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ABSTRACT 

Bo He: Evaluation of the diagenetic role of iron as a sulfide buffer at Cape Lookout 
Bight, North Carolina (USA) 

(Under the direction of Stephen Meyers and Marc Alperin) 
 

Organic matter accumulation in marine environments is influenced by a range of 

factors, including primary production and the degree of subsequent biochemical 

degradation. Iron availability has important impacts on primary production rate and thus 

it has been argued that an increase in iron supply to the oceans could result in enhanced 

primary production and organic matter burial. This study investigates an alternative 

hypothesis, designated the “Sulfide Buffer/Phosphorous Trap Hypothesis”, through a 

series of “iron addition” macrocosm experiments with modern sediments collected from 

Cape Lookout Bight (North Carolina). Results of the incubation experiments are used to 

evaluate the hypothesis that an increase in iron delivery to the sediments can buffer the 

accumulation of hydrogen sulfide within pore water, enhance the oxygen penetration 

depth and degree of bioturbation/bioirrigation, and increase the remineralization of 

organic matter. This biogeochemical hypothesis provides a mechanism that could link 

iron concentration and organic matter burial in ancient marine environments. 
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Introduction 

 

Past studies suggest that iron delivery to the ocean can serve as an important control 

on primary production rate (Martin, 1990), and potentially on organic matter burial rate 

(e.g., Leckie et al., 2002). Iron is an important micronutrient for living systems, 

particularly in the photosynthetic process. Mesoscale iron enrichment experiments 

(Martin et al., 1994; Coale et al., 1996) conducted in the high nutrient low chlorophyll 

regions of the ocean have demonstrated a relationship between the addition of iron and an 

increase of primary production. In this study we will test an alternative hypothesis 

regarding to the role of iron in driving marine biogeochemistry and organic matter burial: 

that an enhancement of iron delivery to marine sediments could result in decreased 

organic matter burial rate through biogeochemical linkages that impact early diagenetic 

organic matter remineralization. This hypothesis is designated the “Sulfide 

Buffer/Phosphorous Trap Hypothesis” (Meyers, 2007). 

 

Background 

 

The production, remineralization, and burial of organic matter are essential controls 

on atmospheric carbon dioxide and oxygen levels (Arthur et al., 1985; Berner and 

Canfield, 1989) throughout geologic time, and have also been linked to the evolution of 

metazoans. The fate of organic matter is also important for studying global climate 
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change (Arthur et al., 1988), as well as for understanding petroleum generation. For these 

reasons, much research has focused on evaluating the fundamental controls on organic 

matter production, preservation and burial (Demaison and Moore, 1980; Ibach et al., 

1982; Pedersen and Calvert, 1990; Hedges and Keil, 1995; and many others). 

 

The principle source of organic matter that accumulates in the marine sedimentary 

environment is phytoplankton (Demaison and Moore, 1980), composed mainly of single-

cell algae living in the euphotic zone, the uppermost layer of the water column where 

light can penetrate and support photosynthesis. Limiting factors for primary production 

besides light include the availability of nutrients, such as carbon dioxide, nitrate, 

phosphate, and iron. Another source of photosynthetically-derived organic matter to the 

marine environment is via terrestrial input, transported by rivers and streams, largely 

dependent on the amount of rainfall on landmasses (Demaison and Moore, 1980). 

 

After it is produced, organic matter is inherently thermodynamically unstable and 

will transform into a more stable state by serving as the energy source for living 

organisms. Bacterial degradation proceeds quickly and efficiently in oxic water. The 

overall degradation process by aerobic bacteria can be illustrated as: 

€ 

CH2O+O2 →CO2 + H2O. 

When oxygen supply in the water is exhausted, organic matter degradation will 

continue by dysaerobic bacteria using MnO2, nitrate and iron oxides almost 

simultaneously as the oxidants (or, electron acceptors, a more general term) by the 

simplified reactions (Froelich et al., 1979): 
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€ 

CH2O+ 2MnO2 + 4H + →CO2 + 2Mn2+ + 3H2O ; 

€ 

5CH2O+ 4NO3
− + 4H + → 5CO2 + 7H2O+ 2N2 ; 

€ 

CH2O+ 2Fe2O3 + 8H + →CO2 + 4Fe2+ + 5H2O. 

After MnO2, nitrate and iron oxide is consumed, the remineralization of organic 

matter will continue by the anaerobic process of sulfate reduction, which can be 

generalized as: 

€ 

2CH2O+ SO4
2− + 2H + → 2CO2 + 2H2O+ H2S . 

The least efficient and final step in anaerobic metabolism is methanogenesis; since a 

great deal of CO2 is accumulated due to previous processes, CO2 and organic acids are 

employed as oxidants for the final step. 

 

Of central importance to the present study, a byproduct of organic matter degradation 

by sulfate reduction is hydrogen sulfide (H2S), which is toxic to living aerobic organisms 

in the water column and sediments. Furthermore, the anaerobic degradation that occurs in 

H2S–rich environments is less efficient than aerobic decomposition (Demaison and 

Moore, 1980). For instance, in the Black Sea, one of the most representative euxinic and 

anoxic environment for organic matter preservation, about 80% of the original organic 

matter input is degraded within the top 200 meters of oxic water. The remaining 20% 

escapes into the anoxic, hydrogen sulfide enriched lower water column, where half of the 

organic material (10%) is further decomposed and recycled by anaerobic bacteria. 

Finally, about 5% of the original organic matter is solubilized in the anoxic water and 5% 

accumulates in the sediments (Demaison and Moore, 1980; Deuser, 1971). In contrast, 

under typical aerobic environment and open oceans, less than 0.5% of the organic matter 
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originally produced in the surface layer is buried and preserved (Demaison and Moore, 

1980). 

A number of factors other than primary production rate and oxygen availability can 

also impact the accumulation of organic matter, such as the sediment particle size and 

sedimentation rate (Ibach et al., 1982; Hedges and Keil, 1995). However, the two most 

common models for organic matter burial invoke either the development of stratified 

euxinic environments (Demaison and Moore, 1980) or changes in the primary production 

rate (Pedersen and Calvert, 1990). The hypothesis investigated in this study, termed the 

“Sulfide Buffer/Phosphorous Trap Hypothesis”, however, does not require either of these 

prerequisites. 

 

The Sulfide Buffer/Phosphorous Trap Hypothesis 

Figure 1 (from Meyers, 2007) intuitively illustrates how changes in iron input could 

affect and adjust the level of hydrogen sulfide in the sediments, the oxygen exposure time 

of organic matter and the degree of organic matter remineralization, assuming a constant 

organic matter input flux. In this conceptual model, Stage B (Figure 1B) is characterized 

by a decreased iron input, compared with an initial Stable Stage A (Figure 1A). The 

decrease of reactive iron input enables H2S to accumulate in the uppermost region of the 

sulfate reduction zone (since less is removed by reaction with iron) and enhances H2S 

diffusion into the overlying bioturbation zone. In response to the elevated H2S 

concentration, the depth of bioturbation/biodiffusion decreases, and the upper interface of 

the sulfate reduction zone (SRZ) shoals. Oxygen exposure time decreases due to the 

shoaling of the SRZ, allowing more labile organic matter to enter the SRZ and further 
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enhancing the production of H2S, yielding a positive feedback. Equally important, 

because the iron oxyhydroxide phases that are highly reactive in sulfidization are also 

highly efficient in scavenging phosphorous (Ruttenberg, 2003), a decrease in reactive 

iron delivery can enhance the phosphorous return flux into the water column to support 

photosynthesis. The net consequence of these biogeochemical interactions is a positive 

feedback that will accelerate shoaling the SRZ until it reaches another potential end 

member, such as the sediment-water interface (Stable Stage 2; Figure 1C). 

