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ABSTRACT

MELINDA MARGARET ROBERTS: Genetic Regulation of Cell Death and Désea
Resistance in Arabidopsis
(Under the direction of Jeff Dangl)

Plants are constantly identifying and responding to cues and tlfn@atsheir
surroundings, such as changes in light, temperature, and humidity, meathmmage
from herbivores and insect, and pathogen attack. Resistance tgtlaogens involves
both passive barriers and active, inducible disease resistarpmnses. Induction of
immune responses in plants leads to, for example, cellular redoxeshaugivation of
MAP kinase cascades, massive transcriptional reprogrammindyeguently culminates
in a form of programmed cell death known as the hypersensitg@omse. In my

dissertation work, | characterized proteins involved in the regulatiozell death and

disease resistance in the model pharabidopsis thaliana.

My first project involved the zinc finger protein LSD1, a cylios scaffolding
protein which is a negative regulator of cell death and diseassarece|sdl mutant
plants exhibit inappropriately triggered cell death and increasastalece to multiple
pathogens. LSD1 was used in a Y2H screen which identified thed li®Bractor NF-
YC3, a CAAT-binding transcription factonf-yc3 mutants have moderately increased
susceptibility to the oomycete pathogedyaloperonospora arabidopsidis, and
overexpression of NF-YC3 increases resistance to this pathogen, detogshat NF-

YC3 is a positive regulator of disease resistance, likelytraascriptional regulation.



This activity could be partially controlled by LSD1 sequesteringXIB in the cytosol,

thereby preventing its nuclear relocalization and subsequent diseatoesfanction.

The latter half of my work involved the characterization of atpesregulator of
Isdl rcd, ADR1-L2. ADR1-L2 belongs to a small family of NB-LRRisetmain class of
resistance proteins that are required to recognize specitiwgeat effector proteins,
leading to pathogen recognition and defense responses. | createdamtiaiimutant of
ADR1-L2, which required P-loop dependent ATPase activity for functimhexhibited
increased resistance to infection with virulent pathogens. | them thé® autoactive
mutant to try to understand the genetic requirements of the sigpalingay involved in
this resistance response, finding that ADR1-L2 functions in a feedback loop inviblging
defense-related hormone salicylic acid, LSD1, andlstie regulator EDS1. Together,

my results refined the model of pathogen-triggered immunity in Arabidopsis.



To Stevie, who believed in me from day one. | know you are proud of me, and that means
the most of all.
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Chapter 1

I ntroduction

Plants, like all other organisms, must properly respond to chamgéseir
surroundings. Examples of these responses include finely-tuned tropétions to
water gradients, light, and gravity (Eapen et al., 2005; Holland,e2G09; Moulia and
Fournier, 2009); proper timing of seed germination (Penfield and King, 2@0@)
correct responses to attacks from herbivores, phytophagous irssttpathogens. As
sessile organisms without adaptive or circulatory immune systelasts have had to
evolve a set of cell-autonomous defense responses. Many times, éhdogenous
disease resistance mechanisms are not successful: plantguatiabgne contribute up to
$30 billion in annual losses to the US agriculture industry (Pimesttedl., 2000).
However, despite the inherent limitation of not having an adaptiveaatory immune

system, most plants are resistant to most pathogens (McDowell and Simon, 2008).

Plant disease resistance arises from both pre-formed medhbarc@rs and
pathogen-induced responses. The former includes basic pathogen deéaismisms
such as the waxy cuticle on the outside of the plant leaves whacksbthe entry of
pathogens and a suite of secondary metabolites with strong anti-raicaobvity (Taiz
and Zeiger, 2002). In addition to these intrinsic barriers, plaptalao able to organize

and produce a series of inducible defense responses. These reacioscur both



locally and systemically, and can be divided into two parts.fifbieof these branches
includes recognition of microbe-associated molecular patterns MRS\ by
transmembrane pattern recognition receptors (PRRS) in the host BRRs frequently
bind proteins and other molecules that are particularly importanheopathogen’s
function (Zipfel, 2009). While MAMP-triggered immunity, or MTI, & effective and
robust defense strategy, pathogens have, by definition, evolved metledsliofy it and
are thus able to colonize their hosts. Pathogens, such as the mod&h Paetelomonas
syringae pathovar tomatoRto), secrete effector proteins into the host plant. These
specialized proteins antagonize MTI responses by, for example, blockingatiedbilose
deposition, interrupting plant hormone signaling important for a pragfende response,
and interfering with cell death responses triggered by othern@f$eGrant et al., 2006).
Effector proteins that are able to suppress MTI help in a ssfate®lonization of the
host plant; this process is known as effector-triggered suscedpt{lill'S). Plants have,
in turn, developed a system for responding to ETS. This response depedidease

resistance, oR, genes.

Plant R gene products, frequently referred to as NB-LRR proteins, contain a
nucleotide-linding (NB) domain followed by alicine-ich repeat domain (LRR) at their
C-terminus. They share homology to animal NLRsc{eotide-binding domairelicine-
rich repeat proteins) and recognize, either directly or indiyretite effector proteins
injected into the plant cell by the pathogen. In a direct inieracthe effector and NB-
LRR interact with each other. Conversely, indirect interaction®lve a host target
protein which is modified by the effector, and it is this chatige is perceived by the

NB-LRR. Either type of NB-LRR-mediated effector recognitimads to effector-



triggered immunity (ETI), resulting in a disease resistaaspanse that is both faster and
stronger than MTI (Jones and Dangl, 2006). ETI responses include calfium,
protein kinase activation, production of reactive oxygen intermediaasscriptional
reprogramming, and, frequently, the hypersensitive response (g af programmed

cell death (Dangl and Jones, 2001).

Basal defense, or the responses triggered by virulent pathogens eptibiesc
hosts, and ETI are easily thought of as different magnitudes otdhe defense
responses. This is best visualized by the zigzag model put fpdiories and Dangl in
2006 (Figure 1). Their model presents MTI as the primary, low-Ewplitude reaction
to pathogens. Successful pathogens utilize effector proteins to overtosndirst
response, and resistant plants employ NB-LRRs to recognize ititesder proteins and
mount a stronger defense, including localized cell death (HR). imhiereéhis model is
the resulting evolutionary “arms race” between pathogens andptitemtial hosts. When
plants begin to recognize existing effector proteins, the patheifjeevolve a new array
of effectors that cannot be recognized or which can counteractahespbriginal ETI.
Plants, in turn, evolve new NB-LRRs, capable of recognizing theefi@etors, and the

cycle will begin again.

The remainder of this introductory chapter will focus on theifips of MTI and
ETI, including key signaling molecules and responses involved in bothyidrdiscuss
the overlap between the two, which leads to the conclusion that babadff@ctor-
triggered defenses are not separate pathways, but rathesergpdifferent levels of

activation of the same responses.



PRRsand MAMP Triggered | mmunity

The first layer of inducible defense responses involves direcep@ro of non-
host elicitors, or MAMPs, by PRRs. To avoid confusion between MAMigse#fectors,
MAMPs are defined as being “conserved among a large group s¥ afamicrobes”,
whereas effectors evolve within a single or small group of ahiat species (Zipfel,
2009). Continuous addition to the body of knowledge about elicitors and effeckes
categorizing these molecules an ongoing effort. Interactions eetiM&MPs and their
receptors occur at the plant cell’'s plasma membrane, and @htiyridentified PRRs are
transmembrane receptor-like proteins (RLPs) or kinases (RLK4Js Rnd RLPs have
similar extracellular structures with multiple LRR domaim&l aimilar transmembrane
helices, but RLKs posses a cytoplasmic kinase domain (Tor et al., A20@9jwo best-
studied examples of MAMP receptors are FLS2 and EFR, RLKswidinad flagellin and
elongation factor-Tu (EF-Tu), respectively. Additional PRRs udel XA21, a rice
protein whose ligand Ax21 was recently discovered (Lee et al., 2009)CERK1, a
LysM-RLK which recognizes chitin (Petutschnig et al., 2010). Adtivabf any of these
receptors leads to a common set of downstream defense respomsed, and fls2

mutants are more susceptible to a range of pathogens (Zipfel, 2009).

Individual pathogens each have multiple MAMPs which may be percéied
potential host. Current knowledge of MTI is based on experiments wiseti single
elicitors and/or single PRR knockout lines. These experiments do not provide indformati

on the specific defense effects of each PRR-mediated MAM&gné&ion event in a



natural plant-pathogen interaction, but do offer an overall picture oMRHitiated
defense effects (Segonzac and Zipfel, 2011). The most frequentlyedteticitor-
receptor interactions are flagellin-FLS2 and EF-Tu-EFR; thmér will be used as an
example here. Flagellin, or the minimal signaling epitope knowrlg22 which is
derived from the N-terminus of flagellin, is recognized at tHe steface by FLS2, a
glycosylated, transmembrane RLK (Gomez-Gomez and Boller, 2000ciGa et al.,
2006). This extracellular detection leads to a heteromerizatioreeerti®_.S2 and BAK1,
a short LRR RLK which is a member of thensatic_Enbryogenesis &ceptor_Knase
(SERK) family (Chinchilla et al., 2007). This PRR/RLK completsoabinds other
SERKSs (Roux et al., 2011). In addition to the formation of the rec&ptase complex,
phosphorylation of both FLS2 and BAK1 quickly follows elicitor recogmit{Schulze et

al., 2010), though the relevant residues are currently unknown.

Proper elicitor-triggered hetero-complex formation and phosphorylabion
unidentified key residues leads to a network of downstream defensenses. These
include callose deposition to strengthen cell walls, accumulation fehskerelated
hormones such as salicylic acid (SA) and jasmonic acid (JA)siveagranscriptional
reprogramming, activation of MAP kinase cascades, and a bipbagiative burst
(Segonzac and Zipfel, 2011). FLS2/flg22-induced protein kinases includeKMEK
MKK4/MKK5 and MPK3/MPK6 (also involved in SA signaling, below), and thes
cascades trigger changes in many defense-related tmimscrifactors, including
WRKY22 and 29. The oxidative burst is a strong and rapid cell-tovumibase in the

amount of reactive oxygen species (ROS) in the plant cells.ifdhistion requires the



NADPH oxidaseRbohD in a cell autonomous manner, and is a way for the initial defense

signal to be propagated across the leaf (Torres et al., 2002; Miller et al., 2009).

Classification of pathogen molecules as MAMPs versus effectod, in a
related manner, PRRs versus R proteins, is an important and cgneteting process.
Initial categorization can be used as preliminary insight into rifle of a new
pathogenesis-related protein, but if incorrect can lead to fautyngsions about that
protein. For instance, classifying a protein as an effectoisléathe conclusion that it
will act within the plant cell, whereas a MAMP functions at éixéracellular membrane.
The experimental approaches used to test the functions of thes@rdtens are
inherently different. Therefore, incorrectly identifying a pint makes it difficult to
properly dissect the genetics and biochemistry of the defensespescin which it is
involved. As more MAMP/PRR pairs are identified, there will deetter understanding
of the common signaling components involved in MTI. Proper classificafidtbAMPs
and effectors also allows for robust evolutionary studies, whichfwvither inform the

overall picture of plant-pathogen interactions.

The specific immunity contribution of each signaling event mélyb& unclear,
but future research should be able to unravel these interactionsh@ndesspective
significance to disease resistance. Importantly, even withopeprclassification of each
defense-related protein, the common set of downstream host respehnibged by all
studied PRRs and shown to be functionally relevant to disease nesistee potential
sources of real-world agricultural application. Genes from non-siisieeppecies can be
transferred to previously susceptible plants as a possible meansosting disease

resistance. One particularly exciting study showed thatgesms expression dEFR in

6



tomato, a species that does not normally carry this PRR, leatlso&al-spectrum
bacterial resistance in these plants (Lacombe et al., 201@n#as such as this prove
that MTI-related research has developed rapidly over the courgee dast 10 years.
Continuing efforts should uncover a much more complete view of timefimah ligand

perception to disease resistance.

NB-LRRs and Effector Triggered | mmunity

Pathogens, in an evolutionary response to MTI, evolved effector prdteins
combat the defense responses triggered by their MAMPs. Baadtdize the type three
secretion system (TTSS), a syringe-like apparatus that 48388 such effector proteins
into the host plant (Cornelis and Van Gijsegem, 2000; Alfano and Col@0é¢).
Effectors target the function of proteins important for MTI, ébgrincreasing pathogen
virulence and causing ETS. For instance, Bie effector AvrPto suppresses basal
defenses in tomato, Arabidopsis, and the model placdtiana benthamiana. AvrPto
binds EFR and FLS2 (Xiang et al., 2008), and targets BAK1 (Shaal.,eR008),
disrupting FLS2-BAK1 interactions and suppressing flg22-induced M&k8 MPK6

activation, cell death, and callose deposition (Hann and Rathjen, 2007).

Another example of effectors targeting MTI involves ®te effector hopM1.
HopM1 is a highly conserved, TTSS effector which is required fibrRto virulence
(DebRoy et al., 2004). HopM1 was found to interact with MIN7, an Arabidopsi
adenosine diphosphate ribosylation factor guanine nucleotide exchange (FiREor
GEF) protein (Nomura et al., 2006). ARF-GEF proteins are involved imclees

7



trafficking, and MIN7 is required for full bacterial resistance ia#dopsis. HopM1 uses
the proteaosome of the host plant to degrade MIN7, thereby increasing battdeace
(Nomura et al., 2006). Left unchecked, effectors can overcome MTI addtdehost
plant susceptibility. Thus, plants have evolved a way to recognizerempbnd to

pathogen effector proteins.

Recognition of pathogen effectors by the host requires the propetiaetsy and
function of NB-LRRs, and proper recognition leads to ETI. Intevadietween NB-LRR
and effector proteins is hypothesized to occur in one of two watlgior indirectly.
Direct interactions occur when an effector and an NB-LRR birehtd other. Examples
of this include the Arabidopsis protein RRS1-R directly intémgctvith the Ralstonia
Avr protein PopP2 (Deslandes, PNAS 2003), the rice Pi-ta NBS-LRRtljimssociating
with Avr-Pita from rice blast (Jia et al., 2000), and L5, L6, and Lotgams from flax,

which directly recognize the products of the rust AarL567 genes (Dodds et al., 2006).

Alternatively, as described in the guard hypothesis, there diract interaction
between effectors and NB-LRR proteins (Van der Biezen and Jones, R2@B¢r, the
effector protein modifies its host target protein, and it is ¢h@snge that activates the
NB-LRR protein. The host target protein is thus “guarded” leyNIB-LRR protein, and
NB-LRR recognition of host target modification is what leadth&éodownstream defense
responses (Dangl and Jones, 2001; Holt et al., 2003). Utilizing a conarget for
multiple effectors could allow the host plant to best exploitat®gnition potential with
a limited set of NB-LRRs. Maximizing the utility of each NERR is very important for

an organism that does not possess an adaptive immune system.



One well-studied example of the guard hypothesis involvesPthsyringae
effectors AvrB and AvrRpm1, along with the Arabidopsis proteins RINd BRPM1.
RPM1 encodes a CC-NB-LRR and guards RIN4, a small, membrane-bounchphaei
is a negative regulator of basal defense (Mackey et al., 2002}. iR modified when
either of the two sequence-unrelated effector proteins, AvrBvoR@gm1, is introduced
to the system via delivery by the TTSSRib DC3000. Neither effector is a kinase, but
their interaction with RIN4 leads to phosphorylation of RIN4 at threopat (Chung et
al., 2011). This phosphorylation of RIN4 is perceived by RPM1, which theretsgy
series of pathogen defense responses, including HR (Boyes #928; Chung et al.,
2011). In anrpml mutant, the lack of RPM1 protein allows AvrRpm1 or AvrB to enter
the cell undetected. From there at least AvrRpm1 actsvasilance factor, promoting
bacterial growth and disease (Ritter and Dangl, 1995). RIN4Aagyalsrded by a second,
independent NB-LRR, RPS2. RPS2 is triggered when AvrRpt2, a Ehsgingae
effector, cleaves RIN4 at two sites. This cleavage iedatled by RPS2, triggering a
similar series of defense responses to those activated by RPM1. A foactioreffiopF2,
also targets RIN4 (Wilton et al., 2010). These interactions involvedifigrent effector
proteins that are all found to trigger defense responses throaiglarnme protein, in fact,
by their action on the same ~30 amino acid domain of RIN4. RINdaslgd by at least
two different NB-LRRs. The RIN4 example provides proof that Atapsis is able to
maximize its pathogen recognition specificity utilizing a Byreon-adaptive set of NB-

LRRs.

Constitutive disease resistance responses can be of high ibsts® the host

plant (Tian et al., 2003). It is therefore very important thatethesponses are only



triggered when necessary, and thus they must be under finely-tuneol.cOne model
of disease resistance shows NB-LRRs functioning as moleswitches, with multiple
subdomains responsible for keeping the protein in the resting, or Séte, thereby
preventing spurious NB-LRR activation (Takken et al., 2006). NB-LRR ipstand
NLR homologs in animals, are members of the NTPase superfamil belong to the
signal ransduction_APases with mmerous_dmains (STAND) subclade (Leipe et al.,
2004). In the “off” conformation, STAND proteins bind ADP, which mustekehanged

for ATP in order to trigger defense responses (Takken et al., 2006).

