
Linking patterns of net community production and marine microbial
community structure in the western North Atlantic

Seaver Wang 1 
● Yajuan Lin1,2 

● Scott Gifford3 
● Rachel Eveleth1,4 

● Nicolas Cassar1,2

Received: 12 December 2017 / Revised: 3 April 2018 / Accepted: 11 May 2018 / Published online: 22 June 2018

Abstract
Marine net community production (NCP) tracks uptake of carbon by plankton communities and its potential transport to 
depth. Relationships between marine microbial community composition and NCP currently remain unclear despite their 
importance for assessing how different taxa impact carbon export. We conducted 16 and 18S rRNA gene (rDNA) 
sequencing on samples collected across the Western North Atlantic in parallel with high-resolution O2/Ar-derived NCP 
measurements. Using an internal standard technique to estimate in-situ prokaryotic and eukaryotic rDNA abundances per 
liter, we employed statistical approaches to relate patterns of microbial diversity to NCP. Taxonomic abundances calculated 
using internal standards provided valuable context to traditional relative abundance metrics. A bloom in the Mid-Atlantic 
Bight featured high eukaryote abundances with low eukaryotic diversity and was associated with the harmful algal bloom-

forming Aureococcus anophagefferens, phagotrophic algae, heterotrophic flagellates, and particle-associated bacteria. These 
results show that coastal Aureococcus blooms host a distinct community associated with regionally significant peaks in NCP. 
Meanwhile, weak relationships between taxonomy and NCP in less-productive waters suggest that productivity across much 
of this region is not linked to specific microplankton taxa.

Introduction

Uptake of carbon by phytoplankton and its exchange
between organisms in the marine environment plays a cri-
tical role in the carbon cycle, with primary production in the

world’s oceans representing half of global net primary
production [1]. A small proportion of surface production [2]
is transported to depth via sinking particles, subduction, and
other processes, transferring carbon to deep ocean pools
with a residence time of millennia or longer [3]. Con-
siderable interest has consequently focused on exploring
relationships between surface microbial community struc-
ture, marine production [4–6], and particulate carbon export
[7–9].

Net community production (NCP) rates reflect the pro-
ductivity and metabolic balance of the surface ocean
microbial community. Expressed as the difference between
gross primary production and community respiration, NCP
rates estimate the mixed-layer production of organic carbon
available for export [10–13]. NCP patterns have been
well-examined independently, as have patterns of surface
ocean community structure. However, direct comparison of
relationships between ecology and productivity remains an
emerging line of investigation.

The Western North Atlantic is a region of interest for
unraveling potential links between community structure and
productivity. New production across this region is thought
to be driven by a variety of physical and biological pro-
cesses including nitrogen fixation, mesoscale features,
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seasonal mixing, and allochtonous nutrient inputs
[14–16].

A dominant feature of the Western North Atlantic is the
Sargasso Sea, an oligotrophic region typical of other sub-
tropical gyre systems [17]. While spring and winter phy-
toplankton blooms occur following winter mixing of
nutrients into the surface layer, the Sargasso Sea in summer
exhibits limiting nitrate and phosphate concentrations (N <
50 nmol kg−1, P < 20 nmol kg−1) [18]. Ongoing changes in
the biogeochemistry of the Sargasso Sea may impact
community composition, carbon export, and nutrient
cycling due to increasing stratification [19] and changing
nutrient inputs [20]. Records suggest gradual community
shifts are underway, with haptophyte populations declining
and Synechococcus and dinoflagellate groups increasing in
abundance [20, 21]. Globally, oligotrophic subtropical
gyres cover some 40% of the planet’s surface [22], and
small shifts in microplankton ecology in such regions may
have repercussions for biogeochemistry and climate. Large-
scale genomics sampling work has suggested that specific
key taxa may be important drivers of carbon export in such
regions [7].

To the west, the Western North Atlantic is bounded by
the North American continental shelf. High rates of pro-
duction are observed along this coast well into summer [23].

In this region, the shelf, shelf break, shelf slope, and Gulf
Stream exert dynamic physical forcings upon resident
microplankton, driving variation in community structure
and primary production over short transects [24]. Such
coastal regions are increasingly being recognized as
potentially important carbon sinks [25] and are also pre-
dicted to undergo future ecological shifts in response to
eutrophication and climate change [26–28].