 

It has been previously demonstrated (Meyers, 2007) that in most modern marine 

environments, relatively modest quantities of iron could be sufficient to buffer the 

hydrogen sulfide accumulation, and that the kinetics of iron sulfidization is also rapid 

enough to remove sulfide as quickly as it is produced. Moreover, the concentration of 

iron within sediments throughout geological history is variable enough for iron to 

function as a primary control on organic matter burial, and may also have implications 

for Oceanic Anoxic Events (Meyers, 2007). 
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Figure 1. Proposed linkage between iron burial, hydrogen sulfide concentration, oxygen 

penetration depth, dissolved phosphorus flux and organic matter burial (the “Sulfide 

Buffer/Phosphorous Trap Hypothesis”). Arrow sizes reflect the magnitudes of the fluxes. 

OM = organic matter, SR = sulfate reduction, MAR = mass accumulation rate. All fluxes 

are purely illustrative, intended to convey the basic premise of the hypothesis. (Figure 

and caption, from Meyers, 2007) 

 

This Study 

 

This study develops a new experimental protocol for assessing organic matter burial 

and testing the role of iron as a sulfide buffer during early diagenesis by conducting a 

series of “iron addition” incubation experiments with modern sediments from Cape 

Lookout Bight (CLB, North Carolina, Figure 2). Cape Lookout Bight is a shallow coastal 

marine environment (< 8m) with an oxygenated water column, but organic-carbon rich 
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sediments dominated by sulfate reduction and methanogenesis. The specific hypotheses 

involved in the experiments are: 

 

Hypothesis 1: A modest increase in reactive iron concentration will buffer the hydrogen 

sulfide (H2S) accumulation in sediments from Cape Lookout Bight. 

 

Hypothesis 2: Increased buffering of H2S will increase the oxygen penetration depth and 

allow for higher degree of bioturbation/bioirrigation. 

 

This study includes one coring campaign and 5 “iron addition” incubation 

experiments. One site was chosen for sediment collection (A-1 in Figure 2). Our study 

introduces a new experimental methodology that involves using both oxygen 

microelectrode measurements and X-ray fluorescence scanning (details will be discussed 

in the Methodology section). Table 1 illustrates the basic procedure of these experiments. 

This study will specifically focus on the diagenetic role of iron as a buffer for pore water 

sulfide, and its impacts on oxygen penetration and bioturbation/bioirrigation. 
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Figure 2. Map of the study area, Cape Lookout Bight (Outer Banks, North Carolina) with 

field sites A-1, C-1, C-2 and C-3 identified (Modified after Haddad and Martens, 1987 

and Bartlett, 1981). 

 

Methodology 

 

Core collection 

50 cm depth side-by-side diver-taken cores, as well as the overlying water, were 

collected from site A-1 on April 30th, 2008 (5 cores, Figure 2). Core tops, together with 2 

cm of overlying water, were covered by rubber caps and kept at ambient temperature (est. 

30 °C) during transportation to the core lab at UNC. The inclusion of 2 cm of overlying 
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water helped to keep the integrity of the surficial sediment layer during transport, and an 

air hole in the caps sustained oxygen supply into the water and prevented anoxia from 

developing. 

 

Synthetic sediment preparation 

10 wt% of samarium oxide (Sm2O3) was added to clay (bentonite) as a tracer 

element to assess bioturbation. To adsorb the samarium onto the clay particles, first, an 

excess of hydrochloric acid (1N HCl) was used to dissolve the samarium oxide, followed 

by the addition of sodium hydroxide (1N NaOH) to neutralize the solution, while 

carefully monitoring pH. Various amounts (3-6 elemental weight percent out of total 

sediment mass) of ferric iron (in the form of hematite powder, Fe2O3) were then added to 

the synthetic sediments. After thorough mixing, the sediments were rinsed and 

centrifuged three times with Milli-Q water to remove extra sodium chloride (NaCl) 

produced during acid neutralization. Then the sediments were dried in the oven at 50 °C 

for 48 hours, crushed into fine powder, and mixed with seawater collected from Cape 

Lookout Bight. 

 

Treatments 

The five sediment cores were subjected to five different treatments. Two cores were 

chosen as controls: one (core 1) with no addition, and the other (core 2) with an addition 

of clay and Sm. Three other cores were prepared with clay, Sm and extra iron addition. 

The synthetic sediments were added on top of the cores as an additional sediment layer 
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(approximate thickness: 0.5 cm) after removing the seawater from the macrocosm 

chamber down to the sediment-water interface. After synthetic sediment addition, 

seawater from CLB was carefully added back to the macrocosm chamber. The overlying 

water was kept oxygenated by bubbling air into the water throughout the experiments. 

After the macrocosm experiments were initiated, sediment cores were left in the 

laboratory at ambient temperature (est. 23 °C) to attain equilibrium for one week, covered 

by a thick lid that prevented light penetration. The overlying seawater was renewed every 

week (after OPD measurements; see below) to avoid the build up of organic matter 

remineralization products. 

 

Assessment 

The impact of iron concentration on oxygen penetration depth and 

bioturbation/bioirrigation is assessed using (1) oxygen microelectrode measurements and 

(2) X-ray fluorescence scanning of subcores. The oxygen microelectrode employed in 

this study has a 100-micron diameter tip and was calibrated in oxygen-saturated seawater 

before measurements. The microelectrode was mounted onto a micromanipulator and 

lowered into the sediments to measure in-situ pore water oxygen concentration. The 

depth interval step size of the microelectrode measurements varied from a few microns to 

a few millimeters depending on the oxygen gradient, with a goal of defining the detailed 

shape of the oxygen profile. We targeted possible burrows and other interesting features 

(e.g., organic matter piles), as well as “background” values from non-burrowed surface 

area. 
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The incubation experiments lasted for three months, including four rounds of OPD 

measurements (measurement dates are reported in the following text). Each round of 

OPD measurements took five days on average to complete. After the fourth round of 

OPD measurements was complete, the overlying seawater was removed and the cores 

were cooled in the refrigerator at 10 °C for 8 hours before they were subcored and 

scanned. X-ray fluorescence scanning evaluated the vertical redistribution of samarium to 

estimate bioturbation. The sediment subcores were attached onto a flat measuring panel, 

which allowed lateral movement to evaluate multiple vertical transects. The scanning 

data was acquired at one millimeter resolution (along core), and replicate scans were 

performed at one centimeter resolution. XRF analyses utilized a 10 kv/1000 uA XRF 

source setting, with an XRF detector count time of 90 seconds per measurement. 

 

Calibration 

The voltage measurements from the microelectrode are calibrated to oxygen 

concentration using two end points: (1) oxygen-saturated seawater at known temperature, 

and (2) anoxic pore water at depth in the incubation experiments (the depth in the 

sediments where voltage plateaus and does not further change is assumed to have zero 

oxygen concentration). For the X-ray fluorescence analysis, the samarium tracer scan 

results are XRF counts that represent relative samarium concentration within the 

sediments. Calibration was performed as follows to convert XRF counts into Sm 

concentration. A series of clay-based synthetic sediment samples, with identical 

concentration of iron (3 wt%) but different percentage of samarium addition (1-9 wt%), 

were analyzed to develop a calibration equation for Sm concentration. The results are 
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plotted in Figure 3 and a linear relationship is exhibited between XRF counts and 

samarium weight percentage. This equation is used to calibrate Sm concentration (wt%) 

in the sediments, given the instrumental XRF counts. 

