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ABSTRACT 

Kathleen Marie Onorevole: Restoration of Estuarine Habitats Supports 
Changes in Nitrogen Cycling and Removal Over Time 

(Under the direction of Michael F. Piehler) 

Salt marshes and oyster reefs can be restored as living shorelines to prevent coastal 

erosion and provide ecosystem functions, including denitrification.  This microbial process 

transforms N to a non-bioavailable gas, possibly also producing the powerful greenhouse gas 

N2O.  This study used a chronosequence space-for-time replacement design spanning 0 to 20 

years to evaluate N cycling following restoration.  Sediment cores were collected seasonally.  

Dissolved N2 and O2 fluxes in the overlying water were analyzed with a membrane inlet mass 

spectrometer (MIMS).  Denitrification always increased from the 0- to 7-year-old sites; changes 

in rates between the 7- and 20-year-old sites were not consistent across seasons.  Sediment 

oxygen demand (SOD) was significantly correlated with annual denitrification and may be a 

viable proxy.  These habitats may be a small sink for N2O.  This research shows that restored salt 

marshes and oyster reefs can augment denitrification without increasing fluxes of N2O.  
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INTRODUCTION 
 

There is increasing awareness of the deleterious impacts of anthropogenic activity on the 

marine environment (Lotze et al. 2006).  Both regional practices and global phenomena can 

affect marine ecosystems.  On a local level, resource exploitation, pollution, nutrient enrichment, 

habitat destruction, and changes in sediment delivery threaten marine environments and the 

communities they support.  Risks to marine environments associated with climate change include 

ocean acidification, rising sea levels, and intensified storms.  Local stressors will likely be 

compounded by climate change in ways that are difficult to predict, possibly resulting in a 

synergistic relationship between the two scales of impact (Crain et al. 2008). 

Habitat degradation is a broad consequence of local and global stressors.  Human well-

being is dependent upon many ecosystem functions and services provided by marine 

environments (Costanza et al. 1997, Millennium Ecosystem Assessment 2005), making habitat 

degradation relevant for social and ecological reasons.  There are therefore multiple motivations 

for combating habit degradation.  Habitat restoration is increasingly identified as a means of 

stymieing habitat loss and providing resiliency against future changes (Seavy et al. 2009).  

Holling (1973) initially defined resilience as an ecosystem’s ability to withstand disturbance 

before changing state, although that definition has since been interpreted in many ways 

(Gunderson 2000).  Since climate change will impact all ecosystems in some capacity, 

designating resiliency as an overall restoration goal can help restoration practitioners maintain a 

holistic, non-linear perspective (Boesch 2005). 
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Among marine environments, coastal habitats have been heavily impacted (Halpern et al. 

2008) and identified as candidates for restoration due to their ecological and cultural importance 

(Borja et al. 2010).  Estuarine habitats provide functions such as nursery habitat for juvenile fish 

and invertebrates (Beck et al. 2001), resilience to rising sea level (Morris et al. 2002), and 

nutrient cycling (Jordan et al. 2011).  Estuaries are often bordered by high human population 

densities, adding additional pressure to these systems that makes habitat restoration imperative 

(Callaway & Zedler 2004). 

One common goal of estuarine restoration is mitigation of nutrient loading.  

Anthropogenic nutrient loading to coastal systems has long been recognized as a concern, largely 

because it increases the probability of eutrophication and poor water quality (Nixon 1995, 

Pinckney et al. 2001).  In nutrient-rich systems, eutrophication can lead to a host of deleterious 

impacts, including harmful algal blooms (Paerl & Otten 2013), hypoxia (Hagy et al. 2004), and 

fish kills (Paerl et al. 1998).  Nitrogen (N) is a common nutrient of concern in coastal systems, 

where it enters primarily in the form of NO3
- via runoff from residential, commercial, and 

agricultural sites (McClelland & Valiela 1998, Valiela et al. 2000).  Restoration of streams and 

coastal waterways increasingly seeks to manage NO3
- concentrations, thus providing a critical 

ecosystem service (Dodds et al. 2008, Craig et al. 2008). 

Strategies for managing aquatic N loads can include decreasing inputs and increasing 

removal.  The latter can be accomplished through denitrification, a pathway that removes 

bioavailable N from terrestrial and aquatic environments.  Through denitrification, NO3
- is 

reduced to biologically non-available N2 gas, which is released to the atmosphere (Herbert 

1999).  The importance of denitrification has been recognized on a global scale (Sutherland et al. 

2010).  Estuarine habitats such as salt marshes and oyster reefs can facilitate denitrification, 
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making them key moderators of NO3
- concentrations (Seitzinger et al. 2006, Sousa et al. 2012, 

Beseres Pollack et al. 2013). 

In estuarine habitats, denitrification is performed by heterotrophic bacteria (Herbert 

1999).  Fungal denitrification is also possible (Sumathi & Raghukumar 2009).  In bacterial 

denitrification, facultative anaerobes use NO3
- as a terminal electron receptor in the absence of 

oxygen, when the more energetically-favorable reduction of oxygen is not possible (van Rijn et 

al. 2006).  Denitrification also depends on available sources of NO3
-, organic matter, suitable 

redox conditions, and a lack of inhibitors such as sulfides (Knowles 1982, Brunet & Garcia-Gill 

1996).  As a result, denitrification activity is very localized: high rates are found in microsites 

with appropriate conditions (Parkin 1987).  These denitrification hotspots can account for a 

disproportionate amount of the total denitrification capacity of a given system (Duncan et al. 

2013).  Intertidal habitats may have more of these hotspots due to their varied microtopography, 

created by bioturbation, sediment accretion, vegetation, and wave energy, suggesting that they 

could support substantial rates of denitrification (Wolf et al. 2011). 

In environments with limited ambient NO3
-, denitrification is typically accomplished via 

coupled nitrification-denitrification (NF-DNF).  Since nitrifiers are aerobes, coupled NF-DNF 

depends upon the existence of proximate oxic and anoxic microsites that can support both 

processes (Jenkins & Kemp 1984).  Intertidal habitats can support conditions conducive to 

coupled NF-DNF because they experience periodic inundation that alters sediment oxygen 

concentrations.  Tidal inundation leads to oxygen draw-down in sediments, which are 

reoxygenated during ebb tide.  As a result, adjacent oxic and anoxic zones can develop in both 

time and space (Seitzinger et al. 2006), making it possible for NH4 to be nitrified and 

subsequently reduced. 
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When considering N dynamics in a global context, it is necessary to also consider N2O 

gas production.  N2O is a powerful greenhouse gas.  It has a radiative forcing approximately 

300x that of CO2 and contributes to the destruction of the ozone layer (Cicerone 1987).  

Consequently, production of N2O has been termed an ecosystem disservice (Burgin et al. 2013).  

N2O is produced as a byproduct of nitrification and an intermediate in denitrification.  In 

estuarine environments, higher emissions are typically associated with denitrification (Dong et 

al. 2002), although some studies have identified nitrification as the dominant source of N2O (de 

Wilde & de Bie 2000).  N2O is produced via incomplete denitrification, when N2O is not reduced 

to N2 gas and is instead released to the atmosphere.  Lower rates of N2O flux have been reported 

for estuarine environments dominated by coupled NF-DNF (Cartaxana & Lloyd 1999, 

LaMontagne et al. 2002).  To balance the value of the ecosystem service of NO3
- removal with 

the disservice of N2O production, it is useful to evaluate both denitrification and N2O production 

when studying denitrification. 

As previously described, there are many factors that determine whether denitrification is 

possible.  The relative rate of denitrification is influenced by temperature (Kemp et al. 1990, 

Bachand & Horne 2000), and seasonal variability has been observed in estuarine environments 

(Thompson et al. 1995, Nowicki et al. 1997, Cabrita & Brotas 2000).  Consequently, single 

measurements of denitrification could fail to adequately describe trends throughout time, making 

it important to evaluate denitrification with a high degree of temporal resolution. 

Routine measurement of denitrification in estuarine habitats can complement long-term 

studies of restored habitats.  Estuarine habitat restoration in North Carolina commonly includes 

the restoration of salt marshes with fringing oyster reefs.  Salt marshes have long been identified 

as important habitats for denitrification (George & Antoine 1982, DeLaune et al. 1983), and 
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recent work has shown that oyster reefs also facilitate high rates of denitrification (Carmichael et 

al. 2012, Piehler & Smyth 2011).  Oyster biodeposits are posited to provide substrate for 

denitrifying bacteria (Kellogg et al. 2013), enabling augmented rates of denitrification in the 

sediment surrounding the reef.  Restoration of salt marshes and oyster reefs may therefore be a 

powerful way to increase denitrification in estuarine systems. 

