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ABSTRACT 

Sarah Eileen Claypool; Characterization and Application of Highly Specific 2’-F RNA Aptamers 

Targeting a Potentially Novel Pancreatic Ductal Adenocarcinoma (PDAC) Biomarker(s) 

(Under the direction of Rihe Liu) 

 

Pancreatic ductal adenocarcinoma (PDAC) has an extremely dismal 5-year survival rate 

of only 6%. Highly specific targeting ligands that can aid in early stage diagnosis and improved 

treatment are urgently needed. To address the challenge, cell-SELEX was used to develop a 

panel of partially modified, 2’-F RNA aptamers that highly selectively recognize pancreatic 

ductal adenocarcinoma cells. One of the best aptamers, termed 1502, was optimized to be the 

shortest target-binding motif that retains the target-binding specificity and affinity, and further 

chemically synthesized with various 3’ and 5’ functional groups for characterization and 

application. Using hyperthermia treatment mediated by gold nanoparticles targeted with this 

optimized aptamer, it was found that the aptamer recognizes all the eleven pancreatic cancer cell 

lines we have tested, but not normal pancreas, nor numerous non-pancreatic cancer cells. 

Additionally, a hybrid lipid-PLGA nanoparticle was developed that can carry small molecule 

organic dyes or drugs for a therapeutic delivery application. With a 5’-modified variation of 

aptamer 1502, this nanoparticle was functionalized to target PDAC cells, and subsequently 

internalized to deliver a cytotoxic drug, resulting in selective cell-killing. We believe that this 

aptamer can be translated to in vivo delivery models and can be used to identify a putative novel 

biomarker of pancreatic ductal adenocarcinoma. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background on Pancreatic Ductal Adenocarcinoma  

The pancreas is a gastrointestinal organ located behind the stomach and next to the 

spleen. This organ contains both endocrine and exocrine glands, both serving vital purposes in 

one’s body. The endocrine glands, which make up a smaller percentage of the cells in the 

pancreas (~5%), play an important role in making critical hormones, such as insulin and 

glucagon. These cells, when clustered together, are called the “islet of Langerhans”, and they 

release hormones into the blood, aiding in the regulation of sugar, among other things. 

The exocrine glands synthesize pancreatic fluids that contain enzymes that help with food 

digestion in the intestines. These enzymes are released into small ducts that form together to 

become larger ducts, that empty into the pancreatic duct. This duct works with the bile duct to 

release the synthesized pancreatic fluids into the duodenum at the ampulla of Vater. These 

glands and ducts consist of the majority of the pancreatic cells, representing about 95%. 

Dysregulation or irregular growths within the exocrine glands of the pancreas would be 

devastating to the proper function of the majority of the pancreas and affect other organs within 

the gastrointestinal system. 

 As with any other organ system, growths and irregularities can unfortunately occur 

within the pancreas. Some of these issues can be associated with infection, such as pancreatitis, 

or growths that are benign. Patients are starting to receive more prevalent screening through CT 
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scans, which has helped to identify newly discovered benign pancreatic lesions. These include 

serous cystic neoplasms (SCNs), mucinous cystic neoplasms (MCNs), and intraductal papillary 

mucinous neoplasms (IPMNs).  While SCNs are usually benign tumors, MCNs and IPMNs have 

the potential to become cancerous over time if not treated.  

Additionally, there are rare cancerous tumors that can occur within or around the 

pancreas. One of these types is solid pseudopapillary neoplasms (SPNs), a slow-growing tumor 

that usually occurs in young women. Surgery is the best treatment for SPNs, and fortunately, the 

outlook is favorable. Another rarer cancer related to the pancreas is ampullary cancer, which 

starts in the ampulla of Vater, where the bile duct and pancreatic duct come together and empty 

into the small intestine. With ampullary cancer, the tumors typically develop to form a blockage 

in the bile duct. This causes bile build up, resulting in jaundice and dark colored urine. These 

noticeable symptoms allow for ampullary cancer to be detected at an early stage, giving patients 

a fairly promising prognosis. 

The exocrine cells and endocrine cells of the pancreas can both form tumors. It is critical 

to distinguish between these different pancreatic cancer types when determining the diagnostic 

tests, symptoms, risk factors, treatment, and prognosis. The endocrine tumors are much less 

common than the exocrine, representing only 4% of pancreatic cancer diagnoses. Cancers that 

can form within the exocrine cells include adenosquamous carcinomas, squamous cell 

carcinomas, signet ring cell carcinomas, undifferentiated carcinomas, and undifferentiated 

carcinomas with giant cells. As a group, the endocrine cancers are sometimes known 

as pancreatic neuroendocrine tumors (NETs). Pancreatic NETs can be benign or malignant. 

Unfortunately, sometimes the diagnosis only becomes clear when the tumor spreads outside of 

the pancreas.  
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Exocrine tumors are by far the most common type of pancreatic cancer. Most patients 

that are diagnosed with pancreatic cancer has an exocrine type of cancer. Pancreatic ductal 

adenocarcinoma specifically is an adenocarcinoma that begins in the exocrine glands. About 

95% of cancers that are exocrine are adenocarcinomas. These cancers usually begin in the ducts 

of the pancreas, however they can also develop from the cells that make the pancreatic enzymes, 

in which case they are considered acinar cell carcinomas. Pancreatic ductal adenocarcinoma 

(PDAC) is one of the worst human cancers, with diagnosis leading to an extremely poor chance 

of survival. In fact, only 7.2% of people with PDAC survive past five years of diagnosis.
 
This 

dismal outlook is in part due to two major concerns regarding pancreatic cancer: a lack of 

effective therapies as well as poor early diagnostic tools
1
.  

 

1.2 Unmet Need with PDAC 

Specifically, early diagnosis for PDAC has shown to be difficult for many reasons. One 

reason is that the symptoms of pancreatic cancer, such as loss of appetite, weight loss, and pain 

in the abdomen often go unnoticed until the cancer is beyond its early stages 
2
. In addition, the 

diagnostic tools in place have limitations in their efficiency in detecting malignant tumors as 

opposed to benign tumors. For example, 20% of patients undergoing CT scans showed 

pancreatic cystic neoplasms and require biannual to annual imaging. Since 60-80% of these 

neoplasms are benign lesions, it is a growing diagnostic dilemma as to how to assess the risk of 

malignancy and the attendant need for an operation 
3
. It has been seen with many cancers that 

targeted therapeutic and diagnostic agents can be beneficial in recognizing biomarkers that are 

overexpressed in only cancerous cells, reducing off-targeting side effects to normal cells while 

allowing for a tumor selective method for both treatment and early diagnoses.  
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Unfortunately, when it comes to pancreatic cancer, this approach has proven very 

difficult due to very few pancreatic cancer-specific biomarkers being proven and identified. Not 

to mention the effect that this has on discovering ligand-based biopharmaceuticals that can be 

used in targeted diagnosis and therapy 
4,5

.  Therefore, there is an urgent need for isolating and 

identifying novel biomarkers specific for PDAC, to enable the development of targeted therapies 

and diagnostic tools.  

 

1.3  Cell-SELEX Preliminary Data   

To address this need, Dr. Hui Chen, a previous post-doc in the Liu lab, used the powerful 

directed molecular evolution technology to selectively isolate targeting ligands that sensitively 

and specifically bind to PDAC cells, and not normal cells, from a pool of nuclease-resistant RNA 

sequences with high diversity. All preliminary data in this chapter is attributed to Dr. Chen’s 

efforts. Ideally, using living pancreatic cancer cells to target the ligand development is the best 

method for determining the physiological interactions of the ligand and the cell-surface 

biomarker. As a negative control, normal pancreas epithelial cells and other non-pancreatic cells 

can be used. This approach has a big advantage on using bioactive PDAC cell surface 

biomarkers without need for target identification, expression and purification, a process that is 

very challenging and time-consuming, particularly for membrane-bound biomarkers that are 

often extensively glycosylated. The method of selection that we chose to use is known as cell-

SELEX, a technology that has shown to be very successful in our previous studies. 

Thus far, only in vivo phage display and cell-SELEX methods allow the use of living 

cancer cells as targets for the development of targeting ligands 
6,7

. In vivo phage display typically 

results in target-binding shorting peptides. Due to their unstructured nature, the short homing 
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peptides are less likely to bind a target with high affinity. In addition, most short peptides are 

quickly degraded by various proteases in plasma when applied under physiological conditions, 

even if they are PEGylated to minimize systemic clearance. One solution to the dilemma is to 

use nuclease-resistant nucleic acid molecules as targeting ligands. Aptamers are high affinity 

single stranded nucleic acid ligands (wild type RNA, DNA, or modified RNA), each specific for 

a given target molecule with high affinity and specificity. The term ‘aptamer’ was coined by the 

Szostak lab at Massachusetts General Hospital, where my thesis advisor, Dr. Liu, was well 

trained for the in vitro selection of functional macromolecular molecules 
8
. The Liu lab at UNC 

Chapel Hill has published a number of papers on the selection of functional macromolecules 

from combinatorial libraries with unusually high diversity using sophisticated directed in vitro 

selection technologies 
9-13

.  

Nucleic acid-based aptamers possess several unique features that make them suitable for 

in vivo translational applications, including high target-binding specificity and affinity, little 

immunogenicity, low toxicity, and long shelf life. Aptamers can be developed through an 

amplification-based iterative round of selection approach called SELEX. Most of the aptamers 

reported so far were selected using purified targets. If successfully performed, the selected 

aptamers typically exhibit remarkable affinity and specificity to their targets, with dissociation 

constants ranging from medium picomolar (50 x 10
-12

 M) to low nanomolar (10 x 10
-9

 M), which 

are stronger than that typical for interactions between Fab fragments and their target antigens 
14

. 

However, aptamers based on unmodified nucleic acids have very short half-lives (several 

seconds to minutes for unmodified RNAs and less than 1 hour for DNAs) under physiological 

conditions due to quick degradation by nucleases that are abundant in the plasma, and therefore 

cannot be used in translational research. The stability of a nucleic acid in plasma is largely 



6 
 

determined by its backbone composition. It was found that substitution of ribonucleotides with 

2'-fluoro or 2'-O-Me nucleotides can greatly increase the plasma stability of an aptamer 
15-17

. 

Significantly, 2'-fluoro CTP and 2’-fluoro UTP can be incorporated into RNA molecules during 

in vitro transcription by using appropriate T7 RNA polymerase mutants 
18-21

. The Liu lab has 

developed and purified a series of T7 RNA polymerase mutants that allow for efficient 

incorporation of different combinations of 2’-fluoro or 2’-OMe NTPs into RNAs. The resulting 

2’-modified RNA aptamers are resistant to nucleases and highly stable in plasma, with in vitro 

half-lives in the 10 to 15 hour range. The plasma stability of an aptamer can be further enhanced 

during post-selection optimization by capping the 5’ and 3’ termini and incorporating non-

nucleotide linkers 
22

. 

When the putative cell surface biomarkers have unknown properties, interactions with 

other biomolecules, or roles in mediating downstream signaling pathways, as in pancreatic 

cancer, cell-SELEX is an ideal technology platform for the development of cancer-specific 

targeting ligands against such a putative biomarker. The conventional SELEX relies on using 

purified target molecule that has been well characterized. Since our knowledge on the targetable 

cell surface biomarkers for PDAC is extremely limited, we applied a method known as cell-

SELEX, which allows the use of living cancer cells as targets. Compared to conventional 

SELEX, cell-SELEX has several major advantages7,23,24
. First, the potential targetable PDAC 

biomarkers are present on the cell surface as their native conformation, and therefore bypasses 

the otherwise indispensable prerequisite of knowing, expressing, and purifying the bioactive 

target proteins. Second, different biomarkers are present on the cell surface, making it possible to 

simultaneously identify multiple aptamers, each specifically recognizing a unique targetable 

biomarker. In this project, we aim at addressing the critical needs in targeting PDAC by 

file:///C:/Users/sclay2/AppData/Local/Temp/Temp1_Dissertation.zip/Chapter%201%20-%20Introduction.docx%23_ENREF_12
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developing 2’-fluoro aptamers that highly specifically recognize and tightly bind to PDAC cells 

but not the closely-related normal pancreas cells. For the target PDAC cells, we initially used 

AsPC-1 cells. Figure 1.1 represents a schematic of our approach, using cell-SELEX to select for 

2’-fluoro RNA aptamers specific to PDAC cells. To avoid enrichment of aptamers that recognize 

cell surface molecules that are present on both pancreatic cancer cells and normal pancreas cells, 

we used well characterized hTERT-HPNE and hTERT-HPDE normal pancreas cells for the 

counter selection.  

 

 

 

Figure 1.1 Schematic of cell-SELEX. 

 

To perform cell-SELEX, Dr. Chen started with a synthetic DNA library that consists of 

an equal molar mixture of two DNA templates, each containing 30 or 40 totally randomized 

nucleotides, respectively, flanked with consensus regions at both ends. The corresponding single-

stranded 2’-fluoro RNAs were generated by in vitro transcription using Y639F T7 RNA 
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polymerase mutant. Dr. Chen performed 15 rounds of cell-SELEX using the 2’-fluoro RNA 

library at 4ºC to facilitate the enrichment of surface receptor-bound aptamers. The selection 

stringency was gradually increased along with the selection progress by applying more extensive 

washing, using less number of PDAC cells, and shortening the incubation time. Negative 

selection using normal pancreas cells was introduced in the 6th round and repeated every 2 

rounds thereafter. The selection progress was monitored by comparing the cell-binding 

properties using selected RNAs that were fluorescently labeled. As shown in Figure 1.2, a steady 

increase in fluorescence intensity from AsPC-1 cells was observed with increased number of 

selection cycles, and the increase of fluorescence was significant for the pool from the 15
th

 round 

of selection. No significant change in fluorescence intensity from the negative normal pancreas 

cells was found, nor when tested using non-pancreatic cancer cells such as Jurkat (acute T cell 

leukemia), LNCaP (prostate carcinoma), MCF-7 (breast adenocarincoma), HeLa (cervical 

adenocarcinoma), H292 (mucoepidermoid pulmonary carcinoma), and A431 (epidermoid 

carcinoma) cells, clearly indicating that 2’-fluoro aptamers that bind and recognize PDAC cells 

with the desired high selectivity were significantly enriched.  
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Figure 1.2 Flow cytometry comparing the original selection pool to the 2
nd

, 7
th

, and 15
th

 rounds of selection against 

AsPC-1 as well as the 15
th

 round against HPNE (normal pancreas), Jurkat (acute T cell leukemia), and LNCaP 

(prostate adenocarcinoma) cells. 

 

 

 

Our plan to thoroughly characterize the selected aptamers involved the utilization of a 

combination of different approaches. Dr. Chen already characterized some of the aptamers 

selected up until round 15 of the cell-SELEX selection. The initial characterization of these 

aptamers, as seen in this preliminary data, was a model for our plan for characterization and 

optimization of other aptamers from this selection.  
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Figure 1.3 Cell-surface binding to AsPC-1 cells after 15 rounds of selection can be seen, with no cell-surface 

binding of HPNE cells. The library, when incubated with AsPC-1 or HPNE cells, does not have a cell-surface 

binding. 

 

 

The cell-binding specificity of the selected aptamers was first examined using confocal 

microscopy. As illustrated in Figure 1.3, the aptamer pool isolated from round 15 bound PDAC 

cells very well, whereas the unselected original library showed minimal binding. The cell-

binding is specific to PDAC cells but not to normal pancreas cells or non-pancreatic cancer cells. 

When the incubation was performed at 4ºC, a vast majority of the fluorescently labeled aptamers 

were bound on the surface of PDAC cells, suggesting they target PDAC cell surface receptors, 

while at 37ºC, a number of the aptamers were present within the cells (Figure 1.4), presumably 

due to receptor-mediated endocytosis. 
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Figure 1.4 At 4ºC, aptamers 1502, 1503, 1504 bound to the cell’s surface, however internalization of 15
th

 round 

selected aptamers 1502, 1503, and 1504 at 37ºC can be seen. HPNE (control) cells, however, treated with aptamers 

at 37ºC, has no observed binding. 

 

 

1.4  Selecting Aptamer 1502 

The full length 2’-F RNA aptamers contain 83 nucleotides, including a consensus 

sequence at each terminus for amplification and a central randomized region with 40 nucleotides. 

The current oligo synthesis technology does not allow for the chemical synthesis of a RNA 

aptamer with this length. Not all nucleotides in an aptamer are essential for binding to its target, 

and non-binding regions could potentially destabilize the aptamer and functional structure. This 

enabled Dr. Chen to map the shortest region that retains the target-binding affinity and 

specificity, a tactic that was both possible and necessary. To identify which regions on the 

selected aptamers are essential for target cell recognition and to facilitate the chemical synthesis 

of the PDAC-specific apatmers for in vitro and in vivo applications, Dr. Chen managed to map 

the minimal binding motif that retained PDAC cell-binding affinity and specificity. Aptamer 
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1501 and aptamer 1502, which account for 14% and 19% of all cloned sequences, respectively, 

and together one third of the 15
th

 round pool, were chosen for further analysis. In addition to 

their prevalence in the selected 15
th

 round, these aptamers can recognize all of the pancreatic 

cancer cell lines that were tested. Mfold structural analysis showed that these two aptamers 

possess similar secondary structures with three stem-loop regions. The most notable differences 

between aptamer 1501 and aptamer 1502 are the base pairing at the 5’-end stem loop and the 

length of the linker between the stem-loop structures. There are two larger bulges in the 5’-end 

stem region of aptamer 1501, while only two mismatched bases in the 5’-end stem region of 

aptamer 1502. Also, the linker of aptamer 1502 is longer than that of aptamer 1501. These 

differences may lead to lower aptamer 1501 stability and potentially a weaker binding affinity. 

Based on these observations, Dr. Chen decided to use the three stem-loop structures as a 

foundation to truncate the aptamers.  

While aptamer 1501 was truncated, data for these truncations are not shown here. The 

truncations, sequence optimization, and characterizations further focused on aptamer 1502 at this 

point forward. A total of five truncated sequences of aptamer 1502 and full length aptamer 1502 

(Figure 1.5A) were prepared by in vitro transcription and labeled with Alexa Fluor 488. 

Truncations were first performed on three different locations on the 5’-end stem region of 

aptamer 1502 (Figure 1.5B-D). The 3’-end stem-loop of aptamer 1502 was trimmed to generate 

another truncation (Figure 1.5E). The 3’-end stem-loop structure itself (Figure 1.5F) was also 

prepared for binding studies.  These variations were tested with AsPC-1 cells for binding with 

flow cytometry. A scrambled sequence (C1), known to have minimal background binding, was 

used as the control.  
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Figure 1.5 Minimal binding motif study of 2’-F-RNA aptamer. Full length 1502 (A) and five truncated versions of 

1502 (B)-(F) were tested for binding with flow cytometry. A scrambled sequence (C1) was used as a control in flow 

cytometry. Predicated secondary structures of full length 1502 and every truncated aptamer are listed beside flow 

cytometry results. 

 

 

As shown by Figure 1.5, all three 5’-end truncations did not diminish the binding 

capability. The shortest truncated aptamer that retained its binding capability is 52 nucleotides 

long (Figure 1.5D). These results indicate that the 5’-end stem-loop structure is not critical for 

the aptamer’s binding to the target, and can be removed. Meanwhile, the removal of the 3’-end 
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stem-loop of aptamer 1502 resulted in dramatically decreased binding affinity (Figure 1.5E), 

implying that the 3’-end stem-loop is critical for the target recognition of aptamer 1502. When 

tested by itself, however, the 3’-end stem-loop structure also lost target binding completely 

(Figure 1.5F). With these truncation results, Dr. Chen reasoned that the central stem-loop 

structure and 3’-end stem-loop structure are both indispensable for PDAC cell binding of 

aptamer 1502. Aptamer 1502 can be truncated by up to 31 nucleotides. This shortest aptamer 

(residues 32-82), containing only the two stem-loops (highlighted in colors), connected by the 

linker region, retains the PDAC cell-binding affinity and specificity. This length allowed us to 

chemically synthesize the PDAC-specific aptamer in a large quantity for further characterization 

and application (seen in Chapters 2-5).  

 

1.5  Hypothesis, Aims, and Future Directions 

1.5.a.  Hypothesis 
 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a 

very poor prognosis. One of the reasons that PDAC is so dismal is due to the lack of effective 

diagnostic tools or therapeutic drugs. It is therefore vital to identify biomarkers specific to PDAC 

cells as well as ligands that can strongly and selectively bind to these biomarkers. We propose 

that using a cell target-based selection approach, PDAC-specific ligands can be developed that 

will hold the promise of targeting fewer normal pancreas and non-pancreatic cells, reducing side 

effects, and improving the quality of patient’s lives.  

My dissertation research focused on developing nuclease-resistant PDAC-specific RNA 

aptamers that were selected using a directed molecular evolution method known as cell-SELEX. 

The advantage of this method lies in the fact that there is no need for a protein target to be 

identified, expressed, or purified for the selection to occur. I hypothesized that nuclease-resistant, 
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partially modified 2’-fluoro aptamers that bind to the cell-surface of PDAC cells without 

affecting normal pancreas cells and non-pancreatic cells with high specificity can be 

systematically synthesized and characterized; and that these aptamers can be further applied as 

targeting ligands for the development of novel diagnostic and therapeutic tools for pancreatic 

cancer. This project had three specific aims. 

 

1.5.b.  Specific Aims 

1.5.b.i. Aim 1  
 

Aim 1 involves the chemical synthesis and characterization of previously selected and 

truncated highly stable 2’-fluoro RNA aptamers that tightly and specifically bind and recognize 

PDAC cells but not normal pancreas cells. Previous studies performed in our lab have employed 

cell-SELEX to identify 2’-fluoro partially modified aptamers that selectively bind to the cell-

surface receptors of pancreatic ductal adenocarcinoma cancer (PDAC) cells, but not to normal 

pancreas cells. With four different types of PDAC cell lines used over 15 increasingly stringent 

rounds, this cell-SELEX study selected for 13 major classes of aptamers that selectively bind to 

surface receptors of PDAC cells. We chose to focus our studies on the most prevalent aptamer, 

termed 1502, for further large scale chemical synthesis, characterization, and application. 