 

 

Figure 3. Scan results for synthetic sediment samples with known composition, exhibited 

strong (high R2 value, forced through origin) and positive linear correlation between 

instrumental X-ray fluorescence counts and in-situ Sm concentrations (wt%). 

 

Statistical Analysis Background 

In any scientific problem, two aspects of statistical analysis are commonly employed 

after data collection is finished: (1) initial data analysis (or, descriptive statistics) and (2) 

inferential statistics. Descriptive statistics includes graphical display of the data, 

summarizing and organizing data; while inferential statistics focuses on reaching 
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conclusions and making decisions via, for example, linear regression analysis as well as 

hypothesis testing. Regression analysis proposes a model to explain the relationship 

between a single variable Y (response, output, or dependent variable) and other variables 

X1, X2, … Xp (predictor, input or independent variable); more importantly, the models can 

be used to explain effects of the predictor variables, describe data structure, or be used for 

prediction. It is important to note that the underlying “truth”, which could be simplified 

as: yn×1 = Xn×(p+1)β(p+1)×1 + εn×1, remains impossible to estimate directly, given a finite 

number of observations (in the equation listed above, Xn×(p+1) is the design matrix, β is the 

coefficient and εn×1 represents the error term). In our study, the response variable is 

oxygen penetration depth (OPD) and the predictors include elapsed time, addition of iron, 

and number of burrows and so on (details discussed in the following text). 

 

To estimate β, 

€ 

ˆ 
β  could be calculated by several criteria. The least square estimate 

(LSE) is one of the most commonly used criteria and has been widely applied in science, 

pharmacy, finance, sociology, and other fields. The goal of LSE is to minimize the square 

error: 

€ 

min
β

εi
2

i=1

n

∑ = εTε = (y − Xβ)T (y − Xβ); and the goodness of fit is usually assessed by 

the residual sum of squares (RSS): 

€ 

(yi −
ˆ y i)

2
i∑  and R2 value (a value between 0 and 1): 

€ 

R2 =1−
(yi −

ˆ y i)
2

i∑
(yi − y )2

i∑
=

(ˆ y i − y )2
i∑
(yi − y )2

i∑
. An R2 value close to 1 usually indicates good fit but 

is not always true because a wrong model might also yield high R2; on the contrary, a low 

R2 value doesn’t necessarily mean there is no relationship between response and 

predictors because it could be caused by a slight trend with high variance. As a result, 
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regression diagnostics have to be performed to determine the assumptions and fit of the 

model, such as checking unusual observations, multi-collinearity, normality, and error 

assumptions. 

 

It has also been proven by the Gauss-Markov Theorem that least square estimation is 

the Best Linear Unbiased Estimate (BLUE) among all the linear unbiased estimates 

(LUE), assuming a full rank design matrix and constant error. However, this standard 

assumption about the error term is sometimes violated since it is not always independent 

and identically distributed (i.i.d.), in which case other types of regression should be used 

instead. 

 

Transformation of the response and/or predictors can improve the fit of the model 

and correct for violation of model assumptions. Often times, we have more options in 

choosing the transformations on the predictors than on the response. The Box-Cox 

method is one of the most popular ways to determine a transformation on the response. It 

is specially designed for strictly positive dependent variables and allows some flexibility 

in choosing the transformation to identify the best fit of the data. The Box-Cox method 

transforms the response: 

€ 

y→ gλ(y) where the family transformation index by λ is: 

€ 

gλ(y) =
y λ −1
λ

,λ ≠ 0

log y,λ = 0

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
. 

The goal of this method is to choose an interpretable λ to maximize the likelihood profile, 

which is calculated as shown below assuming normality of error: 

€ 

L(λ) = −
1
2
log(RSSλ /n) + (λ −1) log yi∑ . 
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Transformation of the independent variables also provides improvements as well as more 

flexibility. Commonly used predictor transformations include Broken Stick Regression, 

polynomials, and regression splines, and so on. It usually takes experimentation to 

determine the appropriate transformation, and the transformed model should always be 

interpretable. In addition, not all the transformations are necessary and one should 

balance the goodness of fit and the models interpretability. 

 

Results and Discussion 

 

We collected four sets of OPD measurements (211 measurements in total) over a 

three-month period, and each individual set contains 10-14 oxygen profiles for each of 

the five cores. The profiles delineate changes in oxygen concentration from the well-

oxygenated water overlying the sediments, to the anoxic sediment pore water at depth 

(Figure 4). The blue profile in Figure 4 displays a typical non-burrowed “background” 

oxygen profile with different vertical zones. The diffusive boundary layer (DBL), located 

just above the sediment-water interface (SWI), is the region where oxygen concentration 

decreases linearly with depth. The SWI occurs at the depth where the oxygen 

concentration deviates from this linear trend (please refer to Appendix A). In this study, 

the oxygen depletion depth (ODD) is defined as the depth where oxygen concentration 

reaches less than 0.5% of the initial saturated oxygen concentration in the water column, 

while oxygen penetration depth (OPD) is the vertical thickness from the SWI to the 

ODD. 
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Figure 4. Oxygen profile measurements from the water column into the sediments. Blue 

profile represents a typical non-burrowed “background” oxygen profile, where different 

zonations (diffusive boundary layer = DBL, sediment-water interface = SWI, oxygen 

penetration depth = OPD, and oxygen depletion depth = ODD) can be identified. Red line 

represents oxygen profile from a burrowing area, where the oxygen penetration depth is 

greatly influenced by burrowing activities. 

 

Several methods are available to determine OPD (communication with Marc 

Alperin, refer to Appendix A). For the DBL and OPD calculations presented here, it is 
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assumed that the sediment surface is homogenous and generally even; however, in 

reality, this assumption is sometimes violated by biological activities (bioturbation, etc. ) 

(refer to the red profile in Figure 4). This problem can make it difficult to determine the 

location of the SWI in the oxygen profile, which is critical for the estimation of total 

OPD. Considering that all the profiles do not share an ideal oxygen depth profile (from 

water column to DBL to SWI), we have selected 45 profiles with easily identifiable DBL 

and SWI and calculated the average thickness of the DBL. The average DBL thickness is 

used to predict OPD by subtracting it from the total depth between top of DBL and ODD 

(

€ 

ODD −DBLTop −DBLAve), both of which are easily determined. We believe that 45 

profiles (21.3% of the population) are statistically sufficient to represent the total 211 

measurements, and the selected 45 oxygen profiles yield an average DBL of 1.21 ± 0.33 

mm (with 1 s.d.). The OPD measurements thus calculated yield detailed contour maps of 

oxygen penetration over time in each core. 
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Figure 5. Histogram of DBL thickness determined from the selected 45 oxygen depth 

profiles. The DBL data, with a mean value of 1.21 mm and standard deviation of 0.33 

mm, falls into the range of DBL from various marine environments (1-2 mm, Sarmiento 

and Gruber, 2005). 

 

Figure 6 displays OPD contour plots for the cores during each of the four 

measurement periods. Solid circles in the plots identify the position of each oxygen 

profile measurement, and the color indicates oxygen penetration depth. These contoured 

surfaces are generated using a minimum curvature spline (GMT, gmt.soest.hawaii.edu) 

interpolation between the measurement points. All plots share the same logarithmic color 
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scale, where cold colors (blue) represent shallow OPD and warm colors (red) represent 

deep OPD. Considering all the cores, the overall OPD averages 2.27 mm. 