Organisms are considered ecosystem engineers when they provide physical structure that 

influences surrounding biology (Jones et al. 1994).  Oysters are a prominent example of an 

ecosystem engineer in coastal North Carolina, as they facilitate physical-biological coupling 

(Lenihan 1999).  Their key role in the aquatic environment has led to oysters’ inclusion in living 

shoreline designs.  Living shorelines are a type of nature-based infrastructure, a type of design 

that is an alternative to traditional gray infrastructure.  Living shorelines are intended to 

minimize coastal erosion.  They consist of marsh vegetation with an optional fringing hard 

substrate whose composition ranges from built materials, such as rocks or cement, to natural hard 

structures like oyster reefs (NOAA Living Shorelines Workgroup 2015).  Living shorelines can 

reestablish some ecosystem functions lost through habitat degradation.  For processes such as 

nutrient removal, these functions are considered ecosystem services that increase the value of the 

living shoreline complex beyond its role in shoreline stabilization (Grabowski et al. 2012). 

Habitat restoration is an expensive and time-intensive effort.  As such, it is desirable for 

restoration practitioners to predict, to the extent possible, the development of desired ecosystem 

services following restoration.  Restoration trajectories are a theoretical framework that 

visualizes changes in an environmental parameter over time (Kentula et al. 1992).  Trajectories 

are constructed by graphing the relative magnitude of a parameter against time since restoration.  

Using a restoration trajectory, managers can compare field measurements from a known 
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timepoint to expected values.  The comparison can suggest whether the site is developing as 

expected or whether additional intervention may be advisable.   The general shape of a 

restoration trajectory can also help managers anticipate benchmarks and craft monitoring plans.  

Monitoring could be timed to measure a parameter during a period of expected change, for 

example (see La Peyre et al. 2014 for an example of an oyster reef restoration trajectory).   

Although restoration trajectories can be useful for planning purposes, there is speculation 

regarding their efficacy (Zedler & Callaway 1999).  Habitats are influenced by a range of biotic 

and abiotic factors that could complicate efforts to identify a common restoration trajectory for a 

given parameter.  Although restoration trajectories can help guide planning, they should be 

employed pragmatically, with an awareness of potential limitations. 

The goal of this study was to identify changes in nitrogen cycling, particularly 

denitrification and N2O production, among estuarine habitats restored in the living shoreline 

framework at known points in the past.  It was hypothesized that denitrification rates would 

increase following restoration and eventually reach a plateau.  It was further expected that salt 

marshes would exhibit higher denitrification rates than the oyster reefs and sandflats.  The 

greater elevation range in salt marshes was expected to facilitate the oxic/anoxic conditions 

necessary for denitrification.  This study also measured relevant biotic and abiotic parameters to 

examine their influence on the development of denitrification rates.  Overall, this study aimed to 

elucidate the impact of living shoreline restoration on N removal and identify whether other site 

parameters could be proxies for the development of N cycling. 

 
 

 
 
 
 



7 

 
 
 
 
 

METHODS 

Study Sites 

This study employed a chronosequence space-for-time replacement design.  

Chronosequence studies have been widely used to illustrate the development of restored sites 

over long periods of time.  Restoration projects have been criticized for lack of monitoring, 

which is often time- and resource-intensive (Hobbs & Norton 1996).  Well-designed 

chronosequence studies can provide the benefits of long-term monitoring without the expense.  

To be suitable for inclusion in a chronosequence, study sites should have comparable geographic 

proximity, habitat types, and environmental conditions.  It has also been advised that 

chronosequences include temporal ranges of up to 100 years and focus on environments with 

lower biodiversity and few disturbances (Walker et al. 2010).  When using a chronosequence 

design, it is important to be conservative in attributing change in parameters to the passage of 

time due to the potential influence of site-specific variables. 

Sampling was conducted in Bogue Sound, located near Cape Lookout in the southern 

Outer Banks, North Carolina (Fig. 1).  Study sites were salt marshes dominated by Spartina 

alterniflora with fringing oyster reefs (Crassostrea virginica).  All sites were restored at known 

timepoints for ecosystem restoration or mitigation purposes using a living shoreline restoration 

design (Sutton-Grier et al. 2015) (Table 1). Sites spanned an age range from 0 to 20 years.   
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Figure 1.  Location of the sampling sites included in this study.  Sites were located within a 13 
km radius in Bogue Sound near Morehead City, NC.  Years reference the amount of time since 
restoration. 

 

Table 1.  Details of living shoreline restoration sites chosen for this study. All sites were restored 
for the overall goal of limiting coastal erosion, with additional restoration impetuses noted 
below. 

Site Abbreviation Restored age (years) Restoration Impetus 
Institute of Marine 
Sciences 

IMS 0 Ecosystem restoration 

Carrot Island Carrot 2 Ecosystem restoration 
NOAA Beach at 
NOAA Beaufort 
Lab 

NOAA 7 Ecosystem restoration 

Army Marsh Army 20 Mitigation 
 

The four sites chosen for this study are located within a 13 km radius and are exposed to 

similar environmental conditions, such as rainfall and temperature.  Wave energy varies between 

sites.  Carrot (2-year-old site) is exposed to direct wave energy, and IMS (0-year-old site) is 

subject to boat wakes from traffic on the Atlantic Intracoastal Waterway.  NOAA (7-year-old 

site) is in a more protected no-wake zone.  Army (20-year-old site) has a bowl-shaped 

morphology that reduces wave energy and may influence tidal exchange.  This collection of sites 

is similar to those chosen for other chronosequence studies (Salmo et al. 2013), and are located 

within a tighter radius than other published studies (e.g. Ballantine & Schneider 2009).   
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Sampling was conducted during each season from summer 2014 through spring 2015 

along transects of five elevations at each site: seaward and landward sides of the oyster reef and 

three elevations in the salt marsh (Fig. 2).  Fieldwork was conducted at approximate low tide to 

maximize access to lower elevations.  Adjacent tidal sandflats within 15 m were sampled at an 

elevation matching the oyster reef/marsh border to evaluate the impact of restoration on 

surrounding sediment. 

 

 

Figure 2.  Diagram of the sampling scheme.  Oyster habitat cores were collected from the 
landward and seaward sides of the oyster reef; marsh cores were collected from low, mid, and 
high marsh elevations; and sandflat cores were collected in adjacent sandflats.  Triplicate cores 
were collected at each sampling point.  The same sampling scheme was used for each site.  This 
photo illustrates the NOAA location. 

 

Sediment Core Collection 

Triplicate sediment cores were collected by hand using plastic polycarbonate tubes (6.4 

cm diameter x 30 cm).  Cores were inserted into the sediment to 17 cm, topped with site water, 

and capped with rubber stoppers.  Care was taken to exclude marsh grass and megafauna such as 

oysters, snails, and crabs from the cores.  Oyster habitat cores were collected from sediment 
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adjacent to the oyster reef.  Site water was also collected for core incubation.  All cores were 

immediately stored in a cooler and transported to an environmental chamber at UNC Institute of 

Marine Sciences (IMS).  Cores were incubated in site water in the dark at average in situ 

temperature.  Following an overnight equilibration, cores were capped and connected to a flow-

through system with a pump rate of 1 mL min-1 (see Piehler & Smyth 2011). 

N2 and O2 Measurements 

Water samples (5 mL) were collected from the outflow of sediment cores and from an 

inflow line for all cores following initial incubation of at least 16 hours to achieve steady state.  

Samples were also collected from an inflow line to assess background concentrations of 

dissolved gas and to isolate any influence of the plastic tubing.  Sampling was repeated several 

times at 5 hour intervals following approximate turnover of overlying water to assess the 

duration of steady state.  

Dissolved N2 and O2 were measured using a Balzers Prima QME 200 quadropole mass 

spectrometer (MIMS; Pfeiffer Vacuum, Nashua, NH, USA; Kana et al. 1994).  The MIMS 

measures dissolved N2 and O2 concentrations in relation to inert Ar gas, making it sensitive to 

small changes in concentration.  It is therefore able to measure net N2 flux very precisely.  

Without the use of radioactive tracers, the MIMS cannot distinguish between N2 produced 

through denitrification or anammox or lost through nitrogen fixation, which has been shown to 

occur in restored salt marshes (Piehler et al. 1998).  However, previous research has indicated 

that anammox is negligible in habitats similar to those studied here (Koop-Jakobsen & Giblin 

2009), indicating that positive net N2 flux can be interpreted as denitrification. 