Plant NB-LRR proteins consist of three distinct domains: edh€C or TIR N-
terminal domain, which is involved in downstream signaling evewmitowied by a
central nucleotide-binding domain (NB), where ADP or ATP bindingus;owhich is
fused to a leucine-rich repeat (LRR) domain at the C-ternihmatsprovides recognition
specificity (Takken et al., 2006). The P-loop and MHD, two subdomains wiitiein
central NBS domain, are particularly important for proper function. H@op motif is
critical for nucleotide binding, and in most cases, mutations indthnsain result in an
inactive NB-LRR (Tameling et al., 2002; Hanson and Whiteheart, 200%5¢d®aand
Moffett, 2006). Mutations in the MHD domain, on the other hand, typicakylt in
autoactivity (Bendahmane et al., 2002; Howles et al., 2005; Tamelalg 2006; Gao et
al., 2011; Williams et al., 2011; Zhang et al., 2012). This is due tor eitipeeference
towards ATP binding or a lack of ATPase activity which kedwsprotein in the “on”
state (Tameling et al., 2006). The inactive conformation is furtr@ntained by proper
physical interactions between the NB and LRR domains (Bendahebahe 2002; Ade

et al., 2007). In this “off” conformation, the LRR inhibits the NB framdergoing
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nucleotide exchange. After pathogen recognition, where spgciiciypically conferred
by the LRR, this autoinhibition is released, allowing ADP to bénamged for ATP and

initiation of defense signaling events.

Attempts to study autoactive mutants have been made in Arabidfiasjsand
tobacco (Table 1). While the majority of NB-LRR autoactive roms recovered have
been in the MHD domain (Bendahmane et al., 2002; Howles et al., 2008Blidguet al.,
2006; Gao et al., 2011; Williams et al., 2011; Zhang et al., 2012), therls@mawtations
that lead to autoactivity which occur outside of this domain (Zhamd,e2003; Igari et
al., 2008; Huang et al., 2010). Much of the work done with these autoacties dias
been carried out in transient over-expression assays in flax @ctobgstems, making it
difficult to test their biological relevance. However, some weyk in Arabidopsis and
flax has shown that these autoactive mutations lead to lethaldwarfed morphology
(Howles et al., 2005; Gao et al., 2011; Zhang et al., 2012). Additionalfg, ihevidence
that NB-LRR autoactivity directly affects the immune systgmaling pathway, as some
of these mutants exhibit hallmarks of defense activation, includgig $teady-state SA
levels (Zhang et al., 2003; Huang et al., 2010) and increased mesistainfection with
virulent pathogens (enhanced basal defense) (Gao et al., 2011)ll,Gvesa autoactive
mutants clearly show that correctly controlled function of NB-ER&Rnecessary for both

plant fithess and defense activation.

While canonical ATP-driven activity of NB-LRRs is cleargssential for a
complete defense response, examples in plants (Bonardi et al., &d1animals
(Kofoed and Vance, 2011; Zhao et al.,, 2011) of NB-LRRs that do not redngre t

canonical P-loop for function indicate that there are functionshi&ge proteins beyond

11



typical ATPase activities. In these cases, NB-LRRs mayvook as canonical ‘sensors’,
but might instead act as ‘helper’ proteins. These ‘helpers’npally function as
scaffolding proteins, perhaps working with other immune-related psyténcluding
canonical NB-LRRs, to trigger defense responses (Bonardi et al.,. 2018e examples
show us that there is still much to be learned about the ovemthat NB-LRR proteins
play in defense. Chapter 3 addresses the characterization of a NiigLRR with both

‘helper’ and P-loop dependent functions in disease resistance.

Proper accumulation and stabilization of NB-LRR proteins is ialgmrtant for
their activity, and control of NB-LRR protein levels requires adddi plant proteins.
Three proteins required for NB-LRR stability are HSP90, SGTHt, RAR1. RARL
encodes a zinc binding protein consisting of two CHORD domains, and isy highl
conserved among all eukaryotes except yeast (Shirasu et al), F9¥R1 protein is
required for full accumulation of almost all tested NB-LRRs. Hmveonly a subset of
NB-LRRs are functionally suppressed inaal background. This dichotomy is explained
by the “threshold model”: proper defense response requires incert level of NB-
LRR protein, and the expression level of some NB-LRR proteingig kigh in an
unchallenged plant. In aarl mutant, the expression level of this class of ‘high-
accumulating NB-LRR proteins’ is reduced, but remains aboveetipgred threshold to
trigger a defense response. Therefore, defense responses avenpairngised (Bieri et
al., 2004; Holt et al., 2005). Conversely, the steady state proteirssixprdevel of NB-
LRR proteins that require RARL1 for their function falls below timeshold point in a

rarl mutant, leading to significantly reduced defense responses.
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SGT1 is also required for proper NB-LRR stability. RAR1 and Siteract via
the C-terminal CHORDII domain of RAR1 and the CS domain of SGTabidopsis
contains two orthologues of this gene; mutationSG1b, but notSTG1a, can alter the
functions of some NB-LRR protein§GT1 double mutants are lethal (Azevedo et al.,

2006).

In planta, both RAR1 and SGT1 associate independently with the cytosolic
protein HSP90. HSP90 is a chaperone protein that is responsible fooplee fmiding of
its “client” proteins, and it is known to regulate accumulation bfi-type amounts of
protein for all tested NB-LRRs. The ATPase domain of cyto3¢8&90 associates with
both CHORDI of RAR1 and the CS domain of SGT1b. This associatione@lcl
important to NB-LRR function, as point mutations in the ATPase dowfabne isoform
of HSP90,hsp90.2, cause a large reduction in the accumulation of the NB-LRR RPM1
(Hubert et al., 2003). This data lead to a model where NB-LRR psotee clients of
HSP90, and are held in proper conformation and therefore maintain propan levels
with the co-chaperones RAR1 and SGT1b. AdditidtnspP0.2 alleles were identified that
suppressedarl phenotypes, allowing accumulation of functional levels of NB-LRRs in
this background (Hubert et al.,, 2009). These alleles furthered the modtSRA0-
regulated protein accumulation, showing that RAR1 normally functiorghysically
regulate HSP90-dependent dynamic protein turnover. Overall, disruptionARL,R
HSP90, or SGT1 can lead to an alteration in NB-LRR accumulation, aedtipdy

affects disease resistance.

In addition to these proteins which are required for NB-LR&bikzation, the

signaling pathways activated by NB-LRRs require furthetofacfor proper activation.
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Proper signal transduction from TIR-NB-LRRs is dependent on EDS1 (Enhanceddise
Susceptibility 1), PAD4 (Phytoalexin Deficient 4) and SAG10InéSeence-Associated
Gene 101), while CC-NB-LRRs require NDR1 (Non-race-specifse@se Resistance 1)
for proper function (Glazebrook, 2001). Together, these NB-LRR regulatotgins and
domains attempt to balance plant cell damage caused by viruleogpas with fithness

costs stemming from disease responses whose amplitude is too high.

Salicylic Acid, a Central Molecule in Plant Defense Responses

Induction of SA, a phenolic plant hormone, has a very wide range edt®fin
plants. It directly and/or indirectly influences seed germinatiefl, growth, stomatal
aperture, and fruit yield (Vlot et al., 2009). It is also importéont proper defense
responses, including basal defense and some effector-triggeredsalisesistance
responses. SA levels increase after pathogen attack, and exogenaatiapmf SA or
BTH leads to increased disease resistance (Lu, 2009). Activatieither NB-LRR-
mediated or MAMP-triggered disease resistance pathways teaals increase in SA
(Glazebrook, 2005; Tsuda et al., 2008). The majority of SA is gendrmateohversion of
chorismate to isochorismate via the isochorismate synthase pEi®By)ay (Lu, 2009).
Mutations in the Arabidopsis gesED2, which encodes isochorismate synthase 1 (ICS1),
block SA production and lead to pathogen-induced SA induction levels éhafl@®o of
wildtype (Wildermuth et al., 2001)sid2 plants are more vulnerable to a variety of
pathogens, and this increased susceptibility can be rescued by exogppleetion of

SA or its synthetic homolog benzothiadiazole (BTH) (Nawrath andrave, 1999;
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Dewdney et al., 2000). An additional isochorismate synthase, ICS2,eaists in
Arabidopsis, and it is responsible for generating the SA measaorsti2 mutants
(Garcion et al., 2008). There is also an ICS-independent pathway feyi8Aesis, as

icsl ics2 double mutants still display very low levels of SA (Garcion et al., 2008).

In addition to those genes encoding the proteins required for the bicggnihe
SA, several other genes are positive regulators of SA. Thechasdcterized of these
include EDS1, PAD4, and NDR1, though a handful of additional positive reguteatoes
been recently characterized (Lu, 2009). Both EDS1 and PAD4, lassveeveral other
positive regulators of SA, are also SA-inducible, and the loss staese phenotypes
seen inedsl, pad4, and ndrl plants can be reversed by exogenous application of BTH
(Zhou et al., 1998; Falk et al., 1999; Shapiro and Zhang, 2001). This BufyEsSA
regulation occurs in a feedback loop: many positive regulators @r&mduced by SA,
leading to dramatic increases in this molecule after disessstance pathways are

triggered.

Much of the signaling downstream of SA requidONEXPRESSOR OF PR
GENES 1 (NPR1) (Cao et al., 1997). NPR1 is found in both the cytosol and the nucleus,
and in the latter location it functions as a transcriptional eggulof pathogen-related
(PR) genes (Dong, 2004). In steady-state conditions, the mabMiPR1 is present in
the cytosol as oligomers. Pathogen challenge promotes a contoralathange of NPR1
from oligomers to monomers, allowing this molecule to enter théensidMou et al.,
2003). Once in the nucleus, NPR1 indirectly activates transcriptionfehsterelated
genes via interaction with transcription factors (TFs), includiregTGA family of bZIP
TFs (Despres et al., 2000). As previously discussed, inappropriatggred defense
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responses can be of high fithess cost to a plant, and thus, inducersrsfedefust be
tightly regulated. In the case of NPR1, this regulation comdseiiorm of proteasome-
mediated degradation, which uniquely both prevents spurious gene activapants
not undergoing pathogen attack and stimulates defense-relatecexx@ession when
plant defense responses are turned on (Spoel et al., 2009). Veryjyreagodtential
mechanism for SA perception and monitoring was proposed (Fu et al., 28&2)atk in
this paper demonstrates that NPR3 and NPR4, paralogues of NPR3A aezeptors
with different binding affinities for the molecule. These two prigdunction in the SA-
mediated degradation of NPR1, and the authors propose that theirnditifneities for

NPRL1 sets up the proper regulation of NPR1 protein levels mentioned above.

NPR1 and SA also are essential for long-term, systemicadonh of disease
resistance. Endogenous increases in or exogenous application ofa8Atolethe
transcriptionally-based defense responses that constitute sysaemiired resistance
(SAR), and SAR requires NPR1. SAR confers broad-spectrum pathegjetance, and
is activated systemically after local pathogen infectiorsArapplication (Shah, 2009).
One key hallmark of SAR, and defense responses in general,aasasrin PR protein
levels (Sels et al., 2008). PR proteins can be induced by SAgnasmacid (JA), and
ethylene (ET) (Dong, 2004). There are fourteen different clas§eBR genes in
Arabidopsis (van Loon and van Strien, 1991), and potentially hundreds of different
members of some classes (Silverstein et al., 2005); thesenlanggers complicate the
understanding of PR activation and activity. SoRfiegenes have been found to have
specific antimicrobial activity (van Loon and van Strien, 1991; van Laaal.e2006),

though the precise role that the majority of these proteins play is still unvastigation.
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Much work has gone into trying to identify the molecule respondiniethe
spread of SAR. Early studies of SA showed that large amounteeotdmpound
accumulate in and around the lesions that form at the site of pathdgetion (Enyedi
et al., 1992). SA levels are also known to increase throughout the fiempathogen
recognition, including in the phloem (Yalpani et al., 1991). Given this dataas
originally thought that SA might be the SAR potentiation signal. &l grafting
studies showed that SA is not necessary for development of thé atgthe site of
infection, though it is required for SAR at distal sites in ttap(Vernooij et al., 1994).
SA can be reversibly turned into methylsalicylic acid (MeS#9)d studies in tobacco
found that this compound fit all the requirements to be the SARalsigncompound
(Park et al., 2007). However, in Arabidopsis, studies showed that MeSAnalation
mutants still could induce SAR (Attaran et al., 2009). Thus, the Isdarcthe SAR

systemic signal continues.

Programmed Cell Death in Plant Pathogenesis

Programmed cell death (pcd) in plants can be induced by ayafiabiotic and
biotic stressors, including high light, heat shock or chilling, andch@mical inducers
H,0O, and paraquat. One of the hallmarks of pathogen recognition is the HR, a pgue of
that includes rapid, localized cell death at and around the sitdéeation. HR is mainly
associated with ETI, although cell death also can be induced byhighelevels of flg22
(Naito et al., 2008). Early events after pathogen invasion include pradwitthe ROS

superoxide (@) and hydrogen peroxide ¢B,), as well as synthesis of nitric oxide (NO)
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(Levine et al., 1994; Delledonne et al., 1998). Increases in ROS ocand iaround the
infected cell, and they are important signaling molecules fopkipagation across the
leaf (Nanda et al., 2010AtRbohD is required for the oxidative burst, and in wild-type
plants this burst signals the cells proximal to sites of ifdedb induce transcription of
defense genes and suppress cell death (Jabs et al., 1996; efate<2005). In distal
cells, ROS and SA function as signal transduction molecules, patantill death
throughout the leaf. This cell death must be kept in check to preventessaeg death of

parts of or the whole plant.

The Arabidopsidesions simulating diseasel (Isdl) mutantprovides an excellent
background to study the roll of cell death in disease resistaBtl is a cytosolic zinc
finger protein, and in wild-type plants it functions as a negaggelator of cell death.
Isdl mutant plants exhibit inappropriately regulated cell death, kalewvn as runaway
cell death (rcd), and increased resistance to multiple path¢Destsich et al., 1997).
Triggers of rcd in ahsdl mutant include pathogen infection, changes in day length, and
exogenous application of SA or BTHy1 plants are unable to stop the propagation of
cell death from any trigger. As a cytosolic zinc finger pmteSD1 functions as a
potential interacting platform for other proteins involved in pcdrfihaka et al., 2006).
Yeast two-hybrid and phage display screens identified sewdrat LSD1 interactors,
including NF-YC3 and NF-YC2, both encodingAST Box-binding Factor CBF-C
subunits of heterotrimeric CAAT-binding TFs. These proteins and thks in plant

defense are further explored in chapter 2.

Several different proteins are required fedl rcd. These include EDS1

(Rusterucci et al., 2001), PAD4 (Rusterucci et al., 2001), and AtMC1 é€Cal., 2010).
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Runaway cell death ilsdl also requires both SA and NPR1 (Aviv et al., 2002)sd,
but not wild-type plants, SA is able to trigger rcd, indicating ttfaD1 is normally
working as a negative regulator of SA-dependent cell deathri@iedt al., 1994). These
results position LSD1 and SA in a feedback loop, where the presenc80df is
necessary and sufficient to stop SA-potentiated rcd. NiBRilso necessary fdsdl-
mediated rcd, making it clear that SA is at least partr@uired as a signal initiator in
rcd. It is also important to note that these SA requirementsatriie same for thisdl-
related basal defense phenotypes: SA-deplstddplants still show increased resistance

(Aviv et al., 2002).

Experiments looking for positive regulatorslsdl rcd also uncovered th&DR1
family of NB-LRRs, members of which function as ‘helper’ NB-LRR basal defense
(Bonardi et al., 2011). As previously stated, at least one membeisdathily also has

canonical, P-loop dependent immune functions which are discussed chapter 3.

Conclusions

Initial studies of plant disease resistance responses led researbledis\te that,
for instance, effector-NB-LRR protein interactions were diracti MAMP and effector
triggered immunity were totally separate events. As genaticnaolecular mechanisms
have been uncovered, a more robust model of the system has beed. ctyate
separated pathways are now seen as part of a larger networkxample, wound
response, SA, ROS, MTI, and ETI all result in transcriptionpfogramming, and

though the levels of these reactions may differ they frequentiyvewtbe same genes or
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gene families (Tsuda et al., 2008; Miller et al., 2009). Anothemeia of overlap,
published recently, shows that there isimaplanta association between the PRR FLS2
and the R proteins RPM1, RPS2, and RPS5 (Qi et al., 2011), though the functiona

consequences of this, if any, remain to be defined.

Defense-related hormone crosstalk, NB-LRRs with multiple indep¢nde
functions, and positive and negative feedback loop pathways are all fevidence that
the picture of disease resistance signaling outputs is moreeld ghan a linear pathway.
As more data is collected, more of these overlaps will be uncgoverdter complicating

the disease resistance network.
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elicitors

Amplitude of Defense Response

Figure 1.1. The zig-zag model of plant defense. Adapted from Jones and Dangl, 2006.
Pathogens are initially recognized by potential hosts via MABt®gnition, leading to
induction of low-level disease resistance responses, or MTI (M#&lggered
immunity). These pathogens have evolved effector proteins, whictietivered using
various mechanisms in various pathogens, and block MTI. Recognition wigle s
effector from the delivered suite by an NB-LRR (middle) letdstronger resistance
responses, including HR, known as ETI (effector-triggered immunityg. recognized
effector is deleted by selection from the pathogen’s genome, eandiring effectors
cause ETS (effector-triggered susceptibility), and one of thisetors is recognized by
a second, newly evolved NB-LRR (far right). This cycle of ETI BA& is repeated both
in a single plant-pathogen interaction, and is also the basisidoevolutionary ‘arms
race’ that drives the evolution of new effectors, by the pathpgnd new effector-
recognition proteins, from the plant.
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Chapter 2

NF-YC3isa positiveregulator of plant diseaseresistance to
Hyal operonospora arabidopsidis that is negatively regulated by L SD1

Preface

For the second chapter, | have included work that will be submatBddaS One
at the completion of some additional experiments currently beimfprped by a
collaborator (see Discussion for further details). The authors opdper will be myself,
Hiro Kaminaka, Kengo Takabayashi, Fumi Arase, Nicholas SjelBas Holt, and Jeff
Dangl. This work was started by Ben Holt at the beginning oPhB work, when he
helped with the initial screens for LSD1 interactors. Ben tlegfopned the pull-down in
Supplemental Fig. 2, and then performed the initial characterizationi-yaf3. Hiro
Kaminaka and his students performed the yeast-2 hybrid experimemhepdotoplast
localization experiments. | helped with additional characteozatf thenf-yc3 mutant,
performed the NF-YC3 over-expression experiments andistieWestern blot, created
the alignment for Fig. 1, and wrote the manuscript with the help ofHB#t and Jeff

Dangl. This work was performed under the direction of Jeff Dangl.