 

In our discussion below, core 1 (no addition) and core 2 (addition of clay, Sm and no 

iron addition) represent controls for the OPD measurements. As the experiments proceed 

(left to right in figure 6), the general pattern of OPD in the control experiments becomes 

shallower (the colder color area expands), which is consistent with a decrease in 

bioturbation/bioirrigation through time. In contrast, core 3 (clay, Sm and 3 wt% iron 

addition) displays a reversed temporal pattern in OPD: (1) during measurement 3, it has 

the highest OPD (13 mm), compared to the overall average OPD of 2.27 mm; (2) In 

measurement 4, although certain extreme values disappear, the general pattern suggests 

deeper oxygen penetration. One possible explanation for the results observed in core 3 is 

that the added iron has buffered hydrogen sulfide in the pore water, enhancing 

bioturbation/bioirrigation. As a consequence, more oxygen penetrates into the sediments 

to fuel aerobic degradation and hydrogen sulfide accumulation. 

 

X-ray fluorescence scanning provides additional information about cores 2 and 3 

from another perspective. Figure 7 is a summary of fine-scan (1 mm step size) results 

from two adjacent vertical transects for each core (blue and red lines). The XRF counts 

on the top horizontal axis represent qualitative samarium concentration, while the bottom 

horizontal axis represents the calibrated weight percentage of samarium in the sediments. 

The Sm effective redistribution depth (ERD), which also represents the depth of 

bioturbation, is this thickness from the SWI (with highest Sm concentration) to the depth 
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where it approaches the background noise level.  The Sm ERD in control core 2 is close 

to 6 mm (±1.5), while the Sm ERD in core 3 (with 3 wt% addition of iron) is approaching 

12 mm (±0.5). The comparison between core 2 and core 3 is in good agreement with 

measured oxygen penetration depths; increased OPD is associated with an increase in Sm 

ERD, which could be explained by the mechanism of the Sulfide Buffer/Phosphorous 

Trap Hypothesis. More importantly, it also suggests that we can use the OPD as a proxy 

for bioturbation depth. Furthermore, since aerobic respiration is thermodynamically the 

most efficient degradation pathway for organic matter, it is reasonable to assume that 

OPD should exert a control on organic matter burial rate (Hartnett et. al, 1998). 

 

In contrast to core 3, the results from core 4 (clay, Sm and 4.5 wt% iron addition) 

and core 5 (clay, Sm and 6 wt% iron addition), do not show any temporal increase in 

OPD (Figure 6). Instead, these two cores share a similar trend as core 1 and core 2, and 

the OPD decreases through time. The Sm ERD for core 4 and 5 averages 5.5 mm (±2) 

and 4 mm (±2.5), respectively. OPD measurements and the Sm ERD are in good 

agreement and also confirm that this methodology, indeed, can detect 

bioturbation/bioirrigation from two different perspectives. However, the results from core 

4 and core 5 indicate that the variance in OPD cannot be explained solely by various iron 

treatments, and that other variables also need to be taken into consideration. 

 

In this regard, since the Sulfide Buffer/Phosphorous Trap Hypothesis relies on iron 

buffering sulfide to enhance bioturbation/ bioirrigation, the number and type of aerobic 

metazoa (e.g., worms) in the sediments becomes very essential to our discussion. In our 
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study, we have not quantified the number and type of organisms directly. However, we 

did observe that core 2 and core 3 had the largest number of burrows and actively digging 

macrofauna. Additionally, the number and distribution of burrows in these two cores may 

be “saturated” (maximized) for the core size (10 cm diameter) in this study. Thus, it is 

very likely that these two cores have fairly adequate and almost equal amount of 

metazoa. In contrast, core 4 and core 5 didn’t have as many burrows or worms and they 

seemed to have less disturbed surface sediments from the start of the experiments. As a 

consequence, even though all the cores were collected from exactly the same geographic 

location, different number of metazoa could explain the observation that core 4 and core 

5 do not show a temporally increasing pattern of OPD, or elevated Sm ERD, as was the 

case in core 3. On the contrary, core 4 and core 5 do have deeper OPD than core 1 at the 

end of the OPD experiment, which could be due to the role of iron addition as a buffer for 

sulfide. It is also reasonable to speculate that different types of metazoa could also lead to 

different OPD and Sm ERD. Multiple factors that could influence OPD and Sm ERD are 

further investigated below using statistical approaches to evaluate the data.  
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Figure 6. OPD contour map summary, with core information to the left and date of 

measurement at the bottom of each column. Dark solid circles represent OPD 

measurements; the coordinates display spatial distribution of OPD measurements, where 

the origin is the center of the sediment cores. Color scheme to the right indicates OPD: 

warm colors represent deeper OPDs and cold colors represent shallower OPDs, 

respectively. 
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Figure 7. X-ray fluorescence scan results from core 2-4. In each plot, blue and red lines 

represent adjacent vertical transects. The XRF counts on top axis represent relative 

samarium concentration, while the bottom axis represents the calibrated weight 

percentage of samarium within the sediments. Count time was 90 seconds per 

measurement; voltage and current were set to 10 kv and 1000 uA, respectively. 
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Statistical Analysis 

 

Initial Data Analysis 

In this regression study we fit a statistical model to predict oxygen penetration depth 

(OPD, millimeters), the response (or, dependent variable). Potential predictors (or, 

independent variables) include time (days), number of burrows, burrow/nonburrow (0/1), 

and iron addition (weight percentage). Figure 8 displays a scatter plot of all possible data 

pair-correlations in a variance-covariance fashion. 

 

Statistical Regression Approaches 

Several regression methods have been applied to fit models to our data, and the 

results are listed in Table 2. Ordinary least square (OLS) regression is the most common 

model and the assumption for OLS is that the data has an independent and identically 

distributed (i.i.d.) random error term. Estimates and standard errors of the coefficients are 

listed in the first two columns, followed by calculated statistics and p-values. The null 

hypothesis and the alternative hypothesis are set as: 

 

H0: the coefficient of the variable is equal to 0, or, the variable is insignificant; 

H1: the coefficient of the variable is not equal to 0, or, the variable is significant; 
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Figure 8. Scatter plots of all data. Circles represent measurements and all the variables 

are listed along the diagonal of the matrix. 

 

A t-test (or, Students t-test) is performed to calculate the t-statistic and the p-value 

(Table 2). The p-value yields the probability of attaining the observed measurement (or a 

more extreme value), given that the null hypothesis is true, and it is compared with α 

(type I error, which represents the error of rejecting the null hypothesis given that it is 

true). The α values set for these statistical tests are usually different from case to case, 

depending on how “risky” the analyst is willing to be when rejecting the null hypothesis. 

In cases where p-value < α, it indicates that at the confidence level of 1-α, it is 

statistically reliable to reject the null hypothesis. On the other hand, when p-value > α, 
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statisticians either choose to perform another test or accept the null hypothesis that the 

particular variable is statistically insignificant. 

 

In our OLS model (OLS-1), four variables (time, number of burrow, 

burrow/nonburrow, iron addition) serve as potential predictors and α (the type I error) is 

set to be 0.05. The results from OLS suggest that: (1) the dependent variable (OPD) is 

positively correlated with all the four independent variables; (2) at 95% confidence level, 

we can reject the null hypothesis that variables “number of the burrows” and “iron 

addition” are not significant, and thus infer that these two variables are related to the 

variance in OPD; (3) if we were willing to raise the tolerance of α (the type I error), we 

could also accept that “time” is a significant variable in our model, however, 

“burrow/nonburrow” is apparently insignificant, and thus it can be eliminated from the 

improved least square model (OLS-2). 

