
TESTING-BASED COMMUNITY DETECTION METHODS FOR
COMPLEX NETWORKS

John J. Palowitch

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Statistics and Operations Research.

Chapel Hill
2017

Approved by:

James S. Marron

Yufeng Liu

Peter J. Mucha

Shankar Bhamidi

Andrew B. Nobel

c©2017
John J. Palowitch

ALL RIGHTS RESERVED

ii

ABSTRACT

JOHN J. PALOWITCH: Testing-Based Community Detection Methods for
Complex Networks

(Under the direction of Andrew B. Nobel)

Community detection is an exploratory method of grouping strongly connected nodes in a net-

work, in most cases using only the network edge structure as a guide. Using discovered communities

for downstream analyses can be crucial for real-world decision-making and inference. Recent ap-

proaches to community detection include testing-based community extraction, a process in which

communities are refined one-by-one via analysis of graph statistics. However, to date, testing-based

extraction methods are tied to the configuration model as a null, which applies only to single-layer,

binary graphs.

In this thesis, testing-based extraction is generalized to arbitrary networks types with a frame-

work called Node-Set Testing (NST). The NST framework defines the broader statistical elements

of an approach that uses hypothesis testing to detect communities in complex networks. The NST

framework is applied to (i) weighted networks and (ii) bipartite correlation networks, resulting in

novel community detection algorithms. In particular, new null models and test statistics are speci-

fied to apply iterative hypothesis-testing algorithms on these types of networks. Detailed analyses

of the empirical and theoretical properties of the proposed methods are provided.

Other chapters in this thesis, while not explicitly involving testing-based algorithms, support

the discussion of community detection in heterogeneous networks. One chapter provides a consis-

tency analysis of a significance-based score for community extraction in multilayer networks. In

another chapter, preceding the discussion of the NST method for bipartite correlation networks, an

application area called eQTL analysis is discussed. In particular, a new model for estimating the

effect size and regression correlation of the links in an eQTL network is introduced and studied.

iii

To Marilyn Maiden Palowitch and Carl Joseph Palowitch, my parents;

to whom I attribute my curiosity, dedication, and enthrallment with understanding;

and who, were it not for the degree that led to this thesis, would probably be

a few years closer to having grandchildren.

iv

ACKNOWLEDGEMENTS

I have an enormous amount of gratitude for my collaborators and their professional and personal

contributions to the work presented in this thesis. First and foremost, I thank my advisor Dr.

Andrew B. Nobel. Dr. Nobel’s near-endless energy and enthusiasm, combined with a genuine

regard for and honest criticism of all my ideas, created an environment in which my needs for

creative exploration and rigorous training were well-satisfied. I also thank my secondary advisor

Dr. Shankar Bhamidi. Dr. Bhamidi continually challenged me to think more intuitively about

complex problems, and provided me with fantastic advice about the relationships between research

directions, career goals, and life endeavors.

I thank Dr. James S. Marron for a year’s worth of immersion in his diverse and interesting

research directions. I thank Dr. Perry Haaland under whom I worked a semester-long internship at

Becton-Dickinson in Research Triangle Park. My collaboration with Dr. Marron and Dr. Haaland

was an indispensable part of my growth as a statistician and data scientist. I am especially grateful

for the presence of Dr. Peter J. Mucha and Dr. Yufeng Liu on my committee, as Dr. Mucha is

technically on sabbatical this semester, and Dr. Liu is a new parent (congratulations!). Over the

past year, I have met with Dr. Mucha and one of his postdoctoral researchers Dr. Dane Taylor to

discuss interesting new directions in network science: I have greatly appreciated these conversations.

A large chapter in this thesis is devoted to my work on the Genotype Tissue Expression (GTEx)

project. Along with Dr. Nobel, the other P.I. on our working group was Dr. Fred A. Wright, the

Director of the Bioinformatics Research sCenter at NCSU. Dr. Wright’s approach to research was

a continual source of inspiration. His ways of thinking about modeling and significance were (and

remain) formative to my statistical intuitions. Also in our working group was Dr. Andrey Shabalin,

assistant professor at VCU. Dr. Shabalin was the main contributer to the software implementations

of our new eQTL model, and was an indispensable collaborator in the refinement of the model’s

theoretical underpinnings. I am grateful for the opportunity to have worked alongside Andrey, as

his experience and advice greatly improved my ability to think systematically about programming

v

and statistical computation. I thank Dr. Yihui Zhou, research assistant professor at NCSU, who

contributed a thorough and somewhat self-contained simulation analysis of our method. Though

it does not appear in this thesis, her analysis was crucial to the publication viability of our paper.

Lastly, I thank some of my peers in the STOR department. Soon-Dr. Kelly Bodwin was my

research co-conspirator during the past four years. I can say without a doubt that many aspects

of projects in this thesis were improved because of our conversations. Kelly shared many of my

attitudes toward and approaches to research, making her camaraderie an indispensable part of my

degree. The entirety of Chapter 2 is joint work with Kelly. Dr. James Wilson, a graduate of this

department and now tenure-track assistant professor at USF, was co-first-author with me on the

paper containing the work featured in Chapter 4. The work presented in Section 4.3 is primarily

his contribution. During his time here, conversations with James and collaborations on simulations

spurred on my thoughts about both the consistency of community extraction methods, and the

general testing-based approach in Chapter 2. This past year, Miheer Dewaskar, a first-year STOR

graduate student, joined the project discussed in the “future work” portion Chapter 5, and has

contributed to computational aspects of the method introduced therein.

vi

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES. xiv

LIST OF ABBREVIATIONS AND SYMBOLS . xvi

1 Introduction . 1

1.1 Preliminary Notation . 4

1.2 Fundamental work on community detection . 5

1.2.1 The Stochastic Block Model . 5

1.2.2 The configuration and Chung-Lu models . 6

1.2.3 Modularity and optimization . 9

1.2.4 Spectral clustering . 10

1.3 Recent directions in community detection . 11

1.3.1 Community Extraction . 11

1.3.2 The Degree-Corrected Stochastic Block Model . 12

1.3.3 Consistency of community detection methods . 14

1.3.4 Community detection for multilayer and bipartite networks 16

1.3.4.1 Bi-partite networks . 17

1.4 Contributions of this thesis . 18

1.4.1 Community extraction for edge-weighted networks . 19

1.4.2 Community extraction for multi-layer, binary networks. 20

1.4.3 eQTL analyses and bi-partite correlation networks . 21

1.5 Document Organization . 23

2 Node-Set Testing for Complex Networks . 24

2.1 Node-Set Testing Framework . 24

2.2 Node-set association testing . 26

2.3 The Stable Community Search (SCS) algorithm . 28

2.4 Background and Type-I Error . 30

2.4.1 Global Error Control . 31

2.4.2 Discussion . 32

3 Continuous Configuration Model Extraction . 35

3.1 Notation and terminology . 35

3.2 The continuous configuration model . 36

3.2.1 Model statement . 37

3.2.2 Null specification of the model . 38

3.3 Test statistic and theoretical results . 39

3.3.1 A test statistic for node-set association in weighted networks 39

3.3.2 Asymptotic Normality of S(u,B,G). 41

3.3.3 Consistency of SCS. 42

3.3.3.1 The weighted stochastic block model . 42

3.3.3.2 Consistency theorem . 43

3.3.3.3 Connection to weighted modularity and related work 47

3.4 The Continuous Configuration Model Extraction algorithm. 47

3.4.1 Step 1: Initialization . 48

3.4.2 Step 3: Filtering of C . 49

3.5 Simulations . 49

3.5.1 Performance measures and competing methods . 49

3.5.2 Simulation settings and results . 50

3.5.2.1 Networks with varying signal levels . 51

3.5.2.2 Networks with overlapping communities . 52

3.5.2.3 Networks with overlapping communities and background nodes 52

3.6 Applications . 54

viii

3.6.1 U.S. airport network data . 54

3.6.2 ENRON email network . 54

3.7 Discussion . 56

4 Multi-layer Community Extraction . 58

4.1 Significance-based scoring of a vertex-layer group . 58

4.1.1 The Null Model . 59

4.1.2 Multilayer Extraction Score . 60

4.2 Consistency Analysis . 61

4.2.1 The Multilayer Stochastic Block Model . 61

4.2.2 Consistency of the Score . 62

4.2.2.1 Consistency of the joint optimizer . 64

4.2.3 Proofs . 65

4.2.3.1 Proof of Theorem 11, and Supporting Lemmas . 66

4.2.3.2 Sketch of the Proof of Theorem 11 . 66

4.2.3.3 Supporting lemmas for the Proof of Theorem 11 . 67

4.2.3.4 Proof of Theorem 11 . 70

4.2.3.5 Proof of Theorem 12 . 71

4.3 The Multilayer Extraction Procedure . 72

4.3.1 Initialization . 73

4.3.2 Extraction . 73

4.3.3 Refinement . 74

4.3.3.1 Choice of β . 75

4.4 Discussion . 76

5 Bipartite Correlation Networks . 77

5.1 The ACME-eQTL model for eQTL effect size . 77

5.1.1 Existing approaches to gene expression modeling . 77

5.1.2 Framework and notation . 78

ix

5.1.3 The ACME-eQTL model and diagnostics . 79

5.1.3.1 Log ANCOVA and log-linear models . 80

5.1.3.2 Model statement . 81

5.1.3.3 Model fit diagnostics . 82

5.1.4 Model p-values and Type I error . 84

5.1.4.1 Empirical performance of the F test . 85

5.1.5 Power, estimation accuracy, and computation speed . 86

5.1.5.1 Computation times. 87

5.1.6 Large-scale real data analysis . 89

5.1.7 Discussion . 91

5.2 Future work: Bi-community detection for correlation networks . 92

5.2.1 The NST Framework for Bi-partite Networks . 92

5.2.2 Notation and CBCE Framework . 94

5.2.3 SCS test statistic and p-value for bi-partite correlation networks 94

5.2.4 The CBCE method. 96

5.2.5 Simulation results . 97

5.2.5.1 Simulation model . 98

5.2.5.2 Performance measures . 99

5.2.5.3 Competing methods . 101

5.2.5.4 Simulation settings and results . 102

5.2.6 Conclusion . 104

5.3 Acknowledgements . 104

6 Future Work and Conclusion . 106

Appendix A NODE-SET TESTING SUPPLEMENTAL . 108

A.1 Cycles in Fixed Point Search . 108

A.2 Proof of Theorem 4. 108

Appendix B CCME SUPPLEMENTAL . 111

x

B.1 Proof of Proposition 5 . 111

B.2 Filtering of B0 and C . 111

B.3 Simulation Framework Preliminaries . 112

B.4 Simulation of community nodes . 112

B.4.1 Community structure and node degree/strength parameters 113

B.4.2 Simulation of edges and weights . 114

B.4.3 Parameter settings . 114

B.5 Background node simulation . 115

B.5.1 Adjusted community-node simulation model . 116

B.5.2 Edges and weights for background . 116

B.6 Proof of Theorem 6 and supporting lemmas. 118

B.6.1 Completing the proof of Theorem 6. 124

B.7 Proof of Theorems 8-9 and supporting lemmas. 124

B.7.1 Proof of Lemma 8 from the main text . 130

B.7.2 Proof of Theorem 9 from the main text . 137

Appendix C MULTI-LAYER EXTRACTION SUPPLEMENTAL . 142

C.1 Proof of Lemma 15 . 142

C.2 Proof of Lemma 16 . 143

C.3 Proof of Lemma 18 . 146

C.4 Proof of Lemma 21 . 147

C.5 Technical Results . 148

Appendix D ACME SUPPLEMENTAL . 158

D.1 Pre-processing gene read counts . 158

D.2 Sampling scheme for residual and goodness-of-fit tests . 158

D.3 Framework for direct null simulation . 158

D.4 Tests of normality and homoskedasticity . 159

D.5 QN-linear regression vs. ACME-eQTL regression . 160

xi

D.6 ACME-eQTL fitting algorithm. 160

D.7 Derivation of effect size standard error . 162

BIBLIOGRAPHY. 164

xii

LIST OF TABLES

3.1 Metrics from methods’ results on ENRON network: number of communities,
minimum community size, median community size, maximum community size,
count of nodes in any community . 56

3.2 Metrics from methods’ results on ENRON network: number of overlapping
nodes, minimum # of memberships, median # of mem’ships, max. # of mem’ships 56

3.3 Top domains associated with community nodes from each method, by proportion 56

5.1 Simulation model parameters . 98

B.1 Simulation model parameters . 113

LIST OF FIGURES

1.1 Two-hundred high-degree nodes from a network formed by data from the Lit-
tleSis website, which tracks powerful people and their business and political
connections. Edges are placed and weighted according to output from a non-
parametric bayesian model with similarities to the SBM (Kim et al., 2013). 7

1.2 The configuration model applied to an empirical random network. Source:
Aaron Clauset’s CSCI5352 lecture notes, Sante Fe Institute. 9

1.3 Visualization of a political blog network, labels estimated by the standard SBM
(a) and the DCSBM (b) (Newman, 2012). 14

3.1 Simulation results described in Sections 3.5.2.1-3.5.2.3. Legends correspond to
all plots. 53

3.2 SLPAw, OSLOM, and CCME results from June 2015 and 2015-year-aggregated
U.S. airport networks. Maps created with ggmap (Kahle and Wickham, 2013) 55

4.1 Illustration of relationship between collections of node sets. 69

5.1 Q-Q plots of likelihood ratio test p-values for ACME-eQTL and log-linear
models, in each sector of GTEx Thyroid sample data, n = 105. The grey line
is where we would expect the p-values (represented by the red dots) to fall if
they were perfectly uniform, and the green line represents the 95% window of
error around this expectation. λ is the estimated genomic inflation factor. 85

5.2 p-value distributions from null simulated data with realistic errors and real
covariate/genotype data. λ values are inflation factors. 86

5.3 Results of large-scale simulation experiment. Left: − log 10 F -test p-values as
a function of η. Middle and right: predicated raw expression with one and two
reference alleles, respectively. 88

5.4 Results of genome-wide cis-eQTL ACME effect size estimations on Thyroid
tissue (n = 105), from GTEx Pilot data. Bottom-left: Maximum gene-wise
estimated effect size vs. log average expression level. Top-left: F p-values from
the QN-linear model vs. F p-values from the ACME-eQTL model. Top-right:
− log10 ACME-eQTL p-value vs. distance from gene TSS to SNP position.
Bottom-right: Full-tissue procedure times of the Matrix-EQTL and ACME-
eQTL fitting softwares. 90

5.5 Correlation matrix of X from a draw from the default simulation model. 100

5.6 Simulation model instances with varying µβ (betamean). 103

5.7 Simulation model instances with varying σ2 (s2). 103

5.8 Simulation model instances with varying g (“bgmult”). 104

B.1 Empirical degrees/strengths vs. adjusted parameters for the example network 118

B.2 Average empirical z-statistics between nodes and node blocks . 119

B.3 SLPAw, OSLOM, and CCME results from January and Februrary 2015 U.S.
airport networks. Maps created with ggmap (Kahle and Wickham, 2013) 139

B.4 SLPAw, OSLOM, and CCME results from March and April 2015 U.S. airport
networks. Maps created with ggmap (Kahle and Wickham, 2013) . 140

B.5 SLPAw, OSLOM, and CCME results from May and July U.S. airport networks.
Maps created with ggmap (Kahle and Wickham, 2013) . 141

D.1 Boxplots of − log10 Shapiro-Wilk and Bartlett p-values from all models. Above,
“AOV” denotes the log-ANCOVA model, “LL” the log-linear model, and
“RAW” the standard linear model with un-transformed gene expression. The
dark red dashed line indicates the FDR α = 0.1 significance cut-off for the
particular bin. 160

D.2 eQTL data from two selected gene-SNP pairs from Adipose tissue. The fitted
lines correspond to the estimated parameters from each model. 161

xv

LIST OF ABBREVIATIONS AND SYMBOLS

n

[b]

u, v

C

A

G

v(u)

vT

d

W

s

NST

SCS

SBM, DCSBM

CCME

ACME-eQTL

Sample size of a network or Euclidean data set.

For a positive integer b, the index set [b] := 1, . . . , b.

Indices for nodes, e.g. u, v ∈ [n].

A node-set cover: C := {C1, . . . , CK} with Cj ⊂ [n] for all j ∈ [K].

Adjacency matrix. A[u, v] = 1 if and only if u and v are connected.

A network G = ([n], A).

The u-th component of an n-vector v

Denotes the vector sum of v, defined vT :=
∑

u∈[n] v(u).

The vector of node degrees, where d(u) :=
∑

v∈[n]A[u, v].

For weighted networks, the adjacency matrix of weights.

The vector of node strengths, where s(u) :=
∑

v∈[n]W [u, v].

Node-Set Testing

Stable Community Search

(Degree-Corrected) Stochastic Block Model

Continuous Configuration Model Extraction

Additive-Contribution, Multiplicative-Error model for eQTL analysis

xvi

CHAPTER 1

Introduction

A network can be both a mathematical structure, having an abstract set of nodes and edges, and

a natural phenomenon, consisting of objects and their interactions. Sometimes there is, in some

sense, an isomorphism between a physical network and its mathematical representation. Road

networks, electric networks, and internet networks all have a set of physical, fixed nodes and links

that can be identified with a binary graph. Analyses of these networks often involve questions

about logistics and operations, like finding efficient ways to schedule travel routes, packet transfers,

or computing jobs.

Most often, however, natural systems are only represented by a mathematical network. For

instance, a gene interaction network is a set of genes and their regulatory relationships. The exis-

tence of such networks are acknowledged through a build-up of statistical evidence for correlations

between genomic regions. However, gene networks do not necessarily correspond to biophysical

pathways. In general, networks that represent a system are studied in a more scientific manner.

Nodes are treated as data objects, and their emergent relationships seen as stochastic, potentially

indicative of underlying group dynamical structure in the system under analysis.

The topics in this thesis focus on the scientific and statistical analysis of real-world systems

through network data objects. In particular, the statistical methods this work introduces apply to

complex networks. The term “complex network” initially arose when natural networks of interest

became large and quite unlike standard random graph models of the mid-to-late twentieth century.

Hence, the study of complex networks is defined by a focus on large-scale, heterogeneous properties

of networks, like topology, clustering, and degree distributions (Albert and Barabási, 2002).

Another facet of the study of complex networks is the increasing availability of a wide variety

of network data attributes (Newman, 2003a). Many networks of interest have weighted, labeled,

signed, or directed edges. Others feature layers of networks, each layer with a registered node set,

but with an edge structure corresponding to a unique experimental unit or a point in a time series.

Still others have hierarchical levels of sub-networks. Each separate data attribute in a network

carries rich information of potential import to any analysis question (Boccaletti et al., 2006). As

such, methods introduced in this thesis will have a particular focus on networks with more-than-one

type of network data.

Myriad descriptions of studies involving networks with more than one attribute are given in

the aforementioned references; here are just a few more notable examples:

1. Almaas et al. (2004) studied the molecular reaction network of the E. coli metabolism, with

edges weighted by the reaction fluxes, providing deeper insights into bacterial metabolic

organization and regulation.

2. Barrat et al. (2004) analyzed the collaboration network of authors contributing to the

condensed-matter physics electronic archive between 1995 and 1998. The network contained

n = 12, 722 authors, with edges weighted by number of collaborations. Their analysis re-

vealed, quantitatively, some intuitive findings about the relationship between academic col-

laborative structure and volume, for instance that highly published authors produce a plurality

of their total output with a stable research group.

3. Ansari et al. (2011) developed flexible parametric models for multi-layer networks. In their

work, they analyzed network data from a Swiss social media platform that connects musi-

cians with listeners as well as with other musicians. The network data had three layers, each

with different attributes: a binary, undirected friendship layer; a binary, directed messag-

ing layer; and a weighted, directed music downloading layer. They showed that modeling

diverse attributes separately, accounting for specific data types, greatly improved predictive

performance.

Efforts to extend network data analysis techniques to incorporate all data attributes in networks like

those mentioned above have comprised significant arms of network science methodology research

(e.g. Newman (2004a) and Opsahl and Panzarasa (2009) for weighted networks, Mucha et al. (2010)

and Kivelä et al. (2014) for time-series and multilayer networks, Battiston et al. (2014) for weighted

and un-weighted multi-layer networks, Leskovec et al. (2010a) for signed, directed networks). In

general, methods for complex networks have driven advances in areas as diverse as social science,

2

systems biology, life sciences, marketing, and computer science (cf. Palla et al. (2007); Barabasi and

Oltvai (2004); Lusseau and Newman (2004); Guimera and Amaral (2005); Reichardt and Bornholdt

(2007a); Andersen et al. (2012)). Surveys of the network science and methodology literature have

been provided by Newman (2003b) and Jacobs and Clauset (2014), among others.

The primary, specific focus of this dissertation is community detection methods for complex

networks, in particular networks with data attributes beyond binary edges. A common, loose

definition of a community is a subset of nodes that are more connected internally than externally.

Community detection is one of the most important network analysis techniques, as communities

often reflect intrinsic structure of the system the network represents. Finding communities among

objects of study in a data set can support exploratory analysis and provide an important starting

point for further scientific inquiry or decision-making (Danon et al., 2005). For example:

1. Hundreds of studies in computational biology have used community detection to find subsets

of genomic loci, genes, cells, or micro-organisms with high levels of interaction. These subsets

can be focal points for a variety of downstream analyses, and can spur new insights about the

underlying mechanics of genomes (Chen and Yuan, 2006; Cabreros et al., 2015; Platig et al.,

2015; Fan et al., 2012).

2. Community detection has been used to facilitate recommender systems in online social net-

works: first by grouping users through their observed edge (or edge weight) interactions, and

then by suggesting interests of users to the rest of their group (Sahebi and Cohen, 2011; Xin

et al., 2014).

3. To study buyer patterns on eBay, community detection was used to group bidders based on

common bidding interests (Reichardt and Bornholdt, 2007b) and to group auctions based on

common bidders (Jin et al., 2007). The latter analysis, in particular, was used to predict and

recommend equally valuable auction items to bidders (Fortunato, 2010).

Countless other examples of community detection applications can be found in surveys by Porter

et al. (2009), Fortunato (2010), and Fortunato and Hric (2016), and the references therein.

Most standard community detection methods involve the optimization of a quality function for

network partitions. For some methods, the quality function is a log-likelihood; for other methods,

3

it is a more general score of the intra-connectedness and inter-disconnectedness of the partition’s

elements. Various quality functions will be discussed in more detail in Section 1.2. Optimization

approaches to community detection have proven extremely effective for decades, in countless ap-

plications. However, the results of these methods rarely come with a significance guarantee or

statistical interpretation. Basic simulations will show that many commonly-used community de-

tection methods reliably find communities in networks that (arguably) lack community structure.

This thesis introduces and analyzes applications of a testing-based framework to community

detection on networks with (potentially) multiple data types. The framework re-motivates com-

munity detection from a statistical testing perspective, providing an iterative hypothesis-testing

algorithm for the discovery of significantly associated node sets. This approach is contrasted

with optimization-based community detection, an approach which (in general) does not provide

guarantees of statistical significance. As the major components of the work presented here, new

testing-based algorithms are derived for various types of networks. Illustrations of these methods’

advantages, empirical efficacies, and theoretical results regarding consistency and error control are

provided. In Section 1.4, more introductory detail is provided about these contributions. The

sections below provide an in-depth review of existing community detection methodology.

1.1 Preliminary Notation

I denote a general network object with n nodes by G := ([n],D), where [n] = 1, . . . , n is the

node set, and D is a data object which encodes the observed interactions between nodes. We call G

a “binary” or “un-weighted” network when D is a matrix A ∈ {0, 1}n×n containing edge indicators.

Explicitly, let u, v ∈ [n] be general node indices, and let A[u, v] denote the u, v-th entry of A, which

equals 1 if and only if u and v share an edge. Unless otherwise specified, we assume that A[u, v]

is symmetric and that A[u, u] = 0 for all u ∈ [n]. A partition of a node set is a finite collection

C1, C2, . . . , CK ⊆ [n] such that ∪iCi = [n] and Ci ∩Cj = φ for all i 6= j. In other words, each node

is assigned to exactly one community. Usually, a partition will be denoted with the concise vector

representation c ∈ [K], with elements c(u) giving the community assignment of u. We define the

degree of node u ∈ [n] by d(u) :=
∑

v∈[n]A[u, v], and the vector of degrees by d := {d(1), . . . , d(n)}.

4

The “total” degree is defined dT :=
∑

u∈[n] d(u). Note that for undirected binary graphs, dT is

simply twice the number of edges in the graph.

1.2 Fundamental work on community detection

Community detection is a wide and varied and field of research, with plentiful sub- and sub-

sub-fields. In what follows, I give a brief overviews of some classical theoretical and methodological

directions in the study of communities in networks.

1.2.1 The Stochastic Block Model

Real-world interconnected systems have been studied with tools from network science and graph

theory since the early twentieth century. Particularly in social science and biology, it eventually

became common to view densely-connected subregions of a graph as emergent macro-structure in

the system of scientific interest. Early on, Holland et al. (1983) and Anderson et al. (1992) proposed

the Stochastic Block Model (SBM) as one way to model macro-structure in a networked system.

In the model, nodes are organized into disjoint “blocks” with diverse intra- and inter- connection

probabilities. The blocks represent meaningful real-world node subgroups which potentially interact

at different rates within-block than out-block. Snijders and Nowicki (1997) gave both maximum

likelihood and Bayesian approaches to estimating both the block structure and the connection

probabilities for a 2-block SBM, though they soon generalized their procedure in Nowicki and

Snijders (2001). The SBM approach to community detection has been of instrumental importance

to the social and biological sciences (Fortunato, 2010; Porter et al., 2009).

Variants of the SBM will be of central focus in parts of this thesis. As such, an explicit definition

of the model is now provided. The SBM is a generative stochastic model for an undirected, binary

graph G := ([n], A), with three parameters. The first parameter is the number of communities (or

blocks) K. The second is a community partition vector c, where c(u) ∈ [K] gives the community

index of u. The third parameter is a K ×K probability matrix P. In the model, an edge is placed

between nodes u and v (independently of all other edges) with probability

puv = P[c(u), c(v)]. (1.1)

5

Thus, the indicator 1{A[u, v] = 1} is Bernoulli(puv), and the resulting network G = ([n], A) has the

likelihood

L(G|K, c,P) :=
∏

16u<v6n

pA[u,v]
uv (1− puv)1−A[u,v] (1.2)

The model can be seen as a generalization of an Erdős-Rényi network, inducing community

structure through c and the matrix P. The most common type of community structure of interest,

in usual applications, is when the diagonals of P are larger than the off-diagonals. In the model,

this will cause nodes to connect more frequently to other nodes in their community, on average,

than to nodes outside their community. This is usually called “assortative” community structure.

Figure 1.1 shows an example of a network exhibiting strong assortative community structure (Kim

et al., 2013). The estimated SBM for this network would have K = 4 or 5 blocks, large diagonal

entires of P, and off-diagonal entries of P near zero. The SBM is, of course, equally capable of

generating disassortive structure, in which nodes connect more frequently outside their community,

a pattern which can also be of interest (Aicher et al., 2014). The SBM has since been extended

to include overlapping nodes (Whang et al., 2013; Airoldi et al., 2009), directed edges (Latouche

et al., 2011), and heterogeneous expected degrees (as will be covered in Section 1.3.2). Aicher et al.

(2014) provided a weighted version of the stochastic block model in which edge weights are random

variables from an exponential family.

An important sub-field of network analysis regards the latent space model (Hoff et al., 2002),

which has close ties to the SBM. In the latent space model, nodes are assumed to have unobserved

positions in an underlying metric space. The distance to other nodes in the metric space govern

their observed interactions in the network. Some fundamental similarities between the latent space

model and the stochastic block model were discussed in Rohe et al. (2011). Compared with other

models and methods discussed in this work, Bayesian techniques play a much more prominent role

in standard applications of latent space models (Sarkar and Moore, 2005).

1.2.2 The configuration and Chung-Lu models

Another random network model that has come to be of great importance to community detec-

tion is the configuration model. Loosely speaking, the n-node configuration model is like a random

Erdős-Rényi graph, but with the restriction that node degrees be exactly a given (positive) integer

6

Figure 1.1: Two-hundred high-degree nodes from a network formed by data from the LittleSis website,
which tracks powerful people and their business and political connections. Edges are placed and weighted
according to output from a nonparametric bayesian model with similarities to the SBM (Kim et al., 2013).

sequence d = {d(1), . . . , d(n)}, with d(u) 6 n for all u ∈ [n]. Initially, the configuration model

was introduced in context of the general study of random graphs and their distributional proper-

ties (Bollobás, 1980; Bender, 1974). Molloy and Reed (1995) gave an algorithm for generating the

configuration model, which can be written as follows:

1. Form a set L of half-edges, with d(u) half-edges assigned to each node u ∈ [n].

2. Draw two half-edges uniformly-at-random from L, without replacement; form an edge.

3. Repeat step 2, always without replacement, until all half-edges are exhausted.

Note that this process generates an undirected graph, and thus dT must be even. This process

also allows for “self-loops” (A[u, u] = 1) and multiple edges. However, easy modifications of the

algorithm can prohibit these features.

A model that is closely related to the configuration model is that of Chung and Lu (2002).

Given a degree sequence d, the model is generated by placing an edge between nodes u and v,

7

independently of all other edges, with probability

puv = min

{
d(u)d(v)

dT
, 1

}
, (1.3)

where dT is the total degree (see Section 1.1). This “Chung-Lu” or “Expected-Degree Random

Graph” model, as it is often called, is more directly related to the Erdős-Rényi model than the

configuration model, since it retains edge-independence. In fact, whereas with the configuration

model the sequence d is best seen as a restriction on the Erdős-Rényi, in the Chung-Lu model

it is a generalization. When all degrees are equal to some fixed d, the Chung-Lu model reduces

to Erdős-Rényi with probability d/n. Nonetheless, fundamental and important similarities remain

between the Chung-Lu and configuration models. It is easy to derive that, if maxuv d(u)d(v) 6 dT ,

the expected degrees under the Chung-Lu model are precisely d. Conversely, when dT = o(n), the

probability of an edge between u and v under the configuration model is approximately puv.

Though neither the configuration nor Chung-Lu models were originally introduced in the con-

text of community detection, they eventually played important (and related) roles in the study of

communities. Newman et al. (2002) published an early, often-cited paper proposing the utility of

the configuration model for simulating social networks. They noted the inadequacy of Erdős-Rényi

networks for this task, as the degree-distribution of real-world networks are always skewed. Notably,

Newman writes that the configuration model produces “a graph with exactly the desired degree

distribution, but which is in all other respects random”. This may be the first acknowledgment

(albeit implicit) that the configuration model may be a suitable null model to test for alternative

structure in graphs with heterogenous degrees. Indeed, soon after that publication, community

detection methods based on the 1st-order structure in the configuration and Chung-Lu model were

introduced, as discussed in the next section. These new methods fundamentally changed the field,

and the related roles of the configuration and Chung-Lu models in these research directions are

now well-known (Olhede and Wolfe, 2012; Durak et al., 2013).

Figure 1.2 demonstrates the efficacy of the configuration model as a null for community detec-

tion. On the left, we see an un-labeled, binary network with what appears to be some community

structure. On the right, the existing edges have been randomly re-assigned with the Malloy-Reed

algorithm, erasing any evidence of community structure. In this example, applying the configura-

8

Figure 1.2: The configuration model applied to an empirical random network. Source: Aaron Clauset’s
CSCI5352 lecture notes, Sante Fe Institute.

tion model algorithm to an empirical network can be thought of as a permutation of the edges,

conditional on the observed degrees. Significance of the community structure in the observed net-

work can therefore be assessed either by successive applications of the model algorithm, in the

style of a permutation test, or by analysis of test statistics from the network with respect to the

distribution of the model.

1.2.3 Modularity and optimization

A novel approach to community detection was introduced via the modularity metric by Newman

and Girvan (2004). Modularity is a score of a network partition such that, loosely speaking, when it

is large, the community structure given by the partition is strong. The modularity score compares

the empirical edge densities to the expected edge densities under the configuration model (see

Section 1.2.2). Explicitly, the modularity score sums the difference between edge indicators of node

pairs in the same community from their corresponding Chung-Lu probability puv (see Equation

1.3). Given a network partition c, modularity is defined

Q(c) :=
1

dT

∑
u,v∈[n]

(
A[u, v]− d(u)d(v)

dT

)
1(c(u) = c(v)), (1.4)

where 1 is the indicator function. Note that Q(c) is always in the interval [−1, 1]. From the

above equation, it is obvious that when the edge densities within the communities outlined by the

partition c are much larger than what is expected under the configuration model, Q(c) will be

closer to 1.

