0.768 1.00 141 0.190 132 0.201 1.00

AC 209 0.174 239 0.220 0.70 (0.56, 0.87) 0.0655 363 0.489 324 0.492 0.97 (0.76, 1.24) 0.9831

CC 17 0.014 14 0.013 1.11 (0.50, 2.44) 0.4845 238 0.321 202 0.307 0.94 (0.68, 1.29) 0.7201

AC + CC 226 0.1877 253 0.2324 0.76 (0.63, 0.93) 0.0075 0.0750 601 0.81 526 0.799 0.97 (0.83, 1.13) 0.6804 0.8729

rs17349 CC 982 0.816 846 0.777 1.00 382 0.515 345 0.524 1.00

CT 207 0.172 234 0.215 0.71 (0.57, 0.89) 0.0960 304 0.410 251 0.382 1.13 (0.89, 1.42) 0.0706

TT 15 0.013 9 0.008 1.46 (0.61, 3.52) 0.2184 56 0.076 62 0.094 0.77 (0.51, 1.16) 0.1178

CT + TT 222 0.1844 243 0.2232 0.79 (0.64, 0.96) 0.0198 0.1320 360 0.485 313 0.476 0.98 (0.82, 1.16) 0.7707 0.8729

RFC1 rs17288820 AA 1204 1.000 1089 1.000 1.00 715 0.964 631 0.959 1.00

AG 0 0.000 0 0.000 NA NA 26 0.035 26 0.040 1.24 (0.06, 26.51) 0.9910

GG 0 0.000 0 0.000 NA NA 1 0.001 1 0.002 1.58 (0.08, 31.94) 0.6572

AG + GG 0 0 0 0 NA NA 27 0.036 27 0.041 1.27 (0.74, 2.18) 0.3922 0.8078

rs2066791 AA 1203 0.999 1089 1.000 1.00 715 0.964 636 0.967 1.00

AG 1 0.001 0 0.000 NA NA 27 0.036 22 0.033 1.10 (0.61, 1.98) 0.7536

GG 0 0.000 0 0.000 NA NA 0 0.000 0 0.000 NA NA

AG +GG 1 0.0008 0 0 NA NA 27 0.036 22 0.033 1.10 (0.61, 1.98) 0.7536 0.8729

rs17287851 CC 1204 1.000 1089 1.000 1.00 623 0.840 554 0.842 1.00

CT 0 0.000 0 0.000 NA NA 115 0.155 101 0.154 1.00 (0.74, 1.35) 0.8643

TT 0 0.000 0 0.000 NA NA 4 0.005 3 0.005 0.86 (0.18, 4.14) 0.8499

CT + TT 0 0.000 0 0.000 NA NA 119 0.160 104 0.158 0.99 (0.74, 1.31) 0.9297 0.9297

FEN1 rs412334 GG 850 0.706 755 0.694 1.00 695 0.937 611 0.929 1.00

AG 318 0.264 304 0.279 0.86 (0.71, 1.05) 0.2725 47 0.063 45 0.068 0.85 (0.54, 1.33) 0.9777

AA 36 0.030 29 0.027 1.06 (0.62, 1.81) 0.6239 0 0.000 2 0.003 NA NA

AG + AA 354 0.294 333 0.306 0.92 (0.78, 1.08) 0.3076 0.7690 47 0.063 47 0.071 0.79 (0.51, 1.04) 0.2768 0.7774

PARP1 rs1136410 TT 854 0.709 796 0.731 1.00 673 0.907 578 0.878 1.00

CT 313 0.260 272 0.250 1.03 (0.84, 1.26) 0.1252 68 0.092 79 0.120 0.73 (0.51, 1.04) 0.6317

CC 37 0.031 21 0.019 1.78 (1.01, 3.17) 0.0509 1 0.001 1 0.002 1.06 (0.07, 17.33) 0.8764

CT + CC 350 0.291 293 0.269 1.12 (0.95. 1.33) 0.1850 0.6167 69 0.093 80 0.122 0.74 (0.52, 1.05) 0.0912 0.6612

a Minor allele frequency for Whites used as reference for both races

b Odds ratio and 95% confidence interval, adjusted for age, self-identified race, African ancestry, and offset term

c P-value is unadjusted for multiple comparisons

Whites African Americans

Cases Controls Cases Controls
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Table 14. Association of BER variants with breast cancer stratified by subtype

Gene SNP Genotype OR (95% CI)a p valueb q valuec OR (95% CI)a p valueb q valuec OR (95% CI)a p valueb q valuec

XRCC1 rs1799782 CC Referent Referent Referent

CT 0.94 (0.72, 1.23) 0.7634 0.89 (0.46, 1.70) 0.9710 1.12 (0.73, 1.72) 0.9701

TT 1.08 (0.33, 3.58) 0.8566 NA 0.9705 NA 0.9705

CT +TT 0.95 (0.73, 1.23) 0.6865 0.8966 0.86 (0.45, 1.64) 0.6391 0.9054 1.08 (0.70, 1.66) 0.7295 0.9787

rs25489 GG Referent Referent Referent

AG 1.33 (0.97, 1.82) 0.9482 1.39 (0.68, 2.86) 0.9826 1.55 (0.92, 2.61) 0.9672

AA NA 0.9502 NA 0.9834 NA 0.9692

AG + AA 1.30 (0.95, 1.87) 0.1033 0.4474 1.40 (0.68, 2.87) 0.3998 0.8496 1.54 (0.92, 2.59) 0.1206 0.5453

rs25487 GG Referent Referent Referent

AG 1.04 (0.85, 1.26) 0.3977 1.07 (0.68, 1.69) 0.2245 0.99 (0.71, 1.39) 0.8529

AA 1.29 (0.94, 1.77) 0.1289 0.54 (0.19. 1.54) 0.2087 0.91 (0.47, 1.75) 0.7747

AG + AA 1.08 (0.90, 1.30) 0.4252 0.8234 0.98 (0.63, 1.53) 0.9487 0.9717 0.97 (0.70, 1.35) 0.8983 0.9787

APE1 rs3136820 GG Referent Referent Referent

GT 1.08 (0.86, 1.37) 0.7465 1.13 (0.64, 2.01) 0.6510 0.84 (0.56, 1.26) 0.2221

TT 1.11 (0.86, 1.43) 0.5420 1.05 (0.56, 1.97) 0.9535 1.04 (0.68, 1.60) 0.4708

GT + TT 1.09 (0.87, 1.37) 0.4359 0.8234 1.10 (0.64, 1.90) 0.7340 0.9187 0.91 (0.62, 1.34) 0.6413 0.9787

OGG1 rs1052133 GG Referent Referent Referent

CG 1.05 (0.66, 1.68) 0.9129 1.88 (0.44, 8.10) 0.5228 0.96 (0.42, 2.23) 0.7277

CC 1.14 (0.72, 1.80) 0.4228 2.09 (0.50, 8.81) 0.2862 1.10 (0.49, 2.49) 0.6194

CG + CC 1.11 (0.71, 1.74) 0.6554 0.8966 2.01 (0.48, 8.37) 0.3359 0.8362 1.04 (0.47, 2.34) 0.9014 0.9787

MUTYH rs3219489 GG Referent Referent Referent

CG 0.81 (0.67, 0.98) 0.0485 0.98 (0.63, 1.53) 0.8219 0.94 (0.69, 1.30) 0.8433

CC 1.05 (0.73, 1.52) 0.3900 1.11 (0.46, 2.67) 0.8299 0.99 (0.52, 1.87) 0.9918

CG +CC 0.84 (0.70, 1.01) 0.0587 0.4474 0.99 (0.65, 1.52) 0.9717 0.9717 0.95 (0.70, 1.29) 0.7276 0.9787

rs3219484 GG Referent Referent Referent

AG 1.20 (0.89, 1.62) 0.7771 1.68 (0.87, 3.23) 0.9660 1.32 (0.77, 2.28) 0.9700

AA 1.81 (0.39, 8.43) 0.5209 NA 0.9685 NA 0.9711

AG + AA 1.22 (0.90, 1.63) 0.1957 0.5545 1.64 (0.85, 3.16) 0.1446 0.8362 1.31 (0.76, 2.24) 0.3636 0.9287

MBD4 rs140696 CC Referent Referent Referent

CT 0.90 (0.72, 1.12) 0.6702 1.04 (0.63, 1.71) 0.3745 1.23 (0,87, 1.74) 0.9393

TT 0.94 (0.52, 1.73) 0.9878 0.40 (0.05, 3.03) 0.3666 1.46 (0.65, 3.29( 0.5052

CT +TT 0.90 (0.73, 1.12) 0.3497 0.8234 0.97 (0.59, 1.58) 0.9366 0.9717 1.23 (0.88, 1.71) 0.1811 0.6157

Luminal HER2+/ER- Basal-like
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Gene SNP Genotype OR (95% CI)a p valueb q valuec OR (95% CI)a p valueb q valuec OR (95% CI)a p valueb q valuec

