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ABSTRACT 

 
DEREK S. LUNDBERG: Root-associated bacterial communities as an extended 

phenotype of the plant  
(Under the direction of Jeff Dangl) 

 

Land plants associate with a root microbiota distinct from the complex microbial 

community present in surrounding soil. The microbiota colonizing the rhizosphere 

(immediately surrounding the root) and the endophytic compartment (within the root) 

contribute to plant growth, productivity, carbon sequestration and phytoremediation. In my 

research I primarily wanted to test the hypothesis that plants that evolved to live in 

environments with different challenges also evolved the ability to associate with a unique 

microbiota as one means of overcoming these challenges. Despite great agronomic interest, 

genetic principles governing the derivation of host-specific endophyte communities from soil 

communities are poorly-understood.  

I first used extensive sequencing of ribosomal 16S rRNA genes to characterize 

bacterial populations from hundreds of roots of different genotypes of the model plant 

Arabidopsis thaliana grown in two wild (non-native) soils from North Carolina. These results 

demonstrated that soil type is the major determinant of the membership of the bacterial 

community in the rhizosphere and the community living inside roots, and that the 

developmental stage of the plant as well and the plant genotype actually have relatively 

minor effects on the colonization behavior of major bacterial taxonomies.  

 Because in wild microbial communities bacteria with different genomic content may 

share a similar 16S rRNA gene, and because of limitations in the 16S rRNA sequencing 

technology, we were limited to statements about bacterial families, and could not say with 
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confidence to which Arabidopsis genotypes individual strains of bacteria associated. This 

was a major limitation, because the presence or absence of specific bacterial genes may be 

a strong determinant of potential host genotypes for a given symbiont. Therefore, I 

developed technological improvements to increase the accuracy and depth of sequencing, 

while meanwhile culturing individual strains of bacteria from roots and creating a gnotobiotic 

system for growing plants in direct association with mixtures of cultured strains. Initial results 

from this system demonstrate that we can culture a wide diversity of root-associated 

bacteria and can successfully recolonize plants with complex but defined cocktails of 

bacteria. Experiments to explore microbe-by genotype association in this gnotobiotic system 

are underway.  
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PREFACE 

 

The part of the material in Chapter 1 that follows the heading “Developing 

systems to study plant microbiota” is part of a review that was commissioned by, and 

submitted to, the journal Trends in Cell Biology. It was ultimately rejected, largely 

because the field was already saturated with reviews. The review was written after 

the publication of the work in Chapters 2 and 3, and therefore discusses that work in 

its current context. For the submitted review, I share authorship with Sarah L. 

Lebeis, Sur Herrera Paredes, and Jeff Dangl. I contributed to and edited all sections 

but wrote only the final review section entitled “The search for novel host factors 

shaping the plant microbiome“, which involves recent conclusions and therefore is 

truncated in Chapter 1 and continued in Chapter 4.  

Chapter 2 was published in Nature. I share co-first authorship with Sarah L. 

Lebeis, Sur Herrera Paredes, and  Scott Yourstone. My intellectual contributions 

were helping design the experiments for the paper, the majority of new protocol 

development and execution, custom scripting in R for analysis of the data tables 

resulting from categorization and quantification of the raw sequences (including the 

organization of count data by bacterial taxonomy and some statistical analysis). I 

designed and produced graphics for all figures and tables except for figures 2.2, 2.3, 

2.13, 2.14, and 2.16. I contributed little to design and implementation of the General 

Linear Mixed Model (Sur), CARD-FISH (Sarah), and processing of raw sequences 
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into clean count tables (Scott). I thank Alice Smithlund, Maciej Gonek, Victoria 

Madden, H. Schmidt, Matthias Rott and N. Zvenigorodsky for technical assistance, 

Amyé Spor, Jason Peiffer and John F Rawls for discussions, and Cathy Herring for 

access to Clayton field soil.  

Chapter 3 was published in Nature Methods. I share co-first authorship with 

Scott Yourstone. My intellectual contributions included assistance with template 

tagging and PCR primer design, all wet-bench protocol design and execution of 

protocols, Peptide Nucleic Acid design and statistical validation, all bioinformatics 

downstream of MTToolbox processing, creating all figures with the exception of 

some parts of Figure 3.6, and writing the manuscript. Scott Yourstone designed and 

wrote MTToolbox, the efficient and user-friendly informatics pipeline. However, for 

some analysis such as that in Figure 3.8, I reproduced key aspects of this pipeline 

using my own inefficient code to make “consensus sequences” and “perfect 

consensus sequences”, so I am familiar with most computational aspects of this 

work as well.  

For experiments mentioned in Chapter 4, I especially thank Surojit Biswas, 

Sur Herrera Paredes, Meredith McDonald, Natalie Breakfield, Meghan Feltcher, and 

Jeff Dangl. For the bacterial culture collection I thank Maciej Gonek, Alice Smithlund, 

Max Rose, and Meredith McDonald.  
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CHAPTER 1 

INTRODUCTION 

INTRODUCTION  

The plant microbiome (its collection of associated microbes) is an example of 

Richard Dawkins’ ‘extended phenotype’ (Dawkins 1989). Plant genotype, both within and 

between species, has been correlated with differences in the associated microbiome, with 

consequent associations to plant growth, development, and performance. The productivity 

of any plant community relies in part on the respective plant-associated microbiomes, which 

are distinct from the microbiomes in surrounding soil. The microbiota is most simply viewed 

as an extension of each plant’s genome; we do not know any plant genome’s full functional 

capacity until we also know the functional capacity and assemblage drivers on its associated 

microbiome. 

Essentially all land plants grow in intimate association with a complex microbiota. 

Microbes in both the phyllosphere and the rhizosphere can be either endophytic, epiphytic, 

or closely associated. Examples of close microbial associates include those inhabiting the 

fluid in pitcher plants, or those not touching roots but heavily influenced by root exudates in 

the nearby soil. The host plant often relies on its root-associated metagenome to provide it 

with critical nutrients (Bais et al. 2006), as minerals are often present in the soil in forms 

inaccessible to plants. In other cases plant-associated microbes, such as Pseudomonads 

(Mavrodi et al. 2006; Vacheron et al. 2013), can act as protectants against phytopathogens. 

Other microbes have been shown to improve growth through production of phytohormones 
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and to help plants withstand heat, salt, drought, and more (Bais et al. 2006; Rodriguez and 

Redman 2008). Growth-promoting mutualistic bacteria associate with the phyllosphere as 

well (Vorholt 2012; Whipps et al. 2008). The plant, in turn, cultivates its microbiome through 

means such as adjusting the pH, reducing competition for beneficial microbes, and providing 

an energy source, mostly in the form of carbon-rich exudates. Decaying dead roots are an 

important contributor of carbon to the soil, and between 5-33% of all atmospheric carbon 

fixed (depending on plant species and climate conditions) exits on living roots as exudates 

(DeDeyn et al. 2008). Thus, the global plant-associated rhizosphere microbiome is a very 

large carbon sequestration niche.  

Studies have begun in a variety of systems to address the microbiome of various 

crops such as maize (Chelius and Triplett 2001), rice (Erkel et al. 2006; Oliveira et al. 2009), 

and other plants (Whipps et al. 2008). Understanding the causes of these differences could 

be transformational in plant breeding and biotechnology, because there is the potential to 

uncover a whole new suite of genes capable of improving plant yields in adverse conditions 

through exploitation and manipulation of the innate (and/or adjusted) probiotic capacity of 

soils and the natural environment. Additionally, rhizosphere microorganisms play a key role 

in long-term sequestration of the carbon secreted by plant roots (DeDeyn et al. 2008), 

meaning that understanding what plant gene products attract particular microbial 

communities could help uncover a genetic component to climate change (Ryan et al. 2009). 

 Microbial community influences plant health. The best-known strategy of plants to 

improve the uptake of phosphate, nitrogen and other minerals is to form symbioses with 

arbuscular mycorrhizal (AM) fungi of the phylum Glomeromycota (Schuessler et al. 2001) 

AM fungi associate intimately with host roots, growing inter- and intracellularly within the root 

cortex. Intraradical colonization enables fungal access to carbohydrates required for the 
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formation of extensive extraradical mycelia, which can lead to a 100-fold increase of the 

nutrient absorbing surface of the root, thus allowing the plant to efficiently utilize minerals 

and to exploit nutrient resources not available without symbiosis. AM symbiosis dates 

back >400 million years (Remy et al. 1994) and coincided with plant colonization of land 

(Heckman et al. 2001; Redecker et al. 2000), and most plant lineages associate with AM 

fungi. Arabidopsis, like the majority of Brassicaceae, and like several other plant lineages, 

has lost the association with AM fungi (Smith and Read 2010). Nevertheless, Brassicas like 

Arabidopsis do manage to extract phosphorous from the soil using root hairs (Bates and 

Lynch 2000) and perhaps associated microbes. Arabidopsis provides a valuable opportunity 

to focus on a plant’s interaction with other important rhizosphere microorganisms in the 

absence of the influence of AM fungi. Additionally, Arabidopsis is the reference system for 

plant genetics, genomics, and molecular biology (Initiative 2000; Weigel 2012) .   

The identification of plant genes associated with specific microbial community traits 

will lead to the search for homologs or functional equivalents in mammalian species. 

Multicellular eukaryotes evolved in a microbial world, hence the evolutionary conservation of 

host-microbe interactions can be very ancient. Indeed, host responses to microbial 

colonization are evolutionarily conserved between mammals and fish (Rawls et al. 2006). It 

is conceivable that host responses to microbial colonization, and even host modulation of 

surface microbial communities, are driven by processes or genes that are shared among 

members of different plant phlya. Once identified, host genes important in shaping microbial 

communities will constitute targets for intervention. Restructuring microbial communities is 

likely to be desirable in agriculture for promoting plant health in particular soil and climate 

conditions.  
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Developing systems to study plant microbiota 

In the simplest scenarios, microbes from surrounding environments (i.e. soil, water, 

and air) colonize plants via a random process involving first come-first serve niche filling 

together with inter-microbe competition to establish idiosyncratic communities on or inside 

organs of each host. This scenario, though, is an unlikely mechanism for microbiota 

colonization of the roots, especially given recent studies of poplar (Gottel et al. 2011), 

Arabidopsis thaliana grown in multiple natural soils from two continents (Bulgarelli et al. 

2012; Lundberg et al. 2012) and maize from five diverse North American fields (Peiffer et al. 

2013). In these studies, whether plants are grown outdoors or in greenhouses or growth 

chambers, specific bacterial taxa are reproducibly enriched inside the root as compared with 

surrounding soils. Several generalities emerged from these studies: soils, as expected were 

the most diverse environment, while the intimate zone of host-microbe contact inside the 

root (putative endophytes) were significantly less diverse; the largest contributor to root 

microbiome composition was the physical proximity to the plant; the second largest 

contributor was the wild soil from which the community was recruited.   

Recently, similar studies were carried out on above ground organs, the phyllosphere, 

where reproducible colonization of a subset of bacterial taxa from the surrounding aerial 

environment was shown in A. thaliana leaves (Maignien et al. 2014). However, the 

importance of stochastic processes and early colonization events was shown to be a major 

force shaping mature microbial communities in these leaves (Maignien et al. 2014) and also 

in apple flowers sampled over developmental time (Shade et al. 2013). Despite large 

genetic differences across hosts, organs sampled, surrounding environments and 

experimental methods, consistent taxonomies are recurrently found in the rhizosphere 

(Bodenhausen et al. 2013; Bulgarelli et al. 2012; Gottel et al. 2011; Lundberg et al. 2012; 
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Peiffer et al. 2013; Schlaeppi et al. 2013) or phyllosphere (Delmotte et al. 2009; Maignien et 

al. 2014; Rastogi et al. 2012) organs. Collectively, these results suggest that a core 

microbiota is recruited from very diverse surroundings; environment-specific enrichments of 

certain taxa suggest fine-tuning both on leaves and roots by the host, in combination with 

environmental biotic and abiotic factors (Bulgarelli et al. 2013; Vorholt 2012). 

 

Ecological processes shaping host-associated microbial communities 

Seed dispersal is an important ecological process in plants and some plant-

associated microbes are known to be inherited via seeds. For instance, there is long-

standing evidence for seed-based inheritance of rhizobia in legume seeds (Ash 1949), and 

recent studies suggest the existence of surprising microbial diversity in the seeds of maize 

(Johnston-Monje and Raizada 2011) and spinach (Lopez-Velasco et al. 2013). Bacterial 

seed coating can protect against pathogens (Hameeda et al. 2010; Wright 2005) and 

promote plant growth (Jetiyanon et al. 2008). Seeds can also harbor bacterial (Gitaitis and 

Walcott 2007), fungal (Biswas et al. 2013; Maruthachalam et al. 2013) and oomycete 

(Testen et al. 2013) pathogens. Thus, understanding dispersion dynamics will ultimately 

lead to better disease control strategies. Readily dispersed microbes might have a 

competitive advantage over microbes that colonize after germination. These cases might 

lead to “historically contingent” microbial communities where the early colonizers determine 

the final community, mediated by microbe-microbe interactions, or by plant mechanisms 

reinforcing the primacy of early colonizers. An alternative, but not exclusive, model proposes 

that successions of microbial communities emerge over developmental time during the host 

plant life cycle. Consistent with this hypothesis, different bacterial taxa preferentially colonize 

the apple flower at different developmental stages (Shade et al. 2013). However, in the fast 
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growing annual A. thaliana, little difference in root bacterial community was noted at two 

very different developmental stages, before and well after the metabolic switch in carbon 

allocation (Lundberg et al. 2012), and poplar trees of different ages showed similar 

communities (Gottel et al. 2011). To fully elucidate how the order of microbial colonization 

affects the plant microbiome, it would be necessary to carry out studies with time series and 

crossover designs; this type of design has already been used to establish the existence of 

such “order effects” in the context of colonization of the mammalian gut (Lee et al. 2013). 

Little is known about how greater differences in developmental time, or how annual versus 

perennial life histories influence the assembly and long term stability of plant microbiota. 

While increased dispersal from sources like soil, seed, or decaying leaf litter is 

expected to increase diversity within individual plants, drift would counteract this effect and 

perhaps add further heterogeneity because species represented by very low number of 

individuals will have a high probability of undergoing local extinction due to stochastic 

fluctuation. In the context of the endophytic compartment of the A. thaliana root and leaf, 

drift might be particularly important given the relatively low estimates of a total of 105 

endophytic bacterial cells per root system (Lundberg et al. 2012), and 104 cells/cm2 on the 

leaf of the same species (Maignien et al. 2014) (though it should be noted that neither of 

these estimates were from wild-grown plants). Given that hundreds of ribotypes were 

detected on both organs, these results imply only tens to hundreds of individuals per 

ribotype. From an ecological perspective, the health of a community can be viewed as its 

ability to withstand and recover from perturbations, and low bacterial diversity in the 

mammalian gut has been associated with susceptibility to perturbation (Virgin and Todd 

2011) and disease (Turnbaugh et al. 2009). It is possible that diversity plays a similar role in 

maintaining a healthy plant microbiome, but systematically controlling and varying diversity 
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in microcosm reconstitution experiments is required to fully distinguish between cause and 

effect. 

Another process influencing microbiome composition is selection, by both abiotic (e.g. 

drought, salinity, nutrient availability, etc.) and biotic (e.g. influence by the host or other 

microbes) environmental components, which can occur due to any of these factors acting 

directly on microbial species in the community, or be mediated by the plant host as it reads 

and responds to its abiotic and/or biotic environment (Eisenhauer et al. 2013). It should be 

noted that selection might act either at some microbial taxonomic level, at the gene level, or 

both. For example legumes recruit nitrogen-fixing rhizobia to their roots only under nitrogen 

deprivation conditions (Coronado et al. 1995), and remarkable host-genotypic specificity has 

been found (Laguerre et al. 2003). Further, drought stress on the plant leads to an 

enrichment of bacteria that produce 1-Aminocyclopropane-1-carboxylate (ACC) deaminase 

(Marasco et al. 2012), which is known to reduce ethylene concentrations under stress 

conditions; lowering ethylene levels helps plants recover from different abiotic stresses (Cao 

et al. 2007). Despite this evidence, 16S rRNA gene-based experiments on samples from 

plants grown in natural soils have provided little insight on the effect of abiotic factors on 

community assembly, mainly because it has been impossible to disentangle the effect of 

abiotic and biotic factors in these studies. Both microbe-microbe and plant-microbe 

interactions might affect the ability of a specific microbe to colonize the host under different 

environments. An association between herbivore behavior and root microbiome has been 

suggested (Badri et al. 2013), and differences were found in bacterial networks constructed 

from rhizosphere microbiomes of different plant hosts and across variable plant host 

diversity (Bakker et al. 2013); however, it remains an open challenge to tie these 

observations to microbiome function.    
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Contributions of immune system surveillance receptors in sculpting microbiomes 

The repertoire of innate immune receptors that recognize and respond to microbe-

associated molecular patterns (MAMPs) allows for accurate sensing of changing microbial 

environments. Although pattern recognition receptors (PRRs) have evolved separately in 

plants and animals (Ausubel 2005; Ronald and Beutler 2010), the development of 

analogous microbial perception systems at least twice points to their importance in the 

lifecycle of both plants and animals. In addition, a large and divergent family of ‘disease 

resistance proteins’ gives plants the ability to specifically recognize pathogen virulence 

factors that overcome resistance and allow microbial colonization. The majority of plant 

disease resistance proteins are NB-LRR proteins (nucleotide-binding site, leucine rich 

repeats), which act as the primary intracellular receptors of the plant immune system 

(Chisholm et al. 2006; Jones and Dangl 2006). Because host-associated microbial 

communities are formed from the microbes present in the host’s environment, it is natural to 

hypothesize that these resistance gene systems are particularly important in the broader 

process of community assembly.  

 

The search for novel host factors shaping the plant microbiome  

Much is known about plant-genotype specificity governing disease resistance or 

susceptibility to pathogens that threaten economically important crops; forward genetics to 

exploit host genotypic diversity is well advanced for dissection of these binary interactions 

(Dangl et al. 2013; Gururani et al. 2012). However, the influence of plant genotype on the 

establishment of mutualistic interactions with populations of microorganisms is less 

understood, probably because beneficial phenotypes are not as carefully monitored as 
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pathogenic phenotypes in agricultural settings. Notable exceptions, of course, are important 

mutualists like arbuscular mycorrhizal fungi, which have broad host ranges and provide 

nearly all agronomically relevant plants with phosphate in exchange for fixed carbon 

(Bonfante and Genre 2010) and the deeply studied, typically host-specific nitrogen-fixing 

rhizobia (Kondorosi et al. 2013). The extent of host specificity, if any, for individual members 

or functional guilds derived from the larger plant microbiota is now an area of active 

research. The hope is to uncover host loci affecting both general and specialized microbial 

colonization by either widespread or soil-specific mutualists, respectively, as well as the 

microbial genetic loci enabling them to communicate effectively with the host. The potential 

agronomic and economical value of such genetic knowledge is huge, as it might enable 

breeders to tailor plants to take advantage of particular types of microbial environments, or 

to take advantage of artificially-supplied beneficial microbial treatments as probiotics. 

To test and identify the contribution of plant genotype to the composition of a specific 

microbiome, several groups grew different inbred plant genotypes in wild soils, under either 

field conditions or in controlled environmental conditions, and then defined the microbial 

community assembled on each host genotype by deep ribotyping (Bulgarelli et al. 2012; 

Bulgarelli et al. 2013; Lundberg et al. 2012; Peiffer et al. 2013; Schlaeppi et al. 2013; Turner 

et al. 2013). These studies revealed low variation in microbiota attributable to plant-

genotype, which may nonetheless be amenable to genetic dissection (Bulgarelli et al. 2012; 

Lundberg et al. 2012; Peiffer et al. 2013). In cases where constructing experiments is not 

possible, attempts have been made to separate covariates such as geographical location, 

as for grape vineyards (Bokulich et al. 2013) and willow trees (Bell et al. 2013). As the 

phylogenetic distance between the host genotypes compared decreases, especially when 

comparing genotypes within a single plant species, it becomes theoretically possible to treat 

elements of the microbial community (such as presence/absence or the abundance of one 
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or more members) as a phenotype, and to map these phenotypes to plant host loci, as has 

been attempted in other systems (Bell et al. 2013; Benson et al. 2010; Srinivas et al. 2013).  

It may ultimately be the case that, as with mycorrhizal fungi, many of the beneficial 

members of the plant microbiome are generalists with the ability to colonize a wide range of 

plant hosts (Moora et al. 2011). This is supported by the observation that the major enriched 

bacterial taxa are the same across different species closely related to Arabidopsis thaliana 

(~25M years of divergence) (Schlaeppi et al. 2013), and by the relatively subtle variation 

observed so far between the microbiota of different plant genotypes within a species. It 

could be that, for a plant, depending on microbial genes found only in a smaller set of 

specific microbes might represent too great a survival risk, since these microbes might not 

always be present. On the timescale of plant evolution there is a great deal of microbial 

turnover, so the majority of plant recruitment mechanisms may need to work over relatively 

wide groups of bacterial taxa, in order to associate with relatively common beneficial 

microbial functions. As noted several times above, however, this is definitely not always the 

case, as tight host specificity for some microbial associations is well documented. Whether 

the apparent rarity of plant host specificity in microbiota assembly is truly as uncommon as it 

appears to be based on 16S rRNA studies, or whether we are still merely blind to important 

differences in the microbiota of genetically distinct plant hosts simply because 16S rRNA 

studies lack the necessarily resolution, remains to be seen.  
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CHAPTER 2 

 

Defining the core Arabidopsis thaliana root microbiome1  

 

INTRODUCTION 

Land plants associate with a root microbiota distinct from the complex microbial 

community present in surrounding soil. The microbiota colonizing the rhizosphere 

(immediately surrounding the root) and the endophytic compartment (within the root) 

contribute to plant growth, productivity, carbon sequestration and phytoremediation (DeDeyn 

et al. 2008; Rodriguez and Redman 2008; Van der Lelie et al. 2009). Colonization of the root 

occurs despite a sophisticated plant immune system (Dodds and Rathjen 2011; Jones and 

Dangl 2006), suggesting finely tuned discrimination of mutualists and commensals from 

pathogens. Genetic principles governing the derivation of host-specific endophyte 

communities from soil communities are poorly understood. Here we report the 

pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis 

thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment 

microbiota of plants grown under controlled conditions in natural soils are sufficiently 

dependent on the host to remain consistent across different soil types and developmental 

stages, and sufficiently dependent on host genotype to vary between inbred 

____________________ 

1Lundberg DS*, Lebeis SL*, Paredes SH*, Yourstone S*, Gehring J et al. (2012) Defining 
the core Arabidopsis thaliana root microbiome. Nature 488(7409): 86-90. 