9

Finding the global maximizer of modularity is NP-complete (Brandes et al., 2006). Thus, all

commonly-used community detection methods based on modularity employ approximation algo-

rithms. Girvan and Newman gave the first approach to approximately maximizing modularity,

which involves first an edge-removal algorithm for finding proposed partitions (Girvan and New-

man, 2002), then a method to choose a partition using the modularity score (Newman and Girvan,

2004). Modularity-based methods have been generalized, re-worked, and analyzed in many ways

over the years (Newman, 2004b, 2006b; Clauset et al., 2004; Eriksen et al., 2003; Langone et al.,

2011), and now are among the most popular tools in network science. The modularity score has

also been extended to networks with directed edges and overlapping communities (Nicosia et al.,

2009; Chen et al., 2014), and to networks with bipartite community structure (Barber, 2007), as

will be discussed more fully in Section 1.3.4. Overall, the modularity approach represents a marked

departure from the model-based community detection procedures described in Section 1.2.1.

Importantly, the modularity framework is not the only approach to assessing or finding com-

munity partitions in networks. Pre-dating modularity, the conductance measure of a node set is

the ratio of cross-edges between that set and its complement to the number of internal edges of the

set. A thorough study of conductance and how it has been used to detect communities, including

novel approaches, is given by Leskovec et al. (2008). Other partition-based community detection

methods have roots in information theory or random walks. These methods involve many diverse

approaches to community detection and types of algorithms. Three examples are: (i) Infomap

(Rosvall and Bergstrom, 2008), an algorithm incorporating information-theoretic measures of com-

munity structure; (ii) Walktrap (Pons and Latapy, 2005), an algorithm incorporating random walk

probabilities; and (iii) a label-propagation algorithm presented in (Raghavan et al., 2007). These

methods perform quickly even for large networks and have been implemented in standard software

packages from R and python, making them commonly used tools in applied network science.

1.2.4 Spectral clustering

Another classical approach to community detection involves projecting the adjacency matrix

or Laplacian of the graph onto principal component vectors, and then clustering those vectors

with standard methods like k-means or the EM algorithm. Detailed layouts of the various, related

spectral clustering methods can be found in von Luxburg (2007). The roots of spectral community

10

detection are in the graph partitioning work of the mid-to-late twentieth century. One early and

particularly influential paper in this field called “Algebraic connectivity of graphs” was written by

Miroslav Fiedler (1973). In that paper, Fiedler relates the eigenvalues of an unweighted, undirected

network’s adjacency matrix to its connectedness. Much subsequent, related work analyzed further

relationships between graph spectra and optimal cuts of the graph using linear algebra and theory

of random walks (Ding et al., 2001; Pothen et al., 1990). While these results are most directly

applied to problems in (for example) distributed computing and circuit designs (Chamberlain

et al., 1998; Shirinivas et al., 2010), they laid the groundwork for the spectral approach to clustering

and community detection (Boccaletti et al., 2006). Some examples of the application and analysis

of spectral approaches to community detection can be found in (for example) Newman (2006a,b);

Richardson et al. (2009); Rohe et al. (2011); Newman (2013).

1.3 Recent directions in community detection

In recent years, the field of community detection has expanded to include novel algorithmic ap-

proaches, nuanced theoretical analyses, and additional methods for new types of complex networks.

Current directions that pertain to the work in this thesis are now discussed.

1.3.1 Community Extraction

The classical approaches to community detection described in Section 1.2 are all based on the

evaluation of a community partition. An alternative approach is to conduct set-wise searches, in

which communities are identified and evaluated one-by-one. This approach, often called community

“extraction”, can feature a number of attractive benefits. One particular benefit is that not all

nodes need to be assigned a community. Usually, this happens for nodes that do not have strong

connectivity to any other subgroup. In this work, I such nodes are called “background”. Extraction

methods have been put forth in a number of recent publications:

1. For a community C ⊆ [n], Zhao et al. (2011) defined the following measure of connectivity:

Q(c) := |C|−1

|C|−1
∑
u,v∈C

A[u, v]− |Cc|−1
∑

u∈C,v∈Cc
A[u, v]

 .

11

The above measure compares the average in-degree of C to the average out-degree. Though

this measure is fundamentally heuristic and model-free, it captures a reasonable conception

of empirical community strength. Zhao et al. (2011) give a node-swapping algorithm to

locally maximize this metric over all possible node sets. Though their algorithm can identify

background, one of its drawbacks is that overlapping communities are dis-allowed.

2. Lancichinetti et al. (2011) introduced the Order Statistics Local Optimization Method

(OSLOM), which locally optimizes a “fitness” function characterizing the statistical signifi-

cance of a community with respect to the configuration model. Their algorithm is capable

of handling networks with directed and weighted edges, can detect hierarchical community

structure, and is capable of identifying overlapping communities and background nodes.

3. Wilson et al. (2014) introduced Extraction of Statistically Significant Communities (ESSC),

which iteratively refines communities using statistical hypothesis testing. Using the config-

uration model as a null, ESSC computes tail probabilities of observed edge counts from a

target community to all other nodes. ESSC then refines this community by keeping nodes

with significant tail probabilities, and discarding others. When applied iteratively, this al-

gorithm adaptively chooses the number of communities, can find overlapping communities

without restriction, and naturally identifies background nodes.

The community detection methodologies introduced and analyzed in this thesis are all extraction

algorithms. In Section 1.4, brief summaries of these new methods are given, in particular how they

relate to or differ from those mentioned above.

1.3.2 The Degree-Corrected Stochastic Block Model

One major drawback of the standard Stochastic Block Model (see Section 1.2.1) is that it does

not allow for degree heterogeneity. Indeed, it is easy to derive that, under the standard SBM,

the expected degrees of nodes in the same community are identical. As noted in Newman et al.

(2002), degrees from real-world networks are often extremely heterogeneous. To account for this,

Coja-Oghlan and Lanka (2009) put forth what is now known as the “Degree-Corrected” Stochastic

Block Model (DCSBM). The model is a simple but powerful extension of the standard SBM. The

DCSBM retains the K, c, and P parameters of the standard SBM, but also includes an n-vector φ.

12

Each component φ(u) is a positive weight controlling the node u’s propensity to form edges with

other nodes. The model is then generated in the Bernoulli-style of the standard SBM, but with

probabilities adjusted by the φ vector. Defining φT :=
∑

v∈[n] φ(v), the appearance of each edge

has probability

puv :=
φ(u)φ(v)

φT
P[c(u), c(v)] (1.5)

Note that φ and P must be chosen so that maxuv puv 6 1,

The extension of the DCSBM in the manner given by Equation 1.5 is analogous to the Chung-

Lu generalization of an Erdős-Rényi network. Moreover, the DCSBM can actually be formulated as

a generalization of Chung-Lu that induces community structure with P. One major difference from

the Chung-Lu model is that the degree parameter sequence φ is not equal to the expected degree

sequence, due to perturbation by the probabilities P. However, as explained in Coja-Oghlan and

Lanka (2009), given P and a target degree sequence d, it is possible to set φ so that the expected

degrees equal d.

Karrer and Newman (2011) give an excellent example of the usefulness of the DCSBM. In Figure

1.3, we see two community partitions of the same network: one given by fitting the SBM, the other

by fitting the DCSBM. The images in Figure 1.3 appear in Newman (2012) as reproductions of those

from Karrer and Newman (2011). The network data comes from internet scraping of links between

political blogs (Adamic and Glance, 2005), and is equipped with an acknowledged ground truth

which labels each blog as politically “liberal” or “conservative”. The visualization was constructed

without knowledge of this ground truth, using only the links between nodes. Nodes are colored by

their labeling under the choice of model, and are sized based on their degree. We see that using the

Degree-Corrected SBM, the estimated labels correspond to the visualization layout, which means

the labeling follows patterns of stronger or weaker edge densities between node subsets. In contrast,

using the standard SBM, the estimated labels follow the degree distribution: nodes are split into two

groups of larger and smaller degrees. Furthermore, as reported in Karrer and Newman (2011), the

estimated labels from the SBM have almost no association with the acknowledged ground truth

given in Adamic and Glance (2005), whereas the DCSBM labels closely align with the political

division.

13

Figure 1.3: Visualization of a political blog network, labels estimated by the standard SBM (a) and the
DCSBM (b) (Newman, 2012).

1.3.3 Consistency of community detection methods

An important, general issue about community detection is the consideration of any given

method’s ability to recover “true” communities in the network. In the community detection liter-

ature, this issue is framed as consistency under an appropriate generative model. The generative

model is almost always taken to be the SBM or some variant thereof. The definition of consistency

varies depending on the method under study and the constraints of the theoretical analysis, but

it is most often a high probability statement about the clustering error as the number of nodes

n tends to infinity. This sub-section contains a thorough review of some prominent consistency

analyses of community detection methods.

Early work on consistency of community detection largely focused on simple versions of the

SBM, restricting the number of blocks to 2 (Snijders and Nowicki, 1997), or forcing community

sizes and connection probabilities to be equivalent (Condon and Karp, 2001). These analyses will

not be discussed in detail, since modern-day consistency analyses have largely eliminated these

assumptions. For instance, Bickel and Chen (2009) proved the consistency of the modularity

and SBM likelihood partition measures under the SBM with an arbitrary number of blocks. Their

analysis begins in consideration of the maximizer ĉn of a general partition measure (like modularity).

The maximizer ĉn is assumed to be estimated from a n-node SBM with a fixed number of blocks

K that does not depend on n. Denote the probability measure associated with the SBM by Pn.

14

Bickel and Chen (2009) defined consistency of a partition measure by

Pn(ĉ = c)→ 1 as n→∞, (1.6)

where the partition vector equivalence is defined up to permutation of the community labels. They

show that a general class of partition measures which includes modularity and the SBM likelihood

are consistent in the above sense. Their result depends on a few key assumptions:

• The average degree of the SBM grows faster than log n.

• The true model partition maximizes the limiting partition measure.

• The relative community sizes are positive and do not change with n.

• The matrix P has entries of the same asymptotic order and unique columns.

Along with a few other technical conditions on the partition measure, these assumptions are a

significant improvement over those found in preceding consistency analyses of community detection

and graph partitioning algorithms. Zhao et al. (2012) generalized the analysis of Bickel and Chen

in the following important ways:

1. Instead of taking the standard SBM as the generative model, they assumed the Degree-

Corrected SBM (see Section 1.3.2).

2. They defined a notion of in-probability (“weak”) consistency, as follows: The maximizer ĉn

is weakly consistent if for any ε > 0,

Pn

n−1
∑
u∈[n]

1{ĉn(u) 6= cn(u)} < ε

→ 1 as n→∞. (1.7)

Above, the partition equivalence is again defined up to a permutation of labels. They showed

that, under assumptions similar to those from Bickel and Chen (2009), maximzers ĉn are

weakly consistent if the average degree tends to infinity. They also proved the strong consis-

tency analog to Bickel and Chen (2009), in the sense of (1.6), when the average degree must

grow more quickly than log n.

15

The work of Bickel and Chen (2009) and Zhao et al. (2012), described above, have been crucial

to understanding the properties and performance of partition measures on networks with commu-

nities. However, it important to note that their results pertain only to the global maximizer of

any given partition measure, which in almost all practical situations is computationally prohibitive

to produce. This is a non-trivial problem, since local optimizers of partition measures often have

diverse community structures (Peel et al., 2016). The consistency of local optimizers has received

comparatively little attention, since a local optimizer is algorithm-dependent. Consistency results

for common variational algorithms used to fit the SBM have been given by Choi et al. (2012) and

Celisse et al. (2012), among others. However, these results generally require stronger assumptions

on the sparsity of the network.

Another important class of consistency analyses for community detection focuses on spectral

methods. Lei et al. (2015) prove that, under assumptions as weak as, if not weaker than, those in the

aforementioned optimization-based analyses, the asymptotic clustering error obtained in practice

by spectral methods is bounded by a function of the average degree, number of communities, ratio

of the maximum and minimum community sizes, and the ratio of the maximum and minimum

connection probabilities. This is a general result that contains some of the weakest assumptions

available for spectral community detection methods. However, spectral methods are in general

more computationally prohibitive than modularity maximization, especially for very large networks.

Though the analysis of spectral methods for community detection is a vast field with many open

problems, the field will not be discussed in any more depth here, since the consistency analyses in

this thesis are more closely related to those for modularity and the SBM likelihood.

1.3.4 Community detection for multilayer and bipartite networks

One important type of network is known as “multilayer” or “multiplex”, and features a finite

number of distinct edge sets corresponding to the same set of nodes. Notationally, a multilayer

network can be written G = ([n], [m], A), where [n] is a node index set, [m] is a layer index set,

and A is an n × n × m binary array, with the third dimension indexing the adjacency matrices

corresponding to particular layers. The edge sets in these layers can be formed from, for example,

elements of a time series, or experimental units from a clinical trial. Multilayer network models

have also been applied to modeling and analysis of air transportation routes (Cardillo et al., 2012),

16

studying individuals with multiple sociometric relations (Fienberg et al., 1980, 1985), and analyzing

relationships between social interactions and economic exchange (Ferriani et al., 2013). Kivelä et al.

(2014) and Boccaletti et al. (2014) provide two recent reviews of the study of multilayer networks.

The development of community detection methods for multilayer networks is still relatively

new. One common approach to multilayer community detection is to project the multilayer net-

work in some fashion onto a single-layer network and then identify communities in the single layer

network (Berlingerio et al., 2011; Rocklin and Pinar, 2013). A second common approach to multi-

layer community detection is to apply a standard detection method to each layer of the observed

network separately (Barigozzi et al., 2011; Berlingerio et al., 2013). However, the first approach

fails to account for layer-specific community structure and may give an oversimplified or incom-

plete summary of the community structure of the multilayer network; the second approach does

not enable one to leverage or identify common structure between layers. Methods introduced in

this thesis will avoid some of these limitations.

In addition to the methods above, there have also been several generalizations of single-layer

methods to multilayer networks. For example, Holland et al. (1983) and Paul and Chen (2015)

introduce multilayer generalizations of the stochastic block model from Wang and Wong (1987) and

Snijders and Nowicki (1997). Peixoto (2015) considers a multilayer generalization of the stochas-

tic block model for weighted networks that models hierarchical community structure as well as

the degree distribution of an observed network. Paul and Chen (2016) describe a class of null

models for multilayer community detection based on the configuration and expected degree model.

Stanley et al. (2016) considered the clustering of layers of multilayer networks based on recurring

community structure throughout the network. Mucha et al. (2010) first extended the notion of

modularity to multilayer networks, and De Domenico et al. (2015) generalized the map equation,

which measures the description length of a random walk on a partition of vertices, to multilayer

networks. De Domenico et al. (2013) discuss a generalization of the multilayer method from Mucha

et al. (2010) using tensor decompositions.

1.3.4.1 Bi-partite networks

Another type of network is known as a “bipartite”. Bipartite networks have two defining

properties. First, the node set [n] is bisected into two non-overlapping node sets N1 and N2 of sizes

17

n1 := |N1| and n2 := |N2|. Second, edges pair nodes only when one node is from N1 and the other

is from N2. In other words, if two nodes are from the same side of the network, no edge can exist

to pair them.

Note that the division of the node set in bipartite networks is of a different character than the

division of an edge set into multiple layers, as in the multi-layer setting discussed in the preceding

part of this section. Whereas a multi-layer network has multiple edge sets corresponding to a

unified node set, a bipartite network has multiple (two) node sets with a shared edge set.

Formally, a bipartite network can be written as G = (N1, N2, A), where N1 and N2 are disjoint

node sets, and the adjacency matrix A is an |N1| × |N2| matrix containing edge indicators between

for edges between nodes in N1 and nodes in N2. Communities in bipartite networks are in fact

bi-communities. A bi-community (C1, C2) ∈ 2N1 × 2N2 consists of a node set from each side of the

network. In applications, it is of interest to find bi-communities (C1, C2) such that nodes in C1 are

strongly connected to nodes in C2, but weakly connected to other nodes in N2, and vice-versa.

Some community detection methods for bipartite networks have been published and well-cited

(e.g. Barber (2007); Du et al. (2008); Liu and Murata (2010)). More recently, Bartlett (2015)

extended spectral community detection to bipartite networks. One growing area of application of

bipartite community detection is when the node sets are genomic markers, and edges indicate a

certain level of interaction strength or statistical correlation (e.g. Platig et al. (2015)).

1.4 Contributions of this thesis

The specific contributions in this thesis follow two broad directions, listed below. Note that

notations not defined in Section 1.1 are used loosely, will be defined explicitly in the corresponding

chapters.

1. Adapt testing-based extraction to general networks data. The testing-based ex-

traction algorithm ESSC, mentioned in Section 1.3.1, was limited to binary, single-layer,

undirected networks. In my work, I formalize the testing-based extraction approach in a way

generalizable to almost all types of network data. Suppose we are given a network G = ([n],D)

with D ∈ D. Two components are needed to perform testing-based community extraction:

• A test statistic T : [n]× 2[n] ×D 7→ R of node-to-set association.

18

• A null model Pθ on D which specifies a notion of “lack of association” for arbitrary nodes

and sets u and B.

Chapter 2 is devoted to a rigorous treatment of these concepts. In practice, the testing

framework components T and Pθ are not always easy to formulate, since D can consist of

data of many different types. Multiple projects in this thesis involve an adaptation of testing-

based extraction to new types of network data.

2. Assess the statistical consistency properties of extraction methods. The consistency

properties of extraction methods have not yet well-investigated. In this thesis, new concep-

tions of consistency for extraction algorithms are introduced, and consistency properties of

proposed methods under various models with planted communities are established.

The following sections introduce specific contributions of this thesis with respect to the direc-

tions above.

1.4.1 Community extraction for edge-weighted networks

Recall from Section 1.2 that many classical community detection methods are based, in some

way, on a null model. A significant drawback of these methods is that no explicit null model exists

for edge-weighted networks. Edge weights are commonplace in network data, and can provide infor-

mation that improves community detection power and specificity (Newman, 2004a; Boccaletti et al.,

2006). While many existing community detection methods have been established for weighted and

un-weighted networks alike, due to the absence of an appropriate weighted-network null model, very

few of these methods provide statistical significance assessments of weighted-network communities.

In contrast, some significance-based community detection methods have recently been introduced

in the literature for un-weighted networks, due to the popularity and acceptance of the configura-

tion model as a binary-network null. These methods, OSLOM from Lancichinetti et al. (2011) and

ESSC from Wilson et al. (2014), were discussed in some detail in Section 1.3.1. While OSLOM can

in practice handle edge weights, the method uses an exponential function to calculate nominal tail

probabilities for edge weight sums, a testing approach which is not based on an explicit null. As a

consequence, communities in weighted networks identified by this approach may in some cases be

spurious or unreliable, especially when no “true” communities exist.

19

The project presented in Chapter 3 has a three-fold purpose: (i) to provide an explicit null

model for networks with weighted edges, (ii) to present a community extraction method based

on hypothesis tests with the null, and (iii) to provide an analysis of the consistency properties of

the method with respect to a weighted stochastic block model. These contributions provide steps

toward a rigorous statistical framework with which to study communities in weighted networks.

Results of extensive simulations show that the proposed extraction method is more successful

than competitors at identifying overlapping and background nodes. The method also extracts

communities that align with key features of real data.

1.4.2 Community extraction for multi-layer, binary networks

As discussed in Section 1.3.4, some approaches to multi-layer networks proceed by either ag-

gregating layers into a single-layer weighted or multi-edge network, or by assuming that the same

community structure exists across all layers. In general, these practices ignore potential layer-

wise heterogeneity. As just one example from social networks, a group of individuals may be

well-connected via friendships on Facebook; however, this common group of actors will likely, for

example, not work at the same company. In realistic situations such as these, a given vertex

community may only be present in a proper subset of the layers. It may be of practical interest

to determine the persistence properties of such a community across various layer sets, something

which layer-aggregation or homogeneous multi-layer modeling cannot accomplish. In general, com-

plex and differential relationships between actors will be reflected in heterogeneous behavior of

different layers, behavior which existing multi-layer network community detection methods, for the

most part, cannot capture.

Chapter 4 introduces a multilayer community detection method called Multilayer Extraction,

which adaptively handles multilayer networks with heterogeneous layers. The primary purpose of

the chapter is to introduce a multilayer notion of significance for individual communities via a score

function, and to prove a consistency theorem for the score. To show how the score may be used, an

algorithm incorporating the score is presented and discussed, though the algorithm is mainly the

contribution of other authors on a recently-submitted associated paper.

20

1.4.3 eQTL analyses and bi-partite correlation networks

In Chapter 5, new methods to study expression Quantitative-Trait Loci (eQTL) networks are

presented. An expression Quantitative Trait Locus (eQTL) is a genetic polymorphism (typically

a single-nucleotide polymorphism, abbreviated by SNP) that is associated with transcriptional ex-

pression levels in a particular tissue. The statistical analysis of eQTLs has become increasingly

important in understanding molecular mechanisms by which genetic variation gives rise to complex

traits and human disease (cf. Morley et al. (2004); Gilad et al. (2008); Grundberg et al. (2012);

Westra et al. (2013)). For example, eQTL studies can be used to plausibly link disease pheno-

types analyzed in Genome-Wide Association Studies (GWAS) to gene expression, with recent work

focusing on variation across tissues (Gamazon et al., 2015; Ardlie et al., 2015). Although the un-

derlying biology is complex, a fundamental step in many analyses is to compare the genotypes of

a large number of SNPs to the expression levels of all known genes, which presents challenges in

computation and multiple testing (Wright et al., 2012). Effectively, the quantitative results of these

comparisons are edge weights on a complete bi-partite network consisting of SNP loci (henceforth

just called “SNPs”), on one side, and genes, on the other.

The first section of Chapter 5 presents a new model for investigating the association strength

of a single gene-SNP pair. Statistical analyses of eQTLs have often been based on standard linear

regression (Shabalin, 2012), with a focus on testing and detection of gene-SNP pair relationships.

A key step, commonly considered necessary to avoid false positives, has been to normalize and

transform the expression data prior to analysis (Beasley et al., 2009). However, normalization

removes the scale of the expression data, and with it, a natural measure of effect size due to

genotype. As a consequence, eQTL effect size has often been described in terms of regression

partial R2 between genotype and transformed expression (see for example Stranger et al. (2007)).

However, the R2 statistic can be highly sensitive to transformations of the response, and is difficult

to interpret biologically. An appropriate eQTL model should reflect a coherent model of allelic

contributions to expression, and be able to capture and describe evidence of dominance that is still

rarely examined in detail (Powell et al., 2013). Furthermore, a biologically appropriate effect-size

model improves the accuracy of hypothesis tests (as I will show), and provides reliable rankings of

eQTLs in terms of effect sizes as opposed to p-values.

21

In Section 5.1, I propose ACME-eQTL, a new model for the effect size of cis-acting eQTLs, in

which the effects of allele count on expression are Additive Contributions on the original expression

scale, with Multiplicative Error. In the ACME-eQTL model the log of expression is equal to

the log of a linear systematic term (“log-of-linear”) plus noise and covariate effects: this subtle

difference from standard log-linear modeling is of key importance in estimating and interpreting

effect sizes. Although the ACME-eQTL model is straightforward, it reflects a marked departure

from standard practice in eQTL analyses and has important implications for inferences from effect

sizes. The major contributions of this project are efforts to: (i) motivate and introduce the model,

(ii) provide a novel fitting algorithm and corresponding software package, and (iii) derive a means

to calculate and evaluate appropriate p-values. To support the use of the model, goodness-of-fit

tests are performed on real data from the GTEx Project (Lonsdale et al., 2013). Also considered

are the model’s robustness to skew in the residuals (under the null), and its superior power and

estimation accuracy compared with existing models (under the alternative).

In Section 5.2, the second section of Chapter 5, I introduce preliminary work on a community

detection method for eQTL networks. Rather than analyzing individual gene-SNP pairs, this

method assesses groups of eQTLs in the search for mutually cross-correlated sets of genes and

SNPs. This methodological research direction is relatively new, and has been applied to eQTL

networks in a few recent publications, for example in Huang et al. (2009); Bao et al. (2010);

Platig et al. (2015). The trend in these publications (among others) is to use the following general

procedure:

1. Compute all cross-correlations between genes and SNPs.

2. Dichotomize the cross-correlations through some inferential procedure.

3. Perform a binary community detection routine on the resulting bi-partite network.

This approach has two major drawbacks. The first is the computational burden. In modern-day

eQTL studies, the genes of interest number in the tens of thousands, and the SNPs of interest

number in the hundreds of thousands or millions. All three steps of the above approach are

computationally intensive for this scale of data. The second drawback is the information loss

incurred by step 2. The statistical significances of eQTLs, as determined by correlation values,

22

vary widely, so any threshold will be necessarily insufficient to capture the complex relationships in

the network. Furthermore, some community detection methods for bi-partite networks are based on

null models (e.g. Barber (2007)) that carry assumptions unreasonable for binary networks formed

by discretized correlations. In particular, a dichotomized correlation network contains edge-to-

edge correlations determined by the underlying partial-correlation structure of the expression data,

correlations which are not accounted for in standard models for binary graphs.

The community detection method for bi-partite correlation networks that I introduce, called

“Correlation Bi-Community Extraction” (CBCE), overcomes both of the aforementioned issues.

CBCE is formulated through a bi-partite network adaptation of the testing-based extraction frame-

work. In this setting, which is described in full in Section 5.2, the goal is to recover eQTL bi-

communities, consisting of a gene-subset, SNP-subset pair with large observed cross-correlations.

Being an extraction method, CBCE searches for modules one-by-one, which eliminates the need to

compute all cross-correlations or a full binary bi-partite network. This greatly reduces the com-

putational burden of the aforementioned approach. Furthermore, the hypothesis testing inherent

to CBCE is able to deal with the observed correlations directly, employing a specific null model

for correlation sums. In other words, CBCE directly uses all information available in the raw

correlation data, and is based upon a principled null model that reflects the correct distribution

of the variables at play. In Section 5.2, I detail the CBCE algorithm in full, provide theoretical

support for a p-value approximation, and show preliminary results comparing its performance to

some existing methods on simulated data.

1.5 Document Organization

The rest of the document is organized as follows. In Chapter 2, I present the testing-based

extraction framework in generality. In Chapters 3-5 that follow, I present the full scope of my work

on the projects introduced in Sections 1.4.1-1.4.3 (respectively).

23

CHAPTER 2

Node-Set Testing for Complex Networks

Though community detection methods vary widely, the notion of a “community” usually in-

volves the characteristic that constituent nodes are strongly internally associated, but weakly ex-

ternally associated. As discussed in Section 1.2, many classical approaches to detect this type of

association in networks rely on a univariate score of a node partition. Dependence on a partition

score can be limiting, since such a score must assess the communities defined by the partition

simultaneously, with one number. Furthermore, the vast majority of partition-based methods do

not come with a natural conception of statistical significance.

In this chapter, a methodological framework called Node-Set Testing (NST) is introduced for

community detection on networks with potentially multiple, heterogenous data types. The NST

framework involves explicit notions of statistical significance, and is motivated by recent iterative

testing-based methods introduced by Lancichinetti et al. (2011) and Wilson et al. (2014). These

methods, however, involve significance tests for binary networks only, and do not rigorously establish

the theoretical underpinnings of the approach. NST introduces a general yet rigorous definition of

a community that does not depend on any partition score. A generalized community extraction

algorithm for networks is then built around this definition. A theoretical result is established

regarding the error properties of the proposed extraction method.

2.1 Node-Set Testing Framework

Suppose we have a network with n nodes and corresponding data sets D := (D1, D2, . . . , Dm).

A single-layer binary network, for instance, has just one data set D1 = A, the adjacency matrix. A

weighted network, however, may have two data sets: D1 = A, the adjacency matrix, and D2 = W ,

the weight matrix. Note that A and W are distinct and worthy of separate consideration in cases

when weights can be zero despite the existence of an edge. In general, a full network data object

can be denoted by the double G := ([n],D).

Define an association function a : [n] × 2[n] 7→ R as some measure of the true relationship

between nodes and sets in G. For any u ∈ [n] and B ⊆ [n], a(u,B) > 0 indicates positive

association between u and B, a(u,B) < 0 indicates negative association, and a(u,B) = 0 indicates

no association. Using a(u,B), the notion of a community can be formally defined, as follows:

Definition 1. Given a : [n]× 2[n] 7→ R, a community is any node set C ⊆ [n] satisfying

(i) a(u,C) is positive for each u ∈ C, and

(ii) a(u,C) is non-positive for every u ∈ Cc.

The function a is a stand-out feature of the NST approach to community detection. In most

community detection methods, the meaning of “association” is tied to a fixed objective function

(like modularity or within-sum-of-squares). In contrast, in the NST framework, we have complete

freedom in our notion of association, and thus also in our notion of a community. Most often, a

will have an interpretation as a “ground-truth” or “population” value of some empirical measure

of association. Thus, strictly speaking, a(u,B) will depend on some (unknown) distribution P that

is assumed to have generated the data D. Here are examples of association functions from two

different types of networks:

1. Let G = ([n], A) be an undirected binary network with distribution P. Define the expected

edge count between u and B under P by

d̄(u,B) := E

(∑
v∈B

A[u, v]

)
. (2.1)

As discussed in Section 1.2.2, the appropriate null for binary networks is the Chung-Lu

(or configuration) model, in which edge probabilities are proportional to expected degrees.

Therefore, for us to call u and B truly associated, d̄(u,B) should be greater than the sum

of the corresponding null edge probabilities. Explicitly, let d̄(u) be the expected degree of

u under P, and d̄T the sum of expected degrees (as in Section 1.1). Recall that, if P is the

Chung-Lu model, we have P(A[u, v] = 1) = d̄(u)d̄(v)/d̄T . Thus, an appropriate association

25

function is

a(u,B) := d̄(u,B)−
∑
v∈B

d̄(u)d̄(v)

d̄T
:= d̄(u,B)− d̄(u)q̄(B), (2.2)

with q̄(B) := d̄−1
T

∑
v∈B d̄(v), the expected relative edge-density of B under the null. The

value q̄(B) is essentially the null probability that a randomly chosen edge connects to a node

in B. Thus, an interpretation of (2.2) is that u and B are associated if and only if d̄(u,B)

exceeds the null-expected proportion of d(u) incident with B.

2. Let X ∈ Rd×n be a matrix of Euclidean data. Define a correlation network by G = ([n],X),

where edges are identified with the sample Pearson correlations of the d-dimensional X data.

Assume X has population n×n correlation matrix Σ, with general element ρ(u, v). Then the

natural association function for detecting communities with high average internal correlation

is

a(u,B) :=
∑
v∈B

ρ(u, v). (2.3)

Unlike in the previous example, the sum of the edge population values ρ(u, v) is the association

measure of interest, and is equal to zero under the null, without centering. This contrast shows

the flexibility of the NST approach across different types of networks.

In the next section, a statistical approach to significance tests for values of a(u,B) is laid out,

yielding a general NST community extraction algorithm.

2.2 Node-set association testing

Let D represent the product space of the data D = (D1, . . . , Dm). To discover communities

satisfying Definition 1, we assume the existence of a summary statistic T : [n] × 2[n] × D 7→ R

with the characteristic that large enough values of T (u,B,D) suggest positive values of a(u,B).

We also assume the existence of an explicit null model Pθ which gives the distribution of D ∈ D

when a(u,B) = 0. Here, θ is a parameter (or set of parameters) for the null model. Assuming θ is

known, we can test the hypotheses

H0 : a(u,B) = 0 vs. HA : a(u,B) > 0 (2.4)

26

with the one-sided p-value

p(u,B,D) := Pθ
(
T (u,B, D̃) > T (u,B,D)

)
, (2.5)

where D̃ is a random realization of the network data under the null. However, in practice θ is

rarely known. Usually, θ must be estimated or set to plug-in values computed from the data.

This is analogous to the treatment of the unknown parameter p in a standard z-test of a binomial

random variable. The canonical confidence interval for p depends on p itself. Thus, the maximum

likelihood estimate p̂ is used in the formula for the interval, even though p̂ is also the test statistic

of interest. Data-dependent measures of connection strength are also not without precedent in

community detection methodology. In the modularity score, for instance, empirical degrees are

stand-ins for the (unknown) expected degrees of the Chung-Lu/configuration model.

Illustrating choices of T and Pθ in practical situations, the examples laid out in Section 2.1 are

continued:

1. To complete the NST framework for binary undirected networks, first recall that in this

setting, the network data is simply D = A, the adjacency matrix. We continue to write D to

conform to generic notation. In this setting, we use the test statistic

T (u,B,D) :=
∑
v∈B

A[u, v], (2.6)

and the Chung-Lu null model with parameter θ = (d̄(1), . . . , d̄(n)). In practice, θ is set to

the empirical degrees (d(1), . . . , d(n)). Let E denote expectation under P, the true generating

model of D. Let Eθ denote expectation under Pθ. Then

a(u,B) := d̄(u,B)− d̄(u)q̄(B) = E
[
T (u,B,D)

]
− Eθ

[
T (u,B, D̃)

]

Hence, if a(u,B) is positive, the p-value in (2.5) will be stochastically larger than uniform.

