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ABSTRACT 

 
MELINDA MARGARET ROBERTS: Genetic Regulation of Cell Death and Disease 

Resistance in Arabidopsis  
(Under the direction of Jeff Dangl) 

 
 Plants are constantly identifying and responding to cues and threats from their 

surroundings, such as changes in light, temperature, and humidity, mechanical damage 

from herbivores and insect, and pathogen attack. Resistance to plant pathogens involves 

both passive barriers and active, inducible disease resistance responses. Induction of 

immune responses in plants leads to, for example, cellular redox changes, activation of 

MAP kinase cascades, massive transcriptional reprogramming, and frequently culminates 

in a form of programmed cell death known as the hypersensitive response. In my 

dissertation work, I characterized proteins involved in the regulation of cell death and 

disease resistance in the model plant Arabidopsis thaliana. 

 My first project involved the zinc finger protein LSD1, a cytosolic scaffolding 

protein which is a negative regulator of cell death and disease resistance. lsd1 mutant 

plants exhibit inappropriately triggered cell death and increased resistance to multiple 

pathogens. LSD1 was used in a Y2H screen which identified the LSD1 interactor NF-

YC3, a CAAT-binding transcription factor. nf-yc3 mutants have moderately increased 

susceptibility to the oomycete pathogen Hyaloperonospora arabidopsidis, and 

overexpression of NF-YC3 increases resistance to this pathogen, demonstrating that NF-

YC3 is a positive regulator of disease resistance, likely via transcriptional regulation.
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This activity could be partially controlled by LSD1 sequestering NF-YC3 in the cytosol, 

thereby preventing its nuclear relocalization and subsequent disease resistance function. 

 The latter half of my work involved the characterization of a positive regulator of 

lsd1 rcd, ADR1-L2. ADR1-L2 belongs to a small family of NB-LRRs, the main class of 

resistance proteins that are required to recognize specific pathogen effector proteins, 

leading to pathogen recognition and defense responses. I created an autoactive mutant of 

ADR1-L2, which required P-loop dependent ATPase activity for function and exhibited 

increased resistance to infection with virulent pathogens. I then used this autoactive 

mutant to try to understand the genetic requirements of the signaling pathway involved in 

this resistance response, finding that ADR1-L2 functions in a feedback loop involving the 

defense-related hormone salicylic acid, LSD1, and the lsd1 regulator EDS1. Together, 

my results refined the model of pathogen-triggered immunity in Arabidopsis. 
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Chapter 1 
 

Introduction 

 

 Plants, like all other organisms, must properly respond to changes in their 

surroundings. Examples of these responses include finely-tuned tropism reactions to 

water gradients, light, and gravity (Eapen et al., 2005; Holland et al., 2009; Moulia and 

Fournier, 2009); proper timing of seed germination (Penfield and King, 2009); and 

correct responses to attacks from herbivores, phytophagous insects, and pathogens. As 

sessile organisms without adaptive or circulatory immune systems, plants have had to 

evolve a set of cell-autonomous defense responses. Many times, these endogenous 

disease resistance mechanisms are not successful: plant pathogens alone contribute up to 

$30 billion in annual losses to the US agriculture industry (Pimentel et al., 2000). 

However, despite the inherent limitation of not having an adaptive or circulatory immune 

system, most plants are resistant to most pathogens (McDowell and Simon, 2008). 

 Plant disease resistance arises from both pre-formed mechanical barriers and 

pathogen-induced responses. The former includes basic pathogen defense mechanisms 

such as the waxy cuticle on the outside of the plant leaves which blocks the entry of 

pathogens and a suite of secondary metabolites with strong anti-microbial activity (Taiz 

and Zeiger, 2002). In addition to these intrinsic barriers, plants are also able to organize 

and produce a series of inducible defense responses. These reactions may occur both 
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locally and systemically, and can be divided into two parts. The first of these branches 

includes recognition of microbe-associated molecular patterns (MAMPs) by 

transmembrane pattern recognition receptors (PRRs) in the host plant. PRRs frequently 

bind proteins and other molecules that are particularly important to the pathogen’s 

function (Zipfel, 2009). While MAMP-triggered immunity, or MTI, is an effective and 

robust defense strategy, pathogens have, by definition, evolved methods of evading it and 

are thus able to colonize their hosts. Pathogens, such as the model bacteria Pseudomonas 

syringae pathovar tomato (Pto), secrete effector proteins into the host plant.  These 

specialized proteins antagonize MTI responses by, for example, blocking cell wall callose 

deposition, interrupting plant hormone signaling important for a proper defense response, 

and interfering with cell death responses triggered by other effectors (Grant et al., 2006). 

Effector proteins that are able to suppress MTI help in a successful colonization of the 

host plant; this process is known as effector-triggered susceptibility (ETS). Plants have, 

in turn, developed a system for responding to ETS. This response depends on disease 

resistance, or R, genes. 

 Plant R gene products, frequently referred to as NB-LRR proteins, contain a 

nucleotide-binding (NB) domain followed by a leucine-rich repeat domain (LRR) at their 

C-terminus. They share homology to animal NLRs (nucleotide-binding domain leucine-

rich repeat proteins) and recognize, either directly or indirectly, the effector proteins 

injected into the plant cell by the pathogen. In a direct interaction, the effector and NB-

LRR interact with each other. Conversely, indirect interactions involve a host target 

protein which is modified by the effector, and it is this change that is perceived by the 

NB-LRR. Either type of NB-LRR-mediated effector recognition leads to effector-
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triggered immunity (ETI), resulting in a disease resistance response that is both faster and 

stronger than MTI (Jones and Dangl, 2006). ETI responses include calcium influx, 

protein kinase activation, production of reactive oxygen intermediates, transcriptional 

reprogramming, and, frequently, the hypersensitive response (HR), a type of programmed 

cell death (Dangl and Jones, 2001).  

 Basal defense, or the responses triggered by virulent pathogens on susceptible 

hosts, and ETI are easily thought of as different magnitudes of the same defense 

responses. This is best visualized by the zigzag model put forth by Jones and Dangl in 

2006 (Figure 1). Their model presents MTI as the primary, low-level amplitude reaction 

to pathogens. Successful pathogens utilize effector proteins to overcome this first 

response, and resistant plants employ NB-LRRs to recognize these intruder proteins and 

mount a stronger defense, including localized cell death (HR). Inherent in this model is 

the resulting evolutionary “arms race” between pathogens and their potential hosts. When 

plants begin to recognize existing effector proteins, the pathogen will evolve a new array 

of effectors that cannot be recognized or which can counteract the plant’s original ETI. 

Plants, in turn, evolve new NB-LRRs, capable of recognizing the new effectors, and the 

cycle will begin again. 

 The remainder of this introductory chapter will focus on the specifics of MTI and 

ETI, including key signaling molecules and responses involved in both, and will discuss 

the overlap between the two, which leads to the conclusion that basal and effector-

triggered defenses are not separate pathways, but rather represent different levels of 

activation of the same responses. 
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PRRs and MAMP Triggered Immunity 

 The first layer of inducible defense responses involves direct perception of non-

host elicitors, or MAMPs, by PRRs. To avoid confusion between MAMPs and effectors, 

MAMPs are defined as being “conserved among a large group or class of microbes”, 

whereas effectors evolve within a single or small group of microbial species (Zipfel, 

2009). Continuous addition to the body of knowledge about elicitors and effectors makes 

categorizing these molecules an ongoing effort. Interactions between MAMPs and their 

receptors occur at the plant cell’s plasma membrane, and all currently identified PRRs are 

transmembrane receptor-like proteins (RLPs) or kinases (RLKs). RLKs and RLPs have 

similar extracellular structures with multiple LRR domains and similar transmembrane 

helices, but RLKs posses a cytoplasmic kinase domain (Tor et al., 2009). The two best-

studied examples of MAMP receptors are FLS2 and EFR, RLKs which bind flagellin and 

elongation factor-Tu (EF-Tu), respectively. Additional PRRs include XA21, a rice 

protein whose ligand Ax21 was recently discovered (Lee et al., 2009) and CERK1, a 

LysM-RLK which recognizes chitin (Petutschnig et al., 2010). Activation of any of these 

receptors leads to a common set of downstream defense responses, and efr and fls2 

mutants are more susceptible to a range of pathogens (Zipfel, 2009).  

 Individual pathogens each have multiple MAMPs which may be perceived by a 

potential host. Current knowledge of MTI is based on experiments which used single 

elicitors and/or single PRR knockout lines. These experiments do not provide information 

on the specific defense effects of each PRR-mediated MAMP recognition event in a 
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natural plant-pathogen interaction, but do offer an overall picture of MAMP-initiated 

defense effects (Segonzac and Zipfel, 2011). The most frequently studied elicitor-

receptor interactions are flagellin-FLS2 and EF-Tu-EFR; the former will be used as an 

example here. Flagellin, or the minimal signaling epitope known as flg22 which is 

derived from the N-terminus of flagellin, is recognized at the cell surface by FLS2, a 

glycosylated, transmembrane RLK (Gomez-Gomez and Boller, 2000; Chinchilla et al., 

2006). This extracellular detection leads to a heteromerization between FLS2 and BAK1, 

a short LRR RLK which is a member of the Somatic Embryogenesis Receptor Kinase 

(SERK) family (Chinchilla et al., 2007). This PRR/RLK complex also binds other 

SERKs (Roux et al., 2011). In addition to the formation of the receptor/kinase complex, 

phosphorylation of both FLS2 and BAK1 quickly follows elicitor recognition (Schulze et 

al., 2010), though the relevant residues are currently unknown. 

 Proper elicitor-triggered hetero-complex formation and phosphorylation of 

unidentified key residues leads to a network of downstream defense responses. These 

include callose deposition to strengthen cell walls, accumulation of defense-related 

hormones such as salicylic acid (SA) and jasmonic acid (JA), massive transcriptional 

reprogramming, activation of MAP kinase cascades, and a biphasic oxidative burst 

(Segonzac and Zipfel, 2011). FLS2/flg22-induced protein kinases include MEKK1, 

MKK4/MKK5 and MPK3/MPK6 (also involved in SA signaling, below), and these 

cascades trigger changes in many defense-related transcription factors, including 

WRKY22 and 29. The oxidative burst is a strong and rapid cell-to-cell increase in the 

amount of reactive oxygen species (ROS) in the plant cells. This induction requires the 
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NADPH oxidase RbohD in a cell autonomous manner, and is a way for the initial defense 

signal to be propagated across the leaf (Torres et al., 2002; Miller et al., 2009). 

 Classification of pathogen molecules as MAMPs versus effectors, and, in a 

related manner, PRRs versus R proteins, is an important and constantly evolving process. 

Initial categorization can be used as preliminary insight into the role of a new 

pathogenesis-related protein, but if incorrect can lead to faulty assumptions about that 

protein. For instance, classifying a protein as an effector leads to the conclusion that it 

will act within the plant cell, whereas a MAMP functions at the extracellular membrane. 

The experimental approaches used to test the functions of these two proteins are 

inherently different. Therefore, incorrectly identifying a protein makes it difficult to 

properly dissect the genetics and biochemistry of the defense processes in which it is 

involved. As more MAMP/PRR pairs are identified, there will be a better understanding 

of the common signaling components involved in MTI. Proper classification of MAMPs 

and effectors also allows for robust evolutionary studies, which will further inform the 

overall picture of plant-pathogen interactions. 

 The specific immunity contribution of each signaling event may still be unclear, 

but future research should be able to unravel these interactions and their respective 

significance to disease resistance. Importantly, even without proper classification of each 

defense-related protein, the common set of downstream host responses exhibited by all 

studied PRRs and shown to be functionally relevant to disease resistance are potential 

sources of real-world agricultural application. Genes from non-susceptible species can be 

transferred to previously susceptible plants as a possible means of boosting disease 

resistance. One particularly exciting study showed that transgenic expression of EFR in 
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tomato, a species that does not normally carry this PRR, leads to broad-spectrum 

bacterial resistance in these plants (Lacombe et al., 2010). Examples such as this prove 

that MTI-related research has developed rapidly over the course of the last 10 years. 

Continuing efforts should uncover a much more complete view of the path from ligand 

perception to disease resistance. 

 

NB-LRRs and Effector Triggered Immunity  

 Pathogens, in an evolutionary response to MTI, evolved effector proteins to 

combat the defense responses triggered by their MAMPs. Bacteria utilize the type three 

secretion system (TTSS), a syringe-like apparatus that sends 15-30 such effector proteins 

into the host plant (Cornelis and Van Gijsegem, 2000; Alfano and Collmer, 2004). 

Effectors target the function of proteins important for MTI, thereby increasing pathogen 

virulence and causing ETS. For instance, the Pto effector AvrPto suppresses basal 

defenses in tomato, Arabidopsis, and the model plant Nicotiana benthamiana. AvrPto 

binds EFR and FLS2 (Xiang et al., 2008), and targets BAK1 (Shan et al., 2008), 

disrupting FLS2-BAK1 interactions and suppressing flg22-induced MPK3 and MPK6 

activation, cell death, and callose deposition (Hann and Rathjen, 2007). 

 Another example of effectors targeting MTI involves the Pto effector hopM1. 

HopM1 is a highly conserved, TTSS effector which is required for full Pto virulence 

(DebRoy et al., 2004). HopM1 was found to interact with MIN7, an Arabidopsis 

adenosine diphosphate ribosylation factor guanine nucleotide exchange factor (ARF-

GEF) protein (Nomura et al., 2006). ARF-GEF proteins are involved in vesicle 
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trafficking, and MIN7 is required for full bacterial resistance in Arabidopsis. HopM1 uses 

the proteaosome of the host plant to degrade MIN7, thereby increasing bacterial virulence 

(Nomura et al., 2006). Left unchecked, effectors can overcome MTI and lead to host 

plant susceptibility. Thus, plants have evolved a way to recognize and respond to 

pathogen effector proteins. 

 Recognition of pathogen effectors by the host requires the proper detection by and 

function of NB-LRRs, and proper recognition leads to ETI. Interaction between NB-LRR 

and effector proteins is hypothesized to occur in one of two ways: directly or indirectly. 

Direct interactions occur when an effector and an NB-LRR bind to each other. Examples 

of this include the Arabidopsis protein RRS1-R directly interacting with the Ralstonia 

Avr protein PopP2 (Deslandes, PNAS 2003), the rice Pi-ta NBS-LRR directly associating 

with Avr-Pita from rice blast (Jia et al., 2000), and L5, L6, and L7 proteins from flax, 

which directly recognize the products of the rust flax AvrL567 genes (Dodds et al., 2006). 

 Alternatively, as described in the guard hypothesis, there is no direct interaction 

between effectors and NB-LRR proteins (Van der Biezen and Jones, 1998). Rather, the 

effector protein modifies its host target protein, and it is this change that activates the 

NB-LRR protein. The host target protein is thus “guarded” by the NB-LRR protein, and 

NB-LRR recognition of host target modification is what leads to the downstream defense 

responses (Dangl and Jones, 2001; Holt et al., 2003). Utilizing a common target for 

multiple effectors could allow the host plant to best exploit its recognition potential with 

a limited set of NB-LRRs. Maximizing the utility of each NB-LRR is very important for 

an organism that does not possess an adaptive immune system. 
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 One well-studied example of the guard hypothesis involves the P. syringae 

effectors AvrB and AvrRpm1, along with the Arabidopsis proteins RIN4 and RPM1. 

RPM1 encodes a CC-NB-LRR and guards RIN4, a small, membrane-bound protein that 

is a negative regulator of basal defense (Mackey et al., 2002). RIN4 is modified when 

either of the two sequence-unrelated effector proteins, AvrB or AvrRpm1, is introduced 

to the system via delivery by the TTSS of Pto DC3000. Neither effector is a kinase, but 

their interaction with RIN4 leads to phosphorylation of RIN4 at threonine 166 (Chung et 

al., 2011). This phosphorylation of RIN4 is perceived by RPM1, which then triggers a 

series of pathogen defense responses, including HR (Boyes et al., 1998; Chung et al., 

2011). In an rpm1 mutant, the lack of RPM1 protein allows AvrRpm1 or AvrB to enter 

the cell undetected. From there at least AvrRpm1 acts as a virulence factor, promoting 

bacterial growth and disease (Ritter and Dangl, 1995). RIN4 is also guarded by a second, 

independent NB-LRR, RPS2. RPS2 is triggered when AvrRpt2, a third P.syringae 

effector, cleaves RIN4 at two sites. This cleavage is detected by RPS2, triggering a 

similar series of defense responses to those activated by RPM1. A fourth effector, HopF2, 

also targets RIN4 (Wilton et al., 2010). These interactions involve four different effector 

proteins that are all found to trigger defense responses through the same protein, in fact, 

by their action on the same ~30 amino acid domain of RIN4. RIN4 is guarded by at least 

two different NB-LRRs. The RIN4 example provides proof that Arabidopsis is able to 

maximize its pathogen recognition specificity utilizing a small, non-adaptive set of NB-

LRRs. 

 Constitutive disease resistance responses can be of high fitness cost to the host 

plant (Tian et al., 2003). It is therefore very important that these responses are only 
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triggered when necessary, and thus they must be under finely-tuned control. One model 

of disease resistance shows NB-LRRs functioning as molecular switches, with multiple 

subdomains responsible for keeping the protein in the resting, or “off”, state, thereby 

preventing spurious NB-LRR activation (Takken et al., 2006). NB-LRR proteins, and 

NLR homologs in animals, are members of the NTPase superfamily and belong to the 

signal transduction ATPases with numerous domains (STAND) subclade (Leipe et al., 

2004). In the “off” conformation, STAND proteins bind ADP, which must be exchanged 

for ATP in order to trigger defense responses (Takken et al., 2006). 

