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ABSTRACT

MATTHEW WOODY: On Enhancing Air Quality Model Predictions of Particulate Matter From
Aircraft Emissions

(Under the direction of J. Jason West and Saravanan Arunachalam)

Aviation is an important mode of transportation and usage is expected to continually grow. How-

ever, aircraft emit numerous pollutants that adversely impact air quality. The goal of this work is

to provide additional certainty in air quality estimates of one of those pollutants, aircraft-attributable

PM2.5, during landing and takeoff cycles, using the Community Air Quality (CMAQ) Model and its

enhancements.

First, CMAQ’s response to secondary organic aerosol (SOA) concentrations, a component of

PM2.5, formed from aircraft emissions was examined. It was determined that at coarser model reso-

lutions (36-km and 12-km), aircraft NOx emissions lowered free radical concentrations and thereby

reduced SOA precursor oxidation. This directly resulted in the reduction of SOA concentrations,

primarily biogenic SOA. At a finer grid resolution (4-km), aircraft primary organic aerosol (POA)

emissions provided additional mass for SOA to partition onto, promoting semi-volatile organic car-

bon species to partition from the particle phase to the gas phase, increasing SOA concentrations.

Secondly, a new formation pathway for modeled PM2.5 (based on recent sampling and smog

chamber data) was incorporated into CMAQ to account for non-traditional SOA (NTSOA), SOA

formed from aircraft emissions of semi and intermediate volatile organic compounds. This new path-

way added 1.7% in January and 7.4% in July to aircraft-attributable PM2.5 at the Hartsfield-Jackson

Atlanta International Airport. Downwind of the Atlanta airport, NTSOA averaged 4.6–17.9% of

aircraft-attributable PM2.5. These contributions were generally low compared to smog chamber re-

sults due to considerably lower ambient organic aerosol concentrations in CMAQ versus those in the

smog chamber experiments.

Thirdly, alternative aircraft PM emission estimates based on a 1-D plume model were coupled

with a plume in grid (PinG) treatment for aircraft in CMAQ. This treatment increased grid-based
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monthly and contiguous U.S. average aircraft-attributable PM2.5 by 40% (from 1.9 ng m�3 to 2.7 ng

m�3) in a winter month and 12% (from 2.4 ng m�3 to 2.6 ng m�3) in a summer month. Maximum

modeled hourly subgrid scale aircraft-attributable PM2.5 concentrations were 23.7 µg m�3 in a winter

month and 59.3 µg m�3 in a summer month, considerably higher than typical grid-based aircraft

contributions ( 0.1 µg m�3).
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CHAPTER 1 INTRODUCTION

Aviation is a vital mode of transportation, rapidly transporting passengers and cargo long dis-

tances. In 2013, there were 739.3 million enplanements (passenger boardings) on domestic U.S.

flights (Federal Aviation Administration, 2014a), which is equivalent to everyone in the U.S. taking

at least one round trip flight (⇠2.5 flights per person). U.S. domestic enplanements are projected to

grow by 2.3% per year over the next 20 years, reaching an expected 1.15 billion in 2034. Passenger

growth on international flights to and from the U.S. is projected to be even greater, increasing at a rate

of 4.1% per year over the next 20 years (from 176 million enplanements in 2013 to 403 million in

2033). In terms of cargo, aviation transported 67.8 million short tons in the U.S. in 2013. Compared

to other transportation sources, aircraft transport less than 1% of the total weight both domestically

and internationally (imports and exports), moving less weight than ships, trucks, rail, and pipelines

(U.S. Department of Transportation, 2006). However, due to the high speeds at which aircraft operate,

they commonly transport high priority cargo. Therefore, aircraft transport 4% domestically and 27%

internationally of the total cargo value, second to trucks domestically and ships internationally.

While aircraft are an important mode of transportation, aircraft directly emit four of the six cri-

teria air pollutants [carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5),

and sulfur dioxide (SO2)] set by the National Ambient Air Quality Standards (NAAQS) under the

Clean Air Act. Aircraft emissions also contribute to the production of a fifth criteria air pollutant,

ozone (O3), produced by the chemical processing of aircraft emissions of nitrogen oxides [NOx, or

nitrogen oxide (NO) + NO2] and volatile organic compounds (VOCs) in the atmosphere. However,

only aircraft NOx emissions are currently regulated by the U.S. Environmental Protection Agency

(EPA) (U.S. Environmental Protection Agency, 2005) while other transportation sources are gen-

erally more heavily regulated. For example, EPA regulations currently limit emissions of 5 pol-

lutants (VOCs, NOx, CO, formaldehyde, and PM) from light-duty vehicles (cars and light trucks)

(http://www.epa.gov/otaq/standards/light-duty/ld-cff.htm).

1



Of the criteria air pollutants emitted and/or formed from aircraft emissions, aircraft contributions

to PM2.5 are likely the most uncertain due to multiple components (i.e. primary and secondary, multi-

ple chemical constituents, varying size) and formation pathways. Exposure to PM2.5 adversely effects

cardiovascular and pulmonary health due to its small size and ability to penetrate deep into the lungs

(Dockery and Pope, 1994). PM2.5 also impairs visibility (Sisler and Malm, 2000) and impacts climate

change (Bauer and Menon, 2012). Emission mitigation and control strategies across all emission

sectors have led to a 33% reduction in total national average PM2.5 concentrations between 2000 and

2012 (U.S. Environmental Protection Agency, 2013). However, over this same 12 year span, the num-

ber of total passengers traveling by aircraft in the U.S. increased by 10% and is expected to continue

growing (Federal Aviation Administration, 2014a). Furthermore, the Federal Aviation Administration

(FAA) indicates 43 hub (major) airports are located in PM2.5 non-attainment areas, exceeding any of

the 1997 or 2006 annual/daily average PM2.5 standards (Figure 1.1) (Federal Aviation Administration,

2014b). Given the opposing trends in U.S. PM2.5 concentrations and aviation activity, the current ab-

sence of PM2.5 emission control policies for aircraft, and occurrence of airports in non-attainment

areas, it is critical to accurately quantify aviation-attributable PM2.5 to provide estimates of aviation’s

current impacts on surface air quality as well help to inform future policies and possible emission

control strategies.

PM2.5 is defined as particles in the atmosphere smaller than 2.5 micrometers in diameter. It is

comprised of seven major components: elemental carbon (EC), sulfate, nitrate, ammonium, secondary

organic aerosols (SOA), primary organic aerosols (POA), and crustal material. Of these seven, aircraft

directly emit EC, sulfate and POA (primary PM2.5 species) as well as emit precursors of sulfate (as

SO2), nitrate (as NOx), and SOA (as VOCs) (secondary PM2.5 species). A sixth component, ammo-

nium, is generally emitted from agricultural activities as ammonia and neutralizes precursors of sulfate

and nitrate to form the inorganic PM2.5 species ammonium sulfate and ammonium nitrate. Therefore,

of the seven major components of PM2.5, only crustal material is neither emitted nor formed from

aircraft emissions.
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Figure 1.1: PM2.5 non-attainment areas (green) and locations of the top 99 airports in the contiguous
U.S. (red).

One method to quantify aircraft-attributable PM2.5 is by direct measurements, such as those col-

lected during the Aircraft Particle Emissions eXperiment (APEX) 1–3 measurement campaigns (Kin-

sey et al., 2010). However, these types of measurements only provide a portion of the total picture.

They generally only capture primary PM2.5 emitted by a single aircraft and often miss secondary

PM2.5 formed downwind of the aircraft. It is also difficult to scale measurements at an engine level

up to determine impacts for in-use aircraft at larger scales (e.g. airport level to regional scales). Fur-

thermore, no standardized sampling methodology currently exists for PM2.5 from aircraft. That said,

these types of measurements provide useful information for understanding and quantifying aircraft

emissions.

Alternatively, measurements can provide emission estimates for aircraft to use in air quality mod-

els, such as the Community Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006), which

are commonly used to provide source specific predictions of total and speciated PM2.5. CMAQ is a

3-dimensional regional air quality model developed and maintained by the U.S. EPA and frequently

utilized in research and regulatory applications. CMAQ simulates the major processes in the atmo-

sphere relevant to air quality (e.g. chemistry, transport, emissions) to provide predictions of both
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gaseous and particle-phase pollutants. Furthermore, model processes in CMAQ are able to represent

the complex nature of PM2.5 (comprised of multiple components which include both primary and

secondary, formed from multiple pathways, etc.).

CMAQ model estimates have shown that aircraft-attributable PM2.5 range from 3.2 ng m�3 (0.05%

of total PM2.5) on an annual average basis in the contiguous U.S. (Woody et al., 2011) to as high as 0.9

µg m�3 (9.4% of total PM2.5) at the Hartsfield-Jackson Atlanta International Airport (ATL) on a daily

average basis (Arunachalam et al., 2011). However, due to uncertainties both inherent to air quality

models and associated with the treatment of aircraft emissions in the model, studies have produced

a wide range of aircraft-attributable PM2.5 estimates. For example, air quality model estimates of

aircraft-attributable PM2.5 range from less than 1% in winter and statistically insignificant impacts

in summer from full flight emissions globally (Lee et al., 2013) to approximately 1.3% of annual

average PM2.5 from aircraft LTO activities at ATL (Arunachalam et al., 2011). Furthermore, aviation-

attributable premature mortality estimates from PM2.5 based on air quality results range from 620 per

year (Jacobson et al., 2013) to as high as 12,600 (Barrett et al., 2010) for full-flight global aircraft

emissions and from 75 (Levy et al., 2012) to 210 (Brunelle-Yeung et al., 2014) for landing and takeoff

(LTO) emissions in the U.S.

Traditionally, aircraft emissions in AQMs are treated on an airport level. In this treatment, aircraft

emissions are instantaneously diluted into the grid cell containing the airport. However, this over-

simplifies the 3-D spatial resolution of aircraft emissions. Unal et al. (2005) sought to improve this

approach in an AQM by allocating aircraft emissions in three dimensions and found that the improved

treatment lowered ozone and PM2.5 impacts from aircraft by 75–80% at ATL. Furthermore, the in-

stantaneous dilution of aircraft emissions into a grid cell can lead to non-linearities in AQM results.

For example, Arunachalam et al. (2011) indicated that aircraft contributions to SOA concentrations

at ATL varied significantly depending on the modeled grid resolutions. At coarser model grid resolu-

tions (36-km and 12-km), PM2.5 concentrations of most species increased in the immediate vicinity

of the ATL airport. However, nitrate and SOA concentrations decreased near the airport but increased

downwind (Arunachalam et al., 2011). This is in contrast to results at a finer grid resolution (4-km),

where aircraft emissions increased SOA concentrations both at and downwind of the ATL airport.
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Similarly, uncertainty exists in organic aerosols from aircraft (as well as other emission sources),

due to the large number of organic compounds and multiple pathways involved, many of which are

not fully understood and some are possibly yet to be discovered (Kroll and Seinfeld, 2008; Miracolo

et al., 2011). Recent sampling and smog chamber results have found that a missing formation pathway

for aircraft-attributable SOA in air quality models (AQMs) includes SOA formed from semi-volatile

and intermediate volatility organic compounds (S/IVOCs) (Miracolo et al., 2012). S/IVOCs are un-

resolved organic compounds, difficult to measure, and have volatilities between POA (low volatility)

and VOCs (relatively high volatility). Also, they are generally considered missing from traditional

emission inventory estimates and are believed to form a significant amount of SOA from emissions

of combustion sources (Jathar et al., 2014). For aircraft, Miracolo et al. (2012) measured a significant

amount of SOA formed from emissions in a smog chamber and were unable to reproduce the results

using traditional modeling approaches. They concluded that the gap in measurements and the model

was attributable to SOA formed from S/IVOCs emitted by aircraft.

Jathar et al. (2012), utilizing the smog chamber measurements of Miracolo et al. (2012), de-

veloped a parameterization for use in AQMs to estimate non-typical SOA (NTSOA) formed from

aircraft emissions of S/IVOCs using the volatility basis set (VBS) (Donahue et al., 2006). With the

newly developed parameterization, Jathar et al. (2012) was able to better reproduce smog chamber

measurements of SOA formed from aircraft emissions in a box model.

Additional uncertainty in AQM estimates of aircraft related impacts is introduced by the method-

ology to estimate aircraft PM emissions, which typically involves the First Order Approximation

(FOA3) (Wayson et al., 2009). However, FOA3 has known limitations. For example, two versions

of FOA3 are currently in use, FOA3 (Wayson et al., 2009) and FOA3a (Ratliff et al., 2009), where

FOA3a accounts for uncertainties in PM emissions science and characterization at the time it was

developed and estimates five times more PM emissions than FOA3. FOA3 organic PM emissions are

estimated using measurements obtained from a single engine type (CFM56-2C1), which may or may

not be representative of organic PM emissions from the 500+ International Civil Aviation Organiza-

tion (ICAO) certified engines. Furthermore, comparisons against measurements have shown FOA3

estimates of POA and EC vary by an order of magnitude for 40% of aircraft engines (Stettler et al.,
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2011). FOA3 assumes POA emissions are non-volatile (and similarly CMAQ traditionally treats POA

as non-volatile) and does not account for variations in POA emissions due to changes in ambient tem-

perature. However, measurements have shown that POA is, in fact, semi-volatile and organic aerosol

formation 30 meters downwind of an aircraft engine is highly dependent on ambient temperature due

to its volatility (Beyersdorf et al., 2014).

The goal of this work is to reduce uncertainty in predictions of aircraft-attributable PM2.5 in an

AQM. This task is accomplished in three ways:

1. by investigating the non-linearity of SOA produced from aircraft emissions at the ATL airport

from Arunachalam et al. (2011), examining the model processes responsible for the changes in

SOA concentrations using process analysis, an advanced diagnostic modeling tool (Chapter 2);

2. by updating CMAQ to include predictions of SOA formed from aircraft emissions of S/IVOC

emissions using a parameterization developed by Jathar et al. (2012) based on smog chamber

data (Miracolo et al., 2012) (Chapter 3); and

3. by combining plume-in-grid model techniques to remove spatial uncertainty introduced from

modeled grid resolution with alternative emission estimates based on a 1-D plume scale model,

while simultaneously quantifying both fine scale (subgrid) and regional scale aviation-attributable

PM2.5 (Chapter 4).
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CHAPTER 2 SECONDARY ORGANIC AEROSOL PRODUCED FROM AIRCRAFT
EMISSIONS AT THE ATLANTA AIRPORT – AN ADVANCED DIAGNOSTIC

INVESTIGATION USING PROCESS ANALYSIS

2.1 Abstract

Efforts using the Community Multiscale Air Quality (CMAQ) model to investigate the impacts

of aircraft emissions from the Hartsfield-Jackson Atlanta International Airport have previously shown

aircraft emissions increased total daily PM2.5 concentrations by up to 9.4% (0.94 µg m�3) with overall

impacts varying by modeled grid resolution. However, those results also indicated that secondary

organic aerosol (SOA) concentrations in the airport grid cell were reduced due to aircraft emissions

at coarser grid resolutions (36-km and 12-km) but not at a finer resolution (4-km). To investigate

this anomaly, this study instruments the CMAQ model with process analysis, an advanced diagnostic

modeling tool, and focuses on changes to SOA concentrations due to aircraft emissions in the grid

cells containing the Atlanta airport at grid resolutions of 36-km, 12-km, and 4-km. Model results

indicated aircraft emissions reduced hourly anthropogenic and biogenic SOA concentrations at the

36-km and 12-km grid resolutions by up to 6.2% (0.052 µg m�3) by removing nitrate, hydroxyl,

and hydroperoxy radicals through chemistry. At the 4-km resolution, however, hourly modeled SOA

concentrations increased (primarily due to changes in biogenic SOA) by up to 11.5% (0.081 µg m�3)

due to primary organic aerosol emissions from aircraft, with the additional organic mass shifting

partitioning of SOA semi-volatile gas phase species into the particle phase.

2.2 Introduction

Aviation is an integral part of daily global activities, transporting approximately 725 million pas-

sengers and 67 million tons of cargo in the U.S. in 2011 over approximately 18 million flights (Federal

Aviation Administration, 2012a). The number of passengers flying is expected to grow by 3.1% per

year through 2032 and eclipse 1 billion passengers in 2024 (Federal Aviation Administration, 2012b).

While important to transportation, aircraft contribute to both noise and air pollution. Aircraft are the

third largest producer of greenhouse gas emissions (11.6% of the total) within the U.S. transportation
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sector behind light duty vehicles (58.7%) and freight trucks (19.2%) (U.S. Department of Transporta-

tion, 2010) and account for 3.5% of global anthropogenic radiative forcing (Lee et al., 2009). Fur-

thermore, aviation activities have known emissions of CO, NOx, volatile organic compounds (VOCs),

SOx, PM2.5, and numerous hazardous air pollutants which adversely affect air quality (Brasseur et al.,

1998; U.S. EPA, 1999; Wilkerson et al., 2010). In 2006, global commercial aircraft activities emit-

ted approximately 2.7 Tg of NOx (as NO2-equivalent), 0.68 Tg of CO, 0.10 Tg of hydrocarbons (as

CH4-equivalent), 0.038 Tg of black carbon, 0.0041 Tg of primary sulfate aerosols, and 0.0028 Tg of

primary organic aerosols (Wilkerson et al., 2010; Olsen et al., 2013). Ambient measurements have

indicated that aircraft emit nanoparticles, with emissions (on the order of 1015–1017 particles per kg

of fuel burn) comparable on a per unit fuel burn basis to the number of particles generated from

ship emissions, biomass burning and forest fires (Kumar et al., 2013) and which increase background

particle number concentrations by up to 100 times, or 107 particles cm�3 (Zhu et al., 2011). Measure-

ments have also shown aircraft emit secondary organic aerosol (SOA) precursors and the formation

of SOA from those precursors can surpass primary aircraft PM emissions at idle (4% thrust), taxing

(7% thrust), and approach (30% thrust) engine power settings (Miracolo et al., 2011). In this study,

the focus is on the effects of aircraft emissions to fine particulate matter (PM2.5) concentrations, and

more specifically the SOA component of PM2.5 at the Hartsfield-Jackson Atlanta International (ATL)

airport.

Organic compounds as a whole make up 20%–90% of aerosol mass in the lower troposphere

(Kanakidou et al., 2005). Kroll and Seinfeld (2008) suggest that the pathways leading to the forma-

tion and evolution of SOA are likely the area with the largest uncertainties concerning organic aerosols

in the atmosphere and while scientific understanding of SOA continues to evolve, it is believed there

are still additional undiscovered as well as not yet fully understood precursors and pathways of SOA

formation. Currently, the most widely accepted pathway is the oxidation of VOCs (primarily monoter-

penes and aromatics) by free radicals—mainly the hydroxyl (OH) radical, ozone (O3), and nitrate

(NO�
3 ) radical—to form semi-volatile products of lower volatility which partition between the gas

and particle phase (Kroll and Seinfeld, 2008).

Specific to aircraft emissions, only a limited number of studies have examined air quality impacts
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(Moussiopoulos et al., 1997; Brasseur et al., 1998; Pison and Menut, 2004; Carslaw et al., 2006)

in an air quality model (AQM), none of which explicitly examine SOA production due to aircraft

emissions. Woody et al. (2011) modeled air quality impacts to speciated PM2.5 from aviation in

a current and future year scenario from 99 major U.S. airports. Impacts to SOA near airports were

insignificant, while inorganic species and elemental carbon comprised the majority of impacts. In fact,

Woody et al. (2011) reported that despite aircraft emissions containing SOA precursors (e.g. xylene,

toluene, benzene), they lowered total SOA concentrations at the Atlanta airport. Recent sampling

and experimental results from Miracolo et al. (2011) suggest otherwise. Aircraft emissions from a

CFM56-2B engine formed significant amounts of secondary PM after 3 hours of photooxidation in a

smog chamber (SOA at low engine power settings and sulfate aerosol at high engine power settings).

The formation of relatively significant amounts of SOA at low engine power settings suggests that

there are possible missing precursors from aircraft emission estimates currently used in AQMs.

At Atlanta, Unal et al. (2005) was one of the first to model aircraft impacts to PM2.5, treating

aircraft as line sources as opposed to the traditional point source treatment. However, only total PM2.5

was considered. Subsequently, air quality and health impacts from commercial aircraft emissions

were studied at the Atlanta, Chicago O’Hare, and Providence T.F. Green airports using a multiscale

(36-km, 12-km, and 4-km) modeling approach (Arunachalam et al., 2011). A three-dimensional and

realistic representation of aircraft emissions was developed using the EDMS2Inv tool (Baek et al.,

2007), an interface between the FAA’s Emissions and Dispersion Modeling System (EDMS) (Federal

Register Notice, 1998), the required model for assessing air quality impacts from aviation sources

in the U.S., and the Sparse Matrix Operator Kernel Emissions (SMOKE) model (Houyoux et al.,

2000). Commercial aircraft emissions were included up to 3,000 m and based on landing and take-off

(LTO) cycles, which include startup, taxiing, queuing, takeoff, climb-out, and approach (Arunachalam

et al., 2011). Aircraft emissions increased total PM2.5 contributions overall both at and downwind of

the three airports and grid resolutions considered. While the concentrations of most PM2.5 species

increased in the immediate vicinity of the ATL airport, nitrate and SOA concentrations decreased

near the airport but increased downwind of it at the 36-km and 12-km resolutions (Arunachalam

et al., 2011), consistent with the SOA results reported by Woody et al. (2011) for ATL. At the 4-km
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grid resolution however, aircraft increased SOA concentrations both at and downwind of the ATL

airport.

This work serves as an extension of the Arunachalam et al. (2011) study, and investigates the

unexpected reduction of SOA concentrations near the airport due to aircraft emissions in the coarser

grid resolutions despite SOA precursors contained in aircraft emissions. The overall objective is to

determine model sensitivities of SOA concentrations from aircraft emissions at the ATL airport when

using various model grid resolutions, and to determine the primary model processes responsible for

this sensitivity.

2.3 Methodology

The Pennsylvania State University/NCAR mesoscale model (MM5) (Grell et al., 1994), SMOKE

model, and Community Multiscale Air Quality (CMAQ) (Byun and Ching, 1999; Byun and Schere,

2006) v4.7 model were used to estimate the effects of aircraft emissions from the ATL airport on SOA.

CMAQ treats PM formation through a trimodal approach (Binkowski and Roselle, 2003). PM2.5 par-

ticles are represented by two lognormal distributions for the Aitken and accumulation modes; a third

lognormal distribution represents coarse particles up to PM10. CMAQ treats the following components

of PM2.5 explicitly in each of these modes: sulfate (ASO4), nitrate (ANO3), ammonium (ANH4), pri-

mary organic aerosol (POA), anthropogenic secondary organic aerosol (AORGA), biogenic secondary

organic aerosol (AORGB) (total SOA = AORGA + AORGB), elemental carbon (AEC), and other un-

speciated PM or crustal (A25). CMAQ v4.7 includes several updates in its treatment of PM2.5 and

SOA, including high/low-NOx SOA pathways; the incremental evaluation of the updates is available

elsewhere (Carlton et al., 2010; Foley et al., 2010).

Two emissions scenarios were considered: a base case with emissions estimated using the EPA’s

2002 National Emissions Inventory (NEI) (U.S. EPA, 2004) and excluding the reported commercial

aircraft emissions and a sensitivity case which included the base case plus commercial aircraft emis-

sion estimates for ATL. Both emission scenarios were modeled at three grid resolutions, 36-km and

nested 12-km and 4-km [for additional details, see Figure 2.1 of Arunachalam et al. (2011)]. The

vertical resolution consisted of 22 layers of variable height from the surface to 50 mbar (about 18 km)

in the 36-km and 12-km grid resolutions and 19 layers from the surface to 100 mbar (about 15 km) in
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Figure 2.1: (a) The grid cell containing the ATL airport at the 36-km (blue), 12-km (red), and 4-
km (green) grid resolutions with counties outlined in black. (b) The vertical profile for modeled
PM2.5, aircraft emissions at the ATL airport on June 6, 2002 for the 36-km, 12-km, and 4-km grid
resolutions. Note the difference in emissions in the uppermost layer of the 4-km grid resolution was
due to differences in vertical structure between the 36 and 12-km resolutions and the 4-km resolution.

the 4-km grid resolution. Meteorological input, based on 2002 data, was generated using MM5 with

the 12-km resolution derived from a nested simulation of the 36-km while the 4-km meteorology was

generated using separate inputs. Aircraft LTO emissions were modeled up to 3,000 m, correspond-

ing to the lowest 15 layers in each grid resolution. With the exception of the horizontal and vertical

grid resolutions and corresponding meteorological inputs, the modeling configuration and emissions

inventories used were identical for each of the 3 grid resolutions. Figure 2.1a shows the location of

the grid cell containing the ATL airport in the 36-km, 12-km, and 4-km grid resolutions. Though the

inputs represent 2002 emissions and meteorology, the methodologies to generate them, including the

aircraft emission inventories, remain mostly unchanged. Therefore, inputs based on a more recent

year would likely produce similar results [e.g. Woody et al. (2011)].