27

2. Finishing the NST framework for correlation networks, we recall that D = X, the Euclidean

data for the nodes [d], and define the test statistic

T (u,B,D) :=
∑
v∈B

r(u, v), (2.7)

where r(u, v) is the Pearson correlation between node u and v. Regarding the null model, re-

call that X is assumed to have true population correlations Σ with general entry ρ(u, v). Under

the null corresponding to the hypotheses (2.4), we assume that a(u,B) :=
∑

v∈B ρ(u, v) = 0.

If in fact a(u,B) is positive, however, the p-value in (2.5) will be stochastically larger than

uniform. Note that the distribution of T (u,B, D̃) depends on Σ. Therefore, we calculate the

p-value in (2.5) with the parameter θ = Σ̂, the estimated correlation matrix of X.

Derivations of closed-form expressions for the p-values in the examples above are part of their

respective applications of NST, and outside the scope of this framework. Wilson et al. (2014)

provided an asymptotic result for (2.6), which facilitated an approximate p-value in that setting.

Bodwin et al. (2015) gave a central limit theorem for a test-statistic similar to (2.7) for the mining

of differential correlation. Similar theoretical results are major components of my work on the NST

methods, introduced in the subsequent chapters of this thesis.

2.3 The Stable Community Search (SCS) algorithm

For arbitrary networks G = ([n],D), we now have the tools to determine the significance of the

empirical association of any node u ∈ [n] and any node set B ⊆ [n], via the p-value p(u,B,D).

The usage of this p-value function is within a community extraction algorithm based on multiple-

testing. Given a candidate community B, we “update” B by taking in (or keeping) significantly

connected nodes, as judged by p(u,B,D), and by leaving out (or expelling) others. Explicitly, the

update procedure can be written as the map Uα : 2[n] ×D 7→ 2[n], defined:

28

Core update Uα

Given a network G = ([n],D) and input set B ⊆ [n]:

1. Calculate p-values p := {p(u,B,D) : u ∈ [n]}.

2. Obtain threshold τ(p) from a multiple-testing procedure.

3. Return B′ := {u : p(u,B,D) 6 τ(p)}.

Remark: Many different multiple testing rules yielding τ are available, the most stringent

being the well-known Bonferroni correction. The choice of the multiple-testing rule should be

situation-specific, and will be addressed as needed in later chapters.

The update Uα is an exploratory tool for moving an input set B closer to a true community.

Consider that, if the initial set B has a majority group of nodes from a community C (as in

Definition 1), the association a(u,B) will be positive for u ∈ C, and non-positive otherwise. If T or

some transformation thereof is a good estimator of a, the statistics {T (u,B,D)}u∈[n] will be large

(or positive) for u ∈ C, and small (or negative) otherwise. Hence, Uα applied to B will return

many nodes in C, and few nodes in Cc. Indeed, ideally, we should expect Uα(C,D) to return C,

given strong enough signal in the data.

The preceding reasoning motivates an algorithm that searches for “stable communities” C

satisfying Uα(C,D) = C. By definition, all interior nodes of a stable community C are significantly

connected to C, and exterior nodes are not. Therefore, a stable community can be thought of as

an “empirical” true community. We define a stable community search procedure, which iteratively

applies Uα until convergence:

Stable Community Search (SCS) algorithm

Given a network G = ([n],D) and initial set B ⊆ [n]:

1. Set t = 1, Bt = B, and B0 := φ.

2. If Bt = Bt′ for any t′ < t, terminate and return Bt.

3. Set Bt+1 ← Uα(Bt,G) and t← t+ 1. Go to step 2.

29

Since the number of possible subsets Bt is finite, SCS is guaranteed to terminate. If t′ = t− 1,

then Uα(Bt,G) = Bt, and Bt is a stable community. If t′ < t, the algorithm has reached a stable

sequence of communities. In full detail, SCS will terminate in one of two states:

1. With a stable community C, satisfying Uα(C,G) = C.

2. With a stable sequence of sets B1, . . . , BJ satisfying

Uα(B1,G) = Uα(B2,G) = . . . = Uα(BJ ,G) = Uα(B1,G).

Stable sequences are somewhat problematic, as the each set in the sequence is, of course, not stable

itself. However, stable sequences are quite rare in practice. Furthermore, the stable sequences that

do arise are usually short, with highly overlapping node sets. Therefore, the constituent sets of

a stable sequence can still be of practical interest, for a given application. In Appendix A.1, an

algorithm is provided to resolve stable sequences which addresses these considerations.

2.4 Background and Type-I Error

Arguably, many nodes in real-world networks do not truly belong to any community. In this

thesis, these nodes are termed “background”, as in Wilson et al. (2014). Within the NST framework,

the notion of a background node can be formally defined as follows:

Definition 2. Let G be a random network with distribution P. Let a(u,B) be the population

association between u and B corresponding to P. Then u ∈ [n] is a background node if and only

if a(u,B) = 0 for all B ⊆ [n].

Remark. Note that a(u,B) < 0 would imply that u is negatively associated with B, and

is therefore not an example of null behavior. Node sets that are mutually negatively associated

are often said exhibit “disassortive” structure, which, though important in some contexts (Aicher

et al., 2014), is not as often of scientific interest. Though the approach introduced in this chapter

focuses on assortive structure, it lays the groundwork for extraction of disassortive communities, as

well. Extraction of disassortive communities could be accomplished by using left-tail rather than

right-tail p-values.

30

A real-world example of a background node in a network otherwise laden with communities is

a happenstance friend in a social network. Suppose you travel to a new city, and happen to meet

and spend some time with a local, or maybe fellow traveler. Subsequently, you decide to “friend”

this person on an online social platform. It is unlikely that your new friend will have significant

connectivity to your existing friend groups, like your college or high school friends, or your work

friends. Nonetheless, upon analysis of your social network, the classical partition-based community

detection methods discussed in Sections 1.2.1-1.2.4 will force this node into some community.

In contrast, the SCS algorithm is naturally suited to handle background nodes. Recall that,

by definition, for any background node u ∈ [n], we have a(u,B) = 0 for all B ⊆ [n]. Thus, for

any B ⊆ [n], the statistic T (u,B,D) will follow the null model, hence p(u,B,D) ∼ U [0, 1]. If

Uα employs an appropriate multiple testing rule, the proportion of background nodes in Uα(B,G)

should therefore be bounded in either expectation or probability, depending on the rule. The

classical multiple-testing rule is the well-known Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995), defined as follows:

1. Given a set of p-values p := {pu}u∈[n] and a target FDR α ∈ (0, 1).

2. Calculate the adjusted p-values p∗u := n pu / j(u), where j(u) is the rank of pu in p.

3. Compute threshold τ(p) := max{pu : p∗u 6 α}.

Benjamini and Hochberg (1995) show that if the p-values are mutually independent, this procedure

ensures that the expected proportion of false discoveries, or in our context, the expected proportion

of background nodes in Uα(B,G), is no greater than α.

2.4.1 Global Error Control

While use of the multiple-testing rule has direct implications about false discoveries in SCS

output sets, its implications for the global error of SCS are not immediately clear. In particular,

we define a null random network as follows:

Definition 3. Let G be a random network with distribution P. Let a(u,B) be the population

association between u and B corresponding to P. Then G is a null network if and only if a(u,B) = 0

for all u ∈ [n] and B ⊆ [n].

31

Note that, by Definition 2, G consists completely of background nodes. We now consider the

probability that SCS recovers any stable community in a null network. Ideally, any application

of the SCS algorithm on such a network will converge to the empty set. However, this is not

guaranteed, due to random fluctuations in the data. Explicitly, let G = ([n],D) be a random

network with distribution P. Define the set of stable communities in G as

C(D, α) := {B ⊆ [n] : Uα(B,D) = B} (2.8)

We define global Type I error at level α as P(C(|D, α)| > 0). One key assumption is needed on P

to bound the Type-I error at α.

Assumption 1. For B ⊆ [n], denote the set of p-values used by the update Uα by

p(B) := {p(1, B,D), . . . , p(n,B,D)}.

Assume that under P, for all B ⊆ [n], the p-values p(B) are independent and uniformly distributed.

The following theorem establishes that, under Assumption 1, the Type-I error is bounded by α if

Uα uses the Benjamini-Hochberg rule. The proof is given in Section A.2.

Theorem 4. (OST global error control)

Fix α ∈ [0, 1] and n > 1. Let G = ([n],D) be a random network with distribution Pn. Assume

Pn satisfies Assumption 1. Then if Uα uses the Benjamini-Hochberg multiple testing procedure,

P
(
|C(D, α)| > 0

)
6 α.

2.4.2 Discussion

The impact of Theorem 4 is powerful. First, note that the theorem makes no reference to the

type of network data. It depends only on the existence of a global null model that provides uniform

and independent p-values for the node-set test statistic. Second, the theorem depends only on the

update Uα(· ,G), not the SCS algorithm overall. Thus, the SCS algorithm should be viewed simply

as one way to search for fixed points. Importantly, the choice of initialization method for the SCS

algorithm, or ways to resolve cycles (discussed at the end of Section 2.3) do not have an effect

32

on global Type-I error. Theorem 4 regards the probability of the existence of fixed points, which

always upper-bounds our probability of finding them.

Of course, Theorem 4 has limitations. First, Assumption 1 is almost never satisfied exactly,

even when the network is completely null as in Definition 3. Small dependencies between the tests

arise due to inherent dependencies in network data. That said, in some simple cases it is easy to see

that these dependencies vanish uniformly with the size of the network. Consider a directed binary

network G := ([n], A), noting that here, A is not symmetric. Without loss of generality we assume

the rows of A contain the in-edges indicators of the network. The natural node-to-set association

statistic in this setting is then the in-degree of u to B, defined

~D(u,B,A) :=
∑
v∈B

A[u, v].

Consider that the statistics { ~D(1, B,A), . . . , ~D(n,B,A)} are, in this setting, mutually independent.

Therefore, if the p-values p(B) := {p(1, B,A), . . . , p(n,B,A)}, were exact, they would also be

mutually independent. However, as with the binary-network example laid out in the previous

sections, a reasonable null model in this setting depends on the expected degrees of the assumed

generative model of G, which are unknown and must be estimated from the data. In particular,

each p-value p(u,B,A) is a function of (and only of) ~D(u,B,A) and the observed in degrees

{ ~D(1), . . . , ~D(n)} where ~D(u) := ~D(u, [n], A) for all u ∈ [n]. Thus, for any finite n, the p-values

are dependent through the observed degrees.

However, as n approaches infinity, these dependencies vanish uniformly, since (in many standard

cases) the observed degrees will approach their limiting values. Thus, loosely speaking, the p-values

will be asymptotically exact and mutually independent. For instance, suppose that the unknown

generative model of G is a directed Erdős-Rényi network with edge probability 0.5. Under this

model, ~D(u) is a Binomial(n, 1/2) random variable, and from Bernstein’s Inequality and a union

bound it follows that

max
u∈[n]

{
| ~D(u)− n/2|

}
p−→ 0 as n→∞.

33

In practice, test-wise dependency issues for finite n can potentially be resolved by using more

stringent FDR control procedures, like that proposed by Benjamini and Yekutieli (2001). Variants

of Theorem 4 that involve these procedures are immediate areas for future work.

Another issue that limits the scope of Theorem 4 is that evaluation of tail probabilities for

reasonable node-set test statistics T often involve asymptotic distributional approximations. This

means that for finite n and any node set B, p-values will not be precisely uniform under the null.

The non-uniformity issue cannot be solved in generality, since every application of SCS involves a

different test statistic and, therefore, a different method (approximate or otherwise) of calculating

p-values. Thus, Theorem 4 does not perfectly guarantee Type-I error under a global null in any

application that involves a distributional approximation. However, empirical Type-I error control

for the methods presented in this paper has been verified in a variety of simulation settings, as will

be shown in subsequent chapters.

34

CHAPTER 3

Continuous Configuration Model Extraction

In this chapter, the Node-Set Testing framework introduced in Chapter 2 is applied to the

problem of community detection on weighted networks. The centerpiece of this application is the

introduction of a weighted network null model that allows for arbitrary degrees and (separately)

arbitrary weighted degrees. Such a model is currently absent from the literature. The null, called

the “continuous configuration model”, allows for rigorous statistical tests of graph statistics for

weighted networks. In particular, we define an NST test statistic for weighted networks, and apply

the continuous configuration model to yield a testing-based extraction method called CCME. The

continuous configuration model also serves as a useful tool for simulation. A benchmarking frame-

work introduced in the following sections involves simulated networks with both communities and

background nodes simulated under the null. Such networks with both communities and background

are crucial for validating the performance of community detection methods on realistic data.

The rest of this chapter is organized as follows. Chapter-specific notation is introduced in

Section 3.1. In Section 3.2, the continuous configuration model is motivated and stated. In Section

3.3, the NST test statistic is defined, and theoretical results are given establishing its limiting

distribution and asymptotic consistency properties. The overall implementation and application

of the core NST algorithm within CCME is described in Section 3.4. Evaluations of CCME’s

empirical efficacy on simulations and real data are presented in Sections 3.5 and 3.6 (respectively).

A discussion is offered in Section 3.7.

3.1 Notation and terminology

This section gives notation unique to this chapter, which will differ slightly from that presented

in Section 1.1. We denote an undirected weighted network on n nodes by a triple G := ([n], E, w),

where [n] := {1, . . . , n} is the node set, E is the edge set, consisting of all unordered node-pairs

{u, v} for which there is an edge between u and v, and w : [n] × [n] 7→ [0,∞) is a symmetric

function that assigns a non-negative weight to each pair of nodes with w(u, v) = 0 if {u, v} /∈ E.

The degree of a node u is defined by d(u) :=
∑

v∈[n] 1({u, v} ∈ E), and we denote the vector of

node degrees by d = (d(1), . . . , d(n)). In an analogous fashion, we define the strength of a node by

s(u) :=
∑

v∈[n]w(u, v), and the strength vector of the network by s = (s(1), . . . , s(n)). The total

degree and strength of G are given by dT :=
∑

v∈[n] d(v) and sT :=
∑

v∈[n] s(v), respectively.

3.2 The continuous configuration model

To understand the continuous configuration model, it helps to consider the intuition behind,

and use of, the binary configuration model for unweighted networks. The configuration model was

discussed in detail in Section 1.2.2; a brief reminder of that discussion is given here. The binary

configuration model for an n-node network is based on a given degree vector d corresponding to

the nodes. Studied originally in Bollobás (1980) and Bender (1974), the model is equivalent to

a process in which each node u receives d(u) half-edges, which are paired uniformly-at-random

without replacement until no half-edges remain (Molloy and Reed, 1995). In other words, the

model guarantees a graph with degrees d but otherwise uniformly distributed edges. Thus, given

an observed network with degrees d, a typical draw from the configuration model under d represents

that network without any community structure. This suggests that communities in an observed

binary network should be defined by node sets having intra-connectivity significantly beyond what

is expected under the model. Indeed, that is exactly how this model is employed in community

detection, beginning with the introduction of the modularity metric (see Section 1.2.3).

The degrees d of the configuration model can be thought of as the nodes’ relative propensities

to form ties. Chung and Lu made this notion explicit by defining a Bernoulli-based model for a

n-node unweighted network with a given expected degree sequence (Chung and Lu, 2002). Under

this model, the probability of nodes u and v sharing an edge is exactly d(u)d(v)/dT . As null model

for community detection, the Chung-Lu and configuration are often equated (Durak et al., 2013).

Indeed, for sparse graphs it can be shown that the probability of an edge between u and v under

the configuration model is approximately the Chung-Lu probability. The continuous configuration

model, introduced in this section, extends the spirit of the configuration and Chung-Lu models

36

by taking both observed degrees d and strengths s as node propensities for (respectively) edge

connection and edge weight. We define the model explicitly in the following sub-section. Some new

notation will be needed. Given a vector x of dimension n, we define for any indices u, v ∈ [n] the

ratio

ruv(x) :=
x(u)x(v)∑

u x(u)
(3.1)

Define r̃uv := min(1, ruv(x)). Note that when x is a degree sequence d, ruv(d) is the Chung-Lu

probability of an edge between nodes u and v. Finally, for a vector y of dimension n, define

fuv(x,y) := ruv(y)/r̃uv(x).

3.2.1 Model statement

The continuous configuration model on n nodes has the parameter set θ := (d, s, κ), where

d ∈ [n]n is a degree vector, s ∈ [0,∞)n is a strength vector, and κ > 0 is a variance parameter.

Let F be a distribution on the non-negative real line with mean one and variance κ. The model

specifies a random weighted graph G := ([n], E,W) on n nodes as follows:

1. P({u, v} ∈ E) = r̃uv(d) independently for all node pairs u, v ∈ [n]

2. For each edge {u, v} ∈ E, generate an independent random variable ξ(u, v) according to F ,

and assign edge weights by:

W (u, v) =

fuv(d, s)ξ(u, v) {u, v} ∈ E

0 {u, v} /∈ E

The edge generation defined by step 1 is equivalent to the Chung-Lu model: edge indicators are

Bernoulli, with probabilities adjusted by the propensities d. The weight generation in step 2 mirrors

this process. Edge weights follow the distribution F , with means adjusted by the propensities s,

through f(d, s). It is easily derived from the model that

P ({u, v} ∈ E) = min

{
1,

d(u)d(v)

dT

}
and E (W (u, v)) =

s(u)s(v)

sT
, (3.2)

37

equations which extend the binary-network notion of null behavior to edge weights. Furthermore,

if r(u, v) 6 1 for all u, v ∈ [n], the equations in 3.2 imply that

E (D(u)) = d(u) and E (S(u)) = s(u) for all u ∈ [n]. (3.3)

where D(u) and S(u) are (random) degree and strength of u under the model. Thus, the continuous

configuration model can be thought of as a random weighted graph with given expected degrees

and given expected strengths.

3.2.2 Null specification of the model

As described in Section 2.2, for the continuous configuration model to be used in an NST

algorithm, we must specify its parameter set θ based on the data. Given an observed network G,

we straightforwardly use the observed degrees and strengths d and s as the first two parameters

of the model. The third parameter of the continuous configuration model, κ, is also computed

from the G, and meant to capture its observed average edge-weight variance. We use the following

method-of-moments estimator to specify κ:

κ̂(d, s) :=
∑
{u,v}∈E

(w(u, v)− fuv(d, s))2 /
∑
{u,v}∈E

fuv(d, s)2 (3.4)

This estimator is derived as follows. Define the edge indicator euv := 1({u, v} ∈ E), and note that

under the continuous configuration model with d and s,

Var
(
W (u, v)

∣∣ euv) = fuv(d, s)2 Var (ξuv) = fuv(d, s)2 κ. (3.5)

Therefore

E

 ∑
{u,v}∈E

(W (u, v)− fuv(d, s))2
∣∣∣ E
 =

∑
{u,v}∈E

Var
(
W (u, v)

∣∣ euv)
= κ

∑
{u,v}∈E

fuv(d, s)2,

Dividing through by
∑
{u,v}∈Efuv(d, s) motivates equation 3.4.

38

Strictly speaking, the distribution F is also a parameter of the model. However, for the purposes

of the NST approach to weighted networks, we do not require a null specification of F . As we discuss

in the next section, p-values from the model will be based on a central limit theorem which requires

only a third-moment assumption on F . While estimating F could improve the model’s efficacy as

a null, in general this would require potentially costly computational procedures, and additional

theoretical assumptions that might be difficult to support or verify in practice. The specification

of F will be most useful for applications of the model that involve simulations or likelihood-based

analyses.

3.3 Test statistic and theoretical results

Following the NST framework introduced in Chapter 2, a summary statistic and an associated

significance test under the continuous configuration model is now established. These components

are to be used in an SCS algorithm for weighted networks. The final sub-sections consist of theo-

retical analyses of the statistic both under the null and under a model with planted communities.

3.3.1 A test statistic for node-set association in weighted networks

As a natural statistic of connectivity between a node u ∈ [n] and a set B ⊆ [n] in a weighted

network G = ([n], E,W), we define the sum of edge weights as

S(u,B,G) :=
∑
v∈B

W (u, v). (3.6)

We now begin to apply the NST framework laid out in Section 2.1. To do so, we assume that any

observed weighted network G is generated by an unknown random weighted network model with

distribution P. Our NST framework association quantity a(u,B) will then be the true expected

value of S(u,B,G) under P, minus its expected value under the continuous configuration null model.

This is analogous to the adaptation of NST to binary networks, illustrated in Section 2.2. To define

a(u,B) explicitly, we first give the expected value (and variance) of S(u,B,G) under the null:

Proposition 5. Let G = ([n], E,W) be a random network generated by the continuous configuration

model with parameters θ = (s,d, κ). For any (u,B) ∈ [n] × 2[n], let µ(u,B|θ) and σ(u,B|θ) be,

39

respectively, the mean and standard deviation of S(u,B,G) under G. Then

µ(u,B|θ) ≡ µ(u,B|s) =
∑
v∈B

ruv(s) (3.7)

and

σ(u,B|θ)2 =
∑
v∈B

ruv(s)fuv(d, s) (1− r̃uv(d) + κ) (3.8)

The proof, given in Appendix B.1, follows from easy calculations with the model’s generating

procedure (see Section 3.2.1). Denote the expected value under P by E, let S be the (random)

strengths from G under P, and define s̄ := E(S). Similarly to examples in Section 2.2, we then

define our NST association quantity as follows:

a(u,B) := E {S(u,B,G)} − µ(u,B|s̄). (3.9)

Of course, s̄ is not observed. Analogously to examples in Section 2.2, we base our inference about

S(u,B,G) on the continuous configuration model with parameter θ containing plug-in values com-

puted from the data. In particular, let θ = (D,S, κ̂(D,S)), where D and S are the degrees and

strengths from G, and κ̂ is the variance estimator defined in Section 3.2.2. Following the NST

framework (see Equation 2.5), we assess the (one-sided) statistical significance of S(u,B,G) with

the p-value

p(u,B,G) := Pθ(S(u,B, G̃) > S(u,B,G)), (3.10)

where G̃ is a random weighted network distributed according to Pθ. Note that, above, G is not

random with respect to Pθ; the operator Pθ acts as a distribution function on the observed value

of S(u,B,G).

Unfortunately, a closed-form expression for the p-value in (3.10) is analytical only for the

most trivial specifications of θ. Therefore, the p-values used for the update Uα(· ,G) cannot be

calculated exactly, in most cases. To overcome this issue, we seek test statistic for S(u,B,G) with

an asymptotic normal distribution. This analysis is the focus of the next section.

40

3.3.2 Asymptotic Normality of S(u,B,G)

A central limit theorem is now established for the summary statistic introduced in Section 3.3.1,

yielding a closed-form approximation for the p-value (3.10). In the setting of the theorem, for any

n > 1, a random network Gn is generated by a continuous configuration model with parameter

θn := (dn, sn, κn) and common weight distribution F . The following regularity conditions are

required on the sequence {θn}n>1. Let λn denote the average entry of dn, (which is the average

expected degree of Gn). For each r > 0 let Ln,r := n−1
∑

u∈[n](dn(u)/λn)r be the normalized

rth-moment of dn. Note that Ln,1 = 1. The regularity conditions are then as follows:

Assumption 2. There exists β > 0 such that, with en(u|β) := sn(u)/dn(u)1+β,

0 < lim inf
n→∞

min
u∈[n]

en(u|β) and lim sup
n→∞

max
u∈[n]

en(u|β) <∞.

Assumption 3. Let β be as in Assumption 2. There exists ε > 0 such that, for both r = 4β + 2

and r = 4β + 2 + ε,

0 < lim inf
n→∞

Ln,r and lim sup
n→∞

Ln,r <∞

Assumption 4. lim sup
n→∞

sup
u,v∈[n]

ruv(dn) <∞.

Assumption 5. The sequence {κn}n>1 is bounded away from zero and infinity, and F has finite

third moment.

Assumption 2 reflects the common relationship between strengths and degrees in real-world

weighted networks (Barrat et al. (2004); Clauset et al. (2009)). Assumptions 3-4 are needed to

control the extremal behavior of the degree distribution. They exclude, for instance, cases with

a few nodes having dn(u) � n and the remaining nodes having dn(u) = O(1). We note that the

Assumption 3 becomes more stringent as β increases, since as β increases the strength-degree power

law becomes more severe.

Theorem 6. For each n > 1, let Gn be generated by the continuous configuration model with

parameter θn and weight distribution F . Suppose {θn}n>1 and F satisfy Assumptions 2-5. Fix a

node sequence {un}n>1 with un ∈ [n] and a positive integer sequence {bn}n>1 with bn 6 n. Suppose

41

dn(un)bn/n → ∞ as n → ∞. Let Bn ⊆ [n] be a node set chosen independently of Gn according to

the uniform distribution on all sets of size bn. Then

S(un, Bn,Gn)− µn(un, Bn|θn)

σn(un, Bn|θn)
⇒ N (0, 1) as n→∞ (3.11)

The proof is given in Section B.6 of the supplemental. Essentially, Theorem 6 says that

S(u,B,G) is asymptotically Normal provided that B is “typical” and that d(u) and B are suf-

ficiently large. The theorem justifies the following approximation of the p-value in (3.10):

p(u,B) ≈ 1− Φ

(
S(u,B,G)− µ(u,B|θ)

σ(u,B|θ)

)
(3.12)

Above, θ is specified from the observed network G, as described in Section 3.2.2. With this p-value,

the SCS algorithm laid out in Section 2.3 can now be applied to weighted networks. In practice,

we find that using this approximation allows the algorithm to filter between background nodes and

nodes in real communities (see Section 3.5).

3.3.3 Consistency of SCS

In this section, we evaluate the ability of the SCS algorithm based on the continuous configu-

ration model to identify true communities in a planted-community model. Explicitly, we consider

a sequence of networks {Gn}n>1 where each network in the sequence is generated by a weighted

stochastic block model (WSBM). The WSBM we employ is similar to that presented in Aicher

et al. (2014), but is generalized to include node-specific weight parameters. In other words, it

is “strength-corrected” as well as degree-corrected, in a manner analogous to the original degree-

corrected SBM (Coja-Oghlan and Lanka, 2009). The proofs of Theorem 8 and Theorem 9 are given

in Appendix B.7.

3.3.3.1 The weighted stochastic block model

For fixed K > 0, we define a K-block WSBM on n > 1 nodes as follows. Let cn be a

community partition vector with cn(u) ∈ [K] giving the community index of u. Denote community

i by Ci,n := {u : cn(u) = i}. Define πi,n := n−1|Ci,n| with πn the associated vector. Let P and M

42

be fixed K ×K matrices with non-negative entries encoding intra- and inter-community baseline

edge probabilities and edge weight expectations, respectively. Let φn and ψn be arbitrary n-vectors

with positive entries, which are parameters giving nodes individual propensities to form edges and

assign weight (independent of P and M). To ensure proper edge probabilities, we assume that

max(φn)2 max(P) 6 1. For identifiability, we assume the vectors φn and ψn sum to n. Finally, let

F be a distribution on the positive real line with mean 1 and variance σ2 > 0. The WSBM can

then be specified as follows:

1. Place edge {u, v} with probability Pn({u, v} ∈ E) = ruv(φn)P[cn(u), cn(v)], independently

across node pairs.

2. For each edge {u, v} ∈ E, generate an independent random variable ξ(u, v) according to F .

Determine edge weight W (u, v) by:

W (u, v) =

0 if {u, v} /∈ E

fuv(ψn, φn)M[cn(u), cn(v)]ξ(u, v) if {u, v} ∈ E

The many parameters involved with this model allow for node heterogeneity and community

structure. When P and M are proportional to a K ×K matrix of ones, the WSBM reduces to the

continuous configuration model with parameters d ∝ φ, s ∝ ψ, and κ = σ2. Community structure

is introduced in the network by allowing the diagonal entries of P and M to be arbitrarily larger

than the off-diagonals.

3.3.3.2 Consistency theorem

Fix K > 0. For our consistency analysis of SCS, we consider of a sequence of random networks

{Gn}n>1, where Gn is generated by a K-community WSBM. In this setting, we incorporate an

additional parameter ρn, and let Pn := ρnP replace P for each n > 1. This lets us distinguish the

role of the asymptotic order of the average expected degree, defined λn := nρn, from the profile of

the edge densities within and between communities (P). Importantly, our results require only that

λn/ log n→∞, reflecting the sparsity of real-world networks. Throughout this section, we denote

the vector of (random) strengths from Gn by Sn.

43

We now define an explicit notion of consistency in terms of the SCS algorithm. Recall from

Chapter 2 that for fixed FDR α ∈ (0, 1), a set C ⊆ [n] from a network Gn is a stable community if

Uα(C,Gn) = C.

Definition 7. We say that SCS is consistent for a sequence of WSBM random networks {Gn}n>1

if for any FDR level α ∈ (0, 1), the probability that the true communities C1,n, . . . , CK,n are stable

communities approaches 1 as n→∞.

To assess the conditions that allow a target set C to be a stable community, we seek more general

conditions under which the update Uα(· ,G) outputs C given any initial set B. If Uα(B,Gn) = C,

all nodes u ∈ C must have significant connectivity to B, as judged by the p-value approximation

defined in 3.12. It is clear from that p-value expression that, for the update to return C, the

test statistic S(u,B,Gn) must be significantly larger than µ(u,B|Sn), its expected value under the

continuous configuration model. Therefore, our first result hinges on asymptotic analysis of that

deviation, which we denote by

A(u,B,Gn) := S(u,B,Gn)− µn(u,B|Sn). (3.13)

Note that the “population” value of A(u,B,Gn), with all random variables replaced by their ex-

pected values, is precisely our NST association quantity (see Equation 3.9) between u and B under

Gn. Explicitly, let En denote expectation under Gn, and define s̄n := ESn. The true association

between any u ∈ [n] and B ⊆ [n] under Gn is then an(u,B) := EnS(u,B,Gn)− µ(u,B|s̄n). Hence,

if an(u,B) > 0, u should be included in the set update. The purpose of Theorem 8 is to make this

notion rigorous. The theorem is stated in terms of a normalization of an, defined

ãn(u,B) := λ−1
n an(u,B), (3.14)

where λn is the order of the average expected degree. Given a sequence of initial sets {Bn}n>1 and

target sets {Cn}n>1, Theorem 8 establishes that Uα(Bn,Gn) = Cn with probability approaching 1

if an(u,B) is bounded away from zero, and is positive if and only if u ∈ Cn. The theorem requires

the following two assumptions:

44

Assumption 6. There exist constants m+ > m− > 0 such that, for all n > 1, the entries of φn,

ψn, P, M, and πn are all bounded in the interval [m−,m+].

Assumption 7. F is independent of n and has support (0, η) with ν <∞.

Assumption 6 is standard in consistency analyses involving block models (e.g. Zhao et al.

(2012), Bickel and Chen (2009)). Note that it does not imply constant edge density, as the sparsity

parameter ρn is allowed to vanish. Assumption 7 allows the use of Bernstein’s inequality throughout

the proof, but may be relaxed if there are constraints on the moments of F allowing the use of a

similar inequality.

Theorem 8. Fix K > 1. For each n > 1, let Gn be a n-node random network generated by a

K-community WSBM with parameters satisfying Assumptions 6 - 7. Suppose λn/ log n→∞. Let

{Bn}n>1, {Cn}n>1 be sequences of node sets satisfying the following: there exist constants q ∈ (0, 1]

and ∆ > 0 such that for all n sufficiently large, |Bn|, |Cn| > qn, and

ãn(u,Bn) > ∆, u ∈ Cn, and ãn(u,Bn) 6 −∆, u /∈ Cn. (3.15)

Then if the update Uα uses the p-value approximation given in Equation (3.12),

Pn
(
Uα(Bn,Gn) = Cn

)
→ 1 as n→∞.

To prove the consistency of SCS, we show that condition 3.15, when it involves the community

sequence, is guaranteed by a concise condition on the model parameters. Let π̃i,n :=
∑

v∈Ci,n ψn(v),

and π̃n the vector of π̃i,n’s. The consistency theorem requires the following additional assumption,

an analog to which can be found in Zhao et al. (2012) for consistency of modularity under the

degree-corrected SBM:

Assumption 8. π̃n ≡ π̃ does not depend on n.

Assumption 8 can be ignored with the minor complication that (3.16) must then hold for

sufficiently large n. Define H := P ·M, the entry-wise product. Note that when φ and ψ are

proportion to 1-vectors, E[W (u, v)] = H[c(u), c(v)] for all u, v ∈ [n]. Thus, the interpretation of H

45

is as the baseline inter/intra-community weight expectations after integrating out edge presence.

