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ABSTRACT 

HAIJING WANG: NMR Study of Water in Nanoscopic Confinement and at the Interface of 

Biomolecules  

(Under the direction of Prof. Yue Wu) 

Water in nanoscopic confinement and at the interface of biomolecules plays critical 

roles in a wide range of biological processes including protein dynamics and functions. For 

the nanoconfined water, I report a hydrophobic-hydrophilic transition upon cooling from 

22°C to 8°C via the observation of water adsorption isotherms in SWNTs measured by 

NMR. A considerable slowdown in molecular reorientation of such adsorbed water was also 

detected. Nanoconfined water in slit-shaped wettable pores has a spin-lattice relaxation time 

similar to that observed in bulk water, suggesting a similar molecular reorientation in both 

conditions. The dependence of the capillary condensation pressure on the nanoscopic pore 

size resembles that given by the Kelvin equation, despite the equation‟s questionable validity 

on nanoscale. For water at the interfaces of proteins, the most basic property of protein 

hydration—the water sorption isotherm—remains inadequately understood. Using NMR to 

measure the isotherms of lysozyme in situ between 18 and 2°C, the present work provides 

evidence that the part of water uptake above the hydration level at which protein starts to 

function is significantly reduced below 8°C. Quantitative analysis shows that such reduction 

is directly related to the reduction of protein flexibility and enhanced cost in elastic energy 

for accommodating the hydration water at lower temperature. The elastic property derived 

from the water isotherm agrees with direct mechanical measurements, providing independent 

support for the solution model, in which protein is treated as a polymer-like solute. The 
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hemoglobin hydration shows similar temperature dependence to that observed in lysozyme. 

NMR relaxation with paramagnetic centers that are present in those proteins could reveal the 

dynamics of hydration water within the protein. The role of interfacial water in the action of 

general anesthesia remains a topic of controversy. Using 
1
H and 

19
F NMR, I provide direct 

experimental evidence that interfacial water in the proximity to proteins is essential for the 

molecular interaction between anesthetics and proteins. The halothane adsorption isotherms 

can reveal the molecular nature of general anesthesia.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Water: Matrix of Life 

1.1.1 Bulk water 

Water is the most abundant compound on Earth‟s surface and the principal 

constituent of all living organisms [1, 2]. It is the most essential solvent to biological 

processes and thus often called the “molecule of life” or “matrix of life” [3, 4]. Water is also 

one of the most mysterious chemical compounds, known for its anomalies such as shrinking 

on melting [5, 6]. The water molecule consists of an oxygen atom and two hydrogen atoms, 

with an average O-H bond length of 0.9572 Å and H-O-H bond angle of 104.52 [1]. Water 

molecules interact with each other through hydrogen bonding with a strength of 20 kJ/mol 

[7].  The directionality of the hydrogen bond and the maximum number of neighbors a water 

molecule can interact with determine most of the structural and thermodynamical properties 

of water.  

Figure 1.1 shows the four-coordinated water structure motif connected through 

hydrogen bonds [6]. Based on this motif and a variation in both the hydrogen bond length 

and the OOO bond angles, solid water may assume a variety of structures known as about 16 

crystalline phases and three amorphous phases of ice [5]. Figure 1.2 shows the phase diagram 

of ice [6]. Most of the anomalous behaviors of liquid water are related to the four-
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coordinated local geometry. For instance, liquid water contains a range of ring structures 

including five- and fourfold ones, which are less space demanding than the sixfold ring in ice 

Ih as shown in Figure 1.2. The removal of the crystal constraints allows the molecules to 

assume a large variety of local structures, many of which occupy less volume than the crystal. 

As temperature increases, the hydrogen bond length increases and the variation of OOO 

angles also increases. This allows water to explore a denser packing than ice. From 273 K to 

277 K, the increase in the OOO angle variation dominates the volume change, leading to a 

contraction of water volume. As temperature increases above 277 K, the normal thermal 

expansion mechanism takes over as the increase of hydrogen bond length dominates the 

volume change.           

 

Figure 1.1 A four-coordinated water molecule showing the classic tetrahedral arrangement of 

the first-neighbor environment of a water molecule hydrogen-binding to four neighbors. The 

hydrogen atom attached to a relatively electronegative atom is a hydrogen bond donor. The 

electronegative atom, such as the oxygen atom, is a hydrogen bond acceptor. Based on the 

transfer of electron density, the central molecule „donates‟ two hydrogen bonds to its two 

lower neighbors and „accepts‟ a hydrogen bond from each of its two upper neighbors [6]. 
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Figure 1.2 The phase diagram of ice [6]. 

 

1.1.2 Nanoconfined and interfacial water 

 The role of water in protein stability and folding was first proposed by Kauzmann [8]. 

He pointed out that an interaction mediated by water, the hydrophobic interaction, causes the 

clustering of hydrophobic units [9]. The facts that oil and water don‟t mix and tend to 

segregate is the consequence of the hydrophobicity, where polar and charged components 

„like‟ water (hydrophilic, from Greek „hydros‟ (water) and „philia‟ (love)) and apolar 

components „hate‟ water (hydrophobic, from Greek „hydros‟ (water) and „phobos‟ (fear)) 

[10]. Similar effects could influence more complicated assemblies such as biological 

structures that consists of both hydrophobic and hydrophilic components [9]. The driving 
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force for the biomolecule to fold into its native structure comes from the different 

interactions of its hydrophobic and hydrophilic components with the interfacial water.  

Water certainly plays an essential role in Kauzmann‟s picture. The details of its role 

in protein folding, structure stability, dynamics and function remain unclear [11-15]. As the 

power of molecular dynamics increases, such elucidation of details becomes possible with an 

explicit description of each solvent molecule [16]. For instance, how could an amino acid 

chain find its native structure from an astronomical number of possible configurations [17, 

18]? How does the water-protein interaction affect the structure and dynamics of interfacial 

water and proteins [15, 19-21]?  

It is even more interesting to notice that water could be present in many biomolecular 

cavities and channels at nanometer scale, such as those in Chaperone and ion channels [22-

25]. Ion channels are pore-forming membrane proteins that help establish and control the 

voltage gradient across the plasma membrane of cells. The behavior of water at this 

dimension could differ significantly from that in the bulk [24, 26]. The hydrophobic effect 

could also depend on the length scale [9, 27, 28]. Due to its importance for both fundamental 

understanding in thermodynamics and its application in biological processes, the study of 

water in nanoconfinement and at the interface of biomolecules has become a topic of current 

interest [29]. Figure 1.3 shows three examples of topics in this area: water at extended 

surfaces for the determination of hydrophobicity at the nanometer scale [30], at the interface 

of a biomolecule and its ligand, and confined and transported through a single-walled carbon 

nanotube [24, 26]. The majority of the above studies are based on molecular dynamics 

simulations. The number of available experimental results is much less due to the difficulty 

in obtaining the necessary experimental conditions or the lack of details in the experimental 
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results at a molecular level. It is the topic of this dissertation to provide and interpret 

experimental results on water in nanoscopic confinement and at the interface of 

biomolecules.      

 

Figure 1.3 How water behaves at different hydrophobic elements: extended surfaces, 

biomolecules, and SWNTs [29]. 

 

1.1.3 Dissertation outlines 

This dissertation consists of water adsorption results in several nanoporous materials 

and biomolecules. I use adsorption isotherms measured by NMR to study the interactions 

between the probe molecules (water/gas) with a variety of surfaces as illustrated in Figure 

1.4. The first topic of this dissertation is the water in nanoscopic confinement. In CHAPTER 

2, I discuss a temperature-induced hydrophobic-hydrophilic transition observed by water 

adsorption in SWNTs. This suggests the hydrophobicity could change in response to the 

structure of interfacial and nanoconfined water. In CHAPTER 3, I describe the observation 

that water adsorption demonstrates signatures of capillary condensation. The condensation 

pressure correlates with the pore size in a way similar to the Kelvin equation. The question is 
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raised whether the water at nanometer scale obeys the macroscopic Kelvin equation. In the 

following chapters, I start to discuss the study on the water at the interface of proteins. In 

CHAPTER 4, I discuss a significant decrease of hydration water in the proximity of 

lysozyme at temperatures below 8C. I explain this by the reduced protein flexibility and 

enhanced cost in elastic energy for accommodating the hydration water at lower temperature 

based on the modified Flory-Huggins theory. Similar effects were also observed in 

hemoglobin and myoglobin as shown in CHAPTER 5. The dynamics of hydration water was 

studied based on the NMR spin-lattice relaxation in the presence of paramagnetic centers. 

Based on all the above understanding of protein hydration, in CHAPTER 6 I extend our 

study to the role of interfacial water in mediating the protein-anesthetic interaction. I provide 

evidences that the apolar molecule halothane, an inhaled general anesthetic, can be adsorbed 

on proteins only in the presence of interfacial water.  

 

Figure 1.4 Illustration of water adsorption in SWNTs, in microporous activated carbons 

derived from PEEK, and on the surface of biomolecules. 

 

1.2 Adsorption 

A gas molecule can move along straight paths until it collides with other gas molecules 

or a surface. Collisions between two gas molecules exchange energy and momentum. Upon 
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hitting a surface, the gas molecule may lose most of its kinetic energy and momentum and 

stay on the surface for a certain length of time before regaining enough energy to re-

evaporate. This phenomenon is called adsorption. Adsorption is a fundamental process that 

could reveal important surface properties such as the interaction between the gas (adsorbate) 

and the surface (adsorbent). The existing theories of adsorption were established to relate the 

measured quantities with surface properties based on fundamental physical principles [31, 

32]. 

1.2.1 Basic quantities 

 If n  gas molecules strike a unit area of a surface per unit time and remain there for an 

average time of  , the adsorbed number of molecules per unit area of surface is n  . 

Base on the kinetic theory of gasses, the number n  can be expressed as 

 22  (torr)
3.52 10

2

AN p p
n

MRT MT
     (1.1) 

where AN is the Avogadro constant, R the gas constant, M the molecular weight, T the 

temperature, and p the pressure in unit of torr or millimeters of mercury. n  is a very large 

number. For instance, at a temperature of 20C and nitrogen pressure of 760 torr, there are 

more than two moles of nitrogen molecules colliding with a surface within an area of 1 cm
2
. 

Such a large number generally suggests that the adsorption establishes equilibrium with 

surface molecules practically instantaneously [31]. In a real experiment, it always requires 

some time to reach adsorption equilibrium. Such a delay is caused by the transportation of 

molecules that are bought from distant locations to the adsorption surface. 

 The time of adsorption,  , is given by  0 exp /Q RT  , where 0  is the time of 

oscillation of the molecules in the adsorbed state, referring especially to vibrations 
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perpendicular to the surface, and Q  is the heat of adsorption. 0  doesn‟t depend on the time 

of vibration of the constituent molecules or atoms of the adsorbing surface, but is often of the 

same order of magnitude, namely, 12 1410 ~ 10  s  .  

1.2.2 Langmuir isotherm 

Langmuir developed a simple picture of adsorption, namely a unimolecular layer of 

adsorbed molecules. He assumed that the heat of adsorption is identical for every molecule 

that collides with a bare surface and there is no interaction between gas molecules, and that 

every molecule colliding with a molecule already adsorbed on the surface returns to the gas 

phase. This simple assumption establishes an expression for the number of adsorbed 

molecules: 

 
0

1n


 


 
  

 
 (1.2) 

where 0 is the number of molecules in a completely filled unimolecular layer on the surface. 

This is equivalent to 

 0

0

n

n

 


 



 (1.3) 

or 

 0

0 0

/

1 / 1

n kp

n kp

  


  
  

 
 (1.4) 

where I have already used Eq. (1.1) with 

 
0 0 2

An N
k

p MRT

 

  
   (1.5) 
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 The Langmuir isotherm could also be derived from a pure statistical mechanics point 

of view. Unimolecular layer adsorption is equivalent to finding the number of molecules that 

occupy sites with energy of  on the surface, where the free gas has an energy of 0 . The 

partition function of one particle is 

  
 

 0
0

0

!
, , exp

! !
Q T


   

  
   

 (1.6) 

where 
 

3/2
2/ 2

p

kT MkT



 . The partition function becomes 

    
0

00

0

exp 1 exp







   



 
          

 
  (1.7) 

The number of molecules adsorbed on the surface is given by 

 
 

 0 0

exp1 ln

1 exp

  


    


   

 
 (1.8) 

This is identical to Eq. (1.4). 

1.2.3 Multimolecular adsorption and Brunauer-Emmett-Teller isotherm 

There are scenarios that suggest the interaction between gas molecules can not be 

negligible. When a gas molecule collides with an adsorbed molecule on the surface, there is 

possibility that the gas molecule is adsorbed on top of an already adsorbed molecule. This is 

called multimolecular adsorption. I denote the fraction of the surface covered with 

unimolecular thickness as 1 , the fraction with thickness of two molecules is 2 , etc. The 

total number of molecules is 

 
0 1 0 2 0 3 0 0

1

2 3
i

i i

i

i i          




         (1.9) 
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The number of molecules striking the bare surface, 0

1

1
i

i

i

n n 




 
  

 
 , must equal to the 

number of molecules that evaporate from fraction 1 , which is 0 1 /   . For the rest of the 

layers above, the time of adsorption, 1 , is different from that for the first layer,  . Here I 

assumed 1 is identical for all layers. Continuing the argument for all thickness, I get  

 
0 1 0

0 1 1

                    i=1

                  i>1i i

n

n

   

   




 (1.10) 

The total number of molecules adsorbed on the surface is 

 
   

1 0
0 0 0

1 11 0 1 1

i
i i

i

i i

n k x
i i

x x kx

  
    

 

 

 

 
   

   
   (1.11) 

where 1 1

0 0

/
2

n N
x p p q

MRT

 

  
   ,and 1/k   , or  

 
   0/

1 1 /

kp

q p k p q
  

    
 (1.12) 

This is the basic form of the Brunauer-Emmett-Teller (BET) isotherm.  

1.2.4 Classification of isotherms  

Langmuir and BET isotherms are two simple but important examples of adsorption. 

In general, due to the complexity of the attraction force between the gas and the solid, the 

isotherms show a variety of patterns. International Union of Pure and Applied Chemistry 

(IUPAC) recommends the following classification for the characterization of porous solids as 

shown in Figure 1.5. Type I is a typical Langmuir isotherm. The physical adsorption of gases 

by microporous solids shows the signature of a Type I isotherm. Type II corresponds to the 

physical adsorption of gases by nonporous solids, while Type IV is typical for gas adsorption 

by mesoporous solids. Type III and V appear for the special adsorption behavior of water 

[32].   
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Figure 1.5 The IUPAC classification of adsorption isotherms for gas-solid equilibria [33]. 

