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ABSTRACT 

Sarah Gonzalez-Nahm: Maternal Adherence to a Mediterranean Diet During Pregnancy, Infant 

DNA Methylation at Birth and Weight Gain in Infancy 

(Under the direction of Diane Rowley) 

 The purpose of this dissertation is to examine the association between maternal 

adherence to a Mediterranean diet during pregnancy, infant DNA methylation at birth at 5 

differentially methylation regions (DMRs) of imprinted genes, and weight gain in the first year of 

life. The first paper of this dissertation uses multinomial logistic regression models to determine 

the association between maternal adherence to a Mediterranean diet in early pregnancy and 

infant DNA methylation at birth. Results suggested an association between a lower level of 

methylation at the MEG3 IG DMR and lower adherence to a Mediterranean diet. This 

association was only evident in girls. The second paper focused on the association between 

infant DNA methylation at birth and weight gain between birth and age 1, as measured by 

change in weight-for-length Z scores. Results of linear regressions showed that a higher 

methylation level at the MEG3 DMR was associated with a lower weight gain in the first year of 

life. This association was evident in boys and in infants with lower than the median birth weight 

for the study sample. In the third aim, the potential mediation by DNA methylation in the 

relationship between maternal Mediterranean diet during pregnancy and weight gain in the first 

year of life was explored. However, the presence of mediation was not assessed due to sample 

size and methodological limitations. Overall these findings suggest that maternal adherence to a 

Mediterranean diet during early pregnancy affects infant DNA methylation of select imprinted 

genes at birth, and infant DNA methylation at select imprinted genes is associated with weight 

gain in infancy. However, no differentially methylated regions included in this study were 

associated with both maternal adherence to a Mediterranean diet and weight gain in infancy. 
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CHAPTER 1- INTRODUCTION 

Childhood Obesity 

 Childhood obesity is a major public health concern in the United States and around the 

world. Obesity in childhood is a risk factor for obesity later in life1–3, and is associated with a 

number of chronic diseases in both childhood4,5 and adulthood6. In the United States, 

approximately 17% of children and adolescents ages 2-19 years are obese7. While overall 

childhood obesity rates have not changed much in recent years, the disparity in obesity rates 

between African Americans and Latinos, and non-Hispanic whites has continued. An alarming 

24.3% of Black children and 21.2% of Hispanic children are obese, while only 14% of non-

Hispanic White children are obese7.  

 Obesity is a multifactorial condition, with environmental and biological risk factors and 

mechanisms. Environmental factors, such as diet and feeding practices8,9, physical activity8, the 

built environment10, and social factors, such as race7,11,12 and socioeconomic status11,12 have 

been associated with the development and incidence of obesity in young children. Identification 

of early obesity predictors may help prevent the onset of obesity later in life. Weight gain in 

infancy has been shown to be a predictor of obesity later in life13–15. Research has shown that 

rapid weight gain in infancy increases obesity risk as early as 2-4 years of age13,16,17, but also in 

adolescence2,18 and adulthood14,15. 

 Evidence has also pointed to the potential in-utero origins of obesity19–22. According to 

the in-utero origins theory, there is a mismatch between the in-utero and postnatal environments 

that predispose an individual to accumulate fat mass more readily than others19–22. Gaining a 

better understanding of the in-utero origins of obesity could help with the identification of those 
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“high risk” individuals. This could allow for better targeting of public health interventions for 

obesity prevention and health over the life course. 

 Dutch famine studies have demonstrated that there are critical or sensitive periods, 

during which environmental factors or metabolic insults may have a greater influence on 

health23,24. The in-utero period is a critical time window, during which a growing embryo or fetus 

may be negatively affected by maternal exposures. These effects may present themselves early 

in life and last throughout the life course4, or may manifest themselves later in life20,21. 

Mechanisms for the in utero origins of obesity have yet to be established, however there is a 

growing literature suggesting potential epigenetic processes25–27. 

Epigenetics 

 Epigenetics is the study of changes to gene expression caused by mechanisms other 

than the underlying DNA sequence28,29. DNA methylation is the most commonly studied 

epigenetic mechanism in epidemiological models due to its stability and the ease with which it 

can be measured30. DNA methylation occurs at cytosines that are followed by guanines i.e. CpG 

dinucleotides, which exist within differentially methylated regions (DMRs)28,31. Changes in DNA 

methylation as a result of early exposures can be measured at specific sites32,33, genome-

wide34,35, or globally36,37. DNA methylation can be measured in many cell types, including 

leukocytes from umbilical cord blood, as well as a variety of tissues. In human studies, tissue-

specific DNA methylation is not readily obtainable due to ethical issues, therefore cord blood or 

peripheral blood are typically used. There is evidence suggesting that there are no significant 

differences between DNA methylation at DMRs regulating imprinted genes from conceptal 

tissues and cord blood38.  

 As in-utero exposures are of interest, it is important to consider imprinted genes. 

Imprinted genes are monoallelically expressed, and this monoallelic expression is controlled by 

DNA methylation, which depends on which parent the allele came from29,39. Methylation of 
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regulatory sequences of imprinted genes is established during gametogenesis and is stably 

maintained throughout somatic division40,41. Parental origin-specific methylation profiles are 

spatially and temporally stable, such that methylation changes at imprinted gene DMRs 

resulting from in utero exposures can been seen later in life. For example, exposure to famine 

conditions in-utero has been detected decades post-exposure23,24.  

 Epigenetic modifications can occur as a result of a variety of exposures. Thus far, animal 

models and epidemiological studies have shown that nutritional manipulations, such as the 

addition of methyl donors or the restriction of protein, can alter DNA methylation42–44. 

Environmental toxicants, such as cigarette smoke45, cadmium46, and lead47,48 have also been 

found to affect the human epigenome. However, the phenotypes associated with these 

epigenetic changes are not well-known.  

 There is still insufficient and inconsistent evidence linking epigenetic mechanisms to 

obesity and weight gain in humans. Studies vary by DNA locus chosen, epigenetic mechanism 

examined, and timing of the outcome or exposure. Many studies looking at the epigenetic 

changes associated with obesity have not focused on the in-utero period49, or have focused on 

non-imprinted genes50. To date, the insulin growth factor 2 (IGF2)/H19 domain has been 

associated with fetal growth51,52, child/adolescent weight and adiposity53,54, and adult obesity 

and chronic disease23,33,55. Other imprinted genes that have been found in association with 

growth and/or obesity include maternally expressed gene 3 (MEG3)55 and pleiomorphic 

adenoma gene-like 1 (PLAGL1)55,56. Methylation in non-imprinted genes, such as peroxisome 

proliferator-activated receptor (PPAR)57, matrix metallopeptidase 9 (MMP9)58, and retinoid x 

receptor alpha (RXRA)50 has also been found in association with obesity. However, the 

heritability, malleability and significance of the epigenetic changes in non-imprinted genes is 

unknown. More research is needed to understand the role of and key players in DNA 

methylation of imprinted genes as a potential intermediate marker in the relationship between 

maternal and infant exposures and obesity in childhood.  
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Obesity and Assessment of Infant Weight Gain 

 Obesity in children ages 2-19 years is defined as a body mass index (BMI) greater than 

or equal to the 95th percentile for age and sex. There is currently no formal definition for obesity 

in children younger than two years of age7. However, a variety of measurements are regularly 

used to assess body weight59, depending on the availability of information. Weight-for-length Z 

scores, weight-for-age Z scores, and BMI are often used to measure body mass and fatness in 

infants, as they are easily and inexpensively obtained. BMI, calculated as an individual’s weight 

divided by their height squared, can be useful if comparing infant weight to weight later in 

childhood, when BMI is regularly used and accepted as a measure of obesity. However, it is not 

generally recommended to use BMI as an obesity measure, as there is insufficient research on 

the meaning of BMI calculated from recumbent length vs height and how that relates to obesity. 

Weight-for-length Z (WLZ) scores and Weight-for-age Z (WAZ) scores have also been used as 

ways to measure obesity. However, WLZ scores are generally regarded as a better measure of 

body fatness in infancy than WAZ scores, as they measure relative weight. There is also 

evidence showing an association between WLZ scores and obesity. According to World Health 

Organization (WHO) standards, obesity is classified as a WLZ score greater than 3 and 

overweight is classified as a WLZ score greater than 260. Weight gain in infancy, as measured 

by change in WLZ scores has also been associated with weight and obesity later in life13. 

Weight gain can be measured continuously, or as a binary variable, in which rapid weight gain 

has been previously defined as a change in anthropometric Z scores of +0.67 SD61 from the 

mean. 

Maternal Diet 

 Maternal diet and nutritional status during pregnancy can influence the fetal 

environment, and may lead to metabolic programming of the fetus that results in increased risk 

of obesity and chronic disease62–65 There is evidence to suggest that both maternal over66 and 
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under67 nutrition can affect offspring health in similar ways. Studies conducted on survivors of 

the Dutch famine of 1944-45 found that individuals affected by famine in-utero had a higher 

incidence of a number of chronic diseases, including type 2 diabetes23. In addition, a study of 

mothers in India found that consuming micronutrient-rich foods during pregnancy was 

associated with fetal size at birth68.  Animal models have shown that protein restriction during 

pregnancy in rats can result in hypertension69, increased fat deposition67, altered feeding 

behavior and preferences70, and other cardio-metabolic outcomes in offspring71. Conversely, a 

diet that is excessive in certain macronutrients, such as fat, can also have an effect on fetal 

biomarkers, and can have lifelong consequences. Murabayashi, et al66. found that rat fetuses of 

mothers fed a high fat diet during gestation, had higher levels of plasma glucose and insulin, 

and inflammatory change in adipose tissue compared to those whose mothers were fed a 

normal fat diet. Another study found that children whose mothers consumed a diet high in sugar 

during pregnancy had an increased odds of obesity at age 5 compared to children whose 

mothers did not have a high sugar intake during pregnancy72.  

Maternal Diet and Epigenetics 

 Maternal diet can also affect the epigenome. It has been shown that individuals who 

experienced famine conditions in-utero exhibit a lower level of methylation at the IGF2 region 

and have a greater incidence of obesity and chronic diseases than their siblings who did not 

experience famine conditions in utero23. Although severe caloric restriction related to famine 

conditions may not be generalizable, a recent study also found that even subtle seasonal 

changes in the diet, which are common in developing countries, may affect the epigenome73. 

There is also evidence to suggest that methyl donor nutrients (folate, vitamin B12, choline, 

genistein, methionine, betaine) may affect DNA methylation. Studies have found that folic acid 

may be associated with increased methylation at the IGF2 DMR43,74,75. In addition, agouti mouse 

models have shown that an increase in maternal dietary genistein intake can influence offspring 
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DNA methylation and may even be protect offspring from becoming obese later in life, despite a 

genetic predisposition to become obese32. Waterland and colleagues76 also found that the 

addition of methyl donors to the diet of pregnant obese agouti mice can prevent the 

amplification of obesity in future generations, suggesting that epigenetic mechanisms are 

affected by this dietary change. There is also evidence to suggest that a maternal high fat diet 

can result in global hypomethylation, which may be reversed or improved with the addition of 

methyl donor nutrients to the diet77. 

Mediterranean Diet  

 The consumption patterns of individuals living in the Mediterranean have been studied 

extensively. The literature suggests that a high adherence to a Mediterranean diet is generally 

characterized by a high intake of vegetables, legumes, fruits and nuts, fish, grains, a high 

monounsaturated fat (MUFA) to saturated fat (SFA) ratio, moderate alcohol consumption, and 

low consumption of other meats and dairy products78,79. Many variations exist in terms of actual 

foods consumed as part of a Mediterranean diet based on geographical region80,81. Despite this, 

several indexes and scores have been created to measure adherence to a Mediterranean diet 

pattern, including the Mediterranean diet score (MDS), a median-based score developed by 

Trichopoulou, et al78,79, the Mediterranean Adequacy Index82 (MAI), and the Mediterranean Diet 

Quality Index83 (DQI). The MDS has been showed to reliably capture what is commonly 

understood as a Mediterranean diet pattern84, and is widely used in research.  

 Research has shown that a high adherence to a “Mediterranean diet” may lead to 

improved health, lower inflammation85, healthier weight86, and greater survival in adults78,79. In 

addition, maternal consumption of a Mediterranean diet pattern during pregnancy has been 

associated with a lower risk of fetal growth restriction80 and smaller waist circumference at age 

487. There is evidence showing that bioactive food components present in the Mediterranean 

diet pattern, such as phenolic compounds can affect DNA methylation88,89. However the 
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epigenetic effects of overall maternal adherence to a Mediterranean diet pattern have not been 

studied. 

Study Overview 

 To address the gaps in the literature, this study aims to  

 Aim 1: Estimate the relationship between maternal Mediterranean diet adherence and 

infant DNA methylation at birth 

 Aim 2: Determine the association between infant DNA methylation at birth and infant 

weight gain between birth and age one 

 Aim 3: Assess the relationship between maternal Mediterranean diet adherence, infant 

DNA methylation at birth, and infant weight gain between birth and age one 

Differentially Methylation Regions 

 In this study, we focus on the following five DMRs of imprinted genes due to their role in 

growth52,56, weight53,56, chronic disease90 and parental obesity33,55:  

1) MEG3 and 2) MEG3 intergenic (IG): Location: chromosome 14q32.238.  

 Both the MEG3 IG and MEG3 DMRs are thought to regulate the MEG3/Delta-like 1 

homolog (DLK1) region, however, it is thought that the MEG3 IG DMR may function 

hierarchically as an upstream regulator in the methylation patterns of the MEG3 DMR91. MEG3 

is found on the MEG3 promoter, and MEG3 IG is located between the MEG3 and DLK1 

promoters. MEG3 is a maternally expressed gene, meaning that only the maternal allele is 

expressed, and is believed to contain a tumor suppressor gene92. Its suppression has been 

associated with a variety of tumors, such as Wilm’s tumors and pituitary tumors39. In addition, a 

decrease in methylation of the MEG3 DMR in infants at birth has been associated with maternal 

pre-pregnancy obesity55. Changes in methylation at the MEG3 DMR have also been associated 

with penicillin use93, maternal depression during pregnancy94, maternal folate consumption74, 

and renal cancer95. In addition, hypermethylation at the MEG3 DMR and expression of MEG3 
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long non-coding RNAs has been associated with insulin resistance and type 2 diabetes90. More 

drastic changes to MEG3 and MEG3 IG, such as loss of imprinting and microdeletions have 

resulted in paternal/maternal uniparental disomy 1491.  

