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ABSTRACT 

 

TRACY L. JOHNSON: Can You Borrow From an Already Borrowed From Number? 

Insights into Second Graders’ Knowledge of Place Value 

(Under the direction of Olof Steinthorsdottir) 

 

This purpose of this study is to provide insights about end-of-the year second graders’ 

knowledge of place value and its application in solving two- and three-digit addition and 

subtraction problems.  Twenty-two students in two schools in the same district in rural North 

Carolina were interviewed using a qualitative, structured, task-based interview.  The tasks 

addressed number combinations, use of ten as a composite unit, conservation of quantity for 

grouped objects, incrementing on and off the decade by tens with and without physical 

representations of quantities, two- and three-digit addition and subtraction problems, and 

understanding of algorithmic procedures.  The findings of this study indicate that students’ 

strategy selection is largely algorithm-dependent, and students appear to have stronger 

procedural knowledge than conceptual understanding of the standard algorithm.  Students 

had more difficulty procedurally and conceptually with subtraction than addition.  This study 

also found that students’ highest known number combination may relate to their overall level 

of base-ten knowledge.  Finally, the interview protocol used to assess students’ place value 

knowledge appears to provide comprehensive data for assessing levels of knowledge. 
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Can You Borrow From An Already Borrowed From Number? 

Insights into Second Graders’ Knowledge of Place Value  

 

Introduction 

The term “place value” refers to many different and complex ideas. Conceptualization 

of place value is more advanced than labeling columns or digits as “tens” or “ones”; it 

requires an understanding of the base-ten number system (Richardson, 2002b). However, 

teaching and learning place value is situated within a context in which “the prevailing view 

of school mathematics is one of rules and procedures, memorization and practice, and 

exactness in procedures and in answers” (Lindquist, 1997, p. xiv; see also Boaler, 2003).  

Place value understanding is a necessary mathematical developmental understanding that 

must solidify in early to middle elementary school.   

Research has established that many children have difficulty understanding place value 

concepts (Brown & Burton, 1978; Cauley, 1988; Ginsburg, 1989; Kamii, 1986; Miura & 

Okamoto, 1989; Resnick, 1987; Resnick & Omanson, 1987; Ross, 1989).  This is caused by 

several factors.  One challenge is understanding the role of the location of digits.  Many 

students struggle with learning the difference between a number’s “face value” (the name of 

the digit, ranging from 0-9) and its “complete value” (the amount the digit represents, given 

its position in the numeral) (Becker & Varelas, 1993).  For example, many children identify 

the two in 23 as having a value of 2 instead of 20.  
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Another challenge to place value understanding is the disparity between physical 

representations of quantities and the written numeral.  Base-ten materials are physical 

representations of the complete value.  Students may be able to manipulate these materials 

and yet still have difficulty transitioning to written notation in which numbers with the same 

face value hold different complete values.  For example, consider the number 282, where the 

left 2 is worth 200 and the right 2 is worth 2.  When using base-ten materials, students do not 

need to consider distinctions between the 2 hundreds and the 2 ones because they are 

represented in their complete value form via two different groupings of blocks (the 200 is 

represented with (two) hundreds flats and the 2 is represented with two individual units).  

There is a different physical representation for each 2 based on its place value.  However, 

written notation does not provide distinct representations for the 200 and the 2 as they are 

both written simply as “2.”  The fact that a numeral can have the same digit (or face value) in 

different locations but represent different amounts is not addressed by using base-ten 

materials and therefore can cause confusion with students when transitioning to written 

notation (Becker & Varelas, 1993). 

Additionally, there is a difference in the verbal and written form of numerals in 

European languages. Consider how the “teen” numbers, and especially “eleven” and 

“twelve,” do not follow the pattern of higher two-digit numbers in which the tens are spoken 

first and the ones are spoken second (such as “twenty-one”) (Fuson & Smith, 1996; Sharma, 

1993).  Further, the presence of a place-holding zero is not explicitly verbally communicated.  

In order to write “one thousand eighty four” students must know to write a zero in the 

hundreds place.  Some errors may include writing 184 or 100084. 
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Not only is place value challenging to conceptualize, it is also necessary as a 

foundation to acquire other mathematical concepts.  Place value understanding is essential in 

order for students to have success with addition and subtraction of multi-digit numbers, 

decimal operations, algebraic expressions and equations, scientific notation, and exponents 

(Wearne & Hiebert, 2002; Sowder, 2002; Carpenter, Franke, & Levi, 2003; Sharma, 1993).  

Since number pervades all areas of mathematics, place value understanding radiates 

throughout additional mathematical concepts as well (National Council of Teachers of 

Mathematics-NCTM, 2000).  “Mathematics in the early years is not just a simpler version of 

mathematics that children will learn later.  Rather, (it) provides foundational concepts that 

are key to understanding more formal and abstract ideas.  To be truly prepared for later 

mathematics, young children need to develop flexibility in thinking about numbers” 

(Richardson, 2003, p.2).   Developing a strong foundation of place value understanding in 

early elementary school is a key benchmark that improves students’ abilities to conceptualize 

mathematical operations, processes, and relationships throughout and well beyond 

elementary school. 

Informal experiences with place value and the base-ten number system occur before 

children enter school (Clements & Sarama, 2007), and formal experiences with place value 

generally begin in first grade.  The National Council of Teachers of Mathematics (NCTM) 

delineates the importance of place value in its Principles and Standards for School 

Mathematics (2000) and NCTM Curriculum Focal Points for Prekindergarten through 

Grade 8 Mathematics (2006).  Students are to develop “beginning ideas of tens and ones” in 

first grade (NCTM, 2006, p.22).  In second grade a more overt emphasis on place value 
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occurs.  The North Carolina Standard Course of Study (NCSCOS) indicates that place value 

is one of the “major concept(s)” in second grade (NCSCOS, 2003).  Similarly, two of the 

three NCTM second grade Focal Points address place value.  The first states that students are 

to “develop an understanding of the base-ten numeration system and place-value concepts” 

and the second states that students are to “develop fluency with multi-digit addition and 

subtraction” (NCTM, 2006, p.23).  Excerpts from these two second grade focal points 

follow: 

1. Number and Operations: Developing an understanding of the base-ten 

numeration system and place-value concepts: Children develop an understanding 

of the base-ten numeration system and place-value concepts (at least to 1000). Their 

understanding of base-ten numeration includes ideas of counting in units and 

multiples of hundreds, tens, and ones, as well as a grasp of number 

relationships…They understand multi-digit numbers in terms of place value, 

recognizing that place-value notation is a shorthand for the sums of multiples of 

powers of 10 (e.g., 853 as 8 hundreds + 5 tens + 3 ones). 

 

2. Number and Operations and Algebra: Developing quick recall of addition facts 

and related subtraction facts and fluency with multi-digit addition and 

subtraction:  Children…solve arithmetic problems by applying their understanding 

of relationships and properties of number (such as place value).  Children develop, 

discuss, and use efficient, accurate, and generalizable methods to add and subtract 

multi-digit whole numbers…They develop fluency with efficient procedures, 

including standard algorithms, for adding and subtracting whole numbers, understand 

why the procedures work (on the basis of place value and properties of operations), 

and use them to solve problems.       

 (NCTM, 2006, p.23) 

 

 Both the NCTM Principles and Standards (2000) and Curriculum Focal Points 

(2006) indicate that all students nationally should develop an understanding of place value in 

second grade.  This study examined second graders’ mathematical understandings 
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surrounding various aspects of place value.   The central question of the exploratory study is 

this:  

What insights do a series of related interview tasks provide about end-of-year second 

grade students’ knowledge of place value and its application in solving two- and three- 

digit addition and subtraction problems? 

 

Within this exploratory question, I specifically examined second graders’ understanding 

of some of the big ideas related to place value and the use of ten.  These big ideas included 

what number combinations for numbers 1-10 do students know fluently, what is students’ 

facility with unitizing, and what is students’ facility recognizing and using place value 

patterns?  I also explored students’ solution strategies for two- and three-digit addition and 

subtraction problems.  Finally, I considered whether there were disconnects between 

students’ procedural knowledge and conceptual understanding of place value when using the 

standard algorithm at the end of Grade 2. 

The first section of this paper (Background) presents the literature on place value.  First, 

the stages of development in children’s conceptualization of place value are detailed, and 

place value is discussed as a key developmental understanding and its composite big ideas 

are delineated.  In the second section (Methodology), the methodology and data analysis of 

this study are described.  The third section (Results) contains the results of this study. The 

fourth section (Discussion) discusses implications for instruction.  



 

 

 

 

 

Background 

 In this section the theoretical framework for place value knowledge is discussed.  

First, suggested stages of development in children’s conceptualization of place value 

understanding are presented.  Second, distinctions between “types” or “levels” of 

mathematical knowledge and understanding are discussed.  Third, place value is explained as 

a key developmental understanding and several big ideas within place value are summarized.  

Fourth, what is known about children’s solution strategies for solving two-digit addition and 

subtraction problems is presented.  Fifth, the effects of using algorithms on young children’s 

understanding is discussed.   

 

 
Stages of Development of Place Value Understanding  

It is important to know what the existing categorizations of conceptual development 

are regarding two-digit numbers and place value.  This information was used both to select 

tasks and analyze responses and is presented in the following section. 

Wright, Martland, Stafford and Stanger (2006b) outline a framework for students’ 

conceptual place value progression.  This learning framework for early number knowledge 

which contains three levels of development of base-ten arithmetical strategies: Level 1) 

Initial concept of ten, Level 2) Intermediate concept of ten, and Level 3) Facile concept of 

ten.   The descriptors of each level are presented in the following table.
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 Table 1 

Levels of Base-ten Arithmetic Knowledge 

 

 
Note. From Teaching number: Advancing children’s skills and strategies (p. 10), by R. J. Wright et al., 2006b, 

Thousand Oaks, CA: Sage. Copyright 2006 by Robert J. Wright, Jim Martland , Ann K. Stafford, and Garry 

Stanger. 

 

 

 
 

Carpenter, Fennema, Franke, Levi, and Empson (1999) also outline students’ 

procedural and conceptual place value progression in their work on Cognitively Guided 

Instruction (CGI).  The authors document the progression of children’s development of 

number concepts.   

Level Description 

 Level 1--Initial Concept of 

Ten 
The child does not see ten as a unit of any kind. The child 

focuses on the individual items that make up the ten.  In 

addition or subtraction tasks involving tens, children count 

forward or backward by ones. 

 Level 2--Intermediate 

Concept of Ten 
Ten is seen as a unit composed of tens and ones.  The child 

is depending on re-presentations (like mental replay or 

recollection) of units of ten such as hidden ten-strips or 

open hands of ten fingers.  The child can perform addition 

and subtraction tasks involving tens where these are 

presented with materials such as covered strips of tens and 

ones.  The child cannot solve addition and subtraction tasks 

involving tens and ones presented as written number 

sentences. 

Level 3--Facile Concept of 

Ten 

The child can solve addition and subtraction tasks 

involving tens and ones without using materials or re-

presentations of materials.  The child can solve written 

number sentences involving tens and ones by adding or 

subtracting units of tens and ones. 
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Base-ten development begins with the child Counting by Ones, and is similar to 

Level 1—Initial Concept of Ten (Wright et al., 2006b).  At this stage the child does not 

understand that they can count groups of ten directly.  Groups of ten appear to carry no 

significance with regard to the number assigned to the collection of counters. When 

presented with a collection of objects grouped by tens, a child would count by ones.   

The second stage of base-ten development is Counting by Tens and is similar to 

Level 2—Intermediate Concept of Ten (Wright et al., 2006b).  .  At this stage the child is 

able to use base-ten number concepts.  When presented with a collection of objects grouped 

by tens, a child would count the grouped objects by tens and then count the ones.   

The highest stage of base-ten development is Direct Place Value and is similar to 

Level 3—Facile Concept of Ten (Wright et al., 2006b).  This is a more flexible conception of 

base-ten concepts.  When presented with a collection of objects grouped by tens, a child 

would not count but rather would immediately recognize the total number of objects in the 

grouped sets (e.g. 5 groups of ten is 50 objects) and add the ones to this number (e.g. three 

more make 53).  This type of thinking is more advance and flexible than that of a child who 

counts by tens. 

 

The Nature of Mathematical Understanding 

Within mathematics education there has been an increased focus on promoting 

students’ understanding. The National Council of Teachers of Mathematics (2000) states 

that, “students must learn mathematics with understanding” (p.11).  Brownell (1947) offers 

several reasons why learning should be focused on meaning and understanding, including 
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assurance of retention, increased likelihood that ideas and skills will be used, providing a 

foundation that allows for transferable understandings, reducing the amount of repetitive 

practice necessary, safeguarding against mathematically absurd answers, and providing 

versatile and flexible approaches.  As Hiebert et al. (1997) state, “understanding is crucial 

because things learned with understanding can be used flexibly, adapted to new situations, 

and used to learn new things” (p.1). 

Mathematical “understanding” has been defined using various terms and constructs, 

although it generally describes a distinction between skill and meaning.  Piaget (1978) 

described the difference between successful action and conceptual understanding.  Skemp 

(1978) defined instrumental understanding as knowing what to do or the possession of a rule 

and the ability to use it and relational understanding as knowing what to do and why.  Hiebert 

and Lefevre (1986) distinguished between conceptual knowledge that is rich in relationships 

and procedural knowledge that consists of symbolic systems and rules for completing 

mathematical tasks.  Resnick (1982) used the terms syntax and semantics, Gelman and 

Gallistel (1978) differentiated between principles and skills, and Hatano (1988) distinguished 

between routine expertise and adaptive expertise. 

There is much overlap among these various labels.  In this paper the learning of skills 

will be referred to as “procedural knowledge,” and the development of understanding will be 

referred to as “conceptual understanding.”   
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Place Value as a Key Developmental Understanding 

As an underlying support of this study, Simon’s (2006) construct of a “key 

developmental understanding” (KDU) is detailed.  A key developmental understanding 

“identifie(s) critical transitions that are essential for students’ mathematical development” 

(p.360).  Further, a KDU “involves a conceptual advance on the part of students…a change 

in the students’ ability to think about and/or perceive particular mathematical relationships” 

(p.362).  Another characteristic of a KDU is that “students without the knowledge do not 

tend to acquire it as the result of an explanation or demonstration. That is, the transition 

requires a building up of the understanding through students’ activity and reflection and 

usually comes about over multiple experiences” (p.362).   

Place value concepts fit within Simon’s construct of a KDU, as place value 

understanding cannot be imparted simply with telling, showing, explaining, or 

demonstrating.  Furthermore, place value understanding impacts the way students think about 

mathematical relationships, without which they may suffer from a fragile mathematical 

foundation that may result in unfulfilled mathematical potential (NCTM, 2006).   

This study explores the key developmental understanding of place value in depth 

during the time in which students are engaged in a “critical transition” that is essential for 

their mathematical development.  End-of-the-year second graders are at this significant 

mathematical juncture.  As Simon (2006) wrote, “A focus is needed on those understandings 

whose development tends to require more than an explanation or demonstration” (p.362).   
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Place Value and Big Ideas 

A broad and complex concept, “place value” is too intricate to be considered as only 

one KDU.  Rather, place value is comprised of several KDUs, and in order for students to be 

facile with place value I surmise that they will need to conceptualize several KDUs.  This is 

supported by Fosnot’s (2007) work, which specifies several “big ideas” that relate to place 

value understanding. 

The first big idea that underlies place value, addition, and subtraction is unitizing.  

Fosnot (2007) defines unitizing as counting single objects, groups, and the ability to do both 

simultaneously.  Children require a “shift in perspective” to “treat a group of ten as a unit, 

and ten groups of ten (100 units) as one unit of a hundred” (Fosnot, 2007, p.7).  Unitizing is 

also referred to in the literature as the use of composite units.  Understanding ten as a 

composite unit means that a student can combine single units into a new, countable unit.  As 

Carpenter et al. (1999) state, “The central principle that children must grasp to understand 

base-ten numbers is that collections of ten (or one hundred or one thousand) can be counted” 

(p.59).  Students who have conceptualized composite units and unitize can see ten as ten ones 

and one unit of ten.  They also understand that the structure of a number is based on its 

organization into groups of tens and ones (Richardson, 2002b).  Unitizing, or 

conceptualization of composite units, is “essential for the development of concepts of place 

value and multiplication—thus, the identification of composite units as a KDU” (Simon, 

2006, p.367). 

Fosnot’s (2007) second big idea behind place value is that place determines value.  

This refers to children understanding the difference between a numeral’s face value and 
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complete value.  “The numeral 2 may represent two units, but the units themselves can 

change; they can be ones or tens or hundreds or more” (Fosnot, p.7).  Where the numeral is 

placed determines its amount. 

Another big idea within place value understanding is equivalence.  Students need to 

understand that “amounts can be rearranged and decomposed and still be equivalent” 

(Fosnot, 2007, p.7).  Students with this understanding are able to conceptualize that 3 tens 

and 4 ones are equivalent to 2 tens and 14 ones as well as 1 ten and 24 ones. 

Commutativity and associativity is another big idea related to place value.  Fosnot 

(2007) explains, “Children need many opportunities to compose and decompose numbers 

before they realize that numbers can be grouped in a variety of ways, even turned around, 

and the amounts stay the same” (p.7).  NCTM (2000) states, “students with number sense 

naturally decompose number” (p.32).  Being able to compose and decompose numbers 

“contributes to developing part-whole relations, one of the most important accomplishments 

in arithmetic” (Clements & Sarama, 2007, p.486). “When children learn to subtract without 

decomposing numbers, they do not have the foundational skills necessary for solving 

problems with larger and more complex numbers” (Richardson, 2002a, p.26).  For example, 

without being able to decompose numbers a student would not be able to use the strategy of 

compensation (subsequently described in Background: Strategies, p.13).  As Kamii (2000) 

stated, “Our goal in single-digit addition is that children become able to think flexibly about 

numbers and construct a network of numerical relationships” (p.69).   

The final place value-related big idea Fosnot (2007) defines is the place value 

patterns that result from repeatedly adding or subtracting ten, making groups of ten, or 
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multiplying by ten.  Children must learn the patterns associated with counting on the decade 

(also referred to as landmark numbers, e.g., 10, 20, 30…) as well as counting off the decade 

(e.g., 14, 24, 34…).  Children also need to learn that these patterns continue past higher 

landmark numbers, such as 100.  The ability to increment by tens is “the forerunner to the 

development of place value knowledge” (Wright, Martland & Stafford, 2006a, p.93).  The 

ability to count by ten, both on and off the decade, will result in an increased ability of 

students to engage in mental arithmetic and conceptualize the quantities with which they are 

working. 