Truncation of the 5’ and 3’ ends, done by Dr. Chen, allowed the length of aptamer 1502 to be 

only 52 nucleotides, from the original 83 nucleotide full length aptamer. Chemical synthesis of 

aptamer 1502 is possible at this truncated length, and can allow for efficient 3’ and 5’ 

modifications at a larger scale. There were several variations of aptamer 1502 synthesized that 

enabled further characterization and application of subsequent specific aims. In addition to 

quantitative and qualitative binding affinity characterization, we proposed to thoroughly 

characterize 1502 for its binding specificity and affinity to various patient derived PDAC tissue 
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samples. Furthermore, aptamer 1502 was tested for its functional stability and compared to 

previously selected aptamers to confirm that its cell-surface target is a putative novel biomarker 

for pancreatic ductal adenocarcinoma. 

 

1.5.b.ii. Aim 2 

In Aim 2 of this research, PEGylated gold nanoparticles were functionalized with 

aptamer 1502 to further illustrate its ability to target and internalize into AsPC-1 (a PDAC cell 

line used in selection) and not HPNE cells. Targeted hyperthermia of PDAC cells was performed 

with an 800 nm IR laser to heat the internalized gold nanoparticles and kill the targeted cells 

exclusively. The targeted hyperthermia assay allows for the targeting capability and 

internalization of 1502 to various cell lines to be tested with high sensitivity. Therefore, to 

further demonstrate the specificity of the selected aptamer against PDAC cell lines, 10 additional 

PDAC cell lines were tested, along with 3 liver cancer, 1 normal pancreas cell line, and 8 non-

pancreatic cancer cell lines. This aim can further characterize the targeting capability and 

extreme specificity of RNA aptamer 1502.  

 

1.5.b.iii. Aim 3 

Aim 3’s mission was to deliver a therapeutic agent specifically to AsPC-1 cells without 

affecting normal pancreatic cells by functionalizing nanoparticles with aptamer 1502. The 

specificity of a ligand targeting cancer is critical to avoiding off-targeting side effects of 

chemotherapies. While the selected and optimized 2’-F RNA aptamer ligands, including aptamer 

1502, do not have a known direct therapeutic application, the aptamers do have the specificity to 

PDAC cell lines. This selectivity can be utilized to deliver therapeutic agents effectively to 



17 
 

PDAC cells without affecting normal pancreatic cells, resulting in selective cell killing. In this 

aim, hybrid lipid-PLGA (poly-L-glycolic acid) nanoparticles were synthesized, purified, 

characterized and functionalized with aptamer 1502 that has a 5’-stearyl modification 

incorporated into the RNA during synthesis. These nanoparticles are biocompatible and can 

serve as the hydrophobic carriers of cytotoxic small molecule drugs, such as SN-38. 

Functionalizing drug-carrying nanoparticles with optimized RNA aptamers will not only enable 

a more effective use of SN-38, but also facilitate targeted therapy of alternative desired 

therapeutics that can treat pancreatic ductal adenocarcinoma. 

 

1.5.c.  Ongoing Collaborations and Future Directions 

 There are two major goals that are currently being studied and will continue beyond this 

dissertation research. One is to identify the putative novel aptamer-binding PDAC cell surface 

biomarker(s) that has great diagnostic and therapeutic potential. This will be done by using a 

combination of biochemical and proteomic approaches. One of the major reasons that there is an 

absence of diagnostic and therapeutic tools for pancreatic cancer is due to few number of 

pancreatic cancer specific biomarkers that have actually been identified.  Our cell-SELEX results 

have shown selected aptamers to bind to cell-surface biomarkers found on PDAC cells. The 

identity of these novel biomarkers, however, remains unknown. We will utilize the high affinity 

binding aptamer 1502, characterized and optimized in Aim 1, to form a complex with its protein 

cell-surface biomarker, facilitating the identification of the binding target. The identification of 

this biomarker might allow for the discovery of a novel targetable PDAC biomarker that can be 

used for both targeted diagnosis and therapy.  
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The second goal is to determine the effects that aptamer 1502 has on in vivo targeting 

against AsPC-1 tumors. We have begun these studies, using an orthotopic PDAC mouse model 

that we have been using in the Liu lab. Two different delivery platforms will be tested, both 

utilizing the targeting effects of aptamer 1502. The first platform is aptamer 1502 that is 

modified on the 5’ end with an amino group. This modification can be conjugated to NHS-

DOTA and subsequently labeled with copper 64 for tracing with PET imaging. The second 

platform that we are currently testing is the 1502 functionalized lipid-PLGA nanoparticles. These 

nanoparticles can carry various hydrophobic dyes initially that can be visualized through IVIS 

imaging. The long term goal of this delivery system is to encapsulate a small molecule drug that 

is targeted to the PDAC tumor, allowing for a therapeutic effect against pancreatic ductal 

adenocarcinoma.  

 

1.6  Impact and Innovation  

Given the lack of effective therapies and diagnosis for pancreatic cancer, there is a dire 

need for researchers to focus their studies on making advancements in these areas. My 

dissertation research further characterized and applied aptamer 1502, a partially modified 2’-

fluoro RNA aptamer selected against pancreatic ductal adenocarcinoma from a cell-SELEX 

selection. This selection allowed for the discovery of novel nucleic acid ligands that selectively 

bind to specific biomarkers on PDAC cells. This method has proven successful in previous 

studies in the Liu lab and through this dissertation research, has been a very effective way to 

identify promising ligands for diagnostic and therapeutic purposes. In addition, utilizing the cell-

SELEX method enables us to identify and further characterize and apply these ligands without 

their target being known. This is particularly useful when studying pancreatic cancer because 
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there aren’t many pancreatic-cancer specific biomarkers known. We therefore have the capability 

to synthesize and characterize variations of aptamer 1502 that selectively targets a cell-surface 

biomarker(s) of pancreatic cancer cells in our first two aims and further apply this aptamer in aim 

3. Furthermore, we are currently working on identifying this aptamer’s target which could be a 

novel biomarker of PDAC. The discovery of this cell-surface target would contribute 

significantly to a type of cancer that currently has an extremely dismal prognosis. Because we 

were able to continue to develop aptamer 1502 without the target being known, we already have 

an effective targeting tool for this unknown biomarker that can be used for diagnostic and 

therapeutic purposes.  Ongoing in vivo testing will allow for further optimizations of aptamer 

1502 against pancreatic ductal adenocarcinoma, and aid in translating these findings into clinical 

applications. 
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CHAPTER II 

CHEMICAL SYNTHESIS AND CHARACTERIZATION OF APTAMER 1502 

 

2.1 Introduction 

Given the preliminary data from Dr. Chen, we felt that aptamer 1502 was an excellent 

candidate ligand to further characterize and apply in various cellular studies. We initially 

designed the necessary characterization and application studies that were necessary to translate 

this aptamer towards clinical studies. This guided our chemical synthesis plan using the ABI 

oligosynthesizer. Many researchers utilize the efficient enzymatic systems of PCR and in vitro 

transcription to synthesize RNA aptamers. Even given the partial 2’-F modifications on the 

pyrimidines, enzymatic synthesis can be done with a commercially available LAR T7 

polymerase. For my extensive short-term and long-term application goals, however, chemical 

synthesis was the more efficient and cost-effective choice. With the truncated length of 52 

nucleotides for 1502, it was feasible to synthesize the aptamer on nmol and even µmol scales. 

Chemical synthesis is often more reliable than enzymatic transcription for this shorter RNA 

aptamer length as well. This synthesis approach also allowed for facile 3’ or 5’ modification with 

various chemical entities, linkers, or florescent tags, which enabled further application and 

characterization to be done.  

For characterization studies, we first wanted to synthesize aptamer 1502 with a 

fluorescent tag. This allowed for qualitative and quantitative data showing that the newly 
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synthesized aptamers bind to the cell-surface of AsPC-1 but not HPNE cells, as seen in the 

enzymatically synthesized aptamers. We also designed variations of 1502 that had mutations in 

the loop regions of the aptamer, in aims of determining the region(s) of the aptamer that are 

critical for target binding. Finally, several versions of 1502 were designed with 5’ and 3’ 

functional groups that could be useful in applications, as seen in Chapters 3, 4, and 5. 

Beyond the synthesis and initial characterization of aptamer 1502 and its binding affinity 

for the cell-surface receptor of PDAC cells, we wanted to be able to study the clinical potential 

of aptamer 1502. In this aim, we did that in two different studies. First, we were fortunate to have 

patient derived xenograft tissue samples from PDAC patients from our collaborator Dr. Jen Jen 

Yeh. These samples allowed for more clinically relevant testing to be done determining if 

aptamer 1502 can target pancreatic ductal adenocarcinoma patient tissue in addition to PDAC 

cell lines. Another important translational aspect of this first aim that was tested was the stability 

of the apatmer against nuclease degradation. One clinical concern of using RNA aptamers as 

targeting ligands is that wild type RNA isn’t very stable when exposed to nucleases, with an 

extremely short half-life of only a few minutes. The selected aptamer, 1502 is partially modified 

with 2’-F pyrimidines, which has shown to have an increased half-time when compared to wild 

type RNA
25

. Therefore, we wanted to test our synthesized aptamers, which have either 5’ or 3’ 

modifications, for stability against nuclease degradation to determine their translational potential 

when taken in vivo. 

Finally, this aim looked at comparing aptamer 1502 to two other 2’-F RNA aptamers that 

were recently selected against PDAC
26,27

. These aptamers, named SQ-2 and M9-5, target newly 

identified biomarkers, ALPPL-2 and cyclophilin B. The binding specificity of these aptamers to 

specified (but not all) PDAC cell lines, as reported in the literature, suggests that aptamer 1502 
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does not bind to the same cell-surface target as aptamers SQ-2 and M9-5. However, to confirm 

that the biomarker targeted by 1502 is different than the targets of these aptamers, studies were 

pursued in this aim. Even if the biomarker of 1502 was not identified in this dissertation 

research, it is important to know if it is the same or different from previously identified 

biomarkers of pancreatic ductal adenocarcinoma. 

 

2.2 Results and Discussion 

2.2.a. Chemical synthesis with an 394 ABI Oligosynthesizer 

 

The RNA and DNA oligos were designed to have varying sequences or modifiers that 

served a purpose for characterization or appliation. The RNA aptamer “1502-original” was the 

original truncated sequence identified by Dr. Hui Chen in the selection that targets pancreatic 

ductal adenocarcinoma. Throughout this dissertation, this aptamer is also referred to as “1502”. It 

is important to note that the length of many of the synthesized RNA aptamers was 54 

nucleotides, 2 nucleotides longer than the original 52mer, due to the addition of a dT on the 3’ 

end (to allow for a low volume synthesis column to be used) as well as a modifier on the 5’ end. 

These additional nucleotides had no effect on the binding of 1502 to PDAC. A scrambled 

sequence of this aptamer, “1502-scrambled”, was designed to be a non-binding RNA aptamer to 

PDAC, that shared the secondary structure of the 1502-original sequence. The structure was 

maintained by keeping consensus stem regions while changing the nucleotides in the loop 

regions, which are the regions of the oligo that we believe to be directly involved in the 

aptamer’s binding to its protein target. Additionally, a third variation of aptamer 1502 was 

designed, called “1502-optimized”. This sequence had minimal differences with “1502-original”, 

with the intent of strengthening the stem regions with additional A-G base pairing, avoiding any 

structural changes, with the potential to improve the aptamer’s ability to bind to its target. It is 
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important to note that this design was a hypothesis, and was not validated in the confocal 

microscopy binding studies (see below). 

There were a series of aptamers that were designed at mutant oligos, with mutations in all 

of the guanosines in the loop and bulge regions. Six mutants were designed, replacing the 

guanosines with other nucleotides, so that the replacement did not change the structure of the 

oligo. These oligos were called, “1502-Mutant7-Sima”, “1502-Mutant11-Sima”, “1502-

Mutant24-Sima”, “1502-Mutant38-Sima”, “1502-Mutant41-Sima”, and “1502-Mutant45-Sima”. 

These oligos, labeled with flourescent Sima(hex) were tested with the  aim of finding a sequence 

or sequences that didn’t bind to the cell surface of AsPC-1 cells. This could have helped to 

identify which region of the aptamer contributed to binding interactions with the target. 

Unfortunately, none of the sequences diminished the binding of the aptamer to the cell surface of 

AsPC-1, as seen with confocal microscopy (following a similar prototocol to methods section 

1.4c). Therefore, characterization utilizing the six mutant aptamers was not continued. 

The remaining RNA oligos designed for chemical synthesis, were designed for planned 

application studies, including those discussed in Chapters 2-5. These designs only incorporated 

the “1502-original” or “1502-scrambled” sequences with varying 5’ or 3’ modifications, with the 

exception of “1502-ext-phosphoryl”, which was designed for an alternative application. All of 

the sequences can be seen in Table 2.1 in the methods section below. The additional sequences 

that were designed for application studies have 3’ and 5’ modifications that include a 5’ alkyne 

and a 5’ aldehyde. Although these aptamers were synthesized, their application studies were not 

carried out to completion, and therefore will not be discussed in detail in this dissertation. RNA 

aptamers that were designed with 5’ and 3’ modifications that were utilized in application studies 

include the “1502-original-amino” and “1502-scrambled-amino” aptamers, discussed in Aim 2. 
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Also, the “1502-original-stearyl” and “1502-scrambled-stearyl” aptamers were applied in studies 

shown in Aim 3. Finally, the biotinylated version of 1502, with the biotin on the 3’ end, “Biotin-

1502-original” was applied in the target identification studies that are discussed in Chapter 5. 

DNA oligos that were designed included an antisense (44mer) of the 1502 RNA aptamer, 

as well as a DNA version of the 1502 RNA aptamer (53mer). The antisense was designed to aid 

in the target identification studies and the DNA version of 1502 was designed as a control 

sequence for application studies.  

Prior to synthesis, the structures of these designed aptamers were predicted using The 

mfold Web Sever from The RNA Institute College of Arts and Sciences at University of Albany, 

and were based on the ΔG of the predicted secondary structures. Each of the oligos synthesized 

had only one predicted structure, and these structures, without the 3’ and 5’ modifications, can be 

seen in Figure 2.1.  
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A) B) C)  

 

 

D) E) F)  

Figure 2.1 M-fold predicted secondary structures of RNA aptamers A) 1502-original B) 1502-scrambled 

(negative control) C) 1502-optimized D) 1502-mutant8 E) 1502-mutant12 and F) 1502-mutant25. 

 

 

With Ethidium Bromide 

1502-Mut7-Sima   1502-Mut11-Sima 
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G) H) I)  

 

J)  

Figure 2.1 cont. M-fold predicted secondary structures of RNA aptamers G) 1502-mutant39 H) 1502-mutant42 

I) 1502-mutant46 J) 1502-ext-phosphoryl. 
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K) L)   

Figure 2.1 cont. M-fold predicted secondary structures of DNA aptamers K) 1502-original DNA and L) 1502 

DNA antisense. 

 

 

 The sequences that were sythesized are seen in Table 2.1 (shown below in the methods). 

RNA and DNA aptamers were synthesized with an ABI 394 Oligosynthesizer. Post-synthesis, 

cleavage, and deproteciton, the oligos were purified, and gel electrophorisis was used to quantify 

the purified oligo. These syntheses were performed on either a 40 nmol or 200 nmol scale. The 

success of the DNA aptamer syntheses were first confirmed with gel electrophoresis, (data not 

shown) before continuing with the RNA syntheses. The percent yields, along with the PAGE 

denaturing gel illustrating the purified RNA aptamers, are portrayed in Figure 2.2.a.-j. This gel 

analysis would help to confirm flourescent labeling, if relevant, as well as general size and 

purification of the aptamer synthesized. 
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Figure 2.2.a. A denaturing urea PAGE gel shows fractions (lanes 1-9)of Biotin-1502-original RNA with a low mw 

DNA ladder in lane 10, indicating the purity and length of the aptamer. This 1 µmol synthesis produced 

approximately 365 nmol of RNA, or a 36.5% yield. 

 

 

 

Figure 2.2.b. Two denaturing urea PAGE gels shows fractions of 1502-original-RNA (lanes 2-9) and the low mw 

DNA ladder (lane 1), without (left) and with (right) ethidium bromide staining, indicating the presense of a the 

fluorescent Sima and the length of the aptamer. This 40 nmol synthesis produced approximately 19.5 nmol of RNA, 

or a 48.8% yield. 
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Figure 2.2.c. Two denaturing urea PAGE gels shows fractions of Sima-1502-scrambled RNA (lanes 2-6) and Sima-

1502-optimized RNA (lanes 7-10), without (left) and with (right) ethidium bromide staining, indicating the presense 

of a the fluorescent Sima and the length of the aptamer. These 40 nmol syntheses produced approximately 17.7 nmol 

of RNA for the Sima-1502-scrambled, or a 44.4% yield and approximately 40 nmol of the Sima-1502-optimized 

RNA, or a 100% yield. 

 

 

 

 

Figure 2.2.d. Two denaturing urea PAGE gels shows fractions of Sima-1502-Mutant8 RNA (lanes 2-4) and Sima-

1502-Mutant12 RNA (lanes 5-8), without (left) and with (right) ethidium bromide staining, indicating the presense 

of a the fluorescent Sima and the length of the aptamer. These 40 nmol syntheses produced approximately 18.5 nmol 

of RNA for the Sima-1502-scrambled, or a 46.4% yield and approximately 39.2 nmol of the Sima-1502-optimized 

RNA, or a 98.0% yield. 
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Figure 2.2.e. Two denaturing urea PAGE gels shows fractions of Sima-1502-Mutant25 RNA (lanes 2-5) and Sima-

1502-Mutant39  RNA (lanes 6-9), without (left) and with (right) ethidium bromide staining, indicating the presense 

of a the fluorescent Sima and the length of the aptamer. These 40 nmol syntheses produced approximately 10.4 nmol 

of RNA for the Sima-1502-Mutant25, or a 26.0% yield and approximately 11.1 nmol of the Sima-1502-optimized 

RNA, or a 27.7% yield. 

 

 

 

 

 

Figure 2.2.f. Two denaturing urea PAGE gels shows fractions of Sima-1502-Mutant42 RNA (lanes 2-5) and Sima-

1502-Mutant46 RNA (lanes 6-9), without (left) and with (right) ethidium bromide staining, indicating the presense 

of a the fluorescent Sima and the length of the aptamer. These 40 nmol syntheses produced approximately 28.1 nmol 

of RNA for the Sima-1502-Mutant25, or a 70.3% yield and approximately 13.3 nmol of the Sima-1502-optimized 

RNA, or a 33.2% yield. 
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Figure 2.2.g. A denaturing urea PAGE gel shows fractions of 1502-original-alkyne RNA (lanes 1-10) with the low 

mw DNA ladder in lane 11, indicating the purity and length of the aptamer. This 200 nmol synthesis produced 

approximately 132.3 nmol of RNA for the 1502-original-alkyne, or a 66.1% yield. 

 

 

 

 

Figure 2.2.h. A denaturing urea PAGE gel shows fractions of 1502-scrambled-alkyne RNA (lanes 2-13), with the 

low mw DNA ladder in lane 1, indicating the purity and length of the aptamer. This 40 nmol synthesis produced 

approximately32.4 nmol of RNA for the 1502-scrambled-alkyne, or a 81.1% yield. 
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Figure 2.2.i. A denaturing urea PAGE gel shows fractions of 1502-original-amino RNA (lanes 2-5), with the DNA 

low mw ladder in lane 1, indicating the purity and length of the aptamer. This 40 nmol synthesis produced 

approximately 40 nmol of RNA for the 1502-original-alkyne, or a 100% yield. 

 

 

 

 

 

Figure 2.2.j. A denaturing urea PAGE gel shows fractions of 1502-original-stearyl RNA (lanes 2-5), with the low 

mw DNA ladder in lane 1, indicating the purity and length of the aptamer. This 40 nmol synthesis produced 

approximately 31.7 nmol of RNA for the 1502-original-alkyne, or a 79.3% yield. 
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Figure 2.2.k. A denaturing urea PAGE gel shows fractions of 1502-ext-phosphoryl RNA (lanes 2-5), with the low 

mw DNA ladder in lane 1, indicating the purity and length of the aptamer. This 40 nmol synthesis produced 

approximately 36.2 nmol of RNA for the 1502-original-alkyne, or a 90.5% yield. 

 

 

2.2.b. Qualitative binding of aptamer 1502 with confocal microscopy  

To further analyze the cell surface receptor binding of the selected aptamers for future 

PDAC targeting applications, we utilized the chemically synthesized 1502 aptamers 1502 that 

contained a 5’ fluorescent Sima (hex) group to visualize binding (or non-binding) properties of 

the aptamers. These properties were first analyzed by confocal microscopy for a qualitative 

assessment of the aptamer binding to the cell surface of PDAC cells. Figure 2.3A illustrates that 

1502-original-Sima, but not its scrambled version, shown in Figure 2.3B bound to the surface of 

AspC-1 cells when the binding was performed at 4°C for 30 min. No binding was observed when 

HPNE normal pancreas cells were used. When 1502-original-Sima was tested on HepG2 (liver 

 1           2          3          4          5 
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cancer) cells, a bright fluorescence was observed around the cell’s surface, similar, if not brighter 

in nature to 1502’s binding to AsPC-1 cells. 

 

Figure 2.3A Binding of the 1502-original-Sima aptamer with AsPC-1 PDAC, HNPE normal pancreas, or HepG2 

liver cancer cells visualized with confocal microscopy illustrates binding of the aptamer to AsPC-1 and HepG2.  

 

 

 

Figure 2.3B Binding of the 1502-scrambled-Sima version with AsPC-1 PDAC or HPNE normal pancreas control 

cells demonstrates a non-binding sequence seen with confocal microscopy.  
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 1502-optimized-Sima was tested on AsPC-1 and HPNE cells to visualize binding 

comparative to 1502-original-Sima. An identical approach to the characterization of 1502-

original-Sima and 1502-scrambled-Sima was taken to test the cell surface binding of this 

potentially optimized aptamer. Results (not shown) demonstrated binding to the cell surface of 

AsPC-1 and not HPNE cells, however the relative fluorescence was not brighter and therefore 

did not indicate an “optimized” aptamer. It was then determined that further characterization and 

application studies were to be done with the “original” selected sequence. 