 

However, the total r-square value (0.2453) from the OLS model (OLS-2) is fairly 

low, which, as mentioned earlier, could be caused by a slight trend with high variance or 

violation of the model assumption (i.i.d. error). The residuals from the model are plotted 

against fitted values, and the plot (Figure 9) displays a special and unique structure 

known as heteroscedasticity, which indicates non-constant residual variance. In addition, 

we know that the model only has a slight (not steep) trend (low regression coeffieients) 

and relatively high variance, so the low r-square value is mostly likely caused by both 

non-constant variance (violation of OLS assumption) and high variance (data scattering). 
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Figure 9. Residuals plotted against fitted value for ordinary least square model (OLS-2). 

 

Different procedures can be taken to improve the fit of the model and to determine 

the best transformation of the output (e.g., the Box-Cox method) and the input (e.g., 

polynomials). The lambda value from the Box-Cox method is selected to maximize the 

likelihood profile (Figure 10), as discussed earlier in the text. Analysis of the OPD data 

indicates an optimal lambda of 0.35, and thus, it is reasonable to choose 0.3 (the cubic 

root) as the most appropriate transformation for the output for the sake of interpretability. 
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Figure 10. Box-Cox transformation of the dependent variable (OPD). The right panel is a 

zoom in of the left panel, both of which indicate an optimal lambda, 0.36, to maximize 

the likelihood profile. 

 

This transformed model (OLS-3), however, still does not have a satisfying r-square 

value (0.2324). We also tried to refit a model (OLS-4) with a transformation on both the 

dependent variable (Box-Cox method) and the independent variables (polynomials, the 

order of 3), but the r-square value still isn’t substantially higher (0.2866). However, 

although the r-square value is not improved, both of the regression models indicate that 

“number of burrows” and “iron addition” are two significant variables (p-value < α), 

which is in agreement with previous OLS models. More importantly, the plots of 

residuals against fitted values from both models still suffer from some heteroscedasticity, 

although reduced (Figure 11). As a result, to overcome the problem of the i.i.d. error 
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assumption, instead of fitting least square models, this study has employed another type 

of robust regression, least absolute deviation (LAD). 

 

Figure 11. Residuals plotted against fitted value for ordinary least square model 3 (left 

panel, with Box-Cox transformation) and 4 (right panel, with Box-Cox transformation 

and polynomials). 

 

The goal of least absolute deviation (LAD) is to estimate 

€ 

ˆ 
β  by minimizing the 

€ 

min
β

εi
i=1

n

∑ = y − Xβ , instead of minimizing 

€ 

min
β

εi
2

i=1

n

∑ = εTε = (y − Xβ)T (y − Xβ) . Table 2 

lists estimates and confidence intervals of the coefficients from the LAD model. The 

confidence interval (CI) is used to indicate the reliability of a coefficient estimate instead 

of only using one single value (also listed in the table). The width of confidence interval 

(CI) is based on the level of confidence (1-α) and the CI will be widened with higher 

confidence level. One intuitive way to understand the importance of confidence intervals 

is that if the origin (0) is included in the CI, it implies that, at the confidence level of 1-α, 
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the particular variable is considered to be statistically insignificant. In this study, as 

mentioned above, α (the type I error) is set to be 0.05 and thus the confidence level is 

95%. As shown in the results, the OPD is positively correlated with “time”, “number of 

burrows” and “iron addition”; more importantly, at the confidence level of 95%, “time”, 

“number of burrows” and “iron addition” are significant variables and should be 

included in our model. 

 

The results from the statistical analyses conducted above demonstrate the 

significance of “time”, “number of burrows” and “iron addition” in our model, and thus 

suggest a critical role of iron in controlling the oxygen penetration depth (OPD). 

However, since manual oxygen microelectrode measurement is very time consuming, we 

have only obtained a finite number of measurements (211 profiles for 5 cores) during a 

limited period of time. Other potential variance may also exist that our data and 

regression model is not yet able to detect. Thus, we do not expect our model to be 

extremely thorough and powerful as a general predictor for the marine sediments from 

Cape Lookout Bight.  However, the statistical analyses do guide us to perform one more 

additional assessment of the data that is quite revealing, discussed further below (Figure 

13). 

 

 

 

 

 



 31 

Discussion and Conclusion 

 

This study has developed a new methodology for assessing the biogeochemical role 

of iron as a sulfide buffer during early diagenesis. Our initial motivation was to test the 

“Sulfide Buffer/Phosphorous Trap Hypothesis” with modern sediments from Cape 

Lookout Bight, a sedimentary environment that is dominated by sulfate reduction and 

methanogenesis. The macrocosm “iron addition” experiments combine both oxygen 

microelectrode contour mapping and X-ray fluorescence Sm-tracer scanning, which 

provides “snapshots” of the biogeochemistry in the sediments through time. The results 

from microelectrode measurements and XRF scans, which exhibit similar magnitude, 

compare very well. This suggests that our methodology can evaluate marine 

biogeochemistry from two perspectives, and that oxygen penetration depth (OPD) and 

bioturbation (Sm ERD) are closely coupled (Figure 12). 

 

In this study we explicitly evaluated the relationship between the reactive iron 

concentration within surficial sediments and bioturbation/bioirrigation. The oxygen 

microelectrode analyses enabled us to monitor oxygen penetration into the sediment 

influenced by bioirrigation, and the samarium tracer allowed us to detect and quantify 

bioturbation. Both of these factors are related to aerobic organic matter remineralization, 

and thus can impact organic matter burial (Hartnett et. al, 1998). 
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Figure 12. Summary of bioturbation and bioirrigation in the macrocosm experiments. 

Empty squares (blue) represent OPD during the fourth measurement period, and solid 

diamonds (red, with 1 s.d.) represent Sm-tracer vertical ERD at the final stage of the 

experiment. The Sm ERD (bioturbation) matches the trends of OPD, suggesting that the 

methodology developed in this study has great potential in the study of early diagenesis 

in marine sediments. 

 

The results from our 3-month “iron addition” experiments indicate that the OPD and 

the Sm ERD are corroborative, which confirms the robustness of our methodology 

(Figure 12). The OPD measurements were contoured for initial graphic comparison 

among different cores (spatial) and measurement periods (temporal). The comparison of 

temporal patterns from cores 2 and 3 suggest that additional iron input could buffer the 

accumulation of hydrogen sulfide (H2S), removing this toxic constituent from the pore 
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water, and consequently enhancing the degree of bioturbation/bioirrigation by aerobic 

metazoa. The consequence of this is a deepened oxygen penetration and Sm 

redistribution (bioturbation). On the contrary, observations from cores 3, 4 and 5 suggest 

that the number and type of metazoa are also possible constraints on the OPD. 

Meanwhile, generally deeper OPDs from cores 4 and 5, compared to core 1, also suggest 

an important role of iron as a buffer for hydrogen sulfide during early diagenesis. 

 

In order to provide a more objective analysis of this experimental data, we employed 

various regression models to evaluate the relationship between the dependent variable 

OPD and independent variables, such as “time”, “number of burrows”, 

“burrow/nonburrow” and “iron addition”. We discovered that Ordinary Least Squares 

(OLS) regression is not applicable in this study, because the heteroscedasticity observed 

in the residual plot indicates that the errors are not independent, and identically 

distributed (i.i.d.). To address this issue, a Box-Cox transformation was applied on OPD 

and a Least Absolute Deviation (LAD) model was fitted to explain the variance in OPD. 

These models emphasize the significance of “time”, “number of burrows” and “iron 

addition” for the model at the confidence level of 95%, meaning that the variance in 

OPD could be explained mostly by “time”, “number of burrows” and “iron addition”. 