 Plant NB-LRR proteins consist of three distinct domains: either a CC or TIR N-

terminal domain, which is involved in downstream signaling events; followed by a 

central nucleotide-binding domain (NB), where ADP or ATP binding occurs; which is 

fused to a leucine-rich repeat (LRR) domain at the C-terminus that provides recognition 

specificity (Takken et al., 2006). The P-loop and MHD, two subdomains within the 

central NBS domain, are particularly important for proper function. The P-loop motif is 

critical for nucleotide binding, and in most cases, mutations in this domain result in an 

inactive NB-LRR (Tameling et al., 2002; Hanson and Whiteheart, 2005; Rairdan and 

Moffett, 2006). Mutations in the MHD domain, on the other hand, typically result in 

autoactivity (Bendahmane et al., 2002; Howles et al., 2005; Tameling et al., 2006; Gao et 

al., 2011; Williams et al., 2011; Zhang et al., 2012). This is due to either a preference 

towards ATP binding or a lack of ATPase activity which keeps the protein in the “on” 

state (Tameling et al., 2006). The inactive conformation is further maintained by proper 

physical interactions between the NB and LRR domains (Bendahmane et al., 2002; Ade 

et al., 2007). In this “off” conformation, the LRR inhibits the NB from undergoing 
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nucleotide exchange. After pathogen recognition, where specificity is typically conferred 

by the LRR, this autoinhibition is released, allowing ADP to be exchanged for ATP and 

initiation of defense signaling events.  

 Attempts to study autoactive mutants have been made in Arabidopsis, flax, and 

tobacco (Table 1). While the majority of NB-LRR autoactive mutations recovered have 

been in the MHD domain (Bendahmane et al., 2002; Howles et al., 2005; Tameling et al., 

2006; Gao et al., 2011; Williams et al., 2011; Zhang et al., 2012), there are also mutations 

that lead to autoactivity which occur outside of this domain (Zhang et al., 2003; Igari et 

al., 2008; Huang et al., 2010). Much of the work done with these autoactive alleles has 

been carried out in transient over-expression assays in flax or tobacco systems, making it 

difficult to test their biological relevance. However, some key work in Arabidopsis and 

flax has shown that these autoactive mutations lead to lethality or dwarfed morphology 

(Howles et al., 2005; Gao et al., 2011; Zhang et al., 2012). Additionally, there is evidence 

that NB-LRR autoactivity directly affects the immune system signaling pathway, as some 

of these mutants exhibit hallmarks of defense activation, including high steady-state SA 

levels (Zhang et al., 2003; Huang et al., 2010) and increased resistance to infection with 

virulent pathogens (enhanced basal defense) (Gao et al., 2011). Overall, these autoactive 

mutants clearly show that correctly controlled function of NB-LRRs is necessary for both 

plant fitness and defense activation. 

 While canonical ATP-driven activity of NB-LRRs is clearly essential for a 

complete defense response, examples in plants (Bonardi et al., 2011) and animals 

(Kofoed and Vance, 2011; Zhao et al., 2011) of NB-LRRs that do not require the 

canonical P-loop for function indicate that there are functions for these proteins beyond 
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typical ATPase activities. In these cases, NB-LRRs may not work as canonical ‘sensors’, 

but might instead act as ‘helper’ proteins. These ‘helpers’ potentially function as 

scaffolding proteins, perhaps working with other immune-related proteins, including 

canonical NB-LRRs, to trigger defense responses (Bonardi et al., 2012). These examples 

show us that there is still much to be learned about the overall role that NB-LRR proteins 

play in defense. Chapter 3 addresses the characterization of a unique NB-LRR with both 

‘helper’ and P-loop dependent functions in disease resistance. 

 Proper accumulation and stabilization of NB-LRR proteins is also important for 

their activity, and control of NB-LRR protein levels requires additional plant proteins. 

Three proteins required for NB-LRR stability are HSP90, SGT1, and RAR1. RAR1 

encodes a zinc binding protein consisting of two CHORD domains, and is highly 

conserved among all eukaryotes except yeast (Shirasu et al., 1999). RAR1 protein is 

required for full accumulation of almost all tested NB-LRRs. However, only a subset of 

NB-LRRs are functionally suppressed in a rar1 background. This dichotomy is explained 

by the “threshold model”: proper defense response requires a certain, set level of NB-

LRR protein, and the expression level of some NB-LRR proteins is very high in an 

unchallenged plant. In a rar1 mutant, the expression level of this class of ‘high-

accumulating NB-LRR proteins’ is reduced, but remains above the required threshold to 

trigger a defense response. Therefore, defense responses are not compromised (Bieri et 

al., 2004; Holt et al., 2005). Conversely, the steady state protein expression level of NB-

LRR proteins that require RAR1 for their function falls below the threshold point in a 

rar1 mutant, leading to significantly reduced defense responses.  
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 SGT1 is also required for proper NB-LRR stability. RAR1 and SGT1 interact via 

the C-terminal CHORDII domain of RAR1 and the CS domain of SGT1. Arabidopsis 

contains two orthologues of this gene; mutations in SGT1b, but not STG1a, can alter the 

functions of some NB-LRR proteins. SGT1 double mutants are lethal (Azevedo et al., 

2006).  

 In planta, both RAR1 and SGT1 associate independently with the cytosolic 

protein HSP90. HSP90 is a chaperone protein that is responsible for the proper folding of 

its “client” proteins, and it is known to regulate accumulation of wild-type amounts of 

protein for all tested NB-LRRs. The ATPase domain of cytosolic HSP90 associates with 

both CHORDI of RAR1 and the CS domain of SGT1b. This association is clearly 

important to NB-LRR function, as point mutations in the ATPase domain of one isoform 

of HSP90, hsp90.2, cause a large reduction in the accumulation of the NB-LRR RPM1 

(Hubert et al., 2003). This data lead to a model where NB-LRR proteins are clients of 

HSP90, and are held in proper conformation and therefore maintain proper protein levels 

with the co-chaperones RAR1 and SGT1b. Additional hsp90.2 alleles were identified that 

suppressed rar1 phenotypes, allowing accumulation of functional levels of NB-LRRs in 

this background (Hubert et al., 2009). These alleles furthered the model of HSP90-

regulated protein accumulation, showing that RAR1 normally functions to physically 

regulate HSP90-dependent dynamic protein turnover. Overall, disruption to RAR1, 

HSP90, or SGT1 can lead to an alteration in NB-LRR accumulation, and potentially 

affects disease resistance. 

 In addition to these proteins which are required for NB-LRR stabilization, the 

signaling pathways activated by NB-LRRs require further factors for proper activation. 
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Proper signal transduction from TIR-NB-LRRs is dependent on EDS1 (Enhanced Disease 

Susceptibility 1), PAD4 (Phytoalexin Deficient 4) and SAG101 (Senescence-Associated 

Gene 101), while CC-NB-LRRs require NDR1 (Non-race-specific Disease Resistance 1) 

for proper function (Glazebrook, 2001). Together, these NB-LRR regulatory proteins and 

domains attempt to balance plant cell damage caused by virulent pathogens with fitness 

costs stemming from disease responses whose amplitude is too high.  

 

Salicylic Acid, a Central Molecule in Plant Defense Responses 

 Induction of SA, a phenolic plant hormone, has a very wide range of effects in 

plants. It directly and/or indirectly influences seed germination, cell growth, stomatal 

aperture, and fruit yield (Vlot et al., 2009). It is also important for proper defense 

responses, including basal defense and some effector-triggered disease resistance 

responses. SA levels increase after pathogen attack, and exogenous application of SA or 

BTH leads to increased disease resistance (Lu, 2009). Activation of either NB-LRR-

mediated or MAMP-triggered disease resistance pathways leads to an increase in SA 

(Glazebrook, 2005; Tsuda et al., 2008). The majority of SA is generated by conversion of 

chorismate to isochorismate via the isochorismate synthase (ICS) pathway (Lu, 2009). 

Mutations in the Arabidopsis gene SID2, which encodes isochorismate synthase 1 (ICS1), 

block SA production and lead to pathogen-induced SA induction levels that are ~10% of 

wildtype (Wildermuth et al., 2001). sid2 plants are more vulnerable to a variety of 

pathogens, and this increased susceptibility can be rescued by exogenous application of 

SA or its synthetic homolog benzothiadiazole (BTH) (Nawrath and Metraux, 1999; 
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Dewdney et al., 2000). An additional isochorismate synthase, ICS2, also exists in 

Arabidopsis, and it is responsible for generating the SA measured in sid2 mutants 

(Garcion et al., 2008). There is also an ICS-independent pathway for SA synthesis, as 

ics1 ics2 double mutants still display very low levels of SA (Garcion et al., 2008). 

 In addition to those genes encoding the proteins required for the biosynthesis of 

SA, several other genes are positive regulators of SA. The best characterized of these 

include EDS1, PAD4, and NDR1, though a handful of additional positive regulators have 

been recently characterized (Lu, 2009). Both EDS1 and PAD4, as well as several other 

positive regulators of SA, are also SA-inducible, and the loss of resistance phenotypes 

seen in eds1, pad4, and  ndr1 plants can be reversed by exogenous application of BTH 

(Zhou et al., 1998; Falk et al., 1999; Shapiro and Zhang, 2001). This suggests that SA 

regulation occurs in a feedback loop: many positive regulators of SA are induced by SA, 

leading to dramatic increases in this molecule after disease resistance pathways are 

triggered.  

 Much of the signaling downstream of SA requires NONEXPRESSOR OF PR 

GENES 1 (NPR1) (Cao et al., 1997). NPR1 is found in both the cytosol and the nucleus, 

and in the latter location it functions as a transcriptional regulator of pathogen-related 

(PR) genes (Dong, 2004).  In steady-state conditions, the majority of NPR1 is present in 

the cytosol as oligomers. Pathogen challenge promotes a conformational change of NPR1 

from oligomers to monomers, allowing this molecule to enter the nucleus (Mou et al., 

2003). Once in the nucleus, NPR1 indirectly activates transcription of defense-related 

genes via interaction with transcription factors (TFs), including the TGA family of bZIP 

TFs (Despres et al., 2000). As previously discussed, inappropriately triggered defense 
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responses can be of high fitness cost to a plant, and thus, inducers of defense must be 

tightly regulated. In the case of NPR1, this regulation comes in the form of proteasome-

mediated degradation, which uniquely both prevents spurious gene activation in plants 

not undergoing pathogen attack and stimulates defense-related gene expression when 

plant defense responses are turned on (Spoel et al., 2009). Very recently, a potential 

mechanism for SA perception and monitoring was proposed (Fu et al., 2012). The data in 

this paper demonstrates that NPR3 and NPR4, paralogues of NPR1, are SA receptors 

with different binding affinities for the molecule. These two proteins function in the SA-

mediated degradation of NPR1, and the authors propose that their different affinities for 

NPR1 sets up the proper regulation of NPR1 protein levels mentioned above. 

 NPR1 and SA also are essential for long-term, systemic activation of disease 

resistance. Endogenous increases in or exogenous application of SA lead to the 

transcriptionally-based defense responses that constitute systemic acquired resistance 

(SAR), and SAR requires NPR1. SAR confers broad-spectrum pathogen resistance, and 

is activated systemically after local pathogen infection or SA application (Shah, 2009). 

One key hallmark of SAR, and defense responses in general, is increases in PR protein 

levels (Sels et al., 2008). PR proteins can be induced by SA, jasmonic acid (JA), and 

ethylene (ET) (Dong, 2004). There are fourteen different classes of PR genes in 

Arabidopsis (van Loon and van Strien, 1991), and potentially hundreds of different 

members of some classes (Silverstein et al., 2005); these large numbers complicate the 

understanding of PR activation and activity. Some PR genes have been found to have 

specific antimicrobial activity (van Loon and van Strien, 1991; van Loon et al., 2006), 

though the precise role that the majority of these proteins play is still under investigation.  
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 Much work has gone into trying to identify the molecule responsible for the 

spread of SAR.  Early studies of SA showed that large amounts of the compound 

accumulate in and around the lesions that form at the site of pathogen infection (Enyedi 

et al., 1992). SA levels are also known to increase throughout the plant after pathogen 

recognition, including in the phloem (Yalpani et al., 1991). Given this data, it was 

originally thought that SA might be the SAR potentiation signal. However, grafting 

studies showed that SA is not necessary for development of the signal at the site of 

infection, though it is required for SAR at distal sites in the plant (Vernooij et al., 1994). 

SA can be reversibly turned into methylsalicylic acid (MeSA), and studies in tobacco 

found that this compound fit all the requirements to be the SAR signaling compound 

(Park et al., 2007). However, in Arabidopsis, studies showed that MeSA accumulation 

mutants still could induce SAR (Attaran et al., 2009). Thus, the search for the SAR 

systemic signal continues. 

 

Programmed Cell Death in Plant Pathogenesis 

 Programmed cell death (pcd) in plants can be induced by a variety of abiotic and 

biotic stressors, including high light, heat shock or chilling, and the chemical inducers 

H2O2 and paraquat. One of the hallmarks of pathogen recognition is the HR, a type of pcd 

that includes rapid, localized cell death at and around the site of infection. HR is mainly 

associated with ETI, although cell death also can be induced by other high levels of flg22 

(Naito et al., 2008). Early events after pathogen invasion include production of the ROS 

superoxide (O2
-) and hydrogen peroxide (H2O2), as well as synthesis of nitric oxide (NO) 
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(Levine et al., 1994; Delledonne et al., 1998). Increases in ROS occur in and around the 

infected cell, and they are important signaling molecules for HR propagation across the 

leaf (Nanda et al., 2010). AtRbohD is required for the oxidative burst, and in wild-type 

plants this burst signals the cells proximal to sites of infection to induce transcription of 

defense genes and suppress cell death (Jabs et al., 1996; Torres et al., 2005). In distal 

cells, ROS and SA function as signal transduction molecules, potentiating cell death 

throughout the leaf. This cell death must be kept in check to prevent unnecessary death of 

parts of or the whole plant. 

 The Arabidopsis lesions simulating disease1 (lsd1) mutant provides an excellent 

background to study the roll of cell death in disease resistance. LSD1 is a cytosolic zinc 

finger protein, and in wild-type plants it functions as a negative regulator of cell death. 

lsd1 mutant plants exhibit inappropriately regulated cell death, also known as runaway 

cell death (rcd), and increased resistance to multiple pathogens (Dietrich et al., 1997). 

Triggers of rcd in an lsd1 mutant include pathogen infection, changes in day length, and 

exogenous application of SA or BTH; lsd1 plants are unable to stop the propagation of 

cell death from any trigger. As a cytosolic zinc finger protein, LSD1 functions as a 

potential interacting platform for other proteins involved in pcd (Kaminaka et al., 2006). 

Yeast two-hybrid and phage display screens identified several other LSD1 interactors, 

including NF-YC3 and NF-YC2, both encoding CAAT Box-binding Factor CBF-C 

subunits of heterotrimeric CAAT-binding TFs. These proteins and their roles in plant 

defense are further explored in chapter 2. 

 Several different proteins are required for lsd1 rcd.  These include EDS1 

(Rusterucci et al., 2001), PAD4 (Rusterucci et al., 2001), and AtMC1 (Coll et al., 2010). 
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Runaway cell death in lsd1 also requires both SA and NPR1 (Aviv et al., 2002). In lsd1, 

but not wild-type plants, SA is able to trigger rcd, indicating that LSD1 is normally 

working as a negative regulator of SA-dependent cell death (Dietrich et al., 1994). These 

results position LSD1 and SA in a feedback loop, where the presence of LSD1 is 

necessary and sufficient to stop SA-potentiated rcd. NPR1 is also necessary for lsd1-

mediated rcd, making it clear that SA is at least partially required as a signal initiator in 

rcd. It is also important to note that these SA requirements are not the same for the lsd1-

related basal defense phenotypes: SA-depleted lsd1 plants still show increased resistance 

(Aviv et al., 2002). 

 Experiments looking for positive regulators of lsd1 rcd also uncovered the ADR1 

family of NB-LRRs, members of which function as ‘helper’ NB-LRRs in basal defense 

(Bonardi et al., 2011). As previously stated, at least one member of this family also has 

canonical, P-loop dependent immune functions which are discussed chapter 3.  

 

Conclusions 

 Initial studies of plant disease resistance responses led researches to believe that, 

for instance, effector-NB-LRR protein interactions were direct, and MAMP and effector 

triggered immunity were totally separate events. As genetic and molecular mechanisms 

have been uncovered, a more robust model of the system has been created. Once 

separated pathways are now seen as part of a larger network. For example, wound 

response, SA, ROS, MTI, and ETI all result in transcriptional reprogramming, and 

though the levels of these reactions may differ they frequently involve the same genes or 
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gene families (Tsuda et al., 2008; Miller et al., 2009). Another example of overlap, 

published recently, shows that there is an in planta association between the PRR FLS2 

and the R proteins RPM1, RPS2, and RPS5 (Qi et al., 2011), though the functional 

consequences of this, if any, remain to be defined. 

 Defense-related hormone crosstalk, NB-LRRs with multiple independent 

functions, and positive and negative feedback loop pathways are all further evidence that 

the picture of disease resistance signaling outputs is more of a web than a linear pathway. 

As more data is collected, more of these overlaps will be uncovered, further complicating 

the disease resistance network. 