Simon (2006) postulated that by observing students engaged in mathematical tasks it 

is possible to “specify understandings that can account for differences in the actions of 

different students in response to the same task.  A way to explain these observed differences 

is by postulating a KDU” (p.363).  This study used interview tasks designed from place 

value-related KDUs and big ideas to identify what students are able to do and what students 

appear to know with respect to place value understanding.  By using the constructs of KDUs 

and big ideas to explore students’ responses it is possible to highlight distinctions between 

students’ understandings, given the level of sophistication in their responses and strategies.  

Student strategies are described in the following section. 

 

Strategies 

The NCTM (2000) states “Students should be able to perform computations in 

different ways” (p.32).  Within the CGI framework, children’s solution strategies for addition 
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and subtraction move through a progression to become more efficient, sophisticated, and 

abstract.  The stages of strategy development follow. 

 In the beginning, children solve problems by direct modeling.  This means students 

use concrete objects or otherwise represent (e.g., through drawing) quantities in order to 

solve problems.  Direct modeling lays an important foundation for children, as “many 

children flounder in mathematics when they reach the elementary grades precisely because 

they haven’t had sufficient hands-on experiences with the place-value system in a concrete 

form” (Ginsberg, Inoue & Seo, 2000, p.139).   

 Over time, children’s direct modeling is replaced by counting strategies.  In addition 

problems (join-result unknown), children may count on from the first number given in the 

problem (count on from first) or they may count on from the larger of the given numbers 

(count on from larger).  In subtraction problems (separate-result unknown), they may count 

down to find the answer.  Counting strategies are more sophisticated than direct modeling, 

because “counting strategies indicate a level of understanding of number concepts and an 

ability to reflect on numbers as abstract entities” (Carpenter et al., 1999, p. 28).  Eventually 

counting strategies are replaced with even more efficient and abstract strategies of using 

number facts that are known facts. 

 Math Recovery explains additional categorizations of strategies that students may use 

to solve two-digit addition or subtraction tasks (Wright et al., 2006b).  One strategy is called 

the jump method, identified elsewhere in the literature as the N10 method (Beishuizen, 

1993) or the sequencing or cumulative method (Thompson, 1999, p.150).  A child using this 

strategy “jumps” from one of the given numbers by the number of tens in the second number, 
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then “jumps” by the number of ones in the second number.  For example, to solve 47+ 22 

one would begin at 47, add the 20 (or 10 and 10) to get to 67, and then add the 2 to yield a 

final answer of 69.  In order to successfully use this strategy a student must be able to 

increment by ten off the decade, which is one reason why the big idea of recognizing place 

value patterns is critical.   

 Fosnot (2007) outlined a strategy similar to the jump method as keeping one number 

whole, using landmark numbers, and adding or removing chunks of tens or hundreds.  

To use this strategy a child would begin the same as the jump method, beginning with one of 

the given numbers and jumping by the number of tens in the second number.  Next, the child 

would use some of the ones from the second number to reach a landmark (or “friendly”) 

number.  Finally, the child would add the remaining ones from the second number.  For 

example, to solve 33 + 29 one would begin at 33, add 10 to get to 43, and add 10 to get to 53.  

In the next step, one would add 53 + 7 to get to 60 (a landmark or friendly number), then add 

2 more to arrive at the answer of 62. 

 Another strategy that students may use to solve two-digit addition or subtraction tasks 

is the split method (Fosnot, 2007; Wright et al., 2006b), identified elsewhere in the literature 

as the 1010 method (Beishuizen, 1993) or the partitioning method (Thompson, 1999).  A 

child using this strategy “splits” the numbers by place value position into tens and ones to 

work with them separately in expanded notation and then recomposes the total quantity to 

produce the final answer.  For example, to solve 47+ 22 one would begin by adding 40 and 

20 to get 60, then add 7 and 2 to get 9, and then add 60 and 9 to yield a final answer of 69. 
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The last strategy that some students may use to solve the two-digit addition and 

subtraction problems is compensation (Chapin & Johnson, 2000).  A child using this 

strategy changes the original numbers to make “friendly” or “nice” numbers that are easy to 

work with, performs the operation, and then compensates for the change made to the original 

quantity to arrive at the final answer.  For example, to solve 49 + 14 a child may think about 

adding 50 and 15 to get 65, and then subtract 2 from 65 to yield a final answer of 63.   

 

The Standard Algorithm and Young Children 

One specific strand of discussion regarding the distinctions that exist between 

conceptual understanding versus procedural knowledge focuses on the use of the standard 

algorithm with young children (i.e., children in kindergarten, first, or second grade).  An 

expanding literature base has focused on the use of the standard algorithm with young 

children and the effect this may have on their conceptual understanding (Kamii, 2000; 

McIntosh, 1990; Thompson, 1999).   

The standard algorithm was developed to efficiently solve mathematical problems.  

Standardized symbolic notation has been “streamlined over hundreds of years to contain a 

maximum amount of information with a minimum amount of writing. This means they are 

quite dense and students can find it hard to construct meaning for them” (Hiebert et al., 1997, 

p.57).   Although it is efficient for adults to use an algorithm, “an analysis of place value that 

seems reasonable to an adult in terms of his or her own relatively sophisticated understanding 

of place value is no substitute for a conceptual analysis of children’s mathematics” (Cobb & 

Wheatley, 1988).  Traditional approaches to teaching place value via two-digit addition and 
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subtraction entail the use of the standard algorithm, in which students “stack” the two 

numbers vertically and operate in columns, working from right to left and “carrying” or 

“borrowing” as needed.  Typically, this notation is emphasized in second grade.   

However, introducing (much less requiring) standardized opaque notation in advance 

of students’ conceptualization of place value can have negative effects.  “For many children, 

the effect of initial instruction on arithmetic symbols is to pry apart conceptual and 

procedural knowledge and send them in different directions” (Hiebert & Lefevre, 1986, 

p.20).  This is detrimental because, as Hiebert et al. (1997) explain, “if students separate their 

conceptual understandings from their procedures it means that they cannot solve problems 

very well” (p. 24).  It is very difficult to re-join conceptual understanding and procedural 

knowledge after they have been separated, and most students are not successful because “it is 

hard to go back and try to understand a procedure after you have practiced it many times” 

(Hiebert et al., 1997, p.25).  Instead, using the standard algorithm often results in students not 

understanding the procedures they are using and leads to students making errors because they 

distort a rule, forget a step in a procedure, over-generalize a rule, or fail to adjust a rule for a 

different type of problem (see Carpenter, Franke & Levi, 2003; Hiebert et al., 1997; Kamii, 

2000).  This results in “syntactically plausible but conceptually flawed errors that so often 

plague children’s use of school-taught algorithms” (Sophian, 1999, p.15).   

Kamii (2000) explained that after working with second graders she realized that using 

the standard algorithm is harmful because “they ‘unteach’ place value, thereby preventing 

children from developing number sense” (p. 83).   Kamii found that the use of standard or 

school algorithms untaught place value by reinforcing misconceptions (thinking the 2 in 25 is 
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actually worth 2) and resulted in less plausible answers when compared with children who 

did not use the standard algorithms.  School algorithms are detached from the quantities the 

numbers represent because of the way they operate in independent columns, and therefore 

children do not necessarily see the link to the quantities represented.  Carraher, Carraher, and 

Schliemann (1987) articulated a similar problem, stating that the use of standard algorithms 

promotes “manipulation of symbols” as opposed to the “manipulation of quantities.”  

Difficulties arise from the way standardized written procedures are “symbolic and contracted 

and by their very nature involve pure manipulation of symbols without reference to the 

particular meanings which the place value system attaches to these individual symbols” 

(Thompson, 1999, p.173).   

“There is little doubt that one of the main reasons for…underperformance in the 

number tests of international surveys is the very early introduction of formal written 

calculation method” (Thompson, 1999, p.170).  This statement is supported by findings that 

the early use of standard algorithms can obstruct students’ development of mental strategies 

and arithmetic (Beishuizen & Anghileri, 1998).  This is due to a disparity between children’s 

thinking and their strategies versus the way the written algorithm operates.  Studies have 

revealed that children typically manipulate a quantity from left to right, whereas standard 

algorithms operate from right to left.  Children also manipulate the entire quantity rather than 

isolated digits and show a preference for recording their work horizontally rather than 

vertically, both of which are in further discord with standard algorithms (Thompson, 1999).   

Development of students’ strategies is also obstructed by the way standard algorithms 

encourage “cognitive passivity” (Williams, 1962-3).  “The algorithm demands that you not 
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even try to think about what the digits actually represent.  If you do, you are highly likely to 

become confused.  Instead you are expected to suspend disbelief and follow the 

recommended steps in the procedure” (Thompson, 1999, p.173).  Kamii (2000) also wrote 

about how standard algorithms “encourage children to give up their own thinking” (p. 83).  

This idea was further developed by Thompson (1999), who explained that “the decision as to 

how to set out the calculation, where to start, what value to assign the digits, etc. are all taken 

out of the individual’s hands” (p.173).    

 Fosnot (2007) emphasized “for students today, a deep understanding of place value 

and equivalence is critical…to be able to assess the reasonableness of an answer found by 

using a calculator…to have good mental arithmetic strategies…[and] to know how to 

calculate efficiently” (p.6).  Another reason why it is critical that students understand place 

value and arithmetic calculations is because they lay a foundation for algebra.  If students 

perceive arithmetic as a series of steps and procedures, then they may not realize the 

properties and relationships of the numbers that allow for calculations.  This, in turn, may 

mean that they may not recognize it is these same properties and relationships that allow 

them to simplify expressions and solve equations.  “If students genuinely understand 

arithmetic at a level at which they can explain and justify the properties they are using as 

they carry out calculations, they have learned some critical foundations for algebra” 

(Carpenter et al., 2003, p.2).  



 

 

 

 

 

Methodology 

Sampling Procedures 

The purpose of this study is to provide insights about end-of-year second graders’ 

knowledge of place value and its application in solving two- and three-digit addition and 

subtraction problems.  This section describes the sample of students who were part of this 

study.  It also presents a detailed discussion of the tasks and data collection procedures used 

to assess students’ knowledge and application.  Finally, a description of how data were 

analyzed is provided. 

This study was conducted using a sample of students in a school district located in a 

rural county in central North Carolina.  Qualitative, structured, task-based interviews were 

carried out in two of the district’s seven elementary schools, School A and School B.  During 

the 2006-2007 school year, School A had an enrollment of 504 students, of which 0.4% were 

Asian, 6.2% Hispanic, 18.8% Black or African American, 72.2% White, 0.6% American 

Indian, and 1.8% Multi-Racial.  At School A, 34% of students received free or reduced 

lunch.  School B had an enrollment of 435 students, of which 0.2% were Asian, 3.0% 

Hispanic, 13.3% Black or African American, 79.3% White, 0.0% American Indian, and 4.1% 

Multi-Racial.  At School B, 30% of students received free or reduced lunch.  School A uses 

Saxon Math as the basis for their K-2 mathematics curriculum.  School B does not use a 

specific curricular program for their K-2 mathematics instruction.  Both schools emphasize 

the use of the standard algorithm to solve multi-digit addition and subtraction problems in the 

second grade.
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Forty second graders, 23 from School A and 17 from School B, were interviewed 

during the last week of April and the first week of May 2007.  In order to assess students 

with similar experiences with and access to the curriculum, students who were identified as 

Exceptional Children (learning disabled or otherwise identified) or English Language 

Learners were excluded from the potential sample pool from which the students were 

randomly selected.  Ten students were randomly selected from each classroom with the intent 

of interviewing six of these students once permissions were obtained.  In two classrooms, 

only five permissions were given.  In School A, six students were interviewed in each of 

three of the second grade classes and five students were interviewed in the fourth second 

grade class, yielding 23 interviews.  In School B, six students were interviewed in each of 

two of the second grade classes and five students were interviewed in the third second grade 

class, yielding 17 interviews.   

The sample selected is representative of the total population of second graders in both 

schools.  Table 2 shows the demographic information of the potential sample pool (all second 

grade students except for those identified as EC or ELL).   
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Table 2 

Demographic Information of the Potential Sample Pool (All Second Grade Students Except 

those Identified as EC or ELL) 

  

Table 3 shows the demographic information of the students who were randomly 

selected and interviewed.  Note that the percent-representation of each category is consistent 

with that of the potential sample pool from Table 2.     

 Classroom  
        School A School B Total 
                  1 2 3 4 5 6 7 N Percent 
Total Number of Students  

Eligible for Study  

(Non-EC, Non-ELL) 

 

22 20 22 20 16 19 19 138 100% 

Gender          
       Female 12 9 10 8 9 11 9 68 49.3% 
       Male 

 
10 11 12 12 7 8 10 70 50.7% 

Racial and Ethic Categories          

    American Indian or            

    Alaskan Native 
0 0 0 0 0 0 0 0 0.00% 

    Asian 

 
0 1 0 0 0 0 0 1 0.72% 

    Black or  

   African American 

 

3 4 6 6 2 4 3 28 20.3% 

    Hispanic or Latino 0 0 2 1 0 0 1  4 2.9% 

    Native Hawaiian     

    or Other    

    Pacific Islander 

 

0 0 0 0 0 0 0 0 0.00% 

    White 

 
19 15 13 13 14 14 15 103 74.5% 

    Multi-Racial 0 0 1 0 0 1 0 2 1.4% 
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Table 3 

Demographic Information of the Interviewed Students 

 

 

For this study, the analyzed sample was further reduced.  Of the 40 interviews 

completed, 22 were randomly selected to be analyzed for this study.  The demographic 

information of the reduced sample set is shown in Table 4 and is consistent with the 138-

student potential sample pool and the 40-student interview sample set.  Therefore, the 

demographics of this 22-student reduced sample set are deemed indicative of the population 

of second grade students at both schools. 

Classroom   

    School A School B Total 
                1 2 3 4 5 6 7 N Percent 
Total Number of Students  

Interviewed for Study  

 

6 5 6 6 6 6 5 40 100% 

Gender          
       Female 4 2 3 3 4 4 3 23 57.5% 
       Male 

 
2 3 3 3 2 2 2 17 42.5% 

Racial and Ethic Categories          

    American Indian or            

    Alaskan Native 
0 0 0 0 0 0 0 0 0.00% 

    Asian 

 
0 0 0 0 0 0 0 0 0.00% 

    Black or  

   African American 

 

1 0 1 3 0 2 0 7 17.5% 

    Hispanic or Latino 0 0 0 1 0 0 1 2 5.0% 

    Native Hawaiian     

    or Other    

    Pacific Islander 

 

0 0 0 0 0 0 0 0 0.00% 

    White 

 
5 5 5 2 6 4 4 31 77.5% 

    Multi-Racial 0 0 0 0 0 0 0 0 0.00% 



 

 

24 

 

 

 

Table 4 

Demographic Information of Students whose Interviews were Evaluated 

 

 

Task Selection and Data Collection Procedures 

Each of the 40 students was interviewed individually by one of three researchers 

using a qualitative, structured, task-based interview (Goldin, 2000).  The interviews were 

videotaped.    Students were asked to complete four different place value-related tasks, which 

were compiled from published well-developed interview protocols that have been in use for 

quite some time.  Each task examines a different big idea (Fosnot, 2007) under the broader 

 Classroom  
      School A School B Total 
                1 2 3 4 5 6 7 N Percent 
Total Number of Student 

Interviews Evaluated 
6 3 1 3 4 2 3 22 100% 

Gender          
       Female 4 0 0 1 3 1 2 11 50% 
       Male 

 
2 3 1 2 1 1 1 11 50% 

Racial and Ethic Categories          

    American Indian or            

    Alaskan Native 
0 0 0 0 0 0 0 0 0.00% 

    Asian 

 
0 0 0 0 0 0 0 0 0.00% 

    Black or  

   African American 

 

1 0 0 2 0 1 0 4 18.2% 

    Hispanic or Latino 0 0 0 0 0 0 1 1 4.5% 

    Native Hawaiian     

    or Other    

    Pacific Islander 

 

0 0 0 0 0 0 0 0 0.00% 

    White 

 
5 3 1 1 4 1 2 17 77.3% 

    Multi-Racial 0 0 0 0 0 0 0 0 0.00% 
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umbrella of place value.  The four tasks, the big ideas they address, and how these big ideas 

relate to place value will now be discussed in detail.   

Task One (Richardson, 2002a) assesses knowledge of combinations to ten by 

determining if students know the missing part of a number without having to figure it out.  

The interviewer starts with five cubes under her hand and shows the student a predetermined 

sequence of exposed cubes, with the balance remaining hidden.  The students is asked how 

many cubes are still hiding.  If the student knows all combinations with automaticity, another 

cube is added to the collection and a new sequence begun.  Once the student begins using 

his/her fingers, taking a long time to respond, or makes several errors, the task stops.  After 

determining the highest number the student knows, the student is asked a sequence of 

questions following the format “What if you had ___ cubes and you gave me ___?  How 

many would you have left?” using a predetermined numeric sequence.  This is done to 

confirm that the student knows the combinations without physical representations.  This task 

relates to place value and multi-digit arithmetic because knowing combinations indicates that 

a student knows the parts of a number, which is a prerequisite to recognizing “the 

relationship between composition and decomposition of numbers and addition and 

subtraction” (Richardson, 2002a, p.26).  The first task assesses whether students are able to 

decompose numbers to ten “so well that when given one part of a number, they automatically 

know the other part” (Richardson, 2002a, p.26).  Task One assessed Fosnot’s (2007) “big 

ideas” of equivalence and commutativity and associativity.   

Task Two (Richardson, 2002b) assesses organizing a quantity into tens and ones, 

conservation of quantity, and counting by groups of tens, fives and twos.  The first part of the 
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assessment is a grouping task used to ascertain how the student groups and counts a 

collection of objects by tens and ones.  The student is presented with a pile of 33 cubes and 

asked to estimate, first, the total number of cubes and, second, the number of tens that could 

be formed.  The student then makes as many groups of tens as possible.  The student is asked 

to report the number of groups of tens and number of leftovers.  He/she is then asked if this 

gives an idea about the total number of cubes.  If the student counts the grouped 33 cubes by 

ones, the number of cubes is reduced to 17 cubes, and the student is asked to estimate the 

number of cubes and predict how many tens he/she can make.  If a student counts the 

grouped 33 cubes by tens, he/she is asked how many cubes there would be if different 

adjustments were made (e.g., add 10 more cubes, take away 10 cubes, add 20 more cubes, 

take away 20 cubes).  If the student performs these calculations without counting by ones, 

he/she is asked how many cubes there would be if given 7 tens and 12 more.  The first part of 

Task Two assesses Fosnot’s (2007) big idea of unitizing, students’ use of ten as a composite 

unit, and counting off the decade by tens.   