 

In one final analysis, we now separate out the number of burrows from the pool of 

significant variables. The data is divided into 3 groups: sparse (0-2 burrows), 

intermediate (3-5 burrows) and dense (6-8 burrows). Each group has a certain range of 

burrow numbers, which we take to represent the biological activity level of aerobic 
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metazoa (e.g., number and type of burrowing organisms). Figure 13 illustrates both the 

scatter plots and box plots of the relationship between OPD and the amount of iron 

addition, given the specific range of burrow numbers. That is, the relationship between 

OPD and iron input is now compared based on similar aerobic biological activity, instead 

of solely based on time. 

 

We observe that the oxygen penetration depth deepens with increased iron delivery 

to the sediments within each set burrow number range. In other words, given a similar 

range of organisms, or, similar aerobic biologic activity level, increased iron input can 

indeed enhance the degree of bioturbation/bioirrigation by buffering hydrogen sulfide 

accumulation in the pore water. The results suggest that iron has an important role in 

early diagenetic processes within sediments, as predicted by the “Sulfide 

Buffer/Phosphorous Trap Hypothesis”. 
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Figure 13. Correlation between the OPD and the amount of iron addition, given different 

burrow numbers: sparse (0-2), intermediate (3-5) and dense (6-8). The number of the 

burrows is taken as proxy for the number of bioturbating organisms (degree of 

macrofaunal activity) in each core. Circles in the scatter plots (left panel) represent 

OPDs, while box plots (right panel) bracket highest and lowest datum still within 1.5 IQR 

(interquartile range), with outliers (extreme values) identified in circles. 
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Future Improvements 

 

The initial focus for our study is the biogeochemical role of iron as a pore water 

sulfide buffer during early diagenesis. Limited by a finite number of observations, we 

have not been able to exclude the possibility that other variables may also be important in 

our incubation experiments.  To better understand the significance of iron, it is necessary 

to rule out iron-unrelated variables like the number of macrofauna as much as possible, 

given the fact that it still remains very challenging to constrain and quantify biologic 

activities after the fact, solely based on the descriptors and observations. For future 

investigation, it is critical to ensure that all the sediment cores share almost identical 

number and type of metazoa. One possibility is to start with complete sulfidization, by 

preventing oxygen exchange with the atmosphere (e.g., sealing the core top). The 

hydrogen sulfide accumulation will eventually shoal the SRZ, and exclude all aerobic 

biologic activities from the sediments. Identical number and type of aerobic metazoa, 

collected from the local ecosystem, could then be introduced with the synthetic sediments 

(consisting of a Sm-tracer element, various amounts of iron addition and clay as the 

carrier). Moreover, the form of iron can also provide additional information; hematite is 

selected for this study primarily based on its accessibility and moderate reactivity (similar 

to the organic matter reactivity in Cape Lookout Bight sediments; Chanton, 1985). Since 

iron has many forms other than hematite, it would be insightful to include iron reactivity 

in our model by incorporating other forms of iron as the H2S buffering agent. These 

improvements would better constrain the initial conditions of our study and lead to more 

rigid and detailed regression models. 
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In addition, the “Phosphorous Trap” aspect of the hypothesis was not addressed in 

this study. The return flux of phosphate from the sediments, including regenerated 

phosphorus from organic matter decay and released iron bound phosphorus, is almost one 

magnitude larger than the riverine input flux globally (Colman and Holland, 2000), and 

this phosphate return flux is highly redox sensitive (Colman and Holland, 2000). The 

coupled relationships among iron delivery, phosphate return flux, and redox boundary 

oscillation within sediments has a very significant potential for controlling organic matter 

burial, and could have impacted climate change and atmospheric carbon dioxide and 

oxygen levels (Martin, 1990). Given that iron input, together with phosphorus and some 

other trace metals, is believed to limit, or at least co-limit primary production in most 

coastal marine settings (Colman et al., 2005), the next phase of incubation experiment 

studies should investigate the relationship between phosphorous flux and iron delivery, 

and further evaluate organic matter burial feedbacks with the global phosphorus cycle. 

Future studies could also automate the oxygen microelectrode mapping and this would 

substantially improve the spatial density of OPD measurements and could considerably 

refine the regression models. 
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Potential Implication 

 

The results from studies such as that pursued here can provide the basis for the 

development of quantitative diagenetic models. One of the potential applications of such 

diagenetic models is to address the causes of ancient organic matter burial events, such as 

the Cretaceous Oceanic Anoxic Events (e.g., OAE II). 

 

The accumulation of skeletal material (mostly calcite and silicate materials) in 

marine sediments has a tremendous capacity to regulate reactive iron concentration. 

Consequently, evolutionary changes in pelagic biomineralization during the Phanerozoic 

may have played an important role in setting the stage for organic carbon burial events 

(Meyers, 2007). Previous studies have documented a major evolution of foraminifera and 

nannofossils during the early Cretaceous. Since foraminifera and nannofossils build their 

shells mainly out of calcite (CaCO3), this event resulted in the contribution of large 

amounts of CaCO3 into the sediments, diluting the concentration of iron. Diluted iron 

concentration could faciliate H2S accumulation in the sediments, and diminish 

bioturbation/bioirrigation, resulting in large amounts of organic matter being preserved 

(Figure 14). Importantly, this time of foraminifera and nannofossil evolution is also 

associated with major organic matter burial events, known as Oceanic Anoxic Events. 

 

 

 



 39 

           

 

  

Figure 14. Foraminifera and nannofossil evolution could contribute large amounts of 

CaCO3, which would have diluted the iron concentration and caused H2S to accumulate 

in the sediments during the Cretaceous. (Foraminifera and nannofossils evolution figures 

from Tappan and Loeblich, 1973) 



 40 

References 

 

Anderson, T. F., and R. Raiswell (2004), Sources and mechanisms for the enrichment of 
highly reactive iron in euxinic Black Sea sediments, Am. J. Sci., 304, 203–233. 
 

Canfield, D. E. (1989a), Reactive iron in marine sediments, Geochim. Cosmochim. Acta, 
53, 619 – 632. 
 

Canfield, D. E. (1989b), Sulfate reduction and oxic respiration in marine sediments: 
Implications for organic carbon preservation in euxinic sediments, Deep Sea Res., Part A, 
36, 121 – 138. 
 

Chanton, J.P. (1985), Sulfur mass balance and isotopic fractionation in an anoxic marine 
sediment, Ph.D. thesis, University of North Carolina at Chapel Hill, 406 pp. 
 

Coale, K. H., et al. (1996), A massive phytoplankton bloom induced by an ecosystem-
scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, Vol. 383, 
p.495-501 
 

Colman, A. S. and Holland, H. D. (2000), The global diagenetic flux of phosphorus from 
marine sediments to the oceans: redox sensitivity and the control of atmosphere oxygen 
levels: SEPM Special Publication No. 66, p. 53-75 
 

Colman, A. S., et al. (2005), Marine phosphate oxygen isotopes and organic matter 
remineralization in the oceans, PNAS.0506455102, doi!10.1073 
 

Demaison, G. J. and Moore, G. T. (1980), Anoxic environment and oil source bed 
genesis: AAPG Bull., v. 64, p. 1179-1209. 
 

Deuser, W. G. (1971), Organic-carbon budget of the Black Sea: Deep-Sea Research, v. 
18, p. 995-1004 
 

Grunau, H. R. (1983), Abundance of source rocks for oil and gas worldwide: Journal of 
Petroleum Geology, v. 6, p. 39-54. 
 



