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ABSTRACT 

M. Omar Nawaz: Benefits of Reduced Premature Mortality from Decreases in PM2.5 and Ozone 

in the United States from 1999 to 2015 

(Under the direction of J. Jason West) 

 

Concentrations of PM2.5 and O3 have reduced dramatically in the United States (US) over 

recent decades from improved regulations and reduced emissions. Here annual mortality burdens 

and trends associated with PM2.5 and O3 in the US were assessed, comparing results for two 

datasets: a model simulation (NACR, 2009-2015) and a satellite-derived dataset (SAT, 1999-

2011).  

During their respective time periods, annual PM2.5-related deaths reduced by 45,700 

[29200, 58000] and 33,800 [22200, 37100]  for SAT and NACR respectively, corresponding to 

4.9% and 7.9% decreases per year. For O3 from NACR, annual deaths reduced by 500 [600, 

2700], or 0.6% per year. Reduced concentrations of PM2.5 and O3, as opposed to changes in 

population and mortality rates, were the major cause of these reductions, preventing 29,400 

(2011, SAT PM2.5), 32,500 (2015, NACR PM2.5) and 2,100 (2015, NACR O3) deaths relative to 

the case where concentration remained unchanged from the first year.  
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CHAPTER 1: INTRODUCTION 

Air pollutants have been quantifiably found to be a leading global mortality risk factor, 

ranking as the fourth-highest overall and the highest environmental risk factor in the 2015 Global 

Burden of Disease (GBD) study (Forouzanfar et al., 2016). From GBD data, estimations for the 

year 2015 (Cohen et al. 2017) found that exposure to ambient fine particulate matter (particulates 

smaller than 2.5 m, PM2.5) resulted in approximately 88,400 (66,800-115,000) premature deaths 

in the United States (US) from Ischemic Heart Disease (IHD), Stroke (STROKE), Chronic 

Obstructive Pulmonary Disease (COPD), Lung Cancer (LC) and Lower Respiratory Ilness. 

Similarly, exposure to ozone (O3) was responsible for 11,700 (4,400-19,600) deaths from 

respiratory diseases (RESP), of which COPD is a subset. 

In the last three decades, decreases in the six criteria air pollutants regulated by the 

Environmental Protection Agency (EPA) have been recorded. These criteria air pollutants are 

some of the most harmful to human health and the environment and are a good metric for general 

trends in air quality. From 1990 to 2010, concentrations of lead (Pb), carbon monoxide (CO), 

nitrogen dioxide (NO2), sulfur dioxide (SO2), 8-hour O3 and PM2.5 have decreased 99%, 77%, 

56%, 85%, 22% and 42% (EPA, 2017). These decreases in concentrations, especially those of O3 

and PM2.5, are expected to have resulted in significant health improvements within the US. These 

changes in air quality are rooted largely in the introduction, implementation, and improvement of 

air quality standards and regulations. Particularly of note are the 1990 Clean Air Act (CAA) 

Amendments, the 2002 NOx State Implementation Plan (SIP) Call, and the Cross-State Air 

Pollution Rule (US EPA, 2011). Additionally, improved emission control technologies and 
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transitions to cleaner power sources, including renewables and natural gas, has reduced pollutant 

emissions released from electricity generation from coal.  

There have been many recent efforts to evaluate the burden of disease attributable to air 

pollution on the global (Cohen et al. 2017, Lim et al. 2012) and national (Fann et al. 2012, 2017, 

Punger and West, 2013, Zhang et al. 2018) levels. Some of these assessments (Fann 2012, 

Punger and West) quantified health at a single point in time with less focus on trends in mortality 

over time while others attempted to capture general trends in health over time (Cohen, Lim, 

Zhang, Fann 2017). 

Two additional studies of interest (Butt et al. 2017; Wang et al. 2017) explored these 

burdens on a global scale. Using exclusively model simulations to quantify PM2.5 mortality 

burdens in recent decades, Butt et al. (2017) examined global and regional burdens while Wang 

et al. (2017) explored the northern hemisphere exclusively. 

Limiting the scope to the US,  Zhang et al. (2018) performed one of the first studies to 

evaluate annual mortality impacts and trends associated with changes in air quality in the US, 

using a 21-year CMAQ simulation between 1990 and 2010 at 36 km resolution for both O3 and 

PM2.5 (Gan 2015, 2016). Cohen et al. (2017) examined air pollution-related mortality at 5-yr 

intervals between 1990 and 2015, using an ambient PM2.5 dataset that combined a global air 

quality model, Moderate Resolution Imaging Spectroradiometer Aerosol Optical Depth (MODIS 

AOD) readings from the MODIS instrumentation on the Terra and Aqua NASA satellites, and 

surface monitoring stations through a geographically weighted regression (GWR) (Van 

Donkelaar et al. 2010). Fann et al. (2017) performed a similar estimation using a kriging dataset 

generated from monitoring station data, investigating all-cause mortality at 10-year intervals 

between 1980 and 2010. Zhang et al. (2018) was the only study to isolate the different drivers for 



 

 

3 

mortality trends and quantify year-to-year variability in mortality. Quantifying air pollution 

mortality trends supports the development of air quality regulations, standards and policies, and 

can highlight the success of past regulations and substantiate the need for future policy 

initiatives. 

The prime objective of this study is to estimate annual premature mortality in the US 

from changes in concentrations of PM2.5 and O3 over recent decades, using a suite of 

concentration datasets and demographic and mortality data. We aim to assess the trends in air 

pollution-related mortality, and to attribute those trends to changes in demographics and 

concentration in the different datasets. To address this objective, two separate concentration 

sources were used. First we use a seven year (2009-2015) CMAQ simulation conducted during 

the North American Chemical Reanalysis Project (NACR) (Tang et al. 2015, Tong et al. 2016) 

using an optimal interpolation algorithm to update the simulation with MODIS AOD and 

monitoring data. Secondly we use a satellite derived dataset (SAT) generated for the years 1990-

2011 using a similar GWR scheme used by Cohen et al. (2017). Annual baseline mortality rates 

and population data at the county level are taken from the open access US Centers for Disease 

Control Database (CDC Wonder, https://wonder.cdc.gov/mortSQL.html).  Air pollution 

mortality is estimated using the same population and baseline mortality data, and the same 

methods of health impact assessment, as Zhang et al. (2018), such that the results here are 

directly comparable with that study, considering now the two additional concentration datasets.

https://wonder.cdc.gov/mortSQL.html)


 

 

4 

CHAPTER 2: METHODOLOGY 

North American Chemical Reanalysis  

The NACR project simulated air quality (both O3 and PM2.5) over the continental US 

(CONUS) between 2009 and 2015 at 12 km resolution (Tang et al. 2015, Tong et al. 2016). 

