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Summary

We consider a problem of reducing the expected number of treatment failures in trials where the 

probability of response to treatment is close to 1 and treatments are compared based on log odds 

ratio. We propose a new class of urn designs for randomization of patients in a clinical trial. The 

new urn designs target a number of allocation proportions including the allocation proportion that 

yields the same power as equal allocation but significantly less expected treatment failures. The 

new design is compared with the doubly adaptively biased coin design, the efficient randomized 

adaptive design and with equal allocation. The properties of the new class of designs are studied 

by embedding them into a family of continuous time stochastic processes.
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1. Introduction

Consider the problem of comparing two treatments in a randomized clinical trial. An issue 

that is central to such a trial is balancing the ethical imperative to assign more patients to the 

better treatment with the need to have sufficient power to compare the treatments. Response 

adaptive designs change allocation away from equal allocation based on responses observed 

so far in the trial; see Hu and Ivanova, 2004, and Hu and Rosenberger, 2006, for review. 

Early response adaptive designs, generalized Pólya urn (Athreya and Karlin 1968; Zhang et 

al., 2006), the play-the-winner rule (Zelen, 1969) and the randomized play the winner rule 

(Wei and Durham, 1978) were developed for comparing treatments with binary outcomes to 

yield “ethical” allocation in the limit, that is, to assign more patients to the better treatment. 

Their limiting allocation, as well as the limiting allocation for the urn design of Ivanova 

(2003), though “ethical”, is not optimal with respect to maximizing power of the treatment 

comparison. In some cases, a trial with allocation proportion that is not optimal in terms of 

power, requires many more subjects to achieve the same power than equal allocation. This 

can result in observing more failures in the trial than under equal allocation, therefore 

defeating the purpose of a response adaptive design to reduce the average number of failures 

in the trial. Other response adaptive designs such as doubly adaptive biased coin designs 
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(Eisele, 1994; Hu and Zhang, 2004), and the efficient randomized adaptive design (ERADE) 

(Hu, Zhang and He, 2009) can target any desired allocation including the allocation that 

maximizes power.

An important metric of any allocation procedure is the amount of randomness it provides. In 

a deterministic procedure the next assignment can be predicted for sure if all previous 

assignments and outcomes, in case of response adaptive allocation, are known. On the other 

side of a spectrum is a fully randomized allocation procedure, an allocation via a fair coin, in 

case of equal allocation, or biased coin otherwise. We use entropy to measure randomness of 

the designs, a measure that has not been used before when response adaptive designs were 

compared. This allows making a fair comparison of adaptive procedures since deterministic 

procedures are more efficient in targeting the desired allocation.

Hu and Rosenberger (2003) showed that the power of treatment comparison is closely 

related to the variability of the allocation proportion: the higher the variability the lower the 

power. The variability of the allocation proportion depends on the type of allocation 

procedure as well as on the allocation that the design targets and the amount of randomness 

it provides. The urn design of Ivanova (2003) yields the lowest variability as it achieves the 

lower bound of the asymptotic variance of the allocation proportion (Rosenberger and Hu, 

2003; Hu, Rosenberger and Zhang, 2006), so does the ERADE (Hu, Zhang and He, 2009). 

The doubly adaptive coin design achieves the lower bound only when the procedure is 

deterministic (Rosenberger and Hu, 2003). Randomness and the variability of the allocation 

proportion in the ERADE and the doubly adaptive coin design depends on the value of the 

design parameter. When several response adaptive designs that target the same allocation are 

compared, their corresponding design parameters can be set to provide the same amount of 

randomness, then the best design is the one that has the lowest variability of the allocation 

proportion.

Zhang et al. (2011) put the lowest variability urn design of Ivanova (2003) and other urn 

models into a general framework of immigrated urn models. In this paper, we generalize the 

design of Ivanova (2003) in a different way by allowing the change in the urn composition 

to depend on several previous outcomes, not only the most recent outcome. This new 

generalization allows targeting a large spectrum of allocation proportions, including 

allocations that yield good power of treatment comparison. Since the design of Ivanova 

(2003) yields the lowest variability of the allocation proportion the new design has low 

variability as well and the result has better power than competitors. The generalization, 

however, creates challenges in obtaining theoretical properties of the design since the new 

design can no longer be embedded into a family of stochastic processes unless 

multidimensional state space is considered.