 

1.2.5 Uniqueness of water adsorption 

In this dissertation, I focus primarily on the adsorption behavior of water in several 

materials, including SWNTs, microporous activated carbon, and biomolecules. The 

fundamental assumption of the surface adsorption model does not apply to these systems 

with either the confined space or complicated surface properties. For instance, in CHAPTER 

2, I identified the signature of water inside SWNTs, a tubular structure formed by rolling a 

single sheet of carbon atoms. As the temperature changes from 18C to 8C, the isotherm 

changes dramatically from Type III to Type I, indicating a significant change of 

hydrophobicity. Such a change can be explained by a change in the local excess chemical 

potential. In CHAPTER 3, capillary condensation dominates the adsorption process and 

shows a signature of a Type V isotherm. The condensation pressure correlates well with the 
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pore size, similar to what the Kelvin equation describes. This raises the question whether 

theories for the bulk phase, like the Kelvin equation, remain valid at the nanoscale. From 

CHAPTER 4 to CHAPTER 6, I will discuss results for water adsorption in biomolecules. At 

low temperature, there is a significant decrease of hydration water at high relative vapor 

pressure. This can not be explained by the surface adsorption picture. A solution picture 

based on the Flory-Huggins theory and a term originating from the elastic energy has to be 

introduced to account for the observed temperature dependence. The adsorption of anesthetic 

gas in dry and wet proteins also demonstrates behaviors beyond the surface adsorption model. 

1.3 Nuclear Magnetic Resonance 

Adsorption isotherms are generally measured by the volumetric or gravimetric method 

[32]. Both methods can only measure the adsorption isotherms for one kind of adsorbate at a 

time. They can only tell the amount, either mass or volume, of adsorbate. NMR has been 

used to measure isotherms for adsorbates containing nuclear spins. Many common important 

adsorbates, such as H2 for hydrogen storage [34], CH4 for natural gas exploration and storage 

[35], H2O for nanoconfined and biological systems [36], contain the 
1
H nucleus. These 

molecules could be used as molecular probes for the characterization of micropores [34, 37, 

38]. Many inhaled general anesthetics contain 
1
H, 

19
F or 

129
Xe. Both 

1
H and 

19
F are perfect 

choices from the point view of NMR. NMR has no difficulty in separating two or more 

nuclear species through their different resonating frequencies. Even for the same nucleus 

from different molecules, or even from different local environments of the same molecule, 

NMR shows the possibility to separate them through chemical shift, spectral line shape, and 

relaxation time. The relaxation time could also reveal the dynamical characters of adsorbates 
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and the interaction between adsorbates and adsorbents. It is therefore useful to review some 

of the basic concepts of NMR prior to its application in measuring adsorption isotherms.  

 

Table 1.1 Gyromagnetic ratio of nuclei used in NMR and electron used in EPR. 

Nucleus Spin Natural Abundance (%)  6 -1 -1 10  rad s T     -1/ 2  MHz T    

1
H 1/2 99.9885 267.513 42.576 

3
He 1/2 0.00014 41.065 6.536 

7
Li 3/2 92.410 103.962 16.546 

13
C 1/2 1.07 67.262 10.705 

19
F 1/2 100 251.662 40.053 

129
Xe 3/2 21.180 -73.997 -11.777 

electron 1/2 100 -1.76×10
5
 -2.8×10

4
 

 

1.3.1 Magnetization  

Many atomic nuclei have non-zero spin angular momentum I  and a dipolar 

magnetic moment I  collinear with it, where  is gyromagnetic ratio. When placed in a 

magnetic field 0H in z direction, nuclear spins in the ensemble quantize along the magnetic 

field with a quantum number of zI m , leading to different magnetic energy 

0 0mE H mH      . The populations mP  of the energy levels are proportional to

   0exp / exp /mE kT mH kT  . The net magnetization of N  spins become [39] 
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 

 

0

0

exp /

exp /

I

m I
I

m I

m mH kT

M N

mH kT















 (1.13) 

With high temperature approximation, 0 / 1H kT , the net magnetization reduces to 

 
 2 2

0

1

3

N I I
M H

kT

 
  (1.14) 

Table 1.1 shows the gyromagnetic ratio of several important nuclei that are 

commonly used in NMR. The gyromagnetic ratio of the electron is much larger than that of 

nuclei. The basic principles used in NMR are also applied in EPR [40]. When subject to 

external perturbation, such as an oscillating magnetic field at the Larmor frequency, 0H , 

perpendicular to the static field, the net magnetization will start processing like a single spin. 

The change of magnetization will be determined by its Hamiltonian.  

1.3.2 Interactions 

The Hamiltonian of a single spin in an alternating magnetic field in terms of the 

amplitude 0

xH  is 

 0 coso z x xH I H I t      (1.15) 

For an ensemble of nuclear spins, there are many other interactions need to be included in the 

Hamiltonian. The interaction between two magnetic moments 1 1 1 I and 2 2 2 I in 

classical electrodynamics gives the expression of the quantum mechanical Hamiltonian for 

dipolar interaction [40]  

 
   1 21 2

3 5

3
d

r r

 
 

   r r
 (1.16) 

Dipolar interaction is the dominant interaction in the majority of this dissertation. 
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 Nuclear spins could also interact with electrons through magnetic interactions. For 

instance, the chemical shift originates from the orbital motion of electrons. The orbital 

motion of electrons changes in response to the external field, and thus alters the magnetic 

field at the nuclear spin. Such a change in local magnetic field is expressed in terms of 

resonance frequency 

    0 0 1H H H         (1.17) 

where  is independent of 0H . When the nucleus and electron are far apart, they could 

interact through the dipolar interaction 

 
   

3 5

3 e ne n
en

r r

 
 

   r r
 (1.18) 

For the s-state of electrons, the electron wave function is nonzero at the nucleus. This 

hyperfine interaction has Hamiltonian 

  28

3
hf e n


   I S r  (1.19) 

where I and S are the nuclear and electron spin respectively, and   r is the electron 

density at the nucleus. The nuclear-electron interaction is essential in the understanding of 

the relaxation mechanism in myoglobin and hemoglobin, where unpaired electrons are 

present in the molecule.   

1.3.3 Relaxation 

The Bloch equations describe the time evolution of the net magnetization in a 

classical picture. 
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 (1.20) 

After a perturbation such as a RF pulse at the resonant frequency, M has been moved away 

from its thermal equilibrium value 0M . In the absence of external perturbation, the net 

magnetization tends to move towards 0M . In the longitudinal direction, any change of zM is 

associated with energy transfer from the nuclear spin to its surroundings, therefore the time 

constant 1T  is called the spin-lattice relaxation time. On the other hand, in the transverse 

plane, 2T characterizes the time needed for spins lose their coherence. No energy is 

transferred during the spin-spin relaxation process. 

 In liquids and gases, molecules are experiencing constant rotational tumbling and 

relative translational motion. Migrations of atoms or groups of atoms from one molecule to 

another are common in the chemical exchange process. If the interaction between nuclear 

spins depends on their relative distance and direction, such as the dipolar interaction, these 

motions provide one of the relaxation mechanisms. The relaxation times for like spins are 

given by [39] 

 

         

             

1 24 2

1

0 1 24 2

2

1 3
1 2

2

1 3 15 3
1 0 2

8 4 8

I I

I I

I I J J
T

I I J J J
T

  

  

   
 

 
     

 (1.21) 

where the second-rank tensor J is the Fourier transformation of the spectral density of the 

dipolar interaction. If the rotational motion of two spins is considered, then 
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 (1.22) 

where b is the distance between two spins,   is the Larmor period, and  is the correlation 

time. These lead to these expressions for relaxation times: 

 

4 2

6 2 2 2 2

1 0 0

4 2

6 2 2 2 2

2 0 0

1 3 4

10 1 1 4

1 3 5 2
3

20 1 1 4

T b

T b

  
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

   

 
  

  

 
   

  

 (1.23)    

 

1.4 Experimental Setup 

Several NMR spectrometers, at 
1
H NMR frequency of 34 MHz, 200 MHz, and 300 

MHz, are available for in situ gas and water loading experiments in our lab. The schematics 

of such adsorption apparatus are shown in Figure 1.6 and Figure 1.7. The basic components 

are a vacuum chamber connected to a mechanical pump, a pressure gauge, the NMR sample 

tube, and the source of water vapor or gas. Such a vacuum chamber can be made from glass 

for pressure lower than 1 atm, or from stainless steel for high pressure experiments.    

A high-pressure in situ gas/liquid loading system is also commercially available from 

Daedalus Innovations. The core design of such system is described in details in reference 

[41]. The material used to fabricate the high-pressure NMR tube is alumina-toughened 

zirconia (AZO). The stainless steel tubing with i.d. = 1/8” was used for connections to reduce 

the total volume in the system.  
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With such an in situ gas loading system attached to the NMR spectrometer, 

adsorption could be studied with isotherms measured by NMR on a serious of adsorbates 

such as water, hydrogen gas, methane and natural gas, and many other gases containing 

nuclear spins, such as inhaled general anesthetics. 

 

Figure 1.6 In situ water loading system for NMR spectrometer at 34 MHz. 
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Figure 1.7 In situ gas and vapor loading system for NMR spectrometer at 300 MHz. 
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CHAPTER 2  

 

TEMPERATURE-INDUCED HYDROPHOBIC-HYDROPHILIC 

TRANSITION OBSERVED BY WATER ADSORPTION 

 

2.1 Introduction 

Water in the immediate vicinity of hydrophobic surfaces plays a crucial role in 

various important phenomena such as the folding and activity of proteins [1, 2], but 

experimental signatures of these water layers have been proven difficult to obtain. One 

possibility is that the structures and dynamics of nanoconfined interfacial water could possess 

distinctive temperature dependences (analogous perhaps to the anomalous density maximum 

manifested by bulk water at 4°C). A temperature dependence in the properties of interfacial 

water could be important for various processes, such as the cold denaturation of proteins [2].  

Single-walled carbon nanotubes (SWNTs) provide a model system for investigating 

the properties of nanoconfined interfacial water [3-9]. Because each nanotube with diameter 

of 1.4 nm can only accommodate one layer of water molecules on its inside surface [5], the 

behavior of adsorbed water inside such SWNTs could provide important insight into the 

properties of nanoconfined interfacial water. A previous theoretical study showed that water 

could fill the interior of carbon nanotubes through favorable structural effects on the local 

excess chemical potential [3]. This result implies that water could be adsorbed inside SWNTs 

below the saturated vapor pressure, as demonstrated by previous studies [10, 11]. However, 

in those studies, the defect density and principal adsorption sites (PAS), known to alter water 
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adsorption isotherms in activated carbon [12], were likely too high to reveal the intrinsic 

adsorption properties of SWNTs. Water adsorption isotherms in SWNTs depend on both the 

interaction with the surface and the structure of the adsorbed water, which could depend on 

temperature. Here I report a hydrophobic-hydrophilic transition upon cooling from 22.1°C to 

8.0°C, revealed by water adsorption isotherms on the inside surfaces of low-defect SWNTs. 

Strong evidence is provided for the formation of monolayer water inside SWNTs at 8.0°C. 

Nuclear magnetic resonance (NMR) studies show the dynamics of the reorientation of 

nanoconfined water molecules to be much slower than in bulk water. In addition to various 

important biological processes, this new phenomenon could also shed light on the intrinsic 

adsorption mechanism of water in nanoporous carbon [12, 13].  

2.2 Experiments 

The SWNTs were synthesized by laser ablation using 0.6 weight percent (each) Ni/Co 

as catalysts. The raw material was purified by refluxing in 20% H2O2 solution at 100°C for 

12 hours and rinsing in CS2 and then in methanol. The purified SWNTs were then annealed 

at 800°C. The tube diameter of 1.4 nm was determined from the Raman spectrum. Details of 

the sample preparation were described previously [14]. The transmission electron microscope 

(TEM) image of the SWNTs is shown in Figure 2.1. SWNTs after annealing usually have 

end caps that prevent the guest molecules from being adsorbed inside. Several techniques can 

be used to open the ends of SWNTs. In our previous study, etching by strong acids was used 

to cut the tubes into short segments [10, 15, 16]. Although this method is effective for 

opening tubes, it introduces a considerable number of defect sites and functional groups 

acting as PAS that could have a strong influence on the water adsorption behavior.  The high 

defect density in cut SWNTs could obscure the intrinsic adsorption behavior of SWNTs [10].  
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Figure 2.1 The TEM image of SWNTs. It shows that the samples in the current experiment 

are relatively long (>1µm) and devoid of magnetic particles. 

 

To reduce the influence of PAS and to reveal the intrinsic adsorption behavior, a 

much gentler method was adopted here to remove the end caps [17]. The SWNTs were 

heated at around 350°C in a thermogravimetric analyzer under air flow for more than 20 min 

until a weight loss of about 3% was reached. 
1
H NMR spectrum of ethane (Figure 2.2) 

adsorbed in such treated SWNTs shows clear signatures of opened SWNTs [15, 16]. Water 

adsorption isotherms were measured by 
1
H NMR at 0.8 T (34 MHz 

1
H NMR frequency) in 

apparatus equipped with an in situ water loading system with controlled vapor pressure and 

temperature. The 
1
H NMR signal of the vapor is negligible because of its low pressure (~2 
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kPa); no bulk water is condensed outside the SWNTs below the saturated vapor pressure (P0). 

Furthermore, water molecules are too large to access the interstitial sites of 1.4 nm diameter 

SWNTs bundles [15]. Thus, the 
1
H NMR signal is associated predominantly with the water 

adsorbed inside the SWNTs [11]. The water content is calibrated by the ethane 
1
H NMR 

spectra as described in details elsewhere [10, 15].  

 

Figure 2.2 
1
H NMR spectrum of ethane adsorbed in SWNTs. The spectrum is taken at 108 

kPa and at room temperature. The dashed lines are Lorentzian fits. The sharp peak (blue) and 

the broad peak (red) are assigned to the ethane outside and inside the SWNTs, respectively. 

This shows that the SWCNTs are open for adsorption.  

 



26 

 

2.3 Results and Discussion 

2.3.1 Water adsorption isotherms in SWNTs 

The amount of adsorbed water measured by 
1
H NMR versus the relative pressure 

P/P0 at 8.0°C, 18.4°C, and 22.1°C is shown in Figure 2.3A. All three isotherms differ 

substantially from the S-shaped type V isotherm as observed in activated carbon and 

defective cut SWNTs, where adsorption increases slowly at low relative pressure but 

increases sharply above P/P0=0.5, quickly reaching the level of saturation [10]. Such an S-

shaped adsorption isotherm in activated carbon is often attributed to PAS [12]. Figure 2.3A 

shows that this ubiquitous sharp increase in the isotherms of activated carbon near P/P0=0.5 

is absent in low-defect SWNTs. The isotherm at 22.1°C exhibits the concave pattern of a 

type III isotherm, typical for clean hydrophobic surfaces with surface-water interactions 

weaker than water-water interactions [18]. Interestingly, the isotherm at 8.0°C exhibits a 

convex pattern, a type II isotherm such as that observed on hydrophilic surfaces [19]. The 

isotherm at 18.4°C shows a linear pattern, which is a transitional pattern between the 

hydrophilic isotherm at 8.0°C and the hydrophobic isotherm at 22.1°C.  

