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ABSTRACT 

DANTE STEPHEN BORTONE: Cellular and Molecular Mechanisms Controlling 
Pyramidal Neuron and Interneuron Migration in the Developing Neocortex. 

(Under the direction of Franck Polleux, Ph.D.) 

 
The development of the mammalian neocortex is contingent upon the successful 

migration of excitatory pyramidal neurons and inhibitory interneurons to the cortical 

plate.  Pyramidal neurons migrate from the ventricular zones of the dorsal telencephalon 

along a radial glial scaffold, while interneurons migrate tangentially from the ventral 

telencephalon with no required substrate.  The aim of my dissertation was to find the 

mechanisms by which these two distinct neuronal populations achieve the same task of 

migrating to the appropriate cortical position in spite of their differences.  In pyramidal 

neurons, I characterized the role of Neurogenin2 (Ngn2) in specifying the migration 

properties and the dendritic morphology of pyramidal neurons by implementing confocal 

time-lapse microscopy and developing quantitative image analysis tools.  In 

interneurons, I identified a novel molecular mechanism underlying the termination of 

their migration.  I demonstrated that of GABAA receptor activation by ambient GABA is 

necessary and sufficient to stop interneurons migration an effect requiring 

theupregulation of the potassium chloride co-transporter, KCC2.  

Taken together, my work has improved our understanding of some of the 

molecular mechanisms controlling the proper migration of pyramidal and non-pyramidal 

neurons during cortical development. 
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CHAPTER ONE 

Introduction 

 The cerebral cortex has undergone an amazing transition in the evolution of 

mammals.  This development is evident when one looks at a lower species such as reptiles.  

The reptilian cerebral cortex is composed of three loosely defined-layers in which the outer 

layers of neurons are formed first.  Inner layers line up underneath their predecessors 

forming sequential waves of migrating neurons from the outside-in (Aboitiz and Montiel, 

2007).  In mammals however, these cortical layers are inverted.  Each successive wave of 

neurons bypasses the previous layers to build the cortex from the inside-out (Angevine and 

Sidman, 1961; Marin and Rubenstein, 2003; Rakic, 1972).  This three-layer inverted 

structure is unique to the mammalian class and is present in the archicortex and 

paleocortex, composing the hippocampus and olfactory cortex, respectively (Brown et al., 

2001).  This inside-out cortical organization expanded during evolution of the six-layered 

cerebral cortex, termed the neocortex. Neocortical evolution culminates in humans where it 

is the dominating structure of the brain, comprising 85% of its volume (Douglas and Martin, 

2007).   

 I complete this dissertation thesis I utilized advanced techniques in imaging and 

image analysis to shed light on the developmental rules governing the assembly of the 

neocortex.  In doing so this work provides a better understanding, not only of this novel trait 

of mammals, but also of that which makes us uniquely human. 

Functions of the neocortex 
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Anyone who has dedicated a significant portion of his or her life to the study of the 

neocortex can be humbled with a simple question: What does it do?  Horace B. Barlow 

echoed this sentiment: 

I feel it is as if, in studying the heart, we had become involved in a detailed 
examination of the ionic currents and membrane channels of the Purkinje 
fibers before making the all-important discovery that the heart pumps blood 
around the body (Aertsen and Braitenberg, 1992). 
 

This humility reflects neither lack of effort nor progress.  Diligent research has shown the 

involvement of the neocortex in the process of perception, decision-making, attention, 

learning, memory, consciousness, attention, speech, adaptability, voluntary movements, 

action planning (Aertsen and Braitenberg, 1992).  The principal role of the cortex in these 

processes is to parse attributes of a sensory modality for parallel processing (Shephard, 

1994).   

The parsing of modalities is clearly evident in the processing of vision. Visual inputs 

are received from the optic nerve by the lateral geniculate nucleus (LGN) of the thalamus 

before proceeding to the neocortex.  There visual processing is broken into over twenty 

distinct neocortical areas in the macaque monkey brain.  Each area can be involved in 

different aspects of vision.  Color information goes from the LGN to cortical area V1 to V2 to 

V4.  Orientation information, however, goes from the LGN to V1 to V2 to V5, also known as 

the visual area MT (middle temporal), or can go directly from the V1 to the MT.  Thus 

different aspects of vision are passed through distinct areas of visual cortex in our 

processing of vision (Shephard, 1994). 

Although the parsing of sensory modalities is being understood to finer and finer 

degrees, this often leaves more questions than answers.  Why is information broken apart in 

this way?  How does the neocortex alter and preserve the information as it is being passed?  

Is this information reassembled to form a cohesive picture of the world or is our perception 

accomplished in the parsing itself?  There are no clear answers to these questions.  The 
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study of neocortical function often leads to higher and higher levels of complexity.  Francis 

Crick has stated his strategy in the face of difficult problems: 

If you do not make headway studying a complex system, study its structure 
and knowledge will follow automatically (Martin, 2002).   
 

Much has been learned in the study of neocortical structure in the hopes of doing just that. 

Structure of the neocortex 

 The cortex is composed of two main cell types: pyramidal and non-pyramidal 

neurons (Peters and Edward, 1984). Pyramidal neurons provide the principal excitatory 

drive of the neocortex (Nieuwenhuys, 1994).  These neurons derive their name from the 

pyramidal shape of their soma, which extends one large dendrite apically and two smaller 

dendritic tufts off the corner base of the ‘pyramid.’  Pyramidal neurons use glutamate to 

depolarize their postsynaptic targets and project over long distances to the thalamus, 

subcortical regions, ipsilateral cortex or contralateral cortex (Molyneaux et al., 2007; 

Nieuwenhuys, 1994).  Non-pyramidal neurons (or interneurons) provide the inhibitory drive 

of the neocortex.  The dendritic arbors of these neurons lack the large apical extension 

typically seen in pyramidal neurons.  To the contrary, interneurons display a significant 

diversity of dendritic morphologies including among others bipolar, bi-tufted, multipolar 

morphologies.  Interneurons use GABA to hyperpolarize their post-synaptic targets (mostly 

pyramidal neurons and other interneurons) and with few exceptions, project locally within 

the cerebral cortex (Nieuwenhuys, 1994; Peters and Edward, 1984).  

 The ratio of excitatory to inhibitory synaptic drive establishes a crucial balance in the 

functioning of the adult brain (Ben-Ari, 2002; Hensch, 2005).  Pop-culture often cites that we 

only use 10% of our brains, suggesting if we could somehow unleash the remaining 90%, 

we would all be geniuses.  To the contrary, in the face of such unbridled excitation, we 

would all be epileptic.  Indeed, one of the most remarkable refinements of the neocortex lies 

in its focal activation of precise subsets of cells only when needed.  The restriction of activity 
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is largely due to the inhibition provided by interneurons.  The ratio of inhibitory interneurons 

to excitatory pyramidal cells is highly conserved, approximately 20%:80% respectively.  This 

ratio is largely conserved between species, among individuals and across neocortical 

regions (Braak and Braak, 1986; DeFelipe et al., 2002; Sloper, 1973; Sloper et al., 1979; 

Tombol, 1974; Winfield et al., 1980).   Even minor perturbations in this balance can result in 

epileptic activity (Cobos et al., 2005). 

Another conserved component of the neocortex is its arrangement into columns.  

This network of neurons connects vertically, extending across layers II-VI to form 

functionally and anatomically distinct domains (Mountcastle, 1997).  Again, the visual 

system provides an excellent example of this columnar organization.  Ipsilateral and 

contralateral projections to the visual cortices form distinct alternating bands of interlacing 

columns called ocular dominance columns.  Wiesel, Hubel and colleagues visualized these 

bands by injecting tritiated proline or fructose into one eye of the mouse.  Autoradiography 

revealed ipsilateral and contralateral bands corresponding to the inputs of the injected eye 

(Wiesel et al., 1974).  The division of the neocortex into minicolumns fuels the speculation 

that it is composed of a repetitive iteration of the same canonical microcircuit (Douglas and 

Martin, 2007), although the structure and function of that microcircuit remain unknown 

(Purves et al., 2004).   

While significant in expanding our understanding, the study of structure has not been 

sufficient in uncovering the mysteries of the neocortex thus far.  Much of the difficulty lies in 

the extreme complexity of the neocortical circuitry.  Ideally we would like a map of every cell 

position, projection and synapse in the neocortex.  Although sounding simple, such a map 

would be of astronomical proportions.  The human neocortex contains up to 2.8x1010 

neurons and 1012 synapses (Mountcastle, 1997).   The means of obtaining this information 

far surpasses our current technology.  Even storing the thousands of terabytes of 
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information within this ‘projectome,’ would exceed our present means (Kasthuri and 

Lichtman, 2007; Lichtman, 2007; Sporns et al., 2005).   

Further complicating this massive undertaking is the flexibility of mammalian nervous 

systems.  Mammals lack the rigid positioning of neuronal soma and projections found in 

other organisms (Lichtman, 2007).  The nervous systems of Caenorhabditis elegans and 

Drosophila melanogaster are deterministic and often referred to as ‘hard-wired’ because it is 

thought that genetic information is sufficient to instruct every synaptic connections in these 

rather simple nervous systems.  Furthermore, these organisms are eutelic, meaning all 

individuals have the same number and placement of neurons and neural projections 

(Sulston et al., 1983).  Building a complete connectivity map of the nervous system of these 

organisms has been achieved (at least for C. elegans; White et al., 1976), because analysis 

of all individuals provides the same structural information.  Although the same general layout 

of the neocortex is similar within a mammalian species, inter-individual variability disables 

this holistic approach to neural connectivity.  The study of a non-eutelic mammalian 

neocortex thus requires one to make conclusions about a complex and inconsistent 

structure. 

If the structure of mammalian neural networks is variable, then understanding the 

developmental laws governing the self-assembly of the neocortex may provide the 

necessary information critical to the understanding of its function.  The study of neocortical 

development may not only uncover key constraints necessary towards understanding its 

function, but also provide insights into how it may be emulated and repaired. 

Development of the neocortex 

In this section, neocortical development of the mouse will be the primary animal 

model discussed.  The genetic tools available for the mouse far exceed those available in 

other mammalian species.  Mouse genetics has provided a tremendous amount of 
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information on the function of encoded proteins in vivo.  Similarly, genetically engineered 

mice with enhanced green fluorescent protein (EGFP), ß-galactosidase (LacZ) or other 

genetic reporters expressed under the control of specific promoters allows the visualization 

of individual cells and the tracking of their migration.  For example, the Gene Expression 

Nervous System Atlas (GENSAT) project has created many of these reporter mice (Gong et 

al., 2003; Heintz, 2004).  GENSAT has produced a gene expression atlas of the mouse 

nervous system.  To make this atlas, the promoter for a given gene is put in front of an 

EGFP reporter.  Every cell that would express this gene now also expresses this fluorescent 

reporter.  Our lab has made great use of the Lhx6-EGFP mice made by GENSAT.  This 

mouse expresses EGFP primarily in parvalbumin positive interneurons and allows us to 

readily identify these cells even in live tissue.  This NIH-based consortium produces 

approximately 250 different reporter strains per year (Heintz, 2004) and makes them freely 

available to labs across the world.  As a result of these reporter mice and other genetically 

modified mice, a wealth of information has been gleaned from developmental studies of 

mouse neocortex.   

Neurogenesis 

 The first phases in neocortical development are neurogenesis and differentiation.  

The time-course of neurogenesis has been revealed by labeling cells during S-phase, the 

period of DNA replication in mitosis.  Tritiated thymidine or its non-radioactive analogue, 

bromodeoxyuridine (BrdU), incorporates into the replicating DNA, which is carried with the 

daughter cell as it migrates into the cortex and revealed via autoradiography or 

immunolabeling, respectively.  Labeling studies of this type indicate that neurogenesis starts 

on embryonic day 11.5 (E11.5) and concludes by E18 (Angevine and Sidman, 1961; 

Molyneaux et al., 2007; Polleux et al., 1997).   
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Although the neurogenesis of 

pyramidal neurons and interneurons 

occurs along a similar time-course 

(McConnell, 1988; McConnell and 

Kaznowski, 1991; Valcanis and Tan, 

2003), many differences lie in the details of 

their neural differentiation.  Pyramidal cells 

originate in the ventricular zone (VZ) of the 

dorsal telencephalon (Fig. 1.1; Marin and 

Rubenstein, 2003) and are specified by the 

expression of specific transcription factors 

such as Emx1, Ngn1/2, Pax6, Tlx1/2 and 

FoxG1 (Molyneaux et al., 2007; 

Schuurmans and Guillemot, 2002).  On the 

other hand, interneurons originate in the 

ventricular zone of the ganglionic eminences, located in the ventral telencephalon (Fig. 1.1; 

Wonders and Anderson, 2006). They are specified by the transcription factors Mash1, 

Nkx2.1, Lhx6 and Dlx1/2 (Rubenstein and Merzenich, 2003; Wonders and Anderson, 2006). 

Neuronal differentiation 

 The relationship between neurogenesis and neural differentiation is not always a 

straightforward one. Loss of the transcription factor Lhx2 prohibits the formation of 

neocortical pyramidal neurons.  Instead, the entire dorsal telencephalon differentiates into 

cortical hem and choroid plexus (reviewed by Molyneaux et al., 2007).  Similarly the loss of 

Nkx2.1 prevents the formation of the medial ganglionic eminence (MGE; Sussel et al., 

  
 
Figure 1.1 - Origins of radial and tangential 
migration in the developing neocortex 
Tangentially migrating interneurons (green) 
migrate large distances from their germinal zone 
in the medial ganglionic eminence (MGE) up to 
the dorsal telencephalon (cortex). On the other 
hand, radially migrating pyramidal cells (red) 
migrate a relatively short distance from their 
germinal zone in the dorsal telencephalon.  
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1999), the principle source of interneurons.  Instead, the neurons in this region differentiate 

into cells resembling the olfactory neurons of the lateral ganglionic eminence (LGE).  

 Other aspects of neural differentiation are specified during neurogenesis.  The 

laminar fates of both pyramidal neurons and interneurons are determined by the age of the 

surrounding tissue during G1/S-phase transition of their final division (McConnell, 1988; 

McConnell and Kaznowski, 1991; Valcanis and Tan, 2003).  Some aspects of neuronal 

differentiation are specified after neurogenesis.  In Xenopus spinal cord neurotransmitter 

specification can be modified by the enhancement or suppression of calcium transients 

(Borodinsky et al., 2004; Spitzer et al., 2004).  The sequential order of differentiation and 

neurogenesis are not competing hypothesis, rather multiple routes by which different 

aspects of neural attributes may be specified. 

Neuronal migration 

Following neurogenesis (and perhaps 

differentiation), neurons of the developing 

neocortex must migrate from their germinal 

zones to the cortical plate.  As mentioned 

previously, the generation of pyramidal neurons 

and interneurons occurs in the dorsal and 

ventral telecephalon, respectively.   In 

traversing from these distinct proliferative 

zones, they have evolved remarkably different 

ways of migrating.  

The migration of pyramidal cells starts with a mono-layered neural epithelium located 

in the dorsal telencephalon.  Each radial progenitor in this monolayer spans the width of the 

developing neocortex, maintaining both apical and basal attachments.  As these progenitors 

F
Figure 1.2 - Nuclear migration during the 
cell cycle 
Cell body position corresponds to cell cycle 
phase in the developing neural epithelium  
(Reproduced from Brown et al., 2001). 
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progress through the cell cycle, their soma undergoes interkinetic nuclear movement Fig. 

1.2; Brown, et al., 2001; Sauer, 1935).  Each cell soma progresses dorsally toward the pia 

as it undergoes G1, S-phase at its most dorsal position, G2 as it descends ventrally and 

finally M-phase upon reaching the ventricle (Brown et al., 2001).  If this division is 

symmetrical, it will produce two identical radial progenitors.  If the division is asymmetric, 

one of the cells will remain a radial glia; the other will detach from the ventricular side and 

pull its nucleus dorsally via nucleokinesis to form the preplate (Nadarajah and Parnavelas, 

2002; Super et al., 1998).  

The next wave of pyramidal cells will split this preplate into two layers.  Again, radial 

progenitors undergo cell-cycle dependant interkinetic nuclear movements within the VZ.  

And again, symmetric divisions along the ventricular surface will produce two progenitor 

cells, while asymmetric divisions result in one radial progenitor and one radially migrating 

neuron (Fig. 1.3; Noctor et al., 2004).  This neuron will then attach to its clonally-related 

radial glia and use this fiber as a substrate for migration to the future cortical plate (Noctor et 

al., 2004; Rakic, 1972).  After exiting the VZ, the radially migrating neuron may detach from 

its radial glial substrate and enter a multipolar phase, forming the subventricular zone (SVZ) 

where it will divide symmetrically.  These abventricular divisions produce either two 

multipolar progenitors or two radially migrating postmitotic pyramidal neurons (Noctor et al., 

2001).  The newly generated postmitotic neurons reattach to their scaffold and migrate to 

 
Figure 1.3 - Radial migration from the ventricular zones 
Asymmetric divisions (red) in the ventricular zone (VZ) can produce a post-mitotic radially 
migrating pyramidal neuron.  Symmetric divisions (blue) in the subventricular zone (SVZ) can 
produce two post-mitotic radially migrating pyramidal neurons  (Copied from Noctor et al., 2004). 
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the preplate.  Upon reaching the preplate, pyramidal neurons terminate their migration by 

detaching from radial glia, forming the cortical plate and layer VI of the neocortex. The 

formation of the cortical plate splits the preplate into two transient layers.  The dorsal portion 

of the split preplate is called the marginal zone (MZ), while the ventral portion is called the 

subplate (Super et al., 1998). 

The next generation of radially 

migrating pyramidal neurons will 

migrate in the same manner, bypassing 

layer VI to the ventral border of the MZ 

before they will also detach from their 

radial glia (Goffinet, 1984).  

Detachment from the radial glia is an 

important step as it allows subsequent 

generations of pyramidal neurons to 

pass them.  This process results in the 

formation of the inner layers of cortex 

prior to the outer layers (Fig. 1.4; 

Angevine and Sidman, 1961).  

Interfering with neuron-glial junction domain proteins causes a premature detachment of the 

pyramidal neuron and termination of radial migration illustrating the critical role of the 

scaffold in the continuation of radial migration (Anton et al., 1996).  Should they fail to 

detach from the radial glial scaffold, future generations of neurons would not be able to pass 

forming an inside out cortex.  Mice with a spontaneous mutation called reeler show this 

phenotype indicating the role of reelin in detachment from the radial glia (Dulabon et al., 

2000; Goffinet, 1984; Pinto-Lord et al., 1982).    

 
Figure 1.4 - Pyramidal neuron radial migration is 
dependant upon radial glial substrate  
Pyramidal cells migrate radially using radial glial 
processes as a scaffold (black) and accumulate in an 
inside-first outside-last pattern (red neuron is older 
than orange, which is older than yellow neuron). 
Termination of radial migration occurs at top of CP 
after detachment from radial glial substrate (CP – 
Cortical Plate; IZ – Intermediate zone; MZ – marginal 
zone). 
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Following the last wave of pyramidal neurons forming layer II, the developmental 

scaffold is transformed.  Radial glial cells lose their ventricular attachments and, drawing up 

dorsally towards their pial connection via nucleokinesis, become the astrocytes of the 

neocortex (Noctor et al., 2004; Schmechel and Rakic, 1979).  The majority of reelin-

secreting cells of the MZ, the Cajal-Retzius cells, die (Super et al., 1998); transforming the 

MZ into a cell sparse - and axon rich - layer I.  A significant proportion of cells of the 

subplate die as well (Super et al., 1998).  Since the VZ is also lost in the generation of 

astrocytes, the only remnant of the developing neocortex is the SVZ, which will continue to 

produce new neurons and glia into adulthood (Alvarez-Buylla et al., 2000).  

 The migration of interneurons to the neocortex is totally distinct from radial migration.  

Unlike the generation of pyramidal cells, which occurs in the dorsal telencephalon, 

interneurons are generated in the ventral telencephalon.  Although early studies concluded 

interneurons originated from the lateral ganglionic eminence (LGE), subsequent studies 

revealed that the majority of cortical interneurons are generated in the medial ganglionic 

eminence (MGE) with the caudal ganglionic eminence (CGE) as a secondary source 

(Anderson et al., 1997; DeDiego et al., 1994; Nery et al., 2002; Polleux et al., 2002; 

Tamamaki et al., 1997; Wichterle et al., 2001).  The LGE does produce a sparse population 

of cortical interneurons (Anderson et al., 2001), but primarily generates the olfactory 

interneurons that form the rostral migratory stream as well as striatal neurons (Wonders and 

Anderson, 2006). 

 There are more differences between interneuron and pyramidal cell migration than 

simply their physical origin. Where radially migrating pyramidal neurons only form one 

leading process along a radial glia (Rakic, 1972), interneurons are multipolar and tend to 

branch during migration.  Even the manner in which these processes turn is different 

between the two cell types.  Interneurons turn by growing a new process and following it in a 
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different direction (Fig. 1.5; Polleux et al., 2002), rather than simply turn the tip of the 

leading process itself as with radial migration.   

The generation of new leading 

processes during interneuron migration 

may be due to the lack of a linear 

substrate providing a strong cell 

adhesion constraint as observed for 

radially migrating neurons.  Where 

pyramidal neurons have radial glia to 

guide them to the cortical plate, 

interneurons have no such guide (Fig. 

1.6).  These tangentially migrating 

neurons do turn and migrate along 

radial glia when invading the cortical 

plate, but even within the cortical plate they are often oriented tangentially (O'Rourke et al., 

1995; Polleux et al., 2002; Yokota et al., 2007). Some evidence suggests that interneurons 

 
Figure 1.5 - Morphological dynamics of the leading process during a change in the direction 
of migration 
These cells, migrating within the intermediate zone, make 90° (A) or 180° (B) changes in their 
trajectory in less than 2 hours (time interval is indicated below each drawing). Note that in each case, 
the turn is not initiated by the growth cone of the leading process, but instead by a second leading 
process that emerges from the cell body (Scale bar: 100 µm; copied from Polleux et al., 2002). 
. 
 

 
Figure 1.6 - Pyramidal neuron radial migration is 
dependant upon radial glial substrate  
Interneurons migrate along a wide variety of paths 
and appear to require neither radial glia nor axons 
(grey) exclusively as a substrate.  Cell numbers 
represent sequential order (CP – Cortical Plate; IZ – 
Intermediate zone; MZ – marginal zone). 



 13 

use axons as a guide to the neocortex (Denaxa et al., 2001; McManus et al., 2004), 

although interneurons have been identified migrating independent of axons via 

immunostaining (Polleux and Ghosh, 2002; Wichterle et al., 2001).  Furthermore, if axons 

were a required substrate for 

interneuron migration one would 

expect a pronounced 

interneuron migration deficit in 

the neocortex of mice lacking 

corticofugal axons.  The 

conditional LKB1 Emx1-Cre 

knockout mouse has no 

corticofugal axons (Barnes et 

al., 2007) yet we have identified 

calbindin-positive interneurons 

in the neocortex of these 

animals (Fig 1.7).  Although the 

distribution of these interneurons is slightly disorganized in the LKB1 cKO, they are 

nonetheless present in the cortex in appropriate numbers.  If interneurons do have a 

required substrate, it has not yet been identified. 

The lack of a directing substrate suggests tangential migration is guided by moving 

towards or away from short or long-range diffusible, factors secreted in the extracellular 

matrix, a process called chemotaxis.  Neuregulin-1 and GDNF both act as chemoattractants 

for interneurons (Flames and Marin, 2005; Pozas and Ibanez, 2005).  As will be discussed 

in more detail later, GABA has long been proposed to affect interneuron migration to the 

neocortex, although conflicting results emerged from experiments assessing the role of 

GABAA receptor activation in neuronal migration (Behar et al., 1996; Behar et al., 1998; 

 
Figure 1.7 - Tangentially migrating interneurons migrate to 
cortex in genetically axotomixed mice  
Immunostaining for calbindin positive interneurons in dorsal 
telencephalon of E16.5.  (A-C) Wild-type mice show distinct 
bands of tangentially oriented interneurons in IZ and SVZ. (D-
E) Although disorganized, interneurons migrate successfully to 
the IZ, SVZ and VZ of genetically axotomized LKB1 cKO 
(Emx1-Cre; CP - Cortical plate; IZ - Intermediate zone; MZ - 
Marginal zone; SVZ - Subventricular zone; VZ - ventricular 
zone). 
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Cuzon et al., 2006). GABAA receptor activation facilitates interneuron entry into the dorsal 

telencephalon (Cuzon et al., 2006), although activation appears to have no effect in 

attracting interneurons or in stimulating their movement (Behar et al., 1996; Behar et al., 

1998; Cuzon et al., 2006).   

Chemorepulsive cues have also been found for cortical interneurons.  There is 

evidence that interneurons undergo chemorepulsion from the ventral telencephalon by 

Slit1/2 interactions (Marin et al., 2003; Zhu et al., 1999), although Slit1/2 knockouts show no 

significant deficit in interneuron migration (Marin et al., 2001).  Interactions between 

Sema3A/3F expressed in the striatal mantle region and their corresponding receptors 

Neuropilin1/2 on interneurons is thought to force cortical interneurons to migrate dorsally 

into the cortex (Marin et al., 2001; Tamamaki et al., 2003).  Interneurons are also repulsed 

from entering the cortical plate prematurely through Cxcr4 and its receptor Cxcl12 (Li et al., 

2008; Lopez-Bendito et al., 2008). 

Upon their entry into the cortical plate, another difference between interneurons and 

pyramidal cells arises.  Rather than terminating migration immediately like their radially 

migrating counterparts, interneurons migrate inside the cortical plate for several days at 

least (Polleux et al., 2002; Tanaka et al., 2006).  It is unknown how long this period lasts or 

what causes them to terminate their migration.  It is surprising that so little attention has 

been given to this biological phenomenon, given how critical interneurons are for proper 

cortical function. 

GABAergic interneurons form some of the first synaptic connections in the 

neocortex.  Although the very first synapses in the developing neocortex occur in the 

subplate (Del Rio et al., 2000) these are transient, as a significant proportion of subplate 

neurons die before adulthood (Super et al., 1998). The first neocortical synapses to form in 

the laminar structures of the cortex are inhibitory and occur from P7 to P20 in the rat (Sutor 

and Luhmann, 1995).  The development of GABAergic synapses precedes the formation of 
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glutamatergic synapses in most systems studied do far (Akerman and Cline, 2007; Ben-Ari, 

2002).   