3) PLAGL1 (also known as ZAC1): Location: chromosome 6q24.255.  

 PLAGL1 is a tumor suppressor gene, and is thought to be part of a network of co-

regulated genes believed to play an important role embryonic and postnatal growth56. In 

addition, PLAGL1 has been shown to be hypermethylated in infants at birth in association with 

maternal obesity55. Also, loss of imprinting at PLAGL1 is associated with transient neonatal 

diabetes mellitus syndrome (TNDM) in infants96.  

4) IGF2: Location: chromosome 11p15.538. 

 IGF2 is located upstream of the imprinted promoters of IGF238. Changes in IGF2 

methylation have been associated with fetal growth51,52, maternal sociodemographic factors97, 

lead exposure47,48, in-utero cigarette smoke exposure45, paternal obesity33, renal cancer, and 

Wilm’s tumors39.  

5) H19: Location: chromosome 11p15.538.  

 H19 is a maternally expressed gene, and is located at the imprinting control region for 

the IGF2/H19 imprinted domain, near the H19 promoter38. H19 is altered with Leukemia and 

Wilms’ tumors39. Changes in H19 methylation have been associated with increased weight for 

age in infants53, Silver-Russel-Syndrome (SRS)98 and Beckwidth Wiedemann syndrome99.  
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CHAPTER 2- AIM1: MATERNAL ADHERENCE TO A MEDITERRANEAN DIET IS 
ASSOCIATED WITH INFANT SEX-SPECIFIC DNA METHYLATION AT INTERGENIC 

DIFFERENTIALLY METHYLATED REGION REGULATING THE DLK1/MEG3 IMPRINTED 
DOMAIN 

Introduction 

 The developmental origins of health and disease hypothesis (DOHaD) posits that in 

utero exposures play a critical role in the risk of adult disease100. Maternal diet during pregnancy 

is an important exposure that is part of the in utero environment. Although mechanisms are still 

poorly understood, a growing consensus suggests that these exposures may act, at least in 

part, through epigenetic mechanisms25,31,21, i.e.,  changes in gene expression caused by 

mechanisms other than the underlying DNA sequence28,29. DNA methylation is the most studied 

mechanism in epidemiologic studies, in part due to the stability of the DNA molecule and 

covalent bonding.  

 DNA methylation plays an integral role in fetal development, including establishing the 

monoallelic expression of genomically imprinted genes in a parent-of-origin manner during 

gametogenesis and the early embryo. These DNA methylation marks are faithfully maintained 

throughout somatic division101,30,41,40, which makes the methylation marks in these regulatory 

regions a reliable indicator of exposures that occur during these early developmental stages (i.e. 

embryogenesis and gametogenesis)23,57,101. Therefore, the parental origin-specific methylation 

profiles are spatially and temporally stable, such that methylation changes at differentially 

methylated regions (DMRs) of imprinted genes resulting from early in utero exposures are 

observed later in life. Exposure to famine conditions in utero were detected in a regulatory 

region of imprinted IGF2 60 years after exposure57. Moreover, stability of DNA methylation at 

the same region was seen three years later in adult controls of a colorectal cancer study102.  



 

10 

 Maternal intake of methyl donor nutrients during the prenatal period has been shown to 

affect DNA methylation in offspring73,103,32,104, suggesting that maternal factors, such as diet, can 

stably alter the in utero environment and health outcomes over the lifecourse42,57,105,106. Both 

maternal over- and under-nutrition can influence the offspring in utero environment and lead to 

fetal programming21-25. However, the majority of such studies have examined single nutrients, or 

have been conducted using animal models in well-controlled environments. Studies looking at 

overall diet patterns allow for the exploration of food interactions and synergy that cannot be 

studied when evaluating nutrients in isolation, or studying animal diets with a prescribed 

distribution of macro and micronutrients. Foods have a variety of components and effects on the 

body, and some may act in synergy with or may interfere with the absorption of other diet 

components107.  Epidemiological studies exploring overall diet patterns in relation to epigenetic 

outcomes are needed to gain a better understanding of the influence of diet on DNA 

methylation.  

 A Mediterranean diet pattern has been recommended for its overall health benefits and 

potential for disease prevention108. These benefits may extend to the in utero period. The 

Mediterranean diet has been well-studied for its ability to reduce inflammation, and improve 

longevity and overall health among adults85,109,110. Consumption of a Mediterranean diet pattern 

during pregnancy has been associated with a lower risk of preterm birth111, lower risk of infant 

growth restriction in a Spanish Mediterranean population80, and more recently, a lower child 

waist circumference at age 4 years87. The Mediterranean diet pattern has also been associated 

with higher intake of certain nutrients, such as folate112 and phenols113 that have been shown to 

modify epigenetic mechanisms75,114. There are few published studies on the influence of the 

Mediterranean diet on epigenetic outcomes, and they have been limited to adult populations. 

There is some evidence suggesting an association between adherence to a Mediterranean diet 

in adulthood and increased LINE-1 methylation115. Another study observed an association 

between a low consumption of the fruit and nuts component of the Mediterranean diet and lower 
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methylation at LINE-1 among healthy non-pregnant women116. No studies have looked at the 

potential epigenetic mechanisms of the in utero effects of the Mediterranean diet pattern.  

 In this study we assessed the associations between maternal adherence to a 

Mediterranean diet pattern during early pregnancy and infant DNA methylation at birth in an 

ethnically diverse cohort. DNA methylation at birth was studied at five DMRs of imprinted genes. 

These regions were selected for their involvement in growth117, obesity33,55, and common 

chronic disease90.  The selected regions include the MEG3 IG DMR and the MEG3 DMR, which 

are involved in regulating the delta-like 1 homolog/maternally expressed gene 3 (DLK1/MEG3) 

imprinted domain on chromosome 14q32.2; the IGF2 DMR and the H19 DMR , which are 

involved in imprinting of the insulin growth factor 2/H19 (IGF2/H19) domain on chromosome 

11p15.5, which are located upstream of the imprinted promoters of IGF2 and at the imprinting 

control region for the IGF2/H19 imprinted domain near the H19 promoter, respectively; and the 

PLAGL1 DMR, which resides at the pleiomorphic adenoma gene-like 1 (PLAGL1) locus on 

chromosome 6q24.2. We expect that a low adherence to a Mediterranean diet pattern will result 

in aberrant DNA methylation at these five DMRs.  

Methods 

Study Sample and Data Collection 

 This study includes mother-infant pairs, who had completed a preconception or first 

trimester Food Frequency Questionnaire (FFQ) and who had infant DNA methylation data 

available from cord blood analysis as part of the Newborn Epigenetic Study (NEST). 

Recruitment and enrollment strategies have been described in detail elsewhere94. Briefly, 

between 2009 and 2011, women were recruited from 5 prenatal clinics and obstetric facilities in 

Durham, North Carolina. Eligibility criteria include being at least 18 years of age, and intention to 

use one of the qualifying obstetric facilities for delivery. Women were excluded if they were HIV 

positive, planned to relinquish custody of the child, or planned to move away from the area in 
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the following three years. Of 2548 women who met the eligibility criteria, 1700 (67%) were 

consented and enrolled. Upon enrollment, mothers completed questionnaires providing 

information on socio-demographic factors and lifestyle characteristics. At delivery, birth 

outcomes were abstracted from medical records and infant cord blood specimens were 

obtained to assess offspring methylation. Medical records were abstracted to verify gestational 

diabetes diagnosis and other medical conditions, birth weight and the newborn’s sex.  

 Of 1700 who enrolled, 396 women were excluded for a variety of reasons, including 

infant death during or soon after birth, being illiterate, underage, refusing further participation, or 

who could no longer be found. Given the malleability of DNA methylation patterns in early 

gestation, we are only including women who completed FFQs relating to preconception or the 

first trimester (N= 870). Mothers who responded to the FFQ were significantly different than 

mothers who did not complete and FFQ with respect to race, education, age, BMI, and smoking 

status (data not shown). Women with extreme implausible energy intakes, defined in our study 

as an intake of less than 500 kcal/day or greater than 7000 kcal/day, were excluded from our 

study (N=36). The ratio of estimated energy requirement (EER) to reported energy intake was 

calculated to assess possible over and under-reporting (defined as EER:kcal greater or less 

than ± 2 SD118). Rather than exclude the possible over/under reporters, a sensitivity analysis 

was conducted to assess the influence of possible over and under reporting of energy intake on 

our results.  DNA methylation was analyzed from cord blood for the first 550 study infants after 

exclusions for infant death, illiteracy, being underage, refusal of further participation, and 

attrition. The mother-infant pairs with analyzed DNA methylation were significantly different from 

those whose DNA methylation had not been analyzed with respect to race and maternal age. 

However, not all infants whose mothers completed a 1st trimester or preconception FFQ were 

part of the subsample with analyzed DNA methylation. Our study includes the 390 women from 

the NEST study who completed a first trimester or preconception food frequency questionnaire 
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(FFQ), who did not have extreme high or low reported caloric intakes, and whose infants had 

DNA methylation data available from cord blood analysis.   

 Dietary data were collected through a Block FFQ119 that had been modified to represent 

diet patterns in North Carolina. Diet data collection was attempted at enrollment, and at least 

once during each trimester. The FFQ collected data on intake frequencies of over 150 food 

items and supplements, and was administered to reflect intake during three periods: 1) the peri-

conception period, 2) the first trimester, and 3) the second and third trimesters. For this study, 

only peri-conceptional and first trimester FFQs will be used, as methylation markers of imprinted 

genes are malleable in the first days of pregnancy. FFQ responses were analyzed by 

NutritionQuest (www.nutritionquest.com). Reported intake portions and frequencies were 

assessed and converted to grams for statistical analysis.  

DNA Methylation 

 Infant cord blood specimens were collected at birth. Samples were collected in EDTA-

containing vacutainer tubes and centrifuged using standard protocols to allow for collection of 

plasma and buffy coat, with buffy coat used for DNA extraction (Qiagen; Valencia, CA). 

Specimens were stored at -80°C until the time of analysis. DNA was extracted using Puregene 

reagents according to the manufacturer’s protocol (Qiagen), and quantity and quality were 

assessed using a Nanodrop 1000 Spectrophotometer (Thermo Scientific; Wilmington, DE).  

Infant genomic DNA (800 ng) was modified by treatment with sodium bisulfite using the EZ DNA 

Methylation kit (Zymo Research; Irvine, CA). Bisulfite treatment of denatured DNA converts all 

unmethylated cytosines to uracils, leaving methylated cytosines unchanged, allowing for 

quantitative measurement of cytosine methylation status. Pyrosequencing was performed using 

a PyroMark Q96 MD pyrosequencer (Qiagen). Pyrosequencing assay design, genomic 

coordinates, assay conditions, and assay validation are described in detail elsewhere38. Briefly, 

assays were designed to query established imprinted gene DMRs using the PyroMark Assay 

Design Software (Qiagen). PCR conditions were optimized to produce a single, robust 

http://www.nutritionquest.com/
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amplification product. Defined mixtures of fully methylated and unmethylated control DNAs were 

used to show a linear increase in detection of methylation values as the level of input DNA 

methylation increased (Pearson r is 0.99 for all DMRs). Once optimal conditions were defined, 

each DMR was analyzed using the same amount of input DNA from each specimen (40 ng, 

assuming complete recovery following bisulfite modification of 800 ng DNA). Percentage of 

methylation for each CpG cytosine was determined using Pyro Q-CpG software (Qiagen). 

Pyrosequencing assays were performed in duplicate for all specimens whose values fell more 

than two standard deviations above or below the means in which case the average of the two 

runs was used. The values obtained represent the mean methylation for the CpG sites 

contained within the sequence being analyzed. 

Diet Assessment 

 Given the malleability of methylation markers of imprinted genes in the early stages of 

gestation, mothers’ Mediterranean diet adherence was assessed using data from preconception 

and first trimester FFQs. Intakes were converted to grams/1000 kcals to account for differences 

in caloric intake, and scored with a modified version of Trichopolou’s Mediterranean Diet Score 

(MDS)78. Briefly, the MDS assigns values of zero or one to each of nine indicated components, 

using the population medians of each component among the participants as cut-points. People 

whose consumption of presumed beneficial components (vegetables, legumes, fruits/nuts, 

cereals, fish) was at or above the median consumption were assigned a value of one, and a 

value of zero otherwise. People whose consumption of presumed detrimental components 

(meat and dairy products) was below the median consumption were assigned a value of one, 

and zero otherwise. A value of one was given to those consuming a moderate level of alcohol, 

and a value of one was assigned to those whose ratio of monounsaturated fatty acid to 

saturated fatty acid intake (MUFA:SFA) was at or above the median (and 0 otherwise).  
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For this study, the MDS was modified as follows:  

1) Fruits and nuts were separated into 2 groups 

2) The grains category was refined refinement to reflect only whole grain intake 

3) The alcohol group was removed, as reported alcohol intake for mothers during 

pregnancy in this study was extremely low and alcohol consumption during pregnancy is 

not advised 

4) Dairy was assessed as a “beneficial” food group rather than a “detrimental” food 

group, as intake of calcium is important during pregnancy.  