These studies used an optimal interpolation (OI) method through which observations from both 

both MODIS (Moderate Resolution Imaging Spetoradiometer) aerosol optical depth (AOD) and 

surface hourly AIRNow O3 and PM2.5 data are input into the Community Multiscale Air Quality 

(CMAQ) model. The Weather Research and Forecasting Advance Research (WRF-ARW) model 

was coupled with CMAQ prior to data assimilation. Tang et al. (2015) incorporated an OI 

method: 

𝑋𝑎 = 𝑋𝑏 + 𝐵𝐻𝑇(𝐻𝐵𝐻𝑇 + 𝑂)−1(𝑌 − 𝐻𝑋𝑏) 

Originally developed by Adhikary et al. (2008), this method combines the prior modeled or AOD 

data (Xb) and the observed AIRNow data (Y) along with their associated error covariance 

matrices B and O using an operator (H) to feed in the observational and AOD data at each time 

step. Four separate OI methods were tested and it was found that decreased time steps provided 

simulated values that more closely matched with observations. Once the method was optimized, 

Tong et al. (2016) then ran longer simulations over 2007-2016. 

To test the efficacy of the OI method, both a base case and an OI CMAQ run were 

compared against the EPA AIRNOW grid interpolated from station data. It was found that over 

the majority of the US, the NACR base simulation under predicted PM2.5, but after the OI 

adjustment the under predicted areas more closely matched observations. O3 was also under 
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predicted but not to as great of an extent. To quantify the reliability of the simulated 

results, a random day was selected and the correlation coefficients and mean biases (MB) were 

determined for both species. For the strongest OI case (OI4) correlation coefficients of R=0.56 

and R=0.40 and mean biases of MB=1.55 and MB=-0.11 were calculated for O3 and PM2.5 

respectively.  

The OI4 case significantly improved the correlation coefficient for PM2.5 and slightly improved 

the value for O3. Ultimately though these coefficients were relatively low, they were still large 

enough to confirm that there was some correlation between the simulated OI4 concentrations and 

the monitoring station concentration data from AIRNow. 

Satellite Derived PM2.5 with Geographic Weighted Regression 

The second dataset (Van Donkelaar et al. 2015) used a geographically weighted 

regression (GWR) statistical model to represent PM2.5 concentrations at 1 km resolution over 

North America between 1999 and 2011. Satellite AOD retrievals from two sources SeaWiFS and 

MISR (Van Donkelaar et al. 2015), were related to a GEOS-Chem simulation of PM2.5 

concentration with AOD-to-PM2.5 relationships that vary in space and time. Then these two 

datasets were compared against their decadal means to use optimal estimation (van Donkelaar et 

al. 2013). These datasets were then compared to ground-based PM2.5 monitoring observations 

from MOD12 (Friedl et al. 2010) to weight the datasets over different land cover to agree with 

the monitoring data. With this methodology applied to the inputs, gridded satellite concentrations 

were constructed. These satellite derived concentrations were then adjusted using the GWR 

model incorporating monitoring data, land use and other factors. 

 With the use of GWR to combine data from different sources and parameters, there was 

a clear improvement when the concentrations were cross-validated with sites not used in the 
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GWR, correlation coefficients between the dataset and the monitoring sites  were R2 = 0.82 

versus R2 = 0.62 for the GWR case and non-GWR case respectively. 

For our study, this concentration dataset was then regridded to 12 km resolution, to match 

the resolution of the NACR dataset and to reduce uncertainties propagated by the GWR model at 

fine resolution.  This was done using a two-step aggregation process. First ArcGIS’s built in 

aggregate function was used to create larger coarser grid cells closer to the desired size (12 km). 

Then regridding was done in MATLAB by using latitude and longitude data from SAT, before 

calculating the average concentration for each 12 km grid cell. 

Mortality Estimation 

To estimate the cause-specific mortality burden attributable to PM2.5 and O3 (Mort) we 

use the health impact function (HIF): 

∆𝑀𝑜𝑟𝑡 = 𝑦𝑜 𝑥 𝐴𝐹 𝑥 𝑃𝑜𝑝 

where 𝑦𝑜 is the baseline mortality rate associated with a specific disease, Pop is the population of 

interest (in this case adults over the age of 25), and AF  (the “attributable fraction”) is the 

increased risk of outcome posed by the air pollutant of interest and is calculated as: 

𝐴𝐹 = 1 −
1

𝑅𝑅
 

with RR being the relative risk of dying from a certain disease. Functions representing RR from 

chronic exposure are derived from epidemiological studies in the US based on large cohorts 

(Burnett et al. 2014, Jerrett et al. 2009). 

For PM2.5, RR is calculated using the integrated exposure-response (IER) model of 

Burnett et al. (2014). This risk function has been used in many recent health impact analyses of 

PM2.5 including Silva et al. (2016), World Health Organization (2016), Wang et al. (2017) and 

Liu et al. (2017).  The function is: 
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𝑓𝑜𝑟 𝑧 < 𝑧𝑐𝑓, 𝑅𝑅𝐼𝐸𝑅(𝑧) =  1 

𝑓𝑜𝑟 𝑧 ≥ 𝑧𝑐𝑓, 𝑅𝑅𝐼𝐸𝑅(𝑧) =  1 + 𝛼 {1 − exp [−𝛾(𝑧 − 𝑧𝑐𝑓)
𝛿

]} 

where z is the annual average ambient PM2.5 concentration, which is compared against zcf, the 

counterfactual PM2.5 concentration below which there is assumed to be no increased risk of 

death. The other parameters (𝛼, 𝛾, 𝛿) are estimated by Burnett et al. (2014) from nonlinear 

regression fitting models. Following Burnett et al. (2014), the lower and upper bounds of zcf were 

set to 5.8 ug/m3 and 8.8 ug/m3, the minimum observed PM2.5 value and the fifth percentile 

observed concentration from the largest cohort study of air quality effects, ACS CPS II (Krewski 

et al. 2009).  