 As described in the synthesis of the RNA aptamers, six mutant aptamers were 

synthesized with a 5’ Sima group and tested for binding to AsPC-1 vs. HPNE cells. If one of the 

mutant aptamers observed diminished or a lack of binding to AsPC-1 cells, further binding 

studies were planned to study the interactions of aptamer 1502 to the potential target. The cell 

binding assay was done at 4ºC for 30 min, as done previously. The binding of these mutant 

sequences, data not shown, was not affected by the mutations that were designed into the 

sequences. Because of these results, no further studies were done with the six mutated 1502 

sequences. 

 

2.2.c. Quantitative binding of aptamer 1502 with flow cytometry 

Flow cytometry was used to determine the binding affinity of aptamer 1502-original-

Sima to AsPC-1, HPNE (control), and HepG2 (liver) cells. The cell-binding affinity was 

determined by measuring the fluorescent signal associated with the three different cell lines. It 

was found that 1502 showed a Kd of 125 nM ± 4.95 nM to AsPC-1 cells, whereas it’s binding 

with HPNE normal pancreas cells was not measurable. Additionally, aptamer 1502 showed 

binding to HepG2 cells with a Kd around 60 nM ± 1.72 nM. The binding affinity (Kd) was 
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calculated on CellQuest software. These results confirm that the chemically synthesized aptamer 

1502 binds strongly to the target cell line AsPC-1 and not the normal pancreas control cell line, 

HPNE. Additionally, the strong binding of HepG2 can be useful in identifying the unknown 

potentially novel target of aptamer 1502. 

 

 

Figure 2.4 Mean fluorescent intensity (AU) was determined by flow cytometry when varying with concentrations 

(nM) of aptamer 1502 labeled with Sima were incubated with AsPC-1, HPNE, and HepG2 cells. AsPC-1 and 

HepG2 demonstrated binding of 125 nM± 4.95 nM and 60 nM ± 1.72 nM, with no measurable binding form HPNE. 

 

2.2.d. Immunohistochemistry of 1502 with Tumor Tissues from Patient Derived Xenograft 

PDAC Mouse 

Prior to any meaningful translational applications, it is critical to examine whether the 

putative novel receptor that is recognized by 1502 is present on patient pancreatic cancer tissue. 

To address the question, we performed immunohistochemical studies by incubating TAMRA-

labeled 1502 with tumor tissue samples from the Patient-Derived Xenograft (PDX) mice, in 

which different patient tumors had been engrafted as tumor fragments into immunocompromised 

mice. As shown in Figure 2.5, strong binding signal was observed in all the three tissue samples 

derived from different human patients, as well as in the AsPC-1 tumor tissue sample. These 
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results suggest that the putative 1502-binding biomarker that is highly specific to PDAC cells is 

very likely present on patient PDAC tissue.  The results also demonstrated that the TAMRA-

labeled 1502 did not target the control A375 (malignant melanoma) tissue. While this sample set 

is small, it is an indication of the translational application of 1502 to target and identify not only 

PDAC cells, but PDAC patient tissue as well. 

 

 

Figure 2.5 Immunohistochemistry studies on the binding of TAMRA-labeled 1502 to PDX tissue samples of 

pancreatic ductal adenocarcinoma.  

 

 

2.2.e. Serum stability assay 

With evidence that aptamer 1502 can bind to PDX tissue samples, in addition to cell 

lines, it would be beneficial to further test the translational application potential of aptamer 1502. 

The stability of the aptamer in mouse serum, tested through a serum stability assay, could help to 

predict how stable the aptamer may be in vivo. 2’-F partially modified RNA aptamers typically 

have an increased stability when compared to WT aptamers, however a decreased stability when 

compared to fully modified RNA aptamers, as shown previously in our lab 
28

. We tested three of 

the synthesized 2’-F partially modified RNA aptamers in 10 or 50% mouse serum for time points 

ranging from 0 min to 24 h. The aptamers tested were 1502-ext-phosphoryl and 1502-original-

amino. The 1502-ext-phosphoryl was predicted to have a similar stability to other unmodified 2’-

F partially modified aptamers and was therefore considered to be a standard for the assay. The 
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1502-original-amino aptamer is further applied in Aim 2, and it is an aptamer that has 

translational in vivo application, as seen in Chapter 5. It was predicted that this aptamer would 

have a similar stability to 1502-ext-phosphoryl.  

The results of this assay can be seen in Figure 2.6. The 1502-ext-phosphoryl aptamer did 

degrade over time in both the 10% and 50% mouse serum, with less than 25% of the aptamer 

remaining after 24 h in 50% serum. This was to be expected for this aptamer. The 1502-original-

amino aptamer, however, seemed to have an increased stability in 10 and 50% serum, with the 

only noticeable degradation occurring at 24 h in 50% serum. This was an unexpected result, 

although promising when considering utilizing the aptamer in vivo. Both aptamer’s assays were 

repeated 3 times to confirm the findings. It is believed that the 5’ amino modifier may have 

provided stability to the aptamer against nuclease degradation. 

 

Figure 2.6 Preliminary results demonstrate that 1502-ext-phosphoryl degrades with 10 and 50% mouse serum, and 

is at least 75% degraded by 24 h in 50% serum. 1502-original-amino, however, does not appear to degrade in 10% 

serum and only exhibits slight degradation in 50% serum at 24 h. Lanes correspond to time of incubation in mouse 

serum; 1-0 min, 2-5 min, 3-2 h, 4-4 h, 5-8 h, 6-12 h, and 7-24 h. 

 

2.2.f. Determining if known PDAC-targeted aptamers have the same target as 1502 

Recently published in the literature, are two 2’-F partially modified RNA aptamers that 

were selected against pancreatic ductal adenocarcinoma cells lines 
26,27

. Post-selection, these 
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researchers determined the target proteins of their aptamer to be cyclophilin B for RNA aptamer 

M9-5, and ALPPL-2 for aptamer SQ-2. Based on the differences in cell binding of these 

aptamers against tested cell lines seen in the literature, there is an indication that aptamers M9-5 

and SQ-2 have differing binding properties when compared to our selected 2’-F RNA aptamer, 

1502. In Chapter 3, a comprehensive cell-binding study is done with 20+ cell lines to validate 

1502’s specificity. However, because 1502’s target has yet to be identified, we would like to 

further confirm that 1502 does not bind to the same target as either aptamer M9-5 or SQ-2.  

  With the M9-5 aptamer, there were technical difficulties in synthesizing the RNA 

aptamer by transcription. Both Klenow and PCR were attempted with various designed primers, 

however the RNA transcription was too low to be useful for labeling. Fortunately, I was able to 

enzymatically synthesize the full length SQ-2 aptamer, which had a non-functional 3’-end that 

was reported in the literature. The Lee group utilized this non-functional end for labeling with a 

tamra-antisense oligo, an approach that I took to label the SQ-2 aptamer. With a 3’-anitsense 

oligo labeled with tamra, I could anneal the SQ-2 RNA to the antisense for a fluorescent labeling 

of the aptamer, an approach also taken by the Lee group to demonstrate cellular binding.  

Initially, a competition of 1502 against SQ-2 was done on AsPC-1 cells. In this 

experiment, Sima-labeled 1502 was mixed with unlabeled SQ-2 at a 1:1, 1:3, and 1:6 ratio. The 

mixture was incubated with AsPC-1 cells to test if the presence of the SQ-2 aptamer, especially 

when in excess, interfered or inhibited the binding of 1502 to the cell surface of AsPC-1 cells. 

The results were visualized with confocal microscopy. Figure 2.7 demonstrated that even at a 1:6 

ratio of Sima-1502 to unlabeled SQ-2, there was no obvious inhibition of binding visualized by 

the fluorescent signal observed by Sima-1502 binding to AsPC-1 cells. 
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Figure 2.7 Competition study with Sima-1502 and unlabeled aptamer SQ-2 at 1:1(top images), 1:3 (middle images), 

and 1:6 (bottom images) molar ratios of 1502:SQ-2. 

 

After labeling aptamer SQ-2 with the tamra-antisense oligo, I further demonstrated that 

the SQ-2 aptamer that I synthesized could bind to the cell lines tested in the paper, including 

ALPPL-2 expressing Capan-1, AsPC-1, and Panc-1 cell lines, without binding to low expressing 

HPNE, CFPAC-1, and MiaPaca-2 cells. Sima-labeled 1502 was tested on these same cell lines, 

which illustrated differences in binding. Figure 2.8a shows the binding similarities and more 

significantly, differences, between 1502 and SQ-2 with the tested PDAC and non-PDAC cell 

lines. The differences seen with these aptamers indicate that the aptamers likely bind to different 

targets. 

Finally, it was important to additionally test cell lines that are known to have a high 

expression of ALPPL-2. The aim was to confirm that SQ-2 is functional and 1502 is not 

functional against these cell lines. Although the ALPPL-2 protein is not completely understood, 

we were able to identify cell lines that have a higher expression of the protein through the Broad-

Novartis Cancer Cell Line Encyclopedia 
29

. We found that the colorectal adenocarcinoma cell 

line, LoVo cells, have a relatively high mRNA expression that corresponds to ALPPL-2 

expression. Additionally, a rectal adenocarcinoma cell line, SW837, also have a relatively high 

 

a) 

 

 

 

b) 

 

 

 

 

c) 
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mRNA expression according the Broad-Novartis Encyclopedia. We tested these cell lines with 

tamra-labeled SQ-2 and Sima-labeled 1502, data seen in Figure 2.8b. These results illustrate that 

1502 does not bind to cell lines with a known higher expression of ALPPL-2, again suggesting 

that aptamer 1502 does not bind to ALPPL-2. The tamra-labeled SQ-2 aptamer demonstrated 

binding to both LoVo and SW837 cell lines; results that further supported the aptamer’s binding 

to ALPPL-2.  

Although at this time, the M9-5 aptamer was not successfully synthesized, we know its 

target has been proven to be cyclophilin B. We again used the Broad-Novartis Cancer Cell 

Encyclopedia to determine cancer cell lines that have high mRNA expression that correlates to 

higher cyclophilin B gene expression 
29

. Two cell lines demonstrate relatively higher levels of 

cyclophilin B expression include a lung carcinoma, A549, as well as a breast adenocarcinoma 

cell line, MCF7. It was also seen from this database, that A549 has some ALPPL-2 expression as 

well, although not as high as LoVo or SW837 cells. We tested the A549 and MCF7 cell lines 

against Sima-1502 to determine if 1502 bound to cell lines with a high expression of cyclophilin 

B. If 1502 targeted this receptor, the Sima-labeled aptamer would likely show this binding 

through fluorescent microscopy. As seen in Figure 2.8.a.-j., 1502 did not illustrate binding to 

either A549 or MCF7 cells, cell lines with higher cyclophilin B expression, suggesting that this 

aptamer does not bind to cyclophilin B. While it would be best to have the M9-5 aptamer to 

further demonstrate the differences in the two aptamer’s targets, these results suggest that 1502’s 

target is not the previously identified cyclophilin B. 
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Figure 2.8.a. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against AsPC-1 cells at 4°C for 30 min. As expected from the literature and from our previous testing, binding was 

observed for SQ-2 and 1502. Cell only, the tamra-antisense oligo, and a fully modified non-functional labeled SQ-2 

aptamer were used as controls and showed no binding to AsPC-1 cells. 

 

 

 

 

Figure 2.8.b. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against HPNE cells at 4°C for 30 min. As expected from the literature and from our previous testing, binding was 

not observed for SQ-2 and 1502, as seen with the controls: cell only, the tamra-antisense oligo, and a fully modified 

non-functional labeled SQ-2 aptamer.  
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Figure 2.8.c. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against Panc-1 cells at 4°C for 30 min. As expected from the literature and from our previous testing, binding was 

observed for SQ-2 and 1502. Cell only, the tamra-antisense oligo, and a fully modified non-functional labeled SQ-2 

aptamer were used as controls and showed no binding to Panc-1 cells. 

 

 

 

Figure 2.8.d. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against Capan-1 cells at 4°C for 30 min. As expected from the literature and from our previous testing, binding was 

observed for SQ-2 and 1502. Cell only, the tamra-antisense oligo, and a fully modified non-functional labeled SQ-2 

aptamer were used as controls and showed no binding to Capan-1 cells. 
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Figure 2.8.e. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against CFPAC-1 cells at 4°C for 30 min. As expected from the literature and from our previous testing, binding 

was observed 1502 but not for SQ-2, an indication of different cell surface targets. Cell only, the tamra-antisense 

oligo, and a fully modified non-functional labeled SQ-2 aptamer were used as controls and showed no binding to 

CFPAC-1 cells. 

 

 

 

Figure 2.8.f. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested against 

MiaPaca-2 cells at 4°C for 30 min. As expected from the literature and from our previous testing, binding was 

observed 1502 but not for SQ-2, an indication of different cell surface targets. Cell only, the tamra-antisense oligo, 

and a fully modified non-functional labeled SQ-2 aptamer were used as controls and showed no binding to MiaPaca-

2 cells. 
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Figure 2.8.g. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against LoVo cells at 4°C for 30 min. The literature indicates that LoVo has a high ALPPL-2 expression and it was 

therefore expected that binding was observed for SQ-2. When tested, binding was not observed for 1502, however, 

suggesting that 1502 does not have a strong binding affinity for ALPPL-2. Cell only, the tamra-antisense oligo, and 

a fully modified non-functional labeled SQ-2 aptamer were used as controls and showed no binding to LoVo cells. 

 

 

Figure 2.8.h. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested 

against SW837 cells at 4°C for 30 min. The literature indicates that SW837 has a high ALPPL-2 expression and it 

was therefore expected that binding was observed for SQ-2. When tested, binding was not observed for 1502, 

however, suggesting that 1502 does not have a strong binding affinity for ALPPL-2. Cell only, the tamra-antisense 

oligo, and a fully modified non-functional labeled SQ-2 aptamer were used as controls and showed no binding to 

SW837 cells. 
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Figure 2.8.i. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested against 

A549 cells at 4°C for 30 min. The literature indicates that A549 cells have a slightly elevated ALPPL-2 expression 

and it was therefore expected that there would be some binding observed for SQ-2. It is also suggested by the 

literature that A549 has a high expression of cyclophilin B. Aptamer 1502, as well as controls, cell only, the tamra-

antisense oligo, and a fully modified non-functional labeled SQ-2 aptamer showed no binding to A549 cells, 

suggesting that cyclophilin B is not the unknown target of 1502. 

 

 

Figure 2.8.j. Aptamers SQ-2 (tamra labeled) and 1502 (sima labeled) at a 300 nM concentration, were tested against 

MCF7 cells at 4°C for 30 min. The literature indicates that MCF7 cells have a low expression of ALPPL-2 and a 

relatively high expression of cyclophilin B. There was no observed binding of aptamers SQ-2 or 1502, as well as 

controls, cell only, the tamra-antisense oligo, and a fully modified non-functional labeled SQ-2 aptamer showed no 

binding to A549 cells, suggesting that cyclophilin B is not the unknown target of 1502. 
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By testing Sima-1502 against targeted PDAC cell lines, non-binding normal pancreas 

HPNE, ALPPL-2 positive non-PDAC cell lines, and cyclophilin B positive non-PDAC cell lines, 

and comparing the qualitative binding of 1502 to ALPPL-2 targeting aptamer SQ-2, the results 

suggest that aptamer 1502 does not target the PDAC biomarkers ALPPL-2 or cyclophilin B. 

Because the target of 1502 is still unknown, it was important to test for its binding to recently 

proven biomarkers of pancreatic adenocarcinoma. We believe that aptamer 1502 could be 

targeting a novel biomarker overexpressed specifically on PDAC cell lines, and that this target 

can be therefore very useful in further diagnostic and therapeutic development.  

 

2.3 Concluding Remarks 

This chapter highlights the extensive chemical synthesis and characterization of 2’-F 

RNA aptamer 1502. The synthesis was done on an ABI oligosynthesizer that was rebuilt and 

reprogrammed to facilitate low volume DNA and RNA solid-phase oligo synthesis. Cleavage, 

deprotection, and purification was customized and performed successfully for over 20 DNA and 

RNA variations of 1502, as seen by the PAGE denaturing gel analysis and quantification. The 

large scale synthesis and straight forward 3’ and 5’ modifications allowed for extensive 

characterization and application of these aptamers in subsequent studies, something that would 

be much more difficult with enzymatic synthesis. 

The initial binding affinity characterization that was done with Sima-labeled 1502 proved 

that this aptamer does bind to the cell surface of AsPC-1 and not HPNE cells. Quantification of 

this binding affinity with flow cytometry indicated a slightly stronger binding affinity of 1502 to 

AsPC-1 with 125 nM binding, with no observable binding to HPNE. A liver cancer cell line, 

HepG2 was tested based on the knowledge that these two cell lines have shared biomarkers, and 
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that 1502 may be binding to one of these cell-surface proteins. Indeed, there was observable cell-

surface binding of Sima-labeled 1502 to HepG2, seen with confocal microscopy and flow 

cytometry. These results will be useful when continuing the biomarker identification studies and 

was utilized in the targeted hyperthermia experiments, seen in Chapter 3. 

 

2.4 Materials and Methods 

2.4.a. Chemical synthesis with an 394 ABI Oligosynthesizer 

The optimized truncated RNA aptamers were chemically synthesized with an ABI 394 

Oligosynthesizer (Table 2.1). These aptamers were modified on the 3’ or 5’ end with various 

linkers, fluorescent groups, and functional chemistries. A comprehensive list of these modifiers 

can be found in Table 2.2. To facilitate deprotection under relatively milder conditions, we used 

TBDMS-protected ultra-mild phosphoramidites and reagents (Chem Genes and Glen Research) 

for the oligosynthesis. Table 2.3 illustrates the full list of reagents used for both DNA and RNA 

synthesis. For DNA aptamers, the cycle used was a normal volume CE cycle, synthesizing at 

either a 40 nmol or 200 nmol scale. For the RNA aptamers synthesized, the cycle was programed 

to have longer coupling times with lower volumes of reagents needed, using low volume 

polystyrene columns (Glen Research).  Oligos were synthesized with DMT on, a manual 

deprotection, and could be monitored throughout by trityl reports. Aptamer synthesis took 

anywhere from 4 to 16 h, depending on the length of the oligo and the nature of the cycle. 
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Synthesized 

Aptamers 

Sequence (5’ to 3’) Synthesis 

Cycle 

Scale 

 

1502-original-

Sima (Hex) 

 

Sima-

CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-scrambled-

Sima (Hex) 

Sima-

CUAUCUUCUAGAGGGAUAUAAACAGUAC

UGAGUGUGCCAGAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-optimized-

Sima 

Sima- 
CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUUCAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-mutated7-

Sima 

Sima- 
CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACUUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-mutated11-

Sima 

Sima- 
CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAGCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-mutated24-

Sima 

Sima- 

CUAUCUUCUAGAGGGAUAUAAACAGUAC

UGAGUGUGCCAGAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-mutated38-

Sima 

Sima- 
CGGUCGCGCAAGGCGACCUAAACAGUCC

UGAGUGCAUUGCAUCACGUCAGGAGdT 

LV40RNAA

LL 

40 nmol 

1502-mutated41-

Sima 

Sima- 
CUAUCUUCCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-mutated45-

Sima 

Sima- 
CUAUCUUGCAAAGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

Biotin-1502-

original 

CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAG-

Biotin 

LV200RNA

ALL 

0.2 µmol, 

1 µmol 

1502-original-

amino 

Amino- 

CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAGdT 

LV40RNAA

LL, 

LV200RNA

ALL 

40 nmol 

1.0 µmol 

1502-scrambled-

amino 

 

Amino-

CUAUCUUCUAGAGGGAUAUAAACAGUAC

UGAGUGUGCCAGAUCACGUCAGUAGdT 

LV200RNA

ALL 

0.2 µmol 

1502-original-

extension-

phosphoryl 

Phosphoryl- 
CGUUCGUCGCACGUAUCUUGCAAGGGGA

UAUAAACAGUACUGAGUGCAUUGCAUCA

CGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-original-

aldehyde 

 

Aldehyde-

CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-original-

alkyne 

 

Alkyne-

CUAUCUUGCAAGGGGAUAUAAACAGUAC

UGAGUGCAUUGCAUCACGUCAGUAGdT 

LV200RNA

ALL 

0.2 µmol 

1502-scrambled-

alkyne 

 

Alkyne-

CUAUCUUCUAGAGGGAUAUAAACAGUAC

UGAGUGUGCCAGAUCACGUCAGUAGdT 

LV40RNAA

LL 

40 nmol 

1502-original-

stearyl 

Stearyl-

CUAUCUUGCAAGGGGAUAUAAACAGUAC

LV200RNA

ALL 

0.2 µmol, 

1.0 µmol 
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 UGAGUGCAUUGCAUCACGUCAGUAGdT 

1502-scrambled-

stearyl 

 

Stearyl-

CUAUCUUCUAGAGGGAUAUAAACAGUAC

UGAGUGUGCCAGAUCACGUCAGUAGdT 

LV200RNA

ALL 

0.2 µmol 

1502-antisense 

(DNA) 

 

ATGCAATGCACTCAGTACTGTTTATATCC

CCTTGCAAGATACGG 

 

0.2 µmol CE 0.2 µmol 

1502-aldehyde 

(DNA) 

 

Aldehyde-

CTATCTTGCAAGGGGATATAAACAGTACT

GAGTGCATTGCATCACGTCAGTAG 

0.2 µmol CE 0.2 µmol 

1502-amino 

(DNA) 

Amino-

CTATCTTGCAAGGGGATATAAACAGTACT

GAGTGCATTGCATCACGTCAGTAG 

0.2 µmol CE 0.2 µmol 

 
Table 2.1 Chemically synthesized truncated RNA and DNA aptamers and their sequences. 
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Modifier  Structure 

Sima (hex) phosphoramidite 

 

3’Biotin-TEG CPG 

 

 

 

 

 

5’ –Amino-Modifier C6-PDA 

 

 

 

 

 

Chemical Phosphorylation 

Reagent II 

 

 

 

 

 

 

5'-Aldehyde-Modifier C2 

Phosphoramidite 
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5'-Hexynyl Phosphoramidite 

 

 

 

 

Stearyl Phosphoramidite 

 
 

 

Table 2.2 Chemical modifiers syntheized on the 3’ and 5’ ends (Glen Research). 