Commercial aircraft emissions data, based on LTO cycles up to 3,000 m, were generated from a

research version of EDMS, processed through the EDMS2Inv tool, and finally input into SMOKE.

These emission estimates included VOCs (which include SOA precursors), CO, NOx, SOx, and PM2.5

from 2005 aircraft flight activity at ATL. Speciated primary PM2.5 emissions from aircraft were in-

cluded for sulfate, elemental carbon (EC), and organic carbon (OC) using a conservative extension of

the International Civil Aviation Organization Council’s Committee on Aviation Environmental Pro-

tection’s endorsed First Order Approximation v3 (FOA3) (Wayson et al., 2009). Figure 2.1b illustrates

11



the vertical profile of ATL aircraft emissions of PM2.5 on June 6, 2002 in the lowest 15 layers of the

model (3,000 m) at each grid resolution. The emission profile indicates that aircraft emissions are

highest at the surface due to long aircraft idle times and max thrust during takeoff. Note that the over-

all vertical emission profile for the three grid resolutions was essentially identical with the exception

of the highest layer (layer 15) in the 4-km resolution and attributable to differences in vertical grid

structures. Additional details regarding aircraft emission estimates are located in Appendix A and

elsewhere (Arunachalam et al., 2011).

From the June and July modeling already performed by Arunachalam et al. (2011), June 6 and 7

were selected as the two-day episode exhibiting the largest reduction in daily average SOA concen-

trations attributed to aircraft emissions for the 12-km and 36-km grid resolutions at ATL (0.005 µg

m�3 and 0.014 µg m�3 reductions at the 36-km resolution, 0.011 µg m�3 and 0.003 µg m�3 reductions

at the 12-km resolution, and 0.015 µg m�3 and 0.002 µg m�3 increases at the 4-km resolution). This

two-day period was characterized with generally high aircraft emissions (although not the highest for

the 2 months) and below average nighttime wind speeds when compared to other days in June and

July (additional details on the modeled winds for the two-day episode and June and July are available

in Appendix A). Given that the overall objective of this study is to perform a diagnostic investiga-

tion of modeled SOA formation due to aircraft emissions, we feel justified in focusing on the two-day

episode out of the two months that were modeled, and still be able to obtain adequate new information

that may be relevant for both scientific and policy assessments. Additionally, while we are unaware

of similar studies focusing on SOA, other studies using process analysis to investigate changes in O3

and PM2.5 have similarly examined results over one to two day episodes (Xu et al., 2008; Yu et al.,

2008).

The CMAQ configuration used in Arunachalam et al. (2011) was reconfigured with CMAQ v4.7

and to include process analysis (Jeffries and Tonnesen, 1994; Jang et al., 1995; Hogrefe et al., 2007;

Liu et al., 2011) over this two-day period. Process analysis is an advanced diagnostic tool available

within CMAQ to provide hourly integrated process rates (IPR) and integrated reaction rates (IRR)

data for each of the scientific processes and reactions responsible for changes in concentrations in

the model. It follows then, that the incremental contributions of aircraft emissions on concentrations,
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Table 2.1: Number of modeled days in June and July that aircraft emissions in the grid cell containing
the ATL airport increased PM2.5 concentrations by at least 0.1 µg m�3 and decreased (increased) SOA
concentrations by at least 1 ng m�3 at the 36-km and 12-km (4-km) grid resolutions based on results
from Arunachalam et al. (2011).

Species Change in Concentration 36-km (days) 12-km (days) 4-km (days)

PM2.5 > 0.1 µg m�3 32 60 61

SOA > 1 ng m�3 — — 59
< -1 ng m�3 50 54 —

Table 2.2: Average modeled change in PM2.5 and SOA concentrations due to aircraft emissions at the
ATL airport on June 6 and 7, 2002.

Grid Resolution Change in PM2.5 Change in SOA
Absolute (µg m�3) Percent (%) Absolute (µg �3) Percent (%)

36-km 0.182 1.8 -0.009 -2.4
12-km 0.55 5.5 -0.007 -1.7
4-km 0.943 9.4 0.009 2.3

IPR, and IRR can be computed by taking the difference between CMAQ simulations with and without

aircraft emissions. The model simulation included one day of spin-up, June 5, 2002, and initial

conditions for each resolution were provided by the previous day’s output (June 4, 2002) from the

2-month modeling performed by Arunachalam et al. (2011). The 12-km and 4-km episodes were

nested simulations from the coarser domains with boundary conditions provided by 36-km and 12-

km results, respectively. While modeling a short episode limits the amount of model results, doing so

helps focus on those model processes responsible for the reduction of SOA concentrations at the 36

and 12-km grid resolutions at a greater detail. In fact, in the grid cell containing the airport, aircraft

emissions decreased daily average SOA concentrations by at least 1 ng m�3 in the 36-km and 12-km

grid resolutions and increased SOA concentrations by at least 1 ng m�3 in the 4-km grid resolution

for the majority of modeled days in June and July as indicated by Table 2.1. Therefore, while the

magnitude of change in SOA concentrations due to aircraft emissions was higher during this two-day

period, the underlying model processes leading to these results were not unique. For comparison,

PM2.5 concentrations increased by at least 0.1 µg m�3 for the majority of days in each of the modeled

grid resolutions (Table 2.1).

Using the Python-based Process Analysis (pyPA) (Henderson et al., 2011) and the Python-based
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Environment for Reaction Mechanisms/Mathematics (PERMM) (Henderson et al., 2009) to post pro-

cess and analyze CMAQ process analysis output, respectively, we analyzed model outputs from each

grid resolution for each of the three single grid cells containing the airport (Figure 2.1). Additional

analysis for the 9 grid cells at the 12-km resolution and the 81 grid cells at the 4-km resolution that

match the spatial extent of the single 36-km grid cell can be found in Appendix A.

2.4 Results

Table 2.2 indicates the model results for the changes in average ground-level PM2.5 and SOA con-

centrations over the two-day episode due to aircraft emissions in the grid cell containing the airport.

Figure 2.2 indicates the spatial impacts of aircraft emissions on both average PM2.5 and SOA concen-

trations over the two-day period in the area surrounding the airport. The largest impacts of aviation

emissions on PM2.5 and SOA occurred in the grid cell containing the airport, but also extended to

downwind grid cells, for PM2.5 sometimes stretching beyond the 180-km x 180-km box centered on

the airport, albeit at lesser magnitudes.

Figure 2.3 indicates the modeled speciated daily average PM2.5 contributions from aircraft emis-

sions at the grid cell containing the airport on June 6 and 7, 2002. The largest contributions from

aircraft emissions were from aerosol EC and ASO4, with negative contributions from SOA at the

36-km and 12-km grid resolutions and ANO3 at all three grid resolutions with the exception of the

36-km grid resolution on June 6 (see Appendix A for further discussion on this result).

Ground-level SOA IPR time series data, which include concentrations (Conc) and the various sci-

ence processes modeled by CMAQ: horizontal (HADV) and vertical advection (ZADV), horizontal

(HDIF) and vertical diffusion (VDIF), chemistry (CHEM), emissions (EMIS), cloud processes and

aqueous chemistry (CLDS), aerosols (AERO), and dry deposition (DDEP), were examined for the

grid cell containing the airport at each modeled grid resolution. Results indicated aircraft emissions

lowered the rate of formation of aerosol mass (AERO process) in the coarser resolutions and increased

it in the finer resolution (Figure 2.4a). In the 36-km and 12-km resolutions, the most apparent reduc-

tion in AERO process rate attributable to aircraft emissions (and responsible for reductions of SOA

concentrations) occurred primarily during nighttime hours [and correspond to reductions in biogenic

SOA (Figure 2.6a)], with the most significant reductions occurring between 0300 – 0500 GMT (2300
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Figure 2.2: Two-day average model results for June 6 and 7, 2002 indicating the impacts of avia-
tion emissions on average (a) PM2.5 and (b) SOA concentrations at 36-km, 12-km, and 4-km grid
resolutions. Note the highest PM2.5 impacts occur in the grid cell containing the ATL airport.
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Figure 2.3: Modeled speciated daily average PM2.5 contributions by mass from aircraft emissions at
the grid cell containing the ATL airport on June 6 and 7, 2002 for sulfate (ASO4), primary organics
(POA), secondary organics (SOA), nitrate (ANO3), ammonium (ANH4), elemental carbon (AEC),
and crustal (A25) aerosols.

– 0100 LST) on June 6 and 0600 – 0700 GMT (0200 – 0300 LST) on June 7. It is worth noting that

the changes in SOA concentrations due to aircraft emissions from processes associated with mete-

orology (HADV, ZADV, and CLDS), while important for aerosol formation in general, were minor.

Examination of the SOA precursor and radical concentration time series data indicated that only NO3

radical concentrations (of all the radicals in CMAQ which oxidize SOA precursors) exhibited signif-

icant changes due to aircraft emissions during these time periods, and were therefore responsible for

the reduction in SOA concentrations. Note, only biogenic SOA precursors (monoterpene, isoprene,

and sesquiterpene) undergo oxidation reactions with NO�
3 in CMAQ v4.7, and therefore reductions of

NO�
3 concentrations have a larger impact on biogenic SOA (see Reactions A.4 and A.7 of Appendix

A). This is particularly relevant since ATL is situated in the Southeastern U.S., which is dominated by

biogenic VOC emissions, and hence forms higher levels of biogenic SOA (Morris et al., 2006). The

change in ground-level nitrate radical IPR time series data in the grid cell containing the airport indi-

cated that the ground-level reduction in radical concentrations from aircraft emissions were attributed
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to changes in the vertical diffusion transport process. Additionally, process rates and concentrations

for both SOA and nitrate radical integrated over the well-mixed volume of air within the planetary

boundary layer (PBL) in the grid cell containing the airport indicated similar results when compared

to the surface layer, suggesting the processes responsible for the reduction of nitrate radicals and SOA

concentrations occurred above the PBL. Further details and discussion regarding the PBL heights at

each of the three grid resolutions can be found in Appendix A.

Figure 2.4: Modeled changes in Integrated Process Rates due to aircraft emissions for (a) SOA (sur-
face layer), (b) NO�

3 radical (integrated over all layers above the PBL), and (c) POA (surface layer).

To determine the fate of nitrate radicals above the PBL, process rates in all layers above the

PBL in the grid cell containing the airport (Figure A.13 of the Appendix A) were integrated using

pyPA and examined using PERMM (Figure 2.4b). PyPA provides the ability to include (or exclude)

results in layers above (or within) the PBL and accounts for the diurnal changes in PBL height.

Figure 2.4b indicates that the CHEM process was the primary cause of the reduction of nitrate radical

concentrations due to aircraft emissions during nighttime hours above the PBL. Integrated reaction
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rates (not shown) indicate that this modeled reduction is attributed to increased NO2 emissions from

aircraft, both at the ground-level and aloft (up to 3,000 m in this particular instance), which reacted

with nitrate radicals to form N2O5. The newly formed N2O5 was then both transported away from

the grid cell containing the airport through advection as well as converted to HNO3 by the N2O5

heterogeneous reaction to aerosol mechanism. Therefore, with the addition of aircraft emissions,

fewer nitrate radicals were available to oxidize SOA precursors, thus lowering SOA production at the

36-km and 12-km grid resolutions

Using ambient measurements, (Rollins et al., 2012) indicated NOx emissions can significantly

increase nighttime SOA concentrations by forming of NO�
3 radicals (by way of reactions of NO2 with

O3). Conversely, the modeled aircraft impacts here indicate aircraft NOx emissions, the majority of

which are NO (Wood et al., 2008), titrate O3, and in the process convert NO to NO2. The reduction

in O3 coupled with the increase in NO2 concentrations (which reacts with NO�
3 to form N2O5) lower

NO�
3 (and SOA) concentrations.

At the 4-km grid resolution, while nitrate radicals are similarly reduced with the addition of air-

craft emissions, the CHEM process does not reduce modeled SOA production in the same manner

as in the 36-km or 12-km resolutions. Instead, changes in modeled POA concentrations dominated

changes to SOA concentrations, leading to higher SOA production due to aircraft emissions. As POA

concentrations increased, additional organic matter promoted semi-volatile gas phase SOA species to

partition to the particle phase, and modeled SOA yields determined by the Odum partitioning theory

(Odum et al., 1996) increased (Hallquist et al., 2009; Schell et al., 2001). The modeled spike in POA

concentrations at the 4-km grid resolution correlates with the highest SOA concentrations (Figure

2.4c). Figure 2.4c also indicates that the changes in modeled POA concentrations were attributed to

direct emissions from aircraft. While the mass of POA emissions from aircraft was roughly equivalent

at the three grid resolutions, larger grid volumes at the coarser resolutions led to dilution, lowering

concentrations and reducing the impact of changes in POA on changes to SOA due to aircraft emis-

sions (Figures 2.5a and 2.5b).
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Figure 2.5: Modeled ground-level POA emissions from aircraft on (a) a mass (grams per second)
basis and (b) a concentration (micrograms per cubic meter) basis at the grid cell containing the airport.
Note in the 4-km grid resolution, a small portion of the airport extends into an adjacent grid cell, and
therefore the mass-based emissions are slightly lower in the single grid cell containing the (majority
of the) airport when compared against the 12-km and 36-km grid resolutions.

While changes in hourly biogenic SOA concentrations were more apparent compared to anthro-

pogenic SOA (Figure 2.6a), reductions in anthropogenic SOA persisted throughout the day, account-

ing for 42% and 58% of the two-day average reduction in total SOA concentrations due to aircraft

in the 36-km and 12-km grid resolutions, respectively (anthropogenic SOA accounts for 4% of the

change in total SOA in the 4-km grid resolution). One would expect that anthropogenic SOA precur-

sors contained in aircraft exhaust (toluene, xylene, and benzene) would increase SOA concentrations.

Instead, NO emissions reduce OH and hydroperoxy (HOO) radicals through O3 titration during the

day and radical termination at night. Lower OH radical concentrations hinder the oxidation of anthro-

pogenic SOA precursors (Reactions A.8, A.11, and A.14 of Appendix A). In CMAQ v4.7, anthro-

pogenic SOA precursors only undergo oxidation with OH whereas biogenic SOA precursors undergo

oxidation with OH, NO�
3 , O3, and odd oxygen and therefore the change in OH radicals has a greater

influence on anthropogenic SOA than biogenic. The reduction of HOO radicals lowers the amount

of SOA formed through the low-NOx pathway in CMAQ (Figure 2.6c; Reactions A.10, A.13, and

A.16 of Appendix A). Note that CMAQ v4.7 only contains high and low-NOx pathways for anthro-

pogenic SOA, and therefore biogenic SOA is not impacted by changes in HOO. Given that more SOA

is formed through the low-NOx pathway at ATL in the base case (Figure 2.6d), reductions in HOO
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concentrations prevent SOA from being formed via this pathway and therefore lead to more signif-

icant reductions in anthropogenic SOA concentrations compared to the high-NOx pathway. In the

4-km resolution, O3, OH, and HOO concentrations were similarly reduced but the increase in POA

emissions counteracted any reduction in anthropogenic SOA.

Figure 2.6: Changes in (a) anthropogenic (AORGA), biogenic (AORGB), and (b) total SOA concen-
trations due to aircraft emissions at ATL. Changes in anthropogenic SOA concentrations formed from
low and high-NOx pathways at ATL (c) due to aircraft emissions and (d) due to emissions from all
sources.

2.5 Discussion

It is difficult to determine whether a particular grid resolution is a more accurate representation of

the actual effects of aircraft emissions on SOA production, without further research. From a health

impact perspective, Arunachalam et al. (2011) have shown that population exposure to PM2.5 from

aircraft activities varied little between 12-km and 36-km model resolutions and while the 4-km res-

olution had the highest overall contributions to PM2.5 at the airport; total health impacts were lower

compared to the 36-km resolution due to population distributions. Similarly from a policy perspec-

tive, though the results are not specific to aircraft, Arunachalam et al. (2006) have shown that a 12-km

resolution is preferred when performing NAAQS-related modeling for O3 and PM2.5. For SOA from

aircraft, recent smog chamber results have suggested that a significant fraction of PM2.5 formed from

aircraft emissions are comprised of SOA, which somewhat agrees with the 4-km results though likely
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for the wrong reasons. The 4-km results were due to changes in biogenic SOA, and along with the

36-km and 12-km results suggest that none of the three modeled resolutions in this study accurately

depict SOA formation from aircraft emissions. Therefore, current models appear to underpredict

SOA production from aircraft emissions likely due to missing SOA precursor emissions in traditional

emission inventories, and is an area where future enhancements are needed in modeling approaches

(Miracolo et al., 2011). Complicating the problem is the lack of ambient SOA measurements from air-

craft emissions, making comparisons against ambient data essentially impossible. Given the current

modeling limitations for SOA from aircraft, care must be taken when interpreting aircraft contribu-

tions for other types of studies (e.g. health impacts) considering that the SOA component is likely

underpredicted. However, this work provides insights into the model sensitivities of SOA formation

as it pertains to aircraft emissions, as well as the need to continually evaluate how SOA is represented

in AQMs.

Model results of aircraft contributions to TC concentrations at the ATL airport for June (0.019

µgC m�3, 0.073 µgC m�3, and 0.212 µgC m�3 for 36-km, 12-km, and 4-km, respectively) from this

study were comparable to those of a modeling study (using organic markers) which estimated aircraft

contributions to TC often exceeded 0.1 µgC m�3 in the Southeastern U.S. (Bhave et al., 2007). While

one might suggest that these modeled contributions from aircraft are relatively small, because of

the unique nature of aircraft emissions and the projected increase in demand for aviation, ongoing

developments in our understanding of the formation of SOA and continued research to quantify their

impacts at multiple modeling scales is imperative. This work is a prime example; although it is

possible that other emission sources could produce similar modeled changes to SOA concentrations

as those discussed here, factors unique to aircraft emissions, such as their 4-dimensional emissions

profile, serve an important role in producing these results.

Future expansion of this work would include exploring alternative approaches to modeling SOA

production for aircraft, such as the VBS. Jathar et al. (2012), building on the work of Miracolo et al.

(2011), recently published SOA yields mapped to the VBS for unidentified non-traditional SOA

(NTSOA) precursors from aircraft emissions and which are currently excluded in AQMs. These
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yields, which were fit to sampling and smog chamber results, significantly enhanced SOA forma-

tion in a box model. They also provide the inputs necessary to predict NTSOA formed from aircraft

emissions in an AQM using the VBS. Another consideration would include modeling aircraft individ-

ually using a sub-grid scale treatment, or other alternate approaches to include sub-grid variability, to

track the formation of aerosols due to aircraft emissions near the aircraft engine and downstream to

avoid sensitivities of results to model grid resolutions. Specifically, this would include obtaining ad-

ditional information from previous and ongoing field campaigns that include measurement of volatile

components of PM from aircraft engines (Kinsey et al., 2010) and newly developed techniques to esti-

mate aircraft PM emissions such as the 1-D plume-scale Aerosol Dynamics Simulation Code (ADSC)

model (Wong et al., 2008), as well as ongoing projects funded by the Transportation Research Board’s

Airport Cooperative Research Program (ACRP) and the U.S. Department of Defense Strategic Envi-

ronmental Research and Development Program (SERDP) (Miracolo et al., 2011), and using this new

information to enhance the modeling approaches discussed here.

It should be noted that the model emissions used in this study were originally generated for CMAQ

v4.6 and therefore did not contain sesquiterpene from biogenic sources, one of the new SOA precur-

sors implemented in v4.7. However, changes to SOA formed from sesquiterpene would likely exhibit

similar results to the biogenic SOA results presented here, with aircraft reducing concentrations at

the 36-km and 12-km grid resolutions and increasing concentrations at the 4-km grid resolution. And

finally, given the relative importance of finer grid resolutions that are needed for characterizing maxi-

mum individual health risk versus coarser grid resolutions for characterizing general population health

risk (Arunachalam et al., 2011), our findings from this investigation provide additional insights into

the relevant atmospheric processes due to aircraft emissions occurring at different grid-scales, and

that could further inform risk-based prioritization for air quality management.

2.6 Conclusions

CMAQ model results indicate that the modeled sensitivity of Atlanta aircraft emissions to forming

SOA concentrations can vary depending on the modeled grid resolution. We used process analysis

to successfully diagnose this varying sensitivity and explain the relevant atmospheric process causing
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this. At the 36-km and 12-km grid cells containing the ATL airport, modeled NOx emissions from air-

craft react and reduce NO�
3 , OH, and HOO radicals. The reduction in NO�

3 prevented the oxidization

of biogenic SOA precursors during the night. The reductions in OH radicals prevented the oxidation

of anthropogenic SOA during the daytime while the reduction in HOO radicals prevented the forma-

tion of anthropogenic SOA through the low-NOx pathway both during the day and at night. At the

4-km grid resolution however, modeled SOA formation is linked to concentrations of POA rather than

to the chemistry of free radicals. Modeled POA concentrations reach significantly higher levels due

to emissions from aircraft (max concentration of 1.00 µg m�3 at the 4-km grid resolution compared

to 0.29 µg m�3 and 0.08 µg m�3 at the 12-km and 36-km grid resolutions respectively and average

concentration of 0.16 µg m�3 at the 4-km resolution compared to 0.08 µg m�3 and 0.03 µg m�3 at

the 12-km and 36-km resolutions respectively). This increase in organic mass also increased SOA as

it promoted partitioning of semi-volatile gas phase species into the particle phase. Furthermore, the

change in modeled SOA concentrations at the 4-km grid resolution was dominated by biogenic SOA,

indicating this is a result of the interaction between aircraft emissions and biogenic SOA precursors.

Results from this study have demonstrated clearly the model sensitivities of SOA formation as it

pertains to aircraft emissions and the identification of the relevant processes that cause them. However,

they also indicate the need to continually evaluate how SOA is represented in AQMs, and to explore

the role of other precursors for SOA formation and their representation in AQMs.
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CHAPTER 3 ESTIMATES OF NON-TRADITIONAL SECONDARY ORGANIC
AEROSOLS FROM AIRCRAFT SVOC AND IVOC EMISSIONS USING CMAQ

3.1 Abstract

Utilizing an aircraft-specific parameterization based on smog chamber data in the Community

Multiscale Air Quality (CMAQ) model with the Volatility Basis Set (VBS), we estimated contribu-

tions of non-traditional secondary organic aerosols (NTSOA) for aircraft emissions during landing

and takeoff (LTO) activities at the Hartsfield-Jackson Atlanta International Airport. NTSOA, formed

from the oxidation of semi-volatile and intermediate volatility organic compounds (S/IVOCs), is a

heretofore unaccounted component of fine particulate matter (PM2.5) in most air quality models. We

expanded a prerelease version of CMAQ with VBS implemented for the Carbon Bond 2005 (CB05)

chemical mechanism to use the Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical

mechanism, and added species representing aircraft S/IVOCs and corresponding NTSOA oxidation

products. Results indicated the maximum monthly average NTSOA contributions occurred at the

airport, and ranged from 2.4 ng m�3 (34% from idle and 66% from non-idle aircraft activities) in

January to 9.1 ng m�3 (33% and 67%) in July. This represents 1.7% (of 140 ng m�3) in January and

7.4% in July (of 122 ng m�3) of aircraft-attributable PM2.5, compared to 41.0–42.0% from elemen-

tal carbon and 42.8–58.0% from inorganic aerosols. As a percentage of PM2.5, impacts were higher

downwind of the airport, where NTSOA averaged 4.6–17.9% of aircraft-attributable PM2.5 and, con-

sidering alternative aging schemes, was high as 24.0% — thus indicating the increased contribution of

aircraft-attributable SOA, as a component of PM2.5. However, NTSOA contributions were generally

low compared to smog chamber results, particularly at idle, due to the considerably lower ambient

organic aerosol concentrations in CMAQ, versus those in the smog chamber experiments.