LIG3 rs4796030 CC Referent Referent Referent

AC 1.04 (0.85, 1.28) 0.1820 0.79 (.47, 1.31) 0.2511 0.78(0.54, 1.11) 0.6950

AA 0.67 (0.50, 0.91) 0.0032 1.08 (0.57, 206) 0.5112 0.70 (0.41, 1.20) 0.3737

AC + AA 0.95 (0.78, 1.16) 0.6023 0.8966 0.86 (0.54, 1.38) 0.5287 0.8798 0.77 (0.55, 1.08) 0.1101 0.5453

NEIL2 rs8191613 GG Referent Referent Referent

AG 0.77 (0.53, 1.12) 0.9508 1.29 (0.62, 2.68) 0.9827 0.81 (0.44, 1.46) 0.9669

AA NA 0.9489 NA 0.9833 NA 0.9659

AG + AA 0.74 (0.51, 1.08) 0.1192 0.4474 1.22 (0.59, 2.55) 0.5693 0.8798 0.76 (0.42, 1.37) 0.3824 0.9287

rs1534862 CC Referent Referent Referent

CT 1.28 (1.06, 1.54) 0.2130 1.82 (1.17, 2.82) 0.0327 0.98 (0.70, 1.36) 0.8100

TT 1.23 (0.88, 1.73) 0.6041 1.02 (0.42, 2.49) 0.5352 1.05 (0.61, 1.79) 0.8552

CT +TT 1.27 (1.06, 1.52) 0.0092 0.1564 1.68 (1.09, 2.57) 0.0178 0.3026 0.99 (0.72, 1.34) 0.9278 0.9787

SMUG1 rs3087404 GG Referent Referent Referent

AG 0.99 (0.79, 1.24) 0.5452 0.58 (0.34, 1.01) 0.0040 1.14 (0.75, 1.72) 0.6663

AA 1.09 (0.84, 1.41) 0.3990 1.23 (0.70, 2.16) 0.3084 1.10 (0.70, 1.75) 0.7888

AG + AA 1.02 (0.82, 1.26) 0.8678 0.9220 0.78 (0.48, 1.29) 0.3354 0.8362 1.12 (0.75, 1.68) 0.5657 0.9787

PCNA rs25406 CC Referent Referent Referent

CT 1.05 (0.86, 1.28) 0.5564 1.33 (0.81, 2.17) 0.3441 1.31 (0.92, 1.86) 0.2615

TT 0.99 (0.77, 1.28) 0.7617 1.19 (0.64, 2.23) 0.9297 1.24 (0.80, 1.92) 0.7128

CT +TT 1.03 (0.86, 1.25) 0.7384 0.8966 1.29 (0.81, 2.07) 0.2819 0.8362 130 (0.93, 1.81) 0.1283 0.5453

rs17352 AA Referent Referent Referent

AC 0.91 (0.73, 1.14) 0.2418 0.95 (0.56, 1.61) 0.8211 0.94 (0.63, 1.40) 0.1677

CC 1.07 (0.76, 1.50) 0.4694 0.80 (0.36, 1.80) 0.5928 1.41 (0.85 2.32) 0.8620

AC + CC 0.94 (0.75, 1.17) 0.5497 0.8966 0.91 (0.54, 1.55) 0.7566 0.9187 1.01 (0.69, 1.48) 0.8848 0.9787

rs17349 CC Referent Referent Referent

CT 0.98 (0.80, 1.21 0.9440 0.80 (0.48, 1.31) 0.9546 0.98 (0.69, 1.38) 0.4042

TT 0.95 (.59, 1.53) 0.8499 0.66 (0.20, 2.21) 0.6219 1.35 (0.72, 2.55) 0.3179

CT + TT 0.98 (0.80, 1.20) 0.8416 0.9220 0.77 (0.47, 1.25) 0.3120 0.8362 1.00 (0.72, 1.39) 0.8744 0.9787

FEN1 rs412334 GG Referent Referent Referent

AG 0.86 (0.69, 1.09) 0.6016 0.79 (0.44, 1.41) 0.2689 0.51 (0.31, 0.83) 0.0617

AA 0.59 (0.28, 1.27) 0.2487 1.53 (0.44, 5.39) 0.3948 1.00 (0.33, 3.07) 0.5513

AG + AA 0.84 (0.67, 1.05) 0.1316 0.4474 0.86 (0.50, 1.48) 0.5586 0.8798 0.56 (0.35, 0.88) 0.0111 0.1887

PARP1 rs1136410 TT Referent Referent Referent

CT 0.96 (0.77, 1.20) 0.1182 1.22 (0.73, 2.03) 0.6763 0.93 (0.62, 1.39) 0.1269

CC 1.72 (0.87, 3.42) 0.1079  2.15 (0.48, 9.59) 0.3805 2.41 (0.79, 7. 34) 0.1079

CT + CC 1.00 (0.81, 1.24) 0.9979 0.9979 1.26 (0.77, 2.08) 0.3443 0.8362 0.99 (0.67, 1.46) 0.9787 0.9787

a Odds ratio and 95% confidence interval, adjusted for age, proportion European ancestry, and offset term

b P-value is unadjusted for multiple comparisons

Luminal HER2+/ER- Basal-like
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Table 15. Assocation of BER variants with breast cancer stratified by estrogen receptor (ER) 

status.  

 
 

 

 

 

 

 

 

 

 

Gene SNP Genotype ER positive p value q value ER negative p value q value

XRCC1 rs1799782 CC Referent Referent

CT 0.97 (0.73, 1.27) 0.92 (0.67, 1.26)

TT 0.92 (0.25, 3.43) 0.91 (0.19, 4.29)

CT +TT 0.97 (0.74, 1.27) 0.7948 0.9651 0.92 (0.67, 1.25) 0.5805 0.8998

rs25489 GG Referent Referent

AG 1.39 (1.01, 1.92) 1.57 (1.09, 2.27)

AA NA 1.41 (0.14, 14.45)

AG + AA 1.36 (0.99, 1.87) 0.0581 0.2910 1.57 (1.09, 2.25) 0.0144 0.2448

rs25487 GG Referent Referent

AG 1.04 (0.85, 1.28) 1.03 (0.82, 1.30)

AA 1.32 (0.96, 1.83) 0.94 (0.61, 1.44)

AG + AA 1.09 (0.90, 1.32) 0.3639 0.7733 1.02 (0.81, 1.27) 0.8929 0.9670

APE1 rs3136820 GG Referent Referent

GT 1.07 (0.84, 1.36) 1.04 (0.78, 1.38)

TT 1.07  (0.82, 1.39) 1.17 (0.86, 1.59)

GT + TT 1.06 (0.85, 1.34) 0.5804 0.8677 1.09 (0.83, 1.43) 0.5484 0.8998

OGG1 rs1052133 GG Referent Referent

CG 1.08 (0.67, 1.75) 0.87 (0.50, 1.52)

CC 1.15 (0.72, 1.84) 1.06 (0.62, 1.82)

CG + CC 1.13 (0.71, 1.79) 0.6125 0.8677 .99 (0.58, 1.69) 0.9764 0.9764

MUTYH rs3219489 GG Referent Referent

CG 0.81 (0.67, 0.99) 1.00 (0.80, 1.24)

CC 1.11 (0.76, 1.61) 1.10 (0.71, 1.70)

CG +CC 0.85 (0.71, 1.02) 0.0856 0.291 1.01 (0.82, 1.25) 0.9101 0.967

rs3219484 GG Referent Referent

AG 1.29 (0.95, 1.74) 1.10 (0.75, 1.63)

AA 1.95 (0.42, 9.02) NA

AG + AA 1.31 (0.97, 1.76) 0.0783 0.2910 1.07 (0.72, 1.58) 0.7410 0.8998

MBD4 rs140696 CC Referent Referent

CT 0.91 (0.73, 1.14) 1.07 (0.84, 1.37)

TT 0.96 (0.52, 1.77) 0.81 (0.41, 1.59)

CT +TT 0.92 (0.74, 1.14) 0.4234 0.7998 1.04 (0.82, 1.32) 0.7215 0.8998
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Gene SNP Genotype ER positive p value q value ER negative p value q value

LIG3 rs4796030 CC Referent Referent

AC 1.02 (0.83, 1.26) 0.91 (0.71, 1.16)

AA 0.66 (0.48, 0.91) 0.85 (0.60, 1.22)

AC + AA 0.93 (0.76, 1.14) 0.4937 0.8393 0.90 (0.71, 1.13) 0.3540 0.7523

NEIL2 rs8191613 GG Referent Referent

AG 0.73 (0.49, 1.09) 0.82 (0.54, 1.23)

AA NA NA

AG + AA 0.71 (0.47, 1.05) 0.0841 0.2910 0.78 (0.52, 1.18) 0.2342 0.6885

rs1534862 CC Referent Referent

CT 1.25 (1.03, 1.52) 1.24 (0.99, 1.55)

TT 1.23 (0.87, 1.74) 1.00 (0.67, 1.49)

CT +TT 1.25 (1.04, 1.50) 0.0185 0.291 1.19 (0.97, 1.47) 0.1026 0.6885

SMUG1 rs3087404 GG Referent Referent

AG 0.94 (0.77, 1.15) 0.90 (0.71, 1.13)

AA 0.93, (0.70, 1.22) 1.06 (0.78, 1.45)

AG + AA 1.04 (0.84, 1.30) 0.7198 0.9413 0.87 (0.67, 1.13) 0.2994 0.5814

PCNA rs25406 CC Referent Referent

CT 1.01 (0.82, 1.24) 1.24 (0.97, 1.57)

TT 0.94 (0.72, 1.23) 1.23 (0.91, 1.67)

CT +TT 0.99 (0.82, 1.20) 0.9313 0.9871 1.24 (0.98, 1.55) 0.6996 0.7271

rs17352 AA Referent Referent

AC 0.97 (0.77, 1.22) 0.85 (0.65, 1.19)

CC 1.09 (0.76, 1.56) 1.07 (0.74, 1.55)

AC + CC 0.86 (0.70, 1.06) 0.1590 0.3908 0.76 (0.60, 0.97) 0.0243 0.8998

rs17349 CC Referent Referent

CT 1.02 (0.82, 1.26) 0.85 (0.67, 1.09)

TT 1.00 (0.61, 1.63) 0.97 (0.59, 1.58)

CT + TT 1.02 (0.83, 1.25) 0.8763 0.9871 0.87 (0.69, 1.09) 0.2303 0.6885

FEN1 rs412334 GG Referent Referent

AG 0.88 (0.69, 1.11) 0.69 (0.51, 0.93)

AA 0.53 (0.23, 1.20) 1.17 (0.55, 2.51)

AG + AA 0.85 (0.67, 1.07) 0.1609 0.3908 0.73 (0.54, 0.97) 0.0315 0.2678

PARP1 rs1136410 TT Referent Referent

CT 0.96 (0.76, 1.21) 1.00 (0.76, 1.31)

CC 1.74 (0.87, 3.49) 2.29 (1.04, 5.05)

CT + CC 1.00 (0.81, 1.25) 0.9871 0.9871 1.06 (.82, 1.38) 0.6621 0.8998

a Odds ratio and 95% confidence interval, adjusted for age, proportion European ancestry, and offset term

b P-value is unadjusted for multiple comparisons

c FDR adjusted
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Table 16. SKAT analysis for base excision repair SNPs 

 

  