For the O3 attributable mortality burden, a log-linear risk function is used: 

𝑅𝑅 = exp𝛽∆𝑋 

where 𝛽 is the concentration response factor and ∆𝑋is a change in O3 concentration which is 

taken here as the difference between O3 in a given year and the low-concentration threshold. We 

calculate the same metric as Jerrett et al. (2009), the summertime (April to September) average 

1-hr daily max ozone average for use in our mortality estimates. The relative risk associated with 

an increment of  10 ppb change in O3 is estimated to be 1.040 [1.013-1.067] (Jerrett et al., 2009), 

which is the same as other recent global burden studies (Cohen et al. 2017; GBD 2015, 2017; 

Lim et al. 2012). We assume that this risk function accurately depicts attributable risk for adults 

25 years and older, although the original study cohort only included adults over 30 years old, to 

allow simple comparisons with prior studies (Zhang et al. 2018, Cohen et al. 2017). The low 

concentration threshold is set at 37.6 ppbv (Leileveld et al. 2015, Cohen et al. 2017). 

Annual baseline mortality rates (𝑦𝑜) for all diseases of interest: IHD, COPD, STROKE 

and LC for PM2.5 and RESP for O3, are obtained at the county level from the National Center for 
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Health Statistics (NCHS) (CDC WONDER). These county-level mortality rates are regridded to 

match the NACR concentration datasets at 12 km resolution. In the database, when a county has 

fewer than 10 deaths in a year, the baseline mortality rate is labeled as “suppressed” and the 

value is hidden to protect the privacy of the inhabitants. Similarly, when a county has fewer than 

20 deaths but greater than 10, the mortality rates are labeled as “unreliable” or “missing”.  To 

address this, previously established procedures are used (Zhang et al. 2018, BenMAP, 2017, 

Fann et al. 2017). Diseases are extracted from the database using the same ICD10 codes used in 

a previous GBD study (Lim et al. 2012). 

County-level population was also taken from the CDC WONDER database, which used 

population counts from the US Census Bureau in 1990, 2000 and 2010. Years between census 

counts were interpolated by CDC between the two closest censuses. For this study, we extract 

population data for each county for adults over the age of 25. 

Population counts and baseline mortality rates were available at the county level and 

needed to be regridded to the 12 km grid of the concentration datasets, on which mortality 

wasestimated. The NACR simulation output assigned FIPS county codes to every 12 km grid 

cell, and these were used directly to assign baseline mortality rates to each grid cell, assuming 

that mortality rates are uniform within each county. Population data at very fine resolution 

(Dobson et al. 2000) from LandScan was aggregated by combining smaller grid cells into grid 

cells similar in size to the concentration grids. LandScan combines census data with remote 

sensing imagery analysis techniques to determine estimations of average population (over 

twenty-four hours)  at the 1 km grid level. These aggregated cells were then regridded using 

latitude and longitude data from both the LandScan dataset and the 12-km grids to ensure 

population data corresponded with the correct spatial locations. Then using the assigned FIPS 
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county codes, each grid cell was assigned to a county. In each of these county bins the sum of 

each of the population counts associated with the grid cells were added to approximate a 

population for that county. Each population value associated with a grid cell was then divided by 

this estimated county population to determine the proportion of a county’s population living in 

that cell. Lastly, the actual county populations from the CDC database were distributed by 

multiplying the proportions by the CDC population numbers to approximate the population 

living in each grid cell, while matching the total population from the CDC. 

Error is estimated using upper and lower bound RR and concentration-response factor 

values from the two epidemiological studies’ health impact functions. Error from any of the 

other inputs (mortality rates, population, concentration) was not considered in estimating 

uncertainty.  

Analysis of Contributing Factors  

To characterize the drivers of trends in PM2.5 and O3 attributable mortality, we examine 

individually the effects of changes in three main factors: population, baseline mortality rates, and 

concentration, following Zhang et al. (2018). To examine the impact of each factor on premature 

mortality, we assume that only a single factor changes in the time span of interest and hold the 

other two factors constant at their values at the beginning of the dataset (1999 for SAT and 2009 

for NACR).  
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CHAPTER 3: RESULTS 

Air Quality Trends 

Both SAT and NACR concentrations indicate a decrease in annual average PM2.5 over 

their respective time spans (Figure 1). SAT annual average PM2.5, averaged spatially across the 

US, decreased by 28.7% from 4.48 ug/m3 in 1999 to 3.20 ug/m3 in 2011. In the same period, the 

US population-weighted average (PWA) annual PM2.5 decreased by 26.5% from 10.6 ug/m3 in 

2009 to 7.8 ug/m3 in 2015. NACR annual average PM2.5 decreased by 28.7% from 4.77 ug/m3 in 

2009 to 3.41 ug/m3 in 2015. In the same period, PWA annual PM2.5 decreased by 28.7% from 

12.3 ug/m3 in 2009 to 8.8 ug/m3 in 2015. 

 

Figure 1 US annual average PM2.5 concentration temporal trends for SAT and NACR: the 

simple area-weighted average over the CONUS and the population-weighted average (PWA) 
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Figure 2 Spatial trends in PM2.5 concentration: SAT 1999 (A), SAT 2011(B), SAT difference 

from 1999 to 2011 (C), NACR 2009 (D) NACR 2015 (E), NACR difference  from 2009 to 2015 

(F)  

For SAT, annual average PM2.5 decreased by 0.11 ug/m3 yr-1 (2.39 % yr-1) while PWA 

PM2.5 decreased by 0.23 ug/m3 yr-1 (2.20 % yr-1). For NACR annual average PM2.5 decreased by 

0.19 ug/m3 yr-1 (4.10% yr-1) while PWA PM2.5 decreased by 0.5 ug/m3 yr-1 (4.07% yr-1). These 

decreases can mainly be attributed to significant reductions in PM2.5 in the eastern US (Figure 2). 

Outside of major cities in California, most of the western US has only moderate decreases or 

slight increases. Air quality improvement within the eastern US is due to reductions in emissions, 

and agrees with previous studies (Gan et al. 2015; Xing et al. 2015; Zhang et al. 2018). Yearly 
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variations in the western and central US could partially be attributed to wildfires (Dennison et al. 

2014; Hand et al. 2013, 2014; Jaffe et al. 2008; Murphy et al. 2011; Spracklen et al. 2007). The 

eastern and southern US appear to have had the strongest reductions in PM2.5 concentration. 

Between the two datasets, SAT PM2.5 concentrations appear to have stronger decreases in 

the specific regions of Appalachia, the Ohio Valley, coastal Carolina/Virginia, and south-western 

Texas, while  NACR appears to have slightly larger decreases overall but fewer regions of sharp 

decrease. Additionally SAT shows a regional increase in the south-western US that is absent 

from NACR. However, when comparing the two it is important to consider that the NACR data 

covered a shorter period of time, meaning a smaller decrease would be expected. 