Our motivating example is the Comparison of Arixtra in Lower Limb Superficial Vein 

Thrombosis with Placebo (CALISTO) trial (Decousus et al., 2010). This was a randomized 

trial comparing a new drug Arixtra with placebo in patients with acute symptomatic 

thrombophlebitis of the lower limbs. The primary efficacy outcome was a composite of 

death from any cause or symptomatic pulmonary embolism or symptomatic deep-vein 

thrombosis or symptomatic extension to the saphenofemoral junction or symptomatic 
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recurrence of superficial-vein thrombosis at day 47. The observed success probabilities were 

99.1% in Arixtra arm and 94.1% on placebo. Similar success probabilities for placebo are 

often observed in other cardio-vascular trials. For example, 30-day mortality is a commonly 

used primary endpoint in trials comparing therapies for acute myocardial infarction, these 

trials yield around 93%-95% non-failure rate (Hjalmarson et al., 1985; Tebbe et al., 1998). 

The mortality rates are usually compared via log odds ratios. Response adaptive designs are 

beneficial for trials like these because they reduce the number of failures on average and 

increase power of treatment comparison, if the treatment is better than placebo, because 

when highly successful treatments are compared based on log odds ratios or relative risk the 

power is maximized when more patients are assigned to the better treatment (Dette, 2004).

In this paper in Section 2 we review possible target allocations for trials comparing two 

treatments. We introduce higher order urn designs in Section 3. Simulation results are 

described in Section 4. In Section 5 we re-design the CALISTO trial. Section 6 is a 

discussion section.

2. Optimal allocations

Consider the case where two treatments are compared. Let Ni(n) be the number of subjects 

assigned to treatment i, i = 1, 2, by the time a total of n subjects have been assigned, N1(n) + 

N2(n) = n. The allocation proportion to treatment 1 by the time n patients have been assigned 

is N1(n)/n. The optimal allocation proportion can be determined by using multiple-objective 

optimality criteria (see Jennison and Turnbull, 2000, for more details). If treatment outcomes 

are binary from Bernoulli(pi), 0 < pi < 1, qi = 1 − pi, i = 1,2, the allocation proportion on 

treatment 1, , Neyman allocation, minimizes the variance of 

. Alternatively, it minimizes the total sample size required to achieve given power if 

the Wald’s test statistic is used to test H0: p1 − p2 = 0. The allocation that minimizes the 

expected number of failures for a fixed variance of the estimate of the parameter of interest 

or for fixed power (Rosenberger et al., 2001) is . Another allocation 

to mention is ρ3 = p1q1 / (p1q1 + p2q2); it yields the same power as equal allocation (see 

discussion of ρ3 in Baldi Antognini and Giovagnoli, 2010). When the log odds ratio, 

log[p1q2 / q1p2)], is estimated the three corresponding allocations are 

,  and .

Ivanova and Rosenberger (2001) noted that response adaptive designs are most 

advantageous in trials with highly successful treatments, or, equivalently, trials with low 

probability of a bad event occurring for the following two reasons. First, in such trials 

treatment failure is often death (Hjalmarson et al., 1985; Tebbe et al., 1998) or severe 

disability (Connor et al., 1994; Simoons et al., 2002; Wallentin et al., 2003) and therefore it 

is most desirable to minimize the number of treatment failures. Second, if treatments are 

compared based on log odds ratio, the allocation that maximizes power, allocation , 

assigns more patients to the better treatment when both success probabilities are higher than 

0.5. In case of highly successful treatments, the allocation  might be even a better target 

for a response adaptive design than allocation  since it assigns even more patients to the 

better treatment and therefore further reduces the expected number of failures. For example, 
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the optimal allocations for success probabilities p1 = 0.991 and p2 = 0.941 observed in 

CALISTO trial are  = 0.717,  = 0.869 and  = 0.866. The total number of failures 

observed in CALISTO trial was 101, 13 out of 1502 in Arixtra arm and 88 out of 1500 in 

placebo arm. The allocation ratio  = 0.866 would have yielded 46 total failures out of 3002 

patients on average if the true rates were equal to those observed in CALISTO trial, 

reducing the average number of failures by 55. For small sample sizes the limiting allocation 

 might not be reached, still, the trial most likely will result in an allocation somewhere in 

(0.5, ], yielding better power and reduced number of failures compared to equal allocation. 

Therefore  is an ideal target allocation in trials with highly successful treatments.

3. Higher order urn designs for binary outcomes

3.1. The second order urn design for binary outcomes

We introduce the second order urn design to create an urn design that focuses on variability 

of the estimated treatment effect rather than the mean. As the result the new design targets 

allocation proportions that are optimal or nearly optimal in terms of power, such as 

allocation . Also, by modifying a low variability design from Ivanova (2003), we obtain a 

low variability design and therefore we expect the new design to have good power compared 

to competitors as variability affects power negatively (Rosenberger and Hu, 2003). The 

design is defined as follows:

Second order urn design—The urn contains balls of three types. Balls of types 1 and 2 

represent the two treatments. Balls of type 0 are called immigration balls. Initially the urn 

contains 2b + a balls; b (≥0), balls of each treatment type and a (>0), immigration balls. 