The water content was about 15 mmol/g when the relative pressure first reached the 

saturated pressure of P/P0=1. This value is in good agreement with the calculated adsorption 

capacity of 13 mmol/g when SWNTs are supposed to be completely filled with water. This 

estimate is made by assuming that the van der Waals diameter of (10, 10) SWNTs is 0.99 nm 

[5] and the density of water is comparable to that at the hydrophobic interface, about 0.9 

g/cm
3 

[20]. Further exposure at P/P0=1 will lead to further increase of adsorption caused by 

condensation outside the SWNTs. 
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Figure 2.3 Water adsorption isotherms in SWNTs. (A) Three isotherms at 8.0°C (squares), 

18.4°C (triangles), and 22.1°C (circles) are shown (The uncertainty of T is ±0.3°C). The lines 

are guides to the eye. The vertical error bars are shown when they are larger than the size of 

the symbols and the pressure uncertainty is less than 1% of P0. (B) An illustration of 

monolayer water in SWNTs with a diameter of 1.36 nm. Monolayer adsorption forms a tube-

like structure at 8.0°C under the constraint of the SWNTs. (C) A logarithmic plot of water 

content versus [log10(P0/P)]
2
 for the isotherm at 8.0°C, following the Dubbin-Radushkevitch-

Kaganer equation.  

 

2.3.2 Dubinin-Radushkevitch-Kaganer equation 

More insight can be gained by analyzing the isotherm at 8.0°C with the Dubinin-

Radushkevitch-Kaganer equation [18]. It describes monolayer adsorption, given by: 

  
2

10 10 10 0log log log /mx x D P P      (2.1) 

where x is the adsorbed water content, xm is the monolayer capacity, and D is a constant 

related to the temperature. A logarithmic plot of the adsorbed water versus [log10(P0/P)]
2
 is 

shown in Figure 2.3C. Using a linear fit to the data below the pressure of condensation and 

extrapolating to [log10(P0/P)]
2
=0, the monolayer capacity xm is evaluated to be 8.70.4 

mmol/g. This value agrees well with the calculated value of 9.5 mmol/g for monolayer 

coverage of the inner surface of SWNTs. The monolayer water forms a tubular structure 

under the confinement of nanotubes as illustrated in Figure 2.3B [21]. The convex shape of 
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the water adsorption isotherm at 8.0°C and its upward turn at P/P00.8 are also evidences of 

molecular layering on the adsorbed surface [22]. This layering effect is commonly seen in 

liquid films (above the triple-point temperature of the bulk liquid) of simple hydrocarbons 

and inert gases on graphite.  

2.3.3 Local excess chemical potential 

Water adsorption is a process of balancing the chemical potential of the confined 

water and the vapor. When water is confined in SWNTs, the energy loss from the breaking of 

hydrogen bonding (~20 kJ/mol) will not be completely compensated by the van der Waals 

interaction (<15 kJ/mol) [23]. However, the local excess chemical potential is dominated not 

by the average binding energy, but by the low binding energy part, as determined by: 

 exp( ) exp( ) ( )exp( )ex

bindu p u u du      (2.2) 

where  = 1/kBT, pbind(u) is the probability distribution of binding energy u (u <0),  and ex
 is 

the local excess chemical potential defined by the difference of chemical potential of water 

and that of an ideal gas under the same conditions [3]. 

At 8.0°C, water adsorption proceeds so as to form a monolayer. The binding energy 

for adsorbed water with an ordered water nanotube structure, as predicted theoretically [24, 

25], is expected to be distributed within a narrower energy range than in bulk water. States of 

low binding energy are less frequently occupied. The chemical potential could be lower than 

that of the saturated vapor. Thus, substantial adsorption could happen even at low relative 

pressure at 8.0°C as shown in Figure 2.3A. At 22.1°C, the adsorbed water in SWNTs could 

possess a variety of local structures and a broader distribution in binding energy. More states 

could be located in the low binding energy region, leading to higher chemical potential and 
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an unfavorable condition for adsorption. Thus, much less water was adsorbed in SWNTs at 

22.1°C than at 8.0°C.  

2.3.4 NMR relaxation and molecular reorientation 

To investigate the dynamics of adsorbed water molecules, the correlation time of 

molecular motion was estimated with 
1
H spin-lattice relaxation time (T1) and the transverse 

relaxation time (T2). The 
1
H T1  in water is determined by interaction fluctuations induced by 

molecular motions characterized by a correlation time τ. Assuming that the intramolecular 

proton-proton dipolar interaction of water molecules dominates the relaxation process , T1 is 

given by [26]:  

 

4 2

6 2 2 2 2

1 0 0

1 3 4

10 1 1 4T r

  

   

  
   

    
 (2.3) 

where γ is the gyromagnetic ratio of the proton, 2πħ is the Planck constant, r is the distance 

between the two hydrogen atoms in a water molecule, and ω0/2π is the Larmor frequency (34 

MHz at 0.8 T). A quantitative relation between T2 and τ can also be established [27]:  
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 (2.4) 

Figure 2.4C plots the theoretical values of T1 and T2 versus τ. The measured T1 values 

versus pressure at 8.0°C and 18.4°C are shown in Figure 2.4A. The T1 at 8.0°C is shorter 

than that at 18.4°C at the same relative pressure until the saturated pressure is reached, where 

T1 values at both temperatures converge to the same value. At 8.0°C, T1 decreases slowly 

with increasing pressure up to P/P0=1.0.  At 18.4°C, however, T1 decreases slowly with 

increasing pressure below P/P0=0.8 but decreases rapidly with pressure above P/P0=0.8.  
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Similarly, at 8.0°C, T2 (Figure 2.4B) increases slowly with pressure up to P/P0=1.0 

whereas at 18.4°C, T2 increases very slowly below P/P0=0.8 but increases sharply above 

P/P0=0.8. T2 is longer at 8.0°C than at 18.4°C at low relative pressure and becomes 

comparable at saturated pressure.  This measurement reveals that T2 is much shorter than T1. 

Also, T2 increases while T1 decreases with either increasing relative pressure or decreasing 

temperature. Thus, the measured T1 values are situated to the right of the T1 minimum (slow-

motion limit) as illustrated in Figure 2.4C by the data at P/P0=0.75.  The measured T2 values 

at P/P0=0.75 are shorter than theoretical predictions, as plotted in Figure 2.4C. The 

theoretical prediction of T2 considers only the intramolecular dipolar interaction and 

underestimates the relaxation rate 1/T2, which also depends on the intermolecular dipolar 

interactions. The molecular motions under confinement are anisotropic and the 

intermolecular dipolar interaction cannot be easily be averaged to zero [28, 29].  

The correlation time changes from 132 ns when T1 is 7 ms (18.4°C, P/P0=0.75), to 46 

ns when T1 is 3 ms (8.0°C, P/P0=0.75). These values are several orders of magnitude longer 

than the 3.5 ps of bulk water at 20°C (on the left edge of Figure 2.4C). The correlation time 

at 8.0°C is shorter than that at 18.4°C at low relative pressure, and the amount of adsorbed 

water at a given relative pressure below P/P0=0.9 is different at these two temperatures. The 

structure and density of adsorbed water are also expected to be different and could lead to the 

observed difference in the correlation time. The correlation times at these two temperatures 

did become the same at P/P0=1.0 (26 ns) where the amount of water became comparable. 

This suggests that the structure is similar at these two temperatures when the SWNTs are 

filled with water. 
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Figure 2.4 Relaxation time of confined water. The measured T1 (A) and T2 (B) values versus 

relative pressure at 8.0°C (squares) and 18.4°C (triangles) are shown.  The theoretical values 

of T1 and T2 based on the intramolecular dipolar interaction are shown in (C). Based on the 

measured T1 values at P/P0=0.75, 7 ms at 18.4°C and 3 ms at 8.0°C, the corresponding 

correlation times of 132 and 46 ns, respectively, are identified. The corresponding T2 values 

are shorter than the theoretically expected values for reasons explained in the text. The 

correlation times at these two temperatures become the same at P/P0=1 (26 ns).  

 

Because the intramolecular dipolar interaction dominates the spin-lattice relaxation, the 

long correlation time τ suggests there is a substantial slowdown in molecular reorientation. 

The slowdown of certain dynamics of water in proximity to small hydrophobic groups has 

been shown previously [30]. Here I show a similar slowdown of water reorientation in 

proximity to an extended nonpolar surface. 

2.4 Conclusion 

Although the hydrophobic effect is widely known to be temperature dependent, our 

observation demonstrates that such temperature dependence could cause a qualitative change, 

as manifested by the hydrophobic-hydrophilic transition. At lower temperature, a well-

defined layered structure of nanoconfined water on hydrophobic surfaces leads to a narrower 

probability distribution of the binding energy, making adsorption favorable in terms of the 
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free energy. When such an ordered structure is weakened at higher temperature, the 

distribution of the binding energy broadens, making adsorption unfavorable.  

The hydrophobicity should not be considered as an absolute property of a surface 

under nanoconfinement without considering the structure of interfacial water. The correlation 

time of water reorientation in SWNTs is determined to be on the order of 10 to 100 

nanoseconds. This result shows that the dynamics of water reorientation is hindered 

compared to bulk water, consistent with the dynamics of water molecules in proximity to 

small hydrophobic groups [30]. Confined and interfacial water are prevalent in biological 

systems, such as the water in ion channels and in proximity to proteins. The affinity change 

due to the temperature-induced structural change of water could be relevant to various 

phenomena including in biological systems, such as the cold denaturation of proteins [2].  
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CHAPTER 3  

 

BULK-LIKE PROPERTIES OF WATER IN NANOSCOPIC 

CONFINEMENT 

 

3.1 Introduction 

In CHAPTER 2, I discussed the unique properties of water confined in SWNTs of 1.4 

nm in diameter [1]. SWNTs represent one kind of nanoscopic tubular structures for 

nanoconfined water [2, 3]. Both the geometrical constraints imposed by SWNTs and the 

surface chemistry of the confining surfaces may affect the structure, dynamics, and 

thermodynamics of the nanoconfined water [4-7]. For instance, at room temperature, water 

can assume a layered structure between extended hydrophobic plates with a separation of ~1 

nm [8]. It is an obvious question to ask how nanoconfined water behaves in different 

geometries and different surface chemistry. In this chapter, I will discuss the properties of 

water confined in slit-shaped pores at the nanoscale. 

The interfacial water on a hydrophobic surface experiences a large interaction 

difference between the water-water interaction and the water-surface interaction. Due to this 

interaction difference, water confined between two hydrophobic surfaces differs more 

significantly from the bulk than when confined between two hydrophilic surfaces [8]. As the 

confining dimensions approach the molecular level, confinement can alter the local 

molecular arrangement of the water [3]. This local effect can extend to macroscopic 

phenomena due to the cooperativity of confined molecules. For instance, narrow carbon 
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nanotubes can align the dipoles of the water molecule chains to a length of ~0.1 mm with a 

persistence time of ~0.1s [9]. Another example includes the capillary phenomenon, in which 

the height of water between two parallel hydrophilic plates dipped into water raises to a 

greater height than the water outside (see Figure 3.1A) [10]. The stronger solid-liquid 

interaction creates a curved liquid-vapor interface between the two plates. Such a curvature 

reduces the liquid pressure in the proximity of the liquid-vapor interface and pushes the 

interface higher than the water outside, with the height inversely proportional to the 

separation of two plates (
1h d  ). It remains an open question whether such phenomena 

and theory will persist as the separation decreases from a macroscopic length to a molecular 

level, up to the point just before they make contact and the water is squeezed out. The key for 

such phenomena is that the liquid pressure (pL) is reduced at the solid-liquid-vapor interface. 

Such liquid pressure (pL) is equivalent to the vapor pressure (pV) at which the liquid-vapor 

equilibrium appears in wettable nanopores through the capillary condensation. In this chapter, 

I provide experimental evidence that water confined in wettable micropores demonstrates 

properties similar to those of bulk water, including molecular reorientation and capillary 

condensation.   

Water in different phases is characterized by different molecular dynamics and 

thermodynamics. The former can be evaluated by nuclear magnetic resonance (NMR) 

through the spin-lattice relaxation time (T1), a characteristic time which indicates how fast 

the Zeeman energy of the nuclear spins can be transferred into the thermal energy. In water, 

T1 is largely determined by the reorientational fluctuation of its intramolecular protons [11]. 

Water adsorption isotherms can reveal the distribution of the chemical potential of adsorbed 

water in equilibrium with its vapor. It is therefore convenient to measure water adsorption 
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isotherms by NMR to obtain molecular dynamics and thermodynamics at the same time. 

Here, I measured water adsorption isotherms in a series of microporous activated carbons 

with pore sizes ranging from 1.2 to 2.4 nm using an NMR probe connected to an in situ water 

and gas loading system at room temperature [1, 12, 13]. During such adsorption, the T1 of 

water increases from ~100 ms to ~1 s, the latter of which is close to that of bulk water (~3 s). 

These isotherms showed signatures of capillary condensation [14]. The condensation occurs 

at higher vapor pressure in larger pores, following a similar relation to that described by the 

Kelvin equation. These results suggest that water starts behaving like bulk water when 

confined in pores as narrow as 1.2 nm, in terms of molecular dynamics and thermodynamics. 

Such a method could be extended for characterization of pore size distribution in a series of 

microporous materials [15]. 

 

Figure 3.1 Illustrations of (a) capillary phenomena at macroscopic scale and (b) capillary 

condensation at microscopic scale.   
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Figure 3.2 Water adsorption isotherms in three microporous activated carbons derived from 

PEEK with different amount of burn-offs at room temperature. Isotherms are fitted to Eq. 

(3.1), with fitting parameters shown in Table I. The inset shows the water spin-lattice 

relaxation time at different relative pressure.  

 

3.2 Experiments   

Three activated carbons are derived from a Poly(etheretherketone), or PEEK, 

precursor by first carbonization in Ar and then activated in steam at 900°C with the amounts 

of burn-offs (BO) of 20, 35, 90 wt%. Such samples contain slit-shaped micropores of 1.2, 1.4, 

and 2.4 nm in size, respectively, as characterized in detail elsewhere [16, 17]. Water 

adsorption isotherms in three samples were measured by 
1
H NMR at ~0.8 T (

1
H NMR 

frequency of 34 MHz) at room temperature (~291 K). The free induction decay was excited 
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by a solid echo with a /2 pulse of ~4 s. The spin-relaxation time was measured by the 

standard saturation recovery methods. The intensities of the 
1
H NMR signals were calibrated 

with a test tube of bulk water of known volume (0.11 cm
3
) with corrections for Gaussian 

decay [11].  

3.3 Results and Discussion 

Figure 2 shows water adsorption isotherms in three samples, plotted as the amount of 

water uptake (mmol of water per gram of activated PEEK) versus the relative water vapor 

pressure (P/P0, where P0 is the saturation vapor pressure) at room temperature. The isotherms 

exhibit a similar S shape as characterized by the Type V isotherm: a small amount of water is 

adsorbed on the surface functional groups as the primary adsorption sites (PAS) at P/P0<0.5 

followed by a steep increase at 0.5<P/P0<0.7 and a saturation in water uptake at P/P0>0.7 as 

a clear signature of capillary condensation [18, 19].  

