Perturbative Expansion of the Colored Jones Polynomial

Andrea Overbay

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Department of Mathematics.

Chapel Hill
2013

Approved by:
Lev Rozansky
Prakash Belkale
Robert Lipshitz
Justin Sawon

Jonathan Wahl



Abstract

ANDREA OVERBAY: Perturbative Expansion of the Colored Jones Polynomial
(Under the direction of Lev Rozansky)

Both the Alexander polynomial Ax(t) and the colored Jones polynomial V,,(K; q)
are well-known knot invariants. While the Jones polynomial seems similar to the
Alexander polynomial, it lacks an interpretation in classical topology. Because the
Alexander polynomial has a classical topological definition, exploring a relationship
between the two polynomials offers the possibility of interpreting the Jones polynomial
topologically.

Melvin and Morton conjectured a relationship between the two through an expan-
sion of the colored Jones polynomial [18]. The conjecture was proven by Bar-Natan
and Garoufalidis [4] and Rozansky extended the result further [24]. Rozansky proved
the following expansion in h = ¢ — 1:

Zhn (K; ¢** — q/?)
A2n+1 a/2 —q a/2)

n>0

where P (KC; ¢*/2 — q=*/?) € Z[q®, ¢*] are polynomial invariants of the knot K.

In this dissertation, we will describe how we used the quantum group U,(sl(2))
and techniques from quantum field theory to calculate the first two of these polyno-
mial invariants for all prime knots of up to nine crossings and present these results.
Furthermore, we will provide evidence of the validity of a conjecture from [23] by
calculating P (K; ¢*/? — ¢=*/?) and P®(K; ¢*/? — ¢~*/?) for all amphicheiral knots

of up to ten crossings.
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CHAPTER 1

Introduction

When studying knots or links, one often seeks to find the topological properties of
the objects being studied. A key question that one strives to answer when studying
knots is, “Are these two knots the same?” This includes seeing if a knot is really the
unknot. In the seemingly never-ending quest to answer these questions and others,
many different knot invariants have been discovered and explored.

Let K be a knot in S®. The Alexander polynomial Ax(¢) is a well understood
knot invariant that has a topological interpretation. In Chapter 2 we will provide
an overview of the Alexander polynomial. Further information about Ax(t) can
be found in numerous texts including [16]. Another knot polynomial came onto
the scene in 1984 with the work of Vaughn Jones [13]. The Jones polynomial is a
polynomial knot invariant that seems similar to the Alexander polynomial in many
ways but is actually a totally different beast. In fact, the Jones polynomial is more
powerful than the Alexander polynomial, but it is defined purely combinatorially and
lacks any obvious topological interpretation within classical topology. Thus it was
particularly exciting when a non-rigorous path integral topological interpretation was
suggested by Witten in [27]. He suggested that the Jones polynomial is an infinite
dimensional integral over all SU(2) connections over S* with a certain weight. The
colored Jones polynomial, V,,(K;q), is a generalized version of the Jones polynomial.
We will describe a way of calculating the colored Jones polynomial as a quantum

trace in Chapter 3.



Melvin and Morton conjectured a relationship between the Jones and Alexander
polynomials in [18]. This conjecture was proven by Bar-Natan and Garoufalidis in
[4]. Rozansky extended the result further in [24].

Associate an (a 4 1)-dimensional U,(s[(2))-module to a fixed knot, K C S®. Let
Jo(KC; q) denote the colored Jones polynomial of I normalized so that it is multiplica-
tive under disjoint unions and

/2 —a/2

g’ —dq

(1.0.1) Jo(unknot; q) = piE—c

We will consider the reduced colored Jones polynomial defined as

Jo (K5 q)

1.0.2 ) = —————.
(1.0.2) Valkig) Jo(unknot; q)

We have the following theorem due to Rozansky.

THEOREM 1.0.1. Let K C S? be a knot. We have the following expansion for the

colored Jones polynomial in powers of h =q — 1:

(1.0.3) V(K q) :Zh"( > Dm,n(/C)(ah)M)

n>0 0<m<n

such that the coefficients Dy, nyom have the following property:

PO )
2m __ !
(104) mz>:0Dm,n+2m(IC)(ah) - A12Cn+1 (qa/z _ q—oz/Q)7

where Ay is the Alexander-Conway polynomial normalized so that Ay ne: = 1 and

PM(K; q%) € Z[q®, q~°] are invariants of the knot.

In this theorem, we sum along the diagonals in Figure 1.1.

Our work involves efficiently calculating these invariants, P™ (K; ¢®), in the hopes
of gaining a wealth of experimental data from which we can infer some topological
properties. As will be described in Chapter 3, the Jones polynomial can be calculated
as a quantum trace. The calculation of V,,(K; ¢) is based on representation theory of

the quantum group U,(s[(2)). The quantum group U,(s[(2)) has standard generators



m

FIGURE 1.1. Summing along Diagonals

E, F, and H with relations

gt — ¢t
(1.0.5) [H,E)=2E, [H,F]=-2F, and [BF]="——"+
q—q"

where ¢ € C. Let W, denote an (o + 1)-dimensional irreducible U,(s[(2))-module.

There is an important U,(s[(2))-intertwiner
(1.0.6) R:Wa@ W,y — W, @ W,

that satisfies the braid relations given in Section 2.4. This means there exists a

homomorphism
(107) f : B, — Enqu(5[(2))(W§n)

where B, is the braid group on n generators, such that f(o;) = R,; where o; is an
elementary braid consisting of a single positive crossing of the " strand over the

(i + 1)* strand and

(1.0.8) R, = 180D @ R @ 18-,



If a knot K is presented as a circular closure of a braid § € B,,, then the Jones

polynomial is the “quantum trace”

(1.0.9) Va(K; q) = 4" Tryyen (Qu f(B))

where Qy = (¢"/?)®" and ¢ is a framing factor given by the Formula (3.4.1). Im-

portantly, one can compute only a partial trace. Namely, for a linear transformation

A WE — WE™ define
(1.0.10) W, — W,

as a trace of A taken over all W, factors except the first one. The partial quantum
trace of f(f) with a framing factor is proportional to the identity with the coefficient

being the reduced Jones polynomial V,(; q), i.e.

(1.0.11) ¢" e} Q4 F(B)) = Val(K: ) L,

where Qg) =1® (¢f/?)20=1),
Let us recall the more familiar classical case of s[(2) before proceeding to the case

of U,(s[(2)). The generators E, F, and H of sl(2) satisfy the relations
(1.0.12) [H,E] =2E, [H,F]=-2F, and [E,F]=H.

In this case, we have a family of homomorphisms f, : sl(2) = C[z,0,] where a € C

and Cl[z, 0,] is the Heisenberg algebra. Its action on the generators is

(1.0.13) falE) =2z, fo(H) = a+220,, and fo(F) = —ad, — 20°.

By deforming f, we get a family of algebra homomorphisms f, : U,(sl(2)) —
C|z,0.]. Before we describe the action of the homomorphisms on the generators of
U,(s1(2)), let us define a function g(q,t,x) € Z[t][[h, x]] as

<qaz _ q_x)(t q:v—l/Q _ t—lq—x+1/2>
v(q —q ) (¢"? —q7'?)

(1.0.14) g(q, t,x) = —



Let a = ah, so that a = % and ¢® = e*. Then the action of the family of homomor-

phisms on the standard generators £/, H, and F' is:
(1.0.15) fo(E) =2z, fo(H)=a+220,, and f.(F) = g(q,q% 20, +1).

The Heisenberg algebra acts naturally on the polynomial algebra C|z], so the
homomorphism f, turns C[z] into a U,(sl(2))-module which we will denote by C,[z].
If av is a positive integer, then C,[z] has a submodule W, generated over Clz] by zo+L.

«

That is, it is generated by {z*"! 2272 ..} over C. The quotient module

(1.0.16) W, = Cqlz]/Wa

is the (a+1)-dimensional irreducible representation of U, (s[(2)) generated by 1, z, 22, ..., 2®
over C. The action of the U,(sl(2)) generators are given by the equations in (1.0.13).
Since the universal R-matrix of U,(s[(2)) is given in terms of the generators £, F', and
H as in Equation (3.3.4), the action of R, the R-matrix composed with permutation,
is determined by substituting the action of the generators into Equation (3.3.4).

For a knot I, it was shown in [24] that since W, is a quotient C,[z]/ W, one can

replace the factors W, in the partial trace (1.0.11) by C,[z]:

(1.0.17) 0" Trg, yen Qi f(B) = Va (K 9)1e, .

In order to produce the expansion in Theorem 1.0.1 and following [24], we study
the limit of Equation (1.0.17) when ¢ — 1 and ¢* is constant. Let h = log(q) and

@ = ¢% Then we can cast

t=q
(1.0.18) R : Clz1, 2] — Clz1, 29
in the form

=1

(1019) 7?, = Q(Zl, 29, 8Z1,8Z2) <1 -+ Z hiRi(Zl, 29, 821,@2))



where R;(z1, 29, w1, wy) is a polynomial of its arguments for each i and R;(21, 22, 0,,, 0.,)

is normal ordered while
(1.0.20) Q(z1, 29,0,,,0,,) = €xp (—Z1az1 + 1290, + t210,, — t222822)

is a Clzq, zo]-algebra homomorphism, that is, ) acts on C|z1, 23] by a linear transfor-
mation on the generators z; and z;. As a result f(5) has a similar form. Suppose
pB € B,. Let z denote z1, 29, ..., 2z, and similarly let 0, denote 0,,,0.,,...,0.,. Then

we can write

(1.0.21) f(8) = Qs(z:2.) (1 +2_ W Bislz, Q»)

where Q3(z,0,) is a C[z]-algebra homomorphism whose action on z1, 29, ..., 2, coin-
cides with the Burau representation of § while B; g(z,0,) is a normal ordered poly-
nomial for each 7. Recall the special relationship between the Burau representation
and the Alexander polynomial. The Alexander polynomial of a knot presented as a
braid closure can be computed as a determinant of the Burau representation of the
braid. Further details can be found in Section 2.5.

When h — 0 and ¢® is kept constant, we are left with only the algebra homomor-
phism, (). A partial trace of an algebra homomorphism can be computed by the
generalized geometric series formula. Let Qﬁ denote the restriction of the action of

()3 to the subspace C" of variables 2, ..., z,. Then we can write

1
det(cn(l — Qﬁ) .

1
(1.0.22) Trpy), Qs =

Since Qﬁ coincides with the Burau representation, Equation (1.0.22) is precisely the
reason the Alexander polynomial appears in the expansion in Theorem 1.0.1.
However, we are interested in the case when A is nonzero. Thus it remains to
take the trace of the second portion of (1.0.21). To do this, we will use methods
from quantum field theory. We should stress that we are using these methods on a

finite number of variables 21, 2o, ..., 2, while the techniques of quantum field theory



are typically performed on a space with infinitely many variables. Hence all of these
techniques are completely rigorous in our setting. Our techniques will be explained
in Chapters 4 and 5, but here is a brief summary. Suppose that ()3 in the geometric

sum formula (1.0.22) depends on an extra parameter €, so Equation (1.0.22) becomes

(1) _ 1
(1.0.23) Trep, @sle) = dotor(1 = 0p)

For a positive integer k, take the k-th derivative over epsilon of both sides and evaluate

at e =0:

m (FQsN| _ 4 1
(1.0.24) Treg ( dek ) ‘50  dek (detcn(l - QB))

k
Although d—ﬁk() is no longer an algebra homomorphism, this formula still computes
€

e=0

its trace. Equation (1.0.24) is the simplest example of the quantum field theory
techniques that we will use to compute the trace of the expanded formula (1.0.21).
We have developed a program in Mathematica [12] to efficiently perform these
techniques in rigorous finite-dimensional cases. Our program takes in information
about the braid representation of a knot and then calculates P! (KC; ¢®) and P®(K; ¢®).
We are now able to calculate PM(K; ¢%) and P (K;¢*) for any knot, and we will
present these polynomials for all prime knots up to nine crossings in Chapter 6. Also
in Chapter 6, we discuss a conjecture about our polynomials for amphicheiral knots
from [23] and provide evidence to the validity of the conjecture. In Chapter 4 we
will expand the R-matrix of U,(sl(2)) in powers of h to prove Theorem 4.1.1. We will
also provide a similar expansion of R~'. In Chapter 5 we will discuss our methods
of calculation including how to take the trace of /3, the action associated to a braid
B. We provide a copy of our program in Appendix A. We begin in Chapters 2 and 3

with some preliminaries, the Alexander polynomial, and the Jones polynomial.



CHAPTER 2

The Alexander Polynomial

In this chapter we begin by discussing some preliminary definitions of knot theory.
Then we present three different interpretations of the Alexander polynomial A ().
These three include a topological interpretation, a skein-relation definition, and a
relationship with the Burau representation of the knot presented as a braid closure.
The last of these will play a role in our own calculations, but the topological inter-
pretation is the one of most interest. One of the biggest strengths of the Alexander
polynomial versus the Jones polynomial is the fact that the Alexander polynomial has
a topological interpretation while the Jones polynomial lacks one in classical topology.

We proceed with the preliminaries.

2.1. Preliminaries

The study of knots began in 1867 when Lord Kelvin suggested that atoms were
knotted up bits of ether. Because of this theory, physicists were interested in tabulat-
ing all possible knots. The Scottish physicist Tait started studying when two knots
are the same and created a table of knots. The following preliminary definitions are

adapted from [16].

DEFINITION 2.1.1. A link £ of m components is a subset of S2, or of R?, that
consists of m disjoint, piecewise linear, simple closed curves. A link of one component

is a knot .

One can envision taking a string, tangling it somehow, and then fusing the ends.

What does it mean for two links or knots to be the “same”?



DEFINITION 2.1.2. Links £; and £, in S® are equivalent if there is an orientation

preserving piecewise linear homeomorphism h : S? — S3 such that h(L£;) = L.

Oftentimes instead of studying the knots or links themselves, we study their pro-

jections into the plane.

DEFINITION 2.1.3. A link diagram, D, of a link, L, is a projection into the plane

that keeps crossing information.

Of course, when studying the projections of links into the plane, we must under-

stand when two of these projections represent the same link.

DEFINITION 2.1.4. A Reidemeister move refers to one of three local moves on a
link diagram. Each move operates on a small region of the diagram and is one of

three types:

(1) Twist and untwist in either direction.
(2) Move one loop completely over another.

(3) Move a string completely over or under a crossing.

These moves can be seen in Figure 2.1

T O e ) e X

/ AN

FIGURE 2.1. Reidemeister Moves

Two link diagrams belonging to the same link, up to planar isotopy, can be related
by a sequence of the three Reidemeister moves. This fact was shown independently
by Reidemeister in 1926 [21] and by Alexander and Briggs in 1927 [3].

Once we understand what it means for two knots, or knot diagrams, to be equiva-

lent, the next natural step is to try to answer the question, “Are these two the same?”



One way that we can try to answer this question is by discovering and calculating knot
invariants. In fact, a variety of topological properties of knots can be investigated by

studying knot invariants.

DEFINITION 2.1.5. A knot invariant is a quantity (in a broad sense) defined for

each knot which is the same for equivalent knots.

Another one of the questions mathematicians seek to answer about knots is, “Is
this the unknot?” Currently we know that the Alexander polynomial doesn’t detect
unknottedness, meaning we have examples of non-trivial knots of 10 crossings for
which the Alexander polynomial is equal to 1. It is still an open question whether the
Jones polynomial can detect unknottedness. These questions about knots and knot
invariants are interesting. Many knot invariants have been discovered and studied,

and this process continues today.

2.2. A Topological Definition of the Alexander Polynomial

The Alexander polynomial is perhaps the most well-known invariant of knots. This
polynomial was discovered by Alexander in 1928 [2]. The Alexander polynomial of a
knot can be interpreted topologically using an infinite cyclic cover of the complement
of the knot. A convenient way to view and build this infinite cyclic cover is through
Seifert surfaces. In this section, we will define these ideas rigorously. A reference for

the following discussion is [16].

DEFINITION 2.2.1. A Seifert surface for an oriented link £ in S? is a connected

compact surface contained in S® that has £ as its oriented boundary.

Of course now that we have this definition, a reasonable question to ask is, “Does
every knot have an associated Seifert surface?” The answer is yes for any oriented

link thanks to the following theorem.
THEOREM 2.2.2. Any oriented link in S® has a Seifert surface.

10



This theorem was first proven by Frankl and Pontrjagin in [11]. In 1935 Seifert
provided another proof which is constructive [25]. His proof provided a general
method of finding a Seifert surface of a knot which is called the Seifert algorithm.
However this construction is not unique.

Although a Seifert surface is not necessary to have an infinite cyclic cover, we can
use it to build an infinite cyclic cover of the knot complement. As described in [16],
let F' be a Seifert surface of £ and let N be a regular neighborhood of £. Define X
to be the closure of S — N. Now let Y be X-cut-along-F. This means that Y is
homeomorphic to X less the open neighborhood F' x (—1,1). We can build X, the
infinite cyclic cover, by stacking countably many copies of Y on top of each other.
X has a natural homeomorphism ¢ : X, — X, which moves up one stack/copy of

Y from the current position.

DEFINITION 2.2.3. The r** Alerander ideal of an oriented link L is the r** ele-
mentary ideal of the Z[t,t~!]-module H;(X;Z). The r'* Alexander polynomial of
L is the generator of the smallest principal ideal of Z[t,t71] that contains the rt"
Alexander ideal. The first Alexander polynomial is called the Alexander polynomial

and is written Ay ().