3.2 Introduction

Aircraft engines emit multiple pollutants during their various modes of activity from landing and

takeoff (LTO) as well as from cruise which negatively impact air quality (Moussiopoulos et al., 1997;
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Brasseur et al., 1998; Tarrasón et al., 2004; Unal et al., 2005; Schürmann et al., 2007; Yim et al., 2013).

For example, emissions from commercial aircraft in the U.S. during the LTO phase have shown to

contribute approximately 3.2 ng m�3 to annual average U.S. fine particulate matter (PM2.5), or 0.05%

of total PM2.5 (Woody et al., 2011). Aircraft also represent the third largest producer of greenhouse gas

emissions (11.6% of the total) within the U.S. transportation sector behind light duty vehicles (58.7%)

and freight trucks (19.2%) (U.S. Department of Transportation, 2010) and account for 3.5% of global

anthropogenic radiative forcing (Lee et al., 2009). However, uncertainty associated with the treatment

of aircraft emissions in air quality models has led to a wide range of estimated aviation-attributable

impacts. For example, air quality model estimates of aviation-attributable premature mortalities range

from 620 per year (Jacobson et al., 2013) to as high as 12,600 (Barrett et al., 2010) for full-flight

global aircraft emissions and from 75 (Levy et al., 2012) to 210 (Brunelle-Yeung et al., 2014) for LTO

emissions in the U.S. Additionally, air quality model estimates of aircraft-attributable PM2.5 range

from less than 1% in winter and statistically insignificant impacts in summer from full flight emissions

globally (Lee et al., 2013) to approximately 1.3% of annual average PM2.5 from aircraft LTO activities

at the Hartsfield-Jackson Atlanta International Airport (ATL) (Arunachalam et al., 2011) and as high

as 9.4% of daily average PM2.5 from LTO activities at ATL (Woody and Arunachalam, 2013). Similar

uncertainty exists in organic aerosols from aircraft as well as other emission sources, due to the

large number of organic compounds and multiple pathways involved, many of which are not fully

understood and some are possibly yet to be discovered (Kroll and Seinfeld, 2008; Miracolo et al.,

2011).

Organic aerosols (OA) as a whole represent a significant fraction of the total fine particulate mat-

ter (PM2.5) mass in the atmosphere, comprising approximately 20–70% of PM2.5 in the U.S., Europe,

and East Asia (Zhang et al., 2007) and as high as 90% in the tropics (Kanakidou et al., 2005). How-

ever, air quality model predictions have shown that aircraft emissions produce little to no secondary

organic aerosols (SOA) near airports (and in some instances decrease SOA concentrations) despite

the presence of SOA precursors (e.g. xylene, toluene, benzene) (Woody et al., 2011; Arunachalam

et al., 2011). Woody and Arunachalam (2013) indicated that these cases of reductions in modeled

SOA in the presence of aircraft emissions are attributable to aircraft NOx emissions reacting with
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and thereby lowering radical concentrations near the airport, slowing the oxidation of SOA precur-

sors from other emission sources, and that this effect is a function of grid resolution. This reduction

in SOA due to aircraft emissions in air quality models contrasts recent sampling and experimental

results from Miracolo et al. (2011). Aircraft emissions from a CFM56-2B engine formed significant

amounts of secondary particulate matter (PM) after three hours of photo-oxidation in a smog cham-

ber at typical summertime OH concentrations. SOA production was approximately 1200 mg/kg-fuel

at 4% power and 15 mg/kg-fuel at 85% power compared to 150 mg/kg-fuel and 70 mg/kg-fuel for

secondary sulfate and 35 mg/kg-fuel and 40 mg/kg-fuel for primary PM emissions (Miracolo et al.,

2011). Box model predictions of SOA were unable to reproduce the total SOA formed in the cham-

ber, suggesting that there are possible missing precursors from aircraft emission estimates being used

in air quality models. Miracolo et al. (2011) proposed that semi-volatile and intermediate volatility

organic compounds (S/IVOC) may be these missing precursors. S/IVOCs are species with volatilities

between primary organic aerosols and VOC gas-phase species or C* values ranging from 100 to 107

µg m�3. These species are generally considered to be missing from traditional emission inventories,

and measurements have confirmed their existence in aircraft emissions (Miracolo et al., 2011; Cross

et al., 2013).

Jathar et al. (2012), building on the work of Miracolo et al. (2011), published yields mapped to

the volatility basis set (VBS) (Donahue et al., 2006) for unidentified non-traditional SOA (NTSOA)

precursors (S/IVOCs) from a CFM56-2B aircraft engine and a T63 helicopter engine. NTSOA was

assumed to be the difference in measured SOA and box model estimates of traditional SOA (TSOA,

i.e., SOA formed from traditional SOA precursors such as xylene, toluene, benzene, etc.). Incor-

porating NTSOA yields into the box model significantly enhanced SOA predictions and provided

better agreement with measurements. Jathar et al. (2012) also provide the inputs necessary to predict

NTSOA formed from aircraft emissions in an air quality model using the VBS, which has previously

been shown capable of representing particle formation from S/IVOC (Robinson et al., 2007; Presto

et al., 2009).

In this work, we use the Community Multiscale Air Quality (CMAQ) model (Byun and Schere,
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2006; Foley et al., 2010) with VBS to estimate NTSOA formed from S/IVOCs, representing uniden-

tified SOA precursors previously considered missing in air quality models, from aircraft LTO emis-

sions at ATL. VBS is the preferred model framework for OA here as the binning of species based on

volatility (typically representing 4–9 orders of magnitude of volatilities) is better suited to represent

the range of volatilities of S/IVOC emissions. Contrast this to the Odum 2-product model (Odum

et al., 1996), traditionally used in CMAQ to represent semi-volatile oxidization products of SOA pre-

cursors, where SOA precursors (and emissions) are typically represented using more explicit species

(e.g. toluene, xylene, benzene). NTSOA predictions were made by incorporating the aircraft-specific

NTSOA parameterization developed by Jathar et al. (2012) into CMAQ with VBS and modeling two

months, January and July, 2002, to capture seasonal variability. The end goal is to provide a more

accurate representation of OA and PM formation from aircraft emissions in CMAQ.

3.3 Methodology

Organic aerosol concentrations were estimated in January and July, 2002 over a 12-km Eastern

U.S. domain [which was selected to simultaneously test VBS in CMAQ (see Appendix B) and pre-

dict NTSOA formed from aircraft emissions] using CMAQ v5.0.1 with the VBS framework. VBS

in CMAQ, implemented for the Carbon Bond 2005 (CB05) chemical mechanism (Yarwood et al.,

2005) by Koo et al. (2014), provides for the treatment of four distinct organic aerosol groups: primary

anthropogenic (representing hydrocarbon-like OA), secondary anthropogenic and biogenic (repre-

senting oxygenated OA), and primary biogenic (biomass burning). Each organic aerosol group is

treated as semi-volatile, including primary organics (Robinson et al., 2007), using five volatility bins.

The lowest bin is treated as non-volatile particles with the other four bins representing particles with

C* values ranging from 100 to 103 µg m�3. Primary organic aerosol (POA) emissions are replaced by

SVOCs, which partition between the particle and gas phase. Additionally, gas-phase IVOC emissions

are included which, when oxidized, form SVOCs and SOA.

In this study, we expanded the Koo et al. (2014) CMAQ VBS implementation for CB05 for use

with the more explicit Statewide Air Pollution Research Center 2007 (SAPRC-07) chemical mech-

anism (Carter, 2010). In CMAQ, our VBS implementation for SAPRC-07 includes 150 gas phase

species [13 representing SOA precursors — 9 anthropogenic (8 contained in aircraft emissions) and
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Figure 3.1: Comparison of traditional (TSOA) and non-traditional SOA (NTSOA) predictions in
CMAQ (solid lines), box model results reported by Jathar et al. (2012) (circles) based on measure-
ments from Miracolo et al. (2011), and NTSOA predictions in CMAQ with 1.5x increased yields
(dashed lines) for a CFM56-2B engine at idle (4% power), taxi (7%), landing (30%), and takeoff
(85%). OH exposure is the integration of OH concentrations over time to account for differences in
OH concentrations between the two models.

4 biogenic] and 413 reactions compared to 80 gas phase species (6 representing SOA precursors — 3

anthropogenic and 3 biogenic) and 205 reactions in CB05. The SAPRC-07 chemical mechanism was

selected due to the more explicit treatment of VOCs and specifically SOA precursors, as we theorized

this would provide a better representation of TSOA formed from aircraft emissions. It also maintains

consistency with the Jathar et al. (2012) study, which used SAPRC VBS yields for TSOA formed

from aircraft emissions.

In our SAPRC-07 implementation of VBS in CMAQ, TSOA precursors with VBS are the same

as with the CMAQ aerosol 6 module (AE6) (Carlton et al., 2010). However, we updated their semi-

volatile oxidation products to map to VBS products with yields taken from Murphy and Pandis (2009)

and Hildebrandt et al. (2009), similar to Koo et al. (2014). The aerosol module remained unchanged

from Koo et al. (2014) except for the addition of NTSOA formed from aircraft S/IVOC emissions

as described below. Additional details regarding our SAPRC-07 VBS implementation in CMAQ,
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Table 3.1: Aircraft-specific mass yields for reactions of S/IVOC gas-phase species (NTSOA precur-
sors) with OH. Values represent the mass transferred and the corresponding reduction in volatility
(log10 C*) for each oxidation step and are 1.5x higher than the values reported by Jathar et al. (2012).
For example, when reacted with OH, 1 g of NTSOA precursor from idle activities with a C* value of
107 would produce 0.15 g of SVOC with a C* of 102 (7 minus 5), 0.15 g of SVOC with a C* of 103,
and 0.3 g of SVOC with a C* of 104.

Change in Volatility Bin -6 -5 -4 -3(log10 C*)

Idle 0 0.15 0.15 0.3
Non-Idle 0.075 0.15 0 0

including comparisons of VBS results against the traditional AE6, can be found in Appendix B.

Specific for aircraft, we introduced aircraft S/IVOC species into CMAQ with a parameterization

based on work by Jathar et al. (2012). The new species, in addition to using an aircraft-specific

parameterization, allow for aircraft contributions to be tracked separately from other sources. Sim-

ilar to the VBS representation of anthropogenic TSOA, five volatility bins were used to represent

aircraft-specific NTSOA, with the lowest bin representing non-volatile organics and the other four

bins spanning C* values from 100 to 103 µg m�3. Emissions and chemistry of gas-phase IVOCs were

included using 4 volatility bins with C* values ranging from 104 to 107 µg m�3. At engine idle, air-

craft emit considerably more organic PM and unburned hydrocarbons per unit fuel burned compared

to other engine modes due to incomplete combustion (Herndon et al., 2008; Timko et al., 2010; Mira-

colo et al., 2011; Beyersdorf et al., 2014). For this reason, the production of NTSOA from idle and

non-idle activities is tracked separately, with unique model species, precursors, and yields for both

sets of activities. The parameterization also includes multi-generational aging reactions of NTSOA,

using a rate constant of 1 x 10-11 cm3 molecules-1 s-1 with each oxidation step lowering the volatility

of the product by one order of magnitude (Murphy and Pandis, 2009; Farina et al., 2010; Jathar et al.,

2011, 2012).

After implementation of the Jathar et al. (2012) aircraft parameterization in CMAQ, CMAQ pre-

dictions of NTSOA were evaluated using results from Jathar et al. (2012). secondary PM (Lobo et al.,

2012), or organic carbon in the near field (1-50 m) of the aircraft engine (Agrawal et al., 2008; Kin-

sey et al., 2010; Timko et al., 2014). Only the Miracolo et al. (2011) study, which the Jathar et al.
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(2012) NTSOA yields are based on, provide measurements of SOA formed from aircraft emissions

(a CFM56-2B aircraft engine and T63 helicopter engine at various power settings) that the authors

are aware of. Our evaluation compared NTSOA production (normalized for OH concentrations using

OH exposure) for the CFM56-2B aircraft engine in a box model version of CMAQ (transport pro-

cesses turned off) and the Jathar et al. (2012) box model using an identical NTSOA mechanism and

similar inputs. CMAQ predictions of NTSOA from the CFM56-2B engine were lower at all power

settings while TSOA results were generally in good agreement, with the exception of the 85% power

setting (Figure 3.1). The NTSOA results suggest that the Jathar et al. (2012) yields in CMAQ would

underpredict NTSOA from aircraft.

We conducted a series of sensitivity analyses in our CMAQ box model and found that increasing

the Jathar et al. (2012) yields by 1.5x provided better agreement of the CFM56-2B experiments at 4%

and 7% power (Figure 3.1), the two power settings with the highest emissions of S/IVOCs. At 30%

power, the Miracolo et al. (2011) OA measurements exceeded the measured S/IVOCs emissions, and

to reproduce the Jathar et al. (2012) results, S/IVOC emissions would have to be increased by 15x in

addition to the 1.5x increase in yields. However, this increase in emissions is unrealistic, producing

more S/IVOC emissions at 30% power than 7% power, which measurements do not support (Miracolo

et al., 2011; Cross et al., 2013). Note, only one experiment was conducted at 30% power by Miracolo

et al. (2011); therefore there is a higher level of uncertainty associated with results at this power

setting compared to others. Given the better agreement at 4% and 7% power settings, our CMAQ

simulations were conducted using the higher (1.5x) yields (Table 3.1).

The SAPRC-07 mechanism in CMAQ includes the formation of anthropogenic TSOA from eight

model species contained in aircraft emissions: benzene (BENZ), toluene (TOL), xylene (MXYL,

OXYL, PXYL), aromatics (ARO1 and ARO2), and alkanes (ALK5). Note, CMAQ also includes

1,2,4-trimethylbenzene (TRIMETH BENZ124) as a TSOA precursor but it is not contained in aircraft

emissions. In addition to the eight CMAQ model species contained in aircraft emissions, the box

model used by Jathar et al. (2012) to develop the NTSOA parameterization included the formation of

TSOA from aircraft emissions of model species representing alkenes (OLE1 and OLE2) and alkanes

(ALK4). To be consistent with that study and because the Jathar et al. (2012) NTSOA yields were
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Table 3.2: SPECIATE v4.3 speciation profile 5565B used to speciate aircraft TOG emissions to
SAPRC-07 model species.

Common Name Model Species Mass Fraction Molecular Weight (g/mol)
1,3-Butadiene BDE13 0.0169 54.0904

Acetone ACET 0.0036898 58.0791
Acrolein ACRO 0.0245 56.0633

Acetylene ACYE 0.0394 26.0373
Alkanesa ALK1 0.0052098 30.069
Alkanesa ALK2 7.8005E-4 44.0956
Alkanesa ALK4 0.0066996 82.5378
Alkanesa ALK5 0.1765 147.1058

Aromaticsa ARO1 0.0027295 111.0468
Aromaticsa ARO2 0.0246 133.8579

1,2,4-Trimethylbenzene B124 0.0035 120.1916
Aromatic aldehydes BALD 0.0103 113.2886

Benzene BENZ 0.0168 78.1118
Acetaldehyde CCHO 0.0427 44.0526

Phenols and Cresols CRES 0.0072597 94.1112
Ethene ETHE 0.1546 28.0532
Glyoxal GLY 0.0182 58.0361

Formaldehyde HCHO 0.1231 30.026
Isoprene products IPRD 0.0103 70.0898

Methacrolein MACR 0.0042902 70.0898
Methanol MEOH 0.018 32.0419

Methylglyoxal MGLY 0.015 72.0627
m-Xylene MXYL 0.0014099 106.165
Alkenesa OLE1 0.091 95.61
Alkenesa OLE2 0.058 110.2306
o-Xylene OXYL 0.0016604 106.165
Propene PRPE 0.0453 42.0797
p-Xylene PXYL 0.0014099 106.165

C3+ Aldehydes RCHO 0.0697 127.1741
Toluene TOLU 0.0064202 92.1384

a Lumping based on reaction rate with OH

based on the difference in measured SOA and predicted TSOA, we added the formation of TSOA

from aircraft emissions of OLE1, OLE2, and ALK4 into CMAQ using yields based on Murphy and

Pandis (2009) to provide for a more accurate prediction of total SOA formed from aircraft.

Meteorological inputs were generated using the Pennsylvania State University/NCAR mesoscale

(MM5) model (Grell et al., 1994). Non-aviation emissions were generated using the Sparse Matrix

Operator Kernel Emissions (SMOKE) model (Houyoux et al., 2000) and estimated using the U.S.

EPAs 2002 National Emissions Inventory (NEI) (U.S. EPA, 2004). Non-aviation S/IVOC emissions

were estimated using the high internal estimate option in CMAQ with VBS, where SVOC emissions

are 3 times the traditional POA emissions and IVOC emissions are 4.5 times POA emissions. This
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option was selected based on our comparisons of our SAPRC-07 implementation of CMAQ with VBS

against OC ambient measurements, which indicated better agreement compared to CMAQ with VBS’s

conservative estimate of S/IVOC emissions (SVOC = traditional POA emissions and IVOC emissions

= twice POA emissions). Additional details on CMAQ with VBS’s internal S/IVOC emission esti-

mates from non-aviation sources and comparisons of ambient measurements of OC and PM2.5 against

our SAPRC-07 CMAQ with VBS implementation can be found in Appendix B.

Our investigation focused on aircraft-attributable PM2.5 contributions (calculated as difference

between CMAQ predictions with and without aircraft emissions) from LTO activities below 1 km at

ATL, which is the busiest airport in the world with approximately 2,400 flights daily (Federal Aviation

Administration, 2013). Aircraft emissions estimates for NOx, SO2, CO, total organic gases (TOG),

and primary PM (sulfate, organic aerosols, and elemental carbon) at ATL were based on the Aircraft

Environmental Design Tool (AEDT) global aircraft emission inventory for 2006 (Wilkerson et al.,

2010). The inventory provides high resolution emissions data both in space and time for individual

flights globally. Gas-phase emissions in AEDT were based on International Civil Aviation Organiza-

tion (ICAO) reported mode-specific emission factors (EFs) while primary PM emissions were based

on the First Order Approximation v3 (FOA3) (Wayson et al., 2009). Primary organic emissions were

treated as non-volatile, consistent with the assumption used by FOA3. Also, this prevents any possible

double counting of NTSOA, as VBS in CMAQ converts a portion of volatile POA (SVOCs) to SOA.

However, measurements collected by Presto et al. (2011) indicate the majority of aircraft POA emis-

sions are semi-volatile, suggesting that a semi-volatile treatment of aircraft POA emissions should be

considered in future studies. CMAQ-ready emission files for aircraft sources were generated using

the AEDTproc tool (Baek et al., 2012), which allocates aircraft emissions in four dimensions (col-

umn, row, layer, and time) using aircraft trajectories taken from the AEDT database, and performs

appropriate conversions of inventory pollutants into model species. These aircraft emissions were

then merged with the non-aviation emissions files from the NEI to create the final files used in the

CMAQ simulations. TOG was speciated into SAPRC-07 model species using the most recent EPA

speciation profile (SPECIATE profile 5565B, Table 3.2) which is based on results of a joint Federal

Aviation Administration (FAA) and EPA effort (U.S. EPA, 2009a,b). Aircraft S/IVOC emissions were
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estimated using the mode-specific EFs for a CFM56-2B engine reported by Jathar et al. (2012) and

normalized by ICAO hydrocarbon (HC) EFs calculated as

EFS/IV OC,engine i =
EFS/IV OC,CFM56�2B ⇥ EFHC,engine i

EFHC,CFM56�2B
. (3.1)

Table 3.5 provides monthly total aircraft emissions estimates of S/IVOCs during the modeling

period. These emissions, when oxidized, form NTSOA, and modeled NTSOA is discussed in Section

3.4.1. IVOC emissions are similar in magnitude to aircraft emissions of long-chain alkanes (ALK5)

(Table 3.3). Also note, the majority of idle S/IVOC emissions are primarily at higher volatilities (C*

values of 106–107 µg m�3) while non-idle emissions are at slightly lower volatilities (103–104 µg m�3).

Therefore, while the total S/IVOC mass from idle emissions is higher than for non-idle emissions,

additional oxidation steps are required to lower the volatility enough for significant partitioning to the

particle phase.

Table 3.3 provides similar aircraft emissions estimates for TOG and TSOA precursors in CMAQ

(ALK4, ALK5, ARO1, ARO2, BENZ, OLE1, OLE2, TOL, and XYL). The non-idle SOA precursor

emissions in Table 3.3 represent those traditionally considered when assessing aircraft contributions

to TSOA. The TSOA idle emissions are those estimated using the Fuel Flow Method2 as described

below and are not included in AEDT by default. They represent approximately a 50% increase in

TOG and TSOA precursor emissions from aircraft. Results of TSOA formed from the precursors in

Table 3.3 are presented in Section 3.4.2. Finally, Table 3.4 provides aircraft emissions estimates of

primary PM species (sulfate, organic aerosols, and elemental carbon) and inorganic PM precursors

(NOx and SO2) for the modeling period.

One limitation to our approach for estimating S/IVOC aircraft emissions is that the ICAO database

assumes a 7% power setting for idle activities while most modern aircraft engines generally idle

below this setting (Herndon et al., 2009). Here a value of 4% was assumed for aircraft idle. To

estimate S/IVOC idle emissions at 4% power, the Boeing Fuel Flow Method2 (FF2) (DuBois and

Paynter, 2007) was used to extrapolate idle hydrocarbon EFs for each flight at Atlanta during the

modeling episode. The FF2 method assumes a bilinear fit of ICAO-reported hydrocarbon EFs (one
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Table 3.3: Monthly total aircraft emissions (short tons) in January (Jan) and July (Jul) of total or-
ganic gases (TOG, the speciation of which is listed in Table 3.2) and CMAQ SOA precursors [alkanes
(ALK4 and ALK5), aromatics (ARO1 and ARO2), benzene (BENZ), alkenes (OLE1 and OLE2),
toluene (TOL), and xylene (XYL, which includes MXYL, OXYL, and PXYL)]. Note that SOA pro-
duction from ALK4, ARO1, and ARO2 was only considered from aircraft and that idle emissions,
which are not included in AEDT emissions by default, were only considered in sensitivity simula-
tions described in Sections 3.4.2 and 3.4.4.

TOG ALK4 ALK5 ARO1 ARO2 BENZ OLE1 OLE2 TOL XYL

Non-Idle Jan 64.3 0.41 9.2 0.15 1.4 1.1 4.4 2.6 0.41 0.29
Jul 78.1 0.49 11.1 0.18 1.7 1.3 5.4 3.1 0.50 0.35

Idle Jan 39.8 0.25 5.7 0.09 0.9 0.7 2.7 1.6 0.30 0.18
Jul 64.9 0.41 9.3 0.15 1.4 1.1 4.5 2.6 0.42 0.29

linear fit for 85% to 30% power settings and a separate linear fit for 4% to 30% power settings)

and a linear fit of ICAO-reported fuel flows. For each flight, time-in-mode for idle activities was

calculated as the difference between total time spent in taxi/idle modes (reported as one value in

AEDT) and the average unimpeded taxi time at the Atlanta airport reported by the FAA’s Aviation

Performance Metrics (Federal Aviation Administration, 2013). Hydrocarbon (and S/IVOC) emissions

from idle activities were then estimated by flight as the product of idle time, fuel flow, and S/IVOC

EF. Using this methodology, we estimated that, due to long idle times and despite low fuel flows at

idle, approximately 23–33% of LTO fuel burn occurs during aircraft idling. For comparison, taxi

accounted for 31–36% of fuel burn, approach 22–26%, and takeoff 12–15%. It should be noted that

while applying a normalized EF for SVOC and IVOC emissions from all aircraft based on a single

engine type introduces some uncertainty (the CFM56-2B engine is primarily used for military aircraft,

but the CFM56 series is used on approximately 20% of US commercial flights in 2006), limited data

currently exists on these emissions from other engine types and is therefore considered an acceptable

approximation for this work.