Abstract

Plants induce a variety of defense responses upon pathogen recognition.

hallmark of disease resistance in plants is the hypersensssponse (HR), a type of
programmed cell death. Genetic regulators of cell death have dezdified and include
the cytosolic zinc finger protein LESION SIMULATING DISEASE 1 (LSDa)negative
regulator of cell death and disease resistance. Here wendemte that LSD1 can
interact with NF-YC3, a NUCLEAR FACTOR Y, subunit C protein.-ME proteins are
components of NF-Y transcription factor complexes that regulateyrgenes in diverse
eukaryotic lineages. The LSD1 interaction could sequester NF-Y@@ ioytosol, which
would prevent the formation of active NF-Y complexes. Using the comlawhniques
of yeast two-hybrid, phage display, and site directed mutagenesaefime a single GxP
motif in NF-YC3 as necessary for the LSD1 interactiofryc3 mutants display
moderately increased susceptibility to the oomycete pathdgaloperonospora
arabidopsidis (Hpa). Alternatively, plants conditionally over-expressiNg-YC3 exhibit
increased nuclear accumulation of NF-YC3 and corresponding enhanedmesistance

to Hpa. ThereforeNF-YC3 is a positive regulator of disease resistance.

I ntroduction

Plants possess a quick-acting, well-regulated immune sysidmwhich they

respond to pathogen attacks (Jones and Dangl, 2006). Pathogen recognititm is of

mediated by plant resistance gem dene) products. Most R proteins belong to the
nucleotide-binding leucine-rich repeat (NB-LRR) superfamilyi¢Edind Jones, 1998);

these directly or indirectly recognize specific pathogen &ffgmroteins. This recognition
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initiates a defense signaling cascade that leads to disesiseance (Pitzschke et al.,
2009). Successful disease resistance requires transcriptiorabgr@mming and
consequently the production of myriad proteins and cell wall re-egrfoents to stop
pathogen growth and colonization (Dangl and Jones, 2001). Signal traosducti
subsequent to recognition thus is likely to culminate in activatidateht transcription

factors to up- or down-regulate the transcription of disease resistlatedrgenes.

The Arabidopsis thaliana (Arabidopsis) genome encodes more than 1500
transcription factors (Riechmann et al.,, 2000). Of these, five fBndi transcription
factors are known to play roles in defense responses: AP2/&ARETALAZ2 /Ethylene-
response factors), bHLH (basic helix-loop-heli%gIP (basic leucine zipper), MYB
(myeloblast), and WRKY (characterized by the amino acids tryptophan (W)niasi
(R), lysine (K), and tyrosine (Y)) (van Verk et al., 2009). Anothandcription factor
found in Arabidopsis is the heterotrimeric Nuclear Factor Y (NFa¥so referred to as
the heme-activated protein (HAP) or CCAAT binding factor (CBHjis transcription
factor is found in all eukaryotes and regulates a diversef ggines. In most organisms,
each of the three unique NF-Y subunits (NF-YA, NF-YB, and NF-Y@hisoded by one
or two genes (Riechmann et al., 2000). However, in Arabidopsis thel® &NE-YA, 13
NF-YB, and 13 NF-YC subunits (Siefers et al., 2008yjachypodium distachyon and
Triticum aestivum also have 35 or more NF-Ys in each of their genomes (Cao et al.,
2011; Stephenson et al.,, 2007), indicating that there has been a gethekdfi2é

expansion in the plant lineage.

The NF-Y heterotrimer assembles in a specific, stepwiaaner (Maity et al.,

1992; Sinha et al., 1996). NF-YB and NF-YC subunits are typically both fouridei
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cytosol, where they initially form a dimer (Frontini et al.,, 20@hda et al., 2005;
Tuncher et al., 2005). NF-YB/C heterodimerization is required foskoaation into the
nucleus; once there the heterodimer binds the third subunit of the filiily (NF-YA).

The mature NF-Y complex binds DNA at the nucleotide seqUEREEAT (the ‘CCAAT

box”) (Ceribelli et al., 2008). Th€CAAT box is a frequent and widespread promoter
element, with functional sites minimally occurring in ~7-8% admmalian promoters
(FitzGerald et al., 2004; Testa et al., 2005). There is no acastteate for the number

of functional CCAAT sites in plants, but Arabidopsis promoters have a higher frequency
of this simple pentamer sequence than what is found in humans $Saefak, 2009a).
NF-Y transcription factors are able to both up- and down-regulatdranscription of

CCAAT box containing genes (Mantovani, 1999).

Compared to analyses in yeast and mammals, an understanding of whether or how
the plant-specific NF-Y expansion leads to mechanistically siveutputs is lacking.
However, mutations in several single-subunit genes display phenoBgresxample, in
Arabidopsis and maize, genes encoding NF-YA and NF-YB subunits harddend to
promote drought resistance (Li et al., 2008; Nelson et al., 2007). NBAGBNF-YC
subunits both play roles in Arabidopsis flowering time regulation (Kumimoto et al., 2008;
Kumimoto et al., 2010a). NF-Y subunits also regulate embryo developienng et
al., 2003), as well as blue light and abscisic acid responses (Wdagteal., 2007).
Furthermore, NF-YA and NF-YC subunits are required for proper rhakoifection and
formation of nitrogen fixing nodules iMedicago truncatula and Phaseolus vulgaris
(Combier et al., 2008; Combier et al., 2006; Zanetti et al., 2010). In &f these

important and numerous functions, and due to the potential cost of unnecessary
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transcriptional activation, it follows that transcription factasch as NF-Ys must

themselves be under some form of control.

Localization can regulate transcription factor activity (\&$ide and Goodbourn,
1993); cytoplasmic retention prevents transcription factors fromiegténe nucleus,
thereby thwarting transcriptional activation. In some casess¢ription factors are
retained in the cytosol until an appropriate signal causes themowe into the nucleus
(Whiteside and Goodbourn, 1993). Such retention can result from the binding of
transcription factors to cytosolic proteins that function as inieraanodules. One
known group of cytosolic interaction modules are zinc finger proténshha et al.,
2003). These molecules use zinc ions to stabilize their protein fotdsaam bind DNA,

RNA and small proteins (Krishna et al., 2003). In Arabidopsis, one suokotig zinc
finger protein is LSD1, a proposed interaction module and a negativkatagof cell

death (Dietrich et al., 1997).

Isdl mutant plants exhibit inappropriately activated and uncontrolleddesith
(Dietrich et al., 1994), leading to runaway cell death (rcd). Thes&nts express
additional defense response phenotypes, including the production of pathogelassd
(PR) proteins and increased resistance to multiple pathoGeesenberg, 1997)sdl rcd
can be initiated by exposure to pathogens, exogenous application of thelgflamde
hormone salicylic acid (SA), and changes in growth conditions (Bhegt al., 1994).
The rcd phenotype requires SA, superoxide, and other key genetic congpoheisease
resistance (Aviv et al., 2002). SA-dependent signaling during defesponses leads to
increased local and systemic cell death. LSD1, in concert wilstive oxygen

intermediates, prevents rcd during this process (Torres et al., 2@@5an interaction
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module, LSD1 is known to interact with both transcription factors (IKaka et al.,
2006) and positive regulators of cell death (Coll et al., 2010; Epple, €083). These
interactions take place in the cytosol. The transcription facZdP1 is a positive
mediator of rcd. LSD1 functions to sequester bZIP10 in the cytosolpthpreventing
its function in transcription of a pro-cell death regulon (Kaminekal., 2006). LOL1
and AtMC1, two proteins with LSD1-like zinc-finger motifs, alsderact with LSD1
(Coll et al., 2010; Epple et al., 2003). These proteins are also pasigukators of cell
death, and in the absence of LSD1 each protein is required for rcoh {bagether, these
data indicate that LSD1 may act as a cytoplasmic scaffolgnogein, sequestering
proteins necessary to appropriately balance cell death and deéspsasises. As such,
other proteins which interact with LSD1 could be important for md/@a disease

resistance.

We found that LSD1 interacted with the Arabidopsis NF-YC3 subarat yeast
two-hybrid (Y2H) library screen. Using phage display technigaed directed Y2H
assays, we noted that this interaction depended on a plant-specili€ Nifteraction
motif. Additionally, nf-yc3 mutants were more susceptible to infection with the oomycete
parasiteHpa isolate Cala2. Parallel to loss-of-function analyses, we cteatdine
conditionally over-expressing wild-type (WBIF-YC3. This line exhibited enhanced
disease resistance tdpa isolate Emco5. Conditional over-expression of tWie-YC3
mutants, one unable to form the B/C dimer and another that cannot bind didNAot
result in enhanceHpa resistance. Thus, using both mutant and over-expression lines, we
demonstrate thalNF-YC3 is a positive regulator of disease resistance, likely via

transcriptional regulation of defense-related genes. This trptispal activation of NF-
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YC3 could be partially controlled by LSD1 sequestering it in thesol, thereby
preventing NF-YC3 movement into the nucleus and its subsequent diesagance

function.

Results

LSD1 interacts with the transcription factor NF-YC3. LSD1 is necessary for
proper regulation of defense responses and interacts with proteingaintpardisease
resistance (Coll et al., 2010; Dietrich et al., 1994; Kaminaka.eP@D6). To identify
additional LSD1-interacting peptides, we performed a phage displag aslibrary of
random 12aa epitopes (Kay et al., 1996). GST:LSD1 fusion proteins wefiechon
glutathione sepharose beads and incubated with the phage library.tRdialgeund to
LSD1 were isolated and independent phage plaques were sequentobdg Vitleen
unique LSD1-interacting peptides (Figure 2.1A). The consensus sequ8nieeGxP
was found in 11 of the sequenced epitopes, and the G and P positions were invariant in all
15 LSD1 interacting peptides (Figure 2.1B). One of the sequenceshtgawas a near
exact match to a peptide in NF-YC3, which had previously beenasolt an LSD1
interacting protein in Y2H assays. Arabidopsis NF-YC3 has homadlognammalian

NF-YC, including the residues required for proper NF-Y formation (Figuzg

To confirm the interaction between LSD1 and NF-YC3, we used a combination of
invitro and semin vivo methods. We first confirmed the Y2H interaction between LSD1
and full-length NF-YC3 (Figure 2.3A, top line). Additionally, we foemed a protein

immunoprecipitation experiment usirtg coli-purified GST-NF-YC3 fusion proteins
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(Figure 2.4). Purified GST-NF-YC3 was incubated with total protextracts from
Arabidopsis expressing LSD1-Myc under control of the 35S promot&esSxprotein
was washed off and proteins bound to GST-NF-YC3 were eluted andhteeban an
SDS-PAGE gel. GST-NF-YC3 pulled down myc-tagged LSD1 protein, eglsea GST
control did not (Figure 2.4A). Protein blots of input proteins showed ths¢ thd bands

were specific to LSD1-Myc (Figure 2.4B).

NF-YC3 localization is dependent on GxP-mediated L SD1 interaction. As an
additional test of whether LSD1 interacts with NF-YC3, we z4ili the plant-specific
GxP motif found in the phage display. This sequence was found in alé ghsgjay
clones that bound LSD1 (Figure 2.1B), leading us to hypothesize ttivabuld be
necessary for the interaction between LSD1 and NF-YC3. Theré seguential GxP
motifs in a Q-rich region at the C-terminus of NF-YC3. A trafimn containing only this
region retained interaction with LSD1 in Y2H assays (Figure 2.BAj)ther, using a
series of truncation mutations and a point mutation in the second GxP (@BBR,
labeled in the Figure 2.2 alignment), we found that this motif i€sseey and likely
sufficient for the interaction with LSD1. We note that this palac GxP motif is in a

region divergent from human NF-YC.

To test the proposed functionality of the GxP interacting domain, \ed us
different versions of GFP-tagged NF-YC3 transiently expregsguiatoplast cells. NF-
YC3-GFP was observed in both the nucleus and the cytoplasm (Figure R.8Rijtant

of NF-YC3 lacking the second GxP motif was also expressed inghasts P35S NF-
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YC34GP2-GFP, expressing a G182A/P184A mutation). Interestingly, NF-XGB2-
GFP was only present in the nucleus (Figure 2.3B, right pandigating that the GxP
motif was required for accumulation in the cytosol. As LSD1 is a knowosolic
protein and previous studies have shown that it works to sequester atisarifition
factors out of the nucleus (Kaminaka et al., 2006), these reseltoasistent with the

suggestion that LSD1 could retain NF-YC3 in the cytosol.

If LSD1 interacts with NF-YC3, there must be direct inteactbetween these
two proteins in plant cells. To test this hypothesis, we used adxmiat fluorescence
complementation (BiFC) assay to check for direct interactiondstvthe two proteins,
albeit under conditions of transient over-expression. LSD1 fused tonhhtr YFP
(YFPN-LSD1) and empty vector C-terminal fragments of YFP (Y)Féid not produce
YFP fluorescence (Figure 2.3C, top). However, strong YFP fluoreseeasebserved in
protoplasts expressing both YEPSD1 and YFB-NF-YC3, indicating that these two
proteins are interacting (Figure 2.3C, middle). When the GP2 mutant constrifeNF-P
YC3AGP2 was expressed in the same cells as"MD1, there was no fluorescent
signal (Figure 2.3C, bottom), further indicating that the GxP metihecessary for

interaction between LSD1 and NF-YC3.

To further test the interaction between LSD1 and NF-YC3, wdyzedh the
nuclear accumulation of NF-YC3 in defense-induced wild-typelsdfd mutant plants.
Given that NF-YC3 should enter the nucleus in order to affect tiptisoal regulation
after pathogen recognition in our model, and that LSD1 could seqiNSt¥¢C3 in the
cytoplasm, we hypothesized that i) the amount of nuclear NF-YC3 wocidase after

rcd was triggered, and ii) this increase would be strongkedin where NF-YC3 could

40



not be as effectively retained in the cytoplasm. Five week oleDQwild-type) andsd1-

2 plants were sprayed with benzothiadiazole (BTH), a synthetic SA functiona@jahat
induces rcd inlsdl (Lawton et al., 1996), and leaf tissue was collected at regular
intervals. Protein blots with an NF-YC3-specific antibody (Kumimetoal., 2010b)
demonstrated that NF-YC3 was detectable in the nuclear-enfictetion of both wild-
type andlsd1-2 plants, and that the amount of protein increased after BTH aativati
(Figure 2.3D). However, thisd1-2 plants showed an overall increased level of nuclear-
localized NF-YC3 compared to Col-0, indicating that LSD1 can functiokeep NF-
YC3 in the cytosol. The lack of hyper-accumulation of NF-YC3 inrtheleus of non-
induced (O time)sdl-2 plants suggests that there are likely additional factors lseside

LSD1 involved in the cytoplasmic retention of NF-YC3.

NF-YC3 is a positive regulator of disease resistance. LSD1 interactors can
regulate pathogen responses (Coll et al., 2010; Kaminaka et al., 208&fote, NF-
YC3 may also play a role in disease resistance. To tedtypthesis, we looked at the
effects of NF-YC3 on disease resistance using the obligateinnt oomycetéipa. We
used theHpa isolate Cala2, which is virulent on the Arabidopsisetacotype (Holub et
al., 1995). On the Ws ecotype, relatively weak resistan¢¢péoCala2 is conferred by
RPP1A (Botella et al., 1998). We isolated-yc3 homozygous mutant plants in the Ws
background from publicly available stocks (Krysan et al., 1999) and dénateaisthat
they are protein nulls (Figure 2.5A). We inoculated Wsel,aandnf-yc3 plants with 5 x
10" spores/ml ofHpa Cala2. After seven days, the number of sporangiophores per
cotyledon was counted. Weak resistance phenotypes, like those seelfRRRAA), are
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characterized by little or no sporulation. By contrastet érppla) plants were highly
susceptible to pathogen growth, as measured by profuse sporulagare(Ei5B). The

nf-yc3 plants exhibited an intermediate leveHya sporulation.

Infected cotyledons were also stained with trypan blue to sty pEll death
and hyphal growth. Strong disease resistance responses exhibited had ¢agwth.
However, intermediate resistance was characterized Hyngraiecrosis, wheréHpa
hyphal growth is accompanied by cell death that “trails” behindgtiogving hyphae
(Davis and Hammerschmidt, 1993). Ws displayed resistance witimien@h amount of
hyphal growth and trailing necroses, while é&aexhibited significant free hyphal growth
(Figure 2.5C). As indicated by the sporangiophore counftg;3 mutants displayed an
intermediate level of disease resistance with more extetrsilieg necroses than Ws,

but less total hyphae growth than é&a-

To prove that the suppressionRPP1A-mediatedresistance was due to the loss
of NF-YC3, we transformeaf-yc3-1 plants with a construct containing full length
genomicNF-YC3 driven by its own promotemplNF-YC3:NF-YC3). A protein blot was
performed to confirm that NF-YC3 protein accumulation was reschg the
transformation (Figure 2.5A). This complementation line was infieat¢h Hpa Cala2,
and displayed a low level of sporulation, similar to Ws (Figure 2f&Bright). Together,
this data indicates that NF-YC3 is necessary forREP1A-mediated resistance tépa

Cala2.