GABA is not always an inhibitory neurotransmitter (Ben-Ari, 2002).  As a classical 

neurotransmitter, GABA exerts its effects in part by activating ionotropic chloride ion 

channels, the GABAA and 

GABAC receptors.  The 

direction of chloride flow - and 

therefore the intracellular 

concentration of chloride - 

determines whether the 

response to GABA will be 

hyperpolarizing or 

depolarizing (See Fig. 1.8).  

The inhibitory/hyperpolarizing 

effect of GABA is a result of 

the flow of chloride ions into 

neurons upon activation (Ben-

Ari, 2002).  The potassium 

chloride co-transporter, KCC2, plays a critical role in the establishment of this chloride 

gradient.  Without it, the effect of GABA on ionotropic GABA receptors is excitatory (Rivera 

et al., 1999).  Interestingly, the transition from a migratory state to a sedentary synaptogenic 

phase coincides with the up-regulation of KCC2 (Lu et al., 1999).  

Summary 

 
Figure 1.8 - Early expression of NKCC1 and late expression 
of KCC2 determines developmental changes in [Cl–]i 
Schematic diagram depicting the Na+–K+–2Cl– cotransporter 
NKCC1, the K+–Cl– co-transporter KCC2 and voltage-gated 
calcium currents, as well as the gradients of chloride ions. (A) 
NKCC1 expression predominates in immature neurons, in which 
the intracellular concentration of chloride ([Cl–]i) is relatively high. 
(B) KCC2 expression predominates in mature neurons.  Note 
that the activation of GABA (γ-aminobutyric acid) type A 
receptors generates an efflux of chloride and an excitation of 
immature neurons, and an influx of chloride and an inhibition of 
adult neurons. CLC2, voltage-gated chloride channel 2; ECl, 
chloride reversal potential; RMP, resting membrane potential 
(Vrest);VDCC, voltage-dependent calcium channel (copied from 
Ben-Ari, 2002). 
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One of the most astounding achievements in neuroscience is how much its founding 

fathers were able to determine about the nervous system simply by looking at it.  Of this 

Edward Callaway and Joshua Sanes have written: 

To a considerable extent, neurotechnology today can be viewed as the 
enterprise of building prosthetic devices that will enable mere mortals to 
demonstrate what Cajal intuited (Callaway and Sanes, 2006). 
 

Not to dispute the brilliance of these men, but humans are visual creatures with profound 

abilities to understand extremely complex phenomenon just by looking at them. Where the 

initial observations of neurons were made by labeling with Golgi staining and horseradish 

peroxidase, we can now electroporate cells with a variety of protein-based fluorescent 

markers, but the same necessity of simply observing developing neurons ‘in the wild’ 

remains the best way to determine with precision the developmental mechanisms leading to 

cortical circuit assembly.  There are, however, limitations to our observational abilities.  

My thesis consisted in developing new time-lapse confocal imaging and quantitative 

analysis tools to study some of the molecular and cellular mechanisms underlying: (1) the 

role of Neurogenin2 in the specification of the migration and morphology of pyramidal 

neurons (Chapter 2 – Article 1) and (2) the role of GABA and KCC2 signaling in stopping 

the migration of cortical interneurons (Chapter 3 – Article 2). Following the presentation of 

these two articles, I will synthesize these results and discuss their outcomes, their 

interpretation and potential future directions in Chapter 4. 



CHAPTER TWO 

Phosphorylation of Neurogenin2 Specifies the Migration Properties 
and the Dendritic Morphology of Pyramidal Neurons in the 

Neocortex. 
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SUMMARY 

The developmental mechanisms specifying the dendritic morphology of different 

neuronal subtypes are poorly understood at the molecular level. Here we demonstrate that 

the bHLH transcription factor Neurogenin2 (Ngn2) is both necessary and sufficient to specify 

the dendritic morphology of pyramidal neurons in vivo by specifying the polarity of its leading 

process outgrowth during the initiation of radial migration. The ability of Ngn2 to promote a 

polarized leading process outgrowth during the initiation of migration requires the 

phosphorylation of a tyrosine residue at position 241, an event that is neither involved in 

Ngn2 proneural function nor its direct transactivation properties. Interestingly, the migration 

defect observed in the Ngn2 knockout and in progenitors expressing Ngn2Y241F can be 

significantly rescued by inhibiting the activity of the small-GTPase RhoA in cortical 

progenitors. Our results demonstrate that Ngn2 coordinates the acquisition of the radial 

migration properties and the unipolar dendritic morphology characterizing pyramidal neurons 

through molecular mechanisms distinct from those mediating its proneural activity.  
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INTRODUCTION 

The astonishing diversity of dendritic morphologies characterizing distinct neuronal subtypes 

underlies their sophisticated signal processing and computational properties (Hausser et al., 2000). 

Although an extensive amount of work performed over the past decade has identified the extracellular 

cues, the receptors and some of the corresponding signaling pathways controlling axon growth and 

guidance (Huber et al., 2003; Tessier-Lavigne and Goodman, 1996; Yu and Bargmann, 2001), the 

cellular and molecular mechanisms specifying the dendritic shape of distinct sub-classes of neurons 

is still poorly understood in vertebrates (Jan and Jan, 2003; Scott and Luo, 2001; Whitford et al., 

2002). In particular, although substantial progress has been made in characterizing the late, activity-

dependent phase of dendritic branching and adaptation of the size of the dendritic arbor relative to 

presynaptic inputs (Gaudilliere et al., 2004; Van Aelst and Cline, 2004; Wong and Ghosh, 2002), the 

early developmental mechanisms specifying the overall dendritic morphology of a given neuronal 

subclass has not been explored. One of the key unresolved questions is the relative importance of 

intrinsic versus extrinsic control in establishing the dendritic arborization characteristic of a given 

neuronal subtype (Scott and Luo, 2001).  

The development of dendritic morphology conceptually involves at least four steps (Scott and 

Luo, 2001): (1) dendritic initiation, (2) dendritic outgrowth and guidance, (3) dendritic branching 

including spine or synapse formation and (4) limitation of dendritic outgrowth. The first step dictates 

whether dendritic outgrowth will be polarized or not and thereby determining whether the dendritic 

field of a neuron will sample the ‘presynaptic space’ uniformly or in a biased manner. In the neocortex 

and hippocampus, pyramidal neurons are initially characterized by a polarized outgrowth of one major 

dendrite i.e. the apical dendrite (Miller, 1981; Peters and Kara, 1985a), whereas the vast majority of 

cortical interneurons undergo an unpolarized dendritic outgrowth leading to a multipolar dendritic 

morphology that is by definition non-pyramidal (Miller, 1986; Peters and Kara, 1985b). Interestingly, it 

has been recently shown that pyramidal and non-pyramidal neurons represent two developmentally 

distinct neuronal lineages generated by specialized and distinct sets of progenitors. Pyramidal 

neurons (1) originate from progenitors located in the dorsal telencephalon and express region-specific 
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transcription factors that include Emx1, Neurogenin (Ngn) 1 and Ngn2, Pax6 and Tlx1/2 (2) migrate 

radially along a radial glial scaffold to reach their appropriate laminar position in an inside-first 

outside-last manner, (3) have an initially unipolar, unbranched pyramidal dendritic morphology 

characterized by an apical dendrite extending towards the pial surface, (4) generate axons that 

project over long distances to sub-cortical or to other cortical areas, and (5) use glutamate as an 

excitatory neurotransmitter. On the other hand, cortical interneurons (1) originate from progenitors 

located in the ventral telencephalon [medial and caudal ganglionic eminence (MGE and CGE 

respectively)] and express a different set of transcription factors such as Mash1, Nkx2.1, Lhx6 and 

Dlx1/2, (2) migrate tangentially to reach the cortex, (3) display a variety of multipolar, non-pyramidal 

dendritic morphologies, (4) have locally-projecting axons and (5) use GABA as an inhibitory 

neurotransmitter (reviewed in Marin and Rubenstein, 2003; Schuurmans and Guillemot, 2002).  

In Drosophila, proneural basic-helix-loop-helix (bHLH) transcription factors such as atonal or 

achaete-scute have been isolated based on their ability to promote neural fates in external sense 

organs models (Jarman et al., 1993; reviewed in Bertrand et al., 2002). Interestingly, in the fly central 

nervous system, atonal does not have proneural activity but is instead specifically required to control 

the pattern of axonal branching during larval and pupal development, an activity it carries out through 

interactions with Notch (Hassan et al., 2000). Furthermore, although the proneural activity of bHLH 

transcription factors has been demonstrated to reside in the DNA-binding basic region (Quan et al., 

2004), there is evidence that neuronal subtype specification is controlled by residues outside the 

DNA-binding domain in both vertebrates and invertebrates (Huang et al., 2000b; Nakada et al., 2004). 

In mammals, recent evidence has also supported the notion that the bHLH protein Ngn2 plays a 

critical role not only in the acquisition of pan-neuronal properties (Lee and Pfaff, 2003; Nieto et al., 

2001; Scardigli et al., 2001; Sun et al., 2001) but also in the specification of neuronal subtypes (Fode 

et al., 1998; Fode et al., 2000; Lee and Pfaff, 2003; Ma et al., 1999; Mizuguchi et al., 2001; Parras et 

al., 2002; Ross et al., 2003; Scardigli et al., 2001; Schuurmans et al., 2004; Seibt et al., 2003). 

Specifically, a recent study demonstrated that Ngn1 and Ngn2 specify the expression of glutamate as 

the excitatory neurotransmitter in pyramidal cortical neurons (Schuurmans et al., 2004). These results 

raised the question of whether Ngn2 function in cortical progenitors was limited to the specification of 
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neurotransmitter expression or whether Ngn2 also participates to the specification of other phenotypic 

traits of cortical glutamatergic neurons, such as their radial migration properties and their pyramidal 

dendritic morphology? 

Interestingly, recent time-lapse confocal analysis of the early initiation of radial migration of 

cortical progenitors has revealed that upon cell-cycle exit, immature neurons display a striking 

transition from a multipolar to a unipolar morphology at the level of the subventricular zone (Noctor et 

al., 2004). These results strongly suggest that molecular mechanisms operating during the initiation of 

radial migration are specifying the polarity of the leading process extension ultimately determining the 

unipolar dendritic morphology of pyramidal neurons in the cortex (Kriegstein and Noctor, 2004).  

In the present study, we provide genetic evidence that the coordinated specification of the 

radial migration properties and the pyramidal dendritic morphology is controlled by the transcription 

factor Ngn2 at least in part by functionally repressing the activity of the small GTPase RhoA. We 

combined in vivo and in vitro gain- and loss-of-function approaches to demonstrate that Ngn2 

specifies the dendritic morphology of pyramidal neurons by controlling their early polarization during 

the initiation of radial migration. Importantly, this activity is mediated by phosphorylation of a tyrosine 

residue at position 241 in the C-terminal domain of Ngn2, a residue that is not directly involved in 

mediating its transactivation properties or its proneural properties. Finally, we used time-lapse 

confocal microscopy of individual migrating neurons in slices and found that neurons expressing 

Ngn2Y241F display a strikingly leading process polarity defect and a failure to undergo proper 

nucleokinesis. 

RESULTS 

Neurogenin2 is expressed by cortical progenitors and transiently by post-
mitotic neurons during the initiation of radial migration 

It is well established that Ngn2 mRNA is specifically expressed by cortical 

progenitors in both the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the dorsal 

telencephalon throughout neurogenesis (Fode et al., 2000; Miyata et al., 2004; Schuurmans 

et al., 2004), while it is not expressed by progenitors located ventrally in the ganglionic 
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eminence (GE). Moreover, it has been recently shown that Ngn2 protein expression is 

regulated in a cell-cycle specific manner in the cortical VZ (Miyata et al., 2004). In particular, 

Ngn2 is expressed by cortical progenitors during the window of time when they commit to 

the neuronal lineage both in the ‘surface’, proliferative divisions in the VZ and the ‘non-

surface’ neurogenic divisions in the SVZ (Miyata et al., 2004; Murciano et al., 2002).  

We wanted to explore more carefully the spatial pattern of Ngn2 expression in the 

cortical germinal zones at E16 (when both the VZ and SVZ are prominent) by performing 

immunofluorescent staining directed against Ngn2 (Fig. 2.1). We confirmed that cortical 

progenitors located in the VZ express Ngn2 (Fig. 2.1A and 2.1J). Interestingly, Ngn2 was 

also expressed by a subset of cells in the SVZ and in the intermediate zone (IZ), where 

early post-mitotic neurons exit the cell cycle and initiate radial migration (Fig. 2.1A-C). In 

order to test directly if these cells were indeed post-mitotic neurons, we performed double 

staining for Ngn2 and three distinct early post-mitotic neuronal markers: NeuN (Fig. 2.1 D-

E’’’), Microtubule Associated Protein-2 or MAP2 (Fig. 2.1F-G’’’) and β-III tubulin or TuJ1 

(Fig. 2.1H-I’’’). This analysis showed unequivocally that Ngn2 is expressed by a sub-

population of post-mitotic cells in the SVZ and IZ (Fig. 2.1E-E’’’, G-G’’’ and I-I’’’). The 

quantification shown in Figure 2.1J shows that although the majority of cells expressing 

Ngn2 (green bars) were located in the VZ, the bulk of Ngn2-NeuN double-labeled neurons 

(orange bars in Fig. 2.1J) were located primarily in the SVZ. The percentage of Ngn2+ cells 

expressing NeuN increased almost linearly as a function of the distance from the ventricle 

(Fig. 2.1H) reaching approximately 50% in the SVZ and 80% in the IZ. Interestingly, Ngn2 is  

Figure 2.1 - Neurogenin2 is expressed both in neuronal progenitors and early postmitotic 
neurons in the developing cortex 
(A–C) Double immunofluorescent staining performed at embryonic day (E) 16 on cryostat sections 
from mouse cortex against Ngn2 protein (A) and the early neuronal marker βIII-tubulin (TuJ1) (B 
and C).  (D–D″ and E–Etriple prime) Coexpression of Ngn2 (D) and NeuN (D′) in the SVZ (D–D″). 
Note the nuclear localization of Ngn2 in double immunopositive cells in the SVZ (arrows in [E]–
[Etriple prime]). (F–F″ and G–Gtriple prime) Coexpression of Ngn2 (F and G) and MAP2 (F′ 
and G′) in the SVZ (arrow in [F″] and [G″]–[Gtriple prime]). 
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(H–H″ and I–Itriple prime) Coexpression of Ngn2 (H and I) and Tuj1 (H′ and I′) confirms the 
presence of Ngn2+ neurons in the SVZ (arrow in [F″] and [G″]–[Gtriple prime]).  (J) 
Quantification of the distribution of Ngn2+ cells (green bars) and Ngn2/NeuN double-
positive neurons (orange bars) expressed as a percentage of the total number of Ngn2+ 
cells found in 25 μm wide bins.  (K) Quantification of the radial distribution of Ngn2-NeuN 
double-positive neurons calculated as a percentage of the total number of cells expressing 
Ngn2+ in each bin (CP, cortical plate; VZ, ventricular zone; SVZ, subventricular zone; IZ, 
intermediate zone). 
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very rapidly down-regulated at the protein level once neurons are reaching the top of the IZ 

and the CP. This analysis shows that Ngn2 is expressed transiently by post-mitotic neurons 

located in the SVZ and the IZ, coinciding with the time when these neurons engage in radial 

migration and display a morphological transformation from multipolar to unipolar (Noctor et 

al., 2004). 

Neurogenin2 is necessary for the specification of the radial migration 
properties of cortical neurons 

Recent BrdU birth-dating studies suggested that Ngn2 knockout embryos were 

characterized by a pronounced migration defect in the cortex as suggested by the ectopic 

deep location of cells born between E12.5 and E14.5 in the germinal and intermediate 

zones of neonatal Ngn2-/- cortices (Schuurmans et al., 2004). We wanted to further explore 

the role of Ngn2 in specifying the radial migration properties of cortical neurons. To do this 

we developed a new allele of Ngn2 by replacing the entire Ngn2 coding sequence with 

EGFP ([Ngn2KIFGP; see Methods; Seibt, 2003). Throughout neurogenesis, EGFP faithfully 

reports the regional expression of Ngn2 in the dorsal telencephalon of heterozygous 

Ngn2KIGFP/+ embryos with the difference that EGFP is maintained much longer in neurons 

and acts as a lineage tracer (Fig. 2.2A-B at E14.5 and data not shown). Interestingly, 

homozygous Ngn2KIGFP/KIGFP embryos express approximately two-fold more EGFP compared 

to Ngn2KIFGP/+ embryos (Compare Fig. 2.2 A and C). Similar to two previously described 

Ngn2 null alleles, the majority of Ngn2KIGFP/KIGFP mice die shortly after birth (Fode et al., 

1998; Fode et al., 2000). We will refer to mice homozygous for this EGFP allele as Ngn2-/- 

or Ngn2 knockout in the remainder of the study. 

Figure 2.2 - Neurogenin2 is required in vivo for the proper migration of cortical neurons 
(A and B) EGFP epifluorescence in live coronal organotypic slices isolated from E14.5 
Ngn2KIGFP/+ mouse embryos (A) and Ngn2KIGFP/KIGFP mouse embryos (B) shows expression 
of Ngn2 in the dorsal telencephalon (D Tel.) 
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(C–J) Sagittal cryostat sections from postnatal day 0 (P0) Ngn2+/+ (C, E, G, and I) and Ngn2-/- 
(D, F, H, and J) mice counterstained with hematoxylin-eosin. At higher magnification, streams of 
ectopic cells (arrows in [F]) emerging from the SVZ (star in [F]) are detected in Ngn2-/- mice but 
not in control Ngn2+/+ mice (E). Heterotopic cell clusters are also found at the cortico-striatal 
boundary and underneath the developing CA regions of the hippocampus of the Ngn2-/- (arrows in 
[H] and [J], respectively) but not the Ngn2+/+ mice (G and I).  (K and L) Ex vivo electroporation of 
pCIG2:DsRed2 in cortical progenitors of Ngn2+/+ (K) and Ngn2-/- (L) E14.5 embryos followed by 
organotypic culture for 4 days in vitro (DIV).  (M and N) Quantification of the distribution of 
DsRed2-expressing cells along the radial axis of E14.5 Ngn2+/+ (M) and Ngn2-/- slices (N) after 4 
DIV. *p < 0.001 χ2 test comparing corresponding bins (ca, Ammon’s horn regions of the 
hippocampus; dg, dentate gyrus; MZ, marginal zone; St., striatum; wm, white matter. Scale bars, 
100 µm (K and L). 



 26 

 
 

Comparison of hematoxylin/eosin-stained sagittal sections from Ngn2+/+ and    

Ngn2-/- neonatal cortices (Fig. 2.2) revealed the presence of large heterotopic cell clusters 

in the Ngn2 mutants that are suggestive of a neuronal migration defect (arrows in Fig. 2.2D-

F) but not in Ngn2+/+ controls (Fig. 2.2C-E). We also noticed a pronounced decrease in the 

cell density of the cortical plate of Ngn2-/- (Fig. 2.2F) compared to Ngn2+/+ neonates (Fig. 

2.2E) suggestive of a decreased level of migration in the Ngn2 knockout cortex. This is 

reinforced by the presence of streams of cells that seemed unable to exit the SVZ in the 

Ngn2-/- cortex (arrow in Fig. 2.2F). Other heterotopias are observed at the corticostriatal 

boundary and the hippocampus of the Ngn2-/- mice (arrows in Fig. 2.2H and 2.2J 

respectively) but not in the control mice (Fig. 2.2G and 2.2I respectively). 

In order to test directly if radial migration was defective in Ngn2-/- embryos, we 

implemented a new technique that combines electroporation-mediated gene transfer and in 

vitro organotypic slice culture (see Suppl. Fig. 2.1 for details). This ex vivo cortical 

electroporation technique allows the transfection of radial glial neural progenitors at 

reproducible efficiencies (up to 30% transfection efficiency among nestin+ VZ progenitors- 

Hand and Polleux-data not shown). After two days in vitro (2div), a cohort of post-mitotic 

neurons generated by the electroporated radial glial progenitors have engaged radial 

migration and are found in the IZ (Suppl. Fig 2.1H). By 4 div this single cohort of radially 

migrating neurons have reached their final position at the top of the cortical plate (Suppl. 

Fig 2.1I) recapitulating the same timing displayed in vivo as demonstrated by birthdating 

studies (Berry and Rogers, 1965) as well as using in utero electroporation technique (Hand, 

Bortone and Polleux, manuscript in preparation; see also Bai et al., 2003; Hasegawa et al., 

2004; Hatanaka and Murakami, 2002; Kawauchi et al., 2003; Shu et al., 2004; Tabata and 

Nakajima, 2001). Therefore, this technique allows the modification of gene expression in a 



 27 

synchronous cohort of cortical neurons and the subsequent examination of their migration 

properties and their final dendritic morphology in vitro.  

Cortical progenitors electroporated at E14.5 (during the production layer 5 Polleux et 

al., 1997) give rise to neurons migrating radially into the intermediate zone and 

accumulating in the cortical plate of control cortex after 4 div (Fig. 2.2K). On the other hand, 

cortical electroporation of E14.5 Ngn2-/- littermate embryos revealed a pronounced 

migration defect resulting in the accumulation of transfected cells in the SVZ and IZ (Fig. 

2.2J). Few cells successfully migrated into the cortical plate in the Ngn2-/- slices after 4 div 

(star in Fig. 2.2J). We quantified neuronal migration by using an automatized cell profile 

counting method where the total number of cell profiles along the radial axis of the cortical 

wall is expressed as normalized percentage of the total distance between the ventricle and 

the pial surface (Fig. 2.2K-L see Methods for details). This normalized distribution analysis 

demonstrates that after 4 div, approximately 30% of electroporated cells successfully 

migrated to the CP-MZ layers in Ngn2+/+ slices whereas less than 10% of electroporated 

cells do so in the Ngn2-/- slices  (Fig. 2.2M-N). In contrast a significantly higher percentage 

of electroporated cells remain in the lower IZ and SVZ regions of the Ngn2-/- slices 

compared to control Ngn2+/+ slices (Fig. 2.2M-N). 

This quantitative analysis suggests that Ngn2 is required for the proper initiation of 

radial migration by cortical progenitors. However, a potential caveat of this analysis is due to 

the long-term consequences of the complete Ngn2 loss-of-function on the fate of cortical 

progenitors. In fact, several studies have already demonstrated that Ngn2 plays an essential 

role in the early specification of the molecular identity of dorsal telencephalic neurons 

(reviewed in Schuurmans and Guillemot, 2002). At E12.5 dorsal progenitors in Ngn2 

knockout upregulate Mash1, a bHLH transcription factor normally expressed predominantly 

by ventral progenitors of the GE which plays an important role in the specification of the 

phenotype of GABAergic neurons of the striatum and cortex (Fode et al., 2000; Parras et al., 
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2002; Schuurmans et al., 2004). Therefore, there are long-term fate changes of knocking 

out Ngn2 expression in dorsal telencephalic progenitors that could indirectly affect the 

migratory properties of their daughter neurons. 

Acute conditional deletion of Neurogenin2 in cortical progenitors alters the 
initiation of radial migration 

In order to circumvent some of these long-term effects, we performed an acute 

deletion of Ngn2 expression in cortical progenitors, using Cre-mediated deletion of Ngn2 

specifically in dorsal telencephalic progenitors. This was achieved by using ex vivo 

electroporation of a plasmid expressing Cre recombinase-IRES-EGFP in E14.5 cortical 

progenitors harboring a conditional allele of Ngn2 (Ngn2KIFloxNgn2Flox; see Methods for detail). 

As shown in Figure 2.3A-B, our electroporation technique leads to a high co-expression of 

high levels of Cre-recombinase and EGFP in E14.5 cortical progenitors within the VZ in less 

than 24 hours in vitro. In order to demonstrate that this electroporation-mediated Cre-

recombinase expression is efficiently knocking out Neurogenin2 protein expression, we 

performed anti-Ngn2 immunofluorescent staining of the slices electroporated with 

pCIG2:Cre-IRES-EGFP. As shown in Figure 2.3C-D Ngn2 immunoreactivity is markedly 

decreased in cells expressing Cre recombinase-IRES-EGFP. After 4 div, control (EGFP 

only) electroporation of Ngn2KIFloxNgn2Flox E14.5 cortical slices results in a robust neuronal 

migration outside the VZ-SVZ into the IZ and up to the CP (Fig. 2.3E and 2.3G). In contrast 

E14.5 Ngn2KIFloxNgn2Flox cortical slices electroporated with Cre-recombinase present a 

pronounced neuronal migration defect with very few neurons reaching the CP (Fig. 2.3F and 

2.3G). These results reinforce our conclusion that Ngn2 is necessary to specify the 

migration properties of cortical neurons.  

One caveat of this interpretation is that this acute loss of Ngn2 function approach 

affects  the  percentage  of  electroporated  EGFP-expressing cells expressing pan-neuronal  
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Figure 2.3 - Acute deletion of 
Ngn2 expression in E14.5 
cortical progenitors impairs 
radial migration 
(A and B) Ex vivo electro-
poration of E14.5 dorsal telen-
cephalic progenitors using a 
pCIG2:Cre-recombinase-IRES-
EGFP followed by in vitro 
organotypic slice culture for 24 
hr in vitro results in high-level of 
coexpression of Cre-recom-
binase (A) and EGFP (B).  (C 
and D) Electroporation of Cre-
recombinase in cortical progen-
itors from Ngn2KIFloxNgn2Flox 
E14.5 embryos (C) results in a 
pronounced downregulation of 
Ngn2 protein expression (star in 
[C] and [D]) in the VZ.  (E and 
F) Acute deletion of Ngn2 
expression in cortical progen-
itors results in a pronounced 
decrease in the number of 
neurons reaching the CP (star 
in [F]) compared to control 
electroporation (EGFP only) in 
Ngn2KIFloxNgn2Flox E14.5 
progenitors (E). Red: immuno-
fluorescence against the 
neuronal marker HuC/D in (E) 
and (F).  (G) Quantification of 
the percentage of EGFP+ cells 
located in the VZ-SVZ, IZ, or 
CP compartments. For both (G) 
and (H), n = 7 slices, unpaired t 
test, **p < 0.01, ***p < 0.001.  
(H) Quantification of the 
percentage of GFP+ cells 
expressing the neuronal marker 
HuC/D reveals a pronounced 
proneural defect in progenitors 
where Ngn2 was deleted 
(pCIG2::Cre) compared to 
control transfected progenitors 
(pCIG2). 
 