Another limitation is that 29.1% of measured TOG mass was unidentified during the derivation of

EPA’s aircraft TOG speciation profile (U.S. EPA, 2009a). Using a ”best fit” approach, this unidentified

mass was assigned to model species to ensure 100% of TOG mass was represented. Our newly added

S/IVOC emissions likely represent a portion of this unidentified mass since S/IVOCs are generally

unidentifiable by gas chromatograph. Therefore, there is the potential for double counting emissions
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Table 3.4: Monthly total aircraft emissions (short tons) in January (Jan) and July (Jul) of NOx and SO2

(inorganic PM precursors) and primary elemental carbon (PEC), organic carbon (POA), and sulfate
(PSO4).

NOx SO2 PEC POA PSO4
Jan 466.6 37.2 1.6 1.3 1.1
Jul 511.9 42.7 1.7 1.4 1.3

and SOA formed from those emissions. However, the newly added S/IVOC emissions do not impact

gas phase chemistry in the model, only participating in SOA formation. This is consistent with the

VBS treatment in CMAQ of IVOCs from all other sources as implemented by Koo et al. (2014).

Furthermore, the SOA formed from traditional SOA precursors is insignificant compared to NTSOA

and any potential overlap of SOA mass would be small compared to the magnitude of NTSOA.

3.4 Results and Discussion

3.4.1 CMAQ Predictions of NTSOA from Aircraft

Monthly average PM2.5 contributions from aircraft operations in the grid cell containing the air-

port (the grid cell with the highest absolute aircraft contribution in the domain) ranged from 140

ng m�3 in January (daily averages ranging from 32 to 311 ng m�3) to 122 ng m�3 in July (daily

averages of 58–312 ng m�3) (Figures 3.3 and 3.2). This is lower than aircraft impacts at ATL re-

ported by Arunachalam et al. (2011) (annual average impacts of approximately 200 ng m�3), which

used a different (higher) emission inventory that was based upon the Emissions Dispersion Modeling

System (EDMS) (Federal Register Notice, 1998). Similar to previous 12-km CMAQ modeling stud-

ies at ATL (Arunachalam et al., 2011; Woody and Arunachalam, 2013), aircraft emissions reduced

biogenic TSOA concentrations in July, which is further discussed in Section 3.4.2. Newly added

NTSOA formed from aircraft S/IVOC emissions accounted for 2.4 ng m�3 in January (1.7% of total

PM2.5 from aircraft; daily averages of 0.2–9 ng m�3) and 9.1 ng m�3 in July (7.4%, daily averages of

1–38 ng m�3), which is approximately 4–6 times higher than TSOA formed from idle and non-idle

aircraft TSOA precursor emissions (Section 3.4.2). Idle activities accounted for 34% in January and

33% in July of the total NTSOA formed. Additional photochemistry in July compared to January

produced higher average OH concentrations at ATL (2.4 x 106 molecules cm-3 compared to 2.4 x 105

molecules cm-3). This allowed for more aircraft S/IVOCs to be oxidized in July and, despite similar
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Figure 3.2: Box-and-whisker plots showing the 25th, 50th (red line), and 75th percentiles, and min-
imum and maximum values of daily average aircraft-attributable PM2.5, non-typical SOA (NTSOA),
and traditional SOA (TSOA) in the grid cell containing ATL. Outliers are defined as values more than
1.5 times the inter-quartile range above the 75th percentile and below the 25th percentile.

non-idle emissions in January and July (Table 3.5), produce approximately four times more NTSOA

from non-idle activities. Furthermore, while idle emissions were approximately 50% higher in July

due to longer idle times, the ratio of idle to non-idle NTSOA was similar in July and January.

Impacts on PM2.5 in January and July were highest near the airport, although impacts as high as 10

ng m�3 extended up to 100 km away from the airport in July (Figure 3.4a,b). NTSOA contributions

were generally confined to grid cells surrounding the airport, similar to primary PM species, though

impacts of 1 ng m�3 or higher were located 50 km away from the airport (Figure 3.4c,d). Additionally,

the percentage of aircraft-attributable PM2.5 comprised of NTSOA increased moving away from the

airport as aircraft S/IVOC were oxidized (Figures 3.4e,f and 3.5). At distances 6–30 km away from

the airport, NTSOA averaged 4.6% in January and 11.8% in July of aircraft-attributable PM2.5; 14.0%
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Table 3.5: Monthly total aircraft emissions (short tons) in January (Jan) and July (Jul) from LTO
activities at ATL of SVOCs and IVOCs (non-traditional SOA precursors).

SVOCs IVOCs
C* 100 101 102 103 104 105 106 107

Non-Idle Jan 0.52 0.88 1.03 4.14 5.6 1.0 2.4 2.4
Jul 0.54 0.92 1.09 4.43 6.0 1.1 2.5 2.5

Idle Jan 0.05 0.03 0.03 0.08 0.2 0.6 10.6 10.6
Jul 0.07 0.06 0.06 0.13 0.3 0.9 16.9 16.9

in January and 7.7% in July at distances 31–54 km away from the airport; and 17.9% in January and

4.0% in July at distances 55–102 km away from the airport. Note that while percentages were higher

in January, PM2.5 (and NTSOA) concentrations dropped off more rapidly moving away from the

airport in January as absolute aircraft-attributable PM2.5 concentrations were approximately 15 (6–30

km), 94 (31–54 km), and 196 (55–102 km) times lower than the grid cell containing ATL in January

and 8, 13, and 16 times lower in July. NTSOA was important away from the airport, but aircraft-

attributable PM2.5 was dominated by inorganic species (secondary ammonium, nitrate, and sulfate)

formed from aircraft emissions of NOx and SO2 (Figure 3.5), similar to previous modeling studies in

CMAQ (Arunachalam et al., 2011; Woody et al., 2011; Rissman et al., 2013).

Absolute NTSOA contributions were generally low compared to elemental carbon and inorganic

aerosols, which contributed 59 ng m�3 (38.9% of PM2.5) and 63 ng m�3 (41.6%) in January and 50

ng m�3 (41.1%) and 70 ng m�3 (57.9%) in July in the grid cell containing ATL, respectively. This is

somewhat contradictory to the smog chamber results of Miracolo et al. (2011, 2012), where reported

aircraft SOA production were comparable to secondary sulfate and higher than primary PM except at

the highest power setting. OA concentrations and the volume into which aircraft emissions mix can

significantly influence aircraft-attributable SOA (Woody and Arunachalam, 2013). OA concentrations

serve a key role in gas-particle partitioning, with higher values promoting partitioning to the particle

phase. In the smaller volume of the smog chamber, where aircraft emissions were concentrated, total

OA concentrations (POA + SOA + NTSOA) ranged between 6 µg m�3 at 85% power to 250 µg m�3 at

4% power (Jathar et al., 2012). Contrast this with the larger volume of the grid cell (12 km x 12 km x

38 m) containing ATL, where average OA concentrations ranged from 3–4 µg m�3 and were largely

determined by emissions from sources other than aircraft. The differences in partitioning due to OA
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Figure 3.3: Speciated monthly average PM2.5 contributions from aircraft in the grid cell containing the
Atlanta airport in January and July. Species include non-traditional SOA from engine idle activities
(NTSOA-I), non-traditional SOA from all other engine modes (NTSOA), sulfate (ASO4), primary
organics (POA), biogenic TSOA (AORGB), anthropogenic TSOA (AORGA), ammonium (ANH4),
nitrate (ANO3), and elemental carbon (AEC) aerosols.

were highest at idle, where smog chamber OA concentrations were highest, emissions of IVOCs were

highest (highest potential for NTSOA formation), and NTSOA products were of relatively higher

volatilities (C* values of 102 to 104).

To test the impact of OA concentrations on NTSOA concentrations, we conducted a sensitivity

analysis again using our CMAQ box model. Two test cases were simulated, one using typical ambient

OA concentrations (5 µg m�3) and the other using mode-specific OA concentrations measured in the

smog chamber (6–250 µg m�3) during the Miracolo et al. (2011) experiments. Results indicated that

when ambient OA concentrations were used, NTSOA and SOA production at the 4% power setting

were approximately a factor of six lower compared to the same simulation using smog chamber OA

concentrations. This also provides one indication of why the majority of NTSOA contributions were

from non-idle aircraft activities, despite the higher potential from idle emissions. NTSOA model

results at a finer scale, such as plume scales where aircraft emissions would be more concentrated

(Rissman et al., 2013), would likely be higher, particularly for idle emissions.
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Figure 3.4: Monthly average contributions from aircraft to PM2.5 in a) January and b) July, to non-
traditional SOA (NTSOA) in c) January and d) July, and NTSOA (> 0.1 ng m�3) as a percentage of
aircraft-attributable PM2.5 in e) January and f) July. Note the differences in scales, that the absolute
maximum impacts occur in the grid cell containing ATL but the percentage of aircraft-attributable
PM2.5 comprised of NTSOA is higher away from the airport, and that the map covers an area of 720
km x 720 km. Circles indicate the location of ATL and 30 km, 54 km, 78 km, and 102 km away from
ATL.

3.4.2 CMAQ Predictions of TSOA from Aircraft

Aircraft contributions to TSOA in the grid containing the airport were generally lower than NTSOA

contributions. Aircraft increased anthropogenic TSOA in January by 1.3 ng m�3 (0.9% of PM2.5; daily

average ranging from �9 to 3 ng m�3) and lowered it by 1.7 ng m�3 (�1.4%; daily averages ranging

from �136 to 1 ng m�3) in July (Figure 3.2). TSOA formed directly from aircraft emissions of SOA

precursors contributed 0.1 ng m�3 (0.1%) in January and 0.7 ng m�3 (0.6%) in July with the remainder

(1.2 ng m�3 and �2.4 ng m�3) attributable to the interaction of aircraft emissions and TSOA precur-

sors emitted from other anthropogenic sources. With the inclusion of idle emissions listed in Table

3.3, TSOA formed directly from aircraft TSOA precursors increased to 0.4 ng m�3 (0.4%) in January

and 2.4 ng m�3 (2.0%) in July. Finally, the interaction of aircraft emissions with biogenic TSOA

precursors lowered biogenic TSOA by 0.1 ng m�3 (�0.1%) in January and 23.6 ng m�3 (�19.4%) in

July (Figure 3.3).

The reduction in TSOA near the airport is similar to previous studies (Arunachalam et al., 2011;
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Figure 3.5: Monthly average composition of aircraft-attributable PM2.5 at the grid cell containing ATL
and at various distances away from ATL. Note that absolute aircraft-attributable PM2.5 concentrations
are approximately 15 (6–30 km), 94 (31–54 km), and 196 (55–102 km) times lower moving away
from ATL in January and 8, 13, and 16 times lower in July.

Woody et al., 2011; Woody and Arunachalam, 2013) and attributable to the NOx-dependent TSOA

pathways in CMAQ with VBS. Aircraft NOx has been shown to lower free radicals in the grid cell con-

taining the airport, slowing oxidation of precursors (particularly the low NOx pathway), and thereby

reduce TSOA formation from all sources (Woody and Arunachalam, 2013). With the traditional treat-

ment of aircraft in grid-based models, aircraft emissions are instantaneously diluted into a grid cell and

interact with non-aviation emissions which may or may not occur near the airport (e.g. biogenic TSOA

precursors). Plume-in-grid modeling techniques would provide an alternative modeling approach to

possibly prevent this result, where aircraft emissions would evolve in plumes prior to interacting with

non-aviation emissions when the plumes are merged back into the underlying grid (Rissman et al.,

2013).

To evaluate TSOA CMAQ results, we compared CMAQ box model results to the Jathar et al.

(2012) box model predictions. The two models use similar mechanisms, utilizing SAPRC VBS SOA
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yields taken from Murphy and Pandis (2009). However, CMAQ used 11 lumped SOA precursors

compared to 91 explicit SOA precursors used by the Jathar et al. (2012) box model. The comparison,

normalized for OH concentrations by using OH exposure, indicated that the two models generally

agreed (Figure 3.1). The underprediction of the CMAQ box model at taxi and takeoff is likely due to

the lumping of SOA precursors. However, grid-based SOA contributions from aircraft again appear

low compared to the chamber experiments, providing further evidence to support the influence that

model grid resolution and OA concentrations have on SOA contributions from aircraft emissions as

detailed in Woody and Arunachalam (2013).

3.4.3 CMAQ Predictions of POA from Aircraft

At ATL, aircraft POA contributed 26 ng m�3 (16.9% of PM2.5) in January and 20 ng m�3 (16.6%

of PM2.5) in July. However, these values may be biased high due to our non-volatile treatment of air-

craft POA. Also, while FOA3 is widely used for aircraft PM emission estimates in air quality models

(including this work), it has known limitations. For example, two versions of FOA3 are currently in

use, FOA3 (Wayson et al., 2009) and FOA3a (Ratliff et al., 2009), where FOA3a accounts for un-

certainties in PM emissions science and characterization at the time it was developed and estimates

five times more PM emissions than FOA3. Also, comparisons against measurements have shown

FOA3 estimates vary by an order of magnitude for 40% of aircraft engines (Stettler et al., 2011).

FOA3 assumes POA emissions are non-volatile and does not account for variations in primary or-

ganic emissions due to changes in ambient temperature. However, measurements have shown that

organic aerosol formation 30 meters downwind of the engine is highly dependent on ambient tem-

perature due to their volatility (Beyersdorf et al., 2014). These limitations highlight the uncertainties

associated with aircraft POA emissions estimates, and the need to improve methods of estimating

POA emissions from aircraft and their representation in air quality models.

3.4.4 Alternative Modeling Techniques to Predict NTSOA

We conducted three sensitivity simulations to determine if alternative modeling techniques could

capture NTSOA formation from aircraft without an aircraft-specific parameterization. In the first sen-

sitivity simulation (sensitivity A), aircraft IVOC emissions were remapped to traditional CMAQ SOA

precursors using AE6 yields (Carlton et al., 2010) to determine if altering emission estimates could
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provide similar results to the updated NTSOA parameterization. While contributions from aircraft to

anthropogenic TSOA contributions increased in the sensitivity case using AE6 (e.g. from approxi-

mately 0.1 ng m�3 to 0.3 ng m�3 in January, leading to a 200% increase), total aircraft contributions to

anthropogenic TSOA were below 0.3% of the total PM2.5 formed from aircraft emissions in January

and below 0.8% in July. In the second sensitivity simulation (sensitivity B), TOG emissions (and thus

traditional SOA precursors) were updated to include estimates of idle emissions at 4% engine thrust

levels. This sensitivity case increased TOG emissions by approximately 50% (Table 3.3). However,

the overall impact of anthropogenic TSOA was small, comprising less than 0.3% of PM2.5 in January

and 0.4% in July. The third sensitivity simulation used the default configuration of CMAQ with VBS

to estimate SOA formed from S/IVOC emissions, where S/IVOCs estimates for aircraft were keyed

to POA emissions (sensitivity C where SVOC = 3 x POA and IVOC = 4.5 x POA). While this case

predicted the highest SOA from aircraft in January of the three sensitivity cases (0.5% of total PM2.5),

July predictions of SOA lowered total PM2.5 from aircraft by 2%.

None of these three sensitivity cases were able to reproduce the NTSOA estimates in CMAQ

as represented in Section 3.4.1. Ratios of SOA to POA in the sensitivity cases ranged from �0.14

(sensitivity C in July) to 0.04 (sensitivity A in July) compared to values ranging from 0.16 to 0.48 in

the explicit NTSOA case, which was still below the SOA to primary PM ratios (ranging from 0.4 at

85% engine load to 30 at 4% engine load) reported by Miracolo et al. (2011). While aircraft impacts

to PM2.5 are, in general, low compared to other anthropogenic emission sources (Arunachalam et al.,

2011; Woody et al., 2011), without this parameterization, predictions of aircraft impacts to PM near

airports would likely be underpredicted by up to 10% in air quality models, particularly in summer

months.

3.4.5 NTSOA Sensitivity to Aging

One limitation to the Jathar et al. (2012) parameterization is the uncertainty associated with aging

of NTSOA. The Miracolo et al. (2011) chamber experiments were conducted over a relatively short

time period (hours) and did not capture aged SOA formed over longer time scales (days). Therefore, to

test how sensitive aged NTSOA formation from aircraft was to the aging scheme used, two sensitivity

simulations were conducted. The first doubled the aging rate constant from 1 x 10-11 cm3 molecules-1
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s-1 to 2 x 10-11 cm3 molecules-1 s-1. This rate constant is consistent with CMAQ VBS TSOA aging

reactions. The second sensitivity test used the aging scheme used by Pye and Seinfeld (2010), and is

based on wood smoke experiments. The Pye and Seinfeld (2010) aging scheme uses a rate constant

of 2 x 10-11 cm3 molecules-1 s-1, lowers the volatility of products by two orders of magnitude, only

allows for one oxidation step per parent hydrocarbon (vs. multi-generational aging), and assumes that

oxidation produces a product 50% heavier than the parent hydrocarbon.

By doubling the aging rate constant, total NTSOA concentrations in the grid cell containing ATL

increased by 1% (from 2.38 ng m�3 to 2.40 ng m�3) in January (0.2% increase in non-idle NTSOA

and 2.2% increase in idle NTSOA) and 10.5% in July (2.8% increase in non-idle NTSOA and 28.6%

increase in idle NTSOA). Alternatively, using the Pye and Seinfeld (2010) aging scheme, NTSOA

concentrations increased by 13.3% in January (18.4% increase in non-idle NTSOA and 2.9% increase

in idle NTSOA) and 38.6% in July (16.7% increase in non-idle NTSOA and 76.2% increase in idle

NTSOA). These aging schemes, could produce NTSOA concentrations as high as 10.1 ng m�3 (2x

aging) or 12.6 ng m�3 [Pye and Seinfeld (2010) aging] in July, which corresponds to 7.2% and 10.3%

of aircraft-attributable PM2.5, respectively.

Further away from the airport, the percent increase of NTSOA was higher as the increased distance

provided additional time for aging reactions to occur. At distances of 6–30 km, 31–54 km, and 55–102

km away from ATL, the 2x aging scheme increased NTSOA by 2.9%, 3.9%, and 6.4% in January and

24.0%, 37.8%, and 48.5% in July, respectively. The Pye and Seinfeld (2010) aging scheme increased

NTSOA by 22.1%, 26.0%, and 33.9% in January and 65.5%, 84.9%, and 91.0% in July at the same

set of distances. As a percentage of aircraft-attributable PM2.5, the Pye and Seinfeld (2010) NTSOA

aging results correspond to contributions of 5.6% in January and 19.5% in July 6–30 km away from

ATL, 17.7% and 14.3% 31–54 km away, and 24.0% and 7.5% 55–102 km away, suggesting aircraft-

attributable PM2.5 could be underpredicted by as much as 20–24% downwind of the airport.
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3.5 Conclusions

An aircraft-specific parameterization of NTSOA formed from aircraft engine emissions of S/IVOC

and based on smog chamber data was successfully incorporated into CMAQ with VBS using SAPRC-

07 chemical mechanism. The newly represented NTSOA, a heretofore unaccounted for PM2.5 com-

ponent in most air quality models, was generally confined to near the airport and increased monthly

average PM2.5 contributions by 2.4 ng m�3 (34% from idle and 66% from non-idle) in January and

9.1 ng m�3 (33% and 67%) in July. This represents a 1.7% (of 140 ng m�3) and 7.4% (of 122 ng m�3)

increase in aircraft-attributable PM2.5 and are approximately 6 times higher than TSOA contributions

from aircraft emissions. Downwind of the airport, NTSOA as a percentage of aircraft-attributable

PM2.5 was higher, where NTSOA averaged 4.6% in January and 11.8% in July 6–30 km downwind,

14.0% and 7.7% 31–54 km downwind, and 17.9% and 4.0% 55–102 km downwind. These results

suggest that grid-based air quality models may underestimate the impacts of aircraft emissions on

PM2.5 by 2–7% near airports and 4–18% downwind due to missing contributions from NTSOA, and

could be as high as 10% near the airport and 20–24% downwind when considering uncertainty asso-

ciated with NTSOA aging.

However, as a percentage of aircraft-attributable PM2.5, SOA results were generally low compared

to other PM components, such as inorganic aerosols and elemental carbon, particularly near the air-

port. We, at least partially, attribute this to the spatial scales (modeled grid resolution) at which SOA

was considered. SOA gas-particle partitioning is dependent on the total OA concentration. At smaller

volumes, such as inside aircraft plumes or smog chambers, OA concentrations can potentially reach

much higher levels due to concentrated POA emissions, partitioning a large fraction of semi-volatile

organics to the particle phase.

Additional research to assess aircraft impacts on PM could include the treatment of POA emis-

sions as semi-volatile as well as use a sub-grid scale treatment, or other alternate approaches to include

sub-grid variability, to track the formation of aerosols due to aircraft emissions near the aircraft engine

and downstream. Specifically, this would include obtaining additional information from previous and

ongoing field campaigns that include measurements of volatile components of PM from aircraft en-

gines (Kinsey et al., 2010) and newly developed techniques to estimate aircraft PM emissions in place
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of FOA3, such as the 1-D plume-scale Aerosol Dynamics Simulation Code (ADSC) model (Wong

et al., 2008) which has recently been expanded to provide aircraft emission estimates of S/IVOCs.

With the sub-grid scale treatment, the impacts of aircraft NOx emissions on reductions in biogenic

TSOA concentrations seen in previous studies (Arunachalam et al., 2011; Woody et al., 2011; Woody

and Arunachalam, 2013) would likely be mitigated and the ratio of SOA to POA may increase.

This study is a part of a larger effort to create an integrated modeling system to model aircraft

emissions at airports — using an enhanced VBS framework in CMAQ (to improve OC contributions),

to incorporate plume-scale models such as CMAQ-APT (Karamchandani et al., 2014) (to improve

sub-grid scale characterization), and ADSC (to improve near-field estimates) with an end goal of

improved characterization of PM2.5 contributions from aircraft emissions at multiple spatial scales.
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CHAPTER 4 MULTISCALE PREDICTIONS OF AIRCRAFT-ATTRIBUTABLE
PM2.5 MODELED USING CMAQ-APT FOR U.S. AIRPORTS

4.1 Abstract

Aviation activities represent an important and unique mode of transportation, but also impact air

quality due to gaseous and particulate emissions. In this study, we aim to quantify the impact of

aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few

kilometers) to continental (spanning hundreds of kilometers) using the Community Multicale Air

Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume-

scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S.

in January and July. In addition to the plume-scale treatment, we account for the formation of non-

traditional secondary organic aerosols (NTSOA) from the oxidation of aircraft S/IVOC emissions,

and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC), a

1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient con-

ditions (accounting for relative humidity and temperature). We estimated monthly and contiguous

U.S. average aviation-attributable PM2.5 to be 2.7 ng m�3 in January and 2.6 ng m�3 in July using

CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July,

respectively, over impacts using traditional modeling approaches (traditional emissions and without

APT). Furthermore, the maximum fine-scale (subgrid scale) impacts near a major airport were 23.7

µg m�3 in January (5-km downwind of the airport) and 59.3 µg m�3 in July (1-km downwind of the

airport), considerably higher than the maximum grid-based impacts near the airport of 4.3 µg m�3 in

January and 0.5 µg m�3 in July.

4.2 Introduction

Fine particulate matter (PM2.5) has known adverse health effects (Dockery and Pope, 1994), neg-

atively impacts visibility (Sisler and Malm, 2000), and influences climate change (Bauer and Menon,

2012). Additionally, PM2.5 is one of six criteria air pollutants regulated by the U.S. Environmental
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Protection Agency (EPA) under the Clean Air Act. Emission mitigation and control strategies have

led to a decline in national average PM2.5 concentrations by 33% from 2000 to 2012 (U.S. Envi-

ronmental Protection Agency, 2013). However, the number of total passengers traveling by aircraft

(which both directly emit PM2.5 as well as precursors of PM2.5) grew 10% over this same 12 year

span (Federal Aviation Administration, 2014a). Furthermore, the number of passengers traveling via

aircraft in the U.S. is expected to grow 2.3% per year over the next 20 years (Federal Aviation Admin-

istration, 2014a). Given the opposing trends in U.S. PM2.5 concentrations and aviation activity, it is

important to accurately quantify aviation-attributable PM2.5 to both estimate current aviation related

impacts and provide guidance for future policies and regulations.

