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Additional details about imputation of the transfer function, D, using the method of Imputation by place.

As stated in the main text when discussing the "Breast cancer example," we noted that there were a total of 8,319 locations in Nassau and Suffolk counties divided among the 3,064 women in the study.  Address coordinates at the street level, and hence D-values, were identifiable for 5,383 of these locations.  The remaining D-values (~ 3,000) are considered "unobserved" and had to be imputed.  The unobserved D-values were imputed in the time period after 1960, the first year when full information existed on traffic flows and tailpipe emissions.  A woman's total dose (opportunity) depended on multiple D's, if she lived in more than one location during the study period.  Dose, besides depending on D-values, also depended on the relative duration lived at each residence and the historical sequence of residence relative to emissions decline.

Rather than impute D’s directly when using the method of imputation by place, we worked with D-values normalized to the average of observed values, with Place average computed separately for cases and controls.  The final D-values were then obtained by multiplying the appropriate Place average by the imputed Dnorm.  We made this choice for several reasons.  First, the normalized D-values (Dnorm) were uncorrelated with breast cancer status (p > 0.9).  Second, among the known D-values we found a long tail in the distribution with a 1%-frequency rate that would not show up well when restricted to individual Places, which have counts ranging from a few to sixty for control women.  Thus, the data itself could not tell us how the long-tailed distribution varied with Place.  Based on previous work [1], we expected abnormally high relative values to occur in any census Place near intersections, so we assumed that the long-tail would occur everywhere.  Our choice of imputing Dnorm’s, in effect, assigns to each Place the global, non-standard distribution with its long tail. 


Multiple imputation of the missing transfer function along with any missing covariate values, was carried out using fully conditional specification as implemented in the R-program, “Multivariate Imputation by Chained Equations (MICE)” [2].   Because of the observed long tail in the dose-distribution that could not be fit with a log-normal or other standard distribution, we chose the option for predictive mean matching in the MICE software, which insures that imputed Dnorm’s come from “observed" values.  The predictive mean matching method ensures that imputed values are plausible and is more appropriate than the regression method if the normality assumption is violated [3].

Imputation was carried out in two steps. The first step accounted for women who had more than one residence with a missing Dnorm and who also had a value missing for one of the covariates listed in Table S2-1.  Only one of these women's residences with missing Dnorm's was included in the first imputation. This established imputed values of missing covariates, which could then be used in the second imputation of the residual Dnorm's not imputed in the first round. As a result, a woman who happened to be missing a covariate, say, highest level of education achieved, was assigned the same value of education level for every residence.  That value might change between imputed data sets, but it would be the same for each of her residences within an imputed data set. 

	Additional File 2, Table S2-1.  Variables imputed and/or used in imputationa

	Imputation

Round
	Direct variables
	Interactions with Dnorm

	Round 1b
	Dnorm
Active smoking status (never, past, current)

Highest level of education achieved

Fertility problems

History of benign breast disease

Family history of breast cancer

Combined estrogen receptor and progesterone receptor status among cases

Parity

Nulliparity

BMI at reference date

Dietary intake of PAH [4] Lifetime intake of grilled or barbecued and smoked meats [4] 
	Active smoking status (never, past, current)

Passive smoking status (never, past, current)

Menopausal status

Nulliparity

Dietary PAH variables

Combined estrogen receptor and progesterone receptor status among cases

	Round 2c
	Dnorms not imputed in Round 1

All covariates from Round 1 (now with all missing values imputed)

Lifetime alcohol intake [5]
Case-control status

Age at diagnosis

Age at menarche

Total household income before taxes in last year 

Centered age at first birth

Use of hormone replacement therapy

Use of oral contraceptives

Latina

Religion in which subject was raised

Total hours worked between 1960 and 1990
	

	a) Covariates obtained through interview are described in Gammon et al. [6], unless another citation is indicated.

b) Missing Dnorm’s and any missing covariates jointly imputed, using observed values of all of them.

c) A woman’s second or later missing Dnorm was imputed in Round 2.  These residual Dnorm’s were imputed using covariates from Round 1 along with the new covariates added in Round 2, which were included, despite their low correlation with the Dnorm's, to insure that any of their missing values were filled in with imputed values.   



