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ABSTRACT 
 

Matthew C. Weiser: Probing the architecture of complex traits: functional genomics methods and 
applications 

(Under the direction of Terrence Furey) 

Genome wide association studies (GWA) have had tremendous success in identifying 

genetic variants associated with complex traits. However, the majority of associated loci fall outside 

of protein coding regions, suggesting a role in regulatory function. This has highlighted a critical 

need for understanding the regulatory architecture of the genome. Recent advances in high-

throughput sequencing technology have enabled transcriptional profiling and mapping of 

epigenetic features across a broad range of cell types and conditions, both in human and model 

organisms. As a result, an increasingly higher-resolution genome-wide annotation of regulatory 

elements is now available. Additionally, expression quantitative trait loci (eQTL) studies mapping 

the genetic basis of gene expression have identified single nucleotide polymorphisms (SNPs) whose 

allelic variation correlates with gene expression levels. In conjunction with epigenetic annotations, 

these results have greatly improved interpretability of variants implicated in complex traits. 

However, a more comprehensive model of epigenetic regulation in disease can only be obtained by 

directly assaying disease-relevant tissue in affected individuals. Moreover, traditional eQTL 

methods often perform a prohibitive number of statistical tests, and are underpowered for 

detecting weaker associations between SNPs and distally-located genes. In the following chapters I 

present a novel statistical method that reduces eQTL testing burden and improves power to detect 

genetic variants associated with expression levels of distal genes. Applying this method to data sets 

in yeast, mouse, and human, I identified thousands of new eQTL and highlighted candidate master 

regulators, which were consistently enriched across species for metabolic function. Additionally, I 
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present an analysis of the chromatin and transcriptional landscapes in colon tissue from 33 Crohn’s 

disease and non-IBD individuals. In ten samples, I found evidence of a molecular signature 

consistent with metaplasia, the prevalence of which was highly over-represented in CD patients. In 

an analysis of the remaining individuals, I identified thousands of regulatory regions implicated in 

disease, many of which co-localize with differentially expressed genes, and highlighted several 

candidate driver transcription factors. Together, these methods and applications provide a richer 

understanding of genetic and epigenetic variants implicated in complex traits and disease, and 

provide hypotheses for future follow up studies. 
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CHAPTER I 

Introduction 

 

The publication of the human genome sequence in 2001 [1] ushered in a new era in the 

biomedical sciences, paving the way for a comprehensive understanding of phenotype, 

development, disease, and evolution. However, initial results from the study immediately suggested 

that gene regulation and interaction played a more complex role in shaping complex traits than 

previously imagined. Surprisingly, the Human Genome Project estimated the number of protein 

coding genes at only 30,000-40,000 [1], a figure that has since been further reduced to ~21,000 [2], 

but was nevertheless already far fewer than pre-human-genome estimates of 60,000 or more [3,4]. 

Furthermore, only ~1% of the 3.2 billion nucleotides in the human genome was found to code for 

proteins [1]. In  conjunction with results from genome wide association (GWA) studies, which have 

found that most trait-associated variation occurs in non-coding regions, this has highlighted an 

urgent need to identify all regulatory elements in both the human and model organism genomes, 

and understand their cell- and condition-specific role in shaping phenotype.  

 

GENOME-WIDE CHARACTERIZATION OF REGULATORY ELEMENTS 

In the years immediately following the release of the human genome, rapid technological 

advances and declining cost of sequencing facilitated cost-effective genome-wide assays measuring 

transcriptional output, DNA methylation, chromatin structure and interaction, DNA copy number, 

transcription factor occupancy, regulatory histone modifications, and more. Shortly upon the 

completion of the Human Genome Project, the Encyclopedia Of DNA Elements (ENCODE) project 



2 
 

was undertaken, with the aim of leveraging the power of high-throughput sequencing capabilities 

to annotate all functional elements of the human genome [5]. A similar project to study the 

regulatory architecture of model organisms Drosophila melanogaster and Caenorhabditis elegans 

was coordinated by the model Organism Encyclopedia Of DNA Elements (modENCODE) consortium 

in 2007 [6]. More recently, the Epigenome Roadmap Project [7] has created a compendium of 

“reference epigenomes” in adult, embryonic, healthy and diseased individuals. Currently, the 

ENCODE project has produced 1,640 data sets in 147 different human cell types [5], while 

modENCODE has generated 237 and 700 genome-wide data sets for  D. melanogaster and C. elegans, 

respectively [8,9]. The Epigenome Roadmap Project has surveyed the epigenomes of 127 tissues 

and cell types [7], with a primary focus on five core histone modifications. Collectively, integrative 

analyses from these consortia have provided major insights into genome architecture, gene-gene 

regulatory relationships, chromatin and transcriptional landscapes, and evolutionary conservation, 

painting a rich, molecular portrait of how a genome functions.  

In human, ENCODE identified nearly 400,000 regions with enhancer features and over 

70,000 regions with promoter features; in total, 80.4% of genomic DNA was found to participate in 

regulatory activity in at least one cell type [5]. Genome-wide regions of accessible chromatin and 

presence of histone marks were measured with DNase I hypersensitive site sequencing (DNase-

seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq), respectively, and 

signals at promoter regions were found to be strongly predictive of gene expression levels [5]. 

Additionally, combinatorial transcription factor binding as assayed by ChIP-seq was found to be 

cell-type and context-specific [10], with expression levels of target genes correlating strongly with 

both ChIP-seq derived binding signal [10] and DNase I hypersensitivity [11]. Initial results from the 

Epigenome Roadmap Project have annotated enhancer and promoter regions in each of 127 cell 

types, finding that an average of 5% of the genome for a given cell type was marked for either 

enhancer or promoter activity [12]. Motif analysis of “enhancer-only” regions identified cell-type 
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specific candidate regulators, and neighboring target gene sets were found to be enriched for cell-

type specific function [12], providing an epigenetic framework for defining cell-type identity. These 

preliminary integrative -omics analyses have given key insights into genetic and epigenetic 

regulation of transcription, and have provided a model for using high-throughput data to screen for 

functional elements that play a role in the architecture of complex traits, particularly for those 

whose misregulation may contribute to disease. 

 

GENOME WIDE ASSOCIATION STUDIES IN COMPLEX TRAITS 

 In contrast to the inter-omics analyses of ENCODE and the Epigenome Roadmap, genome 

wide association (GWA) studies have taken a functionally-agnostic approach to associate genetic 

variants with complex traits [13]. In these studies, thousands to millions of common single 

nucleotide polymorphisms (SNPs) are tested for statistical association with a binary (ex: disease 

versus no disease) or quantitative (ex: height) phenotype. SNPs that meet a genome-wide level of 

significance are thought to represent loci with direct association to the trait of interest, and may be 

prioritized for further functional studies. Since the first GWA study on age-related macular 

degeneration was conducted in 2005 [14], thousands more have followed; as of November 2013, 

the NHGRI GWA catalog contained a total of 11,912 genome-wide significant, trait-associated SNPs, 

obtained from a total of 1,751 curated publications [15].   

Despite the success and widespread adoption of the GWA approach, very few trait-linked 

loci have been found within coding regions of genes [15], suggesting that the mechanism of 

association for many GWA loci is exerted via a regulatory influence on a nearby gene or genes. Thus 

fine-mapping and follow-up analyses are necessary for pinpointing the causal variants that 

potentially lie in linkage disequilibrium (LD) with an associated lead SNP, and identifying the 

mechanism of association with the trait. Results from functional genomics studies in tissue types of 
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interest, such as those from ENCODE, can therefore be of crucial importance in selecting which LD 

buddy SNPs to prioritize for time-consuming and expensive follow-up studies [16,17].  

In order to attain sufficient power to detect meager effect sizes of common variants, GWA 

studies often perform analysis using thousands to hundreds of thousands of individuals. Still, for 

almost all traits studied, the combined effects of associated loci explain only a small fraction of trait 

heritability. Although some debate exists regarding the accuracy of heritability and effect size 

estimates [18], there are two predominant (and non-mutually exclusive) hypotheses for this 

“missing-heritability.” The first contends that rare variants with minor allele frequencies (MAF) less 

than 0.01 account for a significant proportion of trait variance; the second claims that many 

common variants, all with small effect sizes, together account for the unexplained variance. Though 

it is not currently known to what extent these two hypotheses contribute to the missing heritability, 

an approach emphasizing functional effects of common variants with small effect sizes has been 

suggested as a potential way forward in the post GWA era [18], and may produce meaningful 

interpretations of genetic disease-association as increases in sample size provide diminishing 

returns in statistical power.  

 

GENE EXPRESSION AS A QUANTITATIVE TRAIT:  
THE GENETIC BASIS OF TRANSCRIPTION 

 Borrowing from both the functional and agnostic models of association testing, expression 

quantitative trait loci (eQTL) analyses treat gene expression levels as a quantitative trait, and seek 

to identify genetic variants associated with transcription. Much as GWA studies perform association 

tests between genetic variants and a phenotype of interest, eQTL studies assay genotype and 

transcription across the same individuals, and systematically test for linkage between genetic 

markers and expression levels of thousands to tens of thousands of genes [19,20]. Significant 

associations provide an important information-bridge, providing a greater understanding of 

mechanism of association identified by transcriptome-phenotype and genotype-phenotype studies.  
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The first eQTL study was conducted using a cross of laboratory and wild-derived yeast 

strains [21]; since then, numerous other studies have been conducted in model organisms, 

including Arabidopsis thaliana [22], C. elegans [23], rat [24], and mouse [25].  Human eQTL 

databases such as GENe Expression VARiation (GENEVAR) [26] provide a data-integration and 

visualization platform for accessing results from multiple human eQTL studies conducted in 

adipose tissue, lymhoblastoid cell lines (LCL), T cells, skin, and fibroblasts [27–30]. Additionally, the 

Genotype-Tissue Expression (GTEx) project has recently concluded a pilot analysis [31] of a project 

involving 43 tissues and 175 individuals, and aims to scale up tissue collection to 900 donors in the 

coming years [32]. 

Results from the GTEx pilot analysis have shown significant enrichment for autoimmune-

related GWA SNPs among eQTL identified in whole blood cell types, but not in tissues unrelated to 

disease, suggesting that eQTL results can be useful not only in highlighting functional relevance of 

GWA SNPs, but also in identifying relevant tissues for disease action [31]. Meanwhile, other studies 

have used eQTLs in LCLs to prioritize otherwise unknown candidate genes for GWA results in both 

childhood asthma [33] and Crohn’s disease [34].  

Although results from eQTL analyses and functional genomics studies have been invaluable 

in understanding how human genome relates to complex traits, many hurdles remain. In human 

eQTL studies, performing association tests for all pairs of SNPs and genes in involves billions of 

tests, leading to challenges in both computational burden and reduced power due to severe 

multiple hypothesis testing (MHT) corrections. One common solution is to restrict analyses to SNP-

gene pairs that are located close to one another in genomic space – usually within 1Mb or less – 

thereby prioritizing discovery of “local” associations in which SNPs are thought to directly influence 

gene expression by altering binding affinity of transcriptional machinery. This reduces testing 

burden but ignores “distal” effects between SNPs and genes located on separate chromosomes, 

whereby a transcriptional association is mediated by differential expression of an intermediate 
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gene (presumably close to the eQTL SNP) that then alters the transcription rate of a distally-located 

target. Better methods for reducing the eQTL search space and identifying distal effects will 

improve functional annotation of the genome and increase our understanding of the genetic 

architecture of complex traits and disease.  

Additionally, GWA studies have highlighted disease-associated loci, but do not directly 

provide information regarding tissue of interest or mechanism of effect. While the results from 

functional genomics studies can be of great use in identifying candidate genes interpreting disease-

associated genetic variants, existing data is primarily limited to normal cell lines and tissues. A 

more comprehensive understanding of disease mechanism can be better obtained by assaying 

disease-relevant tissue in affected and unaffected individuals. Disease-associated regulatory 

elements, genes, and pairwise associations identified with this approach will enhance our 

understanding of molecular basis of disease, and when interpreted in conjunction with existing 

association studies and functional annotations, may provide novel candidate targets for treatment 

and/or predict therapeutic response. 

In chapter II, I present a novel method for eQTL detection, Network-based, Large-scale 

Identification oF disTal-eQTL (NetLIFT), which reduced testing burden and outperformed the 

power of distal eQTL detection compared to existing methods [35]. I applied this method to gene 

expression and genotype data for yeast, mouse, and human, identifying thousands of novel distal 

eQTL, and showed a consistent enrichment of distal effects within metabolic pathways. In chapter 

III, I discuss unpublished work in which an integrative -omics approach in Crohn’s disease 

identified regulatory regions and genes implicated in disease, highlighting functional regulatory 

relationships and candidate drivers. In chapter IV I discuss how these results improve the 

resolution of the current image of the functional genome, and contribute to a better understanding 

of the genetic basis of complex traits and disease. 
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CHAPTER II 

Novel distal eQTL analysis demonstrates effect of population 
architecture on detecting and interpreting associations1 

 

OVERVIEW 

Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated 

with transcription rates, and has provided insight for genotype-phenotype associations obtained 

from genome-wide association studies (GWAS). Traditional eQTL mapping methods present 

significant challenges for multiple testing burden, resulting in a limited ability to detect eQTL that 

reside distal to the affected gene. To overcome this, we developed a novel eQTL testing approach, 

NetLIFT, which performs eQTL testing based on the pairwise conditional dependencies between 

genes’ expression levels. When applied to existing data from yeast segregants, NetLIFT replicated 

most previously-identified distal eQTL, and identified 46% more genes with distal effects compared 

to local effects. In liver data from mouse lines derived through the Collaborative Cross project, 

NetLIFT detected 5,744 genes with local eQTL while 3,322 genes had distal eQTL. This analysis 

revealed founder of origin effects for a subset of local eQTL that may contribute to previously 

described phenotypic differences in metabolic traits. In human lymphoblastoid cell lines, NetLIFT 

was able to detect 1,274 transcripts with distal eQTL that had not been reported in previous 

studies, while 2,483 transcripts with local eQTL were identified. In all species, we found no 

enrichment for transcription factors facilitating eQTL associations; instead, we find that most trans-

                                                           
 
1 A version of this work was previously published as Weiser M, Mukherjee S, Furey TS. Novel distal 
eQTL analysis demonstrates effect of population genetic architecture on detecting and interpreting 
associations. Genetics. 2014;198: 879–93.  
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acting factors were annotated for metabolic function, suggesting that genetic variation may 

indirectly regulate multi-gene pathways by targeting key components of feedback processes within 

regulatory networks. Furthermore, the unique genetic history of each population appears to 

influence the detection of genes with local and distal eQTL. 

 

INTRODUCTION 

Gene expression is highly heritable, indicating a strong genetic component [36,37]. 

Expression quantitative trait loci (eQTL) mapping strives to uncover the underlying genetic 

architecture of transcriptional regulation. An important concept in dissecting complex regulatory 

processes is to identify both local and distal variants that are associated with gene expression. Local 

eQTL are largely thought to regulate proximal genes by affecting the activity of regulatory elements 

that directly influence transcription rates, such as through alterations in genomic sequence that 

affect binding affinities of regulatory factors. In contrast, distal eQTL map to genomic locations far 

from the affected gene, possibly on different chromosomes, and likely act initially on the expression 

or function of some nearby, intermediate gene that then affects the associated target gene in trans. 

Notably, in genetically diverse populations such as humans, the reported effect sizes and 

significance levels for distal associations are weaker than for local eQTL [21,22,38]. This is likely 

attributable to the greater noise inherent in indirect effects that occur within the context of a 

protein-protein interaction network.  

Initial eQTL discovery analyses performed association tests for all pairs of genomic variants 

and genes [39–41], leading to challenges in both sensitivity and interpretation. Although recent 

methods have greatly reduced the computational burden for this approach [42], the reduced 

statistical power due to multiple testing correction still present significant problems, especially in 

detecting distal eQTL. Using this technique, the reported frequency of distal effects has varied from 

2% to 75% of all detected eQTL [40,43,44], and it remains unclear whether this is attributable to 
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differences in regulatory architecture or statistical power. Indeed, in several recent eQTL analyses 

using human data, distal eQTL mapping was either not performed or not reported [45,46], likely 

due to the inability to detect any distal eQTL whatsoever. Additionally, inferring the direction of 

effect of distal associations that result from protein interactions is difficult when dealing with gene 

expression data that is often noisy and highly correlated.  

To detect distal eQTL with greater power, some recently-developed methods assume an 

underlying regulatory architecture in which the local regulation of an intermediate gene leads to 

widespread expression variation in a large set of target genes  [47–50]. Modules of target genes are 

defined by factor analysis or gene-gene correlation statistics, and association testing is performed 

between genotypes and summary statistics of each module. In this setting, strong associations are 

thought to represent master regulators that exert broad, but potentially weak, effects in the 

regulatory network. These approaches reduce the multiple testing burden, as thousands of genes 

are replaced by a few dozen modules; however, there remain several drawbacks. First, if the 

regulatory activity of a trans-acting factor (TAF) affects only a handful of target genes, the initial 

clustering approach may not identify the small gene module. Secondly, the intermediate genes 

regulating the expression of gene modules are often not identified. Finally, expression for individual 

genes belonging to a module do not always correlate with the eQTL associated with the module, 

raising doubts about the validity of the results [47].  