Considering ongoing shifts in microplankton community
structure in ecosystems across the Western North Atlantic,
evaluating the impact of future community shifts upon
primary production and potential carbon export in this
region is of great interest. There is thus a need to identify
relationships between community composition and NCP.
Few regional NCP measurements have been conducted in
the Western N. Atlantic to date, with existing NCP data
generally coming from time-series measurements [29] or
fine-scale studies [30, 31]. Similarly, while community
structure at the Bermuda Atlantic Time Series (BATS) has
been regularly studied [32, 33], broader rDNA amplicon
data surveying the whole region are far sparser.

In this study, we gathered samples for high-throughput
16 and 18S rDNA amplicon sequencing and concurrently
conducted high-resolution O2/Ar-based NCP measurements
using Equilibrator Inlet Mass Spectrometry (EIMS) [34]

Fig. 1 a Map of O2/Ar-derived
volumetric NCP measured using
EIMS in early August 2015
across the western Sargasso Sea.
Positive rates are shown using a
warm color scale, while net
negative measurements are
shown with a cool color scale.
Gray values indicate balanced
NCP rates. Locations at which
samples were collected for
community rDNA sequencing
are indicated with open circles.
b Time series of O2/Ar-derived
NCP measurements, with
molecular sampling stations
indicated by black stars



along three transects spanning the oligotrophic Sargasso
Sea, the Gulf Stream, and the U.S. East Coast. To obtain
absolute taxonomic abundances for the sampled commu-
nities, we adapted an internal standard approach for 16 and
18S rDNA sequencing to quantitatively characterize com-
munity structure [35]. We then assessed trends in whole-
community composition and diversity in relation to NCP
and evaluated associations between productivity and spe-
cific microplankton groups identified in our samples.

Materials and methods

Study Area and collection of O2/Ar and ancillary
data

Continuous and discrete measurements were collected over
a 3 100 km transect in the western North Atlantic aboard the
R/V Atlantic Explorer from 3–12 August 2015. The cruise
track progressed west from the BATS Station (32.3°N,
−64.6°W) to the North Carolina coast, then northeast to
~50 km south of Long Island, New York before returning to
Bermuda (Fig. 1). Fourteen CTD casts were conducted
during the cruise at 200–400 km intervals. Underway dis-
solved O2/Ar measurements were collected alongside dis-
crete sampling for chlorophyll and DNA. O2/Ar was
measured continuously from the ship’s underway intake
using the EIMS method [34]. Details of O2/Ar-derived NCP
calculations and assessment of potential vertical O2/Ar
fluxes are described in the Supplementary Methods.

Microbial community sampling and rDNA amplicon
sequencing

Samples for rDNA analysis were obtained from 5m CTD
casts and underway samples (Table S2) pumped from a
towfish trailing abeam of the vessel at 3–5 m depth. This
custom-built towfish, suspended alongside, is trace metal-
clean, using plastic tubing and carrying seawater aboard via
an air-driven pump. For each sample, one liter was filtered
through a 0.22-μm filter (Millipore, Billerica, MA, USA)
using a peristaltic pump, preserved with RNAlater (Thermo
Fisher, Waltham, MA, USA), and flash-frozen in liquid
nitrogen. At stations with high biomass, the volume of fil-
trate was reduced to 0.2–0.5 l as filters became clogged.

Internal controls for quantitative sequencing

A quantitative internal standard approach provides infor-
mation on per-liter abundance of taxa across samples,
yielding more meaningful comparisons between taxonomic
abundances and biological rate measurements. To quantify
rDNA copy numbers l−1, internal genomic standards were

added to each sample following [35]. Genomic DNA was
obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA) for Thermus Thermophilus
(ATCC #27634D-5), a thermophilic hot springs bacterium,
and Schizosaccharomyces pombe (ATCC #24843D-5), a
yeast species. The S. pombe genome contains ~110 copies
of the 18S V4 rDNA amplicon [35], while the T. thermo-
philus genome contains two 16S V4 copies [36].

Given the large range in 18S rDNA copy number across
eukaryotic genomes, we determined an appropriate spike of
control DNA (0.073 ng) by evaluating the average 18S
rDNA concentration in our samples using qPCR with 18S
V4 primers. To ensure that such a diluted spike would
reliably manifest in sequencing output, we conducted a pilot
sequencing run on duplicate filters from this study at the
Boston University Microarray Core on an Ion Torrent PGM
using a 314 chip (Supplementary Methods).