Source specific air quality impacts are commonly estimated using air quality models (AQMs)

(e.g. Unal et al., 2005; Nam et al., 2006; Hodzic et al., 2007; Bergin et al., 2008; Pacsi et al., 2013).

However, uncertainty in aircraft emissions and their treatment in AQMs, have led to varying results.

For example, aviation-attributable premature mortalities based on AQM estimates range from 620 per

year (Jacobson et al., 2013) to as high as 12,600 (Barrett et al., 2010) for full-flight global aircraft

emissions and from 75 (Levy et al., 2012) to 210 (Brunelle-Yeung et al., 2014) for landing and takeoff

(LTO) emissions in the U.S.

A portion of the uncertainty originates from the treatment of aircraft emissions in AQMs. Tra-

ditionally, aircraft LTO emissions are instantaneously diluted into the grid cell containing the air-

port. However, when assessing aviation impacts, this may not be a good assumption. Unal et al.

(2005) sought to improve this approach in an AQM by allocating aircraft emissions vertically and

found that the improved treatment lowered ozone and PM2.5 impacts from aircraft by 75–80% at the

Hartsfield-Jackson Atlanta International Airport (ATL). Additionally, the instantaneous dilution of

aircraft emissions can produce non-linearities in aviation-attributable PM2.5 at varying modeled grid

resolutions. For example, Arunachalam et al. (2011) indicated that at a finer grid resolution (4-km),

aviation emissions from ATL increased the secondary organic aerosol (SOA) component of PM2.5 but

when modeled at a coarser grid resolutions (12-km and 36-km), the same emissions reduced SOA

concentrations. Woody and Arunachalam (2013) found that at the finer resolution aircraft emissions
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of primary organic aerosol (POA) influenced the gas to particle phase partitioning of semi-volatile or-

ganics, promoting partitioning to the particle phase to form additional SOA. However, at the coarser

resolution, NOx (emitted from aircraft) chemistry had a greater influence on SOA concentrations by

lowering free radical concentrations and thus lowering SOA precursor (from all sources) oxidation.

Furthermore, air quality estimates in grid-based AQMs, such as the Community Multiscale Air

Quality (CMAQ) model (Byun and Schere, 2006), are only available at scales equivalent to the mod-

eled grid resolution. If results at scales finer than the AQM grid are desired, other models or modeling

techniques are required (e.g. dispersion models). Additionally, finer AQM grid resolutions (e.g. 4-

km) are generally used to obtain fine scale air quality estimates, but due to increased computational

costs, the domains cover a smaller area (e.g. hundreds of km). Alternatively, coarser grid resolutions

(e.g. 36-km) can provide more widespread impacts (e.g. contiguous U.S.), but at the cost of coarser

impacts.

An alternative modeling approach, the plume-in-grid (PinG) treatment, could potentially alleviate

some of these limitations. PinG treats emissions from a particular source at the subgrid scale level,

allowing those emissions to evolve chemically prior to being diluted into the grid. Therefore, this

treatment could prevent non-linearities in chemistry at varying model resolutions as emissions would

no longer be immediately diluted into the grid, but instead are chemically aged in the plume before

interacting with background concentrations. PinG also has the added advantage of simultaneously

providing subgrid scale (fine scale) impacts and grid-based (larger scale) impacts using a consistent

modeling framework (i.e. same chemical mechanism, aerosol treatment, emissions, meteorology,

etc.). Because the model tracks individual plumes, the locations and concentrations within plumes

can be used to provide air quality impacts at any given point in the model (plume concentration plus

grid cell concentrations), as opposed to just a grid-based concentration.

The PinG modeling approach is generally used for large emission sources, such as electric generat-

ing units (EGUs) though a number of recent studies have examined using PinG modeling techniques

to represent aircraft emissions (Jacobson et al., 2013; Cameron et al., 2013; Rissman et al., 2013).

Cameron et al. (2013) indicated that when aircraft emissions are treated using PinG, ozone produc-

tion is reduced by 33% for a single flight and up to 77% for multiple overlapping flights compared
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Figure 4.1: Locations and tier classifications of the 99 airports.

to a grid-based treatment. At the ATL airport, Rissman et al. (2013) using the CMAQ - Advanced

Modeling System for Transport, Emissions, Reactions, and Deposition of Atmospheric Matter (AM-

STERDAM) model (an earlier version of the PinG model used in this study) found that treating LTO

aircraft emissions using PinG tended to increase secondary aircraft-attributable PM2.5 by up to 10%

while also lowering primary aircraft-attributable PM2.5 by approximately 5%.

Additional uncertainty in AQM predictions of aviation-attributable PM2.5 is introduced by the

methodology used to estimate aircraft PM emissions, typically the First Order Approximation (FOA3)

(Wayson et al., 2009). Comparisons against measurements have shown FOA3 estimates of POA and

elemental carbon (EC) vary by an order of magnitude for 40% of aircraft engines (Stettler et al., 2011).

Also, FOA3 assumes POA emissions are non-volatile and does not account for variations in POA

emissions due to changes in ambient temperature. However, measurements have shown that organic

aerosol formation 30 meters downwind of the engine is highly dependent on ambient temperature due

to their volatility (Beyersdorf et al., 2014).

Finally, uncertainty is introduced from missing formation pathways for the SOA component of

aircraft-attributable PM2.5 in AQMs, which is believed to be the case for other emission sources as
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well (Jathar et al., 2014). Miracolo et al. (2012) measured a significant amount of SOA formed from

aircraft emissions in a smog chamber and were unable to reproduce the results using traditional mod-

eling approaches. They concluded that the gap between measurements and the model was attributable

to SOA formed from semi-volatile and intermediate volatility organic compounds (S/IVOCs) emitted

by aircraft. Jathar et al. (2012), utilizing the smog chamber measurements of Miracolo et al. (2012),

developed a parameterization to estimate non-typical SOA (NTSOA) formed from aircraft emissions

of S/IVOCs in an AQM. When implemented, this parameterization estimated NTSOA comprised an

additional (and previously unaccounted for) 2–24% of aircraft-attributable PM (Woody et al., 2014).

The goal of this study is to reduce uncertainty in aircraft-attributable PM estimates in an AQM

introduced by 1) varying results produced at different model grid resolutions, 2) emission estimates,

and 3) missing PM formation pathways. We aim to accomplish this goal in three ways. First, we use

a plume-in-grid treatment for aircraft emissions, allowing aircraft emissions to chemically evolve in a

plume before adding them back into the grid and which simultaneously provide fine scale and larger

scale aviation related impacts. Second, we employ alternative PM emission estimates (which include

S/IVOCs) derived from the 1-D plume model Aerosol Dynamics Simulation Code (ADSC) (Wong

et al., 2008). Finally, we include the formation of NTSOA from aircraft emissions of S/IVOCs, using

the volatility basis set (VBS) framework (Donahue et al., 2006), to reflect the findings of recent sam-

pling and smog chamber data (Miracolo et al., 2012). This modeling framework is applied to a 36-km

continental U.S. modeling domain in January and July, 2005 in an effort to quantify PM2.5 produced

from aircraft LTO emissions at 99 major contiguous U.S. airports.

4.3 Methodology

Aircraft-attributable PM2.5 was estimated in January and July, 2005 using CMAQ - Advanced

Plume Treatment (APT) (Byun and Schere, 2006; Karamchandani et al., 2014), which incorporates a

plume scale treatment into CMAQ v5.0.1 using the Second-order Closure Integrated puff model with

CHEMistry (SCICHEM) (Electric Power Research Institute, 2003). SCICHEM uses overlapping

3-D puffs to represent plumes and includes plume dynamics, such as plume rise, dispersion, puff

merging/splitting, and an identical chemical mechanism and aerosol module as the parent model. We

utilized the Carbon Bond 2005 (CB05) (Yarwood et al., 2005) chemical mechanism and the aerosol 6
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Table 4.1: Monthly total aircraft emissions (short tons) in January (Jan) and July (Jul) of CO, NOx

(as NO2-equivalent), SO2, and VOCs.

CO NO x SO2 VOCs
Jan 3,787 7,934 481 1,681
Jul 4,097 8,562 521 1,835

Table 4.2: Monthly total aircraft emissions (short tons) in January (Jan) and July (Jul) of primary
elemental carbon (PEC), primary organic aerosol (POA) plus primary semi-volatile organic carbon
(pSVOC), and primary sulfate (PSO4) for AEDT (based on FOA3) and ADSC.

PEC POA + pSVOC PSO4

Jan AEDT 15.3 39.0 14.9
ADSC 89.8 82.5 10.6

Jul AEDT 16.3 42.3 16.1
ADSC 95.0 91.2 11.6

(AE6) module with the VBS approach to model organic aerosols recently incorporated in CMAQ by

Koo et al. (2014). VBS for organics is preferred in this study because of its ability to include a non-

traditional secondary organic aerosols (NTSOA) parameterization for aircraft emissions as described

in Jathar et al. (2012) and implemented in CMAQ in Woody et al. (2014). Additionally, it provides a

framework for us to treat POA as semi-volatile, which we apply to aircraft POA emissions and marks

the first time (we are aware of) that this treatment has been applied to aircraft emissions in a regional

air quality model.

The modeling domain consisted of a 36-km horizontal grid resolution over the contiguous U.S. and

34 variable width vertical layers from the surface to 50 millibars. Meteorological inputs were based

on NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) (Rienecker

et al., 2011) and downscaled using the Weather Research and Forecasting (WRF) model (Skamarock

and Klemp, 2008). Dynamically varying boundary conditions were derived from global Commu-

nity Atmosphere Model with Chemistry (CAM-chem) (Lamarque et al., 2012) output (Olsen et al.,

2013). Spatio-temporally resolved lightning NOx emissions were included and estimated using Na-

tional Lightning Detection Network (NLDN) (Orville et al., 2002) flash density data (Allen et al.,

2012). Non-aviation emissions were generated using the Sparse Matrix Operator Kernel Emissions

(SMOKE) model (Houyoux et al., 2000) and estimated using the U.S. EPA’s 2005 National Emissions

Inventory (NEI) (U.S. EPA, 2007).
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Table 4.3: Monthly total aircraft emissions (short tons) in January (Jan) and July (Jul) of SVOCs and
IVOCs for AEDT and ADSC.

SVOCs IVOCs
C* Non-Vol 100 101 102 103 Total 104 105 106 107 Total

Jan AEDT 12.6 3.8 4.5 4.8 13.3 39.0 11.9 13.2 171.1 184.5 380.7
ADSC 3.6 4.2 16.7 0.8 57.2 82.5 22.0 204.4 48.3 181.9 456.6

Jul AEDT 13.6 4.2 4.9 5.3 14.4 42.3 13.2 15.9 216.1 233.1 478.4
ADSC 3.9 4.5 17.8 0.9 64.1 91.2 26.8 222.2 52.5 197.6 499.0

Aircraft emissions from landing and takeoff (LTO) activities up to 1 km at 99 major U.S. airports

(Figure 4.1 and Table C.1) for NOx [speciated to NO, NO2, and HONO using Wood et al. (2008)],

SO2, CO, total organic gases (TOG) (Table 4.1), and primary PM (sulfate, organic aerosols, and

elemental carbon) (Table 4.2) were incorporated into CMAQ. Emission estimates were based on the

Aircraft Environmental Design Tool (AEDT) global aircraft emission inventory for 2005 (Olsen et al.,

2013). The inventory provides high resolution emissions data both in space and time for individual

flights globally. Gas-phase emissions in AEDT were based on International Civil Aviation Organiza-

tion (ICAO) reported mode-specific emission factors (EFs) while primary PM emissions were based

on the First Order Approximation v3 (FOA3) (Wayson et al., 2009). The 99 airports represent ap-

proximately 85% of total flight activity in the U.S. and are identical to those used in Woody et al.

(2011).

Aircraft POA/SVOC emissions were estimated using AEDT POA emissions and split into VBS

volatility bins (spanning volatilities from non-volatile up to a C* of 103 µg m�3) using engine power

setting specific fractions reported by Jathar et al. (2012). This maintains the mass of POA emissions

from AEDT. However, higher volatility SVOC emissions will evaporate to the gas phase and there-

fore lower total particle emissions. This treatment operates on the assumption that POA emission

factors were made at low dilution and therefore most semi-volatiles are measured in the particle phase

whereas at ambient conditions portions of SVOC/POA would evaporate to the gas phase. Similarly,

IVOC emissions (C* of 104 – 107 µg m�3) were scaled from AEDT POA emissions using Jathar et al.

(2012) fractions for IVOCs. S/IVOC emission estimates are provided in Table 4.3.

Alternative aircraft PM emissions (primary sulfate, elemental carbon, and POA) and S/IVOCs

were estimated using ADSC, which has previously shown to provide accurate PM emission estimates
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of primary sulfate from aircraft (Wong et al., 2008). ADSC currently provides aircraft emissions for

6 engines (BR-715, CF34-3B, CFM56-2C5, CFM56-7B26, JT8D-219, and PW2037) across a range

of engine power settings and ambient conditions. The 6 ADSC engines (out of 500 ICAO certified

engines) accounted for approximately 25% of U.S. flights in 2005.

To generate an emission inventory using ADSC, a total of 2,304 ADSC simulations were per-

formed for the 6 aircraft engines, at 6 power settings (4%, 7%, 30%, 65%, 85%, and 100%), 8 relative

humidities (10–80%), and 8 temperatures (275–310 K). Considerations were made to incorporate

ADSC into CMAQ to run inline. However, ADSC run times made this impractical (typically 1-2

hours for a single simulation and up to 1-2 days in some instances). Therefore, the ADSC simula-

tions were performed offline and lookup tables containing emission factors for each engine/power

setting/humidity/temperature combination were generated (Figure C.3). The lookup tables were in-

terfaced with AEDT aircraft information (locations, engine types, time-in-mode) and ambient condi-

tions (temperature and relative humidity) from WRF data to generate emission estimates (Figure C.4).

Non-ADSC engines were mapped to ADSC engines using ICAO reported smoke number, a proxy for

aircraft EC emissions.

Table 4.2 provides a comparison of AEDT and ADSC emissions. In general, EC emissions are

approximately six times higher with ADSC while POA emissions are approximately twice as high.

However, the volatility split of SVOC (and IVOC) emissions is different in ADSC (Table 4.3). More

ADSC emissions are in the higher volatility bins compared to AEDT, suggesting that while ADSC

may have higher POA emissions, much of that additional mass will likely be found in the gas phase.

The ADSC model assumes a different speciation of SO2 and sulfate emissions and, while the total

amount of sulfur is consistent between the two models, ADSC estimates slightly lower sulfate emis-

sions and slightly higher SO2 emissions compared to AEDT.

CMAQ-ready point source inline emission files for aircraft were generated using the AEDT2inline

tool, which, using aircraft trajectories taken from the AEDT database, allocates aircraft emissions in

four dimensions (x, y, z, and time) and performs appropriate conversions of inventory pollutants into

model species. TOG was speciated into CB05 model species using the most recent EPA speciation

profile (SPECIATE profile 5565B, Table 3.2) which is based on results of a joint Federal Aviation
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Table 4.4: SPECIATE v4.3 speciation profile 5565B used to speciate aircraft non-hazardous air pol-
lutant (non-HAP) total organic gas (TOG) emissions to CB05 model species. Note that the total mass
fraction is >100% as benzene is classified as a HAP species but is included due to its role as an SOA
precursor.

Common Name Model Species Mass Fraction Molecular Weight (g/mol)
Paraffin PAR 0.3759 14.3326

Terminal Olefin OLE 0.0876 28.5737
Methanol MEOH 0.0181 32.0419

Internal Olefin IOLE 0.0246 56.1063
Formaldehyde FORM 0.1389 29.3904

Ethane ETHA 0.0052146 30.069
Ethene ETH 0.1546 28.0532

Benzene BENZENE 0.0168 78.1118
Aldehydes ALDX 0.0585 35.2256

Acetaldehyde ALD2 0.0435 43.6298
Toluene TOL 0.0223 98.148

Unreactive UNR 0.043 13.4366
Xylene XYL 0.0278 105.7999

Administration (FAA) and EPA effort (U.S. EPA, 2009a,b).

Airports were divided into three tiers based on size/flight activity, where Tier I represents large

airports, Tier II represents medium sized airports, and Tier III represents smaller airports (Figure 4.1

and Table C.1). The tier grouping loosely maps to FAA’s large, medium, and small hub designation.

The 12 airports in Tier I represent approximately 33% of total flight activity across the 99 airports,

the 17 Tier II airports represent approximately 30% of flight activity, and the other 47 Tier III airports

comprise the remaining 37% of activity. This grouping was used to determine the number of points

used to represent aircraft PinG emitter locations at each airport. A total of 1,923 point sources were

utilized across the 99 airports, with 49 points at each Tier I airport, 25 at each Tier II airport, and 13 at

each Tier III airport. This approach provides a more explicit treatment at larger airports compared to

smaller airports and reduces the total number of emitters used in CMAQ-APT to produce reasonable

model run times.

Three dimensional aircraft emitter locations were determined using AEDT aircraft locations, as

AEDT has the ability to provide highly resolved flight trajectories based on radar data. However, this

type of accuracy is generally reserved to AEDT simulations at a single airport or a handful of airports.

For large applications with hundreds of airports, such as the global inventory used in this study, the

trajectories in the near field of the airport are not as highly resolved. Therefore, aircraft emitter points
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Table 4.5: Summary of CMAQ model scenarios.

Case Aircraft Emissions PinG?
base N/A No

AEDT AEDT No
AEDT APT AEDT Yes
ADSC APT ADSC Yes

begin at the airport and radiate out in straight lines, similar to the locations provided by AEDT (Figure

C.1).

A total of four CMAQ cases were simulated in January and July 2005. Table 4.5 summarizes each

of the CMAQ cases. Aircraft contributions (and contributions from the PinG treatment and ADSC

emissions) were calculated as the difference in scenarios with aircraft emissions (or PinG/ADSC)

versus those without.

Fine scale (subgrid scale) CMAQ-APT impacts were determined as a post-processing step using

on-demand receptors. These receptors were located in concentric circles surrounding each airport at

distances of 1, 5, 10, 25, and 50 km. Concentrations at receptors were meant to represent exposures

and were estimated as grid-based concentrations plus the concentration of plumes located at that

receptor. Therefore, in the absence of a plume at a given receptor, the concentration reported at that

receptor would be the equivalent to the grid-based concentration.

4.4 Results and Discussion

4.4.1 Contiguous U.S. Results

Within the contiguous U.S., model predictions using ADSC emissions with plume-in-grid (ADSC APT)

indicated aircraft emissions increased monthly average PM2.5 by 2.7 ng m�3 in January and 2.6 ng

m�3 in July (Figure 4.2). These impacts represent an increase of 40% and 12% in January and July,

respectively, over impacts estimated using traditional modeling approaches [AEDT emissions and

without PinG (AEDT) scenario].

In January, the major component of aircraft-attributable PM2.5 was ammonium nitrate aerosol

(AHN4 + ANO3), comprising approximately 58% of PM2.5 (Figure 4.2), formed from the interaction

of aircraft NOx emissions with ammonium emissions from agricultural activities. This is predomi-

nately seen in agricultural areas rich in ammonia, such as Eastern North Carolina and Iowa, Michigan,
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Figure 4.2: Speciated monthly average aircraft-attributable PM2.5 in January and July 2005 for AEDT,
AEDT APT, and ADSC APT, relative to the base simulation. PM2.5 species include non-traditional
secondary organic aerosol (NTSOA), primary organic aerosol (POA), biogenic SOA (AORGB), tradi-
tional anthropogenic SOA (AORGA), elemental carbon (AEC), sulfate aerosol (ASO4), ammonium
aerosol (ANH4), and nitrate aerosol (ANO3).

Minnesota, and Illinois.

In July, higher temperatures meant the formation of ammonium nitrate was thermodynamically

less favorable, allowing the formation of more ammonium sulfate (ANH4 + ASO4) relative to ammo-

nium nitrate and which comprised 33% of aircraft-attributable PM2.5 in July. The increase in temper-

atures (and photooxidation) also increased SOA species [traditional anthropogenic SOA (AORGA),

NTSOA, and biogenic SOA (AORGB)] concentrations (37% of PM2.5) due to an increase in radical

concentrations and therefore additional SOA precursor oxidation (Figure 4.2). This is in contrast to

Woody et al. (2011), who found that approximately 95% of aircraft-attributable PM2.5 consisted of

inorganic species (ammonium nitrate and ammonium sulfate) and is likely due to the use of a differ-

ent aerosol module in CMAQ [AE4 in Woody et al. (2011) versus AE6 + VBS in this study] and the

addition of NTSOA. The shift in PM2.5 composition from January to July also corresponded with a

shift in spatial impacts, with higher impacts seen around airports in July (e.g. Atlanta, GA; New York,

NY; Los Angles, CA; etc.) (Figure 4.3).

The increase in aviation-attributable PM2.5 in ADSC APT over AEDT was largely due to ammo-

nium nitrate and EC in January and EC in July. However, ammonium nitrate impacts with ADSC APT

were approximately 10% lower compared to the AEDT emissions with plume-in-grid (AEDT APT
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scenario) due to changes in primary sulfate emissions between the two cases. In ADSC APT, the

speciatation of sulfate and SO2 emissions led to lower sulfate emissions (instead emitted as SO2) and

thereby lowered both ammonium sulfate and ammonium nitrate impacts. However, given the rela-

tively higher impacts of ammonium nitrate, the changes in nitrate were more pronounced. Spatially,

ADSC APT inputs were similar to AEDT APT (discussed below) with the exception of increased

contributions at and near airports from additional EC emissions (Figure 4.3).

Aircraft do not directly emit biogenic SOA precursors. Therefore increased biogenic SOA con-

centrations were the result of interactions between aircraft emissions and biogenic SOA precursors.

This may be true for anthropogenic SOA as well. Results from Woody et al. (2014) indicated anthro-

pogenic SOA formed from aircraft emissions in summer was minimal (< 1%) at ATL. This, coupled

with the increase in biogenic SOA concentrations suggest aircraft increase radical concentrations and

therefore the oxidation of SOA precursors emitted by non-aviation sources. Finally, NTSOA com-

prised 9% of aircraft-attributable PM2.5 in July but only 4% in winter, consistent with the results

presented in Chapter 3.

AEDT APT estimates indicated aircraft-attributable monthly average PM2.5 concentrations in-

creased in the U.S. in January compared to AEDT estimates (from 1.9 ng m�3 to 2.5 ng m�3, 27%

increase) and produced similar concentrations in July (from 2.3 to 2.4 ng m�3, 2% increase) (Figure

4.2). The increase in winter was attributable to an increase in ammonium nitrate aerosol, as aircraft

NOx emissions in puffs were converted to nitric acid which, when neutralized, formed ammonium

nitrate. Spatially, this effect generally occurred throughout the U.S., with the use of PinG increasing

aircraft-attributable PM2.5 at and around airports (Figure 4.3). In July, the formation of ammonium

nitrate was thermodynamically less favorable and therefore this formation pathway for PM2.5 was less

pronounced. PinG did not significantly alter any of the other PM2.5 species and therefore resulted in

a minimal change in July. This is also true spatially, as impacts were similar with and without PinG

with slight increases and decreases throughout the U.S. in July (Figure 4.3).

Predictions from the AEDT scenario represent a more traditional modeling approach and provide

a baseline we can use to compare our results to other traditional modeling studies. The AEDT sce-

nario estimated aircraft increased PM2.5 by 1.9 ng m�3 in January and 2.4 ng m�3 in July, which is
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Figure 4.3: Monthly average aircraft-attributable PM2.5 in January and July 2005 for AEDT (top),
AEDT APT minus AEDT (middle), and ADSC APT minus AEDT (bottom).
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slightly lower than the 3.2 ng m�3 reported by Woody et al. (2011) for aircraft impacts from the same

99 airports on an annual average basis. Note that Woody et al. (2011) used a different emission inven-

tory based on the predecessor to AEDT [Emission Dispersion Modeling System (EDMS), (Federal

Register Notice, 1998)], included LTO emissions up to 3 km (opposed to 1 km used in this study),

and used an earlier version of CMAQ (v4.6).