  



21 

 

 

Figure 1.1. The zig-zag model of plant defense. Adapted from Jones and Dangl, 2006. 
Pathogens are initially recognized by potential hosts via MAMP recognition, leading to 
induction of low-level disease resistance responses, or MTI (MAMP-triggered 
immunity). These pathogens have evolved effector proteins, which are delivered using 
various mechanisms in various pathogens, and block MTI. Recognition of a single 
effector from the delivered suite by an NB-LRR (middle) leads to stronger resistance 
responses, including HR, known as ETI (effector-triggered immunity). The recognized 
effector is deleted by selection from the pathogen’s genome, and remaining effectors 
cause ETS (effector-triggered susceptibility), and one of these effectors is recognized by 
a second, newly evolved NB-LRR (far right). This cycle of ETI and ETS is repeated both 
in a single plant-pathogen interaction, and is also the basis for the evolutionary ‘arms 
race’ that drives the evolution of new effectors, by the pathogen, and new effector-
recognition proteins, from the plant. 
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Chapter 2 
 

NF-YC3 is a positive regulator of plant disease resistance to 
Hyaloperonospora arabidopsidis that is negatively regulated by LSD1 

 

Preface 

 For the second chapter, I have included work that will be submitted to PLoS One 

at the completion of some additional experiments currently being performed by a 

collaborator (see Discussion for further details). The authors on this paper will be myself, 

Hiro Kaminaka, Kengo Takabayashi, Fumi Arase, Nicholas Siefers, Ben Holt, and Jeff 

Dangl. This work was started by Ben Holt at the beginning of his PhD work, when he 

helped with the initial screens for LSD1 interactors. Ben then performed the pull-down in 

Supplemental Fig. 2, and then performed the initial characterization of nf-yc3. Hiro 

Kaminaka and his students performed the yeast-2 hybrid experiment and the protoplast 

localization experiments. I helped with additional characterization of the nf-yc3 mutant, 

performed the NF-YC3 over-expression experiments and the lsd1 Western blot, created 

the alignment for Fig. 1, and wrote the manuscript with the help of Ben Holt and Jeff 

Dangl. This work was performed under the direction of Jeff Dangl. 
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Abstract 

 Plants induce a variety of defense responses upon pathogen recognition. A 

hallmark of disease resistance in plants is the hypersensitive response (HR), a type of 

programmed cell death. Genetic regulators of cell death have been identified and include 

the cytosolic zinc finger protein LESION SIMULATING DISEASE 1 (LSD1), a negative 

regulator of cell death and disease resistance. Here we demonstrate that LSD1 can 

interact with NF-YC3, a NUCLEAR FACTOR Y, subunit C protein. NF-YC proteins are 

components of NF-Y transcription factor complexes that regulate many genes in diverse 

eukaryotic lineages. The LSD1 interaction could sequester NF-YC3 in the cytosol, which 

would prevent the formation of active NF-Y complexes. Using the combined techniques 

of yeast two-hybrid, phage display, and site directed mutagenesis, we define a single GxP 

motif in NF-YC3 as necessary for the LSD1 interaction. nf-yc3 mutants display 

moderately increased susceptibility to the oomycete pathogen Hyaloperonospora 

arabidopsidis (Hpa). Alternatively, plants conditionally over-expressing NF-YC3 exhibit 

increased nuclear accumulation of NF-YC3 and corresponding enhancement of resistance 

to Hpa. Therefore, NF-YC3 is a positive regulator of disease resistance. 

 

Introduction 

 Plants possess a quick-acting, well-regulated immune system with which they 

respond to pathogen attacks (Jones and Dangl, 2006). Pathogen recognition is often 

mediated by plant resistance gene (R gene) products. Most R proteins belong to the 

nucleotide-binding leucine-rich repeat (NB-LRR) superfamily (Ellis and Jones, 1998); 

these directly or indirectly recognize specific pathogen effector proteins. This recognition 
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initiates a defense signaling cascade that leads to disease resistance (Pitzschke et al., 

2009). Successful disease resistance requires transcriptional re-programming and 

consequently the production of myriad proteins and cell wall re-enforcements to stop 

pathogen growth and colonization (Dangl and Jones, 2001). Signal transduction 

subsequent to recognition thus is likely to culminate in activation of latent transcription 

factors to up- or down-regulate the transcription of disease resistance-related genes. 

 The Arabidopsis thaliana (Arabidopsis) genome encodes more than 1500 

transcription factors (Riechmann et al., 2000). Of these, five families of transcription 

factors are known to play roles in defense responses: AP2/ERF (APETALA2 /Ethylene-

response factors), bHLH (basic helix-loop-helix), bZIP (basic leucine zipper), MYB 

(myeloblast), and WRKY (characterized by the amino acids tryptophan (W), arginine 

(R), lysine (K), and tyrosine (Y)) (van Verk et al., 2009). Another transcription factor 

found in Arabidopsis is the heterotrimeric Nuclear Factor Y (NF-Y), also referred to as 

the heme-activated protein (HAP) or CCAAT binding factor (CBF). This transcription 

factor is found in all eukaryotes and regulates a diverse set of genes. In most organisms, 

each of the three unique NF-Y subunits (NF-YA, NF-YB, and NF-YC) is encoded by one 

or two genes (Riechmann et al., 2000). However, in Arabidopsis there are 10 NF-YA, 13 

NF-YB, and 13 NF-YC subunits (Siefers et al., 2009b). Brachypodium distachyon and 

Triticum aestivum also have 35 or more NF-Ys in each of their genomes (Cao et al., 

2011; Stephenson et al., 2007), indicating that there has been a generalized NF-Y 

expansion in the plant lineage.  

 The NF-Y heterotrimer assembles in a specific, stepwise manner (Maity et al., 

1992; Sinha et al., 1996). NF-YB and NF-YC subunits are typically both found in the 
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cytosol, where they initially form a dimer (Frontini et al., 2004; Goda et al., 2005; 

Tuncher et al., 2005). NF-YB/C heterodimerization is required for translocation into the 

nucleus; once there the heterodimer binds the third subunit of the NF-Y family (NF-YA). 

The mature NF-Y complex binds DNA at the nucleotide sequence CCAAT (the “CCAAT 

box”) (Ceribelli et al., 2008). The CCAAT box is a frequent and widespread promoter 

element, with functional sites minimally occurring in ~7-8% of mammalian promoters 

(FitzGerald et al., 2004; Testa et al., 2005). There is no accurate estimate for the number 

of functional CCAAT sites in plants, but Arabidopsis promoters have a higher frequency 

of this simple pentamer sequence than what is found in humans (Siefers et al., 2009a). 

NF-Y transcription factors are able to both up- and down-regulate the transcription of 

CCAAT box containing genes (Mantovani, 1999). 

 Compared to analyses in yeast and mammals, an understanding of whether or how 

the plant-specific NF-Y expansion leads to mechanistically diverse outputs is lacking. 

However, mutations in several single-subunit genes display phenotypes. For example, in 

Arabidopsis and maize, genes encoding NF-YA and NF-YB subunits have been found to 

promote drought resistance (Li et al., 2008; Nelson et al., 2007). NF-YB and NF-YC 

subunits both play roles in Arabidopsis flowering time regulation (Kumimoto et al., 2008; 

Kumimoto et al., 2010a). NF-Y subunits also regulate embryo development (Kwong et 

al., 2003), as well as blue light and abscisic acid responses (Warpeha et al., 2007). 

Furthermore, NF-YA and NF-YC subunits are required for proper rhizobial infection and 

formation of nitrogen fixing nodules in Medicago truncatula and Phaseolus vulgaris 

(Combier et al., 2008; Combier et al., 2006; Zanetti et al., 2010). In light of these 

important and numerous functions, and due to the potential cost of unnecessary 
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transcriptional activation, it follows that transcription factors such as NF-Ys must 

themselves be under some form of control. 

 Localization can regulate transcription factor activity (Whiteside and Goodbourn, 

1993); cytoplasmic retention prevents transcription factors from entering the nucleus, 

thereby thwarting transcriptional activation. In some cases, transcription factors are 

retained in the cytosol until an appropriate signal causes them to move into the nucleus 

(Whiteside and Goodbourn, 1993). Such retention can result from the binding of 

transcription factors to cytosolic proteins that function as interaction modules. One 

known group of cytosolic interaction modules are zinc finger proteins (Krishna et al., 

2003). These molecules use zinc ions to stabilize their protein folds and can bind DNA, 

RNA and small proteins (Krishna et al., 2003). In Arabidopsis, one such cytosolic zinc 

finger protein is LSD1, a proposed interaction module and a negative regulator of cell 

death (Dietrich et al., 1997). 

 lsd1 mutant plants exhibit inappropriately activated and uncontrolled cell death 

(Dietrich et al., 1994), leading to runaway cell death (rcd). These mutants express 

additional defense response phenotypes, including the production of pathogenesis-related 

(PR) proteins and increased resistance to multiple pathogens (Greenberg, 1997). lsd1 rcd 

can be initiated by exposure to pathogens, exogenous application of the plant defense 

hormone salicylic acid (SA), and changes in growth conditions (Dietrich et al., 1994). 

The rcd phenotype requires SA, superoxide, and other key genetic components of disease 

resistance (Aviv et al., 2002). SA-dependent signaling during defense responses leads to 

increased local and systemic cell death. LSD1, in concert with reactive oxygen 

intermediates, prevents rcd during this process (Torres et al., 2005).  As an interaction 
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module, LSD1 is known to interact with both transcription factors (Kaminaka et al., 

2006) and positive regulators of cell death (Coll et al., 2010; Epple et al., 2003). These 

interactions take place in the cytosol. The transcription factor bZIP10 is a positive 

mediator of rcd. LSD1 functions to sequester bZIP10 in the cytosol, thereby preventing 

its function in transcription of a pro-cell death regulon (Kaminaka et al., 2006). LOL1 

and AtMC1, two proteins with LSD1-like zinc-finger motifs, also interact with LSD1 

(Coll et al., 2010; Epple et al., 2003). These proteins are also positive regulators of cell 

death, and in the absence of LSD1 each protein is required for rcd. Taken together, these 

data indicate that LSD1 may act as a cytoplasmic scaffolding protein, sequestering 

proteins necessary to appropriately balance cell death and defense responses. As such, 

other proteins which interact with LSD1 could be important for rcd and/or disease 

resistance. 

 We found that LSD1 interacted with the Arabidopsis NF-YC3 subunit in a yeast 

two-hybrid (Y2H) library screen. Using phage display techniques and directed Y2H 

assays, we noted that this interaction depended on a plant-specific NF-YC interaction 

motif. Additionally, nf-yc3 mutants were more susceptible to infection with the oomycete 

parasite Hpa isolate Cala2. Parallel to loss-of-function analyses, we created a line 

conditionally over-expressing wild-type (wt) NF-YC3. This line exhibited enhanced 

disease resistance to Hpa isolate Emco5. Conditional over-expression of two NF-YC3 

mutants, one unable to form the B/C dimer and another that cannot bind DNA, did not 

result in enhanced Hpa resistance. Thus, using both mutant and over-expression lines, we 

demonstrate that NF-YC3 is a positive regulator of disease resistance, likely via 

transcriptional regulation of defense-related genes. This transcriptional activation of NF-
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YC3 could be partially controlled by LSD1 sequestering it in the cytosol, thereby 

preventing NF-YC3 movement into the nucleus and its subsequent disease resistance 

function. 

 

Results 

 LSD1 interacts with the transcription factor NF-YC3. LSD1 is necessary for 

proper regulation of defense responses and interacts with proteins important in disease 

resistance (Coll et al., 2010; Dietrich et al., 1994; Kaminaka et al., 2006). To identify 

additional LSD1-interacting peptides, we performed a phage display using a library of 

random 12aa epitopes (Kay et al., 1996). GST:LSD1 fusion proteins were purified on 

glutathione sepharose beads and incubated with the phage library. Phage that bound to 

LSD1 were isolated and independent phage plaques were sequenced, yielding fifteen 

unique LSD1-interacting peptides (Figure 2.1A). The consensus sequence WVWGxP 

was found in 11 of the sequenced epitopes, and the G and P positions were invariant in all 

15 LSD1 interacting peptides (Figure 2.1B). One of the sequenced variants was a near 

exact match to a peptide in NF-YC3, which had previously been isolated as an LSD1 

interacting protein in Y2H assays. Arabidopsis NF-YC3 has homology to mammalian 

NF-YC, including the residues required for proper NF-Y formation (Figure 2.2). 

 To confirm the interaction between LSD1 and NF-YC3, we used a combination of 

in vitro and semi-in vivo methods. We first confirmed the Y2H interaction between LSD1 

and full-length NF-YC3 (Figure 2.3A, top line). Additionally, we performed a protein 

immunoprecipitation experiment using E. coli-purified GST-NF-YC3 fusion proteins 
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(Figure 2.4). Purified GST-NF-YC3 was incubated with total protein extracts from 

Arabidopsis expressing LSD1-Myc under control of the 35S promoter. Excess protein 

was washed off and proteins bound to GST-NF-YC3 were eluted and separated on an 

SDS-PAGE gel. GST-NF-YC3 pulled down myc-tagged LSD1 protein, whereas a GST 

control did not (Figure 2.4A). Protein blots of input proteins showed that these two bands 

were specific to LSD1-Myc (Figure 2.4B). 

 

 NF-YC3 localization is dependent on GxP-mediated LSD1 interaction. As an 

additional test of whether LSD1 interacts with NF-YC3, we utilized the plant-specific 

GxP motif found in the phage display. This sequence was found in all phage display 

clones that bound LSD1 (Figure 2.1B), leading us to hypothesize that it would be 

necessary for the interaction between LSD1 and NF-YC3. There are 4 sequential GxP 

motifs in a Q-rich region at the C-terminus of NF-YC3. A truncation containing only this 

region retained interaction with LSD1 in Y2H assays (Figure 2.3A). Further, using a 

series of truncation mutations and a point mutation in the second GxP motif (GP2, 

labeled in the Figure 2.2 alignment), we found that this motif is necessary and likely 

sufficient for the interaction with LSD1. We note that this particular GxP motif is in a 

region divergent from human NF-YC.  

 To test the proposed functionality of the GxP interacting domain, we used 

different versions of GFP-tagged NF-YC3 transiently expressed in protoplast cells. NF-

YC3-GFP was observed in both the nucleus and the cytoplasm (Figure 2.3B). A mutant 

of NF-YC3 lacking the second GxP motif was also expressed in protoplasts (p35S:NF-
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YC3∆GP2-GFP, expressing a G182A/P184A mutation). Interestingly, NF-YC3∆GP2-

GFP was only present in the nucleus (Figure 2.3B, right panel), indicating that the GxP 

motif was required for accumulation in the cytosol. As LSD1 is a known cytosolic 

protein and previous studies have shown that it works to sequester other transcription 

factors out of the nucleus (Kaminaka et al., 2006), these results are consistent with the 

suggestion that LSD1 could retain NF-YC3 in the cytosol. 

 If LSD1 interacts with NF-YC3, there must be direct interaction between these 

two proteins in plant cells. To test this hypothesis, we used a bimolecular fluorescence 

complementation (BiFC) assay to check for direct interaction between the two proteins, 

albeit under conditions of transient over-expression. LSD1 fused to N-terminal YFP 

(YFPN-LSD1) and empty vector C-terminal fragments of YFP (YFPC) did not produce 

YFP fluorescence (Figure 2.3C, top). However, strong YFP fluorescence was observed in 

protoplasts expressing both YFPN-LSD1 and YFPC-NF-YC3, indicating that these two 

proteins are interacting (Figure 2.3C, middle). When the GP2 mutant construct YFPC-NF-

YC3∆GP2 was expressed in the same cells as YFPN-LSD1, there was no fluorescent 

signal (Figure 2.3C, bottom), further indicating that the GxP motif is necessary for 

interaction between LSD1 and NF-YC3.  

 To further test the interaction between LSD1 and NF-YC3, we analyzed the 

nuclear accumulation of NF-YC3 in defense-induced wild-type and lsd1 mutant plants. 

Given that NF-YC3 should enter the nucleus in order to affect transcriptional regulation 

after pathogen recognition in our model, and that LSD1 could sequester NF-YC3 in the 

cytoplasm, we hypothesized that i) the amount of nuclear NF-YC3 would increase after 

rcd was triggered, and ii) this increase would be stronger in lsd1, where NF-YC3 could 
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not be as effectively retained in the cytoplasm. Five week old Col-0 (wild-type) and lsd1-

2 plants were sprayed with benzothiadiazole (BTH), a synthetic SA functional analog that 

induces rcd in lsd1 (Lawton et al., 1996), and leaf tissue was collected at regular 

intervals. Protein blots with an NF-YC3-specific antibody (Kumimoto et al., 2010b) 

demonstrated that NF-YC3 was detectable in the nuclear-enriched fraction of both wild-

type and lsd1-2 plants, and that the amount of protein increased after BTH activation 

(Figure 2.3D). However, the lsd1-2 plants showed an overall increased level of nuclear-

localized NF-YC3 compared to Col-0, indicating that LSD1 can function to keep NF-

YC3 in the cytosol. The lack of hyper-accumulation of NF-YC3 in the nucleus of non-

induced (0 time) lsd1-2 plants suggests that there are likely additional factors besides 

LSD1 involved in the cytoplasmic retention of NF-YC3.  

 

 NF-YC3 is a positive regulator of disease resistance. LSD1 interactors can 

regulate pathogen responses (Coll et al., 2010; Kaminaka et al., 2006); therefore, NF-

YC3 may also play a role in disease resistance. To test this hypothesis, we looked at the 

effects of NF-YC3 on disease resistance using the obligate biotrophic oomycete Hpa. We 

used the Hpa isolate Cala2, which is virulent on the Arabidopsis La-er ecotype (Holub et 

al., 1995). On the Ws ecotype, relatively weak resistance to Hpa Cala2 is conferred by 

RPP1A (Botella et al., 1998). We isolated nf-yc3 homozygous mutant plants in the Ws 

background from publicly available stocks (Krysan et al., 1999) and demonstrated that 

they are protein nulls (Figure 2.5A). We inoculated Ws, La-er, and nf-yc3 plants with 5 x 

104 spores/ml of Hpa Cala2. After seven days, the number of sporangiophores per 

cotyledon was counted. Weak resistance phenotypes, like those seen in Ws (RPP1A), are 
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characterized by little or no sporulation. By contrast La-er (rpp1a) plants were highly 

susceptible to pathogen growth, as measured by profuse sporulation (Figure 2.5B). The 

nf-yc3 plants exhibited an intermediate level of Hpa sporulation.  

 Infected cotyledons were also stained with trypan blue to study plant cell death 

and hyphal growth. Strong disease resistance responses exhibited no hyphal growth. 

However, intermediate resistance was characterized by trailing necrosis, where Hpa 

hyphal growth is accompanied by cell death that “trails” behind the growing hyphae 

(Davis and Hammerschmidt, 1993). Ws displayed resistance with a minimal amount of 

hyphal growth and trailing necroses, while La-er exhibited significant free hyphal growth 

(Figure 2.5C). As indicated by the sporangiophore counts, nf-yc3 mutants displayed an 

intermediate level of disease resistance with more extensive trailing necroses than Ws, 

but less total hyphae growth than La-er.  