Group Number of SNPs SNP-set Global p-value

African Americans 29 rs1799782 rs25489 rs25487 rs25496 rs3136820 

rs1052133 rs1805373 rs3219489 rs3219497 

rs3219484 rs140696 rs2307289 rs3219275 rs3136025 

rs4796030 rs5745926 rs8191613 rs1534862 

rs3136391 rs3087404 rs25406 rs17352 rs17349 

rs17288820 rs2066791 rs17287851 rs412334 

rs1136410 rs323870

0.8638

Whites 20 rs1799782 rs25489 rs25487 rs3136820 rs1048945 

rs1052133 rs3219489 rs3219484 rs140696 rs4135113 

rs3136797 rs4796030 rs8191613 rs8191664 

rs1534862 rs3087404 rs34857719 rs25406 rs17352 

rs17349 rs412334 rs1136410 rs323870

0.1601
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Table 17. Linkage Disequilibrium by race 

 

XRCC1 rs1799782 rs25489 rs25487 XRCC1 rs1799782 rs25489 rs25487

rs1799782 1.00 rs1799782 1.00

rs25489 0.00 1.00 rs25489 0.00 1.00

rs25487 0.04 0.02 1.00 rs25487 0.01 0.07 1.00

rs25496 0.00 0.01 0.00 rs25496 0.00 0.13 0.01

APE1 rs3136820 rs1048945 APE1 rs3136820 rs1048945

rs3136820 1.00 rs3136820 1.00

rs1048945 0.16 1.00 rs1048945 0.00 1.00

OGG1 rs1052133 rs1805373 OGG1 rs1052133 rs1805373

rs1052133 1.00 rs1052133 1.00

rs1805373 0.04 1.00 rs1805373 0.02 1.00

MUTYH rs3219489 rs3219497 rs3219484 MUTYH rs3219489 rs3219497 rs3219484

rs3219489 1.00 rs3219489 1.00

rs3219497 0.12 1.00 rs3219497 0.11 1.00

rs3219484 0.02 0.01 1.00 rs3219484 0.00 0.00 1.00

MBD4 rs140696 rs2307289 MBD4 rs140696 rs2307289

rs140696 1.00 rs140696 1.00

rs2307289 0.11 1.00 rs2307289 0.53 1.00

LIG3 rs3136025 rs4796030 LIG3 rs3136025 rs4796030

rs3136025 1.00 rs3136025 1.00

rs4796030 0.01 1.00 rs4796030 0.16 1.00

NEIL2 rs8191613 rs8191664 rs1534862 NEIL2 rs8191613 rs8191664 rs1534862

rs8191613 1.00 rs8191613 1.00

rs8191664 0.91 1.00 rs8191664 0.05 1.00

rs1534862 0.06 0.24 1.00 rs1534862 0.03 0.01 1.00

PCNA rs25406 rs17352 rs17349 PCNA rs25406 rs17352 rs17349

rs25406 1.00 rs25406 1.00

rs17352 0.26 1.00 rs17352 0.00 1.00

rs17349 0.29 0.95 1.00 rs17349 0.34 0.31 1.00

ar2= correlation coefficient squared

Whites African Americans
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CHAPTER 4. SINGLE NUCLEOTIDE POLYMORPHISMS IN DNA BYPASS 

POLYMERASE GENES AND ASSOCIATION WITH BREAST CANCER AND BREAST 

CANCER SUBTYPES AMONG AFRICAN AMERICANS AND WHITES 

 

4.1 Introduction 

 

The integrity of DNA is constantly threatened by DNA damage from both endogenous 

and exogenous sources. DNA may be damaged as much as a million times per cell per day (103). 

Unrepaired DNA damage can result in genomic instability, leading to point mutations, deletions 

and insertions, as well as chromosomal alterations.  These defects increase the probability of a 

hit to an oncogene or tumor suppressor and may ultimately lead to carcinogenesis. To maintain 

genomic integrity, there is an intricate system of damage response mechanisms (363). 

Researchers have identified at least 15 different DNA polymerases in humans which are essential 

for DNA replication, DNA repair and the tolerance of DNA damage (222).  

 DNA replicative polymerases which carry out the bulk of DNA synthesis have evolved 

to be very precise and efficient (224). Despite this high fidelity, a replication error may generate 

a one-sided double-strand break (DSB) or degrade to a full DSB if it not repaired prior to 

initiation of DNA replication (225, 226). In order to resume DNA replication at a stalled 

replication fork, two damage tolerance mechanisms have been proposed; template switching in 

homologous recombination (HR) and translesion synthesis (TLS) (227). During template 

switching, synthesis on the undamaged template strands can continue to a limited extent (119, 

222, 227).  In contrast, translesion synthesis is conducted by specialized DNA polymerases that 

do not directly repair the damage, but rather bypass the damage to prevent replication fork 

stalling. Unlike replicative polymerases, bypass polymerases lack 3' to 5' exonuclease 
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(proofreading) activity and are able to resume replication without an undamaged template. 

However, this also contributes to their low fidelity and potential mis-incorporation of nucleotides 

(234).  

Previous research has shown that mutations in bypass polymerases may be associated 

with the risk of cancer. POLH (pol eta) was shown to be highly efficient in the bypass of UV 

lesions, such as cyclobutane pyrimidine dimer (CPD). Germline mutations in POLH were 

identified in patients with xeroderma pigmentosum (XP), an autosomal recessive genetic 

disorder of DNA repair in which individuals are unable to repair damage caused by UV light and 

thus are at high risk of developing skin cancer. Typically mutations in the nucleotide excision 

repair (NER) genes results in XP, however this was the first evidence that bypass polymerases 

may be involved in human cancer (249).  While genetic variation in other DNA repair pathway 

genes have been studied extensively in association with breast cancer, the focus on DNA bypass 

polymerases is relatively recent. Several studies have evaluated bypass polymerases in 

association with breast cancer risk (166, 202, 213, 254, 261, 262). Two reports from a 

comprehensive analysis of DNA repair genes in nested case-control study within the NHS 

(Nurses’ Health Study) II cohort evaluated SNPs from 5 bypass polymerase genes (POLB, 

POLD1, POLE, POLL, POLK) (202, 213). Han et al. reported that 44 SNPs, including 3 SNPs in 

POLK (rs3213801, rs5744533, and rs3756558), were significantly associated with 

premenopausal breast cancer risk (239 cases, 477 controls) (p<0.05) (202). However, in the 

study of postmenopausal women (1,145 cases, 1,142 controls), there were no associations with 

any of the studied bypass polymerase SNPs (213). In an in vivo study of breast cancer cells, 

Yang et al. reported elevated POLI expression when exposed to UV radiation (254).  In a gene 

sequencing study, Wang et al. identified several mutations in POLB, including an 87-bp deletion 
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in the catalytic domain of the gene (166). In two other reports, POLQ overexpression in tumors 

was associated with poor prognosis of breast cancer (261, 273).  

We evaluated the association between DNA bypass polymerases variants and breast 

cancer risk in the Carolina Breast Cancer Study, a large population-based case-control study with 

a racially diverse study population and tumor subtype data. This analysis offered a unique 

opportunity to evaluate both breast cancer subtype and race specific effects of 7 bypass 

polymerase genes. 

4.2 Materials and Methods 

4.2.1 Study population 

 

The Carolina Breast Cancer Study (CBCS) is a population-based case-control study of 

breast cancer conducted in 24 counties of central and eastern North Carolina and has been 

described previously (275, 356). Briefly, rapid case ascertainment was implemented to identify 

eligible cases from the North Carolina Central Cancer Registry (NCCCR) (277). Eligible cases 

included women ages 20-74, living in the selected North Carolina counties during their primary 

breast cancer diagnosis. There were 2 phases of enrollment: Phase 1 (1993-1996) enrolled only 

invasive cancers, while Phase 2 (1996-2001) also included women with in situ cancer. Eligible 

controls were identified using Department of Motor Vehicles (DMV) records for women under 

age 65 and Health Care Financing Administration lists for women ages 65 and older. Controls 

were frequency matched to cases based on race and age using randomized recruitment to 

oversample African American and younger women, a subgroup often underrepresented in 

research studies of breast cancer (278). This study was approved by the Institutional Review 

Board of the University of North Carolina at Chapel Hill.  
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4.2.2 Baseline Study Visit 

 

During an in-home visit, a written signed informed consent was obtained from cases and 

controls Release forms for medical records and tumor tissue were obtained from cases. The in-

home interview consisted of a nurse-administered questionnaire asking about demographic 

factors and known and suspected breast cancer risk factors. A 30mL blood sample was collected 

at the end of the nurse visit.  Blood samples were collected from 88% of cases and 90% of 

controls. Whites were more likely to provide blood samples than African Americans (88% vs. 

83%), but there were no significant differences in other risk factors for those who provided a 

blood sample and those who did not (281, 282). A total of 2,311 cases (894 African American 

and 1,417 Whites) and 2,022 controls (788 African Americans and 1,234 Whites) were 

successfully enrolled in the study. The overall response rates for cases and controls were 78% 

and 57% respectively (281).     

4.2.3 SNP selection  

 

We searched SNP500 (http://snp500cancer.nci.nih.gov) and dbSNP 

(http://www.ncbi.nlm.nih.gov/SNP) databases and selected 30 SNPs in bypass polymerase genes 

to be genotyped based on reported in vitro or in silico functional effect and the DNA repair 

literature (364). These SNPs included non-synonymous missense, regulatory (5’UTR and 3’ 

UTR), and intronic variants (including splice SNPs) with a minor allele frequency (MAF) of at 

least 5% in African Americans or Whites (Table 19).   

4.2.4 Genotyping methods and quality control 

 

DNA was extracted from peripheral blood lymphocytes by standard methods using an 

automated ABI-DNA extractor (Nuclei Acid Purification System, Applied Biosystems, Foster 

City, CA, USA)  (356). High-throughput genotyping of selected SNPs was conducted at the 

http://snp500cancer.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/SNP
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Mammalian Genotyping Core Facility at the University of North Carolina at Chapel Hill. An 

Illumina high-multiplex GoldenGate Genotyping with 1536 SNP Sentrix Array matrix included 

30 SNPs in 7 bypass polymerases genes (POLH, POLI, POLM, POLQ, REV1L, and REV3L) 

(Illumina Inc, San Diego, CA) (290). Assay intensity data and genotype cluster images for all 

SNPs were reviewed individually. Overall, 1,373 of 1536 (89%) SNPs passed quality control.  