* = contributed equally 
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Arabidopsis accessions. We describe different bacterial communities in two geochemically 

distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots 

grown in these soils. The communities in each compartment are strongly influenced by soil 

type. Endophytic compartments from both soils feature overlapping, low-complexity 

communities that are markedly enriched in Actinobacteria and specific families from other 

phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different 

developmental stage and genotype. Our rigorous definition of an endophytic compartment 

microbiome should facilitate controlled dissection of plant–microbe interactions derived from 

complex soil communities.   

 

MAIN  

Roots influence the rhizosphere by altering soil pH, soil structure, oxygen availability, 

antimicrobial concentration, and quorum-sensing mimicry, and by providing an energy 

source of dead root material and carbon-rich exudates (Dennis et al. 2010; Marschner et al. 

1986). The microbiota inhabiting this niche can both benefit and undermine plant health; 

shifting this balance is of agronomic interest. Mutualistic microbes may provide the plant with 

physiologically accessible nutrients and phytohormones that improve plant growth, may 

suppress phytopathogens or may help plants withstand heat, salt and drought (Firáková et 

al. 2007; Mendes et al. 2011). The rhizosphere community is a subset of soil microbes that 

are subsequently filtered via niche utilization attributes and interactions with the host to 

inhabit the endophytic compartment (EC)(Schulz et al. 2006). Although a variety of microbes 

may enter and become transient endophytes, those consistently found inside roots are 

candidate symbionts or stealthy pathogens (Hallmann et al. 1997; Schulz et al. 2006). 

Notably, Arabidopsis and other Brassicaceae are not well colonized by arbuscular 
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mycorrhizal fungi, implying that other microorganisms may fill this niche. 

Microbial community structure differs across plant species (Hardoim et al. 2008; 

Redford et al. 2010), and there are reports of host-genotype-dependent differences in 

patterns of microbial associations (Inceoglu et al. 2011; Inceoglu et al. 2010). However, the 

divergent methods used in those studies relied on small sample sizes and low-resolution 

phylotyping techniques potentially confounded by off-target sequences and chimaeric 

amplicons. We developed a robust experimental system to sample repeatedly the root 

microbiome using high-throughput sequencing. Our results confirm many of the general 

conclusions from earlier studies and, because of controlled experimental design and the 

power of deep sequencing, provide a key step towards the definition of this microbiome’s 

functional capacity and the host genes that potentially contribute to microbial association 

phenotypes. Such plant genes would constitute major agronomic targets. 

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene 

amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were 

grown from surface-sterile seeds in climate-controlled conditions in two diverse soils, 

respectively termed Mason Farm and Clayton (Table 2.1; detailed in Methods). For each soil, 

we assayed multiple individuals from each A. thaliana accession grown from sterile seeds in 

both soils across independent full-factorial biological replicates, in which all genotypes and 

bulk soils (pots without a plant) for a given soil type were grown in parallel (Table 2.2). We 

isolated separate rhizosphere and EC fractions from individual plant root systems (Fig. 2.1 

and Table 2.2). We established 1114F and 1392R as our primer pair (Methods and Fig. 2.2). 

Using an otupipe-based pipeline (http://drive5.com/otupipe/), we grouped sequences into 

97%-identical operational taxonomic units (OTUs), reduced noise and removed chimaeras. 

We determined technical reproducibility thresholds to conclude that OTUs defined by >25 

reads in >5 samples (hereafter 25 × 5) are individually ‘measurable OTUs’ (Benson et al. 
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2010; Gottel et al. 2011) (Figs 2.2 and 2.4). All data reported here are from one run of our 

otupipe-based pipeline (Fig. 2.3). 

Excluding additional control samples, we ribotyped 1,248 samples comprising 111 

bulk soil, 613 rhizosphere and 524 EC samples, generating 9,787,070 high-quality reads 

(Figs 2.3 and 2.4a–c). After removing plant-sequence-derived OTUs, we obtained a table of 

usable OTU read counts per sample containing 6,387,407 reads distributed across 18,783 

OTUs. We normalized this table of usable reads by rarefying to 1,000 reads per sample or, 

alternatively, by dividing the reads per OTU in a sample by the sum of usable reads in that 

sample, resulting in a table of relative abundances (frequencies). Using the 25 × 5 threshold, 

we defined 778 measurable OTUs representing 54% (3,463,632) of the usable reads (Fig. 

2.4c). The diversity of the 778 measurable OTUs in soil, rhizosphere and EC fractions 

showed expected relative trends when compared with the diversity by fraction of all usable 

OTUs (Fig. 2.4d).  

We used principal coordinate analysis on pairwise, normalized, weighted UniFrac 

distances between all samples, considering all usable OTUs, to identify the main factors 

driving community composition (Fig. 2.5a and 2.6a). The first principal coordinate (PCo1) 

revealed that the two bulk soils and their associated rhizospheres were differentiated from 

the respective EC fractions. Soil type was the main factor in the second component (PCo2). 

This pattern was recapitulated by hierarchical clustering of pairwise Bray–Curtis 

dissimilarities considering only measurable OTUs (Fig. 2.5b and 2.6b). Samples harvested 

at different developmental stages clustered together, indicating that this variable does not 

have a major effect on overall community composition (Fig. 2.5 and 2.6a, b; yng versus old, 

where yng refers to the time of appearance of an inflorescence meristem and old refers to 

fruiting plants with greater than 50% senescent leaves). Additional control samples from the 

reference genotype Col-0 harvested from four independent digs of Mason Farm soil 
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underscored the reproducibility of these bacterial community profiles (Fig. 2.7). Together, 

these data demonstrate that the interaction of diverse soil communities with plants 

determines the assembly of the rhizosphere, leading to winnowed ECs, that the ECs from at 

least these two diverse soils are very different from the starting soil communities and that 

there is little difference in communities over host developmental time. We fitted a general 

linear mixed model (GLMM) to samples from each set of plant fractions (rhizosphere or EC), 

plus the bulk soil controls, to identify measurable OTUs whose abundances differ 

significantly between plant and bulk soil as a result of soil type, developmental stage, 

fraction and genotype (Methods). This approach allowed us to quantify the contribution from 

each variable to the community composition (Table 2.3). Controlling for sequencing plate 

effects, plant fraction is the most important factor; its effect is strongest for the EC, 

consistent with our UniFrac and Bray–Curtis analyses. Soil type is less important, followed 

by experiment, developmental stage and, finally, genotype, which had a small but consistent 

effect. 

Hierarchical clustering of sample groups considering 256 OTUs identified by the 

GLMM to differentiate rhizosphere and EC from soil recapitulated the separation of EC from 

soil and rhizosphere (Fig. 2.8A and Fig. 2.9A, left; compare with Fig. 2.5 and 2.6). Of these, 

164 OTUs were enriched in EC samples (Fig. 2.8B, a; dark and light red bars), defining an A. 

thaliana ‘EC microbiome’. Of these 164, 97 were enriched in EC samples from both soil 

types (Fig. 2.8B, a; dark red bars), potentially representing a core EC microbiome. By 

contrast, 67 of these 164 were enriched in EC to a greater extent in one soil than the other 

(Fig. 2.8B, a; light red bars; Fig. 2.8B, b)). Importantly, 32 OTUs were depleted in EC 

samples (Fig. 2.8B, a; blue bars). Some OTUs exhibited rhizosphere enrichment; these 

significantly overlapped the EC-enriched OTUs (P < 10−16, one-sided hypergeometric test) 

and also sometimes had a soil-type component (Fig. 2.8B, c and d). Only a few rhizosphere-
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specific enrichments were not also enriched in the EC. Hence, the A. thaliana EC 

microbiome is enriched for both a shared set of OTUs commonly assembled across two 

replicates from two diverse soils, and a set of OTUs that are assembled from each soil. We 

assessed taxonomic distributions, first those of the 778 measurable OTUs in soil, 

rhizosphere and EC fractions, and then those of the 256 EC-enriched and 32 EC-depleted 

OTUs (Fig. 2.8A, 2.9A). Measurable OTUs were distributed across seven dominant phyla 

(Fig. 2.8c and Fig. 2.9c) and contained ~50–70% of the usable reads in all fractions (Fig. 

2.4c). Phyla distribution of the EC-enriched OTUs reflected that of the entire EC. Conversely, 

the phyla distribution of the EC-depleted OTUs typically resembled that of the rhizosphere 

fraction (Fig. 2.8C). The lower Shannon diversity of the EC fraction is consistent with 

enrichment for a subset of dominant phyla. Specifically, the EC microbiome was dominated 

by Actinobacteria, Proteobacteria and Firmicutes, and was depleted of Acidobacteria, 

Gemmatimonadetes and Verrucomicrobia, when soil types were considered either together 

or separately (Fig. 2.8C, Fig. 2.9C and Fig 2.19). Lower-order taxonomic analysis (Fig. 2.8D 

and Fig. 2.9D) demonstrated that enrichment of a low-diversity Actinobacteria community in 

the EC was driven by a subset of families, predominantly Streptomycetaceae. 

Other phyla, such as Proteobacteria, were represented by both EC enrichments and 

EC depletions at the family level (Fig. 2.8E and Fig. 2.9E). Strikingly, two 

alphaproteobacterial families, Rhizobiaceae and Methylobacteriaceae, and two 

gammaproteobacterial families, Pseudomonadaceae and Moraxellaceae, dominated the EC 

population in their respective classes (Fig. 2.8F, α and γ, and Fig. 2.9F, α and γ). Equally 

striking was the EC redistribution of particular alpha- and gammaproteobacterial families that 

were common in soil and rhizosphere (Fig. 2.8F and 2.9F). 

Specific OTUs, three from the family Streptomycetaceae and one from the order 

Sphingobacteriales, demonstrate the robustness of EC enrichments (Fig. 2.10a–d and Fig. 
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2.11a–d). A few OTUs were either significantly enriched in rhizosphere but not in the EC 

(Fig. 2.10e, f, and Fig. 2.11e, f), or were associated with one of the two developmental 

stages (Fig. 2.10g, h, and Fig. 2.11g, h). Data in Figs. 2.8, 2.9, 2.10, and 2.11 demonstrate 

that entire taxa at various levels are enriched in or depleted from the EC microbiome. 

Additionally, rhizosphere taxa capable of colonizing the root vicinity are nonetheless 

prevented from colonizing the EC. Several OTUs differentiated inbred A. thaliana 

accessions. Genotype-dependent enrichments and depletions were significant but weak. To 

identify accession-dependent effects specific to a soil type or a developmental stage, we 

fitted a partial GLMM that modelled each genotype against bulk soil for each experiment or 

developmental stage group, and tested the model’s predictions with a non-parametric 

Kruskal–Wallis test corrected for multiple testing (Methods). We considered only those 

significant accession-dependent effects that were present in the same direction in both 

biological replicates. We further required that these OTUs have a consistent prediction in the 

full GLMM, which narrowed the field to 12 OTUs (or 27 with frequency-normalized data). In 

Fig. 2.10, we display relative abundances of two such OTUs, one for each soil type, both 

Actinobacteria (Fig. 2.10i, j and Fig. 2.11i, j). That these enrichments were detected by the 

full GLMM (which accounts for plate effects due to 454 sequencing), and were sequenced 

over several plates (Fig. 2.13) supports a true genotype effect. Thus, a small subset of the 

EC microbiome is likely to be quantitatively influenced by host-genotype-dependent fine-

tuning in specific soil environments. This could allow compensatory contributions of the EC 

microbiome and host genome variation to overall metagenome function. 

Because the rhizoplane is stripped during preparation of EC fractions, we confirmed 

the presence of live bacteria on roots using catalysed reporter deposition and fluorescence 

in situ hybridization (CARD–FISH) to whole Col-0 root segments (Eickhorst and Tippkötter 

2008). Eubacteria were common on unsonicated roots (Fig. 2.13a). Actinobacteria detected 
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with probe HGC69a were visible on the surface of roots grown in Mason Farm soil, and co-

localized with a subset of the eubacterial signals using double CARD–FISH (Fig. 2.13b), 

suggesting that their enrichment in EC fractions either comes from, or egresses through, the 

rhizoplane. Similarly, we confirmed the rare presence on the rhizoplane of 

Bradyrhizobiaceae (Fig. 2.14c), a family with members defined by the GLMM as more 

abundant in Mason Farm rhizosphere than Mason Farm EC (Fig. 2.10f and Fig. 2.11f). We 

enumerated the relative number of CARD–FISH signals on a set of filters made from equal 

amounts of material harvested in the same way as were the samples processed for pyrotag 

sequencing (Fig. 2.14a, b). We confirmed that Actinobacteria were found in higher 

abundance, and that Bradyrhizobiaceae were present in lower abundances, in EC samples 

than in the bulk soil and rhizosphere samples. We also noted that emerging lateral roots 

were typically heavily colonized by a variety of bacteria (Fig. 2.14d) consistent with previous 

observations (Chi et al. 2005). These results are PCR-independent support for our 

sequencing methods.  

We present a reduced-complexity, robust experimental platform with which to study 

root microbiota. Our data, and similar conclusions presented in a companion publication 

(Bulgarelli et al. 2012) using a similar platform, provide the deepest analysis available 

regarding the principles of root microbiome assembly for any plant species. Remarkably, our 

conclusions are very similar to those in Bulgarelli et al. and we identify phyla and family level 

enrichments in the EC fraction that largely overlap with those reported in Bulgarelli et al. We 

note three main differences between our study and that of Bulgarelli et al.: different soils 

from a different continent, a different primer pair and a different portion of root harvested 

(top 3 cm in Bulgarelli et al.; whole root here). 

A subset of the soil bacterial population is typically enriched in rhizosphere samples 

(Dennis et al. 2010). Thus, a diverse bacterial community can surround the root surface and 



27 
 

thrive there, recruited by biophysical and/or host-derived metabolic cues. We demonstrate 

that the A. thaliana microbiome undergoes dramatic loss of diversity as the spatial level of 

plant–microbe ‘intimacy’ further increases from the external rhizosphere to the intercellular 

EC. Both common and soil-type-specific OTUs are established inside roots grown in diverse 

soils. A small number of bacterial taxa, particularly the Actinobacteria family 

Streptomycetaceae, and several Proteobacteria families, are highly enriched in the EC. 

Actinobacteria are well known for production of antimicrobial secondary metabolites 

(Firáková et al. 2007), and many proteobacterial families contain plant-growth-promoting 

members. Conversely, several taxa (Acidobacteria, Verrucomicrobia and 

Gemmatimonadetes, and various proteobacterial families) that are common in soil and 

rhizosphere are depleted from the EC. This depletion suggests that these taxa are either 

actively excluded by the host immune system, outcompeted by more-successful EC 

colonizers or metabolically unable to colonize the EC niche. Our identification of a limited-

diversity EC facilitates detailed characterization of the isolates comprising the core A. 

thaliana microbiome, which could facilitate the design of community-based plant probiotics. 

Within the EC, we identified rare cases of quantitative variation in the enrichment of 

specific bacteria at two developmental stages or by different host genotypes, consistent with 

rare genotype-dependent associations noted in Bulgarelli et al. The former result suggests 

that the EC microbiome is robust to the source–sink differences across these two 

developmental stages, which may be related to the relatively high frequency of putative 

saprophytes defined in Bulgarelli et al. The latter result suggests that host genetic variation 

can drive either differential recruitment of beneficial microbes and/or differential exclusion. A 

limited-diversity EC microbiome with common features suggests similar host needs across A. 

thaliana, potentially extending to other plant taxa. These are probably fulfilled by 

contributions from a limited number of bacterial taxa across diverse soils. The identification 
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of genotype-specific endophyte associations in particular soils may signal interactions that 

meet environment-specific host needs, balancing contributions of EC microbiome and host 

genome variation to overall metagenome function. These two generalities suggest that the A. 

thaliana root microbiome might assemble by core ecological principles similar to those 

shaping the mammalian microbiome, in which core phylum level enterotypes provide broad 

metabolic potential combined with modest levels of host-genotype-dependent associations 

that individualize the metagenome (Arumugam et al. 2011; Spor et al. 2011). Isolation and 

characterization of the microbes that define host-genotype-dependent associations, and 

characterization beyond the 16S gene, should be particularly instructive in unravelling the 

molecular rules contributing to endophytic colonization and persistence. 
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MATERIALS AND METHODS 

General strategy 

Seed sterility was verified by plating and deep-sequencing of homogenates from 

sterile seedlings (Fig. 2.15). We established seedling growth, harvesting and DNA 

preparation pipelines as detailed in the specific sections below. We defined the bacterial 

community within each soil, and the community associated with plant roots across a number 

of controlled experimental variables: soil type, plant sample fraction, plant age and plant 

genotype. For plant age, we harvested roots from two developmental stages: at the 

formation of an inflorescence meristem (yng) and during fruiting when ≥50% of the rosette 

leaves were senescent (old). The former represents plants at the peak of photosynthetic 

conversion to carbon, whereas the latter represents a stage well after the source–sink shift 

has occurred, marking the change in carbon allocation from vegetal to reproductive 

utilization (Masclaux et al. 2000). We prepared two microbial sample fractions from each 

individual plant: a rhizosphere (bacteria contained in the layer of soil covering the outer 

surface of the root system that could be washed from roots in a buffer/detergent solution), 

and EC (bacteria from within the plant root system after sonication-based removal of the 

rhizoplane; Fig. 2.1). We also collected control soil samples (soil treated in parallel, but 

without a plant grown in it). 

 

Soil collection and analysis 

For each full-factorial experiment, the top 8 in of earth were collected with a shovel 

and transported to the lab in closed plastic containers at room temperature from two 

collection sites. The first collection site, Mason Farm, is managed by the North Carolina 

Botanical Garden and is free of pesticide use and heavy human traffic and is located in 

Chapel Hill, North Carolina, USA (+35° 53′ 30.40′′, −79° 1′ 5.37′′). The second collection site 

is the Central Crops Research Station in Clayton, North Carolina, USA (+35° 39′ 59.22′′, 

−78° 29′ 35.69′′) and is also free of pesticide use. Visible weeds, twigs, worms, insects and 

so on were removed with gloves, and the soil was then crushed with an aluminum mallet to 

a fine consistency and sifted through a sterile 2-mm sieve. Because sieved soil from Mason 

Farm drained poorly and test plants grown in it suffered from hypoxia, we adopted the 

practice of mixing sterile (autoclaved) playground sand into both Mason Farm (MF) and 
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Clayton (CL) soils at a soil:sand ratio of 2:1. Soil micronutrient analysis was performed on 

pure and 2:1 mixed soils by the University of Wisconsin soil testing labs. 

 

Seed sterilization and germination 

All seeds were surface-sterilized by a treatment of 1 min in 70% ethanol with 0.1% 

Triton-X100, followed by 12 min in 10% A-1 bleach with 0.1% Triton-X100, followed by three 

washes in sterile distilled water. Seeds were spread on 0.5% agar containing half-strength 

Murashige & Skoog (MS) vitamins and 1% sucrose. Seeds were stratified in the dark at 4 °C 

for one week, then germinated at 24 °C under 18 h of light for one week. Seed coat sterility 

was confirmed by lack of visible contamination on MS plates during germination, and also by 

absence of visible contamination after plating some of the whole seeds on KB, 1/10-strength 

LB and 1/10-strength ‘869’ bacterial growth media. 

To address whether there were seed-borne microbes that might survive surface 

sterilization, one-week-old seedlings were taken from sterile MS plates and homogenized by 

aseptic bead beating under non-bacteriolytic conditions (three 3-mm glass balls per 2-ml 

tube, with 300-μl PBS, using a FastPrep from MP Bio at speed 4.0 m s−1 for 10 s). The 

homogenate was streaked onto 1/10-strength LB, 1/10-strength ‘869’ and KB media. No 

colonies were observed. To detect potential unculturable microbes, we pyrosequenced 16S 

amplicons from the same homogenates using bacteriolytic DNA preps from the genotypes 

Col-0, Cvi-0, Sha-0 and Tsu-0 (Fig. 2.15). Each accession was individually barcoded and 

sequenced with 1114F and 1392R, yielding 21,935, 20,747, 23,141 and 20,272 reads, 

respectively. A matching number of total reads was sampled from each accession using 

pooled data from the full experimental data set for comparative analysis. Thus, 86,095 high-

quality reads were obtained from both non-sterile plants and sterile plants, the majority of 

which were chloroplast sequences. See Fig. 2.15 for results. 

 

Seedling growth 

One-week-old healthy seedlings were aseptically transplanted from MS plates to 

sterile (autoclaved) 2.5-inch-square pots filled with either MF or CL soil, with one seedling 

per pot. Seedlings were transferred by lifting from underneath the cotyledon leaves using 
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open tweezers; no pressure was applied to the hypocotyl. Some pots were designated ‘bulk 

soil’ and were not given a plant. All pots, including bulk soil controls, were always watered 

from the top with a shower of distilled water (non-sterile) as an accessible proxy for rain 

water that avoids chlorine and other tapwater additives. Pots were spatially randomized and 

placed in growth chambers providing short days of 8 h light (800–1,000 lx) at 21 °C and 16 h 

dark at 18 °C. The use of short days was to help synchronize flowering time between A. 

thaliana genotypes and to facilitate robust rosette and root growth. After harvesting the floral 

transition developmental stage, remaining plants and bulk soils were moved from the growth 

chamber to 16-h days in the greenhouse to promote a more synchronized flowering and 

senescence for the senescent developmental stage. 

 

Harvesting 

Each plant was killed and harvested at one of two developmental time points: (1) at 

the floral transition and (2) after fruiting when senescence is well underway. We considered 

the floral transition to have begun when the shoot apical meristem was first apparent in five 

or more plants. Cvi-0, Sha-0 and Ct-1 occasionally flowered one to two weeks earlier under 

our conditions than the other A. thaliana genotypes. The senescence harvest began when 

five or more plants showed 50% or more yellow and/or brown rosette leaves (S. Levey 

2005); this occurred approximately four to five weeks after transfer to the greenhouse. 

Senescence occurred in the same order as bolting (flowering). 

Our maximum harvesting and processing capacity was 30 plants per day, meaning 

that each harvesting period for each full-factorial biological replicate (90 pots) lasted 

between one and two weeks. On each harvest day, we strove to represent all genotypes 

and at least one bulk soil to avoid potential confounding harvesting artefacts with genotype 

effects. Because we harvested as many pots each day as time allowed, we did not always 

harvest in multiples of our genotype number and did not have equal representation of each 

genotype on each harvest day. 