Assume that j patients have been treated so far, with at least one patient assigned to each 

treatment. If the jth patient was assigned to treatment i, let  be this patient’s outcome. 

A ball is drawn from the urn at random. If the ball is of type 0, i.e., an immigration ball, no 

subjects are assigned to treatment, and the ball is returned to the urn together with 2 

additional balls, one of each treatment type. If a ball corresponding to treatment i is drawn, i 

= 1, 2, the next subject is assigned to treatment i and an outcome  is observed. If 

, where  is the outcome of the previous subject assigned to 

treatment i, the ball is not returned. Otherwise, the ball is returned to the urn.

In the urn design of Ivanova (2003) the ball is not returned to the urn if there is a failure on 

the corresponding treatment. In the second order urn design the ball is not returned to the urn 

if the two most recent responses on the treatment are different. This increases the allocation 

to the treatment with smaller variance, thus changing the urn composition according to the 

variability rather than the actual outcome.

3.2. Limiting allocation proportion and variability of the second order urn design

When a response adaptive design is investigated, of most interest is the limiting distribution 

of the proportion of patients assigned to each treatment. To obtain this distribution for the 
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second order urn design, we use the technique of embedding the design into a family of 

continuous time stochastic processes (Athreya and Ney, 1972; Ivanova et al., 2003). Let Zm 

= (Zm0, Zm1, Zm2) denote the urn composition after m consecutive draws, including draws of 

immigration balls, where Zm0 is the number of immigration balls and Zmi is the number of 

balls of treatment type i, i = 1,2. Define the continuous time analog of the urn as follows. Let 

τm be the time of the mth draw, and τ = 0. Given the urn composition after m draws, Z(τm) = 

(Zm0, Zm1, Zm2), generate three independent random variables V0, V1, and V2, such that Vi 

has exponential distribution with mean 1 / Zmi, i = 0,1, 2. Let Tm+1 = min(V0, V1, V2) and 

define τm+1 = τm + Tm+1. If Tm+1 = Vi the drawn ball is of type i. The urn composition after 

m + 1 draws, Z(τm+1), is obtained as described in Section 3.1. The stochastic processes {Zm; 

m = 0,1,2,…} and {Z(τm); m = 0,1,2,…} have the same transition probabilities and therefore 

are equivalent. It can be shown that τm → ∞ almost surely (Athreya and Ney, 1972). We 

define Z(t), t > 0, to be the right continuous version of Z(τm), Z(t) = (Z0(t), Z1(t), Z2(t)). This 

defines Zi(t), i = 0,1,2, as the number of balls of type i at time t. See Athreya and Ney 

(1972), Ivanova et al. (2000), Ivanova (2003) and Ivanova (2006) for more details on 

embedding a discrete type stochastic process into a continuous type process. As a result, the 

urn design can be described by using the notion of continuous time which is a useful 

mathematical construct not related to the real time in the medical experiment. Let Ui(t) be 

the number of draws of a ball of treatment type i resulting in a success on treatment i, and 

Yi(t) be the number of draws of a ball of type i resulting in a failure on treatment i, so that 

the number of trials on the ith treatment is Ni(t) = Ui(t) + Yi(t), i = 1,2. Let I(t), the 

immigration process, be the number of draws of balls of type 0, immigration balls. By 

construction Zi(t) = Zi(0) + I(t) − Yi(t). The total number of draws of a ball of treatment type 

i, Ni(t) is of most interest to us, while the number of balls in the urn, Zi(t), is the quantity that 

defines the process. The stochastic processes literature focuses on Zi(t). Ivanova et al. (2000) 

extended the technique from Cox and Miller (1965, p. 265) to obtain the differential 

equation for the joint probability generating functions. To describe the behavior of Ni(t), we 

will obtain its joint probability generating function with the number of balls in the urn, Zi(t), 

G(i)(,t z w) = E (zzi(t)wNi(t)). Since the two most recent responses are used, consider the 

generating function  describing the behavior of the process corresponding to 

treatment i when the preceding state was 0, the penultimate outcome on treatment i was a 

failure, and  describing the behavior of the process when the preceding state is 

1, the penultimate response on treatment i was a success. Then we have

Using backward equations, the following system of equations is obtained (see Appendix I 

for more details):
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(1)

Initial and boundary conditions are  and G(i)(t, 1, 1) = 1, i = 

1, 2, with t ≥ 0, |z| ≤ 1, and |w| ≤ 1.