4.4.2 Fine Scale Impacts

Impacts at and around three airports [Atlanta (ATL) (Tier I; 2,650 flights per day), Salt Lake

City (SLC) (Tier II; 1,150 flights per day), and Cleveland (CLE) (Tier III; 800 flights per day)]

were further analyzed to assess local impacts. These airports were selected due to being located in

areas of PM2.5 non-attainment and therefore eligible to participate in the FAA’s Voluntary Airport

Low Emissions (VALE) program (Federal Aviation Administration, 2014b). They are also spatially

isolated from other airports, minimizing the influence of emissions from other airports on model

results at and around these 3 airports.

ADSC APT model results indicated that aircraft emissions increased PM2.5 in the grid cell con-

taining ATL, SLC, and CLE by 30.0, 10.9, and 8.1 ng m�3 in January and 52.9, 5.7, and 10.5 ng

m�3 in July, respectively (Figure 4.4). PM2.5 impacts at ATL and SLC were dominated by primary

species directly emitted by aircraft (ASO4, PEC, POA), comprising 71–85% of aircraft-attributable

PM2.5 (Figure 4.4). However, at CLE primary species only comprised 53% in January and 25% in

July of aircraft-attributable PM2.5, with higher relative contributions from ammonia nitrate compared

to ATL and SLC. Note that biogenic SOA concentrations were lowered at ATL by aircraft emissions

in the AEDT scenario, consistent with previous studies (Arunachalam et al., 2011; Woody et al., 2011;

Woody and Arunachalam, 2013) but not in the APT scenarios. Moving 18–90 km downwind of the

airports, secondary components such as ammonium nitrate in January and SOA in July became more

important (Figure 4.4).

As previously discussed, the PinG results also provide the opportunity to examine subgrid scale

impacts, defined as puff plus grid scale aircraft impacts, or concentrations representing exposure

at a given receptor location attributable to aircraft (Figure 4.5). AEDT APT concentrations at re-

ceptors led to aircraft-attributable PM2.5 estimates approximately an order of magnitude higher than
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Figure 4.4: Speciated monthly average aircraft-attributable PM2.5 in January and July 2005 for AEDT
(AE), AEDT APT (AEA), and ADSC APT (ADA) in the grid cells containing the Atlanta (ATL),
Salt Lake City (SLC), and Cleveland (CLE) airports (top), 19-54 km away from the airports (middle),
and 55-90 away from the airports (bottom). Note the change in scale with distance from the airports.
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grid-based concentrations alone (Figures C.6 and C.7). Additionally, maximum PM2.5 concentrations

were as high as 8.4 µg m�3 in January (5-km downwind of the airport) and 25.4 µg m�3 in July

(1-km downwind of the airport), which is approximately two times the maximum grid-based impact

in the area surrounding ATL in January (4.3 µg m�3) and approximately 50 times higher the maxi-

mum aircraft impact in July (0.5 µg m�3). However, not all puffs, (including those aloft) pass by the

receptors and therefore would be detected. It is possible that puffs with higher overall PM2.5 concen-

trations exist but were not included. Furthermore, receptor-based impacts were generally highest 1–5

km downwind of the airport, when puffs were dominated by primary PM species, of relatively small

volume, and prior to dilution.

Subgrid scale impacts increased considerably in the ADSC APT case as receptor-based aircraft

impacts reached as high as 23.7 µg m�3 in January (5-km downwind of the airport) and 59.3 µg

m�3 in July (1-km downwind of the airport) (Figure 4.5). This corresponds to increased aircraft

impacts of 15.5 µg m�3 in January and 33.9 µg m�3 in July over AEDT APT impacts (and 19.4 µg

m�3 in January and 58.8 µg m�3 in July over the maximum grid-based concentrations near ATL).

The ADSC APT impacts were attributable to an increase in both EC and POA concentrations, which

is slightly different than grid-based ADSC APT results where increased aircraft contributions were

primarily attributable to EC only. ADSC emission estimates included both higher emissions of EC

and POA (Table 4.2). However, much of those emissions occurred at a higher volatility (C* of 103 µg

m�3) relative to AEDT POA emissions (Table 4.3), and the majority of which would be located in the

gas-phase at ambient conditions. However, in puffs where volumes were smaller relative to the grids

and organic aerosol concentrations were higher, higher volatile organics partitioned to the particle

phase and increased POA concentrations. Once puff volumes increased or the contents of the puffs

were merged into the grid and the organic aerosol concentrations returned to values closer to ambient

conditions, these higher volatility POA species partitioned back from the particle phase to gas phase.

4.5 Conclusions

We have successfully used CMAQ-APT to model a large number of aircraft sources (⇠2,000) as

PinG emissions sources on a large scale, simultaneously estimating impacts at fine (subgrid) scales
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Figure 4.5: Box-and-whisker plots of aircraft-attributable PM2.5 (grid plus puff concentrations) at
receptors located at the Atlanta (ATL), Salt Lake City (SLC), and Cleveland (CLE) airports and at
distances of 1 km, 5 km, 10 km, 25 km and 50 km away in January (top) and July (bottom). Grey
dots represent outliers which are defined as values more than 1.5 times the inter-quartile range above
the 75th percentile and below the 25th percentile. Figure C.7 in Appendix C replicates this figure but
with outliers removed.
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and regional scales. Additionally, we have successfully incorporated 1-D plume scale emission es-

timates into the modeling framework to provide updated emission estimates that include variations

based on ambient conditions and volatility based S/IVOC emissions.

Within the contiguous U.S., monthly average aviation-attributable impacts estimated using ADSC

emissions and PinG were 2.7 ng m�3 in January and 2.6 ng m�3 in July. This represents an increase

of 40% in January and 12% in July over AEDT emissions without the use of PinG, primarily due to

increased contributions from ammonium nitrate in January and EC in both January and July. Subgrid

scale impacts were also much higher in ADSC, with a maximum impact of 23.7 µg m�3 in January

(5-km from the airport) and 59.3 µg m�3 in July (1-km from the airport) which was 5.5 µg m�3 higher

in January and 33.9 µg m�3 higher in July over AEDT APT impacts (and 19.4 µg m�3 in January

and 58.8 µg m�3 in July over the maximum grid-based concentrations near the airport). The higher

subgrid impacts in ADSC were largely attributable to the higher primary emissions of EC and POA.

The use of PinG with AEDT emissions generally increased aircraft-attributable PM2.5 concentra-

tions in January both locally and regionally due to an increase in ammonium nitrate concentrations

compared to scenario with AEDT emissions and without PinG. In July, however, the use of PinG only

slightly altered aircraft-attributable PM2.5 (increase of 2%). Subgrid scale impacts at and around the

airport were approximately an order of magnitude higher than grid-based impacts, with concentra-

tions reaching as high as 8.4 µg m�3 in January and 25.4 µg m�3 in July, or approximately 2 and

50 times higher than grid-based impacts. Furthermore, the use of PinG prevented the interaction of

aircraft NOx emissions and biogenic SOA precursors. Where previous model results indicated aircraft

NOx emissions lowered biogenic SOA concentrations (Chapter 2), this was no longer the case with

PinG.

Future considerations of this work could explore how sensitive model estimates are to the number

and location of emitters used to represent aircraft. Specifically, this would include incorporating

higher resolution AEDT aircraft locations from single airport AEDT simulations into CMAQ-APT,

providing radar based aircraft locations near the airport. Additional considerations include developing

ADSC look-up tables for additional aircraft engines to provide a broader base of engines to pull from

when developing an ADSC based emission inventory. And finally, considerations should be made

63



to compare grid-based and subgrid-based aircraft impacts to measurements from field campaigns,

though currently a limited number of measurement studies appropriate for comparison to these model

results currently exist.

64



CHAPTER 5 CONCLUSIONS

The primary goal of this work was to reduce uncertainty in predictions of aviation-attributable

PM2.5 in an air quality model, which was accomplished in three ways:

1. by investigating the non-linearity of SOA produced from aircraft emissions at the Atlanta airport

from Arunachalam et al. (2011), examining the CMAQ model processes responsible for the

changes in SOA concentrations using process analysis (Chapter 2);

2. by updating CMAQ to include predictions of NTSOA formed from aircraft emissions of S/IVOC

using a parameterization developed by Jathar et al. (2012) and based on smog chamber data

(Miracolo et al., 2012) (Chapter 3); and

3. by combining plume-in-grid model techniques to remove spatial uncertainty introduced from

modeled grid resolution with alternative emission estimates based on a 1-D plume scale model,

while simultaneously quantifying both fine scale (subgrid) and regional scale aviation-attributable

PM2.5 (Chapter 4).

5.1 Non-Linear Response to SOA From Aircraft

Regarding the non-linear response to SOA from aircraft, CMAQ model results indicated that the

modeled sensitivity of Atlanta (ATL) aircraft emissions to form SOA concentrations varied depend-

ing on the modeled grid resolution. Process analysis was used to successfully diagnose this varying

sensitivity and explain the relevant atmospheric process that led to this result. At the 36-km and

12-km model grid cells containing the ATL airport, modeled NOx emissions from aircraft reacted

and reduced NO�
3 , OH, and HOO radical concentrations. The reduction in NO�

3 lowered the amount

of biogenic SOA precursors oxidized during nighttime hours. Similarly, reductions in OH radicals
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lowered the amount of anthropogenic SOA precursors oxidized during daytime hours while the re-

duction in HOO radicals lowered the amount of anthropogenic SOA formed through the low-NOx

pathway both during daytime and nighttime hours. At the 4-km grid resolution however, modeled

SOA formation was influenced more by concentrations of POA than NOx chemistry. Modeled POA

concentrations reached significantly higher levels due to emissions from aircraft (max concentration

of 1.00 µg m�3 at the 4-km grid resolution compared to 0.29 µg m�3 and 0.08 µg m�3 at the 12-km

and 36-km grid resolutions, respectively). This increase in organic aerosol mass promoted partition-

ing of semi-volatile organic carbon gas phase species into the particle phase. Furthermore, the change

in modeled SOA concentrations at the 4-km grid resolution was dominated by biogenic SOA, indicat-

ing this was the result of interaction between aircraft emissions and biogenic SOA precursors and not

caused by anthropogenic SOA precursors contained in aircraft emissions.

Results from this work demonstrated clearly the model sensitivities of SOA formation as it pertains

to aircraft emissions and the identification of the relevant processes that cause them. However, further

research is needed to determine if a particular grid resolution is a more accurate representation of

the actual effects of aircraft emissions on SOA production. Further complicating the problem is the

lack of ambient SOA measurements from aircraft emissions, making comparisons against ambient

data difficult. Given the current modeling limitations for SOA from aircraft, care must be taken when

interpreting aircraft contributions for other types of studies (e.g. health impacts) considering that the

SOA component is likely underpredicted.

5.2 NTSOA from Aircraft

For NTSOA, an aircraft-specific parameterization of NTSOA formed from aircraft engine emis-

sions of S/IVOC and based on smog chamber data was successfully incorporated into CMAQ with

VBS using the SAPRC-07 chemical mechanism. The newly represented NTSOA, a heretofore unac-

counted for PM2.5 component in most air quality models, was generally confined to near the airport

and increased monthly average PM2.5 contributions by 2.4 ng m�3 in January and 9.1 ng m�3 in

July, 2002. These values represent a 1.7% (of 140 ng m�3) and 7.4% (of 122 ng m�3) increase in

aircraft-attributable PM2.5, respectively, and were approximately 6 times higher than traditional SOA
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contributions from aircraft emissions. Downwind of the airport, NTSOA as a percentage of aircraft-

attributable PM2.5 was higher, where NTSOA averaged as much as 17.9% in January (55–102 km

downwind) and 11.8% in July (6–30 km downwind). These results suggest that grid-based air qual-

ity models may underestimate the impacts of aircraft emissions on PM2.5 by 2–7% near airports and

4–18% downwind due to missing contributions from NTSOA, and could be as high as 10% near the

airport and 20–24% downwind when considering uncertainty associated with the NTSOA parameter-

ization.

The increased contributions from secondary organic aerosols (as NTSOA) from aircraft are of

potential importance for future emission control strategies or other policies related to aircraft emis-

sion impacts on air quality. Traditionally, AQM predictions have been dominated by inorganic species

(Woody et al., 2012) and therefore have been the primary focus. However, this work suggests NTSOA,

which was previously unaccounted for, is a significant component of aviation-attributable PM2.5. As

efforts are made to reduce the inorganic portion of aviation-attributable PM2.5, such as the desulfur-

ization of jet fuel (Barrett et al., 2012), the importance of aircraft NTSOA will only rise.

5.3 Combination of Plume-in-Grid Model Techniques with Alternative Emission

Estimates for Aircraft

In combining modeling techniques for aircraft, the CMAQ-APT model was successfully used to

model a large number of aircraft sources as PinG emission sources (⇠2,000 PinG sources across 99

airports) on a large scale (contiguous U.S.), simultaneously providing model based estimates at fine

(subgrid) scales and regional scales. Additionally, a 1-D plume scale model for aircraft emission

estimates was successfully incorporated into the modeling framework to provide alternative emission

estimates. These updated emission estimates account for variations in emissions based on ambient

conditions (temperature and relative humidity) and include volatility based S/IVOC emissions along

with traditional aircraft PM emissions (elemental carbon, primary organic aerosol, and primary sulfate

aerosol).

Utilizing ADSC emissions with PinG, we estimated monthly and contiguous U.S. average aviation-

attributable PM2.5 to be 2.7 ng m�3 in January and 2.6 ng m�3 in July. This represents a 40% increase

in January PM2.5 and 12% increase in July PM2.5 over estimates using traditional AEDT emissions
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and without the use of PinG and was primarily attributed to increased EC emissions and ammo-

nium nitrate formation. Subgrid scale impacts were also much higher in ADSC, with a maximum

receptor-based impact of 23.7 µg m�3 in January (5-km downwind of the airport) and 59.3 µg m�3 in

July (1-km downwind of the airport). These values were 5.5 µg m�3 higher in January and 33.9 µg

m�3 higher in July compared to the maximum subgrid scale impacts using AEDT emissions and PinG

and 19.4 µg m�3 higher in January and 58.8 µg m�3 higher in July compared to the maximum AEDT

grid-based impacts (without PinG). The higher subgrid impacts in ADSC were largely attributable to

the higher primary emissions of EC and POA.

The use of PinG alone increased aircraft-attributable PM2.5 concentrations in January, 2005 both

locally and regionally, primarily due to an increase in ammonium nitrate concentrations. For example,

over the contiguous U.S., aviation-attributable PM2.5 concentrations increased by 27% (from 1.9 ng

m�3 to 2.5 ng m�3) due to PinG. In July, 2005, however, the use of PinG only slightly altered

aircraft-attributable PM2.5 (increase of 2%) since warm temperatures in summer present less favorable

conditions to form ammonium nitrate compared to winter.

Subgrid scale impacts at and around airports (without altering emissions) were approximately an

order of magnitude higher than grid-based impacts, with concentrations reaching as high as 8.4 µg

m�3 in January and 25.4 µg m�3 in July, or approximately 2 and 50 times higher than grid-based im-

pacts, respectively. Furthermore, the use of PinG prevented the interaction of aircraft NOx emissions

and biogenic SOA precursors at ATL. Where previous model results indicated aircraft NOx emissions

lowered biogenic SOA concentrations at coarse model grid resolutions (Chapter 2), this was no longer

the case when using PinG.

Comparisons of ADSC against measurements made by Kinsey et al. (2010) and Agrawal et al.

(2008) suggest that ADSC EC emission indices compare favorably across a range of power settings

for two aircraft engines. Also, ADSC provides EC emission estimates for all aircraft engines and

power settings, unlike FOA3 which estimates an EC emission index of zero for engine and power

settings when Smoke Numbers are not available in the ICAO engine database (Stettler et al., 2011).

This also suggests that the ADSC EC emissions are a better indicator of total EC emissions. However,

the ADSC emission comparison against measurements was only performed for two engines with
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available measurements. While these two engines compared favorably, its possible that other engines

(or the mapping of ADSC emission indices to other engines) could bias the ADSC inventory high or

low. Additional comparisons of the ADSC (and AEDT) PM emission indices are needed to provide

additional certainty in the aircraft emission inventories used in AQMs.

Finally, when considering PM2.5 from all emission sources, grid-based results would suggest that

aviation-attributable PM2.5 comprises only a small (<1%) fraction of total PM2.5. From this, one

may conclude that air quality impacts (and health related impacts) from aircraft emissions are negli-

gible. However, higher aviation-attributable PM2.5 concentrations at the subgrid scale would suggest

otherwise. Typical concentrations ranged from 0.1 µg m�3 to 1.0 µg m�3 several km away from

airports which could negatively impact public health and attainment demonstration downwind of the

airport. Therefore, while considerations of grid-based impacts do well in providing overall impacts

from aircraft, they could potentially miss ”hot spots” of impacts near airports.

5.4 Future Considerations

AQMs traditionally underpredict SOA (De Gouw et al., 2005; Volkamer et al., 2006), including

CMAQ (Foley et al., 2010). NTSOA from S/IVOC emissions represent a formation pathway which,

until recently, was not considered in AQMs. While there is a significant amount of uncertainty associ-

ated with NTSOA, both in emissions of S/IVOCs and yields, this pathway could potentially improve

AQM predictions of SOA. Aircraft represent a small percentage of total anthropogenic emissions and

therefore NTSOA from aircraft is relatively small compared to total PM2.5 from all sources. How-

ever, other major combustion sources, such as gas and diesel vehicles similarly emit S/IVOCs, and

improving NTSOA predictions from these sources in AQMs, as was done in this work for aircraft,

would likely significantly increase the amount of SOA mass formed in AQMs.

Future considerations of the PinG work could explore how sensitive model estimates are to the

number and location of emitters used to represent aircraft. Specifically, this would include incorpo-

rating higher resolution AEDT aircraft locations from single airport AEDT simulations into CMAQ-

APT, providing radar based aircraft locations near the airport. Additional considerations include

developing ADSC look-up tables for additional aircraft engines to provide a broader base of engines

to pull from when developing an ADSC based emission inventory. And finally, considerations should
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be made to compare grid-based and subgrid-based aircraft impacts to measurements from field cam-

paigns, though currently a limited number of measurement studies appropriate for comparison to these

model results currently exist.

5.5 Uncertainty

Uncertainty still remains in model predictions of aviation-attributable PM2.5. For example, the

S/IVOC emission estimates used in this work (both AEDT and ADSC emissions) are based on one

set of measurements and experiments for a single aircraft engine and extrapolated to other engines.

Moreover, considerations of S/IVOC emissions from all sources is a relatively new area and the sci-

ence is continually evolving. Measurement techniques are still being developed to accurately quantify

S/IVOCs emissions and their chemistry and both of which would have direct implications for how

S/IVOC and their products are represented in AQMs. Furthermore, aircraft PM emissions on a whole

remain uncertain. There are currently approximately 500 active aircraft engines in the ICAO aircraft

engine database, each with a unique emission profile. However, ICAO only certifies those engines

for NOx, CO, hydrocarbons, and smoke number, a proxy for EC emissions. Uncertainty will likely

remain until measurements of S/IVOC and POA emissions become available for a broader base of

aircraft engines. This work provides a step in the right direction but as is the case with any modeling

application, results are limited by the accuracy of the model inputs.

Furthermore, evaluations of model predictions of aviation-attributable PM against measurements

would help to provide additional certainty in model estimates. Limited measurements are currently

available for aircraft and there are no PM measurement standards for aircraft (though a measurement

standard for EC is currently being developed). Additionally, measurements are made at a wide range

of distances from aircraft (ranging from 1 m behind the engine to 10’s of meters) and typically do

not provide detailed speciation, reporting total PM, total primary vs. secondary PM, or a single com-

ponent (e.g. EC). Finally, these types of measurements are commonly made in conjunction with the

development of emissions. Therefore, the measurements are reported in terms of mass of pollutant

per mass of fuel burned (e.g. gram per kg fuel). While useful for emissions, this type of measure-

ment is difficult to use in a comparison of ambient concentrations, which are reported as a mass per
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unit volume (e.g. µg m�3) and more appropriate for model evaluations. These limitations in mea-

surements thereby limit the ability to evaluate model results and indicate the need for comprehensive

field measurement campaigns to be conducted at varying spatial scales (near aircraft/runways as well

as downwind to assess evolution of aircraft emissions) for speciated PM components to effectively

corroborate model results.
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APPENDIX A SUPPLEMENTAL MATERIAL: SECONDARY ORGANIC AEROSOL
PRODUCED FROM AIRCRAFT EMISSIONS AT THE ATLANTA AIRPORT – AN

ADVANCED DIAGNOSTIC INVESTIGATION USING PROCESS ANALYSIS

A.1 CMAQ v4.7 Carbon Bond 05 SOA Precursor Reactions

adapted from CMAQs mech.def file and Carlton et al. (2010)

A.1.1 Biogenic Precursors

TERP +O ��! TERPRXN (A.1)

TERP +OH ��! TERPRXN (A.2)

TERP +O3 ��! TERPRXN (A.3)

TERP + NO3 ��! TERPRXN (A.4)

SESQ + O3 ��! SESQRXN (A.5)

SESQ + OH ��! SESQRXN (A.6)

SESQ + NO3 ��! SESQRXN (A.7)

A.1.2 Anthropogenic Precursors

TOL + OH ��! TOLRO2 (A.8)

TOLRO2 + NO ��! TOLNRXN (A.9)

TOLRO2 + HO2 ��! TOLHRXN (A.10)

XYL + OH ��! XYLRO2 (A.11)

XYLRO2 + NO ��! XYLNRXN (A.12)

TOLRO2 +HO2 ��! XYLHRXN (A.13)
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BENZENE + OH ��! BENZRO2 (A.14)

BENZRO2 + NO ��! BNZNRXN (A.15)

BENZRO2 + HO2 ��! BNZHRXN (A.16)

RXN species represent oxidized SOA precursors and are used to estimate semi-volatile SOA

species in gas/aerosol partitioning. Similarly, NRXN and HRXN species represent oxidized SOA

precursors for high NOx and low NOx SOA formation pathways, respectively. Some other products

in the above reactions not involved in SOA formation were removed for brevity, and to keep the focus

on SOA.

A.2 Modeled Aircraft Emissions

A.2.1 Emission Totals

Table A.1: Average monthly total aircraft emissions for 2002 and total aircraft emissions for June 6,
2002; and June 7, 2002 (identical for all 3 grid resolutions) in tons.

CO NOx SO2 VOCs PM2.5

Average Monthly Total 481.9 631.9 62.3 81.5 13.8
June 6, 2002 18.8 24.5 2.4 3.9 0.6
June 7, 2002 16.4 21.4 2.1 3 0.5

Table A.2: Surface level aircraft emissions in the airport grid cell for June 6 and 7, 2002 in tons. Note
emissions are slightly lower in the 12-km and 4-km grid resolutions due to portions of the airport
extending into adjacent grid cells.

Model Resolution CO NOx SO2 VOCs PM2.5

June 6, 2002
36-km 16.2 6.7 1.1 3.6 0.2
12-km 15.8 6.5 1.1 3.6 0.2
4-km 12.3 4.3 0.8 1.5 0.2

June 7, 2002
36-km 14.1 6 1 2.8 0.2
12-km 13.9 5.9 1 2.8 0.2
4-km 12.1 4.9 0.8 1.3 0.2

A.2.2 Vertical Profile of Emissions
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Figure A.1: Vertical aircraft emission profile for CO at the 36-km, 12-km, and 4-km grid resolutions
on June 6, 2002.

Figure A.2: Vertical aircraft emission profile for NOx at the 36-km, 12-km, and 4-km grid resolutions
on June 6, 2002.
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Figure A.3: Vertical aircraft emission profile for SO2 at the 36-km, 12-km, and 4-km grid resolutions
on June 6, 2002.