Others have developed methods focused on addressing interpretability and directionality of 

associations using randomization of genetic variables [51] and causal model selection tests [52] as 

a foundation for statistical inference. In these methods, conditional dependence between 

expression of genes and/or latent variables is used to probabilistically determine whether the 

association between the genetic variant and target gene is causal. In this study, we present a novel 

eQTL detection method: “Network-based, Large-scale Identification oF disTal eQTL” (NetLIFT), 

which, rather than performing causal model selection or randomization, uses pairwise partial 
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correlations derived from gene expression data to restrict distal association testing, thereby 

reducing the multiple testing burden and highlighting candidate regulatory genes. In this 

framework, statistically significant local associations are first identified, and then local eQTL 

variants are tested for distal associations only for genes whose expression values show evidence of 

direct effects. We show that NetLIFT identifies individual SNP-gene distal associations with greater 

power than traditional pairwise eQTL testing, scales well to large data sets, and provides 

interpretability regarding the mechanism of association by highlighting potential trans-acting 

factors. In simulation studies, NetLIFT better identified distal eQTL, especially those with small 

numbers of target genes, when compared with a traditional all-SNPs-vs-all-genes approach, a 

module-based approach (Independent Components Analysis, adapted from [50]), and a method 

designed to identify causal associations using randomization of genotype data [51]. Applying 

NetLIFT to a data set consisting of 112 yeast segregants [53], we recapitulated previously reported 

distal associations and putative regulators, while discovering several additional eQTL with 

plausible biological mechanisms of association. In mouse livers, we discovered founder of origin 

effects for a subset of local eQTL that drive differential expression of target genes in a subspecies-

of-origin-specific manner, suggesting a possible role for these loci in transcriptomic and phenotypic 

differences between strains. Using data from human lymphoblast cell lines [45], we identified over 

one thousand distal associations not previously reported. We note that individuals from each of 

these three populations (yeast, mice, human) have unique genetic histories, and our analysis 

suggests that this influences the number and type of eQTL detected in each study. 
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MATERIALS AND METHODS 

Description of the NetLIFT Model 

The analysis workflow for the NetLIFT model is outlined in Figure 2.1, and was designed to 

parallel our understanding of the mechanism of trans regulatory effects. That is, if SNP si, affects the 

transcription of gene gj in trans, we expect that si first directly affects the transcription level of an 

intermediate gene gi, and that the transcription rate of gi directly or indirectly affects the 

transcription rate of gj. There are three main steps to the NetLIFT algorithm: 

Step 1: Identify local eQTL: 

Local association tests are performed for all variants that lie within an a priori defined 

window of each gene (Figure 2.1a). Allele counts are regressed on the genes expression values, 

using a univariate, additive linear model. Since some genes contain many more variants than 

others, we control the false positive rate in local testing by retaining only associations that meet a 

Bonferroni-corrected significance cutoff of 0.05. Significant associations represent variants that 

may have a direct effect on the transcription rate of nearby genes, likely by altering activity of cis 

regulatory elements. 

Step 2: Estimate pairwise partial correlations for all genes: 

Pairwise partial correlations are estimated for all gene pairs (Figure 2.1b) to identify genes 

with expression level dependencies. The distribution of connections for gene networks has been 

shown to follow a power-law distribution [54–57] with an overall small numbers of edges. 

Therefore, we estimate the partial correlation matrix G using a method that enforces sparsity on the 

entries of G via L1 regularization, and which has been shown to accurately identify network hubs 

[58,59]. 

Briefly, this method performs joint sparse regression on all p variables (genes) 

simultaneously, by minimizing the penalized loss function:  
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where gi and gj are the expression vectors for genes i and j, ρij denotes the partial correlation 

between genes i and j, and σii and σjj are the ith and jth diagonal entries of the inverse covariance 

matrix. The L1 penalty λ controls the sparsity of the network, and was optimized by minimizing the 

BIC criterion outlined in [58].  

For p genes, the resulting p x p matrix G consists of entries Gi,j that represent the correlation 

between expression vectors gi and gj, conditioned on the expression of all other genes’ expression:  

 .,,,corr jikgggG kjiij    

G can be interpreted as an undirected network, where each node represents a gene, and an edge is 

drawn between two nodes if and only if the corresponding entry in the matrix G is nonzero.  

Step 3: Distal eQTL testing: 

Distal eQTLs are called by integrating the results from these two steps (Figure 2.1c). For 

each variant si that shows significant association to a local gene gi, we test si for association with 

distal genes gj that are nearby gi in the partial correlation network defined by G. Since the edges of 

G only account for direct relationships between two genes, we exploit the network structure to 

search for second-degree (downstream) regulatory effects as well. Specifically, we require two 

conditions for si to be tested for a distal effect on gj:  

i) si must be strongly associated with expression of the putative trans-acting factor 

(TAF), gi; and  

ii) genes gi and gj must be separated in the partial correlation network by no more than 

two edges, i.e. either Gi,j ≠0, or there exists a third gene gk such that Gi,k ≠ 0 and Gk,j ≠ 

0. Additionally, we incorporate a threshold whereby two-degree genes are tested 

only if the association between si and the intermediate gene gk meets a user-defined 
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significance level (we selected p < 0.2 for this cutoff in all analyses presented here). 

Although longer-range interaction effects could be considered by testing genes at 

increased distances within the network, doing so would exponentially increase the 

number of tests performed at each distance cutoff. We sought to balance this 

tradeoff by limiting the edge distance to two. 

If a locally-affected gene contains many significantly associated variants, only the variant 

with the strongest local association is tested with distal genes. Furthermore, we impose 

directionality in the ambiguous case where two directly connected genes both have local eQTL, by 

only recording the direction with the strongest distal association. We note that since G is a 

symmetric matrix representing an undirected network of correlated genes, we make no assumption 

regarding the direction of potential gene-gene effects, and therefore no assumption about how 

variant-to-gene effects may propagate through the network. Instead, we use the network structure 

only to select which variant-gene pairs to test for associations.  Although significant associations do 

not provide conclusive evidence of trans associations, we expect that many of the distal eQTL will 

be acting in trans, potentially through the putative TAF identified by our method.   

We note that the correlation-based network structure used to guide the distal association 

tests will likely lead to correlations among test statistics. The Benjamini-Yekutieli (BY) FDR 

correction holds rigorously under general dependence of test statistics [60]; however, this 

correction is generally considered to be overly-conservative. Instead, we use the standard 

Benjamini-Hochberg FDR [61], which in simulation studies was shown to perform comparably with 

the BY correction in the case of general dependency, and in particular for two sided t statistics [62]. 

 

ICA Method 

The Independent Components Analysis (ICA) methodology was adopted from [50] and 

applied to the simulated data for comparison with NetLIFT. ICA identifies a predefined number of 
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hidden variables (“independent components”) by factoring the gene expression data matrix, X, into 

a product of two matrices: X~SA. Each column of matrix S corresponds to an independent 

component or factor, and the i-th element of a column is the “activation” level of the i-th gene in that 

factor. These factors are meant to model some latent or underlying biological process. The k-th row 

of matrix A reflects the amount of activation of the k-th independent component across all 

individuals, Aij is activation on the j-th individual for component i. Rows of A serve as the response 

vector when testing SNPs in a linear model. We used the fastICA function implemented in the R 

programming language to factor the expression data. This algorithm minimizes the statistical 

dependencies between the columns of S, so that each column of S defines groups of co-expressed 

genes. Since the method requires an a priori-defined number of components to use in factorization, 

we set this parameter to 14; the number of modules in each simulated expression data set. To 

assign individual genes to components, we used the fdrtool function, which models a column’s 

scores as a mixture of null and alternative distributions. Each entry of the column is assigned an 

FDR corresponding to the likelihood of belonging to the null. For each component (column of S), a 

corresponding component-set was defined for genes with FDR < 0.05. 

Association tests were performed by regressing allele counts on rows of A, which represent 

the activation of each component across individuals. SNP-component associations with Benjamini-

Hochberg corrected FDR < 0.05 were considered significant. For each association between a true 

local eQTL and a component, we defined the number of true positives to be the number of 

component-set genes which were downstream of the locally-affected driver gene. False positives 

were defined as any other gene assigned to that component-set.  

 

Trigger Method 

The Trigger method is described in [51]. This method aims to infer causality of a genetic 

variant on expression of a gene by treating genetic variants as randomized variables, and leveraging 
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the causality equivalence theorem to identify the direction of effect. Briefly, let:  si bet the genetic 

variant to be tested for association, and let gi be a nearby gene. Trigger first tests for association 

between si and gi (graphically: si → gi) using a standard likelihood ratio test. This gives Pr(si → gi). If 

the probability of a local association exceeds a defined threshold, the variant is then considered for 

distal association testing. A similar likelihood test is used for defining the probability of linkage 

between si and gj, for all other genes gj, under the condition that si → gi, (denoted Pr(si → gj | si → gi)).  

Finally, we test whether si and gj, are independent, given the expression of gi: Pr(si ⊥ gj |  gi | si → gi 

and si → gj). The causality equivalence theorem can be used to show that: 

Pr(si → gi → gj) = Pr(si → gi) × Pr(si → gj | si → gi) × Pr(si ⊥ gj |  gi | si → gi and si → gj), 

so multiplying the probability estimates yields an estimate for direct effect of si on gj. We use the R 

package “trigger” for implementation of this algorithm. 

 

Data Simulation Procedure 

A total of ten gene expression data sets were simulated, each with 500 genes and 250 

samples. For each set of 500 genes, a network gene structure consisting of 14 disconnected gene 

modules of varying numbers of genes was imposed. Sizes of gene modules in each data set were as 

follows: 100 (x2), 50 (x2), 10 (x10), leaving 100 genes that were independent of any module. 

Module topologies are depicted in Figure 2.2. For each module, the hub gene’s expression values for 

250 samples were simulated first, by drawing from a standard normal distribution. Each successive 

downstream gene’s expression was modeled as a linear combination of the upstream gene plus 

random error, using an effect size of ±1, and a random error drawn from a standard normal 

distribution, represented as follows: 

            

where gds and gus represent expression of the downstream and upstream genes, respectively, and 

ε~N(0,1). Genes directly downstream of either the hub gene or a highly connected gene (defined as 
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a gene with degree greater than 20) were chosen to have effect sizes of 1, while all other effect sizes 

were assigned randomly as -1 or 1 with probability 0.3 and 0.7, respectively.  

Next, for each gene, the total number of SNPs for that gene was drawn from a gamma(4,0.2) 

distribution and rounded to the next highest integer. Minor allele frequencies for each SNP were 

drawn from a uniform(0.05, 0.5) distribution; from these, diploid genotype frequencies encoded 0, 

1, 2 were derived under the assumption of Hardy-Weinberg equilibrium.  

For each module, a single gene, not necessarily the hub gene, was chosen to have a local 

eQTL effect. Since the network topology is undirected, local eQTL effects on non-hub driver genes 

may lead to spurious distal associations in the analysis. In order to investigate the sensitivity and 

specificity of the method under these potentially confounding circumstances, we assigned local 

eQTL effects to hub genes in some modules, and to genes downstream of the hub in others. 

Furthermore, thirty percent of the 100 independent genes were assigned at random to have local 

eQTL effects.  If a gene was not chosen to have an eQTL, genotypes were assigned randomly to the 

250 samples. For genes chosen to have an eQTL, the direction of effect was chosen to be positive or 

negative with probability 0.7 and 0.3, respectively. Genotype labels were assigned using a genetic 

algorithm that sought to maximize the effect size under the condition that the significance of 

association lie within a certain range (here, between 5e-05 and 1e-08). In cases where the eQTL 

was assigned to the hub gene, all genes in the module were considered as distal targets; however, to 

model cases where confounding associations may occur between the eQTL SNP and genes 

“upstream” of the locally-affected gene, we also assigned eQTL effects to non-hub genes.  

The retrospective allele assignment allowed the specification of desired eQTL effect sizes 

and significance levels without the need to explicitly consider the pairwise correlations between 

genes when performing the genotype simulation. This procedure was carried out for 10 simulated 

data sets. Each data set consisted of gene expression networks for the same module topologies, and 

each module’s expression was characterized by an identical underlying genetic architecture. We 
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defined true distal associations as those genes downstream of the locally-associated gene in the 

expression topology. Working code and a representative simulated data set is available for 

download at: http://fureylab.web.unc.edu/software/netlift/. 

 

Yeast Data 

Gene expression and genotype data, described previously [53] were obtained from R. Brem. 

112 yeast segregants were mated from parent strains BY4716 and RM11-1a and grown in culture. 

Strains were genotyped at 2,957 markers and expression measurements were assayed for 6,216 

ORFs. Genes with no available annotation information were removed, leaving a total of 5,647 genes 

for analysis. 

 

Mouse Liver Data 

Gene expression data was previously assayed on the Affymetrix Mouse Gene 1.0 ST array, 

and was obtained from GEO (accession number GSE22297) [63]. Expression values were 

normalized using the “rma-sketch” option in the Affymetrix Power Tools package. Probes 

containing SNPs were masked in the normalization procedure. Probesets that were expressed at a 

level above 6 on a log2 normalized scale in at least 87.5% of mice were retained, leaving a total of 

9,377 probesets for further analysis. Genotypes for 181,752 markers from the “A” test array for the 

Mouse Diversity Array were obtained from D. Aylor.  

 

Human Lymphoblastoid Cell Line Data 

Gene expression data and HapMap phase 2 and 3 genotypes were obtained from 

http://eqtl.uchicago.edu. Normalization and processing were performed as described previously 

[45]. Additionally, the top 25% of transcripts ranked by expression level were retained for further 

http://eqtl.uchicago.edu/
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analysis, based on median expression level of the pre-quantile normalized data across all 69 

individuals, leaving 9,810 transcripts that were retained for analysis.   

 

RESULTS 

Simulation Analysis 

To assess the sensitivity and specificity of NetLIFT for identifying distal eQTLs, we applied 

the method to ten simulated data sets consisting of paired expression and genotype data (see 

Methods).  

For comparison, we also tested three previously described eQTL detection methods: 

Independent Component Analysis (ICA), Trigger, and an All-vs-All pairwise testing approach (AvA) 

(Figure 2.3). The ICA method is primarily suited to identify eQTL that drive the expression of large 

numbers of distal genes; however, we note that the number of desired components must be defined 

according to some empirical criteria, and no specific intermediate gene is pinpointed as the trans-

acting factor responsible for large scale variations. Therefore, this method does not identify local 

eQTLs. 

We first compared the network structures inferred by NetLIFT’s partial correlation analysis 

to the true simulated regulatory architecture. We found that NetLIFT estimates the gene-gene 

partial correlation structure with high sensitivity, but note that as module connectivity increases, 

specificity decreases (Table 2.1, Figure 2.4). However, since the network structure is used primarily 

to determine which SNP-gene tests to perform, the main effect of false network edges is a slight 

increase in testing burden. As a result, we were willing to tolerate a reduction in network accuracy 

so long as the sensitivity remained high. 

For detection of local eQTL effects, NetLIFT, Trigger, and AvA both identified true positives 

with 100% success (FDR < 0.05, Table 2.2). The local eQTL false positive rate for NetLIFT was 

identical to AvA under this FDR; setting a stricter FDR cutoff of 0.001 resulted in only one false 
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positive for both methods. Additionally, we observed a large number of false positive local eQTL for 

Trigger, likely due to a lenient default thresholding criterion in the local eQTL testing step. Since we 

are particularly interested in this method’s ability to detect distal eQTL, and since distal eQTL 

identification is conditional on local linkages for this method, we chose to retain the permissive 

threshold and focus primarily on results for distal associations. 

Intra-module distal eQTL were predicted using each method simultaneously considering all 

genes and SNPs from all simulated modules. For each module, the true set of distal effects was 

defined as all SNP-gene associations between the module eQTL and genes downstream of the 

locally-affected gene. Thus, for modules where the eQTL acted on the hub gene, all combinations of 

the local eQTL SNP with non-hub genes were considered “true positives.” For modules with eQTL 

acting on non-hub genes, the true positives were defined as the eQTL-gene pairs in which the 

associated genes were downstream of the locally-affected, driver gene. False positives were defined 

as eQTL-gene associations where the associated gene was not downstream of the locally-affected 

gene. Figure 2.5 details the performance of each of the four methods.  

In this case, NetLIFT identified true distal associations at a higher rate for all module 

topologies (overall 77.9% detection rate), at the cost of a slightly elevated false positive rate. These 

false positives were mostly due to eQTL SNPs being linked distally to genes that were in the same 

module, but that were not downstream of the locally-affected gene. Since our network estimation 

step cannot infer directionality of expression effects, these false associations reflect our inability to 

distinguish true functional associations from those that are due to confounding gene expression 

correlations present in the data. However, we note that the estimation of direct gene-gene effects 

and subsequent testing procedure prevents many upstream genes from being tested against the 

eQTL SNP, reducing the overall burden of these false associations.  Moreover, in a rank based test 

performed on FDR values, true positives were found to have higher significance values than the 
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false positives (p = 4.92e-96), again suggesting that the false positive count is strongly dependent 

on the FDR threshold chosen. 

The AvA approach performed poorly, as most true associations were lost after correcting 

for multiple hypothesis testing. ICA performed well in large module settings, but poorly for small 

modules, suggesting that this approach is underpowered for detecting small co-regulated gene 

modules under the influence of a common variant. Trigger performed better than an AvA approach, 

though in general identified fewer than 12% of true distal associations. NetLIFT was the only 

method to consistently identify distal effects in all network topologies.  

We next evaluated NetLIFT’s performance in detecting “hotspot” eQTL loci, where a hotspot 

is defined as a locus that is associated with more transcripts than is expected by chance. To derive a 

FWER for each locus, we used the procedure described in [64], which permutes genotypes among 

samples but preserves the correlation structure present in the gene expression data. Performing 

association testing with the permuted genotype data sets yields a distribution of the expected 

maximum number of linkages under the null hypothesis of no eQTL associations. When restricting 

to a FWER of 0.05, NetLIFT identified the eQTL for all hub-based gene modules as hotspots in 10/10 

simulated data sets, while the AvA approach identified these eQTL as hotspots only 20-60% of the 

time, and with many fewer linkages (Table 2.3).  

To investigate whether a larger simulated data set affected the sensitivity and/or specificity 

of our method, we generated and analyzed an additional simulated data set consisting of 2,000 

genes. We observed that the overall fraction of true and false positives remained similar in this 

analysis (data not shown). These simulation results indicate that in addition to scaling well to large 

data sets, NetLIFT may discover distal eQTL that are not readily identifiable with existing detection 

methods.  
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Analysis of 112 yeast segregants 

We applied NetLIFT to previously analyzed paired genotype/gene expression data for 112 

haploid yeast segregants [53].  After filtering for genes with available annotation, 5,647 genes and 

2,956 variants were retained for analysis. Variants within 10kb of the gene’s transcribed region 

were considered “local,” and all other linkages were denoted as distal eQTL. At an FDR of 0.05, we 

identified a total of 1,124 (19.9%) and 1,642 (29.1%) genes with local and distal eQTL effects, 

respectively (Figure 2.6). Local and distal effects were observed to have a similar effect size and 

level of significance (Table 2.4). The large effect sizes for distal eQTL are in line with previously 

reported results, and are likely attributable to the extreme diversity between the two strains of 

yeast.  

A GO analysis using all 143 genes identified as intermediate trans-acting factors (TAFs) for 

at least 10 downstream targets revealed enrichments for a wide range of functions, with top hits 

reserved for metabolic function and transport (Table 2.5). This corroborates previous findings 

where putative regulators located near hotspots were not found to be enriched for transcription 

factors; instead, evidence suggests that many trans regulators exert widespread transcriptional 

effects by mediating levels of key metabolites or regulating post-translational processes [44,65]. A 

comprehensive list of all putative regulators is provided in Table 2.6.  