Use of the MIMS requires that cores be maintained in a dark environment to prevent the 

formation of oxygen through benthic microalgae photosynthesis.  Since water constantly overlies 
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the sediment, incubation mimics high tide conditions.  Cores experience a gradual draw-down of 

oxygen over the course of the incubation that was quantified as sediment oxygen demand (SOD).  

Use of the MIMS avoids limitations associated with older methods of measuring denitrification, 

such as acetylene block, which blocks nitrification and therefore is not applicable when 

measuring coupled NF-DNF (Groffman et al. 2006). 

All fluxes (µmol m-2 h-1) were calculated per the following equation: 

[Equation 1.] 

ݔݑ݈݂ =  ൫[ݔ]௢௨௧௙௟௢௪ − ௜௡௙௟௢௪൯[ݔ] ݁݃ܽݎ݁ݒܽ ∗
݁ݐܽݎ ݌݉ݑ݌
ܽ݁ݎܽ ݁ݎ݋ܿ

 

 
where [x]outflow is concentration in the sediment core outflow tube (µM), average [x]inflow is 

average concentration in the inflow tubes (µM), pump rate is the incubation flow-through rate (L 

h-1), and core area is the surface area of the sediment sample in the core (m2). 

Positive and negative dissolved gas fluxes were interpreted as flux out of and into the 

sediment, respectively.  Denitrification was calculated as net positive N2 gas flux (µmol N m-2 h-

1).  Sediment oxygen demand (SOD) was calculated as the flux of O2 into the sediment (µmol O2 

m-2 h-1). 

Denitrification efficiency (DNE) was calculated per the following equation (Eyre & 

Ferguson 2002): 

[Equation 2.]  

(%) ܧܰܦ =  ଶܰ ݂݈ݔݑ

ଶܰ ݂݈ݔݑ + ݔݑ݈݂ ܰܫܦ
∗ 100 

 

where DIN flux included NH4 and NOx (µmol m-2 h-1). 
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N2O Concentration and Flux Measurements 

Water samples (100 mL) were collected in vented N2-sparged glass serum bottles (260 

mL) to prevent inclusion of ambient N2O.  Vials were shaken vigorously to equilibrate gases, 

and headspace gas was transferred to an evacuated glass vial (13 mL).  A syringe was used to 

transfer a 5 mL air sample to a Shimadzu GC-2014 (Shimadzu Corporation, Kyoto, Japan) for 

detection of headspace N2O gas. 

N2O concentrations were calculated based on the assumptions of Henry’s Law.  N2O 

concentration (µM) in each water sample was calculated using the Bunsen solubility coefficient 

(β), which was in turn calculated from the Henry’s Law solubility constant (Ko).  Equations from 

Weiss & Price 1980 were used to calculate Ko based on published constants and in situ 

temperature and salinity.  Concentration was converted to flux (µmol N2O m-2 h-1) per Eqn. 1. 

Nutrient Concentration and Flux Measurements 

Water samples (40 mL) were collected from inflow and outflow tubing following 

achievement of steady state.  Samples were processed on a Lachat Quick-Chem 8000 (Lachat 

Instruments, Milwaukee, WI, USA) to measure concentrations of NOx, NH4, PO4
3-, total 

nitrogen (TN), and organic nitrogen (ON) (µM).  Detection limits were 0.05 µM N-NOx, 0.24 

µM N- NH4, 0.02 µM P-PO4
3-, and 0.75 µM N-TN.  Nutrient flux was calculated per Eqn. 1.  

Sediment Characteristics 

Surface sediment (0-3 cm) was collected from each core at the end of the incubation and 

analyzed for sediment organic matter (SOM) via loss on ignition (LOI) (Byers et al. 1978).  

Known volumes of surface sediment from spring 2015 samples were baked and combusted to 

determine bulk density (g cm-3).  Sediment samples from spring 2015 were pulverized and 

analyzed with a Costech ECS 4010 CHNS-O Elemental Analyzer (Costech Analytical 
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Technologies Inc., Valencia, CA, USA) to determine bulk percent nitrogen, percent carbon, and 

C:N ratios.  Bulk density and CHN data were assumed to represent sediment conditions during 

the study period. 

Oyster Filtration and Marsh Grass Density 

Oyster density was measured in summer 2015 to describe conditions during the study 

period.  A total of four 1/16 m2 quadrats were randomly tossed onto the oyster reef.  Two 

quadrats were located on the reef crest and two were located on the landward side of the reef.  

Live oysters were excavated and transported to IMS for processing.  The number of mature 

oysters and their shell heights (SH) were recorded.  Spat < 25 mm SH were excluded (zu 

Ermgassen et al. 2013). 

Oyster filtration provides a more comprehensive representation of oyster populations than 

count data.  Oyster filtration was calculated for each season per the following equation (zu 

Ermgassen et al. 2013): 

[Equation 3.]  

(ଶℎିଵି݉ ܮ) ݁ݐܽݎ ݊݋݅ݐܽݎݐ݈݂݅ = ܰ൫8.02ܹ଴.ହ଼݁ൣି଴.଴ଵହ∗൫(்ିଶ଻)మ൯൧൯ 

 
where N is oyster density (number of mature oyster m-2), W is dry tissue weight (g), and T is 

temperature (° C).  Dry tissue weight was calculated from SH using an equation developed for 

South Carolina (Grizzle et al.2008; zu Ermgassen et al. 2016).  SH to biomass conversion varies 

regionally, making it most appropriate to use an equation developed for the nearest geographical 

location.  The process used to calculate oyster filtration was recommended for assessing restored 

oyster populations by the Nature Conservancy (zu Ermgassen et al. 2016). 

S. alterniflora density was measured in fall 2015 prior to senescence to describe 

conditions during the previous growing season.  Three marsh elevation zones (low, mid, and 
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high) were sampled at each site.  Three ¼ m2 quadrats were distributed horizontally in each zone 

in accordance with the site’s sediment core sampling scheme.  Quadrats were tossed in a manner 

favoring vegetated areas within each elevation.  The number of live S. alterniflora culms in each 

quadrat were recorded.  S. alterniflora densities were adjusted by estimated percent cover to 

calculate overall density for each elevation zone. 

Inundation Calculation 

HOBO water level loggers (Model: U20-001-01, Onset Corporation, Bourne, MA, USA) 

were deployed at approximately the same elevation as the seaward oyster cores at each site.  

Water level data were logged at 15-minute intervals for at least one month.  Data were corrected 

using barometric pressure recorded at a NOAA monitoring station in Beaufort, NC, and 

incorporating a brackish salinity correction factor built into the HOBOware software (Onset 

Corporation, Bourne, MA, USA).  HOBO data were standardized to local tide records measured 

at the NOAA monitoring station, as described below.  The relationship was used to hindcast tide 

patterns at each study site during sampling seasons.  NOAA records were hindcast without 

standardization at Army, where HOBO data were not successfully recorded.  Elevation data and 

field records indicated that conditions were similar enough at Army and the NOAA monitoring 

station for direct comparison. 

Seasonal percent inundation was calculated using inverse cumulative percent histograms 

that modeled the hindcasted water level at the elevation of each sampling zone.  Elevations were 

obtained using an automatic laser level (Model SAL24N, CST/Berger, Watseka, IL, USA). 

There is some error inherent in hindcasting tidal predictions.  The HOBO data first 

underwent a phase shift to account for the slight temporal difference in tidal extremes between 

the study sites and the NOAA tide gauge.  Units of one hour were used for the phase shift, which 
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could have resulted in some loss of precision.  Linear equations were then fit to the HOBO and 

NOAA records, and the difference in y-intercepts was added to or subtracted from the HOBO 

data.  The pair of linear equations had extremely similar slopes at all sites, indicating that the 

HOBO logger and NOAA gauge were measuring the same tidal patterns.  In some instances, the 

heights of maximum low and high tide following the vertical offset were slightly different 

between the HOBO and NOAA data, introducing a small source of error.  When the corrected 

HOBO data were regressed against the NOAA data, R2 ≥ 0.92 at all sites.  This indicates strong 

correlation between the two data sets and confirms the appropriateness of the correction process.  

However, since R2 ≠ 1, there was some error introduced by the correction.  HOBO data were not 

available for Army, so it is possible that there was error created by using the NOAA gauge data 

as a proxy for that site. 

Statistical Analysis 

N2 flux data were analyzed for normality and heteroscedasticity.  A constant was added 

to convert all N2 flux data to positive values.  Data were transformed using the Box-Cox 

transformation with a lambda value that maximized a log-likelihood function (Box 1964).  