Out of the 30 TLS SNPs selected, we excluded 4 SNPs (rs6941583, rs9333500, rs462779 and 

rs3204953) for which genotyping resulted in poor signal intensity or genotyping clustering, 1 

SNP that failed due to poor assay design (rs3218600), and 3 non-polymorphic SNPs (rs3730823, 

rs28382644, and rs28382635). All SNPs were in HWE (P>0.05) (Table 20). Our final analysis 

included genotyped data for 22 SNPs in bypass polymerase genes for 1,972 cases and 1,776 

controls. In addition 144 ancestry informative markers (AIMs) were genotyped to estimate 

African and European ancestry (281). 

4.2.5 IHC analysis and subtype ascertainment 

 

Immunohistochemical (IHC) markers were used as a surrogate for gene expression-based 

subtyping (58). IHC staining and scoring procedures have been explained previously in detail 

(22, 53, 58, 59). Briefly, tumor tissue blocks were used to confirm diagnosis by a pathologist and 

to conduct IHC subtyping. Formalin-fixed paraffin-embedded (FFPE) tumor tissue was available 

80% of cases and immunohistochemistry was completed for 62% of cases. ER/PR status was 

abstracted from medical records for 80% of cases while IHC was used for the remaining 20% of 

cases (for whom clinical status was not available). In cases that had both medical records and 

IHC data available, the concordance of ER/PR status was 81% (307). A total of 1424 (77% of 

available tumor blocks) were successfully subtyped and classified tumors as either luminal (ER+ 

and/or PR+; n=788), basal-like (ER-, PR-, HER2-, CK 5/6+ and/or EGFR+; n=199) or 
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HER2+/ER- (n=94). We excluded ‘unclassified’ tumors from further analysis. The major 

distinction between the two luminal subtypes are their proliferation signatures, measured by the 

expression of CCNB1, MKI67, and MYBL2 (49). HER2 expression only identifies about 30% of 

luminal B tumors.  In the current study, we did not have information about these proliferation 

markers and therefore combined Luminal A and B tumors into a single ‘luminal’ category (48, 

49). Additionally, most other studies do not have subtype data available and only have estrogen 

receptor status data. Therefore, we conducted an additional exploratory analysis using estrogen 

receptor (ER) status to evaluate comparability to “intrinsic” subtype results. We found that ER 

positive effects were concordant with luminal subtype results (Table 23). There were no 

differences between CBCS cases with and without subtyping data in terms of age, menopausal 

status, or family history. 

4.2.6 Statistical analysis 

 

We calculated allele and genotype frequencies stratified by case status and self-reported 

race (African American or White). We assessed departure from HWE for each locus by 

comparing expected versus observed genotype frequencies among race-specific (White and 

African American) controls using exact tests (p<0.05). We calculated pairwise linkage 

disequilibrium (LD) r
2 

stratified by race using SAS Genetics (version9.1.3) (SAS Institute, Cary, 

NC). 

We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% 

confidence intervals (CIs) for race-stratiifed effects of bypass polymerase SNPs on breast cancer 

based on the additive model. Less than 2% of participants self-identified as a race other than 

Caucasian or African American and were not included in the final analysis. We coded each 

genotype as an ordinal variable (0, 1, or 2 for the number of minor alleles carried by the 
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individual). If the minor allele frequency (MAF) differed by race, the more common allele in 

Whites was used as the referent group for both populations. We also adjusted for proportion of 

African ancestry, as measured with a set of 144 ancestry informative markers (AIMs) (297, 306). 

We excluded non-polymorphic SNPs or SNPs with a minor allele frequency of less than 0.05 in 

either race, leaving 20 SNPs in Whites and 29 SNPs in African Americans available for analysis. 

Because of the high number of rare homozygote variants (18 out of 22 SNPs), homozygotes for 

the variant allele were combined with heterozygotes and effect estimates were reported based on 

the dominant model. Final models were adjusted for age at diagnosis, proportion of African 

ancestry and offset term for the sampling design (278). 

4.2.7 Subtype analyses 

 

We coded breast cancer subtype as a categorical variable with four levels (control, 

luminal, HER2+/ER-, and basal-like).  We used unconditional polytomous regression to estimate 

ORs and 95% CI for each subtype compared to controls. 

4.2.8 Correction for multiple testing 

 

We used FDR correction for multiple testing, following the method of Benjamini and 

Hochberg (313). The false discovery rate is defined as “the expected proportion of errors among 

the rejected hypotheses” (313). Corrections were based on the number of SNPs tested and were 

performed separately for African American and Whites in the race-stratified analysis and 

separately for luminal, HER2+/ER- and basal-like categories in the subtype analysis. Observed 

p-values from the additive model were used to determine q-values. The q-value is defined as the 

minimum FDR that can be attained when calling a SNP significant (i.e., expected proportion of 

false positives) (314). Q-values were computed using the software package R. Statistical 

significance was set at q<0.10.  
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4.2.9 Pathway-based analysis 

 

We used SKAT (SNP-set Kernel Association Test) to evaluate the combined effects of 

the genotyped SNPs in bypass polymerases (333). A SNP-set refers to a set of related SNPs that 

are grouped based on prior biological knowledge. Per our study aim, we used a SNP-set that 

contained bypass polymerases. We chose a linear kernel since we assumed a log linear model. 

Kernel regression methods convert genomic information for a pair of individuals to a kernel 

score representing either similarity or dissimilarity. The formation of SNP-sets harnesses the 

potential correlation between SNPs to increase power (328). When applied to all pairs of the 

individuals, this information formed a positive semi-definite matrix (332). We tested the global 

null hypothesis (none are related to breast cancer) for SNPs in the pathway separately for White 

and African American participants (333).  

4.3 Results 

 

Characteristics of the CBCS population with genotyping data are described in Table 18. 

The distributions of age, proportion of African ancestry, and menopausal status were similar 

between cases and controls. African American cases were more likely to be diagnosed at a later 

stage and were more likely to have tumors that were ER negative. African Americans were twice 

as likely to be classified as having basal-like tumors compared to Whites.  

4.3.1.Genotype associations by race 

 

Genotype distributions in race-stratified controls were all in HWE (p <0.05) (Table 20). 

The race-stratified adjusted odds ratios for BER SNPs are summarized in Table 21. Most SNPs 

did not show a meaningfully increased or decreased odds ratio. However, for both race groups, 3 

SNPs in POLQ were associated with an increased odds ratio under the dominant model (p<0.05). 
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POLQ rs487848 (AG+AA vs GG) showed a statistically significant (uncorrected) positive 

association with breast cancer risk in Whites (OR=1.31; 95% CI= 1.08, 1.68) and African 

Americans (OR=1.22; 95% CI=1.00, 1.49).  POLQ SNP rs532411 (CT+TT vs. CC) was also 

significantly associated with increased breast cancer among both races (OR=1.31; 95% CI= 1.02, 

1.66) and (OR=1.22; 95% CI=1.00, 1.48), respectively.  Finally, POLQ SNP rs3218634 

(CG+CC vs. GG) showed an increased risk in breast cancer in Whites (OR=1.29; 95% CI: 1.02, 

1.65) and in African Americans (OR=1.20; 95% CI=0.98, 1.47). After adjustment for multiple 

testing, none of the SNPs remained significant at the 0.10 FDR level. 

4.3.2 Genotype associations by subtype 

 

In subtype-specific analyses, the 3 POLQ SNPs were significantly associated with 

luminal breast cancer (p<0.05 without FDR correction): rs487848 AG+AA vs. GG (OR=1.34, 

95% CI: 1.02-1.67); rs532411 CT+TT vs. CC, (OR=1.33, 95% CI: 1.06-1.65); rs3218634 

CG+CC vs. GG, (OR=1.26, 95% CI: 1.01-1.57). Additionally, another POLQ SNP rs1381057 

(CT+TT vs CC) was significantly associated with HER+/ER- breast cancer (OR=1.44; 95% CI= 

1.06, 1.93) (Table 22).  The same set of POLQ SNPs was significantly associated with ER+ 

breast cancer (Table 23). However, after FDR adjustment for multiple testing, none of these 

SNPs remained significant (q=0.10). 

4.3.3 Pathway-based analysis 

 

We assessed the global p-value for two different SNP-sets (SNPs successfully genotyped 

in African Americans and SNPs successfully genotyped in Whites) using the SNP-set Kernel 

Association Test (SKAT), adjusted for AIMs, and offset term. We did not find any significant 

associations for SNP-sets. A Kernel machine test of no linear effects yielded a global p-value of 

0.40 and 0.54 for African Americans and Whites, respectively (Table 24).  
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 4.4 Discussion 
 

 Given the relatively low fidelity and high mutational potential of bypass polymerases, it 

was initially hypothesized that SNPs in DNA bypass polymerases may be linked to increased 

cancer risk. We did not find a consistent pattern of association with breast cancer risk overall or 

within a given subtype for most SNPs we evaluated.  Subsequently, specialized bypass 

polymerases were shown to bypass lesions in an error-free manner (233, 246, 365). Therefore, 

functional redundancy in this pathway may partially explain the lack of associations between 

bypass polymerases and breast cancer.  Indeed, lesion specificity and functional redundancy are 

both evolutionary tactics which may ensure that genomic integrity is maintained.(366). 

 Despite the weak results for most bypass polymerases, we did observe evidence for both 

race- and subtype -specific associations between three POLQ variants and an increased breast 

cancer risk. To our knowledge, other studies have not investigated these associations. 

Interestingly, all of the SNPs showing an association appeared to predict increased risk of 

luminal breast cancer. Although not statistically significant using the FDR these findings are 

suggestive and warrant replication in other studies. Within each race, these three POLQ SNPs 

were in linkage disequilibrium with each other making it difficult to identify which, if any SNPs 

were most likely to have functional effects.  POLQ rs3218634 had a SIFT score of 0.01 

indicative of being a damaging functional SNP (Table 19), possibly implicating the SNP as the 

most likely causal variant, however functional studies and fine mapping of the region is needed.   