The second part of Task Two assesses students’ recognition that counting by different 

sized groups does not change the total quantity.  Although by second grade we expect 

students have developed conservation of number when counting individual objects, they may 

not yet have attained conservation of quantity when grouping is involved.  In the second part 

of Task Two, a student considers the pile of 33 cubes and is asked how many cubes there 

would be if the cubes are counted by fives.  The students then counts the cubes by fives.  

Next, the student again considers the pile of 33 cubes and is asked how many cubes there 

would be if the cubes are counted by twos.  The student then counts the cubes by twos.  This 
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portion of Task Two relates to place value understanding because it again addresses to what 

extent a student unitizes and has conceptualized composite units and how grouping objects 

relates to the total quantity (Richardson, 2002b).   

Task Three (Wright, Martland, and Stafford, 2006a) assesses knowledge of counting 

by tens on (e.g., 10, 20, 30…) and off the decade (e.g., 4, 14, 24…).  First, the student is 

presented with a strip picturing 10 dots and asked how many dots there are.  One more strip 

is added, and the student is asked how many there are altogether.  The interviewer continues 

to add one strip of 10 at a time until 80 dots were present.  Next, the student is shown a strip 

picturing four dots and asked how many dots there are.  One strip of 10 was added to the 

right of the 4 dots, and the student is asked how many there are altogether.  The interviewer 

continues to add one strip of 10 at a time until 74 dots were present.  This task determines 

whether the student can increment by tens when a representation of the quantity is displayed, 

and relates to Fosnot’s (2007) big idea that children need to recognize place value patterns 

that result from repeatedly adding 10. 

The second part of Task Three uses a large sheet upon which similar dots were 

pictured in groups of tens or as various numbers of ones.  The dot sheet is screened and the 

student is shown the first quantity and asked the number of dots present, then the dots are 

screened and the next quantity of dots is uncovered.  Subsequently, each student is asked the 

total number of dots (both the re-screened portion and visible portion).  The first dot sheet 

presents additions of only ones or only tens at a time, whereas the second dot sheet displays 

additions of both tens and ones at the same time.  The second portion of the third task 

assesses whether students unitize and use ten as a composite unit or as ten single units.  
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Kamii (2000) explains that although adults can represent “one ten” and “ten ones” 

simultaneously to themselves, “young children…think only successively about ‘one ten’ and 

‘ten ones’” (p. 31; emphasis in original).  A child who thinks about tens and ones 

successively counts both the tens and the ones in an arrangement by tens, because he/she 

cannot think about tens and ones simultaneously and therefore once the child starts counting 

by tens he/she will continue to count by tens even when he/she encounters the single units of 

an arrangement (Fuson & Smith, 1996; Kamii, 2000).  This task presented an activity in 

which it was possible to see whether students thought about tens and ones simultaneously or 

successively.   

Task Four (adapted from Wright, Martland, and Stafford, 2006a) assesses strategies 

for solving several different two- and three-digit addition and subtraction problems, with and 

without regrouping.  Problems are presented on cards written as horizontal number sentences.  

Students are provided marker and paper to solve the number sentences within Task Four if 

they elect to do so with writing or drawing.  The first problem asks students if they had a way 

to figure out 16+10, and the second asks students if they could use 16+10 to help them do 

16+9.  There are several subsequent problems; each involves showing the student a card with 

the number sentence and asking if he/she has a way to figure out the problem.  The problems 

are presented in the same order to each student, as indicated by the ordering of the problems 

in Table 5.   



 

 

29 

 

 

 

Table 5 

Task Four: Horizontal Number Sentences 

Two-digit addition Two-digit subtraction Three-digit addition Three-digit subtraction 

1. 16+10 6. 56-23 9. 128+354 11. 267-119 

2. 16+9 7. 43-15 10. 168+156 12. 324-133 

3. 42+23 8. 73-48  13. 524-239 

4. 38+24    

5. 39+53    

    

 This task again assessed the big idea of unitizing and students’ use of ten as a 

composite unit.  It also assessed how this understanding related to their work in solving two- 

and three-digit addition and subtraction number sentences and whether students understood 

the strategies and/or algorithms they used in terms of rules and procedures (procedural 

knowledge); in terms of place value, base-ten properties and quantity (conceptual 

understanding); or whether they demonstrated both procedural knowledge and conceptual 

understanding.  Exploring these areas also assessed the big idea that the place of a digit 

determines its value and the strategy of regrouping (Fosnot, 2007).  Task Four also assessed 

students’ understanding that the structure of written notation is consistent and indicative of 

base-ten groupings.  Students’ work with addition and subtraction problems was examined to 

determine the strategy selected, flexibility, and underlying use of ten as a composite unit.   

Within Task Four, two additional questions were asked regarding the two-digit 

problems 39+53 and 73-48.  After a student solved each of these problems, the interviewer 

posed a scenario in which she had been working with another student, Manny, who solved 
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the problem differently.  After solving 39+53, students were told that Manny solved 39+53 

by first doing 30+50=80, then doing 9+3=12.  The interviewer then said that Manny got 

confused at this point, and asked the student how he/she would suggest that Manny continue.  

Questions were asked to ascertain if the student understood why Manny used 30, 50, 9, and 3 

in his calculation.  After students solved 73-48, the interviewer told students that the same 

boy, Manny, solved this problem by doing 73- 40=33, then 33-3=30, and lastly 30-5=25.  

Questions were asked to ascertain if the student could make sense of this strategy and if 

he/she understood why Manny used 40, 3, and 5 in his calculation.  These questions were 

asked because “understanding can be characterized by the kinds of relationships or 

connections that have been constructed between ideas, facts, (and) procedures” (Hiebert et 

al., 1997, p.15).  If students think relationally it can facilitate learning arithmetic and provide 

a foundation that will ease the transition to algebra (Carpenter et al., 2003; Carpenter & Levi, 

2000).    

The four tasks and sub-tasks were presented in the same order for each student.  The 

interview protocol included the wording for questions on tasks one, two, and three.  Task 

Four questions were presented at a time when they applied to the students’ work (e.g., asking 

about regrouping just after the student used regrouping notation).  Some questions for the 

fourth task were also specific to a student’s approach to the problem.   

Follow-up questions were used throughout all four tasks to determine if the student 

understood what he/she was doing and to clarify students’ thinking.  Students were asked to 

explain their thinking and strategies as they worked.  In some cases, more difficult sub-tasks 

of the interview were skipped if a student experienced difficulty or frustration on a previous 
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sub-task.  Written student work was retained at the end of the interview.  Interviews were 

approximately 35 minutes in length; therefore some students did not finish all of the sub-

tasks due to the amount of time.     

 Prior to beginning this study, the three researchers piloted the interview protocol by 

using it to interview second graders in a different school and district in central North 

Carolina.  Observations of each other during the interviews and videotaping were done.  This 

helped refine the protocol and promote consistency amongst the interviewers.   

 

Data Analysis 

Each video recording of the 22 interviews in the reduced sample set was watched at 

least twice to code the data in detail.  The interviews were not transcribed, except for sections 

of dialogue that seemed particularly insightful in terms of clarifying a students’ thinking, 

strategy, or conceptualization of place value.  Students’ written work was also examined in 

tandem with the videotape and dialogue that transpired as they were writing.   

The coding schema utilized the same framework that Richardson (2002a, 2002b) and 

Wright, Martland, and Stafford (2006a) designed for use with their tasks.  Additional schema 

were generated to capture aspects of place value understanding that the original framework 

did not directly address.  This was done to link the task to the big idea for which it was 

selected.  Strategies and processes were recorded even if the student did not produce the 

correct numerical answer.     

Task One did not require any additional coding beyond that delineated by Richardson 

(2002a).  For Task Two, Richardson’s (2002b) coding framework was used as well as two 
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additional codes.  The first was to indicate whether students used the quantity ten as ten 

single ones or as a composite unit.  The second was to indicate whether students knew that 

the total quantity did not change based on grouping arrangement.   

For Task Three, the CGI levels of base-ten development were used.  The three levels 

were: counting by ones, counting by tens, and direct place value (Carpenter et al., 1999; 

previously described in Background: Stages of Development of Place Value Understanding, 

p.6).  At the initial level, a student does not realize he/she can count by groups of ten directly 

and therefore counts by ones.  At the intermediate level, a student is able to use base-ten 

concepts and counts the grouped objects by tens and then counts on the ones.  At the most 

sophisticated level, a student uses direct place value to immediately recognize the total 

number of objects in the grouped sets (e.g., 5 groups of ten is 50 objects) and then add the 

ones to this number (e.g., 3 more make 53). 

Three additional codes were also introduced for Task Three.  The first was to indicate 

whether students used the quantity ten as ten single ones or as a composite unit.  The second 

was to indicate whether students addressed tens successively or simultaneously (Kamii, 

2000).   

Students’ work on Task Four was perhaps the most difficult to capture because it was 

a more qualitative task.  Another challenge was that although a final coding framework was 

provided by Wright et al. (2006b), it was necessary to develop intermediate coding schemas 

to form a bridge from the interview transcripts to Wright et al.’s levels of base-ten 

conceptualization.  First, the student’s problem solving strategy was noted, regardless of 

whether he/she employed the strategy correctly or arrived at a correct answer.  The strategy 
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that a student used first and without prompting was the strategy coded, as this was the 

strategy most indicative of how the student solved the problem when working on his/her 

own.  Therefore the student’s strategy for 16+9 was not usually coded, because the 

interviewer specifically asked the student to solve it using 16+10.  However if the student 

could not solve 16+9 by using 16+10, then the strategy he/she did use was coded since it was 

considered unprompted and an independent choice.  Data were also coded to indicate if the 

student 1) saw the relationship between 16+10 and 16+9, 2) made sense of the alternative 

solution strategy for 39+53, and 3) made sense of the alternative solution strategy for 73-48.  

The following are descriptors used to code a student as making no sense, limited sense, or 

thorough sense of the two proposed alternative solution strategies. 

Table 6  

 

Coding Students’ Understanding of Manny’s Alternative Solution Strategy 

Level of 

understanding 

Description 

No understanding The student does not see how the numbers used relate to the original 

problem and may even say that the answer is wrong. 

Limited 

understanding 

The student understands part of the alternative solution.  The student 

is able to explain where at least some of the numbers “come from” 

and how the numbers relate to the original problem.  The student 

may not fully understand the alternative strategy.  For example, with 

the problem 73-48, the student may understand that 73-40=33 

relates to subtracting the tens quantity in the second number, but for 

33-3=30 and 30-5=25 the student may not recognize the subtraction 

of 8 and that it relates to the ones quantity in the second number. 

Thorough 

understanding 

 

The student fully understands the alternative solution.  The student 

is able to explain where all of the numbers “come from” and how 

the numbers relate to the original problem.   
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Data were coded separately for addition and subtraction on whether the student: 1) 

had procedural fluency, 2) flexibly used multiple strategies, 3) talked in tens, 4) explained 

regrouping in addition in a way that indicated understanding, 5) explained regrouping in 

subtraction in a way that indicated understanding, 6) manipulated symbols, and 7) 

manipulated quantities.  Each of these seven aspects of possible evidence of place value 

understanding was coded as a “yes” or a “no.” In a few instances a student’s response was 

coded as “both”, although this was avoided whenever possible.  When the majority, although 

perhaps not entirety, of a student’s response indicated a “yes” or “no” as a fair assessment, it 

was appropriately coded.  When a student’s response seemed evenly representative of a 

partial understanding(s) with partial misconception(s), “both” was coded.  The following are 

descriptors used to code a student as “yes” for these seven place value-related behaviors, 

each of which was coded separately for addition and subtraction.



Table 7: Students’ Place Value-Related Behaviors 
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Behavior Definition 

Procedural fluency A student has procedural fluency when he/she consistently performs the standard 

algorithm correctly.   

Flexibility and 

Multiple strategies 

A student demonstrated multiple strategies when he/she used more than one 

strategy to solve horizontal number problems in Task Four.  This means that the 

student used more than one strategy over the battery of problems solved, not that 

the student necessarily had multiple ways to solve a single problem.  One problem, 

16+9, was excluded from analysis for multiple strategies, since each student was 

asked by the interviewer to use 16+10 to solve 16+9 and, therefore, the student was 

not making unprompted decisions about strategy use.  All other two-and three-digit 

addition and subtraction problems were analyzed for multiple strategies.  This 

assessed a student’s flexibility with selecting a strategy that would be a good match 

for the type of problem and the numbers in the problem.    

Talked in Tens A student talks in tens if he/she refers to digits by their complete value rather than 

face value.  For example, when asked about the number 25 a student who was 

talking in tens would talk about the 2 as “twenty”, not as “two.” Likewise, when 

explaining 25+43 with an algorithm a student who was talking in tens would say 

“20 plus 40 equals 60” rather than “2 plus 4 equals 6.” 

Explained regrouping 

(carrying in addition) 

in a way that indicated 

understanding 

A student demonstrated regrouping with understanding when he/she referred to 

carrying as “carry a ten” versus “carry the one.”  Students were also asked when 

carrying the number 12, why the 2 is written in the ones place of the answer and 

the 1 is carried and not the other way around.  Responses were evaluated to 

determine if students understood carrying based on if they articulated anything in 

regards to a ten or place value (indicating understanding) or if they talked in ones 

and procedures (indicating a lack of understanding).  When asked about carrying, a 

student who did not understand may only be able to say, “Put the number down 

here and the other number up here,” whereas a student with understanding may 

explain that since he/she has ten or more he/she needs to write down the number of 

ones and write the ten with the other tens. 

Explained regrouping 

(borrowing in 

subtraction) in a way 

that indicated 

understanding 

A student demonstrated regrouping with understanding when he/she referred to 

borrowing as “borrow a ten” versus “borrow a one.”  Students were also asked 

when borrowing with the number 43 why the 4 changes to a 3, why the 3 changes 

to a 13, and why the 3 does not change to a 4 (since 1 is borrowed from the tens 

and added to the 3 ones).  Responses were evaluated to determine if students 

understood borrowing based on if they articulated anything in regards to a ten or 

place value (indicating understanding), or if they talked in ones and procedures 

(indicating a lack of understanding).  When asked about borrowing, a student who 

did not understand may only be able to say, “Cross off the number, write one less, 

go next door, put the one on the front, then subtract,” whereas a student with 

understanding may explain that since he/she do not have enough ones to subtract 

he/she needs to move a ten over and then reduce the number of remaining tens by 

one. 

Manipulated symbols A student who manipulates symbols thinks about the algorithm as a series of steps 

performed on isolated columns, within which he/she crosses off and moves 

numbers.   

Manipulated quantities A student who manipulates quantities thinks about the problem and his/her strategy 

as calculating a total quantity, not working isolated digits. 
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A summary coding was also made to indicate a student’s overall level of 

conceptualization of ten.  These levels were inspired by Wright, Martland, and Stafford’s 

(2006a) stages of base-ten arithmetical strategies, which were previously outlined in Table 1, 

with two significant adjustments.  The first change is that the original Level Two/ 

Intermediate Concept of Ten states that students “cannot solve addition and subtraction 

involving tens and ones when presented with written number sentences” (Wright et al., 

2006a, p.93).  However, all of the interviewed second grade students were able to solve the 

horizontal number sentences.  Had the levels not been adjusted, everyone would have been 

coded at Level Three/Facile Concept of Ten.  It was necessary to make finer distinctions 

between students, especially when considering their calculations in light of their conceptual 

understanding of quantity versus symbolic manipulation.  The second change is that several 

of the other aspects of the previously delineated coding framework were added to expand the 

levels from descriptors of base-ten arithmetic levels to descriptors of base-ten knowledge.   

The following are the new descriptors that were used to determine and code a 

student’s overall level of conceptualization of base-ten knowledge.  Level One uses all of 

Wright et al.’s (2006b) material as well as additional descriptors.  Level Two is a completely 

new definition that was piloted with this study.  Level Three uses all of Wright et al.’s 

material as well as additional descriptors.   
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Table 8 

Level of Base-Ten Knowledge 

 

Level Description 

Level 1--Initial 

Concept of Ten 

“The child does not see ten as a unit of any kind. The child focuses on 

the individual items that make up the ten.  In addition or subtraction 

tasks involving tens, children count forward or backward by ones” 

(Wright et al., 2006a, p.93).  The child may still rely on direct 

modeling.  When using an algorithm the child thinks about procedures 

and manipulates symbols, not quantities.  The child talks in ones, even 

to describe a two-digit algorithm.  The child explains carrying and 

regrouping in terms of ones.  The child might be able to identify the 

“tens” and “ones”, but does not conceptualize their meaning as 

anything beyond labels.  In summary, “ten” is neither mentioned 

(beyond a label) nor used.     

Level 2-- 

Intermediate Concept 

of Ten 

The child is able to perceive ten as a unit composed of tens and ones.  

The child may use tens as a composite unit, although this may not be 

consistent (e.g., may use ten as a composite unit to count groups but as 

ten single units when asked to add or subtract, especially when numbers 

get larger).  The child may address tens successively, not 

simultaneously.  The child identifies the “tens” and “ones” and may 

begin to talk in tens but does not do so consistently (e.g., can explain 

that the 2 in 26 is twenty, but when explaining the algorithm may refer 

to it as “add 2”). Conceptualization of ten has moved beyond labels; 

there is some notion of ten, but it is not consistent or solid.  When 

adding or subtracting begins to manipulate quantities, at other times 

still manipulates symbols and remains focused on procedures rather 

than their meaning.  In summary, “ten” is inconsistently mentioned and 

used. 

Level 3--Facile 

Concept of Ten 

“The child can solve addition and subtraction tasks involving tens and 

ones without using materials or re-presentations of materials.  The child 

can solve written number sentences involving tens and ones by adding 

or subtracting units of tens and ones” (Wright et al., 2006a, p.93).  

Addresses tens simultaneously, not successively.  The child 

consistently talks in tens, both to identify parts of a numeral as well as 

when explaining the algorithm.  The child explains regrouping in terms 

of tens.  Consistently manipulates quantities, not just symbols.  