3.3.1 Binary adsorption isotherms of H2 and D2O 

Water and high-pressure H2 adsorption isotherms suggest that the capillary 

condensation of water occurs in the same micropores as that of H2 does. The binary 

adsorption isotherms of  H2 and D2O (Cambridge Isotope, purity 99.9%) in the 35 wt% burn-

off sample at room temperature were measured by 
1
H NMR at ~4.7T (

1
H NMR frequency of 

200 MHz). A single pulse of ~10 s (a /2 pulse) was used for excitation. The in situ gas 

loading system is capable of H2 pressure up to 100 atm [16]. The sample with 35 wt% burn-

off was allowed to reach equilibrium with a certain vapor pressure of D2O before measuring 

the adsorption isotherm of H2 up to ~100 atm at room temperature. Figure 3.3(a) shows the 

1
H NMR spectra of H2 with various amounts of preadsorbed D2O. The upfield peaks have 

been assigned to H2 in narrow pores (d~1.4 nm) [16]. The intensity of this peak decreases 
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with increasing amounts of preadsorbed D2O. Figure 3.3(b) plots the fractional intensity of 

the upfield peaks,
2H , relative to the intensity of the peak at 100 atm with no preadsorbed 

D2O, versus the pressure of H2 and the relative pressure of D2O. For comparison, the 

reversed water adsorption isotherm (
2

1 H O  versus P/P0) in the same sample is plotted on the 

plane corresponding to the H2 pressure of 100 atm. A good correlation between the increase 

of D2O and the decrease of H2 suggests D2O residues in the same pores as H2 does. The small 

error here could be due to error in measuring the water vapor pressure in a much larger 

stainless steel system.  
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Figure 3.3 (a) 
1
H NMR spectra of H2 at the pressure of 100 atm with different amounts of 

preadsorbed D2O in the sample with 35 wt% burn-off. (b) The binary isotherms with H2 and 

D2O based on the peak intensity of upfield peak in H2 spectra. Water adsorption in the same 

sample is duplicated on the plane of H2 pressure of 100 atm.   

 

The inset of Figure 3.2 shows T1 changing from ~100 ms before capillary 

condensation to ~1s after saturation in all three samples. Such a dramatic change is consistent 

with the capillary condensation and low density of PAS: T1 of water is dominated by PAS at 

low relative pressure; after capillary condensation, water shows a similar T1 to that of bulk 
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water (~3s). These are very different from the case of water in SWNTs of 1.4 nm in diameter 

where the T1 are much shorter and depends little on the change of relative pressure [1, 12, 13]. 

Such long T1 has not been observed by previous NMR measurements of adsorbed water in 

activated carbons, where surface relaxation centers of PAS dominate the T1 [20]. This 

suggests the water, even confined in nanoscopic pores, could have similar molecular 

reorientation as bulk water, reflected by the spin lattice relaxation mechanism [11].  

3.3.2 Water adsorption in activated carbons 

The mechanism of water adsorption in activated carbons is a current issue of debate 

[21-23]. It is generally accepted that the amount and adsorption energy of PAS and the pore 

size distribution are two primary factors [15, 18, 24]. Water is primarily adsorbed on PAS at 

low relative pressure (P/P0<0.5). If the surface density of PAS is high, water is able to cover 

the surface and fill the pores continuously through the adsorption on PAS as the relative 

pressure increases. If the surface density of PAS is low, the collapse of water clusters near 

neighboring PAS leads to capillary condensation. Capillary condensation is indicated by a 

steep increase of water uptake around P/P0=0.5 in the isotherm. The pore size then starts 

playing an important role in determining the relative pressure when capillary condensation 

occurs [15]. Previous studies of water adsorption in various forms of activated carbons 

suggest  that different carbonization and activation processes will lead to different amounts 

of PAS and different pore size distributions [18, 19]. Larger pore sizes are usually associated 

with a higher density of PAS. Continuous adsorption on PAS will obscure the steep increase 

in water uptake and the effect of pore size on capillary condensation [18]. The uniqueness of 

activated carbons derived from PEEK is that as the activation time increases, the pore size 
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increases but the PAS remains at low density. Such a low density of PAS is crucial to explore 

the effect of pore size on capillary condensation. 

3.3.3 Mahle’s isotherm 

Low water uptake at P/P0<0.5 suggests a small amount of PAS. As the vapor pressure 

increases, the isotherm increases within a narrow range of pressure and then bend towards 

high relative pressure. This is the signature of capillary condensation. It suggests that the 

pores are filled with water and activated carbons are wettable due to the cooperativity of 

water [25]. The capillary condensation occurs at a higher relative pressure in the sample with 

higher burn-off. Characterizations of the pore size by N2 and H2 adsorption have shown that a 

higher burn-off corresponds to a larger pore size of a few nanometers as listed in Table 3.1 

[16, 17]. This indicates that the pore size (d) is the dominating factor in capillary 

condensation. The measured symmetric S-shaped isotherm represents a distribution of 

condensation pressures with a Lorentzian distribution. It can be fitted into the isotherms 

provided by Mahle as expressed in the amount of adsorbed water versus relative pressure 

(P/P0) via  [15]: 

 
1 10/

tan tansn P P A A
n

D B B

      
      

    
 (3.1) 

where n and ns are the number of adsorbed water molecules at P and P0, respectively, A and 

B , expressed in units of P/P0, are related to the center and the distribution of the 

condensation pressures respectively, and the normalization coefficient D is given by 

   1 1tan 1 / tan /D A B A B       . The fitting parameters are listed in Table 3.1.  
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Table 3.1 Parameters characterizing three activated carbons derived from PEEK. A, B, and 

ns/D are used to fit the water adsorption isotherms to Eq. (3.1). The pore size and BET 

surface area are determined in ref [16, 17].  

Burn-off 

(wt %) 

A 

(P/P0) 

B 

(P/P0) 

ns/D 

(mmol/g) 

nsVL 

(cm
3
/g) 

d 

(nm) 

Surface Area 

(m
2
/g) 

20 0.543±0.006 0.112±0.008 11.4±0.2 0.55 1.2 1294 

35 0.592±0.005 0.080±0.006 9.3±0.2 0.47 1.4 981 

90 0.775±0.003 0.067±0.004 15.3±0.3 0.79 2.4 2802 

 

3.3.4 Pore size distribution 

The relation between the center value of the condensation pressure (A) and the pore 

size (d) is shown in Figure 3.4 by plotting d (nm) vs.  01/ ln /P P . A simple linear fitting 

gives 

  00.52 / ln / 0.38d P P    (3.2) 

Such a relationship allows us to convert the water adsorption isotherms into pore size 

distributions via [15] 

    

1
2

0
0 0

/
1 / ln /

0.38

s LV P P A n V
BD P P P P

d B d



      
        

      

 (3.3) 

where LV is the molar volume of the liquid water. Despite the fact that the molar volume of 

water within nanoconfinement may be different from its bulk value, it should remain as a 

constant close to 
318 cm /mol  as I have used here [8]. Such pore size distributions are shown 

by solid symbols in the inset of Figure 3.4. They demonstrate the major characteristics of 

differential pore volume determined from N2 adsorption of the same materials, as shown by 
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open symbols in the inset of Figure 3.4 [15-17]. The difference in details could be due to the 

different adsorption mechanism of water at room temperature and that of N2 at 77K [19]. In 

the micropores region, the description of adsorbate density becomes a discontinuous 

function. This introduces the defects in the density functional theory analysis of N2 

adsorption isotherms [26]. The limitation of the current method is that only a single 

Lorentzian distribution is assumed for the condensation pressure [15]. Thus only the major 

component of pore volume could be extracted from the adsorption isotherm. Nevertheless, 

this result validates Eq.(3.2) by several individual samples and independent measurements.  

Equation (3.2) reveals the relation between the relative vapor pressure and the pore 

size. It follows a similar form to the Kelvin equation [15, 19]: 

      0 0 02 / ln / 2 / ln / 2 1.07 / ln / 2m L Lr V RT P P V RT P P P P           (3.4) 

where mr  is the mean radius of curvature of the meniscus (nm), R  the gas constant, T  the 

temperature, and   the surface tension [15, 19]. The variation of the surface tension with the 

curvature is given by the approximation  / 1 2 / mr    , where 271.97 mJ/m  is the 

planar limit at 25 °C, is the separation between the surface of tension and the equimolar 

surface [10]. For N2 adsorption in mesopores where the Kelvin equation is known to be valid, 

the pore size is related to the radius of the equimolar surface by cos 2md r t   , where   is 

an effective contact angle and t is the thickness of the adsorbed film. [18, 19]. For water, the 

Kelvin equation is believed to be valid down to 9 nm [27]. The reason why the macroscopic 

theory of Kelvin equation fails in micropores is that extremely small areas make the surface 

tension and local density deviate from the bulk and planar values [19]. Water confined 

between two surfaces with a separation of nanometer scale also lacks a sharp interface 
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separating the liquid and vapor at molecular scale, making even the definition of the surface 

difficult [10]. Despite the questionable validity of the Kelvin equation on the nanoscale, it is 

still intriguing to obtain a coefficient that seems to be the cosine of the contact angle, 

 0.52 /1.07 cos 61  , by comparing Eq.(3.2) and (3.4). Since the Kelvin equation considers 

only the liquid-vapor interface, a correction from the center of the surface atoms to the 

contact line should be added as shown in Figure 3.1(b) [28]. This can be approximated by the 

Lennard-Jones potential parameter 2 0.36 nmss t    of the carbon-carbon interaction [18]. 

This agrees well with the intercept of Eq.(3.2), 2 cos 2 0.38 nmt    .   is a small value 

suggesting the surface of tension and the equimolar surface are very close to each other [10]. 

The similarity of Eq.(3.2) and (3.4) suggests that at least the underlying principle of 

the Kelvin equation remains valid for water confined in pores of 1.2~2.4 nm. The solid-liquid 

and solid-vapor interactions determine the boundary conditions of the liquid-vapor interface. 

In macroscopic scales, this leads to the curvature of the liquid-vapor interface and a contact 

angle. Such definitions may be difficult on the nanoscale. The physical meaning of cos  

resides no longer in a geometrical factor such as the contact angle. Instead, such a coefficient 

should be intended to characterize the solid-liquid-vapor interaction and the magnitude of the 

reduced liquid pressure. The reduced liquid pressure is estimated to be

L V 2 cos / ( 0.38) 0.085 GPap p d      , from the parameters obtained in the 20 wt% 

burn-off sample. 

The reduced liquid pressure Lp  represents the ability of corresponding pores to 

absorb water. Such phenomena could have a wide range of application in engineering and 

biology. For instance, the capillary phenomenon is among several mechanisms used by the 
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tree to deliver water from the ground to the tree tops. The limit of the tree height is found to 

be ~120 m tall on the earth [29]. If assuming the capillary phenomenon is the only limit for 

the tree height, the corresponding biological capillary is ~0.1 m in diameter. The reduced 

pressure L 0.085 GPap    obtained in the 20 wt% burn-off sample could hold a water 

column with a height of 8.7 km. This shows the significant effect of the capillary 

phenomenon at the nanoscale.  

3.4 Conclusion 

In conclusion, the water adsorbed within nanoscopic pores of microporous activated 

carbons shows properties that are similar to those of water in its bulk phase, including 

molecular reorientation and capillary condensation. The dynamics of water as indicated by T1 

change dramatically upon the capillary condensation and reach a value that is close to that of 

bulk water [11, 30]. The capillary condensation occurs at a vapor pressure that can be 

accurately estimated by the Kelvin equation. This result suggests that water starts to exhibit 

bulk properties with thickness as thin as three molecular layers in a pore size 1.2 nm. 

Therefore, water adsorption measurements could be used effectively as a tool for 

characterizing pore size distribution on the nanometer scale. 
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Figure 3.4 Pore size distribution determined from water adsorption isotherms and from the 

differential pore volume determined from N2 adsorption at 77k in Ref [17]. The data are 

converted from the isotherms shown in Figure 3.2. The dashed lines are fitted to Eq. (3.2). 

The inset shows the correlation of pore size d with the condensation pressure characterized 

by A. The data obtained from three samples give a straight line.  
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CHAPTER 4  

 

TEMPERATURE DEPENDENCE OF LYSOZYME HYDRATION AND 

THE ROLE OF ELASTIC ENERGY 

 

4.1 Introduction 

In CHAPTER 2 and CHAPTER 3, I discussed nanoconfined water in different 

geometries and surface chemistry. The original motivation to study such water is the 

important role water plays in the folding, dynamics and functions of proteins. Equipped with 

my understanding of water developed in previous chapters, I continue to study water at the 

interface of biomolecules in the following chapters.   

The most basic property of hydration—the water sorption isotherm—remains 

inadequately understood. Surface adsorption is the commonly adopted picture of hydration. 

However, surface adsorption does not account for changes in the conformational entropy of 

proteins, with this picture it is difficult to explain why protein dynamics and activity change 

upon hydration. The solution picture of hydration provides an alternative description of the 

thermodynamics of hydration. In this model the flexibility of proteins can influence the 

hydration level as the elastic energy of the protein changes upon hydration. Using nuclear 

magnetic resonance to measure the isotherms of lysozyme in situ between 18 and 2°C, I 

provides evidence that the part of water uptake associated with the onset of protein function 

is significantly reduced below 8°C. Quantitative analysis shows that this reduction is directly 

related to the decrease of protein flexibility and enhanced cost in elastic energy for 
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accommodating the hydration water at lower temperatures. The elastic property derived from 

the water isotherm agrees with direct mechanical measurements, providing independent 

support for the solution model. This result also implies that water adsorption at charged and 

polar groups occurring at low vapor pressure, which is known to soften the protein, is crucial 

for the later stage of water uptake. This water uptake leads to the activation of protein 

dynamics. These results also shed light on the mutual influence of protein flexibility and 

hydration, providing the basis for understanding the role of hydration in protein dynamics. 

 

Figure 4.1 (a) A van der Waals representation of a lysozyme molecule colored with a 

hydrophobic scale: white = hydrophobic, red (dark gray) = hydrophilic, orange (gray) = 

positive or negative charge. (b) A lattice model of protein hydration. The white chain 

represents a lysozyme molecule occupying x lattice cells. The blue (gray) spheres are 

hydration water, each of which occupies one lattice cell. Their locations are obtained from 

hydration water of less than 0.34 nm away from the protein in molecular dynamics 

simulations shown in Section 4.3.6.  
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Hydration plays an important role in protein folding, dynamics, and functions [1-4]. 

For instance, the enzymatic activity of lysozyme increases significantly above a hydration 

level of h = 0.2 (in grams of water per gram of dry proteins) [2, 5]. Water-protein interaction 

has also been a central theme of protein folding ever since Kauzmann introduced the concept 

of hydrophobic interaction in 1959 [1]. One of the direct ways to probe the characteristics of 

protein hydration is the water sorption isotherm. Surprisingly, the mechanism governing 

water sorption isotherms in proteins still remains an issue of debate [2, 6]. The prevailing 

picture of surface adsorption does not take into account structural and dynamical changes of 

proteins associated with hydration. The present work provides new experimental evidence 

indicating that the understanding of water sorption isotherms in the globular protein 

lysozyme also requires a treatment beyond surface adsorption theory. A deeper 

understanding of water sorption isotherms in proteins could shed light on the structure, 

dynamics, and functions of protein [2-10]. 