We performed linear multivariate regression on Dnorm’s, to decide which covariates to use in conditional specifications involving Dnorm’s, retaining variables for which p-values were less than 0.25.  These variables are listed in Table S2-1 under the Round-1 imputations.  Any missing values of these covariates were also imputed in the process.  Also included were biologically interesting interaction terms with Dnorm’s, which are listed in the second column of Table S2-1.  By including interaction terms in the imputation, we carry over correlations found in the observed data to the unobserved data needing imputation 


After imputing the Dnorm’s with these variables, the covariates not included in the first round (listed in Table S2-1, Round 2) had any missing values imputed by MICE as part of the second imputation.  Fifteen imputations were carried out for our numerical examples.  Five are considered sufficient for combining confidence limits across multiple imputations using Rubin’s rules [7]. 
Comparison of historical dose quartiles with exposure quartiles at most recent address by dose categories.


In the absence of methods to deal with historical exposure data, few epidemiologic studies to date have attempted to gather complete lifetime residential addresses, and consequently many studies base exposure estimates on current or recent residences as proxies for lifetime histories [8].  This must clearly result in misclassification of exposure. To get some idea of the extent of such misclassification, we calculated Pearson correlation coefficients between cumulative and current doses as shown in Table 1 of the main text.  This Table indicated how these different dose estimates matched up when considered as continuous variables (r–values below 0.6).  Table S2-2 below shows how cumulative and current doses match up using a categorical approach in a frequency Table.  Specifically, Table S2-2 compares dose quartiles for the last year of the study period to the estimated quartiles for dose from 1960 to 1990.  The results are for a typical imputation.  Table S2-2 indicates that the quartile assignments for recent dose are modestly consistent with the quartile assignments for cumulative doses.  43% to 61% of women were classified the same under the two measures depending on the quartile number.  Still, there is significant misclassification, which could lead to an attenuation of any effect between dose and disease risk, were the wrong measure to be chosen for analysis.  We found that the average distance of a move on Long Island for our study subjects was less than 10 km, which suggests that, aside from intersection complications, study subjects remained in generally the same area along the 120-km long study area.  Because considerable dose gradient occurs along the Island study area [1], the tendency to remain relatively close to previous residences may help explain the general consistency of the two exposure measures.
	Additional File 2, Table S2-2.  Chi-Square Table comparing end-of-period (1995) dose to cumulative dosea)

	
	Quartile of 1995 dose 

	
	1
	2
	3
	4

	Quartile of dose 1960-1990
	
	
	
	

	1
	375
	198
	71
	51

	2
	154
	302
	180
	72

	3
	96
	113
	328
	150

	4
	73
	86
	120
	426

	
	
	
	
	

	Total of column
	698
	699
	699
	699

	a) For one imputation.  The number of women in the Table is less than the number for which we have total dose, because of the difficulty in imputing 1995 doses for women for whom we have only pre-arrival dose.


Alternate transfer function for out-of-area dose surrogates.


The choice of transfer function used in the out-of-area surrogate was based on an average over study subjects with calculated transfer function.  For sensitivity analysis, it is possible to take a different approach, namely to adjust the average transfer function up or down to insure that there is no dependence of total average dose on year of arrival.  This alternate approach produced only minor differences in total doses.  Correlation coefficients were in the 99% range. 

Multiple Comparisons of dose models:



We have considered a number of models for biological effectiveness of traffic pollution, because it is not clear that a simple exposure sum is the best metric for assessing health risk.  How many of these models should be used in regressions against health data?  There are few empirical data on the nature of the dose-response relation for traffic pollutants and the assumption of a simple dose-response relation implicit in the use of cumulative exposures seems a reasonable baseline strategy.  Consideration of peak exposure also seems worthwhile, given the possibility of a non-linear dose response indicated in the earlier Long Island PAH-DNA adduct study of breast cancer [9] and the finding of a high dose cohort among the top 1% of cases in this study.  The strong age effects found in radiation epidemiology for breast cancer suggest it is worth trying functional forms that vary strongly with age at exposure and/or age of onset, recognizing that chemical pollutants may have more complex interactions with cells than does ionizing radiation, due, for instance, to hormonal influences that might supplement DNA-damage.  Still, the radiation functional forms will help in comparing and contrasting different possible dose-response functions.   