 

Figure 3 US 8-hr 6 mo. O3 concentration temporal trends for NACR  

Figure 3 illustrates the general temporal trends in summertime O3 from NACR. Satellite-

derived O3 data was not available so NACR results are the focus of the O3 analysis. A slight 

increase and stabilization of O3 concentrations occurs from 2010-2012, followed by a period of 

decrease. PWA O3 was much higher than spatially average O3 indicating that pollution is 

generally worse in urban environments. O3 data is far more variable than PM2.5 where a clearer 
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decrease was observed.  For a deeper analysis of trends in Ozone see “Comparisons with Other 

Studies” below. 

 

Figure 4 Spatial trends in O3 concentration: 1. NACR 2009 (A), 2. NACR 2015 (B), 3.  NACR 

difference from 2009 to 2015 (C) 

Summertime average 8-hr max O3 from NACR decreased by 7.6% from 49.0 ppbv in 

2009 to 45.2 ppbv in 2016. In the same period, PWA 8-hr max summertime O3 decreased by 

5.51% from 87.1 ppbv to 82.3 ppbv. For O3, spatial changes were far more gradual when 

compared to PM2.5, which has been decreasing more rapidly in the US in recent years (Figures 1 

and 2). Around densely populated areas (such as New York City, Los Angeles and Chicago), 

greater decreases in O3 concentration have been observed. Additionally, it appears that the 

largest decreases in O3 occurred in the southern and western US, with the northern and eastern 

US mostly showing little change or decreasing slightly. The eastern US saw significantly smaller 

relative decreases in O3 pollution than PM2.5 pollution. 

A B 

C 
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Mortality Burden Trends 

Table 1 Percentage of PM2.5-related deaths from specific diseases over all years for SAT 

and NACR 

 PERCENTAGE 

OF DEATHS 

(SAT) 

PERCENTAGE 

OF DEATHS 

(NACR) 

IHD 79.6% 75.2% 

LC 9.2% 10.9% 

COPD 5.5% 7.6% 

STROKE 5.7% 6.3% 

 

For both SAT and NACR, we see that premature deaths due to exposure to ambient PM2.5 

have decreased gradually in the US in their respective timespans (Figures 5 and 6). For SAT a 

decrease of 58.6% was estimated from 77800 [36800, 128400] deaths yr-1 in 1999 to 32200 

[7600, 70400] deaths yr-1 in 2011. For NACR a decrease of 47.5% was observed from 71100 

[33700, 113300] deaths yr-1 in 2009 to 37300 [11500, 76200] deaths yr-1 in 2015. For both SAT 

and NACR, Ischemic Heart Disease (IHD) made up the majority of deaths due to PM2.5 (Table 1) 

at 79.6% and 75.2% respectively. Other health outcome percentages are listed in Table 1. 

For O3, the negative health outcome of interest was respiratory disease (RESP).  For 

NACR O3, a decrease of 3.6% was estimated from 10100 [3400, 16300] deaths yr-1 in 2009 to 

9700 [2800, 13600] deaths yr-1 in 2015. 

Figures 5-7 show trends in pollution-related deaths for three cases: “base”, “concentration 

change excluded” and “concentration change only”. Here, “base” refers to the estimation using 

annual values of the three inputs: mortality rates, population and concentration. For the 

“concentration change excluded” (or “excluded”) case, annual values of mortality rates and 

population are used for each yearly estimation, however, the concentration data corresponding to 

the first year in the time period (ie 1999 for SAT) is the only one used. For the “concentration 
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change only” (or “only”) case, annual values of pollutant concentration are used, however, 

mortality rate and population data is held at the values of the first year in the time period. 

 

Figure 5 Temporal trends in PM2.5 mortality burden (SAT) 

From SAT PM2.5 (Figure 5), we see that since 1999 deaths related to PM2.5 have been 

decreasing.  For most of the period, the “base” case resulted in far fewer deaths than the 

“excluded” case, indicating that a large proportion of reductions in premature mortality can be 

attributed to changing concentrations. Most of the year-to-year variation of the “base” case is 

caused by similar variations in the “only” case as indicated by similar shaped trends, indicating 

that the yearly variability of premature deaths can be attributed to changes in concentration, not 

baseline mortality rate or population. Towards the beginning of this period, it appears that the 

“only” case increases, surpassing the estimated amounts of the “excluded” and “base” cases. 

This is due to increased PM2.5 concentration during this period (Figure 1).  

When SAT PM2.5 concentrations are held to 1999 levels throughout the period of 1999-

2011, known as the “excluded” case, deaths only decrease by 21.0% from 77,800 (1999) to 
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61,500 (2011), driven solely by decreased mortality rates, in spite of growing population. For the 

year 2011, PM2.5 reductions caused 29,400 fewer PM2.5-related deaths (61,500 minus 32,100), 

relative to the “excluded” case where concentrations were held to 1999 values. When baseline 

mortality rates and population were held to 1999 values, known as the “only” case, we see a 

decrease of 46.2% from 77,800 (1999) to 41,800 (2011). Ultimately, both the shape and amount 

of deaths estimated appears to be determined primarily through change in concentration. 

For NACR PM2.5 (Figure 6) we see that since 2009 deaths have been decreasing. Similar 

to SAT, the “base” case estimates far fewer deaths than the “excluded” case, indicating that 

reductions in PM2.5 concentration are responsible for decreased deaths. Year-to-year variability is 

characterized by the concentration; similar shapes in the trend occur between the “base” and 

“only” cases, but are absent from the “excluded” case, indicating that air pollution is the major 

factor causing the variability in deaths. 

 

Figure 6 Temporal trends in PM2.5 mortality burden (NACR) 
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When NACR PM2.5 concentrations are held to 2009 levels throughout the period of 2009-

2015, in the “excluded” case, PM2.5-related deaths decrease 1.84% from 71,100 (2009) to 69,800 

(2015), driven by decreased baseline mortality. In this timespan (2009-2015), improvements in 

PM2.5 reduced excess mortality considerably, preventing 89,000 deaths when comparing the 

“base” case to the “excluded” case. For the year 2015, PM2.5 reductions resulted in 32,000 fewer 

PM2.5 related deaths (69,800 minus 37,800) relative to the “excluded” case. When baseline 

mortality rates and population are held to 2009 amounts in the “only” case, we see a decrease of 

46.2% from 71,100 (2009) to 38,200 (2015).  