Understands underpinnings of procedures and symbolic notation 

associated with the algorithm.  In summary, “ten” is consistently 

mentioned and used.    
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These coding schema were developed and used in order to tie the interview back to 

the big ideas associated with place value.  This allowed for analysis to be based on how 

students conceptualized and used ten for counting, grouping, incrementing, and in solution 

strategies.
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Results 

 This section examines the overall findings from the interview data.  First, what 

students were able to do and seemed to know in regards to place value-related big ideas is 

presented.  Second, students’ solution strategies are reported.  Third, disconnects between 

procedural knowledge and conceptual understanding within the standard algorithm are 

discussed.  Given that this study is based on a qualitative interview, descriptive statistics and 

frequency distributions were generated by compiling the coded data from each student’s 

interview.  These statistics were used to generate the tables in this section.  

 

Students’ Place Value-Related Understandings of Big Ideas 

The first area this study explored was students’ use and understanding of some of the 

big ideas related to place value.  The first big idea this study assessed was number 

combinations.  This was done by determining students’ highest known number combination 

from Task One.  Another big idea was students’ ability to unitize, which was analyzed based 

on their work in Task Two and Task Three.  A third big idea that this study explored was 

students’ ability to perceive place value patterns, which was evaluated by analyzing their 

work on Task Two and Task Three. 

 

Number Combinations 

This study assessed students’ number combinations through Task One: Hiding 

Assessment.  Students’ automaticity with number combinations reveals that they are able to 
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decompose a number into parts.  That is, when given one part of a number they 

automatically knew the other part.  This supports the development of a part/whole 

understanding of number.    

Task One was used to determine if a student was fluent with number combinations to 10, and 

if not then what was the highest number with which the student demonstrated fluency.  The 

following table shows the highest number that each of the 22 students was able to decompose 

with automaticity.   

 

 

Table 9 

 

Task One, Hiding Assessment: Highest Number for which Combinations are Known with 

Automaticity 

Note. N=22 

The median highest known number combination is six.  Just over forty percent of 

students’ highest known numbers was 5 or less, 59.1% was 6 or less, and 72.7% was 7 or 

less.  This means that only 27.3% of students had a highest known number of 8 or more, and 

only 13.6% demonstrated fluency with decomposing the number 10. 

 

 

Unitizing 

Another big idea this study explored was unitizing.  Unitizing involves counting 

single objects as units, groups of objects as units, and the ability to do both simultaneously.  

 Highest Known Number 

 3 4 5 6 7 8 9 10 

Number of Students 1 2 6 4 3 3 0 3 
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Children require a “shift in perspective” to “treat a group of ten as a unit, and ten groups 

of ten (100 units) as one unit of a hundred” (Fosnot, 2007, p.7).  Unitizing is also referred to 

as the use of composite units.  Understanding ten as a composite unit means that a student 

can combine single units into a new, countable unit.  Students who have conceptualized 

composite units and unitize can simultaneously see ten as ten ones and one unit of ten.  Task 

Two and Task Three were analyzed to investigate students’ use of ten as a composite unit, 

whether they addressed tens successively or simultaneously, and whether they conserved 

quantity regardless of the grouping arrangement.  The findings are presented in the following 

table. 

 

Table 10 

Unitizing  

 

 
Big Ideas 

 

 

 

 

Uses ten as 

10 single 

units 

Uses ten 

both as 10 

single units 

and as a 

composite 

unit 

Uses 10 as a 

composite 

unit 

Addresses 

tens 
successively 

Addresses 

tens 
successively 
and 
simultaneously 

Addresses 

tens 
simultaneously 

Tens-to-

ones shift 

errors 

Conserves 

total quantity 

despite 

grouping 

arrangementa 

Number 

of 

students 

(n=22) 

2 6 14 5 4 13 10 3 

Percent 9.1% 27.3% 63.6% 22.7% 18.2% 59.1% 45.5% 14.3% 

a
n=21 because one student did not complete Task 2 

Of the 21 students, 9.1% of students were unable to unitize and used ten in the form 

of ten single units.  When presented with groupings of objects, these students counted by 

ones and not by tens.  These students counted objects grouped by tens as ones, and also 
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counted by ones to increment by ten.  Ninety- one percent of students were able to use ten 

as a composite unit at least some of the time, and 63.6% consistently used ten as a composite 

unit.  Two differences were found between students who were able to use ten consistently 

and those who reverted to using single units at times.  While both groups of students were 

able to count groups of objects by ten, a difference was found in their ability to a) continue to 

use ten as a composite unit with larger numbers, and b) use ten as a composite unit when 

mentally adding or subtracting ten from an off-decade number when presented with a 

physical representation of the original quantity.  Sixty-four percent of students were able to 

use ten consistently to count groups of objects, mentally add or subtract ten from an off-

decade number, and increment with larger numbers.   

 Data were examined to determine whether students addressed tens successively or 

simultaneously.  Fifty-five percent of students addressed tens simultaneously, meaning they 

were able to conceptualize ten as both one unit of ten and ten units of one at the same time.  

These students were able to successfully “switch” from counting the tens portion to counting 

the ones portion of a number.  In contrast, 45% of students addressed tens successively at 

least some of the time, and were not able to conceptualize ten existing both as one unit of ten 

and ten units of one at the same time.   

 The majority of students appear not to know that a quantity remains constant 

regardless of how it is grouped or arranged.  Students were given 33 cubes and asked to 

predict how many cubes there would be if the cubes were a) grouped by fives, and b) 

grouped by twos.  Only 14.3% of students responded that there would continue to be 33 

cubes.  Seven students (33.3%) responded that there would be 30 or 35 cubes when grouped 

by fives and five students (23.8%) responded that there would be 32 or 34 cubes when 
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grouped by twos, suggesting some students were thinking about counting by groups of 

fives and twos.   

The majority of students (11 students or 52.4% for grouping by fives, and 12 students 

or 57.1% for grouping by twos) responded with an entirely different quantity of cubes 

(responses included 82, 90 and 120).  Several students had interesting explanations for this 

misconception.  One girl thought there would be 43 cubes because “there would be more 

because we’re counting by fives.”  Another student thought that there would be more cubes 

when grouping by two than by five, because “I’m counting by a less number which makes it 

more cubes when you put them together.”  When asked if she meant more number of cubes 

or more groups, she confirmed “more number of cubes.” 

The results of this study also indicate that there may also be a relationship between 

students’ highest known number combination and their use of ten as a composite unit.  The 

following table presents these findings.   

 

Table 11 

Number Combinations and Use of Ten as a Composite Unit 

Use of ten Highest known number    N Median highest 

known number 

Uses Ten 10 single units  5, 6 2 5.5 

Uses Ten Both as 10 single units 

and as a Composite Unit 
3, 4, 5, 5, 6, 7 6 5 

Uses Ten as a Composite Unit 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 10, 10, 10 14 7 

Note. n=22.  
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 Although the group sizes are different and only two students used ten only in the 

form of single units, it seems there may be some relationship between the highest number 

combination a student knows and his/her understanding of how to unitize and use ten as a 

composite unit.  Students who consistently used ten as a composite unit also had the highest 

median of known number combinations.  Students who used ten single units and students 

who used ten both as 10 single units and as a composite unit appeared to have similar 

knowledge of number combinations.  The numbers of students in the three groups are small; 

this finding suggests further direction for analysis.   

Students’ overall level of base-ten knowledge was also compared to their use of ten.  

As previously described (Methodology: Data Analysis, p.31), students use of ten was coded 

to indicate whether they worked exclusively in ones, whether they worked at times in ones 

and at times in tens, or whether they worked exclusively in tens.  The results are presented in 

the following table, which identifies students’ use of ten as sorted by level of base-ten 

knowledge (previously defined in Table 8, p. 37). 
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 Table 12 

Use of Ten by Conceptual Level of Base-Ten Knowledge 

Category and level Use of Ten
a
     N  

Two-Digit Addition   

Level 1: Initial Concept of Ten 2 ones, 3 both, 4 tens 9 

Level 2: Intermediate Concept of Ten 2 both, 9 tens 11 

Level 3: Facile Concept of Ten 2 tens 2 

Two-Digit Subtraction 
  

Level 1: Initial Concept of Ten 2 ones, 2 both, 9 tens 13 

Level 2: Intermediate Concept of Ten 2 both, 4 tens 6 

Level 3: Facile Concept of Ten 2 tens 2 

Three-Digit Addition 
  

Level 1: Initial Concept of Ten 1 ones, 3 tens 4 

Level 2: Intermediate Concept of Ten 1 both, 2 tens 3 

Level 3: Facile Concept of Ten 3 tens 3 

Three-Digit Subtraction 
  

Level 1: Initial Concept of Ten 1 ones, 1 both, 6 tens 8 

Level 2: Intermediate Concept of Ten NA 0 

Level 3: Facile Concept of Ten 1 ten 1 

a
Ones: student worked exclusively in ones 

Both: student sometimes worked in ones and other times worked in tens 

Tens: student worked exclusively in tens 

Note. Total number of students changes across categories because some students did not complete all of  

the tasks in the 35 minutes allotted for the interview. 
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The results in the previous table suggest that students who exclusively worked in ones 

were operating at Level One for base-ten knowledge (only 2 students).  Students who were at 

Level Three for base-ten knowledge appear to be thinking exclusively in tens.  However, this 

does not mean that all students who exclusively worked in tens also were evaluated to be at 

Level Three, because, in fact, students who consistently worked in tens were found at all 

three levels.  Students who worked in both ones and tens were at Level One or Level Two, 

but not at Level Three.   

 
Place-value Patterns 

Another big idea related to place value that this study investigated is students’ ability 

to perceive place value patterns.  Fosnot (2007) defines this big idea as the place value 

patterns that result from repeatedly adding or subtracting ten, making groups of ten, or 

multiplying by ten.  Children must learn the patterns associated with counting on the decade 

(also referred to as landmark numbers, e.g., 10, 20, 30…) as well as counting off the decade 

(e.g., 14, 24, 34…).  Children also need to learn that these patterns continue past higher 

landmark numbers, such as 100.  The ability to increment by tens is “the forerunner to the 

development of place value knowledge” (Wright, Martland & Stafford, 2006a, p.93).  The 

ability to count by ten, both on and off the decade, will result in an increased ability of 

students to engage in mental arithmetic and conceptualize the quantities with which they are 

working. 

This knowledge was evaluated by analyzing students’ work on Task Two and Task 

Three.  Task Two asked students to mentally increment by ten to calculate 33+10, 33+20, 33-

10, 33-20.  Task Three asked students to increment by tens on the decade, by tens off the 
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decade, by tens or ones separately, and by tens and ones simultaneously.  These tasks 

assessed students’ ability to recognize place value patterns when adding or subtracting 

groups of ten.  The following table indicates students’ facility with such tasks. 

 

 

Table 13 

Strategies for Incrementing by Ten and Incrementing by Tens and Ones 

 

           Tens strips: Visible    Screened dots: Not Visible 

 

 

Strategy 

Counting  

by ten  

on the decade
 

Incrementing 

by ten  

off the decade
 

Incrementing 

by only tens or 

only ones  

Incrementing 

by both tens 

and ones
a
  

Counting by Ones  0 0 6 3 

Counting by Tens 2 12 7 14 

Direct Place Value 20 10 9 4 

Note. N=22. 
a
n=21, because one student had considerable difficulty with Sheet One and therefore was not asked to complete 

Sheet Two. 

 

 

 Students were very successful counting by ten on the decade (e.g. 10, 20, 30…) when 

presented with a strip of paper showing ten dots.  Twenty students (90.9%) knew the number 

instantly by direct place value (strategies previously defined in Background: Stages of 

Development of Place Value Understanding, p.6).   All students were able to increment off 

the decade (e.g. 4, 14, 24…) by using ten as a composite unit.  Whereas the majority of 

students were able to use direct place value to count on the decade, 12 students (54.5%) 

counted by tens to determine the off-the-decade quantity.  Of the 12 students who counted by 

tens, eight of these students (36.4% overall) began by counting by ones, but were eventually 
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able to switch over to counting by tens.  After counting the ten dot strips by one for 4-14, 

14-24, and 24-34, one student switched to counting by tens to figure out 44 and up.  When 

asked how he was able to figure it out faster he said, “They all keep ending in fours.”   

   When the task switched from using visible tens strips to screened sheets so that 

students could not see the quantity from which they were incrementing, strategies became 

less sophisticated.  The sheet was uncovered one section at a time and at this point presented 

a picture of only tens or only ones to add to the previous screened quantity.  Six students 

(27.3%) needed to count on by ones, and seven students (31.8%) counted on by tens.  Nine 

students (40.9%) were able to use direct place value to immediately know the new total 

quantity.   

 When the task again increased in difficulty, the number of students using the most 

advanced strategy of direct place value decreased.  On the second sheet, students were 

presented with a picture of both tens and ones simultaneously to add to the previous screened 

quantity.  Now only four students (19.0%) were able to use direct place value to determine 

the new total quantity.  Two-thirds of students (66.7%) counted by tens and then continued 

counting on by ones.  Three students (14.3%) counted everything, including the tens, by 

ones.  One boy who was trying to work with large numbers in ones exclaimed, “I keep losing 

count!”   

 Several students demonstrated using less sophisticated strategies as the tasks 

increased in difficulty.  An example of one such student was a girl who used direct place 

value to recognize the number of dots on the tens strips to increment by ten on the decade.  

When asked to increment by ten off the decade from 4 she began counting by ones but was 
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able to switch to counting by tens once she reached 24.  For all of the screened tasks in 

which the original quantity was not visible she counted on by ones. 

 

Strategy Use 

The second area of interest of this study was to identify students’ strategies for 

solving two-and three-digit horizontal number sentences.  Students were presented with a 

maximum of thirteen number sentences, although only nine students completed all thirteen 

problems.  Since interviews were kept to about thirty-five minutes in length, most students 

did not complete all of the problems.  The remaining thirteen students completed between 

five and twelve of the problems.  The following table displays the problems in the order they 

were presented, the number of students who attempted each problem, and the number and 

percent of problems that were solved correctly.  
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Table 14 

 

Correct Answers for Horizontal Number Sentences 

 

Problem 
Number of students  

who attempted 

Total number  

correct 

Percent correct 

Two-Digit Addition    

   16+10 22 21 95.5% 

   16+9 22 22 100.0% 

   42+23 22 21 95.5% 

   38+24 22 22 100.0% 

   39+53 22 21 95.5% 

Two-Digit Subtraction    

   56-23 21 21 100.0% 

   43-15 21 11 52.4% 

   73-48 19 14 73.7% 

Three-Digit Addition    

   128+354 9 8 88.9% 

   168+156 11 11 100.0% 

Three-Digit Subtraction    

   267-119 9 4 44.4% 

   324-133 5 3 60.0% 

   524-239 7 2 28.6% 

Note. Total number of students who attempted each problem changed because some students did not complete 

all of the problems in the 35 minutes allotted for the interview. 
 

 All 22 students completed the 5 two-digit addition problem tasks.  Students were 

successful in responding to these problems; correct responses ranged from 95% to 100%.  

This suggests a high level of fluency with two-digit addition.  Two-digit subtraction 

problems without regrouping also were answered correctly 95% of the time.  However, the 

two problems that involved two-digit subtraction with regrouping were answered correctly 

52% and 73% of the times attempted, respectively.  Students appear more fluent with two-

digit operations with and without regrouping in addition and without regrouping in 

subtraction more so than when regrouping in subtraction. 
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 Each of the three-digit problems required regrouping (carrying or borrowing) 

at least once.  Students were able to complete the first three-digit addition problem (which 

required regrouping from the ones to the tens) with 88.9% success and the second three-digit 

addition problem (which required regrouping from the ones to the tens and from the tens to 

the hundreds) with 100% success.  Students were not as successful at calculating the correct 

answer for three-digit subtraction problems.  Students completed the first three-digit 

subtraction problem (which required regrouping from the tens to the ones) with 44.4% 

success, the second three-digit subtraction problem (which required regrouping from the 

hundreds to the tens) with 60% success, and the third three-digit subtraction problem (which 

required regrouping from the tens to the ones and the hundreds to the tens) with 28.6% 

success.  Given that work with three-digit numbers using addition and subtraction for most 

students is introduced late in the year in second grade, if at all, it is not surprising that 

performance appears to be less successful than work with two-digit number problems.    

 Although this is a helpful starting point, a goal of this study to move beyond 

assessment based on analysis of correct and incorrect responses.  The literature indicates that 

attention to strategy and understanding is needed in mathematics education.  The strategies 

used for all of the horizontal number sentences that students completed are presented in the 

following table.  
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Table 15 

Strategy Use for Horizontal Number Sentences 

 

Strategy 
Number of Students who 

Used Strategy (n=22) 

Number of Times Strategy 

was Used (n=196) 

Direct Modeling 1 3 

Counts on from First 5 6 

Counts on from Larger 0 0 

Counts Down 0 0 

Split Strategy 3 5 

Jump Strategy 0 0 

Compensation 0 0 

Known Fact 8 8 

Incorrect Strategy 2 3 

Standard Algorithm 22 172 

 

 

Students’ independently selected strategies relied heavily on standard algorithms.  All 

twenty-two students used standard algorithms at least three times.  Eight students made use 

of the known fact strategy, all of which were for solving 16+10.  Five students (22.7%) 

counted on from the first number in the problem, three students (13.6%) used the split 

strategy, two students (9.1%) used an incorrect strategy (both students added the digits in the 

problem together as their first step), and one student (4.5%) used direct modeling (she drew 

tally marks and circles).   

 When considering the overall number of times each strategy was used, the results 

reveal that students use standard algorithms significantly more than any other strategy.  It 

should be noted that the curriculum and instructional methods students experienced focused 

attention on the use of the standard algorithm.  Students use standard algorithms 172 times 

(87.8%) to solve the horizontal number sentences, whereas the next-most used strategy was 

that of using a known fact and occurred only seven times (3.6%).  Twelve students (54.5%) 
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used standard algorithms as their only strategy, and all 22 students (100%) used 

standard algorithms at least two-thirds of the time, with a range of 66.6% to 100% algorithm 

use.  Other seldom-used strategies included counting on from first, split strategy, direct 

modeling, and incorrect strategy.  Counting on from larger, counting down, jump strategy, 

compensation and using landmark numbers were never used by any of the students. 

 This study sought to examine not only students’ selection of strategies but also their 

ability to think relationally.  This study analyzed students’ relational understanding by asking 

students to make use of 16+10 to solve 16+9, presenting students with two alternative 

solution strategies.  Students’ flexibility was also analyzed by considering whether students 

used multiple strategies to solve the horizontal number sentences or if they used the same 

strategy regardless of the problem-type and numbers involved.  The results are presented in 

Table 16. 