If NF-YC3 is a positive regulator of disease resistance, itiseover-expression

should lead to increased disease resistance. To test thishemtgd a dexamethasone
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(Dex)-inducible, HA-tagged version of NF-YC3 and transformed d wild-type Col-0
plants. When sprayed with 20uM of Dex, pDex:NF-YC3-HA plants espres
significantly more total NF-YC3 protein than non-transgenic paredtd-0 (Figure
2.6A). To assay for an enhancement of disease resistance intrdresgenic lines, we
usedHpa isolate Emco5, which is highly virulent on parental Col-0. For an Emco5
resistant control we used lea-plants, which exhibit stron§PP8-mediated resistance
(McDowell et al., 1998). As expected, Col-0 plants exhibited higlldeof sporulation
when inoculated withiHpa Emco5, and Lar plants were resistant to this isolate (Figure
2.6B). Dex application 24 hours pre-inoculation did not affect the resulteither
control. Sporulation levels opDex:NF-YC3-HA cotyledons that had not been sprayed
with Dex were essentially identical to Col-0. However, wBbex:NF-YC3 plants were
sprayed with Dex, the number éfpa Emco5 sporangiophores per cotyledon was
reduced to Laer levels (Figure 2.6B). Additionally, trypan blue staining of thesesline
showed that in Col-0 plants with or without Dex, giakex:NF-YC3-HA plants without
Dex, there were high levels of free hyphae (Figure 2.6C). ConygerBel-induced
pDex:NF-YC3-HA cotyledons exhibited no free hyphal growth, and were therefore
disease resistant. While these plants exhibit some increasesll death post Dex
induction, disease resistance occurs prior to the appearancé aéatbl symptoms. This
was demonstrated by the presence of numeHpasspores arrested at the penetration
peg stage (prior to production of hyphae or death of surrounding cellsnagpafied
view in Figure 2.6C). Therefore, increasdda resistance is due to over-expression of

NF-YC3. This finding, along with the opposing phenotype expressed bwfijes
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mutant data, supports our conclusion thét-YC3 is a positive regulator of disease

resistance.

NF-YC3 function requires proper heterotrimeric NF-Y formation. As noted
in the Introduction, NF-Y-containing transcription factors assenmbe specific manner
and this formation is required for proper NF-Y-related transcripti@galation. Specific
conserved residues in the NF-YC subunits are required for both ditrerizad DNA
binding (Sinha et al., 1996). Dimerization is coordinated by consergkicsne (I) and
leucine (L) residues that are highly conserved between plant amdldxi--YC proteins
(Figure 2.2, arrows; (Cao et al., 2011; Siefers et al., 2009a)). Mutatiohsse residues
disrupt dimerization, subsequent NF-Y formation, and transcriptional atemulin
mammals (Sinha et al., 1996). A second conserved site in NF-Yinisased of alanine
(A) and arginine (R) residues. Disruption of these residues prevents matuodrine¢eic
NF-Y complexes from binding DNA. We predicted that disruptions iseghesidues in
NF-YC3 would interfere with NF-Y complex formation, but not the USibteraction,
therefore eliminating the increased resistancélpa Emco5 observed when wild-type

NF-YC3 is overexpressed.

To test this hypothesis, we created transgenic Col-0 expge&®x-inducible
NF-YC3 with either the 1105D/L108E (predicted to interrupt NFAZRIlimerization) or
A74D/R75P (predicted to interrupt DNA binding) mutatiopBéx:NF-YC341L-HA and
pDex:NF-YC34AR-HA, respectively). As expected, these proteins still associaittd w

LSD1 at or near wild-type levels, as shown via Y2H assaysi(@&ig.3A). Although NF-
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YC3AAR-HA accumulated in the nucleus, we did not measure significantarucl
accumulation of NF-YCBIL-HA (Figure 2.6A). Next, we challanggaDex:NF-YC34IL-

HA andpDex:NF-YC34AR-HA plants with theHpa isolate Emco5, with and without Dex
induction. Dex-induced accumulation of these mutant proteins did not Ilead t
substantially increased resistanceHjea Emco5 (Figure 2.6D). These data suggest that
NF-YC3 functions in a heterotrimeric complex and binds DNA to couwfisease

resistance téipa.

Discussion

Our key finding is that Arabidopsis NF-YC3 functions as a positglator of
Hpa disease resistance, presumably by contributing to the overall uptregudisease
resistance-related genes and/or cell death genes. Additiomallgtiscovered that LSD1
potentially participates in NF-YC3 cytosolic retention. As thisneo hyper-accumulation
of NF-YC3 in the nucleus d&d1 plants, we hypothesize that LSD1 may be working with
other factors to regulate NF-YC3 nuclear accumulation. Thesati@mt factors may
prevent interactions between NF-YB and NF-YC subunits, and thus theseguent
movement into the nucleus to form a functionally active NF-Y beierer, as
previously described in mammals and yeast (Ceribelli et al., 2088)1 was previously
shown to antagonize the nuclear shuttling of a defense-relatectripios factor,
AtbZIP10, resulting in increased disease resistance (Kaminakh, €2006), and also
associates with other positive mediators of disease resistadceell death (Coll et al.,

2010). In this work, we provide additional evidence that LSD1 may functioa as
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transcriptional regulatory scaffold, sequestering defense-repaitgdins in the cytosol,

and dampening their functions.

There is, however, one main caveat with the current data, spéygifwith the
data indicating that LSD1 is functioning as a retention facfoNF-YC3. The key
problem is that the current BiFC data shows that all thedhoemce is in the nucleus
when both LSD1 and NF-YC3 are co-expressed (Figure 2.3C). This ignirast to
previously published data, which has shown LSD1 to be a cytosolic proteiis, @ad in
opposition to the data from Figure 2.3B, which indicates that an ib&2f interaction
motif is necessary for NF-YC3 to accumulate in the cytosol. Midear localization
currently seen in Fiure 2.3C could be due to false nuclear latiahzof the xFP fusions,
or could be a localization artifact of BiFC, either of which colodddue to the over-

expression of both fusions in the protoplast assay.

To address these problems, additional experiments are beingnpedfany our
collaborator Hiro Kaminaka. First, we will add a panel of LSDIPG& be the third row
in Figure 2.3B to demonstrate LSD1 localization on its own. Wethalh set up a new
Figure 2.3C, which will use co-localization of two xFP colors to address thé#isipe of
the interaction between LSD1 and NF-YC3. This new figure wouldch®ver-
expression of LSD1-xFP with, first NF-YC3-xFP, and second with'IBAGP2-xFP.
These constructs must express different FPs for LSD1 and theCSFeonstructs so that
they can each be imaged at the same time, and a merged mmaiiperc be made for the
figure. The anticipated result is that the LSD1 / NF-YC8 weo-localize in the cytosol

(with perhaps some NF-YC3 signal in the nucleus) and that LSDIYCBAGP2 will
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show that LSDL1 is in the cytosol and NF-YAZ3P2 is in the nucleus, as predicted by the

current Figure 2.3B.

Even with these caveats, our data suggests that NF-YC3 positgellates plant
disease resistance. Over-expression of NF-YC3 clearly destrong resistance to a
normally highly virulentHpa strain, although the loss of function phenotypes were
relatively mild, possibly due to overlapping functionality with othef-XC family
member. Indeed, NF-YC4 was also identified as a potential LSDhatde via our Y2H
screen, and this protein has the requisite LSD1-binding GxP sequence (unpublighed da
Six additional Arabidopsis NF-YCs in Arabidopsis also contain theserved GxP
interaction motif, though their association with LSD1 has not yet bleemonstrated.
Functional overlap between these, or other NF-YA and NF-YB subunitsNBAAGC3
and LSD1 are the target of future work. However, this may beudlifto parse, due to
the inherit redundancy of the large NF-Y gene families. Thezefeerial deletion or
mutation of theNF-Y subunits may help to broaden the understanding of the function of

these genes in plant defense.

Our studies also suggest that the specific amino acid resuemsfied in other
systems for NF-Y assembly are conserved in Arabidopsis. Thégistep assembly of
the mature NF-Y has been extensively studied (Maity et al., 1968a ®t al., 1996).
Here we provide genetic evidence demonstrating that NF-Y transarfpttor formation
is likely to proceed similarly in plants. The conserved IL and A8ldues, previously
shown to be necessary for NF-YB/C interaction and NF-Y DNA bindiegpectively

(Sinha et al., 1996), are required for at least the diseasanesigthenotype we measure,
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suggesting that the Arabidopsis proteins act analogously to thast yand animal

counterparts.

In the simplest model consistent with our data, LSD1, likedyking with other
immune-related proteins, retains NF-YC3 in the cytoplasm, prexgitirom forming a
functional NF-Y complex capable of driving defense-relatedegeanscription in the
nucleus. A pathogen-induced signal, provided here by inoculation kip) causes
dissociation of NF-YC3 from LSD1. NF-YC3 is then able to bind anY¥F-enter the
nucleus, and form the active NF-Y complex which regulates #resdription of pro-
defense genes. Further work to explore both the interactions bepnetems regulated
by LSD1 retention, as well as studies designed to define thanelsF-YA and NF-YB
subunits, and to indentify the set of defense genes induced by theCBHeontaining
NF-Y, will allow a better understanding of the role of NF-gniscriptional regulation in

the plant defense response.
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Materials and M ethods

Plant M aterials and Growth Conditions

We usedArabidopsis thaliana Columbia (Col-0), Landsberg erecta (&3; and
Wassilewskija (Ws) ecotypes. Mutanftyc3 in the Ws background is a protein null T-
DNA insertion line (-492bp from ATGnf-yc3 pNF-YC3:NF-YC3 (WSs), Dex:NF-YC3-
HA (Col-0), Dex:NF-YC34IL-HA (Col-0), andDex:NF-YC34AR-HA (Col-0) were cloned
in the pGWB1 Gateway vector, and Arabidopsis transgenics wergatgheusing
Agrobacterium (GV3101)-mediated floral dip transformation (Clougth Bent, 1998).
Isd1-2 is in the Col-0 background. Plants were grown under short day condi@dns (

light, 21°C; 15 hrs dark, 18°C).

Phage Display

All phage display techniques used were performed as previdestyibed (Kay
et al., 1996). GST-LSD1 fusion proteins were purified with glutathgapharose beads
as per the manufacturer’s instructions (Amersham PharmaciacBjoRiscataway, NJ).
GST-LSD1 was eluted from the sepharose beads with glutathiemraghinding to the
wells of high protein binding ELISA plates (Fisher ScientifitlaAta, GA) and screening
of the phage library. The phage library consisted of random 12 amuhanaertions into
the plll gene of M13 phage and was supplied as a generous gift fran Ray
(University of Wisconsin, Madison). The vector pMYAP was used fpression of the

phage epitopes fused to alkaline phosphatase as previously descridrmedbfi and

49



Kay, 2001). Epitopes from randomly selected independent phage plaques were

sequenced, and 15 unique sequences were confirmed.

Yeast Two-Hybrid Assay

The fragments of mutated or deleted NF-YC3 cDNA were aldayePCR-based
mutagenesis. All NF-YC3 fragments including full-length, muteded deleted cDNAs
were cloned into pENTR-D-TOPO (Invitrogen). After verifyitige nucleotide sequence
of PCR fragments by sequencing, all NF-YC3 fragments were then tradsieo pJG4-
5gw (Holt et al., 2005) using LR clonase Il (Invitrogen). Yeasi-hybrid assay using
LexA-based two hybrid system was basically carried out aridbed previously
(Kaminaka et al., 2006). Briefly, the transformation of yeads &GY48 (MATa ura3
trpl his3 3LexAop-leu2) harboring pJK1032lexAop-lacZ]) reporter plasmid was carried
out with the Frozen-EZ Yeast Transformation Il Kit (Zymo Resk). Transformants
with both LSD1 in pEG202 (Kaminaka et al., 2006) and NY-FC3 fragmensG4-5
were grown on glucose base selection medium [SD(Glu)/-UsfHp], and then
independent clones of each transformant were plated on galactosaffamuse base
selection medium [SD(Gal)/-Ura/-His/-Trp] containing X-gal toerform semi-
guantitative p-galactosidase activity assay on gel. Level of each interagtas also
evaluated by measurement 3fjal activity usingo-Nitrophenyl$-D-galactopyranoside

(ONPG) method according to Yeast Handbook (Clonetech).
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Subcellular localization analyss usng GFP and BiFC analysis in Arabidopsis

mesophyll protoplasts

For the construction of NF-YC3-GFP fusion genes driven by theI\C 35S
promoter, NF-YC3 wild-type and NF-Y@&P2 cDNA fragments made as described
above were transferred into p2GWF7 (Karimi et al., 2002), using loRase Il
(Invitrogen). Similarly, for BiFC experiments, YFRSD1 and YFP-NF-YC3 genes
driven by the CaMV 35S promoter were made by transferringlL&il)-length cDNA
and NF-YC3 wild-type or NF-YCBGP2 cDNA fragments into nYFP/pUGWO and
cYFP/pUGWO (Singh et al., 2009), respectively, using the Gatevikayecombination
reaction. As a negative control, YFBIlone driven by the CaMV 35S promoter was also
created by PCR-based mutagenesis using"¥ER5W2. NLS-tdTomato driven by the
CaMV 35S promoter was used as a nuclear organelle marker amwhtenl for
transformation (Arase et al., 2012). Transient expressiodrabidopsis mesophyll
protoplasts and assay for fluorescence using a confocal laserirsg microscopy was

carried out as described (Arase et al., 2012).

Immunaoblot Analysis.

Leaves from 2-wk-old plants were harvested, and total proteins e&xtracted by
grinding frozen tissue in a buffer containing 20mM Tris (pH8), 0.33Mr&e; 1mM
EDTA (pH8), 5 mM DTT, and plant protein protease inhibitor mixt@wgtha-Aldrich).
Samples were centrifuged at 2,000 x g for 5 min at 4°C to pldleis, and a portion of

the supernatant was set aside (total protein). The remaining atggrwas centrifuged
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at full speed (~20G) for 30 min at 4°C. The resulting supernatantraasferred to a
new tube (soluble fraction), and the pellet was resuspended (nucliedwedniraction).
Proteins were separated on 12% SDS/PAGE gels and werestradsio polyvinylidene
difluoride membrane. Protein blots were performed using standard methatoF-

YC3 antibody was used at a 1:3,000 dilution. Signals were detecteeghtmnced

chemiluminescence using ECL Plus (Amersham Biosciences).

Hpa infection assays

Twelve- to fourteen-day-old seedlings were inoculated with 50,00@ Sfpar of
Hyaloperonospora arabidopsidis isolate Emco5 or Cala2. These plants were covered
with a lid to increase humidity during inoculation and pathogen grdsygbrangiophores
counted at 7 dpi as described (Holt et al., 2002). Trypan blue stdaricgll death and

hyphal growth as previously described.

Semi-in vivo Pulldown

Total protein was extracted from Arabidopsis expressing a 3B8:A09/c
transgene. GST:NF-YC3 was purified froncoli using glutathione sepharose beads.
This gel matrix was incubated with the protein extract, and thenbeads were

precipitated from the solution. Bound proteins were eluted and run on an SDS-PAGE gel.
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A % Library of M13 phage
expressingrandom
% 12 amino acid epitopes
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LSD1 Interacting Phage Clones
SKQDWVWGAPVR
YDQSWVWGMPGT

DWVWGFPRSDPUV
GEDTWVWGVPMG
DGTVWGWPVGNV
DWVWGDPETDPP
GWEWGGPTIESNS
ESWVWGIPTASG

SQKTVWGFPLWE
YDQSWVWGMPAT
LDGGMVMGYPVT

GDWVWGTPVSGS
ASFDKWVWGTPYV
GGQDWVWGMEPEFG
GHAGETVWGWPV

| Consensus: WVWGxP ‘

Figure 2.1: LSD1, a negative regulator of cell death, interacts with members of the
NF-Y transcription factor family. A) Phage display: 1. GST-tagged LSD1 is bound to
wells and a phage library of randomly-generated, 12 amino acid-potopes is added to
the wells; 2. Interacting proteins bind to LSD1 and other phage ashed off; 3.
Proteins attached to LSD1 are eluted and sequenced. B) A consensusc&eque
(WVWGxP) was found in a majority of sequenced epitopes.
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AtNF-YC3 1 MDQQGQOESAMNYBSNPYQTNAMTTTPTGSDHPAYHQTHOOQQQQLTEOHE 50
HsNF-YC 1 -————- VijEEGGEG------———-------——--————- TSSSDAQESHEE 20
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HSNF-YC 21 SRR 1o BErurL v DR 0 EESRRSRATN: DEOV<HISASRRNIE 79

AWNF-YC3 99 RECEMEN BEEERSH EIE-NKEREEOXNDIA> EVER ]  EDEEVDIVER 145

HSNF-YC 71 KAQ T SISINRA il DN < NDWA 8 K - HOEDEH [DIVER 120
A A

1 2
AtNF-YC3 149 EDER--—-- DENL.GGYGAEAATAAGYPYGYLBPGTAPIE-—-N-—————~ 184
HsNF-YC 121 DEBKPPKROEENVROSNMTPAEPVQYYFTLAQQBTAVOVOBOQOGOOTTSST 170

3 4
AtNF-YC3 185 —--——-PE-MVMGNE--B-AYBPNPYME---—- @PMWOPB-EPEQEDPDN-- 219
HsNF-YC 171 TTIQBEQIIIAQBOOBQTTEVTMOVEBEGQOVEIVOABEOBQABBAQSGTG 220

HsNF-YC 221 QTMQVMQOIITNTGEIQQIPVQLNAGQLQYIRLA 254

Figure 2.2: NF-YC Transcription factor subunits are conserved across eukaryotes.