 

 



 30 

 
markers such as HuC/D as an index of the proneural potential of cortical progenitors (Fig. 

2.3H). This quantification reveals that after 4 div, only 15% of cells electroporated with Cre-

expressing vector in Ngn2KIFloxNgn2Flox slices expressed the neuronal marker HuC/D against 

approximately 60% in Ngn2KIFloxNgn2Flox slices electroporated with control (EGFP only). This 

result suggests a strong proneural defect due to the acute inactivation of Ngn2 expression in 

cortical progenitors which is compatible with the well-documented function of Neurogenins 

(reviewed in Bertrand et al., 2002). Therefore, the migration defect characterizing both the 

complete and the conditional loss of Ngn2 function could be a secondary consequence of 

the inability of cortical progenitors to initiate neuronal differentiation and possibly exit the cell 

cycle. The dominant proneural function of this class of transcription factors represents one 

of the main limitations in the exploration of their other potential functions in neuronal subtype 

specification. To overcome this limitation, we decided to perform a structure-function 

analysis of Ngn2 in order to isolate potential residues that could uncouple the proneural 

activity of Neurogenin2 from its potential function in the phenotypic specification of neuronal 

subtypes. 

Neurogenin2 is tyrosine phosphorylated in vivo 

The alignment of chick (Gallus gallus), mouse (Mus musculus) and human (Homo 

sapiens) Ngn2 protein sequences revealed a complete conservation of the bHLH domains 

and a partial conservation of domains of unknown function in the amino- (N-) and carboxy- 

(C-) terminal domains (Fig. 2.4A). Interestingly, the N- and C-terminal domains of Ngn2 are 

also highly divergent from Ngn1 and Ngn3, two of its most closely related homologues in the 

mouse genome (Fig. 2.4B). In order to isolate potential residues of Ngn2 outside the DNA-

binding domain that might mediate neuronal subtype specification, we first sought to 

determine if Ngn2 was post-translationally modified and specifically if it was phosphorylated 

in cortical progenitors. Using electroporation of myc-tagged Ngn2 in E14.5 cortical 
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progenitors followed by 24 hours of cortical wholemount culture in vitro in the presence of 

γ32P-labeled ATP (Fig. 2.4C) we found that Ngn2 is phosphorylated in cortical precursors 

(Fig. 2.4D). 

To examine the putative phosphorylation sites in Ngn2, we used a sequence- and 

structure-based prediction program (Blom et al., 1999; see Experimental Procedures) which 

predicted 15 potential serine residues, 4 threonine residues and 3 tyrosine residues 

displaying a significant (p>0.90) probability of phosphorylation (data not shown). Using 

electroporation of a GST-Ngn2 fusion protein in cortical precursors followed by GST-

pulldown and thrombin cleavage of Ngn2 from GST, we found that Ngn2 is tyrosine 

phosphorylated in vivo using anti-phosphotyrosine immunoblotting (Fig. 2.4E). Using GST-

pulldown in undifferentiated P19 cells in order to increase the protein yield we were able to 

confirm that Ngn2 is tyrosine phosphorylated (Fig. 2.4F). Furthermore we found that 

tyrosine 241 is the major site for tyrosine phosphorylation in Ngn2 since its mutation into a 

non-phosphorylatable phenylalanine residue (Ngn2Y241F) drastically reduced the signal 

detected by phosphotyrosine immunoblotting. 

Therefore we focused our effort on the effects of mutating tyrosine 241. In addition, 

mutations of the two other tyrosine residues presenting a high probability to get 

phosphorylated (Y226F and Y252F) did not produce any detectable effects on the 

acquisition of neuronal migration properties or dendritic morphologies (see Suppl. Fig. 2.5 

and data not shown). Interestingly, tyrosine 241 (i) is part of a proline-rich motif (YWQPPPP, 

boxed in Fig. 2.4A) that constitutes a predicted binding site for SH3-containing proteins, (ii) 

is mammalian-specific (not conserved in chick but perfectly conserved in human) and (iii) is 

specific to Ngn2 (not present in mouse Ngn1 or mouse Ngn3; see box in Fig. 2.4B).  

In order to test the requirement of the DNA-binding properties of Ngn2 in mediating 

some of its biological functions, we also produced a DNA-binding incompetent form of Ngn2 

by  substituting  the  last  two  basic/polar  residues  of  the  basic  domain (position 123-124  
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Figure 2.4 - Neurogenin2 is tyrosine phosphorylated in cortical precursors 
 
(A) Alignment of human (Homo sapiens NP_076924), mouse (Mus musculus NP_033848), and 
chick (Gallus gallus NP_990127) Ngn2 protein sequences. The asterisks indicate the position of 
the four tyrosine residues conserved in mouse and human Ngn2 proteins. The arrowheads 
indicate the tyrosine residues presenting a high probability of phosphorylation that we mutated into 
phenylalanine residues. 

(B) Alignment of mouse Ngn2 (MATH4A; NP_033848), Ngn1 (MATH4C; NP_035026), and Ngn3 
(MATH4B; NP_033849) protein sequences reveals a high level of conservation of their bHLH 
domains but a low level of conservation of the N- and C-terminal domains including the 
YWQPPPP motif in the C-terminal domain of Ngn2 (boxed in [A] and [B]), which is not found in 
Ngn1 or Ngn3. 

(C) Photomicrograph showing the high electroporation efficiency of myc-tagged Ngn2 (myc-Ngn2-
IRES-EGFP) obtained by ex vivo electroporation of E14.5 dorsal telencephalic progenitors 
subsequently cultured as wholemount for 24 hr in vitro (HIV). 

(D) Anti-myc immunoprecipitation (IP) of Ngn2 in E14.5 cortical progenitors as shown above. 
Minus lane: control (EGFP only) electroporation. Right panel: 32P autoradiogram of telencephalic 
wholemount cultures performed in the presence of γ32P-labeled ATP reveals the presence of a 
phosphorylated protein corresponding to myc-Ngn2 (arrowhead at 36–40 kDa; n = 3). 

(E) A GST-Ngn2 fusion protein was expressed using cortical electroporation at E14.5 followed by 
24 hr of wholemount in vitro culture as shown in (C). GST-pulldown using glutathione-beads (line 
1) leads to the detection of a product corresponding to GST-Ngn2 (65 kDa) using anti-GST 
immunoblotting. Cleavage of the GST-Ngn2 fusion protein bound to the beads by thrombin 
releases a small amount of GST (lane 2 at 25 kDa) and a product corresponding to Ngn2, which is 
detected by using an anti-phosphotyrosine antibody (Recombinant PY20 i.e., RC20 lane 5). Note 
that GST is efficiently released by glutathione elution (lane 3) and is not tyrosine phosphorylated 
(lane 6). 

(F) Transfection of undifferentiated P19 cells with GST-, GST-Ngn2 fusion, or GST-Ngn2Y241F 
fusion followed by GST-pulldown using glutathione-beads, elution, and immunoblotting with anti-
GST antibody (left blot) or anti-phosphotyrosine antibody (RC20) demonstrates that tyrosine 241 
is the major tyrosine phosphorylation site in Ngn2. 

(G) Mapping of the transcriptional activation domain of mouse Ngn2 in HEK 293T cells using the 
Gal4-UAS-Luciferase system. Gal4-Ngn2[181-213] fusion protein (but not Gal4-Ngn2[214-263]) is 
able to transactivate a UAS-Luciferase reporter to a similar extent as Gal4-Ngn2[181-263], 
suggesting that the minimal transactivation domain is located between residues 181 and 213. *p < 
0.01 Mann-Whitney nonparametric test (n = 6); n.s., nonsignificant. 

(H) Full-length Ngn2 as well as Ngn2Y241F induces a robust 20-fold increase (compared to 
control, **p < 0.001 Mann-Whitney test) in transactivation of the 1.7 kB NeuroD promoter (Huang 
et al., 2000a). Both Ngn2NR->AQ and Ngn2Δbasic (complete deletion basic domain) fail to 
transactivate this promoter in undifferentiated P19 cells. 

(I–K) Immunofluorescence staining for EGFP (I) and MAP2 (J) was used to assess the proportion 
of E14.5 cortical progenitors differentiating into postmitotic neurons in different experimental 
conditions after culturing dissociated E14.5 progenitors for 5 DIV. 

(L) Histogram of the percentage of neurons (MAP2+) derived from EGFP+ precursors expressing 
the indicated constructs. A minimum of 200 cells from four independent experiments were counted 
for each construct; **p < 0.01; n.s., nonsignificant; χ2 analysis. 
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respectively NR; arrows in Fig. 2.4A) into non-polar residues (AQ). This double substitution 

(e.g. Ngn2NR->AQ) was previously shown to abolish Ngn1- and Ngn2-mediated DNA-binding 

and therefore the transactivation of its direct target promoter sequences in a dominant-

negative manner (Lee and Pfaff, 2003; Sun et al., 2001) without interfering with its nuclear 

translocation (see Suppl. Fig. 2.2).  

We first wanted to determine if tyrosine 241 was located within the transcription-

activation (transactivation) domain (TAD) of Ngn2. To our knowledge, the TAD of Ngn2 has 

never been mapped before. Therefore we performed a standard TAD mapping using a 

modified Gal4-UAS system (Fig. 2.4G). The TAD of most proneural bHLH transcription 

factors lies in the proximal or the distal portion of the C-terminal domain of the protein 

(Sharma et al., 1999). Therefore, we designed three Gal4 fusion proteins containing 

respectively (1) the entire C-terminal tail of Ngn2 (residues 181 to 263), (2) the proximal part 

of the C-terminal tail (residues 181 to 213; hatched in Fig. 2.4G) and (3) the distal domain of 

the C-terminal tail (residues 214-263; black in Fig. 2.4G). Using a normalized UAS-

Luciferase reporter assay, we found that the first half of the C-terminal tail proximal to the 

second helix (181-213) displays transactivation properties comparable to the entire C-

terminal tail (Fig. 2.4G). Interestingly, the distal portion encompassing residues 214 to 263 

(including tyrosine 241) did not have any significant transactivation properties (Fig. 2.4F).  

To assess more directly the transactivation properties of the mutant forms of Ngn2 

used in this study, we used the 1.7 kB promoter region of NeuroD previously shown to be 

strongly transactivated by Ngn3 (Huang et al., 2000a). We subcloned this portion of the 

NeuroD promoter upstream of a luciferase reporter system and used constitutive Renilla 

expression to normalize for transfection efficiency in undifferentiated P19 cells. We found 

that Ngn2 strongly transactivates the NeuroD promoter (Fig. 2.4H; on average 20 fold 

p<0.01 Mann Whitney test n=3), whereas Ngn2NR->AQ and Ngn2Δbasic (presenting a complete 
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deletion of the basic domain) both failed to transactivate the NeuroD promoter (Fig. 2.4H). 

Interestingly, the mutation of tyrosine 241 did not interfere with Ngn2-mediated 

transactivation of the NeuroD promoter (Fig. 2.4H).  

Taken together with the transactivation mapping, these results suggest that tyrosine 

241 does not affect the ability of Ngn2 to heterodimerize with class-I bHLH transcription 

factors such as E12 or E47, a function primarily mediated by the HLH domains, or to bind 

DNA, a function primarily mediated by the basic domain (Bertrand et al., 2002; Puri and 

Sartorelli, 2000).  

Tyrosine 241 of Neurogenin2 is not involved in mediating its proneural activity 

Next we wanted to assess the functional effect of mutating tyrosine 241 on the 

proneural function of Ngn2. To do this, E14.5 cortical progenitors were electroporated, 

dissociated and cultured for 5 days in vitro at medium cell density (Fig. 2.4I-K). The 

proneural activity of Ngn2 was assessed quantitatively by scoring the percentage of Ngn2-

transfected progenitors that express MAP2 after 5 div. This analysis revealed that under our 

serum-free culture conditions, over-expression of Ngn2 significantly increased the bias of 

progenitors to differentiate into MAP2+ neurons (approximately 90%; n=481 cells from 3 

independent experiments; Fig. 2.4L) compared to control EGFP-only transfected 

progenitors (63%; n=357 from 3 independent experiments; Fig. 2.4L). Importantly, 

expression of Ngn2NR->AQ was unable to promote neuronal differentiation (n=509 cells; 4 

independent experiments; Fig. 2.4L) whereas expression of Ngn2Y241F had a proneural 

activity that was undistinguishable from wild-type Ngn2 (n=377 cells; 4 independent 

experiments; Fig. 2.4L). These results demonstrate that the proneural activity of Ngn2 is (1) 

at least partially dependent on its DNA-binding properties as previously shown (Lee and 

Pfaff, 2003; Sun et al., 2001), and (2) importantly the proneural activity of Ngn2 does not 

require the integrity of tyrosine 241.  
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Ngn2 specifies the radial migration properties of cortical progenitors in a DNA-
binding independent manner 

We used the ex vivo cortical electroporation technique to study the radial migration 

properties of neurons generated by cortical progenitors forced to express various mutant 

forms of Ngn2. As shown above, control electroporations performed at E14.5 resulted in the 

radial migration of a synchronous cohort of neurons, with approximately one third of the total 

number of cells electroporated accumulating at the top of the cortical plate after 4 div (Fig. 

2.5A and 2.5E). Overexpression of wild-type Ngn2 in E14.5 cortical progenitors, increases 

significantly the proportion of cells recruited to the SVZ and the proportion of neurons 

initiating radial migration and accumulating in the CP (Fig. 2.5B and 2.5F).  

 Surprisingly, the radial distribution of cells expressing Ngn2NR->AQ did not differ 

significantly from the distribution observed after expression of full length Ngn2 and certainly 

did not impair the radial migration properties of E14.5 cortical neurons (Fig. 2.5C and 2.5G). 

Importantly, expression of Ngn2Y241F in E14.5 cortical progenitors almost completely 

abolished the radial migration of cortical neurons into the cortical plate, with the majority of 

neurons accumulating in the IZ and being unable to penetrate into the CP (Fig. 2.5D and 

2.5H). None of the differences in migration exhibited following forced expression of 

Ngn2Y241F could be attributed to defects in neuronal differentiation as the same proportion of 

EGFP+ expressed the post-mitotic markers TuJ1 and MAP2 in the IZ of electroporated 

slices (RH, DB and FP data not shown; see also Fig. 2.4H-K). It is worth emphasizing that 

the forced expression of Ngn2Y241F, but not expression of Ngn2NR->AQ, phenocopies the 

complete and the conditional loss of Ngn2 function (see Fig. 2.2 and Fig. 2.3).  The radial 

migration arrest in the IZ due to expression of Ngn2Y241F by cortical progenitors is unlikely to 

be due to an indirect effect on the structure of the radial scaffold since both at short-term (36 

hiv) and long-term (4 div) time points, radial glial processes are unaffected by expression of 

Ngn2Y241F (Suppl. Fig. 2.3).  
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These results strongly suggest that the inhibition of radial migration resulting from the 

expression Ngn2Y241F in cortical progenitor is dominant over endogenously expressed Ngn2 

in cortical progenitors (see Fig. 2.1). In order to test directly if Ngn2Y241F acts as a dominant-

negative over Ngn2, we performed a set of co-electroporations aimed at expressing different 

ratios of full length Ngn2 and Ngn2Y241F (Suppl. Fig. 2.4). When expressed at a 1:1 or even 

a 10:1 ratio over full length Ngn2, Ngn2Y241F (Suppl. Fig. 2.4B and 2.4C respectively) is still 

inhibiting significantly radial migration compared to control electroporation of wild-type Ngn2 

alone (Suppl. Fig. 2.4A). Therefore, we conclude that Ngn2Y241F acts as a dominant-

 
Figure 2.5 - Phosphorylation of tyrosine 241 in Ngn2 is necessary to specify the radial 
migration properties of cortical progenitors 
(A) Ex vivo electroporation of E14.5 cortical progenitors followed by organotypic slice culture for 4 
DIV (see also Figure S1) allows the visualization of the radial migration properties of a single cohort 
of neurons to the top of the CP. Red counterstaining is anti-Nestin immunofluorescence revealing 
the intact structure of the radial glial scaffold in all four conditions.  (B and C) Electroporation of full-
length Ngn2 or Ngn2NR->AQ increases the number of cortical progenitors engaging in radial 
migration in the IZ and reaching the CP.  (D) Electroporation of Ngn2Y241F results in a premature 
arrest of migration in the IZ (star) beneath the CP.  (E–H) Histograms of the distribution of EGFP+ 
cells along the radial extent of the cortical wall (normalized as a percentage). Error bars represent 
standard error to the mean. *p < 0.01; χ2 comparing equivalent bins (Scale bar value in (A)–(D), 
200 μm). 
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negative over Ngn2, probably by binding competitively to rate-limiting effectors and therefore 

preventing wild-type Ngn2 to interact with these effectors that could be necessary to 

transactivate specific target promoters of genes involved in regulating radial migration 

and/or neuronal polarity (see below and Fig. 2.2.9). 

Expression of Ngn2Y241F impairs the polarity and nucleokinesis of radially 
migrating neurons 

 In order to gain insights into the cellular mechanisms underlying the function of the 

Y241 residue in Ngn2, we coupled ex vivo cortical electroporation with slice culture and 

time-lapse confocal microscopy to document the dynamics of radial migration of neurons 

expressing endogenous wild-type Ngn2 (Fig. 2.6A) or Ngn2Y241F (Fig. 2.6B). This analysis 

reveals that progenitors expressing Ngn2Y241F are able to transit from the SVZ into the IZ but 

when they should engage radial migration these cells display a striking loss of the polarity of 

their leading process outgrowth (red arrow in Fig. 2.6B) as well as failure to undergo 

nucleokinesis (three cells pointed in Fig. 2.6B). Our quantification demonstrate that cells 

expressing Ngn2Y241F display a significant decrease of the rate of cell body translocation 

(Suppl. Fig. 2.5A) and a significant increase of the rate of leading process branching 

(Suppl. Fig. 2.5B) compared to progenitors expressing endogenous wild-type Ngn2.  

Rescue of the migration defect due to Neurogenin2 loss-of-function by 
inhibition of RhoA function 

In order to improve our understanding of the molecular mechanisms underlying the 

role of Ngn2 in specifying the radial migration properties of pyramidal neurons, we took 

advantage of a recent substractive hybridization screen (Mattar et al., 2004) that led to the 

identification of several Ngn2-target genes in the developing cortex. Interestingly, several of 

these putative Ngn2-target genes have been previously shown to be critical for radial 

migration such as Doublecortin (Dcx; Bai et al., 2003; des Portes et al., 1998; Gleeson et al.,  
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Figure 2.6 – Expres-
sion of Ngn2Y241F 
impairs the polarity of 
neu-rons initiating 
during radial migration 
in the intermediate 
zone 
 
(A) Time-lapse confocal 
microscopy images 
showing the dynamics of 
radial migration for 
neurons transitioning 
from the SVZ to the IZ 
(time stamp in hours: 
minutes). Colored ar-
rows (red, green, and 
blue) point to individual 
control cells electro-
porated with EGFP, 
which display the char-
acteristic unipolar mor-
phology of migrating 
neurons with a single 
leading process directed 
toward the pial surface 
(top of the pictures). 
 
(B) In contrast, neurons 
expressing Ngn2Y241F 
display a striking polarity 
defect where some cells 
(red arrow) lose their 
pre-existing leading pro-
cess (pointed by ast-
erisk in [B]) and extend 
a process toward the 
ventricle instead (yellow 
arrow). In addition, all 
three cells pointed to by 
arrows fail to translocate 
their nucleus toward the 
leading process and as 
a result fail to move dur-
ing the entire duration of 
the movie. 
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1998). However, several other target genes have no known function in regulating neuronal 

migration. Among those, two genes encode two distinct Rho-family of GTPase Activating 

Proteins (Rho-GAPs) called RhoGAP5 (also called ARHGAP5 or p190 Rho-GAPb) and 

Formin Binding Protein 2 (FNBP2; Katoh, 2004; also called srGAP2 Coyle et al., 2004; 

Wong et al., 2001). Interestingly, FNBP2 is specifically down-regulated in cortical 

progenitors of E13.5 Ngn2 knockout mice compared to wild-type littermates (Mattar et al., 

2004). Rho-GAPs act as negative regulators of small-GTPase activity by increasing GTPase 

catalytic activity therefore promoting the GTP to GDP exchange (Ridley et al., 2003). 

Interestingly, the small-GTPase RhoA itself is specifically expressed at high levels by 

cortical progenitors but is sharply down-regulated during the initiation of radial migration in 

the IZ (Olenik et al., 1999). Given the known function of activated-RhoA in inhibiting non-

neuronal cell migration (Arthur and Burridge, 2001) and the down-regulation of two Rho-

GAPs in Ngn2 knockout cortical progenitors, we hypothesized that (1) inhibition of RhoA 

activity is normally a pre-requisite to initiate radial migration outside the VZ/SVZ into the IZ 

and therefore that (2) a failure to up-regulate the expression of RhoGAPs such as 

RhoGAP5/ARHGAP5 or FNBP2/srGAP2 could lead to reduced inhibition of RhoA activity in 

Ngn2-/- cortical progenitors impairing their ability to initiate radial migration upon cell-cycle 

exit.  

In order to test directly if cortical progenitors failed to initiate migration in Ngn2-/- 

cortex at least partially because of an inability to inhibit RhoA activity, we used the 

electroporation technique in order to rescue the migration phenotype characterizing the 

Ngn2-/- cortical progenitors by expressing a dominant-negative form of RhoA (RhoAN19; 

Olson et al., 1995). Expression of RhoAN19 in E14.5 cortical progenitors of Ngn2 knockout 

embryos is sufficient to rescue partially the migration defect and induces a significant 

proportion of neurons to leave the VZ/SVZ and migrate into the IZ (Fig. 2.7A-D). However, 
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this rescue was only partial as most migrating neurons stopped sharply at the boundary 

between the IZ and the CP after 4 div (Fig. 2.7B and 2.7D).  

Because the expression of many different genes might be altered in Ngn2-/- cortical 

progenitors that might directly or indirectly affect their migration properties, we wanted to 

determine if we could rescue more specifically the migration phenotype due to the 

expression of Ngn2Y241F in cortical progenitors by inhibiting RhoA activity. As shown in 

Suppl. Fig. 2.7, co-electroporation of two constructs expressing RhoAN19-IRES-DsRed2 and 

Ngn2Y241F-IRES-EGFP leads to the very high rate of co-expression of both construct. 

 
Figure 2.7 - Inhibition of RhoA activity rescues the migration defect due to Ngn2 loss of 
function  
(A–D) Ex vivo electroporation of dominant-negative RhoA (RhoAN19-IRES-DsRed2; [B and D]) in 
E14.5 Ngn2-/- cortical progenitors increases the number of cells initiating migration into the IZ 
compared to control DsRed2 electroporation in Ngn2-/- progenitors (A and C). Note that this is a 
partial rescue because the majority of cells expressing RhoAN19 in the Ngn2-/- slices fail to enter 
the CP. (E–H) Coexpression of dominant-negative RhoAN19-IRES-DsRed2 and Ngn2Y241F-IRES-
EGFP (F–H) almost completely rescues the migration defect caused by expression of Ngn2Y241F 
alone (E–G). 
*p < 0.01 χ2 test comparing equivalent bins. Scale bar in (A), (B), (E), and (F), 50 μm. 
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Importantly, expression of RhoAN19 is sufficient to rescue very significantly the inhibition of 

migration due to expression of Ngn2Y241F in cortical progenitors (Fig. 2.7F-H) to a level 

comparable to control electroporation of EGFP only (see Fig. 2.5A and 2.5E) or wild-type 

Ngn2 (see Fig. 2.5B and 2.5F).  

These results demonstrate that tyrosine 241 in Ngn2 is required for the specification 

of the radial migration properties of cortical progenitors at least partially by inhibiting RhoA 

activity.  

Neurogenin2 is sufficient to specify cell-autonomously the unipolar dendritic 
morphology of pyramidal neurons 

In slices expressing EGFP only (Fig. 2.8A) or full length Ngn2 (Fig. 2.8B), the vast 

majority of neurons accumulate at the top of the cortical plate after completion of their radial 

migration where they displayed a unipolar morphology with their leading process/apical 

dendrite directed towards the marginal zone (Fig. 2.8E-F respectively). Interestingly, 

expression of Ngn2NR->AQ resulted in a significant disorganization of the CP (Fig. 2.8C), even 

though the total number of neurons that successfully reached the upper cortical plate was 

comparable to full length Ngn2-electroporated slices (Fig. 2.8B). Moreover, Ngn2NR->AQ 

expressing neurons seem to ignore the upper limit of the CP and abnormally invade the MZ 

(Fig. 2.5G and see also Fig. 2.8C).  

Importantly, expression of both Ngn2NR->AQ and Ngn2Y241F led to more severe 

disruption of the dendritic morphology of neurons in the CP (Fig. 2.8G-H). Expression of 

either mutations of Ngn2 affected the unipolar the dendritic morphology of immature 

pyramidal neurons reaching the CP in fact, a significant number of cells expressing Ngn2NR-

>AQ or Ngn2Y241F displayed a non-pyramidal morphology defined by the outgrowth of multiple 

primary dendrites from the cell body (red arrows in Fig. 2.8G-H). We specifically quantified 

the effect of expression of Ngn2Y241F on the dendritic morphology of cortical neurons in slices 
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using an computerized approach described below (see Fig. 2.8N-P) called the Pyramidal 

Morphology Index (Suppl. Fig. 2.8). These results suggested that the integrity of tyrosine 

241 in Ngn2 is necessary to specify the polarity of leading process/apical dendrite 

outgrowth, one of the defining features of pyramidal neurons.  

The interpretation of the effects we observed on the polarity of dendritic outgrowth in 

neurons expressing Ngn2Y241F in slices is complicated by the fact that this defect could be a 

secondary consequence of migration defects as previously observed in the developing 

cortex of the reeler mutant mouse for example (Pinto Lord and Caviness, 1979; Pinto-Lord 

et al., 1982). In other words, the unipolar dendritic morphology of pyramidal neurons in the 

cortical plate may depend on the ability of these neurons to respond to appropriate 

extracellular cues, which may not be the case for neurons expressing Ngn2Y241F given that 

their migration is abnormal or retarded.  