 

Table 16 

Relational Understanding and Flexibility in Students’ Solution Strategies 

Note. Total number of students asked changed for some tasks because some students did not complete all of the 

tasks in the 35 minutes allotted for the interview. 

 

                                           Relational understanding    Flexibility 
 

 

 

Saw relationship 

between  

16+10 and 16+9 

Limited sense of 

alternative 

solution strategy 

for 39+53 

Thorough sense 

of alternative 

solution strategy 

for 39+53  

Limited sense of 

alternative 

solution strategy 

for 73-48 

Thorough sense 

of alternative 

solution strategy 

for 73-48 

Multiple 

strategies 

Number of 

students who 

demonstrated/ 

Total number 

of students 

asked 

17/22 0/17 9/17 5/11 1/11 6/22 

Percent 77.3% 0% 52.9% 45.5% 9.1% 27.3% 
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Just over 77% of students used 16+10=26 to solve 16+9.  Many students said 

that the answer was 25 “because it’s just one less.”  Twenty-three percent of students chose 

to use a written strategy, most often the standard algorithm, to solve 16+9 despite knowing 

16+10=26.   

Students tended to have more difficulty with the “Manny” alternative solution 

strategy scenarios that were presented.  53% of students could thoroughly explain the 

alternative solution strategy for 39+53 (previously detailed in Methodology: Task Selection 

and Data Collection Procedures, p.24).  Since no students demonstrated a limited 

understanding of the strategy, this means that approximately 47% of students had no 

conception of what was happening with the alternative strategy, where the numbers “came 

from,” how the numbers related to the original problem, or if the strategy even resulted in a 

correct answer.   

For the alternative solution strategy for 73-48 (previously detailed in Methodology: 

Task Selection and Data Collection Procedures, p.24), one student (9.1%) appeared to have a 

thorough understanding of the alternative strategy, and five students (45.5%) provided 

limited understanding.  This means that the remaining five students (45.4%) who were asked 

about this strategy were not able to relate the alternative strategy to the original problem.  

Two of these students (18.2%) thought that the answer was actually wrong. One boy insisted, 

“He obviously didn’t look at the problem.  You’re supposed to copy it off like this.  He 

probably should do it over…he should do it how it says on the card.”  Some students thought 

that the alternative strategy was using any numbers that combined to 92, which they already 

knew was the correct answer having first solved the problem themselves.  For example, one 

girl explained the alternative strategy by saying “He just picked random numbers to see if 
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they added up to 12 and then to see if they would add up to 80… That gets you to 92.”  

Similarly, a boy thought that to solve the alternative solution for 73-48 “you could use an 

addition problem…24+1 ‘cuz that equals 25” even though these numbers had no relation to 

the problem other than arriving at the correct answer.   

Six students (27.3%) had multiple strategies for solving the horizontal number 

sentences.  Since all students used standard algorithms (see Table 15), this means that only 

six students were able to use a strategy in addition to standard algorithms, excluding 

problems 16+10 and 16+9 (their exclusion was previously explained in Methodology: Data 

Analysis, p.31).  Also, the strategy of a “known fact” was not considered, as the aim was to 

discover how children engage in problem solving and those students who used known fact to 

answer 16+10 were not engaging in problem solving since they already knew the answer.  

When one student solved a problem using the standard algorithm for addition and was asked 

if she could solve it a different way, she responded “That’s always how our teacher does it so 

that’s how we do it on paper.”   

Three of the six students who used multiple strategies used strategies that could be 

categorized as inefficient: one student drew tally marks and two students counted on from the 

first number using their fingers.  This means that three students (13.6%) made use of 

efficient, alternative strategies at some point during the battery of number sentences.  All 

three of these students used the split strategy to calculate an answer, two of them doing so 

mentally and one in writing.  

Procedural Knowledge and Conceptual Understanding 

 
  The third area of interest of this study focuses on students’ disparity between 

procedural knowledge and conceptual understanding of two-digit operations and place value 
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knowledge while using standard algorithms.  This was evaluated based on students’ 

procedural fluency, manipulation of symbols versus quantities, talking in tens, and 

understanding of regrouping.  The results are presented in the Table 17. 

 

Table 17 

 

Procedural Knowledge and Conceptual Understanding  

 

Number of students who demonstrated /Total number of students  

Addition Subtraction 

 Two-digit Three-digit Two-digit Three-digit 

Procedural Knowledge 
    

   Procedural Fluency 20/22 10/10 11/21 1/8 

Manipulated Symbols 18/22 6/10 19/21 7/8 

Initial Conceptual Understanding     

Manipulated Symbols and Quantities 3/22 1/10 1/21 0/8 

Conceptual Understanding     

Manipulated Quantities 1/22 3/10 1/21 1/8 

Talked in Tens 3/22 2/21 

Understands Carrying in Addition 4/22  

Understands Borrowing in Subtraction  4/21 

Note. Total number of students asked changed for some categories because some students did not complete all 

of the problems in the 35 minutes allotted for the interview. 

 

 

 Students’ procedural fluency, evaluated based on their correct use of the standard 

algorithm, was found to be very high for addition. Twenty students (91%) demonstrated 

procedural fluency for two-digit addition and all ten students who completed the three-digit 

addition problems (100%) demonstrated procedural fluency.  There were only two students 
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who did not have procedural fluency with two-digit addition.  One of these students had 

difficulty regrouping:  When doing 39+53 she arrived at an incorrect answer 82.  She 

explained, “3+5=8, 9+3=2.”  When asked about 9+3=2 she said “9+3=12.  The one goes 

away, the two stays.”  Instead of regrouping (or “carrying) the ten she dropped it out of the 

answer.  The second student who had trouble with addition procedures was working on 

42+23.  He wrote out the algorithm, then got stuck.  The dialogue that followed is transcribed 

below: 

Student: “I forgot how to carry.”  

TJ: “What’s that mean?”  

Student: “It means when you carry a number to the top number.” 

TJ: “Why do you do that?”  

Student: “So you can add.”  

TJ: “Do you always have to carry every time you add?” 

Student: “When this number is bigger than this number you have to carry” (when the 

bottom ones digit is larger than the top ones digit you have to carry). 

Student rewrites algorithm, this time with 23 on top and 42 on bottom  

TJ: “You did that because now the 3 is bigger than the 2 now you can add them?” 

Student: Nods  

TJ: “But when it was 2 + 3 you couldn’t add them?”  

Student: Nods   

 

This student appeared to think that to add he had to have the larger ones digit “on top” and 

the smaller digit on the bottom.  He seemed not to realize the commutative nature of addition 

and that it does not matter which number is written first or second.  Perhaps he was thinking 

about subtraction and starting with the larger number from which to subtract the smaller 

number.   

 Students’ procedural fluency with subtraction was notably less well-developed, with 

eleven students (52.4%) demonstrating procedural fluency with two-digit subtraction and 

only one out of the eight students (12.5%) who completed the three-digit subtraction 
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problems demonstrating procedural fluency.  When subtracting, eleven students did not 

regroup when necessary.  Ten of these students subtracted “up.”  One girl explained this 

strategy by saying, “I always start with the higher number, even if it’s on the bottom.”  One 

student who did not borrow subtracted to zero, and for the problem 73-48 explained that the 

answer was 30 because, “It has to be zero…3-8=0 because 8 is a greater number than 3.”   

Some students’ difficulties and mistakes were unique to operations with three-digit 

numbers.  One student who was trying to calculate 524-239 said, “I don’t really get 

borrowing from the hundreds that much….I’m just guessing.”  He could not explain how he 

arrived at his incorrect answer of 105.  Another student, who eventually did calculate the 

correct answer, said while working on 524-239 in regards to the tens (which you first borrow 

from and then borrow for), “This part hurts my head a little.  Can you borrow from already 

borrowed numbers?…I think so…as long as it’s a number you can mostly borrow from it.”  

He realized that as long as the number is not zero you could continue to use it to regroup.   

 

Manipulation of Symbols vs. Manipulation of Quantities 

 While analyzing students’ verbal explanations of their written work, it was found that 

the majority of students appear to have manipulated symbols rather than quantities.  This was 

true in all four categories of problems, with 60% symbolic manipulation for three-digit 

addition, 81.8% for two-digit addition, 87.5% for three-digit subtraction, and 90.5% 

symbolic manipulation for two-digit subtraction.  Students demonstrated symbol 

manipulation when their explanations were limited to procedures and markings but failed to 

touch on place determining value.  For example, when one student was solving 43-15 he said, 

“You can’t do that (3-5) so you mark out the 4 and put a 3 and then put a 1.”  Similarly, when 
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explaining 42+23, one student said “I add this one up (2+3) and this one up (4+2) and it 

gave me 65.”   

 Many fewer students demonstrated that at times they were manipulating symbols and 

at times quantities, with 4.8% for two-digit subtraction, 10% for three-digit addition, and 

13.6% for two-digit addition.  For example, the one student who used tally marks 

manipulated quantity in this strategy, but when asked if she could solve the problem with 

numbers, she used the standard algorithm and talked in ones, indicating that she was 

manipulating symbols.  Another student manipulated symbols and quantities for two-digit 

subtraction.  When solving 56-23 he used the standard algorithm and said “on the 5 and 2 I 

subtracted.  5, 4, 3.”  This indicated symbol manipulation.  When solving 43-15 he was able 

to talk about borrowing a ten and even demonstrated borrowing using cubes.  This 

demonstrated quantity manipulation. 

A low number of students consistently manipulated quantities, with 4.5% for two-

digit addition, 4.8% for two-digit subtraction, 12.5% for three-digit subtraction, and 30.0% 

quantity manipulation for three-digit addition.  For example, one student solved 39+53 

mentally by using the split strategy.  She did her calculation out loud, saying “50, 60, 70, 80, 

89, 90, 91, 92.”  She started at the 50 (decomposed from 53), counted on 30 (decomposed 

from 39) to get to 80, “jumped” up by 9 (from the 39), then counted on 3 (from the 53).  

When asked if she had a way to write this down, she wrote 50+10+10+10+9+3.  This is an 

example of a student who is able to manipulate quantities, not just symbols.  Her strategy and 

explanation show that she is able to decompose and recompose numbers, understands some 

properties of addition (including the big ideas of commutativity and associativity), and 
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understands that place determines value and the associated complete values of two-digit 

numbers.   

 Another student who was trying to calculate 43-15 first wrote 40-10=30.  Then he 

wrote 3-5, at which point he crossed off the 40 and replaced it with a 30 and changed the 

answer of 30-10 to 20.  Then he wrote 13 instead of 3.  Next he did 13-5=8.  His final step 

was 20+8=28.  This student also was able to decompose and recompose numbers and thought 

in terms of quantities and complete values in order to perform this split strategy. 

 

Procedural Knowledge and Conceptual Understanding of Regrouping: Addition 

In addition to analyzing students’ procedural abilities, students’ conceptual 

understandings were considered.  Most students appeared to demonstrate a procedural 

knowledge of why one regroups in addition, which all students referred to as “carrying”.  

Four students (18.2%) explained carrying with some understanding that it was a ten that was 

being carried, whereas eighteen students (81.8%) referred to it as a one.   

Many students appear to have some notion that one needs to carry because “there 

isn’t enough room” and “you can’t put two numbers in one space.”  One girl said that she 

carried when “I know I don’t have enough fingers for that” (for adding two digits in the ones 

place whose total was more than ten).  When students were asked to explain carrying, most 

students’ talked about rules or procedures, not numeric relationships.   

The most common wording was “carry a one.”  When describing their work, the 

majority of students used language such as the following for explaining 38+24:  

 Student begins by writing standard algorithm 

 Student: 8+4 is 12.  Put the 2 down here, put the one above the 3. 

 Interviewer: That’s a 1? 
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 Student: Yes 

 Interviewer: And it’s worth 1? 

Student: Yes. Then it’s 1+3+2=6, so the answer is 62. 

The majority of students described carrying in this way.  This indicates the presence of a 

procedural knowledge but also suggests a lack of conceptual understanding as to Fosnot’s 

(2007) big idea of place determines value within the workings of the standard algorithm.   

 In order to further gauge students’ conceptual understanding, they were asked how 

they knew which of the two digits to carry and which to write in the ones place of the answer.  

Most students explained this in terms of rules or procedures, not numeric relationships.  One 

student said, “Carrying means putting the second number down here and the first number up 

here.”  Five students similarly explained that they “carry the first part.”  Two students said “if 

it’s higher than nine we carry our one and put it at the top.”  

Two students thought “you put the biggest number down there and the smallest up 

here” (these students thought that the larger number was written as part of the ones answer 

and the smaller number was carried to the tens, regardless of their order).  This 

misconception could result from the fact that it is always a one that is carried, and usually the 

number written in the ones answer is going to be larger than one.  However, this reasoning 

undermines the role of place value in carrying and is an example of a misconception coming 

from the standard algorithm (Kamii, 2000; Sophian, 1996).   

As expected student responses indicated a range of conceptualization about 

regrouping in addition (carrying).  I will present portions of student responses in order from 

less to more developed conceptual understanding.  

 The following dialogue is a transcription of how one student explained 38+24: 
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Student: “I learned this in class…Miss X said to just write down the last number and 

take the first number over there, and if you have twenty something you just put 2 ones 

up there (carry the 2 “ones”).” 

Interviewer: “Why do you put the two down and not the one? Could I put the 2 up 

and the one down?” 

Student: “No, because you’d count that as two and its not supposed to be and you’d 

get the answer wrong.” 

Interviewer: “Why don’t you leave the one at the bottom?” 

Student: “Because you would get the answer wrong.”   

This student has a procedurally-based conception of carrying.  There was no mention of 

“ten,” no labels for columns, and no indication that place determines value.  Five students 

responded similarly to the interviewer’s question about why you couldn’t put the one “down” 

and the two “up” when the ones column added to 12 by saying that “you would get the 

answer wrong.”  They could give no additional explanation as to why.  One student 

responded, “It’s math’s nature.” This again indicates math is more about getting correct 

answers than making sense.   

One boy who correctly solved 38+24 was asked to explain his carrying.  The 

subsequent dialogue is a transcription of the conversation: 

Student: “There’s an extra because the number is too big and you can’t put two 

numbers cuz it won’t be really equal, so you put it up here.” 
 TJ: “How do you know to put the 2 here (in the ones of the answer) and the 1 up there 

(carried to the top of the tens)?”  

Student: “Because I did it a lot in class” 

TJ: “Why don’t you put the 1 down there and put the 2 up there?” 

Student: “Only the ones works up there…This is the tens (points to the ones) and this 

is the ones (points to the tens).”  

TJ: “Oh so that’s why the 1 goes up there because that side is the ones (referring to 

the tens side)?”  

Student: “Yep.” 

TJ: “So if that side is the tens side, what are they worth?  What’s that 2 worth, it’s 

worth just 2?”  

Student: “Um hm.”  

TJ: “Even though it’s on the tens side?” 

Student: “Um hm.” 

 



Table 7: Students’ Place Value-Related Behaviors 

63 

 
This student’s response is telling in several ways.  First, he has some notion that he has to 

carry because “the number is too big,” but he is not yet able to fully explain why.  Second, he 

is willing to put his faith in the algorithm but he does not know how it works, only that he 

“did it a lot in class” and it gets him the correct answer.  Third, this student, unlike the 

previous student, is aware that there are labels (although he has not made a connection to 

their values) for the digits.  Finally, this student thinks the tens side is called the ones because 

that is where you carry the “one” (where you write a one to indicate a ten).  This is another 

good example of a misconception coming from the confusing nature of the standard 

algorithm (Kamii, 2000; Sophian, 1996).  It seems this student was trying to make sense of 

the algorithm, and it certainly makes sense to call the ones where the ones “go,” but 

unfortunately he is incorrect in his thinking and again doesn’t realize the role of place 

determines value.   

 The next example is of a student with slightly more developed procedural knowledge 

and demonstrates an initial conceptual understanding of carrying.  This student explained 

how he solved 38+24: 

Student: “8+4 is 12 so I carry my 1, put my 2, 3 plus 2 is 5 plus the one is 6.  65. 

Interviewer: So you said you put your 2 and carry your 1, what were you talking 

about? 

Student: In my class…If it’s higher than 9 we carry our 1 and put it at the top and 

then put our 2 down here.  Then 3+2 is 5, plus 1 is 6.” 

Interviewer: “Why didn’t you carry your 2 and put your 1 there?” 

Student: “Because we haven’t learned to carry your two yet.” 

Interviewer: Why does the 1 go over here?” 

Student: “Because it comes first.” 

Interviewer: “What does it mean when it come first?” 

Student: “I think I remember I think she said the first number goes to the top.” 

Interviewer: “To the top of what?” 

Student: “To the top of the tens.” 

Interviewer: “So what does the one represent? What does it mean?” 

Student: “It represents the 12…the 2.” 
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Interviewer: “Well the 2 is there, what does this 1 represent?” 

Student: “The tens.” 

 

This student is able to state that the “1” represents ten, but only after a series of questions.  

He thinks of carrying in terms of moving the “first part” before he thinks about tens and how 

place determines value.  At this point, he is essentially using “ten” as a label more than as a 

conceptualization of place value.   

 The next two examples show students who have an initial sense as to why one carries.  

One boy who solved 38+24 with the standard algorithm explained it the following way: 

 Student: “8+4 is 12.  You put the 1 right here (above the 3).” 

 TJ: “Why didn’t you put the 12 down here?”  

Student: “Because it would be the wrong answer.”  

TJ: Why is it wrong?  

Student: “It wouldn’t make sense…..because if you add these two numbers you don’t 

usually get 612….the 1 floats….so I put it up top…because that’s where the 1 

goes…you put the ones column down and the tens column here.” 

TJ: “So this is a 1?”  

Student: Nods   

TJ: “Is it worth 1?”  

Student: Nods  

TJ: “You add 1 + 3 + 2?”  

Student: Nods 

 

Another student similarly explained the same problem (38+24): 

Student: “8 + 4….I know I don’t have enough fingers for that…it’s too high a 

number…there’s not enough room….it would be 612 which is really big for just 

38+24.  So you drag a one over.”   

TJ: “That’s a one?”  

Student: “Yeah.” 

 

Both students have an encouraging notion that you carry so that your answer “makes 

sense.”  The first student is also using “ten” and “one” as a label, but has connected the label 

with their place value.  Other students conveyed similar explanations that the answer would 

be “too big” without carrying.   
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 The final example of a student’s explanation of carrying indicates a move to a 

further developed conceptual understanding.  This student explained carrying within the 

standard algorithm using the problem 38+24: 

Student: “Eight plus four is twelve.  You can’t put a ten in the ones column, so you 

put it up here.” 