The quantity Ni(t) / [N1(t) + N2(t)] is the allocation proportion to treatment i by time t. By 

construction, it is also the allocation proportion to treatment i among the first J(t) patients in 

the embedded urn process, where J(t) = N1(t) + N2(t). As t → ∞ therefore, if both J(t) → ∞ 

and Ni(t) / [N1(t) + N2(t)] converges in probability to a limit, then this limit is equal to the 

limiting allocation proportion in the urn process. We now sketch a demonstration that this is 

indeed so. For more details, see Ivanova et al. (2000); Ivanova (2003).

The limit of the allocation proportion can be computed (Ivanova, 2003) by first obtaining

It might not be possible to obtain the closed form solution of the system of equations (1) 

except for special cases. Using characteristic function approach (Ivanova et al., 2000) we 

can show that limt→∞ E{Ni(t) / t} is a / (2piqi), where the limit is in probability, and that 

Ni(t) → ∞, i=1,2, almost surely as t → ∞. Hence J(t) → ∞ almost surely, as required. 

Next, similarly to Ivanova (2003), the limit in probability of the allocation proportion is

which is  defined in Section 2. This demonstrates that the limiting allocation in the 

embedded urn process is .

The variability can be assessed by computing

where G(1,2)(t, 1, w1, w2) is a joint function for N1(t) and N2(t) (see Ivanova, 2006, for 

details). It was not possible to obtain the closed form expressions for var {N1(t)}, varN2(t) 

and cov{N1(t), N2(t)} for given t and as t→∞, so we resorted to numerical computations.
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3.3. Higher order urn designs

In Section 3.1 we introduced the design that is an extension of the low variability design 

from Ivanova (2003) and uses two most recent responses instead of one response as in the 

original Ivanova design. In this section we extend the design further by using three or more 

responses. This extension creates designs that target an even wider range of allocation 

proportions and converge faster than the second order urn design while keeping variability 

low as before.

To describe this extension we first note that the second order design defined in Section 3.1 

can be alternatively defined using the estimate of success probability obtained from the two 

most recent observations. The estimate , i =1, 2, can take on three 

possible values 0, 1/2 and 1. The ball of type i is not returned if  = 0.5. Similarly, in the kth 

order urn design, the estimate of success rate is based on the k most recent responses: 

. Let an integer α be such that k = 2α, if k is even, or k = 2α + 1, if 

k is odd. Consider the kth order design where the ball is not returned if  or 

, that is, the ball is not returned if the estimate of success rate is the closest 

possible to 0.5. The probability of not returning the ball is  if k = 2α, or 

 if k = 2α + 1. Here 

 is a binomial coefficient with , if α < 0 or α > k. The limiting 

allocation proportion for this urn design (Ivanova, 2003) is equal to 

. For example, when k = 3 (so that α = 1) the 

limiting allocation proportion is ρ(α = 1) = p2q2 / (p1q1 + p2q2) = , when k = 4, the 

allocation is . For p1 > p2 and α > β, ρ(α) > ρ(β), therefore for 

all α > 1 ρ(α) is closer to 1 than ρ(1) = . Allocations ρ(α) for α > 1 might be desirable for 

trials with the goal of selecting the best treatment, however, as was discussed in Section 2, 

the power under allocations ρ(α) with α > 1 is lower than under  or under equal allocation.

With the use of a biased coin the kth order urn design can be made to target the desirable 

allocation . The kth order urn design with biased coin, k = 4, 5…, that targets  is 

described as follows. If m successes were observed in the last k patients assigned to 

treatment i, i =1, 2, the ball of type i is not returned if 1) the estimated success probability 

from the last k patients assigned to treatment i is away from 0 or 1, that is, m = 1,…, k−1; 

and 2) a biased coin with probability of heads equal to  lands heads. 

To show that this design targets , we first compute the probability of not returning the ball
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Therefore the limiting allocation is equal to Q2/(Q1 + Q2) = p2q2/(p1q1 + p2q2) = . For 

example, when k = 4, the possible values for  are 0, 1/4, 1/2, 3/4, and 1. According to the 

design described above, the ball is not returned if  = 1/2; or if  = 1/4,3/4 and a biased 

coin with the probability of heads equal to 3/4 lands heads. When k = 5, the ball is not 

returned if  = 2/5, 3/5; or if  = 1/5, 4/5 and a biased coin with the probability of heads 

equal to 2/3 lands heads.

4. Comparison with competing designs

In this section we compare the new urn designs with the doubly adaptive biased coin design 

(Hu and Zhang, 2004) and the efficient randomized adaptive design (Hu, Zhang and He, 

2009).