Defining Π̃ := π̃π̃t, we state the consistency theorem:

Theorem 9. Fix K > 0. Let {Gn}n>1 be a sequence of networks generated by a K-community

WSBM satisfying Assumptions 6-8. Suppose that the matrix

M := H− HΠ̃H

π̃tHπ̃
(3.16)

has positive diagonal entries and negative off-diagonal entries. If λn/ log n→∞, SCS is consistent

for {Gn}n>1.

Understanding of condition 3.16 begins with the consideration of the case K = 2, when it

reduces to the requirement that H[1, 1]H[2, 2] > H[1, 2]2. Interestingly, this condition implies that

when (for example) we have

H =

 0.5 0.25

0.25 0.25

 ,
Uα is consistent for both communities, even though community 1 nodes have the same baseline

weight expectation to community 2 nodes as they do to other community 1 nodes. To see why, con-

sider a WSBM with the H matrix above and ψ proportional to the 1-vector, inducing homogenous

within-community expected strengths. Under this model, the expected strengths from community

2 are less than those from community 1. Therefore, under the corresponding continuous configu-

ration model, we expect nodes from community 2 to have higher baseline weight expectation to

nodes from community 1.

In some sense, then, the matrixM reveals whether or not appropriate signal exists in the model,

with respect to the continuous configuration null. Notice that this signal need not be present in

both P and M. For instance, the condition would be satisfied if H is a scalar multiple of M, that

is, if P is proportional to the 1-matrix. This entails that SCS is consistent even when the edge

structure of Gn is Erdős-Renyi, as long as the edge weight signal is assortative. Of course, the

opposite also holds, namely that SCS is consistent even when assortative community signal is only

present in P.

46

3.3.3.3 Connection to weighted modularity and related work

The conditions of Theorems 8-9 have a deep relationship to weighted modularity (WM), which

is the modularity metric with degrees replaced by strengths (Newman, 2004a). For fixed n > 1, let

c be any partition of [n]. Define K := max{c} and Cu := {v : c(v) = c(u)}. Then the (random)

WM of c on Gn can be written

Qwn (c) :=
1

Sn,T

∑
uv∈[n]

{W (u, v)− ruv(Sn)}1{c(u) = c(v)}

=
1

Sn,T

∑
i∈[K]

∑
c(u)=c(v)

W (u, v)− ruv(Sn) =
1

Sn,T

∑
u∈[n]

∑
v∈Cu

W (u, v)− ruv(Sn)

=
1

Sn,T

∑
u∈[n]

Sn(u,Cu)− µn(u,Cu|Sn) =
1

Sn,T

∑
u∈[n]

A(u,Cu,Gn)

Thus, the contribution of u to WM with its assignment Cu is precisely the random association from

u to Cu. Writing the population WM as q̄wn (C) := n−1
∑

u ãn(u,Cu), it can be shown that condition

(3.16) implies qwn is maximized by Cn, the true community partition.

The consistency analysis of the (binary) modularity metric under the degree-corrected SBM,

provided by Zhao et al. (2012), similarly hinges on maximization of population modularity. It is

unsurprising, then, that the parameter condition for their result can be (analogously) expressed as

a fixed K ×K matrix having positive diagonals and negative off-diagonals. In fact, if the WSBM

parameter M is proportional to a matrix of 1s, and the parameter ψ is a scalar multiple of φ,

condition 3.16 in Theorem 9 is equivalent to the parameter assumptions on modularity consistency

in Zhao et al. (2012). Furthermore, their analysis also requires that λn/ log n→∞. However, the

definition of consistency and proof approach for the theorems here are entirely novel.

3.4 The Continuous Configuration Model Extraction algorithm

In the previous section, we established an asymptotic result showing that ground-truth commu-

nities are, with high probability, fixed points of the SCS algorithm using the test statistic S(u,B,G)

and the p-value approximation in (3.12). This result demonstrates the in-principle sensibility of

the search algorithm. In practice, we must rely on local, heuristic algorithms for initialization and

termination, as with other exploratory methods. For instance, k-means is often used to initialize the

47

EM algorithm, and modularity is often locally maximized through agglomerative pairing (Clauset

et al., 2004). We incorporate SCS in a general community detection method for weighted networks

entitled Continuous Configuration Model Extraction (CCME), written in loose detail as follows:

The CCME Community Detection Method for Weighted Networks

1. Given an observed weighted network G, obtain initial node sets B0 ⊆ 2[n].

2. Apply SCS to each node set in B0, resulting in stable communities C.

3. Remove sets from C that are empty or redundant.

We describe steps 1 and 3 in more detail below (step 2 was covered thoroughly in Section 2.3).

Importantly, the method has no connection to any graph-partition criteria. It proceeds solely by

the SCS algorithm, which assesses communities independently. This allows CCME to adaptively

return overlapping communities and background nodes.

3.4.1 Step 1: Initialization

Just as estimation procedures for mixture-models can be initialized with heuristic techniques

like k-means, it is possible to initialize CCME with partition-based community detection algorithms.

However, we have observed this approach to perform somewhat poorly in practice. Instead, we

initialize with a novel, more thorough algorithm based on the continuous configuration model. For

a fixed node u ∈ [n], and any node v ∈ [n], we define

zu(v) :=
w(u, v)− fuv(s,d)√

θfuv(s,d)
∨ 0

The measure zu(v) acts like a truncated z-statistic, quantifying the extremity of the weight w(u, v).

The initial node set corresponding to u, denoted by B0(u), is formed by sampling d(u) nodes with

replacement from [n] with probability proportional to zu(v). The intuition behind this procedure

is that if u is part of a highly-connected node set C, then zu(v) for nodes v ∈ C will be larger (on

average) than for other nodes.

48

3.4.2 Step 3: Filtering of C

The CCME community detection method returns a final collection of communities C, containing

the results of the SCS algorithm for each initial set in B0. By default, we remove any empty or

duplicate sets from C. In some applications, pairs of sets in C will have high Jaccard similarity.

In Appendix B.2, we detail a method of pruning these near-duplicates from C. Additionally, in

Appendix B.2, we describe routines to suppress the application of SCS to initial sets that are

“weakly” intra-connected, or with high overlap to already-extracted communities. These routines

greatly reduce the runtime of CCME, and, on some simulated networks, improve accuracy.

3.5 Simulations

This section contains a performance analysis of CCME and existing methods on a benchmark-

ing simulation framework. Simulated networks are generated from the Weighted Stochastic Block

Model (see Section 3.3.3.1), with slight modifications to include overlapping communities and back-

ground nodes, when necessary. The performance measures, competing methods, simulation settings,

and results are described in the subsections below.

3.5.1 Performance measures and competing methods

To assess the performance of a community detection method, three measures are used:

1. Overlapping Normalized Mutual Information (oNMI): Introduced by Lancichinetti

et al. (2009), oNMI is an information-based measure between 0 and 1 that approaches 1 as

two covers of the same node set become similar and equals 1 when they are the same. From a

method’s results, we calculate oNMI with respect to the true communities only for the nodes

the method placed into communities.

2. Community nodes in background (%C.I.B.): The percentage of true community nodes

incorrectly assigned to background.

3. Background nodes in communities (%B.I.C.): The percentage of true background

nodes (if present) incorrectly placed into communities.

49

In addition to CCME, two other weighted-network methods capable of identifying overlapping nodes

are assessed. One of these is OSLOM (Lancichinetti et al., 2011), as described in Section 1.3.1. The

other is SLPAw, a weighted-network version of a recent overlapping label propagation algorithm

Xie et al. (2011). Also included are three commonly used partition-based methods implemented

the R package igraph (Csárdi and Nepusz, 2006): Fast-Greedy, which performs local modularity

optimization via a hierarchical agglomeration (Clauset et al., 2004); Walktrap, an agglomerative

algorithm that locally maximizes a score based on random walk theory (Pons and Latapy, 2006);

Infomap, an information-flow mapping algorithm that uses random walk transition probabilities

(Rosvall and Bergstrom, 2008).

Remark 1. Being extraction methods, only CCME and OSLOM directly specify background

nodes. For all other methods, we manually specify background nodes as all nodes in singleton

communities. However, these methods almost never returned singleton communities, even under

weak or non-existent signal.

Remark 2. A more thorough simulation study would include other modularity maximization

algorithms, especially those not implemented in R. However, as CCME is coded in R, the easiest

initial benchmarking step is to compare it with other community detection algorithms with imple-

mentations in the same language. Furthermore, we have not yet implemented weighted stochastic

block model fitting algorithms (e.g. Aicher et al. (2014)) into the benchmarking study, as initial

attempts to run these algorithms proved computationally intensive.

3.5.2 Simulation settings and results

In this section an overview of the simulation procedure for the benchmarking framework is

given. We relegate precise details to Appendix B.3. We first describe “default” parameter settings

of the WSBM; in the simulation settings below, individual parameters are toggled around their

default values, to reveal the dependence of the methods to those parameters. At each unique

parameter setting, 20 random networks were simulated. The points in each plot from Figure 3.1

show the average performance measure of the methods over the 20 repetitions.

The default WSBM setting has the number of nodes at n = 5, 000. The community member-

ships were set by obtaining community sizes from a power law, then assigning nodes uniformly at

random. This process produced approximately 3 to 7 communities per network. Full details are

50

provided in Appendix B.4.1. Recall the parameters P and M, which induce baseline intra- and

inter-community edge and weight signal. In the default setting, these matrices have off-diagonals

equal to 1 and diagonals equal to constants se = 3 and sw = 3 (respectively). In some simulation

settings, overlapping and background nodes are added (as described later in this section), but the

default setting includes neither overlap nor background.

Common parameter settings. For all simulated networks (regardless of the setting), the

node-wise edge parameters φ were drawn from a power law to induce degree heterogeneity. The

parameter φ is scaled so that the expected average degree of each network was equal to
√
n, which

induces sparsity in the network. The parameter ψ is set by the formula ψ = φ1.5 to ensure a

non-trivial relationship between strengths and degrees. See Appendix B.4.3 for full detail.

3.5.2.1 Networks with varying signal levels

The first setting tested the methods’ dependence on se and sw. These values were moved along

an even grid on the range [1, 3]. Plots A-1 and B-1 in Figure 3.1 show the performance measure

results when sw is fixed at 3, plots A-2 and B-2 show results when se = 3, and plots A-3 and B-3

show results when se and sw are moved along [1, 3] together. Many methods had large oNMI scores

in this simulation setting. We transformed the oNMI scores using the function

t-oNMIa(x) := (1
1−x+a −

1
1+a)/(1

a −
1

1+a)

with a = 0.05. This is a monotonic, one-to-one transformation from [0, 1] to itself, which stretches

the region close to 1, allowing a clearer comparison between the methods’ performances. CCME

consistently out-performed all competing methods, especially when either the edge or weight signal

was completely absent.

The plots in row B show that when either se or sw were near 1, OSLOM and CCME assigned

many background nodes. This is consistent with these methods’ unique abilities to leave nodes

unassigned when they are not significantly connected to communities. That said, %C.I.B. can be

seen as a measure of sensitivity, since ideally no nodes would be assigned to background when any

signal is present. In this regard, CCME outperformed OSLOM, sometimes handily.

51

3.5.2.2 Networks with overlapping communities

The second setting involved networks with overlapping nodes. To add overlapping nodes to

the default network, two parameters were introduced: on, the number of overlapping nodes, and

om, the number of memberships for each overlapping node. The particular overlapping nodes

and community memberships were chosen uniformly-at-random. This closely follows a simulation

approach taken by Lancichinetti et al. (2011). Plots C-1 and C-2 show performance results from

the setting with on moving away from 0 and om = 2. Plot C-3 shows results from the setting with

on = 500 and om ∈ {1, . . . , 4}. We find that CCME consistently outperforms all methods in terms

of accuracy (oNMI), and outperforms OSLOM in terms of sensitivity (%C.I.B.).

3.5.2.3 Networks with overlapping communities and background nodes

The final simulation setting involved networks with both overlap and background nodes. The

number of background nodes was fixed at 1,000, and number of community nodes varied from

n = 500 to n = 5, 000. For each network, on = n/4 nodes were randomly chosen to overlap

om = 2 communities (also chosen at random). Background nodes were created by first simulating

the n-node community sub-network, and then generating the 1,000-node background sub-network

according to the continuous configuration model, using empirical degrees and strengths from the

community sub-network. The complete details of this procedure are given in the Appendix B.5.

The results of this simulation setting are shown in row D from Figure 3.1. From plot D-1, we

see that OSLOM and CCME had the highest oNMI scores, favoring OSLOM when the number

of community nodes decreased. Because this simulation setting involved background nodes, the

%B.I.C. metric is relevant, and can be taken as a measure of specificity: ideally, nodes from

the background sub-network should be excluded from communities. From plot D-2, we see that

methods incapable of assigning background had %B.I.C. equal to 1. We found that CCME correctly

ignored background nodes as the network size increased, whereas OSLOM became increasingly anti -

conservative for larger networks. Furthermore, CCME again had lower %C.I.B. than OSLOM.

52

Figure 3.1: Simulation results described in Sections 3.5.2.1-3.5.2.3. Legends correspond to all plots.

53

3.6 Applications

In this section, results from CCME, OSLOM, and SLPAw (the methods capable of returning

overlapping communities) on two real data sets are discussed.

3.6.1 U.S. airport network data

The first application involves commercial airline flight data, obtained from the Bureau of Trans-

portation Statistics (www.transtats.bts.gov). For each month from January to July of 2015, we

created a weighted network with U.S. airports as nodes, edges connecting airports that exchanged

flights, and edges weighted by aggregate passenger count. We also constructed a year-aggregated

network, formed simply by taking the union of the month-wise edge sets, and adding the month-wise

weights.

With the monthly data, OSLOM and CCME tended to find communities consistent with geog-

raphy, whereas SLPAw placed most of the network into one community. With the year-aggregated

data, OSLOM also agglomerated most airports, whereas CCME continued to respect the geography.

Since the aggregated data is much more edge-dense, this suggests the performance of OSLOM and

SLPA may suffer on weighted graphs with high or homogeneous edge-density, whereas CCME is

able to detect proper community structure from the weights alone. This aligns with the simulation

results described in Section 3.5.2.1. In Figure 3.2, we display the methods’ results when applied

to the June and year-aggregated data sets from 2015. We provide results from other months in

Figures B.3-B.5 of the Appendix.

3.6.2 ENRON email network

An email corpus from the company ENRON was made available in 2009. In the networks liter-

ature, the un-weighted network formed by linking communicating email addresses is well-studied;

see www.cs.cmu.edu/~./enron for references and Leskovec et al. (2010b) for the data. For the pur-

poses of this paper, we derived a weighted network from the original corpus, using message count

between addresses as edge weights. Though the corpus was formed from email folders of 150 EN-

RON executives, we made the network from addresses found in any message. This full network has

80,702 nodes, comprised of a majority of non-ENRON addresses, and likely many spam or irrele-

54

Figure 3.2: SLPAw, OSLOM, and CCME results from June 2015 and 2015-year-aggregated U.S. airport
networks. Maps created with ggmap (Kahle and Wickham, 2013)

55

vant senders. Thus the network has many potential “true” background nodes. We applied CCME,

OSLOM, and SLPAw to the network to see which methods best focused on company-specific areas

of the data.

Tables 3.1 and 3.2 give basic summaries of the results, which show noticeable differences between

the outputs of the methods. CCME placed far fewer into nodes into communities, but detected

larger communities with more overlapping nodes. Notably, CCME had the highest percentage of

ENRON addresses among nodes it placed into communities (see Table 3.3). These results suggest

that CCME was more sensitive to critical relationships in the network.

Table 3.1: Metrics from methods’ results on ENRON network: number of communities, minimum com-
munity size, median community size, maximum community size, count of nodes in any community

Num.Comms Min.size Med.size Max.size Num.Nodes
CCME 185 2 687 5416 14552

OSLOM 405 2 19 770 17635
SLPAw 2138 2 4 4793 79316

Table 3.2: Metrics from methods’ results on ENRON network: number of overlapping nodes, minimum #
of memberships, median # of mem’ships, max. # of mem’ships

Num.OL.Nodes Min.mships Med.mships Max.mships
CCME 8104 2 9 78

OSLOM 462 2 2 8
SLPAw 3860 2 2 4

Table 3.3: Top domains associated with community nodes from each method, by proportion

CCME.Domains Prop.
enron.com 0.784

aol.com 0.008
cpuc.ca.gov 0.006

pge.com 0.004
socalgas.com 0.003
dynegy.com 0.003

OSLOM.Domains Prop.
enron.com 0.529

aol.com 0.029
haas.berkeley.edu 0.016

hotmail.com 0.015
yahoo.com 0.009
jmbm.com 0.005

SLPAw.Domains Prop.
enron.com 0.423

aol.com 0.039
hotmail.com 0.023
yahoo.com 0.016

haas.berkeley.edu 0.007
msn.com 0.006

3.7 Discussion

This chapter introduced the continuous configuration model, the first null model for community

detection on weighted networks. The continuous configuration model allows for the construction

of a flexible and powerful community extraction method called CCME, via the NST framework. It

was shown that a standardized statistic for CCME tests is asymptotically normal, a result which

enables an analytic approximation to p-values used in the method. Another theorem established

56

asymptotic consistency under a weighted stochastic block model for the stable-community search

procedure inherent to CCME.

On simulated networks the proposed method CCME is competitive with the best existing

community detection methods. CCME was the dominant method for simulated networks with

large numbers of overlapping nodes. Furthermore, on networks with background nodes, CCME

was the only method to correctly label true background nodes while maintaining high detection

power and accuracy for nodes belonging to communities. On real data, CCME gave results that

accorded with known (external) features of the data set.

The continuous configuration model may have applications outside the setting of this paper.

One may investigate the distributional properties of many different graph-based statistics under

the model, as a means of assessing statistical significance in practice. For instance, the appropriate

theoretical analysis, for which Theorem 6 may be a precedent, could yield an approach to the

assessment of statistical significance of weighted modularity. Another benefit of an explicit null for

weighted networks is the potential for simulation. Using the continuous configuration model, and

parts of the framework presented in this paper, one can generate weighted networks having true

background nodes with arbitrary expected degree and strength distributions.

Software. The R code for the CCME method is available in the github repo ‘jpalow-

itch/CCME’. The code for reproducing the analyses in Sections 3.5 and 3.6 is available at the

github repo ‘jpalowitch/CCME analyses’.

57

CHAPTER 4

Multi-layer Community Extraction

This chapter is devoted to the multilayer network community extraction method introduced

briefly in Section 1.4.2. Importantly, the method applies to un-weighted multilayer networks only.

We note this because the last chapter was devoted to a study of weighted single-layer networks.

Henceforth in this chapter, all discussion of networks will pertain to the un-weighted, multi-layer

setting. The first section presents a multilayer network null model and a significance score for

multi-layer vertex sets. In Section 4.2, theoretical results are introduced regarding the asymptotic

consistency properties of the proposed score. Section 4.3 provides a detailed description of the

Multilayer Extraction procedure that incorporates the score.

4.1 Significance-based scoring of a vertex-layer group

Seeking a vertex partition that optimizes, or approximately optimizes, an appropriate score

function is a standard approach to single layer community detection (e.g. (Newman, 2006b; Wang

and Wong, 1987; Chung, 1997); see Section 1.2.3 for a complete discussion). Rather than scoring a

partition of the available network, Multilayer Extraction makes use of a significance based score that

is applicable to individual vertex-layer sets. In the following sections, we describe the multilayer null

model, and then the proposed score. First, we define some notation that will be used exclusively

for this chapter and Appendix C. Let G(m,n) = ([n], [m], (E1, . . . , Em)) be an observed (m,n)-

multilayer network, with [n] = 1, . . . , n the node set, [m] = 1, . . . ,m the layer set, and E` the edge

set of layer ` ∈ [m]. For each layer ` ∈ [m] and pair of vertices u, v ∈ [n], let

x`(u, v) = 1({u, v} ∈ E`)

indicate the presence or absence of an edge between u and v in layer ` of G(m,n). The degree of a

vertex u ∈ [n] in layer `, denoted by d`(u), is the number of edges incident on u in G`. Formally,

d`(u) =
∑
v∈[n]

x`(u, v).

The degree sequence of layer ` is the vector d` = (d`(1), . . . , d`(n)) of degrees in that layer; the full

degree set of G(m,n) is the list d = (d1, . . . ,dm) containing the degree sequence of each layer in

the network. Define as dT,` :=
∑

u∈[n] d`(u) the total degree in layer `. In this section, a partition

vector c retains its meaning from Chapters 1-3, but we denote its elements by cu instead of c(u).

4.1.1 The Null Model

Our significance-based score for vertex-layer sets in multilayer networks is based on comparing

observed graph statistics with a null distribution, as in the NST framework (Chapter 2). The null

model we use for this algorithm is best described as a multi-layer configuration model, where each

layer of a random network is generated (independently) according to the single-layer configuration

model. The single-layer configuration model was described in detail in Section 1.2.2. We give a

brief reminder of the model, using the notation from this setting. Let G(m,n) denote the family of

all (m,n)-multilayer networks. Given the degree sequence d of the observed network G(m,n), we

define a multilayer configuration model and an associated probability measure Pd on G(m,n), as

follows. In layer G1, each node is given d1(u) half-edges. Pairs of these half-edges are then chosen

uniformly at random, to form edges until all half-edges are exhausted (disallowing self-loops and

multiple edges). This process is done for every subsequent layer G2, . . . , Gm independently, using

the corresponding degree sequence from each layer.

Under the above null model, each layer is generated according to the Molloy and Reed (1995)

algorithm for the single-layer configuration model Bollobás (1980); Bender (1974). The probability

of an edge between nodes u and v in layer ` depends only on the degree sequence d` of the observed

graph G`. The distribution Pd has two complementary properties that make it useful for identifying

communities in an observed multilayer network: (i) it preserves the degree structure of the observed

network; and (ii) subject to this restriction, edges are assigned at random. As discussed in 1.2.2,

59

these characteristics have caused configuration model to have long been taken as the appropriate

null model against which to judge the quality of a proposed community partition.

The configuration model is the null model which motivates the modularity score of a partition

in a network (Newman, 2004b, 2006b). Recall the modularity score, discussed in Section 1.2.3:

Q(c) :=
1

dT

∑
u,v∈[n]

(
x(u, v)− d(u)d(v)

dT

)
1(c(u) = c(v)) (4.1)

A brief reminder of the motivation for this score is as follows. Above, the ratio d(u)d(v)/dT is

the approximate expected number of edges between u and v under the configuration model. If

the partition c represents communities with a large observed intra-edge count relative to what is

expected under the configuration model, it receives a high modularity score. The identification of

the communities that (approximately) maximize the modularity of a partition is among the most

common techniques for community detection in networks.

4.1.2 Multilayer Extraction Score

Rather than scoring a partition, the Multilayer Extraction method scores individual vertex-layer

sets. We define a multilayer node score that is based on the single-layer modularity score (4.1) and

amenable to iterative maximization. We first define a local set modularity for a collection of vertices

B ⊆ [n] in the layer ` ∈ [m]:

Q`(B) :=
1

n
(|B|

2

)1/2 ∑
u,v∈B:u<v

(
xl(u, v)− d`(u)d`(v)

dT,`

)
(4.2)

The scaling term in the equation above is related to the total number of vertices in the network

and the total number of possible edges between the vertices in B. This score is one version of the

various set-modularities considered in Fasino and Tudisco (2016), and is reminiscent of the local

modularity score introduced in Clauset et al. (2004).

The Multilayer Extraction procedure seeks communities that are assortative across layers, in

the sense that Q`(B) is large and positive for each ` ∈ L. In light of this, we define the multilayer

set score as

H(B,L) :=
1

|L|

(∑
`∈L

Q`(B)+

)2

, (4.3)

60

where Q+ denotes the positive part of Q. Generally speaking, the score acts as a yardstick with

which one can measure the connection strength of a vertex-layer set. Large values of the score

signify densely connected communities.

We note that the multilayer scoreH(B,L) is reminiscent of a chi-squared test-statistic computed

from |L| samples. That is, under appropriate regularity assumptions on Q`(B), the score in (4.3)

will be approximately chi-squared with one degree of freedom.

4.2 Consistency Analysis

In this section I evaluate the asymptotic consistency of the multi-layer local modularity score.

Existing work on consistency of community detection algorithms was given comprehensive treat-

ment in Section 1.3.3. In Section 4.2.1, I introduce a multi-layer version of the Stochastic Block

Model (SBM; see Section 1.2.1), which is the model under which the consistency of the score will

be established. In Section 4.2.2, I describe and state the consistency results. Section 4.2.3 contains

the proofs of the results.

4.2.1 The Multilayer Stochastic Block Model

We assess the consistency of Multilayer Extraction under the multilayer stochastic block

model (MLSBM) with two vertex communities, defined as a probability distribution Pm,n =

Pm,n(·|P , π1, π2) on the family of undirected multilayer networks with m layers, n vertices and 2

communities. The distribution is fully characterized by (i) the containment probability π1 for com-

munity 1, and (ii) a sequence of symmetric 2× 2 matrices P = {P1, . . . , Pm} where P` = {P`(i, j)}

with entries P`(i, j) ∈ (0, 1). Under the distribution Pm,n, a random multilayer network Ĝ(m,n) is

generated using two simple steps:

1. A subset of dπ1ne vertices are placed in community 1, and remaining vertices are placed in

community 2. Each vertex u in community j is assigned a community label cu = j, forming

a partition vector c ∈ {1, 2}n.

2. An edge is placed between nodes u, v ∈ [n] in layer ` ∈ [m] with probability P`(cu, cv),

independently from pair to pair and across layers, and no self-loops are allowed.

61

For a fixed n and m, the community labels cn = (c1, . . . , cn) are chosen once and only once,

and the community labels are the same across each layer of Ĝ(m,n). On the other hand, the inner

and intra community connection probabilities (and hence the assortativity) can be different from

layer to layer, introducing heterogeneity among the layers. Note that when m = 1, the MLSBM

reduces to the (single-layer) stochastic block model from Wang and Wong (1987).

4.2.2 Consistency of the Score

We evaluate the consistency of the Multilayer Extraction score under the MLSBM described

above. Our first result addresses the vertex set maximizer of the score given a fixed layer set

L ⊆ [m]. Our second result (Theorem 12 in Section 4.2.2.1) leverages the former to analyze the

global maximizer of the score across layers and vertex sets. Explicitly, consider a multilayer network

Ĝ(m,n) with distribution under the multilayer stochastic block model Pm,n = Pm,n(P , π1, π2). For

a fixed vertex set B ⊆ [n] and layer set L ⊆ [m], define the random score by

Ĥ(B,L) :=
1

|L|

(∑
`∈L

Q̂`(B)+

)2

,

where Q̂`(B) is the set-modularity of B in layer ` under Pm,n. Our main results address the behavior

of Ĥ(B,L) under various assuptions on the parameters of the MLSBM.

Toward the first result, for a fixed layer set L ⊆ [m], let B̂opt(n) denote the node set that

maximizes Ĥ(B,L) (if more than one set does, any may be chosen arbitrarily). To define the

notion of a “misclassified” node, for any two sets B1, B2 ⊆ [n] let dh(B1, B2) denote the Hamming

distance (rigorously defined as the cardinality of the symmetric difference between B1 and B2). We

then define the number of misclassified nodes by a set B by

Error(B) := dh(B,C1) ∧ dh(B,C2).

Note that this definition accounts for arbitrary labeling of the two communities. As the nodes and

community assignments are registered across layers, neither dh nor Error depend on the choice of

L. Before stating the main theorem, we define a few quantities that will be used throughout its

statement and proof:

62

Definition 10. Let “det” denote matrix determinant. For a fixed layer set L ⊆ [m], define

δ` := detP` δ(L) := min
`∈[L]

δ` π := (π1, π2)t κ` := πTP`π κ(L) := min
`∈[L]

κ` (4.4)

The value δ` determines, by its positivity, whether or not the community structure in layer `

will be detectable in the limit. Hence, a requirement of the theorem below will be that δ(L) > 0.

κ` is the (normalized) overall average edge density of layer `. Note that in this asymptotic setting,

we assume that π1 does not change with n. We now state the fixed-layer-set consistency result:

Theorem 11. Fix m and let {Ĝ(m,n)}n>1 be a sequence of multilayer stochastic 2 block models

where Ĝ(m,n) is a random graph with m layers and n nodes generated under Pm,n(·|P , π1, π2).

Assume π1 6 π2. Fix a layer set L ⊆ [m]. If δ(L) > 0 then there exist constants A, η > 0

depending on π1 and δ(L) such that for all fixed ε ∈ (0, η),

Pm,n
(
Error

(
B̂opt(n)

)
< Anε log n

)
> 1− exp

{
−κ(L)2ε

32
nε(log n)2−ε + log 4|L|

}
(4.5)

for large enough n.

Note that an immediate corollary of Theorem 11 is that for any ε ∈ (0, 1),

Pm,n
(
Error

(
B̂opt(n)

)
< nε log n

)
→ 1 as n→∞.

Therefore, the constantsA and η play a role only in bounding the convergence rate of the probability.

The proof of Theorem 11 is given in Section 4.2.3.1. We note that the assumption that π1 6 π2

is made without loss of generality, since the community labels are arbitrary. When m = 1, Theorem

11 implies asymptotic n→∞ consistency in the (single-layer) stochastic block model. In this case,

the condition that δ` = P`(1, 1)P`(2, 2) − P`(1, 2)2 > 0 is a natural requirement on the inner

community edge density of a block model. This condition appears in a variety of consistency

analyses, including the evaluation of modularity (Zhao et al., 2012). When m > 1, Theorem 11

implies the vertex set that maximizes H(B,L) will have asymptotically vanishing error with high

probability, given that L is a fixed layer set with all layers satisfying δ` > 0.

63

4.2.2.1 Consistency of the joint optimizer

Theorem 11 does not address the joint optimizer of the score across all vertex-layer pairs.

First, we point out that for a fixed B ⊆ [n], the limiting behavior of the score Ĥ(B,L) depends on

L ⊆ [m] through the layer-wise determinants {δ` : ` ∈ [n]} and the scaling constant 1
|L| inherent

to H(B,L), as defined in equation (4.3). In what follows, we consider the asymptotic optimality

of several alternate scaling constants with respect to all layer-set pairs, and argue that 1/|L| is the

natural choice of scaling. To this end, let γ : N+ 7→ R+ be an arbitrary non-decreasing function of

|L|. Define a general version of the multilayer extraction score as

Hγ(B,L) :=
1

γ(|L|)

(∑
`∈L

Q`(B)+

)2

(4.6)

and let Ĥγ(B,L) be the corresponding random version of this score under an MLSBM. We first

provide an illustrative example. Consider a MLSBM with m > 1 layers having the following

structure: the first layer has positive determinant, and all m−1 remaining layers have determinant

equal to 0. Note that δ1 > 0 implies that the first layer has ground-truth assortative community

structure, and that δ` = 0 for all ` > 1 implies that the remaining layers are (independent) Erdos-

Renyi random graphs. In this case, the desired global optimizer of Hγ(B,L) is community 1 (or

2) and the first layer. However, setting γ(|L|) ≡ 1 (effectively ignoring the scaling of H) will

ensure that, in fact, the entire layer set is optimal, since Q`(B)+ > 0 by definition. It follows that

setting γ(|L|) to increase (strictly) in |L|, which introduces a penalty on the size of the layer set, is

desirable.

For a fixed scaling function γ, define the global joint optimizer of Ĥ(B,L) by

(
B̂

(n)
opt , L̂

(n)
opt

)
:= arg max

2[n]×2[m]

Ĥγ(B,L) (4.7)

Note that
(
B̂

(n)
opt , L̂

(n)
opt

)
is random, and may contain multiple elements of 2[m] × 2[n]. The next

theorem addresses the behavior of
(
B̂

(n)
opt , L̂

(n)
opt

)
under the MLSBM for various choices of γ(|L|),

and shows that setting γ(|L|) = |L| is desirable for consistency.

64

Theorem 12. Fix m and let {Ĝ(m,n)}n>1 be a sequence of multilayer stochastic 2 block models

where Ĝ(m,n) is a random graph with m layers and n nodes generated under Pm,n(·|P , π1, π2).