A) Alignment of Homo sapiens NF-YC and Arabidopsis NF-YC3 deduced protein
sequences. Alignment was created using VectorNTIl AlignX (logén). Residues
shaded in dark grey are identical between species, those igrgyhare similar. The NF-
YC3 and mammalian NF-YC histone fold motifs are highly conservéd; and R75 are
required for the complex to bind DNA and 1105 and L108 are required for NF-YC to bind
NF-YA. Arrowheads mark A74, R75, 1105, and L108; numbers 1-4 indicate Gxis mot
(potential LSD1 interacting motifs).
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Figure 2.3: LSD1 interacts with the NF-Y subunit NF-YC3. A) B-gal activity assay
based on two-hybrid system in yeast showing specific interabttween LSD1 and NF-
YC3 through GxP motif. Yeast (EGY48:pJK103) cells were co-tcanséd with BD-
LSD1 bait plasmid and AD-NF-YC3 prey plasmid d with bait plasmaluding LexA
DNA-binding domain (BD)-LSD1 fusion (BD-LSD1) in pEG202 and prey pias
including activation domain (AD)-NF-YC3 fusions (AD-NY-FC3s) in gd& To
observe the interaction, semi-quantitatprgal activity assay was carried out by plating
transformants on SD(Gal)/-Ura/-His/-Trp medium containing X-géhe level of each
interaction was also evaluated by measuremepigatl activity using the ONPG method.
Vector indicates empty vector (negative control experimentpn§ir approximately
equivalent expression of the NF-YC3 truncation and point mutant proteyeagh was
verified by protein blot analysis (data not shown). B) Subcelldealization of NF-
YC3-GFP and NF-YCBGP2-GFP. GFP fusions of NF-YC3 or NF-Y&3P2 and NLS-
tdTomato, as a nucleus marker and as a control for transformagos ca-introduced in
Arabidopsis mesophyll protoplasts. GFP, NLS, and BF (top) represent GFP and
tdTomato fluorescence and bright field images, respectively. n:usjde cytosol. Bars
= 10um. C) BiFC assay was used for the detectiomaivo protein-protein interaction
between LSD1 and NF-YC3. YPR.SD1 and YFE:NY-FC3 or YFP fusions were
transiently co-expressed ifrabidopsis mesophyll protoplasts with a nuclear marker
NLS-tdTomato. BiFC, NLS, and BF (top) represent YFP and tdTomatoeBaence and
bright field images, respectively. c: cytosol. Bars =ub@ D) Isd1 plants have stronger
NF-YC3 induction than wild-type. 5 week old Col-0 dsdl-2 plants were sprayed with
300uM BTH and collected at time points indicated. Protein waaagtt and this extract
was spun to separate the nuclear fraction, which was run on ABE-Rels and
immunoblotted with anti-NF-YC3 antibody.
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Figure 2.4: Semi-in vivo pulldown. A) Semiin vivo pulldown using GST-bound NF-
YC3, and adding plant extract containing 35S-overexpressed LSD1-mycNGESC3
is able to pull down myc-tagged LSD1. B) Protein blot showing spggifacd myc-

tagged proteins used in (A).
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Figure 2.5: NF-YC3 is required for full pathogen resistance. A) Protein extracted
from plants in (B) was run on an SDS-PAGE gel and immunoblottedantiiNF-YC3.

B) Two week old plants were sprayed witpa isolate Cala and sporangiophores
counted 6dpiNF-YC3 is in Ws background; WSNF-YC3:NF-YC3 is thenf-yc3 mutant
complemented with native-promoter-drivéii--YC3. C) Plants from (B) were stained
with trypan blue to assaypa HR, free hyphae, and sporangiophore growth.
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Figure 2.6: NF-Y assembly and DNA interactionsarerequired for induced pathogen
resistance. A) Two week old Col-0,pDex:NF-YC3-HA, pDex:NF-YC34IL-HA and
pDex:NF-YC34AR-HA were sprayed with silwet or silwet and 20uldxamethasone. 24
hours later, protein was extracted from these plants and oegetlifto separate the
soluble and nuclear fractions, which were run on SDS-PAGE gels andnablotted
with anti-NF-YC3 antibody. Labels indicate endogenous NF-YC3 prodech HA-
tagged, Dex induced NF-YC protein. Nuclear fraction is 4 times owtbas compared
to soluble fraction. B) Col-0, Lar, andpDex:NF-YC3-HA were sprayed with silwet or
silwet and 20uMdexamethasone, and 24 hours later inoculated kpthisolate Emcob.
Sporangiophores were counted 6dpi. C) Plants from (B) were staitiedrypan blue;
close-up is of arrested growth of Emco5 in dexamethasone-ingimedNF-YC3-HA
plant. D) Two week old Col-0, Ler, pDex:NF-YC34IL-HA andpDex:NF-YC34AR-HA
plants were sprayed with silwet or silwet and 20uM dexametieasand 24 hours later
inoculated withHpa isolate Emco5. Sporangiophores were counted 6dpi.
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Chapter 3

Genetic requirementsfor signaling from an autoactive plant NB-L RR intracellular
innate immune r eceptor

Preface

Prior to the work reported in this chapter we published a paper on the mutant
phenotypes of the ADR1 family (Bonardi et al., 2011). This preface quickly summarize

that paper.

Abstract Plants and animals deploy intracellular immune receptorg#rative
specific pathogen effector proteins and microbial products delivatedthe host cell.
We demonstrate that the ADR1 (Activated Disease Resistgnizanily of Arabidopsis
NB-LRR receptors regulates accumulation of the defense hormdicgliSaAcid (SA)
during three different types of immune response: (i) they arereshjas ‘helper NB-
LRRs’ to transduce signals downstream of specific NB-LB&eptor activation during
effector-triggered immunity (ETI), (ii) they are required basal defense against virulent
pathogens, and (iii) they regulate microbial associated molecalbderp (MAMP)-
dependent SA accumulation induced by infection with a disarmed pathogearkaély,
these functions do not require an intact P-loop motif for at leastA@R1 family

member. Our results suggest that some NB-LRR proteins canasit®nal functions



beyond canonical, P-loop-dependent activation by specific virulencg@feextending

analogies between intracellular innate immune receptor function from plashsnimals.

Conclusions ADR1-L2, a positive regulator ¢$d1 rcd, is a part of a small family
of NB-LRRs. This protein functions downstream of ROI production, andegmtof SA
accumulation in basal defense and MAMP-triggered SA accumulation.lARRalso
functions as a ‘helper’ protein during some, but not all ETI responsendyy effector-
mediated activation of other NB-LRR.proteins. Surprisingly, none ofetltefense
functions require an intact P-loop. We speculate that in these comd@®1-L2 may be
working in association with an additional, P-loop dependent NB-LRR, permss

scaffold protein in a signal transduction pathway.

My Contributions For this paper, | characterized thdrl family mutant lines,
represented in Supplemental Fig 1. | also helped with design and sethgoROS burst
experiments, edited the paper, and contributed to the writing of ttexiMand Methods

section.
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Abstract

Plants react to pathogen attack via recognition of and responsehtmggra
specific molecules at the cell surface and inside the cdhoBen effectors (virulence
factors) are monitored by intracellular nucleotide-binding leuciclemepeat (NB-LRR)
sensor proteins in plants and mammals. Here, we study the agesgtirements for
defense responses of an autoactive mutant of ADR1-L2, an Arabidopeis-coil (CC)-
NB-LRR protein. ADR1-L2 functions upstream of salicylic acidh\(&ccumulation in
several defense contexts, and can act as a ‘helper to transpecé&csmicrobial
activation signals from ‘sensor’ NB-LRRs. ADR1-L2 and anotbfefwo closely related
members of this small NB-LRR family are required for propagabf unregulated
runaway cell death (rcd) in dsdl mutant. We demonstrate that, in this context, ADR1-
L2 function is P-loop dependent. We generated an autoactive missenfermadR1-
L2pasay, in @ small homology region termed MHD. Expression of ADR@sksleads to
dwarfed plants that exhibit increased disease resistanceasiitutively high SA levels.
The morphological phenotype also requires an intact P-loop, suggesting that thelse ADR
L2p4g4v phenotypes reflect canonical activation of this NB-LRR protein. Véd AOR1-
L2p484v tO0 define requirements for signaling. Signaling from ADRZL4s2, does not
require NADPH oxidase, and is negatively regulated by EDS1 andCAt
Transcriptional regulation 0ADR1-L2p4g4y is correlated to its phenotypic outputs; these
outputs are both SA-dependent and -independent. The genetic requiremekiigRior
L2p4g4v activity resemble those that regulate the SA-gradient-depensigmial
amplification of defense and cell death signaling observed imalisence of LSD1.

Together, these data allows us to propose a genetic model pvbidbdes further insight
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about the proteins that function in an SA-dependent feedback regulation loap, whi

surprisingly includes ADR1-L2.

I ntroduction

Plants encounter a wide variety of pathogens. To defend ag#edian, plants
evolved an active, two-layered immune system (Jones and Dangl, Z@@d)rst branch
utilizes transmembrane receptors (PRRs, or pattern recogreieptors) which detect
microbe-associated molecular patterns (MAMPSs) of various pathd@agonzac and
Zipfel, 2011). MAMP detection elicits a rapid, relatively low-amyde host
transcriptional response resulting in MAMP-triggered immunity [(MWhich is
sufficient to halt growth of many microbes (Jones and Dangl, 2B6ber and Felix,
2009). Successful pathogens can suppress or delay MTI via deliveryfectoe
molecules into host cells. Effectors are virulence proteins (DoddsRathjen, 2010).
Gram-negative bacterial pathogens deliver effectors via injeictiorthe plant cell by the
Type 1l Secretion System (TTSS). Plants respond to effegtidhsthe second tier of
recognition, which is dependent on highly polymorphic intracellular désessistance
(R) proteins of the NB-LRR family. NB-LRRs are specifigadctivated by the presence
and/or action of effectors to trigger robust defense responsesadtffector-Triggered
Immunity (ETI), which can include localized hypersensitive delith (Jones and Dangl|,

2006).

NB-LRR proteins are members of the signal transduction ATRaesumerous

domains (STAND) superfamily, which also includes animal innate immune sengbes of
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nucleotide-binding domain and leucine-rich repeat-containing (NLR) (lasge et al.,
2004; Lukasik and Takken, 2009). STAND proteins are ATPases that function as
molecular switches: in the “off” position they bind ADP, and in tba"“position they
bind ATP, activating nucleotide hydrolysis and triggering downstréei@nse responses
(Takken et al., 2006). Two essential, conserved homology regions ngcessaroper
plant NB-LRR activity are the P-loop (Walker-A) and the thusplant-specific MHD
domain located between the NB domain and the start of the LRRstidvistan the P-
loop typically lead to loss of function (Tameling et al., 2002; Hareswh Whiteheart,
2005). Conversely, mutation of the Asp (D) in the MHD domain often leads t
autoactivity of the NB-LRR (Bendahmane et al., 2002; Howles e2@05; Tameling et
al., 2006; Gao et al., 2011; Williams et al., 2011; Zhang et al., 204@lfing in either
lethality or a severely dwarfed morphology thought to be the consegus ectopic
accumulation of SA, a key defense hormone whose synthesis from nchigriss
controlled by the isochorismate synthase gene (ICS1) (Wilderetuti., 2001), and
consequent defense activation (Howles et al., 2005; Gao et al., 2011;2ldn@®012).
Several NB-LRRs, in both plants and animals, work in pairs: one functions as aoreffect
specific ‘sensor’, and the other as a ‘helper’ protein. This mimy aor drive the
formation of higher-order protein complexes necessary for defats@tion (Eitas and

Dangl, 2010; Kofoed and Vance, 2011; Zhao et al., 2011; Bonardi et al., 2012).

ADR1-L2 (Activated Disease Resistance 1-Like 2) is para eamall family of
NB-LRR proteins that includes ADR1 and ADR1-L1 (Chini and Loake, 2005). We
recently noted that ADR1-L2 functions downstream of reactive oxygemmediates

(ROI) production and upstream of SA accumulation in basal defenfieeffl@s the
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response that limits growth of genetically virulent pathogens), AMM-triggered SA
accumulation, and as a ‘helper’ protein during some, but not alldspbnses driven by

effector-mediated activation of specific sensor NB-LRR proteins (Bongadl, 2011).

Surprisingly, none of the functions of ADR1-L2 detailed above requiredtact
P-loop (Bonardi et al., 2011). In addition to these ‘non-canonicalndefactivities, we
suggested that ADR1-L2 could have P-loop dependent, ‘canonical’ functidrer¢has
yet undefined in the absence of the specific effector requmeddtivation. ADR1-L2
would not be the first NLR protein to have multiple, independent fumgtibhe mouse
NLR protein NLRC4 has two separate functions: it functions aslpehigrotein in the
recognition of both the MAMP flagellin and PrgJ, a component of the@udlla TTSS.
These separate activities require two different sensor NDNRIP5 is necessary for
flagellin perception, and NAIP2 is required for PrgJ recognitionf¢gd and Vance,
2011; Zhao et al., 2011). Importantly, NLRC4 ‘helper’ activity is also P-loop independent

(Kofoed and Vance, 2011; Zhao et al., 2011).

Canonical, effector-driven NB-LRR activation drives an NADPHidage-
dependent ROI burst (Torres et al., 2005). The ADR1-L2 helper funatiad above is
downstream or independent of this oxidative burst. Thusadhk triple mutant &drl
adrl-L1 adr1-L2) exhibits normal ROI production after successful pathogen recognition
(Bonardi et al., 2011). Howeveadrl triple mutants fail to accumulate the wild-type
levels of SA required for ETI in this context (Bonardi et al., 20Ahpther protein that
functions downstream of effector-driven oxidative bursts and both tegudad responds
to upstream of SA accumulation ieesion Smulating Disease resistance 1 (LSD1)

(Dietrich et al., 1994; Torres et al., 2005). Loss of LSD1 leads pooiper triggering and
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regulation of runaway cell death, or rcd (Dietrich et al., 1994). Tiadidopsis NADPH
oxidase AtRbohD, which is required for the effector-driven oxidabuest, is not
required forlsd1-mediated cell death (Torres et al., 2005). On the other hsiidicd is
both induced by and requires SA (Dietrich et al., 1994; Aviv et al., 2002)rcd is also
regulated by Enhanced Disease Susceptibility 1 (EDS1) angpea It metacaspase,
AtMC1; edsl Isd1l andatmcl Isdl plants do not exhibit rcd (Rusterucci et al., 2001; Coll
et al., 2010)EDSL1 is a defense response regulator, required for both basal defehse
Toll/interleukin-1 (TIR)-NB-LRR mediated ETI (Wiermer ek,a2005). EDS1 and SA
act in a regulatory feedback loop, with SA up-regulating EDS1EE1 functioning as

a potentiator of SA-mediated signaling (Falk et al., 1999; Venugdpal.,e2009).

AtMCL1 is a positive regulator of ETI-mediated cell death (Coll et al., 2010).

To define the genetic requirements of the putative canonical dasatf ADR1-
L2, we created an autoactive MHD mutant, ADRXL4gd,. This allele displayed the
dwarfed morphology that is the hallmark of such mutants (Howlds €085; Gao et al.,
2011; Zhang et al., 2012). We demonstrate that this autoactivityaspPdependent,
downstream of AtRbohD-mediated ROI production, partially dependent sy&Aesis,
and negatively regulated by EDS1 and AtMC1l. We then present a rfmdéhe
interaction of EDS1, LSD1, and ADR1-L2, showing that these proteiegatitin both

SA-dependent and SA-independent feedback loops.
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Results

Members of the ADR1 family of NB-LRRs are required for runaway cell

death in Isd1. ADR1-L2 is a CC-NB-LRR that suppresdedl rcd (Bonardi et al., 2011).
It is part of a small family of NB-LRRs that includes ADRnd ADR1-L1 (Chini and
Loake, 2005; Bonardi et al., 2011). To test whether ADR1 and ADR1-blsalspress
the initiation and propagation téd1 rcd, we generateddrl Isd1-2 andadr1-L1 |sd1-2
double mutants and sprayed them with the SA analog benzothiadiazol¢ (BdHach
et al., 1996). Col-0 wild-type plants were unaffected by BTHtimeat, whereassdl-2
plants sprayed with BTH showed typical rcd (Dietrich et al., 1994).pfeviously
reported, theadr1-L2 Isd1-2 double mutants fully suppresséslil rcd (Bonardi et al.,
2011). adr1-L1 also fully suppressetkdl-2 rcd, while adrl only had a slight effect
(Figure 3.1A,B). We quantified this phenotype by monitoring cellidar leakage via
changes in media conductivity, an established proxy for membranagéaassociated
with cell death (Dellagi et al., 1998). Col-0 plants did not exhilgnifcant changes in
media conductivity, butsdl-2 plants showed increasing conductivity, with the highest
reading at 92 hours post-BTH treatmeatirl-L1 Isd1l-2 and adrl-L2 Isd1-2 both
exhibited complete ion leakage suppression, whdel Isd1-2 exhibited a marginal

effect (Figure 3.1C). Thus, ADR1-L1 and ADR1-L2 are each requireddbircd.