 

 

General Oligosynthesis Reagents DNA Oligosynthesis Reagents  RNA Oligosynthesis Reagents 

LV polystyrene columns (dT), (dG) dG-CE-phosphoramidite iPr-Pac-G-CE Phosphoramidite 

0.02M I2 in THF/Pyridine/H2O dC-CE-phosphoramidite 2'-F-Ac-C-CE Phosphoramidite 

Dichloromethane dT-CE-phosphoramidite 2'-F-U-CE Phosphoramidite 
 

Acetonitrile 0.45 M Tetrazole in Acetonitrile 0.25M 5-Ethylthio-1H-tetrazole in 

Acetonitrile 

Deblocking Mix (3% TCA/DCM) Cap Mix A 

 (THF/Pyridine/Ac2O) 

Cap Mix A (THF/Pyridine/Pac20) 

Table 2.3 List of oligosynthesis reagents used for DNA and RNA synthesis. 
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2.4.b. Cleavage, deprotection, and purification of aptamers 

For the DNA control aptamers, the oligos were cleaved and base-deprotected with 30% 

ammonium hydroxide (Sigma) for 16 h at 55°C. The supernatant was dried and resuspended in 

TE with 50 mM NaCl. 

The RNA oligos were cleaved and base-deprotected with a fresh 1:1 solution of 30% 

ammonium hydroxide and 40% methylamine (AMA) at room temperature for 2 h. The 

supernatant was dried to a pellet, and the RNA was resuspended in 100 µL anhydrous DMSO. If 

necessary, the oligo was heated to 65°C for 5 min to get it into solution. To deprotect the 2’-silyl 

groups, triethylamine trihydrofluoride (TEA.3HF) was added to the sample and the mixture was 

heated to 65°C for 2.5 h. The deprotected oligo was desalted by a Nap 5 column or ethanol 

precipitation. The concentration was measured by NanoDrop and the aptamer length was 

confirmed by a PAGE denaturing gel. The RNA aptamers were stored in DEPC-treated water at -

20°C. 

To purify the aptamers, the oligos with MMT on the 5’ end, were flushed through a 

GlenPak DNA cartridge (Glen Research) to remove abortive sequences, followed by cleavage of 

the MMT protecting group to result in a purified full-length oligo. 

 

2.4.c. Cell culture 

AsPC-1 (pancreatic ductal adenocarcinoma), PANC-1 (pancreatic ductal 

adenocarcinoma), CAPAN-1 (pancreatic ductal adenocarcinoma), CFPAC-1 (pancreatic ductal 

adenocarcinoma), hTERT-HPNE (pancreatic ductal epithelial cell), LNCaP (prostate 

adenocarcinoma), BxPC-3 (pancreatic ductal adenocarcinoma), HPAF-II (pancreatic ductal 

adenocarcinoma), Hs766T (pancreatic ductal adenocarcinoma), SW1990 (pancreatic ductal 



54 
 

adenocarcinoma), COLO 587 (pancreatic ductal adenocarcinoma), Mia-Paca-2 (pancreatic 

carcinoma), Hep3B (hepatocellular carcinoma), PC-3 (prostate adenocarcinoma), DU 145 

(prostate carcinoma), A549 (lung carcinoma), SK-OV-3 (ovarian adenocarcinoma), MCF7 

(breast adenocarcinoma), HT-29 (colorectal adenocarcinoma), A431 (epidermoid carcinoma), 

MCF7 (breast adenocarcinoma), SW837 (rectal adenocarcinoma), and LoVo (colon 

adenocarcinoma) were purchased from the Tissue Culture Facility at Lineberger Cancer Center, 

UNC. These cells originated from the American Type Culture Collection (ATCC) cell repository 

and were therefore validated through this source. HepG2 (hepatocellular carcinoma) and Huh7 

(heptatocelluar carcinoma) were acquired through a collaborator. Cell culture was maintained at 

37°C and 5% CO2 in various mediums which included RPMI 1640, EMEM with NEAA, 

McCOY’s 5a, DMEM/F12, Leibovitz’s L-15, IMDM, F-12K, or DMEM medium supplemented 

with 10% heat-inactivated fetal bovine serum, FBS (GIBCO) and 100 units/ml penicillin–

streptomycin (Cellgro), along with additional supplements when necessary.  

 

2.4.d. Confocal microscopy  

The binding of selected pools and individual aptamers to target cells was evaluated by 

fluorescence confocal imaging. Cells tested included AsPC-1, HPNE (control), and two 

additional liver cancer cell lines, HepG2 and Huh7. Cells were incubated with various 

concentrations, ranging from 0 to 1000 nM, of Sima-labeled aptamers in 200 μL binding buffer 

(1x PBS with 5 mM Ca
2+

 and 1 mM Mg
2+

) at 4°C for 30 minutes. The Sima-labeled aptamers 

tested included Sima-original 1502, Sima-scrambled 1502 (control), and Sima-optimized 1502. 

After washing, cells were fixed with 1.5% paraformaldehyde (PFA), for 10 min in the dark at 

room temperature. The cover glass containing the cells and sample was transferred to a slide with 
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cell-adhesion solution (company) for examination with a confocal microscope. Fluorescence 

confocal imaging was performed on a Zeiss LSM 700 confocal microscope in the UNC School 

of Medicine Microscopy Services Laboratory. The objective used for imaging was a 40X oil-

immersion objective.  

 

2.4.e. Flow cytometry 

To monitor the enrichment of aptamers along with the progress of SELEX and quantify 

the cell-binding of individual aptamers, Sima-labeled aptamer, Sima-original-1502, which is also 

termed 1502, was incubated with 1×10
6
 cells in 400 μL binding buffer at 4°C for 30 min. Similar 

to the confocal microscopy testing, the cell lines tested included AsPC-1, HPNE (control), and 

two additional liver cancer cell lines, HepG2 and Huh7. Cells were washed twice after 

incubation and analyzed by flow cytometry. Flow cytometry was performed on a FACScan 

cytometer with CellQuest software (Becton Dickinson). Kd was calculated by this software using 

the following equation: Y = Bmax*X/(Kd + X). Nonspecific binding was also calculated using cell 

only controls and subtracted from the tested samples. 

 

2.4.f. Immunohistochemistry with (Patient-Derived Xenograft) PDX Tissue Samples 

Patient derived xenograft tissue samples from 3 patients were tested to determine if 

aptamer 1502 could bind to human tissue. AsPC-1 tumor tissue were tested as a positive control, 

and A375 tumor (melanoma) tumor tissue was the negative control. Paraffin embedded tissue 

samples were prepared by the UNC Histology Core. Staining wells were filled with xylene to 

remove the paraffin, and tissue samples were soaked in the wells for 10 min. This was done a 

second time with fresh xylene. Tissue samples were rinsed in various ethanol in water 
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preparations (100%, 95%, 70%, 50%, and 30%) for 2 min each to continue this process. Tissue 

plates were rinsed with PBS and kept in a 1 M Tris buffer, pH 8.0 which was heated to 95°C for 

15 min. Plates were saturated with the RNA binding buffer at room temperature in a humidified 

chamber. Finally, 500 nM of TAMERA-labeled 1502, previously prepared by Dr. Hui Chen, was 

added to the plates at 4°C for 30 min in the dark. The aptamer was then removed and plates 

washed with the binding buffer 2X, and the plates were left to dry in the dark at room 

temperature overnight. A BX-61 microscope, with a 10X objective lens, was used to take images 

of the tissue samples. 

 

2.4.g. Serum stability assay 

Three synthesized 2’-F RNA aptamers were tested for their stability in mouse serum 

(Life Technologies). This included three 1502 RNA aptamers with 5’ modifications; 1502-

original-stearyl, 1502-original-amino, and 1502-original-phosphoryl. 5 pmol of the aptamers was 

incubated with either 10 or 50% mouse serum at 37°C for varied time points (0, 5 min, 2, 4, 8, 

12, and 24 h).  This experiment was repeated 3X for reproducibility. All samples were examined 

by PAGE gel electrophoresis. 

 

2.4.h. Determining if known PDAC-targeted aptamers have the same target as 1502 

To determine if aptamer 1502 has the same target as recently selected PDAC aptamers, 

M9-5 (that targets cyclophilin B) and SQ-2 (that targets ALPPL-2), it is important to compare 

the binding of the three aptamers in vitro. Primers were designed to assemble and synthesize M9-

5 and SQ-2 DNA sequences. The DNA was transcribed into partially modified 2’-F C/U RNA 

using LAR T7 polymerase. It is important to note that aptamer M9-5 has not been efficiently 
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transcribed to date, and therefore the cell binding studies have been limited. However, cell 

binding studies confirmed the targeting and non-targeting properties of aptamers SQ-2 and 1502 

against cell lines that have higher expression levels of ALPPL-2, as well as binding studies for 

aptamer 1502 against cell lines with a higher expression of cyclophilin B. Additionally, a 

competition study was initially performed between aptamer 1502 and aptamers SQ-2 to 

determine if their targeting of PDAC competed with one another. 

 

2.4.i. Enzymatic synthesis of RNA aptamers M9-5 and SQ-2 

2.4.i.i. Primer design 

5’ and 3’ primers were designed for DNA assembly for both the M9-5 and SQ-2 RNA aptamers.  

SQ-2’s 5’ primer – 5’  

TTCTAATACGACTCACTATAGGGAGATACCAGCTTATTCAATTGCCTGAAAAGCTAT

CGCCCAATTCGCAGT 3’ containing the T7 promoter (underlined) and the 3’ primer - 5’ 

AGATTGCACTTACTATCTTAAAGGATATCACTGCGAATTGGGCGATAGCTTTTC 3’ 

was designed for Klenow. 

M9-5’s 5’ primer – 5’ 

TTCTAATACGACTCACTATAGGGAGGACGATGCGGGGACCTATGCAGTAGCCAGTG

TGGACT 

 3’ containing the T7 promotor (underlined) and the 3’ primer - 5’ 

AGATTGCACTTACTATCTTAAAAATTTCGGGCGAGTCGTCTGGGGGGGGCAGCC 

CAGTCCACACTGGCTACTGCAT 3’ was designed for assembly PCR or Klenow.  
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2.4.i.ii. PCR/Klenow and in vitro transcription 

The DNA template for M9-5 was assembled through PCR. Briefly, PCR reactions 

contained 0.2 mM dNTPs (each), 0.2 µM of each 5’ and 3’ primer, 1X Taq polymerase buffer, 

and 1.25 U/50 µL reaction Taq polymerase (NEB). Through PCR titrations, 15 rounds of PCR 

was determined to be optimal. PCR parameters consisted of 2 min of Taq activation at 94°C, and 

15 cycles of PCR at 94°C for 30 s, 58°C for 30 s, 72°C for 30 s, followed by 10 min of extension 

at 72°C. For SQ-2, the DNA template was assembled and amplified through a Klenow reaction. 

The 5’ and 3’ primers, at concentrations of 1.5 and 1.0 µM respectively, were annealed by 

heating to 80°C followed by slow cooling to room temperature. 1X NEBuffer 2 (NEB), 0.2 mM 

dNTPs, and 2.5U/50 µL reaction Klenow Fragment (3’ to 5’ exo-) (NEB) were added and the 

reaction was kept at 37ºC for 1.5 h. The quality of PCR amplification and Klenow reactions were 

confirmed by agarose gel electrophoresis and visualized by ethidium bromide staining. Both 

DNA templates were purified with phenol/chloroform extraction, followed by ethanol 

precipitation, and resuspended in TE buffer with 5 mM NaCl. 

In vitro transcription was performed with mutant LAR T7 polymerase (made in-house). 

Briefly, the transcription reactions contained 200 nM DNA template, 1X LAR T7 buffer, 1.5 

mM rNTPs, including 2’-F U and 2’-F C, 6.25 mM MgCl2, 10 mM DTT, 0.8 U/100 µL 

thermostable inorganic pyrophosphatase (NEB), and 0.8 U/100 µL LAR T7 polymerase. The 

reactions were done at 37ºC for 20 h. RNA transcripts were treated with DNAse for 2 h at 37ºC 

and EDTA at 70ºC for 10 min. The RNA aptamers were purified by ethanol precipitation and 

resuspended in DEPC-treated water. 
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2.4.j. Labeling of RNA aptamers with a tamra-labeled antisense oligo 

A tamra-labeled antisense sequence was designed to complement the 3’ non-functional 

tail that is present in the SQ-2 RNA aptamer. This primer’s sequence is as follows – 5’    tamra-

AGATTGCACTTACTATCTTAAA 3’. The SQ-2 aptamer and the tamra-antisense oligo were 

combined at a 1:20 molar ratio. The mixture was heated to 80°C for 3 mins, followed by a slow 

cooling to room temperature to anneal the antisense oligo to the RNA aptamer. The resulting 

aptamer was diluted in 1x PBS with 5 mM Ca
2+

 and 1 mM Mg
2+

, to the desired concentration for 

the cell binding and competition studies. 

  

2.4.k. Competition study between aptamer 1502 and SQ-2  

To determine if aptamer 1502 competes with aptamer SQ-2 in binding to ALPPL-2, 

Sima-labeled 1502 was mixed with unlabeled SQ-2 at a 1:1, 1:3, and 1:6 molar ratio with a 200 

nM 1502 concentration. These mixtures were incubated with AsPC-1 cells for 30 min at 4ºC. 

Sima-1502 was also tested on AsPC-1 cells to confirm it’s functionality of binding to AsPC-1. 

The cells were washed once with 1X PBS and transferred to slides with cell-adhesion solution. 

The Zeiss 700 confocal microscope with a 40X objective oil lens was used to visualize cell-

surface binding.  

 

2.4.l. Binding of aptamers 1502 and SQ-2 to targeted and non-targeted cell lines 

The functionality of the tamra-labeled aptamer, SQ-2 was confirmed by incubation at a 

300 nM concentration with AsPC-1 and HPNE (control) cells at 4ºC for 30 min. Sima-1502 was 

also tested at 300 nM to confirm it’s functionality. The cells were washed once with 1X PBS and 
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transferred to slides with cell-adhesion solution. The Zeiss 700 confocal microscope with a 40X 

objective oil lens was used to visualize cell-surface binding.  

To continue the comparison of binding to differing PDAC cell lines, tamra-labeled SQ-2 

and Sima-1502 aptamers were tested against some of these PDAC and non-pancreatic cancer cell 

known to have high or low expression of ALPPL-2. The demonstrated binding of these aptamers, 

visualized with confocal microscopy, can help to indicate if 1502 binds to SQ-2’s PDAC target, 

ALPPL-2. Cell lines were initially chosen based on the literature for PDAC cell lines tested with 

aptamer SQ-2. The SQ-2 binding cell lines included Capan-1, Panc-1, and AsPC-1. The non-

binding cell lines included HPNE, MiaPaca-2, and CFPAC-1. The aptamers were incubated with 

the cell lines separately at 300 nM at 4ºC for 30 min. Additional controls included cell only, 

tamra-antisense oligo only, and a fully modified non-functional SQ-2 aptamer, labeled with the 

tamra oligo. The cells were washed once with 1X PBS and transferred to slides with cell-

adhesion solution. The Zeiss 700 confocal microscope with a 40X objective oil lens was used to 

visualize cell-surface binding. 

To complete the study, we introduced different cell lines that are known to have a higher 

expression of ALPPL-2, a colorectal adenocarcinoma, LoVo, and a rectal adenocarcinoma, 

SW837. The same conditions and controls, as listed above, were applied.  

Finally, although we didn’t have the M9-5 aptamer synthesized, we tested Sima-labeled 

1502 against two cell lines that are known to have a higher expression of cyclophilin B. These 

cell lines included lung carcinoma cells, A549 (which also has some expression of ALPPL-2), 

and a breast adenocarcinoma cell line, MCF7. The same controls and conditions, as performed 

for the PDAC cell lines seen above, applied for the cyclophilin B experiment. 
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CHAPTER III 

TARGETED HYPERTHERMIA APPLICATION OF 1502 FUNCTIONALIZED GOLD 

NANOPARTICLES DEMONSTRATES THE SPECIFICITY OF 1502 TO PANCREATIC 

DUCTAL ADENOCARCINOMA 

 

3.1 Introduction  

 We know from the selection performed by Dr. Chen, and the additional characterization 

done in Aim 1, that aptamer 1502 does bind to the cell surface of PDAC cell line, AsPC-1, and 

not normal pancreas, HPNE. We also know that aptamer 1502 can bind to one liver cancer cell 

line tested, HepG2. This could aid in the biomarker identification and is reasonable considering 

that liver cancer and PDAC are known to share characteristic molecular indicators 
30-32

. 

However, this finding could call into question the specificity of aptamer 1502 to pancreatic 

ductal adenocarcinoma, the type of cancer that the series of aptamers were selected against. It is 

therefore critical to further identify aptamer 1502’s specificity against pancreatic cancer, liver 

cancer, and non-pancreatic cancer. To do so, we need to develop a sensitive and accurate 

platform that can identify the targeted cell lines over the cell lines that are not targeted by 

aptamer 1502. 

 In addition to further characterizing the targeting capabilities of aptamer 1502 against 

PDAC and non-PDAC cell lines, it would be useful to develop an assay that could take 

advantage of the internalization properties of aptamer 1502, which was observed when the 

aptamer was incubated with AsPC-1 cells at 37ºC (seen in the preliminary data from Chapter 1). 
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Although the mechanism of action has not been proven, we hypothesize that 1502 targets a cell-

surface receptor and subsequently internalizes through receptor-mediated endocytosis. If we 

could characterize this delivery to other PDAC or non-PDAC cell lines, it could be extremely 

beneficial for targeted therapeutic delivery via aptamer 1502. This goal is a part of Aim 3 and is 

discussed in detail in Chapter 4. 

We chose to develop a targeted hyperthermia assay by functionalizing PEGylated gold 

nanoparticles with aptamer 1502. We have functionalized gold nanoparticles in previous studies 

in our lab and know it to be a very sensitive ligand-directed cell-killing assay that would take 

advantage and further characterize the internalization capabilities of aptamer 1502 
33-34

. Gold 

nanoparticles, and other types of plasmonic metal nanoparticles, have the capability to produce 

hyperthermia in cells after internalization. The theory behind this approach is that the gold 

nanoparticles, PEGylated for stability in salted buffers, will be directed to the cell-surface of cell 

lines that contain the biomarker which is targeted by 1502. The aptamer and the conjugated gold 

nanoparticles will be internalized by receptor mediated endocytosis (our hypothesis). A near 

infrared (NIR) laser at 800 nm will be used to localize radiation heat to the gold nanoparticles to 

an average temperature of 42°C, which is too hot for the cells to survive. This targeted 

hyperthermia has shown to be a non-invasive approach for cancer treatment, especially when 

used in conjunction with chemotherapy delivery 
35

. This type of targeted hyperthermia allows for 

selective delivery of heat to only the cells that are targeted by the ligand conjugated to the 

nanoparticle. The gold nanoparticles are particularly efficient in this approach due to their 

enhanced localized surface plasmon resonance and their surface chemistry, facilitating the 

conjugation of biomolecules such as RNA aptamer 1502 
36,37

. 
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This assay would allow for a sensitive specificity screen to be done across several cell 

lines, and would also selectively kill the cells targeted by aptamer 1502. The variation of aptamer 

1502 that was synthesized with a 5’ amino group can be converted fairly easily to a 5’ 

dithiocarbamate with carbon disulfide and an alkaline buffer. This modification will have two 

thiol groups that can conjugate to the gold’s surface, functionalizing the nanoparticle to target 

cell lines that overexpress the RNA ligand’s unknown biomarker.  

 

3.2 Results and Discussion 

3.2.a. Characterization with the zeta sizer 

While the 30 nm citrate coated gold nanoparticles are commercially available, and were 

purchased and quality controlled by Nanocomposix, it is important to validate their size, 

polydispersity index, and zeta potential and to further characterize the 1502 aptamer 

functionalized gold nanoparticle. The Zeta Sizer was used for this characterization, with 

measurements taken for three samples, 3X and averaged with a standard deviation. The results 

for size, PDI, and zeta potential for the gold nanoparticle and aptamer functionalized gold 

nanoparticle can be seen in Figure 3.1. The gold nanoparticle measured an average size of 27.81 

±9.986 nm and a PDI of 0.251. The 1502 functionalized gold nanoparticle measured an average 

size of 47.61 ± 7.328 nm and a PDI that was a little higher at 0.413. With the 1502 aptamer 

measuring approximately 8 nm in length, this increase in size is what we would expect. This 

increase in size also indicates that the aptamer successfully conjugated to the gold nanoparticles. 

The zeta potential measurements were taken of the same group of samples, and measured to be -

48.8 mV ± 9.2  for the gold nanoparticle and -52.3 mV ± 10.1 for the 1502-gold nanoparticle. 



64 
 

These values are within the expected values for gold nanoparticles and aptamer functionalized 

gold nanoparticles.  

 

 

A)                                               30 nM Gold Nanoparticle 

 

B)                                              1502-Gold Nanoparticle 

 

Figure 3.1 Gold nanoparticle size and polydisersity index of A) 30 nm gold nanoparticles and B) 1502-gold 

nanoparticles measured with a Malvern Zeta Sizer. 
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3.2.b. Hyperthermia Studies Using Gold nanoparticles targeted with 1502 

The presence of the putative 1502-binding receptor in PDX tumors prompted us to take 

advantage of this aptamer for more detailed specificity studies on the whole panel of PDAC cell 

lines. We first tested whether this 1502 could be immobilized on the surface of gold 

nanoparticles (AuNPs) to target the killing of bound cancer cells using the AuNP-mediated 

hyperthermia effect.   

To introduce aptamer 1502 to AuNPs, we synthesized the aptamer with a 5’ amino group, 

which can react with carbon disulfide to form a dithiocarbamate, a functional group that has been 

reported to adsorb much more strongly onto gold nanoparticles (AuNPs) than monothiols. Using 

a modified protocol based on that in the literature 
38

, we were able to generate PEGylated AuNPs 

targeted against PDAC with aptamer 1502. 

There was some trial and error to stabilize the citrate coated gold nanoparticles against 

aggregation, a common potential issue with metallic nanoparticles. For this formulation, the 

optimal protocol that allowed for nanoparticle stability, was to add 1000:1 molar ratio of PEG-

2000-thiol (to the gold nanoparticles) first to a 1X PBS buffer, followed by the nanoparticles. 

This allowed for the negatively charged citrate coated gold nanoparticles to stabilize in the 1X 

PBS buffer and prevented significant aggregation as well. The aptamer, at varying molar ratios, 

as seen below, was added last after the nanoparticles were stabilized.  