The doubly adaptive biased coin design (Hu and Zhang 2004) allocates patient j to treatment 

i with probability , where  is the target proportion estimated from the 

data. We use the choice of g from Hu and Zhang (2004):

Here γ is a design parameter controlling the amount of randomization in the design. Let 

ρ(p1, p2) be the target allocation proportion as a function of p1 and p2, for example, 

 for inverse Neyman allocation. Hu and Zhang (2004) 

give the following formula for the asymptotic variance, ω2, of N1(n)/n

When γ = 0, the design is fully randomized, and the variance is ; when γ = +∞ the 

design is deterministic, the variance is  and is equal to the lower bound of the asymptotic 

variance. Hu and Rosenberger (2005) recommended using the design with γ = 2.

The ERADE (Hu, Zhang and He, 2009) is a generalization of Efron’s coin which attains the 

lower bound of the asymptotic variance and can target any desirable allocation. The ERADE 

requires specifying a design parameter π, 0 ≤ π < 1, that reflects the degree of 

randomization, with larger values of π corresponding to more randomization and variability. 

The design is defined as follows. As before,  is the estimated target allocation for treatment 

1. Then the next patient is assigned to treatment 1 with probability  if the actual allocation 

to treatment 1 exceeds ; with probability  if the actual allocation is equal to the estimated 

target allocation; with probability 1−(1− )π if the actual allocation is below the estimated 

target allocation. Hu, Zhang and He (2009) studied the choice of π and found that the 
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simulated results of π = 1/8 and 1/4 were very similar to the results of π = 1/2 in terms of 

allocation proportion and its variability, and the ERADE with π = 3/4 has a slightly larger 

variability than others. They recommended using π in [0.4, 0.7]. Since the ERADE with π = 

0.5 performed very similar to lower values of ERADE we used the ERADE with π = 0.5.

We compared designs based on variability of allocation proportion and randomness. 

Randomness was quantified by summing entropy of the allocation distribution for each 

assignment, , where ξj is the probability of being assigned to treatment 1 

after (j − 1) patients have been assigned. For a given p1 and p2, the sample size, N, used for 

entropy calculations was that which yields 80% power with a two-sided type I error rate of 

0.05 for testing based on the log odds ratio. For the adaptively biased coin design 

. In the case of the third order urn design, ξj is equal to 

, where zi(j) is the number of balls of 

type j in the urn right after the most recent treatment (non-immigration) ball was chosen, and 

the sum is over the number of immigration balls m to be drawn before a treatment ball is 

drawn. The product in the denominator is the probability that m − 1 immigration balls are 

chosen before z(j) is finally chosen. We have not been able to obtain a closed form for the 

sum. Noting that the sum of all terms after the mth term is less than the mth term (see 

Appendix II) it is easy to obtain the numerical value for the sum with any degree of 

accuracy. We computed the sum within 10−14 of the true value.

First, we compare the asymptotic variance of the second and third order urn designs with the 

lower bound of the asymptotic variance of designs that target  and the asymptotic variance 

of the doubly adaptive biased coin design with γ = 2. Fig. 1 displays the asymptotic 

variances for p2 = 0.90 and p1 in [0.90, 0.99]. Even though the design from Ivanova (2003) 

achieves the lower bound of the asymptotic variance, the higher order urn designs do not, 

but their variances are very close to the lower bound and are significantly smaller than those 

of the biased coin design with γ = 2.

Second, for each (p1, p2), we computed the sample size required to achieve 80% power in a 

trial with equal allocation. Then we compared response adaptive designs using these sample 

sizes. We compared the second and third order urn designs to the adaptively biased coin 

design with γ = 2 and ERADE with π = 0.5 for values of p1 and p2 greater than 0.5 based on 

the variance of the allocation proportion and on the amount of randomness the designs 

provide. The regions of (p1, p2) sample space where the third order urn design has higher 

entropy, which is more desirable, are marked with vertical lines in Fig. 2. Elements of 

(p1,p2) space where the asymptotic variance for the third order urn design was smaller are 

marked with horizontal lines in Fig. 2. In Section 2 we proposed  as the target allocation in 

a trial where treatment comparison is based on the log odds ratio. The first row of Fig. 2 

shows the comparison with the adaptively biased coin design and the ERADE targeting , 

the second row targeting . Fig. 2 shows that the third order urn design performs well 

against the adaptively biased coin design and the ERADE targeting  in about half of the 2-

dimensional region of (p1, p2). When the coin design and the ERADE target  the region 
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where the new design is better is smaller, however, the advantage of the proposed design 

still holds for trials where highly successful treatments are compared.