 41 

Haddad, R. I., and Martens C. S. (1987) Biogeochemical cycling in an organic-rich 
coastal marine basin: sources and accumulation rates of vascular plant-derived organic 
material: Geochimica et Cosmochimica Acta, 51 2991-3001. 
 

Hartnett, H. E. et al. (1998), Influence of oxygen exposure time on organic carbon 
preservation in continental margin sediments: Nature, v. 391, p. 572-574. 
 

Hedges, J. I. and Keil R. G. (1995), Sedimentary organic matter preservation: an 
assessment and speculative synthesis: Marine Chemistry, 49, p. 81-115. 
 

Ibach, L. E. J. (1982), Relationship between sedimentation rate and total organic carbon 
content in ancient marine sediments: AAPG Bull., v. 66, 170-188. 
 

Leckie, R. M. (1985), Foraminifera of the Cenomanian-Turonian boundary interval, 
Greenhorn Formation, Rock Canyon Anticline, Pueblo, Colorado, in Fine-Grained 
Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic 
Sedimentary Processes, edited by L. M. Pratt et al., pp. 139 – 149, Soc. for Sediment. 
Geol., Tulsa, Okla. 
 

Leckie, R. M., T. J. Bralower, and R. Cashman (2002), Oceanic anoxic events and 
plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous, 
Paleoceanography, 17(3), 1041, doi:10.1029/2001PA000623. 
 

Libes, S. (2005), An introduction to marine biogeochemistry, Elsevier, New York. 
 

Martin, J. H. (1990), Glacial-interglacial CO2 change: The iron hypothesis, 
Paleoceanography, 5, 1– 13. 
 

Martin, J. H., and S. E. Fitzwater (1988), Iron deficiency limits phytoplankton growth in 
the north-east Pacific subarctic, Nature, 331, 341–343. 
 

Martin, J. H., R. M. Gordon, S. Fitzwater, and W. W. Broenkow (1989), VERTEX: 
Phytoplankton/iron studies in the Gulf of Alaska, Deep Sea Res., Part A, 36, 649–680. 
 

Martin, J. H., et al. (1994), Testing the iron hypothesis in ecosystems of the equatorial 
Pacific Ocean, Nature, 371, 123–129. 



 42 

 

Meyers, S. (2007), Production and preservation of organic matter: The significance of 
iron: Paleoceanography, v. 22, PA4211, doi:10.1029/2006PA001332. 
 

Meyers, S. R., B. B. Sageman, and T. W. Lyons (2005), Organic carbon burial rate and 
the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian 
oceanic anoxic event 2, Paleoceanography, 20, PA2002, doi:10.1029/2004PA001068. 
 

Meyers, P. A. (2006), Paleoceanographic and paleoclimatic similarities between 
Mediterranean sapropels and Cretaceous black shales, Palaeogeorg. Palaeoclimatol. 
Palaeoecol., 235, 305–320. 
 

Meyers, S. R. (2003), Integrated cyclostratigraphy and biogeochemistry of the 
Cenomanian/Turonian boundary interval, Western Interior Basin, North America, 393 
pp., Ph.D. thesis, Northwestern Univ., Evanston, Ill. 
 

Meyers, S. R., and B. B. Sageman (2004), Detection, quantification, and significance of 
hiatuses in pelagic and hemipelagic strata, Earth Planet. Sci. Lett., 224, 55–72. 
 

Meyers, S. R., B. B. Sageman, and L. A. Hinnov (2001), Integrated quantitative 
stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using 
evolutive harmonic analysis and stratigraphic modeling, J. Sediment. Res., 71, 627– 643. 
 

Perdersen T. F. and Calvert S. E. (1990), Anoxia vs. productivity: What controls the 
formation of organic-carbon-rich sediments and sedimentary rocks: AAPG Bull., v. 74, p. 
454-466. 
 

Prufert, L. (1985), Seasonal variations of iron and manganese diagenesis in an organic 
rich coastal marine basin. M.S. thesis, University of North Carolina at Chapel Hill. 
 

Ruttenberg, K. C. (2003), The global phosphorous cycle, in Treatise on Geochemistry, 
vol. 8, edited by W. H. Schlesinger, pp. 585–643, Elsevier, New York. 
 

Sageman, B. B., A. E. Murphy, J. P.Werne, C. A. Ver Straeten, D. J. Hollander, and T. 
W. Lyons (2003), A tale of shales: The relative roles of production, decomposition, and 



 43 

dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian 
basin, Chem. Geol., 195, 229–273. 
 

Sageman, B. B., and T. Lyons (2004), Geochemistry of fine-grained sediments and 
sedimentary rocks, in Treatise on Geochemistry, vol. 7, edited by F. MacKenzie, pp. 
115–158, Elsevier, New York. 
 

Tappan, H., and A. R. Loeblich (1973), Evolution of the ocean plankton, Earth Sci. Rev., 
9, 207–240. 
 

Toth, D. J., and A. Lerman (1977), Organic matter reactivity and sedimentation rates in 
the ocean, Am. J. Sci., 277, 465– 485. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

Table 1. Procedures for incubation experiments 

 

 

 

 

 

 

 



 45 

Table 2. Statistical regression results 

Ordinary Least Square (OLS-1) 
 
Call: 
lm(formula = OPD ~ Time + BurrowNbr + Burrow + Fe, data = dat) 
 
Coefficients:      
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 0.040469 0.424832 0.095 0.924  
Time 0.006489 0.00399 1.627 0.105  
BurrowNbr 0.445225 0.064204 6.934 5.16E-11 *** 
Burrow 0.036306 0.351922 0.103 0.918  
Fe 14.689621 6.31624 2.326 0.021 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 2 on 206 degrees of freedom 
Multiple R-squared: 0.2453, Adjusted R-squared: 0.2307  
F-statistic: 16.74 on 4 and 206 DF,  p-value: 6.735e-12  
 
 
 
Ordinary Least Square (OLS-2) 
 
Call: 
lm(formula = OPD ~ Time + BurrowNbr + Fe, data = dat) 
 
Coefficients:      
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 0.04088 0.423796 0.096 0.9232  
Time 0.006501 0.003978 1.634 0.1038  
BurrowNbr 0.448377 0.056334 7.959 1.12E-13 *** 
Fe 14.673646 6.299234 2.329 0.0208 * 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.995 on 207 degrees of freedom 
Multiple R-squared: 0.2453, Adjusted R-squared: 0.2344  
F-statistic: 22.43 on 3 and 207 DF,  p-value: 1.296e-12  
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Table 2 continued 

Ordinary Least Square after transformation on response (OLS-3) 
 
Call: 
lm(formula = I(OPD^0.3) ~ Time + BurrowNbr + Fe, data = dat) 
 
Coefficients:      
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 0.7183437 0.0756831 9.491 < 2E-16 *** 
Time 0.0009937 0.0007105 1.399 0.163425  
BurrowNbr 0.0770383 0.0100602 7.658 7.13E-13 *** 
Fe 4.0166516 1.1249399 3.571 0.000443 *** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3563 on 207 degrees of freedom 
Multiple R-squared: 0.2324, Adjusted R-squared: 0.2213  
F-statistic: 20.89 on 3 and 207 DF,  p-value: 7.298e-12  
 
 
Ordinary Least Square after transformation on response and Polynomial (OLS-4) 
 
Call: 
lm(formula = I(OPD^0.3) ~ poly(Time, 3)+poly(BurrowNbr, 3)+poly(Fe, 3), data = dat) 
 