Transformation achieved heteroscedasticity and improved normality.  Several factors remained 

non-normal following transformation.  ANOVA testing can tolerate non-normality (Underwood 

1997).  Non-parametric methods were also used to analyze the data, as described below. 

A three-way ANOVA was used to identify significant differences (α = 0.05) in 

denitrification rates, with site, season, and habitat as interactive fixed factors.  The effect of 

habitat was not significant (p = 0.17), so a two-way ANOVA was run with site and season as 

interactive fixed factors.  A Tukey post-hoc test was also conducted. 
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Regression was used to assess the relationship between restored age and site parameters.  

Regression was modeled using second-order polynomial equations.  Separate regression analyses 

were conducted for annual and seasonal groupings of parameters (SOD, SOM, bulk density, and 

N2 flux).  Annual regression was conducted using data collected during the entire year; data were 

not averaged.  Regressions for specific seasons used data collected during that season.  

Correlations were conducted to identify collinearity among site parameters and between LOI and 

CHN data.  Regression and correlation results are reported with the p-value and the Pearson 

correlation coefficient. 

Regression trees were used to explore the relative impact of site parameters (SOD, O2 

concentration, SOM, percent inundation, NH4 flux, and NOx flux) on N2 fluxes.  A second 

regression tree was constructed with the addition of site age, season, and habitat.  Separate 

regression trees were also constructed for each season to eliminate the potentially confounding 

influence of temperature, which is a known driver of denitrification (Seitzinger 1988, Bachand & 

Horne 2000).  Each seasonal regression tree included all parameters except habitat.  Data were 

not transformed because regression trees do not rely on assumptions regarding data distribution 

or homoscedasticity.  Regression trees were constructed using the ANOVA version of recursive 

partitioning, and pruned with a complexity parameter corresponding to the smallest tree with a 

cross-validation error within one standard deviation of the minimum (De’Ath & Fabricius 2000).  

If this method did not sufficiently prune the tree, the next smallest complexity parameter was 

applied.  

All analyses were conducted using R Version 3.3.1 (R Core Team 2016).  Regression 

trees were constructed using the rpart package (Therneau et al. 2015). 

 
 



17 

 
 
 

 
 

RESULTS 
 

Overall Trends 

N2 flux rates (µmol N m-2 h-1) were generally positive, indicating net denitrification (Fig. 

3).  Subsequent discussion of statistical differences in N2 flux refers to Box-Cox transformed 

values.  Rates were not significantly different across habitats (p = 0.18).  Site and season each 

had a significant impact on transformed denitrification rates (p = 2 x 10-16 & 1.9 x 10-13, 

respectively).  The interaction of site and season was also significant (p = 9.8 x 10-13), indicating 

that transformed denitrification rates did not respond to seasonal variation in the same way 

across sites.  Post-hoc testing indicated that all seasons were significantly different from one 

another except for winter and fall (p = 0.99), and that NOAA was the only site that was 

significantly different from all other sites (p = 0.00).  Denitrification was highest in the summer 

for most sites and habitats, and was consistently high at NOAA compared to other sites. 
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Figure 3.  Seasonal average net N2 flux (µmol N m-2 h-1) divided by site and grouped by habitat.  
Fluxes were generally positive, indicating net denitrification.  Denitrification was generally 
highest during the summer and at the 7-year-old site.  Error bars represent standard error. 

 

Some seasonal grouping was apparent when N2 flux was presented as a function of O2 

concentrations (mg L-1) (Fig. 4).  O2 concentrations were highest in the winter (> 7.5 mg L-1) and 

lowest in the summer (< 5.0 mg L-1).  The highest N2 fluxes were associated with lower O2 

concentrations. 
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Figure 4.  N2 flux (µmol N m-2 h-1) as a function of average O2 concentrations (mg L-1) 
demonstrates some seasonal grouping, particularly for samples collected in the summer and 
winter. 
 

Annual N2 flux was positively related to SOD (µmol O2 m-2 h-1) (Fig. 5).  The highest N2 

flux and SOD were observed in the summer and spring; the lowest were observed in the winter. 
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Figure 5.  Annual N2 flux (µmol N m-2 h-1) is positively related to sediment oxygen demand 
(SOD) (µmol O2 m-2 h-1).  General seasonal trends indicated higher N2 flux and SOD in the 
summer and spring, and lower values in the winter. 
 

Denitrification efficiency was always greater than 50%, indicating that N2 flux was 

greater than DIN flux and that net N removal was occurring (Fig. 6).  DNE was typically greater 

than 75%.  DNE not follow a discernable seasonal pattern, although the lowest rates were 

generally recorded in the winter (data not shown).  DNE remained relatively stable across 

restored age, and was not notably different between habitats.  Statistical testing was not 

conducted on denitrification rates because the term is a proportion. 
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Figure 6.  Average annual denitrification efficiency (DNE) for each site, grouped by habitat.  
DNE was always greater than 50%, indicating net N removal.  DNE was generally stable across 
restored site age and did not exhibit strong differences between habitats.  Error bars represent 
standard error. 
 

DNE generally increased with SOD, especially between 0-1000 µmol O2 m-2 h-1 (Fig. 7).  

DNE plateaued above 1000 µmol O2 m-2 h-1.  NH4 flux was not positively correlated with SOD 

or SOM (data not shown). 
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Figure 7.  DNE generally increased with increasing sediment oxygen demand (SOD) (µmol O2 
m-2 h-1), especially between 0 and 1000 µmol O2 m-2 h-1.  There was not a clear difference in the 
relationship among habitats.  
 

Positive N2O fluxes (µmol N2O m-2 h-1) were less than 0.2 µmol m-2 h-1 (Fig. 8).  Fluxes 

were often negative, particularly at the youngest site.  The most extreme positive fluxes were 

recorded in the summer and winter, whereas the most extreme negative fluxes were recorded in 

the summer and fall. 
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Figure 8.  Seasonal N2O flux (µmol N2O m-2 h-1) divided by season.  Within each season, fluxes 
are reported for each site, identified by its restored age, and divided by habitat.  Fluxes were 
generally low and did not follow a clear pattern.  Error bars represent standard error. 
 

Average annual N2O fluxes were < 0.5 µmol N2O m-2 h-1.  There were two positive 

average fluxes: the oyster habitat at the 2-year-old site and the marsh habitat at the 20-year-old 

site (Fig. 9).  All other fluxes were negative or had a range of error that included 0.  The 0-year-

old site exhibited the largest negative fluxes.  Annual averages did not obscure any trends 

apparent in the seasonal data. 



24 

 

Figure 9.  Annual average N2O flux (µmol N2O m-2 h-1) by restored age, divided by habitat.  
Annual fluxes were less than 0.5 µmol N2O m-2 h-1.  The 0- and 7-year-old sites exhibited 
negative fluxes across all habitats.  Error bars represent standard error. 
 

When data from the entire year are included, N2O flux was significantly correlated with 

N2 flux at the two oldest sites (p = 0.009 & 0.0027, R2 = 0.27 & 0.34, respectively; Fig. 10).  The 

relationship was positive at the 7-year-old site and negative at the 20-year-old site. 
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Figure 10.  Relationships between N2O flux (µmol N2O m-2 h-1) and N2 flux (µmol N m-2 h-1) for 
each site.  Data from the entire year are included.  N2 flux demonstrated a positive relationship 
with N2O at the 7-year-old site and a negative relationship at the 20-year-old site. P-values and 
the Pearson correlation coefficient (R2) are reported for each site. 
 

Regression 

Regression of all data collected during the study year indicated that N2 flux and SOD 

were significantly associated with age, although the relationships did not explain a large amount 

of the variability (p < 0.01; Fig. 11, Table 2).  Both parameters increased to the 7-year-old site, 

then decreased to the 20-year-old site.  SOM and bulk density were also significantly associated 

with age (p < 0.01; Fig. 11, Table 2).  Their regression curves were mirror images: SOM 

increased to the 7-year-old site then plateaued, whereas bulk density decreased to the 7-year-old 

site and remained constant to the 20-year-old site.  This is not surprising, as SOM and bulk 

density are usually inversely related. 
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Figure 11.  Regression for sediment oxygen demand (SOD) (µmol O2 m-2 h-1), sediment organic 
matter (SOM) (%), bulk density (g cm-3), and N2 flux (µmol N m-2 h-1) as a function of restored 
age (years).  All data collected during the study year are included.  Regressions are fitted with a 
second-order polynomial equation.  Pearson’s correlation coefficient (R2) and p-values are 
reported in Table 2. 
 