If we restrict ourselves to considering the Alexander polynomial of a knot I, we
have a very satisfying interpretation of Ax(t) as a characteristic polynomial presented

in [16].

THEOREM 2.2.4. Let K be a knot in S® and let t : Xoo — Xo be the (covering)
translation of X (the infinite cyclic cover of the exterior of K). Then Hi(X; Q) is
a finite-dimensional vector space over the field Q. The characteristic polynomial of
the linear map t, : Hi(Xoo; Q) = H1(Xoo; Q) s, up to multiplication by a unit, equal

to the Alexander polynomial of K.

11



Through this set up of the Alexander polynomial and the proceeding theorem, one
can see that the polynomial has its basis in topology. There are other descriptions of

the Alexander polynomial that are not topological in nature.

2.3. A Skein Relation Definition of the Alexander Polynomial

In 1970 Conway introduced his polynomial which satisfies certain skein relations
[9]. In fact, Alexander had shown that his polynomial satisfied the same relations.
This result was presented in the miscellaneous section of Alexander’s paper and was
thus not thoroughly investigated for some time. The Conway polynomial and the
Alexander polynomial are related by a simple formula and oftentimes the polyno-
mial knot invariant is simply called the Alexander-Conway polynomial. The Conway

polynomial is defined in the following way.

DEFINITION 2.3.1. For oriented links £, the Conway polynomial V(z) € Z[z, 27!

is defined by

(1) vunknot('z> = 17
(2) whenever three oriented links L, L_, and Lg are the same except in a neigh-

borhood of a point where they are as shown in Figure 2.2, then

(2.3.1) Vi (2) = Vi _(2) = 2V, (2).
LoX X
L, L. Lo

FiGURrE 2.2. Conway Triple

The triple in Figure 2.2 is known as the Conway triple.

The Alexander polynomial is related to the Conway polynomial as follows:
(2.3.2) Ar(?)=Ve(t—th

12



for A,(t) normalized to satisfy the relation
(2.3.3) Ap () —Ap (1) = (2 =73 AL ().

Oftentimes this is the method used to calculate the Alexander polynomial, but it lacks

the satisfying topological basis of the previous definition of the Alexander polynomial.

2.4. Presenting Knots as Braid Closures

In order to discuss the third interpretation of the Alexander polynomial, we must

pause here and discuss braids. Any braid is made up of elementary braids.

DEFINITION 2.4.1. An elementary braid o; is a braid in which the only crossing
is the i*"-strand crossing over the (i + 1)*-strand. The inverse of o;, denoted o; !, is
the braid consisting of only the crossing in which the (i 4 1)*!-strand crosses over the

it"-strand.

0; o

AN /
NI Ny

1 1+ 1 1 1+ 1

F1GURE 2.3. Elementary Braids

The braid group on n-strands, B,, is made up of elementary braids with certain

relations.

DEFINITION 2.4.2. The braid group on n strands, denoted B,,, is generated by the
braids o; for i = 1,...,n — 1 subject to the relations
0;0;4+10; = 0410041 for 1 S 1 S n—2

(2.4.1)
0i0; = 0,0; for |i — j| > 2

13



Then naturally, a braid is an element of B,, for some n > 1.
The closure of a braid 3, denoted S, is created by connecting corresponding ends
in pairs. We are talking about braids because there is a clear relationship between

braids and knots. We have the following theorem proven by Alexander in 1923 [1].

THEOREM 2.4.3. Every knot can be presented as the closure of a braid.

Note that this theorem says nothing about the uniqueness of the braid represen-
tation of the knot, so we must ask when two different braid closures give rise to the
same knot. This question was answered by Markov in [17]. There are two actions on

a braid, called Markov mowves, that we consider. The first is conjugation.

DEFINITION 2.4.4. Given two braids a and S in B,,, a type 1 Markov move, also

called conjugation, takes a8 — Ba.

We have another Markov move that is called a stabilization move.

DEFINITION 2.4.5. Given a braid § € B, a type 2 Markov move, also called a

stabilization move, takes 3+ Bo, € B,1 or S+ Bo, ' € Buy1.

We can use these moves to determine when two braids will give rise to the same

knot. The following theorem is due to Markov [17].

THEOREM 2.4.6. Given two braids @ € B, and f € B,, we have that & 1is

equivalent to B if and only if B can be obtained from o through a finite sequence of

Markov mowves.

We conclude this section with a table that shows braid representations for the
some non-trivial knots. The knot diagrams in this table are from Knot Info [8] while

the braid representations were created in Mathematica [12].

14
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31 4, 2

Table 2.1: Braid Representation of Some Knots

2.5. The Alexander Polynomial by the Burau Representation

There is yet another characterization of the Alexander polynomial using the re-
duced Burau representation of the braid group. The following definition of the reduced

Burau representation and Theorem 2.5.2 are presented in [5].

DEFINITION 2.5.1. Let K be the closure of braid on n-strands, 5. Let o; be the
elementary positive braid in which the i’ strand crosses over the (i + 1) strand.
Then the reduced Burau representation associated to o; for i = 2,....n — 1 is the

(n —1) x (n — 1) matrix of the form

Ii s
1 0 0
(2.5.1) t —t 1
0 0 1

]n—i—2

15



where [, denotes the r x r identity matrix. When ¢ = 1, we have a block matrix in

the upper left corner of the (n — 1) x (n — 1) matrix of the form:

—t 1
(2.5.2)

0 1

and the identity elsewhere. The reduced Burau matriz, B, associated to 3 is the

matrix product of the matrices associated to the sequence of elementary braids in f.

Through the reduced Burau representation, we get the following theorem concern-
ing the Alexander polynomial. This theorem is presented in [5] as a modification of

a theorem of Burau from [7].

THEOREM 2.5.2. For the Alexander polynomial, Ax(t), and the reduced Burau

matrix, B, we have the following relationship

_ det(B—-1)
14t

(2.5.3) Ax(t)

Putting together the information in this section and the discussion from the intro-
duction, we can now understand why the Alexander polynomial appears in Theorem
1.0.1. Since the action of Q) in the expansion of f(/5) coincides with the Burau repre-
sentation and taking the trace of such an expression introduces a factor of det(1— Q 8)

we get the Alexander polynomial in Equation (1.0.4).
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CHAPTER 3

The Jones Polynomial as the Quantum Trace of a Braid

3.1. The Bracket Polynomial

The next knot invariant of interest is the Jones polynomial which can also be
defined using a skein relation. A reference for the following discussion is [14]. Often

we will be considering framed links.

DEeFINITION 3.1.1. A link £ provided with a non-singular normal vector field is
said to be framed. Two vector fields on £ that are homotopic in the class of non-

singular normal vector fields determine the same framing.

To compute the Jones polynomial using a skein class of diagrams, we must make

the following definitions.

DEFINITION 3.1.2. Fix a nonzero complex number ¢q. Let E(q) be the complex

vector space generated by all link diagrams quotiented by

(1) ambient isotopy in the plane;
(2) the relation DU O = —(q + ¢ ')D, where D is an arbitrary link and O is a
simple closed curve bounding a disk in the complement of D;

(3) the identity in Figure 3.1 which is called Kauffman’s skein relation.

E(q) is a skein class of diagrams.

oo

FIGURE 3.1. Kauflman’s Skein Relation



Thus given a link diagram, one can use these relations to resolve any crossing of

the diagram.

DEFINITION 3.1.3. Every link diagram D represents an element of E(g) which

will be denoted by (D)(q) or sometimes just (D). This is called the skein class of D.

For knot diagrams, this skein class makes sense due to the following theorem

presented in [14].

THEOREM 3.1.4. The skein class of any link diagram is invariant under the Rei-

demeister moves.

We should note that introducing a positive or negative curl as in the first Rei-
demeister move introduces a factor of —¢=3/2 or —¢%? respectively. However this is
considered to be equivalent in the skein class.

Using Theorem 3.1.4, we can define the bracket polynomial of a link £. Present
L by a diagram D and choose ¢ € C so that ¢+ ¢~ # 0. Then we have the following

definition.

DEFINITION 3.1.5. The bracket polynomial of L is

(3.1.1) (L)(q) =—(g+q ") (D)(q).

Note that the bracket polynomial does depend on the framing of the link L.

3.2. The Jones Polynomial

Using the bracket polynomial we can define the Jones polynomial, V(L;q), of an
oriented link £ in R3. In fact, we can define the Jones polynomial using the diagram
D of L. The Jones polynomial is basically the bracket polynomial with a framing

correction and renormalization.

DEFINITION 3.2.1. Let w(D) € Z be the sum of all signs over all crossing points

of D. w(D) is called the writhe of D.
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Once we have this definition, we have the following theorem stated in [14] about

computing the Jones polynomial of a link diagram.

THEOREM 3.2.2. Let |D| denote the number of crossing points of D. Then the
Jones polynomial can be calculated from the diagram D as follows:

(3.2.1) V(Liq) = (_1)|Dl+lq3w(D)/2;i>;Q)1-

While this is a reasonable way to define the Jones polynomial, it can seem overly

complicated. There is a characterization like that of Theorem 2.3.1 for the Jones

polynomial from [14]. Recall that the Conway Triple is the relation in Figure 2.2.

THEOREM 3.2.3. There exists a unique function
(3.2.2) V : {non-empty oriented links in R*} — Z[q, ¢ ]

such that
(1) if L is isotopic to L', then V(L) =V (L)
(2) V(unknot) =1

(3) for any Conway triple
gV (Ly) = ¢*V(L-) = (¢ — ¢ ")V (Lo)
Furthermore, this unique function is the Jones polynomial.

As was discussed in the introduction, the Jones polynomial is more powerful
than the Alexander polynomial, but it lacks any obvious topological interpretation
in classical topology. Witten introduced a path integral topological interpretation
in [27]. The Jones polynomial is an infinite dimensional integral over all SU(2)
connections over S? with a certain weight. We should note that if you compute this
integral with the help of perturbation theory, then you get an expansion of the Jones
polynomial in powers of (¢ — 1) or log(g). In the next chapter, we will be expanding

the colored Jones polynomial in h = log(q).
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3.3. The Quantum Group U,(sl(2))

The colored Jones polynomial, V,(K;q), is a generalized version of the Jones
polynomial. Here a denotes coloring by an (« + 1)-dimensional representation of
U,(s1(2)). Note that Vi(K;q) = V(K;q). The colored Jones polynomial can be
calculated using R-matrices of quantum groups. Here we consider U, (s[(2)), the Hopf
algebra with generators F, F, and H satisfying:

¢’ —q "
(3.3.1) [H,E|=2E, [H,F]=-2F, and [E F]=——"+
q—dq
with comultiplication given by:
AE)=E®d"+10FE
(3.3.2) AF)=F@l+q¢"aF
AH)=H®1+1®H

This is a natural definition for the comultiplication of U,(sl(2)). For a Lie algebra

we usually have that
(3.3.3) Alz)=z®1+1®z,

so that the comultiplication respects the commutator of the Lie algebra. This is also
the case for our quantum group. The comultiplication is chosen in the above way so
that it respects the commutator. For example, [A(H), A(E)] = A([H, E]).

U,(sl(2)) acts on tensor products, but because of the above definition of the co-
multiplication, permutation P : V@ W — W ® V which takes v ® w — w ® v is
not an U,(sl(2)) intertwiner. However we do have many different intertwiners. We
consider a special one that satisfies the Yang-Baxter equation and the braid relation.

This intertwiner is called an R-matrix and is given as follows:

(3.3.4) R =q"®™MEN "R, (q)(E" ® F"),
n=0
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where
o . B qn _ qfn
(3:35) Ra(h) = "2 g = )" (nla) ™ and ol =5 —

A good reference for this is [15].

3.4. Calculating the Colored Jones Polynomial

As previously stated, one can calculate the colored Jones polynomial using this
R-matrix structure. This method was developed by Reshetikin and Turaev in [22].
First present the knot KC as the closure of a braid S. Using Theorem 2.4.3, we know
that any knot can be presented as a braid closure. To any braid g of n-strands, one
can associate an action § on W& where W, is an (a + 1)-dimensional representation
of U,(sl(2)). To the elementary braid o;, we associate R, the R-matrix composed
with permutation, acting on W, @ W, at the " and (i + 1) positions in W™ as in

Figure 3.2 and described thoroughly in the introduction.

o; R

AN AN
AN N

/) 1+ 1 Wo W, W, W,

FIGURE 3.2. Associated Action for o;

We associate R, R~ composed with permutation, to the negative elementary braid

1

o, = as in Figure 3.3.

In this construction the action of braids commutes with the global action of U,(s((2)).

Now we can compute the colored Jones polynomial using the following theorem.
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/

i i+l Wo Wo = Wo W
FIGURE 3.3. Associated Action for o; !

THEOREM 3.4.1. Present a knot K as the closure of a braid . Let B denote
the representation of B acting on W™, Then the colored Jones polynomial can be

calculated as the quantum trace of the braid, i.e.
Va(K; q) = ¢" Tryyen (¢"/)%" B,

where (q"/?)®" denotes an operator that acts as ¢1/? on each module W, of W&™. fr

1S a framing correction:

(3.4.1) fr=—1/4(a® — 1)e(p),

where e(f) equals the number of positive elementary braids minus the number of neg-

ative elementary braids in 3.

3.5. The Melvin-Morton-Rozansky Expansion

In the 1990’s a relationship between the Jones and Alexander polynomials was
explored. Melvin and Morton made the following conjecture concerning the colored

Jones polynomial in [18].

THEOREM 3.5.1. Let V,(K) € Q(q) be the “framing independent colored Jones
polynomial” of the knot IC, i.e. the framing independent Reshetikhin-Turaev invariant
of IC colored by the (o + 1)-dimensional representation of sl(2). Let h be a formal
parameter and let ¢ = €. Then expanding V,(K;e") in powers of a and h,

Va(Kse") = ) ajm(KK)a’h™,

7,m=>0
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we have:
(1) “Above diagonal” coefficients vanish: a;,(K) =0, if j > m.
(2) “On diagonal” coefficients give the inverse of the Alexander-Conway polyno-

maal:
(3.5.1) MM(K)(h) - Ac(g)(e") =1,
where Ax(q) is the Alezander-Conway polynomial and MM is defined by

(3.5.2) MM(K)(h) = f: Ly ()™

m=0

Here we note that this conjecture was proven by Bar-Natan and Garoufalidis in
an equivalent form in [4]. This idea was studied further by Rozansky in [24]. Here
we switch to the set up and notation of [24]. Let K be a knot in S®. Associate an
a-dimensional U, (sl(2))-module to the knot. Let V,, (K ¢q) denote the reduced colored
Jones polynomial of K normalized so that it is multiplicative under disconnected sums
and V,(unknot; ¢) = 1. In this set up, an equivalent statement of Theorem 3.5.1 is

as follows.

THEOREM 3.5.2. Let K C S® be a knot and h = ¢ — 1. We have the following

expansion for the colored Jones polynomial:

(3.5.3) Va(Ksq) => b ( > Dm,n(K)a2m>

n>0 0<m<n
such that the coefficients D,, ,, have the following properties:

(1) Dypn(K) =0 for m > g,

(2) Y Dmaom(K)a™™ = m;

m>0
where a is a formal parameter, Ay is the Alezander-Conway polynomial normalized

50 that Aypiner = 1, and t = ™.

Note that the second part of the theorem says to sum along the first diagonal in

Figure 3.4.
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In fact, there is another theorem which involves summing along other diagonals
which gives powers of the the Alexander polynomial in the denominator. This theorem

is due to Rozansky [24]. In this theorem, we sum along the other diagonals in

Figure 3.4.

THEOREM 3.5.3. Let K C S® be a knot and h = ¢ — 1. We have the following

expansion for the colored Jones polynomial:
(3.5.4) Va(Ksq) =>_h" ( > Dmm(IC)(ah)m)
n>0 0<m<n

such that the coefficients Dy, niom have the following property:

om _ P(n)(lc’ qa/2 o qfa/2)
T (goTE — gari)

m>0

where Ay is the Alexander-Conway polynomial normalized so that Aypiner = land

PM(IC; q%) € Z[q®, q~%] are invariants of the knot.

/
no(/ /S
/ , /
/ /
/ / / 7 /
/
/ ‘ , [ ] /
/ /
ry, /
/ / , / /
VA ry,
/ ’ / /
© oD
ro8 ) el)gy
/ /
/ /
/ /
/ /
ry, /
/ /
/ /
A
VN
/
/ /
/ /
/
/
" D
/ 1,2

m

FIGURE 3.4. Summing along Diagonals

In the next chapters, we will describe our methods of calculating P (KC; ¢®) and
P®(K; ¢*) and then present these polynomials for all prime knots up to nine crossings.

We will also discuss an interesting property of the polynomials for amphicheiral knots.
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An amphicheiral knot is one that is isotopic to its mirror image. The interesting
property is given as a conjecture by Rozansky in [23] stated by expanding in a new

parameter
(3.5.6) h=0+h)Y?—(1+h)"Y2
Expanding V,,(K; ¢) in h, we have
(3.5.7) V(K q) = i V(K — g )",
n=0
Then the conjecture is as follows:
CONJECTURE 3.5.4. For an amphicheiral knot C,
(3.5.8) V(K ¢ — g% =0
and

B p(2n) (K qoz/2 _ q—a/2)
3.5.9 VE(K) = ’ :
( ) ( ) A%H—l(qa/Q o q_a/2>>

for all n > 1.