 The POLQ gene, located at chromosome 3q, is a member of the A Family that encodes 

the protein polymerase theta. POLQ has also been implicated as playing a role in other DNA 

repair mechanisms such as base excision repair (BER) and crosslink repair (367, 368). POLQ is 

able to efficiently bypass oxidative DNA lesions such as abasic (AP) sites and thymine glycol in 
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vitro (246, 369-371). Another lab study showed that POLQ successfully extends from 

mismatches and bases opposite (6-4) photoproducts (246). On the other hand, POLQ-deficient 

mutants exhibited hypersensitivity to oxidative base damage induced by H2O2 (263). The results 

of the current study, together with previous experimental evidence, suggest POLQ may play an 

important role in breast cancer risk.  

 Recently, a pair of studies have linked POLQ overexpression in tumors to breast cancer 

progression and poorer prognoses (253, 261, 262). Lemee et al. examined gene expression 

profiles of tumors from two cohorts of European women with untreated primary breast cancer. 

Patients’ tumor cells that overexpressed POLQ had a 4.3-fold increased risk of death compared 

those with normal expression (261). Higgins et al. also found elevated levels of POLQ 

expression in breast cancer cells, which was linked to poor prognosis in early breast cancer 

patients (262). While these findings emphasize the role of POLQ after disease onset, genes that 

influence progression also have been shown to influence early disease/etiology and therefore 

these findings also suggest that POLQ merits further investigation. 

These findings should be considered in light of strengths and limitations of our study. 

Compared to other genetic association studies of breast cancer, CBCS has a larger proportion of 

African Americans (over 40%). In addition, CBCS has detailed subtype data on tumors from a 

large population-based sample of women allowing a unique investigation of the genetics of 

specific breast cancer subtypes as well as the ability to extend study results to the population as a 

whole. Stratification by subtype does reduce power for some race-specific and subtype 

comparisons, especially for HER2+/ER- and basal-like tumors. Future research that includes 

large numbers of breast cancer cases with less common subtypes and focuses on oversampling 
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African American cases should have improved power to more precisely estimate subtype 

associations, especially among African American women. 

We had genotype and subtype data for a large proportion of CBCS participants. Tumor 

tissue was available for 1,845 of 2,311 cases (80%) and subtyping using IHC was completed for 

1,424 of 2,311 cases (62%) (307). A comparison of subtyped and non-subtyped CBCS cases 

showed that the subtyped cases were not significantly different from the CBCS as a whole with 

respect to age and menopausal status. However, cases with subtype data were more likely to be 

African American and to have a later stage at diagnosis, which may bias estimates for SNPs 

related to race or disease aggressiveness (22).  

It is also noteworthy that definitions for luminal breast cancer have evolved since original 

CBCS IHC subtyping methods were published (58). As a result, we were unable to divide 

luminal breast cancers into finer categories (Luminal A vs. Luminal B); current methods require 

use of PR positivity (on a quantitative scale) or Ki-67 to distinguish the two (295, 372). 

Therefore, there is heterogeneity within the group of luminal breast cancers defined here. 

Nonetheless, our subtyping methods here have the advantage of excluding tumors that were 

negative for all markers tested. Only triple negatives that were also positive for a basal-like 

marker are included among basal-like cancers, reducing outcome misclassification potential in 

this important subgroup.  

Although we did not find any significant combined effects of SNPs in the TLS pathway 

using SKAT, use of kernel-based machine learning to assess pathway effects in breast cancer is 

an important advance in studying gene-gene interactions (175, 213). While our pathway analysis 

was limited by the density of SNP coverage across TLS pathway genes, it is important to 

understand gene-gene interactions in breast cancer pathways.  Future application of SKAT to 
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similar data should consider tag-SNP approaches, which may better capture variation in 

candidate pathways.   

4.5 Conclusions 

 

 In summary, this study adds important new information on the role of bypass 

polymerases in breast cancer etiology by using tumor tissue to evaluate subtype-specific effects 

and considers carefully selected regulatory and coding SNP-sets in a biologically established 

DNA repair pathway. We identified three novel SNPs in the POLQ gene, not previously 

evaluated in an epidemiologic study.  With the exception of POLQ, we did not find any other 

bypass polymerase variants to be significantly associated with breast cancer risk. Larger studies 

such as the CBCS Phase 3 with improved power for race- and subtype-specific analyses and 

collaborative consortia will help gain further insight into the role of genetic variation in the DNA 

bypass polymerases and the risk of breast cancer.  
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Table 18. Characteristics of CBCS participants with genotyped data 

 

Characteristic

N % N % N % N %

Total (N) 742 100 1,204 100 658 100 1,089 100

Average age at selection 52 52 52 53

Average proportion of African ancestry 0.78 0.064 0.774 0.066

Menopausal status

   Pre-menopausal 324 41.36 539 30.53 290 59.09 456 62.67

   Post-menopausal 418 58.64 665 69.47 368 40.91 633 37.33

Stage

   CIS* 88 11.90 349 29

1 216 29.10 393 32.6

2 299 40.30 328 27.2

3 76 10.20 68 5.7

4 27 3.60 15 1.3

Missing 36 4.90 51 4.2

Subtype

   Luminal 269 56.31 519 75.63

   HER2+/ER- 38 7.59 56 5.82

   Basal-like 108 21.98 91 10.68

Estrogen Receptor (ER) Status

   Positive 235 49.57 482 68.91

   Negative 251 50.43 242 31.09

*carcinoma in situ

Cases Controls

African American White African American White

1
3
5
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Table 19. List of successfully genotyped TLS variants 

Gene rs# Type of variant
Amino Acid 

Change

Allele 

Change 

SIFT 

score
a

POLH rs35675573 missense T329I C/T 0.01

rs9333555 missense M595V A/G 0.13

rs6899628 3'UTR N/A C/T N/A

POLI rs3730823 missense H449R A/G 0.52

rs3218786 missense F507S C/T 0

rs8305  missense A706T A/G 0.86

POLL rs3730477 missense R438W C/T 0

rs3730475 splice N/A C/T N/A

rs3730463 missense T221P A/C 0

POLM rs28382653 missense V246F G/T 0

POLQ rs487848 missense A581V A/G 0.48

rs3218651 missense H1201R A/G 0.17

rs532411 missense A2304V C/G 0.05

rs1381057 missense Q2513R C/T 0.26

rs3218634 missense L2538V C/G 0.01

rs3218637 missense R1953Q A/G 0.58

rs3218649 missense T982R C/G 0.61

rs702017 missense R66I G/T 0.21

REV1L rs 3087403 missense V138M A/G 0.09

rs 3087386 missense F257S C/T 0.38

rs3087399 missense N373S A/G 0.78

REV3L rs458017 missense Y1078C C/T 0.22

rs17539651 missense P1713S C/T 0.61
aRanges from 0 to 1. The amino acid substitution is predicted damaging if the score is <=0.05, 

and tolerated if the score is > 0.05
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Table 20. Minor Alleles Frequencies of bypass polymerase SNPs stratified by race 

 

Gene SNP

Minor 

Allele Cases Controls p HWE 

Minor 

Allele Cases Controls p HWE

POLH rs35675573 T 0.000 0.000 N/A T 0.012 0.014 0.707

rs9333555 G 0.026 0.026 0.735 G 0.006 0.004 N/A

rs6899628 T 0.039 0.039 0.278 T 0.328 0.342 0.085

POLI rs3730823 G 0.000 0.000 N/A G 0.005 0.007 N/A

rs3218786 C 0.035 0.026 0.375 C 0.007 0.006 N/A

rs8305 G 0.301 0.293 0.914 G 0.060 0.067 0.971

POLL rs3730477 T 0.211 0.224 0.656 T 0.056 0.073 0.773

rs3730475 C 0.284 0.288 0.601 C 0.169 0.186 0.135

rs3730463 A 0.072 0.065 0.199 C 0.103 0.106 0.580

POLM rs28382653 T 0.000 0.001 N/A T 0.051 0.051 0.569

rs28382635 T 0.000 0.000 N/A T 0.000 0.000 N/A

rs28382644 C 0.012 0.008 N/A C 0.000 0.002 N/A

POLQ rs487848 A 0.078 0.062 0.899 A 0.205 0.181 0.354

rs3218651 G 0.167 0.163 0.073 G 0.118 0.109 0.725

rs532411 T 0.078 0.063 0.874 T 0.204 0.181 0.354

rs1381057 T 0.309 0.298 0.696 T 0.367 0.350 0.765

rs3218634 C 0.078 0.063 0.849 C 0.201 0.179 0.103

rs3218637 A 0.001 0.000 N/A A 0.049 0.055 0.446

rs3218649 C 0.361 0.352 0.926 C 0.454 0.441 0.447

rs702017 G 0.000 0.000 N/A G 0.044 0.044 0.504

REV1L rs3087403 A 0.281 0.291 0.464 A 0.291 0.277 0.476

rs3087386 T 0.443 0.451 0.886 T 0.287 0.290 0.550

rs3087399 G 0.127 0.119 0.488 G 0.257 0.257 0.487

REV3L rs458017 C 0.065 0.070 0.208 C 0.040 0.049 0.743

rs17539651 T 0.001 0.002 N/A T 0.113 0.119 0.226

Whites African American

1
3
7
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Table 21. Assocations between bypass polymerase variants with breast cancer stratified by race 

 
 

Gene SNP Genotype Cases (N) Controls (N) OR (95% CI) p q value Cases (N) Controls (N) OR (95% CI) p q value