 

Figure 7 Temporal trends in O3 mortality burden (NACR) 

For NACR O3 (Figure 7), we again see that both the level and variability of the “base” 

case mortality matches closely with the “only” case. This indicates that for both O3 and PM2.5 

and for both SAT and NACR, changing concentration appears to be the greatest factor 

influencing estimated mortality. 
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For NACR O3, in the “excluded” case deaths increase by 17.5% from 10,100 (2009) to 

11,800 (2015), driven by a combination of increasing baseline mortality rates and population. In 

2015 O3-related deaths decreased considerably, preventing 2000 extra deaths when comparing 

the “base” case to the “excluded” case. Additionally when baseline mortality rates and 

population were held to 2009 amounts in the “only” case, we see a decrease of 16.9% from 

10,100 (2009) to 8,300 (2015).  

From the results of the NACR study, it is difficult to ascertain how certain a downward 

trend in O3-related deaths is, due to the variability of the O3 data. To measure this variability, a 

linear regression line was constructed based on the death data points and the corresponding R2 

value was determined. NACR O3 data had an R2 value of 0.48 compared to NACR PM2.5 which 

had a R2 value of 0.94. However, a slight downward trend, is observed; for a clearer image of 

this trend, the results from the NACR dataset are combined with the EPA dataset used by Zhang 

et al. (2018) in Figure 13. 

 

Figure 8 Spatial trends for PM2.5 mortality burden (SAT): in 1999 (A), 2011 (B), and locations 

with an increased trend from 1999 to 2011 (C), and with a decreased trend from 1999 to 2011 

(D) 

A B 

C D

A 
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Across the CONUS, PM2.5-related deaths decreased far more often than increased for 

SAT (Figure 8). More deaths occurred in the eastern US than the western US due to higher 

concentration of PM2.5 and a larger population exposed. The southwest and northwest showed 

moderate increases in deaths, with a few points in the eastern US also showing somewhat 

significant increases in death. In magnitude, however, decreases were far more significant than 

increases with largest decreases being on the order of 100, as opposed to the largest increases 

being on the order of 10. Regional decreases agreed well with the decreases observed in PM2.5 

concentration from Figure 2c. 

 

 

Figure 9 Spatial trends for PM2.5 mortality burden (NACR): in 2009 (A), 2015 (B), increased 

trend from 2009 to 2015 (C), decreased trend from 2009 to 2015 (D) 

Similarly, for NACR (Figure 9), a majority of the CONUS saw decreases in PM2.5-related 

death. For the most part, spatial trends observed in the SAT data were seen in the NACR data as 

well. The estimation from NACR saw even fewer increases in death in the eastern US, as well as 

generally smaller amounts of both increases and decreases. The eastern US had even fewer 

A B 

C D 
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points of increase for NACR while regional decreases for both datasets appeared very similar. 

California appeared to have the most spatial variability for both datasets, having some of the 

regions of sharpest increase and sharpest decrease for PM2.5-related deaths.  

 

 

Figure 10 Spatial trends for O3 mortality burden (NACR): in 2009 (A), 2015 (B), increased 

trend from 2009 to 2015 (C), decreased trend from 2009 to 2015 (D) 

For NACR O3-related deaths, there was less of a distinction between decreases and 

increases (Figure 10) compared to the results for PM2.5. New England was one of the regions that 

saw some of the greatest decreases in O3-related deaths, along with areas of southern California 

and coastal Washington area. However, other areas of California saw significant increases in O3-

related deaths matching some of the variability seen in the PM2.5-related deaths from Figures 8 

and 9.  

Additionally, individual states were examined to better quantify regional trends in air 

pollution-related deaths and to determine the states that benefitted the most from improvements 

A B 

C D 
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in air quality. Tables 2-4 show the three states with the most excess deaths in each category, a 

full list of the deaths and trends for all states can be found in the appendix. 

Table 2 Leading states in premature mortality and reductions for PM2.5 SAT 

 SAT 

 1999 2011 Largest Decrease 

1 California 

(7,360) 

California 

(3,920) 

Florida 

(-3,580) 

2 Texas 

(6,060) 

Texas 

(2,820) 

California 

(-3,440) 

3 Ohio 

(5,160) 

Ohio 

(2,100) 

Texas 

(-3,230) 

 

Table 3 Leading states in premature mortality and reductions for PM2.5 NACR 

 NACR 

 2009 2015 Largest Decrease 

1 California 

(8,650) 

California 

(6,590) 

New York 

(-2,620) 

2 Pennsylvania 

(4,860) 

Ohio 

(2,850) 

California 

(-2,060) 

3 Ohio  

(4,250) 

Pennsylvania 

(2,820) 

Pennsylvania 

(-2,040) 

 

Table 4 Leading states in premature mortality and reductions for O3 

 NACR 

 2009 2015 Largest 

Increase 

Largest 

Decrease 

1 California 

(1,400) 

California 

(1,300) 

Pennsylvania 

(+90) 

Texas 

(-190) 

2 Texas 

(800) 

Texas 

(600) 

North Carolina 

(+50) 

California 

(-130) 

3 Ohio 

(500) 

Pennsylvania 

(500) 

Connecticut 

(+40) 

Ohio 

(-60) 

 

Comparisons Between PM2.5 Datasets 

The mortality burdens attributable to PM2.5 differed significantly between the NACR and 

SAT datasets. At periods of overlapping concentration data (2010, 2011) SAT mortality ranged 
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from 68.6% (2009) to 49.4% (2011) of the NACR dataset. This lower mortality is a result of 

significantly lower input PM2.5 concentrations (Figure 1). To characterize this difference, all of 

the grid cells associated with the NACR and SAT concentrations were split into four quartiles 

based on population. Once split, the two datasets were compared. 

 

Figure 11  PM2.5 concentration comparison between NACR and SAT for different quartiles of 

population  

Figures 11 and 12 show data from 2011. We see that at every population bracket of 

interest NACR data has higher average concentration, indicated by both the red line (median) 

and the green diamond (mean). For larger population grid cells, especially grid cells with 

population greater than 1000, this trend is even more apparent with the NACR data having on 

average 3-5 ug/m3 higher concentration. This analysis verifies that high population grid cells 

have higher PM2.5 in the NACR dataset, which is responsible for overall higher mortality 

estimations. The modelled concentration data has both a higher average and PWA value for 

PM2.5 concentration. 
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Figure 12 Sattellite vs. modeled concentrations: dashed line indicates equivalent value, values 

above the line indicate higher NACR concentration in the population quantile. 