TJ: “So if you have 12, how do you have 10?” 

Student: “Twe-lve” (points to 1-points to 2) 

TJ: “How do you know to put the 1 up there?  Why don’t you put the 1 down here 

and put the 2 up there?” 

Student: “Because the 1 is not really a one.”   

TJ: “What is it?” 

Student: “It’s a 10.” 

TJ: “What’s the 2?” 

Student: “A one.” 

 

This student was able to not only label the columns and digits, but recognized it was the 

associated place value that is the basis for what digits represent and that you carry a ten, not 

the “first part.” 

 

Procedural Knowledge and Conceptual Understanding of Regrouping: Subtraction 

Most students also demonstrated procedural knowledge of why one regroups in 

subtraction, which all students called “borrowing”.  Four students (19.0%) explained 

borrowing with an understanding that a ten was being borrowed, while seventeen students 

(81.0%) said that a one was borrowed. Many had some notion that one needs to borrow and 

said things including “you can’t do 3-5” and “you don’t have enough.”  One boy said, “You 

borrow a 1 because the lower number is up there (meaning the smaller number is “on top” of 

a larger number in the algorithm).”  Another student said, “You need a bigger number to be 

able to subtract.”  A few students said, “It (the answer) would be negative.” 
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 When students were asked to explain borrowing, most students explained this in 

terms of rules or procedures, not numeric relationships.  The most common wording was that 

numbers “turned into” or “became” a number one more or one less than they were originally.  

For example, when doing the problem 43-15 the most used wording to explain regrouping 

was to say the four “turns into” or “becomes” a 3, and the 3 “turns into” or “becomes” a 13.  

However, students rarely could explain how they were able to change the numbers, again 

falling back on comments such as “this is how we do it in my class” and that they borrow “to 

get the right answer.” This type of language indicates that students are aware of the 

procedural outcomes (a 4 becomes a 3) but not the processes involved that allow this to 

happen. 

 Naturally there was a range of student responses indicating a range of 

conceptualization of regrouping.  I will present portions of student responses in order from 

less to more developed conceptual understanding.  At the most procedural level, students 

described borrowing in terms of ones, that is, “borrow a one.”  For example, with the 

problem 43-15 the most common explanation was as follows: 

 Student writes standard algorithm 

Student: “You can’t do 3-5, so you cross off the 4 and make it a 3, add 1 to the 3 and 

it’s 13.  13-5=8.  3-1=2.  The answer is 28.” 

   

 To see if students conceptually understood regrouping they were asked why, in the 

problem 43-15, the 3 “turned into” a 13 and not a 4.  One boy said the following: 

Student: “Take away the 4, make that a 3, carry the 1, make that a 13.” 

Interviewer: “1 and 3 is 4 so how is it 13?”  

Student: “It’s not like you add them.  You put it in front.” 

Interviewer: “Is it really a 1?”   

Student: “Yeah…(pause)…I don’t know that’s how I just do it.” 
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A girl with a similar procedural knowledge about regrouping had a comparable 

explanation: 

Student: “ You don’t have enough numbers so I borrow from the 4.  Cross off the 4, 

make it a 3.  Drag the 1 over and make it into 13.  I borrowed 1.” 

TJ: “Why doesn’t the 3 turn into a 4 instead of a 13?”  

Student: “Because I’m not adding I’m taking away (pause)…Because it still wouldn’t 

be enough…I don’t know, we just learned it this way.” 

 

When asked why 3 turns into 13 not 4, several students responded that “it still wouldn’t be 

enough” (meaning 4-5 was still not possible).  At this level of conception there is a notion of 

“getting a big enough number” rather than understanding where that number comes from or 

how it relates to the overall quantity. 

Students who had a slightly more conceptual understanding of regrouping responded 

in ways similar to the following boy: 

Student: “5 is bigger than 3, so we cross it out and get a bigger number, and the 3 

asks the 1, the 3 asks the 5, the 3 asks the 4 if he can borrow a ten, so it gets a 1.” 

Interviewer: “So it gives up a 1?  It sends a 1 next door?” 

Student: “Yes.” 

 

A girl explained 73-48 in a similar way: 

 

Student: “3 asked the 7 to borrow a ten.” 

TJ: “You said the 7 gives a 10 to the 3.  How does it have a 10 to give if it’s only a 

7?”   

Student: “I don’t know.” 

 

Even though these students originally identified that they were borrowing a ten, it seems to 

instantly turn into a one in their subsequent explanations.  When asked again about the one, 

they do not say that it is a ten but rather that it is a one.  Several students had similar 

explanations, that is, when they initially used language (most likely similar to that used by 

their teacher) they would say “borrow a ten” but before they finished their explanation it had 

turned into a one, and when asked what it was worth they usually said it was a one.  This is 
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important to realize because without further questioning it may seem these students 

understand borrowing because they initially say the phrase “borrow a ten.”  However, upon 

further questioning it becomes clear that they have not conceptualized what this means and 

the ten turns into a one.  Developing this concept could be delayed by the written notation of 

the standard algorithm, in which a student simply writes a “1” in front of the original ones 

digit.  They literally do not see a ten but only a one.  Also, several students used wording 

such as “you knock on the tens and borrow one.”  Here again, adults understand this wording 

to mean you borrow one ten, but children only hear that you “borrow one.”  These are further 

examples of how using the standard algorithm may, as Kamii (2000) said, “unteach place 

value” (p.83). 

 Students who had a more developed conceptual understanding of the big idea that 

place determines value responded in ways similar to the following boy, who explained 43-15:  

Student: “Since the 5 is bigger than the 3 I took 1 from the 4 and I have 3 and I took 

10 over.”  

TJ: “How did the 3 turn into a 13?” 

Student: “10 plus 3 equals 13.” 

TJ: “Where did 10 come from?”  

Student: “The 4.” 

TJ: “How did 10 become 4?”  

Student: “The 3 borrowed 1 ten from 4. I had to cross it out and put 3.” 

TJ: “Why did 4 turn into a 3?”  

Student: “Because it’s subtraction and when you run into problems like this you gotta 

take 1 away and you put 10 over here.” 

TJ: “So how does 1 from here turn into 10 over here?”  

Student: “Because you only want 1 ten.” 

Another student explained the same problem (43-15) this way: “Take a 10 from the 4 to 

make the 3 a 13, which leaves you with 3 tens.  But you still have 43, just in a different way. 

Thirty plus 13 equals 43.” 
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 These students were able to not only explain the procedure and initially state that a 

ten was borrowed, but were able to thoroughly explain what was happening within the 

mechanics of the procedures.  They were able to explain borrowing in terms of place 

determines value rather than procedures. 

 

Talked in Tens 

Three students (13.6%) talked in tens in regards to addition, and two students did so 

for subtraction (9.5%).  Two of these were the same student talking in tens for both addition 

and subtraction, and the third student talked in tens for addition but not subtraction.  The 

majority of students (86.4% for addition and 90.5% for subtraction) explained their strategies 

and calculations by talking in ones.  That is, if they used standard algorithms, even the tens 

column was referred to as if it were ones and there was no indication that the numerals 

represented tens.  When asked what a digit in the tens column was worth, students responded 

with the digit’s face value rather than its complete value.   For example (in regards to the 

problem 38+24): 

Student begins by writing standard algorithm. 

Student: “8+4 is 12.  Put the 2 down here, put the one above the 3.” 

 Interviewer: “That’s a 1?” 

 Student: “Yes.” 

 Interviewer: “And it’s worth 1?” 

Student: “Yes. Then it’s 1+3+2=6, so the answer is 62.” 

Some students inconsistently referred to tens, such as this student who was adding 

168+156: 

Interviewer: “So you said 1+1+1=3 (in regards to the hundreds)?” 

Student: “Yes…it’s 3 hundreds.” 

TJ: “What is this (pointing to the 1 in 156)?” 

Student: “It’s a 1.” 

TJ: “It’s worth 1?” 
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Student: “Yes…well actually it’s 100.” 

 

 

Three students consistently talked in tens, evident in explanations such as a student 

explaining the tens in 42+23 as “40 plus 20 equals 60.” 

 

Level of Base-Ten Knowledge 

This study also examined students’ overall level of base-ten knowledge, which 

summarized their use of ten and overall conceptual understanding of place value.  The results 

for the three levels (previously defined in Table 8, p.37) are presented in the following table. 

 

 

Table 18 

 

Conceptual Level of Base-Ten Knowledge 

 

 Addition Subtraction 

Level Two-Digit Three-Digit Two-Digit Three-Digit 

Level 1: Initial Concept of Ten 9 4 13 8 

Level 2: Intermediate Concept of Ten 11 3 6 0 

Level 3: Facile Concept of Ten 2 3 2 1 

Note. Total number of students asked changed is different across categories because some students did not 

complete all of the problems in the 35 minutes allotted for the interview. 

 

 Overall the majority of students were found to have an initial concept of ten.  For 

two-digit addition nine students (40.9%) had an initial concept of ten, eleven students (50%) 

had an intermediate concept of ten, and two students (9.1%) had a facile concept of ten.  Of 

the ten students who completed three-digit addition tasks, four (40%) had an initial concept 
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of ten, three students (30%) had an intermediate concept of ten, and three 

students (30%) had a facile concept of ten.   

When presented with subtraction tasks, students’ level of base-ten knowledge 

generally decreased from what it was with addition.  With two-digit subtraction, the majority 

of students (61.9%) had an initial concept of ten, six students (28.6%) had an intermediate 

concept of ten, and two students (9.5%) had a facile concept of ten.  Of the nine students who 

completed three-digit subtraction tasks, eight students (88.9%) had an initial concept of ten 

and one student (11.1%) had a facile concept of ten.   

Eight students (36.4%) had an initial concept of ten in all categories they attempted 

and one student (4.5%) had a facile concept of ten in all four categories.  Twelve students 

(54.5%) had the same levels of base-ten arithmetic knowledge for both addition and 

subtraction.  Seven students (33.3%) had a higher level of base-ten knowledge in addition 

than subtraction, and one student (4.8%) had a higher level of base-ten knowledge in 

subtraction than addition.  Five students (50.0%) had the same level of base-ten knowledge 

for both two-digit and three-digit operations.  Five students (50.0%) had a higher level of 

base-ten knowledge for two-digit operations than three-digit operations.  

Students’ overall level of base-ten knowledge was also considered along side their 

highest known number combination.  The results are presented in the following table, which 

identifies each student’s highest known number combination as sorted by level of base-ten 

knowledge (defined in Table 8, p.37). 
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Table 19 

Highest Known Number Combination by Conceptual Level of Base-Ten Knowledge 

 

Category and level Highest known number    N Median 

highest 

known 

number 

Two-Digit Addition    

Level 1: Initial Concept of Ten 3, 4, 4, 5, 5, 5, 6, 7, 10 9 5 

Level 2: Intermediate Concept of Ten 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 10 11 6 

Level 3: Facile Concept of Ten 8, 10 2 9 

Two-Digit Subtraction 
   

Level 1: Initial Concept of Ten 3, 4, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 10 13 5 

Level 2: Intermediate Concept of Ten 5, 6, 6, 6, 8, 10 6 6 

Level 3: Facile Concept of Ten 7, 10 2 8.5 

Three-Digit Addition 
   

Level 1: Initial Concept of Ten 6, 6, 8, 10 4 7.5 

Level 2: Intermediate Concept of Ten 5, 6, 7 3 6 

Level 3: Facile Concept of Ten 8, 10, 10 3 10 

Three-Digit Subtraction 
   

Level 1: Initial Concept of Ten 5, 6, 6, 6, 7, 8, 10, 10  8 6.5 

Level 2: Intermediate Concept of Ten NA 0 NA 

Level 3: Facile Concept of Ten 10 1 10 

Note. Total number of students changes across categories because some students did not complete all of  

the tasks in the 35 minutes allotted for the interview. 
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These results indicate there may be a relationship between students’ highest known 

number combination and their overall level of base-ten knowledge.  This is evident by the 

fact that the median highest known number is always highest in all four categories for 

students who are also in Level 3.  The only place this trend does not hold is in levels one and 

two for three-digit addition, in which Level 1 students have a median of 7.5 and Level 2 

students have a median of 6.  In two-digit addition, two-digit subtraction, and three-digit 

subtraction, the trend is consistent for all three levels with Level One students having the 

lowest median number combination, Level 2 students having the middle median, and Level 3 

students having the highest median.  Again, the numbers of students in the groups are small.  

These findings suggest further directions for research. 
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Discussion 

The purpose of this study is to provide insights about end-of-year second graders’ 

knowledge of place value and its application in solving two- and three- digit addition and 

subtraction problems.  Data were gathered through the use of a qualitative, task-based 

structured interview that occurred individually with each of the 22 students and was video 

taped.  Data analysis reveals several interesting results, which are discussed in the following 

section. 

 

Key Developmental Understandings, Big Ideas, and Place Value 

It was found that 63.6% of students consistently unitized and used ten as a composite 

unit, 27.3% of students used ten as a composite unit at times, and 9.1% of students used ten 

as ten single units.  These results give specific insights into the KDU of composite units.  As 

Simon (2006) explained, “One way to identify KDUs is to observe students engaged in 

mathematical tasks to specify understandings that can account for differences in the actions 

of different students in response to the same task” (p.363).  Two such differences between 

students who unitized and used ten as a composite unit consistently as compared to those 

who did so inconsistently were a) continuing to use ten as a composite unit with larger 

numbers, and b) using ten as a composite unit when mentally adding or subtracting ten from 

an off-decade number when presented with a physical representation of the original quantity.  

Therefore, this study indicates that such a difference exists in students who are at varying 

stages of development with the KDU of composite units and big idea of unitizing.  
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These results indicate that students develop an ability to unitize and use ten as a 

composite unit first with lower numbers, and they continue to use ones until they have 

developed a sense of composite units with higher numbers.  Furthermore, students develop a 

concept of composite units to count groups of physical objects by tens earlier than they 

develop an ability to apply composite units to mental addition and subtraction.  This was 

evidenced by the fact that all of the students who used ten inconsistently could count groups 

of objects by ten, but had to mentally add and subtract in ones.  Although not all children will 

learn concepts in the same order, this study identified some of the stages within the 

development of the conception and use of ten as a composite unit. 

This study also found that students who consistently used ten as a composite unit had 

a higher median of known number combinations than students who used ten as a composite 

unit inconsistently or not at all.  This suggests that students who have more facility with 

composing and decomposing numbers are also more likely to have more facility working in 

groups of ten rather than single units.  This indicates that students may need a solid sense 

about numbers before being able to manipulate groups of numbers.  Students who are able to 

compose and decompose numbers have “construct(ed) a network of numerical relationships” 

(Kamii, 2000, p.69) which allows them to use ten as a composite unit instead of as single 

ones.   

One of the more skewed results of this study was finding that a majority of students 

(85.7%) did not know that a quantity remains constant regardless of how it is grouped or 

arranged.  This indicates that conservation of quantity when grouping develops after 

conservation of individual objects.  Most students who did not conserve the original quantity 

of 33 thought that there would be more cubes when counting by groups.   
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Students’ strategies generally became less sophisticated when tasks involving 

incrementing by ten increased in difficulty by counting off the decade, removing a visual 

representation, and asking students to increment simultaneously by both tens and ones.  The 

increased demand on students’ working memory was evident as they computed.  Whereas to 

count by tens students generally responded before or as the next tens strip was placed on the 

table, students were slightly slower incrementing by tens off the decade and considerably 

slower when working with a screened quantity.  Many students mentally calculated for 

twenty seconds or so, and then asked for the screened quantity again because they forgot it in 

their mental work or had otherwise floundered and needed to start over.   

Students who were able to continue working in tens did so with either the split 

strategy or the jump strategy.  Five students used the jump strategy, four students used the 

split strategy, and five students used both the jump and split strategy (it remained unclear as 

to what strategy two students used).  Everyone who used the split strategy explained that they 

grouped the tens first, then the ones.  When using the jump strategy, students first “jumped” 

up by the new number of tens, then by the new number of ones.  These findings are 

consistent with research that reveals children typically manipulate a quantity from left to 

right (Thompson, 1999, p.170).  This is important to consider because the standard algorithm, 

which was the primary means of calculation that all of these students were taught, operates 

from right to left.  Although all of the students used standard algorithms in their written 

work, when presented with a high-cognitive demand task that they had to solve mentally, 

students who were able to work in tens used the split strategy and/or jump strategy and 

moved from left to right.  This indicates an ability for using a alternative strategy in mental 

work.  
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Another finding was that all five students who used both the split strategy and the 

jump strategy began by using the split strategy and later switched to the jump strategy.  This 

indicates an initial preference and ability on the part of these students to use the split strategy.  

However, as the task proceeded the numbers grew larger and the screened arrangements of 

dots were increasingly difficult to picture.  These five students most likely switched from 

visualizing the arrangements of dots, which they used with smaller numbers to first group the 

tens together and then the ones.  Instead they began to use the jump strategy which did not 

require a visualization of the screened dots (although it did not preclude it, either) but rather 

only required retaining the total number of screened dots and then counting on first by the 

new number of tens and then by the new number of ones.  This is consistent with Wright et 

al.’s (2006b) statement that students had more difficulty using the split strategy with more 

difficult problems than they did using the jump strategy.  

 

Strategy Use 

The second area of interest of this study was to examine students’ strategy use on 

two-and three-digit horizontal number sentences.  This study found that students’ 

independently selected strategies relied heavily on standard algorithms.  All twenty-two 

students used standard algorithms for at least two-thirds of their strategies, and twelve 

students used standard algorithms as their only strategy. Standard algorithms accounted for 

approximately 88% of all of the strategies used.  Although these results favored standard 

algorithms for written work, as highlighted previously, students’ appeared to be able to 

conceptualize mental incrementing and addition by using the jump strategy or split strategy, 

rather than the standard algorithm.    
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These results confirm findings that the early use of standard algorithms can obstruct 

students’ development of other strategies (Beishuizen & Anghileri, 1998).  Although NCTM 

(2000, p.32) states “Students should be able to perform computations in different ways,” 

several other viable strategies were hardly used (known fact, counting on from first, split 

strategy, direct modeling), and others were never used (counting on from larger, counting 

down, jump strategy, and compensation).  This confirms Kamii’s (2000) findings that early 

use of standard algorithms “encourage(s) children to give up their own thinking” (p. 83).  

Indeed, very little original thinking was evident during the series of horizontal number 

sentences, as most students were focused on the steps and procedures of the standard 

algorithms.     