5. Example: re-designing CALISTO trial

The proposed approach is illustrated by re-designing the CALISTO trial (Decousus et al., 

2010). The total sample size in the trial was 3002 patients with 1502 patients assigned to 

Arixtra and 1500 to placebo. The sample size of 3000 was chosen because it yields the 

power of 87% to detect a 2 percentage point absolute increase in incidence of events at the 

two-sided 0.05 level of significance using Fisher’s exact test, provided the incidence in the 

placebo group is no greater than 2%. Observed success probabilities were p1 = 0.991 in the 

Arixtra arm and p2 = 0.941 in placebo arm. For p1 = 0.991 and p2 = 0.941, the optimal 

allocations are  = 0.717, which minimizes the sample size given power,  = 0.869, which 

minimizes the expected number of failures given power, and  = 0.866, the allocation that 

yields the same power as equal allocation but less treatment failures. The limiting allocation 

for our proposed urn design coincides with . For the success probabilities in the CALISTO 

trial both the coin design and the ERADE perform better when targeting , therefore we 

describe simulation results for these two designs for  target only. To redesign the 

CALISTO trial we first found the values of parameters γ in the coin design and π in the 

ERADE design that yield the same randomness, measured by the total entropy, as the third 

order urn design. These parameters were γ = 0 for the coin design and π = 0.28 for the 

ERADE. Then trials with assignments by the coin design and the ERADE were simulated. 

Results are presented based on 5000 simulated trials. The simulation study was repeated 

with recommended values γ = 2 and π = 0.5 yielding similar conclusions. To simulate the 

CALISTO trial we resampled from CALISTO data knowing that 13 out of 1502 failures 

were observed in Arixtra arm and 88 out of 1500 in placebo arm. Results when data were 

simulated from Bernoulli distribution with success probabilities p1 = 0.991 and p2 = 0.941 

were very similar. If equal allocation is used and true probabilities are p1 = 0.991 and p2 = 

0.941, 536 subjects total are required to achieve 90% power in a two-sided test with the type 

I error rate of 0.05. As the sample size in the CALISTO trial was much larger than needed 

we re-designed the trial as a two-stage trial with the Pocock boundary (Pocock, 1977) to 

allow stopping early for efficacy after outcomes from the first 1500 patients were observed. 

In fact, all trials were stopped for efficacy after 1500 patients essentially yielding a single 

stage trial with a total sample size of 1500. The average number of failures and the 5th and 

95th percentiles were 33 (25, 42) for the coin design, 34 (28, 41) for ERADE, 30 (26, 34) for 

the urn design and 50 (43, 59) for equal allocation. All response adaptive designs 

dramatically reduced the total expected failures with the new urn design yielding the 

smallest number of failures.

Fig. 3 shows power curves in the informative region of total sample sizes, between 300 and 

600, for the third order urn design, the ERADE, and equal allocation. Power for the 

adaptively biased coin design is inferior and is not shown. As seen from Fig. 3, the proposed 

urn design has better power than equal allocation and the ERADE. Better power for the urn 

design is the result of low variability of the allocation proportion (Fig. 4). The average 
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allocation proportion and its 25th and 75th percentiles (Fig. 4) show that the allocation 

proportion of the doubly adaptive coin design and the ERADE converges to the limiting 

proportion quickly, but that the variability of the allocation proportion is high. For example, 

for the total sample size of 300, the allocation proportion in 10% of the trials is 90:10 or 

more extreme when the target is, in fact,  = 0.717. This makes the design more sensitive to 

time trends and to have low power in case multiple interim analyses are performed. Though 

the urn design converges more slowly, it is far less variable.

We also performed simulations with delayed response. As shown by Bai, Hu and 

Rosenberger (2002) the asymptotic properties of response adaptive designs under delay in 

outcome are the same as without a delay unless the delay is substantial and as long as 

adaptations are done frequently. We assumed that the data from the first patient were only 

available when the kth patient was enrolled, the data from the second patient were available 

when the (k+1) patient was enrolled etc. For example, if k ≥ 1500 in a trial with 1500 

patients total, no data are available to modify the allocation proportion. If no data were 

available to modify the allocation proportion patients were randomized by flipping a fair 

coin. A delay with k = 500 yielded 39, 39 and 38 failures on average for the coin design, the 

ERADE and the urn design with fewer failures observed on average than 50 failures under 

equal allocation. Significant delay of k = 1000 in a trial of 1500 yielded 44, 44 and 45 

failures on average for the three adaptive designs, only slightly fewer failures than under 

equal allocation with faster converging coin and ERADE designs now performing better 

than the urn design. Note that if the adaptations of the allocation proportion are only 

performed once or twice during the trial, the proposed urn design is not suitable and the 

adaptively biased coin or the ERADE should be used. Both the coin design and the ERADE 

estimate the success probabilities using all available data and compute the desirable 

allocation proportion.