The characteristics of water sorption isotherms of globular protein powders are quite 

universal near room temperature [2, 6, 11, 12]. From dry condition to a relative water vapor 

pressure P/P0~0.7 (P0 is the saturated water vapor pressure at a given temperature), the 

amount of absorbed water increases gradually with P/P0, reaching a certain hydration level (h 

~0.2 in lysozyme). This initial stage of hydration is identified with water adsorption at 

ionizable groups, and charged and polar sites, as illustrated in Figure 4.1(a) [2, 11, 13, 14]. 

Above this pressure, an upswing in water uptake occurs. It has been suggested that this 

upswing in water uptake correlates with the onset of key protein functions [2, 13]. So far 

there is no consensus with regard to the mechanism of this upswing in water uptake [2, 6]. 

The understanding of the nature of this upswing in water uptake is the focus of this work. In 
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particular, the temperature dependence of this upswing is clearly established at temperatures 

below 8°C. Although hydration near physiological temperature is of primary concern in 

biology, the temperature dependence of the isotherm below room temperature provides 

important clues to the mechanisms of hydration. To our best knowledge, water sorption 

isotherms over the entire pressure range of P/P0=0 to 1 have not been reported for protein 

crystallites down to temperatures near 0°C. This could be due to the inconvenience of using 

the traditional gravimetric technique for in situ hydration measurements over a wide range of 

vapor pressure and temperature. In this work, water sorption isotherms were measured with 

an alternative approach based on 
1
H nuclear magnetic resonance (NMR) [15, 16].  

4.2 Experiments 

The hen egg white lysozyme (HEWL, catalog no. L-7561, 3× crystallized, dialyzed, 

and lyophilized) was purchased from Sigma Aldrich and used without further purification. 

The enzymatic function of lysozyme is strongly affected by the hydration level and the 

temperature: it increases significantly above a hydration level of h = 0.2 [5]; the activity at 

10C is only about 20% of that at 35C [17]. The lysozyme was loaded into the quartz NMR 

sample tube connected to an in situ water loading system with controlled vapor pressure and 

temperature [16]. A single pulse (~5 µs) was used to excite the 
1
H NMR signals at 0.8 T (34 

MHz 
1
H NMR frequency). The spectrum of as-received lysozyme powder contains two 

major components: a sharp peak with the FWHM of ~2.4 kHz on top of a broad peak with 

FWHM of ~40 kHz, as shown in Figure 4.2(a). The sharp peak can be gradually removed by 

pumping the sample chamber to 
310  torr

 for 24 hours at room temperature. The broad peak 

remains unchanged during the pumping procedure and was assigned to proton background 

solely from lysozyme molecules [12]. After the initial pumping, a constant water vapor 
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pressure was kept in the sample chamber at each step to rehydrate the lysozyme. The 

intensity of the NMR signal reaches equilibrium within 2~3 hours, much faster than the 

isopiestic method that is slowed down by the air environment [18]. No further change in 

NMR signal was observed after 3 hours as verified by continued monitoring over a time 

period of 2 days. The sharp peak reappears in the rehydration process and is assigned to 

water sorption in the protein [12]. Since the protons account for about 6.8% weight of a 

lysozyme molecule [19], the hydration level h can be calculated from the intensity ratio of 

the sharp and broad peaks of the NMR spectra at equilibrium. Since the NMR signal is very 

stable and accurate, the major systematic error comes from the conversion from the intensity 

ratio of broad and narrow peak into the hydration level. The effect of the detection delay (~8 

µs) on the fast decay component of the free-induction-decay, corresponding to the broad 

peak in the spectra, has to be considered. Based on a Gaussian decay, I can extrapolate it 

back to the end of the excitation pulse [20]. The extrapolation leads to a systematic error of 

~5% to the conversion coefficient. The similarity of the sorption isotherms at 18C measured 

by NMR and by other methods confirms that this error is not significant [21]. Such an error 

only affects the absolute hydration level. Its net effect is similar to stretching or shrinking the 

hydration axis of the isotherms by ~5%. It has no effect on the relative value for 

measurements at different temperatures and at different vapor pressures. Thus the shape of 

the sorption isotherms remains unaffected and the systematic error in the absolute value of 

the hydration level is insignificant. The isotherms measured by the 
1
H NMR method were 

shown to be consistent with those obtained by the traditional gravimetric technique [12].  
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Figure 4.2 (a) NMR spectra of lysozyme powder before (open circle) and after pumping 

(filled circle). (b) The sharp NMR peak corresponding to the hydration water of protein as 

the temperature decreases from 4°C to -34°C. The initial hydration level is h~0.21 at 4°C. 

The inset shows the hydration levels estimated from the integrated intensities of such sharp 

peaks. 

 

4.3 Results and Discussion 

Figure 4.3 shows measured hydration level h versus relative vapor pressure P/P0 in 

lysozyme at temperatures of 18°C, 8°C, 4°C, and 2°C. These isotherms share a common 

sigmoidal feature as type II isotherms [22]. The isotherms at low relative pressure (P/P0 < 

0.7) depend linearly on P/P0 with small changes in slope below 8°C. The adsorbed water in 

this part of the isotherm has been correlated with the charged and polar groups in proteins 

based on in situ IR measurements [11, 13]. Above P/P0 = 0.7, the measured isotherms depend 

strongly on temperatures over a small range of temperature from 18°C to 2°C. This 

dependence has not been established by earlier studies [2, 6].  
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Figure 4.3 Water sorption isotherms in lysozyme powder from 18°C to 2°C. The isotherms at 

high relative pressure are fitted as the implicit form of Eq. (4.2) with parameters shown in 

Table 4.1. The inset plots 0

( )elN versus temperature. 

 

There is a seemingly dramatic change between the isotherms at 8°C and 4°C. This is 

caused by the difference in water uptake of the charged and polar groups at low relative 

pressure. The portion of the hydration water related to the upswing actually decreases 

smoothly from 18C and 2C, when the number of water molecules adsorbed on polar groups 

is removed. I will discuss this in Section 4.3.5. As the pressure reaches the saturated vapor 

pressure, further hydration will cause condensation of bulk water without any increase of 

pressure. The upper data points at P/P0 =1, as shown in open symbols, correspond to such 
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bulk condensation, confirming that I reached saturated vapor pressure at corresponding 

temperatures.   

4.3.1 Surface adsorption picture 

The main reason for the lack of isotherm data for low temperatures near 0°C is 

perhaps the prevailing belief that the isotherms should be largely temperature-independent 

when plotted versus P/P0 [6]. In the picture of surface adsorption the upswing in water 

uptake above P/P0 ~0.7 is attributed to multilayer formation [6, 11, 23]. The best known 

surface adsorption theory for describing multilayer formation is the BET theory [22]. The 

BET isotherm is given by 

 
 

   
0 0

0 0

1 / /

1 1 / 1 /

c P P P P
h

c P P P P


 

  
 (4.1) 

where 1/c   .  and 1 are the residence times of molecules directly bound to the adsorbent 

surface and adsorbed on top of the first layer, respectively. Inside protein crystals, spatial 

restrictions would prevent bulk water condensation and adsorption is limited to finite number 

of layers and can be easily taken into account in the BET theory [22, 23]. Other surface 

adsorption models give somewhat different expressions for the isotherms but the essence for 

the description of the upswing in water uptake is very analogous to the standard BET theory 

[6, 23]. Equation (4.1) shows that the upswing in water uptake, as dominated by the second 

term, is expected to be temperature-independent when plotted versus the relative pressure 

P/P0 [6]. Isotherm data taken above room temperature indeed confirm this expectation [21, 

24]. However, this is no longer the case in lysozyme below 10°C. The upswing in water 

uptake above P/P0 ~0.7 gradually disappears as the temperature approaches 0°C. Such a 
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temperature dependence of water sorption isotherms cannot be explained in the framework of 

surface adsorption [22, 23].  

4.3.2 Modified Flory-Huggins theory 

It was suggested that the system at the upswing could be treated as a very 

concentrated solution based on the Flory-Huggins theory [6, 25]. The Flory-Huggins theory 

describes the mixing of water with protein by a three-dimensional lattice model, where a 

protein molecule is represented by a chain occupying x lattice cells and each water molecule 

occupies one lattice cell [26]. This model is illustrated in Figure 4.1(b). Upon mixing of N1 

water molecules with N2 protein molecules, the change of the free energy is given by 

( )m m elG H T S H      , where  1 2 1 2/m BH k T N N N xN    is the enthalpy of mixing 

characterized by the parameter of interaction   between water and the protein molecule and 

Bk  is the Boltzmann constant.  1 1 2 2ln lnm BS k N v N v     is the entropy of mixing where 

 1 1 1 2/v N N xN   and  2 2 1 2/v xN N xN   are the volume fractions of water and 

proteins, respectively.   
2

1/3

( ) 2/ 2 1elH V K v    is the elastic energy,  as approximated to 

the first order, due to the volume expansion upon water addition as given by Rowen and 

Simha [25], where  1 1 2V V N xN   is the total volume of the N2 protein molecules mixed 

with N1 water molecules and 
1V is the volume of each lattice cell. K is the macroscopic 

parameter of the elastic modulus of the proteins. Since globular proteins have residues that 

are compact, the core may not be readily available for mixing with water molecules [27]. 

This can be taken into account by replacing x with x in the expressions of 
mH

 
and 

mS , 

where 0 1   is the fraction of flexible segments in the protein [28, 29]. This correction is 
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not necessary in 
( )elH since the elastic energy depends on the volume change of the bulk. 

The equality of the chemical potentials of water in the vapor phase,  0ln /vapor Bk T P P  , 

and in the water-protein mixture leads to [25, 28, 29] 

  
12 2

0 1 2 2 21/3 1/3

2 2

1 5
ln / ln  1 1

2 3B

KV
P P v v v v

k T v v
     

          
  

 (4.2) 

Here, the plot of   2

0 1 2 2ln / lnP P v v v      versus    1/ 3 1/ 3 2

2 2 21 5/ 3 1v v v      is linear 

with the intercept at  and the slope containing the elastic modulus K, if both parameters are 

constant within a certain range of relative pressure. Using the partial specific density of water 

( 3

1 1.0 g/cm  ) and lysozyme ( 3

2 1.38 g/cm  ) [30], v1 and v2 can be determined from the 

hydration level h via 1 21v v   and  2 2 11/ / 1v h   . The exact value of  is unknown. I 

could examine a wide range of  values and obtain the corresponding elastic modulus K. 

 As pointed out already by Rowen and Simha,  was estimated to be too small 

for polymers and proteins at room temperature to have any significant effect on sorption 

isotherms [25]. This is consistent with the largely temperature-independent water sorption 

isotherms above room temperature [6]. The key idea of this work is that this situation might 

change at lower temperature since K increases strongly with decreasing temperature. For 

instance, the Young‟s modulus of lysozyme increases more than five-fold as the temperature 

decreases from 53°C to 22°C based on mechanical measurements [31]. The elastic modulus 

K should be similar to Young‟s modulus if the Poisson‟s ratio for lysozyme is assumed to be 

0.33 [32]. This suggests that the elastic energy could have a significant effect on water 

sorption isotherms below room temperature. The elastic energy term also provides a unique 

link between the microscopic mechanism of water sorption and a macroscopic quantity K, 

( )elH
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which can be compared to values obtained by mechanical measurements. This offers an 

independent validation of the solution picture of protein hydration. 

 

Figure 4.4 Plots of [ln(P/P0)-lnv1-v2]/v2
2
 versus [(v2

-1/3
-1)(5/3v2

-1/3
-1)/v2

2
] for the isotherms 

data following Eq. (4.2). The plots show a linear portion when [ln(P/P0)-lnv1-v2]/v2
2
>0.6. The 

fitting parameters are shown in Table 4.1 for =1. The inset shows the comparison of the 

temperature dependence of the elastic modulus (red square) derived from isotherms in this 

study, with the Young‟s modulus of hydrated lysozyme (red circle) measured in [31]. 

 

4.3.3 The elastic constant and its temperature dependence 

Figure 4.4 plots the isotherm data following Eq. (2) when 1  . All isotherms at 

temperatures from 18°C to 2°C have a linear portion when   2

0 1 2 2ln / ln 0.6P P v v v     , 
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which corresponds to P/P0 > 0.7. Using 18 cm
3
/mol to estimate the water molecule volume 

1V  in Eq. (2),  and K can both be determined from the linear fits in Figure 4.4. These values 

are listed in Table I.  is expected to be a constant at high relative pressure and depends on 

temperature following  / RT     with α and β being constants and R is the gas 

constant [25, 26]. With the temperature change from 18°C to 2°C, the change of  should be 

less than 4% with typical values of α (-1.1 kJ/mol) and β (1.3) as determined in serum 

albumin [25]. From Table I,  values at different temperatures are all close to 0.59 within 

errors. This is comparable to the value of 0.87 for water-serum albumin system and 0.41 for 

water-salmine system [25]. The determined elastic modulus K increases from 190 MPa at 

18°C to 1326 MPa at 2°C. Although the temperature is in the vicinity of the freezing point of 

bulk water at 0°C, such a dramatic change of elastic modulus is not due to the crystallization 

of hydration water. Figure 4.2(b) shows that as the temperature decreases from 4°C to -34°C, 

the sharp NMR peak corresponding to the nonfrozen hydration water becomes broader. Its 

integrated intensity, however, remains the same as shown in the inset of Figure 4.2(b). This 

confirms that the freezing temperature of the protein-water system is reduced well below 0°C 

[6, 20, 33]. It is intriguing to note that the Young‟s modulus of the lysozyme tetragonal 

crystal along the [001] direction determined by mechanical measurements increases from 34 

MPa at 53°C to 175 MPa at 22°C, as shown in the inset of Figure 4.4 [31]. Such elastic 

moduli are shown to be identical to those of amorphous samples [34]. The values of K 

derived from the isotherms are consistent with those derived from the independent 

mechanical measurement. This provides strong evidence that water sorption above the 

upswing in the isotherms should be interpreted using the solution model with explicit 

consideration of the elastic energy and entropy. 
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Table 4.1 Fitting parameters ( and K) and standard errors following Eq. (2), when =1, 0.5 

and 0.25, and the maximum number of water per protein associated with the elastic free 

energy 0

( )elN , and the total number of hydration water per protein 0

hydrationN , at P/P0=1. 