Assume π1 6 π2. Fix 0 = δ(0) < δ(1) < 1. Suppose the layer set [m] is split according to

[m] = ∪i=0,1Li, where δ` = δ(i) for all ` ∈ Li. Then for any ε > 0, the following hold:

(a) Suppose γ(|L|) ≡ 1. Let L̂+ := {` : Q̂`(B̂
(n)
opt) > 0}. Then for all n > 1, L̂

(n)
opt = L̂+, and

Pm,n
(
Error

(
B̂

(n)
opt

)
< nε log n

)
→ 1 as n→∞

(b) Suppose γ(|L|) = |L|. Then

Pm,n
(
L̂

(n)
opt = L1, Error

(
B̂

(n)
opt

)
< nε log n

)
→ 1 as n→∞

(c) Suppose γ(|L|) = |L|2. Then

Pm,n
(
L̂

(n)
opt ⊆ 2L1 , Error

(
B̂

(n)
opt

)
< nε log n

)
→ 1 as n→∞

The proof of Theorem 12 is given in Section 4.2.3.5. Part (a) implies that setting γ(|L|) ≡ 1

ensures that the optimal layer set will be, simply, all layers with positive modularity, thereby

making this an undesirable choice for the function γ. Part (c) says that if γ(|L|) = |L|2, the

layer set with the highest average layer-wise modularity will be optimal (with high probability as

n→∞), which means that all subsets of L1 are asymptotically equivalent with respect to Ĥ(B,L)

(with high probability). By part (b), if γ(|L|) = |L|, then L1 is the unique asymptotic maximizer

of the population score (with high probability). Therefore, γ(|L|) = |L| is the most desirable choice

of scaling.

4.2.3 Proofs

In this section we prove the theoretical results given in Section 4.2. The majority of the section

is devoted to a detailed proof of Theorem 11 and supporting lemmas. This is followed by the proof

of Theorem 12, of which we give only a sketch, as many of the results and techniques contributing

to the proof of Theorem 11 can be re-used.

65

4.2.3.1 Proof of Theorem 11, and Supporting Lemmas

We prove Theorem 11 via a number of supporting lemmas. We begin with some notation:

Definition 13. For a fixed vertex set B ⊆ [n] define

ρn(B) =
|B ∩ C1,n|
|B|

, sn(B) =
|B|
n
, vn(B) := (ρn(B), 1− ρn(B)) (4.8)

We will at times suppress dependence on n and B in the above expressions.

Definition 14. Define the population normalized modularity of a set B in layer ` by

Q`(B) :=
sn(B)√

2

(
vn(B)tP`vn(B)− (vn(B)tP`π)2

κ`

)
(4.9)

Define the population score function H(·, L) : 2[n] 7→ R by

H(B,L) = |L|−1

∑
`∈[L]

Q`(B)

2

(4.10)

Throughout the results in this section, we assume that L ⊆ [m] is a fixed layer set (as in the

statement of Theorem 11). We will therefore, at times, suppress the dependence on L from δ(L)

and κ(L) (from Definition 10).

4.2.3.2 Sketch of the Proof of Theorem 11

The proof of Theorem 11 is involved and broken into many lemmas. In this section, we give a

rough sketch of the argument, as follows. The lemmas in this section establish that:

1. C1,n maximizes the population score H∗(·, L) (Lemmas 15 and 16).

2. For large enough sets B ⊆ [n], the random score Ĥ(B,L) is bounded in probability around

the population score H∗(B,L) (Lemmas 18 and 21).

3. Inductive Step: For fixed k > 1, assume that dh(B̂opt(n), C1,n)/n = Op(bn,k), where larger

k makes bn,k of smaller order. Then, based on concentration properties of the score, in fact

dh(B̂opt(n), C1,n)/n = Op(bn,k+1) (Lemma 22).

66

4. There exists a constant η such that for any ε ∈ (0, η), dh(B̂opt(n), C1,n)/n = Op(n
ε log n)

(Theorem 11). This result is shown using the Inductive Step.

4.2.3.3 Supporting lemmas for the Proof of Theorem 11

Lemma 15. Define φ(L) := (|L|−1
∑

`
detP`

2κ`
)2. Then:

1. For any B ⊆ [n], q`(B) = sn(B)√
2

(π1 − ρn(B))2 · detP`
2κ`

, and therefore

H(B,L) = |L|φ(L)
sn(B)2

2
(π1 − ρn(B))4

2. δ(L)2 6 φ(L) 6 1
π2
1δ(L)2

and therefore H(C1,n, L) > |L|π
2
1
2 (1− π4

1)δ(L)2

Lemma 16. Fix any n > 1. Define

R(t) :=

{B ⊆ [n] : |s(B)− π1| ∨ [1− ρ(B)] 6 t}, π1 < π2

{B ⊆ [n] : |s(B)− π1| ∨ ρ(B) 6 [1− ρ(B)] 6 t}, π1 = π2

Then there exists a constant a > 0 depending just on π1 such that for sufficiently small t, B /∈ R(t)

implies H∗(B,L) < H∗(C1,n, L)− a|L|φ(L)t.

The proofs of Lemmas 15-16 are given in Appendix C. We now give a general concentration

inequality for Ĥ(B,L), which shows that for sufficiently large sets B ⊆ [n], Ĥ(B,L) is close to the

population score H∗(B,L) with high probability. This result is used in the proof of Lemma 21, and

its proof is given in Appendix C. We first give the following definition:

Definition 17. For fixed ε > 0 and n > 1, define Bn(ε) := {B ⊆ [n] : |B| > nε}.

Lemma 18. Fix ε ∈ (0, 1). Let κ be as in Definition 10. For each n > 1 suppose a collection of

node sets Bn is contained in Bn(ε). Then for large enough n,

Pn
(

sup
Bn

(∣∣∣Ĥ(B,L)−H(B,L)
∣∣∣) > 4|L|t

n2
+

52|L|
κn

)
6 4|L||Bn| exp

(
−κ2 εt2

16n2

)

for all t > 0.

We now define new notation that will serve the remaining lemmas:

67

Definition 19. Let γn := log n/n, and for any integer k > 0, define bn,k := γ
1− 1

2k
n .

Definition 20. For any r ∈ [0, 1] and C ⊆ [n], define the r-neighborhood of C by N(C, r) := {B ⊆

[n] : dh(B,C)/n 6 r}. For all n > 1, any constant A > 0, and fixed k > 1, define

Nn,k(A) :=

N (C1, A · bn,k−1) ∪N (C2, A · bn,k−1) , k > 1

Bn(A), k = 1

Lemma 21, stated below, is a concentration inequality for the random variable Ĥ(B,L) on

particular neighborhoods of C1:

Lemma 21. Fix ε ∈ (0, π1) and any constant A > 0. For k > 1 satisfying 1/2k−1 < ε, we have for

sufficiently large n that

sup
B∈Nn,k(A)

∣∣∣Ĥ(B,L)−H(B,L)
∣∣∣ 6 5|L|bn,k (4.11)

with probability greater than 1 − 2 exp{−κ2ε
32 nγ

1−ε
n log(n) + log 4|L|}. The conclusion holds with

k = 1 if A = ε.

The proof of Lemma 21 is given in Appendix C. We now state and prove the key lemma used

to drive the induction step in the proof of Theorem 11:

Lemma 22. Fix ε ∈ (0, π1) and an integer k > 1 satisfying 1/2k−1 < ε. Suppose there exist

constants A, b > 0 such that for large enough n,

Pn
(
B̂opt(n) ∈ Nn,k(A)

)
> 1− b exp

{
−κ

2ε

32
nγ1−ε

n log n+ log 4|L|
}

:= 1− bβn(ε)

Then there exists a constant A′ > 0 depending only on π1 and δ such that for large enough n,

Pn
(
B̂opt(n) ∈ Nn,k+1(A′)

)
> 1− (4 + b)βn(ε). The conclusion holds for k = 1 if A = ε.

Proof. Assume π1 < π2; the following argument may be easily adapted to the case where π1 = π2,

which we explain at the end. Recall bn,k from Definition 19. For c > 0, define

Rn,k(c) := {B ⊂ [n] : |s(B)− π1| ∨ [1− ρ(B)] 6 c · bn,k},

68

Figure 4.1: Illustration of relationship between collections of node sets.

Note that sets B ∈ Rn,k(c) have bounded Hamming distance from C1,n, as shown by the following

derivation. Writing s = s(B) and ρ = ρ(B), for all B ∈ Rn,k(c) we have

n−1|dh(B,C1,n)| = n−1
(
|B \ C1,n|+ |C1,n \B|

)
= n−1

(
|B| − |B ∩ C1,n|+ |C1,n| − |B ∩ C1,n|

)
= s+ π1 − 2ρs 6 s+ (s+ c · bn,k)− 2 (1− c · bn,k) s

= c · bn,k + 2sc · bn,k 6 3c · bn,k (4.12)

Therefore, Rn,k(c) ⊆ N(C1,n, A
′ · bn,k) ⊂ Nn,k+1(A′) with A′ = 3c.

We have assumed B̂opt(n) ∈ Nn,k(A) with high probability; our aim is to show B̂opt(n) ∈

Nn,k+1(A′). Since Rn,k(c) ⊆ Nn,k+1(A′), it is sufficient to show that B̂opt(n) /∈ Nn,k(A) ∩ Rn,k(c)c

with high probability. This is illustrated by figure 4.1: since B̂opt(n) is inside the outer oval

(with high probability), it is sufficient to show that it cannot be outside the inner oval. To this

end, it is enough to show that, with high probability, Ĥ(B,L) < Ĥ(C1,n, L) for all sets B in

Nn,k(A) ∩Rn,k(c)c. Note that by Lemma 21,

sup
B∈Nn,k(A)

Ĥ(B,L) < H(B,L) + 5|L|bn,k (4.13)

for large enough n, with probability at least 1 − 2βn(ε). Next, since cbn,k → 0 as n → ∞, by

Lemma 16 there exists a constant a > 0 depending just on π1 such that for large enough n,

B ∈ Rn,k(c)c implies H(B,L) < H(C1,n)− a|L|φ(L)cbn,k. Applying Lemma 21 again, we also have

69

H(C1,n, L) < Ĥ(C1,n) + 5|L|bn,k with probability at least 1 − 2βn(ε). Furthermore, φ(L) > δ2 by

Lemma 15. Applying these inequalities to (4.13), we get

sup
B∈Nn,k(A)∩Rn,k(c)c

Ĥ(B,L) < Ĥ(C1,n, L)− a|L|δ2cbn,k + 10|L|bn,k (4.14)

with probability at least 1−4βn(ε). With c large enough, (4.14) implies that Ĥ(B,L) < Ĥ(C1,n, L)

for all B ∈ Nn,k(A) ∩Rn,k(c)c. This proves the result in the π1 < π2 case.

If π1 = π2, the argument is almost identical. We instead define Rn,k(c) as

Rn,k(c) := {B ⊆ [n] : |s(B)− π1| ∨ ρ(B) ∨ [1− ρ(B)] 6 c · bn,k}.

A derivation analogous to that giving inequality (4.12) yields

n−1 (dh(B,C1,n) ∨ dh(B,C2,n)) 6 3c · bn,k

which directly implies that Rn,k(c) ⊆ Nn,k+1(A′) with A′ = 3c. The rest of the argument goes

through unaltered. �

4.2.3.4 Proof of Theorem 11

Recall Q`(B) from Definition 4.2 and let Q̂`(B) be its random version under the MLSBM, as

in Section 4.2.2. For any B ⊆ [n], we have the inequality

[
Q̂`(B)

]
+
6

Y`(B)

n
(|B|

2

)1/2 6
(|B|

2

)
n
(|B|

2

)1/2 6 |B|n (4.15)

This yields the following inequality for Ĥ(B,L):

Ĥ(B,L) = |L|−1

∑
`∈[L]

Q`(B)

+

2

6 |L|−1

∑
`∈[L]

Q`(B)+

2

6 |L|−1n−2|B|2 (4.16)

70

Recall that Bn(ε) := {B ∈ 2[n] : |B| > εn}. Inequality (4.16) implies Ĥ(B,L) 6 |L|ε2 for all

B ∈ Bn(ε)c. By part 2 of Lemma 15, φ(L) > δ2. Therefore, defining τ :=
π2
1
2 (1− π1)4δ2/2,

|L|τ < |L|φ(L)
π2

1

2
(1− π1)4 = H∗(B,L)

Therefore, for all B ∈ Bn(ε)c, we have Ĥ(B,L) 6 |L|ε2 < H∗(C1,n, L) − |L|(τ − ε2). By Lemma

21, for large enough n we therefore have

sup
Bn(ε)c

Ĥ(B,L) < Ĥ(C1,n, L)− |L|(τ − ε2) + 5|L|γ1−ε
n (4.17)

with probability greater than 1 − 2βn(ε), where βn(ε) := exp{−κ2ε
32 nγ

1−ε
n log n + log 4|L|}. For

any ε <
√
τ , inequality (4.17) implies Ĥ(B,L) < Ĥ(C1,n, L) for all B ∈ Bn(ε), and therefore

B̂opt(n) ∈ Bn(ε), with probability at least 1− 2βn(ε). Note that ε <
√
τ < π1, and Nn,k(ε) = Bn(ε)

by Definition 20. Therefore, the conditions for Lemma 22 with k = 1 (and A = ε) are satisfied. For

any fixed ε ∈ (0, η) with η :=
√
τ , we may now apply Lemma 22 recursively until 1/2k 6 ε. This

establishes that for sufficiently large n,

Pn
(
B̂opt(n) ∈ Nn,k(A)

)
> 1− (2 + 4k)βn(ε) (4.18)

By definition, B̂opt(n) ∈ Nn,k(A) implies that

Error(B̂opt(n)) := min
C=C1,C2

dh(B̂opt(n), C) 6 A · n · bn,k. (4.19)

Note that

n · bn,k = nγ
1− 1

2k
n = n · n

1

2k
−1

(log n)
1− 1

2k < nε log n

since 1/2k 6 ε. Combined with inequality (4.18), this completes the proof. �

4.2.3.5 Proof of Theorem 12

To prove part (a), we first note that Theorem 11 implies that on the layer set L1, for any ε > 0,

Error(B̂
(n)
opt) = Op(n

ε log n). Lemma 15 can be used to show that H(B,L) = 0 for any L ⊆ L0 and

71

any B ⊆ [n]. Using Lemma 18 and taking a union bound over L0, it is then straightforward to

show (using techniques from the proof of Theorem 11) that on the full layer set [m], for any ε > 0,

Error(B̂opt) = Op(n
ε log n). Considering now L̂

(n)
opt, observe that if Q̂`(B) 6 0, then Ĥ(B,L) =

Ĥ(B,L \ {`}). This immediately implies that L̂
(n)
opt = L̂+.

To prove part (b), we note that it is straightforward to show (using Lemma 15) that H(B,L1) >

H(B,L) for any L ⊂ [m], with equality if and only if L = L1. Using Lemma 18 and a union bound

over [m] will show that L̂
(n)
opt = L1 with high probability. Applying Theorem 11 completes the part.

Part (c) is shown similarly, with the application of Lemma 15 showing that for any L ⊆ L1 and

L′ ⊆ [m], H(B,L) > H(B,L′), with equality if and only if L′ ⊆ L1. �

4.3 The Multilayer Extraction Procedure

This section introduces a community detection method based on the multilayer set-score called

Multilayer Extraction. Importantly, while the method has algorithmic similarity to the SCS pro-

cedure for the NST framework (Chapter 2), it does not incorporate explicit hypothesis testing.

The method is still testing-based by virture of the set-score’s basis in a null-model. Instead of

being used for hypothesis testing, however, the set-score will be optimized in a greedy fashion, as

described below. Regardless, the method does quite well against competing methods for multilayer

un-weighted networks, as shown in the corresponding publication Wilson et al. (2016). As the

simulation and application sections for Multilayer Extraction were completed by other authors on

this publication, they are omitted from this thesis.

Multilayer Extraction is built around three operations: initialization, extraction, and refine-

ment. In the initialization stage, a family of seed vertex sets is specified. Next an iterative extraction

procedure (Extraction) is applied to each of the seed sets. Extraction alternately updates the

layers and vertices in a vertex-layer community in a greedy fashion, improving the score at each

iteration, until no further improvement to the score is possible. The family of extracted vertex-layer

communities is then reduced using the Refinement procedure, which ensures that the final col-

lection of communities contains the extracted community with largest score, and that the pairwise

overlap between any pair of communities is at most β, where β ∈ [0, 1] is a user-defined parameter.

72

The importance and relevance of this parameter is discussed in Section 4.3.3.1. We describe the

Multilayer Extraction algorithm in more detail below.

4.3.1 Initialization

For each vertex u ∈ [n] and layer ` ∈ [m] let N(u, `) = {v ∈ [n] : {u, v} ∈ E`} be the set

of vertices connected to u in G`. We will refer to N(u, `) as the neighborhood of u in layer `.

Let B0 = {N(u, `), u ∈ [n], ` ∈ [m]} be the family of all vertex neighborhoods in the observed

multilayer network G(m,n). Multilayer Extraction uses the vertex sets in B0 as seed sets for

identifying communities. Our choice of seed sets is motivated by Gleich and Seshadhri (2012),

who showed that vertex neighborhoods are optimal seed sets for local detection methods seeking

communities with low conductance.

4.3.2 Extraction

Given an initial vertex set, the Extraction procedure seeks a vertex-layer community with

large score. The algorithm iteratively conducts a Layer Set Search followed by a Vertex Set Search,

and repeats these steps until a vertex-layer set, whose score is a local maximum, is reached. In each

step of the procedure, the score of the candidate community strictly increases, and the procedure

is stopped once no improvements to the score are possible. These steps are described next.

Layer Set Search: For a fixed vertex set B ⊆ [n], Extraction searches for the layer set L that

maximizes H(B, ·) using a rank ordering of the layers that depends only on B. In particular let

Q`(B) be the local set modularity of layer ` from (4.2). Let Lo be the layer set identified in the

previous iteration of the algorithm. We will now update the layer set L0 ; L. This consists of the

following three steps:

(i) Order the layers so that Q`1(B) > · · · > Q`m(B).

(ii) Identify the smallest integer k such that H(B, {`1, . . . , `k}) > H(B, {`1, . . . , `k, `k+1}). Write

Lp := {`1, . . . , `k} for the proposed change in the layer set.

(iii) If H(B,Lp) > H(B,Lo) set L = Lp. Else set L = Lo

In the first iteration of the algorithm (where we take Lo = ∅), we set L = Lp in step (iii) of the

search. The selected layer set Lp is a local maximum for the score H(B, ·).

73

Vertex Set Search: Suppose now that we are given a vertex-layer set (B,L). Extraction updates

B, one vertex at a time, in a greedy fashion, with updates depending on the layer set L and the

current vertex set. In detail, for each u ∈ [n] let

δu(B,L) =

H(B/{u}, L)−H(B,L) if u ∈ B

H(B ∪ {u}, L)−H(B,L) if u /∈ B.
(4.20)

Vertex Set Search iteratively updates B using the following steps:

(i) Calculate δu(B,L) for all u ∈ [n]. If δu(B,L) 6 0 for all u ∈ [n], then stop. Otherwise,

identify u∗ = arg maxu∈[n] δu(B,L).

(ii) If u∗ ∈ B, then remove u∗ from B. Otherwise, add u∗ to B.

At each iteration of Extraction, the score of the updated vertex-layer set strictly increases,

and the eventual convergence of this procedure to a local maximum is guaranteed as the possible

search space is finite. The resulting local maxima is returned as an extracted community.

4.3.3 Refinement

Beginning with the n vertex neighborhoods in each layer of the network, the Extraction

procedure identifies a collection CT = {(Bt, Lt)}t∈T of at mostm∗n vertex-layer communities. Given

an overlap parameter β ∈ [0, 1], the family CT is refined in a greedy fashion, via the Refinement

procedure, to produce a subfamily CS , S ⊆ T , of high-scoring vertex-layer sets having the property

that the overlap between any pair of sets is at most β.

To quantify overlap, we specify a generalized Jaccard match score to measure overlap be-

tween two communities. We measure the overlap between two candidate communities (Bq, Lq) and

(Br, Lr) using a generalized Jaccard match score

J(q, r) =
1

2

|Bq ∩ Cr|
|Bq ∪ Cr|

+
1

2

|Lq ∩ Lr|
|Lq ∪ Lr|

(4.21)

It is easy to see that J(q, r) is between 0 and 1. Moreover, J(q, r) = 1 if and only if (Bq, Lq) =

(Br, Lr) and J(q, r) = 0 if and only if (Bq, Lq) and (Br, Lr) are disjoint. Larger values of J(·, ·)

indicate more overlap between communities.

74

In the first step of the procedure, Refinement identifies and retains the community (Bs, Ls) in

CT with the largest score and sets S = {s}. In the next step, the procedure identifies the community

(Bs, Ls) with largest score that satisfies J(s, s′) 6 β for all s′ ∈ S. The index s is then added to

S. Refinement continues expanding S in this way until no further additions to S are possible,

namely when for each s ∈ T , there exists an s′ ∈ S such that J(s, s′) > β. The refined collection

CS = {Bs, Ls}s∈S is returned.

4.3.3.1 Choice of β

Many existing community detection algorithms have one or more tunable parameters that con-

trol the number and size of the communities they identify (von Luxburg, 2007; Leskovec et al.,

2008; Mucha et al., 2010; Lancichinetti et al., 2011; Wilson et al., 2014). The family of communi-

ties output by Multilayer Extraction depends on the overlap parameter β ∈ [0, 1]. In practice, the

value of β plays an important role in the structure of the vertex-layer communities. For instance,

setting β = 0 will provide vertex-layer communities that are fully disjoint (no overlap between

vertices or layers). On the other hand, when β = 1 the procedure outputs the full set of extracted

communities, many of which may be redundant. In exploratory applications, we recommend in-

vestigating the identified communities at multiple values of β, as the structure of communities at

different resolutions may provide useful insights about the network itself (see for instance Leskovec

et al. (2008) or Mucha et al. (2010)).

Empirically, we observe that the number of communities identified by the Multilayer Extraction

procedure is non-decreasing with β, and there is typically a long interval of β values over which

the number and identity of communities remains constant. In practice we specify a default value

of β by analyzing the number of communities across a grid of β between 0 and 1 in increments of

size 0.01. For fixed i, let βi = (i − 1) ∗ 0.01 and let ki = k(βi) denote the number of communities

identified at βi. The default value β′ is the smallest β value in the longest stable window, namely

β′ = smallest βi such that k(βi) = mode(k1, . . . , k101)

75

4.4 Discussion

This chapter introduced a significance-based node-set score for multilayer binary networks. It

was showed that, under appropriate conditions, the score of true communities in a 2-block SBM is

bounded asymptotically close to the global maximizer of the score, with high probability. Then,

an implementation of the score in a community detection method for multi-layer binary networks,

called Multilayer Extraction, was detailed. Applications of Multilayer Extraction to simulations

and real data can be found in Wilson et al. (2016).

76

CHAPTER 5

Bipartite Correlation Networks

This chapter introduces new methods for Expression-Quantitative Loci (eQTL) analysis. Some

background on eQTL analysis was presented in Section 1.4.3. In Section 5.1, a new model for eQTL

effect size is introduced. In Section 5.2, preliminary and on-going work is presented regarding a

detection method for communities in bipartite eQTL networks.

5.1 The ACME-eQTL model for eQTL effect size

The following sub-sections comprise a thorough motivation, validation, and exploration of a new

non-linear regression model called ACME-eQTL for the dependence between a gene and a genomic

loci (SNP). Section 5.1.1-5.1.2 introduces some existing work and notation. In Section 5.1.3, the

ACME-eQTL model is motivated and stated in detail, followed by statistical tests on real data

to show its ability to characterize cis-eQTL associations. In Section 5.1.4, results of analyses are

presented showing the robustness of ACME-eQTL model p-values to potential violations of model

assumptions in real data. Section 5.1.5 contains a thorough power analysis, comparing ACME-

eQTL to existing eQTL models. In Section 5.1.6, the ACME-eQTL model is applied to cis-eQTLs

identified using recent data from the GTEx Project, and ACME-eQTL effect sizes are related to

other biological features of the data. A summary of these analyses and results is given in Section

5.1.7.

5.1.1 Existing approaches to gene expression modeling

Gene expression data are rarely analyzed on the original scale, due to heteroskedasticity and

heavy-tailed errors (Rantalainen et al., 2015). Logarithmic transformation of expression is a stan-

dard pre-processing step for many microarray platforms (e.g. Morley et al. (2004); Irizarry et al.

(2003)) and often plays an important role in downstream analyses such as differential expression

(e.g. Network et al. (2013); Li et al. (2014)). RNA-Seq data are inherently count-based, and sta-

tistical analyses of such data often make use of binomial, negative-binomial, or Poisson generalized

linear models (McCarthy et al., 2012; Zhou et al., 2011; Zwiener et al., 2014), all of which use

logarithmic or near-logarithmic canonical link functions. However, count-based modeling is rarely

used in eQTL analysis, possibly due to computational requirements, and the fact that several stages

of read-count normalization that are usually applied to gene expression data. Furthermore, count-

based modeling may not be necessary in studies with large sample sizes (Zhou et al., 2011). Instead,

eQTL analyses often involve direct application of linear regression to log-transformed expression

with additive allelic effects (e.g. Myers et al. (2007)).

Another common transformation of expression is inverse quantile-normalization (e.g. Dixon

et al. (2007)), which is used to ensure normality of residuals under the null in the linear regression

setting (Beasley et al., 2009; Szymczak et al., 2013). Given a vector y of length n, the quantile-

normalization (QN) transformation is the function Q(yi) = Φ−1((rank(yi)/(n+ 1)), mapping each

value to a normal quantile corresponding to its rank. Henceforth, eQTL analysis involving linear

regression of quantile-normalized gene expression will be referred to as “QN-linear”.

The QN-linear model yields p-values that are approximately uniform under the null of no asso-

ciation between expression and genotype. However, the quantile-normalization mapping inherent

to this approach erases all connection between the linear model parameters and the original gene

expression values. Hence, the estimated coefficients derived from QN-linear regression do not reflect

the scale of the original data, and contain almost no information about the true allelic effect. As a

result, QN-linear model effect-size estimates from eQTLs with clearly diverse signal-to-noise ratios

can yield nearly identical p-values (see Appendix D.5).

5.1.2 Framework and notation

We assume that genotype, gene expression read counts, and covariate data are available for

each of n samples. The genotype at a SNP is the number of minor alleles 0, 1, or 2, rounded if

using imputed data. Genotype is contained in an S × n matrix where S > 0 is the number of SNP

markers; we denote a (length n) row vector of the genotype matrix by s. The expression of a gene

is measured by the number of mapped reads relative to the overall library size (see Appendix D.1

for more details). Read count data for expression is contained in a T × n matrix where T > 0 is

78

the number of genes or transcripts; we denote a (length n) row vector of the expression matrix by

c. Finally, measurements of p covariates (like sex or batch) for each sample are stored in a p × n

matrix.

Throughout this chapter, analyses of real data are performed only on “cis” gene-SNP pairs,

for which the SNPs are within 1 megabase upstream or downstream of the transcription start or

stop sites. The ACME-eQTL model may also easily be applied for trans-analyses, but further

consideration of dominance terms may be warranted (see the discussion in Section 5.1.3.1).

5.1.3 The ACME-eQTL model and diagnostics

In this section we introduce the ACME-eQTL model in the context of several alternative ap-

proaches to estimating eQTL effect size. We exclude approaches that involves QN-transformed

gene expression because, as discussed in Section 5.1.1, our aim is to arrive at a model that retains a

direct relationship to the scale of the expression data. We also exclude linear regression on raw gene

expression since (as discussed in Section 5.1.1) the error distribution from such a model is known

to be heteroskedastic and non-normal. In Appendix B, we show that the non-normality observed

in real-data residuals after linear regression with raw expression causes severe Type-I error rates.

In the absence of rank-based normalization, log transformed expression is a natural starting

point for regression modeling, and can been shown to yield approximately normal residuals. To

illustrate this, we display the results of tests of normality and heteroskedasticity of residuals after

fitting QN-linear, standard linear, and various log-linear models (see Appendix D.4) to data from

the GTEx pilot project. We see that models using log-transformed expression perform much better

than those based on raw expression. Comparison to the QN-linear model results indicate that

the log-transformation is still somewhat subject to noise and outliers. However, we consider the

resulting violations of normality and homoskedasticity to be acceptably modest, when balanced

against the ability to assess effect size with a biologically accurate model. In Section 5.1.4 we provide

evidence that p-values for the ACME-eQTL model (which takes log-expression as its response) are

approximately uniform under the null.

79

5.1.3.1 Log ANCOVA and log-linear models

Here we detail the modeling of eQTL association for a single gene-SNP pair (though a full-

genome analysis setting involves separate estimations for millions of pairs). Let yi := log(1 + ci)

denote the log-transformed normalized gene read count from sample 1 6 i 6 n, where the addition

of 1 avoids taking the logarithm of zero. The value ci is the result of taking the original raw count

for the gene in sample i, library-normalizing and then scaling up to the magnitude of the original

mean count (see Appendix D.1). Let si denote the minor allele count for the SNP in sample i

(si ∈ {0, 1, 2}). Let Zi denote the p× 1 vector of covariates for sample i, and let γ be an unknown

p×1 covariate coefficient vector. Finally, let ε1, . . . , εn be independent N(0, σ2) errors with positive

variance σ2. Note that the quantities σ and γ may differ across gene-SNP pairs. It is common in

eQTL studies to assume that the covariate effect ZTi γ contributes to expression on the same scale

as the noise (e.g. Shabalin (2012)). We follow this practice for all models considered in this section

(including linear regressions with both raw and quantile-normalized gene expression). Additional

support for this convention can be seen from the fact that the covariates were computed from

normalized data to reduce the influence of outliers (Ardlie et al., 2015), so it is natural for them to

be residualized on the log-scale.

One approach to modeling allelic effects is to assume that each genotype is associated with a

distinct level of average log-expression. Such a model effectively includes a dominance term for the

homozygous genotype for the reference allele, and yields what we refer to as the “log-ANCOVA”

model:

yi = α010(si) + α111(si) + α212(si) +ZT
i γ + εi. (5.1)

Here the parameters αj are unknown log-expression means corresponding to the genotypes, and

1k(si) = 1 if si = k, and zero otherwise.

A simpler model is the additive “log-linear” regression model

yi = θ0 + θ1si +ZT
i γ + εi, (5.2)

where θ0 is baseline log-expression, and θ1 is the contribution to log-expression of each reference

allele. This model includes one fewer degree of freedom than log-ANCOVA, due to the loss of the

80

dominance term for the secondary reference allele. Here, the mean relationship between alleles

and log-expression depends only on allele count. Linear regression of transformed expression has

been heavily used in eQTL analysis (Ardlie et al., 2015), perhaps partly because evidence of eQTL

dominance effects are scant, even in trans-analyses (Wright et al., 2014). However, the log-linear

model assumes additivity of allelic effects on the log scale. Despite the widespread use of log-linear

regression in the eQTL setting, no one (to our knowledge) has posed a biological motivation for

log-scale allelic effect additivity. In fact, this feature runs counter to the simplest model for allele-

specific expression, in which allelic effects are additive on the raw expression scale, an assumption

inherent to the proposed ACME-eQTL model, detailed below.

5.1.3.2 Model statement

The current understanding of cis-eQTL variation in humans is that it is largely allele-specific

(Castel et al., 2015), i.e., the transcription of a gene in a particular chromosome is influenced

primarily by one or more SNP alleles on the same chromosome. Thus, in the absence of feedback

mechanisms, the effect of each SNP allele should be additive on the original scale of measured

expression. Nevertheless, working with expression on the log-scale is still desirable, based on

aforementioned analyses of residual distributions. With these considerations in mind, we propose

a log-based non-linear regression model (ACME-eQTL) of the following form:

yi = log(β0 + β1si) +ZT
i γ + εi. (5.3)

Here β0 is the baseline mean of raw expression, and β1 the additive contribution of each allele.

Exponentiating each side of equation 5.3, we may write the model on the expression scale as:

ci + 1 =
(
β0 + β1si

)
· exp

(
ZT
i γ + εi

)
. (5.4)

It is clear from this equation that the effect of genotype is linear, as desired, while the effects

of noise and covariates are multiplicative. We fit the ACME-eQTL model to data via maximum

likelihood, using a Gauss-Newton algorithm, which is derived in Appendix D.6.

81

The effect size. The coefficients β1 and β0 from the ACME-eQTL model operate on the

original expression scale, so they lend themselves naturally to a “fold-change” interpretation that is

often employed by biologists. In particular, the ratio β1/β0 represents the fraction of mean increase

due to a single referent allele compared to the baseline genotype 0. We note that Equation (5.3)

may be written in the form

yi = log(β0) + log

(
1 +

β1

β0
si

)
+ZT

i γ + εi, (5.5)

which separates the role of β0 in determining baseline expression and the role of β1/β0 in determining

the effect of genotype. Equation 5.5 also plays a role in the fitting algorithm. In what follows we

use “effect size” to refer to the ratio β1/β0. In Appendix D.7 we obtain a formula for the standard

error of β1/β0, using a reduced Hessian matrix derived from the model. We note that other notions

of effect size may be of interest to biologists. For example, an alternative effect size model, studied

simultaneously and independently, incorporates allele additivity through an explicit focus on a

fold-change parameter (Mohammadi et al., 2016).