6. Conclusions

The doubly adaptively biased coin design and ERADE estimate success probabilities from 

all available data, then estimate the target allocation which is a function of these 

probabilities and therefore can target any allocation proportion that is a function of success 

probabilities. Both designs converge rapidly to the target, however, the variability of the 

allocation proportion is high as well. The proposed higher order urn design does not estimate 

success probabilities from all data but rather takes them into account indirectly using only 

the most recent data. It, therefore, converges to the target allocation more slowly, however, 

is far less variable. In the example considered, the third order urn design does not result in 

extreme allocations and yields higher power than the doubly adaptive coin design, the 

ERADE and equal allocation. Another advantage of the proposed urn designs is that one 

does not have to know the most recent estimates of the treatments’ success probabilities p1 

and p2. For the third order urn design, for example, one only needs to know if there were any 

failures among the most recent 3 responses. Therefore, if data used for a recent adaptation 

accidently become known to investigators, they will not know the most recent estimates of 

p1 and p2.
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In the CALISTO trial example where two highly successful treatments were compared, all 

three response adaptive designs yielded substantial savings in failures compared to equal 

allocation. The proposed third order urn design and the ERADE resulted in similar or better 

power than equal allocation. Therefore, it is worth considering response adaptive designs as 

a design option for trials with highly successful treatments.
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APPENDIX I

Though we have two processes corresponding to the two treatment arms, it is sufficient to 

describe the behavior of a Markov process corresponding to a single treatment arm with 

success rate of p, q = 1 − p. In similar derivations in Ivanova et al. (2001) and Ivanova 

(2003) the state that the process is in was a function of the number of balls currently in the 

urn. In the second order urn, the state that the process is in is determined by the response of 

the previous patient and the number of balls currently in the urn. The initial urn contains one 

ball of each type. Assume that one patient has been already treated and response observed. If 

the response was a success, X1 = 1, the Markov process starts at the state (1,1), if response 

was a failure, X1 = 0, the Markov process starts at the state (0,1). Assume that the process is 

at the state (0, m), m > 0, at time t. The following transitions are possible in time Δt:

Similarly, if the process is in the state (1, m), m > 0, at time t, the transitions in time Δt are:

Let p0,m(t) equal the probability of being at state (0, m) at time t, and p1,m(t) equal the 

probability of being at state (1, m) at time t. To obtain backward equations we consider all 

possible ways to get to states (0,m) and (1,m) by time t:

(2)

Define generating functions
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(3)

The system of partial differential equations (1) and its initial and boundary conditions are 

obtained from (2) and (3).

APPENDIX II

Define , m ≥ 0. We would like to 

show that . We first show that, aj,m+1 / aj,m ≤ 0.5. This ratio is

because all terms are nonnegative and z1(j) + m ≥ 1.

The geometric sequence 0.5n has the property that the sum of all terms beyond the mth term 

is equal to the mth term. Then, aj,m+k < (aj,m)(0.5)k and therefore .

References

Athreya KB, Karlin S. Embedding of urn schemes into continuous time branching processes and 
related limit theorems. Annals of Mathematical Statistics. 1968; 39:1801–1817.

Athreya, KB.; Ney, PE. Springer Verlag; Berlin: 1972. 

Bai ZD, Hu FF, Rosenberger WF. Asymptotic properties of adaptive designs for clinical trials with 
delayed response. Annals of Statistics. 2002; 30:122–139.

Baldi Antognini A, Giovagnoli A. Compound optimal allocation for individual and collective ethics in 
binary clinical trials. Biometrika. 2010; 97:935–946.

Connor EM, Sperling RS, Gerber R, Kiselev P, Scott G, O’Sullivan MJ, et al. Reduction of maternal-
infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. New 
England Journal of Medicine. 1994; 331:1173–1180. [PubMed: 7935654] 

Cox, DR.; Miller, HD. The Theory of Stochastic Processes. Wiley; New York: 1965. 

Decousus H, Prandoni P, Mismetti P, Bauersachs RM, Boda Z, Brenner B, Laporte S, Matyas L, 
Middeldorp S, Sokurenko G, Leizorovicz A. Fondaparinux for the treatment of superficial-vein 
thrombosis in the legs. New England Journal of Medicine. 2010; 23(363):1222–1232. [PubMed: 
20860504] 

Holger D. On robust and efficient designs for risk estimation in epidemiological studies. Scandinavian 
Journal of Statistics. 2004; 31:319–331.

Eisele JR. The doubly adaptive biased coin design for sequential clinical trials. Journal of Statistical 
Planning and Inference. 1994; 38:249–261.

Ivanova and Hoberman Page 13

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hjalmarson A, MIAMI Trial Steering Committee. Metoprolol in acute myocardial infarction 
(MIAMI). A randomised placebo-controlled international trial. European Heart Journal. 1985; 
6(3):199–226. [PubMed: 2863148] 

Hu F, Rosenberger WF. Optimality, variability, power: Evaluating response-adaptive randomization 
procedures for treatment comparisons. Journal of the American Statistical Association. 2003; 
98:671–678.