The Ion Torrent test revealed that a 15.2 ng T. thermo-
philus genomic DNA spike resulted in T. thermophilus reads
comprising an average of 5.3% of all reads, while the addition
of 0.679 ng of S. pombe gDNA yielded 0.9% S. pombe reads.
Based upon these results, we adjusted the spike amounts to
quantities expected to constitute <1% of sequenced reads,
adding 0.679 ng of the S. pombe standard and 3.04 ng of the
T. thermophilus standard to each sample, both in 50 μl
volumes. This corresponded to adding c.a. 5 780 000 rDNA
copies sample−1 of S. pombe and 2 800 000 rDNA copies
sample−1 of T. thermophilus genomic DNA.

DNA extraction for 16S and 18S rDNA sequencing

We conducted DNA extraction using the Qiagen DNeasy
Plant Mini Kit (Qiagen, Germantown, MD, USA) following
manufacturer instructions with slight modifications [37],
with internal gDNA standards added prior to bead-beating
[38]. PCR amplification was performed for 30 cycles using
custom 16S V4 primers 515F-Y (5′-GTGYCAGCM
GCCGCGGTAA-3′) and 805 R (5′-GACTACNVGGG-
TATCTAAT-3′) and 18S V4 primers F (5′-CCAGCAS-
CYGCGGTAATTCC-3′) and R (5′-ACTTTCGTTCTT
GAT-3′), with attached Illumina adapters and barcodes
(Supplementary Table 3). These primers are adapted from
widely-used universal primers for the amplification of
marine prokaryotic [39, 40] and eukaryotic [41] taxa,
modified to improve coverage of SAR11 and haptophytes
[5, 42]. Primers were each dual-indexed with 6 bp barcodes,
using a heterogeneity spacer approach [43, 44]. 16S sam-
ples were run at 94 °C for 3 min, 30 cycles at 94 °C for 30 s,
60 °C for 30 s, 72 °C for 1 min, followed by a third stage at
72 °C for 10 min. 18S samples were run identically apart
from an annealing temperature of 57 °C. Each 16S PCR
reaction (25 μl volume) consisted of 2.5 μl 10 × PCR buffer,
0.5 μl dNTP mix (10 μM each), 1 μl 50 mM MgSO4, 0.5 μl



each of forward and reverse primer (10 μM), 0.1 μl Platinum
Taq Hi-Fidelity Polymerase (Thermo Fisher, Waltham, MA,
USA), and 19.4 μl of sterile water. 18S PCR reaction mix-
tures were identical except polymerase amounts were dou-
bled (0.2 μl per reaction) to address weak amplification,
with a compensating water volume decrease to 19.3 μl. PCR
products were purified using the Qiagen QIAquick PCR
Purification Kit and quantified using a Qubit 3.0 fluo-
rometer (Life Technologies, Carlsbad, CA, USA). The
samples were then pooled at equimolar concentrations and
sequenced using the Illumina MiSeq platform (300 bp PE,
V3 chemistry) at the Duke Center for Genomic and Com-
putational Biology.

Analysis pipeline

We obtained 20 450 700 single-end reads from our
25 sequenced samples. Raw single-end reads were trimmed
to remove barcodes, assembled, and quality filtered fol-
lowing [43] using pandaseq [45]. 16S amplicon length was
296.7+ /− 2.9 bp (mean+ /− sd), while mean 18S
amplicon length was 424.1+ /− 4.3 bp. Demultiplexing
was performed in QIIME [46]. Five 18S rDNA samples and
one 16S rDNA sample contained no reads, the former likely
due to a defective forward primer. Primer and other non-
biological sequences were subsequently removed using
Tagcleaner [47]. We conducted chimera detection and
open-reference OTU picking at 97% similarity using the
Usearch 6.1 algorithm [48, 49] and Release 123.1 of the
SILVA database [50]. OTU clustering was performed using
the usearch61 method for de novo OTU picking, and the
usearch61_ref method for reference-based OTU picking.
Alignment was performed using PyNAST [51] and tax-
onomy assignment conducted using the RDP classifier 2.2
[52]. Full sequence processing scripts are included in
the Supplementary Material. Following taxonomy assign-
ment, internal standard DNA sequences, eukaryotic
metazoans, and plastid 16S sequences were filtered out
using the QIIME script ‘filter_taxa_from_otu_table.py’. We
further discarded one sample due to the low volume of
filtrate, leaving 19 eukaryotic and 23 prokaryotic samples.