Likewise, students’ flexibility was fairly limited as only six students used a strategy 

in addition to the standard algorithm, and only three of these students made use of an 

efficient, alternative strategy.  NCTM (2000) states that students in grades pre-Kindergarten 

through grade two need to “develop a sense of whole numbers and represent and use them in 

flexible ways, including relating, composing, and decomposing numbers” (p.78).  Students 

generally did not adapt their strategy to the problem type or numbers involved, but rather 

continued using standard algorithms regardless of whether an alternative strategy would have 

been easier or more efficient to calculate.  Students learning the many procedures in the 

standard algorithms may have decreased their range of available strategies, as they have not 

been afforded time to develop or be exposed to alternative strategies.  As Fosnot (2007) 

states, an objective for addition and subtraction “is for children to look to the numbers first 

before deciding on a strategy.  Mathematicians do not use the same strategy for every 

problem; their strategies vary depending on the numbers” (pp.8-9).        
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Although roughly three-quarters of students were able to use a relational strategy to 

solve 16+9 from 16+10, just under half had difficulty understanding alternative solution 

strategies that made use of the split strategy.  These students had several common responses 

to the problem.  They tended to say that the problem was written wrong, it was too many 

steps, it added or subtracted too many times, that you cannot change the numbers from the 

original problem, and that you cannot change the steps from those of the algorithm.  Some 

students thought that the alternative strategy was using any numbers that combined to 92, 

which they already knew was the correct answer having first solved the problem themselves.  

This shows a lack of understanding that the numbers used are directly related to the original 

problem, even if they are in a different form (in this case decomposed into tens and ones).  

Some students said you could use other numbers even though they had no relation to the 

problem other than arriving at the correct answer.   

This indicates that for some students, math is about generating the correct answer 

instead of about making sense. “If from an early age, children are taught to approach problem 

solving as a way of making sense out of problem situations, they may come to believe that 

learning and doing mathematics involves the solution of problems in ways that are always 

meaningful” (Carpenter et al., 1999, p. 57).  Early algorithm use may have resulted in some 

students having a limited and rigid conception of how calculations, and mathematics in 

general, work.  At this point they are thinking in terms of steps in algorithms, but not numeric 

relationships and about half have a hard time understanding alternative strategies when 

asked.    
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Procedural Knowledge versus Conceptual Understanding 

This leads into the results for the third area of interest of this study, which was to 

examine whether students had disconnects between procedural knowledge and conceptual 

understanding within the standard algorithm.  Regrouping is a major concept housed within 

the procedures of the standard algorithms.  Students referred to regrouping in addition as 

“carrying” and regrouping in subtraction as “borrowing.”  Students were generally 

procedurally fluent with two-digit addition with regrouping.  There were only two students 

who did not have procedural fluency with two-digit addition.   

Students had the most procedural difficulty with subtraction with regrouping.  The 

most common mistakes associated with two-digit subtraction procedures included: a) not 

borrowing, b) subtracting the smaller number from the larger number even if the larger 

number was in the second quantity (thereby effectively subtracting “up” the algorithm), c) 

disregarding that there “wasn’t enough” to subtract and subtracting to zero, d) adding all of 

the digits in the original problem together, e) subtracting the tens but adding the ones, and f) 

unnecessarily borrowing.  Eleven students did not borrow or regroup when necessary.  Ten of 

these students subtracted “up,” which indicates a lack of understanding that subtraction is not 

commutative.  Some students subtracted to zero.  Although these students did not know how 

to address having a smaller number minus a larger number in the ones column, they did 

understand that subtraction is not commutative because they did not “flip” the problem to 

subtract “up” like many other students.  Two students added all of the digits in the original 

digits in the problem together and tried to manipulate them to calculate an answer.  Two 

students subtracted the tens but then added the ones instead of subtracting.  One student 

borrowed when it was unnecessary.   
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Students were procedurally fluent with three-digit addition procedures (100% 

correct), but again had more difficulty with three-digit subtraction with regrouping (12.5% 

correct).  Some students had similar procedural difficulties with three-digit subtraction as 

with two-digit subtraction.  Two students subtracted “up,” one subtracted to zero, and one 

added all of the digits together.  Some students had procedurally difficulties unique to three-

digit subtraction.  For example, one student began 267-119 by borrowing from the hundreds, 

but then did not know how to use this to help him with 7-9 in the ones.  It may be that this 

student has a misconception that when borrowing you always start with the digit furthest to 

the left.   

In summary, students’ were generally procedurally strong with both two- and three-

digit addition.  Students made more procedural errors with subtraction, some of which reveal 

misconceptions associated with subtraction and others reveal misconceptions about the role 

of place value within the standard algorithm. 

 

Procedural Knowledge and Conceptual Understanding of Regrouping: Summary 

Students’ responses indicate a range of conceptual understanding of regrouping both 

for addition and subtraction.  In both operations, students seem to begin with procedural 

knowledge and little conceptual understanding.  They explain regrouping in terms of 

procedures that one follows so that one does not get the answer wrong.  Next students begin 

to label tens and ones and talk about regrouping in terms of “carrying/borrowing a one.”  

Later students understand that regrouping helps you get an answer that makes sense.  Finally, 

students merge the labels and procedures with the big idea that place determines value to 

consistently recognize the role of ten in regrouping, and students realize that they are 
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regrouping a ten.  This study found that the students at the end of second grade were 

generally still in the procedural stages of understanding regrouping. 

 

Talking in Tens 

In this study, the majority of students (86.4% for addition and 90.5% for subtraction) 

were talking in ones not tens.  Examples of talking in ones can be seen throughout students’ 

verbal explanations of regrouping in both addition and subtraction, which were previously 

detailed and therefore will not be repeated here.  The fact that the majority of students talked 

in ones is significant because it indicates students’ procedural comprehension of the standard 

algorithm.  Talking in ones reveals that students think about independent columns of 

numbers rather than the overall quantity, and may not understand that there is a difference 

between face value and complete value.  These results are consistent with research that 

indicates students’ perceive the standard algorithm as independent columns and in terms of 

face value (Carraher et al., 1987; Kamii, 2000; McIntosh, 1990; Thompson, 1999).  Some 

students inconsistently referred to tens, showing an initial conception of complete value.  

Only three students consistently talked in tens.   

 After analyzing all 22 student responses, it is evident that as a student moves from a 

procedural knowledge to a conceptual understanding of regrouping the way he/she verbally 

address tens also develops.  Students begin without mentioning tens at all.  All procedures 

and why they are performed are in terms of ones, for example “the 4 turns into a 3, the 3 

turns into a 13.”   Next, a student uses tens and ones as labels, but continues talking in ones 

when asked what a digit in the tens column is worth by responding with its face value rather 

than complete value.  A third step comes when students begin to not only label but also 
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inconsistently refer to tens as part of their explanations.  For example, a student may say that 

he/she borrows a ten initially but later may refer to it as a one.  Finally, students consistently 

talk in tens in meaningful ways and connect the big idea that place determines value to 

procedures.   

 

Manipulation of Symbols versus Quantities 

 This study found that the majority of students manipulated symbols not quantities.  

This is consistent with Carraher et al.’s (1987) finding that standard algorithm use can 

encourage symbol manipulation rather than quantity manipulation.  Students demonstrated 

symbol manipulation when their explanations were limited to procedures and markings but 

failed to touch on place determining value.   

 Going back to a previously mentioned misconception reveals a student’s 

manipulation of symbols rather than quantities.  To solve 43-15 a student subtracted to zero 

(resulting in an incorrect answer of 30).  In the context of symbol manipulation a student who 

subtracts to zero does not perceive the digits as related to the same overall quantity.  This 

means that when there are not enough ones to subtract, the answer in the ones equals zero 

because the ones are viewed as a stand-alone quantity.  There is no connection of any given 

digit to the overall quantity and no realization that there is “more” available to permit full 

subtraction of the ones and the tens.  Multi-digit numbers are viewed as a series of 

independent, single-digit quantities. 

 Students’ manipulations of symbols were further evident in their language.  When 

students talked in ones, this indicated a focus on symbols and face values rather than 

quantities and complete values.  In addition to talking in ones, using phrases such as a digit 
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“turns into” or “becomes” a different number, or that you “make” a 3 into a 4 indicates 

attention to symbols not quantities.   

 A few students did manipulate quantities (ranging from 4.5% to 30% depending on 

problem type).  Three students did not use an algorithm but rather used the split strategy.  

These students were able to manipulate quantities, not just symbols.  Their strategy and 

explanation show that they are able to decompose and recompose numbers, understand some 

properties of addition (including the big idea of commutativity and associativity), and 

understand that place determines value and the associated complete values of two-digit 

numbers.  One student who used the split strategy also solved the same problem with the 

standard algorithm.  When asked which strategy was easier for her to think about, she said 

“this one (standard algorithm) is easier because you don’t have to add in your head.”  This 

seems to confirm findings that students using the split strategy find it difficult to adapt this 

strategy (Wright et al., 2006b).  However, Wright et al. also indicate that using the split 

strategy makes it more likely that a student will make errors, but she did not make any errors. 

 

Level of Base-Ten Knowledge 

The majority of students were found to have an initial concept of ten (levels 

previously defined in Table 8, p.37).  In particular more students had an initial concept of ten 

for subtraction than for addition.  For two-digit subtraction nearly 62% of students had an 

initial concept of ten and for three-digit subtraction almost 88% of students had an initial 

concept of ten.  These numbers were higher for subtraction than addition.  One-third of 

students scored higher in addition than subtraction.   
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These findings support previously discussed results that more students manipulated 

symbols (rather than quantities) in subtraction than addition and more students made 

procedural errors with subtraction than addition.  This indicates that subtraction may be 

harder and/or take longer to develop a quantity-based conceptual understanding as opposed 

to addition.  A further exploration of the literature would be informative in this regard.  One 

possible explanation is that the standard subtraction algorithm has a higher number of 

symbols that require manipulation, and the increased quantity demands more time for which 

to develop an understanding.  Or perhaps there is something inherent in the actual operation 

of subtraction that children have a harder time conceptualizing.  Upon considering the steps 

of both addition and subtraction with objects (how children are often taught early operations), 

the increased complexity of subtraction becomes apparent.  With addition children can make 

groups for both numbers, add both groups of objects, count every object, and do so in any 

order.  Subtraction is a slightly more complex concept for children to learn given that they 

only make a group for the first number, they never make a group for the second number, only 

one group of objects is the correct one with which to begin, the second amount needs to be 

removed from the original amount, and only the remaining sub-set of the original number is 

counted for the final answer.  When considering the algorithm for two-digit subtraction, 

numbers are crossed off, new amounts written, and “ones” are placed in front of digits.  

Perhaps the convergence of the subtraction operation and the standard algorithm require 

more time and experience in order for students to develop an understanding.  Until students 

develop this understanding and make sense of both the operation and the algorithm, they will 

manipulate symbols not quantities, talk in ones, and have only an initial concept of ten.  

Again, an exploration of the literature in regards to subtraction would be informative.   
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Results also suggest that there is a relationship between students’ highest known 

number combination and their overall level of base-ten knowledge.  It is important to 

emphasize that while results imply a relationship between highest known number 

combination and overall base-ten knowledge, it does not mean that knowing higher number 

combinations causes a student to have a higher level of base-ten knowledge.  Given that both 

the ability to compose and decompose numbers and conceptualize place value are key 

developmental understandings, it is more likely that high levels in both areas are developed 

over time and as a result of numerous experiences.  Therefore, isolated drilling of number 

facts will be unlikely to raise a students’ base-ten knowledge.   

  The relationship between higher known number combinations and higher levels of 

base-ten conceptualization suggests that there is more involved with knowing number facts 

than may appear on the surface.  This result contributes to previous findings that knowing 

number combinations indicates the development of complex networks of numeric 

relationships (Richardson, 2002a).  It may be that it is the development of a network of 

numeric relationships that allows students to conceptualize and use ten and students who 

have less developed numeric relationships are less likely to conceptualize ten.    

It may also be that it is the ability to compose and decompose numbers that allows 

students to know number combinations and allows them to perceive the complete values 

within multi-digit numbers.  For example, a student who is not able to decompose numbers 

may be less successful realizing 24 is decomposed into 20+4, and thereby may remain 

focused on face value, talking in ones, and manipulating symbols.  A student who can 

decompose 24 into 20+4 may be more likely to recognize complete value, talk in tens, and 

manipulate quantities. 
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Summary 

This study provided insights into end-of-year second graders’ knowledge of place 

value and its application in solving two-and three-digit addition and subtraction problems.  

The interview protocol provided ways to look at and understand end-of-year second grade 

students’ thinking about tens and ones.   

Within this exploratory study, I examined second graders’ understanding of some of 

the big ideas related to place value and the use of ten using a carefully designed set of 

assessment tasks.  These big ideas included what number combinations for numbers 1-10 

students know fluently, students’ facility with unitizing, and students’ facility recognizing 

and using place value patterns.  The median highest known number combination was six.  

The majority of students’ (59.1%) highest known number combination was 6 or lower, with 

13.6% demonstrating fluency with combinations of the number 10.   

In regards to unitizing, nearly all students (90.9%) were able to use ten as a composite 

unit at least some of the time.  Two distinguishing abilities between students who used ten as 

a composite unit consistently as compared to those who did so inconsistently were a) 

continuing to use ten as a composite unit with larger numbers, and b) using ten as a 

composite unit when mentally adding or subtracting ten from an off-decade number.  Fifty-

nine percent of students addressed tens simultaneously, and 41% addressed tens successively 

all or part of the time.  The majority of students (85.7%) did not know that a quantity remains 

constant regardless of how it is grouped or arranged.  In regards to the big idea of place value 

patterns, the level of strategy sophistication decreased when tasks involving incrementing by 

ten increased in difficulty by counting off the decade, removing a visual representation, and 

asking students to increment simultaneously by both tens and ones. 



 

88 

 

This study also examined students’ strategy use on two-and three-digit horizontal 

number sentences.  Students appear to be highly fluent with two-digit operations with and 

without regrouping in addition and without regrouping in subtraction (ranging from 95 to 

100% correct), and had some difficulty with regrouping in subtraction (ranging from 52 to 

74% correct).  Students were fluent with three-digit addition procedures (ranging from 89 to 

100% correct), but had more difficulty with three-digit subtraction (ranging from 29 to 60% 

correct).  Students’ independently selected strategies relied heavily on the standard 

algorithms.  All twenty-two students used the standard algorithms for at least two-thirds of 

their strategies and twelve students used the standard algorithms as their only strategy. Only 

six students used a strategy in addition to the standard algorithms, and only three of these 

students made use of an efficient, alternative strategy.  Students also used known fact, 

counting on from first, split strategy, direct modeling, and incorrect strategy.  Counting on 

from larger, counting down, jump strategy, and compensation were never used by any of the 

students.  The majority of students (77%) were able to use a relational strategy to solve 16+9 

from 16+10, but had difficulty understanding alternative solution strategies.  Approximately 

half of students could not explain the alternative addition strategy, and only one student had a 

thorough understanding of the alternative subtraction strategy.      

The third area of interest for this study was whether students had disconnects between 

procedural knowledge and conceptual understanding of two-digit operations and place value 

within the standard algorithm.  Nearly all of the students demonstrated procedural fluency 

with two-digit addition, but only slightly more than half of the students were procedurally 

sound with two-digit subtraction.  Similar results were found with three-digit operations, with 

high levels of fluency for addition (ranging from 91 to 100%) and much lower levels for 
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subtraction (ranging from 12.5 to 52%).  The majority of students were found to manipulate 

symbols not quantities, and talked in ones not tens.  Most students appear not to understand 

regrouping in addition (82%) or regrouping in subtraction (81%) beyond procedures.  The 

majority of students were also found to have an initial concept of base-ten.  Although some 

students had an intermediate or facile concept of ten for addition (59.1% for two-digit and 

60% for three-digit), these numbers again decreased for subtraction for which fewer students 

demonstrated an intermediate or facile concept of ten (38.1% for two-digit and 12.5% for 

three-digit).  Results also indicate that there may be a relationship between students’ highest 

known number combination and their overall level of base-ten knowledge.   

 

Limitations of Study 

 One limitation of this study was that not all students completed all of the horizontal 

number sentences in Task Four.  Interviews were kept to similar lengths of time, aiming for 

around 35 minutes so that students could return to their classrooms in reasonable amounts of 

time.  However, this meant many students did not finish all of the number sentences.  

Consequently, it was more likely that students who were naturally slower workers or who 

worked slower due to difficulties on earlier tasks were the ones who did not complete all of 

the problems.  This means it tended to be students who were more efficient workers or had an 

easier time with the interview tasks who completed all of the horizontal number sentences.  

Therefore there was a smaller sample size for evaluating three-digit operations, since those 

were the very last problems asked.  This also resulted in a smaller sample size to evaluate 

three-digit procedural fluency, symbol versus quantity manipulation, and base-ten 

knowledge.   
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 A second limitation was that while this interview provided a detailed snap-shot, the 

study did not follow teaching throughout the school year to know what was taught and how it 

was taught.  This study did conduct a focus group with the classroom teachers in both 

schools that discussed their teaching of place value, but this could be enhanced by classroom 

observations throughout the year.   

 A third limitation of this study related to determining students’ strategy use in Task 

Four.  For some of the two-digit addition problems it was difficult to determine if a student 

“counted on from first” or “counted on from larger” because four of the five horizontal 

number sentences were written with the larger number first.  This made it difficult to know if 

students began with the number because it was first or because it was larger.  This could be 

remedied by writing some of the horizontal number sentences in the opposite order, with the 

larger number located second.  

 

Questions for Further Research 

 The set of tasks used provided rich and useful insights into students’ place value 

knowledge.  The results of data analysis suggest a number of findings that are worthy of 

further investigation. 

An issue that emerged from this study and warrants further research pertains to the 

relationship between higher known number combinations and higher level of base-ten 

knowledge.  Although the results from this study indicate a relationship, it remains unclear as 

to why this is the case. 

 Another issue generated by this current study provokes the question, what is each 

student’s stage of two-digit number conceptualization?  Fuson and Smith (1996) provide 
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stages for two-digit number conceptualization that were considered when analyzing the data 

in an attempt to determine each student’s level.  Although it was possible to determine some 

student’s levels, it remained unclear what many student’s levels were.  Usually some of the 

six levels were confidently eliminated as possibilities, but at times two or three potential 

levels remained and it was not possible to reliably select one level for each student.  If these 

levels were of particular interest, a new sub-task could be added to the interview protocol to 

better assess a student’s conceptualization of a two-digit number.  Specifically, asking 

students to draw a given two-digit quantity would help to see how a student pictures the 

quantity and allow for finer distinctions to be made than verbal descriptions and written work 

allowed. 