POLH rs9333555 AA 1142 1034 Referent 733 653 Referent

AG+GG 62 55 0.94 (0.64, 1.38) 0.7398 0.8088 9 5 1.92 (0.62,6.01) 0.2601 0.6134

rs6899628 CC 1117 1007 Referent 336 275 Referent

CT+ TT 87 82 0.92(0.65,1.29) 0.2778 0.716 405 383 0.96 (0.81,1.13) 0.5979 0.7972

POLI rs3218786 TT 1120 1032 Referent 732 650 Referent

CT+CC 84 57 1.41 (0.98, 2.03) 0.065 0.2763 10 8 1.04 (0.39,2.76) 0.9358 0.9943

POLL rs8305 AA 599 543 Referent 657 573 Referent

AG+GG 605 546 1.06 (0.93, 1.21) 0.3791 0.7161 85 85 0.84 (0.61, 1.16) 0.2876 0.6134

rs3730477 CC 739 659 Referent 662 565 Referent

CT+TT 464 430 0.93 (0.80, 1.08) 0.3286 0.7161 80 93 0.79 (0.57,1.08) 0.1438 0.6134

rs3730475 TT 613 548 Referent 511 430 Referent

CT+CC 591 541 0.98 (0.85, 1.12) 0.7612 0.8088 231 228 0.91 (0.74,1.12) 0.3761 0.6134

POLM rs3730463 AA 1041 950 Referent 599 525 Referent

AC+CC 163 139 1.12 (0.88, 1.43) 0.3416 0.7161 143 133 1.00 (0.78, 1.28) 0.9802 0.9943

rs28382653 GG 1204 1086 Referent 670 592 Referent

GT + TT 0 3 N/A N/A 72 66 1.03 (0.73, 1.46) 0.8481 0.9943

POLQ rs487848 GG 1024 957 Referent 469 438 Referent

AG+AA 180 132 1.31 (1.03, 1.68) 0.0279 0.2131 273 220 1.22 (1.00, 1.49) 0.0487 0.482

rs3218651 AA 840 771 Referent 577 521 Referent

AG+GG 364 318 0.96 (0.82, 1.13) 0.6463 0.8088 165 137 1.13 (0.88,1.43) 0.3411 0.6134

rs532411 CC 1024 956 Referent 469 438 Referent

CT+ TT 180 133 1.31 (1.02, 1.66) 0.0318 0.2131 272 220 1.22 (1.00,1.48) 0.0484 0.482

rs1381057 CC 575 534 Referent 298 276 Referent

CT+ TT 629 555 1.02 (0.90, 1.17) 0.7355 0.8088 444 382 1.10 (0.94,1.29) 0.2464 0.6134

rs3218634 GG 1024 955 Referent 30 15 Referent

CG+ CC 180 134 1.29 (1.02, 1.65) 0.0376 0.2131 712 643 1.20 (0.98,1.47) 0.0723 0.482

rs3218637 GG 1202 1089 Referent 672 586 Referent

AG+AA 2 0 N/A N/A 69 72 0.88 (0.62, 1.24) 0.4559 0.6513

rs3218649 GG 497 457 Referent 221 201 Referent

CG+CC 704 632 1.01 (0.89, 1.15) 0.8453 0.8453 521 457 1.08 (0.92,1.26) 0.3358 0.6134

White African Americans
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REV1L rs3087403 GG 623 543 Referent 377 348 Referent

AG+AA 580 546 0.95 (0.83, 1.09) 0.4451 0.7424 365 310 1.09 (0.92,1.29) 0.3406 0.6134

rs3087386 CC 385 329 Referent 383 329 Referent

CT+TT 819 760 0.96 (0.85, 1.09) 0.5317 0.7532 359 329 0.98 (0.83,1.17) 0.8511 0.9943

rs3087399 AA 915 843 Referent 411 360 Referent

AG+GG 306 259 1.07 (0.89, 1.29) 0.4804 0.7424 331 298 1.00 (0.84, 1.19) 0.9943 0.9943

REV3L rs458017 TT 1054 945 Referent 684 595 Referent

CT+CC 150 144 0.87 (0.68, 1.11) 0.2642 0.7161 58 63 0.83 (0.58, 1.20) 0.3222 0.6134

rs17539651 CC 1201 1085 Referent 582 508 Referent

CT+TT 3 4 N/A N/A 160 150 0.90 (0.70,1.15) 0.3987 0.6134

N/A indicates non-polymorphic

1
3
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Table 22. Association of bypass polymerase variants with breast cancer stratified by subtype 

Gene SNP Genotype OR (95% CI) p q value OR (95% CI) p q value OR (95% CI) p q value

POLH rs6899628 CC Referent Referent Referent

CT+ TT 0.94 (0.74, 1.21) 0.6402 0.873 1.00 (0.57, 1.77) 0.9991 0.9991 0.80 (0.55, 1.17) 0.255 0.425

POLL rs8305 AA Referent Referent Referent

AG+GG 0.99 (0.81, 1.20) 0.8863 0.8863 1.22 (0.76, 1.97) 0.4115 0.8763 0.91 (0.63, 1.30) 0.5897 0.6719

rs3730477 CC Referent Referent Referent

CT+TT 0.98 (0.80, 1.20) 0.8344 0.8863 0.72 (0.43, 1.21) 0.2144 0.6432 0.79 (0.54, 1.15) 0.2168 0.425

rs3730475 TT Referent Referent Referent

CT+CC 0.97 (0.81, 1.17) 0.7731 0.8863 0.68 (0.43, 1.06) 0.867 0.9389 0.93 (0.68, 1.26) 0.6271 0.6719

POLM rs3730463 AA Referent Referent Referent

AC+CC .92 (0.71, 1.18) 0.4994 0.873 0.86 (0.47, 1.58) 0.6358 0.9166 1.34 (0.92, 1.96) 0.1236 0.425

POLQ rs487848 GG Referent Referent Referent

AG+AA 1.34 (1.02, 1.67) 0.0096 0.144 1.21 (0.72, 2.02) 0.4753 0.8763 1.23 (0.86, 1.76) 0.2492 0.425

rs3218651 AA Referent Referent Referent

AG+GG 1.16 (0.65, 2.07) 0.6258 0.873 1.18 (0.28, 5.01) 0.8215 0.9289 1.10 (0.38, 3.15) 0.2492 0.425

rs532411 CC Referent Referent Referent

CT+ TT 1.33 (1.06, 1.65) 0.118 0.3918 1.20 (0.72, 2.02) 0.479 0.8763 1.23 (0.86, 1.76) 0.2487 0.425

rs1381057 CC Referent Referent Referent

CT+ TT 1.11 (0.97, 1.27) 0.1306 0.3918 1.44 (1.06, 1.93) 0.0193 0.2895 1.10 (0.88, 1.38) 0.389 0.5305

rs3218634 GG Referent Referent Referent

CG+ CC 1.26 (1.01, 1.57) 0.0376 0.282 1.18 (0.71, 1.98) 0.5258 0.8763 1.24 (0.87, 1.77) 0.2331 0.425

rs3218649 GG Referent Referent Referent

CG+CC 1.08 (0.95, 1.23) 0.2505 0.6263 1.27 (0.94, 1.71) 0.1235 0.6308 1.04 (0.84, 1.30) 0.7263 0.7263

REV1L rs3087403 GG Referent Referent Referent

AG+AA 1.01 (0.88, 1.16) 0.8611 0.8863 0.78 (0.55, 1.11) 0.1682 0.6308 1.22 (0.97, 1.53) 0.0931 0.425

rs3087386 CC Referent Referent Referent

CT+TT 0.95 (0.83, 1.08) 0.4133 0.873 1.25 (0.93, 1.69) 0.1404 0.6308 0.86 (0.68, 1.07) 0.1771 0.425

rs3087399 AA Referent Referent Referent

AG+GG 1.05 (0.87, 1.28) 0.6069 0.873 0.91 (0.57, 1.46) 0.7042 0.9166 0.84 (0.60, 1.17) 0.3085 0.4626

REV3L rs458017 TT Referent Referent Referent

CT+CC 0.76 (0.57, 1.02) 0.0651 0.3255 1.11 (0.60, 2.05) 0.7333 0.9166 0.84 (0.52, 1.38) 0.4933 0.6166

HER2+/ER- Basal-likeLuminal
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Table 23. Association of bypass polymerase variant with breast cancer stratified by ER status 

 

Gene SNP Genotype OR (95% CI) p q value OR (95% CI) p q value

POLH rs6899628 CC Referent Referent

CT+ TT 0.99 (0.80, 1.21) 0.8827 0.9225 1.03 (0.83, 1.27) 0.7925 0.8491

POLL rs8305 AA Referent Referent

AG+GG 1.08 (0.92, 1.27) 0.3581 0.6714 1.05 (0.86, 1.28) 0.6496 0.847

rs3730477 CC Referent Referent

CT+TT 0.96 (0.80, 1.14) 0.6103 0.8322 0.85 (0.68, 1.06) 0.1413 0.6038

rs3730475 TT Referent Referent

CT+CC 0.98 (0.84, 1.14) 0.7862 0.9225 0.95 (0.79, 1.14) 0.566 0.847

POLM rs3730463 AA Referent Referent

AC+CC 0.99 (0.78, 1.26) 0.9225 0.9225 1.12 (0.87, 1.46) 0.3804 0.8151

POLQ rs487848 GG Referent Referent

AG+AA 1.30 (1.06, 1.60) 0.0113 0.1028 1.18 (0.94, 1.48) 0.1526 0.6038

rs3218651 AA Referent Referent

AG+GG 0.87 (0.73, 1.04) 0.1307 0.2801 1.05 (0.85, 1.31) 0.6393 0.847

rs532411 CC Referent Referent

CT+ TT 1.29 (1.05, 1.59) 0.0137 0.1028 1.18 (0.94, 1.48) 0.1537 0.6038

rs1381057 CC Referent Referent

CT+ TT 1.14 (0.99, 1.31) 0.0638 0.2392 1.04 (0.89, 1.22) 0.5935 0.847

rs3218634 GG Referent Referent

CG+ CC 1.26 (1.02, 1.44) 0.03 0.15 1.18 (0.94, 1.48) 0.161 0.6038

rs3218649 GG Referent Referent

CG+CC 1.11 (0.98, 1.27) 0.1131 0.2801 1.02 (0.88, 1.19) 0.7717 0.8491

REV1L rs3087403 GG Referent Referent

AG+AA 0.99 (0.86, 1.14) 0.8769 0.9225 1.08 (0.92, 1.27) 0.3422 0.8151

rs3087386 CC Referent Referent

CT+TT 0.96 (0.84, 1.10) 0.57 0.8322 0.97 (0.83, 1.13) 0.6776 0.847

rs3087399 AA Referent Referent

AG+GG 1.05 (0.88, 1.25) 0.582 0.8322 0.98 (0.81, 1.19) 0.8539 0.8539

REV3L rs458017 TT Referent Referent

CT+CC 0.80 (0.61, 1.060 0.1184 0.2801 0.86 (0.63, 1.19) 0.3663 0.8151

ER+ ER-
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Table 24. SKAT analysis of bypass polymerase SNP sets 