Note that this conjecture says two things of importance. The first is that P?"=D(KC; ¢*)
vanishes for all n > 1 for amphicheiral knots. The second is that for n > 1,
PCM(KC; ¢®) is divisible by the powers of Alexander polynomial for amphicheiral knots.
When we present our results in Chapter 6, we will provide evidence to the validity of
this conjecture. We present the first two polynomials for all amphicheiral knots up
to ten crossing and will show that the polynomials have the properties in Conjecture

3.5.4.
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CHAPTER 4

Expansion of the R-matrix

4.1. The h-adic Hopf Algebra U,(s((2))

In this chapter we are concerned with expanding the universal R-matrix of U, (s[(2))
in powers of h = log(q). First we discuss the generators of the Uy(s[(2)) themselves,
then we move on to further techniques. We will calculate an expansion of each term
in the R-matrix and then talk about how we can put the pieces together to get an

expression of the form
(411) 7?, = Q(Zl, 29, 8217 822>(1+h R1(217 29, 821, 822) +h2 RQ(Zl, 29, 821, az2>+0(h3))

First we begin with a description of Uy(s((2)).
Un(sl(2)) is the h-adic Hopf algebra with generators F, F', and H satisfying:

(4.1.2) [H,E| =2E, |[H,F]=-2F, and [E, F|=

with comultiplication given by:
AE)=E®@"+1QFE

(4.1.3) AF)=F@l+e™aF
AH)=H®1+1®H

The universal R-matrix is given by

(4.1.4) R =N "R (h)(E" ® F),
n=0



where

hn _ _—hn
(A15)  Ra(h) = 0021 — Py ()t and o), = S
Furthermore, R has an inverse given by
(4.1.6) R = e hlHEeH)/2 Z e "R, (h)((e"E)" @ (" F)™).

n=0
We denote the R-matrix composed with permutation by R. Similarly, R~! denotes
the inverse R-matrix composed with permutation. For further discussion on this, see
[15] or [14].

For the remainder of the chapter, we aim to prove a theorem about the expan-
sion of the R-matrix. As discussed in the introduction, there is a family of algebra
homomorphisms f, : U,(sl(2)) — C|z, 0,] where a € C and C|z, 0,] is the Heisenberg

algebra. Recall that its action on the standard generators E, H, and F' is:
(4.1.7) fo(E) =2, fo(H)=a+220,, and f,(F) = g(q,q% 20, + 1),

for

<qz _ q—as)<t q:v—l/2 _ t—lq—x+l/2)
w(q—q ) (¢"? = ¢

(4.1.8) g9(q,t,x) = — € Z[t][[h, x]].

We will provide a proof of the action of f, on F'in Proposition 4.2.1 using the commu-
tator relations on the generators E, H, and F'. Using this family of homomorphisms,
we can state our main theorem. As in the introduction, the Heisenberg algebra acts
naturally on C[z], so f, turns C[z] into a U,(sl(2))-module denoted C,[z]. If W,

a+1

denotes the submodule over C,|z] generated by z**!, then the quotient module

(4.1.9) W, = Cqlz]/Wa

is the (a+1)-dimensional irreducible representation of U, (s[(2)) generated by 1, z, 22, ..., z°
with the action of E, F, and H given by Equation (4.1.7). Then the R-matrix acts

on W, ® W, and can be expanded in h = log(g) as in the following theorem.
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THEOREM 4.1.1. Let t = ¢® and h = log(q). Then R of Uy(sl(2)) can be written

as

(4.1.10)

with

(4.1.11)

(4.1.12)

and

(4.1.13)

R = Q(217z278217822)<1 + th(’Z17z278217822> + h2 R2<21,22,82178Z2) + O(hB))7

Q(z1, 22,0z, 0.y) = exp (—210:, + 1220:, + 1210,, — t°220.,)

1 2
Ri(z1, 29,0.,,0,,) = <_2t2 —5+ 3) 2102, + <2t — ;) 210.,0.,

1
-+ (g — 3t) 2122652 + 221228Z1(922,

22

16t 4 2 8
Ry (21, 22,0.,,0,,) = (4t3 - — 4+ —) zf@g + (—4153 + — + 10t — Z) zf@i@zl

3 3t t3
3 6 394 2 1 292
4+ 6t° — - — 11t + ; »75221822 + | -4 — t_2 +5 21322

2
(=) 20, + <2t2 v 2o 4> 02 52

4¢2 2 10 293
3 et ?) »40,
9t 1 4
+ 7 + 2_t2 — 3) Z;Z%@i + (—10t2 — t_2 + 14) 222?632821
1 3 13 2
4 2 494 2
+ (2t +ﬁ_6t —t—2+?> 21622+ (Qt_¥> 21822821

2 1 2 14t
t— ;) 20,07 + <¥ - 5t) 202102, + <§ - T) 25210

_l’_
/—\/\/M\\/—\/—\/—\

2 2
+ [ -2t — Z) zzzfﬁfﬁzl + <¥ — 6t) z%zfagz(?zl + 229210.,0.,
4
i (4t z) ORGP, + 9232020, + 22720, 07, + 232302 0%
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Our key technique will appear over and over in this chapter. For each piece of the
R-matrix, we will express it as a higher order term and an exponential of a bilinear
form in 21, 29,0,, and 0,,. When we say higher order term, we mean a term of the

form
(4114) 1+ hPl(Zl, 22, 021, 8z2) + h2 PQ(Zl, 22, 831, 622) + O(hg)

For each portion of the R-matrix, we will have an exponential of a bilinear form in
z’s and 0,’s and higher order terms. We will normal order each higher order term as
we go along. An expression is normal ordered if all partial derivatives appear to the
right of any multiplication by z. To complete our theorem, we will have to move a
higher order term through the exponential of a bilinear form. The mechanisms of this
moving will be discussed in Chapter 5, but it amounts to making linear substitutions

in z1, 29, 0,,, and 0,,.

4.2. The Generators F, F, and H

We want to use quantum groups to calculate the colored Jones polynomial of a
knot as in Chapter 3. However, we will do it in such a way that we will automatically
get the expansion in powers of h in Theorem 3.5.3. The idea is outlined as follows.
We will first represent the knot as a braid closure. Next we will look at the associated
action of B on W™ as before. As explained in the introduction and the previous
section, we consider W,, which is the (« + 1)-dimensional irreducible representation
of U,(s!(2)) generated by 1, z, 2%, ..., 2* with the action of E, F', and H as in Equation
(4.1.7). Before expounding on this for U,(s[(2)), let us recall the more familiar classical
case.

Consider s[(2) which has generators £, F, and H that satisfy the relations
(4.2.1) [H E|=2F, [H,F]=-2F, and [E F]=H.
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In this case, we have a family of homomorphisms f, : s[(2) — C[z,d.]. We want
to define its action on the generators F, F', and H. It is reasonable to make the

following choices for E and H:

(4.2.2) fo(E) =2z and [ (H) = a+220,.
Then
(4.2.3) [fal(H), fo(BE)] = [0+ 220, 2] = 22 = 2f,(E)

as required. From here we can figure out what fa(F ) should be, using the relation
[E,F] = H. Let us make an informed guess that f,(F) = b3, + ¢d?. After solving

for the coefficients, we find that b = —a and ¢ = —z, so

(4.2.4) fol(F) = —d, — 20°.

With this choice of f,(F), we have that [fo(H), fa(F)] = —2fo(F), and [fo(E), fo(F)] =
fo(H) as required.
We wish to do a similar process with the generators of U,(s[(2)). Now we will let

g=-¢c" a=ah,and t = ¢* = e®.

PROPOSITION 4.2.1. Let t = ¢* and h =log(q). If

(4.2.5) fo(E) =2 and fo(H)= a+ 220,
then
t—t1 t+tt L, t—t! 53 )
fo(F) = — 5 0, — 5 207 — h(42°0; 4+ 620; — 0,)
(4.2.6)
ot

h? (22302 + 82207 + 320%) + O(h?)

12
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PROOF. We can expand F' in powers of h by considering

n—1
FE"|0) =Y E""'[F, E|E*|0)
k=0
n-1 " —qH
_ ZEnfkfl (_ — ) Ek‘())
0 q—q
n—1
2. 1
(4.2.7) - Z(tq% — g2y ER o)
9—49
1 2n 1 —2n __ 1
_ — (t q . t_l q — ) En—1|0>
q—q q—1 g —1

=gt - t_lq_n+1/2)Enfl‘0>
(¢—q")(q"?—q1/?)

for t = ¢* = e“.

Once we have this expression, we can expand

(qn _ q—n)(t qn—1/2 _ 75—1q—n-‘r1/2)

(4.2.8) - 4 —q V)72 — 72

in powers of h. Doing so, we arrive at the following

(4.2.9)
t—t1 t4+t1 t—t1

FE"0) = { — _1) —
|0) { 57 n -+ 5 n(n ) D

t4+t1
12

h(4n(n —1)(n — 2) +6n(n — 1) —n)

R*(2n(n —1)(n — 2)(n — 3) +8n(n — 1)(n — 2) + 3n(n — 1)) + O(hg)} E"10)

Now we can write f,(F') in powers of h as follows:

t—t1 t4 ¢t t—t 1
Fo(F) = — R, h(4220° + 6202 — .)
2h 2 12
(4.2.10)
ot =1

h?(22°0 + 82°07 + 320%) + O(h?).

12
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4.3. Expansion of R, (h)

We are now ready to work on expanding the pieces of the R-matrix of U, (sl(2)).

First we concern ourselves with

(4.3.1) Ra(h) = "™ D/2(1 = ¢72)"([n], ).

LEMMA 4.3.1. We can expand R,,(h) in powers of h =log(q) and get the first few
terms as follows:

(4.3.2)
Ry (h) = q"™V2(1 — ¢2)([n]H) "

= M HD/2(1 _ =2y ([p] 1)

= (273)” <1 + gn(n — 1) + %(9”(% — 1)(n — 2)<n — 3) + 32n(n _ 1)(71 . 2) + 12”)
+O(h?))

PROOF. In order to calculate the expansion, we take the natural log of some of
the pieces in (4.3.2), work on each piece, then exponentiate to return to what we

wish. First we have that
1
(4.3.3) In(ehm(n+1)/2) — p (ﬁn(n + 1)) + O(h?).

Next we expand

h2 4

(4.3.4) n(n(l —e?") =n (ln(?) +1In(h) — h + o % + @(h6)) :
Now we work on an expansion of [n],!. Recall that

n —n hn —hn

" —q e —e
(4.3.5) [n], = e S
Consider
ehk — e=hk k*—1 3k — 10k* + 7

4.3. —_— = 1 2~ 1 o).
(4.3.6) - k< +h 5 +h 360 —|—(9(h)>

32



Taking the natural log yields

ek — g=hk k? —1 E*—1
4.3. In(—+ | =1 2 4 %).
(4.3.7) n(eh—e—h> n(k)+h 5 +h 180 + O(Rh°)

In order to calculate [n],!, we sum (4.3.7) with k& running from 1 to n. Doing so we

obtain

(4.3.8)

n hk _ —hk M2 L 3n—5 6nt + 1513 + 10n? — 31
Zln(%)zlm(n!)+h2n(n+n )_h4n(n—|— n° + 10n )
— et — e~ 36 5400

Finally, we exponentiate (4.3.3) + (4.3.4) — (4.3.8) and obtain that

(4.3.9)
Ry (h) = % (1 + gn(n —1)

+l;—;(9n(n —1)(n—2)(n—3)+32n(n—1)(n—2)+ 12n) + 0(h3)) _

4.4. Expansion of £" ® "

Now that we have expanded R, (h), we must tackle E™ ® F™. First we use the

result of Lemma 4.3.9 to write

(4.4.1)

= = (2h)" h h?

Y Ry(ME"@F" =) ( ') E"® F" {1 +-(2hE® F)* + — (9(2hE ® F)*
— — n 2 2

+32(2hE ®@ F)® + 12((2hE @ F)) + O(h%)}

2
=exp(2hE ® F) {1 + g(zhE ® F)* + % (92hE ® F)*

+32(2hE ® F)? +12((2hE ® F)) + O(h*)}.

Before proceeding further, we pause here and expand

(4.4.2)
2
1+ g(QhE ® F)? + % (92hE @ F)* + 32(2hE ® F)* + 12((2hE ® F)) + O(h?).
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LEMMA 4.4.1. Let T =t —t"' and S =t +t~*. The expansion in powers of h of
Formula (4.4.2) is

(4.4.3) 1+ hsy(21,29,0.,0,,) + h? sa(21, 29, 0., 02y) + O(R?),
where

(4.4.4) s1(21, 22,0, 0.,) = %T%fai

and

1 4 1
22 + STZ%ZQ@:Z; + gT4z?a§2 — §T3zf8§2 — 6T218z2 .

zZ

1
(445) SQ(zl,z2,8Z1,8Z2) = §STZ%G

PROOF. There is not much to do here. We simply expand (4.4.2) and normal

order the terms based on the commutator relation
(446) [azm Zj] = 51]

Doing so yields (4.4.3). O

4.5. Expansion of exp(2hE ® F')

We are now ready to work on expanding each part of Equation (4.4.1). For each
of these pieces, we will have an exponential of a bilinear form and a higher order part
which consists of normal ordered polynomials in 21, 25, 0., and 9,,. First we consider
exp(2hE @ F'). We wish to express this as
(4.5.1)
exp(2hE®F) = Qa(z1, 22, 0s,, 0s,) (1 + hai (21, 22, 0., 05,) + Kqo(21, 22, 0.y, 02,) + O(RY)) .

PROPOSITION 4.5.1. We can expand exp(2hE ® F') in powers of h and get that
(4.5.2)
exp(2hERF) = exp(—T20,,) (1 +haqi(21, 22,05, 0.) + B qa(21, 22,0, 0s,y) + O(h?’)) ,
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with

(4.5.3) Q2(21, 22,0.,,0.,) = exp(—(t — t 1) 210.,),
1
(4.5.4) q1(21, 22,04, 0,,) = —ESTzfai — 8212002,
and
(4.5.5)
1 1 25%T 273 1
QQ(2’17 29, 831, 622) = gTzlﬁzz - §T2Z%8222 ( 3 - T) zf@i + §52T22f8§2

2 21N 5 3 lors aq Lo o o
+ [ S°— = 2120, + 55 T27 20, + 55 21250,
Ty, — 2T 220
— 1 2129 20 g 2129 o

PROOF. First recall that

(4.5.6) fo(Er) = 21
and
t—t1 t+tt L, t—t! 53 )
fa(Fy) = — o 0z — 5 205, — 15 h(4250;, + 62203, — 0s,)
(4.5.7) .
t+t-

o W (22505, + 82302 + 32002)) + O(h?).

Thus we can write
(4.5.8)

. t—tt
2hE @ Fy = —(t—t"1)210.,—

t4+t1
h

R 21 (42502 462002, —0.,)+O(h*).

2
212903, —

Before finding the higher order part, let us consider the exponential term. We must get
a normal ordered expression of exp(—(t—¢"1)z,0,,), denoted : exp(—(t—t1)210.,): .

Because z; and 0,, commute, there is nothing to be done here. We have that

(4.5.9) exp(—(t —t 1)210,,) =: exp(—(t —t1)210,,): .
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Thus we have
(4.5.10) Q2(21, 22,0.,,0.,) = exp(—(t — t ™ 1)20.,).

For convenience, we set T =t —t ! and S = t +t~!. Proceeding to the higher

order term, we consider

(4.5.11) U(s) = e AsesAThB)

where

(4.5.12) A=-Tzd.,

and

(4.5.13) B = —h(S21202) — I? <%zlz§3§’2 + Tz12002, — %218z2) .

Since we are looking for an expansion in h, we write

(4.5.14) U(s) =1+ hth(s) + WP Us(s) + O(h?)
Differentiating both (4.5.11) and (4.5.14) gives us that
(4.5.15) Uj(s) = e **p,

where ad4 on B is the usual adjoint action [A, B]. Thus

U (s) = (/0 B_TadAd7'> B

1— —sadag
--—° B
adA

(4.5.16)

We can expand this in powers of ad 4 and conclude that at the order of h we have the

following

(45,17 B+ 5[A, B+ 5[4, [A BI) - . [A[A[A, BIL
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which can be written as a normal ordered operator in terms of 21, 23, 0,,, and 0.,

which gives the desired
1
(4518) Pl(Zl, 29, 821, 8Z2) == —§STZ%832 — 82122832.

Proceeding in a similar fashion, we see that
1 — e—sad,42
(4.5.19) Uy(s) = e s alfy(s) = e **" ——— (B, B).
adA2

Here we have introduced the notation A; to mean that this copy of A acts on the

copy of B in the above expression. Again, we integrate and find that

1 1— —sada, 1— —s(ada, +ada,)
(4.5.20) Us(s) = ( < c

- ) (B, B).

n adA2 adAl CLdAl + adA2

Again expanding the above expression in ad,4, and performing the adjoint action on
the appropriate copies of B, we get the following,

(4.5.21)

%BQ _ é[A, B]-B+ %[A, A, B]-B— éB- A B - é[A,B][A, Bl + 2—143- A [A, B].

Once we compute the commutators and normal order the expression, we get the

desired
(4.5.22)
1 1 28°T 273 1
P2(217 29, 821, azg) = 6T218Z2 - §T2Z%a§2 ( 3 - T) Ziia:; + éSQTQZilai

2 2T2 2 3 1 2 3 4 1 22204

+ S - T 21228Z2 + 55 TZl,ZQaZQ + 55 2122(9z2
2 2 293
—T220;, — ST220;,.