 The next step to extend this research would be to use the interview data from this 

study to form student profiles.  For example, a student profile could be made for a student 

who demonstrated a Level One conception of base-ten knowledge, a Level Two conception, 

and a Level Three conception.  The development of these learning profiles may help teachers 

and researchers get a sense of responses that are typical of a student who is operating at 

Level One.   

 

Implications  

 This study has implications both for the use of this interview protocol to assess 

student knowledge and for teaching and learning about key developmental understandings 

and big ideas, strategies, and procedures related to place value and the use of ten.  This final 

section highlights some ways that teachers in the early grades (K-2) can support students’ 

place value learning and conceptualization.   
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 Students’ highest known number combination appears to be related to higher levels of 

base-ten knowledge.  One area that early grades teachers can all help to develop is students’ 

ability to compose and decompose numbers to ten with automaticity.  NCTM (2000) states 

that students in grades PreK-2 need to “develop a sense of whole numbers and represent and 

use them in flexible ways, including relating, composing, and decomposing numbers” (p.78).  

An emphasis within most kindergarten and first grade curriculums is the development of 

number sense.  Engaging in activities in which students learn the various ways each number 

can be composed will help lay a foundation and begin building numeric networks to promote 

students’ base-ten knowledge.  Rather than drill-and-practice, this study’s evidence appears 

to support a process of manipulative-based experiences in which students “make” numbers 

with various combinations and “break” numbers into component parts. 

 One of the findings of this study was that students are more accurate using ten to 

count groups of objects and increment on the decade.  Six students reverted to using ones for 

mentally incrementing from an off-decade number, for higher numbers, when there was no 

visual representation of the final quantity, and to increment simultaneously by both tens and 

ones.  Having taught first grade it seems that the curriculum was focused more on counting 

groups and counting by tens on the decade than these other skills.  As a result, most of my K-

2 colleagues spent more time using tens to count on the decade and groups of objects than 

they did these other tasks.  By presenting activities in which students can use ten to count off 

the decade, count higher quantities, increment without physical representations, increment 

mentally from an off-decade number, and increment simultaneously by both tens and ones 

will support students’ progress on the big idea of composite units. 
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 A third area that curriculum and teachers could expand time and focus on is 

conservation of quantity while grouping.  One of the most skewed results of the entire study 

was that only three students knew that a quantity remains constant regardless of how it is 

grouped or arranged.  Curriculum often addresses conservation of number, but may need to 

also consider that it is a separate conceptual understanding for a student to realize quantities 

are conserved when grouped.  It would also be helpful for first and second grade teachers to 

be aware of this so that they can offer additional experiences to students in which they 

engage in activities that involve a number of manipulatives which students group in various 

ways and count to build their understanding that the quantity is constant regardless of if they 

have ones, groups of twos, groups of fives, or groups of tens. 

 Another implication of this study on teaching and learning is that students need to 

have multiple ways to compute problems and should have flexible approaches so that they 

can chose a strategy that best fits the given problem type and numbers.  As Fosnot (2007) 

explained, “The justification for using different strategies is based on the big idea of the 

commutative and associative properties and a good sense of place value and landmark 

numbers” (p.9).  Similarly, Kilpatrick, Swafford, and Findell (2001) stated, “Flexibility of 

approach is the major cognitive requirement for solving non-routine problems” (p. 127).  

Delaying the introduction of the standard algorithm until the second half of second grade or 

the beginning of third grade would allow students to develop their own meaningful solution 

strategies. Even if the standard algorithm is to be used earlier, students can still be exposed to 

alternative strategies, such as the split strategy and jump strategy.  As Fosnot (2007) 

explained, the standard algorithms should not be “seen as the ultimate strategies for 

computation, only as other (albeit generalizable) strategies in a toolbox for computation 
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based on a deep sense of number and operation” (p.6).  Exposure to and conceptualization of 

multiple strategies may help students develop relational thinking, increase flexibility, 

understand quantity manipulation, and make sense of the algorithm.  Alternative strategies 

will also help students with mental calculations.  Some of the students who were interviewed 

tried to mentally calculate a multi-digit addition problems by visualizing the algorithm, but 

either arrived at an incorrect answer or had to resort to writing the algorithm out on paper.  

While the algorithm is efficient when written, the split or jump strategy are more efficient for 

mental calculations. 

  Given that students had more procedural and conceptual difficulties with subtraction 

than addition, students need to be afforded more time to develop their understanding of this 

operation.  This will likely require more time and more experiences so that students can make 

sense of both the procedures and the overall operation.  When planning these experiences it is 

important to remember “it is not children’s manipulations of materials that is important; it is 

their understanding of the principles involved in the manipulations” (Carpenter et al., 1999, 

p. 68).  Teachers can help students’ development of subtraction understanding by engaging in 

more conceptually-based experiences with single-digit subtraction in both kindergarten and 

first grade.  This would mean that students would enter second grade with a stronger 

understanding of properties of subtraction.  Then second grade teachers could build off of 

this and focus on students’ understandings of multi-digit subtraction.      

Students who accurately calculate with the standard algorithms still need experiences 

to develop a conceptual understanding of the underlying processes and role of place value.  

NCTM (2000) stated, “computational fluency should develop in tandem with understanding” 

(p.32).  Students need to be able to manipulate quantities not symbols, talk in tens not ones, 
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and understand regrouping conceptually rather than procedurally.  Most likely, this will 

require more time to allow teachers and students to work on these key developmental 

understandings before demanding computational mastery.  This study suggests that just 

because a student is procedurally fluent does not mean he/she has a conceptual understanding 

beyond rules and procedures. In regards to using the standard algorithms, NCTM (2006) 

states that students need to “understand why the procedures work (on the basis of place value 

and properties of operations)” (p.23).  Given that quantity manipulation, talking in tens, and 

conceptual understanding of regrouping are all key developmental understandings, it will not 

be possible for students to develop in these areas simply by increasing teacher-directed 

explanations or demonstrations because as Fosnot (2007) explained, “When regrouping 

methods are taught as rote procedures, children often latch on to them without understanding 

deeply why they work” (p.8).  When working with addition and subtraction of multi-digit 

numbers, Fosnot (2007) endorsed “the important underlying ideas to emphasize…are place 

value and equivalence, not computational procedures” (p.6).  Teachers need to spend time 

introducing two-digit operations and regrouping with direct modeling so that students can 

actually see what is happening and why.  This should be done before introducing notation 

and transitioning to paper and pencil.  Linndquist (1997) explained the need for direct 

modeling: “As you talk, do not expect the students to learn without observing the actions on 

the objects.  Then help students symbolize the actions, and later generalize to larger numbers 

for which the actions on objects become awkward” (p.xi).  This process needs to be 

thoughtfully monitored and not rushed so that students have time to learn through observing 

before moving on to the abstraction of the algorithm. 
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A related area that teachers can specifically reflect on and improve is in their own use 

of language when explaining procedures in algorithms.  Again, conceptual understanding 

will not be developed by explanations alone, but it does seem that a teacher’s language can 

promote conceptual understanding as opposed to procedural knowledge.  For example, 

telling students to “carry the one”, “borrow a one,” have a number “turn into” another 

number, and “make” a 3 into a 4 most likely contribute to students’ similar explanations of 

multi-digit operations and detract from conceptual understanding.  Common phrases such as 

borrowing “from next door” or “from your neighbor” or “putting the one next door” or 

“carrying a ten to your neighbor” may increase students’ perception that numbers are 

comprised of isolated digits rather than considered as one overall quantity.  Similarly, 

teaching “tricks” to know when to carry or borrow undermines learning about place value 

and numeric relationships and elevates rules above sense-making.  Teachers can help 

students by using language that consistently talks in tens instead of ones and emphasizes 

quantity rather than symbol manipulation. The last contribution of this study to teachers is 

the compilation of helpful questions that teachers can ask their students to informally assess 

their strategy use and understandings about multi-digit operations and regrouping.  The 

following questions were taken from the interviews and tended to result in telling responses 

from students.  These questions could be used to illicit responses that indicate students’ 

procedural versus conceptual understandings and may reveal some misconceptions.  

Classroom teachers could use these questions to informally assess students’ understandings 

as they work on multi-digit addition or subtraction problems.   
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Table 20 

 

Questions for Teachers to ask Students for Multi-Digit Addition or Subtraction 

 

Problem Type Questions 

General Questions Do you have any other ways to solve this problem? 

 

 Can you draw/show what this problem means? 

 

Questions about 

Regrouping in 

Addition 

Why do you do that (in reference to carrying a ten/writing a one)? 

 What does it mean to carry? 

 

 When do you carry? 

 

 (E.g. 38 + 24) Why don’t you write the 12 down there (under the 

equal sign as in 512)? 

 

 (E.g. 38 + 24) Why do you put the 1 on top and the 2 down 

below? Can you put the 2 on top and the 1 down below? Why 

don’t/can’t you put the 2 on top and the 1 down below? 

 

 Can you draw/show what carrying means? 

 

Questions about 

Regrouping in 

Subtraction 

Why do you do that (in reference to borrowing a ten/writing a 

one)? 

 

 What does it mean to regroup/borrow? 

 

 When do you regroup/borrow? 

 

 (E.g. 43-15) When you take a 1 from the 4, why/how does the 3t 

become 13, why doesn’t it become a 4 (since 3 + 1 = 4)? 

 

 If student talks about borrowing a ten: 

     (E.g. 43-15) How can you borrow a ten if it’s only a 4? 

 

 Can you draw/show what borrowing means? 

 

Three-digit 

Subtraction 

Can you borrow for a number that you already borrowed from? 
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To evaluate student responses a teacher can consider whether a student talks in ones or tens, 

whether he/she talks about manipulating symbols or quantities, and whether he/she has any 

misconceptions. 

 Taking into consideration the results of this study, there are evidenced-based 

strategies that teachers can apply to help students in their progress on key developmental 

understandings that support place value and the use of ten.  By integrating these suggestions 

into students’ mathematical experiences in kindergarten through second grade, young 

children are afforded specific support for place value-related key developmental 

understandings, big ideas, and strategies.    



 

99 

 

References 

Becker, J., & Varelas, M. (1993). Semiotic aspects of cognitive development: Illustrations 

from early mathematical cognition. Psychological Review, 100(3), 420-431. 

 

Beishuizen, M. (1993). Mental strategies and materials or models for addition and 

subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics 

Education, 34, 519-38. 

 

Beishuizen, M., & Anghileri, J. (1998). Which mental strategies in the early number 

curriculum? A comparison of British ideas and Dutch views, British Education 

Research Journal, 34: 394-43. 

 

Boaler, J. (2003). Experiencing School Mathematics. Mahwah, NJ: Erlbaum. 

 

Brown, J. S., & Burton, J. R. (1978). Diagnostic models for procedural bugs in basic 

mathematical skills. Cognitive Science, 2, 155–192. 

 

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999).  Children’s 

mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann. 

 

Carpenter, T. P., Franke, M. L., & Levi, L. (2003).  Thinking mathematically: Integrating 

arithmetic and algebra in elementary school. Portsmouth, NH: Heinemann. 

 

Carpenter, T. P., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the 

primary grades (Report No 00-2). Madison, Wisconsin:  University of Wisconsin-

Madison, National Center for Improving Student Learning and Achievement in 

Mathematics and Science. 

 

Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1987). Written and oral mathematics. 

Journal for Research in Mathematics Education, 18, 83–97. 

 

Cauley, K. M. (1988). Construction of logical knowledge: Study of borrowing in subtraction. 

Journal of Educational Psychology, 80, 202–205. 

 

Chapin, Suzanne H. & Johnson, Art (2000).  Math matters: Understanding the math you 

teach.  Sausalito, CA: Math Solutions Publications. 

 

Clements, D. H., & Sarama, J. (2007). Early childhood mathematics learning. In F. K. Lester 

(Ed.), Second handbook of research on mathematics teaching and learning (pp. 461-

555). Charlotte, NC: Information Age Publishing. 

 

Cobb, P., & Wheatley, G. (1988). Children’s initial understanding of ten.  Focus on Learning 

Problems of Mathematics, 10(3), 1-28. 

Fosnot, C. T. (2007). The t-shirt factory: Place value, addition, and subtraction. Portsmouth, 

NH: Heinemann. 



 

100 

 

 

Fuson, K. C., & Smith, S. T. (1996). Complexities in learning two-digit subtraction: A case 

study of tutored learning. In B. Butterworth (Ed.), Mathematical Cognition (Vol. 1, 

pp. 165–213). East Sussex, UK: Psychology Press. 

 

Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, 

MA: Harvard University Press 

 

Ginsburg, H. P. (1989). Children's arithmetic: How they learn it and how you teach it. 

Austin, TX: Pro. Ed. 

 

Ginsburg, H. P., Inoue, N., & Seo, K. H. (2000). Young children doing mathematics: 

Observations of everyday activities. In J. V. Copeland (Ed.), Mathematics in the early 

years (pp. 135-146). Reston, VA: National Council of Teachers of Mathematics. 

 

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in  

mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of 

research and design in mathematics and science education (pp. 517-545).  Mahwah, 

NJ: Lawrence Erlbaum Associates. 

 

Hatano, G. (1988). Social and motivational bases for mathematical understanding. In G. B. 

Saxe & M. Gearhart (Eds.), Children’s mathematics (pp. 55-70).  San Francisco: 

JosseyBass. 

 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Wearne, D., Murray, H., Olivier, A., & 

Human, P. (1997).  Making sense: Teaching and learning mathematics with 

understanding. Portsmouth, NH: Heinemann. 

 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 

introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The 

case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates. 

 

Kamii, C. (1986). Place value: An explanation of its difficulty and educational implications 

for the primary grades. Journal of Research in Childhood Education, 1, 75–85. 

 

Kamii, C. (2000).  Young children reinventing arithmetic: Implication of Piaget’s theory. 

New York: Teachers College Press. 

 

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001).  Adding it up: Helping children 

learn mathematics. Washington, DC: National Academy Press. 

 

Lindquist, M. M. (1997). Foreward. In J. Hiebert et al., Making sense: Teaching and learning 

mathematics with understanding (pp. i-xi).  Portsmouth, NH: Heinemann. 

McIntosh, A. (1990). Becoming numerate: Developing number sense. In S. Willis (Ed.), 

Being numerate: What counts? (pp. 24-43). Victoria, Australia: Australian Council 

for Educational Research. 



 

101 

 

 

Miura, I. T., & Okamoto, Y. (1989). Comparisons of U.S. and Japanese first graders’ 

cognitive representation of number and understanding of place value.  Journal of 

Educational Psychology, 81, 109-113. 

 

National Council of Teachers of Mathematics (2006). Curriculum Focal Points for 

Prekindergarten through Grade 8 Mathematics: A Quest for Coherence. Reston, VA: 

National Council of Teachers of Mathematics. 

 

National Council of Teachers of Mathematics (2000). Principles and standards for school 

mathematics.  Reston, VA: National Council of Teachers of Mathematics. 

 

National Council of Teachers of Mathematics (n.d.). Standards for school mathematics. 

Retrieved June 10, 2007 from http://standards.nctm.org/document/chapter3/numb.htm 

 

North Carolina Standard Course of Study (2003). Standard course of study: Mathematics,  

grade 2. Retrieved June 10, 2007 from  

http://www.ncpublicschools.org/curriculum/mathematics/scos/2003/k-8/16grade2. 

Piaget, J. (1978). Success and understanding. Cambridge, MA: Harvard University Press. 

Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In T. P. Carpenter, J. M.                                              

Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective 

(pp.136-155). Hillsdale, NJ: Lawrence Erlbaum Associates. 

 

Resnick, L. B. (1987). Syntax and semantics in learning to subtract. In R.Glaser (Ed.),   

Advances in instructional psychology (Vol. 3, pp. 136–156). Hillside, NJ: Erlbaum. 

 

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R.Glaser 

(Ed.), Advances in instructional psychology (Vol. 3, pp. 41–95). Hillsdale, NJ: 

Erlbaum.  

 

Richardson, K. (2002a) Assessing math concepts: Hiding assessment. Rowley, MA: Didax. 

Richardson, K. (2002b) Assessing math concepts: Grouping tens assessment. Rowley, MA: 

Didax. 

 

Richardson, K. (2003). Mathematics for young children. Retrieved May 27, 2007 from 

http://www.hsnrc.org/CDI/krichardson1.cfm 

 

Ross, S. H. (1989). Parts, wholes, and place value: A developmental view. Arithmetic 

Teacher, 36, 47-51.  

 

Sharma, M. C. (1993). Place value concept: How children learn it and how to teach it. Math 

Notebook, 10(2). 

 



 

102 

 

Simon, M. A. (2006). Key developmental understandings in mathematics: A direction for  

investigating and establishing learning goals. Mathematical Thinking and Learning, 

8(4), 359-371. 

 

Skemp, R. R. (1978). Relational understanding and instrumental understanding. Arithmetic 

Teacher, 26(3), 9-15. 

 

Sophian, C. (1999). Children’s ways of knowing: Lessons from cognitive development 

research. In J. V. Copley (Ed.), Mathematics in the early years (pp. 10-26). Reston, 

VA: National Council of Teachers of Mathematics.  

 

Sowder, J. (2002).  Place value as the key to teaching decimal operations.  In D. L. Chambers 

(Ed.), Putting research into practice in the elementary grades: Readings from 

Journals of the National Council of Teachers of Mathematics (pp. 113-118). Reston, 

VA: National Council of Teachers of Mathematics.  

 

Thompson, I. (1999). Written methods of calculation.  In I. Thompson (Ed.), Issues in  

teaching numeracy in primary schools (pp.169-183). Philadelphia: Open University 

Press. 

 

Wearne, D., & Hiebert, J. (2002).  Place value addition and subtraction. In D. L. Chambers 

(Ed.), Putting research into practice in the elementary grades: Readings from 

Journals of the National Council of Teachers of Mathematics (pp. 109-112). Reston, 

VA: National Council of Teachers of Mathematics.  

 

Williams, J. D. (1962-3). Arithmetic and the difficulties of calculative thinking. Educational 

Research, 5(3), 216-228. 

 

Wright, R. J., Martland, J., & Stafford, A. K. (2006a) Early numeracy: Assessment for 

teaching and intervention. Thousand Oaks, CA: Sage. 

 

Wright, R. J., Martland, J., Stafford, A. K., & Stanger, G. (2006b) Teaching number: 

Advancing children’s skills and strategies. Thousand Oaks, CA: Sage. 