For most previously identified hotspots, NetLIFT correctly identified biologically validated 

regulators (Table 2.7). Several predicted novel regulators with more than 15 target genes were also 

found, many involved in metabolic and biosynthetic processes. In some cases, we provide 

regulatory evidence for novel drivers not identified previously for detected hotspots; furthermore, 

our results suggest that there may be numerous secondary drivers within previously identified 

hotspot regions, indicating that local association signals arising from two or more distinct loci may 

influence a similar set of distal target genes. One example is the hotspots on chromosome 2 where 

target genes are enriched for ribosome biogenesis and ncRNA processing (Table 2.7). Previous 
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results implicated AMN1 and MAK5 as trans-acting factors for subsets of the target genes; however, 

patterns of linkage to distinct regions within this locus suggest that additional regulators lie on 

chromosome 2 [21]. In addition to AMN1, NetLIFT implicated at least seven new candidate 

regulators on chromosome 2– TBS1, ARA1, YSW1, TOS1, UMP1, NPL4, and YBR197C– that were 

strongly linked with local eQTL (p < 1.0e-05) and were associated with highly overlapping sets of 

distally-associated genes (Figure 2.7). Notably, we fail to identify MAK5, as this putative regulator 

was shown to contain a loss of function mutation which has no effect on transcription [21]. By 

definition, distal effects arising from amino acid substitutions affecting protein function of the 

trans-acting factor will be undetectable using NetLIFT, as we specifically seek to identify distal 

effects that arise from local, cis-regulatory effects.  

Given the strong enrichment for ribosome function among target genes linking to the 

chromosome 2 loci, we hypothesized that causal variants would significantly affect growth rates via 

widespread differential transcription originating from direct up-/down- local regulation of the 

candidate TAF. To investigate this, we used segregants’ gene expression profiles to predict relative 

growth rate, using previously described methods [66]. We then tested each of the candidate 

regulators’ distal eQTLs for association with the growth rate phenotype. After correction for 

multiple testing, we found that nearly all of the underlying variants attained significance at FDR < 

0.05. We propose that differential expression of the putative regulators influences growth rate by 

perturbing common, growth-related pathways in trans.   

We found numerous loci linking to small sets of target genes that are functionally related, as 

might be expected from the simulation results. TEC1, a transcription factor that targets 

filamentation genes, was found to have a significantly associated local variant that was distally 

linked to 16 genes enriched for pseudohyphal growth annotation (p=1.03e-03). Additionally, for 5 

of these 16 genes (31.2%), the YEASTRACT database shows direct evidence of TEC1 DNA binding 

and transcriptional regulation [67]. Of the 25 genes that mapped to the lead variant (defined as the 
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variant with strongest local effect on TEC1) in an all versus all test, only 4 (16%) showed direct 

evidence of TEC1 binding and regulation, suggesting that NetLIFT is better able to identify 

biologically relevant associations.  

We identify several putative regulators that are metabolic enzymes and whose target gene 

sets are enriched for metabolic and biosynthesis annotations. For example, a locus on chromosome 

2 that acts as a local eQTL for LYS2 was distally associated with 167 target genes enriched for the 

GO term “lysine biosynthetic process via aminoadipic acid” (p=1.27e-07). LYS2 catalyzes the 

reduction of alpha-aminoadipate to alpha-aminoadipate semialdehyde (αAASA), the fifth step in the 

lysine biosynthesis pathway. Downstream of this reaction, glutamate-forming saccharopne 

dehydrogenase, which consists of the structural determinant LYS9 and the regulatory product 

LYS14, converts αAASA to saccharopine. LYS9 loss of function increases intracellular levels of 

αAASA, which induces the regulatory activity of Lys14p and results in the up-regulation of several 

genes in the pathway, including LYS1, LYS9, LYS2, LYS4, LYS20, and LYS21 [68]. In a previous 

experiment, a mutant strain with loss of function for both LYS2 and LYS9 was shown to have 

decreased intracellular αAASA and lower levels of transcriptional activation of pathway genes, 

relative to the LYS9 single mutant [69,70]. We hypothesize that strains harboring the genomic 

variant associated with decreased transcription of LYS2 will have a similar reduction of 

intracellular αAASA concentration, and thus a decreased potential for transcriptional activation of 

Lys14p. Of the previously mentioned lysine biosynthesis genes that are targeted by Lys14p, we find 

four linked distally to the putative eQTL (LYS1, LYS9, LYS20, and LYS21). We note that the direction 

of effect between the eQTL and the downstream genes reflects what we expect under the proposed 

mechanism (Figure 2.8). Among the set of transcriptional targets are four additional genes whose 

promoters contain the Lys14p binding motif, TCCRNYGGA, one of which, LYS12, is involved in lysine 

biosynthesis and has a directional expression pattern matching the other Lys14p targets (Figure 

2.8). 
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Analysis of 156 partially inbred mouse lines 

To test how well NetLIFT scales to larger data sets, and for organisms with more complex 

mechanisms of gene regulation, we analyzed paired genotype and liver gene expression data from 

156 partially inbred mice originating from eight founder mice (A/J, C57BL/6J, 129S1/SvImJ, 

NOD/LtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ), part of the Collaborative Cross (CC) project 

[71,72] (Figure 2.9). Founder strains of the CC were chosen to provide a high level of genetic 

diversity, and represent three subspecies of origin: Mus mus domesticus, Mus mus castaneus, and 

Mus mus musculus. Wild-derived WSB/EiJ and classical inbred strains A/J, C57BL/6J, 129S1/SvImJ, 

NOD/LtJ, NZO/HlLtJ have a genetic background comprised mostly of the Mus mus domesticus 

subspecies, while the wild-derived CAST/EiJ and PWK/PhJ founder strains are primarily 

representative of the Mus mus castaneus and Mus mus musculus subspecies, respectively [71,72].  

We filtered for probe sets expressed above background levels and retained 9,377 genes for 

analysis. PCA analysis revealed no batch effects in the data (Figure 2.10). Genotypes for the same 

mice were available for 171,761 markers. In a previous analysis, a total of 6,182 eQTL were 

discovered for 5,733 genes at a 5% genome-wide threshold; 75% of eQTL were within 10cM of the 

affected gene [63].  

For eQTL testing, we defined local effects as those where variants were within 1Mb of the 

affected gene, based on the marker-to-gene distances for linkages reported previously for these 

data [63]. We detected a total of 5,744 genes (61%) with a local eQTL, and 3,322 (35%) with at 

least one distal eQTL (FDR < 0.05). Of the genes with a distal eQTL, 1,102 (12%) were linked to one 

SNP, 574 (6%) were linked to two SNPs, 400 (4%) were linked to three SNPs, and 1,246 (13%) 

were linked to four or more SNPs.  

We next investigated patterns of large-scale effects on the regulatory architecture that are 

attributable to founder and/or subspecies of origin. For the 293 genes with a local eQTL that was 

linked to at least 5 genes on different chromosomes, genes inherited from a PWK genetic 
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background showed more extreme expression variation than genes inherited from the other 

founder strains (Figure 2.11). Mice from the CC have been shown to be phenotypically diverse for 

various immune related phenotypes [73,74], body weight [75], and behavior [75], with variance for 

some traits exceeding that observed in the founder strains [75]. One plausible reason for this is that 

epistatic interactions between alleles inherited from distinct subspecies (castaneus, domesticus, and 

musculus) may severely mis-regulate gene expression and homeostasis. To investigate whether 

allele inheritance from different subspecies of origin led to more extreme expression for particular 

combinations of locally-acting eQTL alleles and target genes, we mapped both eQTL SNPs and 

target genes to their subspecies of origin. Since alleles inherited from PWK mice appeared to be 

driving extreme expression variation in locally-affected genes, we reduced the locally-affected set of 

genes to a subset of 61 genes for which the Mus musculus musculus-derived PWK allele explained at 

least half of the overall genetic effect on expression (Figure 2.12a). We observed that for these 

SNPs, expression of distally-linked genes showed differential variation based on the combinatorial 

genetic backgrounds of the locally-associated variant and target gene (Figure 2.12b).  

These transcriptomic differences may in turn affect phenotype. Body weight for wild-

derived founder strains (CAST/EiJ, PWK/PhJ, WSB/EiJ) used in the Collaborative Cross is lower 

than in classical laboratory strains [63]. A GO analysis performed for the 142 distal genes linking to 

the PWK-driven eQTL revealed annotation for various terms related to metabolism and lipid 

processes (Table 2.8). This enrichment suggests a possible role for the candidate trans acting 

factors in regulating weight, via a broad but subtle effect on gene expression.  

 

Analysis of 69 human individuals 

RNA-seq data from lymphoblastoid cell lines and HapMap genotype data for 69 Nigerian 

individuals were recently interrogated for eQTLs [45]. For NetLIFT analysis, expression data was 

corrected for GC content and batch, and was normalized as described previously. We selected 9,810 
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Ensembl transcripts in the top quartile based on median expression level for further analysis. 

Genotype data for the same individuals, consisting of 9.5 million SNPs, were obtained from HapMap 

phase 2 and 3, release 27.   

Using a local regulatory window of 200kb, similar to the original analysis [45], we identified 

2,483 transcripts (25.3%) with a local eQTL effect (FDR < 0.10). Of the 929 transcripts previously 

identified as having local associations at the same FDR, we replicated 538. The remainder not found 

consisted of transcripts that we removed from the data set due to low median expression level, with 

the exception of 3 transcripts that were not identified in our analysis. In addition, we identified 

1,945 novel local associations, likely attributable to greater power resulting from testing only the 

most highly expressed quartile of transcripts.  

NetLIFT identified 1,274 transcripts (13.0%) with at least one distal eQTL (FDR < 0.10, 

Figure 2.13). None were reported in the previous analysis [45]. A traditional all SNPs-vs-all genes 

testing approach on this filtered set of genes and variants yielded only 5 significant distal 

associations at this FDR, indicating that our method is better powered for detecting these 

associations. A GO analysis for the 64 candidate regulators that were linked to at least 3 transcripts 

(FDR < 0.1) again suggested enrichment for metabolic and biosynthetic processes (Table 2.9).  

 

DISCUSSION 

Genome Wide Association Studies (GWAS) have so far identified thousands of quantitative 

trait loci associated with hundreds of complex traits [76]. However, the success of GWAS has been 

tempered by a lack of understanding of the mechanism of association for many variants. eQTL 

studies have shown excellent promise in highlighting potential biological mechanisms of SNP-

phenotype associations, and prioritizing particular variants for follow up studies [40]. Furthermore, 

the correlation between significance levels of SNP-phenotype associations and eQTL associations 

may help to identify tissue types that play a key role in disease etiology [77]. Recently, gene-gene 
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interaction evidence has been incorporated in the GWAS setting to identify epistatic effects on 

phenotype [78], suggesting that correlation based testing may increase power to detect associated 

variants. We described here a novel method, NetLIFT, that addresses the problems of 

computational burden and power in traditional eQTL testing, by reducing the search space and 

using conditional dependencies between genes’ expression to prioritize variant-gene testing. The 

reduced multiple testing correction penalty under our algorithm allows detection of weaker eQTL 

effects that are missed by currently available methods. Furthermore, our results provide immediate 

interpretability of the mechanism of association, by highlighting potential regulatory genes that 

mediate discovered distal effects. We note that in the current implementation of our code, runtime 

and memory usage increases nonlinearly as the number of genes increases, and that the major 

bottleneck in runtime is the estimation of the partial correlation matrix. Therefore, when the 

number of genes exceeds 10,000, users may wish to filter gene expression data sets by most highly 

expressed or most variable genes.  

Importantly, we showed through simulations that NetLIFT can identify instances where 

distal eQTL only affect a small number of genes, not just the large hub genes found by other 

methods. Additionally, candidate regulators that are putatively affected in cis by the causal variant 

can be identified, highlighting potential mechanisms of association. We note that since our method 

seeks to identify distal effects that arise via alterations in the expression level of trans-acting factors 

located nearby the eQTL, we are unable to detect associations mediated by a loss-of-function coding 

variant in the trans-acting factor. 

We demonstrated the ability of NetLIFT to identify distal eQTL in three very different data 

sets. In yeast segregants, we replicated numerous distal eQTL reported previously, as well as the 

biologically validated regulators for many of the associations. Additionally, we identified several 

novel biologically plausible distal associations. In inbred lines from genetically diverse founder 

mice, we detected an interesting pattern of eQTL effects driven by PWK-derived alleles, which may 
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provide clues as molecular underpinnings of downstream phenotypes such as reduced mouse size 

in the wild-type derived PWK mice. Lastly, in a set of 69 human individuals, NetLIFT was able to 

find over 1,200 gene transcripts with significant distal eQTL due to its increased power, whereas 

previously only 5 had been identified. 

Intuitively, one might think that the best candidates for asserting regulatory influence on 

distal genes would be transcription factors that directly participate in controlling gene 

transcription rates. In accordance with previous results, though, we found no enrichment for 

transcription factor annotation among genes implicated by our method as trans-acting factors; 

instead, we find that many of these genes play a role in metabolic and biosynthesis pathways.  This 

suggests that more commonly, the regulation of key genes in these pathways play a role in 

feedforward or feedback processes that then affect transcription rates of downstream target genes 

within the same pathway.  These indirect effects are more subtle than the direct effects associated 

with local eQTL, but they can have significant effects on phenotypes, such as growth rates (seen in 

yeast) and size (seen in mouse).  

Our results also highlight an often unaddressed topic in complex trait mapping; namely, that 

eQTL discovery and interpretability of mapping results is significantly influenced by the genetic and 

genomic diversity within the sample population. The two yeast strains from which the analyzed 

segregants were derived were extremely diverse, with an estimated sequence divergence of 0.5-

1%.  This, and overall genome complexity, likely contributed to many distal effects being found to 

be as strong as local effects, enabling their easier detection. Genetic incompatibilities between 

progenitors can result in atypical patterns of linkage disequilibrium, which present challenges in 

identifying causal versus linked markers. In an inbred mouse model, we were able to identify 

numerous distal linkages where expression variation in the distally-affected genes appears to be 

driven by differences in the genetic background at the local and distal loci. However, the resolution 

of the eQTL mapping is ultimately restricted by the randomization of the genome that is mediated 
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by recombination events. On the other hand, human studies typically involve genetically diverse 

individuals, whose genomes are randomized to a greater extent. Thus a model organism may allow 

for accurate eQTL mapping at the expense of precision, whereas in human populations we expect to 

identify eQTL with precision, but reduced accuracy.  
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Figure 2.1.  Schematic of the NetLIFT method. Top: genotypes for ‘m’ markers (s1, s2, … sm) and 

‘p’ genes (g1, g2, … gp) are assayed for the same ‘n’ individuals (a1, a2, … an). Markers and genes that 

map to the same locus are color coded.  Local eQTL mapping is performed for markers and nearby 

genes using an a priori defined genomic distance for local effects (A), yielding a local eQTL effect 

matrix (significant marker-gene associations depicted in green). A sparse partial correlation matrix 

is inferred from the expression data, representing a network of gene-gene interactions (B). Finally, 

significantly associated local eQTL markers are tested for distal eQTL effects on genes near the 

locally-affected gene in the interaction network (C). 
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Figure 2.2.   Simulated gene module topologies. Each module’s expression effects were 

simulated by first generating the hub gene’s expression; each successive downstream gene’s 

expression values were simulated using the upstream gene’s expression as a baseline 

(dependencies indicated by arrows). For each module, a single local eQTL effect was simulated for a 

SNP assigned to either the hub gene (blue), or to a gene downstream of the hub (red), but not both.  
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Figure 2.3.   Illustration of eQTL detection methods. SNP is depicted as a red node; genes 

depicted in green. All vs All (A) performs a standard regression significance test for all pairs of SNPs 

and genes. Trigger (B) seeks to identify distal associations that are mediated by a locally associated 

variant-gene pair (local associations depicted with blue arrows). Genes downstream of the inferred 

direction of gene-gene effects (represented by green arrows) should be associated with the variant 

(true distal associations = solid black arrows), while genes upstream of gene effects will not show 

association (dashed black arrows).  Independent Components Analysis (C) first factors expression 

data into Independent Components, then performs association tests between allele frequency and 

the activation levels of components across samples. NetLIFT (D) first performs local linkage tests 

for a SNP and nearby genes (blue arrows). For significant linkages (solid blue arrow), distal eQTL 

tests are performed for all genes in the network which are one- or two- edges removed from the 

locally affected gene (black arrows).  
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Figure 2.4.   Partial correlation structure from network detection step, for representative 

100 gene, 50 gene, and 10 gene modules. True positive correlations depicted with green edges, 

false negatives correlations in red, false positives in gray.  

 

 

 

 

 



 

Figure 2.5.  Number of detected distal associations, by module topology/method. Topology of each network module is depicted in 

header. Black nodes depict genes with an assigned local eQTL effect, and red nodes represent “true” distally-associated genes. Total 

number of “true” distal associations given in parentheses. Each cell value reports the mean and standard deviation of TP / FP, over the ten 

simulated data sets. Cells are colored according to fraction of true positives discovered. Rightmost column (bottom row) reports the 

number of false positive distal associations where the locally-regulated gene and target gene belonged to disjoint modules.
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Figure 2.6.   Local and distal eQTL linkages in yeast. X axis shows the genomic coordinates of 

marker variants; Y axis represents gene position. Each dot represents a significant marker-gene 

association at FDR < 0.05. 
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Figure 2.7.   Pairwise overlap of target gene sets enriched for ribosomal annotation. Cell [i,j] 

shows the target gene overlap for between proposed regulators i, j.  

 



 

Figure 2.8.   eQTL effects for LYS2 local regulatory variant and downstream genes. The allele associated with lower LYS2 expression 

(“0”) is associated with lower expression of known Lys14p targets LYS2, LYS1, LYS9, LYS20, and LYS21. The same allele also associates with 

higher expression of three non-LYS genes containing Lys14p binding motifs (DYS1, TOP2, DAD2), and the Lys14p motif-containing LYS12. 
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Figure 2.9.  Distal eQTL associations in pre-Collaborative Cross mice. X axis gives the genomic 

coordinates of marker SNPs; Y axis represents gene position. Each dot represents a significant 

marker-gene association at FDR < 0.05, for markers that were at least 1Mb from the associated 

gene. 
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Figure 2.10.   PCA analysis for pre-CC mice. Top two principal components for gene expression 

data in 156 pre-CC mice. 
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Figure 2.11.   Expression variability by founder strain, for locally-regulated genes with at 

least 5 distal targets. Gene expression values were binned according to the genetic background of 

the locally-affected gene. Violin plot shows the level of variation compared to the overall sample 

expression medians, for each of the eight founder strains.  
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Figure 2.12.  Expression variability for PWK-driven trans-acting factors and target genes, in 

pre-Collaborative Cross mice. Top: Distribution of absolute expression deviation from median, for 

putative trans-acting factors with a PWK-driven local eQTL, grouped by founder strain genetic 

background at the eQTL locus. Only putative trans-acting factors that were linked to at least 5 target 

genes on a different chromosome were considered. Bottom: Expression distribution for target 

genes of PWK-driven eQTL loci, stratified by subspecies of origin allele 

(castaneus/domesticus/musculus) at both the local and distal loci. Each boxplot represents the 

expression deviation for all target genes, for each possible combination of local/distal alleles. 