 To prove that the suppression of RPP1A-mediated resistance was due to the loss 

of NF-YC3, we transformed nf-yc3-1 plants with a construct containing full length 

genomic NF-YC3 driven by its own promoter (pNF-YC3:NF-YC3). A protein blot was 

performed to confirm that NF-YC3 protein accumulation was rescued by the 

transformation (Figure 2.5A). This complementation line was infected with Hpa Cala2, 

and displayed a low level of sporulation, similar to Ws (Figure 2.5B, far right). Together, 

this data indicates that NF-YC3 is necessary for full RPP1A-mediated resistance to Hpa 

Cala2. 

 If NF-YC3 is a positive regulator of disease resistance, then its over-expression 

should lead to increased disease resistance. To test this, we generated a dexamethasone 
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(Dex)-inducible, HA-tagged version of NF-YC3 and transformed it into wild-type Col-0 

plants. When sprayed with 20uM of Dex, pDex:NF-YC3-HA plants expressed 

significantly more total NF-YC3 protein than non-transgenic parental Col-0 (Figure 

2.6A). To assay for an enhancement of disease resistance in these transgenic lines, we 

used Hpa isolate Emco5, which is highly virulent on parental Col-0. For an Emco5 

resistant control we used La-er plants, which exhibit strong RPP8-mediated resistance 

(McDowell et al., 1998). As expected, Col-0 plants exhibited high levels of sporulation 

when inoculated with Hpa Emco5, and La-er plants were resistant to this isolate (Figure 

2.6B). Dex application 24 hours pre-inoculation did not affect the results for either 

control. Sporulation levels on pDex:NF-YC3-HA cotyledons that had not been sprayed 

with Dex were essentially identical to Col-0. However, when Dex:NF-YC3 plants were 

sprayed with Dex, the number of Hpa Emco5 sporangiophores per cotyledon was 

reduced to La-er levels (Figure 2.6B). Additionally, trypan blue staining of these lines 

showed that in Col-0 plants with or without Dex, and pDex:NF-YC3-HA plants without 

Dex, there were high levels of free hyphae (Figure 2.6C). Conversely, Dex-induced 

pDex:NF-YC3-HA cotyledons exhibited no free hyphal growth, and were therefore 

disease resistant. While these plants exhibit some increases in cell death post Dex 

induction, disease resistance occurs prior to the appearance of cell death symptoms. This 

was demonstrated by the presence of numerous Hpa spores arrested at the penetration 

peg stage (prior to production of hyphae or death of surrounding cells; see magnified 

view in Figure 2.6C). Therefore, increased Hpa resistance is due to over-expression of 

NF-YC3. This finding, along with the opposing phenotype expressed by the nf-yc3 
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mutant data, supports our conclusion that NF-YC3 is a positive regulator of disease 

resistance. 

 

 NF-YC3 function requires proper heterotrimeric NF-Y formation. As noted 

in the Introduction, NF-Y-containing transcription factors assemble in a specific manner 

and this formation is required for proper NF-Y-related transcriptional regulation. Specific 

conserved residues in the NF-YC subunits are required for both dimerization and DNA 

binding (Sinha et al., 1996). Dimerization is coordinated by conserved isoleucine (I) and 

leucine (L) residues that are highly conserved between plant and animal NF-YC proteins 

(Figure 2.2, arrows; (Cao et al., 2011; Siefers et al., 2009a)). Mutations in these residues 

disrupt dimerization, subsequent NF-Y formation, and transcriptional regulation in 

mammals (Sinha et al., 1996). A second conserved site in NF-YC is composed of alanine 

(A) and arginine (R) residues. Disruption of these residues prevents mature heterotrimeric 

NF-Y complexes from binding DNA. We predicted that disruptions in these residues in 

NF-YC3 would interfere with NF-Y complex formation, but not the LSD1 interaction, 

therefore eliminating the increased resistance to Hpa Emco5 observed when wild-type 

NF-YC3 is overexpressed.  

 To test this hypothesis, we created transgenic Col-0 expressing Dex-inducible 

NF-YC3 with either the I105D/L108E (predicted to interrupt NF-YB/C dimerization) or 

A74D/R75P (predicted to interrupt DNA binding) mutations (pDex:NF-YC3∆IL-HA and 

pDex:NF-YC3∆AR-HA, respectively). As expected, these proteins still associated with 

LSD1 at or near wild-type levels, as shown via Y2H assays (Figure 2.3A). Although NF-
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YC3∆AR-HA accumulated in the nucleus, we did not measure significant nuclear 

accumulation of NF-YC3∆IL-HA (Figure 2.6A). Next, we challanged pDex:NF-YC3∆IL-

HA and pDex:NF-YC3∆AR-HA plants with the Hpa isolate Emco5, with and without Dex 

induction. Dex-induced accumulation of these mutant proteins did not lead to 

substantially increased resistance to Hpa Emco5 (Figure 2.6D). These data suggest that 

NF-YC3 functions in a heterotrimeric complex and binds DNA to confer disease 

resistance to Hpa. 

 

Discussion 

 Our key finding is that Arabidopsis NF-YC3 functions as a positive regulator of 

Hpa disease resistance, presumably by contributing to the overall up-regulation of disease 

resistance-related genes and/or cell death genes. Additionally, we discovered that LSD1 

potentially participates in NF-YC3 cytosolic retention. As there is no hyper-accumulation 

of NF-YC3 in the nucleus of lsd1 plants, we hypothesize that LSD1 may be working with 

other factors to regulate NF-YC3 nuclear accumulation. These retention factors may 

prevent interactions between NF-YB and NF-YC subunits, and thus their subsequent 

movement into the nucleus to form a functionally active NF-Y heterotrimer, as 

previously described in mammals and yeast (Ceribelli et al., 2008). LSD1 was previously 

shown to antagonize the nuclear shuttling of a defense-related transcription factor, 

AtbZIP10, resulting in increased disease resistance (Kaminaka et al., 2006), and also 

associates with other positive mediators of disease resistance and cell death (Coll et al., 

2010). In this work, we provide additional evidence that LSD1 may function as a 
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transcriptional regulatory scaffold, sequestering defense-related proteins in the cytosol, 

and dampening their functions. 

 There is, however, one main caveat with the current data, specifically with the 

data indicating that LSD1 is functioning as a retention factor of NF-YC3. The key 

problem is that the current BiFC data shows that all the fluorescence is in the nucleus 

when both LSD1 and NF-YC3 are co-expressed (Figure 2.3C). This is in contrast to 

previously published data, which has shown LSD1 to be a cytosolic protein, and is also in 

opposition to the data from Figure 2.3B, which indicates that an intact LSD1 interaction 

motif is necessary for NF-YC3 to accumulate in the cytosol. The nuclear localization 

currently seen in Fiure 2.3C could be due to false nuclear localization of the xFP fusions, 

or could be a localization artifact of BiFC, either of which could be due to the over-

expression of both fusions in the protoplast assay. 

 To address these problems, additional experiments are being performed by our 

collaborator Hiro Kaminaka. First, we will add a panel of LSD1-GFP to be the third row 

in Figure 2.3B to demonstrate LSD1 localization on its own. We will then set up a new 

Figure 2.3C, which will use co-localization of two xFP colors to address the specificity of 

the interaction between LSD1 and NF-YC3. This new figure would be co-over-

expression of LSD1-xFP with, first NF-YC3-xFP, and second with NF-YC3∆GP2-xFP. 

These constructs must express different FPs for LSD1 and the NF-YC3 constructs so that 

they can each be imaged at the same time, and a merged image can then be made for the 

figure. The anticipated result is that the LSD1 / NF-YC3 will co-localize in the cytosol 

(with perhaps some NF-YC3 signal in the nucleus) and that LSD1/ NF-YC3∆GP2 will 
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show that LSD1 is in the cytosol and NF-YC3∆GP2 is in the nucleus, as predicted by the 

current Figure 2.3B. 

 Even with these caveats, our data suggests that NF-YC3 positively regulates plant 

disease resistance. Over-expression of NF-YC3 clearly led to strong resistance to a 

normally highly virulent Hpa strain, although the loss of function phenotypes were 

relatively mild, possibly due to overlapping functionality with other NF-YC family 

member. Indeed, NF-YC4 was also identified as a potential LSD1 interactor via our Y2H 

screen, and this protein has the requisite LSD1-binding GxP sequence (unpublished data). 

Six additional Arabidopsis NF-YCs in Arabidopsis also contain the conserved GxP 

interaction motif, though their association with LSD1 has not yet been demonstrated. 

Functional overlap between these, or other NF-YA and NF-YB subunits, and NF-YC3 

and LSD1 are the target of future work. However, this may be difficult to parse, due to 

the inherit redundancy of the large NF-Y gene families. Therefore, serial deletion or 

mutation of the NF-Y subunits may help to broaden the understanding of the function of 

these genes in plant defense. 

 Our studies also suggest that the specific amino acid residues identified in other 

systems for NF-Y assembly are conserved in Arabidopsis. The step-by-step assembly of 

the mature NF-Y has been extensively studied (Maity et al., 1992; Sinha et al., 1996). 

Here we provide genetic evidence demonstrating that NF-Y transcription factor formation 

is likely to proceed similarly in plants. The conserved IL and AR residues, previously 

shown to be necessary for NF-YB/C interaction and NF-Y DNA binding, respectively 

(Sinha et al., 1996), are required for at least the disease resistance phenotype we measure, 
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suggesting that the Arabidopsis proteins act analogously to their yeast and animal 

counterparts.  

 In the simplest model consistent with our data, LSD1, likely working with other 

immune-related proteins, retains NF-YC3 in the cytoplasm, preventing it from forming a 

functional NF-Y complex capable of driving defense-related gene transcription in the 

nucleus. A pathogen-induced signal, provided here by inoculation with Hpa, causes 

dissociation of NF-YC3 from LSD1. NF-YC3 is then able to bind an NF-YB, enter the 

nucleus, and form the active NF-Y complex which regulates the transcription of pro-

defense genes. Further work to explore both the interactions between proteins regulated 

by LSD1 retention, as well as studies designed to define the relevant NF-YA and NF-YB 

subunits, and to indentify the set of defense genes induced by the NF-YC3-containing 

NF-Y, will allow a better understanding of the role of NF-Y transcriptional regulation in 

the plant defense response.  
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Materials and Methods 

Plant Materials and Growth Conditions 

 We used Arabidopsis thaliana Columbia (Col-0), Landsberg erecta (La-er), and 

Wassilewskija (Ws) ecotypes. Mutant nf-yc3 in the Ws background is a protein null T-

DNA insertion line (-492bp from ATG). nf-yc3 pNF-YC3:NF-YC3 (Ws), Dex:NF-YC3-

HA (Col-0), Dex:NF-YC3∆IL-HA (Col-0), and Dex:NF-YC3∆AR-HA (Col-0) were cloned 

in the pGWB1 Gateway vector, and Arabidopsis transgenics were generated using 

Agrobacterium (GV3101)-mediated floral dip transformation (Clough and Bent, 1998). 

lsd1-2 is in the Col-0 background. Plants were grown under short day conditions (9 hrs 

light, 21°C; 15 hrs dark, 18°C). 

 

Phage Display 

 All phage display techniques used were performed as previously described (Kay 

et al., 1996). GST-LSD1 fusion proteins were purified with glutathione sepharose beads 

as per the manufacturer’s instructions (Amersham Pharmacia Biotech, Piscataway, NJ). 

GST-LSD1 was eluted from the sepharose beads with glutathione prior to binding to the 

wells of high protein binding ELISA plates (Fisher Scientific, Atlanta, GA) and screening 

of the phage library. The phage library consisted of random 12 amino acid insertions into 

the pIII gene of M13 phage and was supplied as a generous gift from Brian Kay 

(University of Wisconsin, Madison). The vector pMYAP was used for expression of the 

phage epitopes fused to alkaline phosphatase as previously described (Yamabhai and 
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Kay, 2001). Epitopes from randomly selected independent phage plaques were 

sequenced, and 15 unique sequences were confirmed.  

 

Yeast Two-Hybrid Assay 

 The fragments of mutated or deleted NF-YC3 cDNA were created by PCR-based 

mutagenesis. All NF-YC3 fragments including full-length, mutated and deleted cDNAs 

were cloned into pENTR-D-TOPO (Invitrogen). After verifying the nucleotide sequence 

of PCR fragments by sequencing, all NF-YC3 fragments were then transferred into pJG4-

5gw (Holt et al., 2005) using LR clonase II (Invitrogen). Yeast two-hybrid assay using 

LexA-based two hybrid system was basically carried out as described previously 

(Kaminaka et al., 2006). Briefly, the transformation of yeast cells EGY48 (MATα ura3 

trp1 his3 3LexAop-leu2) harboring pJK103 [2lexAop-lacZ]) reporter plasmid was carried 

out with the Frozen-EZ Yeast Transformation II Kit (Zymo Research). Transformants 

with both LSD1 in pEG202 (Kaminaka et al., 2006) and NY-FC3 fragments in pJG4-5 

were grown on glucose base selection medium [SD(Glu)/-Ura/-His/-Trp], and then 

independent clones of each transformant were plated on galactose and raffinose base 

selection medium [SD(Gal)/-Ura/-His/-Trp] containing X-gal to perform semi-

quantitative β-galactosidase activity assay on gel. Level of each interaction was also 

evaluated by measurement of β-gal activity using ο-Nitrophenyl-β-D-galactopyranoside 

(ONPG) method according to Yeast Handbook (Clonetech).  
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Subcellular localization analysis using GFP and BiFC analysis in Arabidopsis 

mesophyll protoplasts 

 For the construction of NF-YC3-GFP fusion genes driven by the CaMV 35S 

promoter,  NF-YC3 wild-type and NF-YC3∆GP2 cDNA fragments made as described 

above were transferred into p2GWF7 (Karimi et al., 2002), using LR clonase II 

(Invitrogen). Similarly, for BiFC experiments, YFPN-LSD1 and YFPC-NF-YC3 genes 

driven by the CaMV 35S promoter were made by transferring LSD1 full-length cDNA 

and NF-YC3 wild-type or NF-YC3∆GP2 cDNA fragments into nYFP/pUGW0 and 

cYFP/pUGW0 (Singh et al., 2009), respectively, using the Gateway LR recombination 

reaction. As a negative control, YFPC alone driven by the CaMV 35S promoter was also 

created by PCR-based mutagenesis using YFPC/pUGW2. NLS-tdTomato driven by the 

CaMV 35S promoter was used as a nuclear organelle marker and a control for 

transformation (Arase et al., 2012). Transient expression in Arabidopsis mesophyll 

protoplasts and assay for fluorescence using a confocal laser scanning microscopy was 

carried out as described (Arase et al., 2012).  

 

Immunoblot Analysis.  

 Leaves from 2-wk-old plants were harvested, and total proteins were extracted by 

grinding frozen tissue in a buffer containing 20mM Tris (pH8), 0.33M Sucrose, 1mM 

EDTA (pH8), 5 mM DTT, and plant protein protease inhibitor mixture (Sigma-Aldrich). 

Samples were centrifuged at 2,000 × g for 5 min at 4°C to pellet debris, and a portion of 

the supernatant was set aside (total protein). The remaining supernatant was centrifuged 
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at full speed (~20G) for 30 min at 4°C. The resulting supernatant was transferred to a 

new tube (soluble fraction), and the pellet was resuspended (nuclear-enriched fraction). 

Proteins were separated on 12% SDS/PAGE gels and were transferred to polyvinylidene 

difluoride membrane. Protein blots were performed using standard methods. Anti-NF-

YC3 antibody was used at a 1:3,000 dilution. Signals were detected by enhanced 

chemiluminescence using ECL Plus (Amersham Biosciences). 

 

Hpa infection assays 

 Twelve- to fourteen-day-old seedlings were inoculated with 50,000 spores/ml of 

Hyaloperonospora arabidopsidis isolate Emco5 or Cala2. These plants were covered 

with a lid to increase humidity during inoculation and pathogen growth. Sporangiophores 

counted at 7 dpi as described (Holt et al., 2002). Trypan blue staining for cell death and 

hyphal growth as previously described. 

 

Semi-in vivo Pulldown 

 Total protein was extracted from Arabidopsis expressing a 35S:LSD1-myc 

transgene. GST:NF-YC3 was purified from E.coli using glutathione sepharose beads. 

This gel matrix was incubated with the protein extract, and then the beads were 

precipitated from the solution. Bound proteins were eluted and run on an SDS-PAGE gel.  