Fitting algorithm and software. Though the ACME-eQTL model can in principle be fit

by brute-force likelihood maximization, we found stock implementations of this approach to be, in

general, slow and unreliable in practice. We have therefore crafted a custom fitting algorithm for

ACME-eQTL and a corresponding software implementation in the R statistical computing language.

A derivation of our algorithm is provided in Appendix D.6. Our software package is available on

the CRAN repository under the name ACMEeqtl, installable with the latest R release. In Section

5.1.5.1, we provide comparisons of computation time between our software, maximum likelihood,

and existing approaches to eQTL analysis.

5.1.3.3 Model fit diagnostics

In the previous section, we pointed out a fundamental mis-match between the log-linear and

ACME-eQTL approaches to eQTL effect-size estimation. The log-linear model assumes allelic

effect additivity on the log-expression scale, whereas ACME-eQTL assumes additivity on the raw-

expression scale. The empirical evaluation of these assumptions can be carried out with goodness-

of-fit tests. In this section, we perform these tests using subsamples of real data from the GTEx

82

Project. The subsampling (described fully in Appendix D.2) was designed to highlight differences

between the models by over-representing gene-SNP pairs with strong eQTL evidence, as the log-

linear and ACME-eQTL models are indistinguishable under the null model (β1 = 0).

Goodness-of-fit test statistic. The log-linear and ACME-eQTL models are each nested

within the log-ANCOVA model. For instance, the log-ANCOVA model reduces to the ACME-

eQTL model via the parameterization

α0(β) := log(β0),

α1(β) := log(β0) + log

(
1 +

β1

β0

)
,

α2(β) := log(β0) + log

(
1 + 2

β1

β0

)
.

Thus, if either model is sufficient to explain variation in gene expression, any further improvements

in the log-ANCOVA fit should be small and consistent with the extra degree of freedom in that

model. Conversely, a model with poor fit will be (significantly) surpassed by log-ANCOVA.

In testing sets of coefficients in nonlinear regression models with normal errors, F -tests are

widely used (Smyth, 2002), and generally better handle the degree of freedom issues posed by

numerous covariates than do likelihood ratio tests. Define SSE3 as the sum of squared residuals

from the fit of log-ANCOVA, and SSE2 as the sum of squared residuals from the fit of any nested

model with 2 degrees of freedom (like LL and ACME-eQTL). Then the goodness-of-fit test statistic

in our setting is F = SSE2−SSE3
SSE3/(n−p−3) which is approximately F -distributed with 1 and n − p − 3

degrees of freedom (recall that n denotes sample size, while p denotes the number of covariates in

the model). A p-value for the goodness-of-fit test is then obtained from the upper-tail of F1,n−p−3.

Results. For both the log-linear and ACME-eQTL models, we applied the goodness-of-fit F

test to every gene-SNP pair in a sub-sample of pairs from Thyroid tissue data (with n = 105 tissue

samples), using GTEx pilot data (Ardlie et al., 2015). To judge the distribution of the F -test

p-values from each model, we plotted Q-Q plots on the − log10 scale (see Figure 5.1). On each

plot, we also supplied the genomic inflation factor λ (hereafter “inflation factor”). The inflation

factor is defined by λ := mediani{χ2
i }/0.455, where χ2

i is the 1 d.f. chi-squared test statistic

corresponding to the p-value for the i-th test, following the original reasoning for genomic control

83

(Devlin and Roeder, 1999). Figure 5.1 shows that the distribution of F -statistic p-values from the

log-linear model grow increasingly non-uniform as eQTLs become more significant, suggesting that

the log-linear model is mis-specified. In contrast, F -statistic p-values for the ACME-eQTL model

are approximately uniform for eQTLs of all strengths. In other words, the fit of the ACME-eQTL

model is largely indistinguishable from that of log-ANCOVA, whereas the fit of the log-linear model

is largely insufficient to explain non-null eQTLs. Overall, these results provide strong empirical

support for the raw-expression allelic additivity assumption of the ACME-eQTL model, and against

the log-expression additivity of the log-linear model. We conclude that, among models nested within

log-ANCOVA (which are all models based solely on allelic effect), ACME-eQTL best conforms to

the underlying biology of eQTLs.

5.1.4 Model p-values and Type I error

In this section we address violations of residual normality, which can affect Type I error. The

large number of tests performed in eQTL analyses presents a special challenge for false positive

control. For cis-analysis, the number of tests is typically on the order of 107 (Lonsdale et al., 2013),

while for trans-analysis, the number of tests can exceed 1010. Using a Bonferroni bound to control

family-wise error at 0.05 requires p-values to be accurate at values of 10−9 for cis-analyses and at

values of roughly 10−12 for trans-analyses. In order to perform a test of no effect, i.e.,

H0 :
β1

β0
= 0 vs. Ha :

β1

β0
6= 0

for a given gene-SNP pair, we fit the ACME-eQTL model and the reduced mean-model with β1 = 0,

and then derive a p-value by comparing the resulting F -statistic with the F (1, n−p−2) distribution.

Non-normality in errors can potentially result in non-uniform F -statistic p-values under the null.

To assess this, we examined the performance of ACME-eQTL on simulated null data with realistic

errors. In addition, we examined the effect of skew in errors for the extremal p-values resulting

from large numbers of tests.

84

Figure 5.1: Q-Q plots of likelihood ratio test p-values for ACME-eQTL and log-linear models, in each sector
of GTEx Thyroid sample data, n = 105. The grey line is where we would expect the p-values (represented
by the red dots) to fall if they were perfectly uniform, and the green line represents the 95% window of error
around this expectation. λ is the estimated genomic inflation factor.

5.1.4.1 Empirical performance of the F test

We began our investigation of the empirical performance of the F test by fitting the ACME-

eQTL model to null data simulated with realistic residuals. The residuals for each simulated

gene-SNP pair were obtained by re-sampling estimated residuals from ACME-eQTL fits to real

GTEx data (full details to be found in Appendix D.3). Both the ACME-eQTL and log-linear

85

models were fit to 1 million null eQTLs generated in this manner, and p-values were obtained from

each method using the F -test. The results are shown in Figure 5.2. The F -test p-values appear

nearly uniform for both models, as the inflation factors were exactly 1.00 (corresponding to no

inflation). We emphasize that these conclusions address the behavior of the ACME-eQTL fit under

a realistic null − the earlier analyses established that ACME-eQTL offers superior fit for real data

when evidence of the alternative is strong.

Figure 5.2: p-value distributions from null simulated data with realistic errors and real covariate/genotype
data. λ values are inflation factors.

5.1.5 Power, estimation accuracy, and computation speed

In this section we present simulation results which display the detection power, estimation

accuracy, and computation speed of the ACME-eQTL model versus existing alternatives. Recall

the representation of the ACME-eQTL model from equations 5.5 and D.2, involving the parameter

η := β1/β0. We simulated 100 repetitions of the model at each value of η from an even grid along

the range (−0.5, 10). The sample-size was set to n = 105, as components of the simulations were

taken from real data (as in Section 5.1.4.1). Explicitly, at each repetition, the other components of

the model were set as follows:

1. Allele counts from a randomly sampled real-data allele count vector corresponding to GTEx

samples of Thyroid tissue.

2. Real-data covariate matrix corresponding to Thyroid samples, constant across all repetitions

and values of η.

3. Noise vector (εn×1) and covariate effect (γp×1) generated as normals with mean 0 and covari-

ances σ2
εIn and σ2

γIp (respectively), independent within and across repetitions.

86

We replicated the above simulation framework for various choices of σγ , with σε fixed at 1. With

simulated data in hand, we applied linear (RAW), quantile-normalized linear (QN), log-linear (LL),

log-ANCOVA (ANCOVA), and ACME-eQTL models to each instance of the simulation. For each

value of η, we computed the average and standard deviation over the repetitions of the following

metrics (per model).

1. F -test p-value for hypotheses H0 : η = 0 vs. H1 : η 6= 0.

2. Estimated raw expression value when reference allele count equals 1.

3. Estimated raw expression value when reference allele count equals 2.

Note that estimation with the QN model cannot give metrics (2) or (3), as the model is based on

a rank-normalized version of expression. Furthermore, the parameters of the LL model are not

directly comparable to those of ACME-eQTL or RAW (as they are additive on the log-expression

scale), which motivates our choice to evaluate estimated expression rather than estimated β1.

In Figure 5.3, we display results from the above simulation framework with σε = σγ = 1. Our

results show that the ACME-eQTL model achieves the most power and estimation accuracy among

the alternative methods. Hence, if the ACME-eQTL model is the best representation of underlying

eQTL biology in terms of allele count (as the analyses in Section 5.1.3.3 suggest), use of the existing

methods reduces accuracy and sensitivity.

5.1.5.1 Computation times

To assess computation speed, we timed various methods on every simulation instance involved

with Figure 5.3. There were 10,000 unique values of η, and therefore 1 million simulation instances.

On each simulation instance, we recorded the computation time of the following fitting procedures:

1. LL model with least-squares estimation.

2. ACME-eQTL model with maximum likelihood using the BFGS method implemented in the

optim function from R.

3. ACME-eQTL model with the custom fitting algorithm derived in Section D.6.

87

Figure 5.3: Results of large-scale simulation experiment. Left: − log 10 F -test p-values as a function of η.
Middle and right: predicated raw expression with one and two reference alleles, respectively.

The timing of procedure (1) will be of the same order as any other procedure based on least-squares

(RAW, QN, and ANCOVA). The timing of procedure (2) is provided as a benchmark for procedure

(3). All computations were performed on an Intel Xeon E5-2640 (2.50 GHz), using the R software

language, and timed with the microbenchmark package.

The mean and standard deviation of computation times for the procedures, over the 1 million

simulation instances, were as follows: least-squares at 0.129ms (0.233), BFGS at 2.687ms (1.270),

custom ACME-eQTL at 0.470ms (0.285). So, the efficiency of the custom ACME-eQTL algorithm is

quite comparable to that of least-squares estimating equations, and far outstrips stock optimization

88

methods. The complete package implementing our algorithm, including wrappers that employ

parallelization to process full-genome results from massive-scale eQTL data, is available in the

ACMEeqtl package on the CRAN respository.

5.1.6 Large-scale real data analysis

Though it is not the primary purpose of this section to provide novel real data analyses, in

this section we show basic features of genome-wide cis-eQTL patterns, using ACME-eQTL model

estimates from GTEx Pilot data. We calculated estimated effect sizes and F -based p-values for

cis-acting gene-SNP pairs from the nine tissues described in Ardlie et al. (2015), having sample

sizes between n = 83 and n = 156. Each tissue-specific data set had p = 19 covariates: sex and 3

genotype principal components, which were shared across all tissues; and 15 PEER (Probabalistic

Estimation of Expression Residuals) factors computed from expression data (Stegle et al., 2012).

These covariates are described in Ardlie et al. (2015).

Figure 5.4 shows the results of the full-tissue cis-eQTL ACME-eQTL analyses from Thyroid

tissue. The left panel indicates that estimated effect sizes are larger when the average expression

level is smaller. This aligns with the understanding that minor alleles will have smaller effect

relative to baseline expression when the baseline is larger. The center panel shows that eQTLs tend

to be more significant when the distance between the gene transcription start site (TSS) and SNP

is smaller. This shows that ACME-eQTL effect sizes are consistent with established properties

of cis-eQTLs (Ardlie et al., 2015). The right panel in Figure 5.4 shows a direct comparison of

ACME-eQTL F p-values and p-values from the QN-linear model. We see that, although the results

are correlated, p-values obtained from the two methods can differ by a few orders of magnitude.

Furthermore, for the most significant pairs, ACME-eQTL p-values tend to be lower. This reflects

the increased power of the ACME-eQTL model, discussed in Section 5.1.5. Overall, the right panel

in Figure 5.4 suggests that using the QN-linear model for cis-eQTL analysis can yield inaccurate

p-values.

Computation times for the real-data analyses were recorded for both the ACME-eQTL and

QN model fitting procedures. The R packages MatrixEQTL and ACMEeqtl provide full-tissue cis-

eQTL procedures for the QN and ACME-eQTL models (respectively). We timed the run of each

procedure on each of the nine tissues. The results are shown in the bottom-right of Figure 5.4. We

89

0

10

20

30

40

50

0 10 20 30 40 50

ACME −log10(pvalue)

Q
N

 −
lo

g1
0(

pv
al

ue
)

0
1
2
3
4
5
6

count
(log10)

Adipose tissue
ACME vs QN pvalues

0

10

20

30

40

50

−1.0 −0.5 0.0 0.5 1.0

gene−SNP MB dist.

−
lo

g1
0(

p−
va

lu
e)

0

1

2

3

4

count
(log10)

Adipose tissue
G−S dist. vs pvalues

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4

log10(Avg. Expr. + 1)

E
st

im
at

ed
 η

0

1

2

count
(log10)

Adipose tissue
Expr. vs Max η

Figure 5.4: Results of genome-wide cis-eQTL ACME effect size estimations on Thyroid tissue (n = 105),
from GTEx Pilot data. Bottom-left: Maximum gene-wise estimated effect size vs. log average expression
level. Top-left: F p-values from the QN-linear model vs. F p-values from the ACME-eQTL model. Top-
right: − log10 ACME-eQTL p-value vs. distance from gene TSS to SNP position. Bottom-right: Full-tissue
procedure times of the Matrix-EQTL and ACME-eQTL fitting softwares.

note that the ACME-eQTL software benefits from parallelization that the Matrix-EQTL software

currently does not employ. This explains why the ACME-eQTL full-tissue procedure is faster than

Matrix-EQTL, even though the former based on an iterative optimization procedure.

90

5.1.7 Discussion

In this section we have proposed ACME-eQTL, a new model for the effect-size of cis-eQTLs

between individual genes and SNPs. ACME-eQTL is based on a simple biological model for cis-

eQTL action, and supported by careful analysis of real data. Our analyses reveal that existing

approaches to cis-eQTL analysis, while useful for some purposes, do not reflect the most plausible

relationship between allele count and gene expression. Goodness-of-fit tests using real data show

that the systematic component of the ACME-eQTL model is the best-fitting description of cis-eQTL

action among two-parameter models involving allele count alone. Thus, the ACME-eQTL model

yields reliable cis-eQTL effect sizes that have a principled biological interpretation. We also show

that the F -test for the significance of estimated effects derived from the model is robust to the types

of violations of error assumptions encountered in real data. Finally, we showed that when real data

closely follows the ACME-eQTL model (as the goodness-of-fit tests suggest), standard methods for

effect size estimation provide insufficient power and estimation accuracy. We provided single-eQTL

and full-tissue comparisons of computation times, showing that large-scale eQTL analyses with

the ACME-eQTL model are extremely feasible. The R code for the ACME-eQTL model fitting

algorithm is available in the ACMEeqtl package on the CRAN repository.

Though we did not explore the application of the ACME-eQTL model to trans-eQTL analysis,

the ACME-eQTL model can in principle be applied to trans-eQTLs. However, for trans-eQTLs,

dominance effects may be more plausible, while current sample sizes may be inadequate to fully

investigate such effects. Thus we consider the use of the ACME-eQTL model for trans-eQTLs to

be exploratory.

Another area of extension that we did not thoroughly explore is a multi-SNP ACME-eQTL

model. However, it is not obvious that allelic additivity assumption should hold in a multi-SNP

model. This is certainly an area for further investigation. For any proposed multi-SNP ACME-

eQTL model, goodness-of-fit tests of the type presented in Section 2.3 would be one avenue for

verification of biological accuracy, as the logical extension of allele-specific expression to multiple

SNPs is to adopt a multiple haplotype model. To facilitate work on this project, we have im-

plemented a step-wise fitting algorithm for a multi-SNP ACME-eQTL model, with software code

included in the ACME-eQTL software package. These estimates can be used to consider preliminary

91

ACME-eQTL models that are additive in genotypes across SNPs, until more rigorous verification

of a multi-SNP approach can be performed.

The primary motivation of our work was to place inferences for cis-eQTL effect sizes on a solid

statistical foundation. We believe the ACME-eQTL model provides such a foundation, and can

be readily implemented in current eQTL analyses. The results may be useful for investigations in

which interpretable eQTL effect sizes are relevant, such as examining enrichment and overlap with

genome-wide association studies (Zhu et al., 2016).

5.2 Future work: Bi-community detection for correlation networks

This section includes preliminary development and analysis of an NST method for bi-partite

correlation networks called Correlation Bi-Community Extraction (CBCE). The CBCE method was

originally motivated by eQTL data, as the set of genes and the set of genomic loci can be organized

into two halves of a bi-partite correlation network. As discussed in Section 1.4.3, a community in

a bi-partite network is a pair of node sets, one set from each side of the network, such that nodes

from one set are strongly connected with nodes from the other. In this section, these pairs are

termed bi -communities.

In the eQTL setting, a “true” bi-community may have some functional relationship with at least

one phenotype of interest. Furthermore, as bi-communities contain many eQTLs, their relationships

with phenotypes and GWAS results may be more complex and revealing than those of individual

eQTLs. The network macro-structure of discovered bi-communities in eQTL networks may also

have interesting interpretations in terms of phenotypes. For instance, in study of eQTL networks in

lung expression data, Platig et al. (2015) found that “hub” genomic loci (loci with many significant

eQTL connections) were negatively correlated with known diseases.

5.2.1 The NST Framework for Bi-partite Networks

Before introducing our approach to bi-partite correlation networks, we adapt the NST frame-

work to bi-partite networks in general. A general complex bi-partite network with [n] nodes can

be written G = (N1, N2,D), with N1 ∪ N2 = [n], N1 ∩ N2 = φ, and D an arbitrary data ob-

ject corresponding to the node set. Community detection for bi-partite networks involves the

92

nuance that associations revealed by D are judged across the network. That is, a bi-community

(C1, C2) ∈ 2N1 × 2N2 is called “strongly connected” by virtue of high association between C1 and

C2, but not within each set. We now give an NST notion of association in a bi-partite network,

which naturally extends Definition 1 in Chapter 2:

Definition 23. Given a : [n]× 2[n] 7→ R, a bi-community (C1, C2) ⊆ 2N1 × 2N2 satisfies

(i) a(u,C2), a(v, C1) > 0 for each u ∈ C1 and v ∈ C2, and

(ii) a(u,C2), a(v, C1) 6 0 for each u ∈ C1 and v ∈ C2.

As in the NST framework from Chapter 2, assume that we can specify a test statistic T (u,B,D)

for a(u,B), and corresponding p-value p(u,B,D). We now provide a natural modification to the

NST update (see Section 2.3) to update a bi-community:

Core update Uα : 2N1 × 2N2 7→ 2N1 × 2N2

Given bi-partite network G = (N1, N2,D) and input bi-set (B1 ×B2) ⊆ N1 ×N2:

1. Calculate p-values p := {p(u,B2,D) : u ∈ N1} ∪ {p(v,B1,D) : v ∈ N2}.

2. Obtain threshold τ(p) from a multiple-testing procedure.

3. Return (B′1, B
′
2) with B′1 := {u : p(u,B2,D) 6 τ(p)} and B′2 := {v : p(v,B1,D) 6 τ(p)}.

Note that the union of a bi-set B1 ∪B2 is just a subset of the full node set n. Hence, assuming

that the set of p-values p are independent and uniformly distributed under an appropriate global

null for D, Theorem 4 guarantees that stable bi-communities occur with probability at most α under

the null. The remaining components of the NST framework, in particular the Stable Community

Search (SCS) algorithm detailed in Section 2.3, require no modifications for bi-partite networks.

The rest of this section is devoted to specification of the association function, test statistic, null

model, and p-values for bi-partite correlation networks. These will provide the core features of the

CBCE method.

93

5.2.2 Notation and CBCE Framework

Let X be an m×n real-valued matrix, with rows representing samples and columns representing

nodes. Throughout, we will assume that the columns X are centered at 0 and scaled to have unit

variance. Each column of X corresponds to a node in a bi-partite network of interest with nodes

[n]. For any node set B ⊆ [n], let XB denote the B-column-subset of X. For u ∈ [n], let Xu be the

u-th column. A bi-partite correlation network has a concise representation as G := (N1, N2,X), as

all sample correlations may be computed from X.

In applications, Xu is the sample data (of dimension m) corresponding to the node u. Often,

there will be a natural division of the nodes [n] into disjoint and exhaustive sets N1 ∪ N2 = [n],

a division which has some relation to the scientific setting of interest. In the eQTL setting, for

instance, the bipartite division of interest is between SNPs and genes. The data matrix X is

often best represented as a block matrix (X1, X2) of sub-dimensions m × |N1| and m × |N2|. In

practice, the data X1 may have a much different character than X2. In the eQTL setting, SNP

data is binary, and gene data is continuous. This type of heterogeneity is fully allowed in the NST

approach outlined in the following section.

5.2.3 SCS test statistic and p-value for bi-partite correlation networks

Assume that X has a true underlying correlation structure defined by the function ρ : [n]×[n] 7→

[−1, 1]. Arguably the most straightforward notion of node-to-set association in a correlation network

is the true average correlation between the node and set. The CBCE method will be based on the

average correlation association, explicitly defined as

a(u,B) := |B|−1
∑
v∈B

ρ(u, v). (5.6)

This association function is identical to that presented in one of the illustrative examples of the

NST framework, for standard correlation networks. Note that a(u,B) = 0 is the natural null

assumption in the correlation network setting, as it implies zero average correlation between u and

the nodes in B. Also, though a(u,B) is defined for any node u ∈ [n] and node-set B ⊆ [n], in the

94

bi-partite community detection setting, it is only of interest to estimate a(u,B) when u and B are

from separate sides of the network, as in the modified SCS algorithm defined above.

For any nodes u and v, denote the sample correlation by r(u, v) := (n− 1)−1Xt
uXv. Our NST

test statistic for a(u,B) is then the average sample correlation, which we write as

R(u,B,X) := |B|−1
∑
v∈B

r(u, v). (5.7)

For any given u ∈ [n] and B ⊆ [n], we use R(u,B,X) to perform the hypothesis test

H0 : a(u,B) = 0 vs. Ha : a(u,B) > 0. (5.8)

Let Pθ denote the joint distribution of the sample correlations {r(u, v) : u, v ∈ [n]}, where θ is

a parameter that will depend on the distribution of X. Let X̃ be a random data set from the

distribution of X. Then, assuming θ is specified so that a(u,B) = 0, we can quantify the evidence

against the null hypothesis in (5.8) with the p-value

p(u,B,X) = Pθ(R(u,B, X̃) > R(u,B,X)) (5.9)

However, Pθ is not known to have a closed-form. Even if a tractable form of Pθ were available, it is

unlikely the distribution of R(u,B, X̃) would be analytical. To approximate Pθ, Steiger and Haks-

tian (1982) provided a limiting normal distribution for the joint distribution of sample correlations,

under quite general conditions. Explicitly, they established the following theorem:

Theorem 24 (Steiger and Hakstian (1982)). Let {X1, . . . , Xn} be a random vector with distribution

P satisfying E|Xu|4 <∞ for all u ∈ [n]. Let X be an m×n matrix, with rows containing independent

samples from P. Let R be a n2-dimensional vector containing the (vectorized) entries of the sample

correlation matrix of X. Then there exists θ = (ρ,Σ) depending on P such that

m1/2 (R− ρ)⇒ Nn2(0n2 ,Σ)

In the theorem, ρ is of course the true variable correlations under P. The entries of Σ depend

on the fourth-order cross-moments. Explicitly, recall that the columns of X are assumed to be

95

centered and scaled, and define for u, v, w, x ∈ [n] the following cross-moments:

ρuv := EXuXv and ρuvwx := EXuXvXwXx, (5.10)

Steiger and Hakstian showed that a general element of Σ has the closed form

Σuv,wx := ρuvwx + 1
4ρuvρwx(ρuuww + ρvvww + ρuuxx + ρvvxx)

− 1
2ρuv(ρuuwx + ρvvwx)− 1

2ρwx(ρuvww + ρuvxx)

Hence, to compute the p-value p(u,B,X) given in (5.9), we take Pθ to be the limiting multivariate

normal distribution given in Theorem 24, assuming that a(u,B) = 0 under Pθ. As the elements

of Σ are unknown, plug-in sample moments from X are used in place of the expressions in (5.10).

This approach is analogous to that in other implementations of the NST framework, as discussed

in Section 2.2.

5.2.4 The CBCE method

The overall extraction method for bi-partite correlation networks, called Correlation Bi-

Community Extraction (CBCE), is now defined. The CBCE method incorporates the Node-Set

Testing SCS algorithm based on the correlation sum statistic R(u,B,X), described above, in the

same way that the CCME method incorporates the SCS algorithm based on S(u,B,G), described

in Section 3.4. In particular, stable cycles are dealt with as described in Section A.1, and overlap-

ping stable communities are filtered based on the process described in Section B.2. However, the

initialization procedure used for CBCE is unique to the setting of bi-partite correlation networks.

The CBCE method obtains an initial bi-community with the following algorithm:

96

CBCE Initialization

Given a bi-partite correlation network G = (N1, N2,X) and initial node u ∈ N1:

1. Calculate correlations {r(u, v) : v ∈ N2}.

2. Calculate p-values p2 := {p(u, v) : v ∈ N2} based on correlation t-tests.

3. Obtain multiple-testing threshold τ(p2) and set B2 ← {v ∈ N2 : p(u, v) 6 τ(p2)}.

4. Calculate p-values p1 := {p(u,B2,X) : u ∈ N1} from Equation 5.9.

5. Obtain multiple-testing threshold τ(p1) and set B1 ← {u ∈ N1 : p(u,B2,X) 6 τ(p0,1)}.

6. Return (B1, B2).

The CBCE initialization algorithm is essentially a bisected version of the bi-partite SCS algo-

rithm. Though it is defined above for u ∈ N1, it can be applied symmetrically to nodes v ∈ N2,

with reversed ordering of test-statistic computations. The full CBCE method can now be defined:

The CBCE Community Detection Method for Bipartite Correlation Networks

Given an observed bipartite correlation network G:

1. Obtain initial bi-communities B0 := {(B1, B2)u : u ∈ [n]} via CBCE Initialization

2. Apply bi-partite SCS to each bi-community in B0, resulting in stable communities C.

3. Remove sets from C that are empty or redundant.

We analyze the performance of CBCE on simulated and real data in the following sections.

5.2.5 Simulation results

This section contains a performance analysis of CBCE and some existing methods on a bench-

marking simulation framework. Simulated networks are generated from a model that plants small

bi-communities of varying size among many background nodes. Our model, choice of performance

measures, competing methods, simulation settings, and results are described in the subsections

below.

97

5.2.5.1 Simulation model

The simulation model we employ is meant to produce realistic bipartite correlation networks

with heterogeneous bi-communities. Before describing the model, we first give a complete list of

parameters. After, we describe each parameter and its role in the simulation model.

Table 5.1: Simulation model parameters

m: Dimension of node-wise Euclidean vectors b: Number of bi-communities
cmax: Max community size cmin: Min community size
g: Scaling factor for background node set µβ : Mean of regression parameters
p: Within-bi-community eQTL probability ρ∗: Intra-correlation of N1 nodes
σ2: Regression noise variance

Our simulation model produces a bi-partite correlation network G = (N1, N2,X) where X is a

block-matrix (X1, X2), as described in 5.2.2. We now describe the “default” network model of our

simulation framework, defined by pre-set values of the parameters above. In simulation settings

(to be described later), we toggle parameters to assess their effect on the competing methods’

accuracies. In the default network, X1 and X2 have row dimension m = 200. The node sets N1 and

N2 are first populated by b = 10 disjoint bi-communities (C1, C2) satisfying cmin 6 |C1|, |C2| 6 cmax.

The sizes of each half of each bi-community are chosen uniformly at random from [cmin, cmax]. The

expected number of nodes in a bi-community from either N1 or N2 is thus b · (cmin−cmax)/2. Using

now the parameter g > 0, we give dg · b · (cmin − cmax)/2e background nodes to both N1 and N2.

Thus, it can be said that the simulation model produces g “times” more background nodes than

community nodes, on average. In the default model, g = 1.

So far, we have described the determination of K = 10 ground-truth bi-communities C∗ :=

{(C1,i, C2,i) : i ∈ [K], C1,i ⊆ N1, C2,i ⊆ N2}, and background node sets B1 and B2. We now

describe the simulation of X1 and X2 based on this bi-community structure. Cross-correlations

between X1 and X2 are generated via a regression model with censored coefficients. First, we

generate the columns of X1 as Normal random m-vectors with mean zero. For u 6= v ∈ N1, let

ρ(u, v) denote the correlation between columns u and v from X1. Then X1 is generated with the

98

following correlation structure, depending on C∗ and B1:

ρ(u, v) =

ρ∗, if u and v are in the same bi-community half

0, if u and v are in different bi-community halves, or if u, v ∈ B1

In the default model, ρ∗ is set to 0.3. With X1 in hand, the columns of X2 are generated by the

following process. For each u ∈ N1 and v ∈ N2, let δ(u, v) be equal to 1 if u and v are in a true

bi-community together, and 0 otherwise. Let δ be the |N1| × |N2| matrix of δ(u, v)’s. Let A be

a random |N1| × |N2| matrix of independent Bernoulli random variables with success probability

p. Let E be a random |N1| × |N2| matrix of independent exponential random variables with mean

µβ. Let Z be a random m × |N2| matrix of N (0, σ2 · c) random variables. The constant c will be

described in the paragraph below. Let ◦ denote the entry-wise (Hadamard) matrix product. Then

X2 is generated by the regression equation

X2 = Xt
1 (δ ◦A ◦E) + Z (5.11)

Essentially, the above equation says that each node from N2 chooses a p proportion of nodes (via

A) within its bi-community to be cross-neighbors, and then is generated by a weighted linear

combination (via E) of those neighbors, plus some noise (via Z). The default parameter settings

are p = 0.5, µβ = 1, and σ2 = 4. The scaling constant c in the variance of Z approximates the

variance of X2 due to the regression on X1, so that σ2 controls the noise variance relative to the

signal. The sample correlation matrix of a draw from the default model is shown in Figure 5.5.

We can see ten clearly-defined bi-communities of varying size, and large background node sets

approximately twice the size of the set of nodes belonging to bi-communities.

5.2.5.2 Performance measures

To assess the performance of a bi-community detection method, three measures are used:

1. Best Match (BM): Introduced by Goldberg et al. (2010), the Best Match (BM) performance

measure captures the similarity between two collections of index sets. Explicitly, for integers

K1,K2 > 0, let C1 be a K1-collection {Si : i ∈ [K1]} and C2 be a K2-collection {S′j : j ∈ [K2]}.

99

Figure 5.5: Correlation matrix of X from a draw from the default simulation model.

Let s(Si, S
′
j) be an arbitrary similarity function for index sets. The best match score is then

defined as

BM(C1, C2) :=

∑
S∈C1

max
S∈C2

s(S, S′) +
∑
S′∈C2

max
S∈C1

s(S′, S)

K1 +K2

Note that BM is symmetric even if s is not. Throughout, we compute BM via the Jaccard

similarity defined s(S, S′) := |S ∩ S′|/|S ∪ S′|.

2. Background Jaccard (BJ): The Jaccard similarity between the set of background nodes

found by the method and the set of true background nodes.

3. Runtime: The computation time of the method, in seconds.

100

5.2.5.3 Competing methods

In addition to CBCE, we run two other bi-partite community detection approaches through

our simulation framework. Given a bi-partite correlation network G := (N1, N2,D), each method

depends on the computation of the cross-correlation matrix C := XtY.

1. Bipartite Recursively-Induced Modules (BRIM): Barber (2007) extended the mod-

ularity score (see Section 1.2.3) to bi-partite networks, and introduced the BRIM method

for community detection on bipartite networks as a technique for local maximization of the

bi-partite modularity. As BRIM operates only on binary bi-partite networks, we introduce

the following procedure to adapt the method in our setting:

(i) Convert the entries of C to t-statistic p-values.

(ii) Compute the Benjamini-Hochberg threshold τ = τ(C) at level α = 0.1.

(iii) Dichotomize the entries of C into 0− 1 variables, where an entry becomes 1 if and only

if it is less than τ .

(iv) Apply BRIM to the binary bipartite network G′ := (N1, N2,C).

Note that after step 3, some nodes may have no cross-edges. We remove these nodes from G′

and automatically assign them to background.

2. Independent Row-Column k-means: One potential solution to bi-community detection

in correlation networks is to apply bi-clustering to C. A common approach to bi-clustering

is to cluster the rows and columns separately, called “Independent Row-Column Clustering”

(IRRC) in Shabalin et al. (2009). In this paper we apply k-means IRRC alongside BRIM

and CBCE. IRRC is somewhat ill-suited for the finding of bi-communities, as it there is no

natural way to pair the row clusters with the column clusters. As such, we apply the following

routine to the results of any IRRC method:

(i) Given cross-correlation matrix C, row clusters S := {S1, S2, . . . , SK} and column clus-

ters S ′ := {S′1, S′2, . . . , S′K}.