3

4.6. Expansion of exp(h(H ® H)/2)

Next we turn our attention to exp(h(H ® H)/2). As before, we wish to write this

as an exponential of a bilinear form and a higher order piece. We have the following.
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PROPOSITION 4.6.1. For exp(h(H ® H)/2) we can write
(4.6.1)
6h(H®H)/2 = 6a2/2hQ1(217 22, 82:1’ 8zg) (1 + hpl (Zla 225 8217 azz) + h2 pZ(Zh 22, 821, azg) + O(hg)) )

with

(4.6.2) Q1(21,22,0,,,0,,) = exp((t — 1)(210,, + 220.,)),
(463) P1 (Zl, 29, 821, 822) = 22122821 8,227

and

(4.6.4)  po(z1, 20,0,,,0.,) = 221290,,0,, + z%zza;a@ +221220,,0% + 2222202 02

2129 rAR)

ProOF. Finding the expression in Equation (4.6.1) is a simple matter of expand-

ing and normal ordering. The calculation is as follows

. exp(h(H ® H)/2) = exp (g (% + 221821> (% + 222832)>

= exp(a®/2h) exp(a(210., + 220.,)) exp(2hz1220.,0.,).

Once we expand the third exponential in powers of h and normal order the coeffi-
cients, we arrive at Equations (4.6.3) and (4.6.4). Now we turn our attention to the
exponential. For the moment, we will ignore exp(a?/2h) as it will be taken care of in
our final calculations as a framing factor. Now we must normal order the exponential.

Normal ordering we get that
(4.6.6) exp(a(z10,, + 220,,) =: exp((e® — 1)(210,, + 220.,)): .
Thus we conclude that

(467) Ql(zla 22, a21 ) 822) = eXp((t - 1)(Z1621 + 22822)).
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In order to complete the proof of Theorem 4.1.1, we must understand how to
compose the exponential terms and how to move a normal ordered operator through
an exponential of a bilinear form. For a discussion on the mechanisms of composing
and moving through exponentials of bilinear forms, see the next chapter. Now that

we have the required expansions, we complete the proof of Theorem 4.1.1 here.

4.7. Proof of Theorem 4.1.1

Proor. Using the previous propositions and lemmas, we have expanded the
pieces of the R-matrix into exponential and higher order terms. Let us take an inven-
tory of what we have. For ease of notation we will often write p; for pi(z1, 22, 0., 0z, ),

Q1 for Q1(z1, 29, 0,,,0,,), and so on. From Proposition 4.5.1, we have written
(4.7.1) exp(2hE ® F) = Qa2 (L 4+ hqi + h* g2 + O(h?)) .

From Lemma 4.4.1, we have written Equation (4.4.2) as

(4.7.2) 1+ hsp+h%sy + O(h?).

Furthermore, using Proposition 4.6.1, we have expanded

(4.7.3) eMHEH)/2 — () (1+hp + h? py + O(h3)) )

Now we must appropriately combine these pieces and normal order the resulting
higher order term. First let us combine (4.7.1) and (4.7.2) since all we need to do is

multiply

(4.7.4) (L+hq+h*g+0O0h%) - (1+hs +h*sy + O(h?))
and normal order the results. Doing so gives us

(4.7.5) N(z1,29,0.,,0.,) = 1+ hny + h*ny + O(h?),
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where

1 1
(476) nl(zl, 29, azl, 822) = (t_2 — 1) zf@i + (—t - ;) 2221832

and

23 2 2 1
mlen 2, 0,0.) = (= s 2= 7 ) 0%+ (1= ) itel

1\ 5. 42 210 53

+ (1 — ﬁ) 21622 + (? — @ + g) ZQZ18z2
2 1 9 904 1 1 1 4nd
(5*@“%"1@2* o )%

1 2 2t
+ (; — t) 2221632 + (g - §> 2321332.

In order to combine the higher order pieces from (4.7.3) and (4.7.5), we must move

(4.7.7)

(4.7.8) 1+ hpy +h%ps + O(R?)

through the exponential @)y of (4.7.1). Using the results of Proposition 5.2.1, this
amounts to making linear substitutions on z1, 29, d,,, and 0., as in equations (5.2.5)

and (5.2.9). These substitutions are
(4.7.9) 2121, = mt+t—t Yz, 0,0, —(t—t10.,, and 0,, > 0.,.

Once we do this moving through and normal order the resulting higher order term,

we arrive at
(4.7.10) 1+ hpy + h* Py + O(h?),

where

2 2
ﬁl(zla 22, 8217 azz) = (_2t2 - ﬁ + 4) Z%azz + (2t - ;) Z%azzam
(4.7.11) ,
+ (; — 2t> 2221832 + 2zzz10Z28z1
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and

(4.7.12)
. 4 12 4 12
pQ(Zl, 29, 821,(922) = (—4t3 + t_3 + 12t — 7) zf@i@zl + (4t3 — t_3 — 12t + T) 222%832
2
—%%ﬁ@+%%ﬁ%+(4ﬂ—ﬁ+0£@
2 2 392 2 2 402 2

293 2,294
222{0;,  2232{0;,
12 12

8
+ (—8t2 -t 16) 202702 0, —

2 8 2
+ (2t4 - 82 — o+ 12) 200 + (Zt - Z) 210.,0.,

2 2 2
+ (Qt - ;) 230,07 + (z - Qt) 202102, + <¥ - Qt) 252108,

4 4
+ (; - 4t> 252200 0., + (4t — ;) 20202 07 + 4202702

2

- 4z§zf(9§2 + 229210,,0,, + 22321(9222821 + 222236 92

z22¥z1
252,202 2

z9 721"

Only one more step remains to get the higher order term associated to R. We must

multiply and normal order

(4.7.13) (1+hp+h*pa+ Oh?)) - (L4 hng + h*ny + O(R?)) .
Doing so yields

(4.7.14) 1+ hRy(21,29,0.,,0.,) + h? Ry(21, 22, 0., 0.,) + O(h?),

with Ry and Ry given by Equations (4.1.12) and (4.1.13) respectively.
To conclude, we must prove that Q(z1, 29, 0,,,0,,) is given by Formula (4.1.11).
To establish this, we will show that the action on z; and 2, of the composition of @)1,

()2, and permutation P sending z; <+ z5 is the same as the action of () on z; and z,.
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Let us consider

(4.7.15)
(PoQioQy) == Poexp(t™ — t)z10.,) 0 exp((t — 1) (210, + 220.,)) - 2

= Poexp((t™! — t)210,,) - (t21)
= tZQ.

Similarly the action on 25 is

(4.7.16)
(PoQ10Q) -z =Poexp((t' —t)210.,) oexp((t — 1)(210,, + 220.,)) - 22

= Poexp((t™! —t)210,,) - (t2»)
=tz + (1 — %) 2.

Now we consider the action of () on both z; and z;. We have

(4.7.17) Q-2 = exp(—210., + t200., +1t210., — 1°220.,) - 21 = 2

and

(4.7.18) Q-2 = exp(—210,, + t220, + 1210, — t2220.,) - 21 = tz1 + (1 — %) 2.

Since the action of () is determined by its action on z; and 25, we have established
the @ given in Equation (4.1.11) is the exponential bilinear form in the expansion of

R. Hence we have completed the proof of Theorem 4.1.1. O

We have a corollary of Theorem 4.1.1 involving the inverse R-matrix composed

with permutation, R~

COROLLARY 4.7.1. The inverse of the R-matriz can be written as
(4.7.19)
7?/_1 == M(Zla 292, 8217 azz)(]- _l_ th(Zl, 29, a2’17 82’2) + h2 N2(217 292, a2:17 822) + O(h3))a
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where

1 1 1
(4720) M(Zl, 29, 8Z1,822) = exp (;218@ + ;ZQazl — t—22’1821 — 22822) s

1
(4721) N1<Zl, 29, 821, 822> = (1 - t2) 23631 + (t + ;) 2221831 - 22221822821,

and
(4.7.22)
1
Ny(z1, 22,0,,,0,) = <¥ — %) 252100 + (1= 17) 2302 + (4* — 4) 230,07,
200 4 10\ 45 .4 21 5 94
i (‘? NET ?) 220+ (5 T ap 1) 20,
2 3 3 th o 1Y a
+ (2¢% = 2) 25210.,00 + Co "+ 3 2,0,

8 8\ 4.4 1 o (2t 2\ L.,

(§ — §> 2,05, + <t — ;) 22107, + (§ — g) 222705,

4N 2 2\ 50 3

+ | —4t — n 25210.,0;, + | —2t — n 25210.,07

+ 220210,,0,, + 2232102,0,, + 229270,,07, + 2252702, 07

2221 z2 721"

PROOF. Since we have an expression for R~' in terms of the generators E, F,
and H, we could prove this corollary in a similar fashion as Theorem 4.1.1. However
we will use the expansion of R to prove the corollary. As before, we will often write
Ny for Ny(z1,29,0,,,0,,), M for M(zy, 29,21, 22), and so on. First note that using
Theorem 4.1.1

y 1
4.7.2 = -1
(4.7.23) R (1+hR1+h2R2+O(h3))Q

Hence to find the higher order part of R~!, we must expand

1
4.7.24
(47.24) (1+th+th2+(9@3)>
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and then move it through Q~!. We expand (4.7.24) in powers of h in the usual way,

1
47.25) <1 +h R+ b2 Rg) = 1= h R4 IR = Fo) + O(R).

The inverse of @ is indeed M as given by Equation (4.7.20). We can establish

this by investigating the action of M o () = Q) o M on z; and z;. We have that

1 1 1
(4726) (M o) Q) * 21 = exXp (2218,22 + 222821 — t—221821 — 226,22) : (tZQ) =21

and
(4.7.27)
1

1 1
(MoQ@) -z =exp <¥Z1322 + ;»2’28,21 - t_gzlazl - 2237,2) St 4+ (1= t2)z2) = Z3.
Similarly,

1 1
(4728) (QOM)'Zl = exp(—zlazl +t228Z1 +t218Z2 —t222(9z2)- (21 + ;ZQ — t—221) =21

and
1
(4729) (Q © M) 2 eXp<_Zlazl + t228zl + tz1822 - t2z2822) . <221) = Z9.

Since Mo@Q =QoM =1, M = Q! and we have the correct formula for M.
Once we move (4.7.24) through (4.7.20) using Proposition 5.2.1 and normal order

the result, we arrive at (4.7.19). O
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CHAPTER 5

Composing Operators and Taking the Trace

5.1. Outline of Calculation

In this chapter, we aim to describe the remaining techniques used to calculate the
perturbative expansion of the colored Jones polynomial. It will often be important
to distinguish when we are discussing an operator acting on C[z] versus when we
are discussing variables. To make this distinction, we will use a “hat” to denote an
operator, i.e. Z denotes an operator which acts as multiplication by z, while z simply
denotes a variable z.

Recall how we can calculate the colored Jones polynomial. Given a knot, K, we
present it as a braid, 5. As described in Chapter 2, this braid is made up of elementary
braids or crossings. To the positive crossing o;, we associate the expansion of R acting
on the i and (i + 1)* copies of W, in W®". Similarly, to the negative crossing o; ',
we associate the expansion of the R~! acting on the i** and (i + 1) copies of W, in
W™, Hence at each crossing, we have an expansion of the R-matrix of U,(s(2)) given
by Theorem 4.1.1. Recall that for each of these expansions, we have an exponential of

a bilinear form Qz and a higher order term ﬁbz So for each o; we have an associated
(5.1.1) o; + Q; 0 HO;

The associated action of the braid S as a whole has the form

~

i1

~

In order to eventually take the trace of this associated action, we must write f =

QB o }/Iag. To do this, we start at the top of the braid and compose the action of the



associated R-matrices. At each step of the composition, we have a Qij and a ]?5”
Then we also have an exponential and higher order term from the composition of the
previous crossings. Call these Q y and }/[5,\ for A = oy, ...04,,,. The first step in our
composition calculation is to move HO » through Qij as in Figure 5.1. This amounts
to making linear substitutions as described in Proposition 5.2.1 in Section 5.2. Once
we have passed HO » through Qij, we must compose Q A and QZ] This composition
will be described in Proposition 5.3.1 of Section 5.3. We then multiply HO x (after
passing through QZJ) and }/Ibij together and normal order the result. The method of

normal ordering will be discussed in Section 5.4

~

Q)\ © ﬁ(\))\ Qij © HOzJ
| J

FIGURE 5.1. Moving f/lb,\ through Qij

Once we have composed all the associated actions of the crossings, we must place
¢"/? at the bottom of each strand except for the first as described in Chapter 3. So
we must compose 1 ® ¢2/? @ ... @ ¢"'/? with Qg and ]leﬂ. The mechanisms of this
composition are the same as described in the previous paragraph.

To complete our calculation of P (IC;t) and P®)(K;t), we must take the reduced
trace of what we have calculated so far. To accomplish this, we will make use of
the holomorphic representation discussed in Section 5.5 and then apply the trace
procedure described in Section 5.7. As explained in the introduction, we will close
all of the strands except the first and calculate the reduced trace on these. Once the
trace is taken, we have the expansion in h = log(q)

PO |, (POK:) :
AL() )*h ( AL() >*O(h)'

Here we must pause and explain that our A and ¢t must be renormalized for our

(5.1.3) 1+h (

polynomials to coincide with the polynomials previously calculated for a few torus
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knots by Rozansky in [23]. Let us denote the parameters used in [23] by a tilde, i.e.
¢ indicates ¢ used by Rozansky in [23]. Rozansky expanded in h = G — 1 while we

2

expanded in h = log(q). Furthermore § = ¢°, so we have that

(5.1.4) h =log(V'1+ h) :g h + O(R?).

2
4
Also we have that t = te". Thus as a final step in our calculation, we make the

appropriate substitutions and expand in h. Then we have PM(K;t) and P®(K;t)

as given by Theorem 3.5.3.

5.2. Commuting Polynomial Operators and Quadratic Exponentials

Now that we have expressed all the pieces of the R-matrix as exponentials of
bilinear forms and normal ordered operators, we must understand how to move an
operator through an exponential of a bilinear form and how to compose such expo-
nentials. Here we discuss the former. Please note that for ease of notation, we will
often drop the limits of a summation, i.e. we will write Z instead of Z We also
denote z,...,2, by z and 0,,,...,0,, by 0,. It is Well—knoévn (for examﬁé, see [10])

that an exponential of a bilinear form,

(521) f(&w = exXp (Z Aijzi(?wj)
]

is an algebra homomorphism Clw] — C|z]. We must consider how to move an oper-

ator through K, ,. Thus we are asking what are p(z) and r(9,) in the equations

N — N

(5.2.2) Kowoty=p(z)oK,w
and
(523) Kg,y o awk - @ © Kg@

Recall one of the reasons we must know how to do this; in Chapter 4 we have expanded

the pieces of the U,(sl(2)) R-matrix and have an exponential term and higher order
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term for each. We wish to combine these into a single quadratic kernel and higher

order term.

PROPOSITION 5.2.1. Given an exponential of a bilinear form,

(5.2.4) K, ., =exp (Z A;j2i0y, > :

we have that

(525) g@owk (ZA kzl) zZ,w

Thus when moving wy through the above exponential from right to left,
(5.2.6) Wy > Az,

If we are moving the operator from left to right, we use A~

PROOF. This is a consequence of the fact that K, is an algebra homomorphism.

Let ¢)(w) be a test function in C[w] and consider (K, o wy) - ¢¥(w). We have that

~

(Kpw 0 W) - Y(w) = Kz,w(wkw(w))

(5.2.7) = kz,w(wk) ° KLQ&MM))

(ZAszZ> 2w (V(w)).

So the overall effect when moving multiplication by wy, right to left through K., is

Now we wish to find the same relationship for partial derivatives.

PROPOSITION 5.2.2. Given an exponential of a bilinear form,
(528) Kz,w = exp <Z Aijzﬁwj> 3
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we have that

(5.2.9) ., 0K, =K.,o0 (Z Amkawk>

Thus when moving 0,, through the above exponential from left to right,
(5.2.10) Oz 7 Y AikOus,.
k

PROOF. Let 1(w) € Clw] and consider (9., o K, ) - t(w). We know how K.,

acts on Y (w); it sends wy, — Z Airzi. So we have

)

(5.2.11) (8., 0 K,u) - ¥(w) = 0,0 (wk => Aikzi> .

Applying the chain rule, we get that

) ow
6219 o (= Tun) =3 (22,002,

(2

but

Owy A and  ——

2.1 — =
(5:2.13) 0z, owy,

So overall we have that

(5.2.14) (8., 0 K,) - ¥(w) = K, o0 (Z Amké?wk> Y(w).

We use these relationships whenever we wish to move an operator through an expo-
nential of a bilinear form. There are two key places that we use these transformations.
First, when we were finding an expansion of the R-matrix in terms of an exponential
and a higher order operator, and second, whenever we are composing the crossings of

a braid representation of a knot.
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5.3. Composing Exponentials of Bilinear Forms

Since exponentials of bilinear forms are algebra homomorphisms, it is to be ex-

pected that they compose in the natural way. Here we show that this is the case.