In order to determine if Ngn2 plays a direct role in the specification of the dendritic 

morphology of pyramidal neurons in the cortex, we took advantage of the fact that previous 

studies have shown that when cortical progenitors are dissociated and cultured from 5 to 7 

days in vitro at low to medium cell density to minimize cell-cell contacts, these progenitors 

give rise to neurons that fail to display the unipolar morphology characterizing pyramidal 

neurons in vivo  (Peters and Kara, 1985a; Peters et al., 1985) and instead display multipolar 

morphologies (Hayashi et al., 2002; Threadgill et al., 1997). Interestingly, Ngn2 transcription 

is significantly down-regulated in dissociated cortical cultures (data not shown), raising the 

possibility that maintenance of proper level of Ngn2 expression in cortical progenitors 

requires cell-cell contacts. As previously reported (Threadgill et al., 1997), cortical 

progenitors in dissociated cultures give rise to neurons displaying multipolar dendritic 

morphologies characterized by multiple dendrites emerging from the cell body (arrowheads 

in Fig. 2.8I), and therefore failed to establish a polarized dendritic outgrowth in vitro. 

Quantification using observer-based categorization (Fig. 2.8M) revealed that only 30% of 
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the neurons in control cultures displayed a unipolar morphology characteristic of pyramidal 

neurons in vivo (i.e. one large apical dendrite emerging from the cell body), approximately 

10% displayed a bipolar morphology (i.e. 2 equally wide dendrites emerging from the cell 

body) and approximately 60 % displayed multipolar, non-pyramidal morphologies (i.e. more 

than 2 dendrites emerging from the cell body). Strikingly, constitutive expression of Ngn2 by 

electroporation in cortical progenitors resulted in a dramatic switch in the polarity of dendritic 

outgrowth, causing 60% of all MAP2-positive neurons to display a unipolar dendritic 

morphology characterized by one large apical dendrite and a single axon emerging from the 

opposite side of the cell body (Fig. 2.8J and 2.8M). Importantly, neither Ngn2NR->AQ (Fig. 

2.8K) nor Ngn2Y241F (Fig. 2.8L) exerted the same activity as wild-type Ngn2 as both failed to 

promote a unipolar morphology in cortical neurons (Fig. 2.8M), suggesting that both the 

DNA-binding properties and tyrosine 241 of Ngn2 are necessary to specify the polarized 

dendritic outgrowth characterizing cortical pyramidal neurons. 

Figure 2.8 - Ngn2 expression is sufficient to specify a pyramidal dendritic morphology 

(A–D) Confocal micrographs illustrating cell organization of the CP of slices electroporated with 
EGFP (control; [A]), wild-type Ngn2 (B), Ngn2NR->AQ (C), or Ngn2Y241F (D). (E–H) Precursors 
expressing Ngn2NR->AQ (G) or Ngn2Y241F (H) but not EGFP (E) or full-length Ngn2 (F) give rise 
to neurons displaying nonpyramidal, multipolar dendritic morphologies in the CP (red arrows point to 
nonpyramidal neurons; white arrow to pyramidal neurons). Small arrowheads point to the axon.  (I–
L) E14.5 cortical progenitors electroporated with a control plasmid (EGFP) and maintained for 5 DIV 
in dissociated culture fail to establish a pyramidal morphology and instead display nonpyramidal 
morphologies with multiple, relatively thin dendritic processes (arrowheads; identified using MAP2, 
data not shown) and a unique, long and thin axonal process (arrow; MAP2 negative but 
neurofilament 165 kDa positive; data not shown). Expression of full-length Ngn2 (J) (but not 
Ngn2NR->AQ [K] or Ngn2Y241F [L]) is sufficient to restore the unipolar pyramidal dendritic 
morphology characterized by a unique large apical process tapering away from the cell body 
(arrowhead in [J]) and a unique axon (arrow in [J]).  (M) Qualitative categorization of dendritic 
morphologies of cortical postmitotic neurons emerging from E14.5 progenitors electroporated by the 
constructs indicated in panels (I)–(L). *p < 0.05 and **p < 0.01; χ2 analysis. A minimum of 200 
randomly sampled neurons from four independent experiments were examined for each treatment.  
(N and O) Definition of the Pyramidal Morphology Index (PMI) as a tool allowing unbiased 
categorization of dendritic morphology. The PMI is defined as the ratio between the width of the 
largest process and the total number of processes (as depicted in [O]) crossing a sampling circle of 
fixed diameter (25 μm). (P) Box plots of PMI values computed for a minimum of 150 neurons per 
experimental set (from four independent experiments). The expression of Ngn2 (but not Ngn2NR-
>AQ or Ngn2Y241F) increases significantly the PMI values of neurons derived from control EGFP-
expressing progenitors. *p < 0.01 ANOVA one-way test. Box plots indicate the median (bottleneck), 
the 25th, and 75th percentiles (main box) as well as the 90th and 10th percentiles (top and bottom 
bars, respectively).  Scale bars, 40 μm (A–D), 20 μm (E–H),and 30 μm (I–L). 
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The categorization of the dendritic morphologies of neurons is subjective and 

therefore heavily observer-dependent (see Discussion in Threadgill et al., 1997). In order to 

circumvent this general problem of qualitative and therefore potentially biased 

categorization, we developed a quantitative, unbiased index called the Pyramidal 

Morphology Index (PMI). We defined the PMI as the ratio between the width of the largest 

process and the total number of processes emerging from the cell body (Fig. 2.8O). As 

shown in Figure 2.8N on model cells, the PMI value obtained for a population of cells 

ranging from purely multipolar (cell a) to purely unipolar (cell g) increases with the polarity of 

dendritic outgrowth. The PMI index thus allows us to distinguish between two cells each of 

which has 3 dendrites emerging from the cell body (cells b and f), but one of which (cell f) 

has one apical-like dendrite process that makes it ‘more pyramidal’ than cell b. The measure 

of the width and number of processes was automatized using an Image J-based macro that 

we developed. This program enables to draw a ‘sampling’ circle of fixed diameter (25 

microns) centered on the cell body, allowing the extraction of the width of each dendritic 

process and the total number of dendrites crossing the sampling-circle (Fig. 2.8O). As 

shown in Figure 2.8P, the PMI turns out to be a reliable measurement of the shift between 

multipolar morphologies observed in control (EGFP) cultures and unipolar morphologies 

observed in neurons constitutively expressing Ngn2 (p=0.0014; ANOVA-test). The increase 

in PMI values obtained in Ngn2-electroporated neurons compared to EGFP-control neurons 

actually corresponds to a doubling of the percentage of neurons displaying PMI values 

superior to 4 i.e. to most unipolar neurons.  

Importantly, expression of both Ngn2NR->AQ and Ngn2Y241F failed to increase the 

average PMI values observed when over-expressing wild-type Ngn2 (Fig. 2.8P) 

demonstrating that both the DNA-binding properties and the tyrosine 241 residue of Ngn2 
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are necessary to specify the polarity of dendritic outgrowth characterizing immature 

pyramidal neurons. 

Ngn1 promotes radial migration but does not promote unipolar dendritic 
morphology to the same extent than Ngn2 

As mentioned previously the tyrosine 241 and its surrounding proline-rich motif 

(YWQPPPP) are not present in Ngn1 or Ngn3. We wanted to determine if Ngn2 function in 

the specification of the migration properties and the dendritic morphology of pyramidal 

neurons was specific to Ngn2 of if this is a property shared by other Neurogenins. In order to 

test this we electroporated both mouse Ngn1-IRES-EGFP at E14.5 to assess the migration 

 
Figure 2.9 - Proposed model for Ngn2 function in the specification of the migration properties 
and the dendritic morphology of pyramidal neurons 
(A) Radial glial cells (yellow) are proliferating and producing neurons through both 
asymmetrical division in the VZ and symmetrical neurogenic divisions in the SVZ (Kriegstein 
and Noctor, 2004; Malatesta et al., 2000; Miyata et al., 2004; Noctor et al., 2001, Noctor et 
al., 2002 and Noctor et al., 2004). Progenitors expressing Ngn2Y241F generate postmitotic 
neurons that fail to migrate past the IZ and present unpolarized, multipolar dendritic 
morphologies. These defects are significantly (but not completely, see Discussion) rescued 
by inhibiting RhoA activity. 
(B)  Potential mechanisms underlying the function of Ngn2 in the specification of the radial 
migration properties and the dendritic morphology of pyramidal neurons. We hypothesize 
that during the initiating radial migration (B), Ngn2 is phosphorylated on tyrosine 241, 
which converts one of its putative interactors from a transcriptional repressor into a 
transcriptional activator regulating the transcription of genes that could regulate neuronal 
migration and dendritic polarity such as RhoGAP proteins (FNBP2 or RhoGAP5) or 
Doublecortin (see Mattar et al., 2004). 
 
(C) We hypothesize that the dominant-negative effect of the Ngn2Y241F mutation is due to 
its inability to convert the putative Ngn2-associated repressor into an activator. 
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properties of cortical progenitors in organotypic slice culture. Our quantitative analysis 

demonstrate that Ngn1 (Suppl. Fig. 2.9A and 2.9C) promotes the radial migration of cortical 

progenitors to the same overall extent than Ngn2 (Suppl. Fig. 2.9B and 2.9D) despite minor 

differences in the actual distribution of post-mitotic neurons in the CP and MZ.  

 However, we found that Ngn1 does not specify the pyramidal neuronal morphology 

in dissociated culture of E14.5 cortical progenitors to the same extent than Ngn2 (Suppl. 

Fig. 2.9E-F). In fact the Pyramidal Morphology Index values obtained for progenitors 

overexpressing Ngn1 were not significantly different from control EGFP-electroporated 

cortical progenitors (Suppl. Fig. 2.9F) suggesting that Ngn2 is unique with regard to its 

ability to promote pyramidal dendritic morphology. 

DISCUSSION 

In the present study, we identified Ngn2 as a critical element in the specification of 

the radial migration properties and the polarized dendritic outgrowth characterizing immature 

pyramidal cortical neurons. In particular, we showed that specification of the radial migration 

properties of cortical neurons and specifically their ability to migrate through the intermediate 

zone into the upper cortical plate, is controlled by Ngn2 largely through a DNA-binding-

independent mechanism, but that these functions are instead critically dependent on the 

phosphorylation of tyrosine 241 in its C-terminal domain (Fig. 2.4). Interestingly, we found 

that tyrosine 241 is not required for Ngn2-mediated transactivation of the NeuroD promoter 

and therefore this residue is unlikely to be involved in Ngn2 DNA-binding properties, 

transcriptional activation (e.g. ability to recruit the general transcription machinery such as 

RNA polymerase II complex) or the ability to hetero-dimerize with E box proteins or Class I 

bHLH transcription factors (such as E12 or E47), all of which are required to transactivate 

Ngn2-target promoters (Bertrand et al., 2002; Puri and Sartorelli, 2000; Skowronska-

Krawczyk et al., 2004). We also found that the inhibition of neuronal migration due to the 



 49 

expression of Ngn2Y241F can be largely rescued by inhibition of the small-GTPase RhoA. The 

third important finding in the present study is that Ngn2 specifies the polarized outgrowth of 

the apical dendrite, a characteristic feature of cortical pyramidal neurons. In contrast to 

Ngn2 function in migration, the ability of Ngn2 to specify a polarized dendritic outgrowth 

requires both the integrity of its DNA-binding properties and phosphorylation of tyrosine 241.  

Coordinated specification of the radial migration properties and dendritic 
morphology of pyramidal neurons 

Using time-lapse analysis of the morphology of single neuronal progenitors exiting 

the cell-cycle, several studies recently demonstrated that newly-generated neurons 

transiently display a multipolar, exploratory morphology in the SVZ before achieving a 

polarized morphology at the point when neurons initiate radial translocation into the IZ 

(Noctor et al., 2004; Tabata and Nakajima, 2003). The molecular cues and signaling 

pathways triggering this striking transition are unknown at present. Our results show for the 

first time that the coordinated initiation of radial migration and the acquisition of a unipolar 

leading process/apical dendrite outgrowth is dynamically controlled by Ngn2. Interestingly, 

the constitutive (Fig. 2.2) or the acute (Fig. 2.3) loss-of-Ngn2 function in cortical progenitors 

leads to a defect in the initiation of radial migration. However, we demonstrate that part of 

this defect is likely due to the proneural function of Ngn2 resulting in a pronounced defect of 

neuronal differentiation or cell cycle exit, which precluded the analysis of other functions of 

bHLH proneural transcription factors. The expression of Ngn2Y241F uncouples for the first 

time the neuronal-subtype specification functions of Ngn2 from its generic proneural 

function. Interestingly, a recent study in chick spinal cord has also shown that the proneural 

and the subtype specification functions of bHLH transcription factors such as Mash1 and 

Math1 are actually dependent on residues located outside the basic DNA-binding region, in 

the second Helix region (Nakada et al., 2004). These results strongly suggest that (1) bHLH 
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transcription factors such as Ngn2 are coordinating the acquisition of pan-neuronal 

properties through the control of the transcription of genes allowing cell cycle exit and 

initiation of generic (non-subtype specific) neuronal differentiation program involving 

expression of pan-neuronal markers (MAP2, βIII-tubulin, etc…) but (2) at the same time 

these bHLH TFs regulate the transcription of region-specific genes specifying neuronal 

subtype identity including migration properties (radial vs tangential) or the dendritic 

morphology (unipolar vs multipolar). The main finding of this study is that these two distinct 

functions involve different molecular modules within Ngn2. 

New classification of dendritic morphology: polarized versus unpolarized 
initiation of dendrite outgrowth 

We propose a model in which the unipolar dendritic morphology of pyramidal 

neurons represents a cellular consequence of their radial migration properties. Our results 

from dissociated cultures of cortical progenitors demonstrate that when progenitors give rise 

to neurons in vitro, the absence of appropriate cell-cell contacts (and maybe decreased 

Notch receptor activation), such as those that occur normally between radial glial cells and 

early post-mitotic neurons, results in a failure to establish a polarized, pyramidal 

morphology, with neurons instead acquiring a multipolar, non-pyramidal morphology 

characterized by an unrestricted number of primary dendrites emerging from the cell body 

(see Figure 2.9 in present study and  Threadgill et al., 1997). Interestingly, dissociated 

cortical progenitors are able to differentiate into unipolar pyramidal neurons when plated 

onto cortical slices in the slice overlay assay (unpublished observations; Polleux et al., 

2000). Taken together these results strongly suggest that extracellular cues present in the 

environment of cortical progenitors during and after completion of radial migration are 

required for the establishment of a polarized dendritic outgrowth (Whitford et al., 2002). 

These results also strongly suggest that the molecular machinery specifying the migration 
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properties of cortical neurons (radial vs tangential) also regulate their dendritic morphology 

(unipolar/pyramidal vs mutlipolar/non-pyramidal). Future experiments will be aimed at 

determining the molecular basis linking the migration properties to the dendritic morphology 

of pyramidal glutamatergic and non-pyramidal interneurons in the cortex. 

Candidate genes underlying the role of Neurogenin2 in the specification of 
pyramidal dendritic morphology 

 What are the signaling pathways underlying the ability of Ngn2 to promote radial 

migration and a pyramidal dendritic morphology? As mentioned earlier, a hint comes from a 

recent subtractive hybridization screen performed in order to identify direct and indirect 

downstream targets of Ngn2 in mouse cortical progenitors (Mattar et al., 2004). Several 

candidate genes that might explain the effects of Ngn2 on neuronal migration and dendritic 

morphology were found to be downregulated in Ngn2 knockout cortical progenitors, 

including the microtubule-binding protein Doublecortin and known regulators of Rho-like 

small GTPase activity involved in cell polarity and cytoskeleton dynamics, such as Forming-

Binding Protein 2 (FNBP2 also annotated as srGAP2 (slit-Robo GAP2; Coyle et al., 2004; 

Katoh, 2004) as well as RhoGAP5 (also called ARHGAP5 and p190-RhoGAPb; Mattar et 

al., 2004). Our results provide strong evidence that at least one of the pathway downstream 

of Ngn2 that regulate radial migration involves inhibition of the activity of the small-GTPase 

RhoA. Therefore, down-regulation of FNBP2 and/or RhoGAP5 in cortical progenitors could 

actually be causal to the migration defect characterizing Ngn2 loss-of-function. Future 

experiments will test directly the involvement of these two genes in the control of neuronal 

migration and dendritic morphology. 

Our results also provide novel insights into the molecular control of neuronal 

migration and dendritic polarity in the cortex because in both rescue experiments (Ngn2 

knockout and Ngn2Y241F electroporation), expression of dominant-negative RhoA is sufficient 
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to recruit the migrating neurons into the IZ but a lot of migrating neurons are stalled beneath 

the CP and seem to be unable to enter their final environment by bypassing their 

predecessors. This suggests a two step model of radial migration with a first step when early 

post-mitotic neurons exit the VZ/SVZ neuroepithelium and migrate into the IZ which requires 

phosphorylation of Ngn2 at tyrosine 241 leading to transient inhibition of RhoA activity (and 

maybe expression of Doublecortin; Mattar et al., 2004) and a second step controlled by 

Rac1/Cdc42 activity (Kawauchi et al., 2003) where neurons migrate through from the IZ into 

the CP (reviewed in Gupta et al., 2002). 

Potential signaling pathways involved in the DNA-binding independent 
function of Ngn2 

Several studies have already illustrated the importance of protein-protein interactions 

and post-translational modifications in mediating some of the biological functions of bHLH 

transcription factors (Lee and Pfaff, 2003; Moore et al., 2002; Olson et al., 1998; Sun et al., 

2001; Talikka et al., 2002; Vojtek et al., 2003; reviewed in Puri and Sartorelli, 2000). Our 

results show that the DNA-binding independent function of Ngn2 in the specification of the 

neuronal migration properties and dendritic morphology of cortical neurons is mediated by 

phosphorylation of tyrosine 241. This tyrosine residue is part of a larger proline rich domain 

(YWQPPPP) motif that constitutes a putative SH2-binding site for non-receptor tyrosine 

kinase of the Tec family. This includes Interleukin-2 regulated Tyrosine Kinase (ITK; Smith 

et al., 2001) which is expressed by immature cortical neurons at E14.5 (Hand and Polleux, 

data not shown). Future experiments will be aimed at determining if ITK or other non-

receptor tyrosine kinases phosphorylate tyrosine 241 of Ngn2 and how the potential 

phosphorylation of Y241 regulates Ngn2 function.  

We hypothesize that the subtype specification activity mediated by phosphorylation 

of tyrosine 241 in Ngn2 involves protein-protein interaction, for example by converting a 
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transcriptional repressor into an activator thereby inducing the transcription of downstream 

target genes regulating neuronal migration and dendritic polarity such as specific Rho-GAPs 

(Fig. 2.9). This is actually the only model that would explain why Ngn2Y241F is acting as a 

dominant-negative over Ngn2 since this dominant-negative activity must involve some 

interaction between Ngn2Y241F that cannot be competed by the wild-type Ngn2. Current 

experiments are aimed at identifying phosphorylation-dependent interactors of the tyrosine 

241 residue of Ngn2. 

Is the phosphorylation of Y241 in Ngn2 a mammalian-specific feature? 

 The tyrosine residue in position 241 of Ngn2 that we characterized in the present 

study is conserved in mammals (human, rat and mouse) but not in non-mammalian 

vertebrates such as birds (chick). Interestingly, neurons in the dorsal telencephalon of birds 

(and reptiles also) accumulate according to a loose ‘outside-first, inside-last’ sequence (Tsai 

et al., 1981a, b), a pattern opposite to the inside-first, outside-last pattern characterizing all 

mammals (Sidman and Rakic, 1973), leading to a loosely laminated structure that lacks the 

six layers characteristic of the mammalian neocortex. Furthermore, studies examining the 

dendritic morphology of neurons in the avian telencephalic cortex revealed that very few if 

any neurons display a pyramidal morphology (Molla et al., 1986), contrasting to the 

mammalian neocortex where approximately 70 to 80% of all cortical neurons are pyramidal 

(Peters and Kara, 1985a; Peters et al., 1985). The ability of migrating pyramidal neurons to 

develop a unipolar morphology, invade the cortical plate and therefore bypass its 

predecessors by perforating the cell-dense cortical plate (leading to an inside-out 

accumulation pattern) is therefore a mammalian-specific feature (Bar et al., 2000; Gupta et 

al., 2002). It is tempting to speculate that tyrosine 241 belongs to a molecular motif 

(YWQPPPP) representing a mammalian-specific protein-protein interaction module that 
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might have enabled the coordinated appearance of a pyramidal unipolar morphology and 

the inside-out laminar accumulation of neurons during brain evolution.  

 Finally, this motif is specific to mammalian Ngn2 as it is not found in the closely 

related mouse Ngn1 or Ngn3 (Fig. 2.4B). Interestingly, expression of mouse Ngn1 promotes 

radial migration just as efficiently as Ngn2 but we found that Ngn1 does not promote 

pyramidal dendritic morphology of E14.5 cortical progenitors. Therefore, this implies that 

Ngn1 might be able to control the transactivation of RhoGAPs genes using a mechanism 

distinct from phosphorylation of Y241, which is not present in Ngn1. However, Ngn2 is 

unique in its ability to promote unipolar dendritic morphology and therefore, the 

phosphorylation of tyrosine 241 in cortical progenitors might represent a unique molecular 

mechanism among Neurogenins. Future experiments will determine the molecular basis 

underlying the potential differences between chick Ngn2, mouse Ngn1, mouse Ngn3 and 

mouse Ngn2 functions in the specification of cortical neurons phenotype.  

 

EXPERIMENTAL PROCEDURES 

Animals 

Mice were used according to a protocol approved by the Institutional Animal Care 

and Use Committee at the University of North Carolina, and in accordance with NIH 

guidelines. All experiments were performed on wild-type C57Bl6/J mouse strain (JAX) or on 

Ngn2 EGFP-knockin allele backcross with C57Bl6/J mouse strain. Time-pregnant females 

were obtained by overnight breeding with males of the same strain and the morning 

following the breeding is considered as E0.5.  

Immunofluorescence on cryostat sections 

See supplementary Experimental Procedures. 
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Constructs 

All Ngn2 cDNAs were subcloned into a pCIG2 vector that we modified from the pCIG 

vector (kind gift of Dr Andy Mc Mahon; Harvard University), which contains a (cDNA)-IRES-

EGFP or a (cDNA)-IRES-DsRed2 cassette expressed under the control of a CMV-enhancer 

and a chicken β-actin promoter (Megason and McMahon, 2002). pCIG2 differs from pCIG in 

that the SV40 nuclear localization sequence 3’ of the EGFP coding sequence was removed. 

The Cre recombinase coding sequence fused to SV40 nuclear localization sequence was 

obtained from pSK-Cre1 (a generous gift from Malcom Logan) and inserted into pCIG2. 

Ex vivo electroporation and organotypic slice culture 

A detailed protocol describing the combination of ex vivo electroporation of 

embryonic mouse cortex and organotypic slice culture will be published separately (Hand 

and Polleux, manuscript in preparation) and is available upon request. Briefly, 

electroporation of dorsal telencephalic progenitors was performed by injecting pCIG2 

plasmid DNA into the lateral ventricles of isolated E14.5 embryonic mouse heads that were 

decapitated and placed in complete HBSS (Supp. Fig. 2.1; Polleux et al., 2002. Injections 

were performed using a Picospritzer III (General Valve) injector with 20 psi input pressure 

and one to four 4 msec long pulses as needed to fill the lateral ventricles. To visualize the 

DNA-containing solution we add 0.5% Fast Green (Sigma) at a 1:20 ratio with a high-titer 

plasmid DNA solution (3µg/µl endotoxin-free plasmid DNA; MEGA-Prep kit from Clontech). 

Electroporations were performed on the whole head with gold-coated electrodes (GenePads 

5x7mm BTX; Supp. Fig. 2.1) using an ECM 830 electroporator (BTX) and the following 

parameters: two to four 100 ms-long pulses separated by 100ms-long intervals at 55V. In 

our transfected areas, we obtained transfection rates of close to 30% of all Nestin+ 

progenitors in the cortical ventricular zone of E14.5 mouse (Hand and Polleux, data not 

shown). Immediately after electroporation, the brain was extracted and 250 microns thick 
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slices were cut using a LEICA VT1000S vibratome with special care towards the integrity of 

the pial surface. The resulting slices were maintained in organotypic slice cultures, fixed and 

stained for immunofluorescence as previously described (Polleux and Ghosh, 2002). The 

primary antibodies used for immunofluorescence on slices were: mouse monoclonal anti-

Nestin (Rat 401 Developmental Hybridoma Bank; 1:10); mouse monoclonal anti-MAP2 

(Sigma); rabbit polyclonal anti-EGFP and chicken polyclonal anti-EGFP (Molecular Probes); 

rabbit polyclonal anti-Ngn2 that we developed [directed against amino-acid 35-49:C-

SSADEEEDEELRRPG, BioGenes GmbH, Germany; used in Suppl. Fig. 2.2] and another 

rabbit polyclonal anti-Ngn2 antibody (kind gift of Dr. M. Nakafuku; used in Figure 2.1), rabbit 

polyclonal anti-Cre recombinase (Covance Research Product, 1:3000), mouse anti-HuC/D 

(Molecular probes, 1:200). 

Dissociated cortical cultures 

Dissociated E14.5 cortical cultures were performed using a papain-based enzymatic 

dissociation method as previously described (Polleux and Ghosh, 2002; Polleux et al., 

2000). Dissociated and electroporated cortical progenitors were cultured on glass-bottom 

dishes coated with Laminin and Poly-L-Lysine for 5 days in serum-free culture medium 

(NeuroBasal +B27+N2 supplements).  