101

(ii) Let Cij be the sub-matrix of C formed by the row-subset Si and the column-subset S′j .

Compute a K ×K matrix M with general entry Mij defined as the entry-wise mean of

Cij .

(iii) Let m := max Mij , and let im, jm be the indices of m in M.

(iv) Define C1 := Sim and C2 := S′jm . Add the bi-community (C1, C2) to a bi-community

collection C.

(v) Remove Sim and S′jm from S and S ′, respectively. Re-set K ← K − 1. If K = 0,

terminate and return C. Otherwise, return to step 2.

The algorithm above iteratively finds the strongest pairings of the row and column clusters.

In each simulation, we set k, the number of row and column clusters that k-means will find,

to the true number of bi-communities in the model that produced the simulation (including

the background node set). We also chose the k-means background node set by choosing the

bi-community from C with the closest Jaccard match to the true background node set. Each

of these procedures can be viewed as “oracle” shortcuts to the k-means IRRC approach, and

therefore are generous versions of its use in applications when the number of bi-communities

or the background node set are unknown.

5.2.5.4 Simulation settings and results

In this section we present three settings in which parameters of the simulation model are

toggled, to assess the competing methods’ sensitivities to aspects of the model. In each setting, we

move one parameter of the model along an even grid, simulating 50 instances of the model at each

parameter value. The performance metrics described in Section 5.2.5.2 are then averaged over the

50 repetitions. We describe the settings and results below.

Increasing the noise variance σ2. In the first simulation setting, we increase σ2 significantly.

We see that the BRIM method performs quite poorly, and that the overall accuracy of CBCE drops

off more quickly than does k-means IRRC. However, this result should be weighed against the fact

that the k-means IRCC approach involves oracle settings of the number of bi-modules and the

identity of the background node set. Absent these settings, it may be more difficult to achieve

similar performance. Furthermore, the CBCE method involves explicit signficance testing, which

102

will be more sensitive (in general) to the absence of signal than a basic optimization method like

k-means.

Figure 5.6: Simulation model instances with varying µβ (betamean).

Decreasing the mean regression parameter µβ. In the second simulation setting, the mean

of the (random) regression parameters is allowed to tend to zero. We see that BRIM remains the

least accurate performer, and CBCE and k-means perform comparably, with CBCE dipping a little

below for low µβ. Again, we temper this result with the fact that the k-means approach is generously

informative, and that CBCE has built-in background node detection capability. Furthermore,

CBCE is approximately three times faster than k-means IRCC in this simulation setting.

Figure 5.7: Simulation model instances with varying σ2 (s2).

Increasing the proportion of background nodes vs. bi-community nodes g. In a

third simulation setting, the ratio of the size of the background node set to the number of bi-

community nodes is increased many-fold. In response to more background nodes in the model, the

performance of both BRIM and k-means depreciate considerably, while the performance of CBCE

remains near-optimal (see Figure 5.8). This displays the unique ability of a testing approach

103

to bi-community detection to accurately distinguish between background nodes and nodes in bi-

communities. Such an ability is particularly important in large-scale genomic data, as important

gene regulation sub-networks comprise only a small fraction of genome. Additionally, the size of

the network increases linearly with g, and we see that the computation time of k-means increases at

least quadratically in response. This displays some of the computational complications with naive

clustering approaches to bi-clustering and bi-community detection, which are surmounted by the

set-by-set testing approach inherent to CBCE.

Figure 5.8: Simulation model instances with varying g (“bgmult”).

5.2.6 Conclusion

As stated at the outset of this section, the CBCE method is preliminary. Much future work

remains to improve the method and apply it to real data. In particular, CBCE is directly applicable

to eQTL networks, with genomic loci and (on the other hand) genes forming two halves of a bi-

partite correlation network. It will be of great interest to examine eQTL bi-community structure

detected by CBCE, and to synthesize the results with those from Genome-Wide Association Studies

(GWAS) and other existing features of the genome.

5.3 Acknowledgements

The GTEx data used for the analyses described in this article were from dbGaP accession

number phs000424.v3.p1 (http://www.gtexportal.org). The GTEx Project was supported by

the Common Fund of the Office of the Director of the National Institutes of Health (common-

fund.nih.gov/GTEx). The work of various authors on this paper was supported in part by NIH

104

R01MH101819-01, NSF DMS1310002, EPA RD83574701, and NHGRI HG007840. The research

and analyses in this paper were spurred along by many helpful conversations and phone calls with

members and working groups from the GTEx Consortium.

105

CHAPTER 6

Future Work and Conclusion

The most immediate contributions of the preceding projects have been discussed within their

corresponding chapters. Here, broader implications of this work are offered, along with future

research directions. The main takeaway of this thesis, seen as a whole, is that the Node-Set Testing

(NST) approach to community detection is both conceptually interesting and of wide practical use.

It is the author’s hope that it is applied to many more network data settings. There are many

reasons for this:

1. The framework gives a flexible algorithm which adapts to the number of communities, the

amount of community overlap, and the presence of background in natural networks.

2. Statistical testing is inherent to NST methods, providing error guarantees that do not usually

come with classical community detection methods.

3. NST methods are conceptually simple to construct for new types of networks. The two

necessary components of the framework, a null model and a test statistic, are directly born

of two questions central to any community detection analysis: what does the absence of

community structure look like, and with what measure could we seek such structure if it

existed?

4. Theoretical analysis of NST methods reduce to theoretical analysis of the null model and test

statistic. As displayed in this thesis, such analyses are tractable, and are based on natural

conceptions of statistical consistency and error rates.

5. The NST methods in this thesis seem to outperform some standard methods on both classic

simulations and simulations involving realistic features of networks, like overlapping commu-

nities and background nodes.

The established work on CCME, and the preliminary work on CBCE, should serve as examples of

NST framework adaptations to specific types of networks with non-standard data types. Hopefully,

many more specific adaptations will follow similarly. Some interesting theoretical questions remain

unanswered, and some directions left un-pursued:

• As mentioned at the end of Chapter 2, it is unreasonable to assume that p-values are indepen-

dent under a global OST null. What types of dependence arise from global nulls in various

applied settings (e.g., weighted or correlation networks)? What multiple testing rules exist to

account for such dependencies, and is global error of the SCS algorithm still controlled when

they are applied?

• In Section 3.3.3, an asymptotic consistency theorem was given for the CCME algorithm. The

proof follows an approach that should, in principle, apply to all other NST methods. Is there

a general consistency framework for NST methods? Under what conditions on the NST test

statistic, null model, and any given data-generating model with communities is a general SCS

algorithm consistent?

• The NST methods pursued in this thesis were based on one-sided tests for association, which

means that the communities sought are strictly assortative. Is it possible to implement a

two-sided testing version of the NST testing framework? In what contexts are communities

in which nodes are both positively and negatively associated of scientific interest?

I look forward to pursuing these questions in my immediate future.

107

APPENDIX A

NODE-SET TESTING SUPPLEMENTAL

A.1 Cycles in Fixed Point Search

As remarked in Section 2.3, it is possible for the SCS algorithm to reach a stable sequence

C1, . . . , CJ that is traversed by the update Uα(·,G). If this happens, we apply the following routine

to re-start the algorithm, or return the union of the sequence:

1. If Ci ∩ Ci+1 = φ for any i ∈ [J], or if CJ ∩ C1 = φ, terminate the iterations and do not extract

a community.

2. Otherwise, define C∗ = ∪Ji=1Ci, and:

(a) If C∗ has been visited previously by SCS, extract C∗ into C.

(b) Otherwise, re-initialize with C∗.

A.2 Proof of Theorem 4

For k > 1, define Ck := {B ⊆ [n] : |B| = k}. For any B ∈ Ck, let p(j) be the j-th ordered p-value

from p(B). Then, by construction of the Benjamini-Hochberg procedure, B is a stable community

if and only if the event

Sn(B,α) :=

{
p(k) 6

kα

n

} ⋂ ⋂
j>k

{
p(j) >

(j + k)α

n

}
(A.1)

occurs. Define Ck(D, α) to be the set of all stable communities of size k. Then, using the event in

equation A.1 and a union bound,

Pn
(
|Ck(D, α)| > 0

)
6

n∑
k=1

∑
B∈Ck

Pn(Sn(B,α)) (A.2)

It is therefore sufficient to show that

n∑
k=1

∑
B∈Ck

Pn(Sn(B,α)) 6 α (A.3)

The remainder of the proof proceeds by induction on n. For any n′ 6 n, we assume Pn′ satisfies

assumption 1. When n′ = 1, inequality A.3 is trivial. Thus, the induction hypothesis is that (A.3)

holds for all n′ 6 n− 1. Fix 1 6 k < n and B ⊆ Ck. Let f be the pdf of p(n) under P. Conditioning

on p(n), we have

Pn(Sn(B,α)) =

∫ 1

α
Pn(Sn(B,α)|p(n) = x)f(x)dx+

∫ α

0
Pn(Sn(B,α)|p(n) = x)f(x)dx

Since k < n, the event p(n) 6 α ensures that Sn(B,α) does not occur. Thus, the probability within

the right-most integral is equal to zero. We now examine the event Sn(B,α) when p(n) = x > α.

Note that for fixed x > α, if p(n) = x, Sn(B,α) will occur if and only if

{
p(k) 6

kα

n

} ⋂ ⋂
n>j>k

{
p(j) >

(j + k)α

n

}

≡
{
p(k)

x
6

k

n− 1

(n− 1)α

nx

} ⋂ ⋂
n>j>k

{
p(j)

x
>
j + k

n− 1

(n− 1)α

nx

}
(A.4)

Note that, conditioned on p(n) = x, the random variables p(1)/x, . . . , p(n−1)/x are ordered indepen-

dent uniform [0, 1]. Thus, it is clear from line (A.4) and the definition of Sn(B,α) in line (A.1)

that

Pn
(
Sn(B,α) | p(n) = x

)
= Pn−1

(
Sn−1

(
B,

(n− 1)α

nx

))
(A.5)

Therefore,

n−1∑
k=1

∑
B∈Ck

Pn(Sn(B,α)) =
n−1∑
k=1

∑
B∈Ck

∫ 1

α
Pn(Sn(B,α)|p(n) = x)f(x)dx

=

n−1∑
k=1

∑
B∈Ck

∫ 1

α
Pn−1

(
Sn−1

(
B,

(n− 1)α

nx

))
f(x)dx

=

∫ 1

α

n−1∑
k=1

∑
B∈Ck

Pn−1

(
Sn−1

(
B,

(n− 1)α

nx

))
f(x)dx

109

Applying the induction hypothesis to the integrand, we obtain

n−1∑
k=1

∑
B∈Ck

Pn(Sn(B,α)) 6
∫ 1

α

(n− 1)α

nx
f(x)dx

Recall that f is the pdf of the n-th ordered p-value. Hence f(x) = nxn−1, and

∫ 1

α

(n− 1)α

nx
f(x)dx = α(n− 1)

∫ 1

α
xn−2dx = α(1− αn−1)

This bounds the first n − 1 elements of the sum in (A.3). For the n-th element, note that Cn

contains only the element B = [n], and that trivially Pn(Sn([n], α)) = αn. Thus overall,

n∑
k=1

∑
B∈Ck

Pn(Sn(B,α)) = Pn(Sn([n], α)) +

n−1∑
k=1

∑
B∈Ck

Pn(Sn(B,α)) 6 αn + α(1− αn−1) = α.

�

110

APPENDIX B

CCME SUPPLEMENTAL

B.1 Proof of Proposition 5

Equation 3.7 follows immediately from the observation in equation 3.3 and the definition of

ruv(s). Next, define euv := 1({u, v} ∈ E). Note that

E (W (u, v)|euv) = fuv(d, s)euv, and Var(W (u, v)|euv) = κfuv(d, s)2euv.

Thus, using the law of total variance,

Var(W (u, v)) = fuv(d, s)2Var(euv) + κfuv(d, s)2E(euv)

= fuv(d, s)2r̃uv(d)(1− r̃uv(d)) + κfuv(d, s)2r̃uv(d)

= ruv(s)fuv(d, s) (1− r̃uv(d) + κ)

Summing over v ∈ B gives equation 3.8. �

B.2 Filtering of B0 and C

To filter through B0 and C, we use an inference procedure based on a set-wise z-statistic, anal-

ogous to the node-set z-statistic presented in Section 3.3. Define s(B) :=
∑

v∈B s(v,B). Note that

s(B) has an easily derivable expectation and standard deviation under the continuous configura-

tion model, which we denote (respectively) by µ(B|θ) and σ(B, |θ). We define the corresponding

z-statistic and an approximate p-value by

z(B|θ) :=
s(B)− µ(B|θ)

σ(B|θ)
, p(B|θ) := 1− Φ(z(B|θ))

Before initializing the SCS algorithm on sets in B0, we compute the p-value above for each member

set, and remove any that are not significant at FDR level α = 0.05. This greatly reduces the

number of extractions CCME must perform, and reduces the probability of convergence on small,

spurious communities.

We also use z(B|θ) to filter near-matches in C, once all FPS extractions have terminated and

empty sets removed. To do so, we require an overlap “tolerance” parameter τ ∈ [0, 1]. First,

we create a (non-symmetric) |C| × |C| matrix O with general element Oij := |Ci ∩ Cj |/|Ci|, which

measures the proportional overlap of Ci into Cj . After setting the diagonal of O to zero, the filtering

proceeds as follows:

1. Find indices i 6= j corresponding to the maximum entry of O.

2. If Oij < τ , terminate filtering.

3. Remove either Ci or Cj from C, whichever has the smaller z(B|θ).

4. Re-compute O, set its diagonal to zero, and return to step 1.

For all simulations and real-data analyses in this paper, we employed this algorithm with τ = 0.9.

To further decrease the computation time of CCME, as we proceed through B0, we skip sets that

were formed from nodes that have already been extracted into C. We find that, in practice, none of

these adjustments harm CCME’s ability to find statistically significant overlapping communities.

Indeed, the simulation results mentioned in Section 3.5.2.2 show that CCME outperforms competing

methods with overlap capabilities.

B.3 Simulation Framework Preliminaries

In this section and the following sections we describe the benchmarking simulation framework

used for the performance analysis of CCME competitor methods in Section 3.5 of the main doc-

ument. In Table B.1, we list and name the complete list of parameters controlling the simulated

networks:

B.4 Simulation of community nodes

The framework is capable of simulating networks with or without background nodes. For now,

we describe the simulation procedure without background nodes, i.e. with nb = 0. Later, we

112

Table B.1: Simulation model parameters

n: Number of nodes in communities nb: Number of nodes in background
mmax: Max community size mmin: Min community size
τ1: Power-law for degree parameters τ2: Power-law for community sizes
k: Mean of degree parameter power-law kmax: Maximum degree parameter
se: Within-community edge signal sw: Within-community weight signal
on: Number of nodes in multiple communities om: Number of memberships for overlap nodes
F : Distributions of edge weights σ2: Variance parameter for P
β: Power-law for strength parameters

describe how to simulate a network with background nodes, which involves a slight modification to

the procedure in this section. Regardless of the presence of background nodes, the first step is to

determine community sizes and node memberships.

B.4.1 Community structure and node degree/strength parameters

In this section we describe how to obtain the community assignments of the n community-

nodes. The goal is to obtain a cover C := {C1, . . . CK} of the nodes [n]. The following steps to

obtain C are almost exactly as those from the benchmark in Lancichinetti and Fortunato (2009),

used extensively in Lancichinetti et al. (2011) and Xie et al. (2013).

1. Each of the on overlapping node will have om memberships. Let nm := n+ on(om− 1) be the

number of node memberships present in the network.

2. Draw community sizes from a power law with maximum value mmax, minimum value mmin,

and exponent −τ2, until the sum of community sizes is greater than or equal to nm. If the

sum is greater than nm, we reduce the sizes of the communities proportionally until the sum

is equal to nm.

3. Form a bipartite graph of community markers on one side and node markers on the other.

Each community marker has number of empty node slots given by step (b), and each node has

a number of memberships given by step (a). Sequentially pair node memberships and com-

munity node slots uniformly at random, without replacement, until every node membership

is paired with a community. This process is a bipartite version of the standard configuration

model. For more details, see Lancichinetti and Fortunato (2009).

113

With the community assignments in hand, simulation of the network proceeds according to the

Weighted Stochastic Block Model as outlined in Section 3.5 from the main text. We describe

choices for particular components of this model in the following section.

B.4.2 Simulation of edges and weights

As described in Section 3.5, we set the P and M matrices to have diagonals equal to se and sw

(respectively, see Table B.1), and off-diagonals equal to 1. We note that this homogeneity facilitates

creating networks with overlapping communities. With variance in the diagonal of P, for example,

it would not be obvious with what probability to connect overlapping nodes that overlap to two

of the same communities, simultaneously. It remains to obtain the strength and degree propensity

parameters ψ and φ; we do so analogously to the simulation framework in Lancichinetti et al.

(2011). We first draw φ from a power law with exponent τ1, mean k, and maximum kmax (see

Table B.1). Next we set ψ by the formula ψ(u) = φ(u)β+1 (this is mentioned in Section 3.5).

It is worth noting here that, under the model given below, the expected degree of node u is ap-

proximately φ(u) and the expected strength approximately ψ(u). Therefore, heterogeneity/skewness

in φ and ψ induce heterogeneity/skewness in the degrees and strengths of the simulated networks.

However, for reasons that will be made clear in the sections to follow, we prefer to have (at least)

the total expected degree and total expected strength of the simulated networks match φT and ψT ,

respectively. As such, after drawing φ from its power law and determining ψ from the aforemen-

tioned formula, we scale these vectors so their sums match the total expected degree and strength of

G. The scaling constants depend on P and M and are easily derivable from the model’s generative

algorithm (described in Section 3.3.3.1 of the main text).

B.4.3 Parameter settings

Here we list the “default” settings of the simulation model, mentioned in Section 3.5 of the

main text. The following choices for parameters were made regardless of the simulation setting:

τ2 = −2, k =
√
n, kmax = 3k (three settings which make the degree/strength distributions skewed

and the network sparse), β = 0.5 (to induce a non-trivial power law between strengths and degrees),

τ1 = −1, mmin = n/5, mmax = 3mmax/2 (settings which produce between 3 and 7 communities

114

per network with skewed size distribution), and σ2 = 1/2. Other parameter choices are specific to

the simulation settings, and described in Section 3.5 of the main text.

B.5 Background node simulation

If nb > 0, we generate a network with n community nodes, and then add nb background nodes,

generating all remaining edges and weights according to the continuous configuration null model

introduced in the main text. First, we obtain node-wise parameters for all n + nb nodes, yielding

vectors φ and ψ as in Section B.4. In a simulated network without background, φ(u) and ψ(u) are

approximately E[d(u)] and E[s(u)], respectively. To ensure that this remains the case in a network

for which background nodes are added after the simulation of community nodes, we must split up

each φ(u) and ψ(u) into community and background portions. A few other adjustments must also

be made after the simulation of community nodes. To this end, define

• [n]C := {1, . . . , n}; [n]B := {n+ 1, . . . , n+ nb}

→ community and background node sets

• φC,T :=
∑

[n]C
φ(u); φB,T :=

∑
[n]B

φ(u)

→ target total degrees of community and background nodes

• φC(u) :=
φC,T
φT

φ(u); φB(u) :=
φB,T
φT

φ(u)

→ target edge-counts between u and the community and background nodes

• φ1,T :=
∑

[n]C
φC(u); φ2,T :=

∑
[n]B

φB(u)

→ target total degrees of community and background subnetworks

• doC(u) :=
∑

v∈[n]C
1({u, v} ∈ E); doB(u) :=

∑
v∈[n]B

1({u, v} ∈ E)

→ observed edge-counts between u and the community and background nodes

The above definitions exist analogously for the strength parameters ψ (replacing “d” with “s” where

appropriate). The word “target” indicates that we will set up the background simulation model so

that these values are the approximate expected values of the graph statistics they represent.

115

B.5.1 Adjusted community-node simulation model

The only adjustment to be made to the simulation of community nodes, described in Section

B.4.2, is that the degree and strength parameters are set to a certain fraction of their original values.

This accounts for the eventual addition of background nodes, where the remaining (random) part

of each nodes degree and strength is to be simulated. So, the community-node simulation (if

background nodes are to be added later) follows the process descibed in Section B.4 with degree

parameters {φC(1), . . . , φC(n)} and strength parameters {ψC(1) . . . ψC(n)}.

B.5.2 Edges and weights for background

For the simulation of the background nodes (following the community nodes) our goal is to spec-

ify adjusted degree/strength parameters φ′ and ψ′ given the observed edge-sums {doC(1), . . . , doC(n)}

and weight-sums {soC(1), . . . , soC(n)} from the community nodes. In what follows we describe this

specification for φ′ only; the specification for ψ′ is exactly analogous. We first represent φ′T , which

we have yet to determine, into community and background totals:

φ′T = φ′C,T + φ′B,T

Since the background subnetwork has not yet been generated, we make the specification φ′(u) :=

φ(u) for all u ∈ [n]B, and hence φ′B,T = φB,T is known. To address φ′C,T , note that for each

community node u ∈ [n]C , φ′(u) may be represented similarly:

φ′(u) = φ′C(u) + φ′B(u)

This reduces the problem of specifying φ′(u) to specifying φ′C(u) and φ′B(u). Since the community

node subnetwork has already been generated, we set φ′C(u)← doC(u). Next, recalling that φB(u) :=

φB,T
φT

φ(u), we make the specification φ′B(u) :=
φB,T
φ′T

φ(u) (which must be solved for via φ′T , in the

following). So, in total, we have

φ′(u) =

doC(u) +

φB,T
φ′T

φ(u), u ∈ [n]C

φ(u), u ∈ [n]B

116

Therefore we can solve for φ′T with the equation

φ′T :=
∑

u∈[n]C∪[n]B

φ′(u)

=
∑
u∈[n]C

[
doC(u) +

φB,T
φ′T

φ(u)

]
+
∑
u∈[n]B

φ(u)

= doC,T +
φB,T
φ′T

φC,T + φB,T

Where doC,T :=
∑

u∈[n]C
doC(u). The solution for φ′T from this quadratic is

φ′T =
φB,T + doC,T

2
+

√
(φB,T + doC,T)2

4
+ φC,TφB,T (B.1)

which then immediately gives the full vector φ′. We can now simulate the remaining edges in the

network. Specifically, for each u ∈ [n]B and each v ∈ [n]C ∪ [n]B, we simulate an edge according to

P ({u, v} ∈ E) =
φ′(u)φ′(v)

φ′T
independent across node pairs (B.2)

We solve for ψ′ analogously. Then for each u ∈ [n]B and each v ∈ [n], we simulate an edge weight

according to

W (u, v) =

fuv(φ

′, ψ′)ξuv, {u, v} ∈ E

0, {u, v} /∈ E

where ξ∼F , is as it was for the generation of the community node subnetwork.

The above simulation steps correspond precisely to the continuous configuration model with

parameters (φ′, ψ′,P, θ). Some basic computational trials have shown that, for large networks, the

solution for φ′T is quite close to φT . Therefore, for each u ∈ [n]B, E[d(u)] is almost exactly φ(u),

i.e. what it would be under the model in B.4.2, without background nodes. The same holds for the

strengths and expected strengths. Together with equation B.2, this implies the background nodes

are behaving according to the continuous configuration model, even as they are a sub-network

within a larger network with communities.

To illustrate these points, we simulated a sample network from the default framework with

parameters n = 5, 000, nb = 1, 000, se = sw = 3, disjoint communities, and other parameters

117

specified by B.4.3. These settings are akin to what was used in Section 3.5 of the main text. First

we plotted φ′ and ψ′ against the empirical strengths and degrees with lowess curves to check the

match. Figure B.1 shows the match is quite close. Second, for each node u ∈ [n] and for each node

Figure B.1: Empirical degrees/strengths vs. adjusted parameters for the example network

block B (either a true community or the background node set) we may calculate the empirical

z-score for s(u : B) as described in Section 3.3 of the main text. The z-score for s(u : B) is a

measure of connection significance, with respect to the continuous configuration model, between u

and B. Let K be the number of true communties in the network. For each i, j = 1, . . . ,K + 1,

where K + 1 is the index of the background node block, we computed the empirical average of

z-statistics between nodes u from node block i the node block B corresponding to index j. Theses

empirical averages can be arranged in a (K + 1)× (K + 1) matrix showing the average inter-block

connectivities of the network. In Figure B.2 we display a visualization of this matrix, which shows

preferential connection within communities, and null connection between the background nodes

and all blocks.

B.6 Proof of Theorem 6 and supporting lemmas.

Here we give the proof of Theorem 6 in Section 3.3.2. We start with supporting lemmas.

Recall the definition of the average degree parameter λn, the normalized rth-moment Ln,r, and

other associated definitions from Section 3.3.2. For the purposes of the results below, we define the

118

Figure B.2: Average empirical z-statistics between nodes and node blocks

following generalization of Ln,r, given a node set Bn ⊆ [n] and bn := |Bn|:

Ln,r(Bn) := b−1
n

∑
u∈Bn

{dn(u)/λn}r

Note that Ln,r([n]) = Ln,r. Recall that in the setting of Theorem 6, the node set Bn is chosen

uniformly from the node set [n]. The first result involves a deterministic sequence {Bn}n>1:

Lemma 25. For each n > 1, let Gn be generated by the continuous configuration model with

parameters θn = (dn, sn, κn) and common weight distribution F . Fix a node sequence {un}n>1 with

un ∈ [n] and a positive integer sequence {bn}n>1 with bn 6 n. Suppose the parameter sequence

{dn(un)}n>1 satisfies

dn(un)bn
n

→∞ as n→∞

Fix ε > 0 as in Assumption 3, and choose δ ∈ (0, 1) such that 2βδ < ε. Fix a sequence of sets

{Bn}n>1 with |Bn| = bn for all n, and suppose that for r = 2β+1 and r = β(2+δ)+1, the sequence

{Ln,r(Bn)}n>1 is bounded away from zero and infinity. Then

S(un, Bn)− µn(un, Bn|θn)

σn(un, Bn|θn)
⇒ N (0, 1) as n→∞

119

Proof. In what follows, the functions ruv and r̃uv from Section 3.1 will be used extensively. Note

that for any nodes u, v, EW (u, v) = ruv(s). Thus by the classical Lyapunov central limit theorem

it suffices to show that ∑
v∈Bn

E|W (un, v)− runv(sn)|2+δ

(√ ∑
v∈Bn

E {(W (un, v)− runv(sn))2}

)2+δ
→ 0 (B.3)

as n tends to infinity. The following derivations hold for any fixed n > 1, so we suppress dependence

on n from un, and Bn, and similar expressions. In what follows, we use the slight abuse of notation

Euv := 1({u, v} ∈ E). For the numerator of (B.3), we have

E|W (u, v)− ruv(s)|2+δ =

(
ruv(s)

r̃uv(d)

)2+δ

E
(
|ξuvEuv − r̃uv(d)|2+δ

)
= fuv(d, s)2+δ · E

(
|ξuvEuv − r̃uv(d)|2+δ

)
, (B.4)

by definition of the model in Section 3.2.1. Moreover, by the law of total variance,

E(|ξuvEuv − r̃uv(d)|2+δ) = (1− r̃uv(d))r̃uv(d)2+δ + r̃uv(d)E|ξuv − r̃uv(d)|2+δ

=
{

(1− r̃uv(d))r̃uv(d)1+δ + E|ξuv − r̃uv(d)|2+δ
}
· r̃uv(d)

6 C · r̃uv(d) (B.5)

for some positive constant C, by Assumption 5. Next, we note that by Assumption 2, there exist

positive constants A < B such that for all v ∈ [n],

A · dn(v)β 6
sn(v)

dn(v)
6 B · dn(v)β,

for n sufficiently large. Thus, if ruv(d) 6 1, r̃uv(d) = ruv(d), and

fuv(d, s) =
ruv(s)

r̃uv(d)
=

(
dT
sT

)
s(u)s(v)

d(u)d(v)
6 B ·

(
dT
sT

)
{d(u)d(v)}β. (B.6)

120

If ruv(d) > 1, r̃uv(d) = 1, and by Assumption 4 there exists B′ such that

fuv(d, s) =
s(u)s(v)

sT
6 B ·

(
d(u)d(v)

sT

)
{d(u)d(v)}β

= B ·
(
dT
sT

)
ruv(d){d(u)d(v)}β 6 B′ ·

(
dT
sT

)
{d(u)d(v)}β. (B.7)

Therefore, combining (B.5)-(B.7) with (B.4), there exists C ′ such that

E|W (u, v)− ruv(s)|2+δ 6 C ′
(
dT
sT

)2+δ

· {d(u)d(v)}β(2+δ)r̃uv(d)

= C ′
(
dT
sT

)2+δ

· {d(u)d(v)}β(2+δ)d(u)d(v)

dT

6 C ′ · d1+δ
T s

−(2+δ)
T · {d(u)d(v)}β(2+δ)+1 (B.8)

A similar analysis of the summands in the denominator of (B.3) gives

E
{

(W (u, v)− ruv(s))2
}
> C ′′ · dT s−2

T · {d(u)d(v)}2β+1 (B.9)

for appropriately chosen C ′′. Let b = |B|. Combining (B.8) and (B.9), with some algebra, we find

that the left side of (B.3) is (up to a constant) less than

(
d(u)

dT

)−δ/2
·

∑
v∈B

d(v)β(2+δ)+1

(∑
v∈B

d(v)2β+1

)1+δ/2

=

(
d(u)

dT
bλ

)−δ/2
·

b−1
∑
v∈B

(d(u)/λ)β(2+δ)+1

{
b−1

∑
v∈B

(d(u)/λ)2β+1

}1+δ/2

=

(
d(u)

dT
bλ

)−δ/2
·
Ln,β(2+δ)+1(B)

(Ln,2β+1(B))1+δ/2
= O

{(
d(u)

dT
bλ

)−δ/2}
(B.10)

where the final term follows from our assumptions on Ln,β(2+δ)+1(Bn) and Ln,2β+1(Bn). By defi-

nition, dn,T = nλn, so the final expression above is O
{

(dn(un)bn/n)−δ/2
}

= o(1) by assumption.

Thus (B.3) holds and the result follows. �

121

We now proceed with the proof of Theorem 6. Proposition 25 yields the CLT for ŝ(un : Bn) for

a deterministic sequence of vertex sets {Bn}n>1 satisfying regularity properties. The remainder

of the argument shows that if Bn is selected uniformly at random then, under the assumptions of

Theorem 6, these regularity properties are satisfied with high probability. We begin with a few

preliminary definitions and results.

Definition 26. A sequence of random variables {Xn}n>1 is said to be asymptotically uniformly

integrable if

lim
M→∞

lim sup
n→∞

E {|Xn|1(|Xn| > M)} = 0

Theorem 27. Let f : Rk 7→ Rk be measurable and continuous at every point in a set C. Suppose

Xn
w−→ X where X takes its values in an interval C. Then Ef(Xn) → Ef(X) if and only if the

sequence of random variables f(Xn) is asymptotically uniformly integrable.

Proof. See Asymptotic Statistics (Van der Vaart 2000), page 17. �

We now give a technical lemma (needed for a subsequent result) which uses Theorem 27:

Lemma 28. Let X1, X2, . . . be non-negative random variables and let s, ε > 0. If the sequences

{EXs
n}n>1 and {EXs+ε

n }n>1 are bounded away from zero and infinity, then {EXr
n}n>1 is bounded

away from zero and infinity for every r ∈ (0, s+ ε).

Proof. Suppose by way of contradiction that there exists t ∈ (0, s+ ε) such that lim infn EXt
n = 0.

Then limk EXt
nk

= 0 along a subsequence {nk}. As the random variables Xt
nk

are non-negative,

Xt
nk

d−→ 0, and it follows from the continuous mapping theorem that Xnk
w−→ 0. As M ε/sXs

n 1(Xs
n >

M) 6 Xs+ε
n , we find that

lim
M→∞

lim sup
k→∞

E{Xs
nk
1(Xs

nk
> M)} 6 lim

M→∞
M−ε/s lim sup

k→∞
E(Xs+ε

nk
) = 0

as E(Xs+ε
n) is bounded by assumption. It then follows from Theorem 27 and the fact that Xs

nk

w−→ 0

that EXs
nk
→ 0 as k → ∞, violating our assumption that EXs

n is bounded away from zero. We

conclude that EXr
n is bounded away from zero for r ∈ (0, s+ ε). On the other hand, if r ∈ (0, s+ ε)

122

then for each n > 1

E{Xr
n1(Xn > 1)} 6 E{Xs+ε

n 1(Xn > 1)} 6 sup
n

E{Xs+ε
n }

As the last term is finite by assumption and E{Xr
n1(Xn 6 1)} is at most one, it follows that E(Xr

n)

is bounded. �

Lemma 29. Suppose a degree parameter sequence {dn}n>1 satisfies Assumption 3 from Section

3.3.2. For each n, let Bn be a randomly chosen subset of [n] of size bn, where bn →∞. Fix ε > 0

as in Assumption 3, and choose δ so that 2βδ < ε. Then for every r ∈ (0, β(2 + δ) + 1], there

exists an interval Ir = (ar, br) with 0 < ar < br <∞ such that P{Ln,r(Bn) ∈ Ir} → 1 as n→∞.

