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ABSTRACT 

 

MEAGAN ELISE BOLLES:  Evaluations Of Severe Acute Respiratory Syndrome Coronavirus 
Therapeutics And A Viral Capacity For Plasticity And Escape. 

 (Under the direction of Ralph S. Baric, Ph.D.) 

 
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emerged in 2002/2003, 

causing the deaths of almost a tenth of the 8000 individuals infected worldwide before it was controlled by 

public health measures. While the 2003 epidemic strain is likely extinct, the importance of coronaviruses as 

emergent zoonotic viruses was again realized with the emergence of a novel human coronavirus in Saudi 

Arabia in 2012. Despite a decade of research on SARS-CoV no approved vaccine or therapeutic yet exists, 

and development of broadly neutralizing and effective therapeutics for coronaviruses remains a priority. 

Neutralizing antibodies targeting the Spike glycoprotein (S) are both necessary and sufficient for protection 

against SARS-CoV, but the high genetic diversity and mutability of SARS-CoV in natural infections 

presents a challenge to both vaccine- and antibody-based therapeutics. Thus, an effective SARS-CoV 

therapeutic should provide S-specific immunity that is nonetheless broad enough to counter heterologous 

and derivative S variants. This work was designed to assess immunization strategies towards SARS-CoV, 

to explore the plasticity and neutralization networks of the Spike glycoprotein, and to assess the utility of 

molecular models to predict host range and antibody neutralization. 

 In the first study we explored the limitations of a doubly inactivated SARS-CoV vaccine, 

identifying a vaccine-induced immunopathology and emphasizing the importance of rigorous challenge 

viruses and animal models that accurately recapitulate age-associated lung pathology. Second, in two 

collaborative studies we assessed multi-generational monoclonal antibodies designed to be broadly 

neutralizing or escape resistant, and extended our characterization of the Spike receptor binding domain 

(RBD) as a highly plastic antiviral target. Finally, we characterized ten recombinant Combinatorial Escape 

Viruses (CEVs) engineered from a database of antibody escape substitutions in the RBD. These CEVs were 

designed to assess the plasticity of the S-RBD, the utility of predictive modeling, and the neutralization 
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networks across the RBD. The tools developed this study will assist in the development of predictive 

models and standardized platforms for combination monoclonal antibody immunotherapies for emergent 

viruses. These studies of SARS-CoV have extended our understanding of a key neutralizing target and have 

provided a valuable foundation for the rapid characterization of novel coronaviruses and potential 

therapeutics.  
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CHAPTER 1:  SARS-CoV and Emergent Coronaviruses: Viral Determinants of Interspecies 
Transmission1 

 

1.1. Overview 

Most new emerging viruses are derived from strains circulating in zoonotic reservoirs.  

Coronaviruses, which had an established potential for cross-species transmission within domesticated 

animals, suddenly became relevant with the unexpected emergence of the highly pathogenic human SARS-

CoV strain from zoonotic reservoirs in 2002. SARS-CoV infected approximately 8000 people worldwide 

before public health measures halted the epidemic. Supported by robust time-ordered sequence variation, 

structural biology, well-characterized patient pools, and biological data, the emergence of SARS-CoV 

represents one of the best studied natural models of viral disease emergence from zoonotic sources. This 

review article summarizes previous and more recent advances into the molecular and structural 

characteristics, with particular emphasis on host-receptor interactions, that drove this remarkable virus 

disease outbreak in human populations.  

1.2. Introduction 

Coronaviruses have an established potential for cross-species transmission that became broadly 

recognized with the emergence of a novel human coronavirus in 2002. Severe Acute Respiratory Syndrome 

(SARS) was first identified as an atypical pneumonia in isolated patients in Guangdong Province, China. 

The disease, caused by SARS-coronavirus (SARS-CoV), spread into epidemic disease proportions 

following key super spreader events that were associated with a novel respiratory virus introduction into a 

globalized community. SARS-CoV rapidly spread around the world, causing about 8,000 infections and 

800 deaths worldwide, before aggressive public health intervention strategies contained the epidemic by 

July 2003. The epidemic went through three distinct phases: early, middle, and late, as determined by 
                                                             

1 Meagan Bollesa, Eric Donaldsonb, Ralph Barica,b. Department of Microbiology and Immunologya and 
Department of Epidemiologyb, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. 
First published in Current Opinion in Virology, December 2011, 1(6): 624-34. 
DOI:10.1016/j.coviro.2011.10.012. Reproduced with permission from Elsevier. 
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molecular analysis. The decimating lethality of SARS-CoV emergence was borne largely by the elderly, in 

whom mortality rates approached 50% or more. Aggressive public health measures limited and eventually 

ended the epidemic in July 2003, absent any effective therapeutics [1]. A subsequent explosion of 

coronavirus research identified SARS-CoV in several small carnivores (palm civets and raccoon dogs) of 

the Chinese wet markets and SARS-like CoV in the predicted reservoir host, horseshoe bats (genus 

Rhinolophus). The vastly expanded CoV phylogeny includes two novel human coronaviruses (NL63 and 

HKU1) and ultimately tripled the number of full length genome sequences available in GenBank. SARS-

CoV was shown to use a novel host receptor, Angiotensin Converting Enzyme 2 (ACE2), for docking and 

entry and the viral attachment protein, Spike, was extensively characterized both as a determinant of host 

specificity and as a therapeutic target. The more recent studies of coronaviruses have progressed to 

increased surveillance and characterization of numerous new coronaviruses circulating in bats, bids, and 

other species, integrated bioinformatics and microbiological studies, and extensive evaluations of potential 

therapeutics [2].  

1.3. Coronavirus Phylogeny and Mechanisms of Genome Diversity 

Following the SARS-CoV outbreak a surge in global coronavirus genome sequencing efforts 

vastly expanded our insight into the CoV phylogeny and resulted in the definition of several sub-

classifications (Fig 1). The greatest contribution of new strains was derived from the newly discovered bat 

coronavirus (BtCoV), which may be the source of most, if not all, mammalian CoVs  [3-9]. The high 

diversity of coronaviruses is attributable to three viral traits [10].  The first characteristic is the potentially 

high mutation rates associated with RNA replication, generally estimated as 10-3 to 10-5. Surprisingly, the 

estimated mutation rate for SARS-CoV and other coronaviruses approached 2x10-6 [11-13]. In contrast to 

other RNA viruses, recent data suggests that coronaviruses encode an RNA proof-reading activity 

associated with the 3’ to 5’ exonuclease activity encoded within nsp14 [14]. It is not clear whether RNA 

proof-reading fidelity is altered in changing environmental settings or during virus replication under stress 

related conditions, but such possibilities may allow for rapid virus evolution in changing ecologic 

conditions [14].  Second, recombination frequencies within the coronavirus family have been calculated to 

be as high as 25% during mixed infection, likely the result of discontinuous RNA transcription and the 

presence of full length and subgenomic negative strand RNAs that allow for frequent strand switching and 
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recombination between viral genomes and subgenomic replication complexes [15,16]. The role of 

discontinuous transcription in recombination is supported by the higher rate of recombination at the 3’ ends 

of viral genomes and by targeted RNA recombination techniques designed to genetically manipulate the 3’ 

end of the genome [17].  Although poorly studied, conservation of transcription regulatory sequence (TRS) 

sites across viral species may implicate these sequences as foci or hot spots of recombination [17]. Thirdly, 

as the largest of the RNA viruses at ~27-31kb, coronaviruses have both increased opportunity for change 

and room for modification, clearly evidenced by the presence of numerous unique open reading frames and 

protein functions encoded at the 3’ end of the genome [10].  These genomic characteristics allow for rapid 

adaptation to novel hosts, ecological niches, tissue tropism, and even generation of novel coronavirus 

species, as seen in the generation of FIPV type II strains from double recombination events between FIPV 

type I and CCoV [10].   
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Figure 1.1: Spike Phylogeny of Representative CoVs and Models of SARS-CoV Emergence.   

A) The Spike peptide sequence of 40 representative CoVs demonstrates that CoVs make up three distinct 
groups named alpha, beta, and gamma.  These names replaced the former group 1, 2 and 3 designations, 
respectively. Classical subgroup clusters are marked as 2a-2d for the beta CoVs and 1a and 1b for the alpha 
CoVs.  The tree was generated via Maximum Likelihood using the PhyML package. Major branch labels 
represent bootstraps that were greater than 70.  SCoV, SARS CoV; BtSCoV, bat SARS-like CoV; BtCoV, 
ZBCoV, and ARCoV, bat CoVs; HCoV, human; FCoV and FIPV, feline CoVs; BCoV, bovine; IBV, avian; 
PHEV, TGEV, PRV, PEDV, porcine CoVs; and MHV, murine hepatitis virus. B) Competing models of 
SARS-CoV emergence. Early data suggested that SARS-CoV initially jumped from the zoonotic reservoir, 
bats, to palm civets, followed by a second jump from civets to humans (blue arrow). More recent 
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phylogenetic and receptor analysis studies suggest a direct emergence from bats to humans, with 
subsequent cross transmission between humans and civets (red arrow). 

 

1.4. Multiple incidents of cross-species transmission. 

Coronaviruses have a strong history of host shifting as evidenced by phylogenetic incongruences 

in the family tree [18]. In addition to SARS-CoV, two human coronaviruses, HCoV-OC43 and HCoV-

229E, are now also recognized as having likely emerged from animal reservoirs. HCoV-OC43 and bovine 

coronavirus (BCoV), betacoronaviruses, have very high sequence similarity, suggesting a recent and 

common origin (Fig 1). Molecular clock analysis of the Spike glycoprotein of both species estimates that 

HCoV-OC43 originated from a BCoV ancestor around 1890 [19]. Similarly, HCoV-229E likely emerged 

from a bat alphacoronavirus approximately 200 years ago [20]. In an example of reverse zoonsis, porcine 

epidemic diarrhea virus emerged suddenly in the early 1980’s, most likely originating from HCoV-229E 

[20]. Additionally, a coronavirus isolated in 1988 from a child with acute diarrhea, HECV-4408, was 

shown to be more closely related to bovine coronavirus (BCoV), indicating the continued introduction of 

zoonotic coronaviruses into human populations [21]. The origins of HCoV-NL63 and HCoV-HKU1, the 

most recently discovered human coronaviruses, remain under study. The most recent example of zoonotic 

emergence of a human coronavirus is the example of SARS-CoV, which had at least two independent 

emergence events from zoonotic reservoirs, recognized in 2002 and 2003 [22]. The most recent 

phylogenetic data estimate the emergence of SARS-CoV some seven years earlier, consistent with the 

identification of low sero-positive cases from archived serum samples in 2001 in China [23]. 

1.5. SARS-related CoVs in Bats 

Following its emergence in 2003, SARS was quickly identified as a zoonotic virus, and the 

identification of the wet markets as a potential source may have assisted epidemiological control of the 

disease [24]. While palm civets, raccoon dogs, and horseshoe bats (Rhinolophus genus) have all been 

identified as hosts of SARS-like CoVs, it is suggested that only the horseshoe bats are likely reservoir 

hosts. Bats are widely distributed, highly diverse, and extremely mobile mammals with an established role 

as hosts of emergent RNA viruses.  Coronaviruses occupy an exceptionally wide distribution in bats; recent 

surveillance studies have extended our recognition of this range to Africa, Europe, South America, and 

North America [4,9,25-27]. The genetic variation encoded within many recently discovered coronaviruses 
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hosted by bats is far greater than the diversity noted between many human coronaviruses, despite a 

proportionally small sampling of the ~1200 bat species, leading some researchers to speculate that all 

mammalian coronaviruses are derived from bat reservoir strains [4,28]. The extensive sequence diversity 

provides considerable opportunity for the emergence of new animal and human coronaviruses, which 

would be sufficiently antigenically distinct as not to be influenced by preexisting exposure and memory 

immune responses to established human CoVs. For example, little antigenic cross reactivity exists between 

the S glycoproteins of more distantly related group 2b bat coronaviruses and the SARS-CoV [29]. From a 

historic context, the next emergent event is likely dependent only on ecological and epidemiological 

situations and time, as the viral potential is well-established [30,31].  

Repeated efforts have been made in recent years to identify the zoonotic reservoir and path of 

emergence for SARS-CoV, both by sampling zoonotic populations and by attempting to clarify SARS-CoV 

receptor usage in alternate hosts. A recent study attempting to address the paucity of bat SARS-related 

coronavirus sequences gathered and analyzed SARS-related coronaviruses in Rhinolophus bats (SARSr-

Rh-BatCoV) (Rp3) genomes from horseshoe bats in China [32]. Interestingly, several bats sampled were 

coinfected with HKU2, an alphacoronavirus, providing direct evidence that individual bats can host 

divergent coronaviruses, even across groups. Further, tagging and clinical assessment of infected bats over 

a four year period showed only minor weight loss associated with Rp3 infection, and viral clearance 

occurring between two weeks and four months.  Analysis of the ten novel genomes gathered in this study 

combined with previously published sequences demonstrated evidence of frequent recombination between 

the strains. They also note a 26-bp deletion in ORF8 near, but not identical to, the 29-bp deletion seen in 

human SARS-CoV epidemic strains, suggesting ORF8 may undergo frequent deletions [32]. Whether the 

epidemic 29-bp deletion was neutral to or critical for human adaption remains undetermined.   

Angiotensin Converting Enzyme 2 (ACE2) is the receptor for SARS-CoV, but following the 

identification of several SARS-like CoVs (SL-CoVs) in several horseshoe bats (genus Rhinophus), the 

ACE2 molecule of R. pearsonii proved incapable of serving a receptor for SARS-CoV [3,33]. These and 

other initial studies suggested that the ancestral SARS-CoV strain in bats used an alternate receptor and that 

the emergence of SARS-CoV was dependent upon either acquisition of an ACE2 binding region or initial 

utilization of an alternative human receptor [33]. However, while human ACE2 is genetically conserved, 
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the bat ACE2 sequences are highly heterogeneous, with 78-84% amino acid identity between families 

[34,35]. Despite this, the residues that interface with the SARS S RBD are more conserved [36]. A recent 

study determined that a minimum three substitutions in the ACE2 of R. pearsonii (RpACE2) allowed this 

protein to serve as a receptor for SARS [37]. Looking more broadly at the ACE2 molecules from seven bat 

species, the ACE2 proteins from Myotis daubentoni and Rhinolophus sinicus are capable of supporting 

Spike-mediated pseudovirus and SARS-CoV infection, though less efficiently than human ACE2 [34]. 

Assessment of receptor usage by early phase and civet isolate Spike proteins might better inform our 

understanding of emergence pathways, determining if SL-CoV jumped directly from bat to human hosts or 

whether civet or other intermediate hosts were required as early intermediates prior to human adaptation.  

Although original data suggested a bat to civet to human origin, evidence supporting direct bat to 

human transmission of SL-CoV emerged from recent phylogenetic studies, in addition to the receptor 

studies mentioned above (Fig 1b).  Initially, a reanalysis of published genome sequences developed 

phylogenies using outgroups that were non-SARS-CoV sequences, designed to test the monophyly of the 

SARS-CoV sequences [38]. Under this assessment, bat isolates are ancestral host to all SARS-CoVs, while 

civet and raccoon dog sequences (small carnivores), as well as pig isolates cluster within the human SARS-

CoV sequences. The small carnivore CoVs are consistently shown to be terminal branches with human 

CoVs intermediate, with subsequent bidirectional transmission of CoV between carnivores and humans 

responsible for isolated cases such as GD03 [38]. A more recent study analyzed CoV sequences gathered 

from 24 Rhinolophus sinicus bats in geographically distant regions of China, characterizing two distinct 

genotypes, Rs672 and Rs806 [39]. Interestingly, one sequence (Rs672) and the previously published Rp3 

are shown in a monophyly more closely related to human-SCoV than to bat SARS-like CoV strains, based 

on the strong similarity of Rs672 ORF1a/b region to human SARS sequences. This study also provided 

further evidence of recombination between Bat-SLCoV, with a recombination breakpoint identified 

immediately after the start codon of Spike, identical to the recombination position in the Rp3 genome [39].  

The combination of highly diverse BtCoV species and divergent ACE2 molecules among bat hosts 

suggests direct bat to human transmission may be feasible. Thus, the field is left with two potentially 

competing models for the origins of the SARS-CoV epidemic, however, in both models civets and raccoon 

dogs became key amplifying hosts for virus persistence and reintroduction into human populations. 
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1.6. Genesis of an Epidemic 

The SARS-CoV outbreak is unique in that a chronological set of sequence changes are available 

that span the epidemic, providing an unparalleled opportunity to identify the genetic basis for zoonotic 

virus cross species transmission and human adaptation during an expanding epidemic. Molecular changes 

noted at with the end of the early phase and expansion into the middle phase of the epidemic include 

A3047V, A3072V in the replicase and D778Y and perhaps E1163K in the Spike gene.  Transition from the 

middle to late phase of the epidemic included an A2552V in ORF1a, E1389D in ORF1b, D77G and T244I 

in the S gene, respectively (Fig 2) [40].  It has been hypothesized that these alterations were key to an 

expanding epidemic, yet empirical data to support these claims and functional significance of these 

alterations remains unavailable.  For example, it is not clear whether the ORF8 29 bp deletion is central for 

human adaptation as suggested, or a genetic hitchhiker amplified and maintained following a selective 

sweep mediated by other beneficial mutations located elsewhere in the genome [3,40].  In addition to these 

changes, the SARS-CoV Spike glycoprotein was under strong positive selection, with 23 substitutions 

evolving during the expanding phases of the epidemic [41]. Experimental evidence suggests both 

adaptation to ACE2 and antibody selection contributed to Spike changes [40,42].  

 
Figure 1.2: Sequence changes over the SARS-CoV epidemic.  

Shown here are the most significant changes important for transition of SARS from Civet to early, middle 
and late phases of epidemic strains.  Mutations indicative of lineages that were not likely to have 
contributed to the expansion to other phases have been removed.  All other positions in the genome are 
identical.  
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1.7. Coronavirus Cross-Species Transmission: Role of Spike-Receptor Interactions in Viral Entry.  

Coronavirus receptor interactions are key determinants regulating host range, cross-species 

transmission, and tissue tropism. The various coronaviruses demonstrate broad receptor and co-receptor 

usage, from proteases such as aminopeptidase N for transmissible gastroenteritis virus (TGEV), canine-

CoV, feline infectious peritonitis virus (FIPV), and HCoV-229E, to cell adhesion molecules such as 

CEACAM1a for MHV, to sugars as co-receptors for some alpha, beta, and gammacoronaviruses 

[36,43,44]. This diverse receptor usage directly impacts host range and tissue tropism as demonstrated by 

the closely related PRCoV and TGEV. PRCoV lacks the sugar-binding region of TGEV, and consequently 

is limited to a respiratory rather than enteric tropism [45].  The recently crystallized structure of the 

Group2a coronavirus MHV complexed with its receptor, murine CEACAM1a, emphasizes again the broad 

diversity and flexibility of CoV Spike glycoproteins, as the core structure is hypothesized to have been 

derived from a host sugar-binding protein (galectin) and subsequently modified to allow mCEACAM1a 

binding, thus enhancing MHV affinity for host cells [43]. Other coronaviruses encode a second putative 

viral attachment protein, the hemagglutinin esterase (HE), which was likely derived from influenza C 

strains by recombinatory mechanisms [46]. Coronaviruses selected in vitro to broaden host range 

oftentimes mutate to bind heparin sulfate for docking and entry [47]. It is notable that OC43 and BCoV 

have carbohydrate (sialic acid) binding capacities, as well as broader host ranges [44]. The capacity to bind 

carbohydrates for docking and entry may provide an additional pathway for coronavirus host range 

expansion, cross-species transmission, and disease emergence, and requires further study.  

The key determinant of SARS coronavirus host specificity is the Spike glycoprotein, an envelope-

anchored trimeric protein responsible for binding human Angiotensin Converting Enzyme 2 (ACE2) as the 

principle receptor for virus docking and entry. SARS-CoV S glycoprotein also binds C-type lectins like 

DC- and/or L-Sign  as a co-receptor, an interaction which is blocked by mannose binding lectin [48,49].  

Importantly, SARS-CoV docking and entry is also highly dependent upon transmembrane protease/serine 

subfamily member 2 (TMPRSS2) S and ACE2 cleavage, especially in airway and alveolar sites, and 

cathepsin L cleavage and subsequent S2 fusion activation  [50-52]. Several studies in the past two years 

have worked to clarify the plasticity of this protein, with particular emphasis on the receptor binding 

domain (RBD). The Spike glycoprotein underwent rapid evolution during the human epidemic [40], was 
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the most significantly variable protein across civet and human isolates [22], and shows evidence of  

positive selection during both inter- and intraspecies transmission events [10,22,40,53].  The SARS Spike 

can recognize and use bat, civet, mouse, and raccoon dog ACE2 receptor molecules for docking and entry, 

indicating that SARS trafficked along receptor orthologue networks to move between species [34,54,55]. 

As several alphacoronaviridae also use APN from different species, these data suggest a common theme in 

coronavirus host range switching: recognizing receptor orthologues from different species [36]. 

Additionally, the role of different orthologue proteases for facilitating coronavirus S glycoprotein cleavage 

and entry processes remains undefined, and could significantly contribute to the efficiency of virus cross 

species transmission processes.   

SARS-CoV replicates but does not produce clinical disease in mice. Two experimental adaptations 

of SARS-CoV to murine hosts by serial passage independently identified a substitution in the Spike gene at 

residue 436 which alone has been shown to enhance infectivity and pathogenesis in mice, and is predicted 

to allow stronger binding to the murine ACE2 receptor [29,56]. However, substitutions outside of Spike are 

necessary for the full lethal disease phenotype in MA15, and presumably also in v2163  [57] . For example, 

two other proteins, nsp9 and nsp13, contained mutations in both mouse-adapted strains, MA15 and v2163. 

Additionally, single substitutions in the M gene are common to MA15 and adaptation to persistent infection 

of human tubular kidney cells, suggesting the M protein influences tropism or pathogenesis by facilitating 

the efficiency of particle egress [58]. The substitutions common to both mouse-adapted strains suggest 

potential SARS-CoV virulence factors in the later stages of adaption to a novel host, and indicate potential 

mutation driven emergence pathways. The mouse-adapted viruses may not represent true cross-species 

transmission events, as SARS could already replicate in the mouse lung, but it is notable that the most 

conserved change in both mouse-adapted strains enhances receptor binding at the same Spike residue. 

Further, serological studies indicate multiple cross-species transmissions into humans in the years before 

the epidemic, suggesting that the virulence factors contributing to the later stages of adaptation to novel 

hosts, in Spike or elsewhere, are critically important [23].  

The receptor binding domain (RBD, aa318-510) is the strongest determinant of host range for 

SARS-CoV and other coronaviruses [29]. Single substitutions within the receptor binding domain can 

significantly affect the binding affinity of Spike to its receptor [59]. Indeed, a minimum of 1-2 substitutions 
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in the RBD are sufficient to allow the virus to alter host receptor specificity [60]. Experimental adaptation 

of civet-Spiked SARS virus to human ACE2 receptor by Sheahan et al. demonstrated the minimal 

requirements for host range expansion. In these studies, a civet-Spiked SARS-CoV was incapable of 

propagating in Vero cells until a human-tropic substitution was introduced at residue 479. When the Civet-

Spiked virus included the K479T substitution it was capable of propagating on Vero cells and further 

capable of replicating on human airway epithelial cells (HAE) and hACE2-expressing DBT cells, 

demonstrating that single substitutions are capable of expanding the virus host range. Interestingly, when 

the K479T-civet-SARS was experimentally selected for enhanced replication on human airway epithelial 

cells, the substitutions that improved replication did not exactly replicate the substitutions seen in the 

epidemic strains. Rather, an initial substitution at 479 was necessary for the civet-SARS to use primate 

ACE2 and propagate in Vero cells, but the adaptive mutations following passage on human airway 

epithelial cells (HAE) selected for substitutions at two different contact interface sites at residues 442 and 

472, rather than the 487 site identified in the epidemic strain [60,61]. This suggests that multiple genetic 

pathways exist which can improve S RBD-human ACE2 receptor interactions, providing the virus with 

multiple strategies to adapt to new host species [55]. It is interesting to note that this alternative pathway for 

recognizing hACE2 ablated interactions with the cACE2 receptor, supporting the hypothesis that epidemic 

SARS-CoV strains were co-selected to efficiently recognize both civet and human ACE2 receptors. 

Antibodies that neutralize SARS-CoV predominantly bind to the RBD of Spike. Rockx et al 

selected and sequenced a number of different escape mutants to a panel of 23 human monoclonal 

antibodies, the majority of which contained single substitutions along the RBD interface with ACE2 [62]. 

All but one escape site mapped within 4 angstroms of contact interface residues, and yet all viruses grew to 

comparable peak titers in Vero and hACE2-restricted DBT cells. However, growth on civet-ACE2-

restricted DBT cells was restricted for all escape viruses, suggesting that escape from antibody 

neutralization can alter Spike-receptor binding and, consequently, host range [62]. That antibody escape 

variants can stably adopt substitutions in the Spike-ACE2 receptor interface suggests that the host response 

to an infection may select for host range variants by a mutation-driven mechanism.   

Extensive structural modeling tools are available to predict receptor binding, antibody 

neutralization, or the stability of substitutions within the receptor binding domain of the SCoV Spike. Three 



 

22 

coronavirus Spike receptor binding domains have been complexed with receptors to date, allowing for 

prediction and validation of the structural determinants of binding to host and orthologous receptors (Fig 

3). Application of mathematical modeling to Spike-receptor and Spike-antibody structural models allowed 

for the prediction of escape substitutions with a high probability of fixation in a viral population [63]. 

These predictions are partially in accordance with published data, predicting selection with antibody 80R 

would select for a substitution at D480 of Spike, as seen in vitro following SARS-CoV escape from 80R 

neutralization [63,64].   

 

 
Figure 1.3: Crystal structures of coronavirus receptor binding domains (RBD) complexed with their 
receptors.  

To date, the crystal structures of three coronavirus Spike RBD-receptor complexes have been solved: A) 
the RBDs of SARS complexed with human ACE2 (pdb 2AJF) [61], B) NL63 complexed with human 
ACE2 (3KBH) [65], and C) MHV complexed with murine CEACAM11a (3R4D) [43].  

 

1.8. Plasticity of the Spike glycoprotein 

The coronavirus Spike glycoprotein is remarkably plastic, capable of accommodating mutations 

and deletions up to 479 (MHV) or 681 nucleotides (PRCoV) while retaining receptor binding and entry 

functions [66-68]. To date, large deletions in the SARS-CoV S glycoprotein have not been reported.  The S 

protein is divided into discrete domains: an N-terminal domain, receptor binding domain (RBD), two 

heptad repeats, a transmembrane anchor, and an intracellular tail [43]. Discrete regions can be exchanged 

between strains while preserving both protein function and antibody binding [29,36]. Multiple coincident 
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substitutions as well as contact interface site substitutions can be tolerated to allow escape from antibody 

neutralization while maintaining receptor specificity [42,59,69,70]. This flexibility allows for multiple 

genetic pathways from the use of zoonotic receptors to the human ACE2 receptor [55].  

Diversity and flexibility of the Spike glycoprotein is characteristic of coronaviruses beyond 

SARS-CoV. The lack of a clear ACE2 receptor binding motif (RBM) in the horseshoe Bat-SLCoV Spike, 

and the inability to use hACE2 as a receptor, led to an early hypothesis that the human SCoV emerged from 

Bat-SLCoV following a recombination event, perhaps with a NL63-like CoV, as NL63 also uses ACE2 as 

a receptor. Such a recombination event would have allowed direct acquisition of an ACE2 binding motif 

and the resulting cross-species transmission [35]. Alternatively, SARS-CoV used batACE2 for docking and 

entry and introduction into human/civet populations selected for mutations that enhanced interaction with 

the civet or humanACE2 receptor. The recently published crystal structure of NL63-CoV complexed with 

the ACE2 receptor shows no structural homology with the SARS-CoV RBM or the core RBD (Fig 3) 

[65,71]. This suggests that convergent evolution, rather than recombination-mediated transfer, lead to the 

common use of ACE2 by NL63 and SARS-CoV [71].  