 

3.2.c. Optimization of Aptamer to Gold Nanoparticle Ratio  

Since aptamers can interact with each other by base-pairing and abolish the desired 

target-binding function when they are present closely in space, it is of great importance to tune 

the density of the aptamer on the AuNPs surface.  The ratio of aptamer to gold nanoparticle was 
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optimized based on the effective cell-killing of AsPC-1 in the targeted hyperthermia assay by 

examining the 1502:gold nanoparticle molar ratio at ≤1000:1, ≤400:1, ≤200:1, ≤20:1, and ≤2:1, 

respectively. We chose these ratios to initially test a wide range of aptamer to nanoparticle ratios. 

The values weren’t chosen or optimized based on the conjugation efficiency of the aptamer to 

nanoparticle, but on the relative cell-killing effect, as mentioned above. 

Due to the sensitive nature of the nanoparticle’s stability in the 1X PBS buffer, free 

aptamer 1502 could not be removed without nanoparticle aggregation. Several methods were 

tried, however it appeared that the aptamer present in solution (whether conjugated or free) 

helped to stabilize the nanoparticles further and could not be removed. The ratio values have 

therefore been listed as ≤ because it represents the input of the aptamer compared to the gold 

nanoparticle. We believe that at higher ratios, there may be more unconjugated 1502 in solution 

due to the decreased surface area available on the nanoparticles as well as the increased steric 

interactions of the aptamers that were conjugated. These steric interactions would make it 

difficult for 1502 to fold into its functional secondary structure, and therefore have less effective 

targeting than ratios that allowed for proper aptamer folding.  

Each ratio was tested on AsPC-1, HepG2, and HPNE (data not shown) cell lines to 

determine the optimal formulation for effective targeting and subsequent cell killing through the 

targeted hyperthermia assay. After treatment with live/dead cell assay dyes, samples were 

visualized with confocal microscopy, as seen in Figure 3.2.  

While all of the ratios had some cell killing effect, it appeared that ≤20:1 was the most 

effective in targeted cell death of AsPC-1 cells, whereas the negative control (the DNA version 

of the aptamer) did not show any targeting or cell-killing effect. The ratio of ≤2:1 had a cell 
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killing effect as well, however it was not as strong as the ≤20:1 ratio. It is this aptamer to gold 

nanoparticle ratio that was used in subsequent targeted hyperthermia studies. 

It is worth mentioning that the DNA aptamer 1502 with a 5’-amino was used in this study 

because the 1502-scrambled-RNA sequence wasn’t synthesized until this study was already 

complete. While the DNA aptamer was a negative control, the 1502-scrambled-RNA is a more 

relevant control and could be conjugated to the gold nanoparticle and tested on the various cell 

lines to further confirm the results. 

It is interesting to note the differences of AsPC-1 and HepG2. The most effective ratio for 

HepG2 appears to be ≤400:1. This optimized ratio suggests that more aptamers are needed for 

the targeting and internalization of the gold nanoparticle into HepG2 cell lines; results that 

conflict with the binding affinity of 60 nM seen in Chapter 2. AsPC-1 has a slightly lower 

binding affinity, and yet in this study, the best conditions for AsPC-1 was ≤20:1, suggesting that 

this cell line needs less aptamer’s on the gold nanoparticle to have the same targeting, 

internalization, and cell-killing effect. These differing results could be due to the varying target 

expression profiles and internalization properties of AsPC-1 and HepG2. Additionally, there is a 

chance that aptamer 1502 binds to different targets on AsPC-1 and HepG2, which would mean 

that the two cell lines couldn’t be directly compared for the aptamer’s binding affinity.  
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Figure 3.2 The hyperthermia cell killing effect of AuNPs with different molar ratios of 1502 aptamer:AuNPs.  
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Although the 1502-gold nanoparticles were prepared in predicted ratios of ≤20:1, there 

was a need to determine actual loading of the aptamer to the gold nanoparticles to further 

quantify this targeted hyperthermia effect. After centrifugation of the 1502-gold nanoparticles at 

the varying aptamer:gold nanoparticle ratios, the NanoDrop was used to measure the aptamer 

concentration of the resuspsended gold nanoparticle pellets.. These measurements were 

compared to a standard curve of the input concentrations to determine the actual concentration of 

1502 conjugated to the gold nanoparticles at each tested ratio.  

 

 

 

Figure 3.3 This graph represents the raw absorbance data at 260 nm (observed for RNA) for both the standard 

concentrations of 0 to 1000 nM of 1502 RNA, seen in blue, and the tested 1502:gold nanoparticles in red, with free 

1502 removed.  
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Input Aptamer for Labeling (nM) Actual Labeling (nM) Conjugation Efficiency (%) 

2 1.91 95.7 

DNA 20 14.8 74.2 

20 15.1 75.6 

200 124 62.2 

400 243 60.8 

1000 446 44.6 

Table 3.1 This table shows the calculated actual labeling concentration of 1502 when compared to the input 

concentration. The overall conjugation efficiency of 1502 to the gold nanoparticle is seen on the right. 

 

The decreased loading and conjugation efficiency with increasing input concentration is 

understandable due to the steric and charge limitations of the aptamers on the surface of the 

nanoparticles. The targeted hyperthermia data, seen in Figure 3.2, further supports this 

conclusion. Although there is a higher concentration of 1502, the cell killing effect is not 

improved with concentrations above 20 nM for AsPC-1 cells. Even if a higher concentration of 

aptamers can be conjugated to the gold nanoparticle, as seen in Table 3.1, all of the aptamers 

may not be functional, resulting in a decrease in binding affinity and internalization.  

 

3.2.d. Targeted Hyperthermia Assay against PDAC and Non-PDAC Cell Lines 

We first tested the targeted hyperthermia assay with the two cell lines used for the original 

selection, AsPC-1 and HPNE. Controls included PBS (positive), methanol (negative), (data not 

shown), and IR laser only. Additionally, a non-targeting PEYylated gold nanoparticles (AuNPs) 

and the DNA version of 1502 were tested to determine if there was non-specific uptake of 

AuNPs with these two cell lines. Images were taken of both the center of the cell plate exposed 

to the near IR laser, and the outer edge of the plate which was not exposed. Figure 3.4 shows that 

only the RNA 1502-AuNP-PEG, when treated with the IR laser, can target, subsequently 

internalize into AsPC-1 cells, and cause cell death. This aptamer, as well as the controls, has no 

such effect on HPNE cells. 
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Figure 3.4 Confocal microscopy images show effective cell killing only when the AuNPs-PEG were targeted by the 

aptamer ligand to AsPC-1 cells, but not normal pancreas (HPNE) cells.  

 

The optimized conditions were applied to the hyperthermia treatment on all the 11 PDAC 

cell lines that are available to us, 3 liver cancer cell lines, in addition to 7 non-pancreatic cancer 

cell lines, that we had at our disposal, representing various organ systems. As illustrated in 

Figure 3.5.a.-u., it appears that 1502 is extremely specific to PDAC and pancreatic cancer cells, 

and not to normal pancreas, or most of non-pancreatic cell lines. It is evident that this aptamer 

has a specific affinity for a cell-surface biomarker that is expressed on PDAC and pancreatic 

carcinoma cells, and can be subsequently internalized for targeted hyperthermia treatment by a 

near IR laser. When this aptamer was tested on other cancer cell lines, derived from various 

organ systems including liver, prostate, lung, ovary, breast, colon, and skin, there was no such 

effect. These results indicate that our selected aptamer, 1502 is likely binding to a cell-surface 

biomarker that is overexpressed on the surface of pancreatic cancer but not on many other cancer 

or normal pancreatic cells. 
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AsPC-1: Pancreatic ductal adenocarcinoma 

 

Figure 3.5.a. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill AsPC-1 cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on AsPC-1 cells. 

 

 

HPNE: Normal Pancreas 

 

Figure 3.5.b. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on HPNE cells.  
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Capan-1: PDAC 

 

Figure 3.5.c. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill Capan-1 cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on Capan-1 cells. 

 

 

Capan-2: PDAC 

 

Figure 3.5.d. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill Capan-2 cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on Capan-2 cells. 
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CFPAC: PDAC 

 

Figure 3.5.e. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill CFPAC cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on CFPAC cells. 

 

Panc-1: PDAC 

 

Figure 3.5.f. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill Panc-1 cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on Panc-1 cells. 
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BX-PC3: PDAC 

 

Figure 3.5.g. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill BX-PC3 cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on BX-PC3 cells. 

 

HPAF-II: PDAC 

 

Figure 3.5.h. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill HPAF-II cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on HPAF-II cells. 
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Hs766T: PDAC 

 

Figure 3.5.i. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill Hs766T cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on Hs766T cells. 

 

SW1990: PDAC 

 

Figure 3.5.j. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill SW1990 cells. Controls, including AuNP-PEG 

do not have a targeted hyperthermia on SW1990 cells. 
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COLO 587: PDAC 

 

Figure 3.5.k. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill COLO 587 cells. Controls, including AuNP-

PEG do not have a targeted hyperthermia on COLO 587 cells. 

 

Mia-Paca-2: Pancreatic Carcinoma 

 

Figure 3.5.l. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill Mia-Paca-2cells. Controls, including AuNP-

PEG do not have a targeted hyperthermia on Mia-Paca-2cells. 
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HepG2: Liver Cancer 

 

Figure 3.5.m. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill HepG2 cells. The cell killing effect isn’t as 

pronounced as it is in PDAC cell lines, however there is a noticeable cell killing effect. Controls, including AuNP-

PEG do not have a targeted hyperthermia on HepG2 cells. 

 

Hep3B: Liver Cancer 

 

Figure 3.5.n. When conjugated to a PEGylated AuNP and treated with an IR laser, RNA aptamer, and not DNA 

aptamer 1502 can explicitly target, internalize, and subsequently kill Hep3B. The cell killing effect isn’t as 

pronounced as it is in PDAC cell lines, however there is a noticeable cell killing effect. Controls, including AuNP-

PEG do not have a targeted hyperthermia on Hep3B cells. 
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Huh7: Liver Cancer 

 

Figure 3.5.o. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on Huh7 cells. 
 

PC-3: Prostate Cancer 

 

Figure 3.5.p. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on PC-3 cells. 
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DU 145: Prostate Cancer 

 

Figure 3.5.q. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on DU 145 cells. 
 

A549:  Lung Cancer 

 

Figure 3.5.r. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on A549 cells. 
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SKOV-3: Ovarian Cancer 

 

Figure 3.5.s. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on SKOV-3 cells. 
 

MCF7: Breast Cancer 

 

Figure 3.5.t. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on MCF7 cells. 
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HT29: Colon Cancer 

 

Figure 3.5.u. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on HT29 cells. 
 

A431: Skin Cancer 

 

Figure 3.5.v. When conjugated to a PEGylated AuNP and treated with an IR laser RNA aptamer and DNA aptamer 

1502, as well as AuNP-PEG has no targeted hyperthermia effect on A431 cells. 
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Figure 3.6 A summary of the targeted hyperthermia study, depicted by confocal microscopy images, demonstrates 

extreme selectivity of 1502 to PDAC cell lines (11 tested), and 2 liver cancer cell lines, and not normal pancreas or 

non-pancreatic cancer cells (8 tested). These images are of the 1502-AuNP treated with the IR laser. 
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The comprehensive list of cell lines tested with this assay, along with the summarized 

assay results, can be seen in Table 3.2. 

 

Cell Line Tissue/Disease Type Targeted Hyperthermia Induced Cell 

Killing Effect Observed (Yes/No) 

hTERT-HPNE Normal pancreas No 

AsPC-1 PDAC Yes 

Capan-1 PDAC Yes 

Capan-2 PDAC Yes 

CFPAC-1 PDAC Yes 

Panc-1 PDAC Yes 

BxPC-3 PDAC Yes 

HPAF-II PDAC Yes 

Hs766T PDAC Yes 

SW1990 PDAC Yes 

COLO 587 PDAC Yes 

Mia-Paca-2 Pancreatic carcinoma Yes 

HepG2 Hepatocellular carcinoma Yes (although not as effective) 

Hep3B Hepatocellular carcinoma Yes (although not as effective) 

Huh7 Heptatocellular carcinoma No 

PC-3 Prostate adenocarcinoma No 

DU 145 Prostate carcinoma No 

A549 Lung carcinoma No 

SK-OV-3 Ovarian adenocarcinoma No 

MCF7 Breast adenocarcinoma No 

HT-29 Colorectal adenocarcinoma No 

A431 Epidermoid Carcinoma No 

 

Table 3.2 The targeted hyperthermia assay using 1502-AuNP was done on 1 normal pancreas cell line, 11 PDAC 

and pancreatic carcinoma cell lines, 3 liver cancer cell lines, and 7 non-pancreatic cancer cell lines. 

 

 

3.3. Concluding Remarks 

One of the overarching goals of this aim was to further define the specificity of aptamer 

1502 against pancreatic ductal adenocarcinoma. Aptamer 1502’s ability to internalize into AsPC-

1 cells when incubated at 37ºC vs. cell-surface binding at 4ºC suggested that the ligand had a 

mechanism allowing for this internalization. We predict that 1502 is internalizing through 

receptor mediated endocytosis, however this was never confirmed in our studies. Given this 

property of aptamer 1502, we developed an assay that could not only sensitively identify if the 
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aptamer was targeting a cell line, but also if the aptamer was internalizing, directing a gold 

nanoparticle with it.  

The gold nanoparticles were PEGylated, and variation of 1502 that was synthesized with 

a 5’ amino was converted to a 5’ dithiocarbamate to react with the gold surface. Titrated ratios of 

1502 to gold nanoparticle were tested to ensure efficient targeting to AsPC-1 cells, and the 

targeted hyperthermia assay conditions were optimized. The initial targeted hyperthermia tests 

demonstrated that aptamer 1502 conjugated to PEGylated gold nanoparticles could target, 

internalize, and subsequently kill AsPC-1 cells after treatment with a NIR laser, heating the gold 

nanoparticles to 42ºC. When tested on HPNE cells, the aptamer-gold nanoparticle platform did 

not have a cell killing effect, indicating that the normal pancreas cell line wasn’t targeted by 

1502. Testing with HepG2 cells, which were previously shown to be targeted by aptamer 1502, 

gave similar results to AsPC-1 cells. The 1502-gold nanoparticle targeted and internalized into 

HepG2 cells, and after treatment with an NIR laser, induced cell death for this liver cancer cell 

line. 

Given the success of the 1502 functionalized gold nanoparticle, with the included 

controls, we felt confident that the targeted hyperthermia assay could be used to further 

characterize the specificity of aptamer 1502 against other pancreatic ductal adenocarcinoma cell 

lines. We tested 11 of the 14 pancreatic cancer cell lines that are available, every cell line that 

was available to our lab. Additionally, we tested two other liver cancer cell lines, in hopes of 

further defining the binding affinity and specificity of 1502 to liver cancer. Finally, we tested 

eight non-pancreatic cancer cell lines, which had some differences to the original non-pancreatic 

cancer cell lines tested by Dr. Chen during the selection. This gave us a diverse panel of 
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cancerous cells that could help to define aptamer 1502’s specificity to the cell-surface 

biomarkers present on a series of cancer cell lines. 

The targeted hyperthermia assay results indicated that aptamer 1502 is highly specific to 

pancreatic ductal adenocarcinoma cell lines, demonstrating a cell killing effect with eleven of 

eleven pancreatic cancer cell lines tested. It is important to note that Mia-Paca-2 experiences a 

slightly decreased cell killing effect, which may be due to the fact that it is a pancreatic 

carcinoma and not a pancreatic ductal adenocarcinoma. The only other cell line that was targeted 

by aptamer 1502 was two of the three tested liver cancer cell lines, HepG2 and Hep3B. The cell 

killing effect does not seem to be as strong for these cell lines as it was for PDAC cell lines, 

however there is noticeable cell death to HepG2 and Hep3B after treatment with 1502-gold 

nanoparticles and the NIR laser. Interestingly, Huh7, which is also a liver cancer cell line, was 

not affected by this platform. It is hypothesized that this cell line has derived from HepG2 and 

Hep3B and overexpresses differing biomarkers on its cell surface. Finally, the normal pancreas 

and eight non-pancreatic cancer cell lines tested with the aptamer 1502-gold nanoparticle and 

NIR laser hyperthermia treatment did not experience a cell-killing effect. This data further 

confirmed aptamer 1502’s extreme specificity to pancreatic cancer, which could be very useful 

for clinical application as a diagnostic or therapeutic tool against the disease. 

 

 

3.3 Materials and Methods 

3.4.a. Cell culture 

AsPC-1 (pancreatic ductal adenocarcinoma), PANC-1 (pancreatic ductal adenocarcinoma), 

CAPAN-1 (pancreatic ductal adenocarcinoma), CFPAC-1 (pancreatic ductal adenocarcinoma), 

hTERT-HPNE (pancreatic ductal epithelial cell), BxPC-3 (pancreatic ductal adenocarcinoma), 

HPAF-II (pancreatic ductal adenocarcinoma), Hs766T (pancreatic ductal adenocarcinoma), 
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SW1990 (pancreatic ductal adenocarcinoma), COLO 587 (pancreatic ductal adenocarcinoma), 

Mia-Paca-2 (pancreatic carcinoma), HepB3 (hepatocellular carcinoma), PC-3 (prostate 

adenocarcinoma), DU 145 (prostate carcinoma), A549 (lung carcinoma), SK-OV-3 (ovarian 

adenocarcinoma), MCF7 (breast adenocarcinoma), LNCaP (prostate adenocarcinoma), HT-29 

(colorectal adenocarcinoma), and A431 (epidermoid carcinoma) were purchased from American 

Type Culture Collection (ATCC). Huh7 (heptatocellular carcinoma) and HepG2 (hepatocellular 

carcinoma) were acquired from a collaborator. Cell culture was maintained at 37°C and 5% CO2 

in various mediums which included RPMI 1640, EMEM with NEAA, McCOY’s 5a, 

DMEM/F12, Leibovitz’s L-15, IMDM, or DMEM medium supplemented with 10% heat-

inactivated fetal bovine serum (FBS) (GIBCO) and 100 units/ml penicillin–streptomycin 

(Cellgro).  

 

3.4.b. Developing the functionalized gold nanoparticle 

3.4.b.i. Reacting 1502-amino with CS2 

 

To allow for a reaction of the gold nanoparticle with 1502, the 5’ modified 1502-amino 

was reacted with carbon disulfide in a borate buffer, pH 9.0 for 2 h at room temperature. The 

buffer was changed back to DEPC water using a 5K column, 3X at 13500 rpm, room 

temperature. After the reaction, the 5’ end of 1502 was a dithiocarbamate, which could be 

reacted with the gold nanoparticle. The same was done with the DNA aptamer with the 5’-

amino.  
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3.4.b.ii. Functionalizing the nanoparticle 

Aqueous, citrate-coated, 30 nm gold nanoparticles (Nanocomposix) were used for a 

targeted hyperthermia treatment of PDAC cells. To functionalize these nanoparticles, they were 

first incubated in PBS with 1000X molar excess of PEG-2000-thiol (Sigma) by spinning for 2 h 

at room temperature. The aptamer was added, at various ratios to the gold nanoparticle, spinning 

overnight at room temperature. 

A schematic of this process is shown in Figure 3.7. Stock, PEGylated, and functionalized 

nanoparticles were characterized for zeta size and potential to confirm successful 

functionalization of the nanoparticle. 

 

3.4.b.iii. Determining the best conditions for a PEGylated gold nanoparticle functionalized 

with 1502 

 

Because gold nanoparticles can be sensitive to their surrounding buffer, the protocol for 

PEGylation and functionalization of the gold nanoparticle needed to be optimized to avoid 

nanoparticle aggregation. Varying molar ratios of PEG-2000-thiol to gold nanoparticle were 

tried, and conditions of immobilization were tested until a reproducible, stable, and functional 

gold nanoparticle was formulated. The optimal conditions for this formulation included reacting 

a 1000:1 molar ratio of PEG-2000-thiol:gold nanoparticle in PBS (adding the PEG first for 

stability) at room temperature for 2 h, followed by incubation with varying molar ratios of 

aptamer 1502 that contains a 5’-dithiocarbamate at room temperature for 2 h. If necessary, the 

AuNPs were sonicated to resuspend nanoparticles that had adhered to the Eppendorf tube 

sidewall. 
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3.4.c. Characterization with the zeta sizer 

3.4.c.i. Size, PDI, and zeta potential 

 

The size and polydispersity index of the gold nanoparticles, before and after 

functionalization with aptamer 1502, was tested by the Malvern Zeta Sizer three times with a 

disposable cuvette. The sample was transferred to a folded capillary cell for zeta potential 

measurement, also measured three times for each sample. 

 



90 
 

 

Figure 3.7 Schematic illustration of efficient immobilization of PDAC-specific aptamer to PEGylated gold 

nanoparticles (AuNPs). 
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3.4.d. Optimization of aptamer 1502 to gold nanoparticle ratio 

The PEGylated gold nanoparticles were immobilized with varying molar ratios of 

aptamer 1502. This included a ≤1000:1, ≤400:1, ≤200:1, ≤20:1, and ≤2:1 molar ratio of 1502 to 

gold nanoparticle. The gold nanoparticle concentration was kept constant at 1 nM, and the 

aptamer concentrations ranged from 2 nM to 1000 nM, respectively.  

 

3.4.e. Determining the actual loading of aptamer to gold nanoparticle  

The molar ratios of aptamer to gold nanoparticle were determined by the input of aptamer 

1502 used for immobilization. To determine the actual loading of 1502 onto the gold 

nanoparticle, free 1502 was removed from the supernatant by centrifugation at 13,500× rpm. 

NanoDrop was used to read the absorbance at 260 nm to determine the free aptamer 

concentration in the supernatant at each of the five ratios, comparing the aptamer concentrations 

to a standard curve that plotted free aptamer concentrations respective to the aptamer:gold 

nanoparticle ratios (1000, 400, 200, 20, 2, and 0 nM). Each ratio was prepared and analyzed 

three times. 

 

3.4.f. Targeted hyperthermia 

A series of AuNP-PEG and aptamer conjugated AuNP-PEG samples were prepared, first 

at varying ratios of aptamer to gold nanoparticle, and subsequently at optimized ratios. The 

AuNP-PEG concentration ranged between 400 and 600 pM in 200 µL of aptamer binding buffer 

(1x PBS with 5 mM Ca
2+

 and 1 mM Mg
2+

). Plated cells were incubated with AuNP samples for 2 

h at 37°C. Samples were removed and washed with 1X PBS once. Media was added and the cells 
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were treated with an 800 nm IR laser for 5 min to induce hyperthermia of the gold nanoparticles. 