Hu, F.; Ivanova, A. Encyclopedia of Biopharmaceutical Statistics. Marcel Dekker; New York: 2004. 
Adaptive design; p. 1-6.

Hu, F.; Rosenberger, WF. The Theory of Response-Adaptive Randomization in Clinical Trials. Wiley 
and Sons; New York: 2006. 

Hu F, Rosenberger WF, Zhang L-X. Asymptotically best response-adaptive randomization procedures. 
Journal of Statistical Planning and Inference. 2006; 136:1911–1922.

Hu F, Zhang Y. Asymptotic properties of doubly adaptive biased coin designs for multi treatment 
clinical trials. Annals of Statistics. 2004; 32:268–301.

Hu F, Zhang Y, He X. Efficient randomized-adaptive designs. Annals of Statistics. 2009; 37:2543–
2560.

Ivanova A. A Play-the-Winner-Type Urn Design with Reduced Variability. Metrika. 2003; 58:1–13.

Ivanova A. Urn designs with immigration: useful connection with continuous time stochastic 
processes. Journal of Statistical Planning and Inference. 2006; 136:1836–1844.

Ivanova A, Rosenberger WF, Durham SD, Flournoy N. A birth and death urn for randomized clinical 
trials: Asymptotic methods. Sankhya B. 2000; 62:104–118.

Ivanova A, Rosenberger WF. Adaptive designs for clinical trials with highly successful treatments. 
Drug Information Journal. 2001; 35:1087–1093.

Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977; 
64:191–199.

Rosenberger WF, Stallard N, Ivanova A, Harper C, Ricks M. Optimal adaptive designs for binary 
response trials. Biometrics. 2001; 57(3):833–837.

Simoons M, Krzemiñska-Pakula M, Alonso A, Goodman S, Kali A, Loos U, et al. Improved 
reperfusion and clinical outcome with enoxaparin as an adjunct to streptokinase thrombolysis in 
acute myocardial infarction. The AMI-SK study. European Heart Journal. 2002; 23:1282–1290. 
[PubMed: 12175665] 

Tebbe U, Michels R, Adgey J, Boland J, Caspi A, Charbonnier B, et al. Randomized, double-blind 
study comparing saruplase with streptokinase therapy in acute myocardial infarction: the 
COMPASS Equivalence Trial. Journal of American College of Cardiology. 1998; 31:487–493.

Zelen M. Play the winner rule and the controlled clinical trial. Journal of the American Statistical 
Association. 1969; 64:131–146.

Wallentin L, Bergstrand L, Dellborg M, Fellenius C, Granger CB, Lindahl B, et al. Low molecular 
weight heparin (dalteparin) compared to unfractionated heparin as an adjunct to rt-PA (alteplase) 
for improvement of coronary artery patency in acute myocardial infarction-the ASSENT Plus 
study. European Heart Journal. 2003; 24:897–908. [PubMed: 12714021] 

Wei LJ, Durham S. The randomized play-the-winner rule in medical trials. Journal of the American 
Statistical Association. 1978; 73:840–843.

Zhang Y, Hu F, Cheung SH. Asymptotic theorems of sequential estimation adjusted urn models. The 
Annals of Applied Probability. 2006; 16:340–369.

Zhang Y, Hu F, Cheung SH, Chan WS. Immigrated urn models - theoretical properties and 
applications. Annals of Statistics. 2011; 39:643–671.

Ivanova and Hoberman Page 14

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
The asymptotic variance of the second order urn design (dashed line), the third order urn 

design (dotted line) and the doubly adaptive biased coin design with parameters γ = 2 (upper 

solid line) and γ = ∞ (lower solid line). Success rate p2 = 0.9.
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Fig. 2. 
Range of success probabilities p1 and p2 where third order urn design has smaller asymptotic 

variance (horizontal lines) and higher entropy (vertical lines) than the doubly adaptive coin 

design with γ = 2 (left panel) or ERADE with π = 0.5 (right panel). The diagonal line is the 

boundary of the sample space. The first row is for the coin design and ERADE targeting , 

the second for .
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Fig. 3. 
Power for the CALISTO trial with p1 = 0.991 and p2 = 0.941 for third order urn design 

(solid line), the equal allocation (dotted-dashed line) and the ERADE with π = 0.28 targeting 

 (dotted line).
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Fig. 4. 
Allocation proportion and its 25th and 75th percentiles for the trial with p1 = 0.991 and p2 = 

0.941 for third order urn design (solid lines), the doubly adaptive coin design with γ = 2 

(dashed lines), and ERADE with π = 0.5 (dotted lines) plotted against the sample size.
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