Figure A.4: Vertical aircraft emission profile for VOCs at the 36-km, 12-km, and 4-km grid resolutions
on June 6, 2002.
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A.3 Meteorological Data

A.3.1 Modeled and Observed Wind Speeds and Direction

Figure A.5: Modeled surface wind direction and speed at the 36-km grid resolution for nighttime
hours (0 to 8 GMT or 8 PM to 4AM LST) on June 6 (top left), June 7 (top right), and June and July
(bottom).
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Figure A.6: Modeled surface wind direction and speed at the 36-km grid resolution for all hours on
June 6 (top left), June 7 (top right), and June and July (bottom).
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Figure A.7: Modeled surface wind direction and speed at the 12-km grid resolution for nighttime
hours (0 to 8 GMT or 8 PM to 4AM LST) on June 6 (top left), June 7 (top right), and June and July
(bottom).
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Figure A.8: Modeled surface wind direction and speed at the 12-km grid resolution all hours on June
6 (top left), June 7 (top right), and June and July (bottom).
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Figure A.9: Modeled surface wind direction and speed at the 4-km grid resolution for nighttime hours
(0 to 8 GMT or 8 PM to 4AM LST) on June 6 (top left), June 7 (top right), and June and July (bottom).
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Figure A.10: Modeled surface wind direction and speed at the 4-km grid resolution for all hours on
June 6 (top left), June 7 (top right), and June and July (bottom).
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Figure A.11: Measured surface wind direction and speed at ATL for nighttime hours (0 to 8 GMT or
8 PM to 4AM LST) on June 6 (top left), June 7 (top right), and June and July (bottom).
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Figure A.12: Observed surface wind direction and speed at ATL for all hours on June 6 (top left),
June 7 (top right), and June and July (bottom).
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A.3.2 Modeled Planetary Boundary Layer Heights

Figure A.13 indicates planetary boundary layer (PBL) heights in meters and layers for the three

modeled grid resolutions. There is good agreement in PBL heights between the 12-km and 4-km

resolutions on June 6 and in the 36-km and 12-km on June 7. Additionally, changes in SOA concen-

trations due to aircraft emissions presented here were small during daytime hours (13–21 GMT) on

June 7 (relative to other hours) when the maximum variation in PBL heights occurred between the

36-km/12-km and 4-km grid resolutions. Therefore, differences in vertical resolution associated with

using separate meteorological inputs to derive the 36-km/12-km and 4-km meteorology do not ap-

pear to serve a role in the variation of model response from aircraft emissions to SOA concentrations

between the three grid resolutions with additional details provided in the results section.

Figure A.13: Planetary Boundary Layer heights for the 36-km, 12-km, and 4-km grid resolutions.
Solid lines indicate heights in meters while dotted lines indicate model vertical layers.

A.4 CMAQ v4.6 vs. v4.7 Model Performance

The Arunachalam et al. (2011) work, which provides the basis for this study, was modeled using

CMAQ v4.6. Conversely, CMAQ v4.7 includes a number of SOA updates which include additional

SOA precursors and formation pathways, updated enthalpy of vaporizations, effective saturation con-

centrations, and stoichiometric yield values (Carlton et al., 2010; Foley et al., 2010) and was therefore

the preferred choice for assessing changes in SOA due to aircraft emissions. Since results were avail-

able from CMAQ v4.6 and v4.7, this provided the opportunity to test how SOA updates in CMAQ

v4.7 influence the impacts of aircraft emissions on SOA. However, to test the updates in CMAQ v4.7

84



on overall model performance and prior to examining the changes of model sensitivity to SOA con-

centrations from aircraft emissions, overall model performance was first considered for both CMAQ

v4.6 and 4.7. Hourly total carbon (TC) concentrations from the CMAQ v4.6 (aerosol 4 module) and

CMAQ v4.7 (aerosol 5 module) model runs were compared against observations at the Jefferson Street

(JST) Southeastern Aerosol Research and Characterization (SEARCH) monitor (Hansen et al., 2003)

located in downtown Atlanta approximately 15 km north of the airport (Table A.3 and Figure A.14a).

TC is defined as the sum of organic (both primary and secondary) aerosols and EC aerosols predicted

by CMAQ. For the 36-km and 12-km grid resolutions, both model versions typically overpredicted

TC during this episode. However, for the 4-km grid resolution, v4.7 appears to have exhibited bet-

ter model performance lowering both model error and bias (Table A.3), particularly on the second

episode day (Figure A.14a). This improved agreement for TC for the 4-km grid resolution was not

attributed to changes in SOA concentrations or to updates to the SOA mechanism in the new version

of CMAQ. Instead, it is associated with another update to CMAQ: the convective and resolved cloud

models (Carlton et al., 2008; Foley et al., 2010). Process analysis results (Figures A.15a and A.15b)

indicated that both POA and AEC concentrations are reduced on June 7 for the 4-km grid resolution

by cloud processes in CMAQ v4.7. While this modeled reduction in the other components of TC

(besides SOA) led to better agreement with the SEARCH monitor, it did not appear to influence the

modeled impacts of aviation emissions on SOA concentrations.

Table A.3: CMAQ v4.6 and v4.7 TC model error and model bias at the Jefferson Street SEARCH
monitoring site.

36-km 12-km 4-km
v4.6 v4.7 v4.6 v4.7 v4.6 v4.7

Model Bias (µg m�3) 1.72 1.72 2.96 3.08 1.76 1.09
Model Error (µg m�3) 1.74 1.82 2.96 3.08 1.87 1.34

A.5 Modeled Aircraft Contributions

A.5.1 CMAQ v4.6 vs. v4.7 Aircraft Contributions

Comparing the impacts of aviation emissions on SOA formation between CMAQ v4.6 and CMAQ

v4.7, the two models predicted similar diurnal patterns (Figure A.14b). The comparison also indicated

that the same model processes contributed to the changes in biogenic SOA concentrations in both

85



Figure A.14: (a) Comparison of CMAQ v4.6 and v4.7 TC concentrations to the Jefferson Street
SEARCH monitoring site, and (b) changes in SOA IPR rates in CMAQ v4.6 (solid lines) and v4.7
(dashed lines).

Figure A.15: CMAQ IPR outputs for AEC, POA, and SOA at grid cell containing the Jefferson Street
SEARCH monitoring site at the 4-km grid resolution for (a) v4.6 and (b) v4.7.
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versions. However, two primary differences between the two versions are the magnitude of the change

in biogenic SOA (v4.7 predicts a smaller change to SOA) and the reduction of anthropogenic SOA

concentrations. The change in biogenic SOA was attributed to parameter updates to the SOA modeling

mechanism in v4.7—specifically, the enthalpy of vaporization, effective saturation concentration, and

stoichiometric yield values (Carlton et al., 2010; Foley et al., 2010). Stoichiometric yields for aromatic

SOA precursors as well as enthalpies of vaporization and effective saturation concentrations for all

SOA precursors were updated to reflect more recent laboratory experiments (Offenberg et al., 2006;

Edney et al., 2007; Ng et al., 2007b; Carlton et al., 2008). Additionally, a correction factor of 1.3

was applied to stoichiometric yields for biogenic SOA precursors reported by Griffin et al. (1999),

which was based on the assumption of a density of 1.0 g/cc for monoterpene, while more recent

work has suggested a density of 1.3 g/cc (Bahreini et al., 2005; Alfarra et al., 2006; Kostenidou

et al., 2007; Ng et al., 2007a; Offenberg et al., 2007). To test the effect of these model updates, a

model sensitivity analysis was performed in which CMAQ v4.7 was run using SOA parameter values

taken from CMAQ v4.6 for enthalpies of vaporization, effective saturation concentrations (c*), and

stoichiometric yields. Figure A.16 presents the results of that sensitivity analysis, indicating that when

using v4.6 parameters in v4.7, SOA concentrations predicted by the two model versions (v4.6 and

v4.7s) follow nearly identical diurnal patterns, with differences attributed to updated SOA pathways

in v4.7.

A.5.2 Equivalent Spatial Extents Comparison

To extend the analysis beyond the single 36-km, 12-km, or 4-km grid cell containing the airport

and to determine the role of spatial extents when assessing how modeled airport emissions influence

SOA concentrations, results for equivalent spatial extents for the three grid resolutions were com-

pared. Results were compared for the 36-km grid cell to average concentrations from the 9 grid cells

in the 12-km domain and from the 81 grid cells in the 4-km domain corresponding to the same spatial

extent as the 36-km grid cell containing the airport. Figure A.17a presents the time series of changes

in anthropogenic and biogenic components of SOA for the equivalent spatial extents comparison due

to aircraft emissions, and similarly Figure A.17b presents the similar comparisons for total SOA. Re-

sults for the 12-km and 4-km resolutions from the equivalent spatial extents comparison more closely
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Figure A.16: Base case SOA concentrations at the ATL airport grid cell in CMAQ v4.6, v4.7, and
v4.7 updated to use enthalpies of vaporization, effective saturation concentrations, and stoichiometric
yields taken from v4.6 (referred to as v4.7s).

resemble the time series from the 36-km individual grid cell containing the ATL airport than do the

12-km and 4-km single-cell results, indicating that the modeled gas-phase chemistry dominated the

changes in SOA concentrations from aircraft at the extended spatial extents. In the case of the 4-km

grid resolution, while aircraft emissions increased SOA concentrations at the airport, they reduced

SOA concentrations at grid cells surrounding the airport. The modeling mechanism which led to the

reduction of SOA concentrations from aircraft emissions in these neighboring cells was the same as in

the 36-km and 12-km grid cell containing the airport. NO2 emissions from aircraft aloft were emitted

and advected into neighboring grid cells where they removed nitrate radicals and ultimately reduced

SOA production. However, the overall reduction of SOA concentrations in the 12-km and 4-km ex-

tents was lower than in the grid cell containing the airport at the 36-km resolution because a smaller

proportion of the grid cells composing the average were influenced by aircraft emissions aloft.

A.5.3 36-km Nitrate Aerosol Contributions

Contributions from aircraft in the grid cell containing the ATL airport lowered daily average ni-

trate aerosol (ANO3) concentrations on June 6 and 7, 2002 at the 4-km and 12-km resolutions but

only on June 7, 2002 for the 36-km resolution. The processes responsible for the reductions were

similar to those for SOA, aircraft NOx emissions lowered NO3 radical concentrations, inhibiting the

formation of ANO3. The unique feature on June 6, 2002 in the 36-km grid containing the airport
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Figure A.17: Changes in (a) anthropogenic (AORGA), biogenic (AORGB), and (b) total SOA concen-
trations due to aircraft emissions for equivalent spatial extents to 36-km grid cell containing the ATL
airport. Note changes to biogenic SOA dominate total changes to SOA and therefore the AORGB
results in (a) are nearly identical to the total SOA results in (b).

was a precipitation event, which converted N2O5 to HNO3 (which goes on to form ANO3) via the

heterogeneous chemistry pathway. The increased HNO3 concentrations via this heterogeneous path-

way offset the reductions due to NOx chemistry and thus led to an overall positive contribution from

aircraft to ANO3 concentrations. Note that while the precipitation event also occurred in the 12-km

grid resolution, it did not occur in the grid cell containing the airport and therefore did not impact

results at the airport in the 12-km grid resolution.

A.5.4 Spatial Plots of Monthly Average Modeled Aircraft Contributions
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Figure A.18: CMAQ v4.6 monthly average incremental contributions (change in individual species
divided by total change in PM2.5) of anthropogenic (AORGA), biogenic (AORGB), and total SOA
due to aircraft emissions at (a) 36-km, (b) 12-km, and (c) 4-km grid resolutions for June 2002 adapted
from Arunachalam et al. (2011). Rings denote radii of 12-km, 24-km, 36-km, and 48-km from ATL
airport.
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Figure A.19: CMAQ v4.6 monthly average incremental contributions (change in individual species
divided by total change in PM2.5) of anthropogenic (AORGA), biogenic (AORGB), and total SOA
due to aircraft emissions at (a) 36-km, (b) 12-km, and (c) 4-km grid resolutions for June 2002 adapted
from Arunachalam et al. (2011). Rings denote radii of 50-km, 100-km, and 150-km from ATL airport.
(Note that the information is the same as in Figure A.18, but for a larger domain around the airport)
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APPENDIX B SUPPLEMENTAL MATERIAL: ESTIMATES OF NON-TRADITIONAL
SECONDARY ORGANIC AEROSOLS FROM AIRCRAFT SVOC AND IVOC EMISSIONS

IN CMAQ

B.1 VBS vs. AE6 in CMAQ

B.1.1 Description of VBS in CMAQ

VBS in CMAQ, implemented by Koo et al. (2014) for the Carbon Bond 2005 (CB05) chemical

mechanism (Yarwood et al., 2005), includes four distinct organic aerosol groups: primary anthro-

pogenic (representing hydrocarbon-like OA), secondary anthropogenic and biogenic (representing

oxygenated OA), and primary biogenic (biomass burning). Five volatility bins are used to represent

the four semi-volatile groups, with the lowest bin being non-volatile and the other four bins repre-

senting particles with C* values ranging from 100 to 103 µg m�3. Stoichiometric yields representing

semi-volatile products of SOA gas-phase precursors are based on Murphy and Pandis (2009) except

for toluene, which is based on Hildebrandt et al. (2009) and are summarized in Table B.1. Forma-

tion of SOA from aromatics, isoprene, and monoterpenes precursors include both high and low-NOx

yields. Anthropogenic SOA is aged by reactions with OH using a rate constant of 2 x 10-11 cm3

molecules-1 s-1, with each aging reaction reducing volatility by an order of magnitude and adding

approximately 3% to the SOA mass (Murphy and Pandis, 2009). Biogenic SOA is not aged (Murphy

and Pandis, 2009), though the exclusion of biogenic aging reactions may not be a good assumption

based on smog chamber data (Donahue et al., 2012). POA is aged by OH with a rate constant of 4

x 10-11 cm3 molecules-1 s-1 (Robinson et al., 2007), lowering volatility by a order of magnitude with

87–90% of the mass (depending on the volatility of the parent POA oxidized) retained as POA and

7–9% transfered to SOA (Koo et al., 2014). The conversion of a portion of POA (hydrocarbon-like

OA) to SOA (oxidized OA), is based on carbon and oxygen balances (Koo et al., 2014). SVOCs

emissions, which partition between the particle and gas phase, replace POA emissions. To account

for the loss of particles to the gas phase, particle formation from IVOC emissions are added. The

VBS implementation includes two options to internally estimate SVOC and IVOC emissions at run-

time based on traditional POA emission inventories, a conservative and a high case both within the

uncertainty range of S/IVOC emissions. In the conservative case, the total mass of SVOC emissions
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Table B.1: CMAQ mass based VBS yields for the CB05 (Koo et al., 2012) and SAPRC-07 (this work)
chemical mechanisms.

CB05 and SAPRC-07 Mechanism
High NOx Yields Low NOx Yields

Model Species 100 101 102 103 100 101 102 103

BENZa 0.0030 0.1659 0.3000 0.4350 0.0750 0.2250 0.3750 0.5250
TOLb 0.0110 0.2480 0.4660 0.6940d 0.0110 0.2480 0.7250 0.4520d

XYLa,c 0.0015 0.1950 0.3000 0.4350 0.0750 0.3000 0.3750 0.5250
ISOPa 0.0000 0.0225 0.0150 0.0000 0.0090 0.0300 0.0150 0.0000
TERPa 0.0120 0.1215 0.2010 0.5070 0.1073 0.0918 0.3587 0.6075
SESQa 0.0750 0.1500 0.7500 0.5090d 0.0750 0.1500 0.7500 0.5090d

SAPRC-07 Mechanism Only
High NOx Yields Low NOx Yields

100 101 102 103 100 101 102 103

ARO1b 0.0110 0.2480 0.4660 0.6940 0.0110 0.2480 0.7250 0.4520
ARO2a 0.0015 0.1950 0.3000 0.4350 0.0750 0.3000 0.3750 0.5250

TRIMETH BENZ124a 0.0015 0.1950 0.3000 0.4350 0.0750 0.3000 0.3750 0.5250
ALK5a 0.0000 0.1500 0.0000 0.0000 0.0000 0.3000 0.0000 0.0000
APINa 0.0120 0.1215 0.2010 0.5070 0.1073 0.0918 0.3587 0.6075

a Murphy and Pandis (2009)
b Hildebrandt et al. (2009)
c SAPRC-07 includes MXYL, OXYL, and PXYL
d Adjusted to meet a mass balance check (Bonyoung Koo, personal communication, March 13, 2013)

Table B.2: Fraction of POA emissions allocated to SVOC volatility bins.

C*
Non-Vol 100 101 102 103

VBS 0.09 0.09 0.14 0.18 0.5
high S/IVOC VBS 0.4 0.26 0.4 0.51 1.43

are estimated to be equal to traditional POA emissions while IVOC emissions are estimated as twice

POA emissions (Robinson et al., 2007). In the high SVOC and IVOC emission case, SVOC emissions

are estimated as 3 times POA emissions while IVOCs are estimated as 4.5 times POA emissions (Shri-

vastava et al., 2011). Table B.2 indicates the fraction of POA mass assigned to each volatility bin of

SVOC emissions.

B.1.2 Methodology

In this study, the CMAQ v5.0.1 VBS implementation developed by Koo et al. (2014) was expanded

for use with the more explicit SAPRC-07 chemical mechanism (Carter, 2010). Updated and added

reactions are listed in Tables B.4 and B.5 of Section B.2. In CMAQ, our VBS implementation for

SAPRC-07 includes 150 gas phase species [13 representing SOA precursors — 9 anthropogenic (8
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contained in aircraft emissions) and 4 biogenic] and 413 reactions compared to 80 gas phase species (6

representing SOA precursors — 3 anthropogenic and 3 biogenic) and 205 reactions in CB05. SAPRC-

07 oxidation products of gas-phase SOA precursors were updated from traditional Odum 2-product

(Odum et al., 1996) species to VBS species with yields taken from Murphy and Pandis (2009) and

Hildebrandt et al. (2009) and identical to Koo et al. (2014) (Table B.1), while the aerosol module

remained unchanged from Koo et al. (2014).

Three different scenarios were modeled for January and July, 2002 over a nested 12-km Eastern

U.S. domain: 1) CMAQ with the traditional model for organic aerosols (AE6), 2) CMAQ with VBS

and conservative estimates of S/IVOC emissions (VBS) and 3) CMAQ with VBS and high estimates

of S/IVOC emissions (high S/IVOC VBS). Model inputs are based on those used in Hutzell et al.

(2012). Briefly, meteorological inputs were generated using the Pennsylvania State University/NCAR

mesoscale (MM5) model (Grell et al., 1994). Emissions were generated using the Sparse Matrix

Operator Kernel Emissions (SMOKE) model (Houyoux et al., 2000) and estimated using the U.S.

EPAs 2002 National Emissions Inventory (NEI) (U.S. EPA, 2004). Table B.3 summarizes CMAQ

domain and monthly total POA emissions in January and July 2002 for AE6 [where POA is the sum

of primary organic carbon (POC) and primary non-carbon organic mass (PNCOM)], VBS, and high

S/IVOC VBS (where SVOC emissions represent POA emissions). Because the CMAQ boundary

conditions do not currently include gas- or particle-phase VBS species, three 36-km contiguous U.S.

simulations, one each for AE6, VBS, and high S/IVOC VBS, were performed for January and July,

2002 and the results used to generate boundary conditions for the 12-km domain. For each nested

12-km simulation, the coarser domain used the identical OA scheme as the nested simulations.

Model estimates of total fine particulate matter (PM2.5) and organic carbon (OC) concentra-

tions were compared against observations at Chemical Speciation Network (CSN) (http://www.epa.

gov/ttn/amtic/speciepg.html) and Interagency Monitoring of Protected Visual Environments (IM-

PROVE) network sites (http://vista.cira.colostate.edu/improve) and OC observations at Southeastern

Aerosol Research and Characterization (SEARCH) network sites (http://www.atmospheric-research.

com/studies/SEARCH). Additional information about the monitoring sites, such as the number of
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Table B.3: Primary organic carbon (POC), primary non-carbon organic mass (PNCOM), primary
organic aerosol (POA, where POA = POC + PNCOM), SVOC, and IVOC emissions for CMAQ with
AE6, VBS, and high S/IVOC VBS (VBSh).

AE6
Jan Jul

POC 86,737 53,763
PNCOM 34,695 21,505

POA 121,432 75,268
VBS VBSh

C* Jan Jul Jan Jul

SV
O

C
s

Non-Vol 10,929 6,774 48,573 30,107
100 10,929 6,774 31,572 19,570
101 17,000 10,538 48,573 30,107
102 21,858 13,548 61,930 38,387
103 60,716 37,634 173,648 107,34

Total SVOCs 121,432 75,268 363,296 225,806
IVOCs 150,537 242,864 546,444 337,709

sites in the domain (Table B.7), their locations (Figure B.5), and performance at sites located clos-

est to ATL (Tables B.8 and B.9) are provided in Section B.2. Note that the VBS implementation in

CMAQ does not track primary organic carbon and primary non-carbon organic matter separately as

in AE6, only estimating primary organic aerosols. Therefore, primary OC was estimated assuming

an OM/OC ratio of 1.4, similar to Lane et al. (2008); Murphy and Pandis (2009, 2010). PNCOM

emission estimates were adjusted to account for this assumption and to maintain consistency between

the model scenarios. For SOA, the EPA recommended precursor-specific OC/OM ratios, which range

from 1.4 to 2.7, were used to calculate AE6 OC. VBS, however, does not track mass formed from

each parent precursor separately as in AE6 and therefore an OC/OM ratio of 2 was assumed for all

secondary species, similar to Murphy and Pandis (2009, 2010).

B.1.3 Results

Organic Carbon

In both January and July 2002, VBS predicted lower OC concentrations compared to AE6, pri-

marily due to the evaporation of POA from the particle phase to the gas phase (Figures B.1b and e).

This effect was more pronounced in winter (Figure B.1b), when POA emissions were approximately

1.6 times higher than in summer (Figure B.1e and Table B.3). While differences in summer appear

95



Figure B.1: Monthly average OC concentrations for CMAQ with AE6 in a) January and d) July,
CMAQ with VBS minus CMAQ with AE6 in b) January and e) July, and CMAQ with VBS and High
S/IVOC emissions minus CMAQ with AE6 in c) January and f) July.

relatively small on an absolute change basis (Figure B.1) compared to winter, low overall concentra-

tions of OC in summer somewhat obscure the differences between AE6 and VBS, which are actually

similar to those in winter on a percent change basis. Compared to AE6, high S/IVOC VBS predicted

higher OC concentrations in the south and portions of the northeast in winter, and near the Great Lakes

and in Colorado in summer (Figures B.1c,f) largely due to anthropogenic SOA formed from oxidative

aging of S/IVOCs from sources of POA emissions (e.g. wildfire in Colorado in July). Evaporation of

POA, which impacted VBS OC results, was generally offset by the increased emissions of S/IVOCs.

Comparing individual components of OC (anthropogenic SOA, biogenic SOA, and POA), VBS

predicted higher concentrations of anthropogenic SOA than AE6, but lower concentrations of biogenic

SOA (with the exception of slightly higher concentrations in the South during July) and POA (Figures

B.2a-c and e-g). Lower POA concentrations far to have shifted gas-particle partitioning of SOA from

the particle phase to the gas phase in VBS, effectively lowering SOA concentrations throughout the

domain. Aging, changes in yields, and conversion of POA to anthropogenic SOA appear to have

counteracted this effect to produce higher anthropogenic SOA concentrations, with aging and the

conversion of POA likely more important in summer due to the additional photo-oxidation which
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Figure B.2: Monthly average absolute difference of CMAQ with VBS minus CMAQ with AE6 in
January for a) anthropogenic SOA b) biogenic SOA c) and POA and in July for e) anthropogenic
SOA f) biogenic SOA g) and POA. Monthly average absolute difference of CMAQ with VBS and
high S/IVOC emissions minus CMAQ with AE6 for POA concentrations in d) January and h) July.

occurs during warmer months. For biogenic SOA, differences in yields appear to have counteracted

the shift in partitioning to produce higher concentrations in the South, where biogenic emissions are

highest (despite lower overall organic mass available for particle partitioning), but not in other areas.