Confocal microscopy 

Fluorescent immunostaining was observed using a LEICA TCS-SL laser scanning 

confocal microscope equipped with an Argon laser (488 nm), green Helium-Neon laser 

(546nm) and red Helium-Neon laser line (633nm) for observation of Alexa488-, Alexa-546 

conjugated secondary antibodies (Molecular Probes) and Draq5 nucleic acid staining 

(Alexis), respectively. 
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SUPPLEMENTAL FIGURES 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 2.1 - Ex vivo electroporation of cortical progenitors coupled to 
organotypic slice culture is a powerful technique to study the migration properties and 
dendritic morphology of cortical neurons 

(A-C’) Intact head of E14.5 mouse embryos where a solution containing a pCIG2 plasmid mixed with 
0.5% Fast Green has been injected into the lateral ventricles (labeled LV in A). After electroporation, 
the brain is isolated (B) and immediately sliced using a vibratome (see Method for details). 250 µm 
thick sections are then plated onto a semi-permeable organotypic membrane (C) as described 
previously (Polleux and Ghosh, 2002). After 12 hours in vitro, robust EGFP expression is specifically 
observed in cortical progenitors here shown on five slices (live picture in C-C’). Note that the plasmid 
expression is precisely targeted dorsally and therefore does not transfect ventral progenitors in the 
ganglionic eminence.  
(D-G) Confocal micrograph of a triple stained slice fixed 24 hours after electroporation showing that at 
this point, the vast majority of EGFP expressing cells (D) display radial glial morphologies with their 
cell bodies located in the VZ or SVZ and their radial glial process reaching the pial surface 
(arrowheads in G). The vast majority of EGFP expressing cells at 24 hiv express Nestin, a radial glial 
marker (E and data not shown). Nucleic acid dye Draq5 (blue) was systematically used to reveal the 
slices cytoarchitecture (F). 
(H) After 2 days in vitro, EGFP+ neurons are found in the intermediate zone and start to invade the 
cortical plate displaying a typical unipolar morphology with a leading process directed towards the pial 
surface (red arrow). Arrowheads points to EGFP+ radial glial process still visible at this stage. 
(I) After 4 days in vitro, EGFP+ neurons have reached the top of the cortical plate accumulating 
beneath the marginal zone (MZ). These pyramidal neurons already started differentiating with their 
apical dendrite branching in the MZ (arrowhead) and their axon growing ventrally towards the 
intermediate zone (arrow). 
Abbreviations: CP: cortical plate; H: hippocampal anlage; LGE: lateral ganglionic eminence; MZ: 
marginal zone; IZ: intermediate zone; SVZ: subventricular zone; VZ: ventricular zone. 
Scale bar values: D-G: 50 microns; H-I: 10 microns. 
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Supplementary Figure 2.2 - Ngn2NR->AQ and Ngn2Y241F are targeted normally to the nucleus 

(A-D) Neurons derived from E14.5 progenitors successfully electroporated with a Flag epitope-tagged 
version of Ngn2 are identified by EGFP expression after 4 div (A). Immunofluorescence directed 
against the Flag-epitope reveals a prominent nuclear localization of Ngn2-Flag (arrowheads in B) as 
confirmed by the identification of the nucleus using Draq5 (C). 
(E-L) Expression of Flag-tagged Ngn2NR->AQ (E-H) or Flag-tagged Ngn2Y241F (I-L) also shows a 
prominent nuclear localization of Ngn2 (arrowheads in F and J respectively) demonstrating that these 
mutations do not interfere with nuclear targeting of Ngn2. 
(M-R) Single confocal optical section (<1 microns z-section) showing that overexpression of wild-type 
Ngn2 or Ngn2Y241F by electroporation results in physiological levels of protein expression in cortical 
neurons in slice culture after 3 div. Immunofluorescence against Ngn2 using a polyclonal antibody 
allows comparison of the endogenous level of Ngn2 expression (blue arrows in N-O and Q-R) to the 
level of Ngn2 overexpression in electroporated cells identified by expression of DsRed2 (arrowheads 
in M-O for Ngn2 and P-R for Ngn2Y241F). Note again the prominent nuclear localization of both 
endogenous Ngn2 and ectopically expressed Ngn2 or Ngn2Y241F. These cells are migrating through 
the IZ after 3div and were imaged using single optical section (<1 microns z-section) by confocal 
microscopy. 
Scale bar values: A-D: 30 microns; E-H: 15 microns; I-L: 20 microns; M-R: 10 microns. 
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Supplementary Figure 2.3 - Expression of Ngn2Y241F and/or RhoAN19 does not affect the 
structure of the radial glial scaffold 

(A-C) Cortical electroporation of E14.5 progenitors with EGFP (A) Ngn2Y241F or Ngn2Y241F and 
RhoAN19 expressing constructs does not alter the morphology of radial glial cells after 36 hours in 
vitro. Cells still display long their radial process (green arrows) with attachment to the basal 
membrane of the pia (red arrowheads). 
(D-F’) After 4 days in vitro the radial glial scaffold integrity was assessed more globally using anti-
Nestin immunofluorescence followed by examination using laser-scanning confocal microscopy. 
Both maximum projection of 10 microns stacks (D-F) and orthogonal Z-sections (D’-F’) of slices 
electroporated with the 3 sets of constructs indicated in panels A-C did not have any significant 
effect on the morphology or the number of radial glial processes. 
Scale bar values: 50 microns in A-C; 25 microns in D-F’. 
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Supplementary Figure 2.4 - Demonstration of the dominant-negative nature of Ngn2Y241F over 
full-length Ngn2 

(A-C) Histograms of the radial distribution of cells derived from progenitors co-electroporated with 
different ratios of Ngn2 versus Ngn2Y241F (1:0 in A; 1:1 in B and 10:1 in C).  Note that at a 1:1 ratio 
or a 10:1 ratio, cortical progenitors are still strongly inhibited in their ability to migrate radially 
suggesting that Ngn2Y241F is playing a dominant-negative function over Ngn2.  
Error bars represent standard error to the mean. Stars indicate significant (p<0.01- Chi square) 
differences of the proportion of neurons find in similar bins in B or C compared to A.  
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Supplementary Figure 2.5 - Specificity of tyrosine 241 in inhibiting the radial migration 
properties of cortical progenitors 

(A-D) Confocal micrograph of wild-type E14.5 slices electroporated ex vivo with full-length Ngn2 (A), 
Ngn2Y241F (B), Ngn2Y226F (C) and Ngn2Y252F (D). Only expression of Ngn2Y241F inhibits the radial 
migration of cortical progenitors, expression of either Ngn2Y226F (C) or Ngn2Y252F has no effect on 
the migration properties of cortical progenitors with a similar proportion of neurons reaching the 
cortical plate (C-D) compared to full-length Ngn2 electroporation (A). 
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Supplementary Figure 2.6 - Expression of Ngn2Y241F decreases rate of cell body translocation 
and increases the rate of leading process branching of radially migrating neurons 

(A-B) Quantification of the rate of cell body translocation (expressed in microns/hour, A) and the 
rate of leading process branching (event/hour, B) in neurons located in the intermediate zone and 
electroporated with control EGFP only (endogenously expressing Ngn2; white bars; n=17 cells from 
independent experiments) or Ngn2Y241F (grey bars; n=12 cells from 3 independent experiments). * 
p<0.05 and ** p<0.001 according to a Mann-Whitney non-parametric test. 
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Supplementary Figure 2.7 - High percentage of co-expression of two constructs following 
cortical co-electroporation  

(A-D) E14.5 cortical slices co-electroporated with 1:1 ratio of Ngn2Y241F-IRES-EGFP (A, green in D) 
and RhoAN19-IRES-DsRed2 (B, red in D) are almost perfectly co-expressed in all neurons present in 
the cortical plate (merged in D). Slices were counterstained with nuclear staining Draq5 to reveal 
the cytoarchitecture (C). 
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Supplementary Figure 2.8 - Quantification of the dendritic morphology of electroporated 
neurons in the cortical plate 

(A-B) Five representative dendritic morphologies of individual neurons located in the cortical plate 
after 4 div following progenitors electroporation at E14.5 with control EGFP (A) or Ngn2Y241F (B) 
constructs. Note the prominent multipolar dendritic morphologies of neurons expressing the 
Ngn2Y241F mutation. The pial surface is systematically oriented towards the top of the picture. 
Interestingly, the red arrowheads point to morphologically identified axons that do not seem to be 
affected by expression of Ngn2Y241F at least with regard to their direction of outgrowth towards the 
ventricle. 
(C) Box plot representation of the Pyramidal Morphology Index values obtained for EGFP-
expressing neurons (n=17) and Ngn2Y241F expressing neurons (n=12) in the cortical plate of E14.5 + 
4 div. * p<0.001 Mann-Whitney non-parametric test. See Figure 8P for details regarding the box plot 
representation. 
Scale bar value: 15 microns for A-B. 
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Supplementary Figure 2.9 - Ngn1 induces radial migration but is not promoting unipolar 
neuronal morphologies to the same extent than Ngn2 

(A-B) Low magnification confocal micrographs illustrating the radial distribution of cell emerging from 
progenitors electroporated with Ngn2 (A) and Ngn1 (B).  
(C-D) Histograms of the distribution of EGFP+ cells along the radial axis of the cortical wall 
(normalized as a percentage). Error bars represent standard error to the mean. Stars indicate 
significant (p<0.01- Chi square) differences of the proportion of neurons find in similar bins (for 
example comparing the 50% normalized distance bins between Ngn2 and Ngn1 over-expression). 
Ngn1 produces similar increase in the percentage of cells migrating to the cortical plate than Ngn2 
when compared to control electroporation (EGFP only, see Figure 5). Note a slight but significant re-
distribution of cells within the cortical plate and marginal zone in Ngn1 compared to Ngn2 
electroporation. 
(E-F) Electroporation of EGFP (not shown) Ngn1-IRES-EGFP and Ngn2-IRES-DsRed2 (E) in two 
distinct sets of E14.5 cortical progenitors followed by dissociation and co-culture for 6 div reveals than 
Ngn2 but not Ngn1 is sufficient to promote pyramidal dendritic morphologies compared to control 
EGFP expressing progenitors (quantified in F). See Figure 8P for details about the box plot 
representation. 
 * p<0.001 according to ANOVA one-way test and Fisher PLSD post-hoc test; n.s.: non significant 
according to the same analysis. 
Scale bar values: 100 microns A-B; 30 microns E. 
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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

Immunofluorescent staining of cryostat sections 

Ngn2 immunofluorescence was performed on freshly dissected brains were fixed in 

4% paraformaldehyde/PBS for two hours, cryoprotected in 20% sucrose/PBS overnight, and 

cryopreserved in OCT. Ten micron thick sections were washed 3 times in TBST (25 mM Tris 

pH 7.5, 0.14 M NaCl, 0.1% Triton X-100), and blocked at room temperature for 1 hr in TBST 

supplemented with 5% goat serum (Invitrogen, Burlington ON) and 3% Bovine Serum 

Albumin (Sigma, St. Louis MO).  Primary antibodies were co-incubated overnight at 4ºC with 

rabbit anti-Ngn2 (obtained from Dr Masato Nakafuku, Cincinnati Children’s Hospital 

Research Foundaton, Cincinnati, OH, USA) diluted 1:2000 as follows: mouse anti-MAP2 

(Clone HM-2; Sigma;1:500); mouse anti-NeuN (MAB377; Chemicon, Temecula CA; 1:500); 

mouse anti-Tuj1 (Covance, Berkeley CA; 1:1000). Sections were washed 3 times in TBST, 

and incubated with donkey anti-rabbit Cy3-conjugated (Jackson Immunoresearch, West 

Grove PA) and goat anti-mouse Alexa-488-conjugated (Molecular Probes, Eugene OR) 

secondary antibodies, diluted 1:500 in blocking solution for 2 hrs at room temperature. 

Sections were washed 3 times in TBST, incubated with TBST supplemented with 1 µg/ml 

DAPI (Santa Cruz Biotechnology, Santa Cruz CA) for 10 min at room temperature, washed 

3 times in TBST, and coverslipped using Aqua Polymount (Polysciences Inc., Washington 

PA). 

Sections stained for Ngn2 (n=20) were visualized using a Leica DMRXA2 

microscope fitted with a Q Imaging Retiga EX camera under constant imaging conditions. 

Bins were generated by drawing lines at 100 µm intervals from the surface of the ventricle, 

extending into the cortical plate using Adobe Photoshop. Ngn2-positive cells were counted 

and scored for the presence or absence of NeuN immunofluorescence. 
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Automatic quantification of radial cell distribution in slice culture 

Using a tile-scan function on a Leica TCS-SL confocal microscope (mounted on a 

DM-IRE2 inverted microscope stand) and equipped with a X-Y motorized Märzhäuser stage, 

assembly of multiple 20x fields (15 microns Z-stacks) were acquired to reconstruct the entire 

neocortical region electroporated along the radial and the latero-medial axis. Using ImageJ 

(http://rsb.info.nih.gov/ij/), the entire montage was run through a Bandpass Filter to segment 

and isolate cell-sized shapes.  The image was then thresholded and segmented into radial 

regions of interest were individual cell position along the radial axis was recorder relative to 

the distance between the ventricle and the pial surface. Cell coordinates were recorded 

using ImageJ’s Analyze Particles feature.  These coordinates were imported into Excel 

along with the top (pial) and bottom (ventricle) boundaries coordinates obtained using 

ImageJ’s Path Writer plugin.  From these top and bottom boundaries, 200 boundary points 

were taken at regularly spaced intervals leading to a sampling of approximately 10 microns 

wide. All of this processing was done using an Excel macro. 

Time Lapse confocal microscopy 

Using a Leica TCS-SL confocal microscope (mounted on a DM-IRE2 inverted 

microscope stand) and equipped with a X-Y motorized Märzhäuser stage, time-lapse 

confocal microscopy was performed by imaging multiple Z-stacks at different positions on a 

given set of electroporated slices (using X-Y motorized stage) repetitively at a frequency of 1 

picture every 20 minutes. Slight drifts of the slices were corrected using an image 

registration tool developed in ImageJ (Turboreg and Stackreg; Thévenaz et al., 1998). 
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Automatic categorization of dendritic morphology using the Pyramidal 
Morphology Index (PMI) 

The width of dendrites and the number of dendrites emerging from the cell body 

were automatically sampled using a sampling circle of fixed diameter (25 microns; see Fig. 

7O) around a cell body from confocal images taken E14.5 cortical cultures maintained for 5 

days in vitro.  The java program used to record these values was adapted from William 

O’Connell’s ImageJ plugin, Oval Profile Plot.  Changes to this program were made with the 

gracious help of William O’Connell (Department of Radiology, University of California-San 

Diego) enabling the program to quickly record data from multiple cells into a single table.  

The coordinates of the pixel values along the sampling circle were then imported into Excel 

(v. X- Microsoft). A macro in Excel was written to normalize 8-bit pixel values (0-255) and 

binarized them (>50% of max equal 1) so that contiguous positive pixels were counted as 

one process.  The sum of adjacent positive points was used to calculate the relative width of 

each process.  For each cell the PMI was recorded as the width of the largest process 

divided by the total number of processes that crossed the sampling circle. 

Protein sequence analysis  

Complete amino-acid sequences from human (NP_076924), mouse (NP_033848) 

and chick (NP_990127) Neurogenin2 (Ngn2) were aligned using Vector NTI suite 9.0.0. 

Putative phosphorylation sites were compared between chick, mouse and human Ngn2 

using a structure- and conformation-based program (Blom, et al., 1999); NetPhos2; 

http://www.cbs.dtu.dk/services/NetPhos/).  

Myc pull-downs and biochemistry 

E14.5 cortical wholemounts electroporated with N-terminal pCIG2::cMyc-Ngn2-IRES-

EGFP (Fig. 3B) were harvested at 48hiv and washed once in cold 1X PBS (containing 

protease and phosphatase inhibitors) and then lysed on ice for 15min in 1% NP40 buffer 
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(containing protease and phosphatase inhibitors). The lysate was passed twice through a 

fine gauge needle, and cell debris was then pelleted by centrifugation (10,000 rpm for 15min 

at 4°C). The supernatant was removed and used for immunoprecipitations: 250-500mg of 

protein lysate was mixed with 2ml of anti c-Myc antibody (final 1:250; Cell Signalling) plus 

1% NP40 buffer (with protease and phosphatase inhibitors) to reach a final volume of 500 

ml. Pull-downs were performed with pre-washed protein A agarose beads. Supernatants 

from pull-downs were denatured by boiling at 95°C for 5 minutes in the presence of SDS 

and proteins were separated electrophoretically on an 10% SDS-PAGE gel. 

For phosphorylation experiments, cortical dissociated cells were cultured for 20 

hours in vitro as described above. Cultured neurons were exposed to a thirty minutes 

‘phosphate purge’ (cultured in phosphate-free, serum-free medium) and for 6 hours in the 

same medium containing 300mCi [g32P]-labeled ATP. After myc-pulldowns were 

performed, proteins were separated by electrophoresis and the blots were imaged using a 

Typhoon PhosphorImager (ImageQuant v1.1 Molecular Dynamics). 

GST Pulldown from E15.5 cortex 

Eight E15.5 embryos were electroporated ex vivo with pCIG2::GST-Ngn2-IRES-

EGFP (N-terminal fusion; approx. 65kDa).  After electroporation, the cortices were dissected 

from the embryos and cultured as cortical whole mounts for 48hrs in vitro. EGFP expressing 

regions of the cortices were removed and lysed in RIPA lysis buffer.  10% of the lysate was 

saved for analysis.  Glutathione sepharose beads were added to the remaining 90% of the 

lysate, and the lysate+beads were rotated at 4°C for 1hr.  The beads were then pelleted by 

centrifugation, the supernatant was removed, and the beads were washed with 1XPBS 

(0.1M pH 7.4) three times.  After washing with PBS, thrombin was added to the beads to 

cleave Ngn2 from GST.  After 1hr, the supernatant containing the cleaved Ngn2 was 

removed and stored for analysis.  Then 10mM of glutathione was added to elute GST from 
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the glutathione sepharose beads.  After 10min, the supernatant containing cleaved GST 

was removed and saved for analysis. 

 

Luciferase-Renilla assay 

A 1.7kB promoter sequence of NeuroD (also called BETA2; kind gift of Dr MJ Tsai- 

Baylor Coll. Med. (Huang et al., 2000a)) was subcloned upstream of a promoterless firefly 

luciferase plasmid (pGL3; Dual-Luciferase; Promega). Freshly plated P19 cells (ATCC) 

were transfected using Lipofectamine 2000 (Invitrogen), with the appropriate combination 

of four constructs: (1) the NeuroD-Luciferase reporter, (2) a control plasmid expressing 

Renilla under the control of a constitutive mammalian promoter (TK-pRL; Promega), (3) an 

IRES-EGFP plasmid (pCIG2) expressing (or not; control empty vector) the following cDNAs: 

full-length mouse Ngn2, Ngn2NR->AQ, Ngn2Dbasic where the entire basic domain was 

deleted (amino-acid 113-124), and Ngn2Y241F; (4) a plasmid expressing the ubiquitous 

bHLH protein E47 under the control of a CMV promoter (kind gift of Dr Anirvan Ghosh). Cell 

lysates were harvested 24 hours after transfection and the Luciferase-Renilla normalized 

chemiluminescence (ratio pGL3 over TK-pRL) were assayed using a multiple fluorescence 

(FluoScan) plate reader as per the manufacturer’s instructions (Promega).  

Transactivation domain mapping 

 Transactivation mapping of mouse Neurogenin2 (mNgn2) was performed as above 

using the Dual Luciferase Assay (Promega). PCR fragments of mNgn2 (containing aa180-

213, aa214-263, aa180-263) were subcloned into a GAL4 fusion protein plasmid (pFA, 

Stratagene). Human Embryonic Kidney (HEK) 293T cells were transiently co-transfected in 

triplicate with the respective GAL4-fusion constructs, pFRLuc (pFR-Luc, Stratagene), and 

Renilla plasmid (TK-pRL) using Lipofectamine 2000. Twenty-four hours after transfection 

cells were lysed and assayed as mentioned above. 
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Summary 

The extracellular cues and signaling pathways that control the termination of cortical 

interneuron migration are unknown. In the present study, we use a BAC-transgenic mouse 

line (Lhx6-EGFP) reporting expression in approximately 50% of parvalbumin-positive 

interneurons (adult basket cells and chandelier cells) and combinations of ex vivo co-culture 

assay, time-lapse confocal microscopy, manipulation of gene expression by electroporation 

and pharmacology to explore the signaling pathways the stop interneuron migrating in the 

developing cortex. We found that activation of GABAA receptors by GABA acts as a 

paracrine stop signal for interneuron migration but only after interneurons up-regulate the 

potassium-chloride exchanger KCC2.  Expression of KCC2 by migrating interneurons is 

both necessary and sufficient to confer responsiveness to GABA as a stop signal by 

decreasing the frequency of intracellular calcium transients. Before or concomitant with 

using GABA as a neurotransmitter to hyperpolarize their post-synaptic partners, GABA first 

specifies the timing of a key transition between the end of migration and the onset of 

inhibitory synaptogenesis. 
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INTRODUCTION 

The balance between excitation and inhibition in cortical circuitry is dictated in part by 

the relative number of glutamatergic pyramidal neurons and GABAergic interneurons. This 

balance is of critical importance for the proper function of the adult neocortex. 

Developmental neuropathologies such as schizophrenia (Pierri et al., 1999) and Autism 

Spectrum Disorders (ASD) (Belmonte et al., 2004; Polleux and Lauder, 2004) are often 

hypothesized to be caused, at least in part, by an imbalance between inhibition and 

excitation in specific cortical circuits. More generally, even a modest decrease of this 

interneurons:pyramidal neuron ratio (20-80%; Braak and Braak, 1986; DeFelipe et al., 2002; 

Sloper, 1973; Sloper et al., 1979; Tombol, 1974; Winfield et al., 1980) can lead to cortical 

hyper-excitability leading to epilepsy (Cobos et al., 2005). In mammals, pyramidal 

glutamatergic neurons are generated by progenitors located in the dorsal telencephalon that 

migrate along the radial glial scaffold to reach the cortical plate (Marin and Rubenstein, 

2003; Noctor et al., 2004; Rakic, 1972). On the other hand, the vast majority of cortical 

GABAergic interneurons are generated by a specialized populations of progenitors located 

in the ventral telencephalon, precisely in the medial and caudal parts of the ganglionic 

eminence (MGE and CGE respectively) and migrate tangentially towards the dorsal 

telencephalon where they will invade the cortical plate and terminally differentiate into 

specific sub-populations of interneurons in a given layer (Marin and Rubenstein, 2003). 

The mechanisms guiding or stimulating cortical interneuron migration from the 

ventral to the dorsal telencephalon are beginning to be made known (Flames et al., 2004; 

Marin et al., 2001; Polleux et al., 2002; Pozas and Ibanez, 2005). On the other hand, the 

factors terminating interneuron migration and precisely dictating where and when cortical 

interneurons should stop migrating are unknown.  Identifying these signaling mechanisms 

would greatly improve our ability to study critical features of the development of the 
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GABAergic circuitry such as synaptogenesis, balancing inhibitory/excitatory drive and 

setting up the critical period (Ben-Ari et al., 2004; Hensch, 2005; Markram et al., 2004). 

The phenotype of cortical interneurons is genetically specified by the expression of 

several transcription factors including Dlx1/2, Nkx2.1 and Lhx6 (Anderson et al., 1997; 

Lavdas et al., 1999; Sussel et al., 1999).  Lhx6-expressing interneurons originate from the 

medial ganglionic eminence (MGE) and will primarily become the parvalbumin-positive 

subpopulation of cortical interneurons (Cobos et al., 2005; Cobos et al., 2006).  This 

subpopulation mainly comprises large basket cells and chandelier cells that make restricted 

synaptic contacts at the soma and axon initial segment of pyramidal neurons, respectively. 

These interneurons present fast spiking firing patterns (Butt et al., 2005; Kawaguchi and 

Kondo, 2002) and are thought to control oscillatory patterns of neural activities such as theta 

and gamma waves (Freund, 2003).   

Tangentially migrating interneurons migrate in a stuttered, start-stop fashion (termed 

‘saltatory locomotion’) to the dorsal telencephalon, whereupon these interneurons undergo 

tangential migration through the marginal zone and intermediate zone (DeDiego et al., 1994; 

O'Rourke et al., 1995; Polleux et al., 2002).  This tangential migration is distinct from the 

radial migration of pyramidal cells, born in the ventricular or sub-ventricular zones of the 

dorsal telencephalon which specifically adhere to a radial glial process and migrate radially 

using this fiber as substrate (Noctor et al., 2004; Rakic, 1972).  Upon reaching the top of the 

cortical plate radial migration is terminated by the detachment of the pyramidal cell from this 

substrate (Dulabon et al., 2000; Pinto-Lord et al., 1982) allowing subsequent generations of 

pyramidal cells to pass forming the cortex in an inside out manner.  Although interneurons 

transiently fasciculate with radial glial fibers during their invasion of the cortical plate 

(Polleux et al., 2002), they can rapidly detach and are most frequently seen moving 

tangentially to the direction of radial glia even within the cortical plate (O'Rourke et al., 1995; 

Polleux et al., 2002; Bortone and Polleux – unpublished observations) suggesting that radial 
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glial processes are not a required substrate for interneurons migration in the cortex. There is 

some evidence that axons may be involved in the process of tangential migration (Denaxa 

et al., 2001; McManus et al., 2004).  However, the observation that interneurons can move 

independent of axons as a guide (Polleux et al., 2002; Wichterle et al., 2001) argues against 

axons as the sole substrate of cortical interneurons.  Since no essential substrate has yet 

been identified in interneurons, determining when tangential migration ends is not as simple 

as observing when they detach as observed for radially migrating neurons (Anton et al., 

1996). 

 Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter of the 

central nervous system, may play a role in this termination of tangential migration. GABA 

receptors are generally categorized into three types: GABAA, GABAB, and GABAC.  GABAA 

and GABAC are ionotropic receptors composed of 5 heteromeric subunits and are 

predominantly permeable to chloride ions. These two ion channels can be distinguished 

pharmacologically as GABAC receptors are not inhibited by bicuculline, a GABAA antagonist.  

GABAB receptors are metabotropic (G-protein coupled) and are therefore not thought to be 

dependent on the electrochemical equilibrium of chloride ions for their function. Tangentially 

migrating interneurons contain GABA, the means to release it (Conti et al., 2004), and the 

capacity to respond to it through both ionotropic GABAA and metabotropic GABAB receptors 

during their migration (Cuzon et al., 2006; Lopez-Bendito et al., 2003; Lujan et al., 2005), yet 

no function is ascribed to GABA in migrating interneurons.   

The neurotransmitter GABA has been suggested to play diverse, sometimes 

conflicting, roles on neuronal proliferation, migration and differentiation during development 

of the central nervous system. Here we report that GABA acts as a pause signal for cortical 

interneurons through activation of GABAA receptors. Interestingly, GABA’s ability to pause 

interneuron migration in the cortex requires expression of the K+/Cl- exchanger KCC2, 

which controls the reversal potential of chloride and therefore determines the switch of 
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GABAA receptor activation from depolarizing to hyperpolarizing. Expression of KCC2 is both 

necessary and sufficient for stop cortical interneuron migration by negatively regulating the 

frequency of spontaneous intracellular calcium transients in these migrating cells. These 

results provide a new important function of GABA in the regulation of a key transition during 

interneuron migration.   