43 
 

 

Figure 2.13.   Local and distal eQTL linkages in human lymphoblastoid cell lines. X axis shows 

the genomic coordinates of SNPs; Y axis represents gene position. Each dot represents a significant 

marker-gene association at FDR < 0.1. 
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Module Topology Mean(FracTP)± 
sd(FracTP) 

Mean(FracFP)± 
sd(FracFP) 

 

 
0.94±0.018 

 
0.092±0.0047 

 

 
0.79±0.015 

 
0.16± 0.010 

 
1±0 0.13± 0.025 

 
1±0 0.14±0.022 

 
1±0 0.17±0.036 

 
1±0 0.22± 0.075 

 

Table 2.1. Sensitivity and specificity of partial correlation detection, for simulated gene 

expression modules. Column 1 shows the mean and standard deviation for the fraction of true 

edges detected, for ten simulated data sets. Column 2 estimates the intra-module false-edge 

detection rate. For each module, the ratio of false positive edges detected to the total number of 

possible false edges is reported.  
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Method True Positive False Negative False Positive 

NetLIFT 442 (100%) 0 20 
AllvsAll 442 (100%) 0 20 
Trigger 442 (100%) 0 1653 

 

Table 2.2. Detected local eQTL effects, by method. FDR cutoff was set to 0.05. Counts are pooled 

for all 10 simulated data sets. 
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Method Module Num Associations 
Needed to Attain 

FWER 0.05 

Mean Number of 
Associations 
Across Ten 
Simulations  

Hotspot 
Detected 

NetLIFT 

 

3 66.4 10/10 (100%) 

AllvsAll 
1 1.6 4/10 (40%) 

NetLIFT 

 

3 39.3 10/10 (100%) 

AllvsAll 
1 0.9 6/10 (60%) 

NetLIFT 

 

3 9.0 10/10 (100%) 

AllvsAll 
1 0.2 2/10 (20%) 

 

Table 2.3. Hotspot detection rate for gene modules with eQTL at hub gene, in ten simulated 

data sets. A null distribution of maximum linkage counts were derived from the permuted data 

sets, with upper 95th quantile for each method listed in column 3. The mean number of identified 

associations for each module across all ten (non-permuted) data sets is listed in column 4. 
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 Numbe
r (%) 

FDR Distribution R2 Distribution Effect Size Distribution 
(β) 

Local 1124 
(19.9%

) 

   
Distal 1642 

(29.1%
) 

   
 

Table 2.4. Distribution of eQTL effects for local, distal eQTL, in 112 haploid yeast segregants 

using NetLIFT method (FDR < 0.05). 
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Table 2.5. GO annotation enrichment for candidate regulators in yeast. GO analysis was 

performed for genes with >= 10 distal associations; top 20 enrichment terms reported in right 

column. 

Pvalue Term 

2.00E-06 asparagine catabolic process 

5.89E-06 cellular response to nitrogen starvation 

5.89E-06 cellular response to nitrogen levels 

4.66E-05 asparagine metabolic process 

4.90E-05 glutamine family amino acid catabolic process 

0.000172 aspartate family amino acid catabolic process 

0.001328 cellular response to nutrient levels 

0.001784 response to nutrient levels 

0.001784 cellular response to extracellular stimulus 

0.001784 cellular response to external stimulus 

0.002359 response to external stimulus 

0.002359 response to extracellular stimulus 

0.003704 cellular amino acid catabolic process 

0.003936 developmental process involved in reproduction 

0.004111 cellular response to starvation 

0.005043 response to starvation 

0.005191 amino acid transmembrane transport 

0.005905 carbon catabolite regulation of transcription from RNA polymerase II promoter 

0.005931 copper ion transport 

0.007164 viral reproduction 
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TAF Chr Start Pos End Pos SNP Pos Growth 
FDR 

eQTL FDR # Distal 
Linkages 

TDA8 1 13364 13744 7712 NA 0.000789 4 

SEO1 1 7236 9017 11638 NA 0.000206 17 

BDH2 1 33449 34702 23813 NA 0.007038 17 

GPB2 1 39260 41902 29969 NA 2.49E-20 14 

BDH1 1 35156 36304 36900 NA 0.000201 9 

ACS1 1 42882 45023 42489 NA 4.09E-06 12 

YAR028W 1 184886 185590 184405 NA 1.94E-36 4 

UIP3 1 183764 184471 185122 NA 1.30E-22 1 

MST28 1 188101 188805 187640 NA 8.18E-25 6 

PHO11 1 225451 226854 229140 NA 0.017334 5 

ECM13 2 136691 137464 142262 NA 5.88E-05 3 

PET9 2 163044 164000 163042 NA 0.017557 1 

ACH1 2 194125 195705 185438 NA 1.10E-05 4 

FUS3 2 192454 193515 199101 NA 4.96E-05 2 

PDR3 2 217473 220403 227290 NA 8.06E-26 15 

UGA2 2 247012 248505 246129 NA 9.36E-06 1 

SCO1 2 310564 311451 301671 NA 0.004078 12 

GIP1 2 328369 330090 334022 NA 1.94E-05 52 

YBR053C 2 339673 340749 343931 NA 0.020541 29 

TRM7 2 364785 365717 368060 NA 0.001228 14 

ECM2 2 368582 369676 368991 NA 1.78E-06 16 

TAT1 2 376571 378430 376668 NA 3.55E-12 265 

TIP1 2 372100 372732 376872 NA 1.06E-11 138 

NRG2 2 370035 370697 376872 NA 4.41E-14 32 

BAP2 2 373858 375687 380932 NA 0.001518 21 

ECM33 2 393118 394854 392138 NA 0.006151 48 

TEC1 2 409163 410623 401568 NA 6.37E-05 16 

PBY1 2 432030 434291 427675 NA 0.00034 13 

POL30 2 424984 425760 427676 NA 0.016151 40 

RFC5 2 423759 424823 427683 NA 0.010096 46 

LYS2 2 469742 473920 477206 NA 1.68E-38 167 

RAD16 2 467242 469614 479164 NA 1.62E-06 25 

AGP2 2 499646 501436 499895 NA 8.34E-40 35 

TPS1 2 488899 490386 499895 NA 0.000468 28 

YBR137W 2 513038 513577 506661 NA 4.06E-05 258 

TBS1 2 541203 544487 537314 0.0036 1.86E-17 296 

ARA1 2 539981 541015 537314 0.0036 2.22E-08 302 

SUP45 2 530863 532176 537314 NA 5.92E-05 303 

RTC2 2 536569 537459 537314 NA 0.00022 47 

YSW1 2 537870 539699 548401 0.0036 7.80E-17 307 

CNS1 2 549765 550922 548401 NA 8.96E-08 8 
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AMN1 2 556543 558192 555596 0.0036 8.51E-31 307 

ICS2 2 553537 554304 555787 NA 0.005304 317 

TOS1 2 563198 564565 565216 0.0036 1.71E-08 291 

EXO5 2 565718 567475 565216 NA 1.27E-06 10 

SSE2 2 573910 575991 565216 NA 0.013449 29 

SEC66 2 578359 578979 569414 NA 0.014054 289 

UMP1 2 581721 582167 584351 0.0036 2.05E-06 268 

NPL4 2 576339 578081 584351 0.0036 2.58E-06 268 

GDT1 2 602629 603471 592989 NA 6.47E-05 273 

PCH2 2 600548 602355 603790 NA 2.33E-05 291 

RPL21A 2 606265 607135 603790 NA 0.013744 50 

RPS9B 2 604503 605503 603790 NA 0.000455 1 

YBR197C 2 615198 615851 616262 0.006255 7.18E-15 237 

COS111 2 629163 631937 620056 NA 0.002184 230 

SDS24 2 651410 652993 658746 NA 1.45E-05 13 

GPX2 2 707523 708011 697894 0.012127 0.002294 205 

GLK1 3 50838 52340 43867 NA 0.00023 1 

ATG22 3 54941 56527 64311 NA 0.004837 42 

FRM2 3 74704 75285 75021 NA 5.98E-06 106 

HIS4 3 65934 68333 76127 NA 1.26E-05 104 

NFS1 3 92777 94270 90412 NA 1.92E-20 31 

LEU2 3 91324 92418 92127 NA 3.42E-71 113 

ILV6 3 104619 105548 105042 NA 5.51E-05 93 

RPS14A 3 177496 178216 175799 NA 0.016242 49 

MATALPHA1 3 200438 200965 201166 NA 3.66E-48 40 

MATALPHA2 3 199542 200174 201166 NA 2.85E-34 28 

RSC6 3 214990 216441 210748 NA 5.46E-09 22 

AHC2 3 258880 259266 258303 NA 8.80E-11 2 

BRE4 4 38868 42245 46292 NA 1.40E-57 4 

HO 4 46272 48032 46292 NA 3.46E-54 6 

TIM22 4 67984 68607 70901 NA 8.64E-14 6 

UGA4 4 84271 85986 89821 NA 1.71E-06 9 

HEM3 4 92763 93746 96259 NA 1.13E-26 21 

MRPL11 4 98476 99225 96259 NA 0.002088 1 

SFA1 4 159605 160765 161196 NA 1.04E-39 4 

RPP1B 4 229906 230527 223324 NA 0.020328 3 

STF1 4 229171 229431 226317 NA 0.009091 2 

YDL124W 4 240259 241197 251013 NA 2.01E-14 9 

NSE4 4 272389 273597 273846 NA 1.14E-26 5 

YDL012C 4 431106 431515 437147 NA 6.22E-10 4 

GAL3 4 463432 464994 465337 NA 1.81E-05 7 

MRH1 4 508145 509107 509817 NA 9.19E-30 9 

LYS14 4 509735 512107 509817 NA 6.38E-07 5 
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ENA2 4 531305 534580 527455 NA 2.44E-50 7 

ENA1 4 535190 538465 527455 NA 1.35E-49 5 

ENA5 4 527420 530695 527455 NA 2.14E-45 6 

YDR134C 4 721069 721479 723155 NA 2.86E-16 7 

MKC7 4 744309 746099 744522 NA 6.19E-06 4 

YDR210W 4 871072 871299 864542 NA 9.80E-06 5 

FCF1 4 1149946 1150515 1149761 NA 7.46E-08 18 

YDR341C 4 1151798 1153621 1149761 NA 0.001413 4 

APT2 4 1344510 1345055 1344670 NA 4.56E-19 3 

ITR1 4 1443706 1445460 1455131 NA 4.70E-05 3 

STL1 4 1507997 1509706 1500950 NA 0.001783 7 

FDC1 4 1512085 1513596 1510883 NA 8.97E-21 4 

YEL076C-A 5 4185 5114 5393 NA 0.008386 6 

YEL077C 5 264 4097 5393 NA 0.009368 7 

YEL076C 5 4464 5114 5394 NA 0.010973 2 

DLD3 5 16355 17845 13213 NA 0.015912 7 

YEL073C 5 7230 7553 17399 NA 8.65E-13 3 

YEF1 5 75944 77431 79647 NA 0.000135 7 

UTR2 5 78053 79456 79647 NA 0.000363 5 

URA3 5 116167 116970 117056 NA 2.33E-62 28 

EDC2 5 222638 223075 218250 NA 0.000758 1 

CHO1 5 207643 208473 218250 NA 1.46E-07 3 

PHM8 5 225888 226853 222998 NA 7.17E-06 5 

KRE29 5 226857 228251 222998 NA 9.82E-05 1 

JHD1 5 254655 256133 251267 NA 0.006914 2 

SER3 5 322682 324091 321714 NA 0.006742 1 

MET6 5 339860 342163 332264 NA 0.003088 37 

LCP5 5 414477 415550 420595 NA 0.015375 102 

NSA2 5 413390 414175 420595 NA 0.000103 5 

FTR1 5 460521 461735 458085 NA 0.010821 7 

YER158C 5 488852 490573 483538 NA 0.048671 9 

YER160C 5 492851 498119 504714 NA 0.010776 19 

SNZ3 6 11363 12259 5853 NA 3.57E-06 2 

DDI2 6 9545 10222 5853 NA 0.000104 3 

AAD6 6 14793 15431 5870 NA 7.59E-10 5 

AAD16 6 14305 14763 5877 NA 1.09E-06 4 

AGP3 6 17004 18680 15106 NA 6.16E-10 5 

SNO3 6 10301 10969 18384 NA 2.11E-05 2 

YFL054C 6 20847 22787 18384 NA 3.77E-19 1 

DAK2 6 23423 25198 18384 NA 7.58E-09 1 

YFL052W 6 28232 29629 38648 NA 1.07E-05 4 

QCR6 6 224314 224757 232259 NA 0.019324 2 

HXK2 7 23935 25395 16619 NA 0.012212 5 
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MTC3 7 73339 73710 69250 NA 0.000218 1 

SIP2 7 97342 98589 98231 NA 1.13E-08 15 

MCM6 7 117858 120911 117900 NA 1.43E-25 1 

OLE1 7 398631 400163 402833 NA 0.001337 5 

PRM8 7 402592 403305 402871 NA 3.82E-20 23 

MST27 7 403690 404394 410146 NA 6.68E-08 3 

RIM8 7 414106 415734 410146 NA 0.020258 9 

TIF4632 7 406863 409607 415585 NA 5.89E-12 8 

ERG26 7 495457 496506 502131 NA 0.000396 1 

GSC2 7 548268 553955 557230 NA 0.002761 7 

CLB1 7 703640 705055 711998 NA 0.001244 7 

ECL1 7 784228 784863 790857 NA 0.006304 10 

TDA10 7 909218 910090 913065 NA 1.52E-32 2 

ZPR1 7 915246 916706 916675 NA 0.006239 27 

HSV2 7 940872 942218 946196 NA 1.09E-08 5 

BNS1 7 951897 952310 952041 NA 0.000953 12 

YHB1 7 959908 961107 956838 NA 0.00082 3 

MOS2 7 961364 962065 956838 NA 0.006376 4 

CPD1 7 984971 985690 985414 NA 7.76E-22 4 

SOL4 7 985977 986744 994478 NA 0.002401 3 

NOP19 7 995644 996234 995892 NA 1.73E-12 2 

SCW4 7 1048805 1049965 1051340 NA 5.31E-12 2 

COS8 8 6400 7545 5842 NA 7.31E-10 5 

ARN2 8 8298 10211 5843 NA 3.62E-30 3 

YHL044W 8 13563 14270 14953 NA 2.69E-23 5 

SPO11 8 62959 64155 56246 NA 5.36E-27 28 

YHL012W 8 78932 80413 84437 NA 1.60E-08 38 

ETP1 8 81960 83717 92978 NA 2.29E-10 24 

GPA1 8 113494 114912 111682 NA 5.51E-11 29 

ERG11 8 120086 121678 111682 NA 8.28E-09 27 

YSC84 8 136874 138448 137221 NA 0.01866 6 

MIP6 8 134547 136526 137227 NA 1.45E-08 17 

DAP2 8 164971 167427 161987 NA 6.85E-18 3 

PIH1 8 176958 177992 176670 NA 4.94E-05 2 

YHR033W 8 175541 176812 185012 NA 1.58E-05 4 

INM1 8 197391 198278 193175 NA 2.87E-13 3 

DOG2 8 192798 193538 193175 NA 1.09E-32 4 

YHR054C 8 213187 214251 203246 NA 4.96E-05 4 

YHR214W 8 541651 542262 549634 NA 6.92E-05 1 

YIL169C 9 23119 26106 21455 NA 1.40E-05 26 

YIL168W 9 29032 29415 27026 NA 0.001944 3 

YIL166C 9 30938 32566 33795 NA 6.20E-11 30 

SUC2 9 37385 38983 38608 NA 0.00186 7 
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OM45 9 93619 94800 98949 NA 0.019546 3 

RPL16A 9 98527 99416 98949 NA 0.001455 6 

QDR1 9 134414 136105 133663 NA 1.30E-06 3 

AYR1 9 126204 127097 133663 NA 9.19E-07 4 

RPI1 9 136651 137874 141014 NA 7.61E-05 21 

HIS5 9 142925 144082 141014 NA 3.31E-11 19 

COX5B 9 155219 155762 154733 NA 3.19E-08 15 

YIL082W-A 9 205632 210129 195965 NA 4.88E-18 14 

YIL080W 9 205632 210354 195965 NA 6.29E-05 3 

YIL089W 9 195596 196213 196145 NA 2.71E-19 3 

AIM19 9 199643 200116 205191 NA 3.75E-10 10 

YIL077C 9 214988 215950 214482 NA 0.01171 1 

FIS1 9 241305 241772 251495 NA 2.11E-09 2 

YIL055C 9 252040 253923 254745 NA 3.51E-05 3 

YVH1 9 404870 405964 398074 NA 0.00101 2 

MUC1 9 389569 393672 403134 NA 0.000351 2 

DCG1 9 412033 412767 410028 NA 0.013272 1 

YPS6 9 430494 432107 430910 NA 2.43E-16 1 

GTT1 9 423806 424510 430910 NA 0.021989 1 

YJL218W 10 21973 22563 22309 NA 5.48E-09 4 

OPT1 10 33850 36249 24397 NA 0.000812 4 

VTH2 10 11475 16124 24469 NA 0.000189 2 

REE1 10 23133 23729 24739 NA 4.29E-14 18 

YJL213W 10 32163 33158 34086 NA 0.000662 13 

NUC1 10 40194 41183 40238 NA 0.010023 6 

CPS1 10 97731 99461 99921 NA 1.18E-10 6 

YJL171C 10 99698 100888 101187 NA 4.38E-09 1 

YJL163C 10 111662 113329 111890 NA 6.30E-05 5 

NCA3 10 193858 194871 204137 NA 4.58E-07 5 

YJL113W 10 197912 203324 204137 NA 0.001428 11 

YJL114W 10 197912 199156 204137 NA 0.002316 3 

YJL107C 10 218848 220011 218798 NA 9.88E-09 4 

PRM10 10 217700 218851 218798 NA 1.18E-11 1 

SIP4 10 265920 268409 262593 NA 0.025365 17 

IKS1 10 328112 330115 325500 NA 9.68E-05 11 

YJL045W 10 356018 357922 353027 NA 0.018223 5 

MHP1 10 361243 365439 353027 NA 0.005888 1 

IRC18 10 376656 377330 372838 NA 6.20E-07 15 

TAD2 10 380243 380995 380085 NA 1.46E-30 9 

MHO1 10 452422 453438 450338 NA 0.005187 8 

YJR015W 10 462713 464245 461201 NA 2.44E-50 2 

SPC1 10 458069 458353 461201 NA 1.05E-31 2 

BNA1 10 471130 471663 471555 NA 0.000767 6 
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OPI3 10 572307 572927 575236 NA 3.55E-05 3 