Compared to VBS, the high S/IVOC VBS predictions were similar for biogenic SOA (slightly higher

concentrations in the South during July likely due to additional organic mass shifting gas-particle

partitioning to the particle phase), and a similar spatial pattern for anthropogenic SOA but with a larger

magnitude. POA concentrations in the high S/IVOC case were higher than AE6 near POA emission

sources due to the increase in S/IVOC emissions in winter but slightly lower in other areas due to

partitioning to the gas phase (Figure B.2d). In summer, POA concentrations were likely lowered by

aging reactions, which shifted a portion of POA mass to anthropogenic SOA (Figure B.2h).

Figure B.3 indicates the normalized mean bias (NME) and normalized mean error (NME) for all

PM species, including OC, and Tables B.6–B.9 indicate the fractional error (FE) and fractional bias

(FB), the recommended model performance metrics for PM (Boylan and Russell, 2006), for OC and

PM2.5. OC model performance comparisons indicate that in general, the VBS treatment performed

worse at CSN and IMPROVE monitor locations compared to AE6 (Figure B.3, Tables B.6 and B.8).

Lower concentrations in VBS led to more severe underpredictions of OC at CSN sites in January
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Figure B.3: Normalized mean bias and normalized mean error at CSN, IMPROVE, and SEARCH
monitor sites in January for a) CMAQ, b) CMAQ with VBS, and c) CMAQ with VBS and high
S/IVOCs and in July for d) CMAQ, e) CMAQ with VBS, and f) CMAQ with VBS and high S/IVOCs.
PM species include sulfate (SO4), nitrate (NO3), ammonium (NH4), PM2.5, elemental carbon (EC),
organic carbon (OC), and total carbon (TC).

and July and at IMPROVE sites in January where AE6 also underpredicted OC. At IMPROVE sites

in January, the underprediction of OC using VBS [FB of -106%] was worse than using AE6 (FB of

-5.9%) (Table B.6). At SEARCH sites, VBS generally performed better than AE6 in January where

AE6 overpredicted OC. Lower OC concentrations in VBS slightly improved FB (150 %) compared

to AE6 (166%) while FE was slightly worse (from 174% in AE6 to 185% in VBS). However, these

values are considered rather poor model performance overall. Performance using VBS with high

S/IVOCs estimates was, in general, similar to AE6. FBs were slightly higher at CSN and SEARCH

sites using high S/IVOC VBS compared to AE6 (Table B.6). In instances where AE6 underpredicted

OC (CSN in July), high S/IVOC VBS improved FB whereas when AE6 overpredicted OC (SEARCH

in January and July), high S/IVOC VBS tended to more severely overpredict OC. The poor model

performance in VBS was largely attributable to the semi-volatile treatment of POA, as a portion of

the POA emissions were partitioned into the gas phase. This effect was somewhat counteracted by

the higher POA emissions in the high S/IVOC emission case.

To test the sensitivity of POA aging on OC concentrations in VBS, an alternative aging scheme

proposed by Pye and Seinfeld (2010) was implemented over the same modeling domain and time
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periods. The Pye and Seinfeld (2010) aging scheme uses a rate constant of 2 x 10-11 cm3 molecules-1

s-1 (vs. 4 x 10-11 cm3 molecules-1 s-1), lowers volatility by two orders of magnitude (vs. one order

of magnitude), only allows for one oxidation step per parent hydrocarbon (vs. multi-generational ag-

ing), and assumes that oxidation produces a product 50% heavier than the parent hydrocarbon (vs. no

increase). Model predictions of OC using the alternative aging scheme were nearly identical during

the summer at CSN (0.454 µgC m�3 in the alternative aging scheme vs. 0.452 µgC m�3 in the CMAQ

aging scheme) and IMPROVE (0.747 vs. 0.743 µgC m�3) monitoring locations and marginally higher

in winter (0.479 vs. 0.441 µgC m�3 at CSN sites and 0.936 vs. 0.884 µgC m�3 at IMPROVE sites).

The slight increase in OC concentrations did little to improve model performance given the underpre-

dictions of OC (0.7 to 4.2 µgC m�3) with VBS.

Koo et al. (2014) reported similar OC model performance at CSN and IMPROVE monitoring

locations in the Eastern U.S. using CMAQ v5.0.1 with CB05 and VBS; VBS model performance was

markedly worse in winter and marginally worse in summer compared to AE6. In the high S/IVOC,

Koo et al. (2014) indicated similar results in winter (performance similar to AE6) but with significant

improvements to performance in summer. In a separate study, Koo et al. (2013) showed that the

high S/IVOC case in CMAQ generally improved performance in February and August, 2005. The

traditional aerosol treatment in CMAQ [AE5 in Koo et al. (2013)] generally underpredicted OC and

therefore the higher predictions of the high S/IVOC case improved performance [note that Koo et al.

(2013) did not report results for CMAQ with VBS and conservative estimates of S/IVOC emissions).

Koo et al. (2014) also reported results for an implementation of VBS in the Comprehensive Air

Quality Model with Extensions (CAMx) (ENVIRON, 2013). In CAMx, model performance between

the traditional OA modeling scheme, VBS, and high S/IVOC VBS were mixed depending on the

time of year and network. In the Weather Research and Forecasting model coupled with Chemistry

(WRF-Chem) (Grell et al., 2005), Li et al. (2011) reported that VBS with high estimates of S/IVOC

emissions generally improved model performance in Mexico City, where the traditional 2-product

OA treatment previously underpredicted OA. Given the mixed model performance in CMAQ (as well

as CAMx), future efforts are needed to refine the VBS treatment, particularly the S/IVOC emission

inputs, to improve CMAQ model performance. With the variation in seasonal performance, one
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possible improvement would be to use seasonally specific S/IVOC emission estimates as proposed

by Koo et al. (2014). Another improvement would be to use source-specific S/IVOC emission inputs.

The CMAQ v5.0.2 implementation of VBS provides the flexibility to estimate S/IVOC emissions

using different scaling factors applied to gas vehicle POA emissions, diesel vehicle POA emissions,

and all other anthropogenic POA emissions. However, the default approach used in this study applies

the same S/IVOC scaling factor to POA emissions from all sources, as source specific scaling factors

for CMAQ were not available at the time this study was performed.

PM2.5

VBS lowered total PM2.5 concentrations throughout the Eastern U.S. in both January and July

(Figures B.4b,e). The same was true for the high S/IVOC case with the exception of Florida and

portions of the Northeast in January and Colorado in the summer (Figures B.4c,f). The reduction of

PM2.5 concentrations with VBS led to mixed impacts on model performance (Figure B.3). Instances

where CMAQ previously overpredicted total PM (CSN and IMPROVE in January) (Table B.7), VBS

improved performance though due to compensating bias. Alternatively, in cases where CMAQ pre-

viously underpredicted total PM (CSN and IMPROVE in July) (Table B.7), VBS worsened model

performance.

Comparing total PM2.5 concentrations between organic aerosol schemes, it is worth noting that

the total change in PM2.5 concentrations was not completely attributable to changes in organics. For

example, reductions in summertime PM2.5 concentrations in the VBS case (or summer and winter

concentrations in the high S/IVOC case) did not agree spatially with changes in OC concentrations

(Figures B.1c,e,f and B.4e,c,f). Comparisons of mean concentrations also support this finding, e.g.

mean OC concentrations in January of 2.8 µgC m�3 and 0.9 µgC m�3 for AE6 and VBS respectively

(difference of 1.9 µgC m�3 ) vs. total PM2.5 concentrations of 18.4 µg m�3 and 14.7 µg m�3 (differ-

ence of 3.7 µg m�3 ). The additional differences were due to an increase in dry deposition of PM2.5

species, which reduced non-organic PM concentrations in VBS by 9–17.5%.
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Figure B.4: Monthly average PM2.5 concentrations for CMAQ with AE6 in a) January and d) July.
Monthly average absolute difference in CMAQ with AE6 minus CMAQ with VBS in b) January and
e) July and CMAQ with AE6 minus CMAQ with VBS and high S/IVOC emissions in c) January and
f) July.

B.2 Additional Figures and Tables
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Figure B.5: Locations of CSN, IMPROVE, and SEARCH ambient monitors in the domain as well as
the Atlanta Airport.
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Table B.4: Updates to existing CMAQ SAPRC-07 reactions for VBS based on Koo et al. (2014).
Where RXN products are replaced by RO2, high and low NOx yields replace NOx independent yields.
SV BVB and SV AVB correspond to semi-volatile biogenic and anthropogenic SOA species, respec-
tively. Newly added reactions (those without a corresponding reaction in SAPRC-07 without VBS)
are listed in Table B.5.

Reactants Default Product Updated VBS CMAQ Product(s)
ISOPRENE + OH ISOPRXN ISOPRO2

APIN + OH TRPRXN TRPRO2
APIN + O3 TRPRXN TRPRO2

APIN + NO3 TRPRXN TRPRO2
TERP + OH TRPRXN TRPRO2
TERP + O3 TRPRXN TRPRO2

TERP + NO3 TRPRXN TRPRO2
ALK5 + OH ALK5RXN ALK5RO2

SESQ + OH SESQRXN 0.092*SV BVB1 + 0.188*SV BVB2 +
0.968*SV BVB3 + 0.679*SV BVB4

SESQ + O3 SESQRXN 0.092*SV BVB1 + 0.188*SV BVB2 +
0.968*SV BVB3 + 0.679*SV BVB4

SESQ + NO3 SESQRXN 0.092*SV BVB1 + 0.188*SV BVB2 +
0.968*SV BVB3 + 0.679*SV BVB4

SESQ + O3P SESQRXN 0.092*SV BVB1 + 0.188*SV BVB2 +
0.968*SV BVB3 + 0.679*SV BVB4

BENZRO2 + NO BNZNRXN 0.001*SV AVB1 + 0.079*SV AVB2 +
0.148*SV AVB3 + 0.222*SV AVB4

BENZRO2 + HO2 BNZHRXN 0.035*SV AVB1 + 0.108*SV AVB2 +
0.185*SV AVB3 + 0.268*SV AVB4

XYLRO2 + NO XYLNRXN 0.001*SV AVB1 + 0.127*SV AVB2 +
0.201*SV AVB3 + 0.301*SV AVB4

XYLRO2 + HO2 XYLHRXN 0.048*SV AVB1 + 0.195*SV AVB2 +
0.252*SV AVB3 + 0.364*SV AVB4

TOLRO2 + NO TOLNRXN 0.006*SV AVB1 + 0.145*SV AVB2 +
0.281*SV AVB3 + 0.432*SV AVB4

TOLRO2 + HO2 TOLHRXN 0.006*SV AVB1 + 0.145*SV AVB2 +
0.437*SV AVB3 + 0.281*SV AVB4
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Table B.5: Newly added reactions for SAPRC-07 for CMAQ with VBS based on Koo et al. (2014).
SV BVB, SV AVB, SV PVB, and SV FVB correspond to semi-volatile biogenic SOA, anthro-
pogenic SOA, anthropogenic POA, and biogenic POA (biomass burning), respectively and similarly
IVOC P and IVOC F correspond to anthropogenic and biogenic IVOCs.

Reactants Product(s)
ISOPRENE + O3 ISOPRO2

ISOPRENE + NO3 ISOPRO2

ISOPRO2 + NO 0.000*SV BVB1 + 0.009*SV BVB2 +
0.006*SV BVB3 + 0.000*SV BVB4

ISOPRO2 + HO2 0.004*SV BVB1 + 0.013*SV BVB2 +
0.006*SV BVB3 + 0.000*SV BVB4

TRPRO2 + NO 0.010*SV BVB1 + 0.101*SV BVB2 +
0.173*SV BVB3 + 0.451*SV BVB4

TRPRO2 + HO2 0.087*SV BVB1 + 0.077*SV BVB2 +
0.309*SV BVB3 + 0.540*SV BVB4

ALK5RO2 + NO 0.000*SV AVB1 + 0.109*SV AVB2 +
0.000*SV AVB3 + 0.000*SV AVB4

ALK5RO2 + HO2 0.000*SV AVB1 + 0.219*SV AVB2 +
0.000*SV AVB3 + 0.000*SV AVB4

SV AVB1 + OH SV AVB0
SV AVB2 + OH SV AVB1
SV AVB3 + OH SV AVB2
SV AVB4 + OH SV AVB3
SV PVB1 + OH 0.864*SV PVB0 + 0.142*SV AVB0
SV PVB2 + OH 0.877*SV PVB1 + 0.129*SV AVB1
SV PVB3 + OH 0.889*SV PVB2 + 0.116*SV AVB2
SV PVB4 + OH 0.869*SV PVB3 + 0.137*SV AVB3
SV FVB1 + OH 0.538*SV FVB0 + 0.464*SV BVB0
SV FVB2 + OH 0.689*SV FVB1 + 0.313*SV BVB1
SV FVB3 + OH 0.783*SV FVB2 + 0.220*SV BVB2
SV FVB4 + OH 0.846*SV FVB3 + 0.156*SV BVB3

IVOC P + OH 0.033*SV AVB1 + 0.216*SV AVB2 +
0.304*SV AVB3 + 0.447*SV AVB4

IVOC F + OH 0.033*SV BVB1 + 0.216*SV BVB2 +
0.304*SV BVB3 + 0.447*SV BVB4
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Table B.6: Mean organic carbon concentrations, fractional bias (FB) and fractional error (FE) for
CMAQ (AE6), CMAQ with VBS (VBS), and CMAQ with VBS and high S/IVOC emissions (VBSh)
for CSN, IMPROVE, and SEARCH monitor sites located within the model domain.

Network Mean Conc. (µg m�3) FB (%) FE (%)
(# of sites) Obs. AE6 VBS VBSh AE6 VBS VBSh AE6 VBS VBSh

CSN Jan 2.9 2.8 0.9 3.4 -3.3 -105 0.4 53.0 111 58.4
(173) Jul 4.9 1.3 0.7 1.6 -103 -140 -92.3 107 142 95.8

IMPROVE Jan 1.1 1.4 0.4 1.5 -5.9 -106 -14.6 59.6 109 67.8
(83) Jul 2.6 0.6 0.5 0.9 -118 -132 -93.7 119 132 97.4

SEARCH Jan 0.7 2.0 0.7 2.3 166 150 168 174 185 173
(8) Jul 1.2 1.3 0.8 1.6 121 105 124 158 174 155

Table B.7: Mean PM2.5 concentrations, fractional bias (FB) and fractional error (FE) for CMAQ
(AE6), CMAQ with VBS (VBS), and CMAQ with VBS and high S/IVOC emissions (VBSh) for
CSN, IMPROVE, and SEARCH monitor sites located within the model domain.

.

Network Mean Conc. (µg m�3) FB (%) FE (%)
(# of sites) Obs. AE6 VBS VBSh AE6 VBS VBSh AE6 VBS VBSh

CSN Jan 12.4 18.4 14.7 18.1 27.8 5.5 23.0 47.0 39.4 46.8
(173) Jul 18.4 12.9 11.0 12.5 -39.9 -53.3 -44.6 53.1 62.2 57.5

IMPROVE Jan 5.4 8.2 6.2 7.7 24.6 0.5 14.4 53.8 47.9 53.1
(83) Jul 12.5 6.7 5.6 6.2 -69.1 -82.8 -81.4 72.7 85.0 84.3

Table B.8: Mean organic concentrations, fractional bias (FB) and fractional error (FE) for CMAQ
(AE6), CMAQ with VBS (VBS), and CMAQ with VBS and high S/IVOC emissions (VBSh) for the
CSN monitor (Site No. 130890002, located approximately 15 km northeast of the airport in Decatur,
GA) and SEARCH monitor [Jefferson Street Site (JST), located approximately 15 km north of the
airport in downtown Atlanta, GA] closest to the Atlanta Airport.

Network Mean Conc. (µg m�3) FB (%) FE (%)
Obs. AE6 VBS VBSh AE6 VBS VBSh AE6 VBS VBSh

Decatur Jan 4.6 3.1 1.0 3.5 -29.5 -127 -21.2 34.1 127 25.4
Jul 4.6 1.2 0.8 1.5 -112 105 -99.4 112 195 99.4

JST Jan 4.5 3.5 1.1 4.1 -18.0 -115 -5.2 34.0 118 27.6
Jul 4.0 2.1 1.1 2.5 -53.1 -105 -43.5 66.4 118 57.3
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Table B.9: Mean PM2.5 concentrations, fractional bias (FB) and fractional error (FE) for CMAQ
(AE6), CMAQ with VBS (VBS), and CMAQ with VBS and high S/IVOC emissions (VBSh) for the
CSN monitor (Site No. 130890002, located approximately 15 km northeast of the airport in Decatur,
GA) closest to the Atlanta Airport.

Network Mean Conc. (µg m�3) FB (%) FE (%)
Obs. AE6 VBS VBSh AE6 VBS VBSh AE6 VBS VBSh

Decatur Jan 13.7 19.4 15.6 19.2 35.2 12.2 32.8 36.0 23.4 36.6
Jul 18.2 11.9 10.5 12.0 -56.2 -69.9 -52.0 56.2 69.9 53.9
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APPENDIX C SUPPLEMENTAL MATERIAL: MULTISCALE PREDICTIONS OF
AIRCRAFT-ATTRIBUTABLE PM2.5 MODELED USING CMAQ-APT FOR U.S. AIRPORTS

Table C.1: List of the 99 airports included in this study and their tier classification, which is based on
activity.

Code Tier Name City State

ABQ III Albuquerque Intl. Sunport Albuquerque NM

ALB III Albany Intl. Albany NY

ATL I Hartsfield-Jackson Atlanta Intl. Atlanta GA

AUS III Austin-Bergstrom Intl. Austin TX

BDL III Bradley Intl. Windsor Locks CT

BFL III Meadows Field Bakersfield CA

BHM III Birmingham Intl. Birmingham AL

BNA III Nashville Intl. Nashville TN

BOI III Boise Air Terminal-Gowen Field Boise ID

BOS II General Edward Lawrence Logan Intl. Boston MA

BTR III Baton Rouge Metropolitan-Ryan Field Baton Rouge LA

BUF III Buffalo Niagara Intl. Buffalo NY

BUR III Bob Hope Burbank CA

BWI II Baltimore-Washington Intl. Baltimore MD

CHS III Charleston Air Force Base/Intl. Charleston SC

CLE III Cleveland-Hopkins Intl. Cleveland OH

CLT I Charlotte Douglas Intl. Charlotte NC

CMH III Port Columbus Intl. Columbus OH

COS III City of Colorado Springs Municipal Colorado Springs CO

CRP III Corpus Christi Intl. Corpus Christi TX

CVG II Cincinnati Northern Kentucky Intl. Covington OH

DAB III Daytona Beach Intl. Daytona Beach FL

DAL III Dallas Love Field Dallas TX

DAY III James M. Cox Dayton Intl. Dayton OH

DCA II Ronald Reagan Washington National Washington DC

DEN I Denver Intl. Denver CO

(Continued on next page)
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Table C.1: 99 airports – continued from previous page

Code Tier Name City State

DFW I Dallas-Fort Worth Intl. Dallas-Fort Worth TX

DSM III Des Moines Intl. Des Moines IA

DTW I Detroit Metropolitan Wayne County Detroit MI

ELP III El Paso Intl. El Paso TX

EUG III Mahlon Sweet Field Eugene OR

EWR II Newark Liberty Intl. Newark NJ

FAT III Fresno Yosemite Intl. Fresno CA

FLL II Fort Lauderdale Hollywood Intl. Fort Lauderdale FL

FNT III Bishop Intl. Flint MI

GFK III Grand Forks Intl. Grand Forks ND

GRR III Gerald R. Ford Intl. Grand Rapids MI

GSO III Piedmont Triad Intl. Greensboro NC

HOU III William P. Hobby Houston TX

HPN III Westchester County White Plains NY

IAD I Washington Dulles Intl. Washington DC

IAH I George Bush Intercontinental-Houston Houston TX

ICT III Wichita Mid-Continent Wichita KS

IND III Indianapolis Intl. Indianapolis IN

ISP III Long Island MacArthur Islip NY

JAX III Jacksonville Intl. Jacksonville FL

JFK II John F. Kennedy Intl. New York NY

LAN III Capital City Lansing MI

LAS II McCarran Intl. Las Vegas NV

LAX I Los Angeles Intl. Los Angeles CA

LGA II La Guardia New York NY

LGB III Long Beach-Daugherty Field Long Beach CA

LIT III Adams Field Little Rock AR

MCI III Kansas City Intl. Kansas City MI

MCO II Orlando Intl. Orlando FL

MDW II Chicago Midway Intl. Chicago IL

(Continued on next page)
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Table C.1: 99 airports – continued from previous page

Code Tier Name City State

MEM II Memphis Intl. Memphis TN

MIA II Miami Intl. Miami FL

MKE III General Mitchell Intl. Milwaukee WI

MLB III Melbourne Intl. Melbourne FL

MSN III Dane County Regional-Truax Field Madison WI

MSP I Minneapolis-St Paul Intl. Minneapolis MN

MSY III Louis Armstrong New Orleans Intl. New Orleans LA

OAK III Metropolitan Oakland Intl. Oakland CA

OKC III Will Rogers World Oklahoma City OK

OMA III Eppley Airfield Omaha NE

ONT III Ontario Intl. Ontario CA

ORD I Chicago O’Hare Intl. Chicago IL

ORF III Norfolk Intl. Norfolk VA

PBI III Palm Beach Intl. West Palm Beach FL

PDX III Portland Intl. Portland OR

PHF III Newport News Williamsburg Intl. Newport News VA

PHL I Philadelphia Intl. Philadelphia PA

PHX I Phoenix Sky Harbor Intl. Phoenix AR

PIT III Pittsburgh Intl. Pittsburgh PA

PVD III Theodore Francis Green State Providence RI

RDU III Raleigh-Durham Intl. Raleigh-Durham NC

RIC III Richmond Intl. Richmond ViA

RNO III Reno Tahoe Intl. Reno NV

ROC III Greater Rochester Intl. Rochester NY

RSW III Southwest FL Intl. Fort Myers FL

SAN III San Diego Intl. San Diego CA

SAT III San Antonio Intl. San Antonio TX

SBA III Santa Barbara Municipal Santa Barbara CA

SDF III Louisville Intl.-Standiford Field Louisville KY

SEA II Seattle-Tacoma Intl. Seattle WA

(Continued on next page)
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Table C.1: 99 airports – continued from previous page

Code Tier Name City State

SFO II San Francisco Intl. San Francisco CA

SJC III Norman Y. Mineta San Jose Intl. San Jose CA

SLC II Salt Lake City Intl. Salt Lake City UT

SMF III Sacramento Intl. Sacramento CA

SNA III John Wayne Airport-Orange County Santa Ana CA

STL II Lambert-St Louis Intl. St Louis MI

SWF III Stewart Intl. Newburgh NY

SYR III Syracuse Hancock Intl. Syracuse NY

TPA III Tampa Intl. Tampa FL

TUL III Tulsa Intl. Tulsa OK

TUS III Tucson Intl. Tucson AR

TVC III Cherry Capital Traverse City MI

TYS III McGhee Tyson Knoxville TN
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Figure C.1: Example of emitter placement for the Hartsfield-Jackson Atlanta International Airport.
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Figure C.2: Illustrative example of puff locations in CMAQ-APT using puff centroid locations at 12
GMT on July 1.

Figure C.3: Exert from ADSC look-up table.
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Figure C.4: Schematic indicating the flow of data used to create ADSC-based CMAQ plume-in-grid
emissions. Note AEDT-based CMAQ plume-in-grid emissions only utilize AEDT data.
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Figure C.5: Box-and-whisker plots of grid-based aircraft-attributable PM2.5 (scenarios without PinG)
in the grid cell containing the Atlanta (ATL), Salt Lake City (SLC), and Cleveland (CLE) airports
(0-18 km) and grid cells located 19-54 km and 55-90 km downwind of the airports in January (top)
and July (bottom). Grey dots represent outliers which are defined as values more than 1.5 times the
inter-quartile range above the 75th percentile and below the 25th percentile.
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Figure C.6: The same as with Figure C.5 but with outliers removed.
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Figure C.7: Box-and-whisker plots of aircraft-attributable PM2.5 (grid plus puff) at receptors located
at the Atlanta (ATL), Salt Lake City (SLC), and Cleveland (CLE) airports and at distances of 1 km, 5
km, 10 km, 25 km and 50 km away in January (top) and July (bottom) with outliers removed, i.e. the
same as with Figure 4.5 but with outliers removed.
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