Early data suggested that the RBD of SARS-CoV and perhaps HCoV-NL63 were derived by 

recombination processes, rather than mutation driven evolution. While these ideas remain highly 

speculative, these data suggested that the S glycoprotein RBDs and/or fusion cores of CoVs may be 

interchangeable between distant strains. In support of this hypothesis, the consensus bat SARS-like genome 

HKU3 was replication competent, but was not sufficient for sequential rounds of infection, presumably 

because of the lack of appropriate receptors for docking and entry. The insertion of the SARS RBD into the 

HKU3 Spike allowed for the production of progeny virus that grew to high titer in ACE2-expressing DBT 

cells, and was capable of replicating in human airway epithelial cells and mouse lungs, although it grew 

with reduced efficiency in the latter [29]. Thus, under certain conditions, recombination processes can 

result in bat CoV host shifting. Further, the bat-SARS-like coronavirus with the SARS RBD was capable of 

replicating in mouse lungs, although with greatly reduced efficiency. It is notable that attempts to isolate 

CoV from bats have repeatedly failed, limiting our ability to study adaptive mechanisms or pathogenesis of 

CoV in host species, but that synthetic biology provides alternative sources of these viruses. The 

construction of a synthetic bat SARS-like coronavirus provided strong evidence that the interspecies 
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movement of coronaviruses, specifically SARS-like coronaviruses, resides strongly in the RBD [29]. While 

previous studies had indicated that small changes in the Spike glycoprotein could alter host specificity of 

coronaviruses, the sufficiency of a discrete RBD change in the context of a divergent 30kb genome 

demonstrates the RBD is a minimum determinant of species tropism. Further, it suggests a potential 

mechanism of host range expansion, suggesting recombination or single substitution events may allow for 

infection of novel hosts. Determining receptor specificities for these novel bat coronaviruses offer 

considerable opportunity to enrich our understanding of coronavirus receptor interactions, identify new 

receptors that coronaviruses use for docking and entry, and provide novel models for studying the ease and 

mechanism of cross species transmission. 

1.9. Conclusions 

 Fundamental insights into the molecular mechanisms and pathways that govern virus 

cross species transmission is central to protecting global health. Coronaviruses readily traffic between host 

species and the Spike glycoprotein is the most extensively characterized viral determinant of host range 

expansion. Binding of the coronavirus spike to the host receptor is the minimum determinant of infectivity 

and species specificity, and many recent studies have demonstrated the ability of S RBD to mutate and 

engage ortholog receptors or escape antibody neutralization [60,62]. We need to know more about the 

breath of novel coronavirus receptors that are used in nature and the mechanisms governing ortholog 

receptor recognition. Importantly, the coronavirus RBD interface is a robust iterative model for predicting 

structure-function relationships between mutation-driven host range expansion, virus-receptor interactions, 

and antibody binding and neutralization. The SARS S-RBD model captures highly-regulated variables that 

recapitulate real-life biological processes critical for coronavirus cross-species transmission and host 

immune response (Fig 4). The SARS RBD, receptor, neutralizing antibody interface provides considerable 

opportunity for predicting and studying the role of mutations in cross species transmission and immunity. 

In addition, recent work has also expanded our appreciation of how intragenic recombination may influence 

coronavirus host range, as evidenced by targeted recombination, recombination between different bat 

coronaviruses, and identifying the RBD as a minimum determinant of host-range expansion [29,39]. While 

the precise ancestor and route of emergence for SARS-CoV remains unidentified, extensive sampling and 

phylogenetic studies of bat CoVs has raised the possibility that the epidemic strain may have jumped 
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directly to humans before jumping to civets. Thus, future coronavirus epidemics may be more frequent than 

appreciated as compared with a two step emergence model that required an intermediate host. Additionally, 

while it remains unclear whether recombination or mutation of Spike mediated the emergence of SARS, 

both mechanisms can readily impact coronavirus host range. Future studies are needed to clarify the 

potential roles of host proteases or antibody mediated selection in cross-species transmission, and whether 

modulation of RNA proof-reading activity could impact viral adaptation to a novel host. Further, structural 

and mathematical modeling tools offer novel predictive capabilities that, when integrated with experimental 

studies, will assist in predicting the ease of cross species transmission and emergence and improved 

therapeutic design. 
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 Figure 1.4:  Experimental Evolution at the SARS S Glycoprotein RBD-Ligand Interface.   

The SARS RBD is heterogeneous and includes defined sequence variation at specific residues that engage 
the ACE2 receptor from different species (Part 1 and 2).  Bioinformatics can be used to predict and then 
test the impact of targeted mutations on variant virus-receptor interactions. Iterative rounds of mutation 
driven selection are also possible using recombinant viruses encoding targeted mutations and variant ACE2 
receptors for docking and entry. The model allows a deep structural understanding of the potential 
pathways and molecular mechanisms that govern cross species transmission and pathogenesis. The 
biological impact of host shifting on antigenicity can be predicted using structural models of antibody-RBD 
interfaces, and then studied using a panel of well characterized human and mouse monoclonal antibodies 
targeting the different SARS-CoV RBD domains (Part 3).  In parallel, neutralizing monoclonal antibodies 
can be used to select for escape mutations (Part 4), allowing for iterative rounds of prediction and testing on 
how these mutations impact host range and ACE2 recognition. 
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CHAPTER 2:  A Double-Inactivated SARS-CoV Vaccine Provides Incomplete Protection In Mice 
And Induces Increased Eosinophilic Pro-Inflammatory Pulmonary Response Upon Challenge1 

 

2.1. Overview 

SARS-CoV is an important emerging virus that is highly pathogenic in aged populations and is 

maintained with great diversity in zoonotic reservoirs. While a variety of vaccine platforms have shown 

efficacy in young animal models and against homologous viral strains, vaccine efficacy has not been 

thoroughly evaluated using highly pathogenic variants that replicate the acute end stage lung disease 

phenotypes seen during the human epidemic. Using an adjuvanted and unadjuvanted doubly-inactivated 

SARS-CoV vaccine (DIV), we demonstrate an eosinophilic immunopathology in aged mice comparable to 

that seen in mice immunized with the SARS-nucleocapsid protein, and poor protection against a nonlethal 

heterologous challenge. In young and one year aged animals, we demonstrate that adjuvanted DIV provides 

protection against lethal disease in young animals following homologous and heterologous challenge, 

although enhanced immune pathology and eosinophilia is evident following heterologous challenge. In the 

absence of alum, DIV performed poorly in young animals challenged with lethal homologous or 

heterologous strains. In contrast, DIV vaccines (both adjuvanted and unadjuvanted) performed poorly in 

aged animal models. Importantly, aged animals displayed increased eosinophilic immune pathology in the 

lungs, and were not protected against significant virus replication.  These data raise significant concerns 

regarding DIV vaccine safety and highlight the need for additional studies into the molecular mechanisms 

governing DIV induced eosinophilia and vaccine failure, especially in the more vulnerable aged animal 

models of human disease. 
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Department of Pathologyd, and Department of Geneticse, University of North Carolina at Chapel Hill, 
Chapel Hill, North Carolina. 
Copyright © American Society for Microbiology [Journal of Virology, December 2011, 85(23): 12201–
12215. doi:10.1128/JVI.06048-11.] 
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2.2. Introduction: 

Emerging in 2002 from the Guandong province of China, Severe Acute Respiratory Syndrome 

(SARS) presented as an atypical pneumonia with an overall mortality rate of 10-12% that exceeded 50% in 

aged (>60) populations [72-74]. The etiological agent was the novel coronavirus SARS-CoV, a zoonotic 

virus that likely emerged from bats and spread into civets and raccoon dogs either concurrent with or prior 

to the human epidemic [3,40,75]. While the epidemic strain was controlled by aggressive public health 

intervention strategies, the possibility of a re-emergence is fueled by the presence of SARS–like CoV 

strains circulating in animal reservoirs [3,7,76]. Indeed, phylogenetic analysis of outbreak strains isolated 

during the late 2003/early 2004 epidemic suggest multiple independent emergences into the human 

population [22,75]. 

SARS-CoV is a cytoplasmically replicating, positive polarity ssRNA virus with three major 

membrane-bound structural proteins, Spike (S), envelope (E), and membrane (M), several unique 

glycoproteins, and one structural protein within the virus core, the nucleocapsid protein (N). Multiple 

candidate antiviral and immunomodulatory therapeutics have been developed in response to the epidemic, 

and vaccines would likely be a major tool in controlling any new SARS-CoV outbreak [77]. Key to the 

development of effective SARS vaccines appears to be the generation of neutralizing antibodies, targeting 

the S glycoprotein, which provide complete protection upon passive transfer and are consistently associated 

with protection in multiple vaccine formulations [42,78-80]. SARS vaccine strategies consist of varied 

formulations of inactivated [81,82], live attenuated [83], recombinant subunit [84], DNA [85,86], or 

subunit-vectored vaccines [87-89]. Live attenuated vaccines with deletions in nonessential proteins show 

some efficacy in young mice, but low antibody titers preclude sterilizing immunity and they remain 

untested in more vulnerable aged animals [83]. Vectored vaccines incorporating the Spike glycoprotein 

alone show significant protection, but are limited by strain specificity and immunosenescence [90]. 

Inactivated whole virus vaccines have the advantages of relative ease of production in large quantities, 

stable expression of conformation-dependent antigenic epitopes, and the contribution of multiple viral 

immunogens. However, disadvantages to inactivated formulations include the risk of vaccine preparations 

containing infectious virus, as well as the inclusion of antigenic determinants not associated with protection 

that may unpredictably skew the immune response [91]. With few exceptions, SARS vaccine formulations 
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have not been tested against heterologous challenges in immunosenescent models of severe end stage lung 

disease [90].  

Effective SARS vaccines must achieve several criteria, including a) the ability to protect against 

heterologous viral variants that arise during independent emergence events, since many S-targeted 

antibodies have significantly reduced neutralization titers against heterologous spike glycoproteins 

[42,88,92]; b) the ability to elicit robust immune responses in elderly populations that are difficult to 

immunize and at increased risk for SARS-CoV-induced morbidity and mortality [93,94], and c) avoidance 

of adverse vaccine outcomes, such as the vaccine-induced immune pathology that has been demonstrated 

following vaccination with the SARS-N protein [88,95]. Whole inactivated SARS-CoV vaccines have 

demonstrated efficacy in young animal models, generating high titers of neutralizing antibodies, yet most 

challenge studies have used a virus replication model devoid of clinical disease [96-98].  In humans, 

inactivated SARS-CoV vaccines have been shown to induce neutralizing antibodies in healthy, young 

subjects in Phase 1 clinical trials [81,84,85]. However, in neither humans nor animal models have 

inactivated vaccines been assessed for their ability to provide protection in aged populations or to protect 

against heterologous challenges. Given the severity of disease in aged populations and the possibility that 

emergent SARS viruses will be antigenically distinct from the 2002 epidemic strain, animal models that 

capture severe age-related disease and allow assessment of heterologous SARS challenges are essential for 

the preclinical validation of any vaccine or therapeutic candidate. The aged BALB/c model reproduces the 

age-related susceptibility to SARS-CoV disease similar to that noted in human infections, including 

increased levels of SARS-CoV viral replication, more severe clinical disease, and enhanced pulmonary 

histopathology [41,99,100]. When challenged with zoonotic and human chimeric SARS-CoV incorporating 

variant Spike glycoproteins, the aged BALB/c model reproduces severe lung damage associated with 

human disease including diffuse alveolar damage, hyaline membrane formation, and death, thereby also 

providing a model for assessing vaccine-mediated protection against heterologous viruses [41]. 

To test these hypotheses, we characterize the efficacy of an inactivated whole SARS-CoV vaccine 

in a highly lethal homologous and heterologous challenge model that recapitulates the age-related 

susceptibility and pathologic findings seen in lethal human cases. The vaccine used was the CDC strain 

(AY714217) of SARS-CoV, doubly inactivated by formalin and UV irradiation, hereafter referred to as 
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doubly inactivated virus (DIV) [98]. The vaccine had initially been characterized in tissue culture and 

young mice, where it was shown to induce neutralizing antibodies and provide protection from viral 

replication. Adjuvanting with alum had minimal effect on the serum neutralizing titers or protection in 

these young mouse protection studies [98]. In this study, we chose to advance the protection and safety 

studies of DIV by assessing homologous and heterologous challenges in mice. We initially assess the 

vaccine’s efficacy and potential for enhancement in a nonlethal animal model using icGD03-S. This 

synthetically derived virus incorporates the Spike of a human strain isolated in 2004, providing a human 

virus challenge that is nonetheless divergent from the vaccine strain [41]. Extending this protection study to 

the more stringent test of a lethal challenge, we utilize a mouse-adapted virus, icMA15, which is lethal in 

both young and old BALB/C mice, and is minimally different from the vaccine strain [57]. A chimeric 

virus incorporating the Spike of a civet strain (HC/SZ/61/03) onto the Urbani backbone provides a lethal 

heterologous and zoonotic challenge model [41]. These three viral challenge regimens, varied adjuvants, 

and an aged mouse model, help to accurately model potential challenges of vaccinating a human population 

against future emergences of a SARS-CoV-like zoonotic virus. Our results demonstrate a vaccine-induced 

enhancement of eosinophilia and inflammatory response following challenge, as well as a failure to protect 

against heterologous challenge and in an aged animal model. This work highlights the challenge of vaccine 

design for zoonotic viruses, the need for developing broadly neutralizing therapeutics, the particular 

difficulty of immunizing aged populations, and offers new routes for understanding SARS-CoV 

pathogenesis.  

2.3. Methods and Materials 

The generation and characterization of each of the recombinant infectious clones (icUrbani, 

icGD03-S, and icHC/SZ/61/03-S) have been described previously [41,101]. Briefly, all recombinant 

icSARS-CoV strains were propagated on Vero E6 cells in Eagle's minimal essential medium (Invitrogen, 

Carlsbad, CA) supplemented with 10% fetal calf serum (HyClone, Logan, UT), kanamycin (0.25 µg/ml), 

and gentamicin (0.05 µg/ml) at 37°C in a humidified CO2 incubator. All work was performed in a 

biological safety cabinet in a biosafety level 3 laboratory containing redundant exhaust fans. Personnel 

were equipped with powered air-purifying respirators with high-efficiency particulate air and organic vapor 
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filters (3 M, St. Paul, MN), wore Tyvek suits (DuPont, Research Triangle Park, NC), and were double 

gloved. 

 VIRUSES AND CELLS.  

The icGD03-S (AY525636) [102], icMA15 (FJ882957) and icHC/SZ/61/03-S [41] strains of 

SARS-CoV were propagated on Vero E6 cells in Eagle’s MEM supplemented with 10% fetal calf serum, 

kanamycin (0.25 µg/ml) and gentamycin (0.05 µg/ml) at 37oC in a humidified CO2 incubator. For virus 

growth, cultures of Vero E6 cells were infected at an approximate MOI of 1 for 1 hr, the monolayer washed 

twice with 2mls of PBS, then overlaid with complete media. At thirty hours post infection, supernatant was 

clarified by centrifugation at 1600 rpm for 10 minutes, aliquoted, and frozen at -70ºC. Virus stocks were 

titrated by plaque assay.  

 MICE:  

Vaccination and challenge. Due to the poor availability of aged mice, two slightly divergent 

mouse strains were utilized during the course of this research. BALB/c mice (Harlan Labs, Indianapolis, 

IN) were challenged with lethal viruses (icMA15 and icHC/SZ/61/03-S), while the National Institute of 

Aging provided BALB/cBy mice for nonlethal/epidemic strain challenges. Prior studies in our lab have 

shown conserved susceptibility phenotypes in these mouse strains following SARS-CoV challenge, with 

slightly increased morbidity and mortality in the NIA (BALB/cBy) strain. Therefore, in the nonlethal 

icGD03-S challenge we expected slightly more morbidity than normally would have been predicted in 

Harlan mice.  

Female BALB/cAnNHsd mice (young [6-8 weeks old] and aged [12-14 months old]; Harlan Labs, 

Indianapolis, IN) were separated into 4 groups of 12 young and 12 aged mice. Mice within each group were 

vaccinated by footpad injection with 20 µL volumes consisting of: 0.2 µg of double-inactivated SARS-CoV 

vaccine; 0.2 µg of double-inactivated SARS-CoV vaccine with alum; 0.2 µg of inactivated influenza; or 0.2 

µg of inactivated influenza with alum. The mice were boosted with the same regimen 22-28 days later. 

Aged female BALB/cBy mice (12-14 months old; NIA) were vaccinated with PBS-, alum-, or VAP-

adjuvated iFlu (n=8,10,9 respectively) or DIV (n=10,9,10) immunogens, respectively. Vaccine 

formulations consisted of 0.2µg of DIV or iFlu, plus either PBS, 0.69mg/mL alum, or 105 infectious units 

of VAP (VEE replicon adjuvanting particle), a dose which had previously been demonstrated to provide 
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protective immunity in young mice [103,104]. These mice were then boosted with the same regimen 22-28 

days later. 

We collected blood from tail veins prior to challenge with icMA15, icHC/SZ/61/03, or icGD03-S 

on day 36 post vaccination. Mice were anesthetized with a ketamine (1.3 mg/mouse)-xylazine (0.38 

mg/mouse) mixture administered intraperitoneally in a 50-µl volume. Mice were intranasally inoculated 

with 105 PFU of icMA15, icHC/SZ/61/03, or icGD03-S in 50µl volumes and weighed daily. At two or four 

days postinfection, mice were euthanized by isolfluorane, and lung and serum samples were collected for 

analysis.  For  studies involving VRP vaccinations, female BALB/C mice that were 5 weeks old were 

immunized with 105 IU  of VRPs expressing SARS N, Bt.CoV 279N or HA in 10µL volume by footpad 

injections. Three weeks later, blood was collected by tail nick method for ELISA, and the mice were 

boosted with 105 IU of respective VRPs . Three weeks post boost, blood was collected by tail nick for 

assessing antibody responses.  Mice were moved to satellite facility under BSL3 conditions, acclimatized 

and were challenged with 105 pfu of rMA15 icGDO3 virus [90] by intranasal inoculation as described 

above.  

All mice were housed under sterile conditions in individually ventilated Sealsafe cages using the 

SlimLine system (Tecniplast, Exton, PA). Experimental protocols were reviewed and approved by the 

Institutional Animal Care and Use Committee at the University of North Carolina, Chapel Hill. 

 PLAQUE ASSAY TITRATION OF VIRUS FROM LUNGS.  

One quarter of each lung was taken for viral titer. Samples were weighed and homogenized for 

60sec at 6000rpm in four equivalent volumes of PBS to generate a 20% solution. The solution was 

centrifuged at 13,000 rpm under aerosol containment in a table top centrifuge for 5 min, the clarified 

supernatant was serially diluted in PBS, and 200-µl volumes of the dilutions were placed onto monolayers 

of Vero E6 cells in six-well plates. Following 1 hour of incubation at 37°C, the cells were overlaid with 

0.8% agarose-containing medium. Two days later, the plates were stained with neutral red and the plaques 

were counted. 

 PLAQUE REDUCTION NEUTRALIZATION TITER ASSAYS.  

We heat-inactivated mouse sera at 55°C for 30 minutes then serially diluted it to 1:200, 1:400, 

1:800, and 1:3200 in PBS to a volume of 125 µL. Next, we added 125 µL of PBS containing 125 pfu of 
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icSARS-CoV to each sera dilution, incubated the virus/serum mixtures at 37°C for 30 minutes, added 200 

µL of each mixture to confluent cultures of Vero E6 monolayers, and allowed them to incubate at 37°C for 

hour. Following the one-hour infection, we covered each monolayer with 4 mL of 0.8% agarose melted in 

standard Vero E6 cell medium and resolved plaques with neutral red staining two days later. Finally, we 

calculated the PRNT50 values—the sera-dilution at which 50% of plaques formed relative to virus not 

treated with sera. 

 LUNG HISTOPATHOLOGY.   

One half of each lung was fixed in 4% PFA in PBS (pH 7.4) for at least seven days, imbedded in 

paraffin, sectioned to 5µm, and stained with H&E. Sections were blindly evaluated by Dr. Funkhouser for 

extent of tissue damage and characterization of inflammation.  

 VISUAL ENUMERATION OF EOSINOPHILS.  

Lung tissues were prepared as above and stained with H&E or Congo Red (+hematoxylin) [105]. 

For each slide, an initial assessment of gross lung pathology was followed by selection of a lung section 

and enumeration of eosinophils within the viewing field at 400x magnification. Representative images were 

minimally and identically processed to enhance contrast in Adobe Photoshop CS4. For both H&E and 

Congo-red stained slides, multiple 160µm2 sections proximate to airways were assessed and eosinophils 

counted were averaged per lung.  

 QUANTITATIVE REAL-TIME PCR.  

One quarter of a lung from each mouse was placed into RNAlater® (Ambion) for 4 days at 4°C 

then frozen at -70°C. Lung samples were transferred from RNAlater® to Trizol®, homogenized for 60sec 

at 6000rpm, and RNA was extracted by chloroform/isopropanol precipitation. cDNA was prepared using 

random hexamers and SuperScriptII Reverse Transcriptase (Invitrogen) by standard protocols. Quantitative 

PCR was conducted on a Lightcycler 480II (Roche) using ABI Taqman Gene Expression Assays specific 

for mouse GAPD or mouse IL-4, IL-5, IFN-γ, IL-13, CCL11 (eotaxin), Cxcl1(KC). Relative quantification 

was calculated as log10 fold-change (2ΔΔcT) relative to mock-vaccinated, mock-challenged controls.  

 FLOW CYTOMETRY.  

Mice vaccinated with PBS, DIV, or DIV + alum were challenged with 105 pfu of icHC/SZ/61/03, 

weighed and monitored daily for morbidity, and euthanized four days postinfection by isofluorane 
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inhalation. Lungs were perfused with 10mLs PBS by cardiac puncture, dissected, manually minced, and 

vigorously agitated for two hours in digestion media [RPMI, 10%FBS, 15mM HEPES,  1.7mg/mL 

DNase1, (Sigma), 2.5mg/mL Collagenase A (Roche), 1x streptomycin, 1x gentamycin]. Lungs were then 

passed through a 75 micron cell strainer, resuspended in RPMI media [RPMI, 10%FBS, 15mM HEPES], 

and overlaid onto a density gradient of iodixanol dilutied to a density of 1.079 gm/cm3 with RPMI 1640 

containing 10% FBS (Optiprep, Sigma-Aldrich Co., St. Louis, MO). Following centrifugation cells were 

collected from the interface, washed, and viable cells counted by Countess® automated cell counter 

(Invitrogen). Cells were then incubated with the following panel of antibodies: APC anti-leukocyte 

common antigen (LCA,CD45PE-Cy7 anti-CD11b; and PE-Cy5 anti-MHC classII antigens, all from 

eBioscience (San Diego, CA); FITC anti-Gr-1 and PE anti-SiglecF, from BD-Pharmingen (San Diego, CA) 

and PE-Texas Red anti-CD11c (Molecular Probes (InVitrogen, Carlsbad, CA). Following staining cells 

were washed with FACS wash buffer [1x HBSS, 1%FBS], fixed with 2% formalin, and flow cytometry 

conducted on a CyAn ADP (Beckman-Coulter) with 300,000 live cell events gathered per lung sample. 

Analysis was performed on the Summit software (version 5.2; Beckman-Coulter). First, we gated on LCA+ 

and CD11c+ cells by plotting those parameters against forward scatter and gating on positive cells. Then, 

Gr-1 was plotted against SigLecF as shown in figure 8A.  SigLecF high, Gr-1 intermediate cells were 

selected and CD11b versus CD11c signal was plotted for cells in that region.  CD11b +, CD11c - cells are 

classified as eosinophils while alveolar macrophages are CD11c +, as shown in figure 8b. As seen in figure 

8a, after gating on LCA+ and CD11c+ cells, Gr-1 positive cells are classified as neutrophils. Of the cells 

that remain after gating out SiglecF+ and neutrophils, we classify MHC class II negative, CD11b+ and 

B220 negative cells as monocyte-derived DCs, or mDCs. Cell counts per lung was calculated as the 

product of the total viable lung cell population by the percentage of gated cells in live cell events. We used 

a two-factor ANOVA to assess the statistical significance of age and vaccine on the overall number of 

eosinophils.  If the ANOVA determined a factor was significant, post-hoc analyses using Tukey’s Honestly 

Significant Differences (HSD) were used to further determine effects of treatment on eosinophil levels.  

 ENZYME-LINKED IMMUNOSORBANT ASSAY.    

Antigen-specific IgG and IgG sub-isotype titers were determined by ELISA.  Briefly, purified 

recombinant SARS nucleocapsid (N) protein or spike protein (S) were coupled to high-binding 96-well 



 

35 

ELISA plates (Greiner) in basic carbonate buffer (pH = 9.6).  After washing with ELISA wash buffer 

(EWB – PBS with .016% Tween 20), diluted serum was added to the wells in EWB with 10% Blocking 

Buffer (Sigma-Aldrich).  After 2 hours at 4ºC, the plates were washed again and horseradish peroxidase 

conjugated goat anti-mouse IgG, IgG1 or IgG2a was added to the appropriate wells diluted in EWB + 

blocking buffer.  After another 2 hours, chromogenic substrate (o-phenylene diamine in citrate buffer with 

added hydrogen peroxide) was added to each well.  After 30 minutes, the reaction is stopped with the 

addition of 0.1M sodium flouride and read at 450 nm.  A sigmoidal curve is fit to each set of optical density 

versus log10 of serum dilution values using the curve-fitting software of the SigmaPlot graphics package 

(Systat Software, Inc.) and the inflection point (where the OD is one half of the maximum value recorded 

for that isotype/antigen combination) is calculated and reported as ‘half-max titer’. 

2.4. Results 

DIV PROVIDES PARTIAL PROTECTION AGAINST NONLETHAL HETEROLOGOUS CHALLENGE IN AGED 
ANIMALS 

The efficacy of doubly inactivated SARS-CoV vaccines has not been evaluated in aged animals, 

which show immunosenescence, increased susceptibility to clinical disease, and increased pathology, 

reflecting conditions in the more vulnerable SARS-CoV-infected aged populations [98]. One year old 

National Institute of Aging mice were vaccinated with doubly inactivated SARS vaccine (DIV) or 

nonspecific immunogen (iFlu) in unadjuvanted form, adjuvanted with alum, or adjuvanted with VEE 

adjuvanting particles (VAP). SARS-specific total IgG responses, as measured by ELISA, show a 

significant increase in the alum adjuvanted group as compared to PBS adjuvanted group for both N-specific 

(3.580 vs 2.625 log10 half-max titer) and S-specific (3.743 vs 2.781 log10 half-max titer) antibody (Fig 

1A). Unexpectedly, the VAP adjuvant nearly ablated total IgG antibody compared to PBS, reducing total S- 

and N-specific antibodies to titers of 0.7432 and 1.182 log10 half-max, respectively (Fig 1A). The alum-

adjuvanted DIV induced a strong skew in the N- and S-specific antibodies towards IgG1, a subtype 

associated with Th2 immune responses, while the non-adjuvanted DIV resulted in a more balanced or 

IgG2a-skewed antibody populations (Fig 1B).  