TRP3 11 36700 38154 46635 NA 0.001134 6 

YKL187C 11 89289 91541 97725 NA 6.63E-10 4 

CWP1 11 260776 261495 261779 NA 5.62E-06 1 

HEL1 11 471337 472992 468771 NA 2.49E-10 2 

SPO14 11 500986 506037 510933 NA 0.000437 4 

GAP1 11 514705 516513 522777 NA 2.36E-13 2 

UTH1 11 519169 520266 522777 NA 0.000555 3 

MET1 11 571254 573035 579819 NA 0.000611 1 

MTD1 11 590037 590999 596215 NA 8.47E-11 6 

TGL4 11 605275 608007 611765 NA 1.05E-12 2 

YKR104W 11 656474 657394 649174 NA 2.45E-25 5 

NFT1 11 652718 656374 649174 NA 7.37E-22 5 

VBA5 11 658354 660102 649240 NA 7.12E-12 4 

FLO10 11 645994 649503 649240 NA 2.63E-14 4 

HSP104 12 88622 91348 86369 NA 3.55E-07 7 

TPO1 12 84803 86563 86369 NA 9.35E-06 4 

SSA2 12 95565 97484 92694 NA 0.000171 1 

POM33 12 97996 98835 99261 NA 3.44E-08 9 

PUF3 12 122074 124713 126934 NA 1.21E-41 22 

YLL007C 12 134301 136298 131338 NA 4.66E-39 1 

PSR1 12 129329 130612 131338 NA 3.61E-34 3 

PCD1 12 441716 442738 433955 NA 1.34E-16 13 

YLR152C 12 442959 444689 450042 NA 0.010395 14 

ASP3-1 12 469318 470406 468981 NA 1.19E-67 50 

ASP3-2 12 472970 474058 468981 NA 1.57E-49 44 

YLR156W 12 472114 472458 468981 NA 4.33E-14 28 

ASP3-4 12 486202 487290 489688 NA 3.75E-55 31 

YLR159W 12 485346 485690 489688 NA 6.25E-11 11 

YLR161W 12 488998 489342 489688 NA 5.77E-07 11 

ASP3-3 12 482550 483638 489688 NA 3.07E-69 29 

YLR173W 12 502423 504249 500493 NA 1.24E-17 11 

PUS5 12 494496 495260 500493 NA 1.97E-10 12 

YLR177W 12 511056 512942 501528 NA 1.81E-06 22 

DPH5 12 501262 502164 501528 NA 9.92E-05 21 

YLR179C 12 514110 514715 514835 NA 7.52E-25 39 

HMX1 12 552726 553679 553064 NA 0.035763 15 

BNA5 12 605760 607121 607076 NA 8.02E-08 29 

TOP3 12 609785 611755 611854 NA 5.23E-05 5 

MAP1 12 625170 626333 635380 NA 5.91E-20 16 

HAP1 12 646417 650925 659357 NA 2.12E-13 29 

GSY2 12 660718 662835 662627 NA 0.000234 33 

YLR257W 12 658828 659793 662627 NA 0.002822 4 
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NEJ1 12 674429 675457 674651 NA 4.18E-19 21 

EXG1 12 728957 730303 719857 NA 3.65E-05 23 

ACO1 12 735214 737550 744436 NA 0.00399 1 

CHS5 12 787664 789679 787505 NA 8.42E-13 7 

FKS1 12 809997 815627 808623 NA 2.04E-08 9 

GAS2 12 816094 817761 815480 NA 1.49E-49 24 

BUD8 12 834351 836162 829265 NA 1.08E-09 5 

TAL1 12 836349 837356 829693 NA 0.000655 6 

STP3 12 871696 872727 881579 NA 2.20E-07 15 

RPS29A 12 898651 898821 899898 NA 0.038439 15 

DUS3 12 922442 924448 912976 NA 0.009912 51 

CTR3 12 947251 947976 956366 NA 0.00645 18 

PUN1 12 953350 954141 956366 NA 9.82E-07 64 

YLR413W 12 951153 953180 956366 NA 0.003039 21 

MRPL4 12 1014488 1015447 1006711 NA 0.00038 3 

CAR2 12 1012498 1013772 1019347 NA 4.16E-07 11 

ECM7 12 1022622 1023968 1023790 NA 0.000462 4 

SST2 12 1039268 1041364 1042072 NA 0.013477 4 

YRF1-4 12 1067085 1071233 1059929 NA 1.79E-12 6 

YLR464W 12 1066570 1067499 1067121 NA 4.96E-13 15 

YLR462W 12 1065954 1066562 1067121 NA 2.25E-06 8 

YRF1-5 12 1072506 1077896 1067121 NA 1.78E-07 7 

PHO84 13 24038 25801 28694 NA 0.000639 32 

ATR1 13 38196 39824 46070 NA 0.006354 23 

YML079W 13 110247 110852 110814 NA 1.25E-11 9 

CYB2 13 165533 167308 163328 NA 5.51E-05 9 

PPZ1 13 239458 241536 238291 NA 1.54E-14 11 

YML002W 13 264541 266754 255486 NA 0.005168 6 

MRPL39 13 251304 251516 255486 NA 0.021399 5 

GLO1 13 261705 262685 268044 NA 3.46E-06 8 

YML003W 13 263483 264355 273244 NA 3.00E-15 7 

PLB2 13 277561 279681 277071 NA 1.15E-18 11 

HXT2 13 288078 289703 298192 NA 0.0119 10 

ARG7 13 395053 396378 395391 NA 0.019466 4 

YMR155W 13 568550 570193 564148 NA 1.60E-06 7 

YIM1 13 563095 564192 572643 NA 7.44E-11 9 

RSN1 13 798517 801378 789466 NA 0.03545 6 

YMR321C 13 917577 917894 922258 NA 4.60E-10 2 

FET4 13 912878 914536 922258 NA 3.74E-10 1 

SNO2 14 12208 12876 13845 NA 0.006868 3 

SNZ2 14 13267 14163 13845 NA 7.92E-05 1 

SPS19 14 259579 260457 258590 NA 4.09E-06 1 

NAM9 14 368597 370057 371953 NA 2.55E-05 25 
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YNL134C 14 372453 373583 371953 NA 1.49E-07 5 

YNL122C 14 398025 398372 402312 NA 0.02306 30 

CYB5 14 416942 417304 410244 NA 0.007424 5 

NOP2 14 510542 512398 502316 NA 0.005542 16 

AQR1 14 503726 505486 502316 NA 7.21E-06 4 

POR1 14 517996 518847 525061 NA 3.09E-05 7 

COX5A 14 531727 532188 525061 NA 0.003086 8 

YNL058C 14 515765 516715 525061 NA 5.47E-07 1 

YNL040W 14 553382 554752 549682 NA 7.10E-14 6 

YNL034W 14 570479 572317 577299 NA 1.22E-07 7 

YNL022C 14 591429 592901 586789 NA 0.013636 6 

YNL019C 14 598378 599232 591228 NA 4.66E-13 3 

YNL018C 14 599938 601776 591228 NA 2.05E-11 15 

MRP7 14 621316 622431 614342 NA 0.000592 1 

BDS1 15 6175 8115 1152 NA 7.62E-32 9 

YOL163W 15 9596 10105 7699 NA 1.91E-08 10 

YOL162W 15 10118 10765 7861 NA 4.29E-09 4 

ENB1 15 19490 21310 10529 NA 0.000299 12 

HPF1 15 28702 31605 27928 NA 1.36E-11 10 

ZPS1 15 34657 35406 37207 NA 0.004242 8 

FRE7 15 40747 42609 43051 NA 7.33E-07 12 

YOL153C 15 36821 38566 43051 NA 4.83E-05 15 

NDJ1 15 116396 117454 108577 NA 5.12E-30 64 

SKM1 15 104326 106293 113254 NA 3.58E-15 15 

ZEO1 15 110297 110638 116709 NA 2.89E-08 26 

SPO21 15 145334 147163 144659 NA 3.42E-23 43 

ATG19 15 168727 169974 170945 NA 5.53E-08 25 

PHM7 15 162356 165331 174364 NA 3.00E-21 107 

YOL019W 15 288899 290554 290670 NA 2.01E-06 12 

YOL014W 15 299694 300068 301074 NA 2.46E-17 6 

AUS1 15 349679 353863 348934 NA 2.04E-06 6 

CRS5 15 389213 389422 382531 NA 4.95E-17 11 

ETT1 15 424848 426086 427159 NA 1.50E-11 10 

RSB1 15 422669 423733 427159 NA 3.14E-09 9 

RAT1 15 418631 421651 427159 NA 2.46E-06 4 

CYT1 15 447441 448370 438824 NA 0.003489 16 

YOR062C 15 442727 443533 438828 NA 2.65E-15 4 

BAG7 15 578565 579794 581277 NA 0.012044 10 

RDL1 15 849634 850053 850119 NA 4.37E-20 3 

RRS1 15 868339 868950 861655 NA 0.01681 3 

YOR304C-A 15 888518 888748 889464 NA 0.020566 11 

FIT3 15 1060439 1061053 1065719 NA 0.046055 1 

YOR389W 15 1074211 1076085 1065809 NA 0.017658 2 
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GLR1 16 375499 376950 368296 NA 6.30E-18 2 

YPL067C 16 425248 425844 428612 NA 0.002836 3 

SUR1 16 451906 453054 462646 NA 5.58E-07 34 

SWI1 16 521011 524955 523450 NA 4.34E-19 40 

IRC15 16 518732 520231 523450 NA 0.024603 7 

SNF8 16 553624 554325 555416 NA 8.56E-23 2 

YOP1 16 623524 624199 618581 NA 2.13E-08 3 

AQY1 16 921856 922773 927500 NA 0.000119 3 

ARR3 16 939918 941132 932535 NA 9.47E-12 4 

OPT2 16 924300 926933 932535 NA 0.000184 6 

ARR2 16 939275 939667 932535 NA 2.05E-05 1 

 

Table 2.6. Comprehensive list of putative regulators identified in yeast. Columns 1-4: putative 

regulator, chromosome, and transcription start/stop annotation; column 5: position of local eQTL; 

column 6: FDR of eQTL variant with growth rate; column 7: FDR for eQTL association; column 8: 

number of distal genes linked to locally-acting eQTL, via putative trans-acting gene. 
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Method eQTL Position TAF Previously 
Predicted 

Regulators 

# 
Targets 

GO Annotation 
Enrichment 

GO pVal FDR - 
Growth Rate 
Association 

*** chrII:376668 TAT1 TRM7[79] 265 cytoplasmic 
translation 

9.63E-
37 

NA 

*** chrII:555596 AMN1 AMN1[44,79], 
MAK5[44] 

307 ribosome 
biogenesis 

2.90E-
12 

0.0036 

*** chrII:697894 GPX2 None[44,79] 205 ncRNA 
processing 

1.53E-
17 

0.012 

*** chrIII:92127 LEU2 LEU2[44,79–81] 113 organic acid 
biosynthetic 

process 

4.05E-
25 

NA 

*** chrIII:105042 ILV6 ILV6[80,81] 93 organic acid 
biosynthetic 

process 

2.45E-
22 

NA 

*** chrIII:201116 MATALPHA1 MATALPHA1[44,7
9,80,82] 

40 response to 
pheromone 

1.78E-
08 

NA 

*** chrV:117056 URA3 URA3[44,79–81] 28 'de novo' UMP 
biosynthetic 

process 

8.66E-
09 

NA 

*** chrVIII:111682 GPA1 GPA1[44,65,79,80
,82] 

29 conjugation 1.14E-
15 

NA 

*** chrXII:659357 HAP1 HAP1[44,65,79,80
,82] 

29 steroid metabolic 
process 

3.80E-
09 

NA 

*** chrXII:1067121 YLR464W YRF1-4[79], 
YRF1-

5[79],YLR464[79] 

15 telomere 
maintenance via 
recombination 

1.81E-
05 

NA 

*** chrXIV:371953 NAM9 MKT1[80], 
SAL1[80] 

25 mitochondrial 
translation 

1.55E-
21 

NA 

*** chrXV:174364 PHM7 PHM7[80,81], 
IRA2[65,82] 

107 cellular ketone 
metabolic 

process 

8.89E-
08 

NA 

*** chrXV:382531 CRS5 CAT5[44,79] 11 cellular 
respiration 

3.77E-
05 

NA 

** chrI:11638 SEO1 NA 17 monocarboxylic 
acid metabolic 

process 

1.11E-
06 

NA 

** chrII:376872 NRG2 NA 32 asparagine 
catabolic process 

1.85E-
06 

NA 

** chrII:401568 TEC1 NA 16 pseudohyphal 
growth 

1.03E-
03 

NA 

** chrII:477206 LYS2 NA 167 lysine 
biosynthetic 
process via 

aminoadipic acid 

1.27E-
07 

NA 

** chrIV:96259 HEM3 NA 21 cytokinesis 5.47E-
04 

NA 

** chrIV:1149761 FCF1 NA 18 endonucleolytic 
cleavage involved 

in rRNA 
processing 

4.02E-
04 

NA 

** chrV:420595 LCP5 NA 102 ncRNA metabolic 
process 

1.90E-
13 

NA 

** chrV:504714 YER160C NA 19 DNA integration 6.65E-
24 

NA 

** chrVII:402871 PRM8 NA 23 cellular zinc ion 
homeostasis 

5.72E-
06 

NA 

** chrVII:916675 ZPR1 NA 27 ribosome 
biogenesis 

2.56E-
05 

NA 
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** chrIX:33795 YIL166C NA 30 oligopeptide 
transport 

2.22E-
03 

NA 

** chrIX:141014 RPI1 NA 21 L-asparagine 
biosynthetic 

process 

1.34E-
05 

NA 

** chrX:24739 REE1 NA 18 formate 
metabolic 

process 

3.32E-
08 

NA 

** chrX:262593 SIP4 NA 17 mitochondrial 
outer membrane 

translocase 
complex 
assembly 

2.03E-
04 

NA 

** chrXII:126934 PUF3 NA 22 transposition, 
RNA-mediated 

1.01E-
06 

NA 

** chrXII:468981 ASP3-1 NA 50 oxidation-
reduction process 

7.84E-
07 

NA 

** chrXII:956366 PUN1 NA 64 beta-alanine 
metabolic 

process 

1.29E-
04 

NA 

** chrXIII:28694 PHO84 NA 32 negative 
regulation of 

catalytic activity 

5.17E-
05 

NA 

** chrXVI:523450 SWI1 NA 40 regulation of DNA 
metabolic 

process 

2.63E-
04 

NA 

* chrXIII:149075 NA SMA2[80] NA NA NA NA 

 

Table 2.7. Distal regulatory loci and candidate regulators identified in yeast. First column 

indicates eQTL identified by: previous methods and NetLIFT (***); NetLIFT only (**); previous 

methods only (*). Third and fourth columns list candidate regulators implicated by NetLIFT, 

previous methods, respectively. Fifth column gives the number of genes linked to the locus by 

NetLIFT. Top GO enrichment for linked transcripts listed in sixth column. For eQTL on chromosome 

2 that were linked to genes with ncRNA and ribosomal annotation, association testing was 

performed for the marker and growth rate phenotype (far right column). 
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Pvalue Term 

0.00116742 malate metabolic process 

0.00192771 progesterone metabolic process 

0.00192771 negative regulation of nitric oxide biosynthetic process 

0.002854168 organic acid metabolic process 

0.003725601 carboxylic acid metabolic process 

0.004640455 small molecule metabolic process 

0.00524957 positive regulation of heart contraction 

0.005659446 lipid transport 

0.005687178 oxoacid metabolic process 

0.006687313 phagocytosis, engulfment 

0.006687313 complement activation, alternative pathway 

0.007432993 steroid metabolic process 

0.008282274 protein targeting to plasma membrane 

0.009233885 monocarboxylic acid metabolic process 

0.010029798 regulation of the force of heart contraction 

0.010029798 C21-steroid hormone metabolic process 

0.010037416 cellular response to lipid 

0.011642566 lipid localization 

0.011925326 natural killer cell differentiation 

0.011925326 membrane invagination 

 

Table 2.8. GO enrichments for distal genes linking to PWK-driver eQTL in pre-Collaborative 

Cross mice. GO analysis was performed for the pooled set of genes that linked to a PWK founder-

driven eQTL with at least 5 distal effects; top 20 GO enrichments are reported in right column. 
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Pvalue Term 

8.27E-05 folic acid metabolic process 

0.000759 folic acid-containing compound metabolic process 

0.001212 one-carbon metabolic process 

0.001766 pteridine-containing compound metabolic process 

0.00537 histidine biosynthetic process 

0.00537 glycyl-tRNA aminoacylation 

0.00537 histidine metabolic process 

0.00537 regulation of hippo signaling cascade 

0.00537 imidazole-containing compound metabolic process 

 

Table 2.9. GO term enrichment for putative trans-acting factors in human LBCs. GO analysis 

was performed for the set of putative trans-acting factors linked to >= 3 distal genes; enrichments 

at significance p < 0.01 reported in right column. 

 

 

 

 

 

 

 

 

 



62 
 

 

 

 

CHAPTER III 

Integrative analysis of chromatin and transcriptional landscape  
in Crohn’s disease colon tissue reveals metaplastic cell populations  
and highlights functional regulatory regions implicated in disease 

 
   

OVERVIEW 

 Crohn’s disease (CD) is a chronic inflammatory disease of the gastrointestinal tract, 

characterized by an inappropriate immune response to the enteric microbiota. Numerous genome 

wide association (GWA) studies have highlighted a strong genetic component to CD, and have to 

date identified 163 genetic susceptibility loci [83]. However, the majority of disease-associated 

variants lie in non-coding regions, suggesting their association with disease is mediated by 

transcriptional regulation rather than a direct effect on protein function. In order to identify causal 

genes and improve existing treatment regimens, it is crucial to better understand the genome-wide 

regulatory architecture of CD at the molecular level, and how it differs from normal tissue. To 

address this question, we performed formaldehyde-assisted isolation of regulatory elements 

(FAIRE-seq) and RNA-seq in whole colon tissue biopsies from 21 CD and 12 non-IBD individuals. 