The cells were then washed once with 1X PBS, and treated with 200 µL of 1 µM calcein AM: 2 

µM ethidium bromide from a Live/Dead Cell Assay Kit (Life Technologies). The dye was 

incubated at room temperature for 30 min, removed, and washed once with 1X PBS. The cells 

were fixed with 1.5% PFA for 15 min and transferred to slides for imaging using the Zeiss LSM 

700 confocal microscope. 
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CHAPTER IV 

APPLICATION OF APTAMER 1502 FUNCTIONALIZED HYBRID LIPID-PLGA 

NANOPARTICLES FOR SELECTIVE CELL KILLING 

 

4.1 Introduction  

When determining a translational, targetable drug delivery platform that could take 

advantage of aptamer’s high specificity and strong affinity for pancreatic ductal adenocarcinoma, 

it was important to utilize a drug delivery platform that was biocompatible, with hydrophilic 

properties, but also able to carry small molecule therapeutics, often hydrophobic in nature. This 

platform had to be able to be directed to PDAC by aptamer 1502, and have stability if translated 

into in vivo studies in the future. The platform also needed to be tunable and versatile, so that it 

could be further optimized to work with a series of detectable dyes or desired therapeutic drugs, 

and also able to be functionalized by other selected 15
th

 round aptamers (if necessary).  Despite 

this growing list of requirements, we found a proven nanoparticle drug delivery platform that 

would allow for these needs, including a facile synthesis and self-assembled functionalization 

with aptamer 1502. 

 We chose to develop hybrid lipid-poly(lactic-co-glycolic acid) (PLGA) nanoparticles that 

can be functionalized with aptamer 1502 for targeted therapeutic delivery. These nanoparticles 

combine the properties of traditional PLGA nanoparticles with the characteristics of lipid based 

nanoparticles, combining the advantages that each nanoparticle system has individually. Both 

liposome nanoparticles and PLGA nanoparticles exhibit properties such as high drug loading 
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capabilities, biocompatibility, the potential for a long half-life, and flexibility in size. 

Individually, lipid based and PLGA based nanoparticles have their own advantages and 

disadvantages as well 
39-43

.  

 PLGA nanoparticles do have some control over the degradation rate of the nanoparticle, 

as the ratio of lactic acid to glycolic acid is easily tunable, and often commercially sold in 

varying ratios (we chose 50:50 in our studies). Another advantage of PLGA is that many 

different compounds can be incorporated into the polymer, allowing the nanoparticle to be very 

versatile in what it can deliver to the diseased cells or tissue. Unfortunately, PLGA nanoparticles 

don’t always last in in vivo studies because it has a short half-life in serum. Also, for our 

purposes of targeting the nanoparticle to PDAC, PLGA would not be useful because the surface 

chemistry is difficult to modify. 

 The surface of lipid or liposome nanoparticles can alternatively easily be modified with 

targeting ligands. There are lipids that have reactive chemical groups that can be incorporated so 

that surface modifications and the conjugation of targeting ligands are possible. Lipids typically 

are composed of both hydrophobic tails and hydrophilic heads and therefore can incorporate 

different types of molecules for carrying or functionalizing purposes. Unfortunately, synthesizing 

lipid nanoparticles can be very difficult and hard to reproduce with consistent size and 

properties, and they often do not store very well for long periods of time. 

 We aimed to take advantage of the desirable properties of both types of nanoparticles by 

formulating a hybrid lipid-PLGA nanoparticle. These nanoparticles have been used with great 

promise to deliver various chemotherapies, markers, as well as dyes for in vivo application. In 

our case, we aim to encapsulate both dyes and small molecule drugs (at separate times) to 

observe the targeting effect of a 1502 functionalized nanoparticle, and subsequently deliver a 
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cytotoxic drug to PDAC, resulting in selective cell death. The PLGA core can encapsulate these 

dyes or drugs, and a single layer lipid outer layer can facilitate the functionalization with aptamer 

1502. This type of encapsulation will allow for a stepwise release of the dye or drug, which 

could aid in reduced toxicity and improved therapeutic properties. This type of hybrid lipid-

PLGA nanoparticle has been utilized in delivering chemotherapies, vaccines, and other types of 

therapies in previous studies 
44-47

. 

 To functionalize the outer lipid layer of the lipid-PLGA nanoparticle, the previously 

synthesized 1502 aptamer with a 5’ stearyl modification can be used. This stearyl group mimics 

a lipid tail, and does not interact with the functional arms of the aptamer. Once folded into its 

functional secondary structure, aptamer 1502 can be mixed with the formulated nanoparticles 

and self-insert into the outer lipid layer without the need for a chemical reaction. The stearyl 

group can interact with the lipid tails of the two lipids that we used, DSPE-PEG and lecithin, 

with the functional aptamer outside of the nanoparticle. Aptamer 1502 can then direct the lipid-

PLGA nanoparticle to PDAC cells, internalize through receptor mediated endocytosis, and 

deliver small molecule dyes or therapeutic drugs selectively to PDAC.  

 Initially we planned on testing this functionalization with nile red dye, a fluorescent dye 

that emits at 555 nm, allowing visualization on the confocal microscope. For subsequent in vivo 

studies, we chose to use NIR dye cardiogreen (ICG), which excites around 790 nm (see Chapter 

5 for details). For a targeted drug delivery and cell killing effect against PDAC, which was the 

overall goal of this aim, we chose to use cytotoxic small molecule SN-38. SN-38 is an active 

metabolite of irinotecan that is actually 1000 times more toxic than irinotecan. It targets the 

topoisomerase I and acts as an inhibitor, killing cells through its cytotoxicity 
48

. Because we can 

observe the cell-killing effects of this 1502 targeted lipid-PLGA nanoparticle platform trough the 
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cytotoxicity of SN-38, we decided that this was an appropriate formulation to test our hypothesis. 

Future studies may incorporate other chemotherapeutic drugs or NIR dyes to further apply this 

targeted therapeutic tool against PDAC. 

 

4.2 Results and Discussion 

4.2.a. Construction, characterization, and functionalization of the lipid-PLGA nanoparticle 

The hybrid lipid-PLGA nanoparticles haven shown great biocompatibility and function in 

vivo in previous studies 
49-51

. The outer lipid layer consists of both DPSE-PEG (Avanti Polar 

Liquids) and lecithin from soy (Sigma) and the inner polymer consists of PLGA (Sigma). The 

DSPE-PEG has shown to provide an increased stability and circulation time in vivo while the 

lecithin can provide structural stability to the nanoparticle. The polymer based PLGA can carry 

organic small molecules and will interact with the lipid tails of the DPSP-PEG and lecithin to 

self-assemble into nanoparticles. 

The construction of the hybrid lipid-PLGA nanoparticles underwent several rounds of 

optimization before finding a protocol that allowed for a low and consistent PDI of the size, 

ranging from 70-90 nm 
52

. Several conditions were tested for synthesis and characterization (data 

not shown). Initially, the concentrations and ratios of DPSE-PEG to lecithin were tailored to 

balance the benefit of PEG with the stability provided by lecithin. Each variation synthesized 

was characterized by size, zeta potential, and PDI to determine the best conditions for a 

consistent and desired nanoparticle synthesis. These conditions included an 8.5:1 molar ratio of 

lecithin to DSPE-PEG and a 1:10 organic (PLGA) to aqueous (DSPE-PEG and lecithin) molar 

ratio.  
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After purification with a 10K column to removed free reagents and washed with 1X PBS 

three times, the nanoparticles were functionalized with the 5’ stearyl modified 1502 aptamer, as 

well as the 5’ stearyl modified 1502 scrambled aptamer (control). A series of nanoparticles were 

prepared without an aptamer for an additional control. The pre-folded aptamer with the 5’ “lipid-

like” tail should self-assemble and insert into the outer lipid layer of the formulated lipid-PLGA 

nanoparticle to functionalize the nanoparticle and allow for specific targeting to PDAC cells. To 

confirm this proof-of-concept, nile red dye added to the PLGA polymer. This dye allowed for 

visualization of the nanoparticle after targeted delivery to PDAC cells, demonstrating that the 

1502-stearyl aptamer successfully inserted into the nanoparticle and is functional. Once 

determined successful, cytotoxic small molecule SN-38 was added to the PLGA polymer, with 

the aim of specifically delivering this nanoparticle to PDAC cells, resulting in a selective cell 

killing effect. A schematic representing this process can be seen in Figure 4.1. 
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Figure 4.1 Schematic of the synthesis and functionalization of 1502 lipid-PLGA nanoparticles, containing either 

nile red dye or cytotoxic small molecule drug, SN-38. 
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The nanoparticles were characterized with a Malvern Zeta Sizer. Measurements were 

taken for three samples, 3X and averaged with a standard deviation. The results for size, PDI, 

and zeta potential for the lipid-PLGA nanoparticles and aptamer 1502 functionalized lipid-PLGA 

nanoparticle can be seen in Figure 4.2. The lipid-PLGA nanoparticles were measured and 

resulted in an average size of 78.65 nm ± 11.7 nm and a PDI of 0.124. The 1502 functionalized 

lipid-PLGA nanoparticle measured an average size of 89.1 nm ± 15.6 nm and a PDI at 0.187. 

With an 8 nm length for the 1502 aptamer, this increase in size is within the range of what we 

would expect. This increase in size also indicates that the aptamer successfully self-assembled 

into the lipid outer layer of the nanoparticles. The zeta potential measurements were taken of the 

same group of samples, and measured to be -23.2 mV ± 14.1 mV for the lipid-PLGA 

nanoparticle and -27.0 mV ± 13.8 mV for the 1502-lipid-PLGA nanoparticle. With a negative 

charge on the 1502 aptamer, it was expected that the zeta potential would be more negative for 

the nanoparticle functionalized by the RNA aptamer.  This characterization was repeated for 

every synthesized, purified, and functionalized lipid-PLGA nanoparticle that was assembled 

throughout the necessary studies.  
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A) 

 

B) 
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C) 

 

 

D) 

 

Figure 4.2 Zeta Sizer measurements for A) Size (78.6 nm) and PDI (.135) of lipid-PLGA nanoparticles, B) Zeta 

Potential of lipid-PLGA nanoparticles (-23.3 mV), C) Size (89.1 nm) and PDI (.187) of 1502-lipid-PLGA 

nanoparticles, and D) Zeta Potential of 1502-lipid-PLGA nanoparticles (-27.0 mV). 
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4.2.b. Confocal microscopy demonstrates successful targeting of 1502-lipid-PLGA 

nanoparticles with an effective 1502 aptamer concentration   
 

When functionalizing the aptamer, the idea concentration of the aptamer loaded into the 

nanoparticle was a consideration. As seen in Chapter 3 with the functionalization of the gold 

nanoparticle, a higher concentration of aptamer does not always mean a more effective targeting 

of PDAC cells. With higher concentrations, there is the potential issue of steric and electrostatic 

interactions among the aptamers. With lower concentrations, the concentration of the aptamer 

could be too low to have a selective and effective targeting effect against PDAC cell lines. To 

determine the optimal concentration of aptamer 1502, lipid-PLGA nanoparticles containing nile 

red dye were functionalized with titrated concentrations of aptamer 1502. It was advantageous to 

find a concentration where the aptamer input equaled the aptamer inserted into the nanoparticle, 

a concentration that has a 100% loading efficiency. This avoided the need to remove free, un-

inserted 1502. Second, the aptamer concentration should be effective in targeting and delivering 

the lipid-PLGA nanoparticles to PDAC cell lines.  

 Initially, higher concentrations of aptamer 1502 were tried, including 1000 nM and 300 

nM, however these concentrations were too high to yield 100% loading efficiency (data not 

shown). Lower concentrations of aptamer loading, including 0, 0.5, 1, 10, and 25, and 50 nM of 

aptamer 1502 testing during the functionalization of the lipid-PLGA nanoparticles containing 

nile red. These nanoparticles were then incubated with AsPC-1 and HPNE cell lines to observe 

their subsequent targeting and internalization capability. Figure 4.3 illustrates this varying 

targeting effect of the titrated samples, also demonstrating that the self-assembly of 1502-stearyl 

was successful.  
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A. 

 

B. 

 

Figure 4.3 A. Titrated concentrations of aptamer 1502 inserted into lipid-PLGA nanoparticles illustrate that 10 nM 

1502 is most effective to target AsPC-1 cells, and B. when tested on HPNE, there is no such targeting and 

internalization effect. 
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 To confirm that the loading of the aptamer at these varying concentrations is efficient, 

and not leaving free unreacted 1502, a PAGE denaturing gel was run of the input concentration 

of aptamer 1502, the aptamer inserted into the lipid-PLGA nanoparticle at corresponding 

concentrations, and the lipid-PLGA nanoparticle without 1502 as a control. Figure 4.4 

demonstrates this analysis, showing that at input aptamer concentrations of 1, 10, and 25 nM, 

there is no free aptamer observed in the gel after functionalization with lipid-PLGA 

nanoparticles. The lipid-PLGA nanoparticle alone was run as a control and did not show any 

observable bands on this denaturing gel. 

 

Figure 4.4 PAGE denaturing gel of L – ladder, 1 – 1 nM 1502, 2 – 10 nM 1502, 3 – 25 nM 1502, 4 – lipid-PLGA 

nanoparticle (NP) only, 5 – 1 nM 1502-lipid-PLGA NP, 6 – 10 nM 1502-lipid-PLGA NP, and 7 – 25 nM 1502-

lipid-PLGA NP demonstrates that there is no observed free aptamer 1502 after functionalization with the 

nanoparticles at any of the input concentrations. 

 

 With these results, we felt confident in the proof of concept of utilizing 1502 with a 5’ 

stearyl to functionalize the outer layer of the lipid-PLGA nanoparticles. We could now forward 

in developing a 1502 functionalized hybrid lipid-PLGA nanoparticle that could be used for 

PDAC specific cytotoxic cell killing. 



105 
 

4.2.c. Flow cytometry illustrates quantitative binding of 1502-lipid-PLGA nanoparticles to 

AsPC-1 but not HPNE cells 

 

In an effort to determine the quantitative cell binding of the lipid-PLGA nanoparticles 

functionalized with aptamer 1502, flow cytometry was done. A lipid-PLGA nanoparticle was 

loaded with nile red dye, as prepared previously, and functionalized with RNA aptamer 1502-

original-stearyl or a non-functional RNA aptamer, 1502-scrambled-stearyl. These formulations 

were incubated with AsPC-1 or HPNE cell lines at 37°C for 2 h, and transferred to FACS tubes 

with FACS solution to be read for flow cytometry. As seen in Figure 4.5, there is a shift in the 

binding of both Sima-labeled 1502 (positive control), and of the 1502-lipid-PLGA nanoparticle 

loaded with nile red dye. The shift of the latter is significantly more than 1502 only, likely due to 

a multivalent effect. When the aptamers were tested on HPNE cells, there was no shift in cell 

population, as seen with the scrambled aptamer and the scrambled aptamer on the nanoparticle. 

This confirms the specificity and binding of not only the aptamer, but of the aptamer conjugated 

to the lipid-PLGA nanoparticle. 
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A)  

B)  

Figure 4.5 Flow cytometry of A) AsPC-1 cells treated with PBS, Sima-1502, Sima-scrambled-1502, 1502-lipid-

PLGA nanoparticle with nile red, and 1502-scrambled-lipid-PLGA nanoparticle showed binding of 1502 and 1502 

nanoparticle but not the scrambled 1502 sequence. B) HPNE (control) cells were treated with PBS, Sima-1502, and 

Sima-scrambled-1502 and illustrated no significant binding shift. 
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4.2.d. Targeted cell killing of hybrid lipid-PLGA nanoparticle loaded with SN-38  

To elicit a targeted cell-killing effect against PDAC, the hybrid lipid-PLGA nanoparticles 

were encapsulated with a small molecule, cytotoxic drug, SN-38. The nanoparticles were 

synthesized with varying titrated concentrations of SN-38, and purified, and functionalized as 

done for the nanoparticles containing nile red dye. The actual concentration of SN-38 in the 

stock nanoparticles, after purification and before functionalization, was measured by breaking 

the nanoparticles open with acetonitrile and using UV-vis to measure the absorbance of SN-38 at 

380 nm. This was done to determine the loading efficiency of SN-38, after removing free SN-38 

and accounting for leakage of the small molecule from the PLGA core. The final concentrations 

that are reported for the nanoparticle are the actual encapsulated drug concentrations, taking 

these factors into consideration and adjusted accordingly. The functional and non-functional 

nanoparticles had 0, 0.25, 2.5, 25, and 2500 nM SN-38 encapsulated. These formulations were 

tested on AsPC-1 and HPNE cells with varying incubation times, followed by a live/dead cell 

assay (Life Technologies) to determine if the cells were living or dying (the green color of the 

calcein AM indicates living cells, and the red color indicates dying cells). Figure 4.6 illustrates 

this assay’s results after 2, 4, and 6 h of incubation with the functionalized 1502 lipid-PLGA 

nanoparticle with only 2.5 nM of SN-38. Other SN-38 concentrations, HPNE control cell line, as 

well as non-functional nanoparticles were also tested at varying time points; however the data is 

not shown here. These results indicate that even after only 2 h of incubation, the functionalized 

nanoparticle can target, internalize, deliver SN-38 to the nucleus, and begin to have a cell-killing 
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effect. After 6 h, the AsPC-1 cells are dead, as indicated by the red color of the live/dead cell 

assay dye. 

 

 
         2 h                                                 4 h                                             6 h  

 

Figure 4.6 Confocal microscopy images of AsPC-1 cells that were first treated with 1502 lipid-PLGA nanoparticles 

containing 2.5 nM SN-38 for 2, 4, or 6 h at 37ºC. Live/dead cell assay dye was added to indicate if the cells were 

living (green) or dying (red). 

  

 It was determined that 2 h was enough incubation time to have a noticeable effect, 

however 4-6 h was enough time for internalization and toxicity to the cell. It is with these results 

that we performed a more comprehensive study of this live/dead cell assay, testing control 

samples (PBS and free SN-38 at 2.5 nM), 1502 lipid-PLGA nanoparticle with 0, 0.25, 2.5, 25, 

and 2500 nM SN-38, and an untargeted lipid-PLGA nanoparticle with 2.5 nM SN-38 

encapsulated on both AsPC-1 and HPNE cells. Figure 4.7 demonstrates the results (not all results 

shown) from this study. It is evident that there is a cell killing effect from 1502 lipid-PLGA 

nanoparticles at 2.5 nM and 25 nM concentrations of SN-38 with no such effect for the 

untargeted nanoparticle or the targeted nanoparticle with 0 nM SN-38. For HPNE, the higher 

SN-38 concentration (25 nM) encapsulated in the 1502 lipid-PLGA nanoparticle that had a cell 

killing effect (as seen in the figure), is shown to have no cell killing effect here. This suggests 

that this platform is selectively targeting AsPC-1 cells over HPNE and that the targeting is 
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dependent upon aptamer 1502. Effective cell killing can be seen with SN-38 concentrations as 

low as 2.5 nM. These results were useful when planning the quantitative MTS assay studies. 

A)                                                                                    B) 

 
Figure 4.7 A) AsPC-1 cells were treated with PBS, free SN-38 at 2.5 nM, 1502 lipid-PLGA nanoparticles with 

varying concentrations of SN-38, and lipid-PLGA nanoparticles with 2.5 nM SN-38 for 6 h at 37ºC, followed by 

live/dead cell assay dyes. B) HPNE cells were treated under the same conditions (with controls and 1502 lipid-

PLGA nanoparticles with SN-38 shown. 

 

To quantify this cell killing effect, a MTS assay was done on both AsPC-1 and HPNE 

cells. The same titrated preparations of 1502 lipid-PLGA encapsulated with SN-38 were used (0, 

0.25, 2.5, 25, 2500 nM). The goal was to quantify the cell killing specificity of the targeted lipid-

PLGA nanoparticle carrying SN-38 by determine an IC50 for the nanoparticle for AsPC-1 and 

HPNE cells. Samples were treated onto HPNE or AsPC-1 cells, plated in 96-well plates, for 6 h 

at 37ºC to allow for maximum internalization. Samples were removed and media was added to 

allow for cell growth over 1 day. The MTS assay was performed by first adding CellTiter 96 

AQueous to the cells, which is composed of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium). When MTS is in PBS, and interacts 

with mitochondrial reductase, which is formed when a cell is dying, it produces a formazan 

product that has an absorbance at 490 nm 
53

.  
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Initially, several conditions were tested to determine the best conditions for this assay. 

This included cell confluence when plated, time of sample incubation, time of cell incubation 

after media was added, and MTS incubation time. The optimal conditions of this MTS assay that 

were determined were 10% cell confluence when plated, 1 day sample incubation after the 

addition of media, and 3 h MTS incubation. Figure 4.8 shows the percent viability of AsPC-1 or 

HPNE cells when treated with the 1502 targeted nanoparticles with varying concentrations of 

SN-38 as well as free SN-38 (2.5 nM) and untargeted lipid-PLGA nanoparticles (with 2.5 nM 

SN-38), marked as 2.5-. The samples were done in triplicate with triplicate absorbance readings 

of each. Sample absorbances were normalized based on controls and adjusted to 100% viability. 

Results yielded an IC50 of 14 ± .5 nM for AsPC-1 cells and an unmeasurable IC50 for HPNE, as 

the cell viability never reached below 50% for these studies. Free SN-38 is expected to have 

cytotoxicity with both AsPC-1 and HPNE, which is seen in Figure 4.8. However, when 

encapsulated in the nanoparticle, SN-38 did not affect HPNE cells. While there was some 

decrease in cell viability for the free SN-38 drug and the untargeted nanoparticle for AsPC-1 

cells, these samples did not have as much of an effect as the corresponding 1502 lipid-PLGA 

nanoparticle containing 2.5 nM SN-38. 
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A) 

 

B) 

 

Figure 4.8 A) The viability of AsPC-1 cells treated with 1502 lipid-PLGA nanoparticles with SN-38 at varying 

concentrations, free SN-38 at 2.5 nM, and lipid-PLGA nanoparticles at 2.5 nM SN-38 gives an IC50 of 14 ± .5 nM. 