To assess protection from heterologous SARS infection, the aged DIV-vaccinated mice were 

challenged with 105 pfu of icGD03-S, a recombinant heterologous human strain that closely resembles 

circulating zoonotic strains in 2004. Both DIV and DIV +alum –vaccinated groups showed significant, 
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though incomplete, reductions in morbidity (as measured by weight loss) by day four postinfection, while 

none of the nonspecific vaccination groups showed any reduction in morbidity or lung viral titer by four 

days postinfection (Fig 1E,F). The VAP-adjuvanted DIV group predictably showed no reduction in 

morbidity or titer, consistent with the failure of DIV +VAP to induce SARS-specific antibody responses in 

the aged animals (data not shown). When the viral titers in the lungs were assessed, only the DIV+alum 

group showed significant reductions in day four lung titers, while all other groups, including DIV 

unadjuvanted, showed high levels of viral replication (Fig 1F). These results demonstrate that while DIV 

does provide some heterologous protection in highly susceptible aged populations, this vaccine is unable to 

provide complete protection from either viral replication or virus-induced morbidity.  
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Figure 2.1: DIV vaccination and nonlethal heterologous challenge in aged animals.  

A) Log10 half-maximum ELISA titers for anti-N and anti-S total IgG antibodies following DIV 
immunization. One year aged NIA mice were immunized with DIV (n=10), DIV +alum (n=9), or DIV 
+VAP (n=9). Values were statistically compared by Mann-Whitney test. B) Log10 half-maximum ELISA 
titers of IgG1 vs IgG2a subtypes. Each point represents log10 IgG1 and IgG2a half-max titers for a single 
mouse. C) Representative images (400x magnification) of eosinophil infiltration in icGD03-S-challenged 
mice following DIV or iFlu vaccination regimens. Lungs taken 4 days postinfection were sectioned and 
stained with congo red, a reliable and specific stain for eosinophils (arrow). D) Box and whisker counts of 
eosinophils proximal to airways in icGD03-S-challenged aged mice, with range in whiskers. Eosinophils 
were counted in 4x160µm2 regions proximal to airways, 5 airways per mouse. Counts were statistically 
compared to adjuvanted controls by t-test with Welch’s correction. E) Mice challenged with the icGD03-S 
virus were weighed daily and visually assessed for morbidity. DIV and DIV +alum immunogens 
significantly reduced the morbidity associated with icGD03-S challenge by day four post-challenge. F) 
Mice were harvested on day 4, and one quarter of the lung homogenized and titered by plaque assay. Lung 
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titers were sporadically reduced for both DIV and DIV+alum groups, with only DIV +alum reaching 
statistical significance by Mann-Whitney. (*p<0.05; **<0.01; †<0.001; ‡<0.0001) 

 
Previous work from our group and others has demonstrated that vaccination with SARS N protein 

fails to protect from SARS replication while driving a vaccine-induced eosinophilic pathology. Therefore, 

given that none of the DIV vaccine strategies resulted in complete protection from viral replication in the 

aged animals, we assessed whether any of the vaccine groups exhibited signs of eosinophilic immune 

pathology. Importantly, both the DIV and DIV +alum groups showed increased numbers of eosinophils in 

the lungs following challenge (Fig 1C). Mice vaccinated with iFlu and iFlu +alum showed a low number of 

eosinophils in regions proximate to airways by congo red staining: both iFlu and iFlu+alum groups had a 

median count of 1.0 eosinophils per region (Fig 1D).  Both DIV and DIV+Alum vaccinated groups showed 

significant increases in eosinophil counts over the comparable nonspecific immune groups, at 5.0 and 35.0 

eosinophils per region, respectively. Further, adjuvanting with alum significantly increased the eosinophil 

influx compared to DIV alone.  

 IMMUNIZATION OF YOUNG AND AGED ANIMALS 

Few candidate vaccines have been tested in aged animals following homologous and heterologous 

lethal challenge, and no whole virus vaccines have been thus tested. Therefore, we assessed whether the 

DIV formulations would protect against heterologous and homologous lethal challenges in young and aged 

animal models. As a control, vaccination with inactivated influenza virus with or without alum did not 

induce detectable levels of anti-SARS (Urbani) antibody in either 12-week young or 59-week aged mice 

(data not shown). When young mice were vaccinated with 0.2µg of the SARS-CoV DIV, 8/16 generated 

detectable levels of SARS-neutralizing antibody titers. Vaccination with DIV +Alum induced detectable 

levels of neutralizing antibody in 15/15 mice and at significantly increased PRNT levels compared to DIV 

alone (Fig 2). Specifically, the mean (±SD) PRNT50 value for DIV alone was 221±220, which 

significantly differed from the DIV+Alum group’s neutralizing titer of 2710±992 (Fig 2). Importantly, DIV 

alone did not induce detectable levels of anti-SARS antibodies in aged mice, while the addition of alum 

increased the response in aged animals, with 8/14 aged animals generating detectable levels of neutralizing 

antibodies. The PRNT50 value had a mean of 425±806, significantly reduced by about 6-fold as compared 

with DIV +alum vaccinated young animals. Thus in young and aged animals, the presence of alum in the 
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DIV vaccine formula significantly improved the induction of SARS-CoV neutralizing antibody: from 

moderate to high levels in young, and from immeasurable to moderate levels in aged animals.   

 
Figure 2.2: Neutralizing antibody titers of vaccinated mice.  

PRNT50 values of sera collected from young and aged mice vaccinated with DIV or DIV +alum. 
Neutralizing titers were significantly reduced in both aged vaccination groups compared to young groups 
(DIV p<0.01, DIV+alum p<0.0001; Fisher exact test). Alum adjuvant significantly increased neutralization 
titers for both young and aged animals (**p<0.01, ‡p<0.0001; 2-tailed Mann-Whitney test). No 
neutralizing antibody was detectable for young or aged mice vaccinated with iFlu (n=15, n=16 
respectively) or iFlu+alum (n=14, n=15 respectively); data not shown. PRNT50 values below the limit of 
detection were assigned a value of 50 and those above the upper limit of quantification a value of 3200. 
(LLOQ = 100 and ULOQ = 1600).  

 

 LETHAL MOUSE-ADAPTED AND ZOONOTIC CHALLENGES IN YOUNG MICE 

To directly assess vaccine mediated protection from lethal disease in young and old animals, mice 

were challenged either with the homologous mouse adapted icMA15 virus or the heterologous zoonotic 

virus icHC/SZ/61/03-S. In young animals, DIV provided partial protection, increasing survival following 

challenge with icMA15 from 0% to 83.3%, and significantly reducing morbidity by day 3 (p<0.01, 2-tailed 

Mann-Whitney test). In contrast, DIV +alum provided complete protection from morbidity and mortality by 

4 days post-infection in icMA15-challenged mice (Fig 3A,B). When young mice were challenged with 

icHC/SZ/61/03-S, both DIV alone and DIV +alum groups provided complete protection from mortality. 

The DIV +alum group showed complete protection from morbidity, while DIV-immunized groups showed 

mild weight loss. The nonspecifically vaccinated groups (iFlu and iFlu+alum) lost ~20% of their starting 
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weight by day 3 (icMA15) or day 4 (icHC/SZ/61/03-S)  post-infection, respectively. Furthermore, the iFlu 

and iFlu +alum vaccinated icMA15-infected animals showed 0% survival by day 4, while the same groups 

challenged with icHC/SZ/61/03-S showed 67% and 50% survival, respectively. In short, although DIV-

mediated protection was not complete, there was partial protection from homologous and heterologous 

lethal challenges in young animals, and this protection from weight loss and death was enhanced by the 

inclusion of alum adjuvant.  

When viral titers were assessed in the lungs at day 4 post infection, young mice vaccinated with 

DIV+alum showed no detectable viral titer following either viral challenge (Fig 3C). In contrast, for DIV 

alone, lung titers following icMA15 challenge were reduced to undetectable levels in only 1 of 5 surviving 

mice, and the remaining 4 had titers ranging from 5.65 to 6.41 log10 pfu/g. Following icHC/SZ/61/03-S 

challenge, viral titers in DIV-vaccinated mice were reduced to undetectable levels for all but 1 mouse (3.74 

log10pfu/g).  In comparison, the iFlu-immunized groups had titers ranging from 3.65 to 4.83 log10 pfu/g 

(iFlu) and 4.72 to 5.14 log10 pfu/g (iFlu +alum). Therefore, in agreement with morbidity data, DIV +alum 

was able to provide complete protection in young animals, while DIV alone reduced but did not eliminate 

viral replication following homologous or heterologous challenge. 
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Figure 2.3: Morbidity and Mortality of lethal MA and zoonotic challenges following DIV 
immunization.  

 Young and aged mice were vaccinated with iFlu, iFlu +alum, DIV, or DIV +alum (n=6 per group) and 
subsequently mock infected (data not shown) or challenged with 105 pfu of icMA15 or icHC/SZ/61/03-S. 
Mice were weighed daily and monitored for morbidity (A) and mortality (B). Four days postinfection lungs 
were harvested and viral load assessed by plaque assay (C). Values were statistically compared by Mann-
Whitney test.  
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 LETHAL MOUSE-ADAPTED AND ZOONOTIC CHALLENGES IN AGED MICE 

In stark contrast to the encouraging results seen in young animals, one year aged animals 

vaccinated with either DIV alone or DIV +alum did not show complete protection from mortality, and both 

groups demonstrated significant morbidity with weight loss and high levels of viral replication. As in 

young animals, iFlu vaccinated groups showed a ~20% weight loss by day 3 (icMA15) or 4 

(icHC/SZ/61/03-S)  post-infection. Survival following icMA15 challenge was 16.7 and 0% on day 4 for 

iFlu and iFlu+alum, respectively; following icHC/SZ/61/03-S challenge these rates were 16.7% and 0%, 

respectively. Unlike young animals, aged groups vaccinated with DIV alone did not show promising 

reductions in morbidity, mortality, or viral titer following these lethal challenges (Fig 3). icMA15 or 

icHC/SZ/61/03-S¬–challenged groups vaccinated with DIV alone had greater than 20% weight loss by day 

four, and the DIV immunization provided no significant increases in survival for either virus challenge 

(16.7% icMA15, 66.7% icHC/SZ/61/03-S). The one surviving mouse following icMA15 challenge had a 

lung viral titer of 6.70 log10 pfu/g, and following icHC/SZ/61/03-S challenge the surviving mice had lung 

titers ranging from 3.89 to 4.44 log10 pfu/g, which was slightly reduced compared to the peak titers seen in 

surviving iFlu vaccinated control mice (4.83 and 4.98 log10 pfu/g). In contrast to DIV alone, DIV +alum 

did significantly increase survival rates for aged mice after both icMA15 and icHC/SZ/61/03-S challenges 

compared to the iFlu +alum immunized groups. Following icMA15 challenge, aged mice vaccinated with 

DIV+alum showed 83.3% survival by day four (vs 0% iFlu+alum; p<0.01, 2-tailed Fisher Exact Test), and 

the comparable group challenged with icHC/SZ/61/03-S showed 100% survival (vs 0% iFlu+alum; p<0.01, 

2-tailed Fisher Exact Test). However, mice in both icMA15 and icHC/SZ/61/03-S¬–challenged groups had 

significant weight loss compared to mock-infected controls (p<0.05 for both) (Fig 3A). Additionally, DIV 

+alum reduced lung titers to undetectable levels by day four in only 3 of the 5 surviving icMA15-

challenged animals, and did not eliminate virus from any of the surviving icHC/SZ/61/03-S¬–challenged 

animals despite 100% survival in these animals (Fig 3C). 

 PATHOLOGIC FINDINGS IN ICMA15 OR ICHC/SZ/61/03-S CHALLENGED ANIMALS. 

DIV alone failed to provide complete protection from SARS replication and disease in both young 

and old animals, while DIV +alum failed to prevent weight loss in aged animals, suggesting that neither 

vaccine formulation would protect from SARS-induced respiratory pathology. We therefore evaluated the 
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lungs of animals from each of the vaccination groups for vaccine-induced pathology. Lethal challenges to 

naïve mice generally result in a denuding bronchiolitis and apoptotic debris in the airways of both young 

and old animals. Young mice challenged with icHC/SZ/61/03-S displayed diffuse parenchymal alveolitis, 

while challenge with icMA15, and both challenges to aged mice, demonstrate additional pathology 

including diffuse alveolar damage (DAD) and hyaline membrane formation, both hallmarks of acute 

respiratory distress syndrome (ARDS) in SARS cases (young: Fig 4; Aged: Fig 5). 

 
 Figure 2.4: Pathology in young mice challenged with icMA15 or icHC/SZ/61/03-S.  

Representative images of H&E stained lung  panorama (100x), airway (400x), and parenchyma (400x) 
sections from young mice vaccinated with the indicated immunogen and challenged with icMA15 or 
icHC/SZ/61/03-S. TB = terminal bronchiole; AD = alveolar duct; black arrow = denuded airway; blue 
arrow = acute alveolitis and septal congestion; green arrow = peribronchovascular cuffing; red arrow = 
hyaline membrane.  
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Young animals vaccinated with DIV suffered significant pathologic changes that were generally 

worse in icMA15 than icHC/SZ/61/03-S challenged animals. Compared to mock-vaccinated groups, the 

DIV-vaccinated groups showed increased perivascular and peribronchial cuffing as well as scattered 

infiltrates in the parenchyma, including neutrophils, alveolar macrophages, and eosinophils (Fig 4). DIV-

vaccinated aged animals showed greater pathology than young, particularly perivascular cuffing and 

interstitial thickening (Fig 5). These results indicate that not only did the DIV vaccine fail to protect from 

viral replication and morbidity/mortality, but the vaccine actually promoted the development of enhanced 

inflammatory damage within the lungs. 

 
Figure 2.5: Pathology following immunization and subsequent lethal challenge in aged Harlan mice. 

 Representative H&E stained sections of panorama (100x), airway (400x), vasculature (400x), or 
parenchyma (400x) lung regions from aged mice. A) mock infected B) iFlu+alum vaccinated, 
icHC/SZ/61/03-S challenge C) DIV+ alum vaccinated, icHC/SZ/61/03-S challenge D) DIV+alum 
vaccinated, icMA15 challenge. 
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The adjuvanted vaccine, DIV+alum, well protected young mice from icMA15 challenge, showing 

minimal pathologic changes. Yet despite good protection from weight loss or lethality, DIV+Alum 

icHC/SZ/61/03-S-challenged mice showed histopathology more extensive than in unvaccinated mice, with 

increased peribronchiovascular cuffing consisting of mature lymphocytes, macrophages, and eosinophils 

(Fig 4). In aged animals, DIV+Alum provided little protection against either challenge, demonstrating 

pathology beyond the unvaccinated, with additional perivascular and peribronchial cuffing, as well as 

fibrinous exudates in the alveolar parenchyma (Fig 5C,D). 

AGED ANIMALS HAVE INCREASED TH2 EFFECTOR AND EOSINOPHIL-ASSOCIATED CYTOKINE MRNA  

Given the Th2-associated skew in antibody profiles (Fig 2), and the broad influx of inflammatory 

cells in vaccinated mice (Figs 4,5), we used quantitative RT-PCR to analyze in vivo cytokine mRNA 

expression following vaccination and challenge (Fig 6). Aged mice vaccinated with DIV+alum and 

challenged with icHC/SZ/61/03 have elevated mRNA levels of Th2 effector cytokines, including IL-13 and 

IL-5, at two and four days post-infection (p<0.01 for each). The eosinophil chemoattractant CCL11 

(eotaxin) is significantly increased in the lungs of vaccinated mice at both 2 and 4 days post-infection 

(p<0.01). By contrast, IL-4 and IFN-γ shows no significant changes at these timepoints (the earliest of 

which is day 2), and the neutrophil associated chemokine, Cxcl1, is elevated in mock-vaccinated rather 

than DIV-vaccinated groups (p<0.05). 
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Figure 2.6: Cytokine and chemokine mRNA expression profiles in aged mice.  

RNA was taken from the lungs of aged mice vaccinated with DIV+alum and challenged with 
icHC/SZ/61/03 at 2 and 4 days post-infection. Cytokine and chemokine mRNA was measured by 
quantitative rt-PCR. Values are shown as Log10 fold-change over an unvaccinated, unchallenged control. 
(*p<0.05; **<0.01) 

 

 VACCINATION AND LETHAL CHALLENGE INDUCE AN EOSINOPHILIC PULMONARY INFLUX 

The presence of high numbers of eosinophils among the inflammatory infiltrates following 

vaccination and subsequent challenge has been a consistent observation associated with RSV and measles 

vaccine-induced immunopathology, and was observed in vaccination experiments with the SARS-

nucleocapsid immunogen peaking at four days post-infection [88,95]. To assess the eosinophilic influx 
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following whole virus immunization and lethal challenge, we blindly assessed H&E-stained lung sections 

of aged mice challenged with HC/SZ/61/03-S and enumerated eosinophils proximate to airways. 

Representative images of 400x magnification regions proximate to airways are shown in Figure 7A, with 

counts of eosinophils per 160µM2 in Figure 7B. A median 9.0 eosinophils per 160µM2 were present 

around airways of DIV-vaccinated groups, comparable to the median 11.0 present in DIV+alum groups. 

These counts are significantly greater than in the iFlu (median 1.0) and iFlu +alum (median 0.0) groups, 

respectively (Fig 7B). These data suggested that increased eosinophilia occurs following DIV and 

DIV+alum vaccination in young and aged animals, especially following heterologous challenge. 

 
Figure 2.7: Visual identification of eosinophils following lethal challenge.  

 Eosinophils proximal to airways were counted in H&E stained sections of lung from aged icHC/SZ/61/03-
S-infected mice. A) Representative images of regions counted, with eosinophils highlighted by black 
arrows. B) Box and whisker counts of eosinophils proximal to airways in icGD03-S-challenged aged mice, 
with range in whiskers. Eosinophils were counted in 4x160µm2 regions proximal to airways, n=31 fields 
per group. Both DIV and DIV+alum immunized mice had visibly more eosinophils present following 
challenge compared to the nonspecific immunogen groups (‡ p<0.0001, t-test with Welch’s correction).  

 

To precisely characterize the inflammatory infiltrate following DIV vaccination, we challenged 

PBS, DIV, or DIV+alum immunized young and aged mice with icHC/SZ/61/03-S and examined whole 
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lungs by flow cytometric analysis at four days post-infection. Eosinophils, defined as LCA+ SiglecF+ 

CD11b+ CD11c- populations (Fig 8), were significantly increased in all vaccinated populations compared 

to unvaccinated following lethal challenge (Fig 8A, F2,32=14.739, p<1x10-4) (Fig 9A).  Post-hoc analysis 

using Tukey’s HSD shows that both DIV (p=0.0003433) and DIV+alum (p<1x10-4) groups had 

significantly increased numbers of eosinophils compared to PBS-immunized animals. Adjuvant had no 

measurable effect on eosinophilic influx, as DIV- and DIV+alum-immunized mice did not have statistically 

significant differences in their overall numbers of eosinophils in either age group. Importantly, the elevated 

eosinophil counts were comparable between young and aged populations despite divergent clinical 

presentations. Further analysis of the inflammatory cell infiltrates of vaccinated mice shows a strong 

influence of age on the neutrophil (F1,32=22.0339, p<1x10-4) and monocytic dendritic (F1,32=26.681, 

p<1x10-4)  cell influx, with both cell populations significantly increased in aged relative to young animals 

(Fig 9B,D). Alveolar macrophage counts showed no significant differences compared to mock vaccinated 

in either young or aged animals (Fig 9C). Finally, the vaccinated animals showed significantly fewer 

monocytic DC counts by day 4 post-challenge, independent of age (F2,32=11.18, p=0.0002079), and post-

hoc analysis shows differences were enhanced by the alum adjuvant (p=0.04402) (Fig 9D). Vaccination 

with DIV clearly induces a strong eosinophilic infiltrate independent of age and regardless of whether it 

protects from morbidity, and raises the possibility that DIV will elicit immune pathology in the face of 

heterologous SARS challenge. 
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Figure 2.8: Flow cytometry gating strategy for cell populations.  

A) Representative (PBS vaccinated) plot of LCA+ lung cell populations. Neutrophils were defined as live 
cells, LCA+, Siglec-, GR-1+ (green gate). SiglecF+ populations (black gate) from young and old mice were 
further analyzed, as shown in B.  B) Representative images of eosinophil (CD11b+, CD11c-; blue gate) and 
alveolar macrophage gates (CD11c +; grey gate) for young and aged mice vaccinated with PBS, DIV, or 
DIV+alum.  
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Figure 2.9: Flow cytometric analysis of additional lung immune cell populations in young and aged 
mice following immunization and subsequent lethal challenge.  

 Mice challenged with icHC/SZ/61/03-S were sacrificed 4 days post infection and lungs stained with an 
eight color panel. Each point represents the cell population for an individual mouse.  A) Eosinophil counts 
for each of the vaccination groups (n=6 per group). Regardless of the age of the mice, the eosinophil counts 
were significantly increased in both DIV and DIV+alum immunized groups compared to mock-vaccinated 
(F2,30=15.81, p<1x10-4). B) For neutrophil counts only age was a significant factor (F1,30=24.7150, 
p=2.525e-05). Alveolar macrophage counts were significantly affected by immunogen in young but not 
aged animals, with posthoc analysis indicating both DIV and DIV+alum significantly different from mock 
vaccinated (F2,30=3.5534, p=0.04121). Monocytic dendritic cells (mDCs) were also significantly affected 
by age (F1,30=20.3622, p=9.193e-05) as well as immunogen (F2,30=9.5681, p=0.0006107), with posthoc 
analysis indicating significant reductions in mDC counts in DIV+alum groups relative to both DIV and 
mock groups. 

 

VACCINE INDUCED EOSINOPHILIA IS A COMMON FEATURE OF N PROTEINS ACROSS GROUP 2B 
CORONAVIRUSES 

The data from our studies collectively demonstrated that eosinophilic infiltration occurs during 

DIV vaccination in both young and aged mice populations, irrespective of the adjuvant and the challenge 

virus used. Previous data from our laboratory has shown that vaccination with Venezuelan Equine 



 

51 

Encephalitis Virus Replicons (VRPs) expressing SARS N protein (VRP N) induces a similar eosinophilic 

phenotype while completely failing to protect against SARS CoV replication [88], suggesting  that the 

eosinophilia may be driven by SARS N protein. To identify whether sequences intrinsic to SARS N protein 

or a N protein from a group 2b coronavirus closely related to SARS contribute to the induction of 

eosinophilia, we immunized mice with VRPs expressing SARS N, the N gene from a bat coronavirus 

BtCoV.279 (VRP 279 N), or an irrelevant antigen VRP HA (containing hemagglutinin gene from PR8 

strain of influenza).  The BtCoV.279 N gene shares 95% sequence homology with SARS N gene with 

conservation across all the major domains of N protein. Groups of mice immunized with 105 IU of VRP N 

and VRP 279N showed high antibody titers post boost (data not shown), and were challenged with 105 pfu 

of rMA15 GDO3-S. This virus causes 15% weight loss in infected young BALB/c mice by day 4 post 

infection [90]. Mice from all the groups showed 15% weight loss by day 4 post infection with virus titers 

ranging to 105 pfu (data not shown), indicating failure of N gene based vaccines to protect from virus 

replication. Histological analysis of congo red stained lung sections showed increased number of 

eosinophils proximal to airways in VRP N immunized mice compared to VRP HA immunized mice (Fig 

10A). Interestingly, enhanced influx of eosinophils was also found in regions proximal to airways in lungs 

from mice immunized with VRP 279 N (Fig 10A). Blind scoring from lung sections indicated a median 

count of 25 eosinophils per region in VRP N and 279 N immunized groups, whereas the VRP HA group 

showed a median count of 3 per region (Fig 10B). These data clearly indicated that eosinophilia is driven 

by immune responses to sequences intrinsic to SARS nucleocapsid protein and is conserved in N proteins 

across group 2b coronaviruses.  
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Figure 2.10: Eosinophilia influx is conserved across Group 2b N-proteins.  

Young mice immunized with VRPs expressing the SARS N protein (VRP N), the N protein from another 
group 2b bat coronavirus, BtCoV.279 (VRP 279N) or an irrelevant antigen (VRP-HA) were challenged 
with icGD03 and lungs taken 4 days post-infection. A) Representative images of lung sections (400x) 
stained with congo red. B) Both the SARS N and BtCoV.279 N proteins induce a significant eosinophilic 
inflammatory influx compared to the irrelevant antigen. (‡ p<0.0001) 

 

2.5. Discussion 

Human coronaviruses HCoV 229E, HCoV OC43, and the SARS-CoV, each likely originating 

from animal reservoirs, have demonstrated the high proclivity for coronaviruses to cross the species barrier, 

adapt, and colonize the human host. Though not currently circulating in humans, SARS-CoV, like other 

zoonotic viruses, remains a significant re-emerging disease threat given its maintenance in animal 

reservoirs. The development of vaccines or therapeutics for SARS-CoV is complicated by several 

challenges: the presence of a large heterogeneous zoonotic reservoir of related strains, the resistance of 

highly susceptible aged populations to vaccination, and potential disease enhancing complications of the 
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vaccine formulations [88,95]. Though many experimental SARS vaccine formulations have been 

developed, whole inactivated virus vaccines have the advantage of large scale production, presentation of 

multiple epitopes, and conformation stability [83,85-89]. 

Aged populations are classically difficult to vaccinate, and suffer increased disease pathologies 

following infection with a variety of respiratory viruses including influenza virus, RSV, HCoV OC43, and 

the SARS-CoV [93]. Until recently, most published assessments of SARS-CoV vaccine efficacy utilized 

models capable of assessing only viral replication or antibody induction, and are routinely conducted in 

animal models that elide important human disease presentations [82,83,88,96-98]. While necessary, these 

assessments are incomplete, especially because more robust lethal challenge models have been developed 

that recapitulate severe end stage lung disease pathologies and allow assessment of the potential 

complications of senescence [41,99,100,106]. As shown here, a vaccine that appears protective in young 

animals is much less protective, and potentially pathogenic, in an aged animal model.  

SARS-CoV emerged from a heterologous pool of closely related animal strains, suggesting that 

future outbreak emergences will likely involve strains with unique changes in the S glycoprotein. The viral 

strains used in this study represent a homologous lethal challenge virus (icMA15), as well as a nonlethal 

human heterologous virus (icGD03-S) and a lethal zoonotic virus (icHC/SZ/61/03-S), which allowed us to 

directly test whether DIV was capable of providing effective protection against heterologous viruses in 

both young and highly susceptible aged populations. Importantly, the DIV vaccine provided partial clinical 

protection against both homologous and heterologous challenge in young animals, and this protective effect 

was enhanced by alum adjuvant. By contrast, even the adjuvanted DIV vaccine failed to protect against 

virus-induced disease and viral replication following homologous or heterologous challenge in aged 

animals. Perhaps most importantly, though DIV+alum protected against viral replication, disease, and 

respiratory pathology following homolgous viral challenge (icMA15) in young animals, which is consistent 

with prior reports [96-98], both DIV alone and DIV+alum failed to protect against respiratory pathology 

following homologous challenge in aged animals, and both vaccine formulations failed to protect against 

respiratory pathology following heterologous challenge in mice of any age (Fig 4,5). These results further 

demonstrate the difficulty in eliciting protective immune responses in highly susceptible elderly population 
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and indicate that in the face of a re-emergent SARS virus, likely antigenically heterologous from the 2002 

outbreak strain, existing vaccine formulations are likely to fail to provide protective immunity.  