The diet components for this study were as follows:  

1) Fruit (including fresh, dried, and frozen fruit, but excluding fruit juice) 

2) Vegetables (excluding vegetable juice and white potatoes)  

3) Nuts and seeds (including nut butters) 

4) Beans and legumes (including soy beans)  

5) Whole grains and whole grain products 

6) Dairy (including full fat dairy, but excluding dairy desserts)  

7) Fish 

8) The ratio of mono-unsaturated fat to saturated fat intake  

9) Meats (including red meat, pork, poultry, game, excluding processed meats)  

 Intake at or above the study population median of “beneficial” food groups was assigned 

a score of 1 and a score of 0 otherwise. Below the median intake of “detrimental” foods received 

a score of 1, and 0 otherwise. The possible range of modified diet score values was 0-9. A 

higher modified diet score was representative of a greater adherence to a Mediterranean diet 

pattern.  
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Statistical Analysis 

 Chi-square and Kruskal-Wallis tests were conducted to assess associations between 

potential covariates and Mediterranean diet adherence. Multinomial logistic regression models 

were used to estimate the associations between maternal adherence to a Mediterranean diet 

and infant DNA methylation at birth. Continuous modified Mediterranean diet scores (MMDS) 

were categorized to reflect 3 groups of roughly the same size, with scores between 0-3 being 

considered “low adherence”, scores of 4-5 being considered “medium adherence”, and scores 

of 6-9 being considered “high adherence”. “High adherence” was used as the reference 

category. Mean DNA methylation values were used in this analysis, as previously reported 

Cronbach’s alpha for correlations among methylation values from all CpGs measured at each 

DMR was >0.8994. Normality of the percent methylation of each DMR was assessed using the 

Kolmogorov-Smirnov test. As 4 of the 5 DMRs tested in this sample were not normally 

distributed (data not shown), DNA methylation was then assessed in tertiles (“hypo-

methylation”, “moderate methylation”, and “hyper-methylation”). Given the theoretical 50% 

expected methylation of imprinted genes, the “mid-level” category of DNA methylation was used 

as the referent. Likelihood ratio tests (LRT) were performed to test for the interaction of 

association between an infant’s sex and maternal diet on infant DNA methylation at birth 

(α=0.20).  The addition of an interaction term for infant’s sex In 3 of the 5 DMRs assessed 

(MEG3, MEG3 IG, H19) was significant, therefore sex-specific adjusted models are presented in 

addition to overall models.  

 Covariates considered in the analysis were maternal race/ethnicity (Black, White, and 

Other), maternal education (greater or less than college education), maternal age at delivery, 

the sex of the infant, maternal smoking at any point during pregnancy (yes/no), gestational 

diabetes diagnosis (yes/no), self-reported maternal BMI prior to pregnancy, infant gestational 

age, maternal gestational weight gain (in kg), parity (primiparous/multiparious), supplement use 

during pregnancy (yes/no), maternal physical activity during pregnancy (light, moderate, intense 
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activity), maternal methyl donor intake (sum of total folate from diet and supplements, total 

choline from diet), processed meats, total energy intake, % total fat in the diet, plate. Covariates 

of interest were added one by one into the original, unadjusted model. Those that changed the 

estimates by more than 10% or that were deemed important from the literature were included 

into the final model. Final adjusted models included the following covariates: maternal pre-

pregnancy BMI, maternal age, maternal smoking during pregnancy, maternal education. As the 

role of dairy in the Mediterranean diet is controversial, we also conducted a sensitivity analysis, 

in which we removed dairy from the diet score. All statistical analyses were conducted using 

SAS 9.4 (SAS Institute, Inc). 

Results 

 The characteristics of the study population by Mediterranean diet adherence level are 

displayed in table 1. Women with the highest adherence to a Mediterranean diet pattern were 

more likely to be White, have completed a college degree or more, were on average older 

(mean: 31.1 years), had lower gestational weight gain (mean: 14.3 kg), and were less likely to 

be smokers (4.4%). Women with the lowest adherence to a Mediterranean diet pattern were 

more likely to be Black, have earned less than a college degree, were on average younger 

(mean: 25.9 years), had greater gestational weight gain (mean: 15.0 kg), and were more likely 

to be smokers (23.4%). No statistically significant differences were found between diet 

adherence groups with respect to parity, pre-pregnancy BMI, gestational age, gestational 

diabetes diagnosis, or sex of the infant. In our study, 12.9% of the population were considered 

possible energy under-reporters and 9.7% were considered possible energy over-reporters 

based on EER:kcal ratio (Appendix 2). Both over and under-reporters were less likely to be 

White. Women who may have under-reported their energy intake, were more likely to have a 

college education or greater, have a higher BMI (mean BMI=30.3), and had significantly lower 

reported intake of dairy compared to possible “moderate” energy reporters. Possible over-
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reporters of energy intake were on average younger (mean age=25.2) and had a significantly 

greater reported intake of vegetables, non-processed meats, and dessert foods compared to 

possible “moderate” energy reporters.  

 Maternal diet characteristics by Mediterranean diet adherence category are shown in 

Appendix 1. Women’s total caloric intake, % calories from protein, % calories from saturated fat, 

% calories from omega-3 fatty acids, fruit, vegetables, legumes, nuts, whole grains, dairy, fish, 

non-processed meats, and MUFA:SFA were significantly different by Mediterranean diet 

adherence category, with women in the highest diet adherence group ingesting the fewest 

calories, having greater protein, omega-3, fruit, vegetable, nut, legume, fish, dairy, whole grain 

intake, greater MUFA:SFA, and lower saturated fat and non-processed meat intake than those 

in lower adherence categories.  

 Results from the total unadjusted models (table 2) show that a low adherence to a 

Mediterranean diet pattern during pregnancy is associated with a higher odds of infant lower 

methylation at the MEG3 IG region (OR=2.80; 95% CI=1.35-5.82). This association is strongest 

and statistically significant only in girls (OR=5.35, 95% CI=1.56-18.36 – unadjusted data not 

shown). At the MEG3 region, low Mediterranean diet adherence was associated with a lower 

odds of lower methylation (OR=0.51; 95% CI=0.26-1.03). This relationship was also statistically 

significant in girls only (OR=0.24, 95% CI=0.07-0.77). In general, sex-specific models showed a 

difference in magnitude, and in some cases, direction of association in one sex compared to the 

other (see table 3 for sex-specific adjusted estimates). 

 After adjustment, the associations at the MEG3 IG DMR persisted (OR=3.17; 95% CI= 

1.38-7.27), even after the stringent Bonferroni correction (0.05/5=0.01). In girls this association 

was further strengthened (OR=7.40, 95% CI= 1.88-29.09), however confidence intervals 

became wider. Notably, after adjustment the strength of association between medium 

Mediterranean diet adherence and methylation of the MEG3 IG DMR in girls, and the odds of 

higher methylation in boys at the PLAGL1 and H19 DMRs in association with low adherence to 
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a Mediterranean diet pattern increased and became statistically significant. However the 

confidence intervals became wider, and the results were no longer statistically significant after 

Bonferroni correction (MEG3 IG: OR= 3.34, 95% CI= 1.10-10.21; H19: OR= 4.46, 5% CI= 1.32-

15.08; PLAGL1: OR= 3.24, 95% CI= 1.02-10.26). 

 The results of the sensitivity analysis, in which we removed dairy from the diet score are 

available in the appendix (Appendix 3). In this alternate model we observed an attenuation and 

loss of statistical significance of our results (Adjusted OR= 1.31; 95% CI= 0.56-3.06). Adding 

dairy as a covariate did not substantially change our results, but adding calcium did (Adjusted 

OR= 1.8; 95% CI= 0.90-3.62). Women who had at or above the median consumption of dairy 

had a significantly greater calcium intake, but not significantly different saturated fat or total fat 

than women who reported below the median consumption of diary (Appendix 4). And women 

who had at or above the median dairy intake were also more likely to be White, have a higher 

level of education, and were on average older than women who reported below the median 

intake of dairy. Women who had a higher intake of dairy were more likely to be high adherers to 

a Mediterranean diet when the score incorporated dairy than when it did not (results not shown). 

Discussion 

 We observed a decreased level of methylation at the MEG3 IG DMR among girls in 

response to low and medium maternal adherence to a Mediterranean diet pattern after adjusting 

for maternal age, maternal education, maternal pre-pregnancy BMI, and maternal smoking. 

Deregulation of the MEG3 IG DMR has been found in cancer tissues120, and it is believed that 

the MEG3 IG region may be an upstream regulator of the MEG3 DMR91, which has been 

associated with type 2 diabetes90. As the Mediterranean diet has been associated with 

improvements in type 2 diabetes121, it is possible that the lower levels of MEG3 IG methylation 

seen in our study may be indicative of a protective effect against type 2 diabetes. However, the 

public health significance of our findings is unclear at this time, as outcomes associated with 
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lower levels of methylation at MEG3 IG are not yet known. Our study’s small sample size did not 

allow for mediation analysis to study child outcomes, therefore future studies will need to 

investigate the phenotypes associated with maternal diet and methylation at the MEG3 IG DMR 

to better understand the implications of these results. 

 This is one of a few studies that has looked at and reported sex-specific differences in 

DNA methylation of imprinted genes45,122. Tobi, et al observed sex-specific associations 

between prenatal famine exposure and methylation at the LEP, INSIGF, and GNAS DMRs. 

Murphy, et al found an increase in IGF2 methylation in association with prenatal smoking that 

was most prominent in boys. Thus far no other published studies have reported sex-specific 

associations at the MEG3 IG DMR. Our findings support the idea that DNA methylation may 

occur in a sex-specific manner, and contribute to the growing literature on sex-specific DNA 

methylation. 

 Surprisingly, no statistically significant associations were observed at the IGF2 DMR in 

this study. Previous studies looking at maternal nutrition during pregnancy have found 

associations between supplementation with B vitamins and increases in IGF2 methylation43,75. 

Others have found decreased IGF2 methylation in response to famine or undernutrition23. 

Perhaps this is because the Mediterranean diet represents a more subtle or even different diet 

exposure than the dietary factors included in these studies. For example, while a Mediterranean 

diet pattern has been associated with a higher folate consumption and blood folate 

concentration112,123, it may not represent the same level as a 400 mcg supplementation of folic 

acid. In addition, a low adherence to a Mediterranean diet pattern is not generally characterized 

by the overall calorie or protein restriction that is experienced during famine. It is also possible 

that the dietary driver of DNA methylation changes are not methyl donors, but other foods or 

compounds in the diet, such as polyphenols or unsaturated fatty acids, which may not have an 

effect on the IGF2 DMR.  
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 A strength of this study is its use of a measure of overall diet rather than nutrients in 

isolation. Thus far, the study of nutrition in relation to DNA methylation has largely focused on 

the intake of individual nutrients, with many studies conducted using animal models. In general, 

nutrients are not consumed in isolation in the human diet, and in some cases, nutrients and food 

components can interact with one another, enhance or weaken the effect of others, or affect 

biological processes in the body107. This has been seen in the case of plant phenols124 and 

measurement of starches with regard to the glycemic index125.  Investigating the potential effects 

of foods and overall diet is important and will have more applicable public health implications. 

To our knowledge this is the first study to assess the effects of overall maternal diet pattern on 

infant DNA methylation. Therefore this study presents an important contribution to this emerging 

literature.  

 We found that 12.9% of our sample possibly under-reported their energy intake and 

9.7% possibly over-reported energy intake, which is within the range of values seen in previous 

literature assessing energy reporting bias among pregnant and non-pregnant women126–128. We 

did see differences in reported intake of specific food groups by energy reporting category, 

however our sensitivity analysis showed that the possibility of over and under-reporting had little 

effect on our findings, as adjusting for the possible over- and under- reporters did not 

substantially change the results of our study.  

 Changes related to the scoring of dairy resulted in an attenuated and non-significant 

association between maternal low adherence to a Mediterranean diet during pregnancy and 

infant methylation at the MEG3 IG DMR. The women in our sample who had a higher dairy 

intake also had a higher calcium, but not fat intake, and the addition of calcium, and not dairy, to 

the model resulted in a strengthening of the association. This suggests that calcium may be a 

driver in the association between maternal Mediterranean diet adherence and MEG3 IG 

methylation. Calcium has been previously associated with DNA methylation in animal 

models129,130, however its association with the regions included in this study has not been 
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studied. Another possible reason for this is that sociodemographic factors may be underlying 

the association between dairy intake and MEG3 IG methylation, as women with above the 

median diary intake were more likely to be White, have a higher education level, and were on 

average older than those with below the median dairy consumption. Currently there is no 

consensus on how to asses dairy intake when assessing Mediterranean diet adherence during 

pregnancy. Dairy has been assessed as both “beneficial”80,131, “detrimental”87,132. We decided to 

present our main findings including dairy as a beneficial component, as we believe dairy to be 

an important component of a balanced diet, and dairy intake was not associated with a greater 

saturated fat intake compared to those who consumed a lower level of dairy. In addition, there is 

literature supporting the importance of dairy as a daily component of a Mediterranean diet 

pattern133,134.  However, it is important to note that the removal of dairy from the Mediterranean 

diet assessment may alter findings.  

 The Mediterranean diet score, from which the score in this study was based, has been 

shown to be a reliable indicator of adherence to a Mediterranean diet pattern84. However, 

assessing diet with a Mediterranean diet score in non-Mediterranean populations may present a 

problem. The specific foods consumed in non-Mediterranean regions may be different from 

those consumed in Mediterranean regions, as food preferences, access, and availability are 

dictated by the environment, and may differ135.  It is important to acknowledge this, as the 

components of the diet pattern may provide different health benefits. For example, olive oil 

makes up a large part of the monounsaturated fatty acids consumed in Mediterranean 

populations. However, in other populations, for example the United States, a large proportion of 

monounsaturated fat consumption comes from animal fats136, which do not confer the same 

health benefits linked to olive oil.  

 A limitation of this study was its small sample size. This likely resulted in imprecise or 

unstable adjusted estimates, as evidenced by wide confidence intervals. Repeated testing is 

also a limitation in our study, however the statistical significance of our main finding persisted 
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even after the stringent Bonferroni correction. In addition, the generalizability of our results to 

prior NEST findings is limited, as women-infant pairs in our reduced sample were significantly 

different from those in the larger NEST cohort. As the first study to report on overall maternal 

diet pattern and infant DNA methylation of imprinted genes, this study provides important 

preliminary data, however larger studies, using a more representative sample will be needed to 

gain a better idea of the magnitude of the associations reported here.  Another limitation was 

the possibility of residual confounding for our adjusted estimates.  Because lifestyle and 

resources are highly associated with sociodemographic factors such as maternal education, and 

age, it is possible that other unmeasured factors associated with methylation also influenced our 

results.  

 In conclusion, our study suggests that low and medium adherence to a Mediterranean 

diet pattern in early pregnancy alters DNA methylation at the MEG3 IG DMR in a sex-specific 

manner.  Associations between maternal diet in early pregnancy and methylation changes at 

the MEG3, H19, and PLAGL1 regions may also exist, however a larger study may be needed to 

uncover these associations. While our study was small, as the first study of its kind, it provides 

important preliminary data, and suggests that sex-specific analyses may be important in studies 

relating diet to DNA methylation of imprinted genes. Studies have shown an association 

between DNA methylation and weight56, adiposity54, and chronic disease23,90 at the sites 

included in this study. However, the significance of our results is still unclear, as child outcomes 

resulting from the altered DNA methylation profiles observed in this study are still unknown. 