PROPOSITION 5.3.1. Given two algebra homomorphisms

(5.3.1) Ki.w:Clz] = Clw] and Koy, : Clw] = Clu]

given by

(532) [A(l;é’w = exXp <Z Aijzﬁwj> and [A(Q;Q& = eXp (Z Bjkwjauk>
ij g,k

their composition

(5.3.3) Kl;g,w © K2;w7y : Clu] — C[g]

s given by

(534) Kl;g,g o IA(Q;Q& = exXp (Z AUB]kzz@uk> .
1,7,k

PROOF. We will establish this by finding the action of K., 40 K.y on 1 € Clu]

for a fixed [ with 1 <[ < n. Consider the action of the composition on u;:

(K1pa © Koigpy) - g = €xp (Z Aijziawj> o exp (Z Bjkwjauk> -y
i.j Gk

(5.3.5) = exp (Z Aijziawj> ' (Z lewj)
i3 J
= Z AiijlZi'
12
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We compare this to the action of [A(gﬂ = exp <Z Aiijkzi8Uk> on u;:
i7j7k

(536) Kg,g U = exp (Z AUBjkzﬁuk> U = Z AUBJZZZ
ij,k ij
Since the action of the algebra homomorphisms is determined by its action on the

subspace of Clu| generated by {ur : 1 < u < n} and the actions coincide on this

subspace, we have that

(5.3.7) Kl;g,w © [A(Z;w@ = &Xp (Z AiijkZia%) :

i7j7k

So now whenever we wish to compose two quadratic exponentials given by matrices
A and B, we simply use their matrix product AB. We note that this is indeed what

one would expect since K., 5 and Ky, ; are algebra homomorphisms.

5.4. Normal Ordering by Wick’s Theorem

In order to take the trace using the holomorphic representation, all of the operators
that we encounter must be normal ordered. A differential operator is normal ordered
when all of the multiplication by any z; appears to the left of any partial derivatives.

We use Z; to indicate the operator that acts as multiplication by z;:

(5.4.1) 2(2) = z(2).

Recall that we are working with polynomial operators in z and 0, and they satisfy

the relation
(5.4.2) (0=, 23] = bij-
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In addition to this relationship, all of the partial derivatives commute with each other
as do each of the Z;’s:
[@” 8@} = 07

(5.4.3)
[21‘, ZAJJ] =0.

If we encounter Z; to the right of 0,,, we can use the relation in (5.4.2) to write

We aim to be able to use this relationship to efficiently normal order our operators
in the Mathematica program. To do this, we use Wick’s Theorem of normal ordering.
A discussion of this theorem can be found in many texts including [6] and [19]. For
a historical perspective, this theorem was proven by Wick in 1950 in [26] as a way
to normal order creation and annihilation operators in quantum field theory. In this
language, we call 2; creation and 0., annihilation. In order to state the theorem, we
must discuss the contraction.

Let A, l’;’, and O denote operators containing creation and annihilation operators.

Then we make the following definitions.

DEFINITION 5.4.1. An operator O is said to be normal ordered when all of the
annihilation operators appear to the right of the creation operators. We denote a

~

normal ordered operator by : O:

-
DEFINITION 5.4.2. For two operators, A and B, we define their contraction, AB,

as
(5.4.5) AB = AB—: AB -
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Using our new definition of contraction, we get the following concerning the con-

tractions of creation and annihilation operators.

- . .
821. j = 821.23—: 8zizj: = 5@‘,

/\ﬁ A
z,@zj = zi@j—: éic?zj L= O,
(5.4.6)
e
RiRj = ZiRZj T Zi%j =0,
T

0.,0., = 0.,0.,—: 0.,0.,;: =0,

Now that we have the necessary definitions, we are ready to state Wick’s theorem
regarding normal ordering operators. The content of the theorem is the following:
given a string of creation and annihilation operators, the string can be rewritten as
the normal-ordered product of the string plus the normal-ordered sum of all possible

contractions.

THEOREM 5.4.3. The ordinary product of linear operators A .. A, can be written

as

(5.4.7)

A An = A Ay 4 s A A A A 1> A A A A AL A
i#£j i,9,k,1

Whenever we need to normal order a higher order term or a product of such terms,

we apply Wick’s theorem to efficiently perform this action.

5.5. The Heisenberg Algebra and the Holomorphic Representation

Throughout the remainder of this chapter, we will be using the holomorphic rep-
resentation to facilitate the trace and other calculations. A good reference on this
subject is [10] and much of the following discussion is based on that text. We consider

the Heisenberg algebra denoted H;» which is

20, 55 2i] = 0ij)
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and a module C[z] over it. Recall that an operator is said to be normal ordered if all

partial derivatives appear to the right of any Z;. We can construct a linear map

(5.5.2) F i Hzo, — Cllz, 2]

2

such that for every 1(z) € C[z] and normal ordered operator O € Hso.

(5.5.3) O(W(z)) = /.7:[ Z,W exp( szw) Zj”

We will refer to K(z, z) = F[O](z, 2) as kernels and O as operators. As described in
[10], we have the following theorem concerning our linear map F which allows us to

move freely between kernels and operators:

THEOREM b5.5.1. Let
(5.5.4) O=) A",

be a normal ordered operator in Hsp . Then F|O](z,2) is given by the formula

(5.5.5) K(z,2) = FlO)(z,2) = exp (Z ziéi) ZAmnsz"

We will make use of this theorem repeatedly throughout the remainder of this chapter.

For us, the kernels we will be dealing with will involve exponential functions of
bilinear forms. We will call these quadratic kernels. When integrating a kernel of
this form, we are integrating what is called a Gaussian integral. In each of our
calculations, we will make use of a well-known property of integrals of this form: the
integral is equal to the value of the integrand at the extremum point of the exponent
of the exponential function, up to a constant that is included in the definition of the

integration measure [10].
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5.6. The Kernel Associated to /3’

Once we have an associated action ,@ to a braid 8 as discussed in the previous
chapters, we must take the trace of this action. Recall that we will have two pieces
after composing the crossings of the braid representation of a knot and placing ¢**/?
at the bottom of each strand except the first. We will have an exponential term and
a higher order term. We must first get the kernel of the composition of these two,
and then we will be ready to take the trace of this action using the holomorphic
representation.

For the matrix A associated to the exponential piece of the braid calculation, the

kernel is given by

(5.6.1) Kg(z,2) = exp <Z Aimzizm> )

i,m
The higher order piece of the braid calculation is given by a normal ordered expression

ﬁb/g = P(z,0,). Using Theorem 5.5.1, the kernel associated to this is given by

(5.6.2) Kuo(z,2) = F[HOg)(2, 2) = exp (Z zz) P(z,2).

%

Now we must compose these and encode this action into our program.

PROPOSITION 5.6.1. For the associated action of B together with 1® (¢/2)®m=1),
we have an exponential of a bilinear form, QB, and higher order terms, _ﬁ(\)g =
P(z,0.). In the holomorphic representation, the kernel associated to their composition
18:

(5.6.3) FlQs o I/‘fb/g] = exp (Z Aljwluj) P (ZM’Q) :
I

j?l
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PRrROOF. We must calculate

(5.6.4)

.7:[@5 o HOB /exp (Z 2y — Z 2% + Z Alkwlzk> P(z,u)d*z
= /eXp <— Z(ZJ — ﬂj)(zj — ZAljwl) + ZA[leﬂLj) P(g, Q)CP&
1 j.l

J
Using the property of the Gaussian integral this calculation yields

(5.6.5) exp (Z Aljwlﬂj> P (ZM, Q) :

al

5.7. Taking the Trace

In order to complete our calculation, we must take the reduced trace of the Qg o

f/lbg. Given any K , we can take its trace using the holomorphic representation:

(5.7.1) WK = /exp( Z%«%) (2,2) d2

where d?2") = d?2z,...d%z, normalized appropriately.

We wish to take the reduced trace of an exponential of a bilinear form Q 3 together
with a normal ordered operator 1?55. We will describe how to take the reduced trace
of Qg together with a general monomial from ﬁb/g after the substitution described
in Proposition 5.6.1. This description can be extended linearly to all of 1{[55.

Consider O, =: [, = /1=, 05 - . We know that the kernel associated to

this operator is
(5.7.2) Opmr = FlOp,] = exp (Z Zill_JZ') H z"wy
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In order to calculate the reduced trace of Qﬁ o @m,z, we need to calculate

(5.7.3)

/eXP (Z (Aijzigj 51]) + A2z + Z A2z + Z lel> H Zml J“] d2

i,j=2 1=2 ij=1
We can calculate this by introducing Q;; = d;; — A;; for 2 < 4,5 < n. Then we have
that the above integral (5.7.3) is

(5.7.4)
gAuaz /exp (Z —Qij (Zz - ZQ;;IAlkZl) ( ZQﬂ A1121> + Z 21 A1Qy Al121>
ij=2 =2 k=2
H mi = d2 (1)

1,5=1

By defining 2, = z; — Z le Az and z =Zj — Z ng ApZ1, the integral becomes
k=2

(5.7.5)

D/exp( ZQU ) H (ZZ{JFZleA”“zl) <2}+2Qﬂ1,41121> d2§/(1>,
k=2 =2

1,j=2 1,J=2

n
where D = exp <A11z121 + Z zlAlemlAuEl) z1Z1. So now to complete the calcu-
k=2
lation of Tr(l)(Qg © Opr), we are concerned with calculating the integral

(5.7.6) /exp (— Z Quz;z;) H A 42z
Y]

i.j=2

A

where Q;; = 6;; — A;j for 2 <4, 5 < n. To calculate this integral, we use a technique
that is common in quantum field theory. For a reference, see [20]. As stressed in
the introduction, we are performing this technique in the rigorous case with a finite

number of variables. We introduce parameters

(5.7.7) €= (€g,...,6,) and €= (é,...,€)
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and then we note that

(5.7.8) H Z™MZT = H ooz <exp (2": €2, + z”: QZ}) )
ij ij =2 =2

Hence if we define Z (¢, €) as

(5.7.9) Z(€,€) = /exp ( Z QijzZ; + €zl + Q-Zé-) a2,

1,j=2 1=2 J

e=é=0

[|
N

then the integral (5.7.6) is equal to

(5.7.10) [Tomoz (Z(e @)

ihj

e=e=0"

We can use our usual technique to calculate the integral Z (e, €):

(5.7.11)
Z(e,€) = /exp <— Z Qij2Z; + Z €2 + Z Ejz§.> a2z
ij=2 i=2 =2
= /exp ( Z Qz] (Z - ZQM €k> (Z - ZQJZ €l> + Z Qz]le Qﬂ 6kel> d2
1,j=2 ,7,k,1=2
= exXp <Z Q];llgk61> .
k=2

So now in order to calculate the reduced trace, we must find

(5.7.12) [omoz (exp (i: Q,;llekel»

i k=2

e=e=0

To calculate Formula (5.7.12), we consider the N term of the formal power series

expansion of Z(e, €)

N
1 (= 1
(5.7.13) Ty = N (Z lel€k€l> )
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n n

where N = Z m; = Z rj. Furthermore, we will only need to consider the monomi-
=2 j=2

als in Ty of the form

m2 M3 Mnp T2 T3 =T
(5.7.14) €y €5 LLENT €Y ES L EN

because these are the only ones that will survive the partial derivatives and then

setting € = € = 0. Indeed in the one-dimensional case

m! fm=r

e=0

(5.7.15) e’

0 ifm;«ér‘

~

So we see for the monomial O,,, =: [[; /" [1, 0 : , the contributing term to the
reduced trace is

malms!...mylral. r)!

(5.7.16) Vi .

where C,, , is the coefficient of €52 €5 ...€)'m €52 €5 ...€» in the formal series expansion of

Z(€e,€) = exp (Z Q,;llekel> and N = Zm,- = er. We perform this procedure

k=2 J
for each monomial in HOpg and sum the results. This gives us the reduced trace.

Now that we have taken the reduced trace, we have arrived at the perturbative
expansion of the colored Jones polynomial. From this we get P (K;t) and P®)(K;¢).
In the next and final chapter, we present the results of this work. We have calcu-
lated the first two polynomials for all prime knots of up to nine crossings and for all

amphicheiral knots of up to ten crossings.
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CHAPTER 6

Results and Evidence Supporting the Conjecture

6.1. Results

Now that we have explained the mechanisms by which we calculate these polyno-
mials, we are ready to demonstrate and discuss our results. So far, we have calculated
PO(IC;t) and PP (K;t) for all prime knots up to nine crossings. In addition, we have
calculated the polynomials for all amphicheiral knots of up to 10 crossings. Our calcu-
lations provide evidence to the validity of a conjecture concerning these polynomials
for amphicheiral knots. As we continue to run our program, we will be able to cal-
culate and study these polynomials for knots of ten crossings and so on. After we
present these polynomials, we will discuss how our results verify the conjecture from
[23] about amphicheiral knots. For our table, we have used the knot diagrams from

Knot Info [8].



Table 6.1: P (K;t) and P®(K;t) for 3; through 949

Knot | Knot Diagram | P (K;t) and P® (K;t)
POty =t =202 42 -2t 41!
31
<\ POK;t) = —t 4t 241482 ¢!
q PY(K;t) =0
4,
PO(Ct) =t —at72 45— 4> + ¢4
POty =2t78 — 4t 6 4 5¢74 — 6172 + 6 — 6t 4 5t
/\ — 4¢% 4 2¢
5, @ PO t) =710 — 4= 4 8t712 — 126710 4 13¢78 — 1876
+32t7% — 49172 + 61 — 49> + 32t* — 185 4 13¢°
(\ PO(K;t) = =5t + 14t72 — 18 + 14¢% — 5t
5 @ PO(KC; 1) = 23t~ — 130¢7 + 35614 — 629¢2 + 762 — 629¢2
+ 356t* — 130¢° 4 23t°
POty =t* —6t2+10— 6t +t*
6, PAO(K;t) = —t78 41076 — 32t + 57t72 — 70 + 57> — 32t*

+10t5 — ¢*
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PO(K;t) =78 —6t75 + 13t™* — 1672 + 16 — 16> + 13t*
@ —6t° +¢°
02
@ PO(IC;t) = —t712 + 14¢710 — 63¢78 4+ 135t 76 — 131¢7* 4 2t 72
+ 87 + 2t* — 131¢* + 135¢5 — 63t% 4 14410 — 12
PO t) =0
65 @ POK;t) = —t712 4 4¢710 42678 — 52¢76 4 177¢7* — 332t 72
\) 405 — 33262 + 1774 — 5245 + 248 + 4410 — 412
PO t) =3t712 — 61710 4 8t78 — 10t76 + 11474 — 12t 72
— 12 — 12¢% + 11¢* — 105 + 8¢5 — 6¢1° + 3¢'2
/\”,\ PO(IC;t) =3t — 12672 4 274720 — 48¢718 4 72716
7 ( /_?) — ot~ M 4 11447 — 1416710 4- 189t 7% — 255¢7F
N + 333t 1 — 402t 7% 4 438 — 402¢* + 333t*
— 2555 + 189¢% — 141410 4 1142 — 96t
4 72416 — 48" 27420 — 1222 4 3%
PW(KC;t) = 14t — 44472 + 60 — 441 + 14¢*
Ty [\\/Q PO(IC;t) = 42t8 — 24875 - 705t~ — 1294t + 1593

— 1294¢% + 705t — 2485 + 4218
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PO t) = 9t™8 — 26178 + 41¢7* — 52t 72 + 56 — 52t + 41t*
— 26t° + 9t®
(\7 PO(IC;t) = 23t76 — 130t~ 4 372t 712 — 740t 710 + 1193¢78
: \b> — 1793t 7% + 2615t~ — 3462t~ + 3849 — 3462t
+2615¢* — 17935 + 1193t% — 740" + 372¢*2
— 130t + 23¢'°
QA PW(KC;t) = 24t — 80t 72 — 80t* + 112 + 24¢*
T4 @ PO(IC;t) = 112¢78 — 720t~ + 2177t — 4064t % + 4994
@ — 4064t + 2177t — 720¢° 4 112¢°
PO(KC;t) = 978 — 34¢76 + 70t~ — 102t72 4 114 — 1024
+ 70t* — 34¢% 4 9¢®
@ PO(K;t) = 23t 716 — 168t 14 4 632t 12 — 1652t 10 4 3389¢ 8
E ;D — 5847t + 8697t — 111172 + 12090 — 11117¢
+ 8697t — 5847t% + 3389t — 1652t'° + 632¢'2
— 168t + 23t1°
PO(K;t) =78 —10t7% + 36t — 66t 2 + 78 — 66> + 36t*
/3 —10t5 +¢®
Ts

PAOK:t) = 8710 — 60t~ + 155t70 — 99t~ — 253172 + 499

— 253t% — 99¢* + 155t — 60¢° + 8¢1°
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Knot

Knot Diagram

PWO(K;t) and PP (K;t)

S
@

PO t) = 3t — 14t72 + 22 — 14¢% + 3¢4
PO(KC;t) = —t712 + 12¢710 — 46¢75 4 3676 4 207t~
— 673t7% + 929 — 673t 4 207t* + 36t° — 46¢°

+ 12410 — 12

&

e

.