When separate equations were fitted for each habitat, all habitats exhibited a significant 

relationship between N2 flux and age (p < 0.01 for oysters and marsh, p < 0.05 for sandflat; Fig. 

12, Table 2).  N2 flux in all habitats increased to the 7-year-old site, then gradually decreased to 

the 20-year-old site.  All habitats also exhibited significant relationships between SOM and age 

(p < 0.01).  Oyster and marsh SOM values increased to the 7-year-old site, then plateaued.  In 

comparison, SOM values in the sandflat remained low through the 7-year-old site, but increased 

to roughly the same SOM value as the oyster and marsh habitats at the 20-year-old site.  Each 
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habitat exhibited the opposite trend for bulk density, although none of the relationships was 

significant. 

 

 

Figure 12.  Regression for sediment oxygen demand (SOD) (µmol O2 m-2 h-1), sediment organic 
matter (SOM) (%), bulk density (g cm-3), and N2 flux (µmol N m-2 h-1) as a function of restored 
age (years).  All data collected during the study year are included.  Data from each habitat were 
fitted with a second-order polynomial equation.  Pearson’s correlation coefficient (R2) and p-
values are reported in Table 2. 
 

Seasonal regressions were also conducted.  N2 flux was significantly correlated with age 

every season except fall (Table 2), although the shape of the regression line was not consistent 

across seasons (data not shown).  The regression line for N2 flux remained high to the 20-year-

old site in the summer (Fig. 13), but decreased from the 7- to the 20-year-old site every other 
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season (data not shown).  SOM was the only parameter significantly correlated with age every 

season (Table 2). 

 

 

Figure 13.  Regression for sediment oxygen demand (SOD) (µmol O2 m-2 h-1), sediment organic 
matter (SOM) (%), and N2 flux (µmol N m-2 h-1) as a function of restored age (years) for data 
collected during summer 2014.  Data were fitted with a second-order polynomial equation.  
Pearson’s correlation coefficient (R2) and the p-value are reported in Table 2. 
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Table 2.  Results of regressions conducted using annual or seasonal data for various site 
parameters regressed against restored age.  Data were fitted with a second-order polynomial 
equation.  Only significant relationships (p < 0.05) are included in the table.  Pearson’s 
correlation coefficients (R2) and p-values are reported. 

Season Parameter Pearson’s 
correlation 
coefficient (R2) 

p-value 

Annual SOD 0.13 < 0.01 
Annual SOM Total: 0.39 

Oyster: 0.33 
Marsh: 0.59 
Sandflat: 0.72 

All: < 0.01 
 

Annual Bulk density Total: 0.44 < 0.01 
Annual  N2 flux Total: 0.3 

Oyster: 0.27 
Marsh: 0.3 
Sandflat: 0.38 

Total: < 0.01 
Oyster: < 0.01 
Marsh: < 0.01 
Sandflat: < 0.05 

Summer 2014 SOM 0.69 < 0.01 
Summer 2014 N2 flux 0.54 < 0.01 
Fall 2014 SOM 0.54 < 0.01 
Fall 2014 SOD 0.45 < 0.01 
Winter 2015 N2 flux 0.52 < 0.01 
Winter 2015 SOM 0.33 < 0.05 
Winter 2015 SOD 0.54 < 0.01 
Spring 2015 N2 flux 0.63 < 0.01 
Spring 2015 SOM 0.38 < 0.05 
Spring 2015 SOD 0.42 < 0.01 

 

Correlations 

Correlation analyses were conducted on all data collected during the study year and on 

data separated by seasons.  Significant correlations with R2 values > 0.20 are reported in Table 3. 

Based on correlations of all annual data, N2 flux was significantly correlated with SOD and O2 

concentrations (p < 0.01; Fig. 14, Table 3).  There was a stronger correlation with SOD than with 

O2 concentrations.  SOD was significantly correlated with O2 concentrations (p < 0.01). 
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Figure 14.  Correlation matrix for all annual measurements of O2 concentrations (mg O2 L-1), 
sediment oxygen demand (SOD) (µmol O2 m-2 h-1), sediment organic matter (SOM) (%), percent 
inundation, NOx flux (µmol NOx m-2 h-1), NH4 flux (µmol NH4 m-2 h-1), and N2 flux (µmol N m-2 
h-1).  Column labels describe the x axes and row labels describe the y axes.  Pearson’s correlation 
coefficients (R2) and p-values are reported for each correlation. 
 

Correlations were also conducted for data collected during each season.  N2 flux was 

significantly correlated with SOM only during the summer (p < 0.01; Fig. 15, Table 3).  N2 flux 

was significantly correlated with SOD every season, and with O2 concentrations in the fall, 

winter, and spring (data not shown).  Percent inundation did not display a clear pattern of 

correlation.  It was significantly correlated with O2 concentrations in the spring and winter, with 

N2 flux in the fall, and with SOD in the spring (data not shown). 
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Figure 15.  Correlation matrix for data collected during summer 2014.  Parameters include O2 
concentrations (mg O2 L-1), sediment oxygen demand (SOD) (µmol O2 m-2 h-1), sediment organic 
matter (SOM) (%), percent inundation, NOx flux (µmol NOx m-2 h-1), NH4 flux (µmol NH4 m-2 h-

1), and N2 flux (µmol N m-2 h-1).  Column labels describe the x axes and row labels describe the y 
axes.  Pearson’s correlation coefficients (R2) and p-values are reported for each correlation. 
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Table 3.  Results of correlations conducted using annual or seasonal data for various site 
parameters.  Only significant relationships (p < 0.05) with R2 values > 0.20 are included in the 
table.  Pearson’s correlation coefficients (R2) and p-values are reported. 

Time 
Frame 

Parameter 1 Parameter 2 Pearson’s correlation 
coefficient (R2) 

p-value 

Annual O2 concentration SOD 0.67 < 0.01 
Annual O2 concentration N2 flux 0.30 < 0.01 
Annual SOD N2 flux 0.54 < 0.01 
Summer O2 concentration SOD 0.92 < 0.01 
Summer O2 concentration SOM 0.31 < 0.01 
Summer SOD SOM 0.37 < 0.01 
Summer SOD N2 flux 0.48 < 0.01 
Summer SOM N2 flux 0.49 < 0.01 
Fall O2 concentration SOD 0.94 < 0.01 
Fall O2 concentration N2 flux 0.81 < 0.01 
Fall O2 concentration % inundation 0.21 < 0.05 
Fall SOD N2 flux 0.79 < 0.01 
Fall % inundation N2 flux 0.31 < 0.01 
Winter O2 concentration SOD 0.82 < 0.01 
Winter O2 concentration SOM 0.21 < 0.05 
Winter O2 concentration % inundation 0.35 < 0.01 
Winter O2 concentration N2 flux 0.59 < 0.01 
Winter SOD SOM 0.26 < 0.05 
Winter SOD N2 flux 0.74 < 0.01 
Spring O2 concentration SOD 0.97 < 0.01 
Spring O2 concentration % inundation 0.31 < 0.01 
Spring O2 concentration N2 flux 0.32 < 0.01 
Spring SOD % inundation 0.29 < 0.01 
Spring SOD N2 flux 0.41 < 0.01 

 

A separate set of correlations was conducted on sediment parameters quantified by CHN 

(%C, %N, and C:N) and loss on ignition (LOI) (SOM (%)) (Fig. 16).  This was to determine 

whether LOI results were supported by CHN analysis.  Percent C was significantly correlated 

with percent N and SOM (p < 0.01). 
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Figure 16.  Correlation matrix for spring CHN data and average annual SOM (%) data.  
Parameters included % C, % N, C:N, and SOM.  Column labels describe the x axes and row 
labels describe the y axes.  Pearson’s correlation coefficients (R2) and p-values are reported for 
each correlation. 
 
Regression Trees 

A regression tree for denitrification rates was first constructed using all annual data for 

parameters measured every season: percent inundation, SOM, SOD, O2 concentration, NH4 flux, 

and NOx flux (Fig. 17).  SOD explained the most variation for the first two levels of the tree, and 

SOM explained the most variation for the third level (R2 = 0.67, full tree). 