Sample diversity metrics were calculated for 16S and
18S datasets using the phyloseq package [53] for R 3.4.1
[54]. For alpha diversity analyses only, sample libraries
were rarefied to the smallest library size in each set of
samples (16S: 98 819; 18S: 33 245). Rarefaction curves
begin to level off at the sequencing depths obtained, sug-
gesting that depth was sufficient to represent major patterns
of diversity in our samples (Figure S1). Alpha diversity
metrics (observed OTUs and Shannon diversity) were cal-
culated using averages from five rarefactions.

Using our non-rarefied sample libraries, calculation of
absolute abundances for each OTU was performed

following [38]:

rDNA abundance l�1 ¼ # of OTU reads

R � V ð1Þ

where V is the volume filtered and R represents the
recovery ratio of internal standards (genomic standards
sequenced/molecules of genomic standard added). Output
OTU tables are included in the Supplementary Material
(Supplementary Tables 5a, 5b)

Further details of downstream statistical analyses
including ordination and PLS regression are described in
the Supplementary Methods.

Results and Discussion

Patterns of O2/Ar-derived NCP

Underway O2/Ar-derived biological oxygen fluxes within the
mixed layer ranged from −2.4 to 17.4 mmol O2 m

−3 day−1

(MLD-integrated rates of −25–190mmol O2 m
−2 day−1)

(Fig. 1). We observed initial rates below 0.5 mmol O2 m
−3

day−1 in the open ocean, increasing to 1 mmol O2 m
−3 day−1

within 400 km of the coast. Turning north, fluxes reached
2–4mmol O2 m

−3 day−1 along the Carolina coast. Values
were subsequently variable along the coast.

The highest O2/Ar supersaturation occurred at the
expedition’s northernmost extent within a productive phy-
toplankton bloom, with values peaking at 17.4 mmol
O2 m

−3 day−1 south of Long Island. Passing this bloom, O2/
Ar supersaturation declined again to typically below 1
mmol O2 m

−3 day−1 during transit back to Bermuda.
We assessed the potential contribution of eddy diffusive

and entrainment fluxes to mixed-layer O2/Ar values as
minimal (Supplementary Methods). Consequently, we
report all biological O2 fluxes as NCP rates henceforth.
Except when comparing our data with integrated figures
from other literature, we also report rates throughout this
manuscript as volumetric values, more suitable for relation
to quantitative taxonomic abundances.

Overall, our high-resolution NCP measurements agree
well with previously measured patterns, with low NCP rates
observed in the open ocean and higher values over the
continental shelf along the Mid-Atlantic Bight. The marked
peak in productivity at the northern end of the expedition
coincided with high measured nitrogen fixation rates [55]
and high Chl a. Peak MLD-integrated productivity, reach-
ing 190 mmol O2 m

−2 day−1 (136 mmol C m−2 day−1

assuming a photosynthetic quotient of 1.4 [56]), is of a
similar magnitude as integrated 14C-derived primary pro-
duction rates for the Mid-Atlantic Bight spring bloom of up
to 158 mmol C m−2 day−1 [57]. Our observed rates are also
comparable to summer peak photic-zone primary



production of between 145 and 190 mmol C m−2 day−1

modeled for the same area using profile observations [24].
Our low MLD-integrated open-ocean NCP rates, with a

mean of 2.2 mmol O2 m
−2 day−1, are also consistent with

prior Sargasso Sea O2/Ar-based estimates in September/
October of 1.1–3.4 mmol O2 m

−2 day−1 [30], as well as
modeled summer regional NCP values of 3–4mmol O2 m

−2

day−1 [58].

Microbial community quantitative and relative
abundance patterns

Analysis of rDNA reads yielded 7 843 eukaryotic and 5 604
prokaryotic OTUs across 19 eukaryotic and 23 prokaryotic
samples (Supplementary Table 6). 16S and 18S samples
contained at least 98 819 and 33 245 reads per sample.

Our observations of 16S and 18S rDNA abundances per
liter were within expected bounds. Bacterial 16S rDNA
abundances of 1.78 × 108–5.4 × 109 copies l−1 are consistent
with bacterial abundances in the Sargasso Sea and Western
North Atlantic of 4.0 × 108–2.3 × 109 cells l−1 [59, 60],
assuming a typical 16S copy number of 1–15 [61].
Excluding the three highest NCP stations, where the highest