B) The viability of HPNE cells is close to 100% for all targeted and untargeted nanoparticle samples, yielding a non-

measurable IC50. 
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4.2.e. Encapsulation efficiency of lipid-PLGA nanoparticles with nile red dye or SN-38 

To determine the encapsulation efficiency of the lipid-PLGA nanoparticles, loaded with 

either nile red or SN-38, a serum stability assay was done with 50% serum over several time 

points including 0 min, 5 min, 2 h, 4 h, 8 h, 12 h, and 24 h. Nanoparticles were prepared in PBS, 

and ultracentrifuged at 18,000 rpm for 1 h at 4°C. The nanoparticle pellet and supernatant were 

both measured for absorbance at 555 nm, for nile red, and 380 nm, for SN-38 using our 

NanoDrop. Similar to other studies found in the literature 
54-58

, there was an initial burst release 

of both nile red and SN-38 after approximately 4 h, followed by a slow release over the 

remaining time points. 

 

 

Figure 4.9 The nile red and SN-38 release from the lipid-PLGA nanoparticle when treated with 50% serum for up to 

24 h.  

 

 

 

4.2.f. Determining the functional stability of 1502-lipid-PLGA nanoparticle with a serum 

stability assay 

 

To translate this targeted delivery platform to in vivo studies, it was important to first 

determine if the functionalized lipid-PLGA nanoparticle can continue to target the AsPC-1 tumor 
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after circulation in the blood. A serum stability assay was done using the 1502 lipid-PLGA 

nanoparticle that encapsulated either nile red or SN-38 (at 2.5 nM). The nanoparticles were 

treated with 50% mouse serum in PBS for 0, 5 min, 2, 4, 8, 12, and 24 h. The size of the 

nanoparticles, loaded with either nile red dye or SN-38 was measured by a Zeta Sizer to 

determine if longer treatment with serum disrupted the size of the nanoparticles. Results seen in 

Figure 4.10, demonstrates a relatively stable size of the both nanoparticle formulations after 

being treated with serum for up to 24 h. 

 

 

Figure 4.10 Size of nile red encapsulated and SN-38 lipid-PLGA nanoparticles treated with 50% serum over 24 h.  

 

Confocal microscopy was used to visualize the targeting of the nile red encapsulated 

nanoparticles to AsPC-1 vs. HPNE cells after being treated with 10% mouse serum at the 

previously mentioned time points (5 min not shown). This was done with the targeted 1502 lipid-

PLGA nanoparticles, the untargeted lipid-PLGA nanoparticles, and lipid-PLGA nanoparticles 

functionalized with scrambled 1502. Results from these tests are shown in Figure 4.11.a.-f. 
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AsPC-1 1502 lipid-PLGA nanoparticle with nile red dye 

 
Figure 4.11.a. 1502 lipid PLGA nanoparticles encapsulating nile red dye were treated with 0, 2, 4, 8, 12, 

and 24 h of mouse serum and then incubated with AsPC-1 cells for 2 h at 37ºC and read on confocal 

microscopy. 

 

 

AsPC-1 1502 scrambled lipid-PLGA nanoparticle with nile red dye 

 
Figure 4.11.b. 1502 scrambled lipid PLGA nanoparticles encapsulating nile red dye were treated with 0, 2, 

4, 8, 12, and 24 h of mouse serum and then incubated with AsPC-1 cells for 2 h at 37ºC and read on 

confocal microscopy. 
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AsPC-1 lipid-PLGA nanoparticle with nile red dye 

 
Figure 4.11.c. Lipid PLGA nanoparticles encapsulating nile red dye were treated with 0, 2, 4, 8, 12, and 24 

h of mouse serum and then incubated with AsPC-1 cells for 2 h at 37ºC and read on confocal microscopy. 

 

 

 

 

 
HPNE 1502 lipid-PLGA nanoparticle with nile red dye 

 
Figure 4.11.d. 1502 lipid PLGA nanoparticles encapsulating nile red dye were treated with 0, 2, 4, 8, 12, 

and 24 h of mouse serum and then incubated with HPNE cells for 2 h at 37ºC and read on confocal 

microscopy. 
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HPNE 1502 scrambled lipid-PLGA nanoparticle with nile red dye 

 
Figure 4.11.e. 1502 scrambled lipid PLGA nanoparticles encapsulating nile red dye were treated with 0, 2, 

4, 8, 12, and 24 h of mouse serum and then incubated with HPNE cells for 2 h at 37ºC and read on confocal 

microscopy. 

 

 

 

HPNE lipid-PLGA nanoparticle with nile red dye 

 
 

Figure 4.11.f Lipid PLGA nanoparticles encapsulating nile red dye were treated with 0, 2, 4, 8, 12, and 24 

h of mouse serum and then incubated with HPNE cells for 2 h at 37ºC and read on confocal microscopy. 
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For AsPC-1 cells, it does appear that there is a strong targeting effect of the 1502 lipid-

PLGA nanoparticle at 0, 2, and 4 h. After 8 h, there is some decrease in signal from nile red, 

however there is a clear cell-surface targeting effect up to 24 h. With the scrambled 1502 lipid-

PLGA nanoparticle and the untargeted nanoparticle, there is signal after 8 h, however the signal 

appears weaker than it does at the same time points for the 1502 lipid-PLGA nanoparticle. This 

suggests that there may be some non-specific delivery of the nanoparticle to AsPC-1 cells if the 

nanoparticle was treated with mouse serum for 8+ h. This non-specificity can be addressed easily 

by tuning the nanoparticle’s composition and improving upon the circulation properties (as 

suggested in the next section). 

From these results, there doesn’t seem to be much of an effect of the targeted 1502 and 

1502 scrambled nanoparticles on HPNE cells. There is some non-specific signal for the lipid-

PLGA nanoparticle treated with serum for 24 h. The stability of the nanoparticle itself may have 

to be further analyzed and improved upon in vivo, however non-specific uptake has been an 

addressable problem in the past 
59,60

. Even adjusting the DSPE-PEG concentration can allow for 

increased circulation time and decreased specificity issues. 

 

4.3. Concluding Remarks 

While the targeted hyperthermia assay in Chapter 3 resulted in specific cell killing of 

PDAC, it is debatable if targeted hyperthermia is clinically translatable for the treatment of 

pancreatic cancer. While a NIR laser can penetrate through human skin, the targeted 

hyperthermia application may be more useful for a cancer that is closer to the skin’s surface, 

such a head and neck cancer. The pancreas is tucked behind the stomach and would be difficult 

to access with a laser. There have been discussions around using orthoscopic methods to deliver 
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a laser to the pancreas, however this idea is preliminary. We needed a targeted delivery platform 

that could reach the pancreas and more specifically, the pancreatic tumor, through the 

bloodstream. Moreover, it would be useful if this platform was biocompatible, tunable, and 

allowed for the delivery of various chemotherapeutic drugs to PDAC tumors.  

The hybrid lipid-PLGA nanoparticle was a great model for the delivery platform that we 

were looking to develop. It had already been proven to be biocompatible with low toxicity and 

an adjustable circulation half-life. Our goal was to synthesize both the nanoparticle and aptamer 

1502 so that the nanoparticle could be directed to PDAC tumors by aptamer 1502. We wanted a 

process that was easy and simple, with very little chemistry. We conceptualized utilizing aptamer 

1502 that had a 5’ stearyl group to functionalize this lipid outer layer of the hybrid nanoparticle. 

The stearyl group mimics a lipid tail, and interacted with the DSPE-PEG and lecithin lipids 

similar to the lipids themselves. With the 5’ stearyl insertion into the nanoparticle, functional 

aptamer 1502 remained on the outermost layer of the nanoparticle to direct the targeting to 

PDAC cells. We were able to prove this concept by loading the polymer core of the nanoparticle 

with nile red dye. The encapsulated nile red dye nanoparticles were functionalized with aptamer 

1502 and delivered selectively to AsPC-1 and not HPNE cells. It was with this data that we felt 

comfortable moving forward to a targeted cell-killing assay. 

The hybrid lipid-PLGA nanoparticles were loaded with SN-38, a cytotoxic small 

molecule drug that is known to have a cell killing effect. With the hydrophobicity of the PLGA, 

the functionalized lipid-PLGA nanoparticle could easily encapsulate a different 

chemotherapeutic if that were desired for a specific therapeutic regimen.  Once functionalized 

with aptamer 1502, the nanoparticle platform was delivered AsPC-1 vs. HPNE cells to determine 

an IC50 and specificity of this targeted therapeutic. An MTS assay demonstrated that the 1502 
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functionalized nanoparticle could selectively target AsPC-1 cells, internalize, and result in a cell 

killing once the SN-38 was released. This effect was not observed in HPNE cells, proving the 

specificity of the targeted therapeutic to AsPC-1. Serum stability tests for this nanoparticle 

indicated that the aptamer’s function was maintained up to 24 h in 10% serum and the specificity 

was maintained up to 8 h in 10% serum. These results indicate that the 1502 lipid-PLGA 

nanoparticle has potential as a translational targeted delivery tool against PDAC tumors in vivo.  

 

4.4 Materials and Methods 

4.4.a. Construction, functionalization, and characterization of hybrid lipid-PLGA 

nanoparticles 

Hybrid lipid-PLGA nanoparticles were prepared following a protocol in the literature 

(reference). Stock solutions of lecithin (1 mg/mL in 4% ethanol), DSPE-PEG (1 mg/mL in 4% 

ethanol), and PLGA (2 mg/mL) in acetonitrile were prepared. An 8.5:1 molar ratio of lecithin to 

DSPE-PEG was mixed at 65ºC until the solution was homogeneous. The solution was cooled to 

room temperature, and PLGA was added drop wise at a 1:10 organic:aqueous molar ratio. The 

solution was vortexed for three min, followed by slow stirring at room temperature for 2 h to 

allow for self-assembly.  

Nanoparticles were purified by a Millipore 10K centrifuge column by centrifugation at 

4000× rpm for 15 min at 4ºC. Nanoparticles were washed three times with 1X PBS. Resulting 

‘stock’ nanoparticles were considered to be at a 50X concentration at 300 µL.   

Functionalization of the hybrid lipid-PLGA nanoparticles with aptamer 1502 was done 

through self-assembly by adding the 1502 aptamer containing a 5’ stearyl modification to the 

purified nanoparticle (final concentration = 1X). The aptamer with the nanoparticle was slowly 

rotated at room temperature overnight to allow for self-assembly.  
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The non-functional and functional nanoparticles were characterized by the Malvern Zeta 

Sizer for size, PDI, and zeta potential. Size and PDI were calculated three times using a 

disposable cuvette, where zeta potential was measured three times in a DTS1060 cuvette. 

 

4.4.b. Confocal microscopy of 1502 lipid-PLGA nanoparticles encapsulated with nile red 

During construction, the lipid-PLGA nanoparticles were encapsulated with nile red dye 

(Sigma) at a 1:10 ratio by volume to the PLGA (stock was 1 mg/mL in acetonitrile). The 

concentration of nile red dye was optimized to have visible signal at 555 nm on the confocal 

microscopy as well as encapsulation efficiency. Purified nanoparticles were functionalized with 

aptamer 1502-stearyl or aptamer 1502-scrambled that contained a 5’-stearyl. To test the targeting 

and internalization of functionalized vs. non-functional nanoparticles against AsPC-1 cells, cells 

(AsPC-1 and HPNE) were plated. Lipid-PLGA nanoparticles containing nile red dye, 200 µL, 

were added to the plated cells for 6 h at 37ºC. Samples included 1502-lipid-PLGA nanoparticles, 

lipid-PLGA nanoparticles (control), and 1502-scrambled-lipid-PLGA nanoparticles (aptamer 

control). After incubation, samples were removed and cells were washed with 1X PBS once. 

Cover slips were transferred to slides with cell-adhesion solution and samples were read at 555 

nm wavelength with a Zeiss 700 confocal microscope at a 40× oil objective lens. 

 

4.4.c. Optimization of aptamer loading  

To ensure efficient delivery and internalization of the lipid-PLGA nanoparticles, varying 

concentrations of aptamer 1502 were added during the functionalization of the nanoparticles. 

Concentrations tested included 0, 0.5, 1, 5, 10, and 25 nM of aptamer 1502. These functional 

nanoparticles were tested with confocal microscopy, as seen in section 1.4.b, to determine the 
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optimal concentration of aptamer 1502. Subsequently, the aptamer’s actual loading efficiency 

was tested by centrifuging the nanoparticle, removing the supernatant containing free 1502, and 

running a PAGE denaturing gel to quantify the free aptamer. 

 

4.4.d. MTS assay of lipid-PLGA SN-38 for AsPC-1 and HPNE 

In a new formulation, lipid-PLGA nanoparticles were constructed by adding a 1:10 ratio 

of cytotoxic small molecule SN-38 (made by a collaborator) to the PLGA polymer. The final 

concentrations of SN-38, post purification and functionalization, included 0, .25, 2.5, 25, 250, 

and 2500 nM. These concentrations were confirmed by breaking open the functionalized 

nanoparticle with acetonitrile and measuring the encapsulated SN-38 by UV-vis at 380 nm. 

AsPC-1 or HPNE cells were plated in a 96-well plate at approximately 40% confluence. 

Lipid-PLGA nanoparticles containing SN-38 (100 µL) were incubated with AsPC-1 or HPNE 

cells for up to 6h at 37ºC to allow for targeted delivery, internalization, and effective 

cytotoxicity. In addition to the non-functional nanoparticles carrying SN-38, 1502-lipid-PLGA 

nanoparticles with SN-38 were tested, along with free SN-38 at 2.5 nM. All samples and controls 

were done in triplicate. Post-incubation, samples were removed and 100 µL of the corresponding 

media was added. Cells were returned to 37ºC for 24 h. 

For the MTS assay, cells were treated with 20 µL of the CellTiter 96® Aqueous One 

Solution Reagent (Promega) for 1 to 4 h at 37ºC. The samples were read with a BioTek 

Fluorescence plate reader at an absorbance of 490 nm to determine the relative viability of the 

cells. Raw data was normalized with the controls and triplicate samples were averaged and 

standard error was determined. 
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4.4.e. Testing the functional stability of aptamer 1502-stearyl with a serum stability assay 

Six lipid-PLGA nanoparticle constructions were tested for the functional stability of the 

aptamer. This included lipid-PLGA nanoparticle (nile red), 1502-lipid-PLGA nanoparticle (nile 

red), 1502-scrambled-lipid-PLGA nanoparticle (nile red), lipid-PLGA nanoparticle (SN-38, 2.5 

nM), 1502-lipid-PLGA nanoparticle (SN-38, 2.5 nM), and 1502-scrambled-lipid-PLGA 

nanoparticle (SN-38, 2.5 nM). All nanoparticle samples were incubated in either 10% or 50% 

mouse serum (Gibco) at 37ºC for varying lengths of time (0, 5 min, 2, 4, 8, 12, and 24 h). Each 

of the nanoparticles containing SN-38 were done in triplicate to allow for standard error. 

 

4.4.e.i. Nanoparticle characterization with Zeta Sizer 

In order to determine the effect that mouse serum has on the formulated nanoparticles, 

the nanoparticles and the aptamer functionalized-nanoparticles were characterized. The serum-

treated nanoparticles were characterized by the Malvern Zeta Sizer for size, PDI, and zeta 

potential. Size and PDI were calculated three times using a disposable cuvette, where zeta 

potential was measured three times in a DTS1060 cuvette.  

 

4.4.e.ii. Confocal microscopy  

AsPC-1 and HPNE (control) cells were plated. Serum-treated lipid-PLGA nanoparticles 

containing nile red dye, 200 µL, were added to the plated cells for 6 h at 37ºC. Samples included 

1502-lipid-PLGA nanoparticles, lipid-PLGA nanoparticles (control), and 1502-scrambled-lipid-

PLGA nanoparticles (aptamer control) at each of the respective time points and serum 

conditions. After incubation, samples were removed and cells were washed with 1X PBS once. 

Cover slips were transferred to slides with cell-adhesion solution. Samples were read at 555 nm 



123 
 

wavelength with a Zeiss 700 confocal microscope at a 40× oil objective lens to determine the 

targeted functionality of aptamer 1502. 

 

4.4.e.iii. Encapsulation efficiency of lipid-PLGA nanoparticles with nile red or SN-38  

The effect of serum on the encapsulation of nile red from the nanoparticle was also 

tested. Both lipid-PLGA nanoparticles containing nile red or SN-38 and 1502-lipid-PLGA 

nanoparticles containing nile red or SN-38 that were treated with 10% serum were 

ultracentrifuged at 18,000 rpm for 1 h at 4ºC. The nanoparticles containing nile red dye or SN-

38, treated with serum for varying lengths of time, were pelleted, leaving the supernatant with 

dye that was no longer encapsulated. The UV-Vis of nile red dye remaining in the supernatant 

was measured using the NanoDrop at an absorbance of 555 nm and the UV-Vis of SN-38 was 

measured at 380 nM. The concentrations were calculated and compared to the starting 

concentration of the nanoparticle not treated with serum to determine the effect that the mouse 

serum had on the encapsulation of nile red dye or SN-38.  

 

4.4.e.iv. MTS assay 

AsPC-1 or HPNE cells were plated in a 96-well plate at approximately 40% confluence. 

Serum treated lipid-PLGA nanoparticles containing SN-38 (100 µL) were incubated with AsPC-

1 or HPNE cells for 6 h at 37ºC to allow for targeted delivery, internalization, and effective 

cytotoxicity. In addition to the non-functional nanoparticles carrying SN-38, 1502-lipid-PLGA 

nanoparticles with SN-38 were tested, along with free SN-38 at 2.5 nM. All samples and controls 

were done in triplicate. Post-incubation, samples were removed and 100 µL of the corresponding 

media was added. Cells were returned to 37ºC for 24 h. 
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For the MTS assay, cells were treated with 20 µL of the CellTiter 96® Aqueous One 

Solution Reagent (Promega) for 1 to 4 h at 37ºC. The samples were read with a BioTek plate 

reader at an absorbance of 490 nm to determine the relative viability of the cells. Raw data was 

normalized with the controls, triplicate samples were averaged, standard error was determined. 

 

4.4.e.v.  Flow cytometry of lipid-PLGA nanoparticles 

To monitor the targeting of 1502-lipid-PLGA nanoparticles to AsPC-1 vs HPNE cells, 

lipid-PLGA nanoparticles were prepared with nile red dye, as done previously, and 

functionalized with either RNA aptamers 1502-original-stearyl or non-functional 1502-

scrambled-stearyl. The nanoparticles, and aptamers only were incubated with 1×10
6
 cells in 400 

μL binding buffer at 4°C for 30 min. Cells were washed twice after incubation and analyzed by 

flow cytometry. Flow cytometry was performed on a FACScan cytometer with CellQuest 

software (Becton Dickinson). 
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CHAPTER V 

COLLABORATIONS AND FUTURE DIRECTIONS 

 

5.1 Introduction 

To progress aptamer 1502 towards the clinic, there are two major studies that need to be 

done. One of the two directions is the identification of the aptamer’s target. The second major 

study is the delivery of aptamer 1502 in vivo. During my dissertation research, I began 

experiments towards both, and through collaborators, we are able to continue these studies post-

defense.  

We know that this target is present on the cell surface of several tested PDAC cells, but 

not many of the non-pancreatic cancer cell lines tested. Identifying this target could make 

significant advancements towards the diagnostic and therapeutic development that is specific for 

pancreatic ductal adenocarcinoma. A visiting scholar, Lu Zhang, along with collaborator Dr. 

Kevin Xiao, is working towards this goal. 

As for the in vivo studies, the tumor targeting effect of aptamer 1502 is being tested using 

two platforms. The first is aptamer 1502 that has been labeled Cu
64

 labeled through aptamer 

modification with DOTA. This can then be traced through PET imaging. The second targeted 

delivery platform is the 1502-functioalized hybrid lipid-PLGA nanoparticle that was developed 

in Aim 3. Both delivery methods have promising preliminary data against PDAC tumors that 
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were inoculated into nude mice and will continue to be tested by our collaborator, Dr. Zibo Li, 

including research associate professor Dr. Hui Wang, and graduate student, Mengzhe Wang.  

 

5.2 Biomarker identification 

So far, only a few biomarkers (such as the 85-90 kDa palladin isoform, plectin-1, 

ALPPL-2, and cyclophilin B) have been implicated in PDAC. The identification of a potentially 

novel biomarker might allow the discovery of a novel targetable PDAC receptor that can be used 

for both targeted diagnosis and therapy 
61,62

. 

Currently, there is an urgent need for the identification of PDAC-specific cell surface 

biomarkers that are of great importance in the targeted diagnosis and therapy of PDAC. Aptamer 

1502 has been able to bind to all 11 pancreatic cancer cell lines available to us, as well as 2 liver 

cancer cell lines, a type of cancer that has shown to share overexpressed biomarkers with PDAC. 

There has been no binding to normal pancreatic cells as well as other several other non-

pancreatic cancer cells. Our results clearly indicate that the selected aptamers bind to a highly 

valuable cell-surface receptor that is universally present on most PDAC cells but not on normal 

pancreas cells or non-pancreatic cells.  

 

5.2.a. Plan for biomarker identification 

The identification of this novel biomarker might allow for the discovery of a novel 

targetable PDAC receptor that can be used for both targeted diagnosis and therapy. The high 

binding affinity and specificity of this aptamer greatly facilitate the identification of its binding 

target. To identify this unknown PDAC cell-surface biomarker, there are several synthesized 

aptamers that can be utilized. I have already synthesized and purified the previously optimized 
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1502 aptamer with a biotin at the 3’ end. This aptamer has been and will continue to be used to 

capture the biomarker from the membrane-bound fraction of different PDAC cell lysates, 

whereas the lysates from normal pancreas cells (HPNE cells) are being used as negative controls. 

The aptamer/biomarker complexes will be isolated using streptavidin agarose beads (Figure 5.1), 

as we have extensively used in other projects 
63-65

.  

The identity of the biomarker will be determined by mass spectrometry as we have 

reported for the identification of other drug-binding protein targets from mouse brain lysate 
66

. 

One concern is that the extremely strong interaction between the biotin and streptavidin requires 

harsh elution conditions that could result in the release of many background proteins from the 

solid support. To address this problem, an excess concentration of the antisense of the aptamer 

can be incubated with the complexes to disrupt the interaction between the immobilized aptamer 

and the captured protein target (Figure 5.1). We have confirmed that this antisense sequence does 

bind to aptamer 1502 and should compete with the target protein’s interaction with 1502 to elute 

the target. 
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Figure 5.1 General strategy for isolation, identification and detection of aptamer-binding target protein using an 

antisense elution approach. 