PW(K:t) = 5t™* — 26172 + 42 — 26t% + 5t*
PA(IC;t) = —3t8 +20t76 — 1474 — 63t72 + 117 — 63t

— 14¢* +20¢% — 3¢8

82

PO t) = 2¢712 — 126710 4 28478 — 40t76 4 47t~ — 50t 2
+ 50 — 50t? 4 47t* — 4015 + 28¢5 — 12410 4- 2412
PO(IC;t) = 72 — 12722 4 63t 20 — 194t~ 18 4 407716
— 628t + 738¢712 — 742¢710 + 962t ® — 1826t ¢
+ 3361t * — 4979t 2 + 5698 — 4979¢* + 3361¢*
— 1826t° 4 962t — 742t'0 + 738¢'% — 628t

+407t10 — 1944 + 63¢2° — 1212 + ¢4

83

PY(K;t) =0
PO(KC;t) = 16178 — 176t7¢ + 795t~ — 1848t~ 2 4 2422

— 1848t + 795¢t* — 1765 + 16¢°
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Knot

Knot Diagram

PWO(K;t) and PP (K;t)

P

PW(KC;t) = 3t78 — 1475 4 25¢ 74 — 2472 + 20 — 24t + 25¢*
— 1415 + 348

PO(KC;t) = =716 + 10t71 — 60t~ 12 4 268t 710 — 761¢78
+1205t7% — 697t * — 852t7% + 1773 — 8522
— 697t + 12055 — 761t% 4 268t1° — 60t

+ 10t — 16

85

PO(KC;t) = 26712 — 12¢710 4+ 31478 — 54476 4 75¢74 — 88472
+ 92 — 88t% + 75tt — 5415 + 3148 — 12410 4 2412
PA(K;t) =720 — 12072 4 65t720 — 214¢7 '8 4 5014716
— 927t 1+ 1492t 712 — 229871 4 3596t °
— 5579t + 8009t~ — 10117t 2 + 10965
— 10117¢* + 8009t* — 5579t° 4 3596t% — 2298¢1°
+ 1492t — 927t + 501" — 2144 + 65¢%°

. 12t22 + t24

86

PW(IC;t) = 568 — 30t7% + 73t ™% — 10872 + 120 — 108>
+ 73t* — 30t 4 5¢°

PO(K;t) = 3t716 — 36t 4 182t 712 — 498710 + 91578
— 1593t 7% + 3179t — 554412 + 6782 — 5544¢*
+ 3179t* — 15935 + 915t — 498410 + 182412

— 36t + 3t16
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+1634t710 — 2074t8 + 1502t % + 270t~ — 2351t 2

Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PO(KC;t) =712 —6t710 +19¢78 — 36¢7° 4+ 47t* — 50t 2
+ 50 — 50t% + 47t* — 36t° 4+ 19¢% — 6¢1°0 + 12
m PO(IC;t) = =20 + 10t718 — 58t 716 4 238714 — 692¢12
8 </\
\_[j + 14014710 — 1908t + 1464¢° 4 226t 4 — 2319t
+ 3280 — 2319¢% + 226t* + 14645 — 19083+
1401t1° — 692¢12 4 238t — 5816 4+ 10¢18 — 20
PO(K;t) =78 — 6670 + 21t — 44t7% 4 56 — 444 + 21¢*
/\D — 6t + 8
A
8g Q PO(IC;t) = —t716 4 12¢714 — 824712 4 3261710 — 790t 8
\/ +1179¢t7% — 996¢~* + 296¢ 2 + 114 + 296t> — 996¢*
+ 11795 — 790t% + 326110 — 8212 + 12414 — ¢16
PO(K;t) =0
% PO t) = —t720 4+ 12t — 58¢16 4 156t — 236t 2
8 +60t710 4+ 735¢78 — 2372¢76 + 45784 — 654412
9 gy\/>
+ 7338 — 65442 + 4578t* — 2372t% + 735¢% + 60¢1°
— 236t + 156¢'* — 5816 4 12418 — 20
PO(KC;t) =712 — 6710 420t 78 — 42676 4 641~ — 78t 2
+ 82 — T8t + 64t* — 42t% + 20% — 6110 + 12
/—\ (1.4  __94—20 -18 —16 -14 —12
C\\/ PA(C;t) = —2t72° + 19t 99t 16 4 351¢ 892t
* 198

+ 3287 — 23512 + 270t* + 1502t° — 2074¢%

+ 1634t — 892¢12 4+ 35141 — 99416 4+ 19418 — 2420

66




Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(IC;t) = 5t% — 34¢70 +92¢~* — 146t 72 + 166 — 1461
+ 92t* — 341 4 5¢°
@ PO (IC;t) = 3t710 — 38t~ 4+ 199t 712 — 552¢ 710 4 1029t ~%
811 N
—6 -4 -2 _ 2
& — 1949t 76 + 4339t~* — 797172 + 9879 — 7971t
+ 4339t* — 1949¢° 4 1029¢® — 552¢'0 4 199+2
— 38tM + 3t1°
PY(K;t) =0
@\ PO(IC;t) = 4t "2 — 726710 4 5578 — 2436t 75 + 6669t
812
\D — 120002 4 14553 — 1200012 + 6669¢" — 24361°
+ 5575 — 72t10 4 4412
PO, t) =78 — 6175 4 23t7* — 52t 72 + 68 — 52t + 23t*
— 6t + 8
/\D PO(K;t) = —t710 4 14t — 98¢712 + 410t 710 — 1057t 8
813 (\/\)
Y +1647¢7% — 1373t + 242¢72 + 433 + 242¢°
— 1373t" + 1647t% — 1057¢® 4 410¢'° — 98¢'?
+ 14t14 o 2516
PW(K;t) = 578 — 38t76 4 118t7* — 210t 2 4 250 — 210#>
+ 118t* — 38t° + 5¢°
(—E\ PO (IC;t) = 3t710 — 40t + 248t 712 — 948710 4 2618t ~°
814

— 5829t % + 10838t ~* — 16247t~ % + 18714
— 162472 + 10838t* — 5829t + 2618¢% — 94819

+ 24812 — 40t + 3¢16
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(IC;t) = 2178 — 106t 75 4- 269t~ — 444¢72 4 520 — 444+
+ 269t* — 106t° + 21¢8
. C@ PO (IC;t) = 120t716 — 1271t~ + 6263t 12 — 206441 1°
15
CC + 50993t % — 99815t + 159284¢* — 2100512
+ 230228 — 210051#* 4 159284t* — 99815t
+50993t% — 20644¢'° + 6263 — 1271t 4 129¢°
PO t) =712 —8¢710 4 30t7% — 6875 + 108t~ — 13412
+ 142 — 134¢% 4 108t* — 685 + 30t — 8¢10 4 ¢!2
C@ PO(KC;t) = —2¢720 4 25718 — 156t 710 4 621¢714 — 170912
8 RS
16
Ué + 3325¢ 710 — 4416t 4 3259t + 820t ™% — 5821t 2
+ 8109 — 58212 + 820t* + 3259t° — 4416t°
+ 3325¢10 — 1709¢'? + 621t — 156t + 25¢18 — 242
PY(KC;t) =0
PO(K;t) = —t720 4126718 — 56¢716 + 108t~ + 135t 12
m — 1564t + 5571¢ % — 13056t ¢ 4 22931¢~*
817 /T/

— 31704t2 + 35247 — 31704¢% + 22931t* — 13056t°
+ 5571¢% — 1564¢1° + 135¢'% + 108t — 5616

+ 12t18 o t20
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PYO(K;t) =0
m PO(K;t) = 13¢716 — 180t~ + 1168¢'2 — 4760t 10
| _8 -6 —4 -2
815 w > + 13742478 — 299641~ + 51208t — 70002
+ 77731 — 70092t + 51208t* — 29964t° + 13742°
— 4760t + 1168¢'2 — 180¢'* + 13¢16
PO ) =32 —6t 10 43t 2 44t -5t —20246
— 212 — 5t* 4 415 + 3t — 6410 + 312
[\F\ PO(KC;t) =3t — 12t72 + 18720 — 7¢718 — 174716 4 30t~
8 ”“3
19 /\
— 25t 12 4+ 20t719 — 40t % + 65t ¢ — 10¢7* — 130t 72
+ 215 — 130t% — 10t* + 65t — 40t® + 20¢1° — 25¢12
+ 30 — 17816 — 718 18420 — 12422 + 3¢
PO, t) = 4t~ — 12672 416 — 12> + 4t*
@ PA(IC;t) = =7t 2 4+ 46710 — 120¢78 + 13876 4 14t~
820
D — 27872 + 416 — 278¢% + 14¢* + 138t — 120¢8
+ 46t — 712
PO(K;t) =78 — 10675 + 33t — 60t 2 + 72 — 60> 4 33t*
j — 108 + ¢
/S
821 % PO(IC;t) = 71 4 4t712 — 60t 10 + 27618 — 775¢7°

+1550t™% — 2331¢72 + 2670 — 23312 + 1550t*

— 775t% + 2761% — 60¢'0 4 4¢'2 + ¢4
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Knot

Knot Diagram

PWO(K;t) and PP (K;t)

9

FOu
Q-

Qe

PO(KC;t) =4t — 871 4 11¢712 — 146710 4 16¢7% — 18¢7©
+19t7* — 20t72 + 20 — 20t* + 19t* — 185 + 16¢°
— 14410 4 11412 — 8! 4 4¢1¢

PO(K;t) = 6t732 — 24t 730 4 561728 — 104t~ 4 166t~
— 240t~ % 4 320t 20 — 400t '8 4 470t '° — 556¢ 1
+ 680t 1% — 845¢t10 + 1050t ® — 1275¢ % + 1496t ~*
— 1670t™% 4+ 1750 — 1670t + 1496t* — 1275t°
+1050t% — 845¢'% + 680t'* — 556t 4 470t°
— 400" + 320t%° — 240t* + 166t** — 104t%

+ 56128 — 2412 + 6132

9

\@\
3

f
¢

PY(IC;t) = 30t — 100t =2 4 140 — 100¢2 + 30¢*
PO (K;t) = 252t ™% — 1628t 76 + 4934t~* — 91862 + 11260

— 9186t% + 4934t* — 1628t5 + 252¢°

&3

PW(KC;t) = 13t712 — 38710 4 62¢7% — 82t76 4 97t~ — 108t 72
+ 112 — 108t% 4 97* — 82t°% + 62¢® — 3810 4- 13t
PA(K;t) = 59t — 342t722 41037t 20 — 2256118
+ 3989t 16 — 6102t + 84571 — 11235t 10
+14817t7% — 19267t ¢ + 24063t * — 28032t 2
+ 29633 — 28032t + 24063t* — 19267¢° + 14817t
— 11235t 4 8457¢'? — 6102t + 3989+ — 2256¢'®

+1037t%° — 3424?22 + 59¢%4
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(KC;t) = 23t8 — 74t + 125¢t7* — 164t 72 + 180 — 164¢>
+ 125¢* — 74¢° + 23¢°
57% PO(IC;t) = 168t 716 — 1064t 14 + 3397t 12 — 74944710
B %[j + 13245¢% — 20655t ° + 29463t ~* — 37560t >
+ 41007 — 37560t + 29463t* — 20655t° 4 13245¢°
— 7494¢'0 4 3397 — 1064t + 168¢'°
T\ PO(K; t) = 65t — 230672 + 330 — 23012 + 65t
95 &/@ PO(K;t) = 1095t % — 7654t % + 24458t* — 46567t >
k@/ + 57342 — 46567t + 24458t* — 7654t° + 1095¢°
PW(K;t) = 13t712 — 50t 710 + 1068 — 166t ¢ + 217¢*
— 25272 + 264 — 252t% + 217t* — 166t° + 106
— 5010 4 13¢"
(//\3 PO(C; ) = 5924 — 448t~ + 178020 — 4946¢ 18
96 E) +10794¢ 7' — 19788¢ ' + 31980t 2 — 47371 1°
>

+ 65965t — 86985t % + 107770t ~* — 123616t >
+ 129619 — 123616t + 107770t* — 86985¢°
+ 65965t — 47371t 4+ 31980¢'%2 — 19788¢14

+ 10794¢'6 — 4946t + 1780¢%° — 448t%2 + 59
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Knot

Knot Diagram

PWO(K;t) and PP (K;t)

&

PW(IC; t) = 23t78 — 102t 75 4- 234t~ — 362t 72 4- 414 — 3621
+ 234t* — 102t° + 23¢°

PO (KC;t) = 168716 — 1456t + 6392t 12 — 18984110
+ 42948t% — 78779t 7% 4+ 120667t * — 155813t >
+ 169719 — 15581312 + 120667t* — 78779t°

+ 42048¢% — 1898410 + 6392t — 1456t + 16816

98

.
0%

PO t) = 3t78 — 22676 + 647 — 102t72 + 114 — 102¢°
+ 64t — 22t6 4 3¢8

PO(KC;t) = —t716 + 16t — 1206712 + 556t — 1613¢~°
+ 2695t % — 1855t — 1345t 2 + 3334 — 1345¢2
— 1855t* 4 2695t° — 1613t% + 556¢'° — 120¢'2

4 16t14 _ t16

99

)
N

PO ) = 13t712 — 506710 + 1168 — 206t + 297t~
— 364t 4 388 — 364t% 4 297t* — 206t° 4 116t
— 50t + 13t

PA(K:t) = 59t~ — 4481722 + 1856t~ 2 — 5554¢ 18
+ 1335810 — 27310t~ + 49099t 1% — 79427t 0
+ 117166t — 158525t % 4- 196982t ~* — 224610t 2
+ 234716 — 224610t* 4 196982t* — 1585256
+117166t° — 7942710 + 49099+ — 27310t

+ 13358¢16 — 55544 + 1856420 — 448t%2 + 59¢%4
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— 17421¢75 + 33493t~ — 50852t 2 + 58771

Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(IC; t) = 40t™8 — 152t 75 4- 298t~ — 4202 4- 468 — 420¢*
+298t* — 152t° + 40¢®
ﬁ) PA(K:t) = 4961710 — 3680t + 137041712 — 34792710
0 w +69151¢7% — 116396t ¢ 4 171083t ~* — 218294t >
+ 237464 — 2182941 + 171083t* — 116396t°
+ 69151¢% — 34792t + 13704¢'% — 3680t'* + 496t
PO(KC;t) = 26712 — 206710 + 75¢ 78 — 150t % 4 211474
— 24872 + 260 — 248t* + 211* — 150t° + 75¢°
— 20110 4- 2t
§>\ PO(IC;t) = 724 — 20t722 4 175¢~20 — 886t~ '8 + 2949t 16
99 Q@ — 702871 4 12910t 12 — 19946t 10 4+ 290778
\/ — 43383t% 4 63831t — 84100t 4 92844
— 84100t + 63831t* — 43383t° + 29077t*
— 199464'° 4- 12910¢'% — 7028t 4- 2949¢'° — 8861®
+ 175¢%° — 20¢%% 4 ¢
PW(IC; t) = 5¢78 — 46t76 + 161t 7% — 304t 2 + 368 — 304>
+ 161t* — 465 + 5t
(\/% PO(KC;t) = 3t716 — 58t~ 4 485¢712 — 2290t 10 4 7255t 8
» @\ j

— 508522 + 33493t* — 17421t% + 7255¢% — 2290¢1°

+ 48512 — 58¢M 4 3¢16
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(KC;t) = 40t 8 — 172¢7% + 378t~ — 568t 2 + 644 — 568t
+ 378t — 172t5 + 40¢8
AN
Q P@(KC;t) = 496¢ 716 — 4192t + 17765¢ 12 — 50726t
913
\_)a + 110764t =% — 198080t~ % + 299319¢~* — 384612t
+ 418539 — 384612t 4+ 299319t* — 1980805
+110764t% — 50726t + 1776512 — 4192¢14 4 496¢16
PO(K;t) =78 — 10675 4+ 52t 7% — 13872 4 190 — 1381
D + 524 — 10t% + 8
(S\ PO(IC;t) = —t716 + 1871 — 160t 712 + 844t~ 1° — 2640t~°
914 \
\Q\) +4723t7% — 4160t * 4 23372 + 2285 + 233>
— 4160t* + 4723t% — 2640¢° + 844¢'° — 160t'?
4 18t14 . t16
PO(K;t) = 5t78 — 50676 + 193t 7% — 392t 2 + 488 — 392¢*
+193t* — 50t5 + 5¢°
@ PO(IC;t) = 3t — 60t + 550t 12 — 2970t~ 1* 4 10685t °
915 1

— 27763t75 + 54520t ~* — 82014¢~2 + 94100
— 82014¢2 + 54520t* — 27763t% + 106855 — 2970¢°

+ 550t12 — 60t 4+ 3¢16
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(IC;t) = 13t712 — 62t 710 4- 165t 75 — 31675 4- 481~
— 610t % + 658 + —610t* + 481¢* — 316t° + 165¢°
— 6210 4 13¢12
® PO(KC;t) = 59t — 554t~ 22 4 2735t 20 — 9433t~ 18
916 ( y + 25475t 1% — 57266t + 111164t "% — 190776t
@ + 293705t % — 409021¢° + 517431¢* — 595632t >
+ 624232 — 595632t + 517431¢* — 409021¢°
+ 293705¢% — 190776¢'° 4 111164¢"* — 57266t
+ 25475¢'% — 9433t'8 4+ 2735¢% — 554t + 59¢*
PO(IC;t) = ¢712 = 10t710 + 40678 — 866 + 115t % — 112t 72
+ 104 — 112t + 115t* — 86t° + 40t® — 10¢10 4 ¢'2
/9 PO t) = —t720 4+ 244718 — 2344710 4 1300t — 4658t 12
9, \ + 11261710 — 18129¢® + 16995t ¢ — 1646t

— 20708¢~2 + 31590 — 20708t> — 1646t* + 16995¢°
— 18129¢% + 11261t'° — 46582 + 1300t'* — 234¢16

4 24t18 _ t20
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(IC;t) = 40t 8 — 18876 + 449t~ — 714t 7% + 826 — 714>
+ 449t* — 188t° 4 40¢°
(\ PA(K:t) = 4961710 — 4528171 + 20876112 — 64904t 10
918 @9 + 152656t % — 287776t % 4 447556t % — 581629t 2
) + 634512 — 581629t + 447556t — 287776t°
+ 152656t° — 64904¢'° + 20876t — 4528+
+ 496t
PO(K;t) =78 —10t70 + 37¢7* — 72672 4 88 — 72> + 374
—10t5 +¢®
Q/\\—O\ PA(K;t) = —t716 420t~ — 1544712 4 590710 — 99248
_r
e %&D — 767t7% 4 7539t * — 17494t 7% 4 22516 — 17494+
+ 7539t — 767t% — 992t + 590¢'° — 154¢'% 4- 20t
o t16
PWO(IC;t) = 2t712 — 20t 10 + 81¢78 — 194¢ 70 + 332¢ ™1
— 442t 4 482 — 442¢% + 332t — 194¢° + 81¢°
— 20t10 4- 2t
f\ PO(IC;t) = 721 — 20t 4+ 179t 720 — 962t 18 + 3582t 16
990 @ — 10116t + 23136t 2 — 45110t 10 + 7784278