We noted thatdrl-L1 and adr1-L2 exhibited non-allelic nhon-complementation
(NANC), a rare genetic condition where plants which are hetgoawy at both loci
phenotypically resemble either homozygous single mutant. Thus, ptantsiigous for
Isd1-2 and heterozygous for bothDR1-L1 and ADR1-L2 were found to exhibit full

suppression ofsdl rcd (Figure 3.1D). We also found thadr1-L2 was fully recessive,
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whereasadrl-L1 appeared to be semi-dominant (Figure 3.1D). NANC frequently
indicates that the two genes act closely together or thatwheptoteins physically
interact or are a part of the same protein complex (SteathBatstein, 1988). Because
all three ADR1 proteins share significant amino acid identitg, speculated that
lowering of the overall ADR1 dose might be sufficient to suppletlsrcd. Thus, the
weak adrl rcd suppression phenotype might simply reflect low expressioADRL
relative to ADR1-L1 and ADRI1-L2. Quantitative RT-PCR analysis of gene specific
MRNA levels confirmed thaADR1 is expressed at lower levels tha&DR1-L1 and

ADRI1-L2 under our growth conditions, consistent with this model (Figure 3.1E).

ADRI1-L2 isrequired at the specific site undergoing cell death. ADR1-L2 is a
positive regulator oflsdl-mediatedcell death. This could be due either to (a) a
requirement for ADR1-L2 activation in cells destined to dieofe#d by its continued
activation in neighboring cells, as the SA-dependent signal for reddpin the absence
of LSD1 (Jabs et al., 1996; Torres et al., 2005); or (b) ADR1-LAgbeequired and
activated in cells initially triggered to die, with this actiga contributing to the spread
of an ADR1-L2-independent cell death signal beyond the primallydeath site. To
distinguish between these two hypotheses, we generated an odésiragn (Est)
conditional expression system, which induces local target genessiqun (Brand et al.,
2006).adr1-L2 Isd1-2 plants expressing an estradiol-induced, HA epitope-tag@sl-
L2 transgene were constructed (Methods). Expression of ADR1-L2 gtastad by
local application of estradiol on only part of a leaf, thus creadmartificial chimera

containing bothadr1-L2 |sd1-2 and ADR1-L2 Isd1-2 sectors (Figure 3.2A). ADR1-L2
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expression was limited to the area of estradiol applicationessured via Western blot
(Figure 3.2B). BTH treatment was then used to inded&mediated rcd; we observed
that cell death was limited to the zone of estradiol treateueehtdid not expand into the
adr1-L2 Isd1-2 sector (Figure 3.2C). This result supports our first hypothesifRIAD?

expression is required in cells undergolisdi-mediated runaway cell death.

The function of ADR1-L2 in Isdl rcd is P-loop dependent. We previously
noted that ADR1-L2 is required for SA accumulation following é¢feand MAMP
recognition, and that this does not require an intact P-loop motifafBbet al., 2011).
However, these results do not preclude additional, canonical P-loop-depéandsions
for ADR1-L2. Thus, we tested whether or not the positive regulatoryieumof ADR1-
L2 in Isdl rcd is P-loop dependent. We generageidl-L2 Isdl-2 plants expressing
ADR1-L2aaa, @ mutated allele of ADR1-L2 which carries alanine (A) stlostns in the
three consecutive conserved residues within the P-loop motif whiclesaential for
nucleotide binding (Bonardi et al., 2011). Interestingly, ADRAa2is not sufficient to
trigger Isdl rcd following BTH treatment (Figure 3.3A), suggesting tlet ADR1-L2

function inlsdl1 rcd proceeds in a canonical, P-loop dependent manner.

An autoactive version of ADR1-L2 displays P-loop dependent, ectopically
activated immune responses. Mutations of the aspartic acid (D) in the conserved MHD
domain in plant NB-LRRs typically lead to autoactivity (Bendahenat al., 2002;

Howles et al., 2005; Tameling et al., 2006; Gao et al., 2011; Williana.,e2011).
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Mechanistically, this is thought to reflect either a preferdac&TP binding or a lack of
ATPase activity, either of which would favor the “on” state,oading to current models
of NB-LRR activation (Takken et al., 2006; Bonardi et al., 2012). Thusmdasi
mutation in the MHD motif of ADR1-L2 should result in a permanent ‘etdte,
resulting in ectopic autoactivity. In the few cases wheha#t been examined, NB-LRR
autoactivity via MHD mutation has been shown to require an intaob{Bendahmane
et al., 2002; Howles et al., 2005; Tameling et al., 2006; Gao et al., 200ianWiet al.,
2011). Thus, given the P-loop dependent function of ADR1-L&lihrcd, we speculated

that ADR1-L2 activity in additional defense contexts might also requinetact P-loop.

We generatecdrl-L2 plants expressindDR1-L2 with a Val (V) for Asp (D)
substitution at amino acid 484 (Figure 3.4A; hereaRBIR1-L2p4s4v). AS expected,
ADRI-L2p484v transgenics exhibited a dwarfeghr (Constitutive PR1 expression)-like
phenotype (Bowling et al., 1994) with short hypocotyls, pointed leavesirg-i3.4B),
and a very bushy appearance after bolting. In contadsi;L2 plants expressing wild-
type ADR1-L2 appeared morphologically similar to wild-type Col-0 plantg(Fe 3.4B).
Both transgenes were expressed from the naidR1-L2 promoter, with C-terminal HA
epitope tags (Figure 3.4C). We note that the majority of ADRJsdsy transgenic lines
accumulated higher protein levels than those expressing the wddARPR1-L2 allele.
However, to show that thepr-like phenotype is not simply a result of higher protein
levels in the autoactive mutant, we specifically sele@BdiR1-L2 and ADR1-L2p484v
lines expressing similar levels of protein (Figure 3.4C); thierdihces in morphology
persist. AdditionalADR1-L2p4g4y lines expressing even less ADR1pkgy protein were

also recovered; these did not exhibit stropglike phenotypes, suggesting that there is a
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threshold amount of ADR1-lxds4y required for the associated phenotypes (data not

shown).

The ADRL family members work additively to limit pathogen growth, watir1
triple mutant plants exhibiting increased susceptibility to virufgathogens (Bonardi et
al., 2011). We therefore tested the ability of autoactive ADRIsds2to confer enhanced
basal defense against otherwise virulent pathog@bdR1-L2p484 plants displayed
increased resistance to botHyaloperonospora arabidopsidis (Hpa) Emco5 and
Pseudomonas syringae pv tomato Pto) DC3000 (Figure 3.4D,E). Trypan blue staining of
cotyledons after inoculation witdpa Emco5 revealed predominantly free hyphal growth
in the wild-type Col-0 control anddr1-L2 which was enhanced in the fully susceptible
control, edsl (Figure 3.4F). ADR1-Lgsssy plants, on the other hand, exhibited only
localized hypersensitive cell death (HR). ADRI1pkgzy plants also exhibited a basal
level of cell death (Figure 3.4F, top row) not seen in the other yeawtThus, ADR1-

L2p484v CONstitutively triggers downstream signaling and increased immune function.

We next examined the dependence ofAB&1-L2p484y Cpr-like phenotype on the
P-loop. The triple missense P-loop dead mutathidiR1-L2,aa (Bonardi et al., 2011),
and the autoactivADR1-L2p48,v mutation were combined ias and transformed into
adr1-L2 plants.ADR1-L2ana pasav plants did not exhibit thepr-like phenotype (Figure
3.5A), despite the fact that they expressed levels of ADRMlLzss4v protein that are
similar to ADR1-L24s4y levels sufficient to cause the dwarfed phenotype (Figure 3.5B).
Thus, an intact P-loop domain is required for ADRL4s2d, autoactivity. We infer that
ADR1-L2p484v is an activated version of this NB-LRR which can be used to shealy

canonical (P-loop dependent) functions of ADR1-L2.
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ADRI1-L 2p484v autoactivity is regulated by Isd1l suppressors. ADR1-L2 was
identified as arlsdl suppressor ((Jabs et al., 1996), above). LSD1 and ADR1-L2 both
function downstream of the NADPH oxidase-dependent ROI burst drivé¥BbyRR
sensor activation, but upstream of SA accumulation (Rusteruckj 20@1; Aviv et al.,
2002; Bonardi et al., 2011). Additionally, ADR1-ilocally required fotsd1l-mediated
rcd (above) and its function in this context is P-loop dependent. Thusype¢hbsized
that additional genetic components known to regukatercd might also be required for
activity of ADR1-L2y484v. We generated double mutants betw@B#R1-L2p484y and the
Isdl suppressorsid2, edsl, andatmcl to try to define a genetic network required for the
ADR1-L2p484v phenotypes. We also generatfldR1-L 2p4g4y atrbohD double mutants to
define whether an oxidative burst is required for the ADR3s42 phenotypes. We
examined these double mutants for ADRI:4sdy protein accumulation, alterations in
the ADR1-L2p484y cpr-like morphology, enhanced resistance to the virulépd isolate

Emcob5, and steady-state SA levels.

AtRbohD is generally required for effector-driven, NB-LRR-dependent
superoxide production, but not ftadl rcd (Torres et al., 2005). In fad¢sdl-2 atrbohD
plants exhibit increased rcd comparedstti-2 single mutants, a phenotype that depends
on SA accumulation (Aviv et al., 2002). This result suggests that #&l2PN oxidase
can down-regulate the spread of cell death as SA-dependentssegnahate from an
infection site (Torres et al., 2005atrbohD ADRI1-L2p4s4 plants morphologically
resembled theADR1-L2p4s4 parent and expressed a similar level of ADRLzkZ,
protein (Figure 3.6A,B). Like théDR1-L2p4s4v parent,atrbohD ADRI1-L2p4s4y plants

were significantly more resistant kpa Emco5 (Figure 3.6C), and had extremely high
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steady-state levels of SA (Figure 3.6D). We conclude that ADR1s4v autoactivity,

unlike effector-driven NB-LRR activation, is downstream, or independent, of AtRbohD

SA is required forsdl rcd (Aviv et al., 2002) and mediates basal defense in
plants (Loake and Grant, 2007). Additionally, SA levels are reducadt infamily triple
mutant plants, corresponding to diminished basal defense and an inkredisease
susceptibility (Bonardi et al., 2011). Thus, it seemed likely thatinbeeased basal
defense iNPADR1-L2p4s4v plants could be due to the massive increase in SA observed in
this line (Figure 3.6D). We tested this hypothesis usingittiemutant, which is unable
to synthesize SA due to a mutation in the biosynthetic isochorisystiease genéCSL
(Wildermuth et al., 2001)xid2 ADR1-L2p484v plants were smaller than wild-type plants,
yet larger tharADR1-L2p484v parents, despite accumulating similar amounts of ADR1-
L2pasgqv protein (Figure 3.6A,B)sid2 ADRI1-L2p4s4y plants exhibited enhanced basal
defense tddpa Emco5, though not to the same extenfBR1-L2p4s4y (Figure 3.6C). As
expected,sid2 ADR1-L2p4g4 plants did not accumulate SA (Figure 3.6D). These
observations indicate that tlopr-like phenotypes oADRI1-L2ps4, consist of both SA-

dependent and SA-independent components.

EDS1 is required folsdl-mediated rcd (Rusterucci et al.,, 2001) and is an
essential regulator of both basal defense against virulent path@ggns et al., 1998;
Feys et al., 2005) and TIR-NB-LRR dependent ETI (Feys et al., 20@higzet al., 2003;
Wirthmueller et al., 2007). Provision of an exogenous SA analog resdgkdasal
defense phenotypes, suggesting that EDS1 acts upstream of IC&hstafor the
phenotypes assayed (Parker et al., 1996; Feys et al., 2001)ADR1-L2p484v plants

were significantly more dwarfed thalDR1-L2p484v (Figure 3.6A), though these two
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lines expressed similar levels of ADR1d42sy protein (Figure 3.6B)edsl ADRI1-
L2p4g4v double mutants were completely resistanHfma Emco5 (Figure 3.6C), and had
steady-state SA levels that were higher than AB&1-L2p484 Single mutant (Figure
3.6D). These surprising results demonstrate that EDS1 is a negagitator of the SA-

accumulation observed in ADR1-ER2av.

AtMC1 is a metacaspase required flmdl rcd; AtMC1 also contributes
significantly to ETI-dependent HR (Coll et al., 2018imcl ADR1-L2p4s4v plants were
extremely dwarfed (Figure 3.6A). However, these plants werstadte; they produced
small amounts of seed and had a very long life cycle compareddaype Col-0 or
ADRI1-L2p484y plants (data not shown). They also accumulated more ADRJsh2
protein than theADR1-L2p4s4v parent (Figure 3.6B)Cotyledons of theatmcl ADRI1-
L2p4s4v plants were similar in size to those ADR1-L2p454y plants, and we were thus
able to performHpa infection assays; we determined thatimcl ADRI1-L2p4g4v
cotyledons are completely resistantHpa Emco5 (Figure 3.6C). Due to the extremely
small size of theatmcl ADRI1-L2p454 double mutant, we were unable to perform SA
analysis on this line. However, we measured SA levels faomel plants that were
heterozygous folADR1-L2p4ssy andresembled theADR1-L2p484, parent in size. We
noted significantly less SA in thatmcl ADR1-L2psgy +/- than in theADR1-L2p4g4v
parent (Figure 3.6D). We noted significantly higher SA indtracl ADR1-L2p4g4y +/-
than in the wild-type Col-0 plants (Figure 3.6D). Collectively, théat indicate that
AtMC1 negatively regulates ADR1-bZs4y protein accumulation, thereby inhibiting

ADR1-L2p484v accumulation, activity and likely subsequent SA accumulation.
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Isdl ADR1-L 2p4s4y lethality requires EDS1. ADR1-L2 is required forsdl-
mediated rcd (Bonardi et al., 2011). We therefore examined wheth&1ADRy,s4v
affects thelsdl phenotpye. We crossdddl-2 and ADR1-L2p4s4y plants, and in the F3
generation homozygousDRI1-L2p484y plants were selected via Basta resistance markers
on the transgene (see MethoddsDR1-L2p48,v hOmozygotes were genotyped fedl-2;
none werdsdl-2 homozygous (Supplementary Table 1). Additionally, we cafegh2
homozygous ADR1-L2p454 heterozygous plants forward an additional generation, and
again used the Basta resistance marker to find homozygoRs-L2p4s4y plants. None
were recovered. Next, we attempted to transfésti-2 mutant plants with the same
ADRI1-L2p484y cOnstruct used in ther1-L2 transformation. No lines were recovered that
expressed detectable levels of ADRI1skg2y protein, and no plants that were recovered
displayed the dwarfed phenotype (data not shown). We concluddsthié? ADR1-
L2p4s4v IS lethal, probably due to an overwhelming amount of constitutivelyea8A

accumulation, and consequent cell death signaling.

We therefore looked for genetic determinants requiredditt ADR1-L2p484v
lethality. As stated abovedsl andatmcl are both suppressorsisfll rcd. To determine
if these two genes were necessarylfdi-2 ADR1-L2p4s4y lethality, we crossedtmcl
Isd1-2 or edsl Isd1-2 plants toADRI1-L2p4g4y. atmcl Isd1-2 ADR1-L2p4s4v plants could
not be recovered (data not shown), indicating #MC1 is not required fordsdl-2
ADRI1-L2p484y lethality. However, we did recovesdsl Isd1l-2 ADR1-L2p4s4v plants.
These plants surprisingly exhibited wild-type morphology, effestivesemblingedsl
Isdl (Rusterucci et al., 2001) (Figure 3.7A). The suppression oRDML-L2p4s4 Cpr-

like phenotype is likely due to a much lower level of steadtesADRI1-L24s4v
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accumulation in thedsl Isd1-2 ADR1-L2p4s4v plants compared to parental plants (Figure
3.7B). Despite examining mamdsl Isd1-2 ADR1-L2psy plants from 4 independent

progenies, no plant withADR1-L2p484y parental expression levels was recovered.
Additionally, edsl Isd1-2 ADR1-L2p4s4y plants did not accumulate the high levels of SA

observed ilPADR1-L2p4s4v (Figure 3.7C).

In light of the surprising result thatdsl Isd1-2 ADRI1-L2p4s4 plants are
essentially wild-type, we re-confirmed the genotypes and pheroiypedsl ADR1-
L2pagqv andedsl Isd1-2 ADR1-L2pss4v. We used a line that was homozygous sl
and ADR1-L24s4v but heterozygous fdtSD1. In the next generation, both dwarfed and
wild-type size plants were identified (Figure 3.8A). These plamtre genotyped for
LSD1, and all dwarfed plants were found tollf##1 homozygotes (Figure 3.8B, 20 of 70
plants werd_SD1 homozygotes). Wild-type size plants were eith8D1 heterozygotes
(34 of 70 plants) olsd1l mutants (16 of 70 plants), suggesting that the dominant loss of
function mutation in this context is the resultlddD1 haploinsufficiency. We therefore
conclude that the difference in the growth phenotype betedsinsdl-2 ADR1-L2p484v
(wild-type) and bothredsl ADRI1-L2p484v (nearly lethal) andisdl ADR1-L2p4s4v -(lethal)
is genuine, and that in the autoact®BR1-L2p48,s mutant, the combined absence of
EDS1 and the loss of, or reduction in, LSD1 leads to down-regulatio®Bf1A 25454y

protein accumulation and restoration of wild-type morphology.