The first node split the data based on SOD.  Samples with SOD < 530.7 µmol O2 m-2 h-1 

had an average denitrification rate of 17.11 µmol N2 m-2 h-1.  The second bifurcation in this 

subgroup was also based on SOD.  Cores with SOD < 232.1 µmol O2 m-2 h-1 had an average 

denitrification rate of 9.481 µmol N2 m-2 h-1, and cores with SOD > 232.1 µmol O2 m-2 h-1 had an 

average denitrification rate of 24.05 µmol N2 m-2 h-1. 
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Samples with SOD > 530.7 µmol O2 m-2 h-1 had an average denitrification rate of 49.17 

µmol N2 m-2 h-1.  From that subgroup, samples with SOD > 1916 µmol O2 m-2 h-1 had an average 

denitrification rate of 77.8 µmol N2 m-2 h-1.  For samples with SOD between 530.7 and 1916 

µmol O2 m-2 h-1, denitrification rates were bifurcated by SOM.  Samples with SOM < 94.2% had 

an average denitrification rate of 31.59 µmol N2 m-2 h-1, whereas samples with SOM > 94.2% 

had an average denitrification rate of 49.88 µmol N2 m-2 h-1. 

 

Figure 17. Results of pruned regression tree for denitrification rates using all annual data for 
parameters measured every season: percent inundation, SOM (%), SOD (µmol O2 m-2 h-1), O2 
concentration (mg O2 L-1), NH4 flux (µmol NH4 m-2 h-1), and NOx flux (µmol NOx m-2 h-1).  
SOD explained the most variation in denitrification rates for the first two levels of the tree, and 
SOM explained the most variation on the third level. 
 

A second regression tree was constructed by adding season, habitat, and site age to the 

parameters included in the first tree (Fig. 18).  SOD explained the most variation for the first 

level of the tree.  SOD and age explained the most variation on the second level, and SOD 

explained the most variation on the third level (R2 = 0.72, full tree). 
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The first bifurcation was identical to the previous regression tree.  Among samples with 

SOD < 530.7 µmol O2 m-2 h-1, those with SOD < 232.1 µmol O2 m-2 h-1 had an average 

denitrification rate of 0.481 µmol N2 m-2 h-1.  Samples with SOD > 232.1 µmol O2 m-2 h-1 had an 

average denitrification rate of 24.05 µmol N2 m-2 h-1. 

Samples with SOD > 530.7 µmol O2 m-2 h-1 were subsequently split by age.  Samples 

with age < 4.5 years had an average denitrification rate of 32.46 µmol N2 m-2 h-1.  Samples with 

age > 4.5 years had an average denitrification rate of 59.91 µmol N2 m-2 h-1, and those samples 

were further bifurcated by SOD.  Samples with SOD < 1393 µmol O2 m-2 h-1 had an average 

denitrification rate of 45.43 µmol N2 m-2 h-1, and those with SOD > 1393 µmol O2 m-2 h-1 had an 

average denitrification rate of 72.4 µmol N2 m-2 h-1. 
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Figure 18.  Result of pruned regression tree results when site, age, and habitat were added to 
parameters measured every season: percent inundation, SOM (%), SOD (µmol O2 m-2 h-1), O2 
concentration (mg O2 L-1), NH4 flux (µmol NH4 m-2 h-1), and NOx flux (µmol NOx m-2 h-1). SOD 
explained the most variation on the first level, but SOD and age explained the most variation on 
the second level.  SOD explained the most variation on the third level. 
 

Separate regression trees were constructed for each season to eliminate the potentially 

confounding influence of temperature, which is a known driver of denitrification.  Sediment 

cores from all sites were incubated at the same temperature during each season.  Constructing 

separate seasonal trees therefore controls for temperature and potentially identifies variables 

whose influence on denitrification rates may have been obscured.  None of the seasonal 

regression trees was notably different than the annual tree (data not shown).  This indicates that 

controlling for season, and by proxy temperature, in the construction of the regression tree did 

not alter the results, suggesting that it was not problematic to include temperature.  It is therefore 

sufficient to consider trees that include all annual data. 
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Physical Site Features 

Oyster filtration (L m-2 h-1) was highest at the 0-year-old site, followed by the 7-year-old 

site (Fig. 19).  The 20-year-old site exhibited the lowest filtration rates.  Filtration rates at all 

sites were highest in the summer and negligible in the winter.  There was no clear relationship 

between oyster filtration and N2 flux (Fig. 20), nor with other site parameters such as SOM, NH4 

flux, or SOD (data not shown). 

 

Figure 19.  Seasonal oyster filtration rates (L m-2 h-1) at each site.  Rates were highest at the 0-
year-old site and lowest at the 20-year-old site.  Filtration was highest in the summer and 
negligible in the winter.  Filtration rates were calculated based on shell height and temperature 
using an equation from zu Ermgassen et al. 2016. 
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Figure 20.  There was no apparent relationship between seasonal averages of oyster filtration 
rates (L m-2 h-1) and N2 flux (µmol N m-2 h-1).  Data were collected in summer 2015 to describe 
conditions during the study period. 
 

Adjusted S. alterniflora stem density (number of stems m-2) roughly corresponded to 

restored age (Fig. 21).  There was no clear relationship between marsh grass density and N2 flux 

(Fig. 22).  Stem density was positively correlated with annual average SOM (p = 0.0502, R2 = 

0.9; Fig. 23).  Older sites expressed higher SOM and marsh grass density. 
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Figure 21.  S. alterniflora stem density (number of stems m-2) for all study sites.  Data were 
collected in fall 2015 to describe conditions during the 2014-2015 growing season. 

 

 

Figure 22.  There was no clear relationship between S. alterniflora stem density (number of 
stems m-2) and N2 flux (µmol N m-2 h-1).  Stem density were collected in fall 2015 to describe 
conditions during the 2014-2015 growing season.   
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Figure 23.  There was a positive relationship between S. alterniflora stem density (number of 
stems m-2) and average SOM (% organic matter).  Stem density data were collected in fall 2015 
to describe conditions during the 2014-2015 growing season. 
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DISCUSSION 

One goal of this research was to identify distinctions in N cycling among restored 

estuarine habitats.  The three habitats sampled- oyster reefs, salt marshes, and sandflats- were 

expected to express different N cycling attributes, particularly denitrification rates, because of 

different sediment organic and redox conditions and possible inundation patterns (Sousa et al. 

2012).  However, denitrification rates in the three habitats were not statistically different from 

one another.  All seasons except fall and winter had a significantly different effect on 

denitrification across sites, suggesting that season and therefore primarily temperature could not 

predict denitrification rates at these sites.  It was surprising that denitrification was not 

significantly different during the summer, as previous studies have found rates to be higher in 

warmer temperatures (Nowicki et al. 1997, Barnes & Owens 1999, Cabrita & Brotas 2000, 

Kellogg et al. 2013, Kuschk et al. 2003). 

A related goal of this study was to determine whether denitrification could be predicted 

by restored site age.  Linear regression of annual averages indicated that denitrification rates 

increased from the 0- to 7-year-old sites, then decreased slightly to the 20-year-old site.  This 

pattern was similar for all habitats, emphasizing the similarity between habitats on an annual 

basis.  The annual regression indicates that there was a relationship between denitrification and 

site age, although changes in rates after the 7-year-old site were less predictable.  The 

relationship was not linear, likely due to the influence of many other site parameters.  Sediment 

characteristics and physical features of a restored site change over time, making it difficult to 

identify a relationship between a single process and time without accounting for simultaneous 
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changes in other parameters.  This study did attempt to capture variability in other parameters, as 

discussed below. 

Trends in regression lines were not the same for each season, which complicates 

interpretation of the annual results.  During the summer, denitrification rates increased from the 

0- to 7-year-old site and remained high to the 20-year-old site.  In subsequent seasons, however, 

denitrification rates decreased markedly from the 7- to the 20-year-old site.  The seasonal 

regressions suggest that it would be misleading to identify a single relationship between 

denitrification and age.  Other studies have also found it challenging to identify a consistent 

relationship between site age and denitrification.  A chronosequence study of denitrification in 

forests converted to pastures in Costa Rica also found that denitrification did not correspond to 

site age, although other measurements of N cycling did (Veldkamp et al. 1999).  Evaluation of 

genes related to denitrification along a glacial retreat chronosequence suggested that denitrifying 

communities develop at different rates (Kandeler et al. 2006).  Analysis of genetic diversity was 

beyond the scope of this research, but it could have contributed to some differences observed 

between sites. 

The concept of restoration trajectories is another way to consider change over time.  This 

study asked whether it is possible to identify a restoration trajectory for denitrification in reef-

marsh restoration projects.  Although significant for annual and seasonal data, the relationship 

between denitrification and restored age was not consistent across seasons.  The summer results 

do warrant special consideration, however.  Denitrification is a particularly important ecosystem 

service in the summer, when it can limit eutrophication during high rates of biological 

productivity.  It is therefore promising to observe sustained rates of denitrification in older 

restored sites during the summer.  In areas prone to eutrophication during warmer months, 
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restoration efforts may be motivated by the prospecting of boosting denitrification during the 

summer.  Other studies have identified seasonal peaks in denitrification: from summer to fall in 

Japanese estuaries (Senga et al. 2010), during the fall in North Carolina salt marshes (Thompson 

et al. 1995), and from winter to spring in intertidal environments in the Netherlands (Kieskamp 

et al. 1991). 