In addition to the general failure of the DIV or DIV+alum vaccines to elicit protective immunity 

against heterologous SARS viruses or provide protection even against homologous viral challenge in aged 

animals, both the DIV and DIV+Alum vaccine formulations results in significantly enhanced immune 

pathology within the lungs compared to control animals. Although adjuvanted DIV protected young 

animals from morbidity and mortality following lethal challenges, the heterologous virus, icHC/SZ/61/03-

S, induced a lung pathology more severe in vaccinated than in unvaccinated mice (Fig 4). This increased 

pathology was not correlated with weight loss or mortality through day four post-infection (Fig 3), but the 

increased immune infiltrate indicates the vaccine is not fully protective against heterologous challenges. 

Further, in aged animals recalcitrant to immunization, insufficient protective immunity correlated with a 

significantly increased immunopathology. Thus, evidence of enhanced disease subsequent to vaccination 

was evident in both heterologous challenge models and models of immune senescence.  

In each of the experiments conducted here, immunization with the whole inactivated SARS 

vaccine induced increased inflammatory infiltrates and pulmonary eosinophilia upon subsequent challenge, 

demonstrating the potential for dangerous clinical complications. This is consistent with two prior studies 

of vaccine formulations incorporating SARS N, where N-specific immune responses resulted in enhanced 

eosinophilic immune pathology [88,95]. This pathologic signature is reminiscent of the two known human 

examples of vaccine-induced immunopathology, atypical measles and enhanced RSV. For both of these 

vaccine induced immunopathologies, infection subsequent to vaccination resulted in a failure to control 

viral replication, enhanced clinical disease, and a pathology characterized by increased complement 

deposition and inflammation, a skewing towards a Th2 responses, and eosinophilic influx [107]. Cytokine 

profiles of DIV+alum vaccinated and icHC/SZ/61/03-challenged mice showed increased levels of Th2 

effector cytokines and eosinophil chemokines (IL-5, IL-13, and CCL11/eotaxin) compared to mock-

vaccinated groups (Fig 8). In contrast, IFN-γ and IL-4 (Th1 and Th2 inducing cytokines) were unchanged 

at 2 and 4 days post-infection, likely because the peak mRNA levels for these inducing cytokines were 

earlier in the timecourse of infection.  
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As previous studies had indicated peak eosinophilia at four days post-infection, we assessed lung 

eosinophilia by both histopathology and flow cytometry at this timepoint, quantifying significant increases 

in the lungs of vaccinated mice following CoV challenge [88]. Eosinophilia was present independent of age 

and independent of the alum adjuvant, although adjuvant did increase the magnitude of the eosinophilic 

influx. DIV-induced eosinophilic influx was present even in the animals that were protected from morbidity 

and mortality. When this protection was absent, eosinophilic immunopathology was a dominant response 

more severe than the viral pathology seen in unvaccinated controls. The eosinophilia in clinically protected 

animals may thus serve as a marker for a potentially pathogenic immune responses. While recent studies 

have argued that eosinophils are not the primary mediators of RSV vaccine-induced immune pathology, 

they may contribute to increased airway hyperresponsive conditions, including asthma, and the 

pathophysiology of viral infections [108,109].   

Only eosinophils were consistently and significantly increased in response to vaccination with 

DIV. By contrast, neutrophils and monocytic DC populations were significantly affected by age, and 

monocytic DCs were decreased as a function of vaccination. The greater population of neutrophils in aged 

animals following challenge, independent of vaccination, suggests that neutrophils may contribute to the 

increased severity of SARS-CoV pathogenesis in the aged. A pathogenic role for neutrophils in infection 

has been demonstrated for other respiratory viruses, including influenza, suggesting conserved mechanisms 

of enhanced respiratory pathology in the aged [110,111].  

SARS-CoV targeted neutralizing antibodies are sufficient to provide complete immunity against 

lethal SARS challenges in multiple animal models, and show evidence of controlling disease severity in 

human infections [42,78,80,88,112-114]. Spike-specific antibodies are both neutralizing and protective up 

to one year post-vaccination in mice, while anti-nucleocapsid antibodies are neither neutralizing nor 

protective, and further appear detrimental to the longevity of protective antibodies [88,95]. This deleterious 

effect does not appear to be antibody mediated (ADE) since passive transfer was unable to replicate the 

immunopathology, though low post-transfer antibody titers preclude definitive exclusion of this potential 

mechanism [88,115].  

While multiple major and minor SARS-CoV antigens are incorporated in DIV, the N protein is the 

most likely agent of eosinophillic immunopathology [116]. N is a strongly immunogenic protein [117-120], 
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is the most abundant protein in infection [116], and has been shown in prior studies to induce 

immunopathology when delivered in isolation [121]. This nucleocapsid-induced enhancement is not 

apparent in animals with appreciable levels of neutralizing antibodies, indicating that the induction of 

sufficiently neutralizing antibody responses can protect against SARS vaccine-induced immune pathology.  

However, the results presented here clearly demonstrate that in situations where individuals fail to mount 

protective anti-SARS responses, as is the case with either heterologous viral challenge or in immune 

senescence, the DIV vaccinated individuals are at significant risk for vaccine-induced immune pathology. 

With this in mind, it will also be important to determine the mechanisms by which N vaccination promotes 

immune pathology, with a key question being whether pathology is simply due to a non-protective response 

against N or if N vaccination actively skews the host immune response to promote immune pathology.  

Given that N has been shown to modulate innate immunity and act as an interferon antagonist, it is possible 

that N sufficiently alters the host immune response to induce a Th2 skew and subsequent inflammatory 

pathology [122]. Indeed, immunization with N appears to induce a Th2 skewing of the immune response 

regardless of adjuvant or formulation, suggesting the nucleocapsid protein alone may well be the defining 

factor in CoV vaccine induced enhancement (K. Long, D. Deming, R. Baric, and M. Heise, manuscript in 

progress) [88,95]. Therefore, additional studies are required to assess whether N’s innate 

immunomodulatory activity is linked to the N vaccine induced immune pathology, and if so, whether this 

reflects a more general trait of viral interferon antagonists in modulating the downstream host adaptive 

immune response. 

The major conclusion that can be drawn from these studies is that although DIV SARS vaccines 

do elicit protection under optimal conditions (homologous challenge in immunocompetent individuals), 

more stringent challenges reveal likely failures. If DIV vaccine approaches are to be used for SARS in the 

future, efforts must be made to improve the quality and magnitude of the vaccine-induced immune 

response while limiting the vaccine’s capacity to induce immune pathology. The whole virus vaccine used 

in this study was doubly inactivated by UV irradiation and formalin [98]. Formalin-inactivated vaccines are 

suggested to skew the immune response towards a Th2 response, producing higher levels of IL-4 and 

increasing the relative contribution of IgG2a isotypes [123,124]. Previously, formalin inactivation leading 

to a disruption of fusion glycoproteins or addition of carbonyl groups had been blamed for the skewing of 
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FI-RSV immune responses [107,123]. However, recent studies suggest that inactivation by alternate 

methods still result in a Th2 skew and immunopathology, and that it is a failure of affinity maturation that 

results in non-protective responses and subsequent antibody-mediated enhancement [124,125]. 

Furthermore, the fact that the DIV vaccine did elicit neutralizing antibody responses and protection against 

homologous challenge in young animals suggests that the DIV-induced pathology did not simply represent 

a loss of antigenic epitopes. Therefore, we do not think the method of inactivation is necessarily 

responsible for immunopathology associated with DIV, but rather that any SARS vaccines that include the 

nucleocapsid protein should be investigated for challenge-induced enhancement.  

The results presented here reinforce the need to find methods to enhance the protective S specific 

immune response while minimizing potentially pathologic anti-N response. Our observation that 

immunization with Bt.CoV 279N which has high sequence similarity with SARS N also induces 

eosinophila, indicates that sequences intrinsic to N protein that are conserved across group 2b 

coronaviruses may drive this immune mediated pathology. The amino acids responsible for this response 

will need to be mapped. Assessment of N-induced immune pathology by sequentially divergent CoV N-

proteins may allow the design of chimeric SARS CoVs that could serve as vaccines devoid of immune 

pathology. In both young and aged mice, adjuvanting with alum increases the immunogenicity of the DIV, 

concordant with many earlier studies using this adjuvant [98]. In young mice, approximately one-half the 

animals mounted neutralizing antibodies following DIV vaccination, and all achieved neutralizing titers 

when DIV was adjuvanted with alum (Fig 2). However, only half the aged mice were capable of mounting 

neutralizing antibody titers to DIV +alum, and none mounted such responses absent the adjuvant. Alum is 

one of the few adjuvants approved for use in human vaccine formulations and functions to stimulate Th2 

immunity, a potentially confounding factor in the induction of immunopathology. We briefly assessed an 

alternative adjuvant VAP (VEE-adjuvanting particles), which is reported to stimulate Th1 immunity 

[124,126-128]. In contrast to reports of success in young mice, the VAP-adjuvanted formulation in aged 

mice ablated rather than enhanced the protective response to DIV; subsequently challenged mice showed 

morbidity and mortality rates comparable to unvaccinated controls (data not shown) [128,129]. While the 

mechanism of this ablation has not been defined, the VAP adjuvant likely functions through cross-

presentation of exogenous antigens within antigen presenting cells, a process impaired in age-associated 
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immunosenescence [130]. VEE formulations incorporating the wild-type 3000 glycoprotein show better 

immunogenicity in aged animals, likely due to improved cross-presentation over the attenuated 3014 

glycoprotein, suggesting that alternative VAP formulations may be more effective [90]. Therefore, if DIV 

approaches are to be considered for SARS or other respiratory coronaviruses, we feel that it will be 

important to rigorously test the vaccine and potential adjuvant in the aged mouse model to assess both 

efficacy and potential immune pathology in the face of immune senescence and/or heterologous viral 

challenges.      

Emergent zoonotic viruses present novel and shifting targets for vaccine design. The clear 

deficiency of the doubly inactivated SARS vaccine against challenge models with divergent Spike 

glycoproteins highlights the need for vaccines that induce broadly neutralizing immune responses. Further, 

impartial conservation of viral antigens cannot be considered a benefit to vaccine formulations for 

coronaviruses when select immunogens induce detrimental immune responses upon challenge. The N-

induced pathogenic responses appear to be masked by S-targeted neutralizing antibodies, but become 

dominant once the protective immunity wanes. In the case of SARS-like CoV, we cannot expect zoonotic 

variation to reduce specificity for N more readily than for S, as the S glycoprotein of multiple isolates 

shows greater sequence variation and readily evolves over the course of an epidemic [3,42,92]. Further, the 

conservation of N across Group2B coronaviruses, and the demonstrated conservation of N-induced 

immunopathology, raises the possibility that challenge with non-epidemic coronavirus strains may induce 

eosinophilic immunopathology in vaccinated populations. Despite the difficulty of vaccine design for 

zoonotic viruses such as coronaviruses, paramyxoviruses, filoviruses, etc, a growing pool of sequence data 

for zoonotic isolates, the rapidity of sequencing and isolation in the case of outbreaks, synthetic gene 

design, and the multiple vectored, inactivation, or antibody-generating platform technologies available 

ensure that vaccines can be readily formulated in the case of novel outbreaks [29]. The challenge for 

researchers and clinicians is to validate these vaccines in strong animal models and to confirm and enhance 

vaccine efficacy in aged individuals. Identifying the vaccine components that induce protective immunity 

in aging individuals will be essential to protecting this vulnerable population. The data presented herein 

indicate that SARS-CoV, coupled with a panel of heterologous zoonotic precursor viruses, represents a 



 

59 

tractable model system to evaluate the molecular mechanisms governing immunosenesence, and its impact 

on emerging virus pathogenesis and vaccine efficacy.   
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CHAPTER 3:  Iterative Development of Potent and Broadly Neutralizing Antibodies Targeting the 
Spike Receptor Binding Domain. 

 

3.1. Overview 

This chapter describes two collaborative projects between the Baric and the Georgiou or Marasco 

laboratories. Both projects are based on a single extensively characterized humanized monoclonal antibody 

(mAb), 80R, which was developed by the Marasco laboratory. 80R binds the receptor binding domain 

(RBD) of SARS-CoV spike glycoprotein (S) and is capable of neutralizing the epidemic strain of SARS-

CoV, but is incapable of neutralizing heterologous human strains and is readily escaped by variants 

expressing a single substitution in the RBD. The Georgiou and Marasco laboratories independently 

generated 80R-derived mAbs intended to extend the breadth of neutralization and increase the barrier to 

viral escape. The Georgiou laboratory generated a series of 80R-derived single-chain fragment variable 

(scFv) by affinity maturation [131] while the Marasco laboratory generated their 80R-derived mAbs by 

using human antibody phage display libraries and panning against RBDs from either heterologous strains 

or escape mutants [132]. We worked in collaboration with these two laboratories to iteratively characterize 

each generation of antibodies by: determining their neutralization profiles on cell culture; assessing their 

ability to protect mice from lethal SARS-CoV challenge following passive transfer; generating, sequencing, 

and cloning SARS-CoV escape mutants; and by evaluating the virulence of the escape variants in mice. 

The highest affinity 80R derivative, SK4, was generated in the Georgiou laboratory. Neutralization escape 

from SK4 in cell culture required at least two concurrent substitutions in the S RBD, indicating a higher 

barrier to escape relative to the parent 80R, but SK4 was incapable of neutralizing viral variants bearing 

heterologous S from early epidemic or zoonotic strains [131]. The second and third generation mAbs 

designed to target heterologous and escape variant RBDs were broadly neutralizing: some neutralized every 

zoonotic, epidemic, and escape variant virus we tested. However, neutralization escape required only a 

single substitution in the S RBD and each of these mAbs readily selected for neutralization escape variants 

in cell culture. Concerningly, some of the resulting escape variants displayed increased pathogenesis in 
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murine models. These studies emphasize the utility of using infectious clone viruses, rather than 

pseudotyped viruses, and animal models that replicate human disease to extensively characterize the 

neutralization potential of nAbs. Further, these studies extend our characterization of the SARS-CoV RBD 

as an antiviral target. Specifically, it is apparent that mAbs targeting RBD present a low barrier to escape 

for the virus, and future development should include a cocktail of mAbs targeting different epitopes within 

the RBD; particularly if neutralization escape variants might exhibit enhanced pathogenesis. Future studies 

using a combination of broadly neutralizing and high affinity derivatives may provide more comprehensive 

neutralization profiles and escape-resistant cocktails. 

3.2. Introduction 

Advancements in antibody humanization technology triggered a surge in the development of 

therapeutic monoclonal antibodies, and although the vast majority of these products have been approved for 

use in cancer or autoimmunity, several mAbs targeting viruses have also been developed. More efficient 

antibody technologies, including isolation by phage display or B-cell immortalization and structure-guided 

mutagenesis, has led to the investigational development of Abs targeting a wide variety of viruses and with 

greater efficacy and breadth of neutralization [42,133-142]. In addition to the development of novel 

therapeutics, the characterization of nAbs has also provided insight into the role of Ab escape in viral 

evolution. For example, a panel of anti-hemagglutinin mAbs was used to demonstrate the stochastic escape 

patterns and seemingly limitless capacity of influenza virus to escape single mAbs with minimal fitness 

cost [143]. Additionally, characterization of mAbs and sera from convalescent SARS patients against 

panels of epidemic-associated spike glycoproteins provided strong evidence of antibody-directed evolution 

during the course of the SARS epidemic [42,64].  

Currently, the anti-RSV monoclonal, palivizumab, remains the only approved direct-acting anti-

viral mAb [144,145]. However, additional mAbs targeting rabies [146,147], HCV [148,149], HIV [149], 

and RSV [150,151], and mAbs targeting several other viruses, including CMV [152], influenza virus 

[153,154], Hendra virus [155], and Ebola virus [133] may also ultimately provide the basis for new options. 

The threat of highly pathogenic human coronaviruses, as evidenced by the SARS-CoV epidemic and the 

recent emergence of a novel coronavirus, MERS-CoV, has fueled extensive investigations into potential 

coronavirus therapeutics, including mAb-based options [156-158]. A substantial amount of effort has been 
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devoted to the production of a whole-inactivated anti-SARS-CoV vaccine in the event of a future outbreak, 

and the vaccine was able to protect against morbidity and mortality in non-human models of infection 

[159]. Unfortunately, the whole inactivated SARS-CoV vaccine has limited protection against heterologous 

strains and may actually enhance pathogenesis by induction of a nucleocapsid-specific cell-mediated 

immune response in the absence of a strong neutralizing antibody response, such as might occur in 

vaccinated people over time [88,159]. Monoclonal antibodies may offer advantages over vaccines, 

including relatively short production times, which would allow for rapid response to newly emergent 

viruses or antigenic variants, and potential uses for prophylaxis, such as in the case of a known or suspected 

exposure events, or as treatment therapy in the case of infection. Additionally, therapeutic antibodies would 

avoid the concerns of immune enhancement and reversion linked to inactivated or attenuated vaccines, 

respectively.  

Of the four major structural proteins of SARS-CoV, which include the spike (S), envelope (E), 

nucleocapsid (N), and matrix (M) proteins, most characterized mAbs target S or N [117,160], the two most 

highly immunogenic viral proteins [161-163]. However, anti-S mAbs may be neutralizing while anti-N 

mAbs are not, and S has therefore been the preferred target for the development of antibody-based vaccines 

and therapies [164,165]. Further, anti-S antibody responses appear to be persistent and have been detected 

for up to three years post-exposure in human patients and one year post-vaccination in a mouse model, 

making it a particularly attractive target for vaccines [88,163]. The S1 domain of spike contains the RBD, 

and although antibodies can be targeted against the S2 domain, the S2 region is less immunogenic 

[162,166]. Indeed, anti-S1 antibodies isolated from patients infected by SARS-CoV predominated over 

their anti-S2 counterparts [162,164]. Anti-S2 antibodies are also less potently neutralizing [162,166], 

making it a less attractive target. Unsurprising, the RBD has become the preferred target and has led to a 

vastly larger proportion of anti-S1 mAbs than anti-S2 mAbs in the available repertoire [64,167]. 

One of the first and best-characterized anti-S mAbs is 80R, an IgG mAb isolated from a naïve 

human scFv lambda phage display library [168]. The 80R mAb binds the RBD and blocks interaction with 

the SARS-CoV receptor, angiotensin converting enzyme 2, ACE2 [169]. 80R neutralizes the virus, and can 

reduce viral replication in a 16-week old BALB/c mouse model of SARS-CoV infection [170]. The crystal 

structure of 80R in complex with the SARS-CoV RBD (pdb code 2GHW) demonstrated that 80R binds the 
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RBD in an epitope overlapping, but not identical to, the binding site for the ACE2 receptor, with 17 of the 

29 RBD-80R contact residues shared with the RBD-hACE2 contact residues [171]. There are, however, 

limitations to the use of 80R as a therapeutic mAb. Sub-extinction levels of 80R in the presence of SARS-

CoV routinely select for a substitution at residue D480 of S, either alanine, glycine, or tyrosine, and a 

substitution to alanine abolishes 80R binding while retaining binding to hACE2, effectively conferring viral 

escape from neutralization by the mAb [64,131,170]. Further, the 480G residue is present in late-phase 

independent emergence virus (GD03, 2003/04) and civet-associated SARS-CoV from the same outbreak 

period (2003-04), rendering these viruses resistant to 80R neutralization [64]. 

In an attempt to broaden neutralization of and prevent escape by SARS-CoV, we worked in 

collaboration with the Marasco and Georgiou laboratories to develop and test several 80R-derivative 

monoclonal antibodies. The Georgiou laboratory took the approach of developing a high affinity derivative 

of 80R. The 80R scFv was randomly mutagenized by error-prone PCR to generate a library of 1.6 x 108 

independent transformants. Subsequent screening of this library using anchored periplasmic expression and 

decreasing concentrations of soluble RBD, mutagenized and rescreened the high affinity clones, and used 

site-directed mutagenesis on key binding residues to generate the RS2, SK4, and RSK scFvs, respectively 

[131,172]. Notably, studies of the high-affinity 80R derivatives were conducted with scFv rather than full 

IgG mAbs. These antibody fragments are fully capable of binding antigen, but the small size alters 

pharmacokinetics, allowing for more rapid tissue penetration but also rapid elimination by the kidney, 

complicating animal studies [173]. The original 80R antibody was reported to bind S with an equilibrium 

dissociation constant (KD) of 32 nM [168]. In contrast, the most affinity matured derivative, SK4, bound 

with an affinity 270-fold higher than the measured KD of the parent 80R scFv [131]. Here, we characterize 

the breadth and potency of these high affinity 80R derivatives by a series of neutralization assays with the 

epidemic strain, heterologous strains, and escape variants to other neutralizing scFv. Further, we selected 

escape mutants to both RSK and SK4 and used homology modeling of the antibody-RBD interface to 

explain the SK4’s robust binding and escape-resistant phenotype [131]. 

The Marasco laboratory attempted to select for broadly neutralizing mAbs by sequentially panning 

human antibody phage display libraries against the RBDs of SARS-CoV strains that were homologous and 

heterologous to the epidemic strain. Initial attempts to develop a more broadly neutralizing mAb involved a 
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repeat of the initial panning of the Marasco laboratory’s naïve library with two different panning targets: 

the RBD from the GD03 virus, which bears an S that is related to the civet-like virus strains and is 

heterologous to the epidemic strain, rather than the standard epidemic strain, Tor-2 (identical to Urbani in 

the RBD), and the Tor-2/Urbani RBD with the D480A substitution. The antibody resulting from panning 

with GD03 as a target, 11A, could neutralize GD03 but not Tor-2/Urbani. The antibody that bound the 

D480A-RBD could bind but not neutralize a SARS-CoV S-bearing pseudovirus [64]. In an alternative 

approach, the Marasco laboratory used structural biology to identify key residues of 80R that interacted 

with the RBD and used both chain shuffling of the Vkappa light chain and focused mutagenesis of the 

CDRL1 (aa161-164) to create 80R-cs and 80R-fm libraries. These libraries were panned against 4 RBD 

targets: Tor2, Tor2-D480A, Tor2-D480G, and GD03 [64]. Several of these second generation mAbs 

derived from these libraries were broadly neutralizing, but the most broadly neutralizing mAb was Fm6 

[64]. Follow-up studies characterizing Fm6 and the other second-generation mAbs are described in Sui et al 

2013, a manuscript in preparation with relevant extracts included below. This manuscript also describes the 

characterization of a third generation of mAbs, Y12 and Y112A, designed to be both broadly neutralizing 

and, by binding RBDs expressing the Fm6 escape substitution, capable of blocking a neutralization escape 

pathway. 
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3.3. Increased Antibody Affinity Confers Broad In Vitro Protection against Escape Mutants of 
Severe Acute Respiratory Syndrome Coronavirus1 

3.3.1. Overview 

Even though the effect of antibody affinity on neutralization potency is well documented, 

surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, 

random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 

80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to 

generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-

CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-

fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, 

antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of 

SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad 

neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions 

associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape 

mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple 

substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered 

antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant 

protection [131].  

3.3.2. Introduction 

It is well established that the potency of neutralizing antibodies for either viruses or bacterial 

toxins depends on affinity [150,174,175]. Surprisingly, engineering antibodies with increased affinity has 

not been investigated as a strategy for conferring broader protection as a means to hinder escape. A higher 

antigen affinity results from a higher ΔGbinding. While antibody-antigen interactions are often dominated by 
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interactions with a binding “hot spot” on the antigen, a high ΔGbinding can also arise from additional 

interactions between the epitope and the paratope [176]. Accordingly, we hypothesized that increasing the 

affinity of 80R for the RBD can elicit broader neutralization [131]. Variants of the 80R scFv anti- body 

fragment exhibiting up to 280-fold-higher affinity for the RBD were generated by random mutagenesis and 

screening using Escherichia coli display by anchored periplasmic expression (APEx) [172]. As expected, in 

vitro neutralization potency against the icUrbani strain correlated directly with affinity. Importantly, 

neutralization of viruses containing the RBD D480A or D480Y mutation that evaded neutralization by 80R 

[170] also correlated with affinity. Only reduced selective pressure with lower concentrations of the high-

affinity antibody led to the evolution of SARS-CoV escape mutants, which contained, in addition to D480Y 

or D480A, secondary amino acid substitutions within the 80R epitope. 

3.3.3. Materials and Methods: 

 VIRUSES AND CELLS 

Recombinant viruses icUrbani (AY278741), icGD03-MA and icHC/SZ/61/03 were propagated in 

Vero E6 cells [41,90,101]. Vero E6 was maintained in MEM media (Invitrogen, Carlsbad, CA) 

supplemented with 10% Fetal Clone II (Hyclone, South Logan, UT) and gentamycin / kanamycin (UNC 

Tissue Culture Facility). Growth curves were performed in Vero E6 with the different wild type or mutant 

recombinant-derived escape mutant viruses at a MOI of 0.1 for 1 hour and overlaid with medium. Virus 

samples were collected at various time points post infection and stored at -70ºC until viral titers were 

determined by plaque assay.   

Virus titers were determined as plaque forming units (PFU) by plating 6-well plates with 5x105 

Vero E6 cells per well and inoculating cultures with 200 µl from the 10-fold serial dilutions. Cells were 

incubated with the virus for 1 h at 37ºC and overlaid with 3 ml of 0.8% agarose in complete media. Plates 

were incubated for 2 days at 37ºC and plaques were visualized by staining with neutral red for 3-6 hours. 

Virus concentration was calculated as PFU/ml. All virus work was performed in a Class II biological safety 

cabinet in a certified bio-safety level 3 laboratory containing redundant exhaust fans while wearing Tyvek 

suits and Powered Air Purifying Respirators. 
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 ISOLATION OF ESCAPE MUTANTS UNDER NEUTRALIZING ANTIBODY SELECTIVE PRESSURE 

1 x 106 PFU of icUrbani were incubated with 20 µg of a neutralizing scAb (RSK, SK4 or 80R) in 

a 200uL volume for 30 min and then inoculated onto cells in the presence of the respective scAb antibody 

fragment at a concentration of 20 µg/ml. The development of cytopathic effect (CPE) was monitored over 

72 hrs and progeny viruses harvested. Antibody treatment was repeated two additional times and more 

rapid CPE noted with each passage. The viruses from passage four were plaque purified in the presence of 

antibody and neutralization resistant viruses were isolated. The S glycoprotein genes from four individual 

plaques for each neutralization experiment were sequenced and the neutralization titers between wild type 

and antibody-resistant viruses were determined as described below. 

In the experiment above, the SK4 scAb resulted in the extinction of parent viruses on three 

separate occasions. To increase the probability of escape mutant evolution, we incubated 1 x 106 PFU of 

icUrbani with decreasing concentrations of SK4 ScAb antibody fragment (15, 10, 5 and 1 µg) for 30 

minutes, and then infected cultures in the presence of 5 µg/ml SK4 antibody. Depending on treatment 

conditions, cytopathology was evident either within 48 h (5, 1 µg doses) or was minimal after 4 days (15 

and 10 µg). Low dose SK4 treated progeny viruses (1 and 5 µg doses) were treated with 5 µg of SK4 for 

two passages, and then selected with one additional treatment of 10 and 15 µg doses, resulting in highly 

antibody resistant viruses that produced extensive CPE in cultures within 24-36 hours. High-dose treated 

stocks were passaged once in the absence of antibody (pass 2) to restore virus titers, and then reselected 

two times in the presence of 5µg antibody. Two final treatments of 10 and 15 µg of SK4 antibody resulted 

in highly resistant populations that rapidly produced CPE in culture. Two to four plaques were isolated 

from each treatment regimen (9 plaques total) in the presence of 20 µg SK4 antibody and the S 

glycoprotein gene was sequenced.  