18S rDNA abundances were observed (range of 1.43 ×
108–3.14 × 1010 18S rDNA genes l−1), the median 18S
rDNA abundance was 1.4 × 109 sequences l−1.This is high
compared with surface ocean eukaryotic cell densities of
1 × 107 protists l−1 and 1 × 106 phytoplankton l−1 [62], but
is likely driven by variation in 18S rDNA copy number.
Peak 18S rDNA abundances, while high, are also reason-
able. Phaeocystis blooms can reach cell counts of 1.5 × 108

cells l−1 [63], and Aureococcus blooms of 6 × 108 cells l−1

have been observed along the Long Island Coast [64].
Absolute abundances of individual taxa are also con-

sistent with previous observations. For example, the median
SAR11 16S rDNA abundance in our samples (Fig. 2b) was
6.2 × 108 rDNA genes l−1 (SAR11 contains one 16S gene
copy cell−1), compared with previous measurements of 2 ×
108 SAR11 cells l−1 in the Sargasso Sea from fluorescence
in-situ hybridization counts [65]. Similarly, we observed a
median of 1.9 × 108 Prochlorococcus 16S rDNA genes l−1

in our samples (Fig. 2b), consistent with Western North
Atlantic observations of 1 × 108 cells l−1 based on qPCR
quantification and flow cytometry [66, 67]. Applications of
the internal standard approach for samples collected in the
lower Amazon River, the Southern Ocean, as well as in soil

Fig. 2 rDNA abundances across
sampled stations for a
Aureococcus anophagefferens b
SAR11 and Prochlorococcus



samples have also demonstrated good correspondence
between the standard-derived abundances and com-
plementary abundance data measured using epifluorescence
microscopy, photosynthetic pigments, flow cytometry,
phospholipid fatty acid analysis, and substrate-induced
respiration approaches [35, 36, 68].

Notably, calculation of absolute taxonomic abundances
using internal standards produces patterns distinct from
those generated using relative abundance metrics (Fig. 3).
This is evident among several abundant 18S and 16S OTUs,
including SAR11 clade members, as well as the protist
clades Dinoflagellata, Gonyaulacales, Alveolata, and
Gymnodiniphycidae. The latter four eukaryotes increase in
absolute abundance within the bloom environment, while
their relative abundances decrease due to the dominance of
Chrysophyceae and Aureococcus anophagefferens within
these samples. A similar phenomenon affects SAR11 rela-
tive abundances, which are highest between S2–S9 and
S20–S25 due to lower 16S rDNA counts for other prokar-
yotes at those stations. These discrepancies highlight
longstanding criticisms of traditionally-used relative abun-
dance metrics [36, 38, 69–72] and illustrate advantages
offered by the internal standard approach. In addition,
avoidance of issues caused by compositional community
data [73, 74] is valuable when relating taxonomic

abundances to microbial or biogeochemical processes
like NCP.

The internal standard approach is nonetheless subject to
several assumptions and limitations. A key assumption is
that recovery rates of DNA standards are comparable to
those of natural sequences within the sample. Particularly
given the general implications of primer biases in amplicon
work, this premise warrants further investigation. Recovery
rate differences due to amplification bias would not alter
how the quantitative abundance pattern of a sampled taxon
changes across samples, but might result in discrepancies
between estimated and actual in-situ abundances. Another
important limitation is that quantitative abundance data
produced by this method remain sensitive to differences in
rDNA copy number across taxa. Although better knowledge
of 16S copy number variation across prokaryotes has
spurred efforts to correct for copy number differences [75],
existing datasets remain limited particularly for eukaryotes,
in which rDNA copy number may vary by multiple orders
of magnitude. As data collection continues, corrections will
likely become more feasible and commonplace.

Among eukaryotes, dinoflagellate lineages dominated all
samples except three from the coastal bloom (S14–S16)
(Fig. 4a, b). Most of these dinoflagellate sequences corre-
sponded to Syndiniales, alveolate parasites infecting various

Fig. 3 a Comparison of patterns of absolute abundance, calculated
using an internal standard approach, to relative abundance for the
SAR11 clade of alphaproteobacteria, as well as four groups of eukar-
yotic protists: b Cryptophyceae, c Retaria, d Gymnodiniphycidae, and

e Gonyaulacales. f Scatter plot of 16S and 18S rDNA absolute vs.
relative abundance data, with points colored for each prokaryotic
(circles) and eukaryotic (diamonds) taxon across all samples, binned at
the 5th taxonomic rank



marine organisms and often detected at high abundances
using molecular tools [76–78]. While many of these
sequences may originate from endosymbionts inside
metazoan zooplankton caught on our filters, Syndiniales
also infect microzooplankton protists, including ciliates,
cercozoa, and other dinoflagellates, and clades targeting
both host categories often exhibit a short free-living life
stage [76]. Consequently, these sequences may also repre-
sent organisms living outside of metazoan hosts, interacting
within the marine microbial environment. To a degree,
elevated dinoflagellate abundances observed may also
reflect high 18S copy numbers, driven by large dino-
flagellate genomes [79, 80].