T(°C) 
 K (MPa) K (MPa)

 0

( )elN
 

0

hydrationN
 

=1 =0.5 =0.25 

18 0.60±0.01 190±15 353±27 417±35 185 360 

8 0.56±0.03 343±45 605±73 709±80 86 299 

4 0.57±0.05 1038±137 1628±193 1923±222 42 189 

2 0.58±0.03 1327±91 2206±189 2646±241 23 167 

 

For the small globular protein lysozyme, the flexible residues that are involved in the 

mixing near the surface take up a large portion of the total volume. Thus, it is reasonable to 

assume that the parameter related to partial flexibility, , is close to 1. Nevertheless, the 

elastic modulus K does not depend sensitively on . As shown in Table I, the extrapolated K 

remains of the same order of magnitude with  = 1, 0.5 and 0.25. The temperature 

dependence of K remains similar for a wide range of . A change of  doesn‟t affect the 

conclusion that the temperature dependence of the elastic modulus K of the protein is 

responsible for the observed temperature dependence of the upswing in water uptake. The 

purpose of this work is not to use sorption isotherms to measure the elastic modulus 

quantitatively. Such an agreement on the same order of magnitude is the most I can expected 

based on the current model. The parameter related to the water-protein interaction, , 

however, depends sensitively on the absolute value of . The value of  became uncertain 

with an unknown . For this reason, it may be difficult to obtain an exact value for  for 

much larger proteins such as BSA and hemoglobin. 
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4.3.4 Protein properties with hydration above h = 0.2 

In the above analysis, the elastic modulus K is assumed to be a constant above P/P0 = 

0.7. This is supported by previous measurements which shows that the Young‟s modulus 

decreases significantly at low hydration level but depends only weakly on hydration above h 

= 0.2, which corresponds to P/P0 > 0.7 [34]. This is also consistent with studies of protein 

dynamics where adsorbed water per protein at charged and polar groups is shown to have a 

strong influence on protein flexibility, perhaps due to a charge screening effect [2, 5]. Many 

other protein properties become identical to those in dilute solutions with hydration above h 

= 0.2. The specific volume of dried proteins is 3~7.5% larger than the value in solutions, 

primarily due to the electrostriction about the charged groups [6, 35]. Such a difference 

disappears as the hydration level increases to h = 0.2 [2, 36]. The protein conformation are 

shown to be similar in the dry state and in solution to a resolution of ~0.1 nm [2]. A raman 

study showed that the conformation and flexibility changes only at low water content within 

h = 0.1~0.2 [37]. Above h~0.17, those properties become similar to those in solutions. These 

facts suggest that, even if there is possible partial unfolding or conformational change during 

the dehydration or rehydration process, it is reversible and occurs at a hydration level lower 

than what is needed for the upswing in water uptake [5, 6, 37].    

4.3.5 The nature of the upswing in water uptake 

Using the linear region in the isotherms (P/P0<0.7), I can estimate the amount of 

water adsorbed on charged and polar groups 
polarN  versus P/P0 as shown in Figure 4.3. 

Subtracting 
polarN  at P/P0 from the total number of absorbed water molecules per protein, 

hydrationN , the excess water 
  hydration polarel

N N N   is obtained as illustrated in Figure 4.3. 
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According to the modified Flory-Huggins theory, water molecules associated with
 el

N  are 

mixed with the protein structure such as side chains and depend on the elastic energy. The 

temperature dependence of K is essential in modulating the ratio of the elastic contribution to 

the chemical potential. The ratio could be much smaller at higher temperatures, and 
( )elH  

will be too small to have significant effect on hydration [25]. As a result, 0

( )elN , the maximum 

of 
 el

N  reached at P/P0 = 1, varies greatly with temperatures.  As shown in Table I, it is 185 

out of 0 360hydrationN   (
hydrationN  at P/P0 = 1) at 18°C, but only 23 out of 167 at 2°C. The inset 

of Figure 4.3 plots 0

( )elN versus temperature. 0

( )elN  decreases gradually from 18°C to 2°C. It is 

important to note that simulations based on the surface adsorption model require about 6 

layers to produce the upswing in water uptake shown in Figure 4.3 [25]. However, the 

amount of absorbed water 0 360hydrationN   at 18°C is smaller than that contains in this number 

of monolayers based on the lysozyme structure [2]. Therefore, water molecules associated 

with
 el

N  should be considered as incorporated in the protein structure with important 

consequences for protein structures and dynamics.  

4.3.6 Molecular dynamics simulations 

The elastic modulus K at high hydration level is an averaged macroscopic measure of 

the microscopically heterogeneous flexibility of the protein and is closely related to structural 

fluctuations [10, 38-40]. They can be affected significantly by hydration and temperature [31, 

34, 41-43]. Therefore the molecular dynamics simulations on lysozyme under partially and 

fully hydrated proteins may provide useful insights on the mechanism of hydration.  
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The structure of HEWL has been solved to an exceptionally high resolution of 0.94 Å 

[14], exhibiting a typical globular protein fold with two main domains: a relatively more 

stable α-domain consisting of residues 1-39 and 89-129 forming four α-helices (helices A-D) 

and a 310-helix, and a relatively more mobile β-domain consisting of residues 40-88 forming 

three anti-parallel β-strands and another 310-helix. Figure 4.5 shows a HEWL structure from 

molecular dynamics simulations. The enzymatic activity site is the cleft between the two 

domains, where a hexasaccharide can bind with a distortional stress at the fourth sugar, 

accelerating the cleavage of its glycosidic bond. Residues Glu35 and Asp52 on the opposing 

faces of the cleft and a water molecule are critically involved in the enzymatic reaction [44].  

I performed molecular dynamics (MD) simulations on lysozyme (PDB: 1IEE) [14] 

using Amber 10.0 [45] with Amber FF99SB force field at constant number of molecules, 

pressure, and temperature of T = 291 K (18°C). Two systems with different lysozyme 

hydration conditions were prepared for simulations. The experimentally-determined numbers 

of hydration water molecules Nhydration of 124 and 360 were used for the partially and fully 

hydrated systems, corresponding to the water vapor pressures of 12 mbar (P/P0 = 0.6) and 20 

mbar (P/P0 = 1), respectively. Both systems were simulated for 11 ns with a time step of 2 fs. 

A cut-off of 10 Å was used for the Lennard-Jones interaction. The particle-mesh Ewald 

method was used for electrostatic interactions. Isotropic position scaling was used to 

maintain the pressure with a relaxation time of 2 ps. The Langevin dynamics was used to 

control the temperatures using a collision frequency of 1.0 ps
-1

. A periodic boundary 

condition was applied to both systems. The data were saved every 2 ps over the course of the 

11-ns simulation. The simulation results were analyzed using AmberTools [45] and 

visualized using VMD [46].  
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The MD simulations suggested that an increase in N(el) is associated with an increase in 

protein fluctuations and correlated motions. The root-mean-square-fluctuation was calculated 

for both systems using the trajectories over the course of last 5-ns simulations. Lysozyme 

showed greater flexibility under the fully hydrated condition, under which N(el) increased 

substantially. In addition, the structures averaged over the last 5 ns simulations were 

subjected to normal mode analyses using the Gaussian network model (GNM) [47, 48]. As 

shown in Figure 4.6, the overall level of fluctuation is lower when Nhydration = 124 (diagonal 

intensities in Figure 4.6(a)) than when Nhydration = 360 (diagonal intensities in Figure 4.6 (b)). 

In addition to the elevated mean square fluctuation at individual residues, it is also interesting 

to note that a high level of hydration greatly increases the correlated motions (off-diagonal 

intensities in Figure 4.6 (b)) of the β-domain. This is most profound in residues 44-53 and 

residues 59-81, as shown from the diagonal intensities (in dashed squares) and off-diagonal 

intensities (in dashed rectangles) in Figure 4.6. Residues 44-53 correspond to the β1 and β2 

along with the linker as highlighted in red in Figure 4.5, and are within the upper-left dashed 

squares in Figure 4.6. Residues 59-81 correspond to the large flexible loop hovering above 

the activity cleft as highlighted in yellow in Figure 4.5, and are within the lower-right dashed 

squares in Figure 4.6. A noticeable exception is the absence of long-range correlated motions 

in residues 54-58 with the rest of the β-domain as shown in orange in Figure 4.5. A close 

examination of the water distribution in the high-resolution crystal structure suggests that no 

water molecule can be found within the first hydration layer, which peaks at ~2.7 Å [49], 

near the segment of residues 54-58. In contrast, at least 23 water molecules can be found in 

the crystal structure covering the surface of other loops in the β-domain. For lysozyme, the 

ability for the contour of the long cleft to be flexible is critical for the two-step enzymatic 
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reaction [44]. The protein dynamics at the loop and hinge regions outside the active site has 

been found to be crucial to the motion of the two dynamically distinct domains and critical to 

enzymatic activities [39]. The presence of water molecules is essential to bringing about the 

modes of protein motion that would be otherwise unrealizable in the absence of water. The 

increase in protein fluctuations at higher hydration level suggests that hydration promotes 

protein fluctuations. Protein fluctuations are related to the elastic modulus at high hydration 

level through the equipartition theorem [10, 40]. The elastic energy could become significant 

as the elastic modulus increases at lower temperature.  

4.4 Conclusion 

The current study reveals the strong temperature dependence of the water uptake in 

lysozyme at high relative pressure below 10°C. Such temperature dependence could be 

explained by the enhanced cost in the elastic energy upon hydration at lower temperature. 

The temperature dependence of the elastic modulus K of the protein is responsible for the 

observed temperature dependence of the upswing in water uptake. Although related to the 

microscopic flexibility of the protein, the elastic modulus K used in our analysis of elastic 

energy is a parameter at the level of thermodynamics, not a model-dependent quantity at the 

molecular level or based on statistical mechanics. The elastic modulus K derived from water 

isotherms is consistent with the values of Young‟s modulus measured directly by mechanical 

measurement. This provides an independent validation of the solution picture. In the surface 

adsorption picture, the protein is simplified as a static surface with adsorption sites [23]. 

There is a clear boundary between water and proteins [27] and changes of protein structure 

upon hydration are not taken into account. In the solution picture, water mixes with proteins 

changing both the enthalpy and entropy of the protein-water system. Side chain 
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rearrangements and volume expansion of protein upon hydration have important effects on 

the enthalpy and entropy of the system [6]. Consequently, water molecules associated with 

the upswing in water uptake alter significantly the thermodynamic properties and could play 

a major role in determining the energy landscape and dynamics of the combined protein-

water system [4]. The present work also shows that a decreased elastic modulus K is essential 

for enabling the sorption of water associated with the upswing in water uptake above P/P0 = 

0.7. Previous studies show that water adsorption on charged and polar groups reduces K [34] 

and enhance the protein flexibility [2]. This suggests that adsorbed water at charged and 

polar groups is an enabling factor for the occurrence of the upswing in water uptake at higher 

relative pressures. The interplay of elastic modulus and water absorption has an important 

role in determining the fluctuations of proteins and may be important for the functions of 

proteins such as enzymatic activities [39].  
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Figure 4.5 A ribbon representation of lysozyme structure from an averaged structure from the 

last 5 ns of 11 ns NPT simulations at 18°C and P/P0 = 1. The residues with elevated 

fluctuations and correlated motions by hydration water are highlighted in red (dark gray, 

residues 44-53) and in yellow (light gray, residues 59-81). The residues with low fluctuations 

in the β-domain are shown in orange (gray, residues 54-58). Residues that are essential for 

the completion of the enzymatic reaction (Glu35 and Asp52) are shown in an atomic 

representation. The rest of the residues are shown in a narrow ribbon representation.  
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Figure 4.6 All-mode correlation plots of hen egg white lysozyme from normal mode analysis 

using the Gaussian network model. The NPT simulations are under comparable conditions to 

the experiments at relative vapor pressure of P/P0=0.6 (Nhydration =124) (a) and P/P0=1 

(Nhydration =360) (b), and the temperature of 18C. Averaged structures from the last 5 ns of 

11-ns MD simulations were used for the GNM analyses. Cross correlation of motion is color-

coded using the color (gray) scale to the right. The most profound increases in diagonal 

intensities are from residues 44-53 (upper-left dashed squares and the red region in Figure 

4.5) and residues 59-81 (lower-right dashed squares and the yellow region in Figure 4.5). The 

corresponding increases in off-diagonal intensities between these two residue groups are 

labeled by rectangles. 
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CHAPTER 5  

 

TEMPERATURE DEPENDENCE OF HEMOGLOBIN HYDRATION 

AND THE DYNAMICS OF HYDRATION WATER 

 

5.1 Introduction 

In CHAPTER 4, I established an in situ NMR method to measure the water sorption 

isotherm in proteins [1]. I studied the role of water in lysozyme, a small globular protein. The 

observed temperature dependence was well-explained by the solution model based on the 

Flory-Huggins theory with the addition of an elastic energy term. Based on these finding I 

now set out to determine if this temperature dependence also exist in other larger or non-

globular proteins. In lysozyme I also found a relationship between the hydration water and 

protein dynamics. However, I was not able to provide direct evidence on the role of water in 

protein function. The biological function of lysozyme requires it to bind to a peptidoglycan 

molecule. This is difficult to implement with the current in situ water and gas loading system. 

It would be much easier to study the protein function if the biological function involves the 

binding to a gas ligand.   

 To examine the role of hydration on protein function I now examine the protein 

hemoglobin. Water may play a pivotal role in the dynamics and gas binding of hemoglobin, 

including the well-known allosteric effect [2-4]. Gases, including oxygen, carbon monoxide, 

and nitric oxide, can bind to the heme group, residing in the interior of hemoglobin resulting 

in either normal biological functioning or disease [5, 6]. Water can affect such a process as it 
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migrates within protein cavities and through the physical pathway that transports the gas. 

Furthermore, the presence of water modulates protein dynamics such as gates and portals [7]. 

It is therefore important to understand the dynamical property of hydration water. Protein 

hydration, as measured by nuclear magnetic resonance, shows a similar temperature 

dependence to that observed in lysozyme [1]. NMR relaxation due to the paramagnetic 

centers that are present in hemoglobin can reveal the dynamics of hydration water within the 

protein.  

 

Figure 5.1 (a) Structure of the heme group with an iron in the center. (b) Secondary structures 

and oxygen binding sites of hemoglobin (PDB: 1GZX) in a ribbon representation. The heme 

groups are highlighted with a CPK representation.  

 

Hemoglobin is the major oxygen transporter in blood. Its secondary structure is shown 

in Figure 5.1. Its oxygen binding ability comes from the heme groups, each of which contains 

an iron (Fe) ion. The Fe ion may be either in the Fe
2+

 or in the Fe
3+

 state. In a reversible 

process, oxygen temporarily oxidizes Fe
2+

 to Fe
3+

, resulting in a superoxide ion [8]. 
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Accordingly, the protein changes from the deoxy- to the oxy- state. Only the ferrous form 

(Fe
2+

) of the protein can bind to oxygen. Another oxidation process leads to the ferri form 

(Fe
3+

) of the protein, methemoglobin, which oxygen is unable to bind to. In the human body, 

the enzyme methemoglobin reductase reduces the iron center and is able to reactivate 

methemoglobin. Malfunctions in this reduction process lead to the methemoglobinemia. 

   

 

Physilogical condition

2 2

Deoxy-hemoglobin                     Oxy-hemoglobin

High Spin Fe II         Low Spin Fe(III)+Superoxide Ion

Paramagnetic                          

HbFe II O HbFe III O 

     Diamagnetic

 

   autoxidation

2 20.5~3%/day
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Figure 5.2 Different oxidization states of hemoglobin. 