Due to seasonal disparity, it is likely ill-advised to ascribe a single restoration trajectory 

to these systems.  Other studies have failed to identify restoration trajectories associated with 

denitrification (Ahn & Peralta 2012), and some authors have questioned whether restoration 

trajectories are a useful construct (Zedler & Callaway 1999).  Consequently, there is a general 

sense of caution against their application in management efforts.  The differences between 

seasonal restoration trajectories reinforces the importance of seasonal sampling, and suggests 

that it may be more feasible to construct accurate restoration trajectories for individual seasons.  

It has been suggested that chronosequences may be best suited for studying soil development 

(Walker et al. 2010), which could explain why SOM was significantly correlated with age every 

season.  La Peyre et al. (2009) and Osland et al. (2012) successfully identified restoration 

trajectories for the development of sediment characteristics in chronosequences of brackish 

marshes and mangroves, respectively.  In their salt marsh chronosequence study, Craft et al. 

suggested that it might be easier to identify sediment characteristics in a chronosequence 

spanning fewer than 30 years, but that nutrient dynamics might require more time to develop 

(1988).  These studies suggest that ours is not the first to have difficulty identifying a single 

restoration trajectory for a biogeochemical process. 

The study design could have contributed to difficulty identifying a consistent trajectory, 

especially beyond 7 years.  Since there was only one site older than 7 years, the later 2/3 of the 
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trajectory was driven by data from the 20-year-old site.  Site-specific characteristics, rather than 

age, could have influenced the parameters measured at that site.  The restoration trajectories were 

interpreted with the awareness that site features, rather than age, could have driven the observed 

trendline, but it is worth noting that the oldest site could have had a disproportionate influence as 

the endpoint of the trajectory. 

Denitrification may not be reliably predicted by age because of the influence of other site 

features.  As restored sites age, their physical characteristics and biogeochemical cycles also 

change, and these parameters in turn influence denitrification.  For example, increasing SOM is 

typically a priority in wetland restoration, and SOM is commonly identified as a driver of 

denitrification (He et al. 2016).  In this study, although SOM was not correlated with 

denitrification when all annual data were considered, regression analysis indicated that all 

habitats exhibited a significant increase in SOM over time.  The increase in SOM in the sandflats 

was particularly striking.  Although SOM in the sandflats remained low through the 7-year-old 

site, it increased in the 20-year-old site to approximately the same level observed in the adjacent 

oyster reef and salt marsh.  This result suggests that the impacts of restoration could have spread 

beyond the two restored habitats and was affecting surrounding areas.  Influences of restored 

habitats beyond the restoration itself has been termed “outwelling,” and has been previously 

identified for mangroves (Lee 1995), tidal marshes (Odum 2000), and oyster reefs and seagrass 

(Sharma et al. 2016). 

It is worth noting that SOM was a reliable predictor of sediment organic matter content in 

this study.  Some studies have challenged that LOI does not adequately reflect organic matter 

pools (Leong & Tanner 1999), but our results agreed with other studies that LOI provided 

comparable results to CHN analysis (Byers et al. 1978, Kristensen & Andersen 1987, Craft et al. 
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1991).  SOM was highly correlated with %C and C:N, indicating that LOI accurately measured 

particulate carbon.  SOM was therefore used in lieu of C:N data to describe sediment 

characteristics. 

This study found that SOM was significantly correlated with marsh grass stem density.  

Greater structural complexity is frequently cited as a means of increasing SOM in restored 

habitats.  As S. alterniflora develop more complex root systems over time, they can more 

effectively trap and retain SOM.  Similar mechanisms are proposed for oyster reefs (see Carlsson 

et al. 2012), although this study found no correlation between oyster filtration and SOM.  Both 

oyster reefs and salt marshes also directly contribute organic matter to the sediment.  Oysters 

produce biodeposits during filtration, and the annual senescence of marsh grass adds decaying 

plant matter.  Marsh grass stem density was roughly associated with age.  Other studies in 

restored salt marshes have also found a link between restored age, stem density, and SOM (Craft 

et al. 2003).  If augmenting SOM is a key goal, it may be useful to increase initial plant density 

and/or replant following initial restoration. 

Since coupled NF-DNF relies on oxic-anoxic microsites, it is expected that inundation 

would be an important driver of denitrification in systems with low ambient NOx.  Inundation 

frequency is expected to interact with sediment particle characteristics, such as bulk density, to 

alter oxygen concentrations in sediment porewater.  Some studies and technical reports even 

recommend incorporating microtopography in restored wetlands to enhance oxygen gradients 

and therefore boost denitrification (Wolf et al. 2011, Wisconsin Natural Resources Conservation 

Service 2002).  Conceptual models have been developed for inundation time and denitrification 

in estuarine sediments, and were designed to predict the timing and duration of sediment redox 

conditions favorable for denitrification (Ensign et al. 2008). 
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This study’s sampling design measured denitrification across a range of elevations.  

Denitrification was not significantly different among habitats, implying that it was not 

significantly different among the different elevations encompassed by those habitats.  This was 

particularly surprising given that coupled NF-DNF is presumed to constitute the majority of 

denitrification at these sites.  Ambient NO3
- concentrations were extremely low, indicating that 

the NO3
- source must have been nitrification.  Percent inundation was also not significantly 

correlated with denitrification on an annual basis.  There was a significant correlation in the fall, 

which may have been driven by larger tidal excursions during that season.  This research 

suggests that maximum denitrification rates may not be correlated with differences in inundation 

associated with typical tidal patterns. 

Some considerations of the study sites and design may be relevant to interpreting the 

inundation results.  Incubation conditions mimicked high tide, which could have obscured the 

impact of inundation.  Core incubation integrates sediment processes, but it is possible that the 

impact of inundation is only perceptible when diurnal fluctuations are actively occurring.  

Additionally, wave energy was not equivalent at each site.  The 2-year-old site experienced 

direct wave energy, whereas the 20-year-old site was very sheltered.  It is possible that wave 

energy interrupted predictable patterns between inundation and denitrification.  Additionally, 

inundation patterns should not be interpreted as indications of the importance of topographic 

variation.  Topographic heterogeneity has been identified as an important factor in meeting 

restoration goals (see review by Larkin et al. 2006).  If N removal is a stated restoration goal, 

however, this research indicates that there is not a strong relationship between inundation 

patterns and denitrification.  It is possible that inundation differences are more relevant for N 

removal in non-tidal or freshwater tidal wetlands, where other studies have found significant 
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correlations between denitrification and microtopography (Moser et al. 2007, Courtwright et al. 

2011, Duncan et al. 2013).   

This study measured many site parameters with a high degree of temporal resolution.  

Regression trees were used to combine all data and identify factors that were best correlated with 

denitrification on an annual basis.  SOD explained the most variation in denitrification, which 

agreed with other denitrification research in similar environments (Piehler & Smyth 2011).  SOD 

reflects the cumulative influence of all microbial processes.  Its position in the regression tree 

suggests that denitrification rates are best explained by evaluating oxygen-utilizing processes at a 

site, rather than considering a single descriptive factor such as percent inundation or age.  When 

site age, season, and habitat were added to the regression tree, age explained some variation in 

denitrification rates.  This further suggests that denitrification rates at the older sites were 

distinct, especially beyond 4.5 years.  However, because age covaried with other site parameters, 

it is difficult to unequivocally equate age to time since restoration in the context of a regression 

tree. 

It is useful to consider the relationship between SOD and SOM.  SOM was significantly 

correlated with denitrification only in the summer, which suggests that although denitrification is 

typically correlated with process-based parameters, it may be limited by physical parameters, 

specifically SOM, when overall microbial activity is high.  During the summer, microbial 

activity is elevated but depends on SOM as a carbon source.  SOD therefore may be limited by 

availability of SOM, which in turn could restrict denitrification (Eyre et al. 2013).  Other studies 

have also made the link between SOM and microbial activity, even without directly measuring 

the latter (Groffman & Tiedje 1989).  This observation reinforces the importance of seasonal 

sampling to capture the nuances of biogeochemical processes. 
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Although denitrification is a valuable ecosystem service, there are concerns that its 

benefits could be tempered by production of N2O.  Since N2O is a powerful greenhouse gas, 

some researchers have raised concerns that high N2O production associated with incomplete 

denitrification could negate the benefits of increase N removal (Burgin et al. 2013).  This study 

identified only two instances of positive N2O flux when fluxes were averaged and represented 

annually by site and habitat.  There was no indication of a predictable pattern in N2O fluxes 

based on site age, season, or habitat.  Increased denitrification was not found to increase N2O 

flux.  Our findings suggest that reef-marsh restoration is not associated with an increase in N2O 

production within 20 years of restoration, and that N2O production is not significantly correlated 

with denitrification rates in these systems. 