Of course, when considering many functional forms and alternatives in regressions against health risk, there will be multiple comparisons made that could increase the chance of a false finding.  However, at the current state of knowledge we do not want to miss an exposure-disease association [10, 11], so it is appropriate to work with a large set of dose measures. 
Additional details of the LIBCSP meteorological dispersion model used in the numerical examples.  

	Addition File 2, Table S2-3.  Default meteorological dispersion model

	Quantity of interest
	Data source
	Comment
	Options for sensitivity analysis

	< 100 m of road
	Chock dispersion model [12].a)
	Models merged at 100 m.b)
	

	> 100 m of road
	Gaussian plume model.
	Briggs dispersion parameters used. [13].b)
	Rural dispersion parameters

	Meteorological data for wind speed and direction. 
	1993 values from Brookhaven National Labs meterological station [14]ti
	
	1990 BNL values; 1990 and 1993 data from MacArthur airport [15].

	Mixing layer
	1993 values from [16].c)
	
	1990 values.

	Rain washout
	Hourly mm of rainfall [14].
	Took standard function of rainfall rate [17].
	Scale factor

	Photo-decay
	Hourly pyranometer readings from [14].
	Proportional to the amount of sunlight, adjusted to give an average 6-hour decay rate.d)

	Scale factor.  1990 pyranometer readings.

	Deposition velocity
	 [18]
	Default value = 0.003 m/s
	Scale factor

	a) Computationally, the Chock model was converted to a gaussian plume formulation by fitting the Chock predictions to spatially dependent, gaussian plume dispersion parameters applied to puffs emitted along the roadway.

b) At 100 meters from the road, the puffs were allowed to continue to expand using standard dispersion parameters, whose values for the default model were taken from 1993 Brookhaven Laboratory measurements (BNL).  Values measured at Brookhaven in 1990 and values derived using PCRammet from data collected at MacArthur airport in 1990 and 1993 were used for sensitivity studies [19], [15].  Both Brookhaven Laboratory and MacArthur airport (Islip) are in Long Island.

c) Raw data converted to hourly mixing heights using the program, PCRammet [19].

d) The default value was chosen to produce a mean BaP lifetime during daylight of 6 hours, a value within the wide range given in the literature. [20], [21].


Switching between different meteorological models at 100 meters. Within 100 meters of a road segment, the Chock highway line model was used [12].  The model gives vertical and horizontal dispersion parameters as a function of stability conditions, wind speed, angle from the road, and distance.  At 100 meters, we matched the values of the Chock dispersion parameters to comparable dispersion parameters in a Gaussian plume model, using a virtual source method [22].  The virtual source method adds a virtual distance to the roadway position sufficient to produce the desired plume width at 100 meters, assuming that the dispersion had been Gaussian from the beginning.  The virtual distance is computed for both horizontal and vertical widths and may differ in each case.  Armed with the matching Gaussian dispersion parameters, the Gaussian model can be used to follow the puff beyond 100 meters.

 Background BaP blown into the study area from outside it.  Previous traffic models have estimated regional background in a number of ways.  For instance, they have used gasoline sales data to estimate background emissions, have used a constant value as a surrogate for the cumulative contribution of distant roads, or have estimated regional background from trends at rural monitoring stations and from national vehicle emissions. [23-25].  Although we have attempted to directly account for traffic emissions within 80 km of our study area, there are more distant roads, as well as other sources of PAH emissions, making it prudent to include a background term in the model.  We provided two options for use in model calibration exercises [1].  In the first, a constant term was added to the on-island model prediction.  For the second option, we allowed background to be proportional to the exposure calculated from the outer counties (all but Nassau, Suffolk, and Queens counties) out to 80 km from Long Island.  In both approaches, the relative scale of the background term can be set by calibration to environmental measurements.  The second option provided a better fit to the soil data used for model calibration, presumably because it captured some of the gradient caused by dispersion from the New York City Metropolitan region.  