 

  

Group Number of SNPs SNP-set Global p-value

African American 20 rs35675573 rs6899628 rs8305 rs3730477 rs3730475 

rs3730463 rs2838653 rs487848 rs3218651 rs532411 

rs1381057 rs3218634 rs3218637 rs3218649 rs702017 

rs3087403 rs3087386 rs3087399 rs458017 rs17539651 

0.4027

White 16 rs933555 rs6899628 rs3218786 rs8305 rs3730477 

rs3730475 rs3730463 rs487848 rs3218651 rs532411 

rs1381057 rs3218634 rs3218649 rs3087403 rs3087386 

rs3087399 rs458017  

0.5453

 

1
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Table 25. Linkage disequilibrium by race  

 

African American White

POLI rs3218786 rs8305 POLI rs3730823 rs3218786 rs8305

rs3218786 1.00 rs3730823 1.00

rs8305 0.00 1.00 rs3218786 0.00 1.00

rs8305 0.00 0.02 1.00

POLL rs3730477 rs3730475 rs3730463 POLL rs3730477 rs3730475 rs3730463

rs3730477 1.00 rs3730477 1.00

rs3730475 0.99 1.00 rs3730475 0.69 1.00

rs3730463 0.00 0.54 1.00 rs3730463 0.02 0.18 1.00

REV1L rs3087403 rs3087386 rs3087399 REV1L rs3087403 rs3087386 rs3087399

rs3087403 1.00 rs3087403 1.00

rs3087386 0.16 1.00 rs3087386 0.32 1.00

rs3087399 0.14 0.14 1.00 rs3087399 0.06 0.11 1.00

REV3L rs458017 rs17539651 REV3L rs458017 rs17539651

rs458017 1.00 rs458017 1.00

rs17539651 0.00 1.00 rs17539651 0.00 1.00

 

1
4
3
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Table 25 continued. 

White

POLQ rs487848 rs3218651 rs532411 rs1381057 rs3218634 rs3218637 rs3218649 rs702017

rs487848 1.00

rs3218651 0.03 1.00

rs532411 1.00 0.03 1.00

rs1381057 0.43 0.07 0.43 1.00

rs3218634 0.94 0.03 0.94 0.42 1.00

rs3218637 0.01 0.00 0.01 0.03 0.01 1.00

rs3218649 0.30 0.10 0.30 0.68 0.28 0.07 1.00

rs702017 0.01 0.01 0.01 0.08 0.11 0.00 0.06 1.00

African American

POLQ rs487848 rs3218651 rs532411 rs1381057 rs3218634 rs3218637 rs3218649 rs702017

rs487848 1.00

rs3218651 0.01 1.00

rs532411 1.00 0.02 1.00

rs1381057 0.17 0.86 0.17 1.00

rs3218634 0.99 0.02 1.00 0.17 1.00

rs3218637 0.00 0.00 0.00 0.00 0.00 1.00

rs3218649 0.14 0.11 0.14 0.79 0.14 0.00 1.00

rs702017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

1
4
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CHAPTER 5. DISCUSSION 

 

Since the discovery of mutations in BRCA1, a prominent DNA repair gene, in the early 

1990’s, researchers have been investigating other DNA repair genes in relation to breast cancer 

risk. Results from many of these DNA repair gene variant studies have been inconclusive; 

however previous CBCS studies have indicated that risk factor profiles may differ by tumor 

subtype and race (22, 59, 373).The purpose of this dissertation was to examine whether there are 

DNA repair gene subgroup SNP effects on breast cancer risk by race or breast cancer subtype. 

We further examined combined SNP effects using a biological pathway-based approach 

separately in each pathway.  

We used genotype data from the Carolina Breast Cancer Study, a population-based study 

of White and African American women in North Carolina the majority of whom had tumor 

samples available for subtyping.  We used unconditional logistic regression to estimate the odds 

ratios (ORs) and 95% confidence intervals (CIs) for the association between 31 SNPs in 15 

genes in the base excision repair pathway and 22 SNPs in DNA bypass polymerase genes. We 

categorized race as White or African-American and classified tumors using immunochemistry as 

luminal (ER+ and/or PR+; n=788), basal-like (ER-, PR-, HER2-, CK 5/6+ and/or EGFR+; 

n=199) or HER2+/ER- (n=94).  

5.1 Summary of Results 

 

 We found evidence for both race- and subtype -specific associations between BER and 

bypass polymerase variants and breast cancer risk. In the BER pathway, two SNPs were 

associated with an increased risk (OGG1 rs1052133 and NEIL2 rs1534862) and two PCNA SNPs 
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(rs17349 and rs17352) in high LD (r
2
=0.95) were associated with an inverse association in 

Whites. Among African Americans, we found a NEIL2 SNP (rs8191613) to be associated with a 

28% decreased risk of breast cancer and UNG rs3219725 with a 44% increased risk. In the tumor 

subtype analysis, the NEIL2 SNP (rs1534862) was positively associated with a moderately 

increased risk of luminal and HER2+/ER- breast cancer. We also found an inverse association 

between FEN1 SNP (rs412334) and basal-like breast cancer. 

The majority of our findings for the BER pathway were in a set of DNA glycosylase 

genes, OGG1, UNG, and NEIL2. These are involved in the initial recognition and response to 

DNA lesions. Therefore, it could be biologically plausible that a mutation in any one of these 

genes may lead to dysfunction in DNA replication or BER repair.  

 OGG1 is a glycosylase that is primarily responsible for the accurate excision of 7,8-

dihydro-8-oxoguanine (8-oxoG), a product of oxidative stress, which can cause a G-T 

transversion during DNA replication if it not removed.  OGG1 variants have been shown to be 

highly mutagenic in mice and in vitro studies and associated with reduced DNA repair activity 

(219, 359). However, the evidence from epidemiologic literature has not been as consistent. The 

majority of studies that evaluated the role of OGG1 rs1052133 with breast cancer risk in White 

and Asian populations showed inconsistent or generally null results (137, 139, 141, 143, 145, 

361). In the current study, the positive association that we observed in Whites did not remain 

statistically significant after adjustment for multiple comparisons.   

We are the first to report a statistically significant increased risk of breast cancer among 

African Americans for UNG SNP rs3219725. Mutational analyses have identified UNG missense 

variants in colorectal cancer, glioblastoma, B cell lymphoma, and esophageal squamous cell 

carcinoma, however there is no evidence for breast cancer. Our result for rs3219725, which is 
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located in the 3’UTR of the gene, represents a regulatory SNP not previously reported for breast 

cancer risk in African Americans. However this finding requires replication in a larger group of 

African Americans since it did not remain significant after adjusting for multiple comparisons. 

 NEIL2 is a part of a newly discovered family of monofunctional DNA glycosylases 

(106). Laboratory studies have shown that NEIL2 plays an important role in the repair of 

oxidized bases such as pyrimidines and cytosines (109, 148). Variants in NEIL2 have been 

previously associated with increased risk in colorectal, head and neck and lung cancers. One 

report from the Cancer Genetic Markers of Susceptibility (CGEMS) Project noted a pair of SNPs 

in NEIL2 (rs8191649 and rs8191642) to be significantly associated with premenopausal breast 

cancer (p<0.02) (202). 

Our analysis showed a different NEIL2 SNP, rs1534862, was associated with increased risk of 

breast cancer in Whites, and also in luminal and HER2+/ER- subtypes. Another NEIL2 SNP 

(rs8191613) was associated with a decreased risk in African Americans.  

 After controlling for multiple comparisons using the FDR, two BER SNPs (PCNA 

rs17352 and NEIL2 rs1534862) remained statistically significantly associated with breast cancer. 

The T allele of NEIL2 rs1534862, located in the 3’UTR of the gene, was associated with an 

increased risk of breast cancer in Whites and two subtypes (Luminal and HER2+/ER-). The C 

allele of PCNA rs17352, located in an intronic region, was associated with a decreased risk of 

breast cancer in Whites. These findings, especially for NEIL2 are new and require further 

replication in larger studies. 

Among bypass polymerase genes, we found evidence for both race- and subtype -specific 

associations between three POLQ variants and an increased breast cancer risk. To our 

knowledge, this is the first study to report these associations. Additionally, all of these SNPs 
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were associated with an increased risk of luminal breast cancer. Among each race, all three 

POLQ SNPs were in high LD.  POLQ rs3218634, a missense SNP,  had a SIFT score of 0.01 

indicative of being a damaging functional SNP, implicating that it may be the causal variant. 

Although not statistically significant after adjusting for multiple comparisons, these findings are 

suggestive and warrant investigation in future studies. 

POLQ, located at chromosome 3q, is a member of the A Family of DNA polymerases 

that encodes the protein polymerase theta. Recently, a pair of in vitro studies has linked POLQ 

overexpression in tumors to breast cancer progression and poorer prognoses (253, 261, 262). 

POLQ-deficient mutants exhibited hypersensitivity to oxidative base damage induced by 

hydrogen peroxide (263). The results of the current study corroborate the experimental evidence 

of the potential mutagenicity of POLQ variants.  

With the exception of POLQ, we did not find any other bypass polymerase variants to be 

significantly associated with breast cancer risk. There is also evidence for functional redundancy 

within the oxidative DNA damage repair system. Both BER and bypass polymerases deal with 

DNA damage caused by oxidative stress. Functional redundancy within and between pathway 

genes may in part explain the lack of SNPs associations with breast cancer. Several studies have 

suggested that DNA bypass polymerases are involved in BER and vice versa.  POLQ is one 

example, purportedly implicated in base excision repair and crosslink repair (367, 368). POLQ is 

able to efficiently bypass oxidative DNA lesions such as abasic (AP) sites and thymine glycol in 

vitro (246, 369-371). Another lab study showed that POLQ successfully extends from 

mismatches and bases opposite (6-4) photoproducts (246).  NEIL2 was shown to interact with 

POLB and LIG3 in the short-patch pathway of BER (109, 110, 150). In addition, 

posttranslational modification of PCNA by ubiquitin may play a role in determining which DNA 
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response mechanism to activate. Studies showed that the mono-ubiquitylation of PCNA may 

allow for translesion synthesis by damage-tolerant DNA polymerases, while poly-ubiquitylation 

may initiate error-free pathway involving template switching in homologous recombination (HR) 

(228-231). Therefore, our data may reflect the fact that there is an intricate system of 

functionally redundant DNA damage response mechanisms in place to protect our cells from 

genomic instability and prevent carcinogenesis. 