 

 The oxygen binding process also changes the magnetic properties of the protein. In 

the ferrous form, the high spin Fe
2+

 contains an unpaired electron. This leads to the 

paramagnetic property of deoxy-hemoglobin. During the oxygen binding process, the 

unpaired electron move towards the paramagnetic oxygen molecule to form a superoxide, 

resulting in  the diamagnetic oxy-hemoglobin with low spin Fe
3+

. On the other hand, when 

oxidized to methemoglobin, Fe
3+

 stays in the high spin states and the protein remains 

paramagnetic. Figure 5.2 shows the different oxidization states of hemoglobin and their 

magnetic properties. Changes in the magnetism properties can be monitored by electron 

paramagnetic resonance [9]. In nuclear magnetic resonance, the existence of a paramagnetic 

center broadens the resonance line by increase the local field inhomogeneity and enhances 
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the spin-lattice relaxation through nuclear-electron coupling and spin diffusion [9, 10]. In this 

chapter, I am able to use the spin-lattice relaxation to interpret the dynamics of hydration 

water in the proximity of hemoglobin.  

5.2 Experiments 

Hemoglobin from bovine blood (catalog no. H7379, lyophilized powder) was 

purchased from Sigma Aldrich and used without further modification. Since native 

hemoglobin is readily oxidized in air, these samples are predominantly in paramagnetic form 

of hemoglobin, methemoglobin. The protein powder was loaded into the quartz NMR sample 

tube connected to an in situ water loading system with controlled vapor pressure and 

temperature [11]. A single RF pulse (~5 µs) was used to excite the 
1
H NMR signals at 0.8 T 

(34 MHz 
1
H NMR frequency). The resulting spectrum contains two major components: a 

sharp peak on top of a broad peak. The broad peak was assigned to proton background solely 

from protein molecules [12]. The sharp peak was assigned to water sorption in the protein 

[12]. Since the protons account for about 6.8% weight of a protein molecule [13], the 

hydration level h can be calculated from the intensity ratio of the sharp to the broad peaks of 

NMR spectra at equilibrium. Here, the effect of the detection delay (~8 µs) on the intensity of 

the free-induction-decay (FID) of the broad peak was taken into account based on a Gaussian 

decay [9]. The isotherms measured by 
1
H NMR were shown to be consistent with those 

obtained by traditional gravimetric technique [12]. NMR relaxation measurements were 

made using  the standard saturation recovery and Hahn echo sequences [14].  
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5.3 Results and Discussion 

5.3.1 Water sorption isotherms and elastic modulus 

Water sorption isotherms in hemoglobin at 18C and 4 are show in Figure 5.3. At 

high relative pressures ( 0/ 0.7P P  ), the isotherms demonstrate a clear temperature 

dependence. Furthermore they show that there is less hydration water at the lower 

temperature. Such a temperature dependence was previously observed in lysozyme, as 

described in CHAPTER 4 [1]. The sorption isotherms provide further support that this 

temperature dependence exists not only in small globular proteins such as lysozyme, but also 

in large proteins such as hemoglobin. The surface adsorption model does not sufficiently 

describe such temperature dependence. The decrease in water uptake could be explained by 

the increased elastic energy cost for hydration at decreased temperature. It follows that the 

temperature dependence of the elastic modulus, K, of the protein is responsible for the 

observed temperature dependence of the upswing in water uptake.  

The quantitative analysis of such elastic energy is based on the lattice model of Flory-

Huggins theory with an addition of an elastic term [1, 15, 16]. Equating the chemical 

potentials of water in the vapor phase and in the water-protein mixture leads to [16-18]: 

  
12 2

0 1 2 2 21/3 1/3

2 2

1 5
ln / ln  1 1

2 3B

KV
P P v v v v

k T v v
     

          
  

 (4.3) 

Here, the plot of   2

0 1 2 2ln / lnP P v v v      versus    1/ 3 1/ 3 2

2 2 21 5/ 3 1v v v      is linear 

with the intercept at  and the slope containing the elastic modulus K. This is true so long as 

both parameters are constant within a certain range of relative pressures. Using the partial 

specific density of water ( 3

1 1.0 g/cm  ) and hemoglobin ( 3

2 1.38 g/cm  ), v1 and v2 can 
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be determined from the hydration level h via 1 21v v   and  2 2 11/ / 1v h   . Since 

hemoglobin has residues that are compact, the core may not be readily available to mix with 

water molecules [19]. This can be taken into account by considering the fraction of flexible 

segments in the protein, , where 0 1   [17, 18]. Given hemoglobin‟s large size, 0.5  is 

a good estimation for the fraction of flexible segments. 
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Figure 5.3 Temperature-dependent water sorption isotherms in hemoglobin. The dashed lines 

are fitted to D‟Arcy-Watt isotherms at low relative pressure region. At high relative pressure, 

the isotherm is fitted into the implicit form of Rowen-Simha equation [16].  
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Figure 5.4 plots the same isotherm data in the scale of   2

0 1 2 2ln / lnP P v v v       

versus    1/ 3 1/ 3 2

2 2 21 5/ 3 1v v v       based on the Rowen-Simha equation and 0.5   [1, 16]. 

There are linear portions to the right of the horizontal axis, corresponding to the isotherm 

data at high relative pressure. The linear fittings lead to 0.80 0.16 GPaK    and 

0.35 0.03   at 18C, and 1.64 0.13 GPaK    and 0.33 0.03    at 4C. Both the 

absolute values and their temperature dependence are reasonable compared to those obtained 

for lysozyme [1]. These results provide further support for the solution model of protein 

hydration in hemoglobin. Mechanical measurements of the elastic modulus of hemoglobin 

crystals are needed for comparison.   
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Figure 5.4 Plots of [ln(P/P0)-0.5lnv1-0.5v2]/v2
2
 versus [(v2
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] for the 

isotherms data following the Rowen-Simha equation [16]. 
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5.3.2 Line broadening and the diffusion barrier 

What makes the methemoglobin more interesting is the paramagnetic property, which 

is absent in lysozyme. In the ferri- or met- form of hemoglobin, the unpaired electrons have a 

magnetic moment  1S Bg S S   , where g is a proportionality constant relating the 

angular and magnetic moments, S is the total spin of the unpaired electrons, and B is the 

electron Bohr magnetron [10]. The presence of paramagnetic centers leads to line broadening 

in NMR spectra and an enhancement in relaxation [10]. Protons in close proximity to the 

paramagnetic center experience a large magnetic field shift from the external static field. This 

leads to line broadening of the NMR spectra. Depending on the distance from the 

paramagnetic center, the proton resonance line may be too broad to be observed by NMR. 

Commonly the diffusion barrier is used as the radius from the paramagnetic center within 

which the proton remains NMR-silent due to the line broadening. Assuming the dipolar 

interaction is responsible for the coupling between the nuclear and electron spin, the 

diffusion barrier is the distance at which the magnetic field due to the paramagnetic center is 

equal to the local nuclear dipolar field: 

 0

3

2

1

4

eff

S
S I

H

H H
b T

 

 
     (4.4) 

where eff

S is the effective electron dipole moment, 2T is the spin-spin relaxation time of 

protons, and H is the gyromagnetic ratio of proton. The effective electron dipole moment 

eff

S depends on the spin-lattice relaxation time of the paramagnetic ions ( 1eT ), compared to 

2T ( 2 17 sT  ) of nuclear spin-spin relaxation time. If the paramagnetic ions are dilute and 
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any interactions between them can be neglected, the 1eT  of electron spin can be replaced by 

the correlation time ( ) of the z component of the spin S. 
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 (4.5) 

At low field and fast electron correlation time, which is usually on the order of 810  to 1310 s, 

the proton feels only the time average of the electron spin, or the Curie spin.  
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Figure 5.5 The spin-spin relaxation time for hemoglobin and its hydration water. 

 

Figure 5.5 shows the measured 2T  of hemoglobin and its hydration water. The spectra 

were measured using a Hahn echo sequence. In each of the resulting spectra there are two 
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distinct peaks: a broader peak corresponding to the protons in the proteins, and a narrower 

peak corresponding to the protons from hydration water. These unique spectral features allow 

the 2T  values of the protein and hydration water to be obtained by examining the intensities 

of the two distinct peaks. The 2T  of the protein, ~ 17 s , remains constant throughout the 

hydration process. On the other hand as the partial pressure is increased, the hydration water 

2T  increases from ~ 40 s  to 2 ms . This is consistent with the picture of protein hydration in 

which at the beginning of hydration, water is present as structural water, and at the final stage 

of hydration, water demonstrates the properties of bulk water.  

Using the hemoglobin 2T  ~ 17 s , the diffusion barrier can be estimated as,    

 

1/3

180 0
2 4.84 10  m

4

S
H S

H
b T

kT

 
 



 
       

 (4.6) 

The extremely small value of the diffusion barrier suggests that all protons are observable 

through NMR under the current conditions, low external static field and strong nuclear 

dipolar field.  

Figure 5.6  shows the distribution of protons versus their distance from the closest 

methyl group and from the paramagnetic center (Fe
3+

). Since only a small number of protons 

reside within 3Å of the paramagnetic center, the majority of protons contribute to the NMR 

signals. This confirms that the calibration method I used is valid and the separation of signals 

from water and protein can be achieved by their dramatic difference in 2T .  
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Figure 5.6 The number of protons within a radius from the relaxation centers based on the 

structure of hemoglobin (1GZX). 

 

5.3.3 Spin-lattice relaxation of proteins 

In diamagnetic hydrated proteins, the proton spin-lattice relaxation time is dominated 

by cross relaxation and spin diffusion [20]. Due to fast spin diffusion in proteins and more 

rapid chemical exchange in water, the protons in the protein phase and in the water phase are 

in a uniform spin temperature in their respective phases. In the protein phase, the fast-rotating 

methyl groups are widely presented in proteins. The spin-lattice relaxation of the surrounding 

protons is made more efficient by transferring their spin energy to the methyl groups through 

the spin diffusion. The hydration water near proteins can exchange spin energy through 
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dipolar coupling between the two proton phases. This leads to cross relaxation between the 

two phases and spin diffusion towards methyl groups. 

The influence of the paramagnetic centers on the proton spin-lattice relaxation can be 

evaluated based on Bloembergen‟s model of relaxation [21]. The proton spin energy can 

relax either through its direct interaction with the unpaired electrons or through spin diffusion. 

For the direct dipolar interaction between a proton and an unpaired electron, the 

paramagnetic contribution to the spin lattice relaxation of the proton is [9, 22]: 

  
2 2 2

6 2 2 2 2

1

3 71 2
1

15 1 1

p pH

H p S p

g
S S

T r
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  
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 (4.7)  

where H  is the proton gyromagnetic ratio, S is the electron Larmor frequency, S is the total 

electronic spin of an iron atom ( 5 / 2S   for methemoglobin [23]), r is the distance between 

the proton and the iron atom,  is the Bohr magnetron, and g is the electronic Lande factor 

(taken here as that of a free electron). In the slow motion limit, the correlation time is equal 

to the longitudinal relaxation time of the unpaired electron, 126.1 10  sp s     . The large 

difference between the nuclear and electron Larmor frequency allows us to express the spin 

lattice relaxation in the form of 

 6

11/ T C r   (4.8) 

 where  2 2 2 42 62 / 5 1 5.25 10  cm /sH pC g S S             . 

 The spatial distribution of the magnetization and its diffusion was analyzed by de 

Gennes [24] and Blumberg [25] using Bloembergen‟s model. The most important parameter 

is the spin diffusion constant, which can be approximated by [9, 21, 25]: 
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where I have used 2.5 Åa  , the typical distance between proton groups [22, 26], and the 

measured 2 17 sT  . This spin diffusion constant is several orders of magnitude larger than 

that in protein solution, where the dipolar interaction is averaged by the molecular motion [9, 

22]. This suggests the spin diffusion mechanism is more effective than the relaxation due to 

the direct dipolar interaction.  

The spatial and temporal distributions of nuclear spin magnetization are essential 

components of the spin diffusion mechanism. After a very short time given by de Gennes,

 
1/2

30.5 / 1.817 mst C D   in the case of hemoglobin, the nuclear spins within the 

pseudopotential radius of paramagnetic center,  

 
 

 
1/4

25/2
/ 3.515 Å

2 5 / 4
C D


  

  

 (4.10) 

have relaxed to equilibrium. As shown in Figure 5.6, most of the protons reside outside this 

radius and their spin-lattice relaxation rate is determined by the spin diffusion mechanism. 

Such a relaxation rate is estimated by  

  1/4 3/4 -1

11/ 4 8.5 =10.46 s 1/ 96 msT N D NC D     (4.11) 

This estimation is very close to the longer component of proton spin-relaxation in proteins

~120 ms . The shorter component comes from the exchange with hydration water and cross 

relaxation. 
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Figure 5.7 The value of long and short components of the spin-lattice relaxation time of 

proteins. 

 

5.3.4 Spin-lattice relaxation of hydration water 

Figure 5.8 shows the measured 1T
 
of water. There are two components, a longer 

component on the order of magnitude of 10 ms and shorter component of 1 ms . The longer 

1T
 
of water is similar in magnitude to the shorter 1T  found in proteins. This suggests that 

there is an exchange mechanism between protein and hydration water. The exchange rate 

determines the value of the common 1T  in proteins and water. Without such exchange, the 

spin lattice relaxation of protein will lead to a single exponential with a characteristic time of 
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~120 ms , and ~ 1 ms  for hydration water. The exchange between protein and hydration 

water bring out a common relaxation time of ~ 10 ms . 
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Figure 5.8 The value of long and short components of the spin-lattice relaxation time of 

water. 

 

The shorter component is due to the paramagnetic centers. Since the atomic diffusion 

is much faster than the spin diffusion, the spin energy in water protons relaxes more 

efficiently through the atomic diffusion of protons towards the paramagnetic center. Using 

the same spin diffusion mechanism of 3/4

1T D  and the spin diffusion constant in protein,

13 2=7.353 10  cm /sspinD  , I can estimate the proton diffusion constant, 
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10 24.352 10  cm /sHD   . This is much slower than the proton diffusion constant in pure 

water, 5 21.85 10  cm /sHD   [27], and in the immediate vicinity of a phospholipid 

membrane, 5 20.65 10  cm /sHD    [28]. The significant reduction of the diffusion constant 

is probably due to the confinement effect of the protein channel on the diffusion of water.  

5.4 Conclusion 

In conclusion, in situ measurements of water sorption isotherms in hemoglobin show 

temperature dependence in the water uptake at high relative pressure. Such temperature 

dependence is similar to what was observed in lysozyme as discussed in CHAPTER 4. This 

provides further support of the role of elastic energy in protein hydration. NMR relaxation in 

hemoglobin shows a cross relaxation between fast-relaxing water and slow-relaxing proteins 

due to different spin diffusion mechanisms. The spin-lattice relaxation can be used to 

estimate the diffusion constant of protons towards the paramagnetic center, which is several 

orders of magnitude slower than that in pure water.   
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CHAPTER 6  

 

ROLE OF INTERFACIAL WATER IN MEDIATING THE 

INTERACTION BETWEEN HALOTHANE AND PROTEINS 

 

6.1 Introduction 

In CHAPTER 4 and CHAPTER 5, I discussed the role of hydration water in 

lysozyme and hemoglobin, respectively. From water sorption isotherms of the proteins, I 

provided support for the solution description of protein hydration based on the Flory-Huggins 

theory with the addition of elastic energy term. Unlike lysozyme, hemoglobin‟s hose 

biological function involves binding to gas molecules. Such gas binding process could 

potentially be observed by NMR. A prime example of the coupling between gas-biomolecule 

binding and the modulation of biological activity is general anesthesia. The binding between 

general anesthetics and biomolecule leads to the inhibition of biological activity, a function 

which is still not fully understood. 