 

Another population concentration analysis was performed by sorting all grid cells in one 

of a hundred evenly spaced population brackets (Figure 12). The average concentrations of each 

of these brackets were calculated, placed into the quartiles from Figure 11 and graphed. Nearly 

all of the population brackets fell above the dashed line, indicating a higher NACR than SAT 

concentration. 

Comparisons to Other Studies 

The mortality burdens from the two datasets used to estimate PM2.5 concentration in the 

CONUS were combined together with those from Zhang et al. (2018), who used a 21-year 

CMAQ run from 1990 to 2010 denoted as EPA (Figure 13).  Since Zhang et al. (2018) used the 

same population, baseline mortality data, and mortality functions as the present study, differing 

only in resolution and therefore in the methods of regridding, we combine these together both to 

compare the impacts of different concentration datasets and to characterize a longer time period 
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than allowed by a single dataset. Zhang et al. (2018) overlapped with the SAT dataset for 12 

years and overlapped with the NACR dataset for two years.  

 

Figure 13 Comparison of PM2.5-related deaths between datasets by absolute number (left) and 

percent change relative to 2010 (right) 

Figure 13 shows substantial differences in the overall estimated PM2.5-related deaths, 

with NACR and EPA far exceeding SAT. However, we see a similar decrease percentage for all 

three datasets, indicating a similar rate of decrease.  EPA has a trend of 3100 deaths yr-1 

corresponding to a 2.5% per year decrease. Similarly, SAT has a trend of 3500 deaths yr-1 

corresponding to a 4.5% per year decrease and NACR has a trend of 4800 deaths yr-1 

corresponding to a 4.3% per year decrease.  

The “percent-change” portion of Figure 13, which shows results as percent changes 

relative to 2010, one of the two years in which all three datasets overlapped, demonstrates 

sharper declines in the estimations from the two datasets used in this study when compared 

against the results from the EPA dataset. The last few years of the EPA results show a sharper 

decline that agrees with the results using SAT and NACR, indicating an agreement in a sharper 

decrease in PM2.5-related deaths in more recent years.  
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Across the period of overlap, on average, the SAT dataset had 24000 fewer deaths per 

year than the EPA dataset, with 25000 fewer deaths in 2010. In contrast, NACR had 13000 more 

deaths per year than the EPA in the period of overlap and 16000 more deaths in 2010. The three 

datasets also do not agree well in yearly variability; years with high or low deaths in one dataset 

are not also high or low in other datasets, and since the same population and baseline mortality 

are used in all cases, these differences in annual variations are due to differences in concentration 

estimates.  

 

Figure 14 Comparison of O3-related deaths between datasets by absolute number (left) and 

percent change (right) 

For O3 mortality (Figure 14), results from the NACR dataset agree very well with the 

EPA dataset of Zhang et al. (2018). In the years 2009 and 2010, when the two datasets overlap, 

the EPA dataset leads to 310 (3.1%) and 380 (3.2%) more deaths respectively, indicating nearly 

identical estimations for deaths.  

Across the whole time period in the EPA dataset, O3-related deaths increase from 11000 

(1990) to 12275 (2010) corresponding to an increase of 12.6%. For the NACR dataset O3-related 

deaths decrease from 10100 (2009) to 9700 (2015) corresponding to a decrease of 3.6%.  

Overall, deaths from the EPA simulation increase by 0.6% per year over the entire period while 
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the NACR simulation finds that deaths decrease by 0.6% per year. The EPA dataset shows a 

peak around the year 1998 with a decrease afterwards that is continued by the NACR dataset.  

To investigate these trends, the period following the peak in O3-related deaths in 1998 

until 2010 for the EPA dataset was compared against the NACR trend mentioned previously. In 

this period O3-related deaths decreased from 14000 (1998) to 12300 (2010), corresponding to a 

decrease of 12.2% or 0.9% per year, agreeing well with the rate of decrease from NACR (0.6% 

per year). From this result, it appears that O3-related mortality has been steadily decreasing since 

1998, though the exact value of this decrease is difficult to determine due to the variability of the 

O3 mortality burden (R2 of 0.1414 and 0.483 for EPA and NACR respectively). 

 

Figure 15 Comparison of PM2.5. related deaths to previous studies.  Error bars are shown for 

Cohen et al. (2017), error bars for NACR and SAT in this study are shown in Figures 5 and 6.   

We also compare our results and those of Zhang et al. (2018), with those of other recent 

studies that estimated US mortality from ambient air pollution (Figure 15). These studies 
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estimated mortality for a single year or at 5- and 10-year intervals, in contrast to the annual 

estimates presented here and by Zhang et al. (2018).   

For PM2.5 the NACR and SAT estimations performed in this study were generally lower 

than other similar studies. This difference can generally be credited to the use of different risk 

functions. Fann et al. (2017) used a log-linear risk function with coefficients from Krewski et al. 

(2009). We use the IER risk function of Burnett et al. (2014) which was also used for GBD 2010 

(Lim et al. 2012). For GBD 2015 (Cohen et al. 2017), the IER function of Burnett et al. (2014) 

was modified with new parameters. The updated IER function from GBD 2015 used a Bayesian 

framework to estimate the function parameters and included additional cohort studies and deaths 

from lower-respiratory infection (LRI).  Cohen et al. (2017) used methods of estimating 

concentrations (Brauer et al. 2016) similar to the SAT dataset used here but on a global scale and 

at coarser resolution.  They performed their estimation using national mortality rates; this 

methodology along with the inclusion of lower respiratory illness (LRI) deaths could be 

responsible for the differences between Cohen et al. (2017) and our estimates using SAT. 

The results from this study (SAT and NACR), Zhang et al. (2018, EPA) and Fann et al. 

(2017) all show a similar sharp downward trend which differs with the more gradual downward 

trend of Cohen et al. (2017), indicating that health benefits from PM2.5 reductions may be 

occurring quicker. The EPA dataset provided estimations within the error bars from Cohen et al. 

(2017) for most of the study period, but tended to have lower results as it approached the present. 