Future studies should focus on child health outcomes associated with DNA methylation changes 

seen as a result of maternal diet during pregnancy. In addition, these results should be 

interpreted with caution. In order to make more concrete inferences, more and larger studies will 

be necessary to find consistent trends in DNA methylation and contribute to the larger body of 

literature. The results of this study highlight the potential importance of overall maternal diet 

during pregnancy in the study of infant DNA methylation. DNA methylation and other epigenetic 
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markers can be viewed as a way, in which adverse environmental exposures are recorded in 

the body over the life course. Researchers should look to maternal diet as a modifiable risk 

factor that may help remediate the damage done by environmental exposures.   
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Table 1. Characteristics of mothers and infants in the NEST cohort by Mediterranean diet 
adherence category 

 Low Mediterranean 
adherence 

Medium Mediterranean 
adherence 

High Mediterranean 
adherence 

 N (%) Mean 
(SD) 

N (%) Mean (SD) N (%) Mean 
(SD) 

Race1       
Black 58 (50)  47 (30.5)  19 (15.8)  
White 30 (25.9)  49 (31.8)  52 (43.3)  
Other 28 (24.1)  58 (37.7)  49 (40.8)  
Missing       
Maternal education1       
Less than college  88 (77.9)  96 (64.0)  51 (43.2)  
College degree or 
greater 

25 (22.1)  54 (36.0)  67 (56.8)  

Missing 3  4  2  
Maternal age2   25.9 (5.4)  28.0 (5.7)  31.1 

(5.1) 
Parity       
Primiparous 42 (36.2)  61 (39.6)  44 (36.7)  
Multiparous 74 (63.8)  93 (60.4)  76 (63.3)  
Maternal pre-
pregnancy BMI 

 26.8 (7.0)  27.3 (6.9)  26.8 
(7.0) 

Missing 2  0  1  
Gestational weight 
gain2 (kg) 

 15.1 (7.8)  12.6 (6.4)  14.3 
(6.9) 

Missing 2  1  2  
Gestational age  38.5 (2.2)  38.4 (1.9)  38.2 

(2.5) 
Maternal smoking1       
Yes 26 (23.6)  19 (12.8)  5 (4.4)  
No 84 (76.4)  130 (87.2)  110 (95.7)  
Missing 6  5  5  
Gestational 
diabetes 

      

Yes 3 (2.6)  10 (6.6)  10 (8.5)  
No 112 (97.4)  141 (93.4)  108 (91.5)  
Missing 1  3  2  
Infant sex       
Male 63 (54.3)  82 (51.9)  68 (56.7)  
Female  53 (45.7)  75 (48.1)  52 (43.3)  

1 Results of chi-square test for differences between groups of diet adherence were statistically significant (P <0.01).  

2 Results of Kruskal-Wallis test for differences between groups of diet adherence were statistically significant (P < 

0.01). 
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Table 2. Unadjusted and Adjusted1 total estimates for the association between adherence to a Mediterranean diet pattern during 
pregnancy (low and medium adherence, compared to high adherence) and infant DNA methylation (hypo- and hyper-methylation 
compared to moderate methylation). 

 Unadjusted Adjusted 

 Hypo-methylation Hyper-methylation Hypo-methylation Hyper-methylation 
 OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P 
MEG3 IG         
Low adherence 2.80 (1.35, 5.82) 0.01 1.70 (0.82, 3.52) 0.15 3.17 (1.38, 7.27) 0.01 1.63 (0.72, 3.67) 0.24 

Medium adherence 1.80 (0.92, 3.54) 0.09 1.57 (0.83, 2.97) 0.17 1.95 (0.95, 3.98) 0.07 1.61 (0.83, 3.13) 0.16 

MEG3         

Low adherence 0.53 (0.27, 1.06) 0.07 1.20 (0.61, 2.34) 0.60 0.73 (0.33, 1.61) 0.44 1.24 (0.58, 2.62) 0.58 

Medium adherence 1.32 (0.69, 2.52) 0.41 1.64 (0.83, 3.24) 0.15 1.63 (0.81, 3.30) 0.17 1.64 (0.80, 3.38) 0.18 

IGF2         

Low adherence 1.26 (0.65, 2.43) 0.50 0.62 (0.32, 1.21) 0.16 1.40 (0.66, 2.98) 0.38 0.99 (0.47, 2.11) 0.98 

Medium adherence 1.14 (0.61, 2.13) 0.69 0.91 (0.50, 1.66) 0.76 1.41 (0.71, 2.78) 0.33 1.32 (0.69, 2.52) 0.40 

H19         

Low adherence 1.33 (0.66, 2.68) 0.42 0.99 (0.50, 1.97) 0.98 1.79 (0.82, 3.92) 0.15 1.65 (0.75, 3.63) 0.22 

Medium adherence 1.03 (0.54, 1.95) 0.94 0.82 (0.44, 1.52) 0.53 1.14 (0.58, 2.23) 0.71 0.98 (0.50, 1.90) 0.95 

PLAGL1         

Low adherence 0.92 (0.47, 1.79) 0.80 1.11 (0.58, 2.12) 0.75 0.99 (0.46, 2.14) 0.98 2.11 (0.98, 4.56) 0.06 

Medium adherence 0.97 (0.53, 1.77) 0.91 0.88 (0.48, 1.62) 0.69 1.03 (0.53, 1.97) 0.94 1.27 (0.65, 2.48) 0.48 
1 Adjusted for maternal pre-pregnancy BMI, maternal education, maternal smoking during pregnancy, maternal age at delivery 
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Table 3. Sex-specific adjusted1 estimates of the association between maternal adherence to a Mediterranean diet pattern during 
pregnancy (low and medium adherence compared to high adherence) and infant DNA methylation at birth (hypo- and hyper-
methylation compared to moderate methylation). 

 Males Females 

 Hypomethylation Hypermethylation Hypomethylation Hypermethylation 

 OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P 

MEG3 IG         

Low MDS 1.77 (0.60, 5.23) 0.30 0.81 (0.25, 2.62) 0.72 7.40 (1.88, 29.09) 0.0004 3.41 (0.95, 12.21) 0.06 

Med MDS 1.27 (0.49, 3.32) 0.62 1.13 (0.43, 2.96) 0.81 3.34 (1.10, 10.21) 0.03 1.99 (0.75, 5.33) 0.17 

MEG3         

Low MDS 1.08 (0.36, 3.22) 0.89 1.11 (0.36, 3.38) 0.86 0.30 (0.08, 1.15) 0.08 1.39 (0.49, 3.96) 0.53 

Med MDS 1.45 (0.53, 3.97) 0.47 1.49 (0.53, 4.17) 0.45 2.03 (0.73, 5.65) 0.18 1.88 (0.66, 5.34) 0.23 

IGF2         

Low MDS 1.63 (0.53, 4.96) 0.39 1.16 (0.37, 3.60) 0.80 1.23 (0.42, 3.55) 0.71 0.82 (0.28, 2.35) 0.70 

Med MDS 1.82 (0.69, 4.75) 0.22 1.49 (0.58, 3.81) 0.41 1.14 (0.42, 3.06) 0.80 1.24 (0.50, 3.13) 0.64 

H19         

Low MDS 2.60 (0.77, 8.77) 0.12 4.46 (1.32, 15.08) 0.02 1.34 (0.47, 3.88) 0.59 0.70 (0.22, 2.19) 0.54 

Med MDS 1.16 (0.44, 3.02) 0.77 1.10 (0.42, 2.86) 0.85 1.15 (0.44, 3.04) 0.77 1.04 (0.40, 2.70) 0.94 

PLAGL1         

Low MDS 0.95 (0.31, 2.93) 0.93 3.24 (1.02, 10.26) 0.05 0.94 (0.31, 2.85) 0.92 1.48 (0.50, 4.36) 0.48 

Med MDS 0.84 (0.33, 2.09) 0.70 1.32 (0.51, 3.40) 0.56 1.06 (0.40, 2.82) 0.91 1.16 (0.44, 3.07) 0.77 
1 Adjusted for maternal pre-pregnancy BMI, maternal education, maternal smoking during pregnancy, maternal age at delivery 
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CHAPTER 3- AIM 2: INFANT DNA METHYLATION AT BIRTH AND WEIGHT GAIN IN THE 
FIRST YEAR OF LIFE 

Introduction 

 Understanding what factors influence a child’s risk of obesity is crucial to the 

development of new strategies for obesity prevention. Obesity in early childhood is a risk factor 

for obesity later in life2,3,5 and for a number of chronic diseases in both childhood4 and 

adulthood137. Early identification of obesity or its risk factors may help prevent the progression of 

obesity and its consequences later in life6. Rapid weight gain in infancy has been associated 

with obesity and overweight later in childhood13,15, and adulthood15. The causes of this rapid 

weight gain are not well understood.  

 In accordance with the developmental origins of disease hypothesis, the intrauterine 

environment is hypothesized to influence an individual’s later susceptibility for chronic 

diseases19, including obesity21,22. Epigenetic modifications have been proposed as a mechanism 

for the in utero origin of later obesity, and a growing literature has found supporting 

evidence32,50,138. Epigenetic modifications are changes to gene expression caused by 

mechanisms other than the underlying DNA sequence. DNA methylation is the most studied 

epigenetic mechanism in humans, due in part, to its stability. DNA methylation that controls the 

monoallelic expression of imprinted genes is established during gametogenesis and is stably 

maintained throughout somatic division29,40,41,101,139, and may therefore provide a register of in 

utero exposures. A study of famine survivors  found that adults who experienced famine in utero 

had hypo-methylation of the imprinted IGF2 gene compared to their siblings who had not 

experienced famine in utero23. In addition, a colorectal cancer study found that methylation 

status of the IGF2/H19 imprinted locus of adult controls was maintained 3 years later140.    
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While interest in epigenetic research has increased, there is still insufficient and inconsistent 

evidence linking epigenetic mechanisms to obesity and weight gain in humans. Studies vary by 

DNA locus chosen, epigenetic mechanism examined, and timing of the outcome or exposure. 

The most consistent association between imprinted genes and obesity has been seen with the 

IGF2 locus. Studies have found a relationship between the IGF2 domain and fetal 

growth51,52,141,142, and body composition or weight in children52–54. More research is needed to 

uncover consistent associations between additional differentially methylated regions (DMRs) 

and weight gain, and better understand the role of DNA methylation as a potential intermediate 

marker in the relationship between maternal and infant exposures and weight gain in childhood.  

 This study aims to assess the association between DNA methylation at 5 imprinted 

genes and weight gain between birth and age 1. In this analysis we include two differentially 

methylated regions (DMRs) involved in regulating the delta-like 1 homolog/maternally expressed 

gene 3 (DLK1/MEG3) imprinted domain on chromosome 14q32.2 (the MEG3 IG DMR and the 

MEG3 DMR), two that are involved in imprinting of the insulin growth factor 2/H19 (IGF2/H19) 

domain on chromosome 11p15.5 (the IGF2 DMR and the H19 DMR) which are located 

upstream of the imprinted promoters of IGF2 and at the imprinting control region for the 

IGF2/H19 imprinted domain near the H19 promoter, respectively, and one at the pleiomorphic 

adenoma gene-like 1 (PLAGL1) locus at 6q24.2. These regions were selected for their 

association with growth51,52,56, chronic disease23,90, and parental obesity55. 

Methods 

Study Sample and Data Collection 

 Study participants were recruited as part of the Newborn Epigenetic Study (NEST). 

Recruitment and enrollment strategies have been described in detail elsewhere94. Briefly, 

between 2009 and 2011, women were recruited from 5 prenatal clinics and obstetric facilities in 

Durham, North Carolina. Eligibility criteria include being at least 18 years of age, and intention to 
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use one of the qualifying obstetric facilities for delivery. Women were excluded if they were HIV 

positive, planned to relinquish custody of the child, or planned to move away from the area in 

the following three years. Upon enrollment, mothers completed questionnaires providing 

information on socio-demographic factors, lifestyle characteristics, and anthropometrics (the 

mother’s and the father’s height, highest and lowest weight ever, and current and usual weight). 

At delivery, birth outcomes were abstracted from medical records and infant cord blood 

specimens were obtained to assess offspring methylation, and at one year, data was collected 

on child anthropometrics, feeding, and lifestyle.  

 1700 pregnant women consented and were enrolled in the NEST cohort. Of those, 396 

women were excluded for miscarriage (N=109) or infant death during or soon after birth (N=4), 

being illiterate (N=1), underage (N=1), refusing further participation (N=146), moving away from 

the area (N=21), or delivering at a hospital not included in the study (N=114). DNA methylation 

data was analyzed for the first 550 infants in the study. Infants with analyzed DNA methylation 

were not significantly different than infants whose DNA methylation had been analyzed with 

respect to race, maternal education, maternal smoking status, maternal pre-pregnancy BMI, 

maternal age, or weight at age 1 (data not shown). Weight and length measurements at birth 

and one year were available for 322 infants who had analyzed DNA methylation data. Infant 

birth weight and length were abstracted from medical records by study personnel. Infant weight 

and length at age 1 were reported by parents at 1-year follow-up through secure mail-in 

postcards (30% of sample) or abstracted from medical records (70% of sample). Weight-for-

length and weight-for-age Z scores were calculated using Centers for Disease Control and 

Prevention (CDC) standards143. Infants with a WLZ greater than 5 or less than -4, or a LAZ 

greater than 3 or less than -5, were identified and further examined (N=9). Of those, 4 were 

implausible and were excluded from analysis. Preterm infants (born before 37 weeks gestation) 

were also excluded from the study (N=18), as their growth and weight gain trajectories differ 

from those of term infants144.  The current study refers to the 300 full term infants with available 
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DNA methylation data on at least one the 5 DMRs of interest, and who had plausible length and 

weight measurements at birth and age 1. Infants included in this study had on average greater 

birth weight and gestational age compared to infants not included in the study (data not shown). 

Infant Anthropometric Data 

 Lengths and weights were used to calculate weight-for-length and length-for-age Z 

scores at birth and age 1 using reference data from the CDC143. Change in Z scores was 

calculated by subtracting the Z score at birth from the Z score at age 1 (WLZ age 1-WLZ birth). 