Two samples (S14, S15) associated with the coastal
bloom were dominated (>90% relative abundance) by
Aureococcus anophagefferens, a pelagophyte that forms
coastal “brown tide” harmful algal blooms (HABs) [81], as
well as Chrysophyceae (Fig. 4a, b). qPCR surveys have also
detected A. anophagefferens at low abundances in pelagic
waters, which some suggest indicates an oceanic origin for
this nuisance algae [82]. A wide distribution of A. ano-
phagefferens is also supported by our study. We found

Aureococcus present in 16 of 19 18S rDNA samples, with a
mean of 7.5 × 104 Aureococcus 18S rDNA genes l−1

observed in non-bloom samples. We estimated abundances
of 4.4–6.6 × 104 18S rDNA genes l−1 in open-ocean sam-
ples (S24, S25) collected near Bermuda. In comparison,
estimated Aureococcus 18S rDNA gene abundances ranged
between 1.8 × 108 and 2.0 × 1010 rDNA genes l−1 within the
observed bloom (Fig. 2a).

Sample 16 featured a high population (~20%) of Prym-
nesiales, primarily Chrysochromulina and Chrysoculter.
Chrysochromulina are another nuisance algae, capable of
mixotrophy [83], and forming blooms that can cause fish
kills [84]. Other members of Prymnesiales produce harmful
hemolytic compounds [85]. Eukaryotic diversity was lower
at two bloom stations, S14 and S15, (Supplementary Fig-
ure 2) but was similar across our other samples.

Among bacterioplankton, SAR11, SAR86 clade mem-
bers (appearing as Oceanospirillales in Fig. 4), and Pro-
chlorococcus (Subsection I cyanobacteria) dominated the
communities sampled (Fig. 4c, d). The AEGEAN-169 clade
of Alphaproteobacteria (Rhodospirillales), as well as MGII
Archaea (Thermoplasmatales) also appeared at high

Fig. 4 Bar plots of a 18S eukaryotic taxonomy shown at the 5th
taxonomic rank using relative abundance and b rDNA gene

abundance, and c 16S prokaryotic taxonomy shown at the 4th taxo-
nomic rank using relative abundance and d rDNA abundance



proportional abundances. Within the northern bloom, we
observed elevated abundances of Planctomycetales, Fla-
vobacteria, Sphingobacteriales, and Order III Cytophagia,
with Phycisphaerales appearing at particularly high abun-
dances (>10%) at two stations. Not much is currently
known about Phycisphaerales, although they are hypothe-
sized to form associations with macroalgae, with many
representatives facultatively anaerobic [86]. In addition,
these bloom samples also appear to contain more sequences
belonging to less-abundant and “rare” taxa (labeled ‘Other’
in Fig. 4). This phenomenon of elevated abundances of
“rare” taxa in bloom events has also been reported else-
where and may be related to ecological associations with
phytoplankton [87, 88]. Bacterial diversity across samples
was more uniform than eukaryotic diversity, with prokar-
yotic Shannon diversity between 4.1–4.5 versus 2.4–5.7 for
eukaryotic samples (Supplementary Figure 2).

Relationships between microbial community
structure and NCP

At the community level, we observed a negative relation-
ship between measured NCP and eukaryotic Shannon’s

H diversity (Pearson: −0.81, Spearman: −0.76, p « 0.01 for
both) (Fig. 5), which was strongly driven by low diversity at
two highly productive stations. This relationship does not
remain significant with those samples excluded (Pearson:
−0.56, Spearman: −0.61, p > 0.01). We observed no
relationship between prokaryotic diversity and NCP.