The SAT dataset was well outside of the error-bars from Cohen et al. (2017), although had the 

closest match to the results of Punger and West (2013) for the year 2005. As mentioned 

previously, the SAT dataset had systematically lower concentration which resulted in less deaths 

estimated.  
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Figure 16  Comparison of O3 related deaths to previous studies 

When comparing O3-related deaths to other studies, we find that the results of this study 

agree well with Cohen et al. 2017 in amount. Cohen et al. (2017) used the same risk function 

(Jerrett et al. 2009) and based their exposure estimate on a single global model without using 

monitoring data to correct more biases. Because NACR used a regional-scale model and 

assimilated to observations, we expect that the estimations of NACR are likely more accurate.  

Both the EPA and NACR results are well within the error-bars for every year of overlap, in 

contrast to the findings for PM2.5. EPA and Cohen et al. (2017) show very similar increases in 

the period of 1990-1998, however, starting in 1998 the EPA results begin to decrease while 

Cohen et al. (2017) continue to increase, albeit, much more gradually. Trends in the EPA and 

NACR datasets imply that O3-related deaths have begun to decrease, whereas findings from 

Cohen et al. (2017) imply that O3-related deaths have continued to increase.
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CHAPTER 4: CONCLUSIONS 

Air quality within the United States has generally been improving, and with it significant 

reductions in air quality-related deaths have occurred. Deaths related to PM2.5 have dramatically 

decreased (EPA: 2.5% yr-1; SAT: 4.5% yr-1 ; NACR: 4.3% yr-1); considering the three datasets 

together, PM2.5-related deaths have been decreasing steadily from 1990 to 2015. From 1990 to 

1998, O3-related deaths increased (3.6% per year) until a peak of around 14000 deaths in 1998. 

O3-related deaths have shown minor decreases since 1998 (EPA: 0.9% yr-1; NACR 0.6% yr-1). 

Changing concentration, as opposed to combined changes in mortality rates and population, 

appears to have had the most dramatic effect on the overall downward trends in deaths.  

Across the two datasets, air quality has been improving. For PM2.5 it is estimated that the 

population-weighted annual average (PWA) concentration reduced by 28.6% and 26.6% for 

NACR (2009-2015) and SAT (1999-2011) respectively. For NACR O3 it is estimated that the 

PWA summertime (April to September) 1-hr daily maximum concentration reduced by 4.4%. 

For SAT and NACR PM2.5, trends in spatially average concentration are nearly identical to the 

PWA mentioned previously but for O3  average concentration decreases by 8.0%, nearly double 

the PWA value. Regions of high population, on average, saw lower reductions of O3 than the 

whole US but similar reductions of PM2.5. 

Changing air quality is the strongest determinant of the yearly variability in mortality, 

and air pollution-related deaths have been estimated to be decreasing. If PM2.5 concentrations 

had remained at 1999 levels (“excluded”) then deaths would have only reduced by 21.0% (SAT). 

If baseline mortality rates and population had remained at 1999 levels (“only”), deaths would 
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have reduced by 46.2%. Changing concentration has a considerably greater effect on 

reductions than changing mortality rates and population. In 2011 alone, improvement in PM2.5 

since 1999 avoided 29,400 deaths (SAT). If the PM2.5 concentrations had remained at 2009 

levels then excess deaths would have only reduced by 1.84% (NACR). In 2015 alone, 

improvement in PM2.5 avoided 32000 extra deaths (NACR). The simulated NACR data had 

significantly higher amounts of deaths when compared to the satellite data, attributable to higher 

base concentration values.  

If the O3 concentrations had remained at the 2009 levels then O3-related death would 

have increased by 17.5%. In this timespan (2009-2015) improvements in O3 reduced mortality 

considerably when compared against mortality if O3 had remained at the 2009 levels. In 2015 

alone, improvement in O3 avoided 2000 deaths.   

When looking at the trends for O3 consideration of the inherent variability in the data is 

necessary. Though a trend towards improved ozone concentration and deaths has been observed 

since 1998, O3 variability remains high with R2
 values of 0.14 and 0.43 for the EPA and NACR 

datasets. 

The numbers of deaths differ when using different datasets. The trends from SAT, NACR 

and EPA match the sharper downward trend of Fann et al. (2017) when compared to the more 

gradual trend of Cohen et al. (2017).  Accounting for year-to-year county-level population and 

mortality rates, as done in SAT, NACR and EPA, allows for a greater characterization of 

variability in trends, however, this introduces some uncertainties since the CDC population data 

between census-years is estimated using an interpolation method. For O3 EPA and NACR agreed 

well with the number of deaths found by Cohen et al. (2017), however EPA estimated fewer 

deaths than the results of Punger and West (2013) and Fann et al. (2012) for the year 2005. In 
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trend, both EPA and NACR estimate a decrease in O3-related deaths in the period following 

1998, while Cohen et al. (2017) still estimate an increase in this period. 

In interpreting the findings of this study, a few uncertainties from the data sources and 

from our methodology need to be considered. To generate gridded geospatial datasets, both the 

SAT and NACR studies used chemical transport models which, though informed by monitoring 

data, are subject to uncertainties. We did not account for these uncertainties in our error 

estimations. In using the risk function, only deaths in adults aged 25 and older are considered, 

ignoring deaths in younger populations. Regridding both the SAT dataset and LandScan 

population data introduces some error into our estimations since grid cells on the border of two 

counties would only be assigned the mortality rate of a single county.  

Despite improvements in air quality, there remain significant mortality burdens attributed 

to both PM2.5 and O3. For the most recent years, deaths due to PM2.5 were estimated as 32,100 

(2011) and 37,300 (2015) for SAT and NACR respectively, and deaths due to O3 were 9,703 

(2015) for NACR. These results imply that improvements in air quality in the US over the last 

two decades have had major positive effects on public health and with a continued effort to 

reduce air pollution greater reductions in excess mortality can be achieved. 
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APPENDIX 

Table 5 Deaths related to PM2.5 in all states from SAT, numbers are rounded to the nearest 10. 