Two outcomes were assessed as a way to capture child relative weight gain and gain in length: 

change in weight-for-length Z scores (WLZ) between birth and age one, and change in length-

for-age Z scores (LAZ) between birth and age 1. Child relative weight gain and gain in length 

were modeled as a continuous variable, using linear regression. In addition, WLZ was 

dichotomized, and rapid weight gain at age 1 was defined as a change in weight-for-length Z 

score between birth and age 1 of 0.67 SD or greater61.  

DNA Methylation 

 Specimen collection and DNA methylation methods have been described in detail 

elsewhere38. Briefly, infant cord blood specimens were collected at birth. Samples were 

collected in EDTA-containing vacutainer tubes and centrifuged using standard protocols to allow 

for collection of plasma and buffy coat, with buffy coat used for DNA extraction (Qiagen; 

Valencia, CA). Specimens were stored at -80°C until the time of analysis. DNA was extracted 

using Puregene reagents according to the manufacturer’s protocol (Qiagen), and quantity and 

quality were assessed using a Nanodrop 1000 Spectrophotometer (Thermo Scientific; 

Wilmington, DE).  

 Infant genomic DNA (800 ng) was modified by treatment with sodium bisulfite using the 

EZ DNA Methylation kit (Zymo Research; Irvine, CA). Bisulfite treatment of denatured DNA 

converts all unmethylated cytosines to uracils, leaving methylated cytosines unchanged, 

allowing for quantitative measurement of cytosine methylation status. Pyrosequencing was 
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performed using a PyroMark Q96 MD pyrosequencer (Qiagen). Pyrosequencing assay design, 

genomic coordinates, assay conditions, and assay validation are described in detail 

elsewhere33. Briefly, assays were designed to query established imprinted gene DMRs using 

the PyroMark Assay Design Software (Qiagen). PCR conditions were optimized to produce a 

single, robust amplification product. Defined mixtures of fully methylated and unmethylated 

control DNAs were used to show a linear increase in detection of methylation values as the level 

of input DNA methylation increased (Pearson r is 0.99 for all DMRs). Once optimal conditions 

were defined, each DMR was analyzed using the same amount of input DNA from each 

specimen (40 ng, assuming complete recovery following bisulfite modification of 800 ng DNA). 

Percentage of methylation for each CpG cytosine was determined using Pyro Q-CpG software 

(Qiagen). Pyrosequencing assays were performed in duplicate for all specimens whose values 

fell more than two standard deviations above or below the means in which case the average of 

the two runs was used. The values obtained represent the mean methylation for the CpG sites 

contained within the sequence being analyzed. 

Statistical Analysis 

 Frequencies and means of sociodemographic variables were calculated, and chi square 

and T tests were conducted to determine if there were significant difference in 

sociodemographic variables by level of change in WLZ score. All potential covariates were 

regressed on the exposure (DNA methylation) and the main outcome (change in weight-for-

length Z scores) to test preliminary associations. Linear and logistic regressions were conducted 

to test the association between DNA methylation and early weight gain and growth outcomes.   

 Potential covariates were determined based on directed acyclic graphs (DAG). Sex and 

birth weight were chosen as potential effect measure modifiers (EMM), as DNA methylation45,122 

and obesity145 are believed to vary by sex, and weight gain may vary by birth weight14,61, with 

the heaviest term infants gaining more rapid weight gain than term infants with average birth 

weights. Birth weight was assessed dichotomously, with a cut point above or below the study 
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sample median. Interaction terms were tested via likelihood ratio test (α=0.15). As birth weight 

has been associated with methylation of PLAGL156,93,94 and IGF2 at birth, and with infant weight 

gain, it is thought that birth weight may be on the causal path between infant DNA methylation 

at birth and infant weight gain.  Given the possibility for birth weight to be either a mediator or 

modifier in the relationship between infant DNA methylation and weight gain in infancy, it was 

not included as a potential confounder in our main models. However, we did conduct a 

sensitivity analysis to determine effects of including it as a confounder in our models. The 

following covariates were tested as potential confounders: maternal education (less than a 

college degree/college degree or greater), maternal gestational diabetes (yes/no), maternal pre-

pregnancy BMI, maternal smoking at any time during pregnancy (yes/no), gestational weight 

gain, parity (primiparous, multiparous), maternal age at delivery, self-report status of 

anthropometric measurements, and date of length and weight measurements relative to infant’s 

first birthday. Covariates were tested in the model one at a time, and were kept in the model if 

they changed the estimate by more than 10%. Final models included maternal education, 

maternal pre-pregnancy BMI, maternal smoking, maternal age, birth weight, self-report status, 

and date of weight and length measurements. The interaction terms for sex and birth weight 

were significant, therefore sex-specific and birth-weight category specific WLZ score models will 

be presented in addition to total models.  

 Despite breastfeeding being a potentially important covariate, it was excluded from all 

models due to excessive missingness (~40%). As breastfeeding was likely missing not at 

random, with non-breastfeeding women being more likely to have missing data on 

breastfeeding, we conducted a sensitivity analysis using simulations to add breastfeeding to our 

models to determine the potential impact of its exclusion. Breastfeeding defined as non-

exclusive breastfeeding duration, and was categorized as 0=0-1 months, 1=1-6 months, 2= 

greater than 6 months. Breastfeeding was assigned to different possible combinations of 

variable values in 10% increments, and regressions were run with each possible scenario of 
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values. Breastfeeding was not included in models, as the simulation results showed that it did 

not change our estimate by more than 10% (condensed table available in appendix 6).  

 Mean DNA methylation values for each DMR were used in regression models, as 

previously reported Cronbach’s alpha for correlations among methylation values from all CpGs 

measured at each DMR was >0.8935. DNA methylation was assessed in tertiles (“hypo-

methylation”, “moderate methylation”, and “hyper-methylation”), as percent methylation values 

were generally not normally distributed at the DMRs of interest, and both hypo- and hyper-

methylation have been associated with health outcomes, depending on the DMR55,94. Given the 

theoretical 50% expected methylation of imprinted genes, the “moderate” category of DNA 

methylation was used as the referent. All statistical analysis was completed using SAS 9.4. 

Results 

 Study population characteristics are presented in table 4. The racial/ethnic breakdown of 

the women in the study is as follows: 38.3% African American, 29.7% White/Caucasian, and 

32.0% other races/ethnicities including Hispanic, Asian/Pacific Islander. The majority of women 

in the study completed less than a college degree (68%) and reported not smoking at any point 

during pregnancy (87%). The mean maternal age for women in this study was 28.0 years (±5.7). 

The mean maternal pre-pregnancy BMI for women in the study was 27.4 (±7.2), and the mean 

birthweight of infants born to mothers in this study was 3385 grams (±496). There were no 

significant differences in sociodemographic variables between infants above and below 0.67 SD 

of change in WLZ between birth and age 1.  

Change in WLZ Scores Between Birth and Age 1 

 Unadjusted linear regression estimates (see table 5) show that infants with a higher level 

of methylation at the MEG3 DMR at birth have a lower change in WLZ score between birth and 

age 1 (β=-0.6, 95% CI= -1.1, -0.2) compared to infants with moderate methylation. This 

association is evident in boys (β=-1.4; 95% CI= -2.1, -0.6) and not girls (β=-0.1, 95% CI= -0.8, 
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0.6). Sex-specific estimates are available in table 6. Infants with lower methylation at the H19 

DMR at birth show a greater change in WLZ score between birth and age 1 compared to those 

with moderate methylation (β=0.5; 95% CI=0.0, 1.0), however there were no sex-specific 

differences in estimates at this DMR. Only girls showed statistically significant differences in 

change in WLZ score estimates between birth and age 1 at the PLAGL1 DMR. Girls with either 

higher or lower methylation showed a smaller change in WLZ scores between birth and age 1 at 

the PLAGL1 DMR compared to girls with moderate methylation (hypo: β=-0.8; 95% CI=-1.5, -

0.2; hyper: β= -0.9; 95% CI=-1.6, -0.2). However, no overall association was seen. All 

statistically significant associations remained after adjustment. Birth weight-specific results 

showed that infants with either a lower than the median birth weight had smaller weight gain 

between birth and age 1 in association with either a higher or lower level of MEG3 methylation 

(hypo: β=-0.9; 95% CI=-1.7, -0.2; hyper: β=-0.9; 95% CI=-1.6, -0.2). At the H19 DMR, infants 

with a higher than median birth weight had greater weight gain between birth and age 1 in 

association with lower methylation (β=0.8; 95% CI=0.0, 1.5). When WLZ between birth and age 

1 was dichotomized at +0.67 SD, results similar to those from linear models were seen in 

association with MEG3 hyper-methylation (Adjusted OR= 0.5; 95% CI= 0.3, 0.9), however 

stratified estimates were not calculated due to small numbers. Results of our sensitivity analysis 

showed that inclusion of breastfeeding did not substantially alter results (range of β estimates in 

relation to hyper-methylation at MEG3: -0.62, -0.63. See Appendix 5). In addition, results of our 

sensitivity analysis including birth weight as a confounder did not substantially alter our findings 

(Appendix 6). 

Change in LAZ Scores Between Birth and Age 1 

 Results of LAZ models are available in table 7. Infants with hyper-methylation at the H19 

DMR had a decrease in LAZ score between birth and age 1 (β=-0.4; 95% CI= -0.7, 0.0). This 

change was no longer statistically significant after adjustment.  
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Discussion 

 We observed slower relative weight gain, as measured by changes in WLZ between 

birth and age 1 among infants who had a higher level of methylation at the MEG3 DMR, and 

greater weight gain among infants with lower methylation at the H19 DMR. We also observed 

sex- and birth weight-specific differences in the association between methylation at the MEG3 

and PLAGL1 DMRs and weight gain between birth and age 1. We observed a slower weight 

gain in association with a higher level of MEG 3 methylation only in boys, and slower weight 

gain in association with both higher and lower levels of PLAGL1 methylation in girls only. In 

addition, infants with lower than the sample median birth weight, who also had either a higher or 

lower level of MEG3 methylation had smaller weight gain between birth and age 1 compared to 

those with moderate methylation. No associations were observed between methylation at the 5 

DMRs included in this study and gain in length between birth and age 1. This study adds to a 

growing body of epidemiologic literature on growth outcomes associated with DNA methylation 

at birth, and shows that DNA methylation at the MEG3, PLAGL1, and H19 DMRs may be 

associated with weight gain in infancy.  

 Higher methylation at the PLAGL1 DMR has been previously associated with maternal 

obesity55, and greater birth weight56 and weight at age 156, however no association had been 

previously seen between methylation at the PLAGL1 DMR and change in Z scores or BMI 

between birth and age 156. In addition, prior literature suggests an association between a higher 

percent methylation at H19 in association with overweight status at age one, defined as a 

weight-for-age BMI at or above the 85th percentile53. These results are not consistent with our 

findings, however the outcome of our study is weight change over time and not weight status at 

one point in time. In addition, we measured weight gain relative to infant length, which may 

result in infants being classified differently with respect to obesity, as infants who are heavy, but 

tall may not be classified as obese. Hypo-methylation of the H19 paternal allele has been 

previously associated with Silver Russel Syndrome (SRS), which is characterized by severe 
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growth restriction, insulin resistance, among other clinical characteristics. However in our study, 

lower H19 methylation was associated with greater relative weight gain between birth and age 

1. More research is needed to gain a better understanding of the relationship between infant 

relative weight gain and methylation at these DMRs. 

 Only one other study has examined the association between methylation at the MEG3 

DMR and early relative weight gain in a mediation model of the indirect effect of MEG3 in the 

association between maternal lead exposure and rapid early weight gain146. No association was 

found between MEG3 methylation and rapid weight gain, however the study was underpowered, 

and DNA methylation was assessed linearly. A lower percent methylation at the MEG3 region 

has previously been associated with maternal obesity prior to pregnancy, with infants of mothers 

who were obese prior to pregnancy having lower methylation at MEG3 compared to infants of 

mothers were not obese prior to pregnancy55. Our study results showed that greater methylation 

at MEG3 was associated with slower weight gain, which is associated with a lower risk of 

obesity. Therefore our results mirror those findings, suggesting that perhaps a lower percent 

methylation may be associated with weight and weight gain in both infants and adults. In 

addition, prior studies have shown that the MEG3 DMR may play multiple roles in the body. 

Studies have linked the MEG3 DMR to insulin resistance147 and type 2 diabetes90. In addition, 

MEG3 may also play a role in the development of cancer, as MEG3 is believed to transcribe a 

powerful tumor suppressor gene92. The results of this study add to the growing knowledge on 

the MEG3 DMR. More long-term studies are needed to fully understand the role of these 

regions in health and weight gain. 

 Although previous literature supports the role of the IGF2 DMR in weight gain and 

adiposity, we did not observe an association between the IGF2 DMR and weight gain in the first 

year of life. However, these results are consistent with a study that found no significant 

difference in IGF2 methylation between one-year old infants above or below the 85th percentile 

for weight-for-age53, but did find an association between increased methylation at H19 and 
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weight for age above 85th percentile at age 1. In addition, much of the evidence shows an 

association between the IGF2 DMR and fetal growth51,148. In our study we restricted to term 

births only, therefore many of the infants with aberrant IGF2 methylation may have been 

excluded from this study.  

 In our study, boys with hyper-methylation at the MEG3 DMR and girls with hypo- and 

hyper-methylation at the PLAGL1 DMR exhibited slower weight gain between birth and age 1 

compared to those with moderate methylation. There is more than one plausible explanation for 

the sex-specific results seen in this study. The first possible explanation is that the weight-for-

length Z scores in this study do not follow the CDC WLZ score distribution. Therefore, although 

Z scores take into account the different growth patterns of boys and girls, there may be 

unaccounted for differences in the distribution by sex, which may lead to differences in WLZ 

scores by sex. However, a comparison of WLZ scores at age 1 and change in WLZ scores 

between birth and age 1 did not reveal any significant differences by sex, suggesting that our 

results do follow the sex-specific Z score distributions. A third possibility is that the study WLZ 

score distribution differs from the CDC distribution in only one sex, which results in sex-specific 

differences in WLZ scores. However we did not see any consistent differences in 

anthropometric variables in one sex over the other, suggesting that this is not the case. A final 

explanation is that methylation at the highlighted DMRs is different in boys and girls. There is a 

growing body of literature supporting the idea of sex-specific methylation23,45,149. Sex-specific 

results have not been consistently seen across the same DMRs in different studies, however 

more studies are needed to gain a better understanding of this phenomenon. 