The aboveground plant organs were aseptically removed. Loose soil was manually 

removed from the roots by kneading and shaking with sterile gloves (sprayed with 70% 

EtOH) and by patting roots with a sterile (flamed) metal spatula—this ‘neighboring soil’ fell to 

the sterile (flamed) work surface. We followed the established convention of defining 
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rhizosphere soil as extending up to 1 mm from the root surface (van Elsas et al. 1988) and 

we removed loose soil on all root surfaces until remaining aggregates were within this range. 

Roots were placed in a clean and sterile 50-ml tube containing 25 ml phosphate buffer (per 

litre: 6.33 g of NaH2PO4·H2O, 16.5g of Na2HPO4·7H2O, 200 μl Silwet L-77). Tubes were 

vortexed at maximum speed for 15 s, which released most of the rhizosphere soil from the 

roots and turned the water turbid. The turbid solution was then filtered through a 100-μm 

nylon mesh cell strainer into a new 50-ml tube to remove broken plant parts and large 

sediment. The roots were transferred from the empty tube to a new sterile 50-ml tube with 

25-ml sterile phosphate buffer, and the turbid filtrate was centrifuged for 15 min at 3,200g to 

form a pellet containing fine sediment and microorganisms. 

Most of the supernatant was removed and the loose pellets were resuspended and 

transferred to 1.5-ml microfuge tubes, which were then spun at 10,000g for 5 min to form 

tight pellets, from which all supernatant was removed. These rhizosphere pellets, averaging 

250 mg, were flash-frozen in liquid nitrogen and stored at −80 °C until processing. The root 

systems, while in the 25 ml of new buffer, were cleaned of remaining debris with sterile 

tweezers and transferred to new sterile buffer tubes until the buffer was clear after vortexing 

(without major sediment on the tube bottom). The roots were then sonicated in a Diagenode 

Bioruptor at low frequency for 5 min (five 30-s bursts followed by five 30-s rests). The 

sonication further disrupted tiny soil aggregates and attached microbes, cleaning the root 

exterior. We opted for physical removal of surface microbes by sonication instead of killing 

them with bleach because sequencing measures DNA; at lower concentrations, bleach kills 

microbes without necessarily destroying the DNA. Although an extended bleach treatment 

would also destroy unwanted DNA, it could also enter roots and destroy DNA of interest. 

After sonication, the roots were snap-frozen, freeze-dried to remove ice and then 

stored at −80 °C until processing. Our rhizosphere and EC fractions were collected using 

time-practical protocols designed to partition sequencing-quality DNA and may differ slightly 

from classic definitions of these fractions that rely on partitioning culturable bacteria. We 

note that sonication may leave some rhizoplane microbes behind, especially if they are in a 

microniche shielded from the ultrasound. Such artefacts may cause our collected fractions 

to differ from theoretical definitions. 
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DNA extraction 

To extract DNA, the samples were resuspended in a lysis buffer and microbial cells 

were mechanically lysed through bead beating. For all bulk soil and rhizosphere data, bead 

beating and purification were performed with the MoBio PowerSoil kit (SDS/mechanical lysis) 

because of its unmatched ability to remove humics and other PCR inhibitors in our soil. EC 

DNA from Arabidopsis experiments was prepared with the MP Bio Fast DNA Spin Kit for soil 

(also a SDS/mechanical lysis) because the more intense bead-beating protocol and lysis 

matrix gave improved lysis of whole roots and higher DNA yield, and soil PCR inhibitors 

were less of a problem with these samples. Our procedure yielded around 1 μg of DNA per 

rhizosphere sample, and more total DNA for EC samples (although a significant portion of 

EC DNA sequenced was of host origin). Although MoBio Powersoil and MP Bio Fast DNA 

use highly similar bead-beating/mechanical lysis methods, we developed a custom method 

of sample pre-homogenization that allowed us to prepare some EC samples using the 

MoBio kit. A comparison of Col-0 fractions soil, rhizosphere and EC across four soil digs of 

MF, where EC was prepared using MoBio in two digs and MP Bio in the other two digs, 

shows that although we cannot rule out a slight kit effect, both kits produce highly similar 

clustering separating EC from rhizosphere and soil fractions (Fig. 2.7, replicates 3 and 4). 

DNA quantity was assessed with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen) and 

a plate fluorospectrometer. 

 

PCR 

For each 1114F-barcoded 1392R primer set, PCR reactions with ~10 ng of template 

were performed in triplicate along with a negative control to reveal contamination. The PCR 

program used was 95 °C for 3 min followed by 30 cycles each of 95 °C for 30 s, 55 °C for 

45 s and 72 °C for 1 min, followed by 72 °C for 10 min and then cooling to 16 °C. We first 

verified that the no-template control did not contain DNA via gel electrophoresis, and then 

pooled the three replicate PCR products and quantified DNA from each pool with PicoGreen 

(Invitrogen). Pooled PCR products from 30–48 barcoded samples were then combined in 

equimolar ratios into a master DNA pool, which was cleaned with Mo-Bio UltraClean PCR 

Clean-Up kit before submission for standard JGI pyrosequencing using a half-plate of Roche 

454-FLX with titanium reagents. 
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454 pyrotag sequencing 

To identify organisms present in each sample, 454 sequencing of the SSU rRNA 

genes was performed. For 454 sequencing, the SSU rRNA genes present in each sample 

were amplified with the primers 1114F and 1392R containing the 454 adaptors 

(Engelbrektson et al. 2010). Each sample was assigned a reverse primer with a unique 5-bp 

barcode, allowing 30–48 samples to be pooled per half-plate. In preparation for sequencing, 

working aliquots of the master pool were immobilized on beads and amplified by emulsion 

PCR, the emulsion was broken with isopropanol, DNA-carrying beads were enriched and 

the enriched beads were loaded on the instrument for sequencing. During the emPCR 

protocol, we reduced the amplification primer amount from 460 μl in the standard protocol to 

58 μl per emulsion cup. This is the same amount of primer used for the paired-end emPCR 

protocol. One-and-three-quarter million beads were loaded in each plate region (reduced 

from 2,000,000 beads per region in the standard protocol). A detailed standard protocol is 

available on request. 

 

Primer test and technical reproducibility 

We first tested three sets of broad-specificity 16S rRNA 5′ primers (Engelbrektson et 

al. 2010) (Fig. 2.2a,b) and established technical reproducibility metrics. We used 13 

samples chosen from each of the three sample fractions (soil, rhizosphere and EC) and both 

soil types (MF and CL) (Fig. 2.2c). Each sample was amplified individually with each of the 

forward primers (804F, which broadly targets bacteria and archaea; 926F, a universal primer; 

and 1114F, which broadly targets bacteria), paired with the barcoded universal reverse 

primer (1392R) and sequenced twice to measure technical reproducibility. We identified 

bacteria by grouping highly similar (97% identity) sequences into OTUs (Methods). We 

chose 1114F for our experiments, on the basis of its broad coverage of the bacterial domain 

(Lane 1991) and higher usable data yield (Fig. 2.2f–i and Fig. 2.16). 

We identified bacteria present by grouping highly similar (97% identity) sequences 

into OTUs using a standard QIIME (quantitative insights into microbial ecology)-based 

pipeline (Caporaso et al. 2010) with default settings; thus, this stand-alone test consists of a 

different set of OTUs than those described in this work. The primer test samples are 

included in our submitted data and are found on 454 half-plates 26b and 27a. The 
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progressive drop-out analysis, displaying the coefficient of determination (R2) of the least-

squares regression between the two technical replicates as low-abundance OTUs are 

sequentially discarded, was calculated using the software R with a custom script. 

Primer, specificity, sequence 

804F prokaryote: 5′-agattagatacccdrgtagt-3′. 

926F universal: 5′-actcaaaggaattgacgg-3′. 

1114F bacteria: 5′-gcaacgagcgcaaccc-3′. 

1392R barcoded universal: 5′-XXXXXacgggcggtgtgtrc-3′. 

 

Sequence processing pipeline and assignment of OTUs 

As each 454 plate was sequenced, raw reads from individual plates were 

immediately run through PYROTAGGER (Kunin and Hugenholtz 2010) to diagnose plate 

quality so that plates could be re-queued if necessary. Plates with a reasonable number of 

long, high-quality raw reads with matching barcodes were used in the final analysis of OTU 

picking and taxonomy assignment. Using QIIME-1.4.029, short reads were removed and the 

remaining reads were trimmed to 220 bp, and low-quality reads were removed from the 

analysis using default quality settings (http://qiime.org/scripts/split_libraries.html). These 

high-quality sequences were clustered into OTUs using a custom script derived from otupipe 

(http://drive5.com/otupipe). The three main steps used from otupipe include (1) de-

replicating sequences to reduce the size of the data set and the run time of clustering 

analysis, (2) de-noising sequences by forming clusters of 97% identity and representing 

these with the consensus sequence, and (3) forming OTUs by clustering de-noised 

consensus sequences at 97% identity. 

The consensus sequence of sequences in each OTU was used as a representative 

sequence. Each representative sequence was assigned a taxonomy by two methods: (1) 

using the RDP classifier (Sul et al. 2011) trained on the 4 February 2011 Greengenes 

reference sequences and (2) by assigning the Greengenes (DeSantis et al. 2006) taxonomy 

of the best BLAST hit within a combined database including the complete Greengenes 16S 
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database and 18S A. thaliana sequences from NCBI. By the BLAST-based method, 

sequences without a hit below the E-value threshold of 0.001 are considered unclassified. 

Once OTUs were assigned a taxonomy, all OTUs annotated as chloroplasts, 

Viridiplantae or Archaea by any of the methods were removed from the OTU table, resulting 

in the set of usable OTUs. 

We pooled usable reads from each bulk soil and rarefied to 200,000 reads per soil; 

this was permuted 100 times. We observed a median of 9,709 OTUs in MF soil and 9,897 

OTUs in CL soil. Rarefaction curves to 200,000 reads in each bulk soil (not shown) indicated 

that, even at 200,000 reads, we were not capturing the entire community in either soil. 

Consequently, the total number of OTUs we report for our bulk soils may be lower than that 

found in some reports aimed at finding the true microbial diversity in soils. 

A handful of samples had been sequenced more than once, over more than one 454 

half-plate (for example to increase the read depth from problematic samples). These 

duplicated samples were pooled into a single sample by adding the unnormalized counts in 

the OTU table, and the resulting column was renamed to reflect the pooling that took place. 

Next any sample that had fewer than 50 usable reads was discarded, resulting in the 

unnormalized usable OTU table. At this point, both a frequency table and a rarefied table 

(1,000 usable reads per sample) were created as alternative normalization techniques. 

The frequency table was made from the unnormalized usable OTU table by dividing 

the number of reads for each OTU in a given sample by the total number of reads in that 

sample and multiplying by 100, and repeating this across all samples. 

We also created a rarefied table; because some samples, particularly samples from 

the EC, had fewer than 1,000 usable reads in the unnormalized usable OTU table, counts 

from independent samples sharing the same soil type, genotype, fraction, age and 

experiment were pooled to make groups of at least 1,000 reads, and the sample names 

were changed to reflect the pooling that had taken place. Then all samples were rarefied to 

1,000 counts using the rrarefy() function in the vegan package of R (Oksanen et al. 2011). 

We present both methods because each has advantages and limitations. The 

advantage of the frequency table is that it keeps each individual plant separate, contains 

more individual samples and uses all of the data, but this comes at the cost of increased 

granularity in the normalized relative abundance percentages for some of the samples with 
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fewer reads, causing problems with direct comparability. The major advantage of the 

rarefied table is that comparisons are not biased by sampling depth and all read counts 

have equal weight, but this comes at the cost of reduced sample number and samples that 

mix information from several replicated individuals because we needed to pool some of our 

samples to meet our rarefaction threshold, and also at the cost of higher overall granularity 

because we discarded many reads from more deeply sequenced samples. 

Because the majority of OTUs were represented by a very small number of reads 

and these OTUs were not technically reproducible (Fig. 2.2d, e), both the rarefaction-

normalized and the frequency-normalized OTU tables were thresholded to generate 

measurable OTUs for the majority of analyses (the major exception being the UniFrac 

analysis in Fig. 2.5: weighted UniFrac distance is robust to rare OTUs). An OTU was 

deemed measurable if and only if there were ≥25 reads in ≥5 samples in the unnormalized 

usable OTU table. As described in the text and Fig. 2.2, this threshold was derived from the 

fact that the correlation between abundance in the same OTU in technical replicates 

improved greatly as OTUs approached an abundance of 25 reads, and from the fact that 

although contamination might create an OTU at this abundance once, the probability of an 

OTU being spurious decreases greatly if it occurs at a measurable level in several (we 

chose ≥5) independent samples. 

 

Detection of differentially enriched OTUs by the GLMM 

The OTU abundances were analyzed with a GLMM to estimate the effect of the 

different variables on each measurable OTU. The lme4 R package (Bates et al. 2011) was 

used to fit the model. The abundance of each OTU on each sample (yij) was log2-

transformed and modelled as a function of the abundance of the same OTU in bulk soil 

samples (std_check) as a fixed effect, and plant genotype (b1), sample type (plant or bulk 

soil, b2), plant developmental stage (b3), soil type (b4), sequencing half-plate (b5) and 

biological replicate (b6) were modelled as random effects. The full model is specified by 

 

where eij is the residual error and std_check was calculated as the mean abundance of each 

OTU in all the bulk soil samples from each combination of experiment and developmental 

tage. 
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There were not enough paired samples of rhizosphere and EC from the same 

individual plant to model the effect of both fractions directly. Instead, the abundance table 

was split into EC and rhizosphere samples, and the effect of each fraction with respect to 

bulk soil controls was estimated. The same model specification was used independently on 

both fractions, and for both the frequency and the rarefied tables (see Methods on sequence 

processing pipeline).  

For each level of the random effects, the conditional mode and 95% prediction 

interval were estimated by Markov chain Monte Carlo sampling from the fitted model. A 

specific level is considered to have an effect on an OTU if the prediction interval of its 

conditional mode does not include zero.  

 

Partial GLMM 

There were not enough samples to estimate all the interaction effect between all 

variables without drastically reducing the size of the data set and our statistical power (Table 

2.2). To assess specific interactions of the genotype effect with other variables, a 

constrained version of the previously defined GLMM was used that employed only the fixed 

effect (std_check) and the random effects for plant genotype (b1) and sample type (b2). 

Samples were split into groups of the same experiment, developmental stage and fraction 

(thus, all the other variables from the full model are tested within each group), and the model 

was fitted and analysed in the same way as the full GLMM. A non-parametric Kruskal–Wallis 

test was used to verify independently the predictions of the partial GLMM for significance, 

where P values were corrected to Q values using the Benjimani–Hochberg FDR method; 

predictions from each partial GLMM with a Q value >0.05 were discarded as insignificant. 

The intersection of the significant genotype predictions between both biological replicates of 

each condition was calculated.  

 

Scanning electron microscopy sample preparation 

Arabidopsis roots were fixed in 2% paraformaldehyde, 2.5% glutaraldehyde and 

0.15 M sodium phosphate buffer, pH 7.4. The samples were dehydrated using a gradual 

ethanol series (30%, 50%, 75%, 100%, 100%) and dried in a Samdri-795 supercritical dryer 
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using carbon dioxide as the transitional solvent (Tousimis Research Corporation). Roots 

were mounted on aluminium planchets with double-sided carbon adhesive and coated with 

10 nm of gold–palladium alloy (60:40 Au:Pd, Hummer X Sputter Coater, Anatech USA). 

Images were made using a Zeiss Supra 25 FESEM operating at 5 kV and a working 

distance of 5 mm, and with a 10-μm aperture (Carl Zeiss SMT Inc.), at the Microscopy 

Services Laboratory, Pathology and Laboratory Medicine, UNC at Chapel Hill. 

 

Log2 transformation 

All log2 transformations on OTU tables followed the formula log2(1000x + 1), where x 

is the rarefied read counts (or frequency) per OTU. 

 

Heat maps 

Heat maps were constructed using custom scripts and the function heatmap.2 from 

the R package gplots (Warnes 2011). For better visualization, all data was log2-transformed. 

Hierarchical clustering of rows and columns in the heat maps is based on Bray–Curtis 

similarities and uses group-average linkage. 

 

Diversity 

The Shannon diversity index and the non-parametric Chao1 diversity were calculated 

with the vegan package in R (Oksanen et al. 2011). The exponential function was applied to 

the Shannon diversity index to calculate the true Shannon diversity (effective number of 

species). 

 

Rarefaction curves 

Rarefaction curves were made with custom scripts that sampled each sample 

fraction only once at each read depth. To reveal the variance in sampling, no attempt was 

made to smooth the curves by taking the average of repeated samplings. 
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Taxonomy histograms and statistics 

Taxonomy histograms were created using custom scripts and visualized in 

GraphPad PRISM version 5.0 for Windows (Motulsky 2003) (GraphPad Software, Inc.; 

http://www.graphpad.com). The ‘low-abundance’ category was created to help remove 

visual clutter, and contained any taxonomic group that did not reach at least 5% in any one 

fraction. The Shannon diversity index was calculated as described above. Differences in 

distribution at varying taxonomic levels, and differences in Shannon diversity between soil, 

rhizosphere and EC fractions, were tested by weighted analysis of variance (to account for 

differing numbers of soil, rhizosphere and EC samples), invoking the central limit theorem 

(>60 samples in each group in all tests for both frequency-normalized and rarefaction-

normalized tests).  

 

Sample clustering using UniFrac 

A phylogenetic tree was built with the representative sequence for each OTU and the 

pairwise, normalized, weighted UniFrac distance (Lozupone and Knight 2005). For UniFrac, 

representative sequences from all non-plant OTUs, including those that did not meet the 

25 × 5 sample threshold, were considered. UniFrac distances between samples are based 

on the fraction of branch length that is unique to each sample in a shared phylogenetic tree 

composed of OTU representative sequences from all samples. Thus, samples containing 

OTUs of highly divergent sequences will be more distant from each other, because the 

OTUs comprising each sample will occupy different major branches on the shared 

phylogenetic tree of OTUs, whereas samples containing highly similar OTUs will share these 

major branches. In weighted UniFrac, the branch length unique to each sample is multiplied 

by the frequency at which that OTU occurs in the sample. Thus, weighted UniFrac can 

detect differences between two samples that have the same set of OTUs that differ 

quantitatively between the samples. 

Principal coordinate analysis was performed using pairwise, normalized, weighted 

UniFrac distances between all samples on the unthresholded but normalized OTU tables, 

and the first two principal coordinates of UniFrac were visualized with GraphPad PRISM 

version 5.0 for Windows. 
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CARD–FISH application to roots 

We applied a modified protocol described previously (Eickhorst and Tippkötter 2008). 

Briefly, several root systems from a bolting Col-0 grown in MF were fixed using 4% 

formaldehyde in PBS at 4 °C for 3 h, washed twice in PBS and stored in 1:1 PBS:molecular-

grade ethanol at −20 °C. Treatments with lysozyme solution (1 h at 37 °C, 10 mg ml−1; Fluka) 

and achromopeptidase (30 min at 37 °C, 60 U ml−1; Sigma) were sequentially used for 

prokaryotic cell-wall permeabilization. Endogenous peroxidases were inactivated with 

methanol treatment amended by 0.15% H2O2 at room temperature for 30 min and washed 

again. Probes targeting either the 16S or the 23S rRNA (EUB338 (5′-

GCTGCCTCCCGTAGGAGT-3′, 35% formamide), NON338 (5′-

ACTCCTACGGGAGGCAGC-3′, 30% formamide), HGC69a (5′-TATAGTTACCACCGCCGT-

3′, 25% formamide) and Brady4 (5′-CGTCATTATCTTCCCGCACA-3′, 30% formamide)) 

were defined using probeBase (Loy et al. 2007) (http://www.microbial-

ecology.net/default.asp), labelled with enzyme horseradish peroxidase on the 5′ end 

(Invitrogen), diluted in hybridization buffer (final concentration of 0.19 ng ml−1) with each 

probe’s optimum formamide concentration, and hybridized at 35 °C for 2 h. Unbound probes 

were washed away from samples in wash buffer (NaCl content adjusted according to the 

formamide concentration in the hybridization buffer) at 37 °C for 30 min. Fluorescently 

labelled tyramide was used for signal amplification, and samples were washed before 

mounting on glass slides. 

For double CARD–FISH, a subset of samples went through a second round of the 

protocol, starting at the peroxidase inhibition with a second variety of fluorescently labelled 

tyramide used to be able to distinguish the signals from each probe. Roots were mounted on 

glass slides using Vectashield with DAPI (Vector Laboratories, catalogue no. H-1200) for 

mounting solution, and sealed with nail polish for storage. All microscopy images were made 

on a confocal laser scanning microscope (Zeiss LSM 710 META) located in the Biology 

Department at UNC. The Brady4 probe, which has not been used for this application 

previously, was tested on filters of cultured Bradyrhizobiaceae and three negative control 

cultured strains to determine the most specific formamide concentration in the hybridization 

buffer. 

For application of samples onto filters, bulk MF soil, rhizosphere and EC samples 

from four sets of Col-0 roots were pooled and harvested in the way described above before 
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DNA extraction. Samples were then fixed as described above and passed through a 10-μm 

filter. The concentrations of plant material were made equal and samples were sonicated in 

a water bath for 5 min. The sample suspension was further diluted to 1:500 in water and 

applied to a 25-mm polycarbonate filter with a pore size of 0.2 μm (Millipore) using a vacuum 

microfiltration assembly. Filters were embedded in 0.2%, low-melting-point agarose and 

dried, and CARD–FISH was applied as described above. For quantification of bacteria, 

filters were visualized on a Nikon Eclipse E800 epifluorescence microscope. Positive 

EUB338 probe signals that co-localized with a DAPI signal were counted as Eubacteria. 

Positive Actinobacteria or Bradyrhizobiaceae signals were counted as positive when the 

HGC69a or Brady4 probe co-localized with both EUB338 and the DAPI signal. 

 

Sample naming in OTU tables 

All sample names in OTU tables are in the following form: [soil 

type].[genotype].[sample number][fraction].[age].[experiment]_[plate]. For example, 

M21.Col.6E.old.M1_2b should be interpreted as [soil type] = M21 = Mason Farm 2:1, 

[genotype] = Col = Col-0, [sample number] = 6, [fraction] = E = endophyte compartment, 

[age] = old, [experiment] = M1 = Mason Farm replicate 1, [plate] = 2b. 
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Table 2.2: Genotypes, seed stocks, and sample numbers. 