Recent debate over the nature of the relationship between
marine microplankton diversity and productivity has been
energetic. Any overall relationship between community
diversity and productivity would reflect the relative impor-
tance of functional diversity, cooperation, competitive
exclusion, selective feeding by grazers, and other factors in
governing ecosystem production [6, 89, 90]. Earlier research
suggests a peak of phytoplankton diversity at locations with
moderate production, with decreasing diversity observed for
less-productive and highly productive sites [91, 92]. Dom-
inance of a handful of taxa beyond the control of grazers
may explain decreased diversity at high productivity.
Increased diversity at moderate productivity rates may
reflect selective feeding pressures that allow coexistence
between a higher diversity of taxa. Within the Western
North Atlantic, our data supports the view that the most
productive marine communities may exhibit relatively low

Fig. 5 a Linear regression of NCP vs. the number of observed 18S
eukaryotic OTUs per sample. b Linear regression of NCP vs. 18S
Shannon alpha diversity across sample libraries. Dashed lines indicate
the resulting regressions when bloom stations (open circles) are

excluded. Significance and goodness-of-fit are provided in boldface for
the full dataset, and in italics for the dataset with bloom station data
excluded

Fig. 6 Principal Coordinates Analysis of a eukaryotic 18S and
b bacterial/archaeal 16S samples, ordinated by Bray-Curtis dissim-
ilarity. Samples are color coded based on general region of origin, as
visually determined from OSCAR ocean current data for the date of

sampling (https://earth.nullschool.net/), with green indicating stations
located within the Gulf Stream and with red and blue samples origi-
nating from waters inshore and offshore of the current, respectively

https://earth.nullschool.net/


eukaryotic diversity, a result consistent with meta-analysis
and model-based findings that the most productive com-
munities are among the least diverse [6].

Principal coordinate analysis (PCoA) of both prokaryotic
and eukaryotic samples demonstrated distinctions between
coastal bloom and other samples (Fig. 6), indicating commu-
nity dissimilarities. Linear regressions of environmental para-
meters against the first principal component revealed
significant correlations between NCP, temperature, latitude,
Chlorophyll, and PC1 for both our 18 and 16S datasets
(Supplementary Table 1), suggesting associations between
these parameters and community structure. None of these
trends remained significant once data from bloom stations S14,
S15, and S16 were excluded, however, indicating that these
relationships were driven largely by these samples, which
possess distinctive community structure, high Chl and NCP,
and low water temperatures compared to all other stations.

Relationships between NCP and specific
microplankton taxa

Partial Least Squares (PLS) regression analysis revealed
groups of prokaryotic and eukaryotic taxa associated with

high volumetric NCP rates (Supplementary Tables 4a-4f),
with these relationships again strongly driven by the bloom
community. Eukaryotic taxa associated with NCP included
Ochrophyta, Aureococcus anophagefferens, picozoa, cryp-
tophytes, prymnesiophytes, and stramenopiles, such as
several uncultured MArine STramenopile (MAST) clades
(Fig. 7b).

Many of these protists are commonly associated with
phytoplankton bloom conditions. Aureococcus anopha-
gefferens possesses a large genome optimized for uptake of
ambient dissolved organic carbon and nitrogen and is
adapted for fast growth under turbid, low-light conditions
[81, 93]. Members of Chrysophyceae also form blooms and
practice phagotrophy, engulfing, and processing particulate
matter [94]. The high abundance of these two taxa within
the bloom implies an environment favoring opportunistic
uptake of available particulate and dissolved organic
material.

Other eukaryotes strongly associated with high NCP
include groups of heterotrophic protists: radiolarians, cen-
trohelids, Labyrinthulomycetes, Ciliophora, as well as fla-
gellates such as Kathablepharidae, Choanomonada, and
uncultured marine stramenopiles. Many of these taxa feed

Fig. 7 Heatmaps showing strength of correlations, determined using
Partial Least Squares regression analysis between a prokaryotic and
b eukaryotic taxa and environmental parameters, including NCP. Plots
were produced at the fourth taxonomic rank for prokaryotes and
eukaryotes. Strength of correlations is denoted by the color scale, with

negative and positive correlations in blue and red tones, respectively.
Rows bounded by black rectangles indicate taxa with a correlation
with NCP greater than 0.2. (Full tables of correlation coefficients
included with supplementary material). Dendrograms link taxa with
similar relationships to the set of variables, and vice versa



upon algae, bacteria, detritus, and other particles. The
associations between these taxa and NCP may indicate
flourishing of heterotrophs within an environment with
enhanced food and prey concentrations.

The bacterial taxa most correlated with NCP corroborate
this picture of a productive bloom ecosystem driven by
high phytoplankton productivity. Groups of Bacteriodetes,
a class of heterotrophic bacteria generally observed to
thrive in particle-rich bloom environments [95], are
strongly associated with NCP. Other bacterial groups pri-
marily exhibiting surface or particle-associated lifestyles,
including Verrucomicrobia and Planctomycetes, also dis-
play high correlations with NCP. Numerous Gammapro-
teobacteria taxa, including the fast-growing Vibrionales
clade, are also strongly associated with productivity
(Fig. 7a).