 PLAQUE REDUCTION NEUTRALIZATION ASSAY (PRNT) 

Each scAb in the panel (80R, RSK, RS2, and SK4) was serially diluted 1:2 in PBS starting at 30 

µg/mL. Wild-type icUrbani, icGD03-MA and icHC/SZ/61/03 were diluted and approximately 100 PFU of 

each was added to the scAb dilution series for 30 minutes at 37°C. The percentage neutralization was 

calculated as 100 - (number of plaques with antibody / number of plaques without antibody) X 100.  For 

50% plaque reduction neutralization titers (PRNT50s) of single-substitution variants, the viruses were 
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diluted to 100 PFU and added to 2-fold serial dilutions of SK4 starting at 5 µg/ml. The single-substitution 

variants are escape mutants developed against mono- clonal antibodies, as previously described (L443R 

and T332I [62] and D480G [64]) or as described above (Y436H, Y442S, and N479I).  

3.3.4. Results 

 SARS-COV NEUTRALIZATION AND ESCAPE.  

To evaluate the neutraling ability of the purified 80R, SK4, and RSK scAbs, we conducted plaque 

reduction neutralization titer assays with each of the scAbs against SARS-CoV (icUrbani). As expected, the 

neutralization potencies of the antibodies increased according to affinity. Compared to 80R (IC50, 0.722 

µg/ml), both RSK and SK4 exhibited 10-fold-greater neutralization (IC50, 0.069 µg/ml and 0.059 µg/ml, 

respectively) (Fig. 3). For antibodies 80R and RSK, in vitro neutralization escape mutants of the icUrbani 

strain emerged after three passages in cell culture, and four plaques for each antibody were picked for 

sequence analysis. Three of the four 80R escape mutants carried a mutation from aspartic acid to alanine at 

position 480 (D480A), and one had a mutation of aspartic acid to tyrosine (D480Y), replicating the D480 

residue identified by previous selection with the full IgG version of this antibody [64,170]. In the case of 

the RSK antibody, three of the four escape variants had the D480Y mutation and one had a Y436H 

mutation (Table 2).  
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Figure 3.3.3: Neutralization activity of the SK4 and RSK scAbs in comparison to 80R.  

 Neutralization activity was tested by plaque reduction assay against icUrbani. Approximately 100 PFU of 
icUrbani was incubated with the scAb dilution series. The percentage neutralization was calculated as [100 
- (number of plaques with antibody/number of plaques without antibody)] x 100. 

 

Table 3.3.2: Amino acid changes in the RBD of spike protein found in the neutralization escape 
mutants. 

 

 

Importantly, the SK4 antibody exhibited very high neutralizing potency, and 20 µg was sufficient 

to completely extinguish 1 x106 PFU of the parent virus, yielding no escape variants. Therefore, the initial 

concentration of SK4 scAb was decreased to reduce the selective pressure and was incrementally increased 

over multiple viral passages. A total of nine plaques were isolated from the final selection with 20 µg SK4 

and sequenced.  

ScAb Mutation(s)
No. of clones with mutation/ 
total sequenced

80R D480A 3/4
D480Y 1/4

SK4 N479I+D480Y 9/9

RSK D480Y 3/4
Y436H 1/4
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All nine of the isolated escape mutants contained two mutations: N479I and D480Y (Table 2). 

Both D480 and N479 have been found to be highly adapted RBD residues that allow specific binding to 

hACE2, and mutations at these positions decrease their affinity for hACE2 and hence infectivity [177]. 

D480 has been shown to have a critical role in the binding of the parental antibody 80R to the RBD 

[170,171], and substitution to a tyrosine has been shown not to affect the binding of the RBD (and therefore 

the virus) to the human ACE2 receptor [178]. The mutation N479I had been found in bananin-resistant 

virus, and this position is found to correspond to a highly variable site in the RBD [179]. 

 

Figure 3.3.4: Cross neutralization studies of high-affinity scAbs with escape mutants with the D480A 
and D480Y mutations. 

 Cross neutralization studies with mutant viruses encoding either D480A or D480Y, which mediated escape 
from 80R and its derivatives, were performed with all three antibodies (Fig. 4). Importantly, SK4 
successfully neutralized both escape mutants, suggesting an enhanced role for high affinity in overcoming 
the effect of D480 substitutions. We note, however, that none of the scAbs could neutralize the civet strain 
icHC/SZ/61/03 or the mouse- adapted variant of the human 03/04 strain, icGD03MA; the latter strain 
carries a Y436H mutation associated with increased mACE2 receptor usage [29] (data not shown). The 
spike proteins of GD03 MA and HC/SZ/61/03 each differ from that of the icUrbani strain at six other 
amino acid positions within the RBD (Table 3), and evidently, at least some of these are critical for 
antibody binding. 
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 Table 3.3.3 Amino acid differences in the RBD of the spike protein 

 

 

To further assess the breadth of SK4 neutralization, we tested SK4 neutralization against several 

viruses that emerged as escape variants to other monoclonal antibodies reported earlier [62,64]. These 

viruses contained single substitutions in the RBD, both within and outside the 80R/SK4 interface. Two 

escape variants, L443R and T332I, were developed under selection with the broadly neutralizing antibodies 

s230.15 and s109.8, respectively [62]. Residue 443 is a contact interface site with ACE2 but not with 80R, 

while residue 332 does not directly interface with either 80R or ACE2. The escape variants Y436H, Y442S, 

N479I (data not shown), and D480G emerged following selection with 80R derivative antibodies and 

contain substitutions that interface with 80R and, except for D480G, also interface with the ACE2 receptor 

[171]. 

SK4 was capable of neutralizing all six of these antibody escape variants. Three of the escape 

variants, namely, Y436H, Y442S, and T332I, were neutralized with an efficacy comparable to that 

observed with icUrbani (IC50s of 0.049 µg/ml, 0.039 µg/ml, and 0.109 µg/ml, respectively, compared to 

0.059 µg/ml for icSARS) (Fig. 5). Importantly, SK4 neutralized three other escape variants, with IC50s 

lower than the IC50 displayed by 80R for icUrbani [0.234 µg/ml (L443R), 0.432 µg/ml (N479I), and 0.542 

µg/ml (D480G), compared to an IC50 of 0.722 µg/ml for 80R with icUrbani]. Thus, viruses containing 

amino acid substitutions at either N479 or D480, which when combined mediated escape from SK4, were 

neutralized with a lower IC50 than that of 80R for icUrbani. 

344 360 436 472 479 480 487
Urbani (human 02/03) K F Y L N D T
HC/SZ/61/03 (civet) R S Y P R G S

R S H P N G S

Amino acid at position:
Strain

GD03MA (mouse-
adatped human 03/04)
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 Figure 3.3.5: SK4 neutralization of escape variants.  

Neutralization activity of SK4 was tested against escape variants, and the IC50s were compared to that of 
icUrbani. 

 

3.3.5. Discussion 

Individually, the substitutions N479I and D480G each cause a shift in neutralization that is 

nonetheless insufficient to escape SK4, reinforcing the necessity of double substitutions to escape the high-

affinity neutralization by SK4. Additional substitutions either selected by 80R-derived antibodies or 

derived independently of 80R antibodies are also incapable of providing escape from SK4. It is worth 

noting, however, that while SK4 is capable of neutralizing each of the single-substitution spike variants we 

tested, it is unable to neutralize the more divergent spikes, i.e., those containing variants in six or seven 

positions relative to the icUrbani strain. This suggests that high-affinity neutralizing antibodies like SK4 

would provide excellent resistance to escape and would be best paired with a broadly neutralizing antibody 

for a highly effective therapeutic cocktail. 

Just as important as neutralization breadth, higher affinity appeared to suppress the formation of 

viral escape mutants. At a concentration of 80R that readily gave rise to escape mutants, incubation with 

the highest-affinity antibody, SK4, led to no CPE or viral plaques after multiple attempts. In order to 
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further understand the potential role affinity might play during simulated infection, the anti-RBD antibodies 

were intentionally used at sub- neutralizing concentrations in an effort to generate viral escape mutants. 

Sequencing revealed that the most common RBD mutation observed in the escape mutants generated by all 

antibodies was D480Y. For SK4, the highest-affinity antibody in the study, escape mutants could be 

generated only when the concentration of antibody was reduced further, and it required two mutations in 

the RBD: N479I and D480Y. The accumulation of two mutations for escape from the action of the 

neutralizing antibody would of course be expected to be a much more rare event, and thus the incidence of 

such escape variants in a therapeutic setting would likely be low. However, we do note that even SK4 

failed to neutralize SARS-CoV HC/SZ/61/03 and GD03MA, presumably because the RBD in these strains 

contains multiple mutations that drastically alter the character of the binding epitope (Table 3). 

In a recent study, Zhang et al. used a sequential antigen panning (SAP) method and successfully 

isolated broadly cross-reactive antibodies with two- to threefold lower IC50s than the parent HIV-1-

neutralizing antibody scFv X5 [180]. Upon further characterization, they found that the highly potent m9 

antibody not only exhibited broad neutralizing activity but also suppressed the generation of escape 

mutants upon immune selection [181]. Additional studies on broadly neutralizing antibodies to HIV from 

memory B cells also suggest that affinity has an important role in breadth and potency of neutralization 

[182,183]. 

However, one needs to proceed with caution. In the case of motavizumab, a high-affinity variant 

of palivizumab (Synagis), a higher incidence of immunogenicity was seen in phase III clinical trials that led 

to discontinuation of its development as a therapeutic agent [142,183,184]. Collectively, our results 

together with evidence from earlier studies support the notion that very high-affinity neutralizing antibodies 

may be particularly useful in a therapeutic setting and suppress the emergence of escape variants. 
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3.4. Effects of Targeting Spike Protein Receptor Binding Domain on Neutralization Escape and 
Fitness of SARS-Coronavirus2 

 

3.4.1. Overview 

The receptor binding domain (RBD) of the spike (S) glycoprotein of SARS-CoV is a major target 

of protective immunity in vivo and a large number of neutralizing antibodies (nAbs) recognizing the RBD 

have been developed. Studies have shown that all nAbs against the RBD can select for neutralization 

escape mutants in vitro, however, the biological implications of targeted escape mutations on virus-receptor 

interactions and pathogenesis remain unclear. We have previously identified a panel of neutralizing human 

monoclonal nAbs against an epitope within the RBD, which is overlapping with the interaction interface of 

the RBD and its receptor, angiotensin 1 converting enzyme 2 (ACE2). We used focused mutagenesis, chain 

shuffling, and de novo panning to select for second and then third generation nAb variants with improved 

breadth, binding and neutralization activities. While most second and third generation nAbs showed 

broadened neutralization activity against a few strains, some were highly effective across a comprehensive 

panel of related SARS variants spanning different stages of an expanding epidemic. Further, while many of 

these nAbs effectively neutralized escape mutants derived from other RBD-targeting nAbs or the ancestral 

antibodies, they all selected for new escape mutations within a distinct binding tract along the RBD. Using 

this panel of mutants, we also extensively investigated their effects on receptor binding and virus fitness in 

vitro and in vivo. We note that while some of these nAbs had great potency and breadth, none of these 

nAbs blocked escape or significantly attenuated the virus. Further, a convergent combination of two nAbs 

targeting the same epitope did not prevent escape. These results suggest that the RBD epitope targeted by 

the studied antibodies is structurally flexible and can tolerate a large variety of mutations without 
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significantly altering structure or function. These studies imply that certain epitope(s) are highly plastic, 

allowing for ready selection of escape mutations that can further alter receptor binding and pathogenesis. A 

conserved epitope with more sophisticated function and structural constraint may provide an ideal escape-

proof target and a divergent combination approach, targeting different epitopes, may be more effective in 

providing broad neutralization and prevention of escaping variants.  

 
  

3.4.2. Introduction 

Coronaviruses are important emerging human RNA viruses as exemplified by the global outbreak 

of severe acute respiratory syndrome (SARS) in 2002/2003 with 10% mortality rates, which were caused 

by a highly infectious betacoronavirus, the group 2b SARS Coronavirus (SARS-CoV) [185-189]. More 

recently, a new human group 2c betacoronavirus was detected in Saudi Arabia which caused similar acute 

respiratory disease syndromes and high mortality [158].  A wide range of other coronaviruses has also been 

detected in bats, including closely related bat SARS-like-CoVs, which likely served as precursor strains for 

the SARS-CoV outbreak [3,6,7,28,30,190]. SARS-like-CoVs and other coronaviruses circulating in bats 

may replicate, recombine and cross species barriers to reemerge as new human pathogens that cause severe 

respiratory diseases. Therefore SARS-CoV remains a warning for vigilance and a research model for 

developing better prevention and treatment strategies against novel emerging coronaviruses in the future. 

From therapeutic antibody and broadly effective vaccine standpoints, to be better prepared for potential 

reemergence of devastating virus in the future, it is not only important to develop broadly neutralizing 

antibodies (BnAbs) that could neutralize a broad spectrum of epidemic and precursor viruses, but also to 

uncover their escape mutant pathways and develop strategies that either prevent virus neutralization escape 

or select for escape pathways that attenuate virus virulence.  

The characteristic surface Spike (S) protein of SARS-CoV is the major target for vaccines and 

therapeutic antibodies [191]. Numerous S-protein-specific neutralizing antibodies against the virus have 

been reported [78,80,164,166,168,169,192-196]. The majority of these nAbs recognize eptiopes within the 

receptor binding domain (RBD) that is responsible for ACE2 receptor binding [78,80,164,165,168,169,194-

196]. Evidence also points to the RBD as a major neutralizing epitope in vivo [162,163,197,198].  NAbs 

against S2 were seen during natural human infection with SARS-CoV, but there is a paucity of information 
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on their epitopes and potencies [120]. Human nAbs developed as potential therapeutics for the prophylaxis 

and treatment of SARS mainly targeted the RBD domain [78,80,164,168]. Studies have been conducted to 

assess anti-RBD nAbs for their breadth of protection against all relevant stains of SARS-CoV and 

neutralization escape variants [42,62]. Some antibodies neutralized multiple viral strains, however all nAbs 

tested, including strain-specific or broadly nAbs, selected for escape mutants. It remains unclear if escape-

resistant epitopes on the RBD have not yet been identified or if the coronavirus RBD is generally a poor 

target for escape-resistant monoclonal antibody development.  

We have previously developed a potent but strain specific human nAb 80R [168,170,171] that 

targets a conformationally sensitive neutralizing epitope located between amino acids 426-492 of the RBD, 

and later we reported that the neutralization activity of 80R was broadened to target a heterologous human 

variant virus, GD03, by antibody engineering [64]. A series of 80R derivative nAbs were developed 

through light chain shuffling and focused mutagenesis of CDR2 of the light chain variable region (VL-

CDR2) [64]. In this study, we tested if convergent nAbs, designed to target the same or similar neutralizing 

epitope within the RBD, can prevent or attenuate viral escape mutants alone or in combination. We first 

examined if a second generation of nAbs, broadened from 80R’s specificity to also target the GD03 spike, 

can more effectively neutralize a wide range of natural SARS-CoV strains and whether these antibodies can 

neutralize 80R’s neutralization escape variants. We next analyzed virological outcome following focused 

antibody pressure on the 80R neutralization epitope – whether 80R derivatives alone or in combination 

with 80R can block neutralization escape pathway(s) or force viral attenuation pathway(s). Some of 80R 

derivative nAbs had great potency and breadth in neutralizing multiple viral strains, including the escape 

mutant viruses derived from other nAbs, however none of these second generation nAbs blocked escape or 

significantly attenuated the virus. Further, a combination of two of them also did not block escape. These 

results suggest this particular epitope targeted by 80R and its derivatives is structurally flexible, which is 

unlikely to be resistant to neutralization escape mutation(s). Ideally, a more conserved epitope with more 

sophisticated function and structural constraint should be targeted. Additionally, a divergent combination 

approach, targeting different epitopes, may be more effective in providing broad neutralization and 

prevention of escaping variants. 
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3.4.3. Materials and Methods 

 VIRUSES AND CELLS  

The generation and characterization of each of the recombinant infectious clones (icSARS, 

icGD03, and icGD03-MA) have been described previously [90,101]. All work was performed in a Class II 

biological safety cabinet in a biosafety level 3 laboratory containing redundant exhaust fans. Personnel 

were equipped with powered air-purifying respirators with high-efficiency particulate air and organic vapor 

filters (3M, St. Paul, MN), wore Tyvek suits (DuPont, Research Triangle Park, NC), and were double 

gloved. Vero E6 cells were grown in minimal essential medium (MEM) (Invitrogen, Carlsbad, CA) 

supplemented with 10% Fetal Clone II (HyClone, South Logan, UT) and gentamicin-kanamycin (UNC 

Tissue Culture Facility). Viruses were propagated on Vero E6 cells in Eagle’s MEM supplemented with 

10% Fetal CIone II (Hyclone, South Logan, UT) and 1X Antibiotic-Antimycotic (Gibco, Grand Island, 

NY) at 37°C in a humidified CO2 incubator. At 30 hours post infection, supernatant was clarified by 

centrifugation at 1600 rpm for 10 minutes, aliquoted, and frozen at -80ºC until use. The viral titers of the 

stocks were determined on Vero E6 cells by plaque assay, as described elsewhere [41,42]. 

NEUTRALIZATION ASSAY WITH INFECTIOUS CLONE OF SARS-COV (ICSARS-COV) OR ESCAPE MUTANTS 

Neutralizing titers were determined by either a microneutralization assay or a plaque reduction 

neutralization titer assay [41]. For the microneutralization assay, nAbs were serially diluted two-fold and 

incubated with 100 PFU of the different icSARS-CoV strains for 1 h at 37°C. The virus and antibodies 

were then added to a 96-well plate with 5 x 103 Vero E6 cells/well and 5 wells per antibody dilution. Wells 

were checked for cytopathic effect (CPE) at 4 to 5 days post infection, and the 50% neutralization titer was 

determined as the nAb concentration at which at least 50% of wells showed no CPE. For the plaque 

reduction neutralization titer assay, nAbs were serially diluted two-fold and incubated with 100 PFU of the 

different icSARS-CoV strains for 1 h at 37°C. The virus and antibodies were then added to a 6-well plate 

with 5 x105 Vero E6 cells/well in duplicate. After a 1-h incubation at 37°C, cells were overlaid with 3 mL 

of 0.8% agarose in medium. Plates were incubated for 2 days at 37°C and then stained with neutral red for 

3 h, and plaques were counted. The percentage of plaque reduction was calculated as [1- (number of 

plaques with antibody/number of plaques without antibody)] x 100. All assays were performed in duplicate. 
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 EXPRESSION AND PURIFICATION OF RBD OF SARS-COV MUTANTS AND ACE2 PROTEINS FOR SPR 
ANALYSIS 

Plasmids encoding the RBD (residues 318-510) fused C-terminally with a Fc tag of human IgG1 

were constructed as described elsewhere [178,199]. Briefly, the RBDs of escape variants were amplified 

using the following primers encoding NheI and BspEI restriction sites (underlined), respectively: 5’-

CCGTGCTAGCCAATATTACAAACTTGTGTCCTTTTGGAGAG-3’ and 5’-

ACATTCCGGAAACCGTGGCCGGTGCATTTAAAAGTTC-3’. The RBD amplicons were digested and 

ligated into the R5T3-Ig vector, after which RBD-Fc fusion proteins were produced by transfection of 293F 

cells (Invitrogen) and purified with Protein A-Sepharose affinity chromatography.  Soluble human ACE2 

protein corresponding to its N-terminal extracellular domain (aa18-740) [61] was kindly provided by Dr. 

Fang Li at University of Minnesota Medical School. For mouse ACE2 protein, its N-terminal extracellular 

domain (aa19-615) was cloned in pcDNA3.1 and fused with a His6-tagged at C-terminal, and the protein 

was produced by transfection of 293F cells and purified by IMAC chromatography.  

 SURFACE PLASMON RESONANCE (SPR) ANALYSIS  

Binding of Abs to different RBDs were analyzed on a Biacore T100 (Biacore) at 25 ºC, as 

described previously [64,153]. Anti-human IgG Fc antibody (Biacore) was covalently coated onto a CM5 

sensor chip by amine-coupling using the coupling kit (Biacore). Abs were captured onto anti-human IgG Fc 

surfaces at the flow rate of 10 µl/min in HBS buffer (Biacore). ACE2 soluble protein was injected over 

each flow cell at the flow rate of 30 µl /min in HBS buffer at different concentrations ranges depending on 

binding affinity for each Ab. The highest concentration tested for mouse ACE2 reached 20 mM. A buffer 

injection served as a negative control. Upon completion of each association and dissociation cycle, surfaces 

were regenerated with 3M MgCl2 solution. The association rates (ka), dissociation rate constants (kd), and 

affinity constants (KD) were calculated using Biacore T100 evaluation software. The goodness of each fit 

was based on the agreement between experimental data and the calculated fits, where the Chi2 values were 

below 1.0. Surface densities of Abs were optimized to minimize mass transfer. All ka, kd, KD reported 

here represent the means and standard errors of at least two experiments.  
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 ESCAPE MUTANT ANALYSIS 

Neutralization-resistant SARS-CoV mutants were generated as described elsewhere [42].  In brief, 

1x106 pfu of icUrbani, icGD03, or icGD03-MA were pre-incubated with 30 mg of a nAb in 100 mL of 

media at 37⁰C for 1 h and then inoculated onto 106 Vero E6 cells in the presence of the respective Ab at the 

same concentration. The development of cytopathic effect was monitored over 72 h, and progeny viruses 

were harvested. NAb treatment was repeated 2 additional passages, passage 3 viruses were plaque purified 

in the presence of Ab, and neutralization-resistant viruses were isolated. Experiments were performed in 

duplicate, and the S glycoprotein gene of individual plaques from each experiment was amplified by 

reverse-transcription-PCR into three products using primers S1f (5’-GTTGTCTTCCTATTCACTCTT-3’), 

S1r (5’-CTGCATAGACATTGGAGAAGC-3’), S2f (5’-CAGGAGATGTTGTGAGATTCC-3’), S2r (5’-

GTGTGTTGCGATCCTGTTCAG-3’), S3f (5’-CTACAGAAGTAATGCCTGTTTC-3’), and S3r (5’-

GTGCAGTAATTGATCTTAGAG-3’), and sequenced. The neutralization titers of wild-type and nAb-

resistant viruses were determined as described elsewhere [41,42]. 

 ANIMAL STUDIES 

Female BALB/c mice, young (10 weeks; Jackson Labs, Bar Harbor, ME) or aged (12 months of 

age, Harlan Labs, Indianapoils, IN) were acclimated for one week after shipping. All mice were housed 

under sterile conditions in individually ventilated Hepa-filtered Sealsafe cages using the SlimLine system 

(Tecniplast, Exton, PA). Experimental protocols were reviewed and approved by the Institutional Animal 

Care and Use Committee at the University of North Carolina, Chapel Hill. For prophylactic passive 

antibody protection studies, aged mice were injected intraperitoneally with 250µg of mAb (80R, Fm6, or 

PBS) in 400 µL PBS 24 hours prior to infection. For all viral challenges, mice were anesthetized with a 

ketamine (1.3 mg/mouse)-xylazine (0.38 mg/mouse) mixture administered intraperitoneally in a 50-µl 

volume, and then intranasally inoculated with 105 pfu of icUrbani, icGD03, icGD03-MA, Fm6-escape 

mutant (Fm6-Esc), Fm39-Esc, Cs5-Esc, Y12-Esc, Y112A-Esc. After challenge, morbidity (weight) and 

mortality were assessed daily. On day 4 post-infection, mice were euthanized by isofluorane and one 

quarter of each mouse lung was taken for viral titer. 
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 LUNG VIRAL TITERS 

Lung tissue samples were weighed and stored in 1mL PBS at -80°C until time of titration. Tissue 

was thawed and homogenized with glass beads at 60 seconds at 6000 rpm in a MagnaLyser (Roche). The 

solution was centrifuged at 13,000 rpm under aerosol containment in a table top centrifuge for 5 min, the 

clarified supernatant was serially diluted in PBS, and 200-µl volumes of the dilutions were placed onto 

monolayers of Vero E6 cells in six-well plates. Following 1 hour of incubation at 37°C, the cells were 

overlaid with 0.8% agarose-containing medium. Two days later, the plates were stained with neutral red 

and the plaques were counted.  

 STATISTICS ANALYSIS 

Percentages of starting weights and viral titers were evaluated for statistically significant 

differences by unpaired t tests using GraphPad software.  

 

3.4.4. Results 

 NEUTRALIZATION AND PASSIVE PROTECTION BY 80R-DERIVATIVE HUMAN MABS.  

Previous studies had identified several broadly neutralizing mAbs, the most promising of which 

were capable of neutralizing spike-protein pseudotyped lentiviruses with Urbani, GD03, and the Urbani-

D480G spikes [64]. In the most recent study, we further extended the neutralization profiles of four of the 

second generation nAbs, and noted that only Fm6 was capable of neutralizing every zoonotic spike variant 

and the escape variants generated with other nAbs [42]. We further evaluated Fm6 and compared it to 80R 

for its prophylactic effect in protecting SARS-CoV challenges in a senescent mouse model. Twelve-month-

old BALB/c mice that received Fm6 at 12.5mg/kg intraperitoneally 24 hours prior to infection with Urbani 

or GD03 were protected against significant weight loss. For both Urbani and GD03 viral challenge groups, 

all five mice in each Fm6 treated groups had a more than 3-log reduction in viral titers in their lungs on day 

4 after infection to below the assay limit. In contrast, animals that received PBS or 80R were not protected 

against weight loss and viral load in lungs after challenge with both viruses (Fig. 2). 80R has been 

previously shown to significantly reduce virus titers in lungs of young mice that were infected with Urbani 

virus [170]. SARS-CoV is more virulent in aged than in young mice, as evidenced by increased virus titers, 

more-severe disease outcomes, and higher mortality rates in aged populations similar to what has been 

reported for humans [200]. That Fm6 but not 80R protected aged mice from infection demonstrates Fm6 is 
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more potent than 80R, and further emphasizes the need to test potential therapeutics in the more stringent 

aged animal models of human disease.  

 
Figure 3.4.2. Prophylactic treatment of SARS-CoV infections in 12-month-old aged BALB/c mice by 
80R and Fm6 nAbs.  

Body weights of mice infected with icGD03 or icUrbani were measured daily after passive administration 
of 12.5 mg/kg (~250 mg/mice) nAbs. Lung tissues of mice infected with icGD03 or icUrbani were 
harvested on day 4 post-infection and assayed for infectious virus by a plaque assay using Vero E6 cells. 
Error bars, standard deviations (n= 5).  

 

 A THIRD GENERATION OF NABS DESIGNED TO PREVENT ESCAPE. 

 Despite the increased potency, Fm6 as well as the other 2nd generation nAbs all allowed 

for the generation of escape variants with single substitutions in the RBD, all at residues D480, N479, or 

Y436.  In an attempt to prevent virus escape, a third generation of nAbs were generated by panning either a 

non-immune antibody phage display or a light chain shuffled 80R-vk-cs library with the Urbani RBD with 

the Y436H substitution [64]. Two nAbs were identified that could neutralize Urbani, GD03, D480G-, 

D480A-, or Y436H-variant spike pseudotyped viruses: Y12, from the non-immune library, and Y112A, 

from the 80R-vk-cs library.  We evaluated the neutralization efficacy of these two nAbs, as well as Fm6 
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and 80R, by PRNT50 assays with Urbani, GD03, GD03-Y436H, the 80R-escape (D480G), and the Fm6-

escape (Y436H) viruses.  While both Y12 and Y112A were capable of neutralizing Urbani-Y436H and 

GD03-Y436H at comparable nAb concentrations, Y112A more potently neutralized Urbani, GD03, and the 

80R-escape variant (Fig 4). 

 
Figure 3.4.4. Broadly neutralization activity of nAbs, fm6 and Y112A.  