 In addition, our study results suggest that infants with lower than the median birth weight 

and either a lower or higher methylation at the MEG3 DMR had a smaller relative gain in weight 

between birth and age 1 compared to those with moderate methylation. The literature suggests 

that infants at the higher end of the birth weight distribution may be at a higher risk for 

obesity150. As our study was restricted to term births only, infants with lower than the median 
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birth weight generally fell within the normal range of birth weight. These results suggest that 

infants of average birth weight may be more likely to have either higher or lower MEG3 

methylation, and may be at a decreased risk of obesity.  

 This study benefits from an ethnically diverse cohort, and prospectively collected data. 

This allows us to gain a better understanding of the timing of methylation with regards to our 

outcome of interest, weight gain. In addition, the use of weight-for-length rather than weight-for-

age Z scores as our outcome of interest provides a better estimate of adiposity. However it is 

not without limitations. Our study’s small sample size may have limited our ability to see 

significant differences among our population. Multiple testing is also a limitation in this study, as 

it may increase the possibility that our results are seen by chance. Moreover, we were unable to 

include breastfeeding as a covariate in our main analysis, due to excessive missing data. Our 

sensitivity analysis showed that inclusion of breastfeeding through multiple imputation did not 

alter our findings. However, previous literature has suggested that breastfeeding is associated 

with obesity and early weight gain151, therefore it is possible that the lack of association in our 

study is related to measurement error or bias in our breastfeeding variable.   

 There is evidence to show that rapid weight gain in infancy and early childhood may be a 

strong predictor of obesity and adiposity later in life14,15,17. However, weight trajectories in mid-

childhood are more predictive of adiposity in adult life152,153.  It is possible that many who are 

classified as having rapid weight gain at age 1 will not become obese. Assessing weight status 

at various time points throughout early and mid-childhood, in addition to adolescence and 

adulthood, may provide more robust results.  

 Our study findings suggest that DNA methylation of the MEG3, H19, and PLAGL1 DMRs 

at birth is associated with weight gain in the first year of life. Associations between methylation 

and infant relative weight gain at MEG3 vary by sex and birth weight and associations at 

PLAGL1 vary by sex. Longitudinal studies are needed to determine whether or not DNA 

methylation at these DMRs is associated with obesity later in life. Determining the associations 
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between DNA methylation and early obesity risk is important, as DNA methylation may serve as 

a biological marker for the assessment of early obesity risk. However, gaining a better 

understanding of the exposures that affect methylation at these regions is also important, as 

exposures that modify methylation of regions that are associated with obesity risk may be a 

good target for early obesity prevention efforts.  
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Table 4. Characteristics of mother-infant pairs by change in WLZ score category between birth 
and age 1 

  Overall WLZ change ≥ 1 SD WLZ change < 1 SD 

 
N (%) 

Mean 
(SD) 

N (%) 
Mean 
(SD) 

N (%) 
Mean 
(SD) 

All infants 300 (100)  124 (41.3)  176 (58.7)  
Weight age 11 (kg)  10.1 (1.4)  10.9 (1.4)  9.5 (1.1) 
Length age 1 (cm)  75.0 (3.9)  75.5 (4.4)  74.7 (3.5) 
Race       

Black 115 (38.3)  50 (40.3)  65 (36.9)  
White 89 (29.7)  33 (26.6)  56 (31.8)  
Other 96 (32.0)  41 (33.1)  55 (31.3)  

Education       
Less than college 
degree 

195 (67.9)  87 (72.5)  108 (64.7)  

College degree or 
more 

92 (32.1)  33 (27.5)  59 (35.3)  

Missing   4  9  
Maternal smoking       

No 245 (86.6)  105 (89.0)  140 (84.9)  
Yes 38 (13.4)  13 (11.0)  25 (15.2)  
Missing 17  6  11  

Maternal age  28.0 (5.7)  27.6 (5.8)  28.2 (5.7) 
Missing  11  3  8 

Sex (of the infant)       
Male 159 (53)  71 (57.3)  88 (50)  
Female 141 (47)  53 (42.7)  88 (50)  

Birth weight (grams) 
 

3385.0 
(496.0) 

 
3344.4 
(446.3) 

 
3413.6 
(527.5) 

Parity2       
Primiparous 121 (40.3)  57 (46.0)  64 (36.4)  
Multiparous 179 (59.7)  67 (54.0)  112 (63.6)  

Breastfeeding       
0-1 months 52 (27.5)  21 (25.9)  31 (28.7)  
1-7 months 44 (23.3)  21 (25.9)  23 (21.3)  
7 months+ 93 (49.2)  39 (48.2)  54 (50)  
Missing 111  43  68  

Maternal BMI  27.4 (7.2)  27.8 (7.0)  27.2 (7.4) 
Missing  3     

Gestational weight gain 
(kg) 

 13.7 (7.5)  13.6 (7.5)  13.8 (7.6) 

Missing  3     
Gestational diabetes       

Yes 22 (7.5)  9 (7.3)  13 (7.6)  
No 273 (92.5)  114 (92.7)  159 (92.4)  
Missing 5  1  4  

1 Results of T-test show statistically significant differences α <0.05.  

2 Results of chi-square test show statistically significant differences α <0.05. 
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Table 5. Unadjusted and adjusted1 results of linear regression of the association between infant DNA methylation at birth and change 
in infant Z scores between birth and age 1, and logistic regression of the association between infant DNA methylation at birth and 
rapid weight gain between birth and age 1. 

 Change in WLZ 0-1 Rapid weight gain (≥0.67 SD change in WLZ) 

 Unadjusted Adjusted Unadjusted Adjusted 

 β 95 % CI P β 95 % CI P β 95 % CI P β 95 % CI P 
MEG3             
Hypo-methylation -0.42 (-0.90, 0.07) 0.11 -0.43 (-0.95, 0.09) 0.10 0.71 (0.39, 1.31) 0.27 0.68 (0.36, 1.31) 0.25 

Hyper-methylation -0.63 (-1.11, -0.15) 0.01 -0.67 (-1.18, -0.17) 0.01 0.53 (0.29, 0.97) 0.04 0.49 (0.26, 0.94) 0.03 

H19             

Hypo-methylation 0.48 (0.005, 0.96) 0.05 0.52 (0.02, 1.02) 0.04 1.57 (0.84, 2.94) 0.15 1.61 (0.83, 3.09) 0.16 

Hyper-methylation 0.12 (-0.34, 0.59) 0.60 0.17 (-0.32, 0.65) 0.50 1.36 (0.74, 2.50) 0.32 1.43 (0.76, 2.70) 0.27 

PLAGL1             

Hypo-methylation -0.37 (-0.83, 0.09) 0.12 -0.34 (-0.82, 0.14) 0.16 0.90 (0.50, 1.60) 0.71 0.92 (0.51, 1.68) 0.79 

Hyper-methylation -0.31 (-0.77, 0.14) 0.18 -0.30 (-0.79, 0.18) 0.22 0.82 (0.46, 1.44) 0.48 0.82 (0.45, 1.50) 0.52 

MEG3 IG             

Hypo-methylation -0.13 (-0.64, 0.37) 0.61 -0.24 (-0.78, 0.30) 0.38 0.85 (0.45, 1.61) 0.63 0.67 (0.33, 1.34) 0.26 

Hyper-methylation -0.18 (-0.67, 0.31) 0.46 -0.30 (-0.80, 0.20) 0.24 0.77 (0.42, 1.43) 0.41 0.61 (0.31, 1.17) 0.14 

IGF2             

Hypo-methylation 0.16 (-0.30, 0.62) 0.50 0.19 (-0.30, 0.69) 0.44 1.11 (0.62, 1.99) 0.72 1.26 (0.67, 2.38) 0.48 

Hyper-methylation -0.11 (-0.56, 0.35) 0.64 -0.13 (-0.61, 0.35) 0.59 0.74 (0.41, 1.33) 0.32 0.75 (0.41, 1.39) 0.36 
1 Adjusted for maternal education, maternal smoking, maternal pre-pregnancy BMI, maternal age, self-report of anthropometric measures, and date of 

anthropometric measurement at age 1. 
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Table 6. Stratified adjusted1 estimates: sex-specific and birth-weight-specific adjusted estimates of linear regression of DNA 
methylation on change in weight-for-height Z score between birth and age 1. 

 Sex-specific Birth weight specific 

 Males Females Lower Higher 

 β 95% CI P β 95% CI P β 95% CI P β 95% CI P 

MEG3             
Hypo-methylation -0.70 (-1.44, 0.04) 0.06 -0.31 (-1.07, 0.44) 0.41 -0.91 (-1.66, -0.16) 0.02 -0.13 (-0.90, 0.65) 0.75 
Hyper-methylation -1.36 (-2.11, -0.61) 0.001 -0.12 (-0.82, 0.58) 0.74 -0.87 (-1.56, -0.18) 0.01 -0.63 (-1.47, 0.21) 0.14 
H19             
Hypo-methylation 0.50 (-0.25, 1.25) 0.19 0.65 (-0.06, 1.35) 0.07 0.31 (-0.37, 0.99) 0.36 0.77 (-0.01, 1.54) 0.05 
Hyper-methylation 0.00 (-0.72, 0.72) 1.00 0.30 (-0.38, 0.98) 0.38 -0.26 (-0.91, 0.38) 0.42 0.54 (-0.20, 1.27) 0.15 
PLAGL1             
Hypo-methylation 0.19 (-0.52, 0.89) 0.60 -0.84 (-1.50, -0.18) 0.01 -0.42 (-1.06, 0.22) 0.20 -0.10 (-0.87, 0.67) 0.80 
Hyper-methylation 0.22 (-0.50, 0.93) 0.55 -0.89 (-1.56, -0.22) 0.01 -0.06 (-0.76, 0.65) 0.87 -0.41 (-1.13, 0.32) 0.27 
MEG3 IG             
Hypo-methylation -0.01 (-0.74, 0.72) 0.98 -0.57 (-1.40, 0.26) 0.18 -0.25 (-0.99, 0.49) 0.50 -0.17 (-0.98, 0.63) 0.67 
Hyper-methylation -0.22 (-0.96, 0.52) 0.56 -0.52 (-1.24, 0.21) 0.16 -0.45 (-1.14, 0.24) 0.20 -0.16 (-0.91, 0.59) 0.68 
IGF2             
Hypo-methylation 0.03 (-0.68, 0.74) 0.94 0.36 (-0.38, 1.10) 0.34 0.32 (-0.31, 0.95) 0.32 0.14 (-0.66, 0.94) 0.73 
Hyper-methylation -0.49 (-1.22, 0.24) 0.18 0.05 (-0.61, 0.72) 0.88 -0.30 (-0.95, 0.35) 0.37 -0.04 (-0.75, 0.68) 0.92 

1 Adjusted for maternal education, maternal smoking, maternal pre-pregnancy BMI, maternal age, self-report of anthropometric measures, date of anthropometric 

measurement at age 1. 
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Table 7. Unadjusted and adjusted1 results of linear regression in the association between infant 
DNA methylation at birth and change in LAZ scores between birth and age 1. 

 Change in LAZ 0-1 

 Unadjusted Adjusted 

 β 95 % CI P β 95 % CI P 
MEG3       
Hypo-methylation -0.20 (-0.54, 0.14) 0.26 -0.03 (-0.39, 0.33) 0.86 

Hyper-methylation 0.05 (-0.29, 0.39) 0.76 0.10 (-0.25, 0.45) 0.58 

H19       

Hypo-methylation -0.17 (-0.52, 0.18) 0.34 -0.15 (-0.52, 0.22) 0.43 

Hyper-methylation -0.35 (-0.70, 0.00) 0.05 -0.31 (-0.67, 0.05) 0.09 

PLAGL1       

Hypo-methylation 0.11 (-0.23, 0.45) 0.52 0.16 (-0.19, 0.51) 0.36 

Hyper-methylation -0.11 (-0.44, 0.22) 0.52 -0.09 (-0.45, 0.26) 0.60 

MEG3 IG       

Hypo-methylation 0.05 (-0.32, 0.42) 0.79 0.10 (-0.29, 0.50) 0.60 

Hyper-methylation 0.05 (-0.30, 0.41) 0.76 0.07 (-0.30, 0.44) 0.73 

IGF2       

Hypo-methylation 0.09 (-0.26, 0.44) 0.60 0.11 (-0.27, 0.48) 0.57 

Hyper-methylation -0.12 (-0.47, 0.22) 0.49 -0.05 (-0.41, 0.31) 0.77 
1 Adjusted for maternal pre-pregnancy BMI, maternal education, maternal smoking, maternal age, self-

report of anthropometric measures, date of anthropometric measurement at age 1. 
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CHAPTER 4- AIM 3: MATERNAL ADHERENCE TO A MEDITERRANEAN DIET PATTERN, 
INFANT DNA METHYLATION AT BIRTH, AND WEIGHT GAIN IN THE FIRST YEAR OF 

LIFE: A SIMPLE MEDIATION ANALYSIS 

Introduction 

 Obesity is a major global public health concern. Obesity leads to an increased risk of 

chronic diseases, such as diabetes and cardiovascular disease. Rapid weight gain in early 

childhood has consistently been found to be a predictor of adiposity, and obesity later in life13,15. 

Maternal diet during pregnancy may also be associated with child overweight and adiposity, 

however this association has not been seen consistently across studies. A study of mice 

showed that a maternal diet high in fat resulted in greater fat mass accumulation in offspring at 

birth154. Epidemiological evidence suggests that a diet high in sugar and saturated fat during 

pregnancy is associated with a greater odds of overweight/obesity at age 572. However, there is 

also literature showing no association between maternal dietary pattern during pregnancy and 

body composition at age 6155. More research is needed to gain a better understanding of the 

association between maternal dietary patterns during pregnancy and infant weight gain and 

adiposity.  

 Mechanisms underlying obesity risk from in utero exposures or early childhood weight 

gain are not well understood. Epigenetic mechanisms have been proposed as possibly playing 

a role in the onset of early childhood obesity21,27,156. Epigenetic modifications are changes to the 

genome that do not alter the underlying DNA sequence21,29. DNA methylation is the most 

commonly studied epigenetic mechanism due to its stability and the ability to measure it from 

easily obtained specimens, such as cord blood and peripheral blood28–30.   