(a) Arabidopsis thaliana genotypes and seed stocks used. 

(b) Number of high quality samples for the frequency-normalized table (top) and the 

rarefaction normalized table (bottom), in which some replicate samples were pooled to make 

the rarefaction threshold. Does not include the four sterile seedling samples (Figure 2.15).  
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Table 2.3. Percent variance explained by each variable in the Full GLMM. 
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Figure 2.1. Harvesting scheme  

(a) Using gloves and a flame-sterilized work surface, plants are overturned, pots are 

removed, and soil is crumbled/brushed away leaving ≤1 mm rhizosphere soil on roots.  

(b) The above-ground parts are cut away and rhizosphere soil is harvested from roots by 

shaking them in sterile phosphate buffer with Silwet L-77; the rinse is pelleted and becomes 

the rhizosphere R fraction.  

(c) Roots are placed in a new tube with sterile phosphate buffer and sonicated for five 30 

second bursts at low intensity (see Methods). The surface-cleaned roots are then snap 

frozen and lyophilized to become the EC fraction.  

(d) SEM showing intact root surface after rhizosphere soil has been removed, but prior to 

sonication. Scale = 100 microns. 

(e) SEM showing a root-surface bacterium on root shown in d. Scale = 1 micron.  

(f) SEM showing the disruptive clearing of nearly the entire root surface after sonication. 

Scale = 100 microns. 
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Figure 2.2. Primer test and technical reproducibility  

(a) Position on the 16S gene of each of the primers tested.  

(b) Sequence of each primer used.  

(c) Composition of the 13 samples tested.  

(d) Log10 transformation of raw reads per OTU for one independent replicate (x-axis) vs. the 

other (y-axis), where both replicates were PCR-amplified and sequenced from the same 

sample (axes labels are transformed and cover a range of 0-10,000 reads). The intersection 

of the red lines shows where an OTU with 25 reads in both replicates would lie.  

(e) Progressive drop-out analysis displaying the R2 correlation of the data in d as OTUs with 

low read numbers are discarded. When only OTUs with ≥25 reads are considered (red line) 

the R2 is acceptable at 0.87, a balance between reproducibility and data loss for low-

abundance OTUs. In f-i, green circles are EC samples, blue triangles are R samples, and 

black squares are bulk soil samples.  

(f) Total reads obtained from amplicons made with 804F, 926F, or 1114F paired with bar-

coded 1392R.  

(g) Percent of the ‘usable’ reads from f which are not identified as plant or chimeric OTUs.  

(h) Shannon-Weiner species diversity of 1000 usable reads (for each sample with ≥1000 

reads).  

(i) Chao1 diversity of 1000 usable reads from each sample (for each sample with ≥1000). 
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Figure 2.3. Informatics pipeline  

Order of events. Broken-line black-line boxes represent files. Blue double-line boxes 

describe events that occur locally using custom scripts. Red boxes describe events that are 

implemented through QIIME/OTUpipe. 
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Figure 2.4. Sequencing statistics and quality.  

(a) Sequencing depth per sample in reads for the three sample fractions S, R, and EC. Each 

dot represents a single plant or soil sample. Within each fraction, the total (t), usable (u), 

and measurable (m) read counts are shown for all samples. The box plots contain the 1st 

and 3rd quartiles, split by the median; whiskers extend to include the farthest outliers.  

(b) Rarefaction curves to 10,000 sequences for cumulative reads from S, R, and EC 

fractions considering all usable OTUs (top) and only measurable OTUs (bottom)  

(c) Table, split by sample fraction, summarizing: cumulative numbers of total high quality 

reads, ‘usable’ (non-plant & non-chimera) reads, number of OTUs after the technical 

reproducibility ‘25x5’ threshold is applied, ‘measurable’ reads (reads contained in OTUs that 

pass the 25x5 threshold).  

(d) Shannon diversity of individual samples from each fraction, calculated from the 

rarefaction-normalized table, before (left) and after (right) applying the 25x5 measurable 

OTU threshold. 
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Figure 2.5. Sample fraction and soil type drive the microbial composition of 

root-associated endophyte communities.  

(a) Principal Coordinate Analysis (PCoA) of pairwise normalized weighted Unifrac distances 

between samples based on rarefaction to 1,000 reads in unthresholded, usable OTUs. CL, 

Clayton; MF, Mason Farm; R, rhizosphere; S, soil 

(b) Rarefied counts for the 2535 thresholded, measurable OTUs from each of 24 soil, stage 

or fraction groups were log2-transformed (Methods) to make 24 representative samples 

(branch labels), and pairwise Bray–Curtis similarity was used to cluster these 

representatives hierarchically (group-average linkage). 
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Figure 2.6. Sample fraction and soil type drive the microbial composition of 

root-associated endophyte communities.  

(a) Principal Coordinate Analysis (PCoA) of pairwise normalized weighted Unifrac distances 

between the samples considering relative abundance of all (unthresholded) OTUs.  

(b) The median RAs for the 25x5 thresholded ‘measurable’ OTUs from each of 24 

soil/stage/fraction groups were log2 transformed (see methods) to make 24 representative 

samples (branch labels) and the pairwise Bray Curtis Similarity was used to hierarchically 

cluster these representatives (group average linkage). 
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Figure 2.7. OTUs identified from four independent biological replicates are 

reproducible.   

Heat map displaying the reproducibility between four independent replicates at the yng 

developmental stage of bulk soil (squares), Col-0 R samples (triangles), and Col-0 EC 

samples (circles). Each symbol represents the median of six or more samples. All data were 

log2 transformed for visualization, but for ease of interpretation the quantities shown in the 

color key represent the original (untransformed) counts (in panel a) and frequencies (in 

panel b) for each color. Although all 778 measurable OTUs were included, some OTUs had 

a median of 0 in all Col-0 and soil groups shown and were removed from the display.  
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Figure 2.8. OTUs that differentiate the endophyte compartment and 

rhizosphere from soil (rarefied).   

(A) Heat map showing OTU counts from the rarefied OTU table (log2-transformed) from 

each of the 256 rhizosphere- and EC-differentiating OTUs present across replicates. 

Samples and OTUs are clustered on their Bray–Curtis similarities (group-average linkage). 

The key relates colours to the untransformed read counts. Different hues of the same colour 

correspond to different replicates as in Fig. 2.5. 

(B) The strength of GLMM predictions (best linear unbiased predictors) is represented by 

bar height. a, OTUs predicted as EC enriched (red, up) or EC depleted (blue, down). b, 

OTUs higher in the EC in Mason Farm soil than Clayton (brown, up) or higher in Clayton soil 

than Mason Farm (gold, down). OTUs in a that are not differentially affected by soil type are 

shown there in darker hues. c, OTUs predicted as rhizosphere enriched (as in a). d, OTUs 

higher in rhizosphere in one soil type (as in b).  

(C) Histograms showing the distributions of phyla present in the 778 measurable OTUs in 

soil, rhizosphere and ECs compared with phyla present in the subset of EC OTUs enriched 

(EC↑ ) or depleted (EC↓ ) relative to soil. Shannon diversity (considering phyla as 

individuals) is given above each bar. A differential number of asterisks above the diversity 

values represents a significant difference (P < 0.05, weighted analysis of variance; Methods).   

(D) Distribution of families present among the OTUs from the phylum Actinobacteria.  

(E) Distribution of families present among the OTUs from the phylum Proteobacteria.  

(F) Distribution of families present among the OTUs of three classes of the phylum 

Proteobacteria: Alphaproteobacteria (α), Betaproteobacteria (β) and Gammaproteobacteria 

(γ).  
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Figure 2.9. OTUs that differentiate the endophyte compartment and 

rhizosphere from soil (frequency).  

(A) Heat map displaying the median RA (log2 transformed) of each of 108 ‘R and EC-

differentiating OTUs’ present across experimental replicates, where samples and OTUs are 

clustered on their Bray Curtis Similarity (group average linkage). The color key relates the 

colors to the untransformed RAs. 

(B) The strength of the GLMM predictions (Best Linear Unbiased Predictors or BLUPs) is 

represented by the height of the bars. a, shows OTUs predicted as EC–enriched (red, up) or 

EC depleted (blue, down). b, shows OTUs found higher in the EC in MF soil than CL (brown, 

up) or higher in CL than MF (gold, down). OTUs in i that are not differentially affected by soil 

type as are shown in darker hues in a. c, OTUs predicted as R-enriched (as in a above). d 

OTUs higher in R in one soil type (as in b).  

(C) Histogram displaying the distribution of the phyla present in the 778 measurable OTUs 

in soil (S), rhizosphere (R) and endophytic compartments (EC) compared to phyla present in 

the subset of EC OTUs enriched (EC-Up), or depleted (EC-Down) compared to soil. 

Shannon Diversity (considering phyla as individuals) is shown above. A differential number 

of asterisks above the Shannon Diversity values represents a significant difference (p<0.05, 

weighted ANOVA, Methods)  

(D) Distribution of families present among the OTUs of the phylum Actinobacteria.  

(E) Distribution of families present among the OTUs of the phylum Proteobacteria.  

(F) Distribution of families present among the OTUs of three classes of the phylum 

Proteobacteria – Alpha (left), Beta (center), Gamma (right). Data in (d-f) are from both soil 

types, pooled (see Fig. 2.19 for each soil separately). 
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Figure 2.12. Genotype-variable OTUs colored by sequence plate.  

Displays the data from Fig. 2.10i (MF old EC, left) and Fig. 2.10j (CL old EC right), colored 

by sequence plate (instead of biological replicate as in Fig. 2.10) according to the legend 

within each plot. The top panel is based on rarefied data, as in Figure 2.10, and the bottom 

panel is based on the relative abundance, as in Fig. 2.11. (Note: ‘a’ and ‘b’ in our plate 

naming scheme do not represent different regions of the same plate. All 454 regions were 

modeled independently in the Full GLMM). 
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Figure 2.13. CARD–FISH confirmation of Actinobacteria on roots.  

A single set of Mason Farm yng Col-0 roots were fixed and stained using CARD–FISH. 

DAPI, 49,6-diamidino-2-phenylindole. Double CARD–FISH was applied using the EUB338 

eubacterial probe (green) and either 

(a) theNON338 probe, which is the nonsense negative control of EUB338, or  

(b) the HGC69a Actinobacteria probe. 

Inset, twofold enlargement of boxed region. Scale bars, 50 mm.  
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Figure 2.14. Quantification of microbes in the three sample fractions using 

CARD-FISH.  

Four sets of Col-0 roots were pooled, processed, diluted, and put onto filters. 

(a) CARD-FISH using the EUB338, eubacterial probe, was applied and counterstained with 

DAPI. The number of EUB positive signals co-localizing with a DAPI signal was counted and 

the number of EUB positive signals per sample was calculated. This is an estimate for the 

number of bacteria present in each of our samples that DNA was extracted from with bulk 

soil (n=40), rhizosphere (n=39), and endophytic compartment (n=40). * indicates statistical 

significance at p<1x1016 (ANOVA with post-hoc TukeyHSD) between each of the sample 

groups  

(b) Using double CARD-FISH on filters made from equal concentration of the 3 sample 

fractions, we determined the % of DAPI positive eubacteria that are also co-localize with 

either the HGC69a (Actinobacteria) or Brady4 (Bradyrhizobiaceae) probes on filters made 

from bulk soil (n=10), rhizosphere (n=10), and endophytic compartment (n=10) samples. 

Actinobacteria was in higher abundance in EC samples and Bradyrhizobiaceae was in lower 

abundance in EC samples compared to soil and R samples as expected from our pyrotag 

sequencing data.  

(c) Double CARD-FISH was applied using the EUB338, eubacterial probe (green) and the 

Brady4, Bradyrhizobiaceae probe (red), counterstained with DAPI (the asterisks indicate 

signals that are positive in all 3 channels).  

(d) Newly forming lateral roots and root tips were found commonly to be heavily colonized. 

Scale bars represent 50 microns. 

 

  



 

80 
 

 



 

81 
 

Figure 2.15. Pyrosequencing of sterile seedlings as compared to non-sterile 

EC samples. 

DNA was extracted from homogenates from gnotobiotic seedlings of the genotypes 

Col-0, Cvi-0, Sha-0, and Tsu-0 (from which no culturable microbes were found), 

using bacteriolytic DNA preps, and these were pyrosequenced and clustered into 

OTUs as part of our full dataset. 21935, 20747, 23141, and 20272 high quality reads 

were obtained from each gnotobiotic genotype, respectively (triangles). The same 

total number of total reads was sampled from using pooled EC data from the full 

dataset for these accessions (circles). Each position on the X axis represents an 

OTU in the full dataset (measurable OTUs on top, rare OTUs on bottom) and the 

position on the Y axis represents the number of sequence reads found in that OTU. 

Both axes are shown in log scale. Of the 86095 HQ reads obtained from both sterile 

plants and non-sterile plants, the majority were from chloroplast OTUs (not shown). 

Far more non-plant reads were obtained from the non-sterile plants (19093 of 86095, 

or 22%) vs. sterile plants (34 of 86095, or 0.04%), a difference approaching three 

orders of magnitude. The 34 reads from non-sterile plants were members of 31 

OTUs (triangles – some overlap on the log-scale axis). No OTU in a sterile plant 

sample was represented by more than one read, and only two OTUs were shared by 

more than one of the accessions - both of these shared OTUs were not in the 

measurable set, and had poor taxonomic classification. 11 of these 31 OTUs were 

not represented in the non-sterile samples. Furthermore, by including extra unused 

barcodes in our mapping files, or by sequencing sterile water in excess, we have 

been able to occasionally 'detect' single representatives of OTUs in our dataset, 

demonstrating that technical noise can cause singletons (data not shown). While we 

cannot rule out that unculturable microbes survive surface sterilization and exist at 

extremely low abundance, we have no evidence that such microbes exist in A. 

thaliana roots. 
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Figure 2.16. Test for PCR bias in pyrotagging.  

Relative abundance of 16S metagenomics and pyrotag reads 

(a) To assess possible bias introduced by amplification for pyrotagging, we compared the 

taxonomic distribution of a metagenome library created without amplification with a 

corresponding pyrotag dataset. Both datasets are from Col-0 Mason Farm young samples. 

16S rDNA reads from this metagenome library (One HiSeq lane; more than 400 million 150 

bp paired-end reads) were extracted by alignment against the 16S Silva database (release 

106). Aligned reads were then assigned a taxonomy using an RDP training set built with the 

Greengenes reference database (version: May 9th 2011). This allowed classification of 

57,663 16S reads from the metagenome sample using a bootstrap threshold >=0.50. There 

is an excellent overall correlation between the relative abundance of pyrotags and 

metagenome 16S rDNA reads across the major phyla represented in the datasets. Only two 

major classes, Thaumarchaeota and Planctomycea, were not amplified by the 1114F-1392R 

primers. Slightly higher abundance of Actinobacteria and Betaproteobacteria was observed 

in pyrotag data than in metagenome 16S reads. This was investigated further.  

(b) For those classes in which underrepresentation in the pyrotag data are observed (red 

class names in a, we used in silico PCR analyses using the Greengenes database as 

template and our pyrotags primer pair, allowing a maximum of 2 mismatches, to investigate 

at which taxonomic level the under-representation would be discerned . We show that 

Thaumarchaeota (class) and Planctomycea (class) may be misrepresented in our pyrotag 

data. Since the Greengenes database contains many sequences amplified with the 1392R 

primer and therefore lacks this primer’s sequence, we removed all sequences shorter than 

6449 (in absolute position) in our reference database to minimize false negative rate (i.e. 

sequences not amplifying because they are not long enough to match the 1392R primer 

sequence). 
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Figure 2.17. 16S taxonomy classification at the family level is robust to method.  

For taxonomy-supervised classification, reads that passed default QIIME quality thresholds 

(but that were not clustered into OTUs) were trimmed to 220bp and were classified via RDP 

against Greengenes (Feb. 4 2011 version) training set to get family-level taxonomy. The 

abundance of each family was compared to the abundance of that family when the family 

assignments were assigned after the taxonomy-unsupervised grouping of reads into OTUs.   

(a) The total reads from non-chloroplast families from both taxonomy-supervised and 

taxonomy-unsupervised methods were rarefied to 10,000,000 reads, and the reads per 

family are shown as the log2 transformed relative abundance of the total reads, whereas  

(b) The relative abundance of each family using all non-chloroplast reads, omitting the 

rarefaction step. The scatterplots thus show the high correlation at the family level for 

supervised and unsupervised taxonomy assignment. The dataset used for this figure 

included extra samples not described here, and was clustered as a single .fasta using the 

default QIIME implementation of Uclust (Caporaso et al. 2010).  
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Figure 2.18. Overlap of GLMM predictions between rarefaction-normalized and 

frequency-normalized OTU tables.  

The number of OTUs predicted by the full GLMM in each category that are unique to the 

frequency table is shown in orange. The number of OTUs predicted by the full GLMM in 

each category that are unique to the rarefied table are shown in green. The number of OTUs 

that were shared predictions in the two tables is shown in black. 
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Figure 2.19. Phyla in each sample fraction by soil type. 

Histogram displaying the distribution of the phyla present in the 778 measurable OTUs in 

soil (S), rhizosphere (R) and endophytic compartments (EC) with each soil type, MF and CL, 

considered independently. Rarefaction-normalized on top; frequency-normalized on bottom.  
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CHAPTER 3 

 

Practical innovations for high-throughput amplicon sequencing1 

 

INTRODUCTION 

We describe improvements for sequencing 16S ribosomal RNA (rRNA) amplicons, a 

cornerstone technique in metagenomics. Through unique tagging of template molecules 

before PCR, amplicon sequences can be mapped to their original templates to correct 

amplification bias and sequencing error with software we provide. PCR clamps block 

amplification of contaminating sequences from a eukaryotic host, thereby substantially 

enriching microbial sequences without introducing bias.  

 

MAIN 

Microbes profoundly affect biological processes across Earth's ecological niches and 

are frequently identified through culture-independent methods using DNA purified directly 

from environmental samples (Lozupone and Knight 2007). Common PCR-based 

approaches target highly conserved rRNA genes, such as those encoding the 16S/18S and 

28S subunits or the internal transcribed spacer (ITS) between them. These ubiquitous 

____________________ 

1Lundberg DS*, Yourstone S*, Mieczkowski P, Jones CD, Dangl JL (2013) Practical 
innovations for high-throughput amplicon sequencing. Nat Meth 10(10): 999-1002. 

* = contributed equally 
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genes have diverged enough that polymorphisms across their 'hypervariable regions' 

(Figure 3.1) allow taxonomic classification. Amplicon sequencing is an important and widely 

used tool for inferring the presence of taxonomic groups in microbial communities, but poor 

estimates result from sequencing errors and biases introduced during amplification. 

Inefficiencies also result from the amplification of nontarget DNA. Here we describe methods 

that make rRNA amplicon sequencing more accurate and cost-effective. 

Accurate base-calling on Illumina platforms requires sequence diversity at each 

nucleotide position (Krueger et al. 2011). Because amplicon libraries often lack diversity at 

specific positions owing to sequence conservation, it is common to spike sequencing runs 

with sheared genomic DNA from the virus phiX174. We created sequence diversity in 16S 

amplicons using a mix of primers that have frameshifting nucleotides (Figures 3.2 and 3.3). 

Despite recent upgrades to Illumina's base-calling procedure, this strategy remains useful 

for maximizing data yield as it devotes the entire sequencing effort to the amplicon of 

interest (Figures 3.4 and 3.5). 

PCR and sequencing introduce sequence errors and sampling bias (Patin et al. 

2013). We adapted and validated a modified protocol that uniquely tags each template 

molecule with random nucleotides before PCR (Faith et al. 2013; Jabara et al. 2011; Kinde 

et al. 2011; Kivioja et al. 2011) (Figures 3.2 and 3.6a,b). Provided that there are enough 

random nucleotides, amplicons sharing the same tag are overwhelmingly likely to have 

originated from the same template molecule (the 'birthday paradox' (Sheward et al. 2012); 

Figure 3.7). Thus, by generating consensus sequences from each group of sequences 

sharing a molecule tag (MT), we can correct errors and infer the amplicon's probable 

template sequence (Figure 3.6f–h). 

We verified that consensus sequences (ConSeqs) correct errors by amplifying a 
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clonal plasmid-borne 16S template (Figure 3.8). A dilution series ensured a variety of 

coverage depths for each MT (Figure 3.8a). We found that a sample of 15,000 ConSeqs 

had fivefold lower mean error than a sample of 15,000 untreated (nonconsensus) 16S 

sequences (Figure 3.8b and Materials and Methods). 

We observed unexpectedly high numbers of singletons in the MT depth distributions 

for samples prepared from diluted templates, suggesting that some singletons arise from MT 

mutations in lower-quality reads. Consistent with this, the error rate among 15,000 

singletons was more than twice that for untreated sequences. We also observed a lower 

error rate among the 4,777 available 'perfect ConSeqs' constructed from three or more 

reads with identical sequence sharing an MT, compared with all ConSeqs. Interestingly, this 

rate was not 0 because either all sequences in these perfect ConSeqs carried the same 

error, the template plasmid had some level of polymorphism that was accurately captured or 

a combination of these. 

Operational taxonomic unit (OTU) clustering is a common approach both to corral 

noisy 16S sequence data into groups approximating microbial species and to reduce 

computational complexity (Patin et al. 2013). Using data from the clonal 16S template, we 

clustered either 30,000 untreated sequences or 30,000 ConSeqs into OTUs using both 97% 

and 99% identity thresholds. ConSeqs clustered at 97% formed two OTUs, with the second 

OTU containing only six sequences (Figure 3.8c). Untreated sequences at 97%, on the 

other hand, produced 66 OTUs, two of which were sufficient to capture 95% of the data. 

ConSeqs clustered at 99% formed 42 OTUs, and the first two OTUs contained 95% of the 

data, whereas untreated sequences produced 683 OTUs and required 66 OTUs to capture 

95% of the data. Thus, ConSeqs were more homogenous than untreated sequences and 

tolerated stricter OTU definitions, a result suggesting that ConSeqs can be used to provide a 

more accurate picture of true microbial alpha diversity(Patin et al. 2013). 
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We applied our approach to samples amplified from pooled bulk wild Mason Farm 

soil DNA ('soil') and pooled root endophyte compartment DNA grown in that soil (Lundberg 

et al. 2012) ('root EC'; Materials and Methods). All 16S reads were processed into untreated 

sequences, ConSeqs and singletons as above, as well as a mix of 'ConSeqs plus adjusted 

singletons' (CASs), in which the singletons were downsampled in proportion to the ConSeqs 

collapse ratio (the ratio of the number of all ConSeqs to the number of all constituent 

sequences used to compute them). CASs thus retain the majority of singletons from 

template-overloaded samples, in which singletons contain the majority of high-quality reads; 

but they retain fewer singletons from dilute samples, in which the singletons are enriched for 

lower-quality outcasts. We generated OTUs at 97% and 99% identity thresholds and used 

rarefaction curves to observe the microbial richness (Figure 3.9a). Within both root EC and 

the more complex soil communities, ConSeqs and CASs performed similarly and gave 

estimates of microbial richness lower than those of untreated sequences. This effect was 

particularly apparent at 99% clustering, but it was also evident at 97%, again demonstrating 

that ConSeqs correct overestimates of microbial alpha diversity (Patin et al. 2013). 