5.2 Strengths and Limitations  

 

5.2.1 Study design  

 

The Carolina Breast Cancer study is one of the first studies of its kind to integrate 

molecular biology and genetics with population-based epidemiology. One of the main strengths 

of this study was the large proportion of African Americans enrolled in the CBCS. In an 

unpublished review of 10 breast cancer studies, only CBCS and two other studies had an 

adequate proportion of African American cases to evaluate race-specific effects. Randomized 

recruitment, a novel sampling method, was used to oversample younger and African American 

women to improve power to detect associations in these often understudied subgroups of women 

(278). As an alternative to frequency matching, "randomized recruitment" or probability 

matching individually randomizes subjects to be recruited or not based on available screening 

variables and disease status (278). In CBCS, these screening variables, race and age, were 

abstracted from pathology reports for cases and DMV and Medicare records for controls. The 

final dataset included 1,809 White women (55%) and 1,505 African American women (45%).  

In addition to reporting results stratified by self-reported race, we also used AIMs to 

estimate African and European ancestry to control for any residual confounding (i.e. population 
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stratification). Rapid case ascertainment improved access to data from North Carolina’s Cancer 

Registry in a more time-efficient manner that allowed for more complete case ascertainment.  

5.2.2 Genotyping methods 

 

CBCS researchers had several quality controls measures in place to minimize potential 

genotyping errors. Blind duplicates were genotyped to verify the reproducibility of genotype 

calls. Any genotype with a call rate <95% was excluded. In addition, tests of Hardy-Weinberg 

equilibrium were conducted. Four SNPs in the BER pathway failed HWE and were excluded 

from subsequent analyses. Assay intensity data and genotype cluster images were reviewed for 

all SNPs. Across both pathways, a total of 8 SNPs were excluded due to low signal intensity or 

indistinguishable genotype clusters. Overall, there were 3,748 or 97% of enrolled participants 

(1,972 cases and 1,776 controls) with successfully genotyped data.    

5.2.3 Tumor Subtyping  

 

CBCS had detailed subtype data on tumors from a majority of cases (62%) allowing a 

unique investigation of the genetics of specific breast cancer subtypes. However, cases with 

subtype data were more likely to be African American and to have a later stage at diagnosis, 

which may bias estimates for SNPs related to race or disease aggressiveness (22). However, 

there were no significant differences for age, menopausal status, or family history between 

CBCS cases with and without subtyping data.  

Definitions for luminal breast cancer have evolved since original CBCS IHC subtyping 

methods were published (58). As a result, we defined tumor subtypes differently than previous 

studies. The major distinction between the two luminal subtypes are their proliferation 

signatures, measured by the expression of CCNB1, MKI67, and MYBL2 (49). HER2 expression 

only identifies about 30% of luminal B tumors.  In the current study, we did not have 
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information about these proliferation markers and therefore combined Luminal A and B tumors 

into a single ‘luminal’ category (48, 49). We also excluded ‘unclassified’ tumors from further 

analysis due to their heterogeneity. 

Our final subtype analysis was based on three subtypes (luminal, HER2+/ER- and basal-

like). Our subtyping methods have the advantage of excluding tumors that were negative for all 

markers tested. Only triple negatives that were also positive for a basal-like marker are included 

among basal-like cancers, reducing outcome misclassification potential in this important 

subgroup. Since many other studies do not have detailed subtype data but do have ER status, we 

conducted an exploratory analysis using estrogen receptor (ER) status to evaluate comparability 

to “intrinsic” subtype results and found that ER positive effects were for the most part 

concordant with luminal subtype results and ER negative effects with HER2+/ER- or basal-like 

subtype results. 

5.2.4 SKAT analysis 

 

Although we did not find any statistically significant combined effects of SNPs in either 

pathway using SKAT, to our knowledge, this is one of the few studies to have used this recent 

kernel-based machine learning method to assess pathway effects in cancer (175, 213). We chose 

this pathway-based method to harness correlation between biologically related genes. However, 

we recognize that our association analyses including the pathway analysis was limited by the 

density of SNP coverage across our two pathways and perhaps our choice of kernel.  Thus SKAT 

may be better applied to GWAS studies with greater SNP coverage.  

5.2.5 Power issues 

 

While Phase 2 of the CBCS improved power by recruiting more invasive breast cancer 

along with in situ cases, with the exception of two SNPs in the BER pathway, other associated 



 

152 

 

SNPs did not remain significant after adjustment for multiple comparisons using the false 

discovery rate (FDR). Therefore, we cannot rule out the role of chance for our observed 

associations. Traditionally, genetic association studies have been criticized for lack of replicable 

results. In our BER literature review, we noticed that many studies were drastically 

underpowered and as a result had imprecise results (Chapter 1, Table 3). In the current study, 

even with over 1,900 cases and 1,700 controls, we may have been underpowered to detect small 

SNP effects and also had reduced power to detect subtype associations, especially for 

HER2+/ER- and basal-like tumors. Therefore, it is possible that our significant subtype findings 

for NEIL2 rs1534862 with HER2+/ER- subtype and FEN1 rs412334 with basal-like subtype are 

due to chance and need to be replicated in a larger group of women with detailed subtype 

classification. 

5.3 Public health significance 

 

While advances in screening and treatment have improved outcomes in breast cancer, 

breast cancer is still the most common (non-skin cancer) and the second most deadly cancer in 

U.S. women. In particular, premenopausal African American women have a disproportionate 

increased risk of mortality due to breast cancer compared to other subgroups of women. 

Therefore, this subgroup was targeted for enrollment into the study. As a result, CBCS represents 

one of the most comprehensive datasets of African American breast cancer cases with tumor 

subtype information.   

CBCS was one of the first studies to report that breast cancer risk and prognostic factors 

may vary by both race and tumor subtype. Millikan et al. reported that risk factors for basal-like 

subtype included increased parity, younger age at first full term pregnancy, lack of breastfeeding, 

high waist-to-hip ratio, young age at menarche, and higher BMI (22). Of note, many of these risk 
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factors were contrary to risk factors established in luminal tumors. Furthermore, Carey et al. 

reported that premenopausal African Americans had a higher proportion of basal-like breast 

cancer (39%) than luminal cancers (36%). African American women were also two times as 

likely to be diagnosed with basal-like cancer compared to their White counterparts (22% vs. 

11%).  Additionally, Carey et al. showed that compared with luminal A tumors, basal-like 

tumors had poorer prognostic factors such as higher mitotic index, higher grade, and lower 

survival (59). These findings for basal-like breast cancer may partially explain the survival 

disparity in this subgroup of younger, African American women.  

Since younger African-Americans carry a disproportionate burden of basal-like disease, 

this high risk group should also be targeted for early screening mammography and increased 

surveillance by their clinicians and patients themselves. Our knowledge of genetic variation in 

DNA repair or bypass polymerases may also inform research on potential targeted therapies. 

Targeted treatments that exploit DNA repair could greatly benefit women whose tumors are not 

responsive to traditional chemotherapy.  To date, several PARP1 and POLB inhibitors are in 

development and have been investigated as adjuvant therapies for cancer (345, 346).  

5.4 Future research 

 

 We identified several potentially significant SNPs in both our race-stratified and subtype-

specific analyses. Further work is needed to replicate these findings in other study populations 

with an adequate proportion of African Americans and with complete subtype information. The 

AMBER consortium, a large collaborative study of African American women with breast cancer 

subtype information fulfills both of these criteria (374). A similar large collaborative study of 

White women with subtype information is needed to replicate SNP findings specific to Whites.  
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 In the past decade, advances in technology and statistical methods have greatly 

accelerated the field of genetic and molecular epidemiology. Our knowledge of DNA repair 

genes and pathway has also expanded since the early 2000s. Several new DNA repair and bypass 

polymerases genes have been discovered since the initially genotyping of the CBCS which could 

enhance the gene coverage in future studies (119). Our knowledge and technology in defining 

breast cancer heterogeneity of tumors is also evolving rapidly.  Future studies should take 

advantage of more comprehensive marker panels (i.e. PAM 50) used for gene expression 

patterns of tumor subtypes (311, 375, 376).  

   We also suggest a using a more comprehensive set of SNPs for future SKAT analyses. 

In addition we would further explore if other kernels are more appropriate fit for our genetic 

model. We would also expand our pathway-based analysis to explore combined SNP effects 

between DNA pathways (i.e since the literature has suggested interactions between genes in 

multiple DNA repair pathways. We could also use different pathway-based statistical methods 

such as other machine learning methods and hierarchical modeling to evaluate multiple SNP-

SNP interactions.  

 Finally, several environmental factors are known to be associated with DNA damage 

such as X-ray radiation, UV radiation, and folate deficiency, as well as yet to be discovered 

environmental sources of damage.  Further research is needed to investigate the effect on 

environment interaction on the relationship between common variation in DNA damage genes 

and breast cancer susceptibility. 

5.5 Conclusion 
 

 Since its inception two decades ago, the Carolina Breast Cancer Study has been at the 

forefront of many breast cancer research discoveries and innovative methods such as randomized 
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recruitment and rapid case ascertainment. Furthermore, the study has strived to stay relevant and 

has adapted to the ever-evolving changes in technology and methods.  The results from this 

current study have added to the repository of over 100 CBCS publications as well as the breast 

cancer literature. We believe this research has contributed to our understanding of the 

relationship between genetic variation in DNA damage response genes and breast cancer risk. In 

the future, we hope that results from the CBCS will continue to add to our understanding of 

breast cancer as it has in the past.  
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