 The Mediterranean diet pattern has been shown to have a positive impact on health, 

inflammation, and chronic disease78,85. However its potential in utero effects on offspring have 
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not been well-studied. There is evidence suggesting that adherence to a Mediterranean diet 

pattern may lower the risk of fetal growth restriction80. A more recent study showed that 

adherence to a Mediterranean diet pattern during pregnancy was associated with child waist 

circumference at age 487. There is also some evidence pointing to an association between 

adherence to a Mediterranean diet and epigenetic mechanisms in adults. A greater adherence 

to a Mediterranean diet in adulthood has been associated with LINE1 methylation115. However 

no studies to date have looked at the potential for epigenetic mechanisms to underlie the 

association between maternal adherence to a Mediterranean diet and infant outcomes. 

 In this study we aimed to conduct a mediation analysis to assess the relationship 

between maternal adherence to a Mediterranean diet in early pregnancy, infant DNA 

methylation at birth, and weight gain in the first year of life. DNA methylation at birth at five 

differentially methylated regions (DMRs) of imprinted genes was included in the study of this 

aim. These regions have been selected for their involvement in growth52,56, obesity53,55, and 

common chronic disease90.  The selected regions include the MEG3 IG DMR and the MEG3 

DMR, which are involved in regulating the delta-like 1 homolog/maternally expressed gene 3 

(DLK1/MEG3) imprinted domain on chromosome 14q32.238; the IGF2 DMR and the H19 DMR , 

which are involved in imprinting of the insulin growth factor 2/H19 (IGF2/H19) domain on 

chromosome 11p15.5, which are located upstream of the imprinted promoters of IGF2 and at 

the imprinting control region for the IGF2/H19 imprinted domain near the H19 promoter, 

respectively38; and the PLAGL1 DMR, which resides at the pleiomorphic adenoma gene-like 1 

(PLAGL1) locus on chromosome 6q24.255.  

Methods And Discussion 

 I proposed to analyze the potential mediation of infant DNA methylation at birth in the 

association between maternal adherence to a Mediterranean diet using methodology outlined 

by Baron and Kenny157. However a small sample size and non-linear associations resulted in 
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this type of mediation analysis not being feasible. In this section I will describe the study sample, 

review mediation methodology as outlined by Baron and Kenny, and discuss the limitations of 

this methodology and why mediation analysis was not possible. 

Study Sample 

 This study was restricted to mother-infant pairs who completed an FFQ during 

preconception or 1st trimester, who had plausible weight and length measurements, and who 

had analyzed DNA methylation. 1700 pregnant women consented and were enrolled in the 

NEST cohort. Of those, 396 women were excluded for a variety of reasons, including infant 

death during or soon after birth, being illiterate, underage, refused further participation, or who 

could no longer be found. DNA methylation data was analyzed for only the first 550 infants in 

the study .Weight and length measurements at one year were available for 740 term infants, 

and preconception/1st trimester FFQ data were available for 870 women. However not all infants 

whose mothers completed an FFQ also had weight and length measurements at age 1 or 

analyzed DNA methylation. Given the malleability of DNA methylation patterns in early 

gestation, only women who completed FFQs relating to preconception or the first trimester were 

included. Extreme implausible energy intakes, defined in our study as an intake of less than 500 

kcal/day or greater than 7000 kcal/day (N=36), were excluded from our study. Preterm infants 

(born before 37 weeks gestation) were also excluded from this study (N=184), as their growth 

and weight gain trajectories differ from those of term infants144. In addition, infants with 

implausible weight and length measurements were excluded (N=7). The analytic sample for this 

aim was therefore reduced to 189 full term mother-infant pairs with available DNA methylation 

data on at least one of the 5 DMRs of interest, who completed a first trimester or preconception 

FFQ, who did not report extreme high or low energy intakes, and who had plausible length and 

weight measurements at birth and age 1.  
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Mediation 

 According to Baron and Kenny, in order for mediation to exist, variations in the exposure 

variable must significantly account for variations in the outcome; variations in the exposure must 

significantly account for variations in the mediator; and variations in the mediator must 

significantly account for variations in the outcome in the presence of the exposure. After 

controlling for the potential mediator, the previously significant relationship between the 

exposure and outcome should decrease or become non-significant157,158. Perfect mediation will 

exist when the exposure has no effect on the outcome variable when controlling for the 

mediator. Partial mediation exists when the beta estimate from the exposure on the outcome is 

decreased in the presence of the mediator157. This methodology is not adequate for assessing 

mediation of non-linear associations, exposure-mediator interactions, or multiple 

mediators158,159.  

 In aims 1 and 2 of this research we found non-linear associations. In aim 1 of this 

dissertation we observed a non-linear association between maternal adherence to a 

Mediterranean diet and infant methylation at the MEG3 IG region. In aim 2 we also observed a 

non-linear association between infant methylation at the MEG3 region and weight gain in 

infancy. Because of this, results of mediation analysis, as described by Baron and Kenny would 

likely not be meaningful, as the test of non-linear associations using methodology meant to 

assess linear associations would likely provide null results. In addition, our small sample of 189 

mother-infant pairs was a barrier to assessing mediation. Fritz, et al determined through 

simulations that the sample size needed to achieve 0.8 power using the methodology described 

by Baron and Kenny would be at a minimum 562, up to 20,886160.  

 The methodology for mediation analysis outlined by Baron and Kenny has been widely 

used in research, however it is not without limitations. This simple mediation methodology has 

been criticized for its inability to look at exposure-mediator interactions, overly relying on 

significance testing of results, its inability to assess non-linearities, and the inability to deal with 
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multiple mediators or variables that are both mediators and confounders158,161,162. In this study, 

theoretically there is a possibility for exposure-mediator interactions, as mediation by infant DNA 

methylation may differ based on maternal Mediterranean diet adherence level. Our results in 

aim 1 showed that both low and medium levels of Mediterranean diet adherence are associated 

with DNA methylation, and have overlapping confidence intervals, suggesting that exposure-

mediator interaction is likely not present. However, it is also possible that EMM exists, as the 

association between exposure and mediator may only be visible in certain strata of a third 

variable, for example sex or birth weight. In aims 1 and 2 of this dissertation, sex and birth 

weight were found to be effect measure modifiers, therefore it is possible that mediation may 

only exist in girls or among those with lower than the median birth weight. Though not the 

purpose of this research, it is likely that more than 1 mediator exists in the association between 

maternal adherence to a Mediterranean diet during pregnancy and infant weight gain. For 

example, infant birth weight is also a possible mediator in this relationship. More sophisticated 

methodologies, such as counterfactual frameworks described by Vanderweele and others161 

would be needed to study these relationships. 
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CHAPTER 5- CONCLUSIONS 

Overview of Findings 

 This dissertation examined the associations between maternal adherence to a 

Mediterranean diet and infant DNA methylation at birth (aim 1), as well as the association 

between infant DNA methylation at birth and weight gain in infancy (aim 2). In addition it 

assessed the potential for mediation of infant DNA methylation in the relationship between 

maternal Mediterranean diet and infant weight gain (aim 3). Our results from aim 1 suggest an 

association between a low adherence to a Mediterranean diet during pregnancy and greater 

infant DNA methylation at the MEG3 IG DMR at birth. This association was evident only in girls. 

In aim 2, we found that greater methylation at the MEG3 DMR was associated with a smaller 

weight gain between birth and age 1 compared to infants with moderate levels of methylation at 

this site. This relationship was evident only in boys and in infants with birth weights that were 

less than the median birth weight for the study population. However there was no DMR that was 

associated with both maternal adherence to a Mediterranean diet and infant relative weight 

gain, suggesting that methylation at one the 5 study DMRs was not a mediator in the 

association between maternal diet and infant weight gain.  

 There is limited literature on the effects of maternal Mediterranean diet during pregnancy 

and childhood outcomes, and none have focused on the potential for mediation of epigenetic 

mechanisms. Most studies have been limited to fetal growth80, birth defects163 child respiratory 

outcomes131. Only one published study looked at the possible association between maternal 

Mediterranean diet intake and risk of child overweight87. They found no association with BMI at 

age 4, but they did find an association between maternal Mediterranean diet intake and waist 

circumference. This suggests that perhaps a more direct measure of adiposity, such as waist 



 

51 

circumference or tricep skinfolds will provide a better assessment of obesity risk. Also different 

timing of outcome assessment may have provided different results. Although there is a body of 

literature suggesting weight gain between birth and age 1 is a risk factor for obesity, there is 

also literature suggesting that adiposity in mid-childhood and adolescence is a predictor for 

obesity later in life152,153. Longitudinal studies that can measure obesity risk over time will be 

needed to gain a better understanding of the relationship between maternal diet and child 

obesity risk.  

 Sex and birth weight specific models were presented in the first two aims of this project. 

Therefore it is possible that such interaction effects exist in the relationship between maternal 

diet and infant weight gain that may be mediated by infant DNA methylation at birth. The use of 

mediation assessment methodologies that allow for the assessment of these interactions, such 

as counterfactual frameworks, are needed to study the mediation of infant DNA methylation at 

birth in the relationship between maternal diet and infant weight gain. 

Limitations 

 This study was limited by a small sample size for studying DNA methylation, and the 

availability of only 9 DMRs for analysis through NEST, of which this study focused on 5. In 

humans, 1-5% of genes are thought to be imprinted164, many of which have been identified in 

recent years. Studies looking at different sets of imprinted genes may provide different results. 

Newer technologies and methodologies allow for genome-wide DNA methylation analysis165, 

which may allow for the expansion of gene sites to target for statistical analysis. It is also 

important to not completely discount the possibility that the DMRs assessed in this study may 

be mediators in the association between maternal diet and obesity later in life. A larger study 

may be able to show statistically significant differences where this study was not. However, it is 

also possible that no association exists. There is little prior evidence showing an association 

between DNA methylation at birth and weight gain in infancy. Although a statistically significant 
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association was seen in aim 2 between methylation at MEG3 and relative weight gain between 

birth and age 1, the study was limited by multiple testing and a small sample size. Therefore it is 

also possible that these results are spurious, that no true association exists, and the 

mechanisms underlying weight gain in infancy are not related to DNA methylation. Replication 

of studies looking at the associations between maternal diet, infant DNA methylation, and infant 

weight gain is needed. 

Selection Bias and Generalizability 

 The NEST cohort is a clinic-based population from Durham North Carolina. It benefits 

from a racially and ethnically diverse selection of mother-infant pairs, and prospectively 

collected data. While the study population may approximate Durham’s racial/ethnic make-up, it 

differs with respect to the racial/ethnic make-up of births across the state of North Carolina.  It 

should also be noted that mothers under age 18 were not included in this study, therefore the 

NEST population differs from Durham and the state of North Carolina with regards to maternal 

age. The results of this study are therefore not generalizable to mothers under the age of 18 or 

births across the state of North Carolina.  

 In aim 1, our small sample size was largely due to two constraining factors: limited 

availability of analyzed DNA methylation data and maternal FFQ non-response. Women-infant 

pairs not included in study aim 1 were more likely to be Black, have lower education, more likely 

to be smokers, and were on average heavier than from those included in the study (data not 

shown). In our study we observed that women of lower education and Black race were also 

more likely to have a lower adherence to a Mediterranean diet pattern, therefore it is possible 

that those who have low adherence to the Mediterranean diet are underrepresented in our 

study. If these likely “low adherers” also have low levels of methylation at the MEG3 IG, then the 

association we see in aim 1 is likely attenuated. However, if those likely “low adherers” have 

high or moderate methylation at MEG3 IG, then the association seen at the MEG3 IG in this 
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study is likely greater than it  would have been had the entire study population been included in 

the analysis.  

Recall and Information Bias 

 An additional limitation of this cohort is the use of self-reported measures, such as 

weight and length measurements at age 1. Approximately 30% of weights and lengths were 

reported by mothers rather than abstracted from medical records. We added a variable 

indicating self-reported measures in our models, however there is still possibility for residual 

confounding or measurement error. The diet data collected for this study also relied heavily on 

maternal self-report. Dietary measures from FFQs are prone to recall bias and social desirability 

bias. FFQ data have been found to be poor measures of energy intake166–168, and have only 

moderate correlations with blood micronutrient measures169,170. Energy-adjusted estimates were 

used as a way to address this. We also conducted a sensitivity analysis to account for the 

potential for over and under-reporting of energy intake and found no significant difference in our 

results after accounting for possible over/under reporters. However, FFQ data can provide a 

reasonable estimate of general dietary patterns171, which was the aim of this study. Therefore 

the use of FFQ data was justified despite its limitations.  

Implications 

 The results of this research, though preliminary, support the idea that maternal diet 

during early pregnancy can modify infant DNA methylation of imprinted genes at birth, and that 

infant DNA methylation of select imprinted genes at birth can predict weight gain in infancy. The 

results of this research also support the idea that methylation can be sex-specific, and should 

encourage future researchers to assess sex-specific methylation and gain a better 

understanding of the biological mechanisms behind this. It will be important to determine how 

these findings can be incorporated into public health recommendations, as the public health 

implications are currently unclear.  
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 The findings of this research suggest that MEG3 IG, MEG3, and H19 may be important 

regions to continue to study in association with maternal diet and infant obesity risk. If 

methylation at a given DMR is consistently associated with both maternal diet and infant early 

obesity risk, this DMR could be used as a biological marker to measure obesity risk and target 

interventions. Also, maternal dietary interventions during pregnancy could be used to prevent 

aberrant methylation, and help prevent obesity over the life course. However, more and larger 

studies are needed to replicate the findings from this research. In addition, studies using more 

sophisticated methodologies for the assessment of mediation are needed to further explore the 

possibility of DNA methylation in the association between maternal diet and infant weight gain.  

 As the first study to explore associations between overall maternal diet patterns and 

infant DNA methylation, this dissertation presents an important contribution to the literature. 

Prior studies have focused on individual micronutrients in relation to DNA methylation rather 

than diet as a whole, thereby limiting their translatability into easily understood dietary 

recommendations. This research encourages the continuation of the study of maternal diet 

patterns, in particular the Mediterranean diet pattern in relation to infant DNA methylation and 

later child outcomes.  

 This research was conducted in collaboration with experts in maternal and child health, 

nutrition, epidemiology, and epigenetics. This interdisciplinary approach gave us a unique view 

and understanding of diet, DNA methylation, obesity, and health over the life course, while also 

focusing on the importance of public health significance in our research. More interdisciplinary 

research is needed to bring alternate solutions to public health problems, and move the field 

forward. 