MT treatments enhanced the technical reproducibility of independently amplified 

samples. Our data set comprised 12 pairs of root EC replicates and 12 pairs of soil 

replicates (Materials and Methods). The OTU abundances of all samples were regressed 

against those of their replicates, and the coefficient of determination R2 was graphed (Figure 

3.9b). Low-abundance OTUs were the least correlated (Benson et al. 2010; Bulgarelli et al. 

2012; Lundberg et al. 2012); as these were removed, R2 increased quickly. Even before low-

abundance OTUs were dropped, ConSeqs and CASs were more reproducible than 

untreated sequences and singletons, and their R2 plateaued more quickly. Singletons 

formed many more small OTUs than did other classes, especially at 99% clustering. Thus, 

relatively more of the irreproducible singleton data were discarded at lower OTU abundance 
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thresholds than for other MT classes, which explains the more rapid increase in technical 

reproducibility for singletons than for untreated sequences. 

We compared our method directly to that of the Earth Microbiome Project (EMP), 

which uses primers without MTs (Caporaso et al. 2012). Using both methods, we prepared 

libraries of the same sample composition, including independent soil samples from two sites, 

root EC samples from individual plants grown in one of the soils and the clonal 16S template 

used above (Materials and Methods). Major beta diversity conclusions from both methods 

were the same; the sample types grouped similarly after we performed principal-coordinates 

analysis based on weighted UniFrac distances (Figure 3.10). Also, the same clades formed 

on the basis of hierarchical clustering by Bray-Curtis dissimilarity. However, there were 

fewer OTUs using our method, which is consistent with our initial data (Figures 3.8a and 

3.9a). Evidence that the extra OTUs are noise comes from the clonal 16S template, which 

formed one OTU with our method, as opposed to several with the EMP method. 

Next we tackled a problem encountered when investigating microbial communities 

associated with a eukaryotic host, wherein 16S sequences originating from the host's 

genome, plastid or mitochondria can account for >80% of the sequences obtained 

(Bulgarelli et al. 2012; Lundberg et al. 2012; Sakai and Ikenaga 2013). Although 

modification of the bases in the 'universal' amplicon primers can mitigate amplification of the 

contamination, this can also lead to bias (Sim et al. 2012). We instead developed peptide 

nucleic acid (PNA) PCR clamps (von Wintzingerode et al. 2000): synthetic oligomers that 

bind tightly and specifically to a unique signature in the contaminant sequence and 

physically block its amplification (Ray and Nordén 2000; Sakai and Ikenaga 2013; Tanaka et 

al. 2010; Troedsson et al. 2008) (Figure 3.11 and Materials and Methods). We designed 

PNAs to suppress plant host plastid and mitochondrial 16S contamination (Figure 3.12) and 

tested them using 24 samples amplified from pooled root EC DNA samples, in which ~85% 



98 
 

of 16S sequences post-PCR were either plastid or mitochondria (Figure 3.13a). Combining 

both PNAs in the same reaction blocked both types of contaminant and yielded 

approximately eightfold more bacterial 16S rRNA sequence as a fraction of total sequences. 

Owing to an effective PNA-dependent template reduction, the mean number of 

sequences sharing an MT that were aligned and used to calculate each ConSeq was ~2.5-

fold larger in the 12 samples containing anti-plastid PNA (pPNA; P = 0.026, permutation test 

of the means) (Figure 3.13a). Neither the presence of pPNA or anti-mitochondrial PNA 

(mPNA) nor the related increase in the number of sequences per alignment affected 

clustering of root EC samples by bacterial families or OTUs (Figure 3.13b and Figure 3.14a). 

There was also not a significant effect on the relative abundance of individual bacterial 

families or OTUs when the 12 samples amplified with each PNA were compared to the 12 

samples amplified without it (Q > 0.05 for all permutation tests on the means with false 

discovery rate (FDR) correction; Figures 3.14a and 3.15a and Materials and Methods). 

Using the same PNA concentrations for PCR of extremely diverse bulk soil (Lundberg et al. 

2012), we observed that PNAs had no effect on clustering of samples by bacterial families 

or OTUs (Figure 3.13c and Figure 3.14b) or the abundances of families or OTUs (Q > 0.05 

for all permutation tests on the means with FDR correction; Figures 3.14b and 3.15b), with 

one exception that was likely a false positive. 

Both the pPNA and mPNA sequences are conserved among higher plants and 

should function well for most plant microbiome projects (Figure 3.16). Many studies have 

demonstrated the potential of PNAs for a variety of research questions using low-resolution 

molecular methods (Chow et al. 2011; Ray and Nordén 2000; Sakai and Ikenaga 2013; 

Terahara et al. 2011; Troedsson et al. 2008; von Wintzingerode et al. 2000), but a proof-of-

concept study using deep sequencing has been lacking. A recent study showed the 

effectiveness of PNAs designed to block plastid and mitochondrial sequences for plant 



99 
 

microbiome analysis using T-RFLP (Sakai and Ikenaga 2013). However, the authors 

considered only primer annealing-blocking regions that overlapped with conserved 16S 

primers, which limited the number of candidate PNAs and likely their target specificity. 

Sequence features in the molecule tagging–frameshifting (MT-FS) primers can be 

used as additional barcodes. For example, nonintersecting sets of frameshifting primers on 

two samples sharing the same PCR barcode—or better, conventional barcoding bases in 

the MT-FS primers—allowed samples to be distinguished with >99.9% accuracy. Each MT-

FS barcode, or even unrelated template-tagging primers such as ITS region primers, can be 

used with the universal PCR barcodes, thereby enhancing the cost-effectiveness of our 

approach (Figures 3.17 and 3.18). 

We also provide our validated MTToolbox: user-friendly software to merge 

overlapping paired-end reads, recognize and trim primer sequences, and process molecular 

tags into ConSeqs. MTToolbox is compatible with data produced by the related Safe-SeqS 

(Kinde et al. 2011) and LEA-Seq (Faith et al. 2013) techniques. Downloads and source code 

can be accessed through SourceForge (http://sourceforge.net/projects/mttoolbox/), and user 

manuals and documentation can be found at 

https://sites.google.com/site/moleculetagtoolbox/). 

 

 

 

 

 

https://sites.google.com/site/moleculetagtoolbox/
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In summary, our methods provided higher sequencing accuracy and technical 

reproducibility while increasing flexibility and savings. In the case of a MiSeq run of 96 root 

EC samples in which the PNAs were applicable, the combination of frameshifts, 

combinatorial barcoding and PNA yielded substantial cost reductions and provided greater 

flexibility to investigate new amplicons. These techniques can be adopted à la carte for a 

particular amplicon project and sequencing platform. The benefits of frameshifting and 

template tagging were independently described in a metagenomics context during the 

revision of this work (Faith et al. 2013), attesting to the need for improved amplicon 

sequencing methods.  
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MATERIALS AND METHODS 

Cloned 16S template 

We amplified a 16S rRNA gene from a Mycobacterium sp. using primers 27F and 

1492R and 25 PCR cycles, cloned the PCR product into pENTR/D-TOPO (Invitrogen) and 

selected a single transformed Escherichia coli colony. Plasmid DNA was prepped from a 3 

mL culture using standard alkaline lysis, purified by silica column, quantified using a 

NanoDrop 1000 (Thermo Scientific) and sequenced using an ABI3130 genetic analyzer 

using 515F and 806R variable region 4 (V4) primers. The forward and reverse reads were 

overlapped and merged using Sequencher (http://genecodes.com/). Primer sequences were 

recognized and removed, thereby generating a high-quality sequence (Figure Specific 

Details). 

 

Root EC, soil and leaf DNA extraction and quantification 

Mason Farm root endophyte compartment DNA (root EC), Mason Farm bulk soil 

DNA (soil), and Clayton bulk soil DNA (Clayton soil) were collected and extracted as 

previously described in Lundberg et al. 2012. All Arabidopsis DNA was made from the 

Arabidopsis thaliana Col-0 reference accession. A. thaliana and Oryza sativa leaf DNA were 

prepared in the same manner as root EC DNA, except that a similar quantity of whole 

leaves was prepped fresh, without sonication, bleaching or any other treatment to remove 

epiphytes. DNA templates were quantified using PicoGreen fluorescent dye (Invitrogen) and 

a fluorescence plate reader exciting at 475 nm and reading at 530 nm. Leaf DNA could not 

be reliably quantified, as it showed fluorescence at the limits of detection, and was therefore 

added without dilution in the template-tagging reactions (described below). For the individual 

samples used in the comparison of our method (Run C) to the Earth Microbiome Project 

(EMP) method (Run D), approximately 50 ng/μL was used for each sample. 

 

Peptide nucleic acid (PNA) design 

To identify candidate PNA oligo sequences, we fragmented in silico the full length A. 

thaliana plastid and mitochondrial 16S sequences into short k-mers for k of length 9, 10, 11, 
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12 and 13, and we queried for exact matches against the 4 February 2011 version of the 

Greengenes 16S training set comprising 35,430 unique, high-quality full-length bacterial 

sequences (Figure 3.12). A. thaliana–specific k-mers falling between the 515F and 806R 

16S rRNA primers (V4 region) were considered candidates and were lengthened as 

necessary to increase the predicted melting temperatures and were screened for design 

characteristics (Terahara et al. 2011; von Wintzingerode et al. 2000). 

A successful elongation arrest PNA clamp is generally between 13 bp and 17 bp and 

has an annealing temperature above that of the PCR primer whose extension it blocks and 

a melting temperature above that used for the extension cycle (Terahara et al. 2011). We 

designed 17-mer sequences to block the plastid and mitochondria, each with a predicted 

melting temperature around 80 °C (Table 3.1f). Melting temperature, problematic hairpins, 

GC content and other design considerations were calculated using the Life Technologies 

PNA designer (http://www6.appliedbiosystems.com/support/pnadesigner.cfm). 

The anti-mitochondrial PNA (mPNA) 5′-GGCAAGTGTTCTTCGGA-3′ and the anti-

plastid PNA (pPNA) 5′-GGCTCAACCCTGGACAG-3′ (Table 3.1f) were ordered from PNA 

Bio. Lyophilized PNA was resuspended in sterile water to a stock concentration of 100 μM. 

For PNA concentrations that were repeatedly tested, working stocks of 5 μM, 15 μM, 25 μM 

and 40 μM were prepared in water. All stocks were stored at −20 °C and heated to 65 °C 

before use to resolubilize any precipitate. 

 

Primer design 

All primers longer than 45 bases were Ultramers from Integrated DNA Technologies, 

purified by standard desalting. Shorter primers, such as the sequencing primers, were 

ordered from Eurofins MWG Operon and purified by the QuickLC method. Forward and 

reverse molecule tagging–frameshifting (MT-FS or Bc-MT-FS for nonbarcoded and 

barcoded, respectively) V4 16S primers and universal barcoding PCR primers are 

diagrammed and listed in Figure 3.2. 

MT-FS primers and their barcoded versions, Bc-MT-FS primers, were designed with 

the frameshift and barcoding bases occurring within the molecular tag regions to break up 

the stretch of random bases and minimize unpredictable features related to annealing and 

secondary structure. We used 2-bp linkers to buffer the template-annealing 515F and 806R 
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portions of the MT-FS primers from the rest of the primer. Ideal linkers have low homology to 

known microbial sequences, creating a short stretch of mispairing. Our linker sequences for 

the V4 16S region differ from those used in the EMP method (Caporaso et al. 2012) but are 

equally valid choices on the basis of the lack of matches to the Greengenes database 

(Figure 3.18). 

The molecule-tagging ITS2 primers are similar but are of an earlier design that uses 

nine random bases for the forward primer and four random bases for the reverse primer. No 

frameshifting variants of the ITS2 primers were used. Forward and reverse molecule-tagging 

ITS2 primers are listed below: 

>ITS9F  
GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNNNNNNNTTGAACGCAGC
RAAIIGYGA 
 
>ITS4R 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGATCCTCCGCTTATTGATATG
C 

 

The 9-bp barcodes we used for the universal barcoding PCR primers were adapted 

from the 12-bp Golay barcodes used by Caporaso and colleagues (Caporaso et al. 2012). 

Of the 2,168 published Golay barcodes, we chose a subset of 96 that had a balanced mix of 

all bases at each position. We then extracted just the first 9 bases of these 12-bp barcodes; 

in our set of 96 barcodes of 9 bp, three or more SNPs would be needed to transform any 

one barcode into another. We chose to trim the Golay barcodes from 12 to 9 in order to 

shorten the primers; deeper barcoding can be accomplished by adding mini-barcodes in the 

MT-FS primers, such as the 3-bp barcodes we chose (Figure 3.2b), and combining each 

mini-barcode used during template tagging with the full suite of 96 universal barcodes in 

PCR. 

 

Template tagging with molecular tagging–frameshifting primers 

Template DNA was tagged with the MT-FS primers in two reactions: one for the 

reverse MT-FS primers and a subsequent reaction for the forward MT-FS or Bc-MT-FS 

primers, as described below. The purpose of using the tagging primers in two separate 

reactions, one for each primer, was to reduce the possibility of formation of difficult-to-



104 
 

remove heterodimers between the long MT-FS primers. The shorter reverse MT-FS primers 

were used to tag the template first because removal of shorter primers during PCR cleanup 

is more efficient. Although the use of separate tagging reactions discourages heterodimers, 

it is not strictly necessary; and in practice both forward- and reverse-tagging primers can be 

used in a single two-cycle template-tagging reaction with good results (not shown). 

For reverse V4 16S tagging in Run B, the primary MiSeq run we analyzed, we 

prepared two working stocks of reverse MT-FS V4 16S primer in water, where each working 

stock contained an equimolar mix of three of our six primers such that the concentration of 

the mixed stock was 0.5 μM. These working stocks we designate “V4R_2-4-6” (806R_f2, 

806R_f4, and 806R_f6) and “V4R_1-3-5” (806R_f1, 806R_f3, and 806R_f5). For Run C, 

which we used to compare our method directly to the EMP method, we used a mix of all six 

reverse MT-FS primers (“V4R_mix1-6”) such that the concentration of the mixed stock was 

again 0.5 μM. 

We used the KAPA 2G Robust HS PCR Kit with dNTPs (KK5518, Kapa Biosystems) 

in a 25 μL including 5 μL Kapa Enhancer, 5 μL Kapa Buffer A, 2 μL of 0.5 μM reverse-

tagging primer mix (“V4R_1-3-5” or “V4R_2-4-6” for Run B or “V4R_mix1-6” for Run C), 0.5 

μL Kapa dNTPs, 0.25 μL Kapa Robust Taq and 12.5 μL DNA template with water. 

To minimize pipetting variation of small volumes, we used master mixes to prepare 

reagents whenever possible. Samples were incubated in a thermocycler using a program of 

denaturing at 95 °C for 1 min, reverse–MT-FS primer annealing at 50 °C for 2 min, and 

extension at 72 °C for 2 min, followed by a cooldown to 4 °C. The newly synthesized 

reverse-tagged strands, as well as the original DNA template molecules to which they were 

annealed, were cleaned to remove primers and PCR reagents with Agencourt AMPure XP 

beads (Beckman Coulter) using the manufacturer's protocol with the exception of an altered 

bead-to-DNA ratio: we used 15 μL of beads to clean the 25 μL of tagged template because 

this ratio (0.6:1) allowed size selection that more effectively eliminated the long tagging 

primers (data not shown). The DNA was eluted in 11 μL of water. 

The cleaned, reverse-tagged DNA was next tagged with forward primers. For Run B, 

we made two forward MT-FS working stocks of three frameshift variants each (Figure 3.2b), 

which we designate “V4F_2-4-6” (515F_f2, 515F_f4, and 515F_f6) and “V4F_1-3-5” 

(515F_f1, 515F_f3, and 515F_f5). For Run C, we made two forward Bc-MT-FS working 
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stocks of six frameshift variants each, where each Bc-MT-FS mix differed by its 3-bp 

barcode (Figure 3.2b). We designate these “V4F_TGA_mix1-6” and “V4F_ACT_mix1-6.” 

For samples to which PNA was applied, PNA was included in reactions in only the 

forward-tagging step, as the PNA blocks the extension of the forward-tagging primers. The 

25-μL forward-tagging reaction included 5 μL Kapa Enhancer, 5 μL Kapa Buffer A, 2 μL of 

0.5 μM forward-tagging primer mix (“V4F_1-3-5” or “V4F_2-4-6” for Run B or 

“V4F_TGA_mix1-6” or “V4F_ACT_mix1-6” for Run C), 0.5 μL Kapa dNTPs, 0.25 μL Kapa 

Robust Taq, 2.5 μL PNA working stock (containing pPNA, mPNA, both mPNA and pPNA, or 

water) and 10 μL reverse-tagged DNA from above. 

Samples were incubated in a thermocycler using a program of denaturing at 95 °C 

for 1 min, PNA annealing at 78 °C for 10 s, forward tagging–primer annealing at 50 °C for 2 

min and extension at 72 °C for 2 min, followed by a cooldown to 4 °C. The DNA, now tagged 

with both forward- and reverse-tagging primers, was cleaned with Agencourt beads using 

17.5 μL of beads to clean the 25 μL of tagged template. A marginally more conservative 

bead-to-DNA ratio of 0.7:1 was used to clean the dual-tagged template as compared to 

single-tagged template because the overall length of dual-tagged template (<500 bp) is 

shorter than that of single-tagged template (>1 kbp). The dual-tagged DNA was eluted in 16 

μL of water. 

ITS tagging was similar to that for V4 16S, except that there was only one reverse 

primer in the 0.5 μM reverse working stock and only one forward primer in the 0.5 μM 

forward working stock. 

 

PCR using tagged templates (our method) 

We performed PCR in a 50-μL reaction mix, in which the reverse primer differed for 

each individually barcoded sample. The mix included 25 μL Kapa HiFi HotStart ReadyMix 

(KK2602, Kapa Biosystems), 2.5 μL PCR_F forward primer (from 5 μM working stock), 2.5 

μL PCR_R_bc reverse primer (from 5 μM working stock), 5 μL mixed PNA working stock or 

water, and 15 μL DNA from the forward template–tagging step. 

The PCR program was denaturation at 95 °C for 45 s followed by 34 cycles of 

denaturation at 95 °C for 15 s, PNA annealing at 78 °C for 10 s, primer annealing at 60 °C 
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for 30 s, extension at 72 °C for 30 s and then a cooldown to 4 °C. All samples were cleaned 

with Agencourt beads using 35 μL of beads to clean the 50-μL PCR (0.7:1). DNA was eluted 

in 50 μL water. 

 

PCR using untagged templates (EMP method) 

We used the primers and protocol available at http://www.earthmicrobiome.org/, with 

some exceptions to improve direct comparability with our method. The first exception to the 

published protocol is that we used 2× Kapa HiFi Ready Mix for the PCR, which is the same 

polymerase we used for the PCR in our method. The second exception is that we altered 

the thermocycling conditions to be more similar to ours (with the exception of the primer 

annealing temperature) and to include a PNA annealing step. The altered EMP 

thermocycling conditions were denaturing at 95 °C for 45 s followed by 35 cycles of 

denaturation at 95 °C for 15 s, PNA annealing at 78 °C for 10s, primer annealing at 50 °C for 

30 s, extension at 72 °C for 30 s and ending with a cooldown to 4 °C. All samples were 

cleaned with Agencourt beads using 35 μL of beads to clean the 50-μL PCR (0.7:1). DNA 

was eluted in 50 μL of water. 

 

Quantification of PCR products and library mixing. 

From all cleaned PCR reactions, 1 μL was quantified in 96-well plate format using 

PicoGreen fluorescent dye (Invitrogen) and a fluorescence plate reader exciting at 475 nm 

and reading at 530 nm. The PCR reactions were mixed at equimolar ratios to make a pooled 

library for each run. For analysis purposes, in a setup run (Run A) and our primary run (Run 

B), we included from each run all potentially sequenceable material from low-yield and 

negative-control samples: low-quality material enriched for primer dimers and other 

abnormal amplicons that decrease the overall quality of the run. In Run C and Run D, 

samples with DNA below the detection limit were not used. 

The mixed libraries were purified once more using Agencourt beads at a 0.7:1 bead-

to-library ratio and were eluted in half the original volume to concentrate the final libraries. 

Each final library was quantified in triplicate using PicoGreen, and the values were averaged 

to reach a library quantification. 
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Library denaturation, dilution and sequencing 

The final library was diluted to 4 nM, assuming an average amplicon length, including 

adaptors, of 448 bp. To denature the DNA, we mixed 5 μL of the 4 nM library with 5 μL of 

0.2 N fresh NaOH and incubated 5 min at room temperature. 990 μL of chilled Illumina HT1 

buffer was added to the denatured DNA and mixed to make a 20 pM library. Finally, 275 μL 

of the 20 pM library was mixed with 725 μL of chilled HT1 buffer to make a 5.5 pM 

sequenceable library, which was kept on ice until use. We noticed that 5.5 pM gave us a 

cluster density of between 700 K/mm2 and 900 K/mm2, which gave the best balance of 

quantity (which improves with higher cluster density) and quality (which improves with lower 

cluster density). The Illumina recommended range is 500 K/mm2–1,200 K/mm2. A 500-cycle 

v2 MiSeq reagent cartridge was thawed for 1 h in a water bath, inverted ten times to mix the 

thawed reagents, and stored at 4 °C a short time until use. 