Neutralization titers against five different SARS-CoVs or escape mutants were determined in a plaque 
reduction neutralization assay. Abs were serially diluted two-fold as indicated and 100 PFU of the different 
icSARS-CoV strains were used (see Materials and Methods). At the end of the assay, plaques were stained 
and counted for calculation of plaque reduction efficiency. Each data shown represent average of duplicate 
samples. GD03-MA is a mouse adapted strain encoding the 2004 human GD03 S protein with Y436H 
mutation in the RBD [90]. 
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 Y12, Y112A, AND COMBINATION OF 80R AND FM6. 

We next examined the escape profiles of a number of viral strains, including the 80R and Fm6 

escape mutants, under the selection of Y12 and Y112A. A series of escape mutants were developed for all 

viruses tested for both second generation antibodies (Fig. 5A). Some of the escape substitutions had 

previously emerged following selection with other 80R derivative antibodies, suggesting that the RBD 

epitope targeted by the 80R derivatives has a limited set of residues sufficiently plastic to allow both nAb 

escape and continued stability/function. As neither Fm6, Y12, nor Y112A alone prevented viral escape, we 

next asked if a Convergent Combination Immunotherapy (CCI) approach, in which two nAbs are used 

directed against a similar epitope determinant, can prevent neutralization escape or seriously impact viral 

fitness. As shown in Fig 5a, the Urbani/D480G mutant virus selected by 80R Ab was no longer able to 

escape neutralization by Fm6, suggesting that the virus can only undergo one round of mutation when the 

virus was targeted by 80R and Fm6 sequentially. We therefore tested if the same evolutionary limitations 

exist when both antibodies are combined and used simultaneously. The result showed that the combination 

did not prevent the emergence of viral escape mutant(s), rather a resistant virus carrying N479T mutation 

was selected (Fig. 5A). Urbani-N479T is also an escape mutant of nAb fm39, which was not susceptible to 

either 80R or Fm6 in cross-neutralization studies (data not shown). Taken together, 80R and all its 

derivatives are selecting for slightly variant escape profiles along a similar track around the 80R epitope, 

and broadly acting escape mutation candidates exist at 5 or more positions along the interface between 80R 

and the RBD domain. These escape positions are either directly adjacent to or are the key contact residues 

for RBD binding to hACE2 (Fig. 5B).  

 

 EFFECT OF ESCAPE MUTATIONS ON HUMAN ACE2 RECEPTOR BINDING AND IN VITRO VIRAL GROWTH.  

In order to test if the escape mutants generated from the above studies alter virus entry and fitness, 

we determined binding affinity and kinetics between the RBDs of these escaping mutants and the soluble 

extracellular domain of human ACE2 (hACE2). Although most escape substitutions occur at positions in 

the RBD important for hACE2 binding [61], the majority did not significantly change the binding affinity 

(KD) and kinetics (Ka and Kd) to hACE2.  The exception is Y12’s escape mutation, Y442S, which had a ~ 

6-fold slower Kd and a ~5-fold increased affinity (Fig. 5C). We further tested virus growth in Vero E6 

cells, as the monkey homologue to hACE2 is identical across the interface with the SARS-RBD. Though 
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replication of all viruses was delayed early in infection as shown by a 1- 2-log reduction in titer at 8 h after 

infection compared with wild-type icUrbani, all viruses reached comparable peak titers of 106-107 pfu/mL 

by 24 h after infection (Fig. 5D). These results indicate these escape mutants could efficiently grow in 

hACE2-expressing cells and suggest no loss in fitness despite the substitutions across the binding interface.   

 
Figure 3.4.5. Locations of neutralization escape variant mutations on the structure of the SARS-CoV 
RBD and effects on the binding to human ACE and viral growth.  

 (A) Left, a list of all critical amino acid changes associated with escape mutation. Right, the locations of 
these amino acids on the structure of the SARS-CoV RBD (blue) bound to its receptor human ACE2 
(yellow). (B) Binding affinity and kinetics measurement of the RBD of the escape mutations listed in panel 
A to human ACE2.  Binding kinetics were evaluated using a 1:1 Langmuir binding model. Each ka, kd and 
KD value represents the mean and standard error of two to two independent experiments ran Biacore.  (C) 
In vitro growth characteristics of neutralization escape mutant SARS-CoV. Cultures of Vero E6 were 
infected in duplicate with icUrbani WT and neutralization escape mutants as indicated at a multiplicity of 
infection (MOI) of 1, as described in Materials and Methods. Virus titers at different time points were 
determined by a plaque assay using Vero E6 cells. A dot line indicates the lowest detectable virus titer.  
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 EFFECT OF ESCAPE MUTATIONS ON IN VIVO VIRUS GROWTH.  

To assess the effect of antibody escape on viral pathogenesis, we infected 12-month aged Balb/c 

mice with two escape viruses, Cs5-escape (N479I) and Fm39-escape (N479T). These two escape viruses 

were attenuated, showing significantly less weight loss (less than 5%) compared with wild type Urbani 

virus (Fig. 6A), and the Cs5-escape (N479I) virus had a significant reduction in viral titer in the lungs. This 

may reflect the different effect of these mutations on binding to hACE2 and mACE2. SARS-CoV infection 

of murine cells is inefficient and limited by the very weak binding between RBDs and mACE2[201]. 

Consistently, by Biacore analysis we found that the binding affinity of the RBDs of wild type Urbani virus 

to mACE2 was very low (estimated to be lower than 20mM, hundreds fold less than to hACE2). Similarly, 

the RBDs from each of the Urbani escape mutants listed in Fig. 5C had binding affinities at this very low 

level and were not accurately measured due to high mACE2 concentrations required (data not shown). This 

is somewhat surprising, as at a minimum the Y436H mutant RBD should have improved interaction with 

mACE2 receptor as it is a mouse adapted mutation described in MA15 [57]. 

We further assessed the binding and pathogenesis of escape mutants of Y12 and Y112A generated 

on the GD03 and GD03-Y436H background (Fig. 6B). Two escape mutations, Y442L and S487T, selected 

on GD03-Y436H by Y12 and Y112A, respectively, increased the binding affinity to hACE2 about 4-fold 

compared with GD03-Y436H or wild-type GD03 to hACE2. For the Y112A-selected escape variant, 

increased binding to hACE2 is consistent with the association of S487T is an epidemic-associated sequence 

located at the interface with hACE2 [41]. Additionally, the Y442L substitution has been identified as a 

mouse-adapting substitution in the MA20 strain, predicted to increase interaction with mACE2 via Q34 

[200]. Interestingly, both mutant viruses showed significantly increased in vivo growth in young mice with 

a more than 2-log increasing in viral titer in the lungs by day 4, compared with GD03-Y436H. The Y12 

escape mutant showed more virulence than Y112A-escape: mice infected with the Y12 escape mutant virus 

lost up to 15% of their weight by day 4 after infection, whereas GD03-Y436H virus had less than 5% 

weight loss (Fig. 6C). In agreement with the greater in vivo weight loss of Y12 escape mutant (GD03-

Y436H/Y442L), the binding affinity with mACE2 was the only measurable one among the many others 

under the same conditions examined by Biacore and Octet, reaching KD=~ 400nM.  These results indicate 
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that the additional mutation of Y442L in GD03-Y436H increased binding affinity to both hACE2 and 

mACE2, increasing pathogenesis in a murine model. 

 
Figure 3.4.6. Effect of neutralization escape on in vivo replication.  

(A) Escape mutants of cs5, cs39 and fm6 in aged mice (12-month). Left, weight loss. All the mice were 
inoculated with 105 pfu of viruses as indicated.  Body weights of infected mice were measured on a daily 
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basis (5 mice per group). Weight changes are expressed as the mean percentage changes for infected 
animals relative to the initial weights at day 0.  Right, lung titers. Lung tissues were harvested from infected 
mice on day 4 after infection and were assayed for infectious virus Virus titers at different time points were 
determined by a plaque assay using Vero E6 cells.  (B) A table lists escape mutants generated with icGD03 
or icGD03-MA (Y436H) viruses for nAb Y12 and Y112A and the binding kinetics of the RBD of these 
escape mutants with human ACE2 and mouse ACE2. (C) Y12 escape mutants in young mice (10-week). 
The experiment was performed similarly as in panel A except the mice are 10-week young mice. Error bars 
denote standard deviations. *p<0.05, **p<0.01 , compared with the icUrbani-WT, by 2-way analysis of 
variance. A dot line indicates the lowest detectable virus titer.   

 

3.4.5. Discussion 

The 2002/2003 SARS-CoV epidemic and the recent identification of another novel coronavirus, 

MERS-CoV, in 2012, emphasizes the continued role of coronaviruses as emerging viral human pathogens 

[158]. Therapeutic monoclonal antibodies can provide immediate protection and have relatively swift 

production compared to vaccines, provided they can be designed to protect against the breadth and 

antigenic variation of a RNA virus. 80R was one of the first neutralizing monoclonal antibodies designed to 

target SARS-CoV, and the use of structural modeling in addition to iterative panning with variant S 

proteins has allowed us to develop of mAbs with increased breadth and potency [64,168]. Among the 80R 

derivatives generated previously [64], Fm6 is the most potent mAb with broadest neutralization activity in 

vitro (Fig. 1, 3 and 4) and protected aged mice from infection with two human strains, Urbani and GD03 

(Fig. 2). However a Y436H escape mutation was developed when the epidemic SARS-CoV, Urbani virus, 

was placed under the selection of Fm6. A new nAb, Y12 and a 80R derivative nAb Y112A, were 

developed against the Y436H mutant using similar approaches we employed previously [64]. Both Y12 and 

Y112A also showed broadly neutralizing activities to other viral strains (Fig. 3C-D and Fig. 4); however 

they did not block escape.  Detailed escape mutant profile analysis for 80R and all its derivatives showed 

that they selected for slightly variant escape profiles along a similar track around the 80R epitope at 5 

positions along the interface between 80R and the RBD domain (Fig. 5A-B). Although these mutations are 

at positions either adjacent to or the key contact residues for binding to hACE2 receptor, most of them did 

not significantly affect hACE2 binding and virus growth in vitro.  

Neutralization escape variants for Ab Cs5 and fm39, Urbani-N479I and Urbani-N479T 

respectively, showed significant attenuation in 12-month aged mice. This correlates with the low binding 

affinities to mACE2, and demonstrate the effect of binding affinity on pathogenesis. Growth in Vero E6 

cells and the measured binding affinity to hACE2 indicate these mutations had different effects on bindings 
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to hACE2 and mACE2. The Fm6 neutralization escape substitution, Y436H, is identical to the sole Spike 

substitution in MA15, a mouse-adapted Urbani virus with six total substitutions conferring rapid lethality in 

young BALB/c mice [57]. However the Fm6 escape mutant, Urbani-Y436H showed only a slight increase 

in lung titer in aged mice, which is in agreement with a recent report that the Y436H mutation is necessary 

but not sufficient in contributing to the adaptation [200]. Though structural modeling suggests that the 

Y436H change may increase binding with D38 of mouse ACE2 via electrostatic interaction [200], this was 

not confirmed in our Biacore studies. The binding between wild-type and all the escape mutants studied 

here was very weak (<20mM), except one escape mutant that contains a double mutation of Y436H and 

Y442L in the RBD of GD03 virus. This double mutation dramatically increased the binding affinity of 

RBD to mouse ACE2, reaching 400nM, and is the only mutant with a binding affinity to mACE2 high 

enough to be measured in this study. Indeed, mice infected with this mutant virus exhibited up to 15% 

weight loss, significantly more virulent than the background GD03-MA virus with a single Y436H 

substitution (Fig. 6C). The Y442L change has also been reported to be associated with increased virulence 

of a mouse adapted MA-20 virus on the Urbani background [200]. These results demonstrate that a Y442L 

substitution improves binding to mouse ACE2 and directly contributes to the increased in vivo virulence. 

The S487T is known important for human adaption of SARS-CoV from civets [59]. While this substitution 

did not significantly increase weight loss in the GD03-Y436H background, it significantly increased viral 

lung titers by 4 days post-infection. Both the Y442L and the S487T substitutions increased binding affinity 

to human ACE2 by ~4-fold compared to the background GD03-Y436H and the wild-type GD03 strains. 

While many of the escape substitutions selected by nAbs either reduced or had no impact on binding and 

pathogenesis, it is notable that these two antibodies selected for escape variants that could increase 

pathogenesis in a mouse model. This emphasizes the importance of carefully characterizing the escape 

phenotypes of nAbs, particularly those targeting the RBD, and the need for further development of 

therapeutics with increased barriers to escape. 

80R and all its derivative nAbs selected for slightly variant escape mutants along the interface of 

80R and RBD, confirming that they all recognize a very similar epitope. These antibodies provided a 

unique toolset to test if a Convergent Combination Immunotherapy (CCI) approach in which two or more 

nAbs directed against a similar epitope can prevent neutralization escape. With the two antibodies we 
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tested, 80R and Fm6, different escape results were obtained depending on if they were used sequentially or 

simultaneously. When 80R was used first to select for the escape variant Urbani-D480G, no further escape 

mutant could be selected following Fm6 neutralization. However the same evolutionary constraint did not 

exist when both antibodies were used simultaneously; the virus took a new escaping pathway (N479T) to 

escape the neutralization of 80R and Fm6. Although this result suggests that combinational therapy against 

this particular epitope in the RBD may be possible when used strategically, it may not be practical for 

treating novel emerging viruses.   

The RBDs of coronaviruses are typically virus specific and vary in length and sequence 

significantly, consistent with the structurally and functionally diverse receptor specificity. The C-terminal 

S2 domain is rather highly conserved and contains the functional elements required for membrane fusion 

that usually places strong evolutionary constraints on the sequence [202]. Our detailed escape studies 

focusing on a particular epitope in the SARS-CoV RBD demonstrate the difficulty of preventing escape 

with monoclonals targeting a single epitope.  This is consistent with previous reports that escape mutants 

were generated for all the SARS-CoV RBD-specific nAbs tested [42,62]. Monoclonal Ab development for 

influenza has demonstrated that targeting of conserved epitopes can allow for broad neutralization profiles 

[153]. The S2 domain of the SARS-CoV Spike may be an ideal target for developing BnAbs with greater 

potency of neutralization, resistance to neutralization escape, and breadth (including new SARS-like-CoVs 

that might emerge).  

On the other hand, a combination of nAbs targeting different neutralizing epitopes is likely a 

better strategy to provide broader protection and reduce the possibility of generating escaping variants. Fm6 

cross-neutralized escape viruses generated by other broadly nAbs (Fig.1B), including the escape variant of 

nAb S109.8 that recognizes an epitope distinct from the Fm6 epitope and not in direct contact with ACE2 

[62]. Thus, Fm6 may be a good candidate for divergent combination with S109.8 to prevent escape and 

provide neutralization against a broader range of viruses. Of note, the approach we applied to broaden the 

activity of a primary strain-specific nAb is a valid strategy for developing BnAbs, as Fm6 was capable of 

neutralizing all epidemic and zoonotic SARS-CoV variants. However the breadth of activity does not 

necessarily ensure a high barrier to viral escape, and escape in epitopes critical for receptor binding may 

have significant implications for binding and pathogenesis. The selection of antibody escape variants with 
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altered receptor usage or increased pathogenesis in mice is not unique to SARS-CoV [203], and the role of 

antibody selection in the virulence profiles of respiratory viruses, particularly during emergence events, is 

worth further investigations. 
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CHAPTER 4:  Structural Plasticity and Antibody Escape in the SARS-CoV Spike Receptor Binding 
Domain.1 

 

4.1. Overview 

Human monoclonal antibody therapies have great potential for the rapid and effective treatment of 

newly emergent respiratory pathogens. The Spike glycoprotein (S) of SARS-CoV is highly immunogenic, 

and neutralizing antibodies targeting the receptor binding domain (RBD) of spike are highly enriched and 

encode a significant component of overall protective neutralizing antibody response following infection. 

However, the genetic mutability and plasticity of binding in the RBD allows for rapid escape from 

individual neutralizing antibodies (Ab). Previous studies have demonstrated that a single monoclonal Abs 

can induce one or more substitutions across the RBD, as well as antibody escape variants with increased 

pathogenesis in a mouse model. Therefore, we sought to identify combinations of escape substitutions that 

were deleterious to SARS-CoV viability in order to inform selection of combination antibody therapeutics. 

Using a database of over thirty known antibody-escape virus sequences, we used synthetic biology to 

generate nine of ten viable Combinatorial Escape Viruses (CEVs) incorporating multiple escape-conferring 

substitutions across the RBD.  Our results illustrate the plasticity of the domain, identify combinations of 

escape substitutions which are mutually antagonist, identify potential escape resistant combinatorial 

antibody therapies, and describe the utility of predictive structural modeling. Further, assessing CEV 

neutralization by multiple independently derived mAbs demonstrated complex susceptibility phenotypes, 

and allowed us to map broader antibody binding tracts than indicated by single substitutions. Assessment of 
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the neutralization networks across the RBD and the plasticity of the domain have informed our efforts to 

develop both potent and broadly neutralizing cocktails of antibodies resistant to viral escape while 

neutralizing the broadest range of SARS-like natural and human isolates including mutant panels of RBD 

sequences described in nature.  

 

4.2. Introduction 

The importance of coronaviruses (CoV) as emerging zoonotic RNA viruses has been repeatedly 

emphasized over the past decade, particularly with the emergence of SARS-CoV in 2002/2003 and the 

recent human coronavirus MERS-CoV in 2012 [158]. Coronaviruses have an established potential for cross 

species transmission, with a minimal genetic barrier that allows the virus to quickly adapt to use novel 

species receptors as evidenced by the broad zoonotic reservoir and repeated incidents of introduction into 

human populations [36,55,204,205]. The spike glycoprotein is the primary determinant of coronavirus 

species specificity and tissue tropism, responsible for binding the host receptor, human angiotensin 

converting enzyme 2 (ACE2) for SARS-CoV [199]. Neutralizing antibodies targeting the spike 

glycoprotein (S) are critical for protection from SARS-CoV infection and passive transfer provides 

protection from virus replication and clinical disease in highly lethal animal models of human disease  

[42,163,206]. Further, anti-S antibodies are capable of providing selective pressure during interspecies 

transmission events, during which sequential changes may allow for altered binding to host receptors as 

well as resistance to neutralizing antibodies [22,42,64].  

Despite a decade of investigation, no approved therapeutics exist for SARS-CoV and some 

existing vaccine formulations either fail to provide complete protection in aged animal models of human 

disease or induce a strong Th2 immune pathology [88,159,207]. As peak SARS-CoV titers in humans 

occur 10 days post infection, with contact patient tracing and quarantine the use of post-exposure 

prophylaxis may be a viable therapeutic option and strategy to limit transmission in an outbreak setting 

[74]. Further, passive transfer of convalescent human Abs was used in human patients during the 

2003/2004 epidemic with some evidence of success [206]. The technology for the development of 

humanized monoclonal antibodies (hMAbs) has advanced substantially in past years and several hMAbs 

have been approved for human use [164,208-210]. Palivizumab, an anti-RSV antibody, is the only human 
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monoclonal approved for antiviral indications, although monoclonal therapeutics targeting HIV, HCV, 

CMV, and rabies are in development [146,147,151,211-214]. Combinatorial antibody therapeutics, 

cocktails of mAbs designed to recapitulate the polyclonal response while maintaining the safety profile of 

humanized mAbs, have experimentally demonstrated enhanced neutralization breadth and potency for 

several viruses, including HIV, rabies, ebola, and SARS-CoV [42,133,137,146,208].  

The development of therapeutics targeting emergent coronaviruses is complicated by the 

heterogeneity of the viral zoonotic precursor strains worldwide and the rapid evolution that occurs in 

response to selection [28,36]. Our laboratories have isolated escape viruses to over 30 human monoclonal 

antibodies tested to date, including antibodies developed by B-cell immortalization or phage display, and 

modified by affinity maturation, diversifying selection, or structure-guided focused mutagenesis 

[42,62,64,131,132,164]. The vast majority of neutralizing antibodies target Spike at the interface with its 

receptor, with single substitutions within the receptor binding domain (RBD) providing escape from 

antibody neutralization.  Notably, we have isolated an escape variant to almost every monoclonal antibody 

tested including a high affinity antibody that requires two coincident substitutions, suggesting a flexibility 

in the S-RBD along the interface with ACE2 and emphasizing a potential obstacle to monotherapy 

[42,131]. Most SARS-CoV antibody escape variants demonstrate modest, if any, reductions in cell culture 

growth at early timepoints, but in vivo studies of escape variants have shown reduced, unchanged, and even 

increased pathogenesis in mouse models, a phenomenon not unique to SARS-CoV [62,132,203]. These 

studies emphasize the necessity of designing mAb cocktails that cross neutralize each other’s escape 

mutants, respectively and that select for mutation sets that are deleterious, leading to unfit progeny 

[42,135,136,215]. 

Given the apparent flexibility of the RBD and the occurrence of antibody escape variants that 

increase pathogenesis in a mouse model, we sought to identify combinations of escape substitution variants 

that were deleterious to SARS-CoV viability, thereby informing the selection of an appropriate 

combination antibody therapy.  Rani et al. have demonstrated the ability of a single mAb to select for dual 

substitutions in the RBD of an escape variant, so we used structural bioinformatics to engineer and 

synthetic biology to construct 10 combinatorial escape viruses (CEVs) with 1 to 4 antibody-escape 

substitutions within the RBD. We sought to determine the limits of RBD plasticity, to assess whether 
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structural prediction could enrich the identification of deleterious substitution combinations, and to 

determine whether neutralization phenotypes remain stable in the context of additional escape substitutions. 

Using these approaches, we identified antibody cocktail combinations that selected for highly deleterious 

combinations of mutations while retaining the capacity to neutralize a wide range of different, human and 

animal SARS-like RBD sequence variants recorded in the SARS-CoV spike glycoprotein. 

  

4.3. Methods 

 VIRUS CONSTRUCTION 

The combinatorial escape viruses (CEVs) differ from the epidemic strain SARS Urbani at 1 to 4 

residues in the receptor binding domain (RBD; amino acids 319-510). Further, five of the mouse-adapted 

substitutions of the MA15 virus are included in the mouse adapted SARS-CoV MA15 genomic backbone: 

H133Y nsp5, E269A nsp5, T67A nsp9, A4V nsp13, and E11K M, to allow assessment of functional fitness 

reductions and neutralization/passive protection in animal models of human disease. The Spike Y436H 

substitution (the sixth of the MA15 substitutions) is also one of the antibody escape substitutions, and as 

such is included only in those CEVs as an intended escape site. The RBD substitutions were initially 

purchased as synthetic constructs 600bp or 1200bp in length (Bio Basic Inc, Ontario, CA). CEV05 was 

ordered as a 1200bp cassette encoding nucleotides 22,227 through 24,422 with the mutation encoding 

K390Q. CEV05 served as the template for the nine other viruses, each ordered as 600bp constructs 

encoding nucleotides 22,413 through 23,024 with the appropriate mutations. The cassettes were designed 

such that Bsu36I and BtgI digestion sites bordered the 600bp fragment, and SalI and PstI sites bordered the 

1200bp fragment (Fig. 1A). To construct the other viral clones, the 1200bp CEV05 fragment in puc57 was 

digested with Bsu36I and BtgI, and then a 600bp fragment derived from the remaining 9 constructs was 

ligated into the 1200bp-puc57 vector. The resulting 1200bp construct (SalI/PstI) was excised, purified, and 

ligated into a icUrbani-CoV E fragment (which had been similarly digested with SalI/PstI and the larger 

fragment excised). The E fragments, now encoding each of the unique CEV-specific RBD domains, was 

excised, purified, and ligated with the mouse-adapted SARS-CoV fragments to generate full-length CoV 

cDNAs from which infectious RNA transcripts were derived, as previously described [101]. RNA 

transcripts were electroporated into Vero E6 cells which were monitored for CPE and passaged twice to 

increase titer, and the sequence of the S glycoprotein verified for each mutant. Sequences of the stock viral 
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RNA was identical to input sequences across the length of the spike glycoprotein. CEV03 was constructed 

on three independent occasions, and no transfected cells developed CPE across two passages, despite the 

presence of subgenomic RNA following transfection.  These data indicate that the CEV03 mutations were 

deleterious and likely deficient in receptor interactions and/or entry. 

 PREDICTIONS AND HOMOLOGY MODELING 

Homology models were constructed from the structure of SARS-RBD bound to human ACE2 

(PDB code 2AJF). Using RosettaBackrub 3.1 (https://kortemmelab.ucsf.edu/backrub/), we generated 10 

models of each of the CEVs as well as models from single substitution variants alone [216]. This method 

by necessity excluded analysis of CEV9, since Rosetta 3.1 was incapable of calculating cysteine changes 

[216]. The lowest energy option, notably often very similar or identical to the next several lowest options, 

was used for modeling in Mac PyMol [217]. As an alternate modeling method, FoldX, a plugin for 

YASARA, was used to create 5 homology models for each of the CEVs using the “mutate multiple 

residues” option, with a “repaired” PDB and optimization of neighboring side chains [218,219]. The lowest 

energy PDB from each of the two methods was then “repaired” in FoldX, an energy minimization operation 

required for reliable energy calculations [218]. We then used FoldX to calculate the stability (free energy of 

unfolding (ΔG) for the object) and interaction energies (kcal/mol) between the two molecules in the object, 

the RBD and ACE2 (Fig. S1).  

EXPRESSION AND PURIFICATION OF RBD OF SARS-COV MUTANTS AND ACE2 PROTEINS FOR SURFACE 
PLASMON RESONANCE (APR) ANALYSIS  

Plasmids encoding the RBD (residues 318-510) fused C-terminally with a Fc tag of human IgG1 

were constructed as described elsewhere [132,178,199].  Briefly, the RBDs of the CEVs were amplified 

using the following primers encoding NheI and BspEI restriction sites (underlined), respectively: 5’-

CCGTGCTAGCCAATATTACAAACTTGTGTCCTTTTGGAGAG-3’ and 5’-

ACATTCCGGAAACCGTGGCCGGTGCATTTAAAAGTTC-3’. The RBD amplicons were digested and 

ligated into the R5T3-Ig vector, after which RBD-Fc fusion proteins were produced in 293F cells 

(Invitrogen) and purified with Protein A-Sepharose affinity chromatography. Soluble human ACE2 protein 

corresponding to its N-terminal extracellular domain (aa18-740) was kindly provided by Dr. Fang Li at 

University of Minnesota Medical School [61].  
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Binding of hACE2 to different RBDs were analyzed on a Biacore T100 (Biacore) at 25 ºC, as 

described previously [64,132,153]. Anti-human IgG Fc antibody (Biacore) was covalently coated onto a 

CM5 sensor chip with an Amine Coupling Kit (Biacore).. ACE2 soluble protein was injected over each 

flow cell at the flow rate of 30 µl /min in HBS buffer at different concentrations ranges depending on 

binding affinity for each Ab. A buffer injection served as a negative control. Upon completion of each 

association and dissociation cycle, surfaces were regenerated with 3M MgCl2 solution.  The association 

rates (ka), dissociation rate constants (kd), and affinity constants (KD) were calculated using Biacore T100 

evaluation software.  The goodness of each fit was based on the agreement between experimental data and 

the calculated fits, where the Chi2 values were below 1.0.  Surface densities of Abs were optimized to 

minimize mass transfer. All ka, kd, KD reported here represent the means and standard errors of at least 

two independent experiments. 

 GROWTH CURVES 

To access virus growth, VeroE6, DBT-humanACE2, or DBT-civetACE2 cell lines were infected 

with Epsilon (MA 5-set), icSARS, or CEVs1-10 at a multiplicity of infection (MOI) of 0.1 for 1 hour at 

37°C. After inoculation, the cells were rinsed twice with DPBS and growth medium (MEM +10%FcII and 

1% anti/anti) was added to the cultures. 100uL aliquots of cell medium were taken at 3, 8, 12, 24, and 32 

hours post-infection, stored at -80°C, and titers later determined by plaque assay on VeroE6 cells. Growth 

curves were performed on at least two independent occasions, with consistent results, and the data shown is 

representative. 