— 120895¢75 + 168287t~* — 207005t 2 + 222164
— 207005¢% + 168287t* — 120895t% + 778428
—45110¢"° + 231362 — 10116t + 3582t¢ — 962¢'8

+ 17920 — 20122 4 t*
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PO(K;t) = 5t78 — 54176 + 220t 7% — 462t 72 + 582 — 462¢*
+220t* — 54t5 + 5¢°
@f\ PO(IC;t) = 3t710 — 62t~ 4 587t 712 — 32941710 4 12394178
921 s
\\J) — 33645t 75 + 68358t ™% — 104909t 2 4 121139
— 104909t 4 68358t* — 33645t° + 12394¢% — 3294¢1°
+ 5872 — 62t + 3t
POC;t) =712 — 10t710 4 41478 — 94¢75 + 140t — 154172
+ 152 — 154¢% + 140t* — 94¢5 + 4145 — 1010 + ¢12
f\ PO(IC;t) = —2¢720 4 38¢718 — 315t 710 4 1554t~ — 5114t~ 12
92 Gé\> + 11635t 710 — 17839¢° + 15665t ¢ + 422t
w — 22883t 72 + 33677 — 22883t% + 422t* + 156655
— 17839t% 4+ 11635t — 5114¢'2 + 1554¢1* — 315¢16
+ 38¢18 — 2%
PU(KC;t) = 408 — 20875 + 539t ™+ — 902t 72 + 1062 — 902¢>
+ 539t* — 208t° + 40t
PA(K:t) = 4961710 — 5040t~ + 256331712 — 86784t 10
/NP
993 + 2185717 — 432908t ° + 694782¢~* — 918113

+ 1006731 — 918113¢% + 694782t* — 432908¢°
+ 218571t% — 86784t'° + 2563312 — 5040¢14

+ 49616

7




Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PO t) = —4t7% 4+ 24t — 56t 2 + 72 — 561> + 24¢* — 448
@ PO(KCt) = 6718 — 67716 + 334714 — 9226712 4 116411
94 C/ K \) 4 1418t7% — 10332675 + 26064t — 42438¢ 2
'S
+ 49547 — 42438t + 26064t* — 10332t° + 1418¢
+ 1164¢" — 92212 4 334" — 67¢'° + 6¢'°
PO t) = 12678 — 94¢76 4 305t * — 56412 + 682 — 564>
+ 305t* — 945 + 1248
J(\_\ PO(K;t) = 21716 — 3277 4 23274712 — 10128710
g
925 Q/\ D
+ 30936t % — 71781t % + 131152t * — 189471¢ >
+ 214542 — 189471t + 131152t* — 71781¢°
+ 30936t% — 10128410 + 23272 — 327t 4- 21416
PO t) = t712 — 10¢710 4 4878 — 134470 + 2441~ — 326t 72
+ 354 — 326t% + 244" — 13415 + 48¢% — 10t 4 ¢12
f/\ PO(K;t) =261 — 27710 4+ 210t — 964¢ "2 + 2465t 10
926 &/

— 2545t78 — 445975 + 22456t~* — 44607t 2 + 54938
— 44607t + 22456t* — 4459t% — 2545t% + 2465t

— 9642 + 210t — 27416 4 218
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Knot

Knot Diagram

PWO(K;t) and PP (K;t)

S
S

PO(K;t) =78 — 10676 4 41¢7% — 8872 + 112 — 88¢2 + 41t*

—10t% +¢®

POK:t) = —t720 420718 — 163t716 + 756t 14 — 22121712

+ 3982719 — 2931¢78 — 5979t 76 + 24262t~
— 44398t 72 + 53328 — 443982 + 24262t* — 5979¢5
— 29312 + 3982¢10 — 2212¢'2 + 756¢M — 163t16

+20t18 — 20

928

PO t) =712 — 106710 + 4778 — 136¢75 + 2714 — 398t 2

+ 450 — 398t + 271t* — 136t + 473 — 1010 4 12

PO t) = =272 4 27¢718 — 167716 + 612t~ — 1375¢712

+ 14641710 + 1842¢78 — 117676 + 28198+
— 44740t% + 51817 — 44740t% + 28198t* — 117675
+ 184218 + 1464t*° — 1375t'2 4+ 612t — 16716

+ 2718 — 2420

929

PO t) =712 — 106710 + 43¢78 — 108¢76 + 181t~ — 222t 2

+ 230 — 222¢% + 181t* — 10815 + 433 — 10t1° 4 12

PA(IC;t) = —4t™2 + 69t 718 — 532716 + 2466t~ — 7662t 12

+ 16466t 1% — 23513t 7% + 17305t 7% + 9140t~
— 4389272 + 60315 — 43892¢% + 9140t* + 17305¢°
— 23513t% + 16466t*° — 76622 + 2466t1* — 53216

+ 6918 — 4420
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PO(KC;t) = 2678 — 1475 4 47t74 — 92¢72 + 114 — 92> + 47¢*
— 1415 + 268
@ PO(K;t) = —26720 4+ 314718 — 2106716 + 82214 — 1944¢ 12
939 68\ + 2181t 710 4 2558¢° — 17256t % 4 41804¢~*
L/ — 66537t 2 4 77105 — 66537t + 41804t* — 17256t°
+ 2558t% + 218110 — 1944¢'% + 822t — 210¢°
+ 31¢18 — 2%
PO t) = —13t710 + 115678 — 463t 70 + 1126t~ — 18572
+ 2185 — 1857t + 1126t* — 463t° + 115¢% — 13¢1°
(\/E PO(K;t) = —13t716 + 180t~ — 1207t 12 4 5157t~ 10
. W/ — 15630t % + 35539t 75 — 62672t 4 87453t >
— 97613 + 87453t* — 62672t* + 35539t° — 15630t°
+ 5157t — 1207¢'% + 180t — 13¢1°
PO(KC;t) =712 —12¢71° 4 63¢t8 — 18870 + 363t * — 508t 2
+ 562 — 508t% 4+ 363t* — 188° + 63¢® — 12t + 12
@ PO (IC;t) = 3t718 — 491716 4 347471 — 1297t 712 4 2213t 710
932

&

+1982t~% — 21345t % 4+ 60831t~ — 105664t 2
+ 125957 — 105664¢% + 60831t* — 21345t° + 1982¢8

+2213¢10 — 1297¢'2 + 347t — 49¢16 + 3418
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PWO(IC;t) = ¢78 —12¢78 4+ 51¢* — 110t 2 4 140 — 110¢*
+ 51t — 125 +¢8
/@ PO(IC;t) = 4t718 — 48716 4210t~ — 133¢712 — 2812t 710
| (8
/ + 1572178 — 47484¢75 4+ 97856+ — 148061t 2
+ 169495 — 1480612 + 97856t* — 47484¢t% + 1572148
— 2812¢19 — 133¢12 + 210t — 48416 + 4418
PO(K;t) = 3t78 — 24t76 + 82t7* — 160t 2 + 198 — 160t°
+ 82t* — 2415 + 38
PAO(K:t) = —2t720 4 341718 — 243t 716 4 899¢ 14 — 134312
-
934 @ — 3320t 710 4+ 25323t 7% — 78832t 6 + 162282t 4
— 244513t72 + 279429 — 244513t + 162282t*
— 7883215 + 25323t% — 3320410 — 1343¢'2 + 899+4
— 24310  34¢18 — 2420
PW(KC;t) = 90t — 324¢72 + 468 — 324t> + 90t
s PO(IC;t) = 2173t™% — 15532t7° 4 50362t~ — 96550t 2

e

+ 119101 — 96550¢% + 50362t* — 15532t% + 21738
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PWO(IC;t) = 26712 — 20t 10 + 78¢78 — 170t 70 + 263t~
— 3282 4 350 — 328t% + 263t* — 170° + 78¢°
— 20¢10 4 2¢12
/Q PAO(K;t) =t — 20672 4 177t720 — 919t~ 18 4 319716
936 @) — 8176t + 16646t '* — 29163t 10 4- 47115¢°
— 72304t 7% + 102929t % — 130019t + 141075
— 130019¢* + 102929¢* — 72304t° + 47115¢°
— 29163t'% + 16646t — 8176t + 3197¢*6 — 919¢'®
+ 177¢%° — 202 4 %
PO(K;t) =78 —10t7% + 39¢t™* — 80t 2 4 100 — 80t + 39t*
— 10t° 4 8
C/S\j PO(K;t) = —t710 4 22¢7 1 — 1744712 4 616t 10 — 530¢~°
937 Q@) — 3765t7% + 16716t — 34640t 2 + 43509 — 34640t
+16716t* — 3765t° — 530t® + 616" — 174+
+ 22t14 _ 2516
PWO(K;t) = 62678 — 328¢70 + 852t~ — 1420t 2 + 1668
— 1420t + 852t* — 328t° + 62t°
@ PA(K;t) = 1182716 — 12246t~ + 62904t 12 — 213694t~ 1°
935 y/> + 538946t % — 1069918t 5 + 1723338t *

— 2285080t 2 + 2509142 — 22850802 + 1723338t*
— 1069918t% + 538946t% — 213694+'° + 629042

— 12246t + 1182t1°
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
PW(KC;t) = 12t78 — 108t 7% + 390t~ — 772t7% + 956 — 772t
+390t* — 108t° + 12¢®
/L/\> PO (KC;t) = 21716 — 368t~ 4 2958t~ 12 — 14510t~ 1°
939 Yl
\;\ + 49295¢% — 124072t~ + 238666t 4 — 353822t 2
+ 403666 — 353822t 4 238666t* — 1240728
+ 49295t — 14510t + 2958t — 368t'* + 21¢1°
PO(IC;t) = t712 — 144710 4 82¢78 — 270t =% + 574t~ — 866t 2
+ 986 — 866t% + 574t — 270t° + 825 — 14¢10 4 ¢12
PO(IC;t) = —t718 4+ 27¢716 — 320t~ + 239812 — 11706t~ 1°
(k\\(— -8 —6 —4 —2
940 <//j + 40644t % — 104066t + 200988t ~* — 296867t
+ 337823 — 296867t* + 200988t* — 104066°
+ 406445 — 11706t'° + 2398¢'2 — 329¢1* + 27416
_ 418
PO t) = 3t78 — 26176 + 113t7* — 268t 2 + 356 — 268¢>
+ 113t* — 26t5 + 3t8
m PAO(K:t) = —6t710 + 87t — 620t 2 4 2604710 — 633618
941

+ 7289t70 4+ 2780t ~* — 21985t 2 + 32374 — 21985¢2
+ 2780t* + 7289t° — 6336t% + 2604t'° — 620¢'2

+ 87t — 616
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Knot

Knot Diagram

PWO(K;t) and PP (K;t)

POMCt) =t —at™0 44t + 472 — 10 4 46> + 4t* — 418

f\ + 8
949 @ PO(KC;t) = —5t712 4 50710 — 187t~ + 3006 — 16t~
/ — 718t7% 4 1150 — 718t% — 16t* + 300t° — 18748
+ 50t10 — 5¢12
PO t) = 2¢712 — 126710 4 25¢78 — 24¢76 4 16t~ — 16t 2
+ 18 — 1662 + 16t* — 24t° + 25¢5 — 12¢10 4 2¢12
@ PO t) = 724 — 12672 + 61¢72° — 160t 7% + 272471
943 GJ\ — 209t — 148t + 693t '° — 950t + 319¢7°
L/ +1351¢* — 3368t 2 + 4319 — 3368t* + 1351¢*
+ 31915 — 950¢% + 693¢'0 — 148¢'% — 209t 4 272416
— 169" + 61¢%0 — 12422 4 ¢*
PO(K;t) = —2¢70 4 13t7% — 32672 + 42 — 3267 + 13¢t* — 218
KJ\D) PO t) = 3t — 31¢712 4 126t 710 — 245¢ 78 4+ 147t 6
o % +390t™* — 1143t + 1506 — 1143t* 4 390t*
+ 147t% — 245¢% + 1260 — 31! + 3t
PWO(IC;t) =78 —16t75 + 76t~ — 168t 4 214 — 168¢*
@ 7614 — 1685 + 15
945 S ) PO(KC;t) = 2t +16t712 — 316¢71° + 18418 — 6088t ¢

+13476t™* — 21370t 72 + 24880 — 21370t% + 13476t*

— 60885 + 1841t% — 316t'° + 162 + 2t
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Knot | Knot Diagram | P(W(K;t) and P® (K;t)
D PO(KC;t) =3t~ — 18t72 4 30 — 18> + 3t
946 @ PO(IC;t) = 3t7% — 34¢76 + 191¢ 7% — 493t~ + 664 — 493>
\> +191¢* — 3415 + 348
PO, t) = t712 — 8710 4 28¢78 — 52¢70 4 577 — 48¢72
+ 44 — 4817 + 57t* — 5210 + 2848 — 8¢10 4+ ¢12
@ PO(K;t) =5t — 72¢716 4 466t — 1743t 12 4 4097t 1°
97 Vi
— 6037t % + 4413t % + 2575t % — 11715t 2 + 16021
— 11715¢% + 2575t" + 4413t° — 6037¢" + 4097¢"°
— 1743t'2 4 466t — 7210 4 5¢18
PO, t) =78 — 14¢70 4 67t — 1482 + 188 — 148t*
(3 6T — 1445 4 8
’\/S 2 12 10 8 6 4
O K\ PO ¢) = 3¢712 — 420710 1 2794 — 1149t + 3177t
</ — 5916t2 + 7299 — 5916t* + 3177t* — 1149¢°
+ 27918 — 42410 4 3¢
PO t) = 2178 — 80t~ 6 4 158t ~* — 220t~ 2 + 242 — 220t
+ 158t — 80t° + 21¢°
@ PO(IC;t) = 129t716 — 960t~ + 3562t 712 — 8910t~ 1°
949 & j:>

+ 1742478 — 29382t6 4 44204¢~* — 57934t
+ 63740 — 579341% + 44204t* — 29382t0 + 17424¢8

— 8910¢'° + 3562¢'2 — 960t + 12916
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6.2. Amphicheiral Knots

Recall the following definitions.

DEFINITION 6.2.1. For a given knot, K, its mirror image, K', is the knot obtained

by reflecting K in some plane.
This definition leads us to the idea of an ampheichiral knot.
DEFINITION 6.2.2. A knot is ampheichiral if it is isotopic to its mirror image.

Something very interesting is happening with our polynomials for amphicheiral
knots. For knots up to eight crossings, the following are amphicheiral: 4, 63, 83,
89, 812, 817, and 8;5. There are several more amphicheiral knots of 10 crossing which
we include in our table of amphicheiral knots as well. Notice that our results sup-
port Conjecture 3.5.4 involving amphichieral knots which was first conjectured by

Rozansky in [23].
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Knot

Ax(t), PO ) & PA(K; t)

Ax(t)=—t2+3 -+

4 | POK;t) =0
POK:t) = Ac(t)(—t72 +1—1?)
A(t) =t —3t72+5—3t> + ¢
6; | PY(K;t)=0
PO t) = A (t) (=t 8 +t76 4+ 10t — 30672 + 41 — 302 + 10t* + 15 — t¥)
Ag(t) = —4t72 +9 — 42
8 | PY(K;t)=0
PO(K;t) = A (t)(—4t7% 4 35t7* — 116t 72 + 166 — 116> 4 35t* — 4¢°)
A(t) ==t S 43t =572 47562 + 3t* — 16
PYO(K;t) =0
89
PO(IC;t) = Ac() (M — 9t712 + 26t 710 — 26¢% — 40t 75 4 180t ~* — 335¢ 2
+ 404 — 335¢t% 4 180t* — 40t° — 26t° + 26t'° — 9'% + 1)
Act) =t =Tt +13-7t> + 1!
PYOK:t) =0
812

PO(IC;t) = Ax(t)(4t8 — 44t76 + 197t — 457t + 597 — 457¢% + 197¢*

— 444 + 4¢%)

Table 6.2: PU(KC;t) and PP (K;t) for Amphicheiral Knots
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Knot

Ax(t), PO ) & PA(K; t)

Ax(t) = —t 44t =872 + 11 — 8% + 4* — 1°

PO(K;t) =0
817 | PA(K;t) = A (t)(t™* — 8712 416710 4 31¢78 — 235t ¢ + 620t
— 103172 4 1211 — 1031¢% 4 620t* — 2355 + 3145 + 16¢10 — 8¢'2
+ ')
A(t) = —t 5+ 5t —10t72 + 13 — 10t> + 5t* — ¢°
PY(K;t) =0
818
POK:t) = Ax(t)(—13t710 + 115¢7% — 463t ¢ + 1126t~ — 1852 + 2185
— 1857t* + 1126t* — 463t° + 115¢% — 13¢'9)
Ac(t) =t =3t 45t — 772 +9 — 712 + 5t* — 3t° 4- 48
PO(K;t) =0
1017 | PO(K;t) = Arc(t) (720 + 9t 718 — 444716 4 1244714 — 2126712 4 19247104
78t7% — 638t % + 1366t * — 2003t % + 2260 — 2003t + 1366t*
— 638t% + 78¢5 + 192¢10 — 212¢'% 4 124 — 444'° 4 9¢!8 — 120)
Ak(t) = 474 — 16t72 + 25 — 16t + 4¢*
PY(K;t) =0
]_033