For sequencing in Run A, Run B and Run C using our method, the custom Illumina 

Nextera P1 primer (“Read1_seq”), was used as the forward sequencing primer for read 1 

and was prepared by mixing 3 μL of 100 μM stock into 597 μL HT1 buffer to make a 0.5 μM 

solution. A MiSeq v2 flow cell was rinsed with water and ethanol and polished dry with lens 

paper. The 5.5 pM library was loaded into the “Load Sample” well, and the custom Nextera 

primer solution was loaded into port 18 of the reagent cartridge. The “Settings” section of the 

sample sheet was modified to include “C1” as the “CustomRead1PrimerMix” and “5′-

AGATCGGAAGAGCACACGTC-3′” as the adaptor. Read 2 was sequenced with the TruSeq 

read 2 sequencing primer already present in the reagent cartridge (“Read2_seq”), and the 

barcode read was sequenced with the TruSeq Index Read Sequencing Primer 

(“Barcode_seq”). The sample sheet along with sample names and the corresponding 

reverse complement of each nine-nucleotide barcode sequence was uploaded onto the 

MiSeq instrument before each run. The machine does not use the final base of the barcode 

read for annotation, and so each sample was associated with an 8-bp read sequence. 

Sequences for Read1_seq, Read2_seq, and Barcode_seq are shown below. 

>Read1_seq 
GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAG 
 
>Read2_seq 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 
 
>Barcode_seq 
GATCGGAAGAGCACACGTCTGAACTCCAGTCAC 



108 
 

 

For Run A and Run B, we applied a feature in Real-Time Analysis (RTA v1.17.22) 

that allowed the machine to use a hardcoded matrix and phasing calculations. This 

modification improved the performance of low diversity libraries. In order to do this we 

altered the MiSeqConfiguration.xml file (this modification required assistance from an 

Illumina field application specialist). For Run C, we upgraded our machine to the new 

version of Real-Time Analysis (RTA v1.17.28) and used the default feature of the upgrade 

without additional hardcoded matrix or phasing modifications. 

For sequencing in Run D (EMP method), all custom sequencing primers were 

prepared by mixing 3 μL of 100 μM primer stock into 597 μL HT1 buffer to make a 0.5 μM 

solution. The custom primer “EMP_Read1_seq” was used as the forward sequencing primer 

for read 1 and was loaded into port 18 of the reagent cartridge. “EMP_Read2_seq” was 

used as the forward sequencing primer for read 2 and was loaded into port 20. 

“EMP_barcode_seq” was used to sequence the sample barcode and was loaded into port 

19. The Settings section of the sample sheet was modified to include “C1” as the 

“CustomRead1PrimerMix,” “C2” as the “CustomIndexPrimerMix,” and “C3” as the 

“CustomRead2PrimerMix.” The sample sheet along with sample names and the 

corresponding reverse complement of each 12-nucleotide barcode sequence was uploaded 

onto the MiSeq instrument before the run. The machine does not use the final base of the 

barcode read for annotation, and so each sample was associated with an 11-bp read 

sequence. As with Run C, Run D was completed using Real-Time Analysis (RTA v1.17.28) 

without additional software modifications. Sequences for EMP_Read1_seq, 

EMP_Read2_seq, and EMP_Barcode_seq are shown below. 

>EMP_Read1_seq 
TATGGTAATTGTGTGCCAGCMGCCGCGGTAA 
 
>EMP_Read2_seq 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT 
 
>EMP_barcode_seq 
ATTAGAWACCCBDGTAGTCCGGCTGACTGACT 
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Demultiplexing 

Standard preprocessing and demultiplexing of PCR barcodes were performed with 

Consensus Assessment of Sequence and Variation (CASAVA) software (Illumina, v.1.8.2), 

allowing for 0 mismatches to the sample barcodes. 

 

Raw sequence processing (our method) 

Paired-end overlapping and merging, as well as recognition of pattern-matching 

sequences and MT processing, were performed using MTToolbox, a freely available 

software package hosted by SourceForge (https://sourceforge.net/projects/mttoolbox/). 

Documentation and user manuals can be accessed via the MTToolbox web page 

(https://sites.google.com/site/moleculetagtoolbox/). 

Paired ends were overlapped with FLASH (Magoč and Salzberg 2011) using 

parameters “-m 30 -M 250 -x 0.25 -p 33 -r 250 -f 310 -s 20” for all V4 16S samples and “-m 

20 -M 250 -x 0.25 -p 33 -r 250 -f 400 -s 20” for all ITS samples. In the overlapping region, 

the bases with the highest quality score were chosen for the merged reads, with bases from 

Read1 preferred in the case of ties (Figure 3.6e). 

In Run B, merged sequences in each sample were then matched to expected 

patterns for either V4 16S amplicons or ITS amplicons using regular expressions. Because 

the merged V4 amplicons in Run C contained barcodes on the template-tagging Bc-MT-FS 

primers (Figure 3.2b), a slightly modified regular expression was used. These expressions 

select sequences without ambiguous bases or errors in priming sequences. 

From the pattern-matching sequences, the sequence fragment 5′ to the forward 

linker and the fragment 3′ to the reverse linker were extracted and concatenated to form that 

sequence's molecular tag (MT), and the sequence occurring between the forward and 

reverse template–specific primers was extracted for analysis (Figure 3.6f). We did not 

analyze sequences corresponding to the primers because we observed high sequence 

variability at the wobble bases, even when amplifying a clonal template, which indicated that 

the wobble base observed in the sequence is a poor indicator of the primed sequence (data 

not shown). 
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Each unique MT observed in a sample was considered a unique MT category 

(Figure 3.6g). Sequences sharing the same MT were classified as belonging to the same 

category, and for each category containing two or more sequences, a multiple sequence 

alignment was built using command line ClustalW (Larkin MA 2007) with parameters “-

output=gde -outorder=input -case=upper -query -quicktree” (Figure 3.6h). A consensus 

sequence was calculated from the multiple sequence alignment by choosing the most 

common base at each position. For MT categories containing only two sequences (and for 

all other ties), the base with the highest average quality score was chosen; and if a tie could 

still not be resolved, an IUPAC base was used to indicate the tie in the consensus 

sequence. For each sample, a FASTA file of consensus sequences was built, with each 

consensus sequence given a composite name including the sample of origin, or 

“P_number_ID” followed by the MT of that consensus. For 

example: >P0_GGCTGACTTTAC-GGCAGTCAAT [Sequence]. 

MT categories in each sample that contained only one sequence (category depth = 

1) could not be represented by a consensus, and the sequences in these categories, or 

'singletons', were kept in a separate FASTA file with each sequence given a composite 

name including the sample the sequences came from, the sequence number within the 

corresponding sample, the MT sequence and the original read ID. For example:  

>P0_20176 GAGTAGGAATA-TCTAT UNC20:76:000000000-A315U:1:1101:14750:1667 

1:N:0:GGCGCTTA  

[Sequence] 

 

Raw sequence processing (EMP method) 

Paired ends were overlapped with FLASH21 using parameters “-m 30 -M 250 -x 0.25 

-p 33 -r 250 -f 310 -s 20.” 

EMP sequencing primers provide data between the highly conserved areas bound by 

the 515F and 806R primers; thus, regular expressions for these primers cannot be used to 

identify pattern-matching sequences. Therefore, we define high-quality sequences in the 

context of EMP data as sequence that successfully overlaps and merges and does not have 

ambiguous bases. 
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Operational taxonomic unit (OTU) formation 

OTUs were built using OTUpipe, a collection of USearch (http://www.drive5.com/) 

commands encapsulated in a bash script that clusters sequences on the basis of their 

nucleotide identity and that removes chimeras that can form during PCR. First, FASTA files 

from samples to be clustered were concatenated into one file. OTUpipe was then run with 

nondefault parameters ABSKEW = 3 and MINSIZE = 1. For 99% OTU clustering, the 

following nondefault parameters were used: PCTID_ERR = 99, PCTID_OTU = 99, 

PCTID_BIN = 99. We did not make OTUs at higher than 99% because a single bacterial 

genome can harbor several copies of the 16S rRNA gene that differ on average by 0.55% 

(Pei et al. 2010), meaning that at identity thresholds higher than 99%, a single bacterium 

would form several OTUs even if error was eliminated. 

 

OTU table construction 

OTUs were built into OTU tables, and their taxonomy was assigned using functions 

in QIIME 1.5.0 (Caporaso et al. 2010). The OTUpipe output file “readmap.uc” was 

transformed into a QIIME cluster file by running the QIIME script “readmap2qiime.py,” 

generating the text file “qiime_otu_clusters.txt.” This file was passed to the QIIME script 

“make_otu_table.py” to make a Biological Observation Matrix (BIOM) OTU table. Finally, the 

BIOM table was converted to a classic format OTU table using the QIIME script 

“convert_biom.py.” 

 

Assigning taxonomy to OTUs 

Taxonomy was assigned to bacterial OTUs using the RDP classifier trained on the 

most recent (4 February 2011) Greengenes 97% identity taxonomy representatives and was 

accomplished by running the QIIME 1.5.0 script “assign_taxonomy.py” on OTU 

representative sequences using “greengenes_tax_rdp_train.txt” as the ID to taxonomy 

mapping file, “gg_97_otus_4feb2011.fasta” as the reference sequences and the parameter 

“-c 0.5.” Helpful instructions for running the QIIME scripts can be found by searching for the 

script name on the QIIME website (http://www.qiime.org/). 
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Owing to a focus on bacterial taxa, RDP trained on Greengenes did a poor job of 

recognizing plastid and mitochondrial sequences in our data. Rather than editing the training 

set, we further recognized plant contaminant OTUs by using BLAST to compare the 

representative sequences to a custom database containing the Arabidopsis 18S rRNA 

sequence as well as plastid and mitochondria 16S rRNA sequences from Arabidopsis and 

other plants. We used BLAST with an E value of 0.00001 and a percent identity of 94. 

 

Predicting pPNA and mPNA utility across diverse plant families 

The pPNA and mPNA sequences were tested for exact matches to representative 

chloroplast and mitochondrial 16S sequences from diverse plant species found in NCBI 

GenBank (Figure 3.16). 

 

Subsampling 

Normalization of FASTA files and all other subsampling was performed using the 

sample() function in the “base” library of R (http://www.r-project.org/). Rarefaction of OTU 

tables was performed using the function rrarefy() the “vegan” library of R, which also makes 

use of the sample() function. 

 

Permutation tests 

All permutation tests involved 24 samples and asked whether the mean value of 12 

samples in “condition low” was lower than the mean value of 12 samples in “condition high.” 

For each permutation test, the values from the 24 samples were randomly assigned into two 

groups of 12 using the sample() function in the base library of R, and the difference in the 

means of these groups was taken. This was repeated 10,000 times per test to form the 

probability distribution for each test. The P value was the fraction of 10,000 permutations in 

which the observed difference in the means would be as large due to chance. 

A nonparametric test on the means was chosen in preference to a parametric t-test 

because of relatively low group size of 12 samples, which prevents accurate estimation of 
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the underlying probability distributions and is not sufficiently large to make the assumption of 

normality under the Central Limit Theorem. 

 

Correction for multiple testing 

Permutation tests were used to test whether the relative abundances of bacterial 

families and bacterial OTUs were lower in PNA samples than in control samples, for all 

families and OTUs above the threshold (see Figure Specific Details). The green and red 

histograms of uncorrected P values display the results of these permutation tests for pPNA 

and mPNA (Figures 3.14 and 3.15). The P values within each histogram were corrected for 

multiple testing using the Benjamini-Hochberg false discovery rate (FDR) method as 

implemented by the p.adjust() function in the “stats” library of R, and the number of tests that 

were included in each application of the FDR method is shown beneath each P value 

histogram. 

 

Chi-squared tests 

The green and red histograms of uncorrected P values display the results of 

permutation tests for pPNA and mPNA, respectively (Figures 3.14 and 3.15a,b). For root EC 

families and OTUs, and for soil families, there were ~100 or fewer tests, and ten bins were 

used for the P value histogram (Figures 3.14a and 3.15a,b). For soil OTUs, there were 

1,010 tests for each PNA, and 20 bins were used for higher resolution of the distribution 

histogram (Figure 3.14b). Each histogram was compared to the null flat distribution (equal 

number of P values in each bin of the histogram) using a Chi-squared test with 9 degrees of 

freedom for histograms with 10 bins or 19 degrees of freedom for histograms with 20 bins. 

Chi-squared tests were performed using the function chisq.test() in the stats library of R. 

 

Accession codes 

Sequence Read Archive: ERP003492 
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FIGURE-SPECIFIC DETAILS 

 

Figure 3.1: Variable regions in the 16S rRNA gene  

All sequences without unambiguous bases in the Greengenes training set of full 

length 16S sequences (29,846 sequences) were aligned to the pre-aligned Greengenes 

core set using PyNAST with default parameters as implemented in the QIIME script 

“align_seqs.py”. The E. coli 16S sequence (PMID: CP002967.1) was also aligned. For each 

base position (non-gap position) in the E. coli alignment, the number of A, C, T, G, and gap 

characters in the corresponding position of all sequences in the Greengenes alignment was 

counted and the Shannon diversity for this position was calculated and graphed (light blue 

vertical needles). The moving average of the Shannon diversity (thick waving black line in 

was calculated by taking the mean Shannon diversity at each E. coli base position 

considering a 50 bp sliding window stretching 25 bases 5’ and 25 bases 3’ of the base 

position considered – for this reason the black line is not graphed for the first 25 and the last 

25 bases of the alignment. We note that this interpretation does not show the Shannon 

diversity at positions in the alignment for which the E. coli sequence shows a gap. Location 

of the hypervariable regions was based on mapping information in Chakravorty et al., 

2007(Chakravorty et al. 2007). Degenerate regular expressions of common primers were 

used to map primer locations to the E.coli reference on the x-axis. The charts were 

produced with the plot() and points() functions in the “base” library of R(Team 2012). 

 

Figure 3.3b: Library diversity simulation 

We simulated in silico a PCR template composed of 1,000 identical copies of a 

single V4 16S sequence, as well as a more realistic template composed of 1,000 real 

bacterial V4 16S sequences from a root EC sample. To mimic the effect of using 

frameshifting primers to PCR each template, subsets of the 1,000 sequences were 

randomly assigned to equally-sized groups to which six frameshifting treatments of 0-5 

additional 5’ bases were applied. To visualize the effect of mixing in phiX174 genomic DNA 

post-PCR, the phiX174 genome [NCBI GenBank ID: NC_001422] was randomly fragmented 

and the fragments were used to replace specific fractions of the 1,000 V4 16S sequences in 

the simulated PCRs. For each treatment of frameshifts and / or phiX174, the first 250 bp of 

each sequence was considered. Shannon diversity at each base position was calculated 

from the number of A, C, T, and G bases present at that position. The charts were produced 

with the boxplot() and points() functions in the “base” library of R(Team 2012). 
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Figure 3.4a-b, 3.5a-d:  Q Score histograms, plots, and heatmaps, and base diversity 

per cycle   

Illumina Q scores are equivalent to 10 times the log10 of the reciprocal of the error 

rate. Q score histograms, plots, and heatmaps, and the graph of % base at each cycle, were 

generated from raw data on the MiSeq machine using Sequence Analysis Viewer version 

1.8.11 

 

Figure 3.4c: Error rate for clonal 16S samples 

Identical to Figure 3.8b, except that only reads from Run A and Run B processed by 

method 1, (NT), were used.  

 

Figure 3.7: Monte Carlo simulation of MT uniqueness 

A custom R script was written to generate 100,000 oligonucleotide (A, C, T, or G) N-

mers each for N’s of 10, 11, 12, 13, and 14. For each N-mer length, the number of non-

unique oligos in the set was divided by 100,000 to give the fraction of non-unique oligos, 

and then multiplied by 100 to give the percentage that is graphed. This process was also 

repeated for depths of 75,000, 50,000, and 25,000 N-mers. The entire simulation was then 

repeated 4 additional times, and all 5 replicates for each N-mer length were graphed. The 

chart was produced with the geom_line() function in the “ggplot2” library of R(Wickham 

2009). 

 

Figure 3.8a: Copy number per MT for clonal 16S samples 

Pattern-matching sequences from Run B of all the clonal 16S template samples, 

including both replicates of the no dilution, 50× dilution, and 100× dilution samples were 

rarefied to 40,000 sequences per sample. The sequences were then categorized by their 

MT (as in Figure 3.6g), but were not made into ConSeqs. A histogram was plotted of the 

number of sequences falling at each discrete MT category depth. The chart was produced 

with the geom_density() and geom_line() functions in the “ggplot2” library of R(Wickham 

2009). 

 

Figure 3.8b: Error rate for clonal 16S samples 

Pattern-matching sequences of the clonal 16S template samples from only the 50× 

dilution and 100× dilution samples, as well as their replicates for a total of four samples were 
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gathered from Run B. The MT and amplified template sequences were extracted (as in 

Figure 3.6f). The sequences were processed four ways to form four comparison groups: 

 

1) “NT”, or no tag, contained a mix of all pattern-matching sequences from all four samples, 

regardless of the MT. 

 

2) “ConSeqs”, or ConSeqs of two or more sequences, in which pattern-matching sequences 

in each sample were categorized by their MT and ConSeqs were constructed from the 

multiple sequence alignments. All ConSeqs made from MT categories containing 2 or more 

sequences were pulled from each sample and pooled. 

 

3) “S”, or singletons, in which pattern-matching sequences in each sample were categorized 

by their MT, and all the sequences with a unique single-copy molecular tag were pulled from 

each sample and pooled. 

  

4) “PConSeqs”, or perfect ConSeqs made from three or more sequences, in which pattern-

matching sequences in each sample were categorized by their MT and ConSeqs were 

constructed from the multiple sequence alignments as described above. Only alignments of 

three or more sequences in which all constituent sequences were 100% identical were 

considered, and the ConSeqs (in this case PConSeqs) of these perfect alignments were 

pulled from each sample and pooled.  

 

The four comparison groups were then each rarefied to 15,000 sequences, with the 

exception of the PConSeqs, which were a rarer class and used in full because only 4,777 

were available in the run. The sequences were all aligned to a common set of pre-aligned 

templates using PyNAST, with default parameters as implemented in the QIIME script 

“align_seqs.py”. The Sanger sequence of the clonal 16S template (sequence below), 

trimmed to the region between the 515F and 806R primers, was also aligned using 

PyNAST. 

>Mycobacterium_16S_clone 

TACGTAGGGTCCGAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGTGGTTTGTCGCGTTGT

TCGTGAAAACTCACAGCTTAACTGTGGGCGTGCGGGCGATACGGGCAGACTTGAGTACTGCAGGGGAG

ACTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTC

TCTGGGCAGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGG 
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For each aligned comparison group, positions that were gaps in all aligned 

sequences and the Sanger reference sequence were not considered. In every case, gaps in 

the PyNAST comparison group alignments matched gaps in the Sanger alignment, 

indicating that the frequency of insertion errors in this sequence was extremely low. Next, for 

each base in the aligned Sanger sequence, the SNPs and gaps for all other sequences in 

the 15,000 sequences (or 4,777 for PConSeqs) of the comparison group were counted. This 

value was divided by 15 (or 4.777 for PConSeqs) to generate the errors per thousand (ept) 

at each base. The mean error rates per thousand were calculated by taking the mean of the 

per-base errors per thousand across each of 253 bases of the sequence. The chart was 

produced with the geom_line() function in the “ggplot2” library of R(Wickham 2009). 

 

Figure 3.8c: OTU analysis of clonal 16S samples 

Pattern-matching sequences from Run B of the clonal 16S template samples from 

only the 50× dilution and 100× dilution samples were unprocessed (NT) or processed into 

ConSeqs (ConSeqs). Each comparison group was rarefied to 30,000 sequences per sample 

and these sequences were clustered into OTUs at 97% or 99% identity. The OTUs were 

ordered by their relative abundance, and the number of sequences in each ranked OTUs is 

graphed for each comparison group. To determine the number of OTUs necessary to 

represent 95% of the data, the sequences in the OTUs were summed, starting with the most 

abundant, until 28,500 sequences (95% of 30,000) were accounted for. The chart was 

produced with the geom_line() and geom_point() functions in the “ggplot2” library of 

R(Wickham 2009). 

 

Figure 3.9a: Rarefaction curves of different MT treatments  

Pattern-matching sequences were gathered from Run B and the MT and amplified 

template sequences were extracted (as in Figure 3.6f). The sequences were processed four 

ways to form four comparison groups: 

 

Comparison groups: 

1) “NT”, or no tag, as described for Figure 3.8b and Figure 3.4c. 

 

2) “ConSeqs”, or ConSeqs of two or more sequences, as described for Figure 3.8b. 
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3) “S”, or singletons, as described for Figure 3.8b. 

 

4) “CAS”, or ConSeqs with adjusted singletons. For each sample, sequences were 

categorized by their MT, and ConSeqs were constructed from the multiple sequence 

alignments. The ConSeqs collapse ratio, or the number of ConSeqs divided by the number 

of constituent sequences in the multiple sequence alignments, was calculated. Next, the 

singletons were quantified. The number of singletons was multiplied by the ConSeqs 

collapse ratio, rounded to the nearest integer, and then the singles were down-sampled to 

this integer. This adjustment thus keeps the ratio of singles to all other sequences constant, 

even as all other sequences are collapsed into their ConSeqs. 

 

OTUs tables were formed from each comparison group, using 97% and 99% identity 

thresholds for clustering. Because the number of sequences in each comparison group 

varied substantially, with the NT group having many more sequences than the other groups, 

the FASTA files containing sequences from each comparison group were each normalized 

to 500,000 sequences. Each comparison group was then clustered independently at 97% or 

99% sequence identity to produce 4 OTU tables. Plastid and mitochondrial OTUs were 

removed computationally, and bacterial reads for root EC and soil samples across all tables 

were pooled, producing a soil pool and a root EC pool per OTU table. These pools were 

rarefied at intervals of 1,000 sequences and the number of OTUs observed at each depth 

was plotted. The chart was produced with the geom_line() and geom_point() functions in the 

“ggplot2” library of R(Wickham 2009). 

 

Figure 3.9b: Progressive drop-out analysis of technical reproducibility 

The same four OTU tables representing the four comparison groups were used as in 

Figure 2a, with four exceptions. First, plastid and mitochondrial OTUs were not removed 

computationally. Second, in each OTU table, we considered the technical reproducibility of 

12 pairs of root EC samples and 12 pairs of soil samples, for a total of 24 pairs, where each 

member of a pair was independently template-tagged, treated with water or PNA, and 

amplified. These 24 pairs were chosen because these samples had good sequencing depth 

and reasonably diverse microbial composition. Third, each sample was rarefied to a 

common inter-table depth.  Fourth, within each table, the more deeply-sequenced pair 

member for each of the 24 technical replicate pairs was rarefied to the number of sequences 
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of the less-sequenced sample in the pair, such that the sequencing depth of the pair 

members was equal. 