We identified a subset of mostly-CD individuals that display an “Ileum-Like” signature consistent in 

both chromatin accessibility and transcription, suggesting a high prevalence of metaplastic cell 

populations in the cecum and ascending colon, particularly in the setting of CD. Among 22 

individuals with expression and chromatin profiles representative of colon tissue (“Colon-Like” 

subclass), we performed an integrative analysis of FAIRE-seq and RNA-seq, finding 751 and 740 

regulatory regions specific to CD and non-IBD, respectively, as well as 51/507 genes 

up/dowregulated among CD individuals. We identified regulatory regions that associate with both 
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disease status and expression of nearby genes, representing strong candidates for follow up 

functional studies. In a motif analysis, we identified several candidate regulators specific to each 

class, including NR2F6 in non-IBD tissue, suggesting a broad role for this transcription factor in 

maintaining an uninflamed phenotype. Additionally, we found a general enrichment of GWA SNPs 

in FAIRE-seq peak regions, but little evidence of increased enrichment in disease-specific chromatin 

peaks, suggesting that risk alleles may associate with disease via trans-acting mechanisms, and/or 

may be independent of chromatin conformation. These results provide valuable insights into the 

functional molecular basis of the disease and highlight specific candidate genes and regulators that 

may play a role in the complex etiology of CD. 

 

INTRODUCTION 

Crohn’s disease (CD) is a chronic and debilitating form of inflammatory bowel disease (IBD) 

affecting over 500,000 Americans [84], with highest incidence reported in young adults between 10 

and 20 years of age [85]. CD may affect any part of the gastrointestinal (GI) tract from mouth to 

anus, and is caused by an aberrant immune response to gut microbiota in a genetically susceptible 

host. This results in mucosal ulceration and inflammation of the GI tract, and symptoms such as 

persistent diarrhea, rectal bleeding, abdominal cramps, weight loss, and fatigue. Current treatment 

regimens consisting of immune-suppressants and corticosteroid combination therapy are effective 

in less than half of patients [86], and roughly 50% of CD patients require surgical resection within 

10 years of diagnosis [87].  

Numerous cell types have been implicated in the pathophysiology of CD, including T cells, 

dendritic cells, natural killer cells [83], and macrophages [88,89]. Though the exact mechanism of 

effect is unclear, disease onset is thought to result from disruption of the mucosal barrier in the 

intestine, upon which benign gut flora trigger an inflammatory response from immune cells in the 

lamina propria (LP) that are typically programmed for tolerance to bacterial antigens. In particular, 
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local macrophage populations that display a circulating monocyte phenotype appear to play a key 

role in initiating this immune response [88,90,91]. Furthermore, metaplastic Paneth cell 

populations have been previously reported at high frequencies in various regions of colon, relative 

to non-IBD individuals [92,93]. Paneth cells are typically confined to the small intestine, and 

presence in the colon may be primarily driven by chronic inflammation and associated repair and 

regeneration. However, a Paneth cell role in impaired innate immunity has also been suggested, via 

a known genetic susceptibility locus at the NOD2 gene [94], highlighting a possible causal role for 

increased metaplasia seen in CD.  

Major progress has been made in understanding the genetic component of CD in recent 

years. Genome wide association (GWA) studies have identified 163 loci linked to IBD [83], which is 

more than any complex disease to date. One locus residing in a gene desert has been shown to 

regulate gene expression of the colitis-linked gene PTGER4 in lymphoblastoid cells [34], suggesting 

a possible mechanism of effect. Additionally, GWA SNPs have been found to be enriched in 

regulatory regions of numerous immune cell types [95], as defined by DNase I hypersensitive site 

sequencing (DNase-seq). However, the functional effect for the majority of associated loci remains 

unknown, as most lie outside of coding regions. A better understanding of the regulatory 

architecture of CD will be crucial in bridging the gap between genotype and phenotype, and will 

play an instrumental role in identifying novel therapeutic targets and more effective clinical 

treatment. 

Formaldehyde-assisted isolation of regulatory elements followed by high-throughput 

sequencing (FAIRE-seq) has been used previously to identify cell type specific regulatory elements 

[96] as well disease-specific chromatin landscape changes in tissue [97,98]. Integrative -omics 

approaches combining paired RNA-seq data in the same individuals have highlighted specific 

mechanistic effects underlying disease, providing context for associations between phenotype and 

geneitc variation/chromatin profile [97]. In this study, we analyze FAIRE-seq and RNA-seq in 
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macroscopically uninflamed, ascending colon tissue biopsies from 33 CD and non-IBD individuals in 

order to better understand the regulatory architecture of CD. Small and total RNA derived from 

colon tissue has previously been used to identify prognostic microRNA markers that distinguish 

disease behavior phenotypes in CD [99], and has identified candidate mRNAs [100,101] and long 

non-coding RNAs (lncRNAs) [102] implicated in CD and IBD. These studies demonstrate the utility 

of sequencing-based assays performed in whole colon tissue as used to profile disease-relevant 

molecular signatures in CD. In our integrative analysis, we identify a subset of 10 individuals whose 

RNA and chromatin profiles suggest an “Ileum-Like” molecular signature, potentially due to 

inflammation-induced Paneth cell metaplasia. We then restrict analysis to 22 “Colon-Like” biopsies 

with paired chromatin and gene expression data, where we identify hundreds of candidate 

regulatory regions and differentially expressed genes specific to disease and non-IBD cohorts, and 

provide evidence for causal functional effects between them. Additionally, we show that GWA SNPs 

are enriched in regions of open chromatin in colon tissue, but find no evidence for disease-specific 

enrichment. 

 

MATERIALS AND METHODS 

Patient Population and tissue procurement 

Biopsies were taken from resected colon tissue at time of surgery. For CD patients, tissue 

was biopsied from cecum or ascending colon, at macroscopically uninflamed regions as determined 

by a resident pathologist. Non-IBD individuals consisted of two individuals with diverticulitis; five 

colon cancer patients, one of which involved a Hartmann reversal after colon cancer; two 

individuals with colonic inertia; two adenoma cases, and one patient with a small intestine 

neuroendocrine tumor. For all non-IBD individuals, complete or partial colonic resection was 

performed and biopsies were taken from regions of cecum or ascending colon; for cancer patients, 
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biopsies were taken from sites distal to tumors, and for all individuals, tissue was macroscopically 

uninflamed at the site of biopsy. 

 

Genotyping and personalized genome construction 

For 32 individuals, genotypes were assayed on the Illumina Immunochip in two separate 

experiments. An additional individual was genotyped on the Illumina Omni Express platform. QC 

was performed using a standard Illumina cluster file, and imputation was performed with MaCH-

Admix [103], using the full phase 1, release 3 vcf annotation for 1,000 Genomes as a reference 

panel. We constructed personalized genomes for all 33 genotyped individuals by starting with sex-

specific genomes, identifying sites where the individual was homozygous for an allele that differed 

from the reference genome, and substituting the true genotype at that position. 

 

RNA isolation and RNA-seq analysis pipeline 

The Qiagen RNeasy kit was used to isolate RNA from flash frozen tissue. Libraries were 

prepared using the Illumina TruSeq polyA+ kit, and paired end sequencing was performed at the 

UNC-CH High-Throughput Sequencing Facility (HTSF), producing 50 bp reads. Reads were filtered 

requiring a quality score of 20 or greater in at least 90 percent of nucleotides, and artifactual reads 

were removed with the tagdust software [104]. Following QC steps, reads were aligned to sex-

specific genomes, which incorporated SNP calls from genotype array and subsequent imputation. 

Alignment was performed using the “SNP-tolerant” GSNAP software [105], using a k-mer size of 15 

and allowing for 2 mismatches per read. Aligned reads were blacklist-filtered using the DAC 

blacklisted region list defined by ENCODE [5], and were processed into RPKM values using an in-

house script with current RefSeq gene annotations. Prior to analysis, RPKM values were 

incremented with a pseudocount of 1, log-normalized, and batch effects were removed using the 

ComBat function in the “sva” package in R [106]. Differentially expressed genes were called using a 
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two-sided t-test on normalized RPKM values, and gene ontology (GO) enrichments were computed 

using the hyperGTest function in the R package GOstats [107]. 

 

FAIRE-seq analysis pipeline 

FAIRE was performed as described previously [108]. In samples for which RNA extraction 

was also performed, the same biopsy was used for both. Sequencing was performed at UNC-CH 

HTSF using the Illumina HiSeq 2000 platform, generating 50 bp single-end reads. Reads were 

filtered requiring a quality score of 20 or greater in at least 90 percent of nucleotides, and 

artifactual reads were removed with the tagdust software [104]. Additionally, no more than 5 reads 

were allowed to align to a single position. Post-QC, reads were aligned with SNP-tolerant GSNAP 

software [109] to personalized genomes, constructed as described above, using k-mer size of 15 

and allowing 1 mismatch per read. Post-alignment blacklist filtering was performed as described 

for RNA-seq reads, and peak calls were performed using F-seq [110] using a feature length of 500 

and hg19 bff background file created using 50 bp sequences. The full genome was tiled into 300 bp 

windows overlapping by 100bp, and raw FAIRE-seq read overlaps were computed for each region. 

Windows overlapping with simple repeat regions and ENCODE DAC blacklist regions were masked 

from downstream analysis. Window counts were normalized by total aligned read counts for each 

sample, and batch effect correction was performed in R using ComBat [106].  

Preliminary peak union sets were created separately for class-specific cohorts (Ileum-

Like/Colon-Like, CD/non-IBD), as well as for the full set of samples by concatenating the list of top 

50,000 peaks for each sample in that cohort. Next, consistent peaks were defined for each of the 

three union sets, by requiring that at least 30% of samples within that cohort have a peak at a given 

site. Peaks within 10bp were merged using the bedtools merge command with –d 10 option, 

yielding a final union set of peaks for each cohort. Differential regulatory regions (DRRs) were 

called using a two-sided t-test performed on normalized window counts for all windows that 
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intersected a consistent peak within the respective cohort. When necessary, a single representative 

was selected from each group of overlapping DRRs by selecting the region with highest overall 

signal. 

The average FAIRE-seq signal at transcription start sites of differentially expressed genes 

was computed using the bedtools coverage command, with aligned reads and TSS annotations as 

input. Signal values at each base pair were aggregated across all TSSs of interest and averaged 

separately within cohorts. 

To compute enrichment of DRRs near differentially expressed genes, the number of DRRs 

falling within 50kb of a differentially expressed gene was recorded. For comparison, ten sets 

consisting of an identical number of regions, selected at random from the full union set of 

consistent peaks, were used as a measure of the expected value under the null hypothesis. 

 

ChIP-seq analysis 

Aligned ChIP-seq reads for histone marks H3K27ac, H3K27me3, H3K36me3, H3K4me1, 

H3K4me3, and H3K9me3 were downloaded from the Epigenome Roadmap project data portal [7], 

for both sigmoid colon and small intestinal tissue. Aligned reads for H3K27ac in inflamed and 

uninflamed sigmoid colon tissue were processed as described in [111] and were downloaded from 

Gene Expression Omnibus (GEO), accession number 51425. ChIP-seq signal over differential 

regulatory regions (DRRs) defined by FAIRE-seq analyses were computed by extracting base-pair 

resolution overlap of aligned ChIP-seq reads with the genomic regions of interest, for 3kb intervals 

centered at the DRR midpoints. Overlap counts at each index were normalized by sequencing depth 

and averaged across all regions of interest.   
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Motif enrichment analysis 

The Discriminative Regular Expression Motif (DREME) package [112] and motif comparison 

tool TomTom [113] were used to discover enriched motifs within DRRs and compare with known 

canonical motifs, respectively. To control for local sequence variation, 300bp flanking regions on 

either side of DRRs for a given class were used as control sequences in the DREME enrichment 

analysis. Motif comparison in TomTom was restricted to the HOCOMOCO (v9) human database. All 

other options for both DREME and TomTom were set to default parameters. 

 

GWA enrichment analysis  

To compute GWA SNP enrichment at FAIRE-seq peaks in colon tissue, we first downloaded 

163 Crohn’s disease associated SNPs from the NHGRI GWAS catalog [15], and expanded to all SNPs 

in LD with this seed set at a cutoff of an R2 > 0.8, as defined by a CEU reference panel from 1,000 

genomes. The total fraction of overlap for the set of GWA hits and LD buddies was computed for 

each sample, using the top 50,000 F-seq peaks in that sample. To compute overlap enrichment 

relative to a null distribution, we mapped each of the 163 seed SNPs to a random SNP in the 

genome, matched for number of LD buddies, MAF, distance to nearest TSS, distance to nearest TES, 

and exonic/genic annotation. A total of 1,000 null sets of SNPs and LD buddies were generated this 

way, and overlap for each of the null sets with each sample’s 50,000 FAIRE-seq peak set was 

computed, yielding a background distribution of expected overlap specific to each sample’s 

chromatin landscape.  

 

RESULTS 

To investigate the role of genotype, chromatin accessibility, and gene expression on the 

etiology of Crohn’s disease, we performed genotyping and high-throughput sequencing assays on 

macroscopically-uninflamed tissue specimens biopsied from colon resections of 21 CD individuals 
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and 12 non-IBD patients (Table 3.1). Genotypes for 32 individuals were assayed using the Illumina 

Immunochip; one additional individual was genotyped on the Omni Express platform. Imputation 

for all samples was performed with MaCH-Admix, and SNPs passing QC were used to construct 

personalized genomes (see methods). We measured the genome-wide DNA accessibility using 

formaldehyde-assisted isolation of regulatory elements followed by high-throughput sequencing 

(FAIRE-seq). Gene expression levels were assayed using the Illumina HiSeq 2500 platform. 

Following sequencing, reads were aligned to personalized, sex-specific genomes. The F-seq 

software [110] was used to call peaks of open chromatin from FAIRE-seq alignments in each sample 

(see methods), and RNA-seq alignments were processed into log-normalized RPKM values. 

 

Clustering analysis of RNA-seq and FAIRE-seq from colon tissue reveals “Ileum-Like” molecular 

signatures in patient subset 

Post-alignment values for reads per kilobase per million mapped reads (RPKM ) were called 

with a personalized script using RefSeq gene annotations, and were subsequently log-normalized 

and batch-corrected using the ComBat function in the R “sva” package [106]. We noted that 

hierarchical clustering and PCA analysis of the normalized counts revealed a subset of genes driving 

a striking separation between samples (Figure 3.1a, b). When classified into two groups based on 

this stratification, a two sided t-test for differential expression (DE) revealed a total of 468 DE genes 

at FDR < 0.05. A GO analysis [107] of these genes showed strong enrichment for transport, drug 

response, and metabolic annotation (Table 3.2), suggesting a potential effect of treatment-specific 

response. Additionally, many of these genes were implicated in ileum-specific gene expression 

signatures. We compared our data to a previous study that conducted transcriptomic analyses on 

several regions of the gut [114]; of the 1,099 genes that were previously found to be differential 

between ileum and transverse colon (FDR < 0.05), 188 were present in our set of 468, all of which 

agreed in direction of effect (p=9.2E-128, hypergeometric test) (Figure 3.1c).  
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To investigate whether these effects were consistent with the chromatin data derived from 

the same biopsies, we used a 100bp sliding offset to tile the entire genome into overlapping 300bp 

windows, and aligned FAIRE-seq reads were converted to signal counts in each window, for all 

samples. Window counts showed a slight evidence of batch effect and were corrected using the 

ComBat software (Figure 3.2). We then restricted to CD individuals only, and stratified the 

normalized FAIRE-seq samples into two classes according to “Ileum-Like” (IL, n=8) and “Colon-

Like” (CL, n=12) labelings derived from RNA-seq clustering. Using a two sided t-test, we identified 

windows significantly more open in either class, at a p-value cutoff of 0.01. In an effort to avoid false 

positives, we required that resulting differential regulatory regions (DRRs) overlap an F-seq peak 

call in at least 30% of samples within their respective class. Adjacent windows were merged, 

resulting in a total of 3,077 DRRs, 1,971 of which were more open in CL and 1,106 were more open 

in IL subclasses. When compared with regions selected at random from the union set of peaks 

across all samples, DRRs for each class were enriched within 50kb of genes up in the same class, 

and depleted within 50kb of the opposite class (Figure 3.3a); additionally, when using t-statistics 

from the DE analysis as a measure of up/down regulation, we found that active DRRs were more 

often associated with upregulation of nearby differentially expressed genes than with 

downregulation (Figure 3.3b). To compare our CL/IL-specific regions with known regulatory 

regions identified in ileum and colon tissue, we used chromatin immunoprecipitation sequencing 

(ChIP-seq) data from the Epigenome Roadmap project [7], and computed the aggregate ChIP signal 

for six histone marks around the DRRs for each class. Colon-Like DRRs were enriched for the 

enhancer marks H3K27ac and H3K4me1 in ChIP-seq data from colon, but not in small intestine 

(Figure 3.3c). Similarly, DRRs for the Ileum-Like subclass were enriched for the same enhancer 

marks in small intestine tissue, but no enrichment was observed in colon. We note that no 

enrichment is observed for the promoter mark H3K4me3 in either class/tissue pair, and that DRRs 

are depleted near transcription start sites (Figure 3.4), indicating that the regions of differential 
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chromatin accessibility are primarily located in enhancer regions. Previous studies have shown that 

cell-type specific chromatin changes are predominantly found in distal regions and are 

characterized by enhancer-specific histone marks [12,96,115–117].  

Interestingly, all but one of the samples classified as Ileum-Like was a CD patient; the lone 

non-IBD individual was affected with diverticulitis, a condition characterized by the formation of 

inflamed pouches in the colon. Thus, given the common underlying factor of inflammation in the IL 

samples, one possibility for the distinct molecular profiles observed is an inflammation-driven 

presence of metaplasia in the ascending colon. This hypothesis is consistent with previous results 

showing that Paneth cells, typically found in ileum, are commonly found in the colon of IBD 

individuals, and are infrequently observed in non-IBD colon [92,93].  Therefore, we propose that 

conditions of chronic inflammation in the colons of the Ileum-Like individuals – and resulting tissue 

damage, cellular turnover, and/or metaplasia – may be the underlying cause of this molecular 

phenotype. Additionally, we note that visual inspection of disease behavior and location in CD 

patients (Table 3.1) revealed no obvious correlation with IL/CL stratification, suggesting no clear 

association between metaplasia and disease severity. 

 

Inflammatory pathways are enriched for differential expression between “Colon-Like” Crohn’s 

samples and non-IBD individuals 

To investigate genes implicated in CD pathogenesis in the colon, we removed the 10 

samples with ileal gene signatures and focused exclusively on the 11 CD and 11 non-IBD “Colon-

Like” individuals with paired RNA-seq and FAIRE-seq data. A two sided t-test on log-normalized 

RPKM values identified 51 and 507 genes up/downregulated in CD, respectively, at p < 0.05 (Figure 

3.5a). Hierarchical clustering of these genes was similarly reflective of the phenotypic breakdown in 

samples (Figure 3.5b). We note that when corrected for multiple testing, none of these genes 

attained an FDR < 0.05; this overall low significance of expression differences may be attributable 
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to the heterogeneous nature of the disease and its underlying causes, differences in cell populations 

obtained from individual biopsies, a subtle expression change in the context of uninflamed colon 

tissue, or some combination thereof. Nonetheless, a GO analysis performed for genes upregulated in 

CD (p < 0.05) revealed strong enrichments for antibacterial response, immune response, response 

to stress, and inflammation (Table 3.3). A similar GO enrichment analysis for downregulated genes 

returned top hits for differentiation, stem cell development, and proliferation, suggesting that 

processes involving normal epithelial cell turnover may be downregulated in CD relative to non-

IBD colon tissue (Table 3.4).  