RESULTS 

Cortical interneurons terminate migration during the first postnatal week in a 
cell autonomous manner 

To first document when interneurons stop migrating in vivo in the developing mouse cortex, 

we performed time-lapse analysis in acute cortical slices isolated from a BAC-transgenic 

mouse line where enhanced green fluorescent protein (EGFP) is expressed under the 

control of the regulatory elements of LIM homeobox 6 (Lhx6), a transcription factor 

expressed specifically in MGE progenitors (Lavdas et al., 1999).  In this mouse line obtained 

from the GENSAT consortium (Gong et al., 2003), EGFP is expressed in approximately 65% 

of cortical interneurons in vivo.  Most of these Lhx6-positive interneurons will become 

parvalbumin-positive large basket cells or chandelier cells (Cobos et al., 2006). These time-

lapse experiments revealed a gradual reduction in interneuron migration from E15 to P7 as 

shown in Figures 3.1B-D. 

Although some interneurons have terminated migration in the cortical plate (CP) by 

E15 (15.1% ± 2.8%; n = 388 cells, 8 movies; Fig. 3.1E), the vast majority continue to 

translocate.  By P1, 57.8 ± 1.9%  (n = 970 cells, 10 movies) of interneurons have stopped 

migrating and almost all cortical interneurons have terminated migration by P7 (91.6 ± 1.4%; 

n = 366 cells, 12 movies).   
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The quantitative assessment of interneuron migration was performed by computing 

two parameters: (1) we defined the moving speed as the rate of translocation (microns/hour) 

when the interneuron is moving i.e. not including the time when the cell pauses and  (2) the 

travel time indicates the proportion of time that the interneuron is moving during recording.  

Most time-lapse investigations report only the average speed as defined by distance 

traveled over a certain period of time (Cuzon et al., 2006). However, this measure is 

ambiguous due to the saltatory nature of interneuron migration, changes in average speed 

Figure 3.1 - Characterizing the termination of cortical interneuron migration 
(A) Illustration of time-lapse set-up.  Cell culture media has access to slice from below, while 
temperature, humidity and CO2 levels are controlled by incubation chamber from above. 
(B-D) Images show decrease in movement of Lhx6-EGFP+ interneurons in cortical slices between 
embryonic day (E)14.5 and post-natal day (P)5 after culturing ex vivo for 1-2 days to allow settling.  
Frame corresponding to the start of imaging (t=0)  is pseudo-colored in green.  Image taken three 
hours later is pseudo-colored in red.  Yellow cell bodies correspond to interneurons that did not 
migrate.  (E-G) Movements of interneurons in the cortical plate were quantified. (E) By P7 the 
majority of interneurons have shown no detectable somal translocations after 6 hours of 
observation.  (F) The average moving speed showed an initial decrease, but showed no decline at 
older ages.  (G) The primary means of slowing and stopping interneuron migration was therefore 
due to a steady decrease in the percentage of time spent traveling.  
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can be caused either by change in the stalling frequency and/or a change in moving speed. 

By separating these two components, we were able to uncover significant changes that 

would not be apparent otherwise.  Most importantly, although the moving speed of cortical 

interneurons declines from 23.0 ± 1.2 microns/hour at E15 to 18.5 ± 1.3 microns/hour at P1 

(Fig. 3.1F) there is no significant decline found from P1 to P7.  While moving speed levels 

off modestly, travel time is found to decrease significantly between all ages dropping from 

24.7 ± 1.6% at E15 to 7.6 ± 1.1% by P7 (Fig. 3.1G).  This analysis shows that interneurons 

stop migrating, not by decreasing their moving speed, but largely by increasing the stalling 

frequency. 

 

 

 

 

 

 

Figure 3.2 - GABA decreases motility of interneurons expressing high levels of KCC2 via 
GABAA receptor activation 

(A) Wild-type neocortex was dissociated providing a 2-D substrate for EGFP migrating interneurons. 
(B-D) Time-series of migrating interneurons pseudo-colored at equally spaced time-frames before (B, 
white 180 minutes after start of imaging i.e. 180 minutes before application of GABA; C, blue 360 
minutes after start of imaging corresponding to time of GABA application) and after extracellular 
application of GABA (20µM; D, red, 540 minutes after start of imaging i.e. 180 minutes after GABA 
application; E, green 720 minutes after start of imaging i.e. 360 minutes after GABA application). 
These cell cultures where fixed immediately after the last frame, and immunofluorescently stained 
with anti-EGFP and anti-KCC2 antibodies (J). This technique allows the matching of individual 
interneuron responses to GABA treatment (G) and the segregation of these responses based on 
individual levels of KCC2 expression found by measuring the optical density of KCC2 
immunofluorescence (L).  Interneuron responses to GABA application were binned into low and high 
KCC2 populations (green and red, respectively), indicating a large negative shift in the high KCC2-
expressing population of interneurons. 
(M-N) Box plots show quantification of binned interneuron responses to drug application. 
No significant changes in moving speed were detected in either sub-population following GABA (M) 
or 20µM GABA with concurrent application of GABAA receptor antagonist bicuculline methiodide 
(BMI; 10µM; data not shown).  (N) Low KCC2 interneurons showed no significant decrease in travel 
time upon GABA application, while high KCC2 interneurons showed a significant (p=0.0004) decline 
after GABA application. BMI co-application with GABA significantly disinhibited the effect of GABA 
alone (p=0.0308), leaving no significant difference between pre and post-drug travel times. 
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GABA application induces pausing behavior in a subset of migrating 
interneurons expressing KCC2. 

Difficulty in time-lapsing acute slices of brain tissue arises from tracking a single 

interneuron for long periods of time as they dive into the slice and out of the focal plane.  

This complication compromises not only the number and length of single neuron 

observations, but all movements occurring in the Z-axis are lost as well.  Since the imaging 

of stacks in the Z-plane at the resolution, depth and speed necessary to enable longer and 

more accurate observations of these cells was not possible without introducing 

unacceptable levels of phototoxicity, a novel in vitro 2D migration assay was developed.  By 

dissociating and plating E14.5 wild-type isochronic dorsal telencephalic neurons 

immediately before explanting MGE isolated from EGFP-expressing littermates (Fig. 3.2A), 

longer observations at higher temporal frequencies are made possible onto this 2D 

substrate. This assay also enables efficient and rapid application of pharmacological 

treatments to migrating interneurons, which is difficult to optimize in slices due to limited 

diffusion of the drugs into the tissue. 

Using this two-dimensional assay, we tested the hypothesis that GABA plays a role 

in terminating the migration of cortical interneurons.  The exact nature of GABA’s effect on 

interneuron migration, specifically through ionotropic receptors, remains unclear in spite of 

much evidence that GABA can modulate the migration of cortical neurons (Behar et al., 

1996; Behar et al., 1998; Cuzon et al., 2006).  

Interneurons from EGFP-expressing MGE explants were allowed to migrate on a 

substrate of dissociated isochronic wild-type cortical neurons for 4.5 div and were time-

lapsed for 6 hours (Fig. 3.2B-C) prior to addition of GABA (20µM) and time-lapsed for 6 

more hours (Fig. 3.2D-E). This method allowed us to quantify the migration properties of 
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individual interneurons before and after drug addition (Fig. 3.2B-F). Interneurons that were 

not present for the entirety of the 12-hour imaging sessions were excluded from the 

analysis.  Interestingly, the moving speed did not decline significantly while the proportion of 

time these interneurons spent traveling dropped slightly but significantly (-7.0 ± 1.5%; 

p=0.0002; n=206 cells; data not shown).  This significant decline, specifically in travel time, 

while maintaining stable moving speeds upon GABA addition strikingly resembles the 

attributes of the age-related termination of migration measured in situ.  In other words, a 

significant increase in the stalling frequency was observed both during maturation of cortical 

interneurons in slices and upon exogenous addition of GABA to interneurons migrating on 

dissociated cortical cultures.  

 Although a significant trend was observed at the population level i.e. slightly more 

interneurons showing decrease of travel time than increase upon GABA addition, our 

analysis mainly unravels a significant level of variability in the response of individual 

interneurons to GABA addition.  Some interneurons within this group responded by reducing 

the frequency of pauses (decrease percentage of time travel), while others show the 

opposite response upon GABA addition (Fig. 3.2G).  

What could account for this important variability in the migratory response of 

interneurons to GABA? These results strongly suggest that interneurons have different 

intrinsic properties underlying their differential responsiveness to GABA. In vivo, we 

determined that most interneurons stop migrating sometime around birth i.e. approximately 

7 days after interneurons start invading the cortex (E13.5; Bortone and Polleux unpublished 

observation). To test if interneurons responsiveness to stop signals (including ambient 

GABA) is due to cell-autonomous or cell non-autonomous changes, we first performed 

isochronic and heterochronic co-cultures where the age of the cortical substrate for 

migration varies from 2div versus 7div (see Supp. Fig. 3.1).  Our results demonstrate that 

after 2div, most interneurons migrate readily (Supp. Fig. 3.1A), but when both interneurons 



 86 

and their cortical substrate have matured for 7div (Supp. Fig. 3.1B), interneurons stop 

migrating. Interestingly, heterochronic experiments reveal that when ‘immature’ interneurons 

(E14.5+ 2div) are plated on ‘mature’ cortical substrate (7div), interneuron migrate at the 

same rate as in isochronic conditions (Supp. Fig. 3.1C, quantified in Supp. Fig. 3.1D-E). 

This strongly suggests that interneurons responsiveness to stop signals requires intrinsic 

maturation maybe necessary for upregulation of an intrinsic ‘gating’ factor. 

Responsiveness of interneurons to GABA via GABAA receptors correlates with 
KCC2 expression. 

There are two intrinsic factors that could contribute to this differential response of 

migrating interneurons towards GABA: 1) the differential expression of GABA receptors 

subunits and 2) the nature of the chloride gradient across the membrane dictating the 

direction of chloride ion flow upon opening of ionotropic GABA receptors. Metabotropic 

GABA receptors, GABAB receptors, are present on interneurons, but appear to have 

consistent expression from interneuron to interneuron (Lopez-Bendito et al., 2003). 

Differential expression of ionotrophic GABA receptor subunits could alter the cell’s 

responsiveness to GABA (Cuzon et al., 2006).  Although differential subunit compositions 

can confer distinctive properties including cellular localization, agonist affinity, rates of ion 

permeability and desensitization, GABAA receptors are the most diverse ligand-gated ion 

channel composed of a staggering 21 subunits (Fritschy and Brunig, 2003).  Systematically 

addressing the effect of each of these subunits may not be feasible. 

Another critical modulator of ionotropic GABA function is the reversal of chloride’s 

electrochemical driving force in neurons, which could completely reverse the effect of GABA 

from hyperpolarizing to depolarizing.  This reversal is predominantly controlled by the 

expression of one protein, the potassium chloride co-transporter, KCC2 (Rivera et al., 1999). 

Early in development the expression of this chloride extruder is low, resulting in a high 
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intracellular concentration of chloride.  The driving force of this gradient causes a 

depolarizing efflux of chloride upon the binding of GABA to ionotropic GABA receptors.  As a 

neuron matures, the up-regulation of KCC2 extrudes chloride, which leads to a reversal of 

its chloride electrochemical driving force (Ben-Ari, 2002; Payne et al., 1996; Rivera et al., 

1999).  The same neurotransmitter, GABA, acting on the same ionotropic GABA receptors 

then leads to a hyperpolarizing influx of chloride ions, underlying the inhibitory function of 

GABA as a neurotransmitter in the adult CNS.   

To test this hypothesis, we took a refined approach, combining individual tracking of 

migrating interneuron by confocal time-lapse microscopy with pharmacological treatment 

and post-hoc immunofluorescent staining of KCC2 in the same interneurons. 2D co-cultures 

time-lapsed for 12 hours as described above (Fig. 3.2A-F) were fixed immediately after the 

last frame and stained for KCC2, MAP2 and EGFP.  Each interneuron tracked during time-

lapse and pharmacological treatment was then re-located, enabling the optical density of 

KCC2 to be correlated to the response of individual cells to GABA addition (Fig. 3.2K-H).  

The individual data points of percentage change in travel time before and after GABA 

addition shown in Figure 3.2G could then be retrospectively split into bins of high and low 

KCC2 expression (Fig. 3.2L).  The results revealed two strikingly different sub-populations 

of interneurons.  Interneurons expressing low levels of KCC2 showed no significant changes 

moving speed or percent travel time in response to GABA (Fig. 3.2L, green dots, whereas 

interneurons expressing high levels of KCC2 (red dots) responded to GABA addition with a 

significant reduction in the time they spent migrating (Mann-Whitney test p=0.0004 when 

compared to pre-drug measurements; n=81 cells).  As seen when characterizing the 

termination of migration in situ, this GABA-induced depression in travel time occurs without 

a significant decrease in moving speed (data not shown).   

Is this response to GABA as a ause signal mediated by activation of GABAA 

receptors? Co-application of 20µM GABA with 10µM bicuculline methiodide (BMI), a GABAA 



 88 

receptor competitive antagonist, significantly blocked GABA’s effect on the travel time 

specifically in interneurons expressing high levels of KCC2 (-2.8 ± 3.0%; n=39; p=0.0308 

compared to change elicited by GABA application alone; p=0.6312 compared to control 

observation period; Fig. 3.2N).   Where co-application of GABA and BMI increased the 

travel time of the high KCC2-expressing interneurons relative to GABA application alone, it 

significantly depressed the travel times of interneurons expressing low levels of KCC2 (-8.12 

± 3.1%; n=44; p=0.0271 with respect to pre-drug observations; data not shown).  These 

results are also evident when viewing the frame-by-frame data (Supp. Fig. 3.2) for 

interneurons subdivided into high and low KCC2 expressing interneurons.  Our results 

identified that expression of KCC2 is coinciding with the ability of interneurons to respond to 

GABA as a stop signal.  

To determine the relevance of increased KCC2 expression to a termination of 

migration, as opposed to a GABA-induced pausing, KCC2 expression was measured in 

older (E14.5 + 7div) interneurons and correlated with their motility.   Explanted E14.5 

EGFP+ interneurons were cultured for 7 div on a dissociation of wild-type E14.5 dorsal 

telencephalon, time-lapsed for 6 hours, fixed, and immunostained for KCC2 (Supp. Fig. 

3.3).  Interneurons showing no movement during the course of this 6-hour observation had 

44.4% higher KCC2 expression than those that moved (±7.1%; n=51; p<0.0001).  The 

correlation of high KCC2 expression with those interneurons exhibiting no movement in the 

absence of artificial GABA application suggest that KCC2 up-regulation is tightly coupled 

with the termination of interneuron migration. 
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Figure 3.3 - KCC2 expression is highly variable among cortical interneurons.  
(A-D) Explanted E14.5 EGFP-MGE interneurons show drastically different KCC2 expression after 4 
div. Throughout the figure, arrowheads identify cells expressing low levels of KCC2.  Arrows 
indicate high KCC2 expressing cells. (E-K) Disparity in cortical interneuron KCC2 expression is also 
found in vivo.  (L-M) E14.5 pyramidal cell progenitors were electroporated with GFP and stained for 
KCC2 after 4.5 div. No KCC2 was observed. (O-Z) Interneurons up-regulate KCC2 earlier than 
pyramidal cells in vitro. Variability of interneuron KCC2 expression was also much higher at early 
ages. 
(AA) Quantification of KCC2 optical density (OD) in cortical pyramidal cells was significantly lower 
than interneurons at 4 and 8 div (p<0.0001 for both).  
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KCC2 expression is highly variable among migrating interneurons and 
precedes KCC2 expression in pyramidal cells.  

To confirm the in vivo relevance of the variability of KCC2 expression observed in 

vitro  (Fig. 3.3A-D), we performed immunofluorescent staining for KCC2 on Lhx6-EGFP 

cortical interneurons in vitro and in vivo.  These results were consistent with intracellular 

variability observed in vivo (Fig. 3.3E-H).  Surprisingly, this variability was observed in every 

layer of the neocortex at P0 including the cortical plate (Fig. 3.3E-K). If KCC2 up regulation 

contributes toward the termination of migration in interneurons specifically, one might expect 

to see KCC2 expression occur in interneurons much sooner than in pyramidal cells.  

The pyramidal cell population was labeled by dorsal electroporation. This 

electroporation technique specifically labels pyramidal cells with no cross-labeling of 

interneurons (Supp. Fig. 3.4A-C).   After culturing for 4 days these slices were fixed and 

immunostained for KCC2 (Fig. 3.3L-N), showing little to no KCC2 expression in pyramidal 

cells in situ at an age when a large proportion of interneurons are already highly expressing 

the co-transporter.   

The 2D in vitro assay was adapted to more directly isolate and compare KCC2 

expression in these two distinct neuronal sub-populations.  Cortical pyramidal cells were 

electroporated with monomeric red fluorescent protein (mRFP) at E14.5, dissociated and 

cultured in vitro with MGE-EGFP explants (Supp. Fig. 3.4D).  The cultures were processed 

for immunofluorescence against KCC2 at 4 and 8 div allowing a comparison of optical 

densities between interneurons and pyramidal cells (Fig. 3.3O-Z).    The quantification of the 

staining showed KCC2 is up-regulated in interneurons much sooner than pyramidal cells 

(Fig. 3.3AA).  At E14.5 + 4 div interneurons had an average optical density of 32.5 ± 4.3 (n 

= 52), which was about three times higher than pyramidal cells at the same age (average 

optical density of 11.8 ± 0.7; n = 59; p < 0.0001).  By 8 div the optical density of interneurons 

(82.9 ± 5.5; n=56) was still twice that of pyramidal cells (46.9 ± 2.9; n=50; p<0.0001).  Also 
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of note, the standard error to the mean (SEM) for interneurons at 4 div comprised a much 

higher percentage (± 13.2%) of its measurement compared to that of pyramidal cells (± 

5.9%).  In other words, up-regulation of KCC2 in pyramidal cells appeared uniform 

compared to the highly variable and precocious expression in interneurons.  

Premature KCC2 expression is sufficient to reduce interneurons migration to 
cortex by increasing stalling frequency upon GABA application  

Our initial results raise an important question: is KCC2 expression the prime intrinsic 

determinant of an interneuron’s responsiveness to ambient GABA as a stop signal? In order 

to test this question, cortical interneurons were electroporated with EGFP-IRES-KCC2 

expression plasmids at E14.5 (Fig. 3.4A-D) and time-lapsed as described above in order to 

determine the sufficiency of premature KCC2 expression to induce responsiveness to GABA 

 
Figure 3.4 - Sufficiency of KCC2 in decreasing interneuron motility  
(A-E) KCC2 was over-expressed in E14.5 wild-type MGE explants by electroporation of EGFP 
IRES KCC2 construct (A).  (B-D) Expression was verified by high immunofluorescence after 2 div.  
(E) Over-expression of KCC2 alone significantly decreased interneuron travel time (p=0.0009).  
Application of 20µM GABA further significantly reduced travel time (p<0.0001), indicating 
sufficiency of KCC2 in depressing speed upon GABA addition.   
(F-I) Electroporations of EGFP into the MGE of a slice (F) shows robust migration (G) of 
interneurons into the dorsal telencephalon.  (H) Electroporation of EGFP IRES KCC2 in slices 
decreases migration to the cortex. (I) Quantification shows a significant decrease in the 
percentage of interneurons migrating into the cortex from the striatum in KCC2 over-expressing 
interneurons (p=0.0091). 
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as a stop signal. These interneurons were time-lapsed for shorter periods of time (3 hours 

before and after drug addition) as their faster speeds made it difficult to retain them in the 

field of view for the full 12 hours used on 4.5 div interneurons.  Figure 3.4E shows that the 

percent travel time in KCC2 over-expressing interneurons is significantly lower than control 

electroporated interneurons (78.6 ± 1.5% and 85.7 ± 1.4% respectively; p = 0.0009), 

presumably in the presence of limiting level of ambient GABA.  The addition of GABA 

(20µM) further depressed the travel times of KCC2 over-expressing cells (68.6 ± 1.9%; 

p<0.0001 when compared to either control or KCC2 over expression alone) illustrating that 

KCC2 expression is sufficient to enable GABA to decrease the rate of migration (i.e. 

increased stalling frequency) in immature migrating interneurons. 

 To test the effect of KCC2 on interneuron migration in situ, the MGE of wild-type 

slices were electroporated with control (EGFP only) or KCC2-IRES-EGFP constructs and 

cultured for 4 days in organotypic slices ex vivo (Fig. 3.4F). Control electroporations show 

robust migration into the cortex (Fig. 3.4G-H), while KCC2 over-expressing interneurons 

appear restricted in their migration mostly to the striatum (Fig. 3.5H).  The quantification of 

these slices shows nearly half (46.5 ± 7.7%, n=8 slices, 966 cells) of control interneurons 

successfully reaching the cortex while only 27.4 ± 8.5% (n = 8 slices, 642 cells; p=0.0091) of 

KCC2 over-expressing interneurons reach the cortex.  

KCC2 is required for termination of cortical interneurons migration. 

To further test the contribution of KCC2 towards terminating cortical interneuron 

migration, we sought to determine if KCC2 expression was required for termination of 

interneuron migration using a KCC2 knockdown approach. To do this, E14.5 MGE explants 

were electroporated with either control or control plus plasmid encoding short hairpin 

(sh)RNA interference constructs targeted against mouse KCC2 (shKCC2) and time-lapsed 

after 7 div i.e. when the vast majority of E14.5 interneurons have (1) upregulated KCC2 
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(Fig. 3.3 and Suppl. Fig. 3.3) and stopped migrating in vivo (Fig. 3.1) and in vitro (Suppl. 

Fig. 3.1).  Our shRNA approach is very effective at knocking down endogenous KCC2 

expression in interneurons below detectable levels using immunofluorescence (Fig. 3.5A-

G). As shown above, only a small proportion of interneurons is still migrating by 7 div using 

Figure 3.5 - Knocking-down KCC2 increases percentage of migrating interneurons 
(A-F) Short hairpin RNAi targeted against mouse KCC2 (shKCC2) is effective in knocking-down 
KCC2 expression.  (A-C) Interneuron electroporated with a contruct encoding EGFP at E14.5 is 
shown immunostained for KCC2 in red at 7 div.  (D-F) Interneuron electroporated with a control 
EGFP and a construct encoding shKCC2 at E14.5 shows no KCC2 expression at 7 div.   (G) 
Quantification shows a significant reduction in KCC2 with use of shKCC2. Measurements of 
background KCC2 immuno-reactivity show KCC2 is approaching undetectable levels with 
introduction of shKCC2.  Optical density was measured in 12 bits (value range of 0-4095). 
(H-J)  Interneurons electroporated with either control plasmid (H) or control plus shKCC2 (I) are 
shown with initial frame (t=0) shown in green and 3 hours later shown in red.  Note decrease in 
yellow ‘co-labeled’ interneurons after knocking-down KCC2 indicating more migrating 
interneurons.  (J)  Quantification shows a significant increase in the number of migrating 
interneurons expressing the shKCC2 (p=0.0031). 
 
 



 94 

this electroporated explant method (27.7 ± 3.8%; n=31 cells; Fig. 3.5H and 3.5J).  However, 

knocking-down KCC2 significantly increases (almost two fold) the proportion of migrating 

cortical neurons to 47.1 ± 3.8% (n = 52; p = 0.0031; Fig. 3.5I-J).  Therefore the modulation 

of KCC2 has a significant impact on the extension of the migratory period in cortical 

interneurons. 

KCC2 regulates termination of migration by altering calcium influx. 

Our results thus far show that KCC2 expression, coupled with activation of GABAA 

receptors, is tightly correlated with an increase in the stalling frequency displayed by 

interneurons as they migrate, however the molecular mechanisms underlying the effect of 

GABAA receptor activation in interneurons expressing KCC2 is unknown.  The frequency of 

intracellular calcium dynamics has been closely linked to the migration of cerebellar granule 

cells (Komuro and Rakic, 1996; Kumada and Komuro, 2004), the extension of axon growth 

cones  (Gomez  et  al.,  1995;    Gomez and Spitzer, 1999)  and  the  stabilization  of  dendritic  

Figure 3.6 - Calcium signals in tangentially migrating interneurons are reduced with KCC2 
upregulation 
(A-B) Migrating cortical interneurons show spontaneous calcium transients to a varying degree.  (A) 
An mRFP-electroporated E14.5 MGE interneuron (red) was loaded with Oregon green BAPTA-AM 
and time-lapsed.  Pseudocolored images show calcium signal at low (A’) and high (A’’) periods of 
activity.  White outlines interneuron (A’’’).  Pseudo colored strip across bottom shows a resectioned 
line through the cell nucleus during the course of the time-lapse.  No pharmacological treatments 
were required to elicit these calcium signals.  (B) Traces of calcium signal in control conditions 
shows wide range of calcium responses. 
(C-F) KCC2 expression ablates 0.003-0.03 Hz calcium transients.  Calcium signals from Oregon 
green BAPTA-loaded interneurons electroporated with either mRFP and a plasmid encoding 
shKCC2 (C) or mRFP IRES KCC2 (KCC2; D) are shown.  Interneurons with knocked down KCC2 
show several calcium spikes (indicated by arrowheads) on top of a larger wave.  KCC2 over-
expressing interneurons do not show these types of signals. (E) A spectral analysis was done on 
individual cells and averaged for each group indicating a decrease in calcium signaling in the 0.003-
0.03 Hz frequency range upon KCC2 over-expression.  (F) The relative power spectral densities 
were binned into 0.003-0.03 Hz and >0.03 Hz categories.   KCC2 knockdown interneurons showed  
significantly higher signaling activity in the range of 0.003-0.03 Hz (p=0.0084).  At higher frequencies 
this difference disappears.  KCC2 over-expressing cells show no significant difference between 
higher and lower frequencies indicating KCC2 expression decreases spontaneous calcium activity.   
(G-I)  Time-lapsed Lhx6-EGFP interneurons at E15 are shown with initial image (t=0) in blue, 3 
hours in green, and 6 hours in red.  Non-moving cells appear white.  Note chelation of calcium 
increases the number of stationary cells (H) relative to control cells (G).  (I) Quantification shows a 
decrease (Chi-Square Analysis p<0.0001) in the number of cells migrating after incubation with 
25µM BAPTA-AM. 
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branches in retinal ganglion cells (Lohmann et al., 2002). Interestingly, in these studies the 

frequency of calcium transients as been positively and negatively correlated to axon growth 

or cell motility. Regulating the switch of GABA from depolarizing to hyperpolarizing could 

alter the calcium signal frequencies within the migrating interneurons through activation of 

voltage sensitive calcium channels and/or release of calcium from intracellular stores.  