 

For each comparison group, the relative abundance of each OTU in one technical 

replicate pair member was log10-transformed to correct for heteroscedasticity and plotted 

against the log10-transformed relative abundance of that same OTUs in the other technical 

replicate pair member. This was repeated for all 24 pairs on the same set of axis, generating 

a densely-populated linearly-correlated scatterplot for each comparison group, similar to that 

previously published(Benson et al. 2010; Bulgarelli et al. 2012; Lundberg et al. 2012). The 

R2 coefficient of determination was then calculated for the scatterplot and graphed. 

 

The low-abundance OTUs in an OTU table either represent rare but real sequences, 

or sequence errors, and are less-reproducible than larger OTUs. We dropped OTUs from 

the scatterplot that did not meet the threshold abundance (x-axis) in at least one pair 

member in at least one of the 24 pairs, and recalculated R2 at each threshold, generating 

the upward-sloping curves. The chart was produced with the geom_line() and geom_point() 

functions in the “ggplot2” library of R(Wickham 2009). 

 

Figure 3.10: Principal Coordinate Analysis of Weighted Unifrac distances 

ConSeqs from our method in Run C, or high quality sequences from the EMP 

method in Run D, were clustered into OTUs with OTUpipe as described above using a 97% 

identity threshold, forming a separate OTU table for each run.  Each sample in the OTU 

table from our method was rarefied to 1,200 ConSeqs, while each sample in the OTU table 

from the EMP method was rarefied to 1,200 high quality sequences.  For each run, the OTU 

representative sequences were aligned to a common set of pre-aligned templates using 

PyNAST, with default parameters as implemented in the QIIME script “align_seqs.py”. The 

full alignments were then filtered and clustered into phylogenetic trees using the QIIME 

script “filter_alignment.py” followed by “make_phylogeny.py”.  The phylogenetic trees and 

the OTU tables were used in the QIIME script “beta_diversity.py” to return, for each OTU 

table, a pairwise matrix of weighted Unifrac distances between all samples.  Principal 

Coordinate Analysis ordination was performed using the pcoa() function in the “ape” library 

of R(Paradis et al. 2004), and the first two principal coordinates were plotted using the 

geom_point() function in the “ggplot2” library of R(Wickham 2009).  
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Figure 3.13a, left: Relative abundance of contaminant sequences 

Pattern-matching sequences in Run B were processed into ConSeqs which were 

clustered at 97% identity to form an OTU table. The twelve root EC samples with the PNA 

titrations and their technical replicates were extracted from this OTU table and rarefied to the 

smallest sample of the 24 (6,880 sequences). The relative abundance of bacterial 

sequences, plastid sequences, mitochondrial sequences, and other sequences were 

expressed as a percentage. The stacked bar chart was produced with the geom_bar() in the 

“ggplot2” library of R(Wickham 2009). 

 

Figure 3.13a, right: Mean number of sequences per multiple sequence alignment  

Pattern-matching sequences from root EC and soil samples, the same used in 

Figure 3.13a, left, were gathered from Run B and the MT and amplified template sequences 

were extracted (as in Figure 3.6f). The sequences were processed into ConSeqs, but just 

prior to formation of the ConSeqs from the multiple sequence alignments, the number of 

sequences in all multiple sequence alignments was counted. The average number of 

sequences per multiple sequence alignment per sample is graphed. The bar chart was 

produced with the geom_bar() in the “ggplot2” library of R(Wickham 2009). 

 

Figure 3.13b and 3.13c, and Figures 3.10 and 3.14: Heatmaps 

Pattern-matching sequences from Run B were processed into ConSeqs, which were 

clustered at 97% identity to form an OTU table. All contaminant OTUs were removed, 

leaving only bacterial OTUs. For root EC heatmaps, 12 root EC samples and their technical 

replicates were extracted from this OTU table and rarefied to the smallest sample of the 24 

(1,092 bacterial ConSeqs). For soil heatmaps, 12 soil samples and their technical replicates 

were extracted from this OTU table and rarefied to the smallest sample of the 24 (11,593 

bacterial ConSeqs). For Figure 3.13b and Figure 3.13c, the bacterial OTUs in each table 

were then reclassified at the family level, and OTUs from the same bacterial family were 

combined to convert the OTU table into a family-level table. Bacterial families that did not 

have an abundance of 5 ConSeqs in at least one of the 24 samples were removed to avoid 

visualizing rare families prone to sampling artifacts. For Figure 3.14, the bacterial OTUs 

were not reclassified at the family level, and OTUs that did not have an abundance of 5 

ConSeqs in at least one of the 24 samples were removed. For better visualization in all 

heatmaps, abundances were transformed to log2 per mille log2(1000x+1) prior to color 

assignment – this transformation is reflected in the color key. The log2 transformation was 



121 
 

for visualization only and transformed data was not used for statistical tests.  All heatmaps 

were made using the function heatmap.2() from the “gplots” library of R(Warnes 2011). 

Hierarchical clustering of rows and columns in the heatmaps is based on Bray-Curtis 

dissimilarity and uses group-average linkage.   

 

Figure 3.12: Exhaustive search for PNA oligo candidates 

Method described under “Peptide Nucleic Acid (PNA) design”. The black histogram 

of k-mer matches to the database was made using the plot() function in the “base” library of 

R(Team 2012), with the abline() function used to add the vertical red lines. Degenerate 

regular expressions of common primers were used to map primer locations to the plastid or 

mitochondrial sequence along the x-axis.  

 

Figures 3.14 and 3.15: Bacterial family and OTU relative abundance for different PNA 

treatments 

In panel a (root EC) and b (soil) for both Supplementary Figures, the relative 

abundance of each bacterial family or OTU was compared between the 12 samples 

amplified using either pPNA (left) or mPNA (right) and the remaining 12 samples not 

containing pPNA or mPNA respectively. The test used was a permutation test on the means 

(Online Methods). Histograms of P-values were made with the hist() function in the “base” 

library of R(Team 2012). The distribution of P-values was compared to the null flat 

distribution using a Chi-squared test (Online Methods).  

 

Figure 3.16: Use of PNA on A. thaliana and O. sativa leaf DNA  

In a, the chloroplast and mitochondrial 16S sequences used to determine if pPNA and 

mPNA respectively were likely to function were taken from NCBI GenBank. 

In b, pattern-matching sequences in Run B were processed into ConSeqs which 

were clustered at 97% identity to form an OTU table. Sixteen leaf samples from A. thaliana 

and O. sativa were extracted from this OTU table and rarefied to the smallest sample of the 

16 (161 sequences). The relative abundance of bacterial sequences, plastid sequences, 

mitochondrial sequences, and other sequences were expressed as a percentage. The 

stacked bar chart was produced with the geom_bar() in the “ggplot2” library of R(Team 

2012). Next, pattern-matching sequences in Run B were processed into NT-sequences 

which were clustered at 97% identity to form an OTU table, and the 16 leaf samples were 

extracted. The number of all NT sequences in each sample, without normalization, is 
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graphed in the dark blue bars. Contaminant OTUs were removed and the number of usable 

bacterial reads, without normalization, is graphed in brown bars. The dark blue and brown 

bar plots were produced with the function barplot() in the “graphics” library of R(Wickham 

2009).  

 

Supplementary Figure 16: Internal Transcribed Spacer (ITS) amplicons  

Pattern-matching sequences from Run B were processed into ConSeqs, which were 

clustered at 97% identity to form an OTU table. Root EC samples amplified with V4 16S 

primers and root EC samples amplified with ITS2 primers were pooled and each pool was 

rarefied to a common value of 14,112 ConSeqs. The number of bases in each OTU was 

calculated (OTU length) for ITS and 16S OTUs, and then the number of OTUs at each OTU 

length was graphed in panel a using the plot() function in the “base” library of R(Team 

2012), as was the rank-abundance curve in panel b.  

 

Supplementary Figure 17: Primer linkers 

Two bases 5-prime of the 515F primer and two bases 3’ of the 806R primer were 

extracted from all sequences without unambiguous bases in the Greengenes 97% training 

set of full length 16S sequences (29,846 sequences) that matched expected patterns for V4 

amplicons, and the frequency of each base at all four positions was graphed. The figure 

represents the + strand, and so the reverse complement of the linkers in both our 806R 

primers  and the Earth Microbiome Project(Caporaso et al. 2012) primers are displayed.  
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Figure 3.2. Schematic of molecular tagging - frameshifting template tagging 

primers.  

(a) MT-FS V4 16S reverse template-tagging primers. 

(b) Forward “MT-FS” V4 16S template-tagging primers (top), and forward barcoded “Bc-MT-

FS” V4 16S template-tagging primers (bottom), where “XXX” is a three base pair barcode. 

MT-FS = Molecular tag and frameshifting bases. Lnk = Linker. “N” = MT random sequence 

(c) PCR primers.  
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Figure 3.3. Frameshifting primers enhance library diversity.  

(a) Schematic showing that frameshifts can impose diversity on a low-diversity library.  

(b) Diversity per sequenced base for simulated libraries made from a perfect clonal template 

(top) or a low-complexity template of 1000 real V4 bacterial 16S rRNA sequences (bottom). 

For each simulated library, subsets of 1000 sequences were randomly assigned to equally-

sized groups to which six frameshifting treatments of 0-5 additional 5’ bases were applied, 

creating between 1 and 6 frames (“Frames”, below xaxis). Some libraries received simulated 

fragments of phiX174 genomic DNA in place of a fraction of the 1000 V4 16S sequences 

(“%phiX174”, below x-axis). For each library, the Shannon diversity for each of the first 250 

sequences was graphed (light blue dots), and the distribution summarized with a box-and-

whiskers plot showing the extremes, upper and lower quartiles, and the median. Six 

frameshifts and no phiX174 were used in the remainder of this study (red box). 
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Figure 3.4. MiSeq run quality for Run A (setup run) and Run B (primary run).  

Run A, a setup run, met Illumina quality specifications of sequencing pure phiX174 

DNA and Run B, the primary run we analyze, came close.   

(a) Illumina MiSeq performance specifications for a 2 × 250 run of phiX174 is >75% of total 

bases above Q30 (not per cycle). A setup run without any phiX174 DNA, but containing a 

sample composition differing only in the initial concentration of several templates and library 

mixing (Materials and Methods), met the advertised specifications based on the machine’s 

statistics (top, purple box). The primary run we analyze (bottom; orange box), made up of a 

nearly identical composition of samples, was close. This was despite deliberate inclusion in 

these runs of all potentially-sequenceable material from low-yield and negative control 

samples.  

(b) Q Score heatmaps for setup run A (left; purple) and primary run B (right; orange). Both 

runs show sustained high quality, with diminishing quality towards the end of each run, and 

lower quality at the beginning of Read2 than of Read1 (circles).   

(c) Analysis of error rate across merged reads of a plasmid-borne clonal 16S rRNA template 

sample present in both runs reveals that the sequencing quality is similar in both runs. The 

mean error rate for pattern-matching (Materials and Methods) in each run is ~2.2 errors per 

thousand (ept) (color key), or Q27, with the error rate increasing towards the 3’ end of the 

read representing the non-overlapping portion of read 2, as expected.   
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Figure 3.5. MiSeq run quality for Run C (our method) and Run D (Earth 

Microbiome Project method).  

The runs were consecutive, on a machine that had the Illumina May 2013 software upgrade 

to Real-Time Analysis v1.17.28. The recommended 5% phiX174 spike was not used for 

either run. Our method (left) and the EMP method (right) were each used in parallel to 

amplify 16S rRNA from the same set of samples (Materials and Methods).  Amplicons from 

each method were mixed to make two independent libraries. 

(a) The EMP library was loaded at a lower cluster density than the library prepared by our 

method – although this is expected to reduce crowding and improve cluster recognition, 

significantly fewer clusters passed the machine’s quality filter.  Of the high quality clusters, 

the percent of bases above Q30 was higher for the library prepared by our method.  Both 

“nano” runs had more bases above Q30 than Run B used for the majority of analysis, likely 

the combined consequence of faster cycling due to the “nano” reagent kit, the software 

upgrade, and the fact that low-quality samples such as blanks were not mixed into the 

libraries, though they were in Run B.  

(b) As predicted from simulation (Figure 3.3b), observed base diversity is much higher for 

our method, resulting in no base approaching 100% representation in each cycle. In 

contrast, the EMP method results in much lower diversity.  

(c) The percentage of bases above Q30 on a per-cycle basis demonstrates a faster drop in 

quality for the EMP method for both read 1 (cycle 1-250) and read 2 (cycle 251-500).  

(d) Q score heatmaps demonstrating the full distribution of Q scores per cycle.   
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Figure 3.6. Template Tagging, PCR, sequencing, and Molecular Tag (MT) 

processing workflow.  

Primer components colored as in Figure 3.2. 

(a) Template is tagged with reverse MT-FS primers using one extension cycle, and residual 

primer is removed.  

(b) The reverse-tagged template is tagged with forward MT-FS primers using one extension 

cycle, and residual primer is removed.  

(c) Dual-tagged template is amplified using universal primers that add sample barcodes. 

Residual primers are removed and samples are quantified and mixed to a final library.  

(d) Amplicons are sequenced in three reads. First, the 9 bp sample barcodes are read 

following priming with “Barcode_seq”. The 250 bp forward read is sequenced following 

priming with “Read1_seq”, and the 250 bp reverse read is sequenced following priming by 

“Read2_seq”.  

(e) All sequenced are de-multiplexed based on the “Barcode_seq” read which captures the 

sample barcode. For each sample, Read1 and Read2 are merged.  

(f) Regular expressions find all sequences in the set of merged sequences that match the 

expected patterns, and then extract the MT and template sequence from these pattern-

matching sequences.  

(g) Sequences (colored lines) sharing the same molecular tag sequence (color) are grouped 

into the same MT category (each colored folder).  

(h) Sequences in the same MT category are aligned and a consensus sequence is built to 

represent that MT category. Singleton MT categories are kept in a separate file from 

consensus sequences. 
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Figure 3.7. A MT of 13 random bases is sufficiently unique.  

Monte Carlo simulation at four sampling depths showing the percentage of non-unique 

oligonucleotide (A, C, T, or G) N-mers for N’s of 10, 11, 12, 13, and 14. The simulation was 

repeated 5 times (multiple lines within each hue). A randomer of N = 13 (second line from 

bottom) has about 140 non-unique oligos for every 100,000 sampled (~0.1%), which group 

into 70 duplicates. In the case of a template-overloaded sample sequenced to a depth of 

100,000 reads or greater, these duplicate tags will lead to the unwanted classification of 

unrelated sequences as originating from the sample template. The consensus sequence 

made from the multiple sequence alignments will favor the overrepresented MT, often 

correcting the problem. Furthermore, each multiple sequence alignment can be assigned a 

quality score based on the average deviation of each sequence in the alignment from the 

consensus sequence for that alignment. Because multiple sequence alignments made from 

falsely-grouped independent templates will in general have worse alignment scores, these 

can be removed from the dataset by thresholding the worst alignments. Choice of random-

mer length must be a balance between uniqueness on the one hand, versus costs in terms 

of sequence length and oligo chaos caused by longer lengths of N. It is more important to 

minimize non-unique N-mers than attempt to eliminate them; samples for which deep 

sequencing is needed can be multiplexed over several barcodes to increase depth, allowing 

unique molecular tagging without increasing random-mer length. 
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Figure 3.8. Molecular tagging reduces sequence error for a clonal template.  

Molecular tagging reduces sequence error for a clonal template.  

(a) Diluting template increases the coverage within each MT. Shown are two replicates each 

(overlaid in the same color) of undiluted, 50× diluted and 100× diluted clonal 16S template. 

All six samples were rarefied to 40,000 sequences, and the number of sequences collapsed 

into each MT was graphed as a density distribution for each sample. We noted more 

singleton MTs than expected by a unimodal Poisson distribution for the diluted samples 

(arrow).  

(b) Per-base error rates per 1,000 sequences were measured in pooled data from the 50× 

and 100× diluted template samples. We compared no-MT sequences (NT); ConSeqs from 

two or more sequences with identical MTs (ConSeq); perfect ConSeqs, for which all 

sequences in the alignments of three or more sequences were identical (PConSeq); and 

singleton MTs (S). Mean error per thousand (ept) for each MT treatment is shown in the 

color key. 

(c) 30,000 ConSeqs (C) or untreated sequences (NT) were clustered into OTUs at both 97% 

and 99% identity thresholds. Rank-abundance curves demonstrate the number of 

sequences per OTU. The position of the colored boxes and circles below the x axis, and the 

numbers in each, show the number of ranked OTUs necessary to represent 95% of the 

sequences for each condition. 
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Figure 3.9. Molecular tagging lowers estimates of alpha diversity and improves 

technical reproducibility.  

(a) 16S sequences with no MTs (NT), ConSeqs from two or more sequences with identical 

MTs (ConSeq), singleton MTs (S) and a combination of ConSeqs and a downsampled 

fraction of the residual singletons (CAS) were rarefied before OTU formation and clustered 

independently into OTUs at 97% (left) and 99% (right) identity. Bacterial reads from root EC 

or soil samples were pooled, producing a soil pool and a root EC pool per MT treatment at 

each identity threshold. These pools were rarefied at intervals of 1,000 sequences, and the 

number of OTUs observed at each depth were plotted. Beige shading connects soil 

samples; green shading connects EC root samples. 

(b) Progressive drop-out analysis displaying the coefficient of determination (R2) of 24 intra-

run technical replicates as OTUs with low read numbers are discarded. OTU tables are the 

same as in a, with the exception that plastid and mitochondrial OTUs were not removed. 
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Figure 3.10. Beta diversity conclusions from our method vs. the Earth 

Microbiome Project (EMP) method.  

Four independent Mason Farm soil samples (back squares), four indepdent Clayton soil 

samples (brown squares), seven Mason Form root endopyte compartment samples from 

separate plants (puple circles) and 3 technical PCR replicates of a cloned 16S template 

were each phylotyped using the EMP method (top) or our method (bottom) (Materials and 

Methods). OTUs were formed at 97% identity and all samples were rarefed to 1,200 

sequences or 1,200 ConSeqs. Principal coordinates analysis based on weighted unifrac 

distances (left) demonstrates that for both methods, the first two principal coordinates 

capture a similar separation of sample types. For heatmap visualization, the OTUs were 

thresholded such that only those OTUs contaning at least 5 sequences or ConSeqs in at 

least one sample are displayed.  Heatmap rows and columns are ordered based on 

unsupervised clustering by Bray-Curtis dissimilarity. The heirarchical clustering results in the 

same separation of sample types as the Unifrac ordination for both methods, demonstrating 

that the same major beta-diversity conclusions can be reached with both methods. 

However, the ConSeqs from our method represent less noise, clearly evident from the single 

OTU formed for the clonal 16S template.  In contrast, the EMP method produed produce 

several low-abundance OTUs from the clonal template, and 31 more OTUs overall using the 

same thresholding parameters (x-axis of heatmap, Materials and Methods). 
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Figure 3.11. PNA schematic  

PNA functions as an additive in the PCR reaction mix (top). After denaturation, PNA anneals 

specifically to templates via base pairing. As long as the PNA has a higher melting 

temperature than the primers, it anneals to template prior to the primers (middle). Depending 

on design, PNA either directly blocks primer annealing or blocks extension of the nascent 

strand.  
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Figure 3.12. Exhaustive search for PNA oligo candidates.  

(a) The full length chloroplast 16S rRNA sequence was split in silico into all possible 9-mers, 

10-mers, 11-mers, 12-mers, and 13-mers. Each fragment was searched against the full 

length sequence for all sequences in the Greengenes 97% representatives microbial 

database, and the number of matches was graphed (black; log scale). Fragments of each 

length matching no sequences are marked with a red vertical line; these represent the best 

candidates for PCR clamping. The location of common 16S primers is shown beneath each 

histogram, and the location of the “pPNA” used in this study is shown with a green arrow.  

(b) As above, but for the mitochondrial 16S sequence. The location of the “mPNA” used in 

this study is shown with the red arrow.  
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Figure 3.13. PNA specifically blocks amplification of contaminant sequences.  

(a) The stacked bar chart legend (left) schematizes the relative abundance of ConSeqs 

classified as bacteria, plastid, mitochondria (Mito.) and other. PNA was titrated into PCR 

reactions of root EC DNA. Each green or red block below the histogram represents 0.25 μM 

of pPNA or mPNA in the final reaction, respectively. The sequence copy number per MT, 

and thus the mean number of sequences (seqs.) in each alignment used to compute the 

ConSeqs (blue bars, right), is determined by the sequencing depth and the amplifiable 

template concentration.  

(b) Root EC samples (rows) to which varying titrations of PNA had been applied (colored 

blocks) were clustered on the basis of the abundance of bacterial families (columns; family 

IDs not shown). The relative abundance of each bacterial family is displayed as a heat map.  

(c) Clustering and abundance as in b but with soil samples. Note that there is no clustering 

by PNA treatment in b and c. 
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Figure 3.14. No bacterial OTU abundances are affected by pPNA or mPNA.  

(a) Root EC samples were clustered by the abundance of the 75 bacterial OTUs with ≥5 

ConSeqs in at least one of the 24 samples. The heatmap shows the relative abundance of 

each OTU (columns) for each of the samples (rows) with the PNA doses shown (colored 

blocks). For each OTU, the 12 samples containing pPNA were tested for lower abundance 

than the 12 samples containing no PNA or only mPNA (left; green). Similarly, the 12 

samples containing mPNA were tested for lower abundance than the 12 samples containing 

no PNA or only pPNA (right; red). P-values were obtained with a permutation test on the 

means using 10,000 permutations, and the P-value distribution was plotted across 10 bins 

(histograms). P-values were corrected for multiple testing with the FDR method; no OTUs 

were found significant. Each P-value distribution was shown not to deviate from the null flat 

distribution with a Chi-squared test (P-values for Chi-squared below histograms). 

(b) Same as in a, but for the 1,010 OTUs in soil samples with ≥5 ConSeqs in at least one of 

the 24 samples. Owing to the much greater number of OTUs the P-value distributions were 

plotted across 20 bins (histograms). The Chi-squared P-values, both for pPNA and mPNA 

comparisons, supported the null hypothesis of a flat distribution. P-values were corrected for 

multiple testing with the FDR method; limited OTUs in soil samples had significant Q-values 

(bold, red). Consistent with these statistics, there is no clustering (based on Bray-Curtis 

dissimilarity and group average linkage) by PNA treatment. 
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Figure 3.15. No bacterial family abundances are affected by pPNA or mPNA.  