We next asked whether chromatin profiles at the transcription start sites (TSSs) of 

differentially expressed genes correlated with expression profiles between classes. As expected, we 

observed a higher overall FAIRE signal in non-IBD samples near TSSs of the genes upregulated in 

non-IBD tissue. Surprisingly, however, no differential signal was observed at the TSSs of the 51 DE 

genes upregulated in CD (Figure 3.5c). This may be attributable to small sample size and/or known 

technical issues with FAIRE-seq in highly-accessible regions such as promoters, whereby DNA that 

is highly depleted in nucleosomes can become overly sonicated and therefore is not sequenced at 

high levels  (personal communication, Terrence S. Furey). We note that H3K4me3 signal at the TSS 

for these genes is markedly higher in macrophage and monocyte cell types, and lower in epithelial 

cell derived cell lines (Figure 3.6). This suggests that upregulation of these genes in CD colon tissue 

is driven by the macrophage cell population present in the lamina propria, where resident 

macrophages remain transcriptomically poised for in inappropriate immune response to bacteria, 

even in macroscopically uninflamed tissue. 
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Colon tissue FAIRE-seq identifies phenotype-specific regulatory regions that co-localize near 

differentially expressed genes and show differing enhancer potential under inflammatory 

conditions 

To investigate whether the chromatin landscape in colon tissue differs between CD and 

non-IBD individuals, we used the same “Colon-Like” cohorts as in the RNA-seq analysis, consisting 

of 11 CD and 11 non-IBD individuals. We used a two sided t-test on FAIRE signal for genome-wide 

300bp windows, and restricted differential regions to those that overlapped an F-seq peak in at 

least 30% of their respective class. At a p-value cutoff of 0.01, we identified a total of 751 and 740 

differential regulatory regions specific to CD and non-IBD, respectively (Figure 3.7a). We used the 

ontology enrichment software GREAT [118] to associate nearby genes with the class-specific 

regions, and found significant enrichment for genes up/down-regulated in macrophages, peripheral 

blood mononuclear cells, dendritic cells, T cells, and B cells in response to environmental stimuli 

(Figure 3.7b). Of particular interest, we discovered enrichment near non-IBD regions for the term 

“Genes up-regulated in comparison of control macrophages versus macrophages treated with 

interferon alpha,” while the top result for CD DRRs was “Genes down-regulated in comparison of 

untreated macrophages versus those cultured with M-CSF and IFNG.” Taken together, the direction 

of regulatory effects from these annotations are consistent with the fact that the aberrant immune 

response in CD is driven by infiltrating macrophages that initiate an inappropriate immune 

response to the host microbiota [88,90,91].  

Next, we sought to identify candidate transcription factors that play a role in regulating IBD-

specific genes by binding to regions of differential chromatin. We used the DREME package in the 

MEME software suite [112] for- de-novo identification of sequences present in the class-specific 

DRRs; results were compared to the HOCOMOCO database of transcription factor motifs and scored 

using the Tomtom package in the MEME suite [113]. At an FDR cutoff of 0.2, we identified 3 

significantly enriched motifs for each class. In CD regions, top hits were for BARX2, HXC6, and SRY, 
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while in non-IBD regions, enrichments were identified for NR2F6, ATF5, and CDX1 (Figure 3.7c). 

Interestingly, NR2F6, the top hit for the non-IBD regions, has been shown to compete with the 

transcription factor NFAT at promoter of the pro-inflammatory cytokine gene IL17a in CD4+ T cells 

[119], thereby reducing transcriptional output. Enrichment of NR2F6 binding sites in non-IBD 

FAIRE regions may suggest a more general role for maintaining an anti-inflammatory phenotype in 

immune cells present in non-IBD tissues. 

To determine whether the DRRs for either class were enriched for inflammation-specific 

epigenetic changes, we downloaded ChIP-seq data for H3K27ac marks in sigmoid colon, which was 

assayed in both inflamed (colonectomy, ulcerative colitis) and uninflamed (colectomy due to 

carcinoma) individuals [111]. We then computed the aggregate ChIP-seq signal across the full set of 

DRRs for each class, normalized for overall read count. In non-IBD regions, we found enrichment of 

H3K27ac marks in uninflamed colon, which was reduced in the presence of inflammation, 

suggesting that under inflammatory conditions, these regions undergo a reduction in their 

regulatory potential. However, no enrichment of H3K27ac marks was observed in either condition 

for CD regions (Figure 3.7d). These results suggest that DRRs that are closed in CD may be open and 

actively regulating gene expression in uninflamed, non-IBD colon tissue, but that an inflamed 

microenvironment reduces the regulatory capacity. On the other hand, the decreased accessibility 

of these regions in CD individuals may reflect a baseline state that retains the epigenetic features of 

inflammation, even in the macroscopically uninflamed setting. 

Finally, we investigated the spatial relationship between chromatin landscape changes and 

differential expression. For each class, we computed the fraction of DRRs within 50kb of a DE gene 

(p < 0.05). When compared with regions selected at random from the union set of peaks across all 

22 individuals, we found that CD DRRs tended to be closer to genes upregulated in CD than 

expected by chance, and were depleted near genes upregulated in non-IBD individuals (Figure 

3.7e). Similarly, non-IBD DRRs were located closer to genes upregulated in non-IBD, and were 
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depleted near TSSs of CD genes. These results suggest a functional link between chromatin 

conformation and gene expression in CD, whereby regions of open chromatin tend to associate with 

upregulation of nearby genes. 

 

Colon tissue open chromatin is enriched for Crohn’s Disease GWA SNPs 

IBD risk loci have been shown to be enriched in both colon tissue eQTL data [120] and 

DNaseI hypersensitive sites in immune cells [95,121]. Here, we asked whether GWA hits for CD are 

enriched in regions of open chromatin in colon tissue, and whether this enrichment is preferential 

for regions found only in CD individuals. We obtained a list of 163 Crohn’s Disease-annotated SNPs 

from the NHGRI-EBI GWA catalog and mapped them to their respective sets of LD buddies, using 

the HapMap Central European ancestry (CEU) reference panel and an R2 threshold of 0.8, resulting 

in a total of 3,179 SNPs. For each sample, the top 50,000 peaks called with F-Seq [110] were 

overlapped with the candidate GWA set, resulting in an overall overlap score. To create a null 

distribution for comparison, we created 1,000 sets of randomly-chosen SNPs, matched to the 163 

SNP CD seed set for number of LD buddies, MAF, distance to nearest TSS, distance to nearest TES, 

and exonic/genic annotation. These null sets were expanded to sets of LD buddies based on the 

same criteria as the CD GWA SNPs, and were then overlapped with each of the sample peak sets. In 

most colon tissue samples, we observed an enrichment of CD GWA SNPs in peak regions of open 

chromatin compared to the expected scores under random chance (Figure 3.8a), suggesting that 

whole colon is a relevant tissue type for investigating the mechanism of disease. However, this 

enrichment was not specific to CD samples, and was similarly observed in non-IBD individuals. 

When restricting to peaks found exclusively in CD or non-IBD individuals, we observed only modest 

enrichment of GWA SNPs in CD-specific peak regions (Figure 3.8b), suggesting that the chromatin 

conformation alone at GWA loci may not be sufficient to contribute to disease. Additionally, when 

pooling all peaks across samples and performing overlap analysis stratified by consistency of the 
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peak call across samples, we found enrichment at all cutoffs, but no increase of enrichment as peak 

consistency increased (Figure 3.9). 

 

Correlation between FAIRE-seq signal and expression level of DE genes identifies candidate 

functional regulatory elements implicated in disease 

In order to prioritize the most significant regulatory regions for follow up study, we 

annotated linkages between differential regions of open chromatin and nearby target genes that 

showed evidence of differential expression. For each DRR, we pooled all 22 samples and computed 

the Spearman rank-based correlation between FAIRE signal and expression level of all DE genes 

within 1Mb. To assign statistical significance for each chromatin/expression association, we 

computed Spearman correlations under 1,000 permutations of the sample labels. Furthermore, 

since the number of DE genes located proximal to a DRR will vary randomly, some DRR will be 

tested against many more genes than others. Therefore, we corrected for multiple testing bias 

separately for each DRR using a Benjamini-Hochberg FDR correction. We identified a total of 72 

regulatory-region-to-gene mappings, under the criteria that the target gene be differentially 

expressed at p < 0.1, and the FDR for the chromatin-to-expression linkage be less than 0.1. Of these 

linkages, 25 and 47 were specific to CD and non-IBD-specific DRR, respectively. We note that only 

63.9% (46 out of 72) of the associations between DRRs and DE genes appeared to be associated 

with upregulation; the remaining associations implied a downregulation of the target gene (Table 

3.5). These region-gene pairs represent excellent candidates for follow-up experimental validation, 

based on their high likelihood of functional association with CD. 

 

DISCUSSION 

In 10 out of 33 tissue samples biopsies from colon, we found strong evidence of ileal 

molecular signatures, underscoring the previously-described heterogeneity of colon tissue, 
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particularly among IBD individuals. Among CD samples, no evidence of association was observed 

between presence of metaplasia and disease subtypes. Of note, the chromatin profiles for “Ileum-

Like” individuals differed only at gene-distal, enhancer specific regions with lower overall FAIRE-

seq signal, which were globally undetectable in principal components and clustering analysis. 

Without matched RNA-seq data from the same individuals, identifying this molecular stratification 

would have been extremely difficult. This result highlights the importance in performing thorough 

QC at the level of tissue composition when studying IBD in colon tissue, particularly when biopsies 

are taken from cecum and ascending colon, where metaplasia has been found to be most prevalent 

[92,93].  

Overall, the disease-specific effects we identified in uninflamed colon tissue were far more 

subtle than the effects distinguishing the “Colon-Like”/”Ileum-Like” classes. This was particularly 

evident for gene expression changes, where immune-related pathways were only subtly 

upregulated in colon tissue of CD individuals. One potential explanation is that in a macroscopically 

uninflamed setting, relevant immune cell types in CD display chromatin landscapes that are 

molecularly “poised” for initiating a transcriptional immune response, but remain relatively 

inactive until inflammation occurs. Alternatively, the cell population in CD tissues may consist of 

slightly higher proportions of disease-specific cell types, such as infiltrating macrophages that are 

not programed for immune tolerance. Though appreciable expression differences may exist 

between the macrophage populations within CD/non-IBD tissues, similarities in expression profiles 

of additional cell types, such as epithelial cells, fibroblasts, and neurons, may dampen the signal 

distinguishing disease from normal. 

In the tissue biopsies molecularly defined as “Colon-Like,” we found general enrichment of 

CD associated GWA SNPs. Interestingly, CD-specific regions of open chromatin showed little 

enrichment of GWA SNPs relative to regions open only in non-IBD, and enrichment did not increase 

with consistency of chromatin accessibility across individuals. This highlights the disease-relevance 
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of regulatory regions defined by FAIRE-seq in whole colon tissue, and suggests that chromatin 

conformation at a GWA locus may be invariant with respect to presence of a risk allele.  

We identified hundreds of regulatory regions more accessible in either CD or non-IBD, 

which localize near genes annotated for immune cell function. In particular, genes near non-IBD 

DRRs were associated with upregulation in control macrophages relative to macrophages 

stimulated with interfereon alpha, a cytokine transcribed at higher rates in CD lamina propria 

mononuclear cells (LPMC) [122], which include lymphocytes, monocytes and macrophages. 

Meanwhile, the top enrichment for genes near CD DRRs involved genes upregulated in 

macrophages by interferon gamma, which is also upregulated in Crohn’s disease LPMC [122]. Using 

a loose threshold of p < 0.05, we defined a set of 51 and 507 genes that were up/downregulated, 

respectively, in CD. Upregulated genes were enriched near DRR regions more open in CD, while 

downregulated genes tended to co-localize with DRRs that were closed in CD. In conjunction, these 

result show that alterations in chromatin accessibility are bidirectional in CD; furthermore, regions 

that “open” in CD more often result in upregulation of nearby inflammation-related genes, while 

those that “close” tend to downregulate genes that characterize an uninflamed or immune-tolerant 

phenotype. 

Applying motif enrichment analysis to the sequences under DRRs, we identified NR2F6 as a 

potential regulator in the setting of non-IBD. NR2F6 has been shown to produce an anti-

inflammatory response in T cells by reducing transcription of the inflammatory cytokine IL-17A. 

The loss of chromatin accessibility at these regions in CD raises the intriguing possibility that 

NR2F6 plays a further role in maintaining immune tolerance by regulating transcription of 

additional genes.  

In summary, we verified that FAIRE-seq performed in whole colon tissue is suitable to 

identify chromatin landscape changes associated with Crohn’s disease. Among hundreds of 

candidate regulatory regions associated with disease, we highlighted dozens that link to nearby 
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differentially expressed genes, representing ideal candidates for future follow-up studies. These 

results provide key insights into the functional mechanisms underlying Crohn’s disease, and 

provide a better understanding of the molecular bridge that connects genotype and phenotype in 

CD.   
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Figure 3.1. Gene expression signatures in colon tissue reveal molecular subtypes 

corresponding to colon- and ileum-specific transcription. A. Principal components analysis 

(PCA) stratifies samples into two distinct subtypes. B. Unsupervised hierarchical clustering of log-

normalized RPKM values. When stratified into subtypes based on PCA, transcripts differentially 

expressed between “Colon-Like” and “Ileum-Like” strongly separate the molecular classes. C. 

Overlap and direction of effect for differentially expressed genes compared to Comelli et al. [114] 

analysis comparing gene expression profiles in ileum and transverse colon. 
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Figure 3.2. Principal components analysis of genome-wide FAIRE-seq signal. A. First and 

second principal components, for 300bp windows normalized by aligned read count, colored by 

batch. B. Top two principal components after batch effect correction.  

 

 

 

 



 

Figure 3.3. Molecular profiles defined by FAIRE-seq correspond to tissue classifications defined by RNA. A. Fraction of 

genes upregulated in either Colon-Like or Ileum-Like classes that co-localize with differential regulatory regions (DRRs) defined in 

each class. Actual rate of co-localization for pairwise analyses (blue); co-localization rates expected under random chance (pink). 

B. Density distributions for t-statistics of differentially expressed genes near DRRs defined for each class. DRRs for each class tend 

to co-localize with a differentially expressed genes that are upregulated in the same class. C. Aggregate ChIP-seq signal at DRRs for 

each class, in both small intestine and colon tissue. Ileum-Like DRRs are marked for H3K27ac enhancer activity in small intestine, 

but not colon. Colon-Like DRRs show cell type specific H3K27ac marks in colon, but not small intestine.
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Figure 3.4. Absolute distance to nearest TSS, for differential regulatory regions (DRRs) 

specific to Colon-Like and Ileum-Like classes. DRRs specific to either class (blue) are depleted 

near TSSs relative to the union set of peak regions (white). 

 

 

 

 

 



 

 

Figure 3.5. Differential gene expression between CD, non-IBD individuals, in Colon-Like subset. A. MA plot of log-

normalized RPKM values. Differentially expressed genes (p < 0.05) in red. B. Unsupervised hierarchical clustering of 51 and 507 

genes up/downregulated, respectively, in CD. C. Aggregate FAIRE-seq signal at TSSs of upregulated genes (top); downregulated 

genes (bottom), by disease classification.  
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Figure 3.6. H3K4me3 signal at TSS of genes upregulated in CD. Normalized signal for 

macrophage cell types (CD14, CD34), T cells (CD3), peripheral blood monocytes (PBMC), and 

epithelial-derived cells (HCT116, CaCo2, ColonicMucosa).
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Figure 3.7. Differential chromatin accessibility analysis for CD, non-IBD highlights disease-

specific pathways and regulatory mechanisms. A. Unsupervised clustering of 751 and 740 

differential regulatory regions (DRRs) for CD and non-IBD classes. B. GREAT analysis enrichments 

for genes co-localizing with DRRs in non-IBD (left); CD (right) highlight pathways in disease-

related, immune-specific cells. C. Significantly enriched motifs within each set of DRRs. D. ChIP-seq 

signal at CD (left) and non-IBD (right) DRRs in inflamed (red) and normal (green) colon. E. Fraction 

of DRRs that co-localize with genes upregulated in either CD or non-IBD classes. Actual rate of co-

localization for pairwise analyses (blue); co-localization rates expected under random chance 

(pink).  

 

 

 

 

 

 

 

 



 

Figure 3.8. Genome Wide Association (GWA) SNP overlap with FAIRE-seq open chromatin regions in colon tissue. A. Green dots 

represent overlap rate of CD GWA SNPs and LD buddies for top 50,000 peaks defined in each CD and non-IBD individual. Boxplot for each 

individual represents distribution of overlap counts for 1,000 null sets of paired SNPs. B. Overlap rate for GWA SNPs in peaks specific to 

CD (left) and non-IBD (right) cohorts.
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Figure 3.9. Overlap of genome wide association (GWA) SNPs for CD, with peak calls stratified 

by consistency. Rate of overlap is enriched in all pooled peak union sets, but does not increase in 

peaks found in higher fraction of individuals. 