 NEUTRALIZATION ASSAYS 

Neutralization titers were determined by microneutralization, as described previously [42]. 

Briefly, mAbs were serially diluted twofold at twice the final concentration, and then incubated with an 

equal volume of 100pfu virus at 37°C for one hour. (Virus titers were determined by plaque assay.) The 

virus-antibody combination was then added to a 96-well plate with 5x103 Vero E6 cells per well, with 5 

replicates for each of 8 antibody dilutions. Virus was allowed to infect cells for 1 hour, 2xMEM was added 

to each well, and wells were checked for cytopathic effect for 3-5 days post-infection. Starting mAb 

concentrations were 20µg/mL, adjusted down to 5 or 2 µg/mL as required for mAbs with lower EC50s 

(s227, s230). To determine the combination/competitive index, as described previously [136], a 



 

97 

microneutralization assay was conducted as described above with s227, s230, and s227+s230, with the 

following changes: total antibody concentrations started at 10µg/mL for each (i.e. 5 µg/mL of each 

antibody in the combination) and with 7 replicates for each of 12 antibody dilutions.  

4.4. Results 

 CEV VIABILITY AND RECEPTOR BINDING.  

Ten combinatorial escape viruses (CEV) were designed to encode multiple antibody escape 

substitutions within the receptor binding domain (RBD) (Figure 1). Substitutions incorporated into CEV 

originated from a broad panel of antibody escape substitutions previously selected by mAbs isolated by B-

cell immortalization or phage display and derived from SARS patients or naïve libraries, respectively 

[164,168]. Subsequent analysis of a panel of antibodies from the immune population grouped the 

antibodies into 6 categories of neutralizing breadth, including antibodies that only neutralized the late phase 

Urbani strains to others that targeted, conserved broadly neutralizing epitopes encoded within animal and 

early/middle phase SARS-CoV strains[42]. Of these, we include escape variants from four groups (Groups 

I, II, IV, and VI), with particular emphasis on the four broadly neutralizing antibodies (s109.8, s215.17, 

s230.15, and s227.14) [42]. In addition, the 80R mAb was selected from a naïve library and extensively 

characterized; subsequent modifications by two laboratories have generated high affinity derivatives (Rs2 

and SK4), a broadly neutralizing mAb designed with structure-guided focused mutagenesis (Fm6), and two 

re-selected to maintain breadth while neutralizing the Fm6-escape variant (Y12 and Y112A) [64,131,132] 

(Fig. 2A).Individually, the majority of the escape substitutions incorporated into the CEVs were associated 

with significantly delayed replication kinetics at early timepoints on VeroE6 cells, eventually achieving 

comparable peak titers by 36 hours after infection [62,132]. A similar trend, though not as pronounced, was 

seen for several escape viruses growing on hACE2-DBT cells [62]. It is not clear whether combinations of 

these escape mutations would select for synergistic or antagonistic alterations in virus receptor interactions 

and S glycoprotein function resulting in reduced virus fitness and/or viability. The antibody escape sites in 

the RBD cover six antibody-escape epitopes as determined by cross neutralization studies, five of which lie 

directly along the interface with the SARS-CoV receptor, hACE2 (Fig. 2B). 
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 Figure 4.1: Combinatorial Escape Viruses.  

A) Scheme for virus assembly from 600bp and 1200bp synthetic constructs. B) Amino acid sequence 
differences between the 10 CEVs and Urbani (WT).  
 

1 5210nt 

SARS E 

SARS F 

RBD 

1 
1196 

BglI BglI NotI 

PstI SalI 

Accessory        Spike 3’ Orf1ab RBD 

1933 
SalI 

icSARS 

18907nt 24051nt 

736 
PstI 

1 

3520nt 4095nt 

3767 

11 

= 600bp cassette 

1189 

= 1200bp insert 

Bsu36I BtgI 

CEVs 1-10 

CEV substitutions 

RBD 

Spike 

SARS E 

SARS F 

33
2

34
4

36
0

39
0

43
6

44
2

44
3

46
0

46
2

46
3

47
2

47
9

48
0

48
7

CEV1 I K F K Y Y R F P G L N Y T
CEV2 T K F K H S L F P D L N D T
CEV3 I K F K Y Y R F A D L N Y T
CEV4 I K F K H S L F P G L N D T
CEV5 T K F Q Y Y L F P D L N D T
CEV6 T K F K H Y L F P D L I G T
CEV7 T K F K Y Y L F P D L I Y T
CEV8 T K F K Y S L F P D L I D T
CEV9 T K F K Y Y L C H D L N D T
CEV10 T K F K H Y L F P D L N G T

Spike:Receptor:Binding:Domain
CEV

A B 



 

99 

 
 Figure 4.2: Panel of antibody-escape profiles. 

A) Sequences and antibody neutralization profiles of epidemic strains and antibody escape viruses. 
References for neutralization phenotypes: 1=[42], 2=[62], 3=[131],  4=[64], 5=[132], 6= [80]. B) Antibody 
escape epitopes modified in CEVs, with residue numbers (relative to spike sequence) indicated on RBD 
(gray) on left.  To right is same molecule, shown in complex with ACE2 interface with RBD. The D480 
residue is shared by both the red (Y436) and purple (N479) epitopes, and CEV-6, CEV-7, and CEV-10 
have multiple substitutions within these conjoined epitopes.  
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combinatorial escape viruses we used prior growth data for the individual escape substitutions, homology 

modeling, and FoldX differential energy calculations to predict which mutation combinations would most 

severely alter RBD-receptor stability and interaction energy between the two molecules, and therefore the 

viability of recombinant viruses. Based on previous growth analyses of single substitution escape variants, 

we predicted that the most impaired of the combinatorial escape viruses (CEVs) would include 

recombinant viruses, CEV-1, CEV-3, and CEV-4, because they all contained four substitutions across 

RBD, each of which were independently associated with reduced virus in growth on Vero cells. 

Additionally, CEV9 (P462H and F460C) was predicted to significantly alter the RBD backbone in one 

localized region, with P462H predicted to alter an essential aromatic stacking interaction and destabilize the 

local structure, potentially reducing viability (Fig. 2) [62]. Of the two substitutions incorporated into CEV-

9 (blue in Fig. 2B), the P462H virus had no impact on virus growth while the F460C virus caused 

significantly reduced growth on both Veros and hACE2-DBTs, respectively [62].  Notably, a homology 

model generated in Rosetta Design predicted that the CEV9 combination would severely alter the local 

structure around residues 462 and 460, disrupting the cystine 467-474 bond (Fig. 3) and reducing stability 

of the RBD. 

 
 

 
 Figure 4.3: Predicted localized destabilization in CEV-9.  

 Rosetta design, which does not allow alterations to the backbone but rather creates homology models using 
side chain movement only, shows a disruption of the cystine 467-474 bond.  
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In an attempt to quantify predicted viability differences between CEVs, we generated two versions 

of homology models, both based off the crystal structure of the RBD in complex with ACE2 (PDB code 

2AJF) [61]. We then used FoldX to calculate the predicted changes to stability and interaction energy 

between ACE2 and the RBDs [218]. In the first method, we used FoldX to generate 5 models from an 

energy minimized 2AJF structure, and in the second we generated 10 homology models using 

RosettaBackrub [216]. Using binding data and virus titer data on Veros for 6 single escape variants from a 

previous study [132], we evaluated the FoldX interaction energy and stability predictions for homology 

models generated by FoldX and RosettaBackrub. The Backrub-generated homology models were much 

more accurate than FoldX-generated models in predicting relative binding affinity and titer for the 6 single 

substitution variants (Fig. 10), therefore we extended this analysis to the combinatorial escape viruses.  
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 Figure 4.4: Predicting CEV viability 

A) Predicted stability and interaction energy changes (ddG) for single escape variants (red, open circles) 
and combinatorial escape viruses (black, small circles) correlated to binding affinity (KD (nM)) and 24hr 
titers on hACE2 and vero cells. WT RBD is indicated by an asterisk. B) Binding data for a subset of CEVs. 
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correlation of stability with binding affinity was markedly impaired for the 6 CEVs compared to the 6 

single substitution variants, although both stability and interaction energy of the RBD did show an 

association with titers on humanACE2-DBTs and Veros. The FoldX analysis of backrub generated 

homology models ranked CEV3 as having the greatest increase in stability (ΔG) and interaction energy 

with ACE2 compared to the wildtype structure. Further, the binding affinity for CEV3 was the highest 

measured, suggesting that CEV3 was the least likely of the 10 CEVs to be viable. Indeed, despite three 

independent attempts no viable CEV-3 virus was recovered. Under identical conditions, the remaining nine 

other CEVs were viable, replicating to titers of between 1.2x106 and 3.4x107 pfu/mL.  

 CEV REPLICATION 

We assessed growth curves for each of the nine viable CEVs on VeroE6, DBT-hACE2, and DBT-

cACE2 cell lines. Growth curve titers for all 9 viable viruses were largely overlapping with the WT virus 

on Vero cells, with some delay at early timepoints (<10 hours post infection). All viruses grew to peak 

titers above 6.7log10 pfu/mL and within 1 log of the WT virus, which had a peak titer of 7.2log10 pfu/mL at 

24 hours post infection. However, CEVs -4, -5, -7, -8, and -9 have some lag in titer, >0.7 log below WT at 

24 hours post-infection, and CEV-4 is 1 log below WT at 24 hours post-infection.  

We also assessed growth on delayed brain tumor (DBT) cells stably expressing either the human 

or civet ortholog of the ACE2 receptor (DBT-humanACE2 or DBT-civetACE2, respectively) [55].  The 

WT virus grew to 5.9 log10 pfu/mL on hACE2-DBT cells, while CEV growth on hACE2-DBTs 

demonstrated greater variability than that seen on Vero cells. Five of the CEVs (left graphs, Fig. 5) are 

within 1 log of WT growth, although CEV-5 peaked early and declined and CEV7 was delayed in peak 

titer. The other four viruses, CEV-1, CEV-4, CEV-8, and CEV-9, showed impaired replication on hACE2-

DBTs with peak titers below 4.2 log10 pfu/mL. The civetACE2-DBT cells support lower replication of WT 

virus, as previously published [55], with peak titers of ~4 log10 pfu/mL. Only CEV2 had significantly 

increased replication on civetACE2-DBTs, with a peak titer of 5.4 log10 pfu/mL. CEV-6 and CEV-10 had 

delayed growth kinetics, and CEVs -7, -1, and -4 demonstrated poor replication with peak titers below 2.9 

log10 pfu/mL.   
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Figure 4.5: Growth curves to assess replication and virus production.  

The 9 viable CEVs are shown in two groups, left are the 5 that grew to comparable titer on hACE2, right 
are the 4 that grew poorly on hACE2-DBTs. Growth curves are representative of two experiments. 
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 CEV NEUTRALIZATION PHENOTYPES  

To assess the effect of combinations of escape-associated substitutions we conducted 

microneutralization assays for the nine viable CEVs with seven representative monoclonal antibodies (Fig. 

6) that include broadly neutralizing (Fm6, Y112A), high affinity (RS2, SK4) derivatives of 80R, as well 

characterized antibody derived from a naïve library. Additionally, we used the most potent broad 

neutralizing antibodies derived from immune B-cell clones (s227.14 and s230.15), and, m396, which was 

derived from a different library and has no known escape mutations [64,80,131,132,164]. Importantly, 

these antibodies select for escape mutants in different parts of the RBD and do not elicit any known cross 

escape phenotypes across the panel.  Importantly, 80R and its derivatives and m396 structures in complex 

with ACE2 have been reported.  Predicted neutralization phenotypes were constructed based on the 

inclusion or absence of a particular antibody’s escape substitution within each of the viruses and structural 

predictions across the 80R and m396 interface. 

Broadly Neutralizing Antibodies. The only monoclonal antibody capable of neutralizing all CEVs 

was s227.14, a broadly neutralizing antibody with no known escape variant in the SARS-CoV Urbani 

backbone. The only identified escape variant for s227.14 is a K390Q substitution selected on a civet virus 

backbone (HC/SZ/61/03) [42]. Incorporation of the K390Q substitution into the WT/Urbani backbone 

(CEV5) did not confer resistance to s227.14, thus this particular antibody’s escape phenotype is dependent 

upon coordinated interactions with other residues encoded within the HC/SZ/61/03 backbone (Fig. 6). 

 
Figure 4.6: CEV neutralization results.   

EC50 values and fold change relative to WT for 7 monoclonal antibodies. Neutralization of CEVs by 
monoclonal antibodies representing broadly neutralizing 80R derivatives, affinity matured 80R derivatives, 
BN mAb from a human immune library, and m396 (from a non-immune human scFv library). Fold change 
is calculated as 2x upper limit of detection viruses not neutralized at the highest mAb concentration tested. 
Underlined fold-change values indicate viruses containing escape substitutions relevant to the mAb being 
tested.   
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S230.15 is another broadly neutralizing mAb with an escape substitution, L443R, identified 

following selection after SARS-CoV Urbani infection. Notably, CEV-6, CEV-7, CEV-8, and CEV-9 

demonstrated significant resistance to s230.15 despite lacking any changes at the known escape site. 

Notably, cross-neutralization studies with viruses incorporating the individual substitutions of CEV-9 

(F460C, P462H) had been readily neutralized by s230.15, while substitutions incorporated in CEV-6, CEV-

7, and CEV-8 (Y436, D480, N479, and Y442) had not been assessed individually [62]. All four 

demonstrated EC50 values more than 32-fold higher than required to neutralize the WT virus. Due to the 

low EC50 for WT (0.313 µg/mL), even a 32-fold rightward shift (to 1.25 µg/mL) may indicate continued 

neutralization within physiologically relevant concentrations for CEV-6, CEV-7, and CEV-8. In contrast, 

CEV-9 was not neutralized at the highest concentration tested, 10 µg/mL. Therefore, we can extend the 

proposed footprint for mAb s230.15 from the single escape substitution, L443R (purple, Fig. 7), to include 

the domain covered by CEV-9, (green, Fig. 7), and the overlapping domain altered in CEV-6, CEV-7, and 

CEV-8 (blue, Fig. 7). We note that these escape-associated sites form a contiguous predicted epitope on the 

RBD surface along the interface with ACE2, and although speculative, these data suggest that these sites 

define the effective binding track for S230.15.  

 
Figure 4.7: Expanded binding tract for mAb s230.15.  

The primary escape site for s230.15 is L443R (purple). CEV-9 completely escaped neutralization by 
s230.15 with two substitutions, F460C and P462H. These substitutions form a contiguous epitope along the 
interface with hACE2. Blue is >32-fold shift (Y436, D480, N479, Y442). Yellow-orange is known escape 
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site (L443). Green is sites included in CEV-9, full escape (F460, P462). Unlikely that backbone of structure 
will remain with loss of the disulfide bond between cysteine(C) 474 and C467, but suggests combination of 
altered disulfide bonding and P463A substitution would substantially alter this epitope.  

 
80R-Derivtive Antibodies. The 80R antibody and its derivative antibodies likely interface along an 

overlapping footprint in the SARS RBD [132]. Several CEVs with combinations of substitutions around the 

80R binding site allowed for escape from the 80R derivative antibodies. Escape studies of 80R repeatedly 

select for substitutions at residue 480, but cross neutralizations have extended the functional 80R epitope to 

include substitutions at residues 436 and 479 [132]. Notably, the 80R derivatives Y112A, RS2, and SK4 

were incapable of neutralizing several viruses with substitutions in the 80R escape epitope, regardless of 

whether individual substitutions alter derivative antibody neutralization phenotypes. For example, Y112A 

selects for escape at N479I and can neutralize both the Y436H and the D480G escape mutant viruses.  

Surprisingly, CEV10, which combines Y436H and D480G, is completely resistant to Y112A 

neutralization. CEV-2, CEV-10, CEV-1, and CEV-4 were also highly resistant to neutralization by Y112A, 

Rs2, and SK4. However, the presence of a substitution at 436, 479, or 480 in a CEV does not unequivocally 

provide escape from 80R and other 80R-derived antibodies. In an example of a novel susceptibly 

phenotype, CEV8 is neutralized by 80R despite the presence of the N479I substitution. These novel escape 

and susceptibility phenotypes emphasize the plasticity of the RBD and the complexity of antibody binding 

epitopes. Substitutions within the epitope shift the susceptibility to neutralization by 80R-derivative 

antibodies, and further substitutions, both within the epitope and outside it, can push the virus to complete 

escape or generate novel susceptibilities. 

The Fm6 and Sk4 antibodies are either broadly neutralizing and/or high affinity derivatives of 

80R, respectively. Targeting the same epitope, the Fm6 phenotype was largely predictable; it failed to 

neutralize every CEV containing the Y436H substitution. One exception that was unexpectedly resistant to 

Fm6 neutralization, CEV-8 (Y442S, N479I), has 2 substitutions, each individually associated with escape 

from other 80R-derivative Abs, Y12 and Sk4, respectively [131,132]. The 80R binding tract therefore 

offers several residues at which the tolerance for 80R-derivative Ab binding may be shifted, and 

accumulations of substations in this region may allow escape phenotypes not predicted by selection from a 

clonal laboratory stock. In contrast to the predictability of Fm6, the majority of the CEVs escaped 

neutralization by the high affinity single chain Ab SK4. In a previous study, SK4 was capable of 
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neutralizing eight escape viruses with single substitutions across the RBD, but incapable of neutralizing the 

icHC/SZ/61/03 or GD03MA viruses, each containing six substitutions compared to the Urbani RBD [131]. 

The escape of 4 CEVs predicted to be neutralized suggests that the high affinity Ab has less tolerance for 

broad changes in the binding epitope. 

M396 – a distinct epitope. The monoclonal antibody m396 was included in the neutralization 

screen as its interaction domain is known and distinct from 80R; so no known neutralizing epitopes were 

included in the CEV design. The m396 antibody-RBD interface overlaps the hACE2-RBD interface, with 

RBD residues I489 and Y491 predicted to contribute strongly to m396-binding [80]. CEV-5 had a 

substitution K390Q that was flanked by the m396 binding domain, was strongly neutralized by m396, 

while two alternate CEVs (CEV-4 and CEV-7) were highly resistant to m396 neutralization (Fig. 6). To 

determine whether we inadvertently incorporated an escape mutation into CEVs -4 and -7, we used m396 

to select for escape variants, using wildtype SARS-CoV. After 3 passages under increasing antibody 

concentration m396, escape viruses were selected that grew to high titer in the presence of 20µg/ml of 

m396. Five escape viruses were sequenced, each with a single substitution in the RBD: R395S (1), R395T 

(2), and D392E (2). Note that D392A was shown to have no significant effect on binding to ACE2 [220], 

and the homology analysis of D392E suggests increased steric hinderance is cause of escape (Fig. 8C). 

R395A was shown to reduce binding, and analysis of a homology model suggests that R395T results in the 

loss of polar contact with m396-D95 (Fig. 8D). Notably, neither of these substitutions are incorporated into 

any of the CEVs, suggesting that resistance to m396 demonstrated by CEV-4 and CEV-7 are conferred by 

more general changes to the topology of the RBD. (Fig. 8A).  

 ASSESSING THE COMPETITIVE INDEX OF A PROPOSED COMBINATION THERAPY.  

The mAbs s227.14 and s230.15 were the two most potent of the group 6 broadly neutralizing 

antibodies in a previous study, and s227.14 neutralizes all native variants and CEVs tested to date [42,62]. 

Additionally, s230.15 selects for escape variant L443R which is incorporated in both CEV3 and CEV1, a 

non-viable and attenuated CEV, respectively. Despite evidence of competitive binding to immobilized 

SARS-CoV spike glycoprotein [42], s227.14 and s230.15 did not display any evidence of antagonism in a 

co-neutralization assay (Fig. 9a).  Combination index (CI) calculations for s227.14 and s230, based on 

microneutralizations conducted in septuplet, indicate non-competitive neutralization for the two 
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monoclonal antibodies (Fig. 9b). This suggests a cocktail of s227.14 and s230.15, two broadly neutralizing 

antibodies with non-competitive interaction, would prevent escape or select for attenuated escape variants. 

 
 

 
 Figure 4.8: Mechanisms of escape from m396.  

 A) Topology of escape variants to m396. Single m396 escape residues, D392 and R395, are shown in 
green. Combinatorial m396 escape virus residues are shown in blue (CEV-4) and red (CEV-7). B) The 
interface between SARS RBD (gray) and m396 (green) Includes multiple polar interactions and an 
electrostatic interaction between R395(RBD) and D95(m396). C) The D392E substitution associated with 
m396 escape increases steric hindrance at the RBD-mAb interface, introduces a negative charge, and alters 
the orientation of R395, breaking multiple polar bonds. D) The R395T substitution breaks the electrostatic 
interface between N95 and R395. 
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 Figure 4.9: Co-neutralization with s227.14 and s230.15. 

 Despite evidence of competitive binding to immobilized SARS-CoV spike glycoprotein [42], s227.14 and 
s230.15 did not display any evidence of antagonism in a co-neutralization assay.  B) Combination index 
(CI) calculations for s227.14 and s230, based on microneutralizations conducted in septuplet, indicate non-
competitive neutralization for the two monoclonal antibodies [136]. 

 

4.5. Discussion 

Group 2b betacoronaviruses demonstrate remarkable diversity in the spike glycoprotein, and not 

surprisingly, animal and human SARS-CoV spike glycoproteins were demonstrated to evolve rapidly 

during the 2003/04 epidemic, perhaps from immune mediated host shifting [36,42]. Further, the epidemic 

strain of SARS-CoV (Urbani) readily evolved mutations that diminished neutralization phenotypes from 38 

of the 39 monoclonal antibodies (mAb) tested in our laboratory, including the evolution of rare adjacent 

mutation sets in key residues that engage the human RBD receptor [131]. Given these findings, it seems 

likely that single monoclonal antibody therapies may fail in an outbreak setting, despite improvements in 

selection, structure-based design, and manufacturing of therapeutic over the past decade [138,221,222]. For 

viruses that evolve quickly like influenza, HIV and noroviruses, efforts have focused on identifying mAbs 

with broad neutralization phenotypes capable of neutralizing antigenically diverse viruses while preventing 

viral escape. Several groups have noted the possibility of using a therapeutic cocktail of two or more mAbs 

to prevent escape [131,132,210]. In this work we describe the construction and characterization of 10 

combinatorial escape viruses (CEVs) designed to incorporate up to four antibody-escape associated 

substitutions within the receptor binding domain. We generated these 10 CEVs in order to aid in the 

rational selection of broadly neutralizing mAbs cocktails that simultaneously minimize the likelihood of 

viral escape while ensuring that any escape mutants that might emerge would be less fit than other 
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circulating strains. In parallel, we sought to assess our ability to use available structure-based predictive 

tools to assist in therapeutic design. This platform approach may be broadly applicable to other important 

human pathogens. 

In this manuscript, we develop a genetic approach to evaluate coordinated interactions of escape 

mutations with the goal of identifying antibody combinations that select for substitution sets that are highly 

deleterious or lethal, assessments based on in vitro replication and in vivo pathogenic features. We identify 

one combination of substitutions, CEV3 (T332I, L443R, P462A, and D480Y), which was not viable despite 

three independent attempts to grow the virus. In addition, while all viable CEVs grew within one log of the 

peak WT titer on VeroE6 cells, there were significant delays and limitations to peak titers on hACE2-DBTs 

cells. The limited replication of CEV-1, CEV-4, CEV-8, and CEV-9 on hACE2-DBTs likely reflects the 

fitness cost of the combined escape substitutions, either by altered binding to hACE2 on a cell line with 

altered receptor density, or by destabilization of the structure. Primate and human ACE2 protein sequences 

are identical across the region that interacts with the RBD, but the expression levels of ACE2 on the 

hACE2-DBT cells is higher than on Vero cells when assessed with a polyclonal antibody against the 

hACE2 ectodomain [55]. It is possible that high level receptor expression may establish a dominant 

negative effect on virus replication by preventing S incorporation into mature virions, thus, it is possible 

that some CEVs encode defects which are receptor concentration dependent [223]. Additional differences 

in host cell environments, including proteases like TMPRSS2 and Cathepsin L which are involved in Spike 

processing during entry, may also contribute to these differences in CEV relative peak titers between cells 

lines [224]. It is notable, however, that nine of the ten CEVs were viable in cell culture, replicating to 

comparable titers on Vero E6 cells, indicating a broad flexibility in the RBD for several coincident 

changes.   

We used the extensive structural data available for the SARS-CoV RBD to generate homology 

models for each of the CEVs by two different programs, FoldX and Rosetta Backrub [216,218]. Rosetta 

Backrub has the capacity to allow for small changes in backbone of a protein model, but cannot change 

cysteine residues (and therefore could not model CEV-9). FoldX, in addition to generating homology 

models, can calculate (or predict?) free energy (“stability”) and the energy differences between two 

interacting molecules in a model (as in between the RBD and hACE2). The approach has been previously 
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used to calculate stability changes for influenza escape mutants to oseltamivir [225,226]. By correlating 

changes in stability and interaction energies for single escape substitutions in the RBD with binding affinity 

and titer data, we assessed the accuracy of stability and interaction energy predictions calculated by the 

FoldX program for CEV models generated by either FoldX or Rosetta Backrub (Fig. S1) [132]. Backrub-

generated models were noticeably better correlated to binding affinity for single escape variants.  Perhaps 

not too surprisingly, the accuracy of both models was negatively affected by the multiple substitutions 

incorporated into the CEVs. Nonetheless, both binding data and prediction programs suggested that CEV-3 

was the least stable of the viruses generated, a prediction borne out by the failure to generate a viable CEV-

3 virus. Further advances in protein prediction, particularly for the more complicated problem of multiple 

substitutions, are necessary before these programs can be expected to reliably predict virus viability and 

receptor usage, but with greater sample sizes we are coming closer to identifying those thresholds.  

By using a panel of human monoclonals from natural infections or phage libraries, one intended 

application of the CEVs was to test the preservation of escape phenotypes in the context of other 

substitutions within the RBD, mimicking sequential RBD changes in response to selective pressure. In 

general, the CEVs tested here were resistant to antibody neutralization when the correlated escape mutant 

was present in a particular RBD, thus the incorporation of other mutations did not appear 

antagonize/synergize this phenotype in this study.  In parallel, CEVs were generally, but not always 

neutralized when a particular monoclonal antibodies escape substitution was absent. However, with the 

exception of s227, each tested mAb had at least one novel escape or susceptibility, and which increased our 

mapping of the putative interaction domain on the RBD (Fig. 1). For example the identification of novel 

substitutions that prevented mAb s230.15 neutralization, allowed us to predict a putative neutralization 

footprint for this mAb along the RBD-ACE2 receptor binding interface.Also, we note that mAb s227.14 

was capable of neutralizing all nine CEVs including CEV-5, which contained the K390Q substitution that 

provided escape in the HC/SZ/61/03 backbone, indicating the reliance of this escape site on the other 

coordinated substitutions in the HC/SZ/61/03 sequence for escape.  

The non-viable CEV (CEV-3) and four others with impaired growth on hACE2 (CEVs -8, -9, -1, -

4) provided suggestions for which mAbs would perform most effectively in mAb combination therapies. 

The neutralization of all CEVs, zoonotic, and epidemic viruses enhances the appeal of s227.14 as 
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therapeutic cocktail component, in addition to the apparently increased barrier to virus escape. The s230.15 

escape substitution is present in both CEV1 and 3, both of which are replication impaired and attenuated in 

vivo. In addition, the s215.17 escape substitution (P462H) is unique to CEV-9, and displays reduced 

growth phenotypes on hACE2 cells, and the P462A substitution (escape from s228.11) is uniquely in CEV-

3, and should be further explored in future studies. Briefly assessing the feasibility of a mAb cocktail 

comprising two of these broadly neutralizing mAbs, we found that S227.14 does not compete with s230.15 

in competitive neutralization studies, and propose this combination as an effective, escape-resistant mAb 

cocktail.  