Validation of the model.  As discussed in the section on the meteorological model in the main text, the meteorological dispersion model was validated against soil data collected as part of the project [1].  A meteorological dispersion model can predict soil concentrations because deposits from the air are proportional, on average, to airborne concentrations.  The model was also tested against hourly CO-levels at a CO-monitoring station and against PAH-DNA adduct levels measured in the blood of study subjects and found to be consistent in both cases [1].  The model predictions for deposition to carpets, however, were not consistent with measurements of PAH levels found in dust vacuumed from the carpets of study subjects [1], but this no longer surprises us, because we have since learned that PAH in house dust has been found to not correlate with airborne concentrations [26], indicating that track-in, cooking splash, or other sources must dominate the concentration in carpet dust.
Some limitations of the exposure modeling used for numerical examples:

The major strengths of the model are that it incorporates higher relative emissions from intersections and that it has been validated and calibrated against soil data collected at 500+ residences and checked against other environmental data.  However, there are some limitations, which we now discuss, that will lead to some exposure misclassification.

Sea and Shore breezes.  For several hours each day, sea and shore breezes affect the mixing layer across the island.  Although their impact on wind directions was included in the model through use of Long Island wind data, the impact on mixing layer was not fully incorporated, because only average mixing layers were utilized as a cap on vertical expansion of puffs.  This means that we explicitly neglected the “thermal internal boundary layer” (TIBL) [27] that forms over the Island for several hours when the wind is blowing from the ocean on warm days.  Neglect of the TIBL is a limitation of the model applicable to a segment of each warm day.  It could have led to some exposure misclassification.

Exposure while traveling in vehicles.  We did not attempt to account for exposure to traffic PAH while in a moving vehicle [28], [29], because no questions directly relevant to in-vehicle modeling were included in the study questionnaire.  We expected this limitation to lead to some misclassification for women residing far from major roads, based on order- of-magnitude calculations.  Recent work in Southern California has suggested that this could be an important limitation for many subjects, at least in some locations [30].  As a result, researchers carrying out future studies of this type might want to gather information at interview about historical travel patterns.

Sources of PAH not modeled.  The primary goal of the model used for our numerical examples was to obtain estimates of life course vehicular traffic exposure.  Thus, for this model, we have purposely not focused on other sources of PAH, which were assessed as part of the LIBCSP.  For example, as stated in the introduction to the main text, we have available individualized estimates for PAH in diet and exposure to passive/active smoking.  Lifetime intake of grilled/smoked meat [31], and long-term passive smoking—but not current or former active smoking [32]—have been associated with breast cancer in our study population.   We also have data from interview on individual use of both wood stoves and fireplaces as a categorical variable, but they are not needed as an example of our approach to life course exposure assessment.  Within the category of PAH air exposure, as stated in the introduction to the main text, we focused in this paper on vehicular traffic because it is a major source of both indoor and outdoor exposures to PAH, and often the largest source in areas near cities, as has been confirmed in a number of experimental studies [33-38].  


The fact that our modeled distribution of doses has a long tail due to traffic intersections is an advantage in our case, because for subjects in the tail their traffic exposure is likely to rise well above contributions from other PAH sources.  Furthermore, neither emissions from residential heating systems nor emissions from industry nor emissions from electric power sources are likely to be correlated with intersections.  In general, a non-standard distribution with a long tail attributable to a unique set of exposure circumstances, despite the complexity that may arise in the statistical analysis, may turn out to be quite useful, because it may prevent confounding occurring throughout the entire study population.

Exposure opportunity.  Residential exposures in our geographic model were calculated assuming a woman was always present at her residence.  As a surrogate for work exposure, we have estimates from interview of total hours worked at each job over a study subject's lifetime, which can be used in regressions against health data to control for work exposures.  
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