 

 



 

91 
 

ID Disease 
Status 

Phenotype Genotype FAIRE RNA FAIRE 
Subclass 

RNA 
Subclass 

22 nonIBD Colon cancer X X X  C 

23 nonIBD Colon cancer  
(Hartmann reversal) 

X X X  C 

25 nonIBD Diverticulitis X X X  I 

27 nonIBD Diverticulitis X X X  C 

30 nonIBD Colon cancer X X X  C 

32 nonIBD Colon cancer X X X  C 

36 nonIBD Colonic inertia X X X  C 

39 nonIBD Colon cancer X X X  C 

43 nonIBD Colonic inertia X X X  C 

48 nonIBD Adenoma X X X  C 

49 nonIBD Adenoma X X X  C 

50 nonIBD SI Neuroendocrine 
tumor 

X X X  C 

20 CD A1L1B2 X X X I I 

21 CD A2L2B2 X X X I I 

29 CD A2L3B3 X X X I I 

51 CD A2L3B2 X X X C C 

54 CD A1L2B1 X X X C C 

62 CD A2L3B3 X X X C C 

63 CD A1L3B1 X X X C C 

64 CD A2L3B3 X  X  I 

405 CD A2L2B1 X X X C C 

407 CD A2L2B3p X X X C C 

408 CD A2L2B1 X X X C C 

413 CD A2L2B1 X X X I I 

420 CD A2L2B2p X X X C C 

422 CD A1L3B2 X X X I I 

424 CD A2L3B3 X X X I I 

429 CD A2L3B1 X X X C C 

431 CD A1L2B1 X X X C C 

433 CD A2L3B1 X X  C  

434 CD A2L3B3 X X X I I 

440 CD A2L3B2 X X X C C 

450 CD A2L1B3 X X X I I 
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Table 3.1. Data availability, clinical phenotype, and molecular subtype designations for 

patient cohort. Montreal classification is listed under phenotype for CD individuals; clinical 

designation and reason for resection is provided for non-IBD individuals. Molecular subclass 

designations are given by:  C=“Colon-Like”; I=“Ileum-Like.” For all CD and non-IBD patients, biopsy 

was taken from macroscopically uninflamed regions, in either cecum or ascending colon; for cancer 

resections, biopsy was performed at sites distal to tumor. 
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Pvalue Term 

8.50E-11 organic anion transport 

1.22E-10 anion transport 

5.71E-07 response to drug 

1.31E-06 drug metabolic process 

1.45E-06 exogenous drug catabolic process 

3.41E-06 terpenoid metabolic process 

9.35E-06 small molecule metabolic process 

1.17E-05 organic acid transport 

1.17E-05 carboxylic acid transport 

1.51E-05 ion transport 

1.74E-05 lipid metabolic process 

2.20E-05 one-carbon metabolic process 

2.20E-05 triglyceride catabolic process 

2.64E-05 transmembrane transport 

3.10E-05 digestion 

3.13E-05 regulation of systemic arterial blood pressure by hormone 

3.13E-05 neutral lipid catabolic process 

3.13E-05 acylglycerol catabolic process 

3.21E-05 bicarbonate transport 

3.21E-05 plasma lipoprotein particle assembly 

 

Table 3.2. Top 20 GO analysis results for genes differentially expressed between Ileum-Like 

and Colon-Like patient subsets. 
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Pvalue Term 

7.60E-09 immune response 

7.77E-09 defense response 

1.12E-07 immune system process 

1.25E-07 response to external biotic stimulus 

1.25E-07 response to other organism 

1.78E-07 response to biotic stimulus 

4.35E-07 defense response to other organism 

1.24E-06 response to bacterium 

4.77E-06 inflammatory response 

1.20E-05 immune effector process 

1.28E-05 humoral immune response 

1.36E-05 antibacterial humoral response 

1.44E-05 response to external stimulus 

1.87E-05 antimicrobial humoral response 

2.01E-05 innate immune response 

3.80E-05 response to type I interferon 

3.80E-05 type I interferon signaling pathway 

3.80E-05 cellular response to type I interferon 

0.000111 defense response to bacterium 

0.000115 response to stress 

 

Table 3.3. Top 20 GO terms for genes upregulated in CD samples. 
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Pvalue Term 

2.34E-05 stem cell differentiation 

2.70E-05 mating 

7.02E-05 stem cell development 

9.40E-05 muscle cell proliferation 

9.45E-05 copulation 

9.50E-05 tissue development 

0.000262 penile erection 

0.000284 negative regulation of developmental process 

0.000337 mesenchymal cell differentiation 

0.000581 spongiotrophoblast differentiation 

0.000581 endothelin receptor signaling pathway 

0.000591 smooth muscle cell proliferation 

0.000607 reproductive structure development 

0.000638 reproductive system development 

0.000668 regulation of cyclic nucleotide metabolic process 

0.000975 mesenchymal cell development 

0.000984 negative regulation of cell differentiation 

0.00106 regulation of myeloid leukocyte differentiation 

0.001172 sensory perception of pain 

0.001187 single organism reproductive process 

 

Table 3.4. Top 20 GO terms for genes downregulated in CD samples. 
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DRR Chr DRR StartPos DRR Stop Pos Gene Gene TSS Gene TES Gene LogFC 

chr1 234659100 234659400 MIR4753 2.35E+08 235353432 -0.38345 

chr12 96883000 96883300 NTN4 96184536 96184537 -0.21654 

chr17 7589800 7590100 MIR4521 8090262 8090263 -0.94453 

chr17 66510000 66510300 ABCA8 66951533 66951534 -0.30759 

chr2 28112400 28112700 FTH1P3 27616443 27616444 -0.32693 

chr11 14657100 14657400 SPON1 13984183 13984184 -0.38118 

chr2 224858400 224858700 SERPINE2 2.25E+08 224896196 -0.39724 

chr14 74256800 74257100 DNAL1 74111577 74111578 -0.21512 

chr1 16876000 16876300 NBPF11 16940100 16940101 -0.14593 

chr7 100143500 100143800 GAL3ST4 99766373 99766374 -0.49859 

chr19 6076900 6077200 ZNF557 7069470 7069471 -0.15419 

chr20 17517700 17518000 SNX5 17949634 17949635 -0.07242 

chr3 24084300 24084600 THRB 24536313 24536314 -0.57633 

chr1 28100600 28100900 SCARNA1 28160911 28160912 -0.21578 

chr12 40501300 40501600 CNTN1 41302158 41302159 -0.6701 

chr19 21950400 21950700 ZNF431 21324839 21324840 -0.12263 

chr8 103423000 103423300 KLF10 1.04E+08 103666193 -0.18031 

chr13 19447400 19447700 ZMYM5 20437776 20437777 -0.13375 

chr7 128200500 128200800 RBM28 1.28E+08 127983963 -0.13014 

chr12 15358600 15358900 PTPRO 15475190 15475191 -0.40886 

chr21 11017700 11018000 BAGE2 11098925 11098926 0.229919 

chr21 11017700 11018000 BAGE3 11098925 11098926 0.229919 

chr7 32780100 32780400 RP9 33149002 33149003 -0.12237 

chr20 17517700 17518000 PET117 18118498 18118499 -0.07982 

chr21 11017700 11018000 BAGE5 11098925 11098926 0.216943 

chr21 11017700 11018000 BAGE4 11098925 11098926 0.216969 

chr17 25642200 25642500 NOS2 26127555 26127556 0.592232 

chr13 79962700 79963000 SPRY2 80915086 80915087 -0.10617 

chr10 74837100 74837400 MRPS16 75012451 75012452 -0.07296 

chr15 31781000 31781300 ARHGAP11B 30918878 30918879 -0.15675 

chr7 100143500 100143800 AP4M1 99699129 99699130 -0.09966 

chr14 97263000 97263300 ATG2B 96829678 96829679 0.065612 

chr16 21357900 21358200 EEF2K 22217591 22217592 -0.13601 

chr17 12159600 12159900 ZNF18 11900689 11900690 -0.12128 

chr7 131012100 131012400 PODXL 1.31E+08 131241377 -0.18672 

chr10 64564000 64564300 ADO 64564515 64564516 -0.10134 

chr1 234659100 234659400 IRF2BP2 2.35E+08 234745272 -0.07284 

chr6 56607100 56607400 BMP5 55740375 55740376 -0.19978 

chr11 10955600 10955900 SNORD97 10823155 10823156 -0.06888 

chr19 21950400 21950700 ZNF708 21512212 21512213 -0.08677 
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chr15 32836600 32836900 GREM1 33010204 33010205 -0.2245 

chr16 28722700 28723000 EIF3CL 28415162 28415163 -0.09543 

chr7 86785900 86786200 ABCB1 87342639 87342640 -0.20763 

chr1 232764800 232765100 NTPCR 2.33E+08 233086370 -0.10903 

chr16 28722700 28723000 EIF3C 28699878 28699879 -0.09825 

chr5 54455700 54456000 GZMK 54320106 54320107 0.60093 

chr3 15643400 15643700 METTL6 15469042 15469043 -0.09204 

chr7 85416900 85417200 SEMA3D 84751247 84751248 -0.62259 

chr15 24738800 24739100 SNORD116-24 25339182 25339183 -0.52605 

chr15 24738800 24739100 SNORD116-7 25307478 25307479 -0.40905 

chr15 24738800 24739100 SNORD116-5 25307478 25307479 -0.40905 

chr15 24738800 24739100 SNORD116-2 25299355 25299356 -0.39398 

chr15 24738800 24739100 SNORD116-3 25302005 25302006 -0.41332 

chr15 24738800 24739100 SNORD116-9 25302005 25302006 -0.41332 

chr15 24738800 24739100 SNORD116-22 25335068 25335069 -0.35292 

chr15 24738800 24739100 SNORD116-8 25315577 25315578 -0.40899 

chr16 57026500 57026800 NLRC5 57050985 57050986 0.237747 

chr15 24738800 24739100 SNORD116-16 25327913 25327914 -0.31242 

chr15 24738800 24739100 SNORD116-19 25328733 25328734 -0.26733 

chr15 24738800 24739100 SNORD116-17 25328733 25328734 -0.26733 

chr15 24738800 24739100 SNORD116-14 25325287 25325288 -0.29379 

chr2 24664200 24664500 TP53I3 24308085 24308086 0.099092 

chr11 3936100 3936400 SNORA54 2985123 2985124 -0.13343 

chr15 24738800 24739100 SNORD116-15 25326432 25326433 -0.32917 

chr5 125346200 125346500 PHAX 1.26E+08 125936607 -0.08546 

chr11 104730900 104731200 CASP1 1.05E+08 104905885 0.191626 

chr15 24738800 24739100 SNORD116-6 25310171 25310172 -0.30651 

chr11 104730900 104731200 CASP5 1.05E+08 104893896 0.287258 

chr14 106869200 106869500 ELK2AP 1.06E+08 106139145 0.523947 

chr14 20178400 20178700 RPPH1 20811570 20811571 0.0382 

chr17 44458500 44458800 MGC57346 43697711 43697712 -0.14022 

chr15 24738800 24739100 SNORD116-23 25336931 25336932 -0.30978 

 

Table 3.5. Differential regulatory regions (DRRs) and candidate target genes. Annotations for 

CD-open (green) and closed  (red) DRRs that link to a differentially expressed (DE) gene within 

1Mb, using cutoffs FDR < 0.05 for DRR-to-gene expression linkage, p < 0.01 for DRR significance, 

and p < 0.05 for DE significance. 
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CHAPTER IV 

Discussion 

 

Despite each containing the same copy of DNA, the 200 different cell types in a single 

human body display a broad range of phenotypic variation and specialization. This remarkable 

level of diversity is achieved by regulating the cell’s information content, controlling how and when 

genes are transcribed. Thus understanding a genome’s relationship with phenotype requires a 

comprehensive model centered on the regulatory architecture.  

Recent advances in sequencing technology have enabled a high-throughput approach to 

studying the molecular signatures of cell lines and tissues, both in human and model organisms. 

These studies have painted a vast molecular portrait of gene expression patterns, transcription 

factor activity, chromatin architecture and interactions, histone modifications and DNA methylation 

across hundreds of different cell types and conditions. Integrative analyses of these -omics data sets 

have increased our understanding of the functional genome, identifying regulatory regions, gene-

gene interactions, and SNPs associated with transcriptional profiles. However, more powerful 

statistical methods for performing associating tests at the genome-wide scale are necessary to 

identify genetic variants and epigenetic factors with small or distal effects on target genes. 

Additionally, understanding the regulatory architecture and how it relates to disease will require an 

integrative approach in a disease-relevant tissue or cell type. Incorporating multi-dimensional data 

in disease-specific conditions will not only increase power for identifying trait-specific variants 

with small effect sizes, but will also provide immediate context for mechanism of effect and suggest 

novel gene targets for therapy.  
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In chapter 2, I described a novel method, Network-based, Large-scale Identification oF 

disTal eQTL (NetLIFT), for detecting genetic variants associated with expression of genes located 

distally in genomic space. NetLIFT uses pairwise partial correlations between gene expression 

levels to construct a network representing likely gene-gene interactions, and performs association 

testing of genetic variants and genes that are most likely to be regulatory targets. By reducing the 

search space and number of association tests performed, this method increased power to detect 

distal eQTL, and I was able to discover thousands of previously unidentified SNP-gene associations. 

Additionally, patterns of linkage revealed insights into gene regulatory networks and effects on 

phenotype. Among genes predicted to mediate expression effects on distal targets, I found a 

consistent enrichment for metabolic functional annotation, suggesting that feedback mechanisms 

within these pathways regulate co-expressed, functionally-related modules of genes. When I 

applied NetLIFT to gene expression data from mouse liver, patterns of local and distal linkages 

suggested that many expression effects were dependent on the combinatorial genetic background 

at the local and distal sites. Furthermore, target genes related to specific genetic background were 

enriched for annotations related to body weight, suggesting a potential role for these genes in 

modulating previously described weight differences between strains [63]. The increased power of 

this method will enable detection of more genetic variants with eQTL effects, and highlight their 

associations with phenotype. Annotating SNP-gene effects with greater resolution may also lend 

mechanistic interpretation to SNPs linked to complex traits and disease.

In the preceding chapter, I use FAIRE-seq and RNA-seq data from colon tissue of Crohn’s 

disease (CD) and non-IBD individuals to identify regulatory regions and genes associated with 

disease. I identified a striking stratification of samples into two molecular subtypes, and showed 

that the features associated with the “Ileal-Like” subtype display markers specific to small intestinal 

tissue. Metaplasia of small intestinal cells in the colon has been previously described in CD [92,93]; 

however, this represents the first study to describe the molecular signature characterizing these 
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local tissue abnormalities. In an analysis of tissue biopsies classified as “Colon-Like,” I identified 

gene expression signatures specific to disease and non-IBD classes. Notably, transcriptional 

changes were moderate in effect size, potentially due to heterogeneous nature of the tissue, 

reduced overall effect in the setting of uninflammed tissue, or both. I then investigated the 

chromatin landscape in disease/non-IBD cohorts, and found over 700 regulatory regions specific to 

each class. I showed that these regions are preferentially located near differentially expressed 

genes, providing evidence of functional association. Additionally, nearby genes were enriched for 

annotation specific to disease-relevant immune cells, and in particular reflected transcriptional 

changes identified in macrophages stimulated with pro-inflammatory cytokines. A motif analysis of 

these regions highlighted three transcription factors relevant to each cohort, implicating possible 

driver roles for these genes in either maintaining immune tolerance or producing an inflammatory 

response. These results demonstrated the suitability of using molecular assays performed in whole 

colon tissue as a means to study the functional regulatory architecture of CD, and provide evidence 

of the functional effect for many putative disease-associated regulatory regions.  

More than ten years have passed since the first genome wide association (GWA) study was 

conducted. Since then, a flood of additional research has annotated thousands of genetic variants 

associated with hundreds of complex traits and diseases. However, our understanding of how most 

of these variants are functionally related to a trait of interest is still only in its infancy. The fact that 

nearly 90% lie in non-coding regions presents an enormous challenge for the post-GWA era. At a 

single GWA locus, there are often dozens of candidate SNPs, each in strong linkage disequilibrium 

with the lead associated SNP. Determining the causal variant and the mechanism of effect requires 

first identifying a target gene and relevant tissue; once this has been established, reporter assays 

and electrophoretic mobility shift assays (EMSAs) can be used to experimentally validate allelic 

effects on gene expression and protein binding, respectively, at the putative enhancer/silencer 

region. However, this process is extraordinarily time consuming and expensive. Thus, annotations 
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derived from large-scale consortia such as the ENCODE project and the Epigenome Roadmap are 

instrumental in prioritizing SNPs based on their localization within DNA annotated for regulatory 

function. Statistical models have shown strong enrichment for trait-associated SNPs within 

regulatory regions [17,95,121]; meanwhile, results from eQTL studies have shown that GWA SNPs 

often associate with transcription. Incorporating this regulatory information with GWA results will 

help to address the frustrating question of missing heritability seen in complex traits. By directly 

integrating regulatory information in a GWA modeling approach, one study found that the number 

of traits rising to genome-wide significance rose by 5% [121]. Increasing the resolution of 

association mapping by directly and indirectly incorporating additional genomics data will likely 

allow for the discovery of variants with smaller effect sizes that play a role in disease.  

Though the importance of incorporating genomic information cannot be understated, it is 

equally important to select the appropriate tissue for the trait of interest, and to conduct regulatory 

studies in both diseased and normal tissue. Cell lines and tissues included in ENCODE and 

Epigenome Roadmap typically represent immortalized cell lines or otherwise “normal” tissue, and 

may differ from the in-vivo chromatin states present in disease, particularly at regions that are 

specific to disease. In a previous study, FAIRE-seq was used to characterize chromatin landscape 

changes specific to tumor tissue in renal cell carcinoma [97], and highlight transcriptional changes 

associated with mutations in chromatin modifying proteins. In the preceding chapter, I used a 

similar approach in whole colon tissue biopsies of CD and non-IBD individuals to FAIRE-seq and 

RNA-seq in CD to annotate possible causal genes as well as their associated enhancer regions and 

transcription factor drivers. Disease-focused inter-omics analyses such as these will be 

instrumental in interpreting existing results from GWA, and generating new leads.  

Continual advances in sequencing technology will further facilitate this aim. The recently 

described assay for transposase-accessible chromatin using sequencing (ATAC-seq) was originally 

shown to identify genome wide regulatory regions using as few as 500 cells [123], far fewer than 
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the 1-50 million cells typically required for FAIRE-seq and DNase-seq. ATAC-seq has since been 

successfully applied to single cells [124], and prevents tantalizing new opportunities for studying 

traits in tissues with limited cell numbers. In CD, this technology would make possible epigenome 

profiling specifically targeted to immune cell populations in the lamina propria. For instance, local 

macrophage populations could be isolated from both diseased and normal individuals, and 

regulatory regions specific to the macrophage populations could be defined. This would avoid the 

problem of signal convolution when using FAIRE-seq applied to whole tissue, allowing for greater 

power in identifying relevant regions of interest, and better biological interpretability for their 

effect in a specific cell type.  

In conclusion, annotating the functional genome remains a major challenge for the post-

GWA era (perhaps even more challenging than watching Mega Vizura miss 14 free throws in a row). 

Understanding the genetic basis of complex traits will only be possible by investigating their 

equally complex underlying regulatory architecture. Although large scale catalogues of genomic 

annotations have greatly complemented what we know about genetic variants associated with 

complex traits and disease, increased resolution will be required to identify variants with smaller 

effect sizes. Furthermore, investigation of disease-relevant tissue will be crucial to identifying 

regulatory elements specific to a trait of interest. In this dissertation, I developed and applied 

methods for better annotating the regulatory architecture of the genome. These advances offer 

insight into the complex interplay of genetics, epigenetics, transcriptional regulation, and 

phenotype, and have provided numerous hypotheses for future functional validation.  
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