We addressed whether the lowered accumulation of ADRlsh2protein in
edsl |sdl-2 ADRI1-L2psv was due to transcriptional regulation. We performed
guantitative RT-PCR, and discovered thatAlER1-L 2p,54y transcript levels imsdl edsl

ADRI1-L2p484v plants were slightly lower than iIADR1-L2p4s4v (Figure 3.7D), generally
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consistent with the diminution of ADR1-EZs4y protein inedsl I1sd1-2 ADR1-L2p4s4v
(Figure 3.7B). We also noted that although the ADRas6& protein level inedsl is
indistinguishable from the parental ADR1d42sv by western blot (Figure 3.7B), the
ADRI1-L2p484y transcript accumulated to higher levels (Figure 3.7D). This apper
contradictory result suggests that ADR1pkgy protein stability requires EDS1, or an
EDS1-dependent process. LSD1 and EDS1 are known to work together in an SA
regulatory feedback loop (Rusterucci et al., 2001). Givenltdatedsl ADR1-L2p4g4v
plants are morphologically normal, express lower levels of SA AeR1-L 2p484, and
accumulate lower levels of both ADR1-L2 transcript and protein HWaR1-L2p4s4v
(Figure 3.7), and that ADR1-L2 accumulation is up-regulated by Eipilication
(Figure 3.4C), we speculate that this loop also regulates ADRExp&ssion. However,
we also observed thad2 had no effect on either ADR1-bzs4v MRNA or protein levels
(Figures 3.6 and 3.7), suggesting that there are also SA-indepeagigiators of ADR1-
L2. We also noted thaBDR1-L2p484y transcript accumulated to significantly higher
levels than the endogenous ADR1-L2 transcript in wild-type Col-0 plamicating that
plants expressing the activated ADR1-L2 allele constitutivelyregpilate ADR1-L2

transcription.

RAR1 is dispensable for accumulation of ADRI1-L2. The autoactive
phenotypes oADR1-L2p484y plants require ADR1-Lzs4y protein accumulation above a
threshold. This indicates that the expression level of wild-typ&EL2 may also be
under exquisite control. The co-chaperone RAR1, while not necessdhgftunction of

all NB-LRRs, is required for the steady state accumulaticdl MB-LRRs tested to date
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(Tornero et al., 2002; Belkhadir et al., 2004, Bieri et al., 2004; Hallt ,€2005). We thus
crossedadr1l-L2 pADR1-L2:ADR1-L2-HA to rarl-21 (Tornero et al.,, 2002). Plants
genotyped as homozygouarl-21 and homozygoufAR1 exhibited similar levels of
ADR1-L2-HA protein (Figure 3.9A), indicating that RARL1 is not reqdifor ADR1-L2
accumulation. Thearl genotype was confirmed by Western blot for RAR1 protein
(Figure 3.9B). ADR1-L2 expression can be up-regulated with BTH (Bloret al.,
2011). We therefore also tested whether RAR1 is required for thedvgls of ADR1-
L2 accumulating after BTH treatment. BTH induced ADR1-L2 @roin rar-21 ADR1-
L2-HA plants accumulated to levels at least as high as thé¥Rh ADR1-L2-HA plants
(Figure 3.9A). Therefore, RAR1 is dispensable for both steadg-sADR1-L2
accumulation, in contrast to other assayed NB-LRR proteins (Torete., 2002;
Belkhadir et al., 2004, Bieri et al., 2004; Holt et al., 2005), and forTid-Biduced up-

regulation.

Discussion

We previously demonstrated that the plant NB-LRR immune rec&&1-L2
can have a non-canonical ‘helper’ role in plant defense (Bonasadi,€2011). Here, we
sought first to define canonical, P-loop dependent function(s) for ADR&A® then to
understand the genetic requirements for these functions. We denezhstiatt wild-type
ADR1-L2 is required locally at the site of BTH-driven cell tteactivation in thdsdl
cell death control mutant; this activity requires an intact P-lbothis contextADR1-L2
genetically interacts wittADR1-L1 to control runaway cell death, as shown by NANC,

further suggesting that members of the ADR1 family might fanctogether in cell
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death signaling. Interestingly, ADR1-L2 does not require RAREitber its steady state
accumulation, nor for its induced accumulation following BTH treatmEms is the first
report of either steady state or inducible NB-LRR accunanathat is not RAR1-
dependent. This result may differentiate ‘helper’ NB-LRRs frgensor’ NB-LRRs, in
that levels of the former might be dictated by the signaliagners with which they
function, while the latter, acting as effector-sensors, arehbieksegulated by the co-

chaperone complex (Shirasu, 2009).

Given the canonical P-loop-dependent function of ADR1-L2 as a positive
regulator oflsdl cell death, we inferred that ADR1-L2, like other NB-LRRs stddio
date, retains the ability to undergo a nucleotide-dependent conimnalaswitch to
regulate its activation. Thus, we sought a context in which we coallyze canonical
ADR1-L2 P-loop dependent functions, despite the absence of an effetriggéw it. We
created an autoactive allele, ADR1d4gs. ADRI1-L2p454y plants exhibit the dwarfed
morphology seen in other autoactive NB-LRR mutants. We showed thattbectivity
requires an intact P-loop. We then used this allele as a proxafonical activation of

ADR1-L2 in a series of epistasis experiments.

Canonical, P-loop dependent, ‘'sensor’ NB-LRR functions typically droth the
AtrbohD-dependent NADPH-dependent oxidative burst following effectocepéon
and SID2-dependent SA accumulation (Torres et al., 2005). By cont@Rt]-A2p484v
autoactivity is downstream, or independent, of AtrbohD, yet still dry¥®2-dependent
SA accumulation. This is consistent with the previously defined, P-lodependent
‘helper’ activity of ADR1-L2 (Bonardi et al., 2011). Resting stdt&-LRRs are localized

to diverse sub-cellular compartments, and dynamic re-localizatiap accompany
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effector-driven activation of some (Bonardi et al., 2012). We note ARR1-L2 is
soluble, and we have no evidence of activation-dependent re-locali{daten not
shown). Thus, our data support a scenario in which the P-loop-independentl2DR1
‘helper’ functions (Bonardi et al., 2011), and the P-loop-dependent functionefime
here can be differentiated from the typical effector-drivetivation of NB-LRR

‘sensors’ described to date (see also below).

Plants expressindDR1-L2p454y €xhibit increased disease resistance and very
high steady-state levels of S&d2 ADR1-L2p4s4y plants expressed, as expected, very low
levels of SA, but these plants did not completely revert to wpe-tymorphology, and
they maintained an increased level of enhanced disease resistés, there must be
SA-independent regulation of activated ADR1-L2. Redundant functions of BBEFA
in plant defense mediated by ‘sensor’ NB-LRR functions have beentee (Venugopal
et al., 2009). In that worlgd2 or edsl mutants were insufficient to disrupt CC-NB-LRR-
mediated disease resistance, while combined loss of both gene prtatlitd loss of
resistance (Venugopal et al., 2009). Our results support this moael tee constitutive
activation of ADR1-L24s4v results in both SA-dependent and SA-independent
phenotypes. Given this data, as well as the factetdsitisdl ADR1-L2p434 phenocopies
sid2 ADR1-L2p484v With respect to SA levels, but not the morphological phenotype, we

conclude that the SA-independent pathway we describe here may require EDS1.

Our most surprising observation is the phenotypic rescue of botathiad|sdl
ADRI1-L2p484y phenotype and the nearly lethalsl ADR1-L2p484y phenotype inedsl
Isdl ADRI1-L2p484y plants. It is important to recall that loss of eitlagrl-12 or edsl

function suppressedsdl rcd (Rusterucci et al., 2001; Bonardi et al., 2011). Recall also
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that the P-loop independent function of ADR1-L2 as a ‘helperdownstream of
AtRbohD, but upstream of SA accumulation (Bonardi et al., 2011). Tinsagreement
with the autoactivéADR1-L2p484v phenotype, which bypasses AtRbohD but still drives

enhanced SA levels, as expected.

We present a model consistent with our new findings and previous geneti
analyses (Rusterucci et al., 2001; Aviv et al., 2002; Torres &08l5; Venugopal et al.,
2009; Bonardi et al., 2011) (Figure 3.10). P-loop-dependent activation of ARR1-L
results in ICS1/SID2-mediated SA accumulation via two separatewags. We
speculate that in the first pathway ADR1pkgs constitutively signals to EDS1, which
in turn positively regulates ICS1/SID2, increasing SA levels. ADRy434v also triggers
additional SA production in a parallel pathway that is both antagoniz&DIS1 and is
under the control of LSD1. In support of our model, SA regulates ED84ctiation
(Falk et al., 1999), which in turn regulates ICS1/SID2 (Bartschl.et2@06). Once
activated, ADR1-L2 causes cell death, which drives more AtRbohD-depeR®I (Jabs
et al., 1996) and SA accumulation in surrounding cells (Enyedi et 8R; J8bs et al.,
1996). In both pathways, SA is part of a feedback loop that further Eteenthe P-loop
dependent activity of ADR1-L2, as indicated by the fact thaRAL.2 is BTH inducible.

Thus, ADR1-L2 is also both upstream and downstream of SA accumulation.

In an otherwise wild-type plant expressing activated ADR1th&, antagonism
between EDS1 and LSD1 maintains SA production below toxic levetmn lisdl plant,
the level of SA surpasses this level due to the fact that LSDiboti there to down-
regulate ADR1-L2-driven SA production. This increased SA in turn sir&BR1-L2

expression, and the cycle repeats, leading to the lethalityrskseid ADR1-L2p4g4y. €dsl

87



and sid2 normally suppresdsdl because the feed forward regulation of the SA
accumulation cycle is blocked. Thus, the surprigtg] |sd1 ADR1-L2p4s4, phenotype is
consistent with the low level of SA in this line being insufficientip-regulateADR1-L2
expression: even though there is chronic signaling feeding thle, cye cycle is
interrupted. How LSD1 and EDS1 negatively regulate each other Hhagoybe
determined, although our data suggest that LSD1 might regulate ED&ioh through
transcriptional control, as EDS1 transcription levels are incdeasean Isdl mutant
(Figure 3.11). Together, our data support and refine the currently pdofmdss of EDS1
and LSD1 as regulators of an SA feedback loop (Rusterucci et al., 20¥1et al.,
2002). In aredsl ADRI1-L2p484v plant, the ADR1-L3434v phenotype is enhanced because
of slightly higher SA levels due to the lack of EDS1 inhibitoryction on the LSD1-
regulated pathway. Our data also suggest that AtMC1 functicm®i@gative regulator of
ADR1-L2 accumulation and activity. Unfortunately, due to the exé&g dwarfed
morphology of theatmcl ADRI1-L2p484y plants, we were unable to carry out the
phenotypic assays performed on the other lines, and therefore ate tmnplace AtMC1

in our model.

Our model supports a scenario in which in wild-type, P-loop dependehiRi¥B
activation leads to local increased levels of SA via an AtRbotie+kent ROI burst and
SID2-dependent SA accumulation. The spread of this SA accumukagpatially down-
regulated through a combined action of EDS1 and LSD1 at incredistagce from the
infection site. As stated above, our model also implies that SAidmscboth up- and
down-stream of ADR1-L2. This may seem difficult to reconcilghwour previous

finding that ADR1-L2 is required for SA accumulation and cell déBimardi et al.,
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2011) following ‘sensor’ activation, but we point out that the phenotypes umzbvuer
our initial findings are P-loop independent, and thus potentially med¢icatis different

than the P-loop dependent ADR1-L2 phenotypes described here.

Overall, we present a general approach to characterize cahoi-loop
dependent functions of NB-LRR proteins in the absence of a spediéctor. We
applied this to a recently characterized ‘helper NB-LRPtgn, ADR1-L2. We
identified genetic components that regulate its P-loop-dependent,ic@nfumctions,
and found that they, in turn, are regulated by suppressors tsifhecd phenotype. Our
work suggests that the genetic requirements for ‘helper RB-lfunction may differ
from the effector-driven activation of canonical ‘sensor’ NBRSRR Given that ADR1-
L2, unlike other NB-LRRs, is required fosdl rcd, we note that our results may be
mainly relevant to the dissection of the functions of ADR1-L2 as¢bdralogues, rather
than being broadly applicable to understanding of ‘sensor’ NB-LRRseftheless, in
agreement with previous reports on ‘sensor’ NB-LRR function (Venugsipal, 2009),
we conclude that the P-loop-dependent autoactivity of ADR1-L2 relesignaling
pathways that differ in their requirement for SA accumulation, Which are both
regulated by EDS1. Thus, though the requirements for ‘sensor’ amerh&B-LRR

functions may be separable, they could still share some overlapping features.
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Materials and M ethods

Plant lines and pathogen strains.

All Arabidopsis lines are in the Columbia (Col-0) ecotypdr1-1 (Bonardi et al.,
2011),adr1-L1-1 (Bonardi et al., 2011)pdr1-L2-4 (Bonardi et al., 2011kds1-2 (Parker
et al., 1996)sd2-1, atrbohD (Torres et al., 2005)sd1-2 (Dietrich et al., 1994)atmcl
(Coll et al., 2010), andar1-21 (Tornero et al., 2002) are described elsewhere; primers
used to genotype these lines are in Supplemental Table 2. Foatgemef adr1-L2
plants expressinADR1-L2-HA, ADRI1-L2pss4-HA, and ADR1-L2p4gsy ADR1-L2apa
lines, the C-terminal HA-tagged coding sequence of wild-BP&1-L2 or the mutated
alleles were fused to its native promoter (500 bp) and cloned in tAR gBasta
resistant) Gateway vector (Nakagawa et al., 2007). For demeraf adr1-L2 Isdl1-2
plants expressing an estradiol inducible ADR1-L2-HA, the coding sequéAdeR1-L2
was cloned into a modified pMDC7 (hygromicin resistant) Gatewatovearrying a C-
terminal HA tag. Arabidopsis transgenics were generated ugiggobacterium
(GV3101)-mediated floral dip transformation (Clough and Bent, 1998). Basta selection of
transgenic plants was performed by spraying 10-day-old seedlitaggs Rvere grown

under short day conditions (9 hrs light, 21°C; 15 hrs dark, 18°C).

Immunaoblot Analysis.

Leaves from 4-week-old plants were harvested and total protemesextracted
by grinding frozen tissue in a buffer containing 20 mM Tris-HCH (p.0), 150 mM

NaCl, 1mM EDTA (pH 8.0), 1% Triton X-100, 0.1% SDS, 10mM DTT, and plant
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protein protease inhibitor cocktail (Sigma-Aldrich). Sampleseweamtrifuged at 14,000
rpm for 15 min at 4C to pellet debris. Proteins were separated on 7.5% (ADR1aHA)
12% (RAR1) SDS-PAGE gels and were transferred to polyvinylidéifieoride
membrane. Western blots were performed using standard methodsiAA(anta Cruz
Biotechnology) antibody was used at a 1:3,000 dilution; anti-RAR1 (cuatdirRAR1
polyclonal antibody was made against the full length RAR1 witkr@ihus GST tag by
Cocalico Biologicals, Inc.) was used at a 1:2,000 dilution. Signai® wletected by
enhanced chemiluminescence using ECL Plus (Amersham Bioscierte@s)BTH

induction experiments (30@M), plants were collected 24 hpi.

SA measurement.

SA and SAG measurements were performed as described (Detfraia 2008).
Briefly, 100 mg of leaves were collected from 4-week-old glaand frozen in liquid
nitrogen. Samples were ground and tissue was homogenized in 200 pl O.Hw acet
buffer pH 5.6. Samples were centrifuged for 15 min at 16,000 gGt ¥00 ul of
supernatant was transferred to a new tube for free SA measureamd 10 pl was
incubated with 1 pl 0.5 U/if-glucosidase for 90 min at 32 for total SA measurement.
After incubation, plant extracts were diluted 5-fold with 44 pkaeebuffer for free SA
measurement. 60 pul of LB, 5 pl of plant extract (treated or nibtfaglucosidase), and
50 ul of Acinetobacter sp. ADPWH-lux (OD = 0.4) were added to each well of a black
96-well plate (BD Falcon). The plate was incubated &3aér 60 min and luminescence

was read with Spectra Max L (Molecular Devices) microptataler. For the standard
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curve, 1 ul of a known amount of SA (Sigma; from 0 to 10@®nl) was diluted 10-fold

in sid2-1 plant extract, and pl of each standard (undiluted for free SA measurement, or
5-fold diluted for total SA) was added to the wells of the plate containinpd &0LB and

50 ul of Acinetobacter. SA standards were read in parallel with the experimental samples.

For BTH induction experiments (3QMM), plants were collected 24 hpi.

Pathogen strains and growth quantification.

Ten-day-old seedlings were spray-inoculated with 50,000 spores/ml of
Hyal operonospora arabidopsidis isolate Emco5 or 20,000 spores/ml of isolate Noco2.
Pots were covered with a lid to increase humidity during inocmasind pathogen
growth. Sporangiophores were counted at 4 dpi as described (Halt 002).Pto
DC3000(EV) was resuspended in 10 mM Mg@&l a final concentration of 2.5 x 10
cfu/ml (ODs0=0.0005). Twenty-day-old seedlings were dipped in the bacterial solution

and growth was assessed as described (Tornero and Dangl, 2001).

Cell death Assays.

4-week-old plants were sprayed with 300 uM BTH, or 10-day-old plaats
inoculated withHpa Emco5 as described above. Leaves were harvested and stained with
lactophenol Trypan Blue (TB) to visualize dead cells as dest(kech and Slusarenko,
1990). For the conductivity measurements, 4-week-old plants wereedpratyn 300 uM

BTH. Plants were harvested and 4 leaf discs (7 mm) were cored and then floatesd in wa
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for 30min. These leaf discs were transferred to tubes contathimd distilled water.
Conductivity of the solutionySiemens/cm) was determined with an Orion Conductivity

Meter at the indicated time points (Epple et al., 2003).

Creation of an artificial chimera.

The central portion of the right halves of leaves from 4-wddkransgeni@dr 1-
L2 Isd1-2 plants expressing an estradiol inducible allele of ADR1-L2eweand-
infiltrated with Est (20 uM) using a needleless syringe. @dBTH was sprayed on the
whole plant 24h post-Est application. g® Est was then hand-infiltrated on the same
portion of the leaves 2 dpi to ensure expression of ADR1-L2. Leaves wereembbedpi

from the first Est infiltration.

Quantitative RT-PCR.