The role of water in the action of general anesthesia remains a topic of controversy[1]. 

The first and well-established theory of general anesthesia was proposed by Meyer and 

Overton, who independently noticed that the anesthetic potency is related to its lipid 

solubility, as shown in Figure 6.1(a) [2, 3]. This leads to the hypothesis that solubilization of 

lipophilic general anesthetic in lipid bilayer of the neuron causes its malfunction and 

anesthetic effect when critical concentration of anesthetic is reached. Based on the anesthetic 
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effect on the activity of lipid-free proteins, Franks and Lieb demonstrated that protein targets 

are also compatible with the Meyer-Overton rule, as shown in Figure 6.1(b)  [4-6].  

 

Figure 6.1 The Meyer-Overton correlation for anesthetics. 

 

Figure 6.2 Structure of general anesthetics widely used in medicine [7]. 
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The general anesthetics are substances that can bring reversible loss of consciousness. 

They are able to cross the blood-brain barrier to produce general anesthesia [8]. Hundreds of 

substances are known to cause general anesthesia, including chloroform (CHCl3), halothane 

(CF3CClBrH), nitrous oxide (N2O), carbon dioxide (CO2), ethylene (C2H4), cyclopropane 

(C3H6), sulfur hexafluoride (SF6), nitrogen (N2), argon (Ar), and xenon (Xe). Figure 6.2 

shows the structure of several widely used general anesthetics [7]. They are apolar molecules 

that lack the ability to form covalent bonds as other drugs do. They interact with the 

anesthetic targets, either at the lipid portion of neuronal membranes or in the hydrophobic 

pocket of the target proteins, through weak polarization forces, such as the hydrophobic 

interaction [9]. Therefore there could be many correlations between the potency of an 

anesthetic and its physical properties that are affected by the same type of weak interaction, 

such as the Meyer-Overton rule [2]. The quantity used to compare the strengths or the 

potency of anesthetic vapors is the minimum alveolar concentration (MAC) [7]. It is defined 

as the concentration of the vapor in the lungs that is needed to prevent movement (motor 

response) in 50% of subjects in response to pain stimulus. A lower MAC value represents a 

more potent volatile anesthetic.  

Deviations from Meyer-Overton rule were also found [7]. Stereoselectivity was 

observed in several anesthetics such as isoflurane and pentobarbital with different potencies 

in different optical isomers [10-13]. The cutoff effect exists in a series of alkanols and 

alkanes with favorable lipid solubility, whose potency increases with molecular weight until 

a point where potency is suddenly lost [14]. Both stereoselectivity and the cutoff effect could 

be related to the molecular shape and size of protein targets. Nonanesthetics show no 

anesthetic effect even with similar lipid solubility and molecular structure as known 
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anesthetics. The only noticeable difference is their low water solubility [15]. Evidence has 

been accumulated that anesthetics bind to amphiphilic sites with the presence of water [16, 

17]. The existence of similar nonanesthetics and the amphiphilic nature of target binding sites 

lead to the hypothesis that water may also play a role in the binding of anesthetics and 

proteins.  

 

Figure 6.3 A diagram showing the logarithm of the anesthetizing partial pressure of non-

hydrogen-bonding anesthetic agents plotted against the equilibrium partial pressure of their 

hydrate crystals [18]. 

 

The first molecular mechanism of anesthesia that emphasizes the role of water was 

proposed by Pauling and Miller [18, 19]. From the relation between the anesthetizing 

potency with the equilibrium partial pressure of their corresponding hydrates at 0C (as 



 

95 

 

shown in Figure 6.3), the anesthetics could induce a structural change of interfacial water to 

form minute hydrate (as shown in Figure 6.4) or ice cover, leading to a reduction of electrical 

activity of the brain and anesthesia [18]. Although there is no evidence that hydrates or ice 

cover exist in a physiological condition, the interfacial water could still play an important 

role in modulating the interaction between anesthetics and their biological targets [17]. In this 

work, I provide direct experimental evidence that interfacial water in the proximity of 

proteins is essential for the molecular interaction between anesthetics and proteins. 

 

Figure 6.4 The structure of the hydrate crystals of small molecules, such as xenon.  

 

The direct way to test the role of interfacial water in general anesthesia is to compare 

the anesthetic-protein interaction at a relative low protein hydration levels. The aqueous 

environment severely obscured the role of interfacial water in the anesthetic-protein 

interaction. Different from these experiments in protein and anesthetic solutions, the current 
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work requires that the hydration water is in direct proximity to the protein surface, the protein 

remains in the solid state, and the anesthetic is in the gas/vapor phase. A typical low 

hydration level for protein is 0.2 g water/g protein (h=0.2). Higher hydration levels contain 

excess amount of bulk water and obscure the role of interfacial water. 
1
H NMR has been 

used to monitor the protein hydration level in situ [20]. The interaction between gaseous 

anesthetics and solid proteins is identical to that in solutions at the molecular level. The only 

difference is the influence of interfacial water that I am interested in.  

 

Figure 6.5 Gas chromatographic partition analysis of isoflurane equilibrium binding to BSA 

at 22C, pH 7.2, and a concentration of 28 mg/mL. 

 

Another goal of this work is to explore the nature of protein-anesthetic interaction 

using adsorption isotherms measured by NMR [20, 21]. 
19

F NMR is a powerful tool for the 

study of anesthesia because 
19

F is abundant in most of modern anesthetics while absent in 

natural biomolecules. Earlier 
19

F NMR studies on anesthesia used anesthetics and proteins in 

solution form [22]. The fast exchange between anesthetic phases leads to only a resonance 
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line in the spectra [23]. The identification of bound anesthetics relies on the two-phase fast-

exchange model of the spin-spin relaxation mechanism. This method has a very low 

sensitivity and lacks the ability to identify the direct NMR signature of bound anesthetics. It 

is also unable to measure the adsorption isotherm of anesthetics on proteins as a function of 

concentration. For instance, the amount of isoflurane bound to BSA is determined indirectly 

through the gas chromatographic partition analysis as shown in Figure 6.5. Bound isoflurane 

was calculated by subtracting aqueous concentrations, as measured using buffer samples, 

from total solution isoflurane concentrations. The dashed line is similar to a Langmuir type 

of adsorption isotherm. This method again is an indirect measurement of amount of bound 

anesthetics. 

 

Figure 6.6 Most voltage-gated ion channels are relatively insensitive to general anesthetics. 

general anesthesia in humans (●), as measured by the lack of a purposeful response to a 

surgical incision, occurs at concentrations of halothane 4 to 30 times lower than the EC50 

concentrations needed to half-inhibit peak currents through L-type Ca
2+

 channels (○) from 

clonal pituitary cells, Na
+
 channels (□) from the squid giant axon, or delayed rectifier K

+
 

channels () from the squid giant axon [5]. 
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Figure 6.7 (a) Identity of general anesthetic concentrations needed to anesthetize whole 

animals and to inhibit luciferase activity by 50%, for a diverse range of simple anesthetics 

over a 100,000-fold range of potencies. The line is the line of identity [24]. (b) Clinically 

relevant concentrations of halothane potentiate responses to low levels of GABA (3 M) in 

dissociated rat brain neurons, with 50% potentiation occurring at 0.23 mM halothane, close 

to the EC50 for general anesthesia (arrow) [5]. 

 

It is essential to determine the amount of bound anesthetics on proteins at a certain 

concentration precisely as required by isotherms measurement. A common signature in the 

curve representing the fraction of patients anesthetized versus the concentration of 

anesthetics, as shown in Figure 6.6, is the existence of a steep increase within a very narrow 

range of anesthetic concentration. The molecular mechanism of such steep increase has not 

been explained. The major criterion for identifying the anesthetic target is that the target 

functionality is inhibited at an anesthetic concentration similar to the concentration needed 

for general anesthesia in clinics as shown in Figure 6.7. The criterion itself suggests the lack 

of physical understanding of the nature of anesthetic-protein interaction.   
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Figure 6.8 
19

F NMR spectra of halothane in an empty NMR tube, in dry lysozyme and BSA. 

 

6.2 Experiments 

Halothane (2-bromo-2-chloro-1,1,1-triflurorehtane, catalog no. B4388, ≥99%), hen 

egg white lysozyme (catalog no. L-7561, 3× crystallized, dialyzed, and lyophilized), and 

bovine serum albumin (catalog no. A9418, lyophilized powder, >96%), were purchased from 

Sigma Aldrich and used without further purification. The proteins were loaded into the quartz 

NMR sample tube connected to an in situ water and halothane loading system with controlled 

vapor pressure and temperature [21]. A single pulse (3~4 µs) was used to excite the 
1
H and 

19
F NMR signals at 7 T (300 MHz 

1
H and 285 MHz 

19
F NMR frequency) to monitor the 

amount of water and halothane, respectively. The protein was dynamically pumped for more 
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than 12 hours to remove the hydration water contained in the as-received sample. The dry 

protein was then exposed to a certain vapor pressure of halothane at a constant temperature 

for adsorption study. For the adsorption in wet protein, the protein was first exposed to water 

vapor to reach a hydration level of h~0.2 g water/g protein, before exposing it to halothane 

vapor.  

 

Figure 6.9 Adsorption isotherms of methane (117.2 K), n-butane (0.0C), neopentane 

(10.0C) and SF6 (-64C) in egg albumin (2% spray frozen) shown in order of low to high 

curve [25]. 
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6.3 Results and discussion 

Figure 6.8 shows 
19

F NMR spectra of halothane in dry lysozyme and BSA, and in an 

empty NMR tube. The FWHM of the halothane spectra is as narrow as ~3 ppm, close to the 

resolution limit as observed from the spectrum of free halothane vapor in an empty NMR 

tube. This suggests that halothane behaves like free gas and doesn‟t bind to dry proteins.  

It has been suggested that there might be a certain degree of rearrangement of protein 

side chains to compensate the large surface energy created by removing the hydration water 

of proteins [26]. This side chain rearrangement is unlikely to block the diffusion pathway of 

gas molecules within the matrix of protein powders. As shown in Figure 6.9, neopentane has 

enough accessibility to the molecular surface of dry proteins. This confirms that halothane, 

with smaller size than that of neopentane, is able to reach the molecular surface of BSA. 
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Figure 6.10 
19

F NMR spectra of halothane in wet lysozyme. 
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Figure 6.10 and Figure 6.11 show the 
19

F NMR spectra of halothane in wet lysozyme 

and wet BSA, respectively. Both of the spectra show a signature of two peaks. The narrow 

peak corresponds to the free halothane in the empty space of the NMR tube that is in-

between the lysozyme or BSA protein granules. The broad peak with a width of ~25 ppm 

corresponds to the strongly-adsorbed and motion-immobilized halothane molecules on wet 

proteins. This is the first model-free and direct evidence of halothane adsorbed on wet 

proteins. The separation of free and adsorbed halothane is directly shown in the spectra. The 

difference of adsorption in dry and wet proteins demonstrates the important role of interfacial 

water in the interaction of anesthetics and proteins. 
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Figure 6.11 
19

F NMR spectra of halothane in wet BSA. 
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6.4 Conclusion 

In this chapter, I provide preliminary results on the role of interfacial water in 

mediating the anesthetic-protein interaction. I identified direct 
19

F NMR signatures of 

adsorbed halothane in wet proteins, including lysozyme and BSA, from spectra. This method 

does not depend on the model-dependent interpretation of spin-spin relaxation that was used 

in solution. The high sensitivity and accuracy of this method allow us to determine the 

halothane binding to small proteins such as lysozyme, which was not observed before. The 

direct separation of free and adsorbed halothane in spectra allows us to measure the 

adsorption isotherm with precise measurements of halothane vapor pressure and its amount 

within the NMR coil through 
19

F NMR signal intensity.   
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CHAPTER 7  

 

CONCLUSION 

 
This dissertation discussed several studies on the nanoconfined and interfacial water 

using NMR. Water exhibits dramatically different behaviors in different circumstances as a 

result of its intrinsic properties and local environment. In the tubular structure at the 

nanometer scale in SWNTs, the hydrophobicity should not be considered as an absolute 

property of a surface without considering the structure of interfacial water. The correlation 

time of water reorientation is reduced to be on the order of 10 to 100 ns compared to ~3 ps of 

bulk water. Confined and interfacial water are prevalent in biological systems, such as the 

water in ion channels and in the proximity to proteins. The affinity change due to the 

temperature-induced structural change of water could be relevant to various phenomena 

including in biological systems. On the other hand, in the wettable nanoscopic pores of 

microporous activated carbons, water show properties that are similar to those of water in its 

bulk phase, including molecular reorientation and capillary condensation. The dynamics of 

water changes dramatically upon capillary condensation and reach a value that is close to that 

of bulk water. The capillary condensation occurs at a vapor pressure that can be estimated by 

the Kelvin equation. This result suggests that water starts to exhibit bulk properties with 

thickness as thin as three molecular layers in size of 1.2 nm. Therefore, water adsorption 

measurement could be effectively used as a tool for characterizing pore size distribution on 

the nanometer scale.  
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Water at the interface of biomolecules has a much broader and direct impact on our 

understanding of biology. I observe a strong temperature dependence of the water uptake in 

lysozyme at high relative pressure below 10°C. Such a temperature dependence could be 

explained by the enhanced cost in the elastic energy for accommodating the hydration water 

at lower temperature. The temperature dependence of the elastic modulus K of the protein is 

responsible for the observed temperature dependence of the upswing in water uptake. 

Although related to the microscopic flexibility of the protein, the elastic modulus K used in 

our analysis of the elastic energy is a parameter at the level of thermodynamics, not a model-

dependent quantity at the molecular level or based on statistical mechanics. The elastic 

modulus K derived from water isotherms is consistent with the values of Young‟s modulus 

measured directly by mechanical measurement. This provides an independent validation of 

the solution picture. The interplay of elastic modulus and water absorption has an important 

role in determining the fluctuations of proteins and may be important for the functions of 

proteins such as enzymatic activities.  

A similar temperature dependence of the sorption isotherm was also observed in 

hemoglobin. NMR relaxation in hemoglobin shows a cross relaxation between fast-relaxing 

water and slow-relaxing proteins due to their different spin diffusion mechanisms. The spin-

lattice relaxation can be used to estimate the diffusion constant of protons towards the 

paramagnetic center, which is several orders of magnitude slower than that in pure water.   

We also provide preliminary results on the role of interfacial water in mediating the 

anesthetic-protein interaction. We identified direct 
19

F NMR signatures of adsorbed 

halothane in wet proteins, including lysozyme and BSA, from NMR spectra. This method 

does not depend on the model-dependent interpretation of spin-spin relaxation that was used 
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in solution. The high sensitivity and accuracy of this method allow us to determine the 

halothane binding to small proteins such as lysozyme, which was not observed before. With a 

precise control of hydration level, we are able to provide evidence that the halothane binds to 

proteins only with the presence of interfacial water. 

 

 

 

 

 

 

 