Both the positive and negative N2O fluxes recorded compare favorably with published 

values for estuarine environments.  Foster & Fulweiler (2016) reported negative fluxes of -0.5 to 

-1 µmol N2O m-2 h-1 in sediments from a Massachusetts estuary, and a review by Murray et al. 

(2015) cited numerous instances of negative N2O fluxes smaller than -5 µmol N2O m-2 h-1 in salt 

marshes.  These published values suggest that the negative N2O fluxes reported in this study are 

not unusual, and that the habitats studied may represent a small but notable sink for N2O.  As 

explained in Foster & Fulweiler, the mechanism for N2O uptake is likely provided by microbes 

with the nitrous oxide reductase enzyme.  These microbes can use N2O as an electron receptor 

during respiration, facilitating fluxes of N2O into the sediment.  Future research should continue 

to explore the uptake of N2O in estuarine environments, as this is a promising ecosystem service. 

Increased NH4 and NOx fluxes are a potential ecosystem disservice sometimes associated 

with restored oyster reefs.  If N is converted to NH4 and NOx, it is recycled to a bioavailable 

form that can be used for growth.  High rates of positive NH4 and NOx fluxes have the potential 
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to eclipse N removal through denitrification, resulting in net N input.  In this study, NOx fluxes 

were negligible, and NH4 fluxes did not exceed 200 µmol m-2 h-1.  There was no correlation 

between NH4 fluxes and oyster filtration, challenging suggestions that oyster reefs increase 

ammonification. 

DNE provides a metric to contextualize N fluxes (Eyre & Ferguson 2009, Piehler & 

Smyth 2011).  DNE did not follow a clear pattern based on season, habitat type, or restored age.  

DNE was generally above 75%, indicating that these systems generate net N removal.  Although 

results did not suggest a predictable restoration trajectory for DNE, they do reiterate one of the 

main findings of this study: restoration augments ecosystem function.  In this case, reef-marsh 

restoration provides net N removal.  It has been suggested that denitrification could become less 

efficient as SOD increases, reducing O2 concentrations and increasing the likelihood of 

incomplete denitrification (Gardner & McCarthy 2009).  Our results indicated that DNE 

increased or remained stable as SOD increased.  These findings agree with a prior study in the 

same region, which also demonstrated sustained denitrification efficiency with increasing SOD 

(Kellogg et al. 2013). 

Restoration practitioners in coastal areas are often limited by time and financial 

resources, making it useful to employ constructs such as restoration trajectories to anticipate 

changes in ecosystem services over time to justify and plan restoration projects.  The results of 

this study do not support advancing a single restoration trajectory for denitrification in oyster 

reef and salt marsh habitats in N-limited coastal systems, because trajectories differed by season.  

However, denitrification did consistently increase from the 0- to 7-year-old sites.  These results 

suggest that denitrification does follow a consistent pattern during the first 7 years following 

restoration, and that practitioners can expect an increase in N removal during that time. 
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The summer restoration trajectory warrants additional consideration.  There was a 

significant relationship between denitrification rates and restored age only during the summer, 

during which rates increased and plateaued.  This suggests that summer denitrification rates 

adhered to La Peyre et al.’s proposed trajectory for biogeochemical factors (2014).  Further 

summer sampling is recommended to confirm this pattern, which may be a useful framework for 

addressing summer eutrophication.  Sustained rates of denitrification during the summer would 

perform a valuable ecosystem service during a time of elevated biological activity. 

Many coastal restoration efforts seek to enhance ecosystem services by constructing 

oyster reefs and salt marshes.  These habitats frequently co-occur naturally in estuaries in North 

Carolina and elsewhere on the East Coast.  In the context of living shorelines, including both 

habitats helps maximize desired shoreline stabilization benefits.  This research indicates that the 

denitrification benefits of reef-marsh restoration are distributed in both habitats.  Other site 

parameters influenced the development of denitrification as the restored sites aged, but 

denitrification rates developed similarly in both habitats.  This suggests that, once a reef and 

marsh are restored, they quickly function as a comprehensive system, at least in terms of 

biogeochemical indicators.  This cohesiveness increases the attractiveness of living shorelines as 

an ecologically-sound coastal management strategy. 

In fact, results suggest that the impact of restoration extends beyond the restored habitats 

themselves into adjacent areas.  Denitrification rates were the same in the sandflat as in the reef 

and marsh, suggesting that N-removal capacity was enhanced beyond the boundaries of the 

restoration itself.  This idea is also supported by the accumulation of SOM in the sandflats over 

time.  SOM in the sandflats was not comparable to SOM in the restored habitats until the 20-

year-old site, indicating that sandflats had lower initial SOM but gradually increased.  The 
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ultimate increase in SOM could point to the compounding influence of the reef-marsh restoration 

on adjacent habitats. 

Since this study employed a chronosequence design, it is important to underscore that the 

20-year-old site is an independent location rather than a true snapshot in time.  As such, it is 

possible that SOM was higher in the sandflats at that site for reasons unrelated to the restoration.  

Future research could discern potential outwelling by measuring denitrification rates and SOM in 

restored habitats and adjacent habitats at multiple sites restored 7 years ago or more. 

Our results suggest that maximizing physical parameters of a site is not guaranteed to 

result in higher levels of biogeochemical function.  Neither oyster filtration nor stem density 

exhibited a clear relationship with N2 flux.  This result addresses the “field of dreams” 

restoration myth: that restoring physical features of a site will ultimately translate to ecosystem 

function (Hilderbrand et al. 2005).  The sites chosen for this study did not display a connection 

between the physical presence of oysters and marsh grass and an increase in denitrification.  

Physical parameters did appear to contribute to other habitat features, such as increased SOM, 

and likely contributed to the outwelling effect on adjacent sandflats.  However, it is unlikely that 

increasing the number of mature oysters and the density of marsh grass would boost 

denitrification. 

Although this study did not find a predictable link between age and denitrification, it did 

demonstrate that reef-marsh restoration augments ecosystem function without introducing 

ecosystem disservices (Burgin et al. 2013, Lyytimaki & Sipila 2009).  Fluxes of NH4 and N2O 

were low across habitat and season.  SOM increased, denitrification rates were appreciable, and 

the physical presence of oysters and marsh grass likely introduced a host of ecosystem services 

not measured in this study, including juvenile fish habitat, wave attenuation, and carbon 
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sequestration (Broome et al. 1988, Davis et al. 2015).  In this study, reef-marsh restoration was 

found to be a self-sustaining way to increase ecosystem function. 

Restoration projects designed to increase N removal benefit from the ability to measure 

denitrification.  However, denitrification can be a costly and difficult process to measure, 

particularly for managers who lack access to scientific equipment.  Based on the results of this 

study, measuring SOD can reliably predict relative rates of denitrification in restored oyster 

reefs, salt marshes, and adjacent sandflats.  Oyster reef restoration criteria tends to focus on 

physical parameters of reefs (Baggett et al. 2015).  Although the structural attributes of the reef 

are indicative of common restoration targets, we did not find it to be correlated with 

denitrification.  This emphasizes the importance of clearly defining restoration goals and 

ensuring that monitoring plans can adequately measure parameters associated with those goals 

(Ehrenfeld 2000, Hobbs & Harris 2001).  When planning restoration projects, it is also important 

to recognize that that some restoration goals may be mutually exclusive.  One study of restored 

wetlands identified a tradeoff between biodiversity and nutrient removal, including 

denitrification (Jessop et al. 2015). 

Future research on denitrification in restored estuarine habitats should continue to assess 

the many factors that impact this process, especially across a seasonal gradient.  It is also critical 

to consider resiliency of reef-marsh restoration, particularly in response to climate change.  Sea 

level rise and coastal squeeze are likely the most pressing consequences of climate change for 

the habitats included in this study.  Restoration can be planned with an awareness of uncertain 

future conditions (Harris et al. 2006, Seastedt et al. 2008), and it is likely that nature-based 

solutions such as living shorelines can help sustain ecosystems and their function. 
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