Calcium transients have been observed in migrating cortical interneurons but only upon 

pharmacological manipulations (Soria and Valdeolmillos, 2002) and therefore at this point, 

the spatial and temporal dynamics of intracellular calcium in migrating cortical interneurons 

have not been reported.  

 In order to first study intracellular calcium dynamics in migrating interneurons, we 

electroporated mRFP in MGE progenitors and cultured these explants on isochronic 

dissociated cortical neurons as a 2D substrate. These co-cultures were then loaded cells 

with the cell-permeant calcium-sensitive dye, Oregon Green BAPTA-AM.  Calcium dynamics 

could clearly be monitored in some of these migrating interneurons at E14.5 + 4 div without 

the addition of drugs (Fig. 3.6A-A’’’), although the occurrence was not systematic and 

probably dependent of the history of the cell (imaging was only performed for relatively short 

periods of time, 10-20 minutes, but at high temporal frequencies; Fig. 3.6B).  

 To determine if KCC2 expression can alter the frequency of these calcium transients, 

interneurons were electroporated with a control plasmid (red) or control plasmid plus 

shKCC2.  At E14.5 + 4.5 div these migrating interneurons were loaded with 5µM Oregon 

Green BAPTA-AM and time-lapsed.  Figure 3.6C shows calcium signals of several shKCC2 

interneurons.  The number of calcium transients varied from numerous as seen in the top 

most trace to just a few as seen in the bottom most trace.   

Representative traces of KCC2 over-expressing interneurons can be seen in Figure 

3.6D where few if any calcium transients can be observed.  Again, KCC2 knockdown 
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interneurons often show calcium transients (indicated by arrows), while KCC2 over 

expressing interneurons do not. In order to quantify more systematically the frequency of 

these calcium transients, we performed Relative Power Spectral Density (RPSD) analysis 

(Uhlen, 2004) which showed a significantly higher occurrence of calcium transients at 

frequencies in the 0.003-0.03 Hz range in the shKCC2 interneurons compared to KCC2 over 

expressing interneurons (Fig. 3.6E).  When these values were binned into 0.003-0.03 Hz 

versus 0.03-0.3 Hz, RPSD of shKCC2 interneurons was significantly higher than that of 

KCC2 over-expressing cells (Fig. 3.6F; p = 0.0084, n = 16 and 14 cells respectively).  The 

shKCC2 interneurons also showed a significantly higher RPSP of 0.003-0.03 Hz frequencies 

over >0.03 Hz frequencies (p < 0.0001), while KCC2 over-expressing interneurons showed 

no statistical difference between high and low frequencies.  This data indicates that KCC2 

expression is negatively regulating the frequency of calcium transients occurring in migrating 

interneurons.   

 If there is a causal relationship between intracellular calcium transients and the 

termination of interneuron migration upon KCC2 up-regulation, one would expect 

sequestration of intracellular calcium to be sufficient to prematurely stop migration in 

interneurons as previously shown for cerebellar granule cells (Komuro and Rakic, 1996; 

Kumada and Komuro, 2004).  After chelating intracellular calcium in acute slices of E14.5 + 

1 div Lhx6-EGFP with 25µM BAPTA-AM for 2 hours, we performed confocal time-lapse 

microscopy and compared the dynamics of interneuron migration in situ to isochronic control 

slices. When comparing a control time-lapse (Fig. 3.6G) to a calcium-chelated slice (Fig. 

3.6H), it is apparent that intracellular calcium chelation is sufficient to inhibit or even stop the 

migration in cortical interneurons.  The quantification of these movies shows that most (84.9 

± 2.8%; n=8 movies and 388 cells) interneurons are migrating in control conditions while 

only 51.4 ± 0.3% (n=3 movies and 204 cells) of interneurons migrate when intracellular 

calcium is sequestered (Fig. 3.6I). This last result strongly suggests that intracellular calcium 
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transients observed in interneurons are necessary for their migration and that KCC2 

upregulation is sufficient to abrogate these intracellular calcium dynamics leading to 

termination of interneuron migration. 

  
Figure 3.7 - Model explaining KCC2-dependent GABA-induced termination of tangential 
migration in the developing neocortex.    

We propose a model whereby (1) interneurons initially express low KCC2 and therefore 
depolarize upon activation of GABAA receptors by ambient GABA, causing a calcium influx via 
activated VDCC’s (shown in bottom tracing), which stimulates movement and (2) that up-
regulation of KCC2 renders activation of GABAA receptors by ambient GABA hyperpolarizing, 
reducing calcium signaling (shown in top tracing) and terminating tangential migration. 
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DISCUSSION 

Our results demonstrate that activation of GABAA receptor by ambient GABA present 

in the environment of migrating interneurons plays a critical role in the termination of 

interneuron migration. Interestingly, GABAA receptor activation is only triggering termination 

of migration in interneurons upregulating KCC2, which only occurs once migrating 

interneurons reach the cortical plate.  

Given these results, we propose that interneuron migration begins with low 

expression of KCC2.  At this point ambient GABA is depolarizing and facilitates migration by 

increasing the amount of time the interneurons spend moving i.e. by decreasing their stalling 

frequency.  Assuming interneurons are the primary source of GABA to the cortex this 

mechanism may facilitate the migration of densely packed interneurons within the marginal 

and lower intermediate zones.  After reaching the cortex KCC2 is upregulated, making 

GABA hyperpolarizing.   

GABA has been previously proposed to modulate interneuron migration, although 

the direction of modulation often varies depending on experimental approach (reviewed in 

Owens and Kriegstein, 2002).  The opening of ionotropic GABAA receptors enhances both 

chemotaxis and chemokinesis in cortical dissociations although GABAA receptor activation 

largely hinders migration of GAD+ cells in the cortical plate (Behar et al., 1996; Behar et al., 

1998).  In spite of GABA’s possible hampering effect on migration, other studies have 

revealed a positive effect of GABAA receptor activation on radial (Manent et al., 2005) and 

tangential migration (Cuzon et al., 2006). An interesting study done by Cuzon and 

colleagues showed that GABA facilitated the migration of interneurons to the cortex without 

affecting their speed (2006).  We believe our results build upon these findings by showing 

that, although GABA does not affect moving speed, it does affect the travel time of migrating 

interneurons.  By studying this phenomenon with respect to individual interneuron 
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responsiveness to GABA application and KCC2 expression, we believe we have found a 

basis for variable responses to GABAA activation in interneuron migration. 

Although KCC2’s contribution in setting the reversal potential of GABA has been 

firmly established, little is known as to why this shift takes place.  A recent article by 

Cancedda and colleagues shows that GABAergic excitation is necessary to attain control 

levels of dendritic arborization (Cancedda et al., 2007).  Down-regulation of KCC2 

accompanies long-term potentiation (Wang et al., 2006) and may be a fundamental part of 

this process.  As the removal of the subplate decreases KCC2 expression and prevents the 

formation of ocular dominance columns (Kanold et al., 2003; Kanold and Shatz, 2006), the 

regulation of KCC2 may also play a prominent role in the development of the critical period.   

The details of when and where the chloride gradient reversal renders GABA 

inhibitory have only recently been explored. Far from being a global homogeneous up-

regulation of KCC2, large differences have been found between brain regions during 

development (Belenky et al., 2008; Belmonte et al., 2004; Gilbert et al., 2007).  The chloride 

gradient has even been found to vary greatly between adjacent neurons within the same 

structure (Gilbert et al., 2007).  Our results add further complexity to this regulation in 

showing a heterogeneous up-regulation within tangentially migrating cortical interneurons.   

Although our results were significant, in no experiment performed did all interneurons 

within a category respond uniformly. There are many factors that could affect the 

responsiveness of a cell to KCC2 expression.  KCC2 activity can be modulated by 

localization, oligomerization and phosphorylation (Adragna et al., 2004; Blaesse et al., 2006; 

Lee et al., 2007; Wake et al., 2007).   

Knowing what factors regulate KCC2 expression in cortical interneurons would 

greatly aid in completing a model for the termination interneuron migration.  Several 

experimental manipulations such as the induction of long-term potentiation, magnesium 

removal, neuronal stress, seizure kindling and sub-plate ablation, have been shown to 
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decrease KCC2 expression (Galanopoulou, 2007; Kanold and Shatz, 2006; Rivera et al., 

2004; Wake et al., 2007; Wang et al., 2006).  Many experiments have been conducted - with 

sometimes conflicting results - on the role of BDNF (Miletic and Miletic, 2007; Rivera et al., 

2002; Rivera et al., 2004) and GABA (Ganguly et al., 2001; Kriegstein and Owens, 2001; 

Leitch et al., 2005; Ludwig et al., 2003; Titz et al., 2003; Toyoda et al., 2003) in regulating 

KCC2 expression, which may indicate a multiplicity of KCC2 regulatory pathways that vary 

greatly between cell types and subtle differences in experimental conditions.  

Our data suggest that a possible mechanism underlying KCC2 function in stopping 

interneuron migration is the modulation of the frequency intracellular calcium transients.  

There are many ways to activate calcium signaling through voltage-dependent calcium 

channel activation within migrating interneurons.  Migrating cortical interneurons have been 

shown to respond to application of AMPA, NMDA, Kainate and GABAA receptor agonists 

(Manent et al., 2006; Metin et al., 2000; Soriano et al., 1992). Modulators downstream of 

calcium may be another source of diversity in the responses observed.  Differential turning 

response of axon growth cones to calcium elevations is dependent on a CaMKII/Calcineurin 

switch (Wen et al., 2004). It would be of interest to test if such a switch in the expression of 

Calcium effectors might underlie its effects on interneuron migration. 

Calcium has often been tied to the process of cellular migration. The GABA-induced 

changes in neuronal chemotaxis mentioned previously were shown to be calcium-

dependent (Behar et al., 1996).  Extension of axonal growth cones - which closely resemble 

the leading processes of migrating interneurons - move at a rate inversely proportional to 

their calcium signal frequency.  Altering the calcium signal frequency of these axons was 

sufficient to induce the corresponding change in axon extension rate (Gomez et al., 1995; 

Gomez and Spitzer, 1999; Kater and Mills, 1991).  Conversely, the rate of migration of 

cerebellar granule cells is directly proportional to the rate of movement.  In this case, a loss 

of calcium transients was correlated with and sufficient to induce termination of cerebellar 
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granule cell migration (Komuro and Kumada, 2005; Komuro and Rakic, 1996; Kumada and 

Komuro, 2004).  

The long-term consequences of altering the window of migration for interneurons 

could be quite drastic for cortical circuit assembly.  Improper distribution of interneurons may 

result in cell death in areas where local densities of interneurons are too high (Fuerst et al., 

2008) and epileptic activity where too low (Cobos et al., 2005; Li et al., 2008). As the 

inhibitory network appears integral in the setting of the critical period (Hensch, 2005) 

extending or retracting the establishment of this network could either force a critical period 

before the surrounding architecture is ready or delay its onset.  Not surprisingly, several 

pathologies have been associated with alterations in interneuron number such as ASD and 

schizophrenia. Future experiments will determine the extent to which perturbation in 

GABA/GABAA receptor/KCC2/Calcium signaling in migrating interneurons is affecting the 

assembly and the function of cortical circuitry. 

Experimental Procedures 

Animals  

Lhx6-EGFP BAC transgenic were kindly provided by Dr Mary-Beth Hatten and Nat 

Heintz (Rockefeller Univ. GENSAT Consortium) were bred on a Balb/C background and 

maintained in a 12/12 hours light:dark cycle. Day following overnight breeding is considered 

as E0.5. 

Tissue preparation and sectioning 

To prepare avertin 40x stock solution, 1g of 2,2,2-tribromoethanol (99%) (840-2; 

Sigma-Aldrich, St. Louis MO) was dissolved with 1mL of Tert-amyl alcohol (99%) (246-3; 

Sigma-Aldrich, St. Louis MO) in a glass container and stored at 4oC protected from light for 

no more than 6 months before use.  Working solution was made adding 40x stock solution 
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to 37o C PBS dropwise.  Intraperitioneal injections were made of 250-300uL per 10 grams of 

mouse body weight.  After the pups failed to respond to a toe prick the mice were perfused 

with 4% PFA in PBS made from 16% Paraformaldehyde solution (Cat. # 15710, Electron 

Microscopy Sciences, Hatfield PA).  Brains were then dissected and fixed overnight in PFA 

before rinsing 3x 30 minutes with PBS, shaking at room temp, sectioning to 80 µm with a 

vibratome (VT1000S; Leica; Wetzlar, Germany) and immunostained. 

Immunostaining for slices and dissociations. 

Made blocking solution (1 g BSA (A7906, Sigma-Aldrich, St. Louis MO)/10 mL PBS; 

0.3% Triton X-100 (X-100, Sigma-Aldrich, St. Louis MO) and stored at 4oC).  After rinsing in 

PBS 3x15 min to remove 4% PFA, incubated overnight in blocking solution at 4oC on 

shaker.  Incubated overnight in blocking solution with 1:1000 primary (Chicken polyclonal 

anti-EGFP (A10262; Invitrogen - Molecular Probes, Eugene OR); Rabbit polyclonal anti-

KCC2 (07-432; Upstate, Temecula CA) against residues 932-1043 of rat KCC2; Mouse 

monoclonal anti-Map2 (Clone HM-2; Sigma-Aldrich, St. Louis MO) at 4oC on shaker.  

Washed 7x15 min in PBS.  Washed 1x15 minutes blocking solution with 5% goat serum.  

Incubated overnight in blocking solution, 5% goat serum with 1:1000 secondary antibody 

(488 goat polyclonal anti-chicken, A11039; 546 goat polyclonal anti-rabbit, A11035; 647 

goat polyclonal anti-rabbit, A21245; 647 goat polyclonal anti-mouse, A21236; Invitrogen - 

Molecular Probes, Eugene OR) at 4oC on shaker.  Washed 5x15min in PBS and mounted 

with GelMount (Biomeda Corp, Foster City CA).   

Pharmacology 

After control time-lapse session, 20µM GABA, made from 20mM stock in ddH2O (A-

5835; Sigma-Aldrich, St. Louis MO) was added to cultures before time-lapsing for second 

session. 10µM Bicuculline Methoiodide (BMI) was added from 10mM stock in ddH2O (2503; 
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Tocris, Ellisville, MO).  25µM BAPTA-AM made from 10mM stock in DMSO (B1205; 

Invitrogen - Molecular Probes, Eugene OR) was added to media underneath slice insert and 

allowed to load for 2 hours before imaging session.  

Calcium imaging/quantification 

A stock solution of calcium indicator was made by adding 10uL DMSO (D2650; 

Sigma-Aldrich, St. Louis MO) to 50µg of Oregon Green 488 BAPTA-1, AM (OGB-1; O6807; 

Invitrogen - Molecular Probes, Eugene OR). After vortexing for 1 min 5x2µL aliquots were 

frozen at –80oC.  Warm 9.12µL Pluronic F-127 in 20% DMSO (P3000MP; Invitrogen - 

Molecular Probes, Eugene OR) was then added to one aliquot of stock solution.  After 

vortexing for 1 min, a 5µM working solution was made by adding 5µL of pluronic - stock 

solution to 715µL HBSS and vortexing for another minute.   

Interneurons electroporated with pCIG4-Tomato (gift from Dr. Tom Maynard, 

University of North Carolina - Chapel Hill) or pCIG4-Tomato-IRES-hKCC2 were loaded with 

working solution at 4 div by removing media from dissociation (saving it at 37oC) and 

washing 3x in 37oC HBSS.  Working solution was applied to the dish and incubated for 

30min at room temperature, while protected from light.  Cells were then washed once with 

HBSS, once with 37oC serum free media, and then the old conditioned media was added 

back to the dish.    

Imaging sessions were done by sequentially scanning the red (plasmid) and green 

(OGB-1) channels with an open pinhole to allow faster scanning (once every 4 seconds).  

Data was extracted from these movies by designing a macro for ImageJ (NIH, Bethesda 

MD), which divides the green by the red channel to correct for changes in cell thickness as 

the interneuron migrates.  The macro also masks out all data not corresponding to the cell 

bodies of interneurons as they migrate.  The average intensity values of these cell bodies 
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were measured and used to calculate a Fluorescence/Fluorescence at t=0 (F/F0) for every 

frame.   

The spectral analysis was done using the protocol and SpectralAnalysis tool 

designed for MatLab (The Mathworks, Natick MA) by Per Uhlen (Uhlen, 2004).  Using this 

tool, a Hanning filter was applied to the data to remove edge effects at the beginning and 

end of the movie.  Then a Fourier transformation was done using 2x109 bins to separate the 

F/F0 data from its time component and view the relative power spectral density for each 

frequency in every cell. 

Construction of multi-welled dishes 

Sylgard 184 silicone elastomer, base & curing agent (Dow Corning Corporation, Midland MI) 

was to used to attach cut rings of 10mL Stripette (4101; Corning Incorporated, Corning  NY) 

to FluoroDish (FD-35-100, World Precision Instruments, Inc., Sarasota FL).  Two days of 

cure time were allowed before use of these multi-welled chambers. 

Constructs 

• pCIG4-tomato - gift from Dr. Tom Maynard (University of North Carolina - Chapel 

Hill) 

• pCIG4-hKCC2-IRES-tomato  

• pMES-KCC2 hKCC2-IRES-EGFP gift from David Mount (Harvard Insitute of 

Medicine, Harvard University) and Dr. Karl Kandler (University of Pittsburgh) 

• pMES control – gift from Dr. Catherine E. Krull (University of Missouri – Columbia 

MO) 

• shKCC2 – Short hairpin RNAi targeting vector was designed using Ambion’s Insert 

Design Tool (http://www.ambion.com/) against sequence spanning amino acids 

2874-2894 of mouse KCC2 (5’-AGCGTGTGACAATGAGGAGAA-3’).  The shKCC2 



 106 

was cloned into pSilencer 2.0-U6 (Applied Biosystems - Ambion, Austin TX) for 

expression.   

Ex vivo electroporation and organotypic slice culture 

Dorsal electroporations were used to label progenitors of pyramidal cells with before 

dissociations.  Intact decapitated E14.5 wild-type heads were punctured through the skull at 

the junction between the 2 cortical hemispheres and the developing midbrain.  Trough this 

hole a small glass capillary pippette (electrode puller and glass capillary) filled with pCIG4-

Tomato (greater than 1µg/µL endotoxin free plasmid DNA; MEGA EF Kit; Clontech, 

Mountain View CA) and Fast Green FCF (0.5% at 1:20; Sigma-Aldrich, St. Louis MO), could 

inject into the lateral ventricals by positioning the tip between the eyes and 1 mm off midline.  

A Picospritzer III (General Valve) was used for the injection using several 10psi 5ms pulses 

to fill both ventricals.  Following the injection 4x 50V 100ms pulse / 100ms pause currents 

were applied to each hemisphere with an ECM 830 electroporator (BCX) using 

Genepaddles (Model 542, BTX) with the negative electrode paddle positioned underneath 

the head and the positive one parallel to the ventricle.  Brains were then either dissociated 

or sliced as normal. 

Slicing for ex vivo organotypic cortical slice culture 

Brains were removed, with pia intact, from skull into 4oC HBSS complete (HBSSc; 

Polleux et al., 2002).  Twenty-five milliliters of 3% low melting agar in HBSSc was heated by 

microwaving at 30% power until boiling three times while inverting several times between 

each boil.  A 3mm layer of agar was allowed to chill on bottom of tear away dish 

(Cat#18646C; Polysciences; Warrington PA) until solid.  The remaining agar was poured 

into the cast, on ice, and stirred with a digital thermometer until it read 50oC.  It was then 

removed from the ice and placed on the bench top and continually stirred while cooling.  At 

42oC dissected brains were removed from the HBSSc with a spatula (Cat#10090-13; Fine 
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Science Tools; Foster City CA) and blotted with Kimwipes (Cat#34120; Kimberly-Clark 

Professional; Roswell GA) to remove excess media.  Upon addition to the agar brains were 

batted around to remove any excess media.  After remaining brains were added they were 

positioned so that the rostral caudal axis was parallel to the bottom of the dish.  The cast 

was placed on ice until the agar was cold to the touch.  Mounted brains were then cut 

coronally to 300 µm sections and either mounted onto inserts (Cat# 353102; Becton 

Dickinson Labware; Franklin Lakes NJ) for culture or confocal inserts (PICM ORG; Millipore; 

Cork, Ireland) for culture and time-lapse.  Slice media was added under the insert as 

described previously (Polleux et al., 2002). 

MGE slice electroporations  

Before mounting, slices were electroporated directly into the MGE to label migrating 

interneurons.  A 1mm section of agar was cut and placed over the positive electrode.  A 

coronal section containing the MGE was then placed on the agar.  One pulse of DNA 

(greater than 1µg/µL endotoxin free plasmid DNA; MEGA EF Kit; Clontech, Mountain View 

CA) and Fast Green FCF (0.5% at 1:20; Sigma-Aldrich, St. Louis MO) was picospritzed into 

the ventricular zone and sub-ventricular zone of the MGE.  To the negative electrode media 

was applied with a pippette and used to connect the circuit by touching the media to the top 

of the slice.  When only the MGE/striatum is between the paddles a 5x 60V 5ms pulse / 500 

ms pause was applied (Cobos et al., 2007).  Slices could then be cultured as normal. 

Explanting to dissociated cortical cultures 

E14.5 dissociations were conducted as described previously (Polleux et al., 2002).  

Explants from E14.5 EGFP or electroporated MGEs (same as slice electroporation protocol) 

were then cut into 6-8 pieces and explanted to the dish after the dissociation had time settle 

for 30 minutes and had serum free media applied.  Multi-well chambers were plated at a 
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density equal to that of the normal dishes by diluting to 500,000 cell per mL and applying 

300uL of dissociate.  One to three explants were applied to each dish.  

Confocal microscopy 

Confocal microscopy on fixed tissue was done as described previously (Hand et al., 

2005).  Time-lapse microscopy was done as described previously (Hand et al., 2005) with 

an imaging frequency of a picture taken every 10 minutes for migration studies.  These 

movies are played back at a rate of 7 frames per second (sped up 4200x real time).  

Calcium imaging movies were and every 4 seconds for calcium imaging sessions (see 

calcium imaging section for details). 

Quantification of migration dynamics 

Positions of interneuron cell bodies were recorded frame by frame using ImageJ 

(NIH, Bethesda MD).  The movement of these cells over time was extracted using Excel 

custom functions and macros (Microsoft).  Average speed was calculated as the total time of 

movie divided by the total distance traveled.  Moving speed was calculated as the total time 

the cell was moving divided by the total distance traveled.  Percent travel time was 

quantified as the total time spent moving divided by the total time of the movie.  Even after 

applying stack registry (Turboreg and Stackreg; Thévenaz et al., 1998) to align the images 

some vibrations were still present.  After visually comparing distances measures to actual 

movements observed, it was determined that movements less than 1.1 µm were noise.   

Therefore movements below the threshold of 1.1 µm were considered to be not moving for 

all movies.    

 Quantification of KCC2 optical density was measured with ImageJ (NIH).  For data 

matched to time-lapse information, post-hoc KCC2 immunostained interneurons were 

sampled with a consistent sampling radius in the three most intense portions of the cell. 
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These were typically located, though not limited to, the base of the leading process.  The 

average of these three values was used for binning and plotting the corresponding cell’s 

time-lapse information.  For up-regulation info, including confirmation of the short hairpin’s 

knockdown potential, only the most intense sampling radius was used for quantifications. 

Supplemental Data 

 

 
Supplemental Figure 3.1 - Termination of migration has a cell autonomous component 

E14.5 wild-type cortical cells are dissociated, plated and co-cultured with EGFP-expressing MGE 
explants.  Frame corresponding to the start of imaging (t=0) is pseudo-colored in green.  Image 
taken six hours later is pseudo-colored in red.  Yellow cell bodies correspond to interneurons that 
stopped migrating.  Note isochronic cultures of interneurons phenocopy reduced travel time from 
2div(A) to 7 div (B) as observed in situ.  In heterochronic cultures (C), dissociated E14.5 wild-type 
substrate was aged 7-9 days before placing E14.5 EGFP-MGE explants.  
Quantification shows no significant difference in percentage of migrating interneurons (E) or travel 
time (D) on an aged substrate indicating interneurons require a cell autonomous maturation to slow 
and terminate migration.  
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Supplemental Figure 3.2 - Frame by frame responses to GABA addition 

(A-F) Data shown in Figure 2E-F is shown here as frame by frame average values of interneurons 
binned into low and high KCC2 populations.  Dotted yellow line shows addition of 20microM GABA 
(A-D) or 20microM GABA + 10microM BMI (E,F).  Solid black lines indicate pre-drug 25th and 75th  
percentiles.   Dotted black lines indicate pre-drug 10th and 90th percentiles.  Note drops in average 
speed and travel time after GABA addition for high KCC2 expressing interneurons (B,D) but not with 
co-application of GABA and GABAA antagonist BMI (F).  Note also travel time decrease in low 
KCC2-expressing interneurons when GABA is co-applied with BMI. 
 



 111 

 
 

 

 

 

  
Supplemental Figure 3.3 - KCC2 correlated with termination of interneuron migration 

(A) E14.5 EGFP-MGE explants were placed on E14.5 wild-type dissociations and cultured for 7div.  
These interneurons were then time-lapsed for 6 hours (B), fixed and immunostained for KCC2. (C) 
Binning interneurons into moving and non-moving populations reveals significantly higher KCC2 
expression in the non-moving population (p<0.0001).  Note yellow co-labeling of KCC2 with 
interneurons in D matches yellow ‘co-labeling’ in time-lapse representation (B’’), indicating KCC2 
expressing interneurons have terminated migration by 7 div.  
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Supplemental Figure 3.4 - Dorsal electroporation specifically labels pyramidal cells 

(A-C) Lhx6-EGFP pups were electroporated with monomeric red fluorescent protein (mRFP) and 
cultured 3 days showing no co-labeling indicating this is an effective method to specifically label 
pyramidal cells.  (D) Dissociating electroporated wild-type pyramidal cells and applying an EGFP-
MGE explant enables concurrent culturing of labeled interneurons and pyramidal cells.  
 