Coefficients:      
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 1.13632 0.024 47.353 < 2E-16 *** 
poly(Time, 3)1 0.13786 0.47729 0.289 0.773002  
poly(Time, 3)2 -0.16509 0.37756 -0.437 0.662396  
poly(Time, 3)3 0.08783 0.39494 0.222 0.824236  
poly(BurrowNbr, 3)1 2.53578 0.67498 3.757 0.000225 *** 
poly(BurrowNbr, 3)2 -1.25893 0.37044 -3.398 0.000817 *** 
poly(BurrowNbr, 3)3 -0.34632 0.46745 -0.741 0.459631  
poly(Fe, 3)1 1.47445 0.42313 3.485 0.000605 *** 
poly(Fe, 3)2 -0.75415 0.54991 -1.371 0.171778  
poly(Fe, 3)3 0.88525 0.3987 2.22 0.027512 * 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3486 on 201 degrees of freedom 
Multiple R-squared: 0.2866, Adjusted R-squared: 0.2547  
F-statistic: 8.973 on 9 and 201 DF,  p-value: 2.362e-11  
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Table 2 continued 

 
Robust regression 
Least Absolute Deviation 
 
Call: rq(formula = OPD ~ Time + BurrowNbr + Fe) 
 
tau: [1] 0.5 
 
Coefficients:    
 coefficients lower bd upper bd 
(Intercept) 0.14561 -0.0827 0.45474 
Time 0.00291 0.0003 0.00536 
BurrowNbr 0.40407 0.33686 0.4504 
Fe 11.20155 7.74799 14.0082 
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Appendix A. Locating the sediment-water interface in O2 microsensor profiles 

(These methods are provided by Marc Alperin) 

 

Constraints 

1. Bottom-up approach. Oxygen concentrations in fine-grained sediments are 

described by the following equation: 
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where c is oxygen concentration, x is depth below the sediment-water interface, ϕ is 

porosity, Do and Ds are the molecular and sediment diffusivity for oxygen, 

respectively, and R is the oxygen consumption rate. Oxygen profiles within the 

sediment should be concave up (d2c/dx2 > 0) provided that: 

a. There is no photosynthetic oxygen production (a reasonable assumption 

provided the sediments are kept in the dark); 

b. The oxygen profile is at steady-state (the time to steady-state is on the 

order of the 5-20 minute [L2/2Ds, where L is the oxygen penetration depth 

(1-2 mm) and Ds is the molecular diffusivity for oxygen]); 

c. Advection can be neglected (this assumption is supported by the Peclet 

number [wL/Ds] Pe ~ 10-4), 
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d. R > 3ϕD dϕ/dx dc/dx (although this is probably true for most estuarine 

sediments where R is large and dϕ/dx is small, it warrants a closer look), 

e. Surface topography is uniformly flat, 

f. Bioirrigation is not important. 

There might be a sudden change in concavity at the sediment-water interface due 

to the rapid transition from Ds to Do (i.e., large dϕ/dx) if surface sediments have 

moderate to low porosity (<0.8). (Note that Ds differs from Do by < 10% if ϕo > 

0.95.) 

To constrain the sediment-water interface, begin below the oxygen penetration 

depth and look for the first horizon where the oxygen profile is no longer concave 

up. In the best cases, the horizon where the profile approaches linearity from 

below will occur at a depth where the slope suddenly becomes less negative. 

Sand layers or other discontinuities in lithology can generate kinks in the oxygen 

profile within the sediment. These ‘kinks’ should be ignored if they imply an 

oxygen penetration depth or diffusive boundary layer thickness that is well-

outside the expected range. 

2. Top-down approach. Oxygen profiles within some portion of the diffusive 

boundary layer should be linear provided that: 

a. Turbulent diffusion << molecular diffusion; 

b. Oxygen consumption or production is not occurring within the water 

column. 
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To constrain the sediment-water interface, begin above the diffusive boundary 

layer, look for the region where the oxygen profile first becomes linear, and draw 

a line that best-fits the linear portion of the profile. The sediment-water interface 

is identified as the lower horizon where oxygen concentrations deviate from the 

line. In the best cases, oxygen concentrations just below the sediment-water 

interface will lie above the line that is extrapolated from the linear portion of the 

profile. 

3. Locate ‘kink’. The flux must be continuous at the sediment-water interface. 

Therefore, the flux from above and below must be equal. 
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To maintain continuity at the sediment surface, the gradient must change by a 

factor of φ3. If interface porosity is 0.9, slope should change by >25%. However, 

the ‘kink’ is often not apparent in the profiles. This may be due to the presence of 

a floc layer, three-dimensional topography, and/or limited resolution of the 

microelectrode.  

4. Down/Linear/Up. The oxygen profile should be concave-down through the 

transition layer, linear through the diffusive boundary layer, and concave-up 

below the sediment-water interface. (This is not exactly true in that the large 

negative porosity gradient at the sediment-water interface can induce downward 

concavity just below the sediment surface.) The sediment surface should be 
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located at or just above the transition from linear to concave-up. This point can be 

used for the flux balance check described below. 

5. Flux constraint. The constraint that F+ = F- can aid in locating the sediment-water 

interface. F+ can be evaluated by linear regression of O2 vs. depth data from the 

linear portion of the profile below the transition layer and above the sediment-

water interface. Uncertainty in F+ can be estimated from uncertainty in the slope 

of the linear regression. The value of F+ is not very sensitive to the exact location 

of the sediment-water interface. F- can be estimated by integrating the reaction 

rate depth distribution estimated by inverse modeling the oxygen profile. The 

integrated rate is sensitive to the location of the sediment-water interface. If F- is 

inconsistent with F+ suggests that the presumed location of the sediment surface is 

incorrect. 

 

Notes on determining rates from inverse modeling: 

a. Set relative error for first 2 points to zero (0.001%) to assure that flux is 

accurate. 

b. Set relative error to 10% for O2 concentrations ≤1 mM. 

c. Vary relative error (one value for all other points) to reduce high 

frequency oscillations in second derivative. 

6. Variance approach. Turbulent eddy penetration is inhibited in the vicinity of the 

sediment-water interface. It may be possible to constrain the location of the 

sediment-water interface by examining temporal fluctuations in oxygen 
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concentrations at each horizon over time. As Gunderson and Jorgensen point out, 

“the transition from stable to fluctuating oxygen concentration is not a 

reproducible indicator of the sediment-water interface because the position of the 

transition varies with flow velocity.” However, the turbulent fluctuations could 

provide an independent check on the location of the sediment-water interface 

constrained by the “bottom-up” and “top-down” approaches. We need more 

experience with oxygen time-series to evaluate whether this will pan out. 

7. DBL constraint. Published values for the thickness of the diffusive boundary layer 

range from 0.2 to 1 mm (in situ and stirred chambers). The top of the diffusive 

boundary can usually be determined as the point where oxygen concentrations 

first begin to drop below bottom-water values. If the presumed sediment surface 

is <<0.2 mm or >>1 mm below the top of the DBL, the presumed location of the 

interface is likely to be in error. 

8. Direct measurement. Roy et al. describe a laser-digital camera system for 

mapping the sediment surface. Optical fibers inserted into the sediment from 

below and aligned precisely with the sediment-water interface were used to 

determine the location of the microsensors relative to the sediment-water 

interface. 

 

Tips for microelectrode profiling 

1. Make at least 4 measurements above the diffusive boundary layer (necessary for 

defining the top of the DBL). 
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2. Use maximum resolution in the DBL (necessary for defining the linear region and 

providing a strong constraint on flux). 

3. If oxygen values in the DBL appear to be noisy or erratic, abandon the profile and 

start over again (noisy data in the DBL make it difficult to establish the flux 

constraint). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