 



53 

 

 

Figure 2.1: LSD1, a negative regulator of cell death, interacts with members of the 
NF-Y transcription factor family. A) Phage display: 1. GST-tagged LSD1 is bound to 
wells and a phage library of randomly-generated, 12 amino acid-long epitopes is added to 
the wells; 2. Interacting proteins bind to LSD1 and other phage are washed off; 3. 
Proteins attached to LSD1 are eluted and sequenced. B) A consensus sequence 
(WVWGxP) was found in a majority of sequenced epitopes. 
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Figure 2.2: NF-YC Transcription factor subunits are conserved across eukaryotes. 
A) Alignment of Homo sapiens NF-YC and Arabidopsis NF-YC3 deduced protein 
sequences. Alignment was created using VectorNTI AlignX (Invitrogen). Residues 
shaded in dark grey are identical between species, those in light grey are similar. The NF-
YC3 and mammalian NF-YC histone fold motifs are highly conserved; A74 and R75 are 
required for the complex to bind DNA and I105 and L108 are required for NF-YC to bind 
NF-YA. Arrowheads mark A74, R75, I105, and L108; numbers 1-4 indicate GxP motifs 
(potential LSD1 interacting motifs). 
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Figure 2.3: LSD1 interacts with the NF-Y subunit NF-YC3. A) β-gal activity assay 
based on two-hybrid system in yeast showing specific interaction between LSD1 and NF-
YC3 through GxP motif. Yeast (EGY48:pJK103) cells were co-transformed with BD-
LSD1 bait plasmid and AD-NF-YC3 prey plasmid d with bait plasmid including LexA 
DNA-binding domain (BD)-LSD1 fusion (BD-LSD1) in pEG202 and prey plasmid 
including activation domain (AD)-NF-YC3 fusions (AD-NY-FC3s) in pJG4-5. To 
observe the interaction, semi-quantitative β-gal activity assay was carried out by plating 
transformants on SD(Gal)/-Ura/-His/-Trp medium containing X-gal.  The level of each 
interaction was also evaluated by measurement of β-gal activity using the ONPG method. 
Vector indicates empty vector (negative control experiment). Strong, approximately 
equivalent expression of the NF-YC3 truncation and point mutant proteins in yeast was 
verified by protein blot analysis (data not shown).  B) Subcellular localization of NF-
YC3-GFP and NF-YC3∆GP2-GFP. GFP fusions of NF-YC3 or NF-YC3∆GP2 and NLS-
tdTomato, as a nucleus marker and as a control for transformation, were co-introduced in 
Arabidopsis mesophyll protoplasts. GFP, NLS, and BF (top) represent GFP and 
tdTomato fluorescence and bright field images, respectively. n: nucleus, c: cytosol. Bars 
= 10 µm. C) BiFC assay was used for the detection of in vivo protein-protein interaction 
between LSD1 and NF-YC3. YFPN-LSD1 and YFPC:NY-FC3 or YFPC fusions were 
transiently co-expressed in Arabidopsis mesophyll protoplasts with a nuclear marker 
NLS-tdTomato. BiFC, NLS, and BF (top) represent YFP and tdTomato fluorescence and 
bright field images, respectively. c: cytosol. Bars = 10 µm. D) lsd1 plants have stronger 
NF-YC3 induction than wild-type. 5 week old Col-0 and lsd1-2 plants were sprayed with 
300µM BTH and collected at time points indicated. Protein was extracted and this extract 
was spun to separate the nuclear fraction, which was run on SDS-PAGE gels and 
immunoblotted with anti-NF-YC3 antibody. 
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Figure 2.4: Semi-in vivo pulldown. A) Semi-in vivo pulldown using GST-bound NF-
YC3, and adding plant extract containing 35S-overexpressed LSD1-myc. GST:NF-YC3 
is able to pull down myc-tagged LSD1. B) Protein blot showing specificity of myc-
tagged proteins used in (A). 
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Figure 2.5: NF-YC3 is required for full pathogen resistance. A) Protein extracted 
from plants in (B) was run on an SDS-PAGE gel and immunoblotted with anti-NF-YC3. 
B) Two week old plants were sprayed with Hpa isolate Cala and sporangiophores 
counted 6dpi. NF-YC3 is in Ws background; Ws pNF-YC3:NF-YC3 is the nf-yc3 mutant 
complemented with native-promoter-driven NF-YC3. C) Plants from (B) were stained 
with trypan blue to assay Hpa HR, free hyphae, and sporangiophore growth. 
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Figure 2.6: NF-Y assembly and DNA interactions are required for induced pathogen 
resistance. A) Two week old Col-0, pDex:NF-YC3-HA, pDex:NF-YC3∆IL-HA and 
pDex:NF-YC3∆AR-HA were sprayed with silwet or silwet and 20uM dexamethasone. 24 
hours later, protein was extracted from these plants and centrifuged to separate the 
soluble and nuclear fractions, which were run on SDS-PAGE gels and immunoblotted 
with anti-NF-YC3 antibody. Labels indicate endogenous NF-YC3 protein and HA-
tagged, Dex induced NF-YC protein. Nuclear fraction is 4 times overloaded as compared 
to soluble fraction. B) Col-0, La-er, and pDex:NF-YC3-HA were sprayed with silwet or 
silwet and 20uM dexamethasone, and 24 hours later inoculated with Hpa isolate Emco5. 
Sporangiophores were counted 6dpi. C) Plants from (B) were stained with trypan blue; 
close-up is of arrested growth of Emco5 in dexamethasone-induced pDex:NF-YC3-HA 
plant. D) Two week old Col-0, La-er, pDex:NF-YC3∆IL-HA and pDex:NF-YC3∆AR-HA 
plants were sprayed with silwet or silwet and 20uM dexamethasone, and 24 hours later 
inoculated with Hpa isolate Emco5. Sporangiophores were counted 6dpi. 
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Chapter 3 
 

Genetic requirements for signaling from an autoactive plant NB-LRR intracellular 
innate immune receptor 

 

Preface 

 Prior to the work reported in this chapter we published a paper on the mutant 

phenotypes of the ADR1 family (Bonardi et al., 2011). This preface quickly summarizes 

that paper. 

 Abstract Plants and animals deploy intracellular immune receptors that perceive 

specific pathogen effector proteins and microbial products delivered into the host cell. 

We demonstrate that the ADR1 (Activated Disease Resistance 1) family of Arabidopsis 

NB-LRR receptors regulates accumulation of the defense hormone Salicylic Acid (SA) 

during three different types of immune response: (i) they are required as ‘helper NB-

LRRs’ to transduce signals downstream of specific NB-LRR receptor activation during 

effector-triggered immunity (ETI), (ii) they are required for basal defense against virulent 

pathogens, and (iii) they regulate microbial associated molecular pattern (MAMP)-

dependent SA accumulation induced by infection with a disarmed pathogen. Remarkably, 

these functions do not require an intact P-loop motif for at least one ADR1 family 

member. Our results suggest that some NB-LRR proteins can serve additional functions 
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beyond canonical, P-loop-dependent activation by specific virulence effectors, extending 

analogies between intracellular innate immune receptor function from plants and animals. 

 Conclusions ADR1-L2, a positive regulator of lsd1 rcd, is a part of a small family 

of NB-LRRs. This protein functions downstream of ROI production, and upstream of SA 

accumulation in basal defense and MAMP-triggered SA accumulation. ADR1-L2 also 

functions as a ‘helper’ protein during some, but not all ETI responses driven by effector-

mediated activation of other NB-LRR.proteins. Surprisingly, none of these defense 

functions require an intact P-loop. We speculate that in these contexts, ADR1-L2 may be 

working in association with an additional, P-loop dependent NB-LRR, perhaps as a 

scaffold protein in a signal transduction pathway. 

 My Contributions For this paper, I characterized the adr1 family mutant lines, 

represented in Supplemental Fig 1. I also helped with design and set-up of the ROS burst 

experiments, edited the paper, and contributed to the writing of the Material and Methods 

section. 
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Abstract 

 Plants react to pathogen attack via recognition of and response to pathogen-

specific molecules at the cell surface and inside the cell. Pathogen effectors (virulence 

factors) are monitored by intracellular nucleotide-binding leucine-rich repeat (NB-LRR) 

sensor proteins in plants and mammals. Here, we study the genetic requirements for 

defense responses of an autoactive mutant of ADR1-L2, an Arabidopsis coiled-coil (CC)-

NB-LRR protein. ADR1-L2 functions upstream of salicylic acid (SA) accumulation in 

several defense contexts, and can act as a ‘helper’ to transduce specific microbial 

activation signals from ‘sensor’ NB-LRRs. ADR1-L2 and another of two closely related 

members of this small NB-LRR family are required for propagation of unregulated 

runaway cell death (rcd) in an lsd1 mutant. We demonstrate that, in this context, ADR1-

L2 function is P-loop dependent. We generated an autoactive missense mutation, ADR1-

L2D484V, in a small homology region termed MHD. Expression of ADR1-L2D848V leads to 

dwarfed plants that exhibit increased disease resistance and constitutively high SA levels. 

The morphological phenotype also requires an intact P-loop, suggesting that these ADR1-

L2D484V phenotypes reflect canonical activation of this NB-LRR protein. We used ADR1-

L2D484V to define requirements for signaling. Signaling from ADR1-L2D484V does not 

require NADPH oxidase, and is negatively regulated by EDS1 and AtMC1. 

Transcriptional regulation of ADR1-L2D484V is correlated to its phenotypic outputs; these 

outputs are both SA-dependent and -independent. The genetic requirements for ADR1-

L2D484V activity resemble those that regulate the SA-gradient-dependent signal 

amplification of defense and cell death signaling observed in the absence of LSD1. 

Together, these data allows us to propose a genetic model which provides further insight 
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about the proteins that function in an SA-dependent feedback regulation loop, which 

surprisingly includes ADR1-L2.  

 

Introduction 

 Plants encounter a wide variety of pathogens. To defend against infection, plants 

evolved an active, two-layered immune system (Jones and Dangl, 2006). The first branch 

utilizes transmembrane receptors (PRRs, or pattern recognition receptors) which detect 

microbe-associated molecular patterns (MAMPs) of various pathogens (Segonzac and 

Zipfel, 2011). MAMP detection elicits a rapid, relatively low-amplitude host 

transcriptional response resulting in MAMP-triggered immunity (MTI) which is 

sufficient to halt growth of many microbes (Jones and Dangl, 2006; Boller and Felix, 

2009). Successful pathogens can suppress or delay MTI via delivery of effector 

molecules into host cells. Effectors are virulence proteins (Dodds and Rathjen, 2010). 

Gram-negative bacterial pathogens deliver effectors via injection into the plant cell by the 

Type III Secretion System (TTSS). Plants respond to effectors with the second tier of 

recognition, which is dependent on highly polymorphic intracellular disease resistance 

(R) proteins of the NB-LRR family. NB-LRRs are specifically activated by the presence 

and/or action of effectors to trigger robust defense responses termed Effector-Triggered 

Immunity (ETI), which can include localized hypersensitive cell death (Jones and Dangl, 

2006).  

 NB-LRR proteins are members of the signal transduction ATPases with numerous 

domains (STAND) superfamily, which also includes animal innate immune sensors of the 
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nucleotide-binding domain and leucine-rich repeat-containing (NLR) class (Leipe et al., 

2004; Lukasik and Takken, 2009). STAND proteins are ATPases that function as 

molecular switches: in the “off” position they bind ADP, and in the “on” position they 

bind ATP, activating nucleotide hydrolysis and triggering downstream defense responses 

(Takken et al., 2006). Two essential, conserved homology regions necessary for proper 

plant NB-LRR activity are the P-loop (Walker-A) and the thus far plant-specific MHD 

domain located between the NB domain and the start of the LRRs. Mutations in the P-

loop typically lead to loss of function (Tameling et al., 2002; Hanson and Whiteheart, 

2005). Conversely, mutation of the Asp (D) in the MHD domain often leads to 

autoactivity of the NB-LRR (Bendahmane et al., 2002; Howles et al., 2005; Tameling et 

al., 2006; Gao et al., 2011; Williams et al., 2011; Zhang et al., 2012) resulting in either 

lethality or a severely dwarfed morphology thought to be the consequence of ectopic 

accumulation of SA, a key defense hormone whose synthesis from chorismate is 

controlled by the isochorismate synthase gene (ICS1) (Wildermuth et al., 2001), and 

consequent defense activation (Howles et al., 2005; Gao et al., 2011; Zhang et al., 2012). 

Several NB-LRRs, in both plants and animals, work in pairs: one functions as an effector-

specific ‘sensor’, and the other as a ‘helper’ protein. This may allow or drive the 

formation of higher-order protein complexes necessary for defense activation (Eitas and 

Dangl, 2010; Kofoed and Vance, 2011; Zhao et al., 2011; Bonardi et al., 2012).  

 ADR1-L2 (Activated Disease Resistance 1-Like 2) is part of a small family of 

NB-LRR proteins that includes ADR1 and ADR1-L1 (Chini and Loake, 2005). We 

recently noted that ADR1-L2 functions downstream of reactive oxygen intermediates 

(ROI) production and upstream of SA accumulation in basal defense (defined as the 
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response that limits growth of genetically virulent pathogens), in MAMP-triggered SA 

accumulation, and as a ‘helper’ protein during some, but not all ETI responses driven by 

effector-mediated activation of specific sensor NB-LRR proteins (Bonardi et al., 2011). 

 Surprisingly, none of the functions of ADR1-L2 detailed above required an intact 

P-loop (Bonardi et al., 2011). In addition to these ‘non-canonical’ defense activities, we 

suggested that ADR1-L2 could have P-loop dependent, ‘canonical’ functions that are as 

yet undefined in the absence of the specific effector required for activation. ADR1-L2 

would not be the first NLR protein to have multiple, independent functions. The mouse 

NLR protein NLRC4 has two separate functions: it functions as a ‘helper’ protein in the 

recognition of both the MAMP flagellin and PrgJ, a component of the Salmonella TTSS. 

These separate activities require two different sensor NLRs: NAIP5 is necessary for 

flagellin perception, and NAIP2 is required for PrgJ recognition (Kofoed and Vance, 

2011; Zhao et al., 2011). Importantly, NLRC4 ‘helper’ activity is also P-loop independent 

(Kofoed and Vance, 2011; Zhao et al., 2011). 

 Canonical, effector-driven NB-LRR activation drives an NADPH oxidase-

dependent ROI burst (Torres et al., 2005). The ADR1-L2 helper function noted above is 

downstream or independent of this oxidative burst. Thus, the adr1 triple mutant (adr1 

adr1-L1 adr1-L2) exhibits normal ROI production after successful pathogen recognition 

(Bonardi et al., 2011). However, adr1 triple mutants fail to accumulate the wild-type 

levels of SA required for ETI in this context (Bonardi et al., 2011). Another protein that 

functions downstream of effector-driven oxidative bursts and both regulates and responds 

to upstream of SA accumulation is Lesion Simulating Disease resistance 1 (LSD1) 

(Dietrich et al., 1994; Torres et al., 2005). Loss of LSD1 leads to improper triggering and 
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regulation of runaway cell death, or rcd (Dietrich et al., 1994). The Arabidopsis NADPH 

oxidase AtRbohD, which is required for the effector-driven oxidative burst, is not 

required for lsd1-mediated cell death (Torres et al., 2005). On the other hand, lsd1 rcd is 

both induced by and requires SA (Dietrich et al., 1994; Aviv et al., 2002). lsd1 rcd is also 

regulated by Enhanced Disease Susceptibility 1 (EDS1) and a type I metacaspase, 

AtMC1; eds1 lsd1 and atmc1 lsd1 plants do not exhibit rcd (Rusterucci et al., 2001; Coll 

et al., 2010). EDS1 is a defense response regulator, required for both basal defense and 

Toll/interleukin-1 (TIR)-NB-LRR mediated ETI (Wiermer et al., 2005). EDS1 and SA 

act in a regulatory feedback loop, with SA up-regulating EDS1 and EDS1 functioning as 

a potentiator of SA-mediated signaling (Falk et al., 1999; Venugopal et al., 2009). 

AtMC1 is a positive regulator of ETI-mediated cell death (Coll et al., 2010). 

 To define the genetic requirements of the putative canonical functions of ADR1-

L2, we created an autoactive MHD mutant, ADR1-L2D484V. This allele displayed the 

dwarfed morphology that is the hallmark of such mutants (Howles et al., 2005; Gao et al., 

2011; Zhang et al., 2012). We demonstrate that this autoactivity is P-loop dependent, 

downstream of AtRbohD-mediated ROI production, partially dependent on SA synthesis, 

and negatively regulated by EDS1 and AtMC1. We then present a model for the 

interaction of EDS1, LSD1, and ADR1-L2, showing that these proteins interact in both 

SA-dependent and SA-independent feedback loops. 
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Results 

 Members of the ADR1 family of NB-LRRs are required for runaway cell 

death in lsd1. ADR1-L2 is a CC-NB-LRR that suppresses lsd1 rcd (Bonardi et al., 2011). 

It is part of a small family of NB-LRRs that includes ADR1 and ADR1-L1 (Chini and 

Loake, 2005; Bonardi et al., 2011). To test whether ADR1 and ADR1-L1 also suppress 

the initiation and propagation of lsd1 rcd, we generated adr1 lsd1-2 and adr1-L1 lsd1-2 

double mutants and sprayed them with the SA analog benzothiadiazole (BTH) (Gorlach 

et al., 1996). Col-0 wild-type plants were unaffected by BTH treatment, whereas lsd1-2 

plants sprayed with BTH showed typical rcd (Dietrich et al., 1994). As previously 

reported, the adr1-L2 lsd1-2 double mutants fully suppressed lsd1 rcd (Bonardi et al., 

2011). adr1-L1 also fully suppressed lsd1-2 rcd, while adr1 only had a slight effect 

(Figure 3.1A,B). We quantified this phenotype by monitoring cellular ion leakage via 

changes in media conductivity, an established proxy for membrane damage associated 

with cell death (Dellagi et al., 1998). Col-0 plants did not exhibit significant changes in 

media conductivity, but lsd1-2 plants showed increasing conductivity, with the highest 

reading at 92 hours post-BTH treatment. adr1-L1 lsd1-2 and adr1-L2 lsd1-2 both 

exhibited complete ion leakage suppression, while adr1 lsd1-2 exhibited a marginal 

effect (Figure 3.1C). Thus, ADR1-L1 and ADR1-L2 are each required for lsd1 rcd.  

 We noted that adr1-L1 and adr1-L2 exhibited non-allelic non-complementation 

(NANC), a rare genetic condition where plants which are heterozygous at both loci 

phenotypically resemble either homozygous single mutant. Thus, plants homozygous for 

lsd1-2 and heterozygous for both ADR1-L1 and ADR1-L2 were found to exhibit full 

suppression of lsd1 rcd (Figure 3.1D). We also found that adr1-L2 was fully recessive, 
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whereas adr1-L1 appeared to be semi-dominant (Figure 3.1D). NANC frequently 

indicates that the two genes act closely together or that the two proteins physically 

interact or are a part of the same protein complex (Stearns and Botstein, 1988). Because 

all three ADR1 proteins share significant amino acid identity, we speculated that 

lowering of the overall ADR1 dose might be sufficient to suppress lsd1 rcd. Thus, the 

weak adr1 rcd suppression phenotype might simply reflect low expression of ADR1 

relative to ADR1-L1 and ADR1-L2. Quantitative RT-PCR analysis of gene specific 

mRNA levels confirmed that ADR1 is expressed at lower levels than ADR1-L1 and 

ADR1-L2 under our growth conditions, consistent with this model (Figure 3.1E). 