The vast majority of unpredicted neutralization phenotypes for the CEVs were novel escape 

phenotypes. These studies indicate that while a mAb may uniformly select for a single substitution when 

selected from a homogeneous starting population, such as a clonal laboratory virus stock, there are multiple 

substitutions across the antibody binding tract capable of allowing escape. Characterizations of antibody-

induced antigenic drift in human influenza A virus have similarly demonstrated the persistent capacity for 

viral escape from a monoclonal antibody selection [143]. Our studies emphasize the structural plasticity of 

the Spike RBD, as multiple antibody-escape substitutions within the same epitope or in multiple epitopes 

across the receptor interface are viable. This structural plasticity in the RBD allows for rapid escape from 

antibody selection and, as the possibility of enhanced pathogenesis and simultaneous dual substitutions 

have already been demonstrated, it emphasizes the importance of robust characterizations of potential 

monoclonal antibody therapeutics. The 9 viable CEVs are powerful tools for assessing available structural 

prediction models, the plasticity of the RBD, the complex coordination between neutralization epitopes, 

and the impact of RBD substitutions on receptor binding and pathogenesis. Our characterization of the 

viability and neutralization phenotypes of these CEVs has allowed us to expand the predicted binding tract 

of broadly neutralizing antibodies and explore the functional impacts of multiple antibody escape 

substitutions. Further, the non-viable CEV and altered growth characteristics induced by select antibody 

combinations will better inform our efforts to develop both potent and broadly neutralizing cocktails of 

antibodies resistant to viral escape. 
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Figure 4.10: Summary of prediction methodologies.  

KD values from single substitution escape variants [132] were compared to the predicted destabilization 
(Stability ddG compared to the wildtype structure, 2AJF) and interaction energy differences (Interface 
ddG) calculated in FoldX for homology models generated by either the FoldX “mutate multiple residues” 
function or by Rosetta Backrub [218,227]. Notably, the repaired structure of the lowest energy Rosetta 
backrub models showed a significant, non-zero, positive slope when both the calculated stability and 
interaction energy differences were graphed against the measured KD for the single substitution escape 
variant RBDs. For this reason, the repaired PDB of the lowest energy Rosetta backrub homology model 
was used for further analyses of predicted CEV viability. Linear regression calculations were conducted in 
Prism.  

Predicted Stability

0 50 100 150
-30

-20

-10

0

10

KD (nM)

S
ta

bi
lit

y 
dd

G
Predicted Interaction Energy 

0 50 100 150
-2
-1
0
1
2
3
4

KD (nM)

In
te

rfa
ce

 d
dG

FoldX 

RosettaBackrub

A

Stability 
Backrub 

Repaired

Stability 
Backrub 
Average

Stability 
FoldX 

Minimum

Stability 
FoldX 

Average

Interface 
Backrub 
Repaired

Interface 
Backrub 
Average

Interface 
FoldX 

Minimum

Interface 
FoldX 

Average
Is slope significantly non-zero?

F 7.282 0.1756 0.07186 1.057 8.208 1.18 2.574 4.596
DFn, DFd 1.000, 6.000 1.000, 6.000 1.000, 6.000 1.000, 6.000 1.000, 6.000 1.000, 6.000 1.000, 6.000 1.000, 6.000
P value 0.0356 0.6897 0.7976 0.3435 0.0286 0.3191 0.1598 0.0758

Deviation 
from zero? Significant Not 

Significant
Not 

Significant
Not 

Significant Significant Not 
Significant

Not 
Significant

Not 
Significant

Goodness of Fit
R square 0.5483 0.02844 0.01184 0.1498 0.5777 0.1643 0.3002 0.4337

Sy.x 2.597 1.482 8.617 1.903 0.7828 0.7624 0.5808 0.7167

B



 

 

 
 
 
 
 
 

CHAPTER 5:  Discussion and Future Directions. 

5.1. Summary 

The studies described in this dissertation were designed to assess immunization and therapeutic 

strategies for SARS-CoV, and, by extension, to enhance our characterization of the receptor binding 

domain of spike (S), a key neutralization target for SARS-CoV therapeutics. We make use of robust animal 

models that accurately replicate human disease and technologies that allow for the rabid generation, 

modification, and characterization of antibodies. In addition, the SARS-CoV infectious clone allows us to 

utilize SARS-CoV strains with heterologous S proteins and to generate novel viruses from synthetic 

constructs. The study of SARS-CoV and the potential therapeutics to target coronaviruses has taken on new 

urgency following the recent isolation and characterization of a novel human betacoronavirus, MERS-CoV 

[158,228]. Our studies of SARS-CoV have provided a valuable foundation for the rapid characterization of 

novel coronaviruses and anti-coronavirus therapeutics.  

The experiments described in Chapter 2 explored the limitations of a doubly inactivated SARS-

CoV vaccine (DIV), identifying a vaccine-induced immunopathology and emphasizing the importance of 

rigorous challenge viruses and animal models that accurately recapitulate age-associated lung pathology. 

Collaborations between the Baric laboratory and two other laboratories are described in Chapter 3, in which 

we assessed multi-generational monoclonal antibodies designed to be broadly neutralizing or escape 

resistant. Through this iterative assessment, we noted the flexibility of the receptor binding domain (RBD) 

of S and extended our characterization of this region as an antiviral target. Building from a database of 

escape substitutions in the RBD, we engineered ten recombinant Combinatorial Escape Viruses (CEVs) 

designed to assess the plasticity of the S-RBD, the utility of predictive modeling, and the neutralization 

networks across the RBD. Assessment of the neutralization networks across the RBD will inform our 

efforts to develop both potent and broadly neutralizing cocktails of antibodies resistant to viral escape. 

These tools will assist in the development of predictive tools and standardized platforms for combination 

mAb immunotherapies for emergent viruses.  
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5.2. SARS-Coronavirus whole inactivated vaccine studies 

In our characterization of the protection and immune response to a doubly inactivated whole virus 

vaccine (DIV), we, like others, note that DIV can protect young mice from a homologous SARS-CoV 

challenge [98]. By extending our analysis to include the aged BALB/c model, as well as highly lethal 

homologous and heterologous challenge viruses, we noted the limited protection and possible enhanced 

disease in these more rigorous model systems. Specifically, we observed an enhanced immune infiltrate in 

the lungs of vaccinated aged animals or animals challenged with a heterologous strain. This immune 

enhancement appears to be Th2 skewed, with an increase in the numbers of eosinophils in the lungs of 

vaccinated animals as well as a significant increase in Th2-associated cytokines and chemokines. The Th2 

skewing of vaccine responses in addition to the eosinophillic influx is reminiscent of other known vaccine-

induced immunopathologies. These studies raised significant concerns about using whole inactivated virus 

vaccines in an aged population, which is both more susceptible to SARS-CoV and more difficult to 

vaccinate [90].  

Future studies of the eosinophillic immunopathologic reaction following vaccination will seek to 

identify the targeted viral components as well as the host immune components that mediate this response. 

Venezuelan equine encephalitis virus replicon particles (VRPs) expressing the nucleocapsid protein (N) or 

the spike (S) were evaluated as vaccine candidates, demonstrating that VRP-S vaccines were protective. 

Notably this study also found that VRP-N vaccines induced a non-protective, eosinophillic inflammatory 

response following either homologous or heterologous challenge [88]. A vaccinia virus vaccine formulation 

expressing the SARS-CoV structural proteins similarly found the nucleocapsid protein to be responsible for 

a severe pneumonia [95]. In contrast, an evaluation of a recombinant spike and two whole inactivated virus 

vaccinations demonstrated an eosinophillic immunopathology for each of the formulations, suggesting the 

alternate hypothesis that the spike protein was responsible for the immunopathology [207]. However, the 

recombinant spike vaccine formulation induced significantly less eosinophillic infiltration than the whole 

inactivated vaccines, and lungs were assessed on day 2 post-infection, a timepoint which only displayed 

minimal eosinophillic infiltration following VRP vaccinations [88,207]. We expect that future studies will 

assess the immune responses to vaccination and challenge using recombinant S and N proteins in order to 

assess the effect of antigen and formulation on vaccine-induced enhancement. Identification of the viral 
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components and vaccine formulations that drive immunopathological responses to challenge will allow for 

rational design of safe and efficacious vaccines. 

DIV vaccinations induced a Th2-biased immune response, including a skewing of IgG subtypes 

from IgG2a (Th1-associated) to IgG1 (Th2-associated) post-vaccination and a significant increase in IL-5 

and IL-13 (Th2-assocated cytokines) post-challenge. Interleukin(IL)-4 is a critical determinant in the 

development of Th2 responses, which are generally non-protective in viral infections [229]. Notably, if the 

nucleocapsid or another viral protein is responsible for triggering Th2-type responses independent of 

vaccine formulation, it is possible that innate Th2 responses may play a role in naïve SARS-CoV 

infections. Increased Th2 cytokines (IL-4, IL-5, and Il-10) were associated with fatal human cases of SARS 

[230]. Further, SARS-CoV was a disproportionately lethal in individuals over 50 years of age, a population 

with enhanced Th2 responses [73,231-234]. Finally, a systems analysis of C57BL/6 mice infected with 

lethal and sublethal doses of SARS-CoV using the WGCNA (weighted gene correlation network analysis) 

approach grouped host responses into 24 groups of transcripts (modules) with co-regulated behavior, of 

which only one module displayed dose-response kinetics [235]. Two targets in this module, IL-4Rα and IL-

13Rα1, were listed in a prioritized ranking at positions 24 and 57, among approximately 700 genes 

hypothesized to be significant. These two genes form the Type II IL-4 receptor, and IL-4Rα is a necessary 

component of the Type I IL-4 receptor, suggesting a role for IL-4 signaling in lethal SARS infection 

[229,236]. Ongoing studies are designed to explore the role of Th2 responses in naïve SARS-CoV 

infections and vaccine challenges by modulating both the host environment and through the use of 

recombinant viral immunomodulators. 

5.2.1. Ongoing studies 

One method of assessing the role of Th2 signaling in vaccination and lethal infection is to utilize 

knockout mouse lines with deficiencies in IL-4 signaling, the key cytokine in the development of Th2 

responses. A preliminary assessment of the role of IL-4 signaling in lethal SARS-CoV infections utilized a 

trio of knockout mouse lines on the BALB/cJ background: IL-4-/-, IL-4Rα-/-, and STAT6-/-. IL-4 is the 

key regulator in the development of Th2 responses, the IL-4Rα subunit is required for IL-4 signaling 

through both Type I and Type II receptors (and additionally blocks IL-13 signaling through the Type II 

receptor), and the STAT6 transcription factor mediates IL-4 and IL-13 signaling. The IL-4-/- and STAT6-/- 
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mice display an increased weight loss phenotype following MA15 challenge compared to the BALB/cJ 

controls, suggesting a protective role for IL-4 signaling in SARS-CoV infections. The IL-4Rα-/- mice 

displayed modestly different weight loss profiles depending on the provider (Jackson Laboratory compared 

to Taconic Farms). However, any potential phenotype for IL-4Rα-/- is complicated by small sample size of 

the Jackson IL-4Rα-/- mice (n=3) and the lack of an appropriate control for the Taconic mice, which have 

not been backcrossed to the congenic BALB/cJ strain since 2000 (Taconic customer service, personal 

communication). We expect that future studies of IL-4 signaling in SARS-CoV will backcross 

commercially-available strains with their congenic controls, and then utilize these IL-4-signaling deficient 

mice to assess the role of Th2 signaling in vaccine-enhancement or naïve SARS-CoV challenges.  

 

Figure 5.1 IL-4 signaling phenotypes following lethal MA15 SARS-CoV infection.  

10 week old mice were infected with 105 pfu of MA15, which causes 10% weight loss and recovery in 
BALB/cJ mice. Jax = Jackson Laboratory; Taconic = Taconic Farms Inc. IL-4-/- = BALB/c-Il4tm2Nnt/J 
(n=5); IL-4Rα-/- = BALB/c-Il4ratm1Sz/J (Jackson n=3; Taconic n=5), and STAT6-/- C.129S2-Stat6tm1Gru/J 
(n=5).  

An alternate mechanism of modulating IL-4 signaling in SARS-CoV infections independent of 

host genetic factors takes advantage of the soluble IL-4Rα (sIL-4Rα), a naturally occurring isoform which 

is capable of binding and inhibiting IL-4 in a species-specific manner [237-239]. We introduced three 

soluble IL-4Ra genes into the mouse-adapted SARS-coronavirus genome in place of the accessory proteins 

ORF7a/b, as previously described [240]. The three soluble IL-4Rα sequences are derived from the BALB/c 

mouse, the C57BL/6 mouse, and the Rattus norvegicous genomes. IL-4 signaling through the IL-4 receptor 

is heavily species specific, so while the two mouse IL-4 receptors have small differences in binding affinity 

to BALB/c or C57BL/6 IL-4, the rat sIL-4Rα virus will serve as a negative control for mouse pathogenesis 

studies and none of the three receptors will be capable of binding human IL-4 [239,241]. We anticipate that 
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expression of sIL-4Rα will attenuate IL-4 signaling pathways and allow us to directly modulate, and 

therefore assess, the role of IL-4 signaling in SARS-CoV infections.  

5.3. Live attenuated vaccine studies 

Despite the relative ease of production, the whole inactivated virus vaccines assessed to date 

display limited protection from heterologous challenges or in aged animal models, and may induce 

nonprotective or enhancing immune responses in subsequent viral challenges [159]. In contrast to whole 

inactivated virus formulations, we recently demonstrated that a live-attenuated low-fidelity strain of SARS-

CoV provided protection in both aged and immunocompromised mouse models with no evidence of 

reversion to virulence [242]. This live-attenuated formulation takes advantage of the nsp14 3’→5’ 

exoribonuclease (ExoN), a protein required for high-fidelity replication and conserved across the 

coronavirus family [13]. We demonstrated that inactivation of the ExoN function in the mouse-adapted 

SARS-CoV (MAwt) background resulted in a virus (MA-ExoN) with attenuated pathogenesis in both 

young (10 week) and aged (14 month) BALB/c mice, with viral titers cleared by day 4 post-infection. 

Additionally, MA-ExoN did not revert to virulence or lose the attenuator phenotype after either 8 passages 

in aged BALB/c mice or after persistence for 30 days in SCID mice. Vaccination of aged mice with both 

low (102.5 pfu) and high (104 pfu) doses of MA-ExoN provided complete protection from a lethal 

challenge of MAwt, with no detectable titers at 2 days post-infection and high serum neutralization of the 

challenge virus.  

 

Figure 5.2: MA-ExoN vaccination protects from lethal challenge.  

(a,b) Low-passage MA-ExoN and mock (PBS) vaccinations of 12-month-old female BALB/c mice 
followed by lethal challenge with MAwt. (a) Weight loss in challenged mice. Dark circles, 104 PFU MA-
ExoN vaccination; white circles, 102.5 PFU MA-ExoN vaccination; dark triangles, PBS vaccination. Error 
bars indicate s.d. (b) Lung titers at day 2 after challenge. ExoN was given at a 2.5 log (102.5 PFU) 
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vaccination. The mean titer is indicated by a bar in each group. (c) Fifty-percent plaque reduction 
neutralization titer (PRNT50) assay using sera from PBS-vaccinated and MA-ExoN–vaccinated mice to 
neutralize MAwt. Reciprocal dilutions capable of effecting 50% plaque reduction are shown by circles; 
mean reciprocal dilutions are indicated by a bar for each group. The limit of detection for each assay, if 
given, is indicated by a dashed line. Determination of viral neutralization antibody titers in mouse 
sera: Mouse sera were heat inactivated for 30 min at 55 °C and then serially diluted to 1:100, 1:200, 1:400, 
1:800 and 1:1,600 in PBS to a volume of 125 µl. Next, 125 µl of PBS containing low-concentration MAwt 
(40 PFU) or high-concentration MAwt (240 PFU) was added to each serum dilution. The virus-serum 
mixtures were incubated at 37 °C for 30 min. After incubation, virus titers of the mixtures were determined 
by plaque assay as described [101]. We then calculated the PRNT50 values, the serum dilutions at which 
plaque formation was reduced by 50% relative to that of virus stock not treated with serum. 

 

5.4. Iterative development and characterization of anti-spike antibodies 

Monoclonal antibodies have immense potential for the treatment of emergent viruses as they 

provide immediate protection, can be rapidly generated to respond to shifts in antigenicity, and can be 

readily used in hard-to-vaccinate populations, such as the elderly. In Chapter 3, we describe a series of 

collaborative experiments iteratively characterizing anti-RBD single chain fragment variable (scFv) and 

monoclonal antibodies (mAbs) designed to broadly and potently neutralize SARS-CoV and variants of the 

epidemic strain. We identified antibodies that were either escape resistant, requiring the virus adopt 

multiple concurrent substitutions to resist neutralization, or were broadly neutralizing, capable of 

preventing replication for viruses expressing the S proteins from zoonotic and human strains sampled from 

throughout the course of the epidemic. However, no single Ab was both escape resistant and broadly 

neutralizing, and escape variants to some of the broadly neutralizing antibodies displayed enhanced 

pathogenesis in mice. These studies extended our understanding of the RBD as an anti-viral target of 

neutralizing antibodies, deeply characterized the 80R epitope through the use of multiple derivative 

antibodies, and identified potential risks of single antibody therapy targeting a receptor binding epitope. 

Importantly, these studies established a platform of antibody development targeting a key neutralizing 

epitope of a betacoronavirus spike (S) protein, and will provide tools for the development of therapeutics 

for emergent coronaviruses. 

The development of multiple derivative Abs targeting the same 80R epitope allowed for us to test 

whether a convergent combination of mAbs could prevent viral escape. Selecting an 80R-escape virus 

(D480G substitution) followed by selection with the broadly neutralizing Fm6 mAb led to extinction of the 

virus, while co-selection with both 80R and Fm6 readily generated an escape virus with a single 
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substitution, N479T. The successful escape from a combination protocol demonstrates that the RBD is 

sufficiently plastic to allow escape from multiple antibodies targeting the same epitope, although this may 

be a limitation of using two antibodies with only minor differences in the binding interface with the RBD. 

Additionally, the failure of the sequential antibody selection protocol, despite the success of the 

combination protocol, suggests that the viral extinction may have resulted from a starting population with 

limited diversity, rather than an intrinsic inability of the RBD to accommodate both the 80R-escape 

(D480G) and Fm6-escape (Y436H) substitutions. Several of the combinatorial escape viruses described in 

Chapter 4, including CEV-6, CEV-7, and CEV-10, demonstrate that a combination of these two escape 

substitutions are viable. Additionally, the high affinity scFv Ab Sk4 provided direct evidence that the RBD 

can accommodate multiple substitutions in response to antibody pressure, selecting for an escape virus with 

two substitutions, N479I and D480Y. It is notable, however, that two antibodies targeting a highly 

overlapping epitope, as when the antibodies are derived from the same parent antibody, allowed for a single 

substitution to provide escape from both antibodies. We anticipate that future studies will characterize 

divergent combination therapeutic cocktails, combinations of mAbs which target distinct non-overlapping 

regions of the RBD or that target both the RBD and a conserved region of the S2 domain.   

The escape variants to second and third generation 80R-derivative mAbs demonstrated enhanced 

pathogenesis in mice, providing direct evidence that antibody pressure on the receptor interface can select 

for enhanced receptor-binding and emphasizing the importance of extensively characterizing antibody 

escape variants. These studies emphasize that mAbs targeting the RBD present a low barrier to escape for 

the virus, and future development should include a cocktail of mAbs targeting different epitopes within the 

RBD; particularly if neutralization escape variants might exhibit enhanced pathogenesis. These studies of 

multiple generations of antibodies and antibody escape variants, demonstrating dual substitutions, 

substitutions at contact interface sites, and altered pathogenesis profiles, prompted us to evaluate the 

plasticity of the RBD and the predictability of neutralization phenotypes with the generation of 

combinatorial escape viruses (CEVs). 

5.5. Combinatorial Escape Viruses  

Neutralizing antibodies against SARS-CoV largely target the receptor binding domain (RBD) of 

the Spike glycoprotein. Escape from antibody neutralization is associated with single substitutions, dual 
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substitutions, or even changes in contact interface sites along the RBD. The studies described in Chapter 4 

assess the plasticity of the RBD, evaluate available tools for predicting stability of the variant viruses, and 

explore the interplay between multiple escape-associated substitutions. Detailed characterizations of 

antibody neutralization tracts will assist in the rational selection of combinatorial antibody therapeutics.  

We note that the microneutralizations required much higher antibody concentrations than in some 

initial neutralizations of pseudovirus infections (i.e. 60ng/mL for 80R to neutralize a Tor2-pseudovirus, vs 

6.25ug/mL to neutralize Urbani, which has the same RBD as Tor2) [168]. Further, the competitive index 

for the mAb combination s227.14+s230.15 suggested no antagonism between the two antibodies (Figure 

4.9), despite evidence of competition in a bioassay incorporating biotinylated antibodies and immobilized 

S-glycoprotein [42]. In contrast, the competition assays described here were conducted with live virus and 

unmodified antibodies. These assay differences in calculated EC50 and IC50 values may be the result of 

structural display differences between immobilized S, pseudovirus, and live virus, emphasizing that the 

method of S presentation can vary between assays with measurable differences in outcome. Similarly, 

despite the concerning claims of enhancement of GD03 pseudovirus infection by anti-epidemic antibodies 

[243], no evidence of antibody-induced enhancement was demonstrated in subsequent studies with live 

virus, emphasizing the limitation of pseudotype assays and encouraging the use of live virus for verification 

where possible [88]. 

5.5.1. Future directions and ongoing studies 

The 9 viable CEVs are powerful tools for assessing available structural prediction models, the 

plasticity of the RBD, the complex coordination between neutralization epitopes, and the impact of RBD 

substitutions on receptor binding and pathogenesis. Our initial characterizations of the viruses are described 

in the above manuscript, but ongoing studies will likely explore the pathogenesis of the viruses and conduct 

more detailed fitness evaluations. Additionally, as these studies identify candidate mAbs for use in 

antibody cocktails, we will utilize a diversified viral stock generated from the low-fidelity MA-ExoN 

attenuated vaccine strain to select for rare escape variants. These studies will extend our understanding of 

the functional impacts of antibody escape on the RBD and spike, and will better inform our efforts to 

develop both potent and broadly neutralizing cocktails of antibodies resistant to viral escape.  
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 PATHOGENESIS STUDIES 

Preliminary pathogenesis analyses were conducted with four of the CEVs in young BALB/cJ 

mice. Numbers were small (n=3 per group), but CEV-7 may have an increased pathogenesis compared to 

the MA15 5-set backbone strain.  Future studies will utilize mouse lines with enhanced weight loss in order 

to better identify attenuated strains, and will expand the numbers and add additional characterizations, 

including lung viral titer.    

 

 

Figure 5.3 Morbidity of 4 CEVs in young mice.  

Young BALB/cJ mice, 10 weeks of age, from Jackson Labs were infected with 105pfu of MA15, CEV-2, 
CEV-6, CEV-7, or CEV-8 (n=3 per group). MA15 contains 6 substitutions across the genome that confer 
lethality in young BALB/c mice, one of which is the Y436H substitution in S. CEVs were constructed on a 
5-set MA15 backbone, including the Y436H substitution causes ~10% weight loss, as do the two CEVs 
containing the Y436H substitution, CEV-2 and CEV-6. CEV-8 displays an attenuated weight loss 
phenotype, as expected, but CEV-7 may have an enhanced weight loss phenotype comparable to the viruses 
containing the Y436H substitution. 

 

 FITNESS CHARACTERIZATIONS. 

Initial characterizations of CEV growth phenotypes on three cell types (Vero E6, humanACE2-

DBT, and civetACE2-DBT cells) demonstrated that the 9 viable viruses grew to comparably high titer on 

Veros. Growth on humanACE2-DBTs differentiated 4 attenuated viruses from the 5 viruses that grew to 

peak titers comparable to wildtype. The Vero (African green monkey) ACE2 molecule is identical to 

human ACE2 across the RBD binding domain, but ACE2 expression is more highly expressed on hACE2-

DBTs, leading us to hypothesize that some of the CEVs encode S-RBDs with receptor concentration 

dependent attenuation [223]. A more detailed fitness analyses would be required to identify any CEVs with 

CEV pathogenesis in young BALB/cJ
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impaired fitness relative to wildtype. A full analysis of relative fitness will require competitive coinfections 

and passage, which anticipate will be conducted in future experiments for select viruses of interest. It is 

likely that even fitness–impaired viruses will evolve compensatory mutations during in vitro or in vivo 

passage. However, the mutation frequency of coronaviruses is lower than other viruses due to ExoN, a 3’ to 

5’ exonuclease activity that functions in a likely RNA proof-reading complex [13]. 

Finally, most attempts to generate escape variants from a two-antibody cocktail extinguish the 

virus, but we hypothesize that utilizing a highly diverse viral swarm, rather than the limited variation of a 

clonal lab stock, will allow us to accurately identify possible escape substitutions. We proposed that the 

s227.14 + s230.15 combination will be both broadly neutralizing and resistant to escape, as both are 

broadly neutralizing, they do not appear to compete in co-neutralization assays, and s227.14 does not have 

any known escape substitutions on the epidemic (Urbani) backbone. The highly diverse viral swarm we 

propose as the starting stock is an amplified viral stock from the lung of a SCID mouse persistently infected 

with MA-ExoN for 30 days [242]. SCID mice do not clear the MA-ExoN virus, and plaques sequenced 

from the MA-ExoN persistently infected mice had a 9.6-fold higher mutation accumulation compared to 

the MAwt virus, including mutations in the S gene. We propose that the use of this diversified viral stock 

will allow us to select rare escape variants to a broadly neutralizing cocktail (s227.14+230.15), a 

convergent cocktail (Fm6+Sk4), and the individual antibodies s227.14 and s230.15. These studies will 

identify key residues in the binding epitopes of broadly neutralizing antibodies, and will demonstrate robust 

models for assessing antibody neutralization strategies.  

5.6. SARS-Coronavirus  

The study of SARS-CoV and the potential therapeutics to target coronaviruses has taken on new 

urgency following the recent isolation and characterization of a novel human betacoronavirus, Middle East 

Respiratory Syndrome Coronavirus (MERS-CoV) [158]. This new CoV shares many similarities to SARS-

CoV, including clinical presentation, classification as a member of the betacoronavirus genus, and a 

presumed bat reservoir [158,228]. Importantly, the decade of study on SARS-CoV has provided a valuable 

foundation for the rapid characterization of novel coronaviruses and potential therapeutics. For example, 

the receptor for MERS-CoV has been identified, and evidence that anti-S antibodies are neutralizing is 

already accumulating [244]. Antibody generation and characterization has advanced to the point that 
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several antiviral monoclonal antibodies are on a promising path towards approval. We anticipate that 

monoclonal antibodies neutralizing the spike of MERS-COV, and cocktails capable of neutralizing both 

MERS-CoV and SARS-CoV, will be rapidly generated and characterized. Additionally, bioinformatics 

analyses are exponentially improving, and homology modeling is being used to predict promising antibody 

binding sites [245]. Finally, the utility of coronavirus infectious clones in combination with increasingly 

cost-effective synthetic biology allows for the rapid generation and characterization of recombinant 

coronaviruses. This rapid and rational production can allow for the generation of viruses designed to 

elucidate viral pathogenesis mechanisms, to iteratively inform structural biology predictions, or to generate 

vaccines informed by conserved coronavirus features.  
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