PAOK:t) = A (t)(4t712 — 40t 710 4 265t — 1232t 76 + 3666t — 6944t 2

+ 8562 — 6944t* + 3666t* — 1232t° + 265¢% — 40t'0 + 4¢'%)
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Knot

Ax(t), PO ) & PA(K; t)

Ar(t) =4t — 13t7% 4+ 19 — 13¢* 4+ 4¢*

PYOK:t) =0
PO(KC;t) = Ax(t)(16t716 — 208t~ 4 1347t 12 — 6164110 4 21438¢~8
o — 56528t 7% + 112519t 7% — 169544t 2 4 194251 — 1695441
4 112519t* — 56528t° + 21438t% — 6164t'° + 1347¢'% — 208t
+ 16t°)
Ax(t) = —t S+ 7t =172 423 — 172 + 7t — #°
PO(K;t) =0
1043 | POK:t) = Arc(t) (=2t + 186712 — 110¢71° 4+ 566t~ — 2096t~ + 5232t~
— 892472 + 10634 — 8924t* + 5232t* — 2096t° + 566t° — 110¢'°
+ 18¢12 — 2t')
Ax(t) = —t 0+ 774 —21¢7% 4 31 — 21#% + Tt* — ¢°
PYO(K;t) =0
1045

PO(IC;t) = Ax(t)(8t12 — 133t710 + 9298 — 3689t ¢ + 9361t * — 16070t >

+ 19186 — 16070t* + 9361t* — 3689¢° 4 929t — 133t'° + 8¢12)
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Knot

Ax(t), PO ) & PA(K; t)

Ac(t) =t =3t O+t — 1202+ 15— 122 + 7t* = 3t° + 8

PO(K;t) =0
1079 | PA(K;t) = Apc(t) (=2t 4+ 1478 — 544716 4 128071 — 1714712 — 15¢7 10
+ 722t7% — 2105t 7% + 3931t~ — 5539t 2 4 6187 — 5539t + 3931¢*
— 210565 + 72263 — 15410 — 17142 + 128" — 54410 4- 144 — 21%0)
Ag(t) = —t5 + 8% — 20t72 + 27 — 20t + 8t* — ¢°
PY(K;t) =0
10g1 | PA(K;t) = Axc(t) (=4t 4 406712 — 243¢71° 4 1136¢~° — 3847¢°°
+9079t* — 15043t 7% + 17767 — 15043t* + 9079t* — 3847t°
+ 1136t% — 243t'0 4 40¢'* — 4¢')
A(t) = —t O+ 874 —24¢7% + 35 — 24¢% + 8t* — ¢°
PO(K;t) =0
10gs | PA(K;t) = Axc(t) (=2t 440t 712 — 362t '° 4- 1930t % — 6689t °

+ 15822t~ — 26252172 + 31025 — 26252t + 15822t* — 6689¢°

+1930¢% — 36210 + 40t'* — 2t')
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Knot

Ax(t), PO ) & PA(K; t)

Ax(t) =t% —4t7% 4+ 10t7* — 16t72 + 19 — 16t> + 10t* — 41° +¢®

PO(K;t) =0
POK:t) = Ac(t)(—2t72 + 16t 718 — 64¢ 710 4 144¢ 1 — 118712 — 416710
+ 2056¢78 — 5152t7 + 9222t 7* — 1281612 + 14264 — 12816¢>
+9222¢* — 5152t5 4+ 2056¢° — 416¢'° — 118¢'2 + 144¢™ — 64¢'6
+ 16t'% — 2t%°)
Ax(t) =t8 =470 1074 — 1772 + 21 — 17¢* + 10t* — 41° + 8
PO(K;t) =0
POK:t) = A (t)(—2t72 + 16t 718 — 63t 710 4 134¢ 714 — 68¢ 712 — 5814710
10109
+ 2462t7% — 5935t % + 10446t ~* — 14403t 2 + 15991 — 14403t>
+ 10446t* — 5935¢5 + 2462¢% — 581110 — 68¢'2 + 134¢* — 63¢16
+ 16t'% — 2t%)
A(t) = =t 5 +9t7* — 26t72 4 37 — 26> 4+ 9t* — 5
PY(K;t) =0
10015 | PO(IC; 1) = Ac(t)(=5t " + 75t — 573710 + 2804t~ — 9339¢~°

+21685t™% — 35672t 72 4+ 42051 — 35672t + 21685t* — 9339¢°

+ 2804¢% — 573t'0 4 75¢12 — 5¢1)
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Knot | Ac(t), PW(K; t) & PO(K; )

Ax(t) =t8 —5t70 4+ 12t7* — 1972 + 23 — 19¢* + 12t* — 5% + ¢°
PO(K;t) =0
POK:t) = Ac(t)(—t720 + 11¢718 — 53¢716 4 1241714 — 18¢712 — 917710
10115
+ 3703t78 — 8971t % + 15915t ~* — 22063t 2 + 24540 — 22063t>
+15915¢* — 8971t% + 3703¢% — 917¢'0 — 18¢'2 + 124¢ — 53¢16

+ 1118 — 29)

A(t) =t78 —6t7% 4 15¢7* — 24¢72 + 29 — 24¢* + 15t* — 61° + ¢°
PO(K;t) =0
10123 | PA(KC;t) = Axc(t) (56710 — 8671 + 628t712 — 2718710 + 8058t %

— 177167 + 30279t ™% — 41372t 72 + 45842 — 41372t + 30279t

— 17716t° 4 8058t% — 271810 + 628¢'% — 86t + 5¢1°)

One can see that our data does support the conjecture, and it will be an interesting
thing to explore in the future. By exploring this further, one can hope to get a more

topological understanding of the Jones polynomial.

6.3. Future Work

In the near future, we will continue working on increasing the efficiency of the
Mathematica program and distribute it for use by others. We will also calculate more
terms in the expansion of the colored Jones polynomial in Equation (3.5.4). This will
give more polynomial invariants, first starting with P®)(K;t) from Equation (3.5.5)
and moving on to PW(KC;t), P®)(K;t) and so on.

The overarching and long term goal of this research is to gain a topological un-
derstanding of the Jones polynomial. There are many things that we may need to do

in order to reach that goal. Once the polynomials that arise in the expansion from
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the U,(sl(2)) case have been explored, we will study similar polynomials that arise
from considering U, (s((3)). This is a quantum group built from sl(3). Like U,(s((2)),

U,(s1(3)) also has an R-matrix and similar, although more complicated, calculations

can be made using this.
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Mathematica Program

knot =;
initialcrossing = firstcrossing[];
initialmatrix = firstmatrix[];
braidword = Sequence[];
n = KnotData[knot, "BraidIndex"];
firstcrossing([x_, y_] := If[x <y, HOy,y, INVY,X] ;
firstmatrix[x_, y_ ] := If[x <y, Matrixx,y, Imatrixy,x];
alex = KnotData[knot, "AlexanderPolynomial"][t"2];
amp = KnotData[knot, "Amphichiral"];
rep2[i_, j_] :=
Which[i == j ==0, 1, True, ((i! j! Coefficient[exp, d,"1i2z,"j]) /. {22 >0, d; »0})]
rep3[i_, j_, k_, 1_] :=Which[i=3j=k=1==0, 1, True,
((i!'j!'k!1l! Coefficient[exp, d,"12,"jd; "kz3"1]) /. {2,>0,d, >0, 2350,d3>0})]
rep4[i_,j _,k ,1_,m ,n ] :=Which[i=j=k=1=m=n==0,1, True,
((i!'j!'k!1l!m! n! Coefficient[exp, d;"i2z,"jd; "kz3"1d; "mz,"n]) /.
{2z, »0,d,-»0,2350,d3-50, z,50,d; »0})]
rep5[i_,j_,k ,1_,m ,n_,o_,p ] :=Which[i=j=k=1==m=n==0=p==0, 1, True,
((i'j!'k!l!m!n!o! p! Coefficient[exp, d,"12,"jd; “"kz3"1d; "mz,"nds “"0z5"p]) /.
{2z, »0,d,->0,2350,d3-50, z2,50,d3>0, 25 >0, ds » 0})]
rep6[i_,j_,k ,1_,m ,n_,o0 ,p ,9q9 ,r ] :=Which[i=j=k=1l==m=n=o=p=q=r==0,
1, True, ((i!j!'k!1l!m!nlolplq!r!
Coefficient[exp, d;"1iz,"jd; "kz3"1d; "mz,°nds "0z5"pdg"qze”r]) /.
{2z, »0,d,-»0,2350,d3-50, 24,-50,d,-50, 25 50,ds >0, z¢ >0, dg¢ » 0})]
trace;[s_] := Expand[Plus@@ (s /. Rule[{a_, b_}, c¢_] » rep2[a, b] ¢)]
tracez[s_] := Expand[Plus@@ (s /. Rule[{a_, b_, e_, f_}, c_] »rep3[a, b, e, f] ¢)]
tracey[s_] :=
Expand[Plus@@ (s /. Rule[{a_, b_,e_, f , g ,h_}, c_] »»repd[a, b, e, £, g, h] )]
traces[s_] := Expand|[
Plus@@ (s /. Rule[{a_, b_,e_, f_,g ,h_,i_,j_},c_]:+>»rep5[a,b,e, £f,g,h,i, jlc)]
traceg[s_] := Expand[Pluse@@ (s /.
Rule[{a_l b_l e_l f_’ g_l h_l i_l j_l k_l l_}l c_] Ead rep6 [al bl el f’ gl hl il jl kl l] c)]
qh[n_] := (1 +hCoefficient[Product[l+2hz;d;+2h"2 (2;d;+2;"°2d;"2), {i, 2, n}], h, 1] +
h”2 coefficient[Product[l+2hz;d; +2h"2 (2;d; +2;°2d;"2), {i, 2, n}], h, 2])
pl_,k_[i_, j_1 :=wWhich[i=k&&j=1,t, 1i=1&&F =k, t,i=7=1,
0,i=3j=k,1-t"2,1i==3j, 1, True, 0]
Matrix; ,_ := Array[pi,x, {n, n}]
Imatrix; ,,_ := Inverse[Matrix; ]
Szl_,k_[zj_] 1= Sum[z; Imatrix,,[[i, j]11, (i, 1, n}];
Sder; ,x_[d;_] := Sum[Matrix, «[[i, 1] d:, {i, 1, n}];
ISzl_,k_[zj_] := Sum[z; Matrix; [[i, j]], {i, 1, n}];

Isder; ,x_[d;_] := Sum[Imatrix,,[[i, j]1]1di, {i, 1, n}];
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Higher[a_, b_, w_, x_] :=

1 2 1
1+h[(3-—2-2t2] az*x2+(——+2t] az*x*w+(——3t]b*a*x2+2b*a*x*w}+
t t t

1 4 16 t 13 1 3
h? 5- —-4t?|a?xx?+ | — - +atd|atexs | —+ -—-6t?+2tt| atxxt+
t? 3t 3 2 2t t?
2 2 8
-—+2t az*x*w+(4—4t2)a3*x2*w+ — - —+10t-4t3|a* x> rw+
t t3 ot
2 2 1 2 14 t
——+2t|adrxrw?+ |-+ —+2t? | atxx?xwi+ | —-5t|braxx?+|[— - ——|bZraxx’+
t t2 t 3t 3
10 2 4t? 1 9 t2 1 6
—_ - + brxaZxx3+|-3+ + bZxaZxx*+|-—+—-11t+6t3 | bradxx’+
3 3¢ 3 22 2 £t
2 2
2bra*x*w+2b?raxx’+w+ |-—-2t|braZxx?s+w+|—-6t|b?xaxxPrw+
t t
4 4
14- —-10t? | b+al*x’xw+2braZsxsxw?+2b?xa+x?xwl+|-—+4t|brad+xx? +w?
t? t
1
Invia_,b_,x_,y ] :=1+h (1—t2)b2*x2+ —+t|braxx’-2bxa*xy*x|+
t

8 8t 1 t 1
h? ((l—tz) bz*x2+(———] b3*x3+[——t2+—] b4*x4+[——+t}b*a*x2+(—4+4t2)

3t 3 2 2 t
10 4 2¢2 2 2t 1
b3*y*x2+ — + - bz*a*x3+[——+—]b*a2*x3+[——t3]b3*a*x4+
3 3¢ 3 3t 3 t

1 ¢ 4
1+ + — bz*az*x4+2b*a*y*x+2b2*a*y2*x+[-——4t]b2*a*y*x2+
2¢2 2 t

2bxaxy*x?+2b2xaZsy?ax?+ (-2+2t2)b3*a*y*x3+ (-%-Zt] bz*az*y*an
HO; 5 := Higher[zi, zj, di, dj]
INV; 5 := Inv[zi, zj, di, dj]
Deri_[f_] := £f+D[f, wy, x;]+(1/2)D[f, {wy, 2}, {x;, 2}] +(1/6) D[f, {w;, 3}, {xi, 3}] +
(1/24) D[£, {w;, 4}, {x;, 4}]+1/ (5!) D[£, {w;, 5}, {xi, 5}1+ (1/6!)D[£, {w;, 6}, {x;, 6}]
NO[l_, {i_, j_}] := If[i< ],
(Derj [Deri[Expand[((l /. Flatten[Table[{zk - 8z;,5[2zx], dx » Sder; 5 [dk]}, {k, 1, n}]]) /.
{di »>wi, dj » wj}) +hCoefficient[Higher[xi, X5, di, dj] , h, 1] +
h~2 (Coefficient[Higher[xi, Xy, di, dj] , h, 2] +Coefficient[
((1 7. Flatten[Table[{zx - Szi,j[2k], dx » Sder; ;[d]}, {k, 1, n}]]) /. {di » wy,
d; —>wj}) , h, 1] *Coefficient[Higher[xi, X5, di, dj], h, 1])]]]) /.
{wA1 >di, wy > dj, x; > 2z;, x5 > 23}, (Der; [Deri[Expand[ ((r/. Flatten[
Table[{zx » IS2;,:[2x], dkx » ISder;,;[dc]}, {k, 1, n}]]) /. {di > wi, @5 > w;}) +
hCoefficient[Inv[xj, Xi, 44, di] , h, 1] +h”2 (Coefficient[Inv[xj, Xi, 44, di] , h, 2] +
Coefficient[((l /. Flatten[Table[{zk - ISz, ;[zx], dx » ISderj,i[dk]},
{k, 1, n}]]) /. {di »wi, d5 > w;}), h, 1] » Coefficient|
Inv[xj, Xi, dj, di], h, 1])]]]) /. {wi »>d;, wy »>dj, X5 >z, X5 zj}]
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g[l_, {x_,y_}] := If[x <y, 1. (Matrixx,y) , 1. (Imatrixyyx)]

qhend[f_] := Expand[ (f /. Flatten[Table[d; » w;, {i, 2, n}]]) +
h (Coefficient[gh[n], h, 1] /. Flatten[Table[z; -» x;, {i, 2, n}]]) +
h”2 (Coefficient[qh[n], h, 2] /. Flatten[Table[z; » x;, {i, 2, n}]]) +
h”~2 ((Coefficient[f, h, 1] /. Flatten[Table[d; » w;, {i, 2, n}]]) *

(Coefficient[gqh[n], h, 1] /. Flatten[Table[z; » x;, {i, 2, n}]]))]

Quad = Expand[Fold[g, initialmatrix, {braidword}]];

a;_,5_:=If[i==3j,Quad[[i, j]]-1, Quad[[i, j]]]

A = Table[a;,;, {i, 2, n}, {j, 2, n}];

F = Inverse[-A];

HigherOrder = Fold[NO, initialcrossing, {braidword}];
kerbeforesub = ( (1 = ghend[HigherOrder]; Do[l = Der;[1], {i, 2, n, 1}]; 1) /.
Flatten[Table[{x; » 2z;, w; » d;}, {i, 2, n}]]);

keraftersub =
Expand [kerbeforesub /. Flatten[Table[zx » Sum[Quad[[i, k]] z;, {i, 1, n}], {k, 1, n}]]1];

poly = Expand[
keraftersub /. Flatten[Table[{z; » 2z; + Sum[F[[k, i -1]] Quad[[1, k+1]] z;, {k, 1, n-1}],
d; ->d; +Sum[F[[i-1, 1]] Quad[[1+1, 1]]ds, {1, 1, n-1}]}, {i, 2, n}]]];

exp =

Expand[1 + Sum[ (Expand[Sum[F[[i-1, j-1]]1d;z;, {j, 2, n}, {i, 2, n}]])Ai/i!, (i, 1, 6}]]s

poly2 = CoefficientRules[poly, Flatten[Table[{d;, z;}, {i, 2, n}]]]
tr = trace, [poly2];

testl = Together[Coefficient[tr, h, 1]];

test2 = Together[Coefficient[tr, h, 2]];

p = If [amp == True, Cancel [Denominator[testl] / alex], Cancel [Denominator[testl] /alex"2]];
q =

If [amp == True, Cancel [Denominator[test2] / alex” 3], Cancel[Denominator[test2] /alex"4]];
terml = Expand [Numerator[testl] / p] / Expand [Denominator[testl] / p];
term2 = Expand [Numerator[test2] / q] / Expand [Denominator[test2] / q];

series = Series[((((1+hterml +h"2 term2) (1/alex)) /. {t » tExp[h]}) alex) /.
{h-h/2-h"2/4}, {h, 0, 2}];

Expand [Numerator[Coefficient[series, h, 1]] / p]

pl

Expand [Numerator [Coefficient[series, h, 2]] / q]

p2
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