 As the field of epigenetic epidemiology advances, it is important to remember that DNA 

methylation can be a useful tool to evaluate the embodiment of adverse environmental and 

possibly societal exposures over the life course. This can be especially useful in the study of 

health disparities, as DNA methylation markers may provide a way to assess the damaging 
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health effects of detrimental exposures across generations, and may provide insights into 

potential remediating strategies. Epigenetic epidemiology research should take an 

interdisciplinary approach, and continue to focus on modifiable exposures that affect DNA 

methylation, such as maternal diet, as they may be possible intervention points in the prevention 

of disease or the remediation of damage done by negative exposures throughout the life course 

or even across generations.  
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APPENDIX 1: TABLE OF DIET COMPONENTS BY MEDITERRANEAN ADHERENCE LEVEL 

AMONG MOTHERS IN THE NEWBORN EPIGENETIC STUDY1 

 Diet score 0-
3 

(Low 
adherence) 

Diet score 4-5 
(Medium 

adherence) 

Diet score 6-
9 

(High 
adherence) 

P value 

     
Calorie intake (kcal/day) 2954.3 2522.0 2144.2 <.0001 
% kcals of protein 12.3 14.0 14.5 <.0001 
% kcals of MUFA 11.9 11.8 12.0 0.851 
% kcals of omega-3 0.6 0.7 0.7 0.011 
% kcals of omega-6 5.2 5.7 5.8 0.118 
%kcal of SFA 10.7 10.1 9.6 0.004 
% Kcals of carbohydrates 58.7 57.8 58.0 0.925 
Mean intake (g/1000 kcal/day) 
of diet score components 

    

Fruit group 134.5 186.0 235.2 <.0001 
Vegetable group 51.5 104.7 153.4 <.0001 
Legumes 12.0 25.8 38.4 <.0001 
Nuts/seeds 1.0 3.2 4.7 <.0001 
Whole grain 17.9 25.0 42.8 <.0001 
Dairy 38.8 46.8 55.0 <.0001 
Fish 2.5 4.2 6.1 <.0001 
Meat 7.8 4.7 3.8 0.015 
MUFA:SFA 0.5 0.6 0.7 <.0001 

1 Median intake (g/1000kcal/day) for each diet score component, used as cut point for diet score 

development of each diet score component: fruit: 143.5; vegetable: 87.0; legume: 15.4; nuts: 0.6; whole 

grain: 21.8; dairy: 30.4; fish: 1.9; meat: 2.9; MUFA:SFA: 0.5  
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APPENDIX 2. CHARACTERISTICS OF POSSIBLE OVER/UNDER-REPORTERS OF ENERGY INTAKE, NEWBORN EPIGENETIC 
STUDY 

 Possible under-reporters Possible plausible 
reporters 

Possible over-reporters 

 N (%) Mean (SD) N (%) Mean (SD) N (%) Mean (SD) 

Overall women 50 (12.8)  302 (77.4)  38 (9.7)  
Race1       
Black 21 (42)  90 (29.8)  13 (34.2)  
White 9 (18)  115 (38.1)  7 (18.4)  
Other 20 (40)  97 (32.1)  18 (47.4)  
Maternal Education1       
Less than college degree 32 (65.3)  168 (56.8)  35 (97.2)  
College degree or greater 17 (34.7)  128 (43.2)  1 (2.8)  
Maternal age2  30.0 (6.5)  28.5 (5.6)  25.2 (5.0) 
Maternal smoking       
Yes  5 (10.2)  36 (12.4)  9 (25.7)  
No 44 (89.8)  254 (78.6)  26 (75.3)  
Maternal pre-pregnancy BMI2  30.3 (8.5)  26.7 (6.6)  25.0 (5.8) 
Energy intake (kcal)2  1027.0 (249.7)  2473.2 (828.5)  5003.8 (1115.4) 
Fruit intake (g/1000 kcal)  200.0 (159.1)  183.0 (166.2)  189.4 (143.1) 
Vegetable intake (g/1000 kcal)2  127.7 (99.3)  100.8 (76.6)  96.5 (82.1) 
Desserts (g/1000 kcal)2  19.0 (18.8)  25.6 (22.6)  27.4 (25.3) 
Non-processed meats (g/1000 kcal)2  2.8 (3.9)  5.7 (8.7)  5.8 (9.5) 
Monounsaturated fat intake (% of total kcals)  11.1 (4.6)  12.0 (3.1)  12.4 (3.7) 
Polyunsaturated fat intake (% of total kcals)  6.4 (2.5)  6.5 (1.9)  6.7 (2.1) 
Saturated fat intake (% of total kcals)  9.5 (3.0)  10.2 (2.7)  10.1 (2.6) 

1Results of chi-square test α <0.05 

2 Results of ANOVA α < 0.05 
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APPENDIX 3. UNADJUSTED AND ADJUSTED1 MULTINOMIAL LOGISTIC REGRESSION OF THE ASSOCIATION BETWEEN 
MATERNAL ADHERENCE TO A MEDITERRANEAN DIET DURING PREGNANCY AND INFANT DNA METHYLATION AT BIRTH 

– ANALYSIS EXCLUDING DAIRY FROM MDS SCORING, NEWBORN EPIGENETIC STUDY. 

 Unadjusted Adjusted 

 Hypo-methylation Hyper-methylation Hypo-methylation Hyper-methylation 

 OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P 

MEG3 IG         
Low adherence 1.68 (0.91, 3.12) 0.10 1.42 (0.76, 2.66) 0.27 1.80 (0.90, 3.62) 0.10 1.42 (0.71, 2.84) 0.33 
Med adherence 1.34 (0.62, 2.91) 0.46 1.92 (0.93, 3.99) 0.08 1.45 (0.64, 3.31) 0.38 2.00 (0.93, 4.31) 0.08 
MEG3         
Low adherence 0.81 (0.45, 1.48) 0.50 1.13 (0.63, 2.05) 0.68 1.08 (0.54, 2.13) 0.83 1.16 (0.60, 2.27) 0.66 
Med adherence 1.21 (0.56, 2.60) 0.63 1.53 (0.71, 3.29) 0.27 1.57 (0.68, 3.60) 0.29 1.71 (0.76, 3.86) 0.20 
IGF2         
Low adherence 1.41 (0.79, 2.49) 0.24 0.81 (0.46, 1.43) 0.46 1.56 (0.81, 2.99) 0.18 1.19 (0.63, 2.28) 0.59 
Med adherence 1.17 (0.57, 2.40) 0.67 0.97 (0.48, 1.93) 0.92 1.42 (0.66, 3.04) 0.37 1.25 (0.60, 2.63) 0.55 
H19         
Low adherence 1.10 (0.61, 2.00) 0.75 1.10 (0.61, 2.01) 0.75 1.39 (0.72, 2.70) 0.33 1.56 (0.79, 3.08) 0.20 
Med adherence 0.65 (0.31, 1.37) 0.26 0.86 (0.42, 1.75) 0.68 0.74 (0.34, 1.60) 0.44 1.00 (0.47, 2.12) 0.99 
PLAGL1         
Low adherence 0.84 (0.48, 1.49) 0.56 1.12 (0.64, 1.95) 0.69 0.86 (0.45, 1.66) 0.65 1.71 (0.89, 3.30) 0.11 
Med adherence 1.10 (0.56, 2.19) 0.78 0.88 (0.43, 1.79) 0.72 1.19 (0.57, 2.47) 0.65 1.18 (0.54, 2.57) 0.68 

1 Adjusted for maternal education, maternal pre-pregnancy BMI, maternal smoking, maternal age, total dietary calcium intake 
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APPENDIX 4. CHARACTERISTICS OF STUDY SAMPLE BY DAIRY INTAKE, NEWBORN EPIGENETIC STUDY 

 Below the median dairy intake At or above the median dairy intake 

 N (%) Mean (SD) N (%) Mean (SD) 

Race/ethnicity1     
Black 80 (39.6)  44 (23.4)  
White 44 (21.7)  87 (46.3)  
Other 78 (38.6)  57 (30.3)  
Maternal education1     
Less than college degree 143 (72.2)  92 (50.3)  
Greater than college degree 55 (27.8)  91 (49.7)  
Maternal age2  27.2 (5.8)  29.5 (5.5) 
Maternal smoking     
Yes 27 (14.0)  23 (12.7)  
No 166 (86.0)  158 (87.3)  
Calcium (mg/1000 kcal)2  1236.8 (718.6)  1498.7 (771.9) 
Saturated fat (g/1000 kcal)  28.0 (17.3)  29.4 (15.3) 
Monounsaturated fat (g/1000 kcal)  34.7 (22.6)  33.3 (17.8) 
Total fat (g/1000 kcal)  88.5 (53.1)  87.2 (44.9) 
Total calories  2556.2 (1338.0) 

 
 2510.8 (2347.1) 

1 Results of chi-square test α< 0.001.  

2 Results of T-test α< 0.001 
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APPENDIX 5. CONDENSED RESULTS OF SIMULATIONS ADDING BREASTFEEDING TO REGRESSION OF THE 
ASSOCIATION BETWEEN INFANT MEG3 METHYLATION AT BIRTH AND RELATIVE WEIGHT GAIN IN INFANCY, NEWBORN 

EPIGENETIC STUDY 

Proportion BF 0-1  
months 

Proportion BF 1-6  
months 

Proportion BF 7+  
months 

Methylation Mean β Minimum β Maximum β 

0 0 1 Hypo-methylation 0.38 0.38 0.38 

0 0 1 Hyper-methylation 0.62 0.62 0.62 

0 0.5 0.5 Hypo-methylation 0.39 0.36 0.43 

0 0.5 0.5 Hyper-methylation 0.62 0.59 0.64 

0 0.8 0.2 Hypo-methylation 0.39 0.37 0.42 

0 0.8 0.2 Hyper-methylation 0.62 0.61 0.63 

0 1 0 Hypo-methylation 0.39 0.39 0.39 

0 1 0 Hyper-methylation 0.62 0.62 0.62 

0.1 0.5 0.4 Hypo-methylation 0.39 0.35 0.43 

0.1 0.5 0.4 Hyper-methylation 0.62 0.58 0.64 

0.1 0.8 0.1 Hypo-methylation 0.40 0.36 0.43 

0.1 0.8 0.1 Hyper-methylation 0.62 0.60 0.64 

0.2 0 0.8 Hypo-methylation 0.39 0.36 0.43 

0.2 0 0.8 Hyper-methylation 0.62 0.60 0.64 

0.2 0.5 0.3 Hypo-methylation 0.40 0.34 0.45 

0.2 0.5 0.3 Hyper-methylation 0.62 0.57 0.67 

0.9 0 0.1 Hypo-methylation 0.41 0.38 0.45 

0.9 0 0.1 Hyper-methylation 0.63 0.62 0.65 

1 0 0 Hypo-methylation 0.41 0.41 0.41 

1 0 0 Hyper-methylation 0.63 0.63 0.63 
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APPENDIX 6. TABLE OF UNADJUSTED AND ADJUSTED RESULTS OF LINEAR REGRESSION OF THE ASSOCIATION 
BETWEEN INFANT DNA METHYLATION AT BIRTH AND CHANGE IN WLZ SCORES BETWEEN BIRTH AND AGE 1, AND 

LOGISTIC REGRESSION OF THE ASSOCIATION BETWEEN INFANT DNA METHYLATION AT BIRTH AND RAPID WEIGHT 
GAIN, INCLUDING BIRTH WEIGHT AS A COVARIATE, NEWBORN EPIGENETIC STUDY 

 Change in WLZ 0-1 Rapid weight gain (≥0.67 SD change in WLZ) 

 Unadjusted Adjusted1 Unadjusted Adjusted1 

 β 95 % CI P β 95 % CI P β 95 % CI P β 95 % CI P 
MEG3             
Hypo-methylation -0.42 (-0.90, 0.07) 0.11 -0.42 (-0.94, 0.10) 0.11 0.71 (0.39, 1.31) 0.27 -0.37 (0.36, 1.34) 0.27 

Hyper-methylation -0.63 (-1.11, -0.15) 0.01 -0.71 (-1.22, -0.20) 0.01 0.53 (0.29, 0.97) 0.04 -0.78 (0.24, 0.88) 0.02 

H19             

Hypo-methylation 0.48 (0.005, 0.96) 0.05 0.52 (0.02, 1.02) 0.04 1.57 (0.84, 2.94) 0.15 1.61 (0.83, 3.10) 0.16 

Hyper-methylation 0.12 (-0.34, 0.59) 0.60 0.20 (-0.29, 0.68) 0.42 1.36 (0.74, 2.50) 0.32 1.50 (0.79, 2.86) 0.21 

PLAGL1             

Hypo-methylation -0.37 (-0.83, 0.09) 0.12 -0.35 (-0.83, 0.13) 0.16 0.90 (0.50, 1.60) 0.71 0.91 (0.50, 1.66) 0.77 

Hyper-methylation -0.31 (-0.77, 0.14) 0.18 -0.28 (-0.77, 0.21) 0.26 0.82 (0.46, 1.44) 0.48 0.85 (0.46, 1.57) 0.61 

MEG3 IG             

Hypo-methylation -0.13 (-0.64, 0.37) 0.61 -0.27 (-0.81, 0.27) 0.32 0.85 (0.45, 1.61) 0.63 0.62 (0.31, 1.27) 0.19 

Hyper-methylation -0.18 (-0.67, 0.31) 0.46 -0.33 (-0.84, 0.18) 0.20 0.77 (0.42, 1.43) 0.41 0.57 (0.29, 1.11) 0.10 

IGF2             

Hypo-methylation 0.16 (-0.30, 0.62) 0.50 0.18 (-0.32, 0.67) 0.49 1.11 (0.62, 1.99) 0.72 1.23 (0.65, 2.33) 0.53 

Hyper-methylation -0.11 (-0.56, 0.35) 0.64 -0.11 (-0.59, 0.36) 0.64 0.74 (0.41, 1.33) 0.32 0.77 (0.42, 1.42) 0.40 
1 Adjusted for maternal education, maternal pre-pregnancy BMI, maternal age, maternal smoking during pregnancy, self-report of 

anthropometric measures, date of anthropometric measurement, and birth weight 
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