Leaves from 4-week-old plants were collected, frozen into liquithgen and
ground into powder with a mortar and pestle. RNA was extract@y uBRIzol
(Invitrogen), DNased (Ambion Turbo DNase), and cleaned up with QiageadyNMini
kit. Reverse transcription was performed (Ambion RETROscript)gusipg/ul total
RNA, and cDNA was analyzed with SYBR green (Applied Biosygtasing an Applied

Biosystems ViiA7. Primers used are listed in Table 3.2.

93



Selection of segregating plants.

Pots of sibling plants fixed faadsl and segregatintgd1-2 (LSD1 heterzygotes)
were Basta sprayed to check for segregatioAR1-L2p484v. Those found to bedsl
ADRI-L2p484y Were transplanted individually into pots, monitored for size, and genotyped

for the T-DNA insertion of thésd1-2 mutation.
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Figure 3.1. A family of CC-NB-LRR proteins is required for Isd1l runaway cell
death. (A) Four-week-old plants were sprayed with BTH or watectUPes of plants
were taken 5 days post-inoculation (dpi). (B) Leaves from plants)ivéfe stained with
trypan blue to visualize cell death. Leaves on the left are uadreantrols, leaves on the
right are sprayed with BTH. (C) lon leakage measurements f##Qnb(days post-BTH
treatment. Values are means = 2 x SE (n = 5). (D) lon leakageurements for NANC.
adrl-L1 Isd1-2 x Isd1-2, adrl-L2 Isdl-2 x Isd1-2, adrl-L1 Isdl-2 x adrl-L2 Isd1-2
represent F1 plants of the indicated crosses, and are lsdushomozygous and
heterozygous for the indicateatlr mutations. (E) Quantitative real time PCR for the
transcript amounts of the three members of AB&R family in wild-type Col-0 plants,
normalized tdJBQ5.
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Figure 3.2. ADR1-L2 isrequired at the site undergoing cell death. (A) Schematic of
the chimera. adrl-L2 Isdl1-2 expressing an estradiol inducible C-terminal HA-tagged
ADR1-L2 were infiltrated in the indicated area with 20 uM eltla making that portion
of the leafADR1-L2 Isd1-2. (B) Western blot to confirm expression of ADR1-L2 was
limited to the estradiol-induced area. Estradiol + and — leas aveee cored and protein
was extracted from these cores. Proteins were run on SDS3Plagend immunoblotted
with anti-HA antibody; C, samples from un-infiltrated leavegstradiol-infiltrated plant
tissue; -, un-infiltrated tissue from the same leaf. In all samples, tine lewatf was treated
with 300 uM BTH. (C)Trypan blue staining to show cell deathsdl control and tissue
chimera plants. Leaves from four-week-old plants were treatedliaated in (A). Plants
were sprayed with BTH 16 hours after estradiol treatment, andde@ere stained with
trypan blue 5 days after BTH treatment.
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Figure 3.3. ADR1-L2AAA is not sufficient to trigger Isdl rcd following BTH
treatment. (A) Four-week-old plants were sprayed with BTH or water.upés of plants
were taken 5 dpi. (B) Proteins from plants in (A) were extdctun on SDS=Page gel,
and probed with anti-HA antibody. Ponceau-stained blot shows relative loading.
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Figure 3.4. ADR1-L2D484V ectopically activates basal defense. (A) Schematic
representation of ADR1-L2 showing the P-loop and MHD mutations us#us study.
(B) Morphology of five-week-olcdr1-L2, andadr1-L2 complemented witADR1-L2 or
ADRI1-L2p484v, Showing relative size. White bar is 2 cm. (C) Western blétAtagged
proteins from plants in (B) + and - BTH. Proteins were extdafitam plants and run on
SDS-Page gel and probed with anti-HA antibody. Ponceau-stainedHaois relative
loading. (D)Ten-day-old seedlings were inoculated with 5 % 4fiores/mLHpa Emco5
via spray inoculation. Sporangiophores per cotyledon were counted 4 dpianvith
average of 80 cotyledons per genotype counted. Sporangiophore counts vwafiecclas
into: no sporulation (0 sporangiophores/cotyledon), light sporulation (1-5),umedi
sporulation (6-10), heavy sporulation (11-15), or very heavy sporulatid).(¥eans of
sporangiophore per cotyledon are listed below the graph. (E) Twlagtpld seedlings
were dip-inoculated witPto DC3000(EV). Bacterial growth was assayed at 0 and 3 dpi.
Values are mean cfu/mg + 2 x SE, n=4. (F) Trypan blue staiagdddrom (D). Leaves
were collected and stained 4 dpi.
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Figure 3.5. An intact P-loop catalytic domain isrequired for the ADR1-L 2D484V

mor phological phenotype. (A) Pictures of 5-week-old Col-&DR1-L2p4s4v, andADR1-
L2ana pasav Plants show relative morphology. White bar is 2 cm. (B) Western blot of Col-
0 and HA-tagged ADR1-Lissy and ADR1-L2aa pagav proteins from plants in (A).
Relative loading indicated by Ponceau stained blot.
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Figure 3.6. Isd1 suppressors are regulators of ADR1-L2D484V autoactivity. (A)
Pictures of five-week-old Col-0ADR1-L2p4s4y, atrbohD ADRI1-L2p4s4y, Sid2-1 ADR1-
L2p4s4v, €ds1-2 ADR1-L2p4s4y, OF atmcl-1 ADR1-L2p4e4yv plants, showing morphological
differences between the genotypes. White bar is 2 cm. (B}eeklots of HA-tagged
ADR1-L2p4s4y proteins from plants in (A). Ponceau staining shows relative lga¢i)
Ten-day-old seedlings from plant lines as in (A) were inoedlatith 5 x 10 spores/mL
Hpa Emco5. At 4 dpi, sporangiophores were counted and classified as. ifh. Bfgpans
per cotyledon are listed below the graph. §@ady-state total SA levels were measured
for leaves from plants as in (A). Values are averageof total SA from 4 replicates, * 2

x SE.
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Self cross of ADR1-L2p,5,y Isd1 +/-

Genotype Actual Expected
LSD1/LSD1 50 31
LSD1/Isd1 74 62
Isd1/Isd1 0 31
Total 124 124

Table 3.1. ADR1-L2p4g4y is lethal in an Isd1-2 background. Table of actual and
expected genotypes of F3 progeny from a cross betlsd®2 andADR1-L2p4g4y Shows
that nolsd1-2 homozygous plants were recovered from plants that were homozggous
ADR1-L2p4gsy. ADRI1-L2p4gv Was also transformed intedl-2, but no plants with a
detectable amount of ADR1-EZs4y protein were recovered.
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Figure 3.7. edsl Isd1 ADR1-L2D484V plants lose ectopic activation phenotypes. (A)
Pictures of five-week-old Col-0ADR1-L2p4gsy, andedsl-2 Isdl-2 ADR1-L2p4s4y plants
showing reversion oddsl-2 Isd1-2 ADR1-L2p4s4y to Wild-type morphology. (B) Western
blot of HA-tagged ADR1-Lgsssv protein from plants in (A). Ponceau stain shows
relative loading. (C) Total SA amounts (mean = 2 x SE) weeasured from plants of
the indicated genotypes. Values are average g of totatd®\ 4 replicates. Error bar
represents = 2 x SE. Controls here are from same experiselataa shown in Fig. 6C.
(D) Quantitative real time PCR for the transcript amounta@iR1-L2 in Col-0,adr1-L2
ADRI1-L2p4z4v, edsl adr1-L2 ADRI1-L2p4gav, edsl Isdl adr1-L2 ADR1-L2p4g4v, andsid2
ADR1-L2p44v.
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primers primers

Figure 3.8. edsl D484V plants segregating L SD1 show both wild-type and extreme

cpr phenotypes. (A) Pictures of plants homozygous fedsl and ADR1-L2pss and
segregatingsdl. From the left: homozygote Isd1, heterozygote Isd1l, homozygote LSD1.
(B) PCR genotyping of plants in (A) shows that oh§D1 homozygousedsl ADR1-
L2p4s4v plants have the severely stunted growth phenotype.
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A -BTH +BTH

rar1-21 rar1-21
Col-0 rar1-21 ADR1-L2 ADR1-L2 ADR1-L2 ADR1-L2

WB: aHA

rar1-21
B Col-0 ra*r1-21iADR1-L2 ADR1-L2

WB: aRAR1

Figure 3.9. RAR1 is not required for either steady state ADR1-L 2 accumulation or
BTH-mediated induction. (A) ADR1-L2-HA and rar1-21 ADR1-L2-HA plants were
sprayed with 300 uM BTH. Plants were collected for protein etxdra@4 hpi. Proteins
from Col-0,rar1-21, and ADR1-L2-HA andrar1-21 ADR1-L2-HA plants + and —-BTH
were run on SDS-Page gels and probed with anti-HA antibodyr@gin from plants in
(A) were also used in an anti-RAR1 Western blot to ensurgaha?1 plants were not
expressing RAR1. Ponceau stained blots in (A) and (B) show relative loading.
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ETI

AtRbohD
\
ROI
4 A
ADR1-L2
_-~>» activation
.’ (ADR1-L204s4v)
! —— LSD1

Enhanced

__
Resistance| EDS1 —

l

ICS1

SA

!

Cell death/HR

Figure 3.10. A model for the regulation of ADR1-L2D484V activity. ETI activates

both an AtRbohD-dependent ROI burst and SID2-dependent SA accumulation via
ADR1-L2. Activated ADR1-L2 initiates cell death and diseasdstasce via SA-
dependent and -independent pathways. EDS1 functions downstream otdcAizdR1-

L2 as a positive regulator of both SA accumulation and the SA-indepepalntay.
ADR1-L2 also triggers SA via a pathway that is controlled b{p1.&nd antagonized by
EDS1. Therefore, the spread of this SA accumulation is spaliaiy-regulated through

a combined action of EDS1 and LSD1. Due to its position in these fdettmgps, SA
functions both up- and down-stream of ADR1-L2.
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Col-0 eds1 Isd1

Figure 3.11. LSD1 negatively regulates EDSL1 transcript. Quantitative real time PCR
for the transcript amounts &DS1 in Col-0,eds1-2, andlsd1-2.
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Primer Name

Primer Sequence

For genotyping

edsl-2F AAGGCGTCTGTAGAGGAAAC

edsl-2R CATATAGTCTCGCAGAGGAG

rarl-21F TCACGACGGAATGAAAGAGTGGAGCTGCTACTAG
rarl-21R TTTTGGAACCGATTTGGCCAGAACTGGTTTCTCAC
sid2-1F AAGCTTGCAAGAGTGCAACA

sid2-1R AAACAGCTGGAGTTGGATGC

AtMC1F GCGTCACCTTCTCATCAACA

AtMC1R ACGGTACCACTATGGCAAGC

LSD1F CTGGGATTTGTAAAGCAGCTG

LSD1R TCAAGTTCCATGGAGCAAAAG

ADR1-L2F TTCTTACTGTGTGTCCCCAG

ADR1-L2R CCTTCCTATCAATCCGATCG

For quantitative PCR analysis

EDS1F GACGGGGAAGTAGATGAGAAG
EDSI1R TCATCCATCATACGCTCACG
ADR1F ATGGCTTCGTTCATAGATCTTTTC
ADR1R CACATTGTAGGTGGTTCTAGG
ADR1-L1F AAACCACTCTTGCCAAAGAAC
ADR1-L1R GGATTTCCAGCTTCACAACC
ADR1-L2F CCTCTTGATGTTCTCATCAAC
ADR1-L2R GTAGCTAGTGTACATCTGTCC

Table S2. Primer sequences used in this work.
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Chapter 4

Conclusions and Future Directions

Plants are the backbone of our environment, providing oxygen, preventing
erosion, and functioning as the base of nutrition for all animals.udk, st is vitally
important that these species are able to survive environmentisttinat they encounter,
such as pathogen attack. Studying the process of disease resiat@hents is of great
importance, as it allows insight into the biochemical and mecHaapgaoaches used by
plants to combat potential pathogens. With such knowledge we are abkvedtop
specific and direct approaches for improving disease resistangkants. In addition,
plants and animals share common disease resistance mechandth®rafore studying
these processes in plants can inform our understanding of animalu@ah,himmune

responses.

During my thesis work, | participated in two main projects, both lmthvstem
from studies on the plant cell death regulator LSD1. In thegfadtof my work, several
assays were used to identify potential LSD1 interactors. Onéhade, the NF-Y
transcription factor subunit NF-YC3, was used in further studies amddfto be a
positive regulator of disease resistanaieyc3 plants exhibit increased susceptibility to
Hpa, whereas over-expression of functional NF-YC3 leads to increaststaree,

presumably by contributing to the overall up-regulation of diseasistaace-related



genes and/or cell death genes. Proper function of NF-YC requareddtalization from
the cytosol to the nucleus, and we discovered that LSD1, probably workimgtiver
factors, potentially participates in NF-YC3 cytosolic retentioher€fore, this work
provides additional evidence that LSD1 may function as a transcriptiegalatory
scaffold, sequestering defense-related proteins in the cytosol, ampeniag their

functions.

Immediate future work on this project focuses on the data indicgitatd SD1 is
functioning as a retention factor of NF-YC3. The key problem isttiecurrent BiFC
data shows that all the fluorescence is in the nucleus when Baxth and NF-YC3 are
co-expressed, which is in contrast to previously published data, apgasiton to our
data which indicates that an intact LSD1 interaction motif iessary for NF-YC3 to
accumulate in the cytosol. To address these problems, additionainexmisrare being
performed which will use co-localization of two XFP colors to eddiithe specificity of
the interaction between LSD1 and NF-YC3. This new experimentsiwiiv co-over-
expression of LSD1-xFP with, first NF-YC3-xFP, and second withIlTBAGP2-xFP.
These constructs will express different FPs for LSD1 and th& G constructs so that
they can each be imaged at the same time, and a merged mmaiperc be made for the
figure. The anticipated result is that the LSD1 / NF-YC8 wo-localize in the cytosol
(with perhaps some NF-YC3 signal in the nucleus) and that LSDIYCBAGP2 will
show that LSD1 is in the cytosol and NF-YAI3P2 is in the nucleus, as predicted by our

current FP localization data.

Beyond this immediate work, future studies for this project should foouhe

redundancy in the NF-Y transcription factor family, looking to see thédreother
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members of this family, alone or in combination with one another, @éspoa role in
disease resistance. Another NF-YC, NF-YC 4, was identified inLDD®1 interactor
screen, and six additional Arabidopsis NF-YCs contain the GxXPLLfteraction motif.
Single and combinatorial mutants of these genes could be made to lothle at

contribution of these other NF-YC subunits to disease resistance.

In the second part of my work, | focused on ADR1-L2, a positive regutdt
Isdl rcd. ADR1-L2 is an NB-LRR, one of the main class of diseasistesce proteins
that are about to recognize specific proteins injected intoethéy pathogens. We first
showed that, in addition to the non-canonical, P-loop independent functions prgviousl
reported, ADR1-L2 had P-loop dependent functiorisdt rcd. By creating an autoactive
version of this protein, ADR1-lzs4y, We were able to characterize the canonical, P-loop
dependent functions of this protein in the absence of a specifidoeffd@t would
normally be required to activate ADR1-L2p4s4y plants are dwarfed, bushy plants with
short hypocotyls and pointed leaves, and they exhibit high ste¢aigylsvels of SA and
increased resistance to virulent pathogens. We then used this aeteactant to help
define the genetic requirements of the signaling pathway thadioerdDR1-L2. Our
data led us to position ADR1-L2 in a feedback loop involving SA, LSD1, &®1EOur
results also indicate that this protein is additionally regdlbte SA-independent factors,

as well as by the cell death executioner AtMC1.

The next experiments using the autoactive ADRsb42 mutant should further
examine the placement of ICS1/SA in our pathway. To do this, wenailesid2 Isdl
ADRI1-L2p4g4y andsid2 edsl ADR1-L2p4g4y plants. If our model is correct, loss of SA in

both of these contexts should lead to a reduction in the rcd phenotypewEhsisould
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be able to recovesid2 Isdl ADRI1-L2p484y plants, andsid2 edsl ADR1-L2psgsy plants
should not be severely dwarfed like tedsl ADR1-L2p454 plants presented hergd?2

atmcl ADRI1-L2p484v plants should also be created, as the phenotypes of this plant could
help to position AtMC1 in our current model. In parallel with thistwiard genetic
screens using EMS mutagenized seed could help us to identify othes teat are
necessary for the autoactive phenotype. Using botALHRL-L 25454y parental line and

the SA-deficientsid2 ADR1-L2p4ssy line would allow us to discover genes important in

both the SA-dependent and -independent pathways.

Uniquely, ADR1-L2 is the first NB-LRR to exhibit RAR1-independent
accumulation. In light of this result, future experiments could &sbthe requirements
of other proteins, such as SGT1b, that are typically required BM.RR protein
stability. Additional work is also being carried out by Dr. Vdanardi to try and
understand the mechanism behind ADR1-L2 function. She is currently zengaly
proteomics data that examines both the phosphorylation state t¥énand activated

ADR1-L2, as well as potential protein interactors.

Overall, my work has helped to refine the model of pathogen-triggaeed
resistance, especially in terms of LSD1. | provided additional thatasupports the idea
of LSD1 as a cytosolic retention factor, and uncovered data that supipemnole of the
NF-Y transcription factor family in disease resistance. Irigmtly, | contributed a model
that tries to add to the understanding of how a single protein beulavolved as both a
positive regulator oflsdl rcd and retain its function as a canonical NB-LRR.
Additionally, my work presents a way around the problem of charaictgra NB-LRR
without the benefit of knowing the effector that triggers it, taprovides a general
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approach to characterize canonical, P-loop dependent functions of NB-ld&nprin

the absence of a specific effector.
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