(a) The abundance of each bacterial family with ≥5 ConSeqs in at least one of the 24 

samples in different PNA treatments (Figure 3.13b) was compared for root EC. For each 

bacterial family, the 12 samples containing pPNA were tested for lower abundance than the 

12 samples containing no PNA or only mPNA (left; green). Similarly, the 12 samples 

containing mPNA were tested for lower abundance than the 12 samples containing no PNA 

or only pPNA (right; red). P-values were obtained with a permutation test on the means 

using 10,000 permutations, and the P-value distribution was plotted across 10 bins 

(histograms). The P-values were corrected for multiple testing with the FDR method; none of 

the resulting corrected Q-values were significant. Each P-value distribution was shown not 

to deviate from the null flat distribution with a Chi-squared test (P-values for Chi-squared 

below histograms). 

(b) Same as a, but analyzing bacterial families in soil (Figure 3.13c).  One Q-value for the 

mPNA test, corresponding to the family Bdellovibrionaceae, was significant.  
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Figure 3.16. Diverse plant species for which the PNAs in this study should 

block organelle V4 16S amplification.  

(a) Diverse plant species for which the PNAs in this study should block organelle 16S 

amplification based on an exact sequence match. Phylogenetic tree and choice of plant taxa 

adapted from Phytozome v9.1 (http://www.phytozome.net/).  Branch lengths are not 

meaningful. Plastid and mitochondrial organelle sequences for each plant in the phylogeny, 

or a relative in the same genus if the Phytozome species was not available, were collected 

from NCBI GenBank.  The pPNA and mPNA sequences were queried against all collected 

plastid and mitochondrial sequences, respectively.  Green squares represent exact matches 

http://www.phytozome.net/
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of the pPNA to the plastid sequence; red squares represent exact matches of the mPNA to 

the mitochondrial sequence; grey squares represent a mismatch; white squares filled with 

“?” mean that the organelle sequence was not publicly available.  

(b) Leaf samples from A.thaliana (left) and O.sativa (right) were amplified with or without a 

mix of both pPNA and mPNA.  Despite the extreme host contamination present in DNA from 

ground leaves (98.3% and 99;8% for A.thaliana and O.sativa respectively), addition of PNA 

increased the relative abundance of bacterial reads (top).  Although the effect appears 

modest for O.sativa, the use of 1.25 μM of both PNAs (arrow) represents a more than 20-

fold increase in detectable templates.  As with A.thaliana leaves, PNAs blocked the 

amplification of the majority of contaminant, and hence, template molecules of O.sativa, 

resulting in less sequenceable material (dark blue bars).  However, more total bacterial 

sequences were nonetheless recovered (brown bars).  These results are consistent with the 

PNAs functioning to block chloroplast and mitochondria, but not bacteria, in O.sativa.   
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Figure 3.17. Universal PCR primers can be used to amplify and barcode other 

tagged templates.  

(a) Root EC DNA was tagged with either V4 16S MT-FS primers or ITS2 MT primers.  

Tagged template was amplified with universal PCR primers, sequenced, and MTs were 

used to form ConSeqs.  For 16S (top, black) and ITS (bottom, green), the OTUs present 

among 14,112 ConSeqs were classified by their sequence length (x-axis), and the number 

of OTUs present at each length was plotted (y-axis).  The total number of OTUs for each 

amplicon is inlaid in each plot.  Although there were more V4 16S OTUs, the distribution of 

amplicon lengths is much narrower than for ITS.   

(b) The OTUs of 16S ConSeqs (black) and ITS ConSeqs (green) were ranked by their 

relative abundance and the number of sequences (log y-axis) is shown for the 10 most-

abundant OTUs (x-axis). (c) The ITS OTUs shown in b were queried against the NCBI 

database using BLAST and the OTU length in base pairs and the best-scoring hit is shown.  

Several Arabidopsis OTUs demonstrate host contamination, but other eukaryotic and fungal 

OTUs are clearly present.   



155 
 

 

Figure 3.18. Primer linkers.  

Our linkers differ from those used by the Earth Microbiome Project (Caporaso et al. 2012). 

Ideal linkers should lack identity to the majority of microbial sequences in order to buffer the 

other elements of the template-tagging primer from the template. Our choices are equally or 

more divergent from sequences in the Greengenes database than are the EMP primers.  
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CHAPTER 4 

 
CONCLUSIONS AND FUTURE DIRECTIONS 

LIMITATIONS OF CURRENT WORK 

One potential explanation of the failure of current DNA sequencing methods to 

identify numerous and robust plant-genotype dependent microbial associations is that 

sequencing restricted to ribosomal regions cannot readily infer microbial genome sequence 

or function. For example, the genus Pseudomonas contains strains ranging from plant 

growth promoting to pathogens, which, depending on the length and region of 16S 

ribosomal gene sequenced, may appear the same (Blakney and Patten 2011). Single genes 

in otherwise closely related microbial backgrounds (by ribotyping or whole genome content) 

may determine whether plant-associated microbes can colonize as pathogens or are instead 

recognized by the plant immune system and thus fail to grow (Jones and Dangl 2006). In a 

complex wild soil, 16S might suggest all plants associate with Pseudomonas, but hide the 

fact that each plant genotype was only compatible for colonization by certain 

Pseudomonads.  An alternative possibility for the failure to attribute a larger fraction of 

microbiome community variance to host genotype is that the majority of microbes colonizing 

a plant species may be generalists with a wide host range. This is consistent with the 

concept of a core microbiome (Bulgarelli et al. 2012; Lundberg et al. 2012) that is largely 

stable across ~25-30 million years of separation in the Brassicaceae, including A. thaliana 

and two of its relatives (Schlaeppi et al. 2013). Whether root-associated microbes have host 

specificity that current methods do not detect, or whether they are generalists, will become 
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more clear as we learn more about plant microbiome function. And it may be that some 

plant-microbe interactions only occur under specific nutrient or stress conditions, consistent 

with the observations of soil-specific contributions to root endophytic compartment 

microbiomes (Bulgarelli et al. 2012; Lundberg et al. 2012). 

Despite advances in high-throughput sequencing technologies, it is still difficult to 

answer mechanistic questions regarding microbiome function due to lack of experimental 

genetic or functional characterization. While in some cases it may be possible to reconstruct 

bacterial functional profiles from phylotyping (Langille et al. 2013), this is dependent on a 

high quality reference database, currently lacking for many plant-associated microbiota. In 

cases of simple microbial environments, including synthetic communities deployed in 

microcosm reconstitution experiments, the utility of ribosomal gene sequences is higher, 

because there is no ambiguity in mapping sequence reads to input organisms (Reyes et al. 

2013). Because the synthetic community approach is limited to only culturable taxa, it is 

imperative that significant effort is given to the isolation and genome sequencing of plant-

associated microbes to increase that fraction of the root- or leaf-enriched microbiota that can 

be cultured. Such collections will ultimately lead to synthetic communities of known and 

individually traceable microbial inputs, providing uniform experimental tools. From such 

experiments, quantitative information about one or a few marker genes can provide high 

confidence in the exact membership of the microbial community for each plant, and if the 

genomes of the community members are known, the full metagenome can be inferred from 

the set of genes detected (Faith et al. 2014; Faith et al. 2013; Faith et al. 2011; Goodman et 

al. 2009; McNulty et al. 2013; Rey et al. 2013). One hope is that synthetic recolonization 

experiments will reveal host-genotype dependent associations with specific microbial gene 

functional groups 
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Higher resolution techniques are needed to develop cocktails of microbial probiotics 

for plant health and to discover plant loci that enhance these functions for agronomic use. 

Because sequencing costs continue to drop, it is likely that shotgun metagenomics, 

metatranscriptomics, and, as the relevant technologies become more available, 

metaproteomics and metabolomics approaches (Ye et al. 2013) applied to large numbers of 

samples will increasingly describe communities in and on plants grown wild soils, ultimately 

impacting plant health (Mendes et al. 2013). Existing work looking across multiple samples 

with both 16S ribotyping, as well as whole metagenome sequencing, demonstrates that 

taxonomically diverse microbes may be functionally redundant (Burke et al. 2011; Lozupone 

et al. 2012). Thus, in some cases where organisms have the same ribosomal sequence, but 

different genomic content, ribosomal sequencing may mask functional diversity, whereas in 

other cases, microbes from different lineages may have similar functional roles. Further, 

approaches using conserved genes other than 16S are promising (Sunagawa et al. 2013), 

but will not overcome the fundamental limitations of single marker profiling. The power of re-

colonization experiments to derive both the rules for the establishment and microbial 

interactions with hosts will expand rapidly. These developments, and their use in controlled 

environment conditions, are imperative if we are to successfully define and deploy mixtures 

of functionally redundant microbes as probiotics in uncharacterized environments where 

they will need to outperform indigenous communities. 
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FUTURE DIRECTIONS 

Establish experimental system for “synthetic community” microcosm reconstitution 

experiments. 

We have had an ongoing effort to culture single isolates of bacteria from Arabidopsis 

roots grown in Mason Farm or Clayton soil, and have collected to date about 600 strains. 

For each strain we made a freezer stock stored at -80 degrees C for future use, and we 

have sequenced the V8 and V4 regions of the 16S rRNA gene (Figure 3.1). Using pairwise 

sequence comparisons, we can match each isolate to the closest OTU from our deep-

sequencing work of plants grown in those same soils. Bacteria that are close matches to 

OTUs (Chapter 2) are likely to be closely related to the bacteria that contributed to those 

OTUs.  

This matching has revealed that we can readily culture more than 50% of the 

phylotypes that are enriched in the EC of A. thaliana based on the work in Chapter 2, which 

has encouraged us to continue culturing and to further investigate novel culturing media to 

find isolates that match currently unrepresented EC-enriched OTUs. We also keep and store 

root isolates that do not match OTUs enriched in the EC, because they nonetheless were 

associated with roots and may be important soil microorganisms that commonly interact with 

root-associated bacteria. We have not yet cultured fungi, because growth, quantification, 

and genetics are all more difficult than with bacteria, but this is an important future direction, 

especially as fungal databases and fungal quantification technologies improve, because 

fungi are in some cases growth promoting in Arabidopsis (Contreras-Cornejo et al. 2009; 

Qiang et al. 2012), and certainly are important pathogens (Foley et al. 2013). 

Having frozen stocks available for experiments makes it possible to grow and mix 

them into specific cocktails, or “synthetic communites”, with which to inoculate seeds or 
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plants. For highest reproducibility, numerous identical freezer stocks can be made from a 

single bacterial suspension; each of these can be thawed, cleaned of the glycerol 

cryoprotectant, and used directly in an experiment without an intermediate growth step. 

Adding defined bacteria to an otherwise sterile substrate means that the organisms 

in the system are known. Sterilizing natural soils and potting soils is difficult to accomplish 

without changing the properties of the soil in unpredictable ways or introducing toxic 

compounds (Boyd 1971), but other more inert materials (sand, perlite, calcined clay) can be 

autoclaved without substantially changing their properties, and can be used as a plant 

growth substrate. I chose to use fine calcined clay (~ 1 mm particle size), a material used 

extensively in hydroponic gardening, one which has good water retention, and which allows 

one to easily extract clean roots (Eddy and Hahn 2008). If not fertilized in any way, the inert 

calcined clay barely supports growth of Arabidopsis, with rosettes only millimeters across at 

maturity (data not shown). However, buffered nutrient solutions such as MS media, or 

perturbations including nitrogen and phosphorus deficiencies, can be used to irrigate the 

calcined clay to either promote healthy growth or to create classic nutrient deficiency 

phenotypes. Arabidopsis grown in calcined clay irrigated with MS media reaches a similar 

size to plants grown in potting soil (Eddy and Hahn 2008).  

For a proof of concept synthetic community experiment, we mixed a synthetic 

community of 42 bacterial members, where 42 represented the largest set of isolates from 

our collection for which each isolate differed from all other isolates by at least 3 SNPs in the 

V4 region of the 16S rRNA gene that we use for MiSeq phylotyping (Chapter 3). This 

threshold of 3 SNPs, which would require multiple mutations to convert the sequence into 

another of the 42, was chosen as a conservative first pass. In cases where multiple strains 

had V4 sequences less than 3 SNPs distant from each other, we prioritized for the 

community those isolates which had a V8 sequence matching one of the EC-enriched OTUs 
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in Chapter 2. We chose 28 EC-enriched isolates which fell into 18 families, with the 

Bacillaceae and Streptomycetaceae each represented by 4 strains. We then added 

additional individually-distinguishable bacteria from diverse phyla to the community to make 

the community as large as possible while satisfying the ≥ 3 SNPs criteria, including DH5α E. 

coli as a control 

The 42 strains were resuspended in dilute MS media buffered with MES to pH 6.0. 

They were either mixed to a final concentration of 105 cfu / mL for each strain (“equal OD 

input”, Figure 4.1), or each strain was assigned a final concentration of 103, 104, 105, or 106 

cfu / mL. (perturbed OD input, Figure 4.1) The communities were irrigated onto autoclaved, 

dry calcined clay and sterile 1 week old Col-0 and Cvi-0 seedlings were transferred from 

agar plates to the inoculated clay. The plants were grown in a growth chamber using 

methods in Chapter 2 and watered as needed with sterile distilled water; roots were 

harvested at bolting and the root-associated microbes were quantified using methods in 

Chapter 3. In an accompanying experiment by Natalie Breakfield and Meghan Feltcher, the 

“equal OD” community was also mixed into phytoagar with MS media and 1 week old Col-0 

seedlings were transferred to the agar. Agar plates were grown vertically, and after 2 weeks 

of growth seedlings were harvested and microbes in roots were quantified by 16S 

sequencing. The results of this early experiment show that while the agar and calcined clay 

systems show major differences, some of the bacteria from in inoculum do recolonize the 

root in both systems (Figure 4.1). Contamination from air and water in the calcined clay was 

minimal, around 5% of total sequences. To further create a gnotobiotic system, I also 

created growth containers modeled on a test tube using pots with sealed bottoms and 

modified MagentaTM  jars (Figure 4.2). While we do not yet have sequence data from these, 

visually they show less contamination by ambient surface fungus that calcined clay pots 

grown in open air. In contrast to sealed containers, the gnotobiotic jars with calcined clay 
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allow gas exchange, lower humidity, healthier rosette development to maturity, and can be 

serviced to add sterile water or new treatments.  

 An experiment I consider an important next step, which is currently running, involves 

expanding upon the 42 member community experiment to include more isolates, more 

genotypes, and more replicates. Error rates were low enough in the 42-member experiment 

that we feel confident identifying and quantifying sequences differing by only 1 SNP, 

allowing us to independently quantify 62 strains. Sur Herrera Paredes and I inoculated 

calcined clay, both in open pots and in the gnotobiotic jars, with a mix of 62 bacterial isolates 

in buffered dilute MS media, and planted four different Arabidopsis accessions (Col-0, 

Shahdara, Cvi-0, and Oy-0) plus the related Brassicaceae Capsella rubella (Slotte et al.) 

and the model grass Brachypodium distachyon (Vogel et al. 2009). There are bulk soil 

controls as well as uninoculated plant controls for each genotype. The results from this 

experiment will reveal if the host genetic background alters the final relative abundance of 

these 62 bacteria; the question is the same as that asked in Chapter 2, but the precise 

tracking of individual strains made possible by defining the organisms allowed into the 

experiment will help resolve whether the root colonizers are generalists or whether there is 

preferential colonization of certain host genotypes. All of these 62 bacteria have or will have 

their genome sequenced, so we will be able to infer and computationally reconstruct the 

metagenomes enriched in each plant from the relative abundance of 16S rRNA genes, 

which will also let us see if there is consistency in enriched functional content (Burke et al. 

2011). 
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Tag genomes of bacterial isolates  

We are interested in understanding if closely related bacteria differ in their ability to 

colonize the root, which sets the stage for genetic dissection of bacterial colonization 

components. We are also interested in understanding how synthetic communities that we 

create in the lab, such as communities that confer benefits to the plant, may fare when 

unleashed into wild soil, where closely related organisms may already exist in abundance. 

Tracking a synthetic community among wild organisms, becomes a challenge, and the 16S 

rRNA gene loses utility in this context because closely related strains share the same 16S 

sequence. Whole metagenome sequencing also has limited utility for quantifying closely-

related strains inside the root because 1) whole genome sequences for all bacteria of 

interest are required 2) it is difficult to overcome the abundance of host DNA and 3) when 

the strains of interest are closely-related, only a small fraction of the sequencing reads will 

actually be unique to each strain.  

 A strategy worth pursuing to overcome these problems is tagging the genomes of 

strains of interest with a unique sequence. This sequence can either be integrated via 

transposon into the highly-conserved Tn7 site (Choi et al. 2005), or put onto a stable single-

copy plasmid. I designed a construct that drives a fluorescent protein from the broad host 

range promoter described in Choi et al. (Choi et al. 2005). The transcription terminator is 

linked to a unique 19 base pair sequence (added by priming with a degenerate primer) that 

serves as the strain ID, and the terminator and strain ID are flanked by two synthetic 

sequences that serve as annealing points for PCR primers (Figure 4.3). When this construct 

is integrated into the Tn7 site or a stable plasmid, the transformed bacteria will glow and can 

be imaged under a confocal microscrope, but importantly, each strain will also have a 

unique ID. Tagged strains can then be inoculated to plants growing on wild soil, and the 

terminator + ID can be amplified via PCR and sequenced using methods described in 
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Chapter 3. Each input strain can then be quantified by counting the abundance of its strain 

ID in the total pool of strain ID amplicons. We are well underway building this system. 

 

Improve plant phenotyping 

The ultimate practical goal of the research in this dissertation is to better understand 

how the genome of the host plant might influence the colonization of beneficial root bacteria, 

and eventually improve the health of the plant. To know if plant health is improving, a 

measure of plant health is needed. For example, rosette size is related to fecundity (Kawano 

2012). Furthermore, plants that are lacking important nutrients and micronutrients, or that 

are affected by toxic levels of chemicals, often reveal this stress in their leaf color. For 

example, phosphate-deficient Arabidopsis is smaller and accumulates red-colored 

anthocyanins (Ticconi et al. 2001). Thus, images of rosettes can provide valuable 

information about overall plant health.  

Manually measuring features of live plants is slow, but automated computational 

image analysis provides an opportunity to measure plant health quickly. Overhead images 

of plants growing in opaque substrates such as calcined clay and wild soil allow for analysis 

of rosette size, rosette color, and even more sophisticated phenotypes. Such remote 

phenotyping is an active research area for crop plants (Peng et al. 2011) and are used by 

biotech companies.  

I have helped, along with Surge Biswas, to develop a high-throughput  imaging 

system for Arabidopsis. Multiple plants in a flat can be imaged from overhead using a copy 

stand. Individual plants, or positions of the flat, have custom barcodes attached to them. We 

created software to recognize the barcodes in the image and segment the image into 

subimages of the individual plants (Figure 4.4); our goal is then to adopt and create software 
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to measure rosette size and rosette color attributes in each image, which can be converted 

into quantitative data that can be analyzed immediately. The speed and ease of such 

imaging makes it practical to image hundreds of plants every week, and search for links 

between growth rate and soil or endophytic microbial communities.   

Of particular interest will be microbes or communities of microbes that result in larger 

and greener rosettes, microbes that can reverse the poor health of plants grown in nutrient-

deficient soil, or microbes that can reverse the poor health of plants grown in the presence 

of pathogens.        
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FIGURES 
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Figure 4.1: Re-colonization of Arabidopsis root endophytic compartments in 
two different experimental systems.  
 

Heatmap illustrating the abundance of 38 out of 42 input isolates (rows) across individual 

samples (columns) from two synthetic community experiments, NBMF1 (sterile agar) and 

BS1 (sterilized calcined clay). Four isolates had fewer than one read on average in the 

inoculum and are therefore not included. The abundance of an isolate is measured as the 

number of molecule tag consensus sequences that exactly match its V4 reference Sanger 

sequence, and molecule tag consensus sequences were formed using the default 

parameters of MTToolbox (Lundberg et al. 2013). Covariate bars (black bars, bottom) 

describe each sample's fraction (inoculum, neighboring soil, root), inoculum evenness 

(Equal OD input; Perturbed Input), and surrounding medium (calcined clay, MS agar). Rows 

of the heatmap are sub-blocked according to each isolate's ability to colonize the root in 

both experiments (8 isolates), NBMF1 only (3 isolates), BS1 only (8 isolates), or neither 

experiment (19 isolates). An isolate is said to colonize the root if the probability of its 

presence in a sample statistically exceeds 0.5 (q-value < 0.05, binomial test). Names of 

Isolates that colonized, based on a greater than 50% probability of being observed in a root, 

are colored light blue. The experiment in which that isolate colonized is noted underneath 

the dendrogram (A, agar only; C, calcined clay only; B, both agar and calcined clay). Figure 

and analysis made with help from Surojit Biswas. 
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Figure 4.2: Gnotobiotic calcined clay system.  
 
Left: pots are sealed on the bottom with silicone so that microbes and water cannot pass, 

and then filled with calcined clay. Pots are placed on a perforated surface that allows for 

airflow. The pots are covered with an upside down MagentaTM GA-7 jar and the whole unit is 

autoclaved. Right: Calcined clay is irrigated with growth media at 40% its dry volume and 

sterile seeds or seedlings are transferred – pots are grown in a climate-controlled growth 

chamber and serviced as necessary in a sterile hood. 
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Figure 4.3: Tagging construct for bacterial isolates 
 
The broad host range promoter PA1/04/04 (a Plac-derivative) (Lambertsen et al. 2004) drives a 

citrine gene or other fluorescent protein. A unique PCR-able site is 5’ of the transcription 

terminator (top). To add a strain ID, the promoter through the terminator are PCR-amplified 

with a forward primer and a degenerate reverse primer that adds the strain ID and a second 

PCR-able site (arrows), generating millions of possible constructs with different strain IDs 

(bottom). Each unique construct can be used to transform one and only one isolate, giving 

each an independent strain ID. The relative abundance of all tagged isolates can be 

measured by sequencing the amplicon defined by PCR site 1 and PCR site 2. 
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Figure 4.4: High throughput rosette imaging 
 

a) Barcodes are produced using heatmap-type functions in R, printed, and laminated. Each 

barcode has three white squares in an L orientation (red line, top), where the long axis has a 

‘zebra’ pattern that helps delimit the 11 horizontal units of the barcode (blue box). An actual 

image of a printed and laminated barcode is shown below.  

b) Actual image of 8 pots, each with a barcode clipped to the side of the pot via a binder clip. 

The matlap script recognizes the “L” orientation for each barcode (red), boxes the barcode 

(blue), and reads the binary barcode (digits). Each pot is then cropped (green boxes) and 

the subimage is saved as a new file with a filename that incorporates the barcode digits.  
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