 

 ADR1-L2 is required at the specific site undergoing cell death. ADR1-L2 is a 

positive regulator of lsd1-mediated cell death. This could be due either to (a) a 

requirement for ADR1-L2 activation in cells destined to die, followed by its continued 

activation in neighboring cells, as the SA-dependent signal for rcd spreads in the absence 

of LSD1 (Jabs et al., 1996; Torres et al., 2005); or (b) ADR1-L2 being required and 

activated in cells initially triggered to die, with this activation contributing to the spread 

of an ADR1-L2-independent cell death signal beyond the primary cell death site. To 

distinguish between these two hypotheses, we generated an estradiol-driven (Est) 

conditional expression system, which induces local target gene expression (Brand et al., 

2006). adr1-L2 lsd1-2 plants expressing an estradiol-induced, HA epitope-tagged ADR1-

L2 transgene were constructed (Methods). Expression of ADR1-L2 was activated by 

local application of estradiol on only part of a leaf, thus creating an artificial chimera 

containing both adr1-L2 lsd1-2 and ADR1-L2 lsd1-2 sectors (Figure 3.2A). ADR1-L2 
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expression was limited to the area of estradiol application as measured via Western blot 

(Figure 3.2B). BTH treatment was then used to induce lsd1-mediated rcd; we observed 

that cell death was limited to the zone of estradiol treatment and did not expand into the 

adr1-L2 lsd1-2 sector (Figure 3.2C). This result supports our first hypothesis: ADR1-L2 

expression is required in cells undergoing lsd1-mediated runaway cell death. 

 

 The function of ADR1-L2 in lsd1 rcd is P-loop dependent. We previously 

noted that ADR1-L2 is required for SA accumulation following effector and MAMP 

recognition, and that this does not require an intact P-loop motif (Bonardi et al., 2011). 

However, these results do not preclude additional, canonical P-loop-dependent functions 

for ADR1-L2. Thus, we tested whether or not the positive regulatory function of ADR1-

L2 in lsd1 rcd is P-loop dependent. We generated adr1-L2 lsd1-2 plants expressing 

ADR1-L2AAA , a mutated allele of ADR1-L2 which carries alanine (A) substitutions in the 

three consecutive conserved residues within the P-loop motif which are essential for 

nucleotide binding (Bonardi et al., 2011). Interestingly, ADR1-L2AAA  is not sufficient to 

trigger lsd1 rcd following BTH treatment (Figure 3.3A), suggesting that the ADR1-L2 

function in lsd1 rcd proceeds in a canonical, P-loop dependent manner.  

 

 An autoactive version of ADR1-L2 displays P-loop dependent, ectopically 

activated immune responses. Mutations of the aspartic acid (D) in the conserved MHD 

domain in plant NB-LRRs typically lead to autoactivity (Bendahmane et al., 2002; 

Howles et al., 2005; Tameling et al., 2006; Gao et al., 2011; Williams et al., 2011). 
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Mechanistically, this is thought to reflect either a preference for ATP binding or a lack of 

ATPase activity, either of which would favor the “on” state, according to current models 

of NB-LRR activation (Takken et al., 2006; Bonardi et al., 2012). Thus, a similar 

mutation in the MHD motif of ADR1-L2 should result in a permanent ‘on’ state, 

resulting in ectopic autoactivity. In the few cases where it has been examined, NB-LRR 

autoactivity via MHD mutation has been shown to require an intact P-loop (Bendahmane 

et al., 2002; Howles et al., 2005; Tameling et al., 2006; Gao et al., 2011; Williams et al., 

2011). Thus, given the P-loop dependent function of ADR1-L2 in lsd1 rcd, we speculated 

that ADR1-L2 activity in additional defense contexts might also require an intact P-loop.  

 We generated adr1-L2 plants expressing ADR1-L2 with a Val (V) for Asp (D) 

substitution at amino acid 484 (Figure 3.4A; hereafter ADR1-L2D484V). As expected, 

ADR1-L2D484V transgenics exhibited a dwarfed, cpr (Constitutive PR1 expression)-like 

phenotype (Bowling et al., 1994) with short hypocotyls, pointed leaves (Figure 3.4B), 

and a very bushy appearance after bolting. In contrast, adr1-L2 plants expressing wild-

type ADR1-L2 appeared morphologically similar to wild-type Col-0 plants (Figure 3.4B). 

Both transgenes were expressed from the native ADR1-L2 promoter, with C-terminal HA 

epitope tags (Figure 3.4C). We note that the majority of ADR1-L2D484V transgenic lines 

accumulated higher protein levels than those expressing the wild-type ADR1-L2 allele. 

However, to show that the cpr-like phenotype is not simply a result of higher protein 

levels in the autoactive mutant, we specifically selected ADR1-L2 and ADR1-L2D484V 

lines expressing similar levels of protein (Figure 3.4C); the differences in morphology 

persist. Additional ADR1-L2D484V lines expressing even less ADR1-L2D484V protein were 

also recovered; these did not exhibit strong cpr-like phenotypes, suggesting that there is a 
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threshold amount of ADR1-L2D484V required for the associated phenotypes (data not 

shown).  

 The ADR1 family members work additively to limit pathogen growth, with adr1 

triple mutant plants exhibiting increased susceptibility to virulent pathogens (Bonardi et 

al., 2011). We therefore tested the ability of autoactive ADR1-L2D484V to confer enhanced 

basal defense against otherwise virulent pathogens. ADR1-L2D484V plants displayed 

increased resistance to both Hyaloperonospora arabidopsidis (Hpa) Emco5 and 

Pseudomonas syringae pv tomato (Pto) DC3000 (Figure 3.4D,E). Trypan blue staining of 

cotyledons after inoculation with Hpa Emco5 revealed predominantly free hyphal growth 

in the wild-type Col-0 control and adr1-L2 which was enhanced in the fully susceptible 

control, eds1 (Figure 3.4F). ADR1-L2D484V plants, on the other hand, exhibited only 

localized hypersensitive cell death (HR). ADR1-L2D484V plants also exhibited a basal 

level of cell death (Figure 3.4F, top row) not seen in the other genotypes. Thus, ADR1-

L2D484V constitutively triggers downstream signaling and increased immune function. 

 We next examined the dependence of the ADR1-L2D484V cpr-like phenotype on the 

P-loop. The triple missense P-loop dead mutation, ADR1-L2AAA (Bonardi et al., 2011), 

and the autoactive ADR1-L2D484V mutation were combined in cis and transformed into 

adr1-L2 plants. ADR1-L2AAA D484V plants did not exhibit the cpr-like phenotype (Figure 

3.5A), despite the fact that they expressed levels of ADR1-L2AAA D484V protein that are 

similar to ADR1-L2D484V levels sufficient to cause the dwarfed phenotype (Figure 3.5B). 

Thus, an intact P-loop domain is required for ADR1-L2D484V autoactivity. We infer that 

ADR1-L2D484V is an activated version of this NB-LRR which can be used to study the 

canonical (P-loop dependent) functions of ADR1-L2. 



78 

 

 ADR1-L2D484V autoactivity is regulated by lsd1 suppressors. ADR1-L2 was 

identified as an lsd1 suppressor ((Jabs et al., 1996), above). LSD1 and ADR1-L2 both 

function downstream of the NADPH oxidase-dependent ROI burst driven by NB-LRR 

sensor activation, but upstream of SA accumulation (Rusterucci et al., 2001; Aviv et al., 

2002; Bonardi et al., 2011). Additionally, ADR1-L2 is locally required for lsd1-mediated 

rcd (above) and its function in this context is P-loop dependent. Thus, we hypothesized 

that additional genetic components known to regulate lsd1 rcd might also be required for 

activity of ADR1-L2D484V. We generated double mutants between ADR1-L2D484V and the 

lsd1 suppressors sid2, eds1, and atmc1 to try to define a genetic network required for the 

ADR1-L2D484V phenotypes. We also generated ADR1-L2D484V atrbohD double mutants to 

define whether an oxidative burst is required for the ADR1-L2D484V phenotypes. We 

examined these double mutants for ADR1-L2D484V protein accumulation, alterations in 

the ADR1-L2D484V cpr-like morphology, enhanced resistance to the virulent Hpa isolate 

Emco5, and steady-state SA levels. 

 AtRbohD is generally required for effector-driven, NB-LRR-dependent 

superoxide production, but not for lsd1 rcd (Torres et al., 2005). In fact, lsd1-2 atrbohD 

plants exhibit increased rcd compared to lsd1-2 single mutants, a phenotype that depends 

on SA accumulation (Aviv et al., 2002). This result suggests that the NADPH oxidase 

can down-regulate the spread of cell death as SA-dependent signals emanate from an 

infection site (Torres et al., 2005). atrbohD ADR1-L2D484V plants morphologically 

resembled the ADR1-L2D484V parent and expressed a similar level of ADR1-L2D484V 

protein (Figure 3.6A,B). Like the ADR1-L2D484V parent, atrbohD ADR1-L2D484V plants 

were significantly more resistant to Hpa Emco5 (Figure 3.6C), and had extremely high 
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steady-state levels of SA (Figure 3.6D). We conclude that ADR1-L2D484V autoactivity, 

unlike effector-driven NB-LRR activation, is downstream, or independent, of AtRbohD. 

 SA is required for lsd1 rcd (Aviv et al., 2002) and mediates basal defense in 

plants (Loake and Grant, 2007). Additionally, SA levels are reduced in adr1-family triple 

mutant plants, corresponding to diminished basal defense and an increase in disease 

susceptibility (Bonardi et al., 2011). Thus, it seemed likely that the increased basal 

defense in ADR1-L2D484V plants could be due to the massive increase in SA observed in 

this line (Figure 3.6D). We tested this hypothesis using the sid2 mutant, which is unable 

to synthesize SA due to a mutation in the biosynthetic isochorismate synthase gene, ICS1 

(Wildermuth et al., 2001). sid2 ADR1-L2D484V plants were smaller than wild-type plants, 

yet larger than ADR1-L2D484V parents, despite accumulating similar amounts of ADR1-

L2D484V protein (Figure 3.6A,B). sid2 ADR1-L2D484V  plants exhibited enhanced basal 

defense to Hpa Emco5, though not to the same extent as ADR1-L2D484V (Figure 3.6C). As 

expected, sid2 ADR1-L2D484V plants did not accumulate SA (Figure 3.6D). These 

observations indicate that the cpr-like phenotypes of ADR1-L2D484V consist of both SA-

dependent and SA-independent components. 

 EDS1 is required for lsd1-mediated rcd (Rusterucci et al., 2001) and is an 

essential regulator of both basal defense against virulent pathogens (Aarts et al., 1998; 

Feys et al., 2005) and TIR-NB-LRR dependent ETI (Feys et al., 2001; Zhang et al., 2003; 

Wirthmueller et al., 2007). Provision of an exogenous SA analog rescues eds1 basal 

defense phenotypes, suggesting that EDS1 acts upstream of ICS1, at least for the 

phenotypes assayed (Parker et al., 1996; Feys et al., 2001). eds1 ADR1-L2D484V plants 

were significantly more dwarfed than ADR1-L2D484V (Figure 3.6A), though these two 
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lines expressed similar levels of ADR1-L2D484V protein (Figure 3.6B). eds1 ADR1-

L2D484V double mutants were completely resistant to Hpa Emco5 (Figure 3.6C), and had 

steady-state SA levels that were higher than the ADR1-L2D484V single mutant (Figure 

3.6D). These surprising results demonstrate that EDS1 is a negative regulator of the SA-

accumulation observed in ADR1-L2D484V. 

 AtMC1 is a metacaspase required for lsd1 rcd; AtMC1 also contributes 

significantly to ETI-dependent HR (Coll et al., 2010). atmc1 ADR1-L2D484V plants were 

extremely dwarfed (Figure 3.6A). However, these plants were not sterile; they produced 

small amounts of seed and had a very long life cycle compared to wild-type Col-0 or 

ADR1-L2D484V plants (data not shown). They also accumulated more ADR1-L2D484V 

protein than the ADR1-L2D484V parent (Figure 3.6B). Cotyledons of the atmc1 ADR1-

L2D484V plants were similar in size to those of ADR1-L2D484V plants, and we were thus 

able to perform Hpa infection assays; we determined that atmc1 ADR1-L2D484V 

cotyledons are completely resistant to Hpa Emco5 (Figure 3.6C). Due to the extremely 

small size of the atmc1 ADR1-L2D484V double mutant, we were unable to perform SA 

analysis on this line. However, we measured SA levels from atmc1 plants that were 

heterozygous for ADR1-L2D484V and resembled the ADR1-L2D484V parent in size. We 

noted significantly less SA in the atmc1 ADR1-L2D484V +/- than in the ADR1-L2D484V 

parent (Figure 3.6D). We noted significantly higher SA in the atmc1 ADR1-L2D484V +/- 

than in the wild-type Col-0 plants (Figure 3.6D). Collectively, these data indicate that 

AtMC1 negatively regulates ADR1-L2D484V protein accumulation, thereby inhibiting 

ADR1-L2D484V accumulation, activity and likely subsequent SA accumulation. 
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 lsd1 ADR1-L2D484V lethality requires EDS1. ADR1-L2 is required for lsd1-

mediated rcd (Bonardi et al., 2011). We therefore examined whether ADR1-L2D484V 

affects the lsd1 phenotpye. We crossed lsd1-2 and ADR1-L2D484V plants, and in the F3 

generation homozygous ADR1-L2D484V plants were selected via Basta resistance markers 

on the transgene (see Methods). ADR1-L2D484V homozygotes were genotyped for lsd1-2; 

none were lsd1-2 homozygous (Supplementary Table 1). Additionally, we carried lsd1-2 

homozygous, ADR1-L2D484V heterozygous plants forward an additional generation, and 

again used the Basta resistance marker to find homozygous ADR1-L2D484V plants. None 

were recovered. Next, we attempted to transform lsd1-2 mutant plants with the same 

ADR1-L2D484V construct used in the adr1-L2 transformation. No lines were recovered that 

expressed detectable levels of ADR1-L2D484V protein, and no plants that were recovered 

displayed the dwarfed phenotype (data not shown). We conclude that lsd1-2 ADR1-

L2D484V is lethal, probably due to an overwhelming amount of constitutively active SA 

accumulation, and consequent cell death signaling.  

 We therefore looked for genetic determinants required for lsd1 ADR1-L2D484V 

lethality. As stated above, eds1 and atmc1 are both suppressors of lsd1 rcd. To determine 

if these two genes were necessary for lsd1-2 ADR1-L2D484V lethality, we crossed atmc1 

lsd1-2 or eds1 lsd1-2 plants to ADR1-L2D484V. atmc1 lsd1-2 ADR1-L2D484V plants could 

not be recovered (data not shown), indicating that AtMC1 is not required for lsd1-2 

ADR1-L2D484V lethality. However, we did recover eds1 lsd1-2 ADR1-L2D484V plants. 

These plants surprisingly exhibited wild-type morphology, effectively resembling eds1 

lsd1 (Rusterucci et al., 2001) (Figure 3.7A). The suppression of the ADR1-L2D484V cpr-

like phenotype is likely due to a much lower level of steady state ADR1-L2D484V 
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accumulation in the eds1 lsd1-2 ADR1-L2D484V plants compared to parental plants (Figure 

3.7B). Despite examining many eds1 lsd1-2 ADR1-L2D484V plants from 4 independent 

progenies, no plant with ADR1-L2D484V parental expression levels was recovered. 

Additionally, eds1 lsd1-2 ADR1-L2D484V plants did not accumulate the high levels of SA 

observed in ADR1-L2D484V (Figure 3.7C). 

 In light of the surprising result that eds1 lsd1-2 ADR1-L2D484V plants are 

essentially wild-type, we re-confirmed the genotypes and phenotypes of eds1 ADR1-

L2D484V and eds1 lsd1-2 ADR1-L2D484V. We used a line that was homozygous for eds1 

and ADR1-L2D484V but heterozygous for LSD1. In the next generation, both dwarfed and 

wild-type size plants were identified (Figure 3.8A). These plants were genotyped for 

LSD1, and all dwarfed plants were found to be LSD1 homozygotes (Figure 3.8B, 20 of 70 

plants were LSD1 homozygotes). Wild-type size plants were either LSD1 heterozygotes 

(34 of 70 plants) or lsd1 mutants (16 of 70 plants), suggesting that the dominant loss of 

function mutation in this context is the result of LSD1 haploinsufficiency. We therefore 

conclude that the difference in the growth phenotype between eds1 lsd1-2 ADR1-L2D484V 

(wild-type) and both eds1 ADR1-L2D484V (nearly lethal) and lsd1 ADR1-L2D484V -(lethal) 

is genuine, and that in the autoactive ADR1-L2D484V mutant, the combined absence of 

EDS1 and the loss of, or reduction in, LSD1 leads to down-regulation of ADR1-L2D484V 

protein accumulation and restoration of wild-type morphology. 

 We addressed whether the lowered accumulation of ADR1-L2D484V protein in 

eds1 lsd1-2 ADR1-L2D484V was due to transcriptional regulation. We performed 

quantitative RT-PCR, and discovered that the ADR1-L2D484V transcript levels in lsd1 eds1 

ADR1-L2D484V plants were slightly lower than in ADR1-L2D484V (Figure 3.7D), generally 
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consistent with the diminution of ADR1-L2D484V protein in eds1 lsd1-2 ADR1-L2D484V 

(Figure 3.7B). We also noted that although the ADR1-L2D484V protein level in eds1 is 

indistinguishable from the parental ADR1-L2D484V by western blot (Figure 3.7B), the 

ADR1-L2D484V transcript accumulated to higher levels (Figure 3.7D). This apparently 

contradictory result suggests that ADR1-L2D484V protein stability requires EDS1, or an 

EDS1-dependent process. LSD1 and EDS1 are known to work together in an SA 

regulatory feedback loop (Rusterucci et al., 2001). Given that lsd1 eds1 ADR1-L2D484V 

plants are morphologically normal, express lower levels of SA than ADR1-L2D484V, and 

accumulate lower levels of both ADR1-L2 transcript and protein than ADR1-L2D484V 

(Figure 3.7), and that ADR1-L2 accumulation is up-regulated by BTH application 

(Figure 3.4C), we speculate that this loop also regulates ADR1-L2 expression. However, 

we also observed that sid2 had no effect on either ADR1-L2D484V mRNA or protein levels 

(Figures 3.6 and 3.7), suggesting that there are also SA-independent regulators of ADR1-

L2. We also noted that ADR1-L2D484V transcript accumulated to significantly higher 

levels than the endogenous ADR1-L2 transcript in wild-type Col-0 plants, indicating that 

plants expressing the activated ADR1-L2 allele constitutively up-regulate ADR1-L2 

transcription. 