CHAPTER FOUR 

Discussion 

The role of Ngn2 in the specification of pyramidal neuron migration and 
morphology 

The Polleux Laboratory ran into several limitations in its attempts to understand the 

role of Neurogenin2 (Ngn2) in pyramidal neuron differentiation (Mattar et al., 2004; 

Schuurmans et al., 2004; Seibt et al., 2003).  Ngn2 is a basic helix-loop-helix (bHLH) 

transcription factor whose expression contributes to the specification of their glutamatergic 

identity (Schuurmans et al., 2004).  When trying to assess the effect of Ngn2 on other 

aspects of pyramidal neuron identity, such as migration and morphology, the results were 

highly subjective (FIGURE - graph user counts).  This variability brought into question the 

consistency of our measurements and cast doubt on our objectivity in the quantification of 

neuronal morphology.  It was therefore necessary for me to develop an automated method 

of assessing pyramidal cell morphology.  To do this, I developed a java-based ImageJ 

plugin to count and measure the width of individual neurites automatically.  ImageJ is an 

open source image analysis program designed by the National Institute of Health.  The 

ImageJ plugin used the neurite information to calculate a pyramidal morphology index (PMI) 

to quantitatively reflect neuronal polarity (Fig. 2.8O).  A polarized pyramidal neuron will have 

a very high PMI while a multipolar interneuron will have a low one (Fig. 2.8N).  The 

automated measurement of PMI standardized our counting methods, ensuring the polarity 

measurements were not dependent upon unintentional bias, background lighting or personal 
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preferences.  This plugin helped to quickly and consistently assess the role of Ngn2, and 

specifically the role of tyrosine residue 241 phosphorylation, in determining pyramidal cell 

polarity. 

 The quantification methods developed for the Ngn2 study represented a major step 

towards unbiased analysis of neuronal morphology and neuronal migration. Results 

obtained using the Pyramidal Morphology Index (PMI) were adapted to reflect subjective 

assessment of neuronal morphology by a trained observer.  As a result, this plugin has been 

requested by several labs to analyze morphology in their own investigations.  In improving 

the reliability of our own measurements, this field of investigation was also given a tool to 

help standardize the quantification of neural polarity, allowing better comparisons between 

research labs. 

Similar subjectivity problems were encountered, when analyzing the role of Ngn2 in 

the specification of the radial migration properties of pyramidal neurons.  Experiments in 

which I electroporated radial progenitors with a variety of Ngn2 constructs produced a 

striking effect in migration, but the quantification of thousands of cells in just one slice could 

take days.  Time was not the only consideration.  The same subjectivity problems noted 

above in counting neurite number also came into play.  Lighting, user preferences and 

fatigue drastically influenced whether a given spot was considered a neuron.  To address 

this problem, it was again necessary to program software for image analysis.  Cell positions 

were extracted using ImageJ.  These cell positions could then be quantified in terms of how 

far each neuron had migrated form the ventricular zone after the creation of a Visual Basic 

for Applications (VBA) program designed for that purpose.  This computational analysis 

allowed the counting of thousands of cells in a given slice, enabling the laboratory to provide 

a quantitative comparative analysis of data that is often only shown as a single qualitative 

picture.  Although imaging is extremely beneficial in understanding the nervous system, it 
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can also be limited by the subjectivity of the user.  The use of image analysis software 

greatly helped in bypassing these limitations. 

 The neuronal migration quantification program, designed to quickly and reliably 

calculate cell positions, succeeded as well.  The number of cells counted per condition in 

this investigation was approximately twenty thousand.  In a field where results of this type 

are typically shown with cell counts in the hundreds - or often just a picture without analysis - 

this represents major advancement in accurately reporting results.  Given the intra-slice 

variability within a single condition, it is difficult to believe publications that simply show a 

picture with no quantifications.  

The limitations of interpreting static images also became apparent after close review 

and quantification of these electroporated slices.  We realized it was difficult to make 

inferences about the extent of migration, an extremely dynamic process, using fixed slices.  

If neurons appeared trapped in the intermediate zone, it was impossible to tell if they had 

stopped migrating and further differentiated to a non-motile state or if aberrant migration was 

occurring.  This was an essential question in determining whether Ngn2 was involved in 

migration itself or in controlling other aspects of differentiation such as polarity.  While 

analyzing fixed images of neurons has provided informative snap-shots of cortical 

development, the gaps in information left room for speculation and guessing.   

A look toward time-lapse confocal microscopy 

Static imaging often leave gaps in our interpretation of neural development.  A 

method used to fill in these gaps by many scientists has been the use of time-lapse 

analysis.  This type of analysis has increased exponentially our understanding of the 

mechanisms underlying the development of the central nervous system.  If fact, most of the 

migration information discussed above was either a direct result of, or stemmed from 

knowledge gained, through time-lapse confocal microscopy of cortical slices.   
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Steven Noctor, Arnold Kreigstein and colleagues have contributed much to our 

understanding of radial migration by extensive use of time-lapse microscopy.  They labeled 

radial progenitors by injecting low titers of a EGFP-expressing retrovirus into the lateral 

ventricle of rat embryos.  Individual fluorescently-labeled radial progenitors and their 

progeny could now be directly observed using time-lapse.  After countless hours of 

observation, they were able to connect the transitions made during different phases of radial 

migration.  They observed radially migrating neurons enter the multipolar phase of the SVZ.  

From there they watched these abventricular divisions result in either two progenitors or two 

post-mitotic neurons (Noctor et al., 2004).  They also watched these neurons migrate back 

to the same clonally related radial glia fiber and proceed to the cortical plate (Noctor et al., 

2001).  Without directly observing the same cell undergo these dynamic transitions the gaps 

between these phases of radial migration might still be unknown. 

The migratory patterns of other neuronal sub-populations have also been elucidated 

using time-lapse microscopy.  Hitoshi Kommuro, Pasko Rakic and colleagues have made 

huge strides in determining the role of calcium transients in the termination of cerebellar 

granule cell migration using this method.  Calcium transients were not only correlated with 

slowed and terminated migration, but were also necessary for continuation of migration as 

chelating intracellular calcium with BAPTA-AM caused a premature termination of migration 

(Komuro and Kumada, 2005; Komuro and Rakic, 1996; Kumada and Komuro, 2004).  Tim 

Gomez and colleagues found the inverse relationship between axon growth cone extension 

and calcium transients.  In this system decreased calcium frequency was correlated with 

increased growth cone extension.  Inhibiting calcium signaling in this situation caused an 

increase of growth (Gomez et al., 1995; Gomez and Spitzer, 1999).  The assessment of 

speed and movement in these other dynamic systems would not have been possible without 

directly observing the dynamics of these events. 
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The success of time-lapse in resolving so many different aspects of neural 

development made it an appealing method for our analysis of radial migration with respect 

to Ngn2.  By implementing time-lapse confocal microscopy of electroporated slices, I was 

able to directly observe the behavior of radially migrating pyramidal cells expressing both 

control and mutant forms of Ngn2.  Time-lapse analysis of radial migration properties of 

control and Ngn2Y241F expressing neurons provided critical information in the understanding 

of Ngn2 function.  Where PMI analysis of dendritic neuronal morphology showed that 

phosphorylation of tyrosine residue 241 was involved in either repressing the outgrowth of 

multiple neurites or enhancing the formation of a single apical dendrite (Hand and Bortone 

et al. Neuron 2005), the migration assays were difficult to interpret as fixed images.  The 

electroporation of Ngn2Y241F in cortical progenitors in slice culture did show a deficit in 

reaching the cortical plate.  This could have been the result of either a premature 

differentiation of dendrites, or a transition to an ineffective mechanism of migration.  The 

time-lapse results revealed the latter: (1) the processes of Ngn2 Y241F expressing neurons 

were highly motile leading to the absence of a polarized leading process extension and (2) 

the soma was incapable of translocating properly. The formation of multiple processes may 

have disrupted interactions between the migrating neuron and the radial glial scaffold, which 

would disrupt it migration (Anton et al., 1996). and prevented its migration to the cortical 

plate.   

It would be interesting to determine if the initiation of multipolar migration is a positive 

or negative effect: Does phosphorylation at tyrosine residue 241 of Ngn2 promote pyramidal 

morphology and migration or does it repress multipolar morphology and migration?  

Expressing a transcriptionally inactive yet phosphorylatable Ngn2 AQ mutant in cortical 

interneurons could answer this question.  The AQ mutation would ensure the observed 

effects were not due to transcriptional functions of Ngn2.   
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 This study revealed several instances of pleiotropy.  Ngn2, a transcription factor 

known for its transcriptional role in neural differentiation, also played a transcriptionally 

independent role in specifying polarity.  Furthermore, the same residue that specified 

unipolar morphology in dendrite formation also specified unipolar morphology in migration.  

The role of GABA in terminating interneuron migration 

Having seen the power of combining computational analysis with time-lapse in our 

study of Ngn2, I applied these approaches to study the dynamics of tangential migration.  As 

mentioned previously, there is a glaring void in the literature with respect to when tangential 

migration of interneurons ends during cortical development.  The lack of a known substrate 

for interneurons makes it particularly difficult to predict when and where these cells stop 

migrating using conventional static imaging methods. The termination of interneuron 

migration was thus characterized using time-lapse analysis of Lhx6-EGFP BAC transgenic 

mice obtained from the GENSAT consortium.  Quite unexpectedly, the characterization of 

this phenomenon led directly to another great question in interneuron migration: What is the 

effect of GABAA receptor activation on migrating interneurons? 

Previous research on this topic yielded contradictory results: GABAA receptor 

activation has been reported to inhibit the migration of interneurons (Behar et al., 1996; 

Behar et al., 1998), while having a positive effect on interneuron migration to the cortex 

(Cuzon et al., 2006).  The cause of these contradictory results were largely due to indirect 

observations of migration, improperly identifying cell types and ignoring interneuron 

heterogeneity with respect to KCC2 expression.  By making a detailed analysis on the effect 

of GABA application on individual interneurons I was able to resolve the effect of GABAA 

receptor activation, KCC2 expression and the termination of interneuron migration.   

Early attempts to answer this question by Behar and colleagues using Boyden micro-

chemotaxis chambers, found that GABA can stimulate the migration of interneurons at 
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micromolar concentrations.  Because the movement of these cells was not dependent on a 

gradient of GABA, the migration was deemed chemokinetic – stimulating movement as 

opposed to a chemotactic, directional response.  GABAB and GABAC receptor agonists 

blocked this chemokinetic response, but not GABAA receptor agonists (Behar et al., 1996).  

This group produced another publication where the cortical plate was separated from the 

ventricular zones before being dissociated.  They found dissociated cultures of dorsal 

telencephalic neurons were particularly rich in GABAergic neurons.  These GABAergic 

neurons responded similarly to their previous investigation (Behar et al., 1996).  They 

reported GABAA receptor activation only caused a chemotactic response in non-GABAergic 

cells of the VZ (Behar et al., 1996; Behar et al., 1998).  This research is often cited as 

evidence that GABA increases the motility of cortical interneurons through the activation of 

GABAB and GABAC receptors. 

Although these experiments represent an important step towards showing an effect 

of GABA during early neocortical development, there are several difficulties in their 

interpretation.  The main concern is that they did not observe migration dynamics in vivo but 

rather depend on the use of a rather artificial Boyden chamber in vitro system.  Another 

problem with not imaging migration directly is that GABA is known to increase cell size 

(Inglefield and Schwartz-Bloom, 1998; Marty et al., 1996).   Since the wells of the 

microchemotaxis chambers used were 8microns in diameter, it is possible that the 

measured effect was not dependent upon migration, but of being able to pass through the 

pores.  The choice of substrate further confounds the interpretation of these results.  A 

coating of poly-D-lysine was used.  In our experience, cortical interneurons are extremely 

sensitive to their extracellular substrate and in our hands do not migrate on poly-D-lysine 

only (Bortone and Polleux unpublished observations).  This is why we used a dissociated 

‘carpet’ of cortical neurons or extracellular matrix (ECM) protein mixture like collagen or 

Matrigel (Wichterle et al., 1997; Bortone and Polleux unpublished results). The result of the 
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Behar study did much to implicate a role for GABA in the cortex, but without the direct 

observation of migration using time-lapse and the positive identification of cortical 

interneurons, it is difficult to tell exactly what that role might be. 

A more recent study performed by Virginia Cuzon and colleagues both labeled 

interneurons and directly observed their migration using time-lapse microscopy (2006).  

Interneurons were identified by using explants of MGE from a mouse constitutively 

expressing enhanced green fluorescent protein (EGFP).  EGFP-expressing interneurons 

could then migrate out from this explant and be readily identifiable on the wild-type cortical 

background.  In slices of cortex they found that inhibiting GABAA receptors hindered the 

migration of interneurons from the striatum into the cortex.  They measured the speed of 

these migrating interneurons and did not notice a significant change between controls, 

GABAA agonist and GABAA antagonist treated populations.  They suggested that somehow 

the entry of these interneurons into the cortex was prohibited at the corticostriatal boundary 

(2006).   

Again, there were several limitations that may hinder the resolution of the role of 

GABAA receptor activation in cortical interneurons.  Chapter 3 of this dissertation research 

has shown that interneurons expressing high levels of KCC2 respond to GABAA receptor 

activation by stopping more often.  This effect would not have been detected in the study by 

Cuzon and colleagues for several reasons:  (1) In the Cuzon study (2006) time-lapse 

experiments were only conducted for up to 3 hours.  For interneurons that migrate in a 

saltatory start-stop manner, this is not a very long time to get a baseline measurement of 

speed. We made twelve-hour observations to reduce the noise inherent to saltatory 

locomotion.  (2) Many cells were excluded from their quantification.  Only moving 

interneurons that were heading in a particular direction were counted.  Since the effect of 

GABAA receptor activation on migrating interneurons is to change the proportion of cells that 

move, and not how fast they move, this method would not be able to detect the results found 
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in our study.  By specifically looking at the proportion of time the interneurons travel and the 

percentage of interneurons moving, we could clearly detect the effect of GABA in 

terminating interneuron migration.  (3) Interneuron data was not segregated based on KCC2 

expression. Upon GABA application, heterogeneity of KCC2 expression within the 

interneuron population results in high KCC2 expressing interneurons pausing more often 

while low KCC2 expressing interneurons are unaffected.  Including these groups together 

dilutes the effect.  To resolve the effect of GABAA receptor activation on interneuron 

migration, we tracked the individual responses of interneurons to GABA and segregated the 

effect based on KCC2 expression.  This detailed analysis enabled the role of GABA in the 

termination of interneuron migration to be observed for the first time.   

GABA signaling during neuronal development 

Decarboxylation of glutamate by GAD65/67 enzyme is not the only way to synthesize 

GABA in vivo.  GABA-transaminase (GABA-T) can catalyze GABA from α-ketoglutarate and 

is present in the mammalian brain (Tillakaratne et al., 1995).  GABA can also be 

synthesized through putrescine (Tillakaratne et al., 1995).  GAD67 knockouts showed less 

immunostaining for GABA (Asada et al., 1997), although homeostatic mechanisms may 

enhance cellular responsiveness to GABA that is present, perhaps by up-regulating GABAA 

receptors.  Additionally, GABA is not the only known agonist to GABAA receptors.  Taurine 

can activate these receptors as well (Hussy et al., 1997).  Interestingly, allopregnanolone is 

a positive allosteric modulator of GABAA.  This neurosteroid is present in large 

concentrations before parturition.  Immediately prior to birth allopregnanolone levels drop 

drastically, affecting signaling through GABAA receptors (Herbison, 2001).  Another birth 

related hormone is oxytocin. Its release transiently suppresses GABAergic inhibition by 

reducing intracellular chloride concentrations (Tyzio et al., 2006), prior to inducing birth.  
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Perhaps these hormones serve to reduce GABAergic excitation and up-regulate KCC2 to 

terminate the migration of some interneurons prior to birth.   

Alterations in the window of tangential migration would also be expected in KCC2 

knockout or knockdown mice.  Without KCC2, GABA would remain depolarizing which might 

result in increased stimulation of voltage dependent calcium channels (VDCC) and prolong 

interneuron migration thereby delaying inhibitory synaptogenesis.  Interestingly, a ‘reduction’ 

of parvalbumin positive interneurons was observed in the cortex of homozygous 

hypomorphic KCC2 mice by P10-11.  Parvalbumin is not expressed in immature migrating 

interneurons; it is up regulated after the first postnatal week of cortical development in vivo 

(Soriano et al., 1992).   The authors attributed a lack of parvalbumin positive interneurons to 

death induced by excessive seizure activity (Woo et al., 2002).  An alternative explanation 

for a lack of parvalbumin positive interneurons in the KCC2 hypomorphic mice is that their 

terminal differentiation (including expression of Parvalbumin) might simply be delayed due to 

a prolonged migratory behavior.  Also potentially in line with our observations, rat pups 

treated prenatally with nimodipine (an L-type Ca2+ channel antagonist) showed precocious 

expression of parvalbumin and S-100ß (Buwalda et al., 1994).  Our results would suggest 

that the antagonism of intracellular calcium transients would cause cortical interneurons to 

terminate migration and begin expressing more mature markers of interneurons 

prematurely.  

Finally, alterations in the termination of interneuron migration might also affect the 

time-course of synaptogenesis. If premature KCC2 expression causes a premature 

termination of interneuron migration then one might expect GABAergic synapses to form 

prematurely.  In rat hippocampal cultures, precocious expression of KCC2 causes an 

enhancement in GABAergic synapses (Chudotvorova et al., 2005).  Perhaps this 

enhancement was caused by an early termination of interneuron migration in these cultures. 

This could be tested in our system to see if the expression of KCC2 interneurons results in 
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an enhancement of GABAergic synaptogenesis.  Other processes may be affected by KCC2 

regulation as well. 

Long-term potentiation and depression of migration 

 Long-term potentiation (LTP) of synapse strength has been correlated with a 

decrease in KCC2 expression (Wang et al., 2006).  LTP is a well know phenomenon, 

whereby a period of high frequency presynaptic stimulation increases the size of the 

resulting excitatory post-synaptic potential (EPSC).  Although synapses do not exist on 

tangentially migrating interneurons (Metin et al., 2000), the activation of GABAA receptors on 

low KCC2 expressing interneurons may provide a stimulatory mechanism, which results in a 

long-term potentiation of movement.  It would be interesting to see if a brief GABAA receptor 

stimulation could potentiate movement of interneurons. The KCC2 variability observed in 

interneurons may therefore be a reflection of the interneuron excitatory history as it 

progressed along its migratory route.  Similarly, one might expect a long-term depression 

(LTD) of movement in high KCC2 expressing interneurons.  To find the mechanisms of LTP 

and LTD at work in migration - a non-synaptic context - would be an extremely interesting 

finding.   

Role of other neurotransmitters 

 GABA may not be the only neurotransmitter involved in the process of interneuron 

migration.  Interneuron migration may ultimately be affected by calcium signaling.   Calcium 

transients have been stimulated in tangentially migrating interneurons with AMPA, NMDA 

and Kainate receptor agonists (Metin et al., 2000; Poluch et al., 2003; Soria and 

Valdeolmillos, 2002), implying glutamate may modulate interneuron migration as well.  Metin 

and colleagues further observed vesicle containing corticofugal growth cones and neurites 

in close proximity with interneurons (Metin et al., 2000).  This raises the possibility that 
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glutamate-mediated calcium transients may also affect the migration or the termination of 

migration in interneurons.  Contrary to this suggestion, activating AMPA receptors causes a 

retraction of the leading process in migrating interneurons.  This retraction is interpreted as 

a reduction in migratory capacity (Poluch et al., 2003).   However, interneurons often 

migrate much faster with smaller neurites (Bortone and Polleux unpublished observations).  

Given the positive correlation between GABA-induced calcium signaling and interneuron 

migration observed in Chapter 3 of this dissertation, it is possible calcium transients induced 

by glutamate also serve to stimulate migration and prevent the termination of migration. 

Differentiation 

 This process of KCC2 regulation may also affect the differentiation of interneurons.  

The work of Spitzer and colleagues has shown a correlation between the calcium influx and 

neurotransmitter choice of Xenopus embryonic spinal neurons.  Increased calcium influx 

resulted in more neurons expressing the inhibitory neurotransmitters, glycine and GABA.  

Decreased calcium influx led to more neurons expressing markers of excitatory 

neurotransmitters, vesicular glutamate transporter and choline acetyltransferase 

(Borodinsky et al., 2004; Spitzer et al., 2004).  Although it is unlikely the calcium history of 

mammalian cortical interneurons is changing their inhibitory nature, other aspects of their 

differentiation may be affected.  A similar phenomenon may be at work in zebrafish, where 

precocious expression of KCC2 results in fewer Dbx1 expressing interneurons (Reynolds et 

al., 2008). 

Tiling 

GABA may act through an autocrine signaling mechanism to modify the spacing or 

tiling of interneurons within the cortex.  Interneurons possess both GABAA receptors and the 

ability to stimulate them by the release of GABA while migrating (Cuzon et al., 2006; Poluch 
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and Konig, 2002). In my initial 

studies at the Polleux Lab, I 

observed some interesting 

calcium transients when the 

leading processes of interneurons 

touched one another.  This 

contact was followed by an 

immediate retraction of the 

processes and a turn in the 

opposite direction (see figure).  

The study of this phenomenon 

was discontinued because it did 

not happen consistently.  Perhaps 

the consistency was relative to 

KCC2 expression.  If KCC2 

regulates the responsiveness of 

interneurons to one another, 

alterations in its expression may 

dramatically affect the spacing of 

interneurons in the cortex. 

Neuropathologies 

There could be a number of neuropathologies affected by alterations in KCC2 

expression.  The function of interneurons is often suspected as a contributor to many 

diseases such as epilepsy and spectrum disorders like autism spectrum disorder, 

schizophrenia and Tourette-syndrome (Levitt et al., 2004; Polleux and Lauder, 2004), 

Figure 4.1 - Interneuron display contact mediated 
repulsion with concomitant calcium fluctuations 
Time-lapse sequence of interneuron processes (green) and 
corresponding Calcium Orange-AM signal (pseudo colored) 
are shown.  Time in minutes is shown on each frame. 
Process on left is contacted by process on right at time = 
20 minutes.  Note the corresponding calcium signal in the 
calcium channel.  Both processes respond by retracting.  
The interneuron on the left (not shown) translocated away 
in the opposite direction of the contacted neurite. 
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although the hard evidence for this model is critically lacking.  One of the most interesting 

correlations in that regard is the increased risk for epilepsy in ASD (Canitano, 2007).   

Alterations of BDNF levels or its receptor, TrkB, have been found in autism, epilepsy 

and schizophrenia patients (Angelucci et al., 2005; Connolly et al., 2006; Hashimoto et al., 

2006; Nelson et al., 2001; Tsai, 2006).  Interestingly, BDNF expression is often inversely 

correlated with KCC2 expression.  Deletion of the subplate during development causes an 

increase in BDNF and a decrease of KCC2 expression in the cortex (Kanold and Shatz, 

2006).  Application of BDNF to slices also causes a decrease in KCC2 expression (Rivera et 

al., 2002), which is mediated through TrkB activation of both Shc/FRS-2 and PLC-gamma 

pathways (Rivera et al., 2004).  If the increases in BDNF expression seen in many 

neuropathologies result in decreased KCC2 expression during the migration of interneurons, 

one might expect the termination of migration to be affected.  All of these conditions have 

noted deficits in interneuron function (Benes and Berretta, 2001; de Lanerolle et al., 1989; 

Levitt et al., 2004; Polleux and Lauder, 2004; Rubenstein and Merzenich, 2003).  Perhaps 

alterations in the termination of interneuron migration can prevent interneurons from arriving 

at the appropriate locations. Very different pathologies can result from very similar causes.  

Multiple sclerosis and rheumatory arthritis arise from different manifestations of an 

autoimmune disorder and is genetically inherited (Toussirot et al., 2006).  As mentioned 

previously, epilepsy and autism are also comorbid (Canitano, 2007).  Perhaps these 

pathologies manifest from defects in terminating interneuron migration, resulting in altered 

density and spacing.  

Even subtle delays in the timing of interneuron development could have dire 

consequences.  GABAergic activity is essential in setting the critical period in the visual 

system.  If this critical period is delayed deficits arise in cortical plasticity and visual acuity 

(Hensch, 2005).   Perhaps altered critical periods, due to defects in termination of 
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interneuron migration, could result in a loss of the plasticity required to establish the 

appropriate connections and synaptic strengths. 

In mouse models Rett-syndrome (MECP2 knockout) and Fragile-X (Fmr1 knockout), 

two syndromes including (but not limited too) autistic features, a delay in the expression of 

parvalbumin positive interneurons has been reported (Fukuda et al., 2005; Selby et al., 

2007).  It would be interesting to know if these mouse models also show alterations in the 

timing of terminating interneuron migration.  Likewise it would be interesting to know if 

human individuals with these neuropathologies have a similar delay of parvalbumin 

expression and a delayed termination of interneuron migration.  Since inhibiting calcium 

signaling in these interneurons was sufficient to stop interneuron migration, perhaps the use 

of nimodipine (an L-type calcium channel blocker already in used for the treatment of high 

blood pressure) could be used to stop interneuron migration as a therapeutic target in ASD 

mouse models.  As mentioned previously, this same drug caused the early expression of 

parvalbumin in mice (Buwalda et al., 1994), and could rescue a defect in delayed 

termination of interneuron migration.   

 Finally, if KCC2 can aid in the termination of migration, then cells that are migrating 

when they should not, as in tumor metastasis, may have a defect in KCC2 expression.   

GABA affects some forms of cancer metastasis (Ortega, 2003).  It would be interesting to 

see if altering KCC2 expression has an effect on the migration of neuroblastomas.  Such 

evidence would provide a new pharmacological target in the treatment of cancer. 

Final thoughts 

In conclusion, there have been many theories as to why GABA undergoes this 

reversal from excitation to inhibitory.  Ion gradients are metabolically costly to build and to 

maintain.  This expense may be more than a young neuron can afford.  Alternatively, the 

fine regulation of local KCC2 expression could be a way to enable both excitatory and 
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inhibitory inputs in a primitive one-neurotransmitter organism.  Nevertheless this detail of 

ontogeny has provided a foothold for natural selection to regulate the termination of 

interneuron migration in the neocortex. 
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