State FIPS  1999 2011 Change % 

Change 

Alabama 01 2110 1080 -1030 -48.8 

Arizona 04 700 410 -290 -41.4 

Arkansas 05 1290 710 -580 -45.0 

California 06 7360 3920 -3440 -46.7  

Colorado 08 170 30 -150 -88.2  

Connecticut 09 810 90 -730 -90.1  

Delaware 10 300 130 -170 -56.7  

Florida 12 4600 1020 -3580 -77.8  

Georgia 13 2770 1400 -1370 -49.5  

Idaho 16 20 0 -10 -50.0 

Illinois 17 5080 2050 -3030 -59.6  

Indiana 18 2740 1180 -1560 -56.9  

Iowa 19 1000 240 -760 -76.0 

Kansas 20 650 160 -490 -75.4  

Kentucky 21 2150 950 -1190 -55.3  

Louisiana 22 1630 740 -890 -54.6  

Maine 23 10 0 -10 -100.0 

Maryland 24 1650 820 -820 -49.7  

Massachusetts 25 690 120 -570 -82.6  

Michigan 26 3040 860 -2180 -71.7  

Minnesota 27 410 120 -280 -68.3  

Mississippi 28 1380 540 -830 -60.1  

Missouri 29 2880 1160 -1720 -59.7  

Montana 30 10 0 -10 -100.0 

Nebraska 31 290 50 -240 -82.8  

Nevada 32 50 70 20 40.0 

New Hampshire 33 50 10 -30 -60.0 

New Jersey 34 1810 750 -1060 -58.6  

New Mexico 35 100 10 -90 -90.0 

New York 36 2740 920 -1820 -66.4  

North Carolina 37 3410 1350 -2060 -60.4  

North Dakota 38 10 0 0 0.0 

Ohio 39 5160 2100 -3060 -59.3  

Oklahoma 40 1320 490 -820 -62.1  
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Oregon 41 140 0 -140 -100.0 

Pennsylvania 42 4970 2270 -2700 -54.3  

Rhode Island 44 150 50 -110 -73.3  

South Carolina 45 1730 830 -900 -52.0 

South Dakota 46 40 0 -40 -100.0 

Tennessee 47 3080 1450 -1640 -53.2  

Texas 48 6060 2820 -3230 -53.3  

Utah 49 70 30 -40 -57.1  

Vermont 50 30 0 -30 -100.0 

Virginia 51 2010 730 -1280 -63.7  

Washington 53 250 20 -230 -92.0 

West Virginia 54 1000 290 -710 -71.0 

Wisconsin 55 1130 180 -950 -84.1  

Wyoming 56 0 0 0 0.0 

 

Table 6 Deaths related to PM2.5 in all states from NACR 

State FIPS  2009 2015 Change % 

Change 

Alabama 01 1360 600 -750 -55 

Arizona 04 740 150 -590 -80 

Arkansas 05 830 270 -560 -67 

California 06 8650 6590 -2060 -24 

Colorado 08 340 140 -200 -59 

Connecticut 09 810 340 -470 -58 

Delaware 10 310 140 -170 -55 

Florida 12 2340 850 -1490 -64 

Georgia 13 2080 1140 -940 -45 

Idaho 16 370 200 -170 -46 

Illinois 17 3870 2640 -1230 -32 

Indiana 18 2440 1490 -940 -39 

Iowa 19 990 430 -560 -57 

Kansas 20 520 310 -200 -38 

Kentucky 21 1660 800 -860 -52 

Louisiana 22 820 400 -420 -51 

Maine 23 150 20 -130 -87 

Maryland 24 1590 980 -610 -38 

Massachusetts 25 1620 240 -1380 -85 

Michigan 26 2980 1170 -1810 -61 

Minnesota 27 800 150 -640 -80 

Mississippi 28 740 250 -480 -65 

Missouri 29 1970 1110 -860 -44 

Montana 30 30 20 -10 -33 

Nebraska 31 230 130 -100 -43 



 

 

34 

Nevada 32 310 230 -80 -26 

New Hampshire 33 270 20 -250 -93 

New Jersey 34 1710 430 -1280 -75 

New Mexico 35 220 50 -170 -77 

New York 36 4190 1570 -2620 -63 

North Carolina 37 2650 1320 -1340 -51 

North Dakota 38 40 10 -30 -75 

Ohio 39 4250 2850 -1400 -33 

Oklahoma 40 860 520 -350 -41 

Oregon 41 950 750 -210 -22 

Pennsylvania 42 4860 2820 -2040 -42 

Rhode Island 44 240 50 -190 -79 

South Carolina 45 1290 620 -660 -51 

South Dakota 46 70 40 -40 -57 

Tennessee 47 2330 1220 -1110 -48 

Texas 48 3960 2300 -1660 -42 

Utah 49 180 100 -80 -44 

Vermont 50 70 30 -50 -71 

Virginia 51 1520 570 -950 -63 

Washington 53 1080 450 -630 -58 

West Virginia 54 710 210 -500 -70 

Wisconsin 55 1260 480 -780 -62 

Wyoming 56 10 0 0 0 

 

Table 7 Deaths related to O3 in all states from NACR 

State FIPS  2009 2015 Change % 

Change 

Alabama 01 190 160 -20 -11 

Arizona 04 350 360 10 3 

Arkansas 05 140 110 -30 -21 

California 06 1450 1320 -130 -9 

Colorado 08 270 310 40 15 

Connecticut 09 70 110 40 57 

Delaware 10 30 40 10 33 

Florida 12 350 310 -40 -11 

Georgia 13 320 270 -50 -16 

Idaho 16 60 60 0 0 

Illinois 17 360 320 -40 -11 

Indiana 18 240 200 -40 -17 

Iowa 19 100 90 -10 -10 

Kansas 20 120 100 -10 -8 

Kentucky 21 170 170 0 0 

Louisiana 22 170 130 -40 -24 
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Maine 23 20 30 10 50 

Maryland 24 180 190 10 6 

Massachusetts 25 140 150 20 14 

Michigan 26 320 350 20 6 

Minnesota 27 110 100 -10 -9 

Mississippi 28 120 90 -30 -25 

Missouri 29 250 200 -50 -20 

Montana 30 30 30 0 0 

Nebraska 31 40 60 20 50 

Nevada 32 160 180 20 13 

New Hampshire 33 20 30 10 50 

New Jersey 34 180 210 30 17 

New Mexico 35 120 140 10 8 

New York 36 300 340 40 13 

North Carolina 37 340 390 50 15 

North Dakota 38 10 10 0 0 

Ohio 39 520 460 -60 -12 

Oklahoma 40 240 180 -60 -25 

Oregon 41 120 100 -10 -8 

Pennsylvania 42 430 530 90 21 

Rhode Island 44 20 20 0 0 

South Carolina 45 190 180 -10 -5 

South Dakota 46 20 20 0 0 

Tennessee 47 280 260 -20 -7 

Texas 48 830 640 -190 -23 

Utah 49 80 110 20 25 

Vermont 50 10 10 0 0 

Virginia 51 230 220 -10 -4 

Washington 53 130 140 20 15 

West Virginia 54 110 100 -10 -9 

Wisconsin 55 120 130 10 8 

Wyoming 56 30 30 0 0 
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