 

 RAR1 is dispensable for accumulation of ADR1-L2. The autoactive 

phenotypes of ADR1-L2D484V plants require ADR1-L2D484V protein accumulation above a 

threshold. This indicates that the expression level of wild-type ADR1-L2 may also be 

under exquisite control. The co-chaperone RAR1, while not necessary for the function of 

all NB-LRRs, is required for the steady state accumulation of all NB-LRRs tested to date 
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(Tornero et al., 2002; Belkhadir et al., 2004; Bieri et al., 2004; Holt et al., 2005). We thus 

crossed adr1-L2 pADR1-L2:ADR1-L2-HA to rar1-21 (Tornero et al., 2002). Plants 

genotyped as homozygous rar1-21 and homozygous RAR1 exhibited similar levels of 

ADR1-L2-HA protein (Figure 3.9A), indicating that RAR1 is not required for ADR1-L2 

accumulation. The rar1 genotype was confirmed by Western blot for RAR1 protein 

(Figure 3.9B). ADR1-L2 expression can be up-regulated with BTH (Bonardi et al., 

2011). We therefore also tested whether RAR1 is required for the high levels of ADR1-

L2 accumulating after BTH treatment. BTH induced ADR1-L2 protein in rar-21 ADR1-

L2-HA plants accumulated to levels at least as high as those in RAR1 ADR1-L2-HA plants 

(Figure 3.9A). Therefore, RAR1 is dispensable for both steady-state ADR1-L2 

accumulation, in contrast to other assayed NB-LRR proteins (Tornero et al., 2002; 

Belkhadir et al., 2004; Bieri et al., 2004; Holt et al., 2005), and for its BTH-induced up-

regulation. 

 

Discussion 

 We previously demonstrated that the plant NB-LRR immune receptor ADR1-L2 

can have a non-canonical ‘helper’ role in plant defense (Bonardi et al., 2011). Here, we 

sought first to define canonical, P-loop dependent function(s) for ADR1-L2, and then to 

understand the genetic requirements for these functions. We demonstrated that wild-type 

ADR1-L2 is required locally at the site of BTH-driven cell death activation in the lsd1 

cell death control mutant; this activity requires an intact P-loop. In this context, ADR1-L2 

genetically interacts with ADR1-L1 to control runaway cell death, as shown by NANC, 

further suggesting that members of the ADR1 family might function together in cell 
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death signaling. Interestingly, ADR1-L2 does not require RAR1 for either its steady state 

accumulation, nor for its induced accumulation following BTH treatment. This is the first 

report of either steady state or inducible NB-LRR accumulation that is not RAR1-

dependent. This result may differentiate ‘helper’ NB-LRRs from ‘sensor’ NB-LRRs, in 

that levels of the former might be dictated by the signaling partners with which they 

function, while the latter, acting as effector-sensors, are threshold-regulated by the co-

chaperone complex (Shirasu, 2009). 

 Given the canonical P-loop-dependent function of ADR1-L2 as a positive 

regulator of lsd1 cell death, we inferred that ADR1-L2, like other NB-LRRs studied to 

date, retains the ability to undergo a nucleotide-dependent conformational switch to 

regulate its activation. Thus, we sought a context in which we could analyze canonical 

ADR1-L2 P-loop dependent functions, despite the absence of an effector to trigger it. We 

created an autoactive allele, ADR1-L2D484V. ADR1-L2D484V plants exhibit the dwarfed 

morphology seen in other autoactive NB-LRR mutants. We showed that this autoactivity 

requires an intact P-loop. We then used this allele as a proxy for canonical activation of 

ADR1-L2 in a series of epistasis experiments.  

 Canonical, P-loop dependent, ‘sensor’ NB-LRR functions typically drive both the 

AtrbohD-dependent NADPH-dependent oxidative burst following effector perception 

and SID2-dependent SA accumulation (Torres et al., 2005). By contrast, ADR1-L2D484V 

autoactivity is downstream, or independent, of AtrbohD, yet still drives SID2-dependent 

SA accumulation. This is consistent with the previously defined, P-loop independent 

‘helper’ activity of ADR1-L2 (Bonardi et al., 2011). Resting state NB-LRRs are localized 

to diverse sub-cellular compartments, and dynamic re-localization may accompany 
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effector-driven activation of some (Bonardi et al., 2012). We note that ADR1-L2 is 

soluble, and we have no evidence of activation-dependent re-localization (data not 

shown). Thus, our data support a scenario in which the P-loop-independent ADR1-L2 

‘helper’ functions (Bonardi et al., 2011), and the P-loop-dependent functions we define 

here can be differentiated from the typical effector-driven activation of NB-LRR 

‘sensors’ described to date (see also below).  

 Plants expressing ADR1-L2D484V exhibit increased disease resistance and very 

high steady-state levels of SA. sid2 ADR1-L2D484V plants expressed, as expected, very low 

levels of SA, but these plants did not completely revert to wild-type morphology, and 

they maintained an increased level of enhanced disease resistance. Thus, there must be 

SA-independent regulation of activated ADR1-L2. Redundant functions of EDS1 and SA 

in plant defense mediated by ‘sensor’ NB-LRR functions have been reported (Venugopal 

et al., 2009). In that work, sid2 or eds1 mutants were insufficient to disrupt CC-NB-LRR-

mediated disease resistance, while combined loss of both gene products led to loss of 

resistance (Venugopal et al., 2009). Our results support this model, since the constitutive 

activation of ADR1-L2D484V results in both SA-dependent and SA-independent 

phenotypes. Given this data, as well as the fact that eds1 lsd1 ADR1-L2D484V phenocopies 

sid2 ADR1-L2D484V with respect to SA levels, but not the morphological phenotype, we 

conclude that the SA-independent pathway we describe here may require EDS1. 

  Our most surprising observation is the phenotypic rescue of both the lethal lsd1 

ADR1-L2D484V phenotype and the nearly lethal eds1 ADR1-L2D484V phenotype in eds1 

lsd1 ADR1-L2D484V plants. It is important to recall that loss of either adr1-l2 or eds1 

function suppresses lsd1 rcd (Rusterucci et al., 2001; Bonardi et al., 2011). Recall also 
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that the P-loop independent function of ADR1-L2 as a ‘helper’ is downstream of 

AtRbohD, but upstream of SA accumulation (Bonardi et al., 2011). This is in agreement 

with the autoactive ADR1-L2D484V phenotype, which bypasses AtRbohD but still drives 

enhanced SA levels, as expected.  

 We present a model consistent with our new findings and previous genetic 

analyses (Rusterucci et al., 2001; Aviv et al., 2002; Torres et al., 2005; Venugopal et al., 

2009; Bonardi et al., 2011) (Figure 3.10). P-loop-dependent activation of ADR1-L2 

results in ICS1/SID2-mediated SA accumulation via two separate pathways. We 

speculate that in the first pathway ADR1-L2D484V constitutively signals to EDS1, which 

in turn positively regulates ICS1/SID2, increasing SA levels. ADR1-L2D484V also triggers 

additional SA production in a parallel pathway that is both antagonized by EDS1 and is 

under the control of LSD1.  In support of our model, SA regulates EDS1 transcription 

(Falk et al., 1999), which in turn regulates ICS1/SID2 (Bartsch et al., 2006). Once 

activated, ADR1-L2 causes cell death, which drives more AtRbohD-dependent ROI (Jabs 

et al., 1996) and SA accumulation in surrounding cells (Enyedi et al., 1992; Jabs et al., 

1996). In both pathways, SA is part of a feedback loop that further potentiates the P-loop 

dependent activity of ADR1-L2, as indicated by the fact that ADR1-L2 is BTH inducible. 

Thus, ADR1-L2 is also both upstream and downstream of SA accumulation. 

 In an otherwise wild-type plant expressing activated ADR1-L2, the antagonism 

between EDS1 and LSD1 maintains SA production below toxic levels. In an lsd1 plant, 

the level of SA surpasses this level due to the fact that LSD1 is not there to down-

regulate ADR1-L2-driven SA production. This increased SA in turn drives ADR1-L2 

expression, and the cycle repeats, leading to the lethality seen in lsd1 ADR1-L2D484V. eds1 
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and sid2 normally suppress lsd1 because the feed forward regulation of the SA 

accumulation cycle is blocked. Thus, the surprising eds1 lsd1 ADR1-L2D484V phenotype is 

consistent with the low level of SA in this line being insufficient to up-regulate ADR1-L2 

expression: even though there is chronic signaling feeding the cycle, the cycle is 

interrupted. How LSD1 and EDS1 negatively regulate each other has yet to be 

determined, although our data suggest that LSD1 might regulate EDS1 function through 

transcriptional control, as EDS1 transcription levels are increased in an lsd1 mutant 

(Figure 3.11). Together, our data support and refine the currently proposed roles of EDS1 

and LSD1 as regulators of an SA feedback loop (Rusterucci et al., 2001; Aviv et al., 

2002). In an eds1 ADR1-L2D484V plant, the ADR1-L2D484V phenotype is enhanced because 

of slightly higher SA levels due to the lack of EDS1 inhibitory function on the LSD1-

regulated pathway. Our data also suggest that AtMC1 functions as a negative regulator of 

ADR1-L2 accumulation and activity. Unfortunately, due to the extremely dwarfed 

morphology of the atmc1 ADR1-L2D484V plants, we were unable to carry out the 

phenotypic assays performed on the other lines, and therefore are unable to place AtMC1 

in our model. 

 Our model supports a scenario in which in wild-type, P-loop dependent NB-LRR 

activation leads to local increased levels of SA via an AtRbohD-dependent ROI burst and 

SID2-dependent SA accumulation. The spread of this SA accumulation is spatially down-

regulated through a combined action of EDS1 and LSD1 at increasing distance from the 

infection site. As stated above, our model also implies that SA functions both up- and 

down-stream of ADR1-L2. This may seem difficult to reconcile with our previous 

finding that ADR1-L2 is required for SA accumulation and cell death (Bonardi et al., 
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2011) following ‘sensor’ activation, but we point out that the phenotypes uncovered in 

our initial findings are P-loop independent, and thus potentially mechanistically different 

than the P-loop dependent ADR1-L2 phenotypes described here.  

 Overall, we present a general approach to characterize canonical, P-loop 

dependent functions of NB-LRR proteins in the absence of a specific effector. We 

applied this to a recently characterized ‘helper’ NB-LRR protein, ADR1-L2. We 

identified genetic components that regulate its P-loop-dependent, canonical functions, 

and found that they, in turn, are regulated by suppressors of the lsd1 rcd phenotype. Our 

work suggests that the genetic requirements for ‘helper’ NB-LRR function may differ 

from the effector-driven activation of canonical ‘sensor’ NB-LRRs. Given that ADR1-

L2, unlike other NB-LRRs, is required for lsd1 rcd, we note that our results may be 

mainly relevant to the dissection of the functions of ADR1-L2 and its paralogues, rather 

than being broadly applicable to understanding of ‘sensor’ NB-LRRs. Nevertheless, in 

agreement with previous reports on ‘sensor’ NB-LRR function (Venugopal et al., 2009), 

we conclude that the P-loop-dependent autoactivity of ADR1-L2 relies on signaling 

pathways that differ in their requirement for SA accumulation, but which are both 

regulated by EDS1. Thus, though the requirements for ‘sensor’ and ‘helper’ NB-LRR 

functions may be separable, they could still share some overlapping features. 
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Materials and Methods 

Plant lines and pathogen strains.  

 All Arabidopsis lines are in the Columbia (Col-0) ecotype. adr1-1 (Bonardi et al., 

2011), adr1-L1-1 (Bonardi et al., 2011), adr1-L2-4 (Bonardi et al., 2011), eds1-2 (Parker 

et al., 1996), sid2-1, atrbohD (Torres et al., 2005), lsd1-2 (Dietrich et al., 1994), atmc1 

(Coll et al., 2010), and rar1-21 (Tornero et al., 2002) are described elsewhere; primers 

used to genotype these lines are in Supplemental Table 2. For generation of adr1-L2 

plants expressing ADR1-L2-HA, ADR1-L2D484V-HA, and ADR1-L2D484V ADR1-L2AAA 

lines, the C-terminal HA-tagged coding sequence of wild-type ADR1-L2 or the mutated 

alleles were fused to its native promoter (500 bp) and cloned in the pBAR (Basta 

resistant) Gateway vector (Nakagawa et al., 2007). For generation of adr1-L2 lsd1-2 

plants expressing an estradiol inducible ADR1-L2-HA, the coding sequence of ADR1-L2 

was cloned into a modified pMDC7 (hygromicin resistant) Gateway vector carrying a C-

terminal HA tag. Arabidopsis transgenics were generated using Agrobacterium 

(GV3101)-mediated floral dip transformation (Clough and Bent, 1998). Basta selection of 

transgenic plants was performed by spraying 10-day-old seedlings. Plants were grown 

under short day conditions (9 hrs light, 21°C; 15 hrs dark, 18°C). 

 

Immunoblot Analysis. 

 Leaves from 4-week-old plants were harvested and total proteins were extracted 

by grinding frozen tissue in a buffer containing 20 mM Tris-HCl (pH 7.0), 150 mM 

NaCl, 1mM EDTA (pH 8.0), 1% Triton X-100, 0.1% SDS, 10mM DTT, and plant 
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protein protease inhibitor cocktail (Sigma-Aldrich). Samples were centrifuged at 14,000 

rpm for 15 min at 4°C to pellet debris. Proteins were separated on 7.5% (ADR1-HA) or 

12% (RAR1) SDS-PAGE gels and were transferred to polyvinylidene difluoride 

membrane. Western blots were performed using standard methods. Anti-HA (Santa Cruz 

Biotechnology) antibody was used at a 1:3,000 dilution; anti-RAR1 (custom anti-RAR1 

polyclonal antibody was made against the full length RAR1 with C-terminus GST tag by 

Cocalico Biologicals, Inc.) was used at a 1:2,000 dilution. Signals were detected by 

enhanced chemiluminescence using ECL Plus (Amersham Biosciences). For BTH 

induction experiments (300 µM), plants were collected 24 hpi. 

 

SA measurement. 

 SA and SAG measurements were performed as described (Defraia et al., 2008). 

Briefly, 100 mg of leaves were collected from 4-week-old plants and frozen in liquid 

nitrogen. Samples were ground and tissue was homogenized in 200 µl 0.1M acetate 

buffer pH 5.6. Samples were centrifuged for 15 min at 16,000 g at 4°C. 100 µl of 

supernatant was transferred to a new tube for free SA measurement, and 10 µl was 

incubated with 1 µl 0.5 U/µl β-glucosidase for 90 min at 37°C for total SA measurement. 

After incubation, plant extracts were diluted 5-fold with 44 µl acetate buffer for free SA 

measurement. 60 µl of LB, 5 µl of plant extract (treated or not with β-glucosidase), and 

50 µl of Acinetobacter sp. ADPWH-lux (OD = 0.4) were added to each well of a black 

96-well plate (BD Falcon). The plate was incubated at 37°C for 60 min and luminescence 

was read with Spectra Max L (Molecular Devices) microplate reader. For the standard 
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curve, 1 µl of a known amount of SA (Sigma; from 0 to 1000 µg/ml) was diluted 10-fold 

in sid2-1 plant extract, and 5 µl of each standard (undiluted for free SA measurement, or 

5-fold diluted for total SA) was added to the wells of the plate containing 60 µl of LB and 

50 µl of Acinetobacter. SA standards were read in parallel with the experimental samples. 

For BTH induction experiments (300 µM), plants were collected 24 hpi. 

 

Pathogen strains and growth quantification.  

 Ten-day-old seedlings were spray-inoculated with 50,000 spores/ml of 

Hyaloperonospora arabidopsidis isolate Emco5 or 20,000 spores/ml of isolate Noco2. 

Pots were covered with a lid to increase humidity during inoculation and pathogen 

growth. Sporangiophores were counted at 4 dpi as described (Holt et al., 2002). Pto 

DC3000(EV) was resuspended in 10 mM MgCl2 to a final concentration of 2.5 x 105 

cfu/ml (OD600=0.0005). Twenty-day-old seedlings were dipped in the bacterial solution 

and growth was assessed as described (Tornero and Dangl, 2001).  

 

Cell death Assays.  

 4-week-old plants were sprayed with 300 µM BTH, or 10-day-old plants were 

inoculated with Hpa Emco5 as described above. Leaves were harvested and stained with 

lactophenol Trypan Blue (TB) to visualize dead cells as described (Koch and Slusarenko, 

1990). For the conductivity measurements, 4-week-old plants were sprayed with 300 µM 

BTH.  Plants were harvested and 4 leaf discs (7 mm) were cored and then floated in water 
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for 30min. These leaf discs were transferred to tubes containing 6 ml distilled water. 

Conductivity of the solution (µSiemens/cm) was determined with an Orion Conductivity 

Meter at the indicated time points (Epple et al., 2003).  

 

Creation of an artificial chimera.  