 

Due to varying expression levels of membrane bound proteins, there may be an issue 

with a low concentration of the target protein, making it difficult to extract enough of the protein 

target for mass spectrometry. An alternative approach to using the biotinylated aptamer to extract 

the target protein, is to utilize a platform that we have already demonstrated to be successful in 

binding our aptamer’s target. Aptamer 1502, conjugated to gold nanoparticles (AuNPs), allows 

for an avidity effect with the optimized 20:1 molar ratio of aptamer to gold nanoparticle. This 

platform should allow for an increase in binding affinity of the aptamer to its target protein. The 

gold nanoparticle conjugated to 1502 can be incubated with the AsPC-1 membrane-bound 

proteins and compared to the gold nanoparticle alone as well as HPNE cell lysates (controls). 

Through centrifugation, 1502-AuNP will be pelleted, with the target protein bound to the 

aptamers attached to the nanoparticle. By removing the non-specific membrane bound proteins 
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in the supernatant, the target protein can be isolated. The visualization and identification of the 

target will be done as described for the biotinylated aptamer. 

Finally, there may be issues with removing the non-specific proteins that bind to the 

streptavidin beads and contaminate the isolated target protein(s). If this appears to be the case, 

we will use a biotin molecule containing an acylhydrazone cleavable linker as the Liu and Kohn 

labs have published, which allows for gentle release of the bound target(s) under very mild, 

slightly acidic conditions (Figure 5.2) 
67

. Mass spectroscopy will be used to identify the unknown 

biomarker.  

For any of these biomarker identification approaches, further confirmation studies will be 

performed with various biochemical and cellular assays, including cell binding and sorting, IP 

and pull-down using antibodies or aptamers, and siRNA. The availability of such information 

will allow us to provide both a novel biomarker and the corresponding targeting ligand to the 

PDAC research community.  
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Figure 5.2 General strategy for isolation, identification and detection of aptamer-binding target protein using a 

cleavable biotin linker that is compatible with click chemistry. 

 

5.2.b. Preliminary results and discussion 

5.2.b.i. Isolation of aptamer 1502’s target protein using a biotinylated aptamer 

Early in this dissertation work, a synthesized biotinylated 1502 aptamer was used to 

isolate and identify the targeted protein on the cell surface of PDAC cell lines. HPNE cells were 

tested as a control. Several changes were made to the protocol over time to further enhance the 

conditions so that there was a difference between the test sample and control, the non-specific 

proteins were removed, while maintaining a strong band for the potential target protein. These 

conditions proved difficult to observe, however many points could be learned from the initial 

findings. Two relatively mild detergents were used in the solubilization buffer, 1% DDM or 1% 

Triton-X-100 with the aim of finding a detergent that could allow for membrane bound protein 

Biotin with cleavable and 

clickable linker

Biotin with cleavable and 

clickable linker
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solubilization while keeping aptamer 1502 functional. Initially, when the eluted fractions were 

run on a SDS-PAGE gel and silver stained, the target protein fraction yielded too many non-

specific proteins, ones that most likely bound to the streptavidin beads even though they were 

pre-blocked. A glycine buffer, pH 2.5 was added to the eluting protocol to add stringency to the 

target isolation elution. This additional step did allow for an increased stringency, however, the 

conditions were too harsh, and there were no longer an isolated protein in the eluted fraction that 

was concentrated enough for mass spec. A summary of the isolated proteins that were pulled 

down with these conditions can be seen in Figure 5.3. We determined the elution conditions 

needed to change in future studies to allow for more specific protein isolation. Additionally, we 

needed to increase the concentration of the target protein to yield a band that could be analyzed 

by mass spec. A visiting scholar, Lu Zhang, has utilized the information gained from these 

experiments to improve conditions of the target protein’s isolation and elution.  

 

 

Figure 5.3 SDS-PAGE silver stained gel loaded with: 1 – ladder, 2 – membrane protein supernatant + SA beads, 3 – 

membrane protein supernatant + B-1502, 4 – membrane protein supernatant (no aptamer), 5 – membrane protein 

supernatant + B-1502 + glycine buffer, and 6 – membrane protein supernatant + glycine buffer (no aptamer). 
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5.2.b.ii. Isolation of aptamer 1502’s target protein using AuNPs 

After the development of the aptamer-gold nanoparticle (Chapter 3), it was thought that 

this platform could be useful in the aptamer’s target identification. The theory behind this 

approach is that the 1502-AuNP-PEG provides a multi-valiancy effect with several aptamers 

conjugated to the gold nanoparticles. This would help to increase the concentration of the 

aptamer bound target protein(s) during the elution steps.  Additionally, through centrifugation, 

these functionalized nanoparticles and their target(s) could be isolated, aiding in 1502’s target 

identification. This approach was performed similarly to the biotinylated 1502, however when 

the proteins were eluted, there were three specific methods used for elution. The first elution 

utilized the synthesized 1502 antisense DNA aptamer that could bind to RNA aptamer 1502 to 

disrupt the binding and release its target protein. The second elution method involved RNAse A, 

an enzyme that digested the RNA, allowing for the release of its bound target protein. The third 

elution fraction involved heating the gold nanoparticles to 95ºC for 5 min to remove any 

remaining specific or non-specific proteins bound to the aptamer or gold nanoparticles. 

Unfortunately, there weren’t distinct bands from this study to move forward with these 

conditions using this approach (data not shown). However we have incorporated some of the 

elution conditions when moving forward.  

 

5.2.c. Ongoing target identification with collaborator – preliminary data 

Lu Zhang has begun her efforts to identify the potentially novel biomarker of aptamer 

1502, with an optimized protocol seen in the proposed methods section. She has initially tested 

AsPC-1 cells and has compared biotinylated 1502 plus streptavidin beads (test sample) to 

streptavidin beads alone (control). After running a SDS-PAGE gel and doing a silver stain, seen 

in Figure 5.4, there were noticeable additional protein bands present in the test sample. Both the 
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test sample and the control were submitted to collaborator Dr. Kevin Xiao for mass spec analysis 

(not shown). The initial mass spec data did isolate proteins that were present in the test sample 

and not in the control, however there were still too many proteins to do further binding analysis.  

 

 

Figure 5.4 SDS-PAGE silver stained gel loaded with: L – ladder, 1 – Biotin-1502 and SA beads, 2 – SA beads only. 

 

Additional controls were added, such as HPNE cells and additional elution steps, as seen 

with the gold nanoparticle approach, to further isolate the protein target of interest. Figure 5.5 

illustrates the promising preliminary results, with a noticeable band around 150 KD that is 

present in the AsPC-1 sample but not in the HPNE. These proteins were sent to Dr. Xiao for 

mass spec analysis.  
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Figure 5.5 Silver stained gel demonstrates proteins eluted with a 2X concentration of 1502’s antisense oligo. This 

was done for both HPNE cells (lane 1) and AsPC-1 cells (lane 2). 

 

 

5.2.d. Proposed materials and methods 

There are two approaches that we have taken in aims of isolating and identifying the cell-

membrane target of aptamer 1502. The first approach, represented in Figure 5.1, used a 

biotinylated aptamer and streptavidin agarose beads to isolate the target protein. The second 

approach took advantage of the aptamer:gold nanoparticle that we developed in Aim 2. While 

there were similar methods utilized in this approach, the density of the gold nanoparticle was 

advantageous to isolate the target that was bound by several aptamers on the surface of the gold 

nanoparticles. For the target elution, several elution approaches were used, including but not 

limited to elution with 1502’s DNA antisense, RNAse I, and boiling.  Both methods were 

performed during my dissertation research and will be considered and improved upon for current 

and future studies. 
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5.2.d.i. Isolation of aptamer 1502’s target protein using a biotinylated aptamer 

 Permeabilization buffer (Thermo), 1 mL was added to the cell pellet (1 x 10
7
 ASPC-1 

cells/tube). The buffer was vortexed briefly to obtain a homogeneous cell suspension and 

incubated for 10 min at 4°C with constant mixing. Permeabilized cells were transferred to a new 

Eppendorf tube and centrifuged for 15 min at 16,000×g. The supernatant, containing cytosolic 

proteins, was carefully removed and transferred to a new tube.  30 µL of cytosolic proteins were 

mixed with 10 µL of 4X loading buffer to check the protein level in the gel. 0.5mL of 

solubilization buffer (Thermo) or binding buffer: PBS with 0.1% SDS, 1% NP-40, RNAse 

inhibitor, protease inhibitor (EDTA-) was added to the pellet and resuspended. Alternative 

detergents, such as 1% DDM and Triton-X-100 were also tried in the solubilization buffer. 

Samples were incubated at 4°C for 30 min with constant mixing. Tubes were centrifuged at 

16,000×g for 15 min at 4°C followed by the transfer of the supernatant containing solubilized 

membrane and membrane-associated proteins to a new tube. 30 µL of the supernatant was 

removed and mixed with 10 µL of 4X loading buffer to check the membrane protein level in a 

PAGE gel. 

  The supernatant was diluted 10x with the aptamer-binding buffer. Pre-folded (80°C for 3 

min and cooled slowly to room temperature) 400 nM biotin-aptamer 1502 was added to the 

buffer and supernatant containing membrane proteins. The sample was rotated for 2 h at 4°C, 

followed by the addition of streptavidin (SA) beads (GE Healthcare). The sample was rotated for 

30 min at 4°C followed by centrifugation for 2 min at 2000 rpm. The supernatant was removed 

and the sample washed three times with 1 mL of aptamer binding buffer. 40 µL of 2X loading 

buffer was added to the sample and run a on a SDS-PAGE gel treated with silver staining.  
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  With this approach, it is possible that non-specific proteins may bind to the streptavidin 

agarose beads, contaminating the eluted sample. If this is the case, there are additional elution 

steps that can aid in removing the streptavidin agarose (SA) beads that is tightly bound to the 

biotinylated aptamer, and any of the non-specific proteins that are bound to the SA as well. A 

few of these elution methods were tried in the preliminary experiments, and may be continued in 

future approaches. One elution step involves adding an antisense of the 1502 RNA aptamer (25X 

molar excess of 1502) to elute the target protein. Second, RNAse A (0.5 µL/2.5U/minimal) could 

be added for 30 min at 37ºC. Finally, the pellet can be boiled at 95ºC to disrupt and elute any 

proteins that were still bound to the SA beads. These methods have been utilized in an alternative 

1502-AuNP-PEG approach, and can be used here as well. Finally, the SA:biotin interaction can 

be disrupted to release and elute the aptamer with the bound protein by heating the sample to 

65°C for 2 min in 10 mM EDTA, pH 8.2, and 95% formamide (Life Technologies). 

 

5.2.d.ii. Isolation of aptamer 1502’s target protein using AuNPs 

  AsPC-1 or HPNE (control) cells (2-3 x 10
7
 were lysed with lysis buffer 1. Cells were 

placed in -80ºC for 10 min, and then thawed to room temperature, three times. Cells were 

transferred to a glass tube and “crushed” to further lyse the cells. Lysis buffer 2 was added to 

cells and they were distributed to Eppendorf tubes (2 mL each) and spun down at 4000 rpm at 

4ºC for 30 min. The supernatant (S1), containing all of the soluble proteins, was removed and 

saved for the total protein gel. Solubilizing buffer was added, cells were vortexed, and spun at 

3000 rpm for 30 min at 4ºC. The supernatant (S2), containing the membrane bound proteins, was 

removed for incubation with aptamer.  

  The optimized molar ratio of aptamer 1502 to gold nanoparticles was synthesized, with 5 

nM of AuNPs, for incubation with the membrane bound proteins. For AsPC-1, this ratio was 
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20:1. A 20:1 molar ratio of 1502 DNA oligo conjugated to the gold nanoparticles was used as a 

negative control. 1502-AuNP and 1502(DNA)-AuNP were incubated at room temperature for 2 

h. The samples were centrifugued at 4000 rpm for 15 min to form a pellet of the AuNP-1502 

bound to the target protein. The supernatant was removed and washed three times solubilizing 

buffer. With this protocol, there was a three step extraction to further isolate the target protein. 

First, an antisense of the 1502 RNA aptamer was added (25X molar excess of 1502). Second, 

RNAse A (0.5 µL/2.5U/minimal) was added for 30 min at 37ºC. Finally, the pellet was boiled at 

95ºC to disrupt and elute any proteins that were still bound to the gold nanoparticle. 

 

5.2.e. Potential impact 

Given the absence of clinically useful biomarkers for pancreatic ductal adenocarcinoma, 

the identification of a novel biomarker is critical for the advancement of targeted therapeutics 

and diagnostic probes. We know that RNA aptamer 1502 specifically targets a cell surface 

protein present in PDAC cells and PDX tissue samples. This aptamer does not target many of the 

non-pancreatic cancer cell lines tested, including normal pancreas. If 1502’s target is a putative 

biomarker and this biomarker is identified, it could become an extremely useful tool for 

diagnostics. Additionally, because 1502 already is known to have a specific and strong affinity 

for this biomarker, it can be further developed, as we have done in Chapter 3, as a targeted drug 

delivery tool against pancreatic ductal adenocarcinoma. 

 

5.3 In vivo delivery of 1502 and 1502 functionalized lipid-PLGA nanoparticle  

To demonstrate the applied translational capabilities of this project, we have performed 

initially preliminary studies to test aptamer 1502, which was characterized and optimized in Aim 
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1, in orthotopic PDAC mouse models. This continuation of my dissertation research is not 

actively being continued at this time; however it is a future direction that is significant and 

potentially impactful to the comprehensive understanding of how aptamer 1502 can translate its 

targeting effect against pancreatic ductal adenocarcinoma. 

Immunohistochemistry studies in Aim 1 illustrated the binding of the optimized 1502 

aptamer to three Patient-derived Xenograft (PDX) tissue samples, using a positive control 

(AsPC-1 cells) and negative controls (A375 xenograft tissue) as comparison, showing that the 

PDAC biomarker is present in patient tissue as well. This preliminary data suggests that the 

aptamer may be able to be translated beyond in vitro cellular targets and assays.  

Additionally, the stability of both aptamer 1502 against nuclease degradation and the 

functional stability of 1502 that is inserted into the outer layer of the hybrid lipid-PLGA 

nanoparticles was tested with serum stability assays (Chapters 2 and 4 respectively). Aptamer 

1502 that was synthesized with a 5’ amino had an increased stability against nuclease 

degradation when compared with a phosphoryl labeled 1502 aptamer. Both were partially 

modified with 2’-F C/U, with differing 5’ moieties. It appeared that the 5’ amino added 

additional protection of the aptamer against the nucleases found in the serum, which is promising 

moving forward to in vivo studies. The functional stability of aptamer 1502 with the 5’ stearyl 

moiety was also tested in serum after being inserted in to the lipid-PLGA nanoparticles. These 

results indicated that there was functional specific targeting of 1502 up to 8 h of incubation in 

serum, with non-specific internalization for the nanoparticles, functional and non-functional, at 

12 and 24 h in serum. This is expected for this type of lipid-PLGA nanoparticles, as they are 

utilized in in vivo drug delivery, even without a targeting ligand. Given the serum stability 
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Figure 5.5 Xenogen imaging of targeting two orthotopic AsPC-1 pancreatic cancer mice using 0.5 nmol IRDye-

BiEGFR by i.v. injection. In mouse B, the IRDye-BiEGFR ligand was proteolytically cleaved prior to injection.  

A1 and B1: whole body Luc signal; A2 and B2: whole body NIR signal; A3: Ex vivo NIR signal after sacrificing 

mouse A. L: liver; K: kidney. 
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results, we decided to test both RNA aptamer 1502 alone and the 1502 functionalized hybrid 

lipid-PLGA nanoparticles in vivo to determine the tumor targeting potential of aptamer 1502. 

 

5.3.a. Plan for future in vivo studies 

The studies delivering aptamer 1502-functionalized lipid-PLGA nanoparticles will be 

performed by in vivo fluorescence imaging with a Xenogen IVIS™ system using an orthotopic 

pancreatic cancer model. We have successfully demonstrated this technique in a previous study 

(Figure 5.5), by injecting with an IRDye-BiEGFR targeting ligand, a novel targeting ligand 

developed in the Liu lab. 

 

Our plan for utilizing the 1502-amino labeled aptamer would be to first characterize the 

PDAC cell-binding affinity and specificity of the synthesized aptamer by reacting the 

synthesized aptamer with FITC (together with a control aptamer). Once shown to be successfully 

reacted and functional, we would react the 1502-amino with NHS-DOTA under alkaline 



140 
 

conditions for copper 64 labeling in vivo. For these studies, we would be using the orthotopic 

PDAC animal model that the Liu lab has been using for the targeted imaging studies. 2 x 10
6
 

AsPC-1 cells would be inoculated into each nude mouse, and the tumor was allowed to reach an 

appropriate size for 4-5 weeks. Once this would occur, both aptamer 1502-DOTA and a negative 

control aptamer 1502-scrambled-DOTA probe, will be labeled with copper 64, and be 

intravenously injected. The relative concentration of copper 64 in the AsPC-1 tumor will be 

traced and visualized with PET imaging, at time points up to 24 h. This will be done with both 

RNA aptamer 1502 and the scrambled RNA aptamer 1502 control. 

In addition to delivering aptamer 1502, we plan on delivering hybrid lipid-PLGA 

nanoparticles that are targeted with 1502, development can be seen in Chapter 4. This 

nanoparticle formulation has shown to be very efficacious in the literature in vivo with low 

toxicity and high biocompatibility (references). We would initially deliver the 1502 

functionalized lipid-PLGA nanoparticle that carries cardiogreen, also known as ICG (Sigma) and 

nile red dye, which was previously used to monitor the internalization of these nanoparticles into 

cells. The nile red dye could be utilized in ex vivo studies with confocal microscopy at an 

excitation of 555 nm and the ICG delivery observed under fluorescent imaging at an excitation 

around 780 nm. Recently, in vivo imaging using near-infrared (NIR, 700 nm - 900 nm) 

fluorescent light has received considerable interest. NIR fluorescent light has a high transmission 

through living tissue and is able to penetrate into the tissue to depths of several centimeters with 

robust safety. 

For continuing experiments using local application of the 1502-lipid-PLGA nanoparticles 

carrying ICG and nile red, mice will be anaesthetized, laparotomy performed, prior to the local 

application to the pancreas of either positive or control scrambled aptamer nanoparticle platform. 
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The mice will be monitored at multiple time points using an IVIS Imaging System. For ex vivo 

imaging, mice will be sacrificed, pancreas with tumors explanted, and the tissues subjected to 

fluorescence imaging.  

If determined successful, the long term plan for this targeted delivery platform is to 

deliver a small molecule drug, carried by the PLGA at the core of the nanoparticle, to aid in 

reducing the AsPC-1 tumor size. This therapeutic approach is extremely versatile and flexible, as 

it would allow for a PDAC targeted delivery of a hydrophobic therapeutic of choice, with 

optimizations incorporated into the composition of the synthesized nanoparticle. 

 

 

 

5.3.b. Proposed materials and methods 

5.3.b.i. Aptamer 1502 

The 1502 aptamer would be labeled with NHS-DOTA for further interaction with 

copper
64

. Immediately after the NHS-DOTA is activated, the aptamer, folded and added to a 

borate buffer, pH 8.5, would be mixed at 4ºC overnight. Free NHS-DOTA would be removed by 

a Nap 5 column (GE Life Sciences). If necessary, the aptamer would be ethanol precipitated to 

remove any unnecessary salts and further de-salt by a Nap 5 column. Copper
64

 is reacted with the 

DOTA of the 1502-NHS-DOTA and free DOTA would be removed with a 5K or Nap5 column. 

Aptamer-NHS-DOTA was intravenously injected into AsPC-1 inoculated mice and monitored by 

PET imaging at various time points for the targeting of aptamer 1502 to the PDAC tumor. 

  

5.3.b.ii. Aptamer 1502 hybrid lipid-PLGA nanoparticle 

The lipid-PLGA nanoparticles would be prepared as done previously (Chapter 4), 

however 2 nmol of nile red and 2 nmol of ICG dyes would be encapsulated with the PLGA 

(instead of nile red alone). The proportions of the dyes has already been optimized so that 
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fluorescence was observed at 555 nm (for nile red) and ~780 nm (for ICG), without a significant 

quenching affect. These absorbances could be quantified on a fluorometer as well as the IVIS 

system directly. Nanoparticles would be functionalized with 1502 and 1502-scrambled as done 

previously. Total volume for injection will be 200 µL per mouse in 1X PBS. Injections would 

occur intravenously under anesthesia with 2-3% isoflurane.  

Fluorescence imaging would be performed using the Xenogen in vivo Imaging System 

(IVIS Kinetics, Perkin Elmer). The system consists of a supersensitive cooled charge-coupled 

device (CCD) camera mounted inside a light-tight imaging chamber. The CCD chip is 2.7 

cm
2 consisting of 2,048 × 2,048 pixels at 13.5 μm each. The camera is capable of detecting a 

minimum radiance of 100 photons per second per square centimeter per steridian (p/s/cm
2
/sr) 

and can achieve a minimal image pixel resolution of 50 μm. The system does not allow for three-

dimensional imaging, and hence spatial resolution is limited to a compressed, two-dimensional 

image for analysis. Images would be acquired at 10 min, 1 hour, 5 hours and 24 hour post 2 nmol 

tracer administrations via tail vein. The gray scale photographic images and fluorescence color 

images can be superimposed using the Living Image 4.1 software overlay (Perkin Elmer). For 

quantification, a region of interest (ROI) can be manually selected based on the signal intensity. 

The area of ROI would be kept constant and the intensity was recorded as average photons per 

second per square centimeter per steridian as described previously.   

 

5.3.c. Potential Impact 

The ongoing and future in vivo studies with aptamer 1502 have significance for the future 

development of this aptamer as a potential tool for diagnosis and therapeutics. If the 

biodistribution of the aptamer in vivo confirms its specificity to PDAC and its effectiveness in 
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targeting PDAC over healthy tissue, this could be very useful as a diagnostic tool. Additionally, 

the hybrid lipid-PLGA nanoparticle delivery system could not only serve as a targeting tool 

against PDAC, but could also deliver a therapeutic drug that could aid in treating this horrible 

disease. 
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