We acknowledge that our community sampling repre-
sents a snapshot of this bloom and cannot capture succes-
sional dynamics. 8-day MODIS satellite chlorophyll data
measured before and after our cruise suggest that the bloom
first appeared in late July one to two weeks before sam-
pling. Our expedition likely encountered the bloom at its

temporal midpoint, with the bloom then fading by late
August. We further note that taxa associated with this event
may not be characteristic of other blooms that might occur
throughout the region. Although satellite imagery indicates
that a large bloom often recurs annually in the Mid-Atlantic
Bight in late summer, additional sampling is required to
confirm whether the observed community structure also
recurs.

Interestingly, when PLS regression analyses were repe-
ated while excluding bloom stations S14–S16, only a
handful of bacterial taxa and eukaryotic taxa remained
associated with NCP rates, and the overall strength of
associations weakened. Outside of the observed bloom,
moderate correlations with productivity were displayed by
just several groups of cryptophytes and bacterioplankton
(Fig. 8a, b). These results might indicate that relationships
between specific groups of eukaryotic and prokaryotic taxa
and NCP in less-productive locations are either undetected
by our study or hidden within the uncertainties of the
measurements conducted. At the same time, such a finding
may suggest that links between productivity and community
structure in this region are complex, with the abundance of

Fig. 8 Heatmaps of PLS correlations for a prokaryotic and b eukar-
yotic taxa at the 4th taxonomic rank, following removal of data from
bloom stations S14 to S16. Strength of correlations is denoted by the
color scale, with negative and positive correlations in blue and red

tones, respectively. Asterisks mark taxa with a correlation with NCP
greater than 0.2. Dendrograms link taxa with similar relationships to
the set of variables, and vice versa



any given taxa not strongly associated with measured
productivity.

The relationships we have detailed between productivity
and selected microplankton taxa exhibit interesting dis-
crepancies with findings from similar work conducted in
other regions of the global ocean. A TARA Oceans study of
associations between bacterial, eukaryotic, and viral taxa,
NPP, and particulate carbon export linked some of the same
microplankton groups to primary production and to particle
export that were productivity-associated within our full
dataset, including Vibrio and Alteromonadales among
bacteria, as well as dinoflagellates, Labyrinthula, Cercozoa,
Picozoa, prymnesiophytes, MAST-3, and Radiolaria [7].

Intriguingly, however, many of these abovementioned
associations vanish from our analysis when our dataset is
limited to non-bloom station data, whereas Guidi et al.
suggest that these same relationships are strong within the
oligotrophic ocean. It is also worth noting that several taxa
implicated in carbon export by Guidi et al. show no or even
negative correlations with NCP in our analysis, such as
Synechococcus (Subsection I Cyanobacteria) and Ocea-
nospirillales. Dissimilarities may be attributable to differ-
ences in abundance metrics, molecular methods, and the
distinctions between in-situ O2/Ar-derived NCP, modeled
NPP, and optically-determined particle export (i.e., not all
NCP is exported). Further, ecological dynamics encom-
passed by our regional study may not be extrapolatable to
global open-ocean data. Yet our work nevertheless spans a
considerable area and range of marine biomes. Rather, our
results suggest that outside of the observed bloom, pro-
ductivity across a relatively wide region is not strongly
associated with specific microbial taxa. Such questions
warrant further investigation.

Conclusions

Our results document a dramatic bloom in Mid-Atlantic
Bight coastal waters, where the harmful algal bloom-
forming taxon Aureococcus, Chrysophyceae, heterotrophic
protists, and particle-associated bacterioplankton were
strongly associated with this productivity peak. This result
emphasizes the potential significance of large coastal
blooms to productivity patterns in the Western North
Atlantic, and highlights HAB-forming Aureococcus as a
taxon of particular interest. We also find few associations
between taxonomy and NCP across a wide range of less-
productive waters, suggesting that specific microplankton
taxa may not be responsible for driving broader patterns of
production across much of this region.

Our quantitative amplicon sequencing approach serves as
a useful tool in investigating the ocean microbiome and its
influence on the marine environment, providing important

additional context beyond relative abundance metrics.
Coupled with the ever-increasing resolution and capabilities
of in-situ biogeochemical methods, adoption of similar
study designs can enable more nuanced examination of the
role of the microplankton community across diverse ocean
environments.

Supplementary information is available at the ISME
Journal’s website. Sequences and metadata are available
from the NCBI Sequence Read Archive under accession
number SRP126177.
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