 The central portion of the right halves of leaves from 4-week-old transgenic adr1-

L2 lsd1-2 plants expressing an estradiol inducible allele of ADR1-L2 were hand-

infiltrated with Est (20 µM) using a needleless syringe. 300 µM BTH was sprayed on the 

whole plant 24h post-Est application. 20 µM Est was then hand-infiltrated on the same 

portion of the leaves 2 dpi to ensure expression of ADR1-L2. Leaves were collected 5 dpi 

from the first Est infiltration.  

 

Quantitative RT-PCR.  

 Leaves from 4-week-old plants were collected, frozen into liquid nitrogen and 

ground into powder with a mortar and pestle. RNA was extracted using TRIzol 

(Invitrogen), DNased (Ambion Turbo DNase), and cleaned up with Qiagen RNeasy Mini 

kit.  Reverse transcription was performed (Ambion RETROscript) using 1 µg/µl total 

RNA, and cDNA was analyzed with SYBR green (Applied Biosystem) using an Applied 

Biosystems ViiA7. Primers used are listed in Table 3.2. 
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Selection of segregating plants.  

 Pots of sibling plants fixed for eds1 and segregating lsd1-2 (LSD1 heterzygotes) 

were Basta sprayed to check for segregation of ADR1-L2D484V. Those found to be eds1 

ADR1-L2D484V were transplanted individually into pots, monitored for size, and genotyped 

for the T-DNA insertion of the lsd1-2 mutation. 

  



95 

 

 

 

 



96 

 

Figure 3.1. A family of CC-NB-LRR proteins is required for lsd1 runaway cell 
death. (A) Four-week-old plants were sprayed with BTH or water. Pictures of plants 
were taken 5 days post-inoculation (dpi). (B) Leaves from plants in (A) were stained with 
trypan blue to visualize cell death. Leaves on the left are untreated controls, leaves on the 
right are sprayed with BTH. (C) Ion leakage measurements from (A), 5 days post-BTH 
treatment. Values are means ± 2 × SE (n = 5). (D) Ion leakage measurements for NANC. 
adr1-L1 lsd1-2 x lsd1-2, adr1-L2 lsd1-2 x lsd1-2, adr1-L1 lsd1-2 x adr1-L2 lsd1-2 
represent F1 plants of the indicated crosses, and are thus lsd1 homozygous and 
heterozygous for the indicated adr mutations. (E) Quantitative real time PCR for the 
transcript amounts of the three members of the ADR family in wild-type Col-0 plants, 
normalized to UBQ5. 
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Figure 3.2. ADR1-L2 is required at the site undergoing cell death. (A) Schematic of 
the chimera. adr1-L2 lsd1-2 expressing an estradiol inducible C-terminal HA-tagged 
ADR1-L2 were infiltrated in the indicated area with 20 µM estradiol, making that portion 
of the leaf ADR1-L2 lsd1-2. (B) Western blot to confirm expression of ADR1-L2 was 
limited to the estradiol-induced area. Estradiol + and – leaf areas were cored and protein 
was extracted from these cores. Proteins were run on SDS-Page gels and immunoblotted 
with anti-HA antibody; C, samples from un-infiltrated leaves; +,estradiol-infiltrated plant 
tissue; -, un-infiltrated tissue from the same leaf. In all samples, the entire leaf was treated 
with 300 µM BTH. (C) Trypan blue staining to show cell death in lsd1 control and tissue 
chimera plants. Leaves from four-week-old plants were treated as indicated in (A). Plants 
were sprayed with BTH 16 hours after estradiol treatment, and leaves were stained with 
trypan blue 5 days after BTH treatment. 
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Figure 3.3. ADR1-L2AAA is not sufficient to trigger lsd1 rcd following BTH 
treatment. (A) Four-week-old plants were sprayed with BTH or water. Pictures of plants 
were taken 5 dpi. (B) Proteins from plants in (A) were extracted, run on SDS=Page gel, 
and probed with anti-HA antibody. Ponceau-stained blot shows relative loading. 
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Figure 3.4. ADR1-L2D484V ectopically activates basal defense. (A) Schematic 
representation of ADR1-L2 showing the P-loop and MHD mutations used in this study. 
(B) Morphology of five-week-old adr1-L2, and adr1-L2 complemented with ADR1-L2 or 
ADR1-L2D484V, showing relative size. White bar is 2 cm.  (C) Western blot of HA-tagged 
proteins from plants in (B) + and - BTH. Proteins were extracted from plants and run on 
SDS-Page gel and probed with anti-HA antibody. Ponceau-stained blot shows relative 
loading. (D) Ten-day-old seedlings were inoculated with 5 x 104 spores/mL Hpa Emco5 
via spray inoculation. Sporangiophores per cotyledon were counted 4 dpi, with an 
average of 80 cotyledons per genotype counted. Sporangiophore counts were classified 
into: no sporulation (0 sporangiophores/cotyledon), light sporulation (1-5), medium 
sporulation (6-10), heavy sporulation (11-15), or very heavy sporulation (>15). Means of 
sporangiophore per cotyledon are listed below the graph. (E) Twenty-day-old seedlings 
were dip-inoculated with Pto DC3000(EV). Bacterial growth was assayed at 0 and 3 dpi. 
Values are mean cfu/mg ± 2 x SE, n=4. (F) Trypan blue stained leaves from (D). Leaves 
were collected and stained 4 dpi. 
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Figure 3.5. An intact P-loop catalytic domain is required for the ADR1-L2D484V 
morphological phenotype. (A) Pictures of 5-week-old Col-0, ADR1-L2D484V, and ADR1-
L2AAA D484V plants show relative morphology. White bar is 2 cm. (B) Western blot of Col-
0 and HA-tagged ADR1-L2D484V and ADR1-L2AAA D484V proteins from plants in (A). 
Relative loading indicated by Ponceau stained blot.  
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Figure 3.6. lsd1 suppressors are regulators of ADR1-L2D484V autoactivity. (A) 
Pictures of five-week-old Col-0, ADR1-L2D484V, atrbohD ADR1-L2D484V, sid2-1 ADR1-
L2D484V, eds1-2 ADR1-L2D484V, or atmc1-1 ADR1-L2D484V plants, showing morphological 
differences between the genotypes. White bar is 2 cm. (B) Western blots of HA-tagged 
ADR1-L2D484V proteins from plants in (A). Ponceau staining shows relative loading. (C) 
Ten-day-old seedlings from plant lines as in (A) were inoculated with 5 x 104 spores/mL 
Hpa Emco5. At 4 dpi, sporangiophores were counted and classified as in Fig. 4. Means 
per cotyledon are listed below the graph. (D) Steady-state total SA levels were measured 
for leaves from plants as in (A). Values are average g of total SA from 4 replicates, ± 2 
x SE. 
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Self cross of ADR1-L2D484V lsd1 +/- 

Genotype Actual Expected 

LSD1/LSD1 50 31 

LSD1/lsd1 74 62 

lsd1/lsd1 0 31 

Total 124 124 

 

Table 3.1. ADR1-L2D484V is lethal in an lsd1-2 background. Table of actual and 
expected genotypes of F3 progeny from a cross between lsd1-2 and ADR1-L2D484V shows 
that no lsd1-2 homozygous plants were recovered from plants that were homozygous for 
ADR1-L2D484V.  ADR1-L2D484V was also transformed into lsd1-2, but no plants with a 
detectable amount of ADR1-L2D484V protein were recovered. 
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Figure 3.7. eds1 lsd1 ADR1-L2D484V plants lose ectopic activation phenotypes. (A) 
Pictures of five-week-old Col-0, ADR1-L2D484V, and eds1-2 lsd1-2 ADR1-L2D484V plants 
showing reversion of eds1-2 lsd1-2 ADR1-L2D484V to wild-type morphology. (B) Western 
blot of HA-tagged ADR1-L2D484V protein from plants in (A). Ponceau stain shows 
relative loading. (C) Total SA amounts (mean ± 2 x SE) were measured from plants of 
the indicated genotypes. Values are average µg of total SA from 4 replicates. Error bar 
represents ± 2 x SE. Controls here are from same experiment as data shown in Fig. 6C. 
(D) Quantitative real time PCR for the transcript amounts of ADR1-L2 in Col-0, adr1-L2 
ADR1-L2D484V, eds1 adr1-L2 ADR1-L2D484V, eds1 lsd1 adr1-L2 ADR1-L2D484V, and sid2 
ADR1-L2D484V. 
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Figure 3.8. eds1 D484V plants segregating LSD1 show both wild-type and extreme 
cpr phenotypes. (A) Pictures of plants homozygous for eds1 and ADR1-L2D484V and 
segregating lsd1. From the left: homozygote lsd1, heterozygote lsd1, homozygote LSD1. 
(B) PCR genotyping of plants in (A) shows that only LSD1 homozygous eds1 ADR1-
L2D484V plants have the severely stunted growth phenotype. 
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Figure 3.9. RAR1 is not required for either steady state ADR1-L2 accumulation or 
BTH-mediated induction. (A) ADR1-L2-HA and rar1-21 ADR1-L2-HA plants were 
sprayed with 300 µM BTH. Plants were collected for protein extraction 24 hpi. Proteins 
from Col-0, rar1-21, and ADR1-L2-HA and rar1-21 ADR1-L2-HA plants + and –BTH 
were run on SDS-Page gels and probed with anti-HA antibody. (B) Protein from plants in 
(A) were also used in an anti-RAR1 Western blot to ensure that rar1-21 plants were not 
expressing RAR1. Ponceau stained blots in (A) and (B) show relative loading. 
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Figure 3.10. A model for the regulation of ADR1-L2D484V activity. ETI activates 
both an AtRbohD-dependent ROI burst and SID2-dependent SA accumulation via 
ADR1-L2. Activated ADR1-L2 initiates cell death and disease resistance via SA-
dependent and -independent pathways. EDS1 functions downstream of activated ADR1-
L2 as a positive regulator of both SA accumulation and the SA-independent pathway. 
ADR1-L2 also triggers SA via a pathway that is controlled by LSD1 and antagonized by 
EDS1. Therefore, the spread of this SA accumulation is spatially down-regulated through 
a combined action of EDS1 and LSD1. Due to its position in these feedback loops, SA 
functions both up- and down-stream of ADR1-L2.  
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Figure 3.11. LSD1 negatively regulates EDS1 transcript. Quantitative real time PCR 
for the transcript amounts of EDS1 in Col-0, eds1-2, and lsd1-2. 
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Primer Name Primer Sequence 

For genotyping 

eds1-2F AAGGCGTCTGTAGAGGAAAC 

eds1-2R CATATAGTCTCGCAGAGGAG 

rar1-21F TCACGACGGAATGAAAGAGTGGAGCTGCTACTAG 

rar1-21R TTTTGGAACCGATTTGGCCAGAACTGGTTTCTCAG 

sid2-1F AAGCTTGCAAGAGTGCAACA 

sid2-1R AAACAGCTGGAGTTGGATGC 

AtMC1F GCGTCACCTTCTCATCAACA 

AtMC1R ACGGTACCACTATGGCAAGC 

LSD1F CTGGGATTTGTAAAGCAGCTG  

LSD1R TCAAGTTCCATGGAGCAAAAG 

ADR1-L2F TTCTTACTGTGTGTCCCCAG 

ADR1-L2R CCTTCCTATCAATCCGATCG 

For quantitative PCR analysis 

EDS1F GACGGGGAAGTAGATGAGAAG 

EDS1R TCATCCATCATACGCTCACG 

ADR1F ATGGCTTCGTTCATAGATCTTTTC 

ADR1R CACATTGTAGGTGGTTCTAGG 

ADR1-L1F AAACCACTCTTGCCAAAGAAC 

ADR1-L1R GGATTTCCAGCTTCACAACC 

ADR1-L2F CCTCTTGATGTTCTCATCAAC 

ADR1-L2R GTAGCTAGTGTACATCTGTCC 

 

Table S2. Primer sequences used in this work. 
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Chapter 4 
 

Conclusions and Future Directions 

 

 Plants are the backbone of our environment, providing oxygen, preventing 

erosion, and functioning as the base of nutrition for all animals. As such, it is vitally 

important that these species are able to survive environmental threats that they encounter, 

such as pathogen attack. Studying the process of disease resistance in plants is of great 

importance, as it allows insight into the biochemical and mechanical approaches used by 

plants to combat potential pathogens. With such knowledge we are able to develop 

specific and direct approaches for improving disease resistance in plants. In addition, 

plants and animals share common disease resistance mechanisms, and therefore studying 

these processes in plants can inform our understanding of animal, and human, immune 

responses. 

 During my thesis work, I participated in two main projects, both of which stem 

from studies on the plant cell death regulator LSD1. In the first part of my work, several 

assays were used to identify potential LSD1 interactors. One of these, the NF-Y 

transcription factor subunit NF-YC3, was used in further studies and found to be a 

positive regulator of disease resistance. nf-yc3 plants exhibit increased susceptibility to 

Hpa, whereas over-expression of functional NF-YC3 leads to increased resistance, 

presumably by contributing to the overall up-regulation of disease resistance-related 
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genes and/or cell death genes. Proper function of NF-YC requires its relocalization from 

the cytosol to the nucleus, and we discovered that LSD1, probably working with other 

factors, potentially participates in NF-YC3 cytosolic retention. Therefore, this work 

provides additional evidence that LSD1 may function as a transcriptional regulatory 

scaffold, sequestering defense-related proteins in the cytosol, and dampening their 

functions. 

Immediate future work on this project focuses on the data indicating that LSD1 is 

functioning as a retention factor of NF-YC3. The key problem is that the current BiFC 

data shows that all the fluorescence is in the nucleus when both LSD1 and NF-YC3 are 

co-expressed, which is in contrast to previously published data, and in opposition to our 

data which indicates that an intact LSD1 interaction motif is necessary for NF-YC3 to 

accumulate in the cytosol. To address these problems, additional experiments are being 

performed which will use co-localization of two xFP colors to address the specificity of 

the interaction between LSD1 and NF-YC3. This new experiment will show co-over-

expression of LSD1-xFP with, first NF-YC3-xFP, and second with NF-YC3∆GP2-xFP. 

These constructs will express different FPs for LSD1 and the NF-YC3 constructs so that 

they can each be imaged at the same time, and a merged image can then be made for the 

figure. The anticipated result is that the LSD1 / NF-YC3 will co-localize in the cytosol 

(with perhaps some NF-YC3 signal in the nucleus) and that LSD1/ NF-YC3∆GP2 will 

show that LSD1 is in the cytosol and NF-YC3∆GP2 is in the nucleus, as predicted by our 

current FP localization data. 

Beyond this immediate work, future studies for this project should focus on the 

redundancy in the NF-Y transcription factor family, looking to see whether other 
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members of this family, alone or in combination with one another, also play a role in 

disease resistance. Another NF-YC, NF-YC 4, was identified in the LDS1 interactor 

screen, and six additional Arabidopsis NF-YCs contain the GxP LSD1 interaction motif. 

Single and combinatorial mutants of these genes could be made to look at the 

contribution of these other NF-YC subunits to disease resistance.  

In the second part of my work, I focused on ADR1-L2, a positive regulator of 

lsd1 rcd. ADR1-L2 is an NB-LRR, one of the main class of disease resistance proteins 

that are about to recognize specific proteins injected into the cell by pathogens. We first 

showed that, in addition to the non-canonical, P-loop independent functions previously 

reported, ADR1-L2 had P-loop dependent functions in lsd1 rcd. By creating an autoactive 

version of this protein, ADR1-L2D484V, we were able to characterize the canonical, P-loop 

dependent functions of this protein in the absence of a specific effector that would 

normally be required to activate it. ADR1-L2D484V plants are dwarfed, bushy plants with 

short hypocotyls and pointed leaves, and they exhibit high steady-state levels of SA and 

increased resistance to virulent pathogens. We then used this autoactive mutant to help 

define the genetic requirements of the signaling pathway that contains ADR1-L2. Our 

data led us to position ADR1-L2 in a feedback loop involving SA, LSD1, and EDS1. Our 

results also indicate that this protein is additionally regulated by SA-independent factors, 

as well as by the cell death executioner AtMC1.  

The next experiments using the autoactive ADR1-L2D484V mutant should further 

examine the placement of ICS1/SA in our pathway. To do this, we will make sid2 lsd1 

ADR1-L2D484V and sid2 eds1 ADR1-L2D484V plants. If our model is correct, loss of SA in 

both of these contexts should lead to a reduction in the rcd phenotype. Thus, we should 
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be able to recover sid2 lsd1 ADR1-L2D484V plants, and sid2 eds1 ADR1-L2D484V plants 

should not be severely dwarfed like the eds1 ADR1-L2D484V plants presented here. sid2 

atmc1 ADR1-L2D484V plants should also be created, as the phenotypes of this plant could 

help to position AtMC1 in our current model. In parallel with this, forward genetic 

screens using EMS mutagenized seed could help us to identify other genes that are 

necessary for the autoactive phenotype. Using both the ADR1-L2D484V parental line and 

the SA-deficient sid2 ADR1-L2D484V line would allow us to discover genes important in 

both the SA-dependent and -independent pathways. 

Uniquely, ADR1-L2 is the first NB-LRR to exhibit RAR1-independent 

accumulation. In light of this result, future experiments could also test the requirements 

of other proteins, such as SGT1b, that are typically required for NB-LRR protein 

stability. Additional work is also being carried out by Dr. Vera Bonardi to try and 

understand the mechanism behind ADR1-L2 function. She is currently analyzing 

proteomics data that examines both the phosphorylation state of inactive and activated 

ADR1-L2, as well as potential protein interactors.  

Overall, my work has helped to refine the model of pathogen-triggered plant 

resistance, especially in terms of LSD1. I provided additional data that supports the idea 

of LSD1 as a cytosolic retention factor, and uncovered data that supports the role of the 

NF-Y transcription factor family in disease resistance. Importantly, I contributed a model 

that tries to add to the understanding of how a single protein could be involved as both a 

positive regulator of lsd1 rcd and retain its function as a canonical NB-LRR. 

Additionally, my work presents a way around the problem of characterizing a NB-LRR 

without the benefit of knowing the effector that triggers it, as it provides a general 
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approach to characterize canonical, P-loop dependent functions of NB-LRR proteins in 

the absence of a specific effector. 

 