Remark: Note that the function Ln,r(·) is non-random. The probability appearing in the conclu-

sion of Lemma 29 depends only on the random choice of the vertex set Bn.

Proof. Let Dn and D′n be drawn uniformly-at-random from dn without replacement, and fix r ∈

(0, β(2 + δ)]. A routine calculation gives

Var{Ln,r(Bn)} = b−1
n λ−2r

n

[
Var{Dr

n}+ {bn − 1}Cov{Dr
n, (D

′
n)r}

]
.

Note that E(Dr
n) = λrnLn,r and E(D2r

n) = λ2r
n Ln,2r, so Var(Dr

n) = λ2r
n (Ln,2r − Ln,r). Further-

more, a simple calculation shows that Cov{Dr
n, (D

′
n)r} is negative for every r, and therefore

Var{Ln,r(Bn)} 6 b−1
n (Ln,2r−Ln,r). Our choice of δ ensures that 2r < 4β+2+ε, and it then follows

from Lemma 28 and Assumption 3 that Ln,2r and Ln,r are bounded. Thus Var{Ln,r(Bn)} = O(b−1
n).

Define ∆ := lim infn Ln,r/2, which is positive by Assumption 3, and let

Ir :=

(
lim inf
n→∞

Ln,r −∆, lim sup
n→∞

Ln,r + ∆

)
(B.11)

As E{Ln,r(Bn)} = Ln,r, an application of Chebyshev’s inequality yields the bound

P{Ln,r(Bn) /∈ Ir} 6 P{|Ln,r(Bn)− E[Ln,r(Bn)]| > ∆/2}

6
4Var{Ln,r(Bn)}

∆2
= O(b−1

n).

123

As bn tends to infinity with n, the result follows. �

B.6.1 Completing the proof of Theorem 6.

Let ε and δ be as in Proposition 25 and Lemma 29. Note that since dn(un) 6 n for all n,

our assumption that bndn(un)/n → ∞ implies |Bn| = bn → ∞. Hence by lemma 29, we have

that for both r = β(2 + δ) + 1 and r = 2β + 1, there exists a positive, finite interval Ir such

that P{Ln,r(Bn) ∈ Ir} → 1 as n→∞. Thus given any subsequence {nk}k>1 we can find a further

subsequence {n′k}k>1 such that Ln′k,r(Bn
′
k
) ∈ Ir almost surely as k →∞, which means this sequence

is bounded away from zero and infinity in k. Now using Proposition 25, for almost every ω we have

Sn′k(un′k , Bn
′
k
)− µn′k(un′k , Bn

′
k
|θn′k)

σn′k(un′k , Bn
′
k
|θn′k)

⇒ N (0, 1) as k →∞

Applying the subsequence principle completes the proof. �

B.7 Proof of Theorems 8-9 and supporting lemmas.

Throughout this section, notation and conventions from Section 3.3.3.1 of the main document

will be used, though we suppress dependence on n for convenience. Further recall functions r and

f from Section 3.1. The following additional notation will be used throughout this section:

• Define φT :=
∑

v∈[n] φ(v) and ψT :=
∑

v∈[n] ψ(v). For each j ∈ [K], define π̃0
j :=∑

v∈Cj φ(v)/φT and π̃j :=
∑

v∈Cj ψ(v)/ψT . Let π̃0 and π̃ be the associated vectors.

• Let 〈·, ·〉 denote the vector dot-product. For a general symmetric matrix A, let A[i, j] be the

i, j-th entry, and A[i] the i-th column. Define H := P ·M, the entry-wise product.

• Let D(u), S(u) be the random degree, strength of node u ∈ [n], let d̃(u), s̃(u) be the corre-

sponding expectations, and let D,S, d̄, s̄ be the associated n-vectors. Define s̄T :=
∑

v∈[n] s̄(v)

and d̄T :=
∑

v∈[n] d̄(v).

We now define a empirical population version of the variance estimate:

Definition 30. Fix n > 1 and let E and W be the edge set and weight function from Gn, the

n-th random weighted network from the sequence in the setting of Theorem 8. Let x,y be arbitrary

124

n-vectors with positive entries. For nodes u, v ∈ [n], define

Vuv(x,y) := (W (u, v)− fuv(x,y))2 , vuv(x,y) := E
{
Vuv(x,y)

∣∣{u, v} ∈ E} .
Define the empirical population variance estimator as follows:

κ∗(x,y) :=

∑
uv∈E vuv(x,y)∑
uv∈E fuv(x,y)2

The estimator κ∗(x,y) is called “empirical” because it depends on the random edge set E.

Despite this, it has a deterministic bound, a fact which is part of Lemma 31. Throughout the

remaining results, denote Θ := (D,S, κ̂(D,S)) and θ∗ := (d̄, s̄, κ∗(d̄, s̄)), where the estimator κ̂ is

the estimator from Section 3.2.2.

Recall the definition of the asymptotic order of the average degree λn := nρn, from Section

3.3.3.2 in the main text. With this and the conventions above, Lemma 31 establishes basic facts

about the WSBM:

Lemma 31. Fix n > 1, and let Gn be a random network generated by a WSBM. For all nodes

u, v ∈ [n], under Assumptions 6 and 7,

(1) d̄(u) = λnφ(u)〈π̃0,P[c(u)]〉 and s̄(u) = λnψ(u)〈π̃,H[c(u)]〉

(2) m2
− 6 d̄(u)/λn 6 m2

+ and m3
− 6 s̄(u)/λn 6 m3

+

(3) m− 6 d̄T /nλn 6 m+ and m2
− 6 s̄T /nλn 6 m

2
+

(4) m4
−/m

1
+ 6 ruv(d̄)/ρn 6 m4

+/m
1
− and m6

−/m
2
+ 6 ruv(s̄)/ρn 6 m6

+/m
2
−

(5) m2
−/m

2
+ 6 fuv(φ, ψ) 6 m2

+/m
2
− and m10

− /m
3
+ 6 fuv(d̄, s̄) 6 m10

+ /m
3
−

(6) 0 6 Vuv(d̄, s̄) 6 (ηm2
+/m

2
− +m10

+ /m
3
−)2

(7) 0 6 κ∗(d̄, s̄) 6 g(η,m−,m+) where g is a deterministic function.

(8) There exist global constants 0 < m1 < m2 < ∞ independent of n such that for any node set

B ⊆ [n],

m1|B|ρn 6 µ(u,B|s̄), σ(u,B|θ∗)2 6 m2|B|ρn

125

Proof. For (1), we have

s̄(u) := ES(u) =
∑
j∈[K]

∑
v∈Cj

EW (u, v) =
∑
j∈[K]

∑
v∈Cj

ρnruv(φ)H[c(u), j]

= ρn
∑
j∈[K]

φ(u)nπ̃jH[c(u), j] = λnφ(u)〈π̃,H[c(u)]〉

An identical calculation yields the expression for d̄(u). The inequalities in (2) then follow from

Assumption 6. For (3), we again apply Assumption 6 to the equation

s̄T =
∑
i∈[K]

∑
v∈Ci

s̄(u) =
∑
i∈[K]

nλnφ(u)〈π̃,H[i]〉 = nλnπ̃
THπ̃

An identical equation yields the inequality for d̄T . (2) and (3) directly yield the inequalities in (4).

Note that Assumption 6 implies m2
− 6 nruv(φ), nruv(ψ) 6 m2

+, which yields the first inequality of

(5). The second inequality of (5) follows from (4). For part (6), note that by Assumption 7 and

the first inequality in (5), we have

W (u, v) := fuv(φ, ψ)ξ(u, v) 6 (m2
+/m

2
−)η (B.12)

The second inequality in (5) then yields (6). For part (7), recalling the definition of κ∗(d̄, s̄) from

Definition 30, note first that, by (6), 0 6 vuv(d̄, s̄) 6 (ηm2
+/m

2
− +m10

+ /m
3
−)2. Thus, by the second

inequality (5),

0 6 κ∗(d̄, s̄) :=

∑
uv∈E vuv(d̄, s̄)∑
uv∈E fuv(d̄, s̄)

6
(ηm2

+/m
2
− +m10

+ /m
3
−)2

m10
− /m

3
+

For part (8), recall that

µ(u,B|s̄) :=
∑
v∈B

ruv(s̄)

The first inequality in (8) follows from applying the second inequality in (4). Similarly,

σ(u,B|θ∗)2 :=
∑
v∈B

ruv(s̄)fuv(d̄, s̄)(1− r̃uv(d̄) + κ∗(d̄, s̄))

The second inequality in part (8) follows from parts (4), (5), and (7). �

126

The next lemma shows that, if the degrees and strengths of Gn are bounded around their

expected values, the empirical estimate of variance is bounded around the conditional population

estimate, and the coefficient of variation of Sn(u,B) is bounded around its population value.

Lemma 32. Fix n > 1. Suppose Assumption 6 holds. Define

M(D,S) := max
u∈[n]

{
|S(u)− s̄(u)|, |D(u)− d̄(u)|

}
6 λnt. (B.13)

Then the following statements hold:

(1) There exists small enough t > 0 such that if M(D,S) 6 t,

∣∣κ̂(D,S)− κ∗(d̄, s̄)
∣∣ =

∣∣∣∣ ∑uv∈E Vuv(D,S)− vuv(d̄, s̄)∑
uv∈E fuv(d̄, s̄)2 + |E|ρnO(t)

∣∣∣∣+ ρnO(t)

(2) Fix a constant ε > 0 independent of n. Assume |κ̂(D,S)−κ∗(d̄, s̄)| 6 ε. Then then there exists

small enough t > 0 (not depending on ε) such that if M(D,S) 6 t, for all B ⊆ [n], we have

∣∣∣∣µ(u,B|Θ)

σ(u,B|Θ)
− µ(u,B|θ∗)
σ(u,B|θ∗)

∣∣∣∣ =
√
|B|ρnO(t)

Proof. M(D,S) 6 λnt implies there exists a n-vector at with components in the interval [−1, 1]

such that S(u) = s̄(u) + λntat(u). Therefore, defining āt := n−1
∑

v at(v),

ruv(S)− ruv(s̄) =
{s̄(u) + λnat(u)t}{s̄(v) + λnat(v)t}

s̄T + nλnātt
− s̄(u)s̄(v)

s̄T

=
s̄T {s̄(u)at(v) + s̄(v)at(u) + λnat(u)at(v)t}λnt− s̄(u)s̄(v)nλnātt

s̄T {s̄T + nλnātt}

=

{
s̄(u)at(v) + s̄(v)at(u) + λnat(u)at(v)t− ruv(s̄)nāt

s̄T + nλnātt

}
λnt

Using parts (2)-(4) of Lemma 31, for sufficiently small t we have

∣∣ruv(S)− ruv(s̄)
∣∣ 6 2λnm

3
+ + λnt+ ρn(m6

+/m
2
−)n

nλnm2
− − nλnt

λnt =
2m3

+ + t+ (m6
+/m

2
−)

m2
− − t

ρnt

Therefore,

|ruv(S)− ruv(s̄)| = ρnO(t) (B.14)

127

as t→ 0. By a similar argument, |ruv(D)− ruv(d̄)| = ρnO(t). It follows that

|fuv(D,S)− fuv(d̄, s̄)| = ρnO(t). (B.15)

Therefore, using Equations B.14-B.15 and part (7) of Lemma 31,

Vuv(D,S) := (W (u, v)− fuv(D,S))2

= (W (u, v)− fuv(d̄, s̄))2 + 2(W (u, v)− fuv(d̄, s̄))(fuv(d̄, s̄)− fuv(D,S))

+ (fuv(d̄, s̄)− fuv(D,S))2

= Vuv(d̄, s̄)2 + 2Vuv(d̄, s̄)(fuv(d̄, s̄)− fuv(D,S)) + (fuv(d̄, s̄)− fuv(D,S))2

6 Vuv(d̄, s̄)2 + ρnO(t) + ρ2
nO(t2) = Vuv(d̄, s̄)2 + ρnO(t)

Define VT :=
∑

uv∈E Vuv(D,S) and V̄T :=
∑

uv∈E Vuv(d̄, s̄). The above inequality implies that

VT = V̄T + |E|ρnO(t). Define gT :=
∑

uv∈E fuv(D,S)2 and ḡT :=
∑

uv∈E fuv(d̄, s̄)2. A similar

bound gives gT = ḡT + |E|ρnO(t). Finally, define v̄T :=
∑

uv∈E vuv(s̄, d̄). Then

∣∣κ̂(D,S)− κ∗(d̄, s̄)
∣∣ =

∣∣∣∣VTgT − v̄T
ḡT

∣∣∣∣ =

∣∣∣∣ V̄T + |E|ρnO(t)

ḡT + |E|ρnO(t)
− v̄T
ḡT

∣∣∣∣
=

∣∣∣∣∣ V̄T + |E|ρnO(t)− v̄T
ḡT
{ḡT + |E|ρnO(t)}

ḡT + |E|ρnO(t)

∣∣∣∣∣
6

∣∣∣∣ V̄T − v̄T
ḡT + |E|ρnO(t)

∣∣∣∣+

∣∣∣∣∣ |E|ρnO(t)− v̄T
ḡT
|E|ρnO(t)

ḡT + |E|ρnO(t)

∣∣∣∣∣
Note that v̄T (E)/|E| and ḡT (E)/|E| are, each, by parts (5) and (6) of Lemma 31, bounded above

and below by constants independent of E, t, and n. Therefore,

∣∣∣∣∣ |E|ρnO(t)− v̄T
ḡT
|E|ρnO(t)

ḡT + |E|ρnO(t)

∣∣∣∣∣ 6 ρnO(t)

ḡT /|E|+ ρnO(t)
= ρnO(t)

This proves part 1. For part 2, first recall that µ(u,B|Θ) ≡ µ(u,B|S) :=
∑

v∈B ruv(S). Therefore

by Equation B.14, we have

|µ(u,B|Θ)− µ(u,B|θ∗)| =
∣∣∑
v∈B

ruv(S)− ruv(s̄)
∣∣ = |B|ρnO(t) (B.16)

128

Recall further that

σ(u,B|Θ)2 :=
∑
v∈B

ruv(S)fuv(D,S) (1− ruv(D) + κ̂(D,S))

Using some straightforward algebra and applying Equations B.14-B.15, we have

∣∣σ(u,B|Θ)2 − σ(u,B|θ∗)2
∣∣ = |B|

(
1 +

∣∣κ̂(D,S)− κ∗(d̄, s̄)
∣∣) ρnO(t)

= |B|ρnO(t) (B.17)

where the second line follows from the assumption that |κ̂(D,S) − κ∗(d̄, s̄)| 6 ε. We will now

bound σ(u,B|Θ) close to σ(u,B|θ∗) using Equation B.17 and a Taylor expansion. Define the

function h(x, σ) :=
√
σ2 + x. For fixed σ, a Taylor expansion around x = 0 gives h(x, σ) =

σ +
∑∞

k=1(−1)k xk

k!σ2k−1 . Setting x = σ(u,B|Θ)2 − σ(u,B|θ∗)2 and σ = σ(u,B|θ∗) and applying

Equation B.17, we obtain

σ(u,B|Θ) = h(x, σ(u,B|θ∗))

= σ(u,B|θ∗) +
∞∑
k=1

(−1)k
|B|kρknO(tk)

k!σ(u,B|θ∗)2k−1
(B.18)

Part (8) of Lemma 31 implies that σ(u,B|θ∗) �
√
|B|ρn. Equation B.18 therefore gives

σ(u,B|Θ) = σ(u,B|θ∗) +
√
|B|ρnO(t) (B.19)

using Equations B.16 and B.19, we write

∣∣∣∣µ(u,B|Θ)

σ(u,B|Θ)
− µ(u,B|θ∗)
σ(u,B|θ∗)

∣∣∣∣ =

∣∣∣∣∣ µ(u,B|θ∗) + |B|ρnO(t)

σ(u,B|θ∗) +
√
|B|ρnO(t)

− µ(u,B|θ∗)
σ(u,B|θ∗)

∣∣∣∣∣ (B.20)

As shorthands, define µ̄n := µ(u,B|θ∗)/|B|ρn and σ̄n := σ(u,B|θ∗)/
√
|B|ρn. Part (8) of Lemma

31 implies that µ̄n, σ̄n � 1. Thus, using Equation B.20 and dividing through by the appropriate

129

factors,

∣∣∣∣µ(u,B|Θ)

σ(u,B|Θ)
− µ(u,B|θ∗)
σ(u,B|θ∗)

∣∣∣∣ =
√
|B|ρn

∣∣∣∣ µ̄n +O(t)

σ̄n +O(t)
− µ̄n
σ̄n

∣∣∣∣
=
√
|B|ρnO(t)

This completes part 2. �

The proof of Lemma 8 from the main text (below) makes use of Lemma 32 by showing that its

assumption holds with high probability, for appropriate t.

B.7.1 Proof of Lemma 8 from the main text

Throughout, we will sometimes suppress dependence on n for notational convenience. Recall

that A(u,B|S) := S(u,B)− µ(u,B|S), the deviation of the CCME test statistic from its expected

value under the continuous configuration model. Recalling that Θ := (D,S, κ̂(D,S)), define also

the random Z-statistic

Z(u,B|Θ) :=
A(u,B|S)

σ(u,B|Θ)
. (B.21)

Define the random p-value

P (u,B|Θ) := 1− Φ(Z(u,B|Θ)). (B.22)

The random variable P (u,B|Θ) is the random version of the p-value p(u,Bn|θ) obtained from the

approximation in Equation (3.12) of the main document. As a consequence of the Benjamini-

Hochberg procedure, the event {Uα(Bn,G) = Cn} will occur if

P (u,Bn|Θ) 6 qα, for all u ∈ Cn, and

P (u,Bn|Θ) > qα, for all u /∈ Cn, (B.23)

since by assumption |Cn| > qn. Let h be the density function of a standard-Normal. By a well-

known inequality for the CDF of a standard-Normal, if Z(u,Bn|Θ) > 0,

P (u,Bn|Θ) 6
1

Z(u,Bn|Θ)
h(Z(u,Bn|Θ)). (B.24)

130

By symmetry, if Z(u,Bn|Θ) < 0, then

P (u,Bn|Θ) > 1 +
1

Z(u,Bn|Θ)
h(Z(u,Bn|Θ)). (B.25)

We therefore analyze the concentration properties of Z(u,Bn|Θ) and apply Inequalities B.24 and

B.25 to show that for sufficiently large n, the event in Equation B.23 occurs with high probability.

We will focus on the first line of B.23 first; the second is shown similarly. For the derivation below

we use the following shorthands: Y ≡ S(u,Bn|Θ), µ ≡ µ(u,Bn|S), σ := σ(u,Bn|Θ), ȳ ≡ EY ,

µ̄ ≡ µ(u,Bn|θ∗), and σ̄ := σ(u,Bn|θ∗). Note

Z(u,Bn|Θ) :=
Y − µ
σ

=
Y − µ̄
σ̄
−
(µ
σ
− µ̄

σ̄

)
=
ȳ − µ̄
σ̄

+
Y − ȳ
σ̄
−
(µ
σ
− µ̄

σ̄

)
>
ȳ − µ̄
σ̄
−
∣∣∣∣Y − ȳσ̄

∣∣∣∣− ∣∣∣µσ − µ̄

σ̄

∣∣∣ (B.26)

Define

z̄(u,Bn|θ∗) :=
ȳ − µ̄
σ̄

= λn
ã(u,Bn|s̄)

σ(u,Bn|θ∗)

where ã(u,Bn|s̄) is the normalized population version of A(u,Bn|S), as defined in Equation 3.14

from the main text. The definition above works with Equation B.26 to produce the illustrative

inequality

Z(u,Bn|Θ) > z̄(u,Bn|θ∗)−
∣∣∣∣Y − ȳσ̄

∣∣∣∣− ∣∣∣µσ − µ̄

σ̄

∣∣∣ . (B.27)

Inequality B.27 exemplifies that, if the right-hand terms vanish, Z(u,Bn|Θ) can be approximated

by a population version. Our analysis therefore reduces to bounding the right-hand order terms in

probability.

Explicitly, consider that by part (8) of Lemma 31, there exists m2 > 0 such that σ(u,Bn|θ∗)2 6

m2nρn = m2λn. Combining this with the crucial assumption on ã(u,Bn) from line 3.15 from the

main text, we have that for all u ∈ Cn,

z̄(u,Bn|θ∗) = λn
ã(u,Bn|s̄)

σ(u,Bn|θ∗)
>
√
λn

∆√
m2

(B.28)

Therefore, the rest of the proof is mainly dedicated to showing that the final two terms in line

(B.27) are oP (
√
λn). This will imply that Z(u,Bn|Θ) = ΩP (

√
λn) and, using Inequality B.24, that

131

{P (u,Bn|Θ) 6 qα, ∀ u ∈ Cn} has probability approaching 1.

Step 1: |µσ −
µ̄
σ̄ | = OP (

√
log n)

For t > 0, define the event

E1(t) :=

{
max
u∈[n]

|S(u)− s̄(u)| ,max
u∈[n]

∣∣D(u)− d̄(u)
∣∣ 6 λnt} (B.29)

For b > 0, define tn(b) :=
√

κ logn
λn

. By part 1 of Lemma 32, the event E1(tn(b)) implies

∣∣κ̂(D,S)− κ∗(d̄, s̄)
∣∣ =

∣∣∣∣ ∑uv∈E Vuv(D,S)− vuv(d̄, s̄)∑
uv∈E fuv(d̄, s̄)2 + |E|ρnO(t)

∣∣∣∣+ ρnO(tn(b)) (B.30)

We analyze the right-hand side of Equation (B.30) when the edge set E is a fixed, arbitrary edge

set Eo. By Lemma 31 (5)-(6), we have

0 6 Vuv(d̄, s̄) 6 (ηm2
+/m

2
− +m10

+ /m
3
−)2 and

∑
uv∈Eo

fuv(d̄, s̄)2 >
m10
−

m3
+

|Eo|.

The edge weights {W (u, v) : {u, v} ∈ Eo} are independent, so by Bernstein’s Inequality,

P

(∣∣∣∣∣
∑

Eo
Vuv(d̄, s̄)− vuv(d̄, s̄)∑

Eo
fuv(s̄, d̄)2

∣∣∣∣∣ >√κ logn
|Eo|

)
6 2 exp

 −2κ log n

2a1 + 2
3a2

√
κ logn
|Eo|

 (B.31)

where a1, a2 > 0 are constants depending only onm+, m−, and η. We now bound the size of the edge

set E in probability. It is easily derivable from the statement of the WSBM and Assumption 6 that

there exist constants a3, a4 depending on m+ and m− such that E|E| = a3nλn and Var|E| = a4nλn.

Therefore, by another application of Bernstein’s Inequality,

P
(
||E| − a3nλn| >

√
nλnκ log n

)
6 2 exp

 −2κ log n

2a4 + 2
3

√
κ logn
nλn

 (B.32)

132

Applying this to inequality (B.31), the law of total probability gives

P

(∣∣∣∣∑E Vuv(d̄, s̄)− vuv(d̄, s̄)∑
E fuv(s̄, d̄)2

∣∣∣∣ >
√

κ log n

a3nλn −
√
nλnκ log n

)

6 2 exp

 −2κ log n

2a1 + 2
3a2

√
κ logn

a3nλn−
√
nλnκ logn

+ 2 exp

 −2κ log n

2a4 + 2
3

√
κ logn
nλn

 = O(n−b) (B.33)

for sufficiently large n. Along with Equation (B.30), this implies there exists a constant A0 de-

pending on parameter constraints such that

P

{∣∣κ̂(D,S)− κ∗(d̄, s̄)
∣∣ 6 A0

(√
b log n

nλn
+ ρntn(b)

)}
> P(E1(tn(b)))−O(n−b) (B.34)

for sufficiently large n. We now assess P(E1(tn(b))). Note that for all u ∈ [n], Var(S(u)) = O(λn).

Furthermore, recall from Inequality B.12 (in the proof of Lemma 31) that W (u, v) 6 m2
+η/m

2
− for

all u, v ∈ [n]. For fixed b > 0, Bernstein’s Inequality therefore gives, for any u ∈ [n],

P
(
|S(u)− s̄(u)| >

√
κ log nλn

)
6 2 exp

 −2a0κ log n

2 + 2
3

√
κ logn
λn

 , (B.35)

where a0 is a constant independent of n. The constant a0 may be chosen so that, similarly,

P
(∣∣D(u)− d̄(u)

∣∣ >√κ log nλn

)
6 2 exp

 −2a0κ log n

2 + 2
3

√
κ logn
λn

 (B.36)

Applying a union bound, equations (B.35) and (B.36) give

P(E1(tn(b))) > 1− 2n exp

 −2a0κ log n

2 + 2
3

√
κ logn
λn

− 2n exp

 −2a0κ log n

2 + 2
3

√
κ logn
λn

= 1−O(n−b+1) (B.37)

133

for sufficiently large n. Returning to the inequality in (B.34), we therefore have

P
{∣∣κ̂(D,S)− κ∗(d̄, s̄)

∣∣ 6 A0

(√
b logn
nλn

+ ρntn(b)

)}
> P(E1(tn(b)))−O(n−b)

> 1−O(n−b+1) (B.38)

for sufficiently large n. Recall that by assumption, λn/ log n→∞. Thus tn(b)→ 0, and

√
b logn
nλn

+ ρntn(b) = tn(b)/
√
n+ ρntn(b) 6 1/

√
n = o(1).

Thus, Inequality B.38 implies that

P
(∣∣κ̂(D,S)− κ∗(d̄, s̄)

∣∣ 6 ε) > 1−O(n−b+1), (B.39)

for sufficiently large n. For ε > 0, define the event E2(ε) :=
{∣∣κ̂(D,S)− κ(d̄, s̄)

∣∣ 6 ε}. By part 2

of Lemma 3, the event E1(tn(b)) ∩ E2(ε) implies

∣∣∣µ
σ
− µ̄

σ̄

∣∣∣ :=

∣∣∣∣ µ(u,Bn|S)

σ(u,Bn|Θ)
− µ(u,Bn|s̄)

σ(u,Bn|θ∗)

∣∣∣∣ =
√
|Bn|ρnO(tn(b))

6
√
λnO(tn(b)).

= O(
√
κ log n) (B.40)

Therefore, there exists a constant A2 > 0 such that, by Inequalities B.37 and B.39,

P
(∣∣∣µ
σ
− µ̄

σ̄

∣∣∣ 6 A2

√
κ log n

)
= 1−O(n−b+1) (B.41)

for sufficiently large n. This completes Step 1.

Step 2: |Y−ȳσ̄ | = OP (
√

log n).

134

Note that, as for Inequality B.35, Bernstein’s Inequality gives

P
(
|S(u,Bn)− ES(u,Bn)| >

√
κ log nλn

)
6 2 exp

 −2a0κ log n

2 + 2
3

√
κ logn
λn

 (B.42)

By Lemma 31 part (8), there exists m2 > 0 such that σ(u,Bn|θ∗)2 6 m2λn. Thus,

∣∣∣∣Y − ȳσ̄

∣∣∣∣ :=

∣∣∣∣S(u,Bn)− ES(u,Bn)

σ(u,Bn|θ∗)

∣∣∣∣ > ∣∣∣∣S(u,Bn)− ES(u,Bn)

m2

√
λn

∣∣∣∣ ,
so by Inequality B.42, we have for sufficiently large n that

P

(∣∣∣∣Y − ȳσ̄

∣∣∣∣ 6
√
b log n

m2

)
> 1−O(n−b). (B.43)

This completes Step 2.

We now recall inequality B.27:

Z(u,Bn|Θ) > z̄(u,Bn|θ∗)−
∣∣∣∣Y − ȳσ̄

∣∣∣∣− ∣∣∣µσ − µ̄

σ̄

∣∣∣ .
In step 1, we showed that there exists a constant A2 depending only on the fixed WSBM model

parameters such that for any fixed b > 1, for large enough n,
∣∣µ
σ −

µ̄
σ̄

∣∣ 6 A2
√
b log n with probability

1 − O(n−b+1). In step 2, we showed that there exists a constant m2 depending only on the fixed

WSBM model parameters such that for any fixed b > 1, for large enough n, |Y−ȳσ̄ | 6
√
b log n/m2

with probability 1−O(n−b). Recall furthermore from inequality B.28 that z̄(u,Bn|θ∗) > ∆
√
λn/m2,

where ∆ is from condition 3.15 in the statement of the Theorem. We can therefore write that for

any fixed b > 1, for sufficiently large n,

Z(u,Bn|Θ) > ∆
√
λn/m2 −

√
b log n/m2 −A2

√
b log n = A3

√
λn −A4

√
b log n

135

with probability at least 1−O(n−b+1). Now, by assumption, |Cn| > qn. Therefore, using Inequality

B.24 and a union bound, we can write that for any fixed b > 1, for sufficiently large n,

max
u∈Cn

P (u,Bn|Θ) 6 exp{−(A3

√
λn −A4

√
b log n)2} (B.44)

with probability at least 1−O(n−b+2). Note that for any fixed b, the right-hand-side of inequality

B.44 vanishes, due to the assumption that λn/ log n→∞. Thus, for b > 2, inequality B.44 implies

that for large enough n (now depending on choice of b), the event {P (u,Bn|Θ) 6 qα, ∀ u ∈ Cn}

has probability 1−O(n−b+2)→ 1.

It can be similarly shown that the second half of the event in (B.23) has probability approaching

1. Instead of Inequality B.27 we (similarly) derive

Z(u,Bn|Θ) 6 z̄(u,Bn|θ∗) +

∣∣∣∣Y − ȳσ̄

∣∣∣∣+
∣∣∣µ
σ
− µ̄

σ̄

∣∣∣ (B.45)

This is useful because if u /∈ Cn, assumption (3.15) ensures that ãn(u,Bn|s̄) < −∆, and hence

z̄(u,Bn|θ∗) :=
ȳ − µ̄
σ̄

= λn
ã(u,Bn|s̄)

σ(u,Bn|θ∗)
6 λn

−∆

σ(u,Bn|θ∗)
6
√
λn
−∆√
m1

where the last inequality follows from part (8) of Lemma 31. Steps 1 and 2 therefore work to show

that for any fixed b > 1, for large enough n,

Z(u,Bn|Θ) 6 −∆
√
λn/m2 +

√
b log n/m2 +A2

√
b log n = A3

√
λn −A4

√
b log n

With probability 1−O(n−b+1). Inequality B.25 then implies that

P
(

max
u/∈Cn

P (u,Bn|Θ) > 1− exp{−(A3

√
λn −A4

√
b log n)2}

)
> 1−O(n−b+2) (B.46)

With reasoning identical to the result for u ∈ Cn, this implies that for any b > 2, for large enough

n(b), the event {P (u,Bn|Θ) > qα, ∀ u /∈ Cn} has probability at least 1−O(n−b+2)→ 1. Applying

a union bound to the event in (B.23) completes the proof. �

136

B.7.2 Proof of Theorem 9 from the main text

We will show that if condition 3.16 holds, then condition 3.15 holds when Bn = Cn = Cj,n

simultaneously across j ∈ [K]. This involves representing condition 3.15 in terms of the model

parameters when Bn = Cn = Cj,n. Specifically, we derive the normalized population deviation

ã(u,Cj,n|s̄) := (ES(u,Cj,n) − µ(u,Cj,n|s̄))/λn. First, note that for any fixed j ∈ [K], part (1) of

Lemma 31 gives

∑
v∈Cj,n

s̄(v) = λn〈π̃,H[j]〉 ·
∑
v∈Cj,n

ψ(u) = nλn〈π̃,H[j]〉π̃j

and thus

s̄T :=
∑
v∈[n]

s̄(v) =
∑
j∈[K]

∑
v∈Cj,n

s̄(v) = nλn
∑
j∈[K]

〈π̃,H[j]〉π̃j = nλnπ̃
tHπ.

Therefore, again applying part (1) of Lemma 31,

µ(u,Cj,n|s̄) :=
∑
v∈Cj,n

ruv(s̄) = s̄(u)
∑
v∈Cj,n

s̄(v)

s̄T
= s̄(u)

〈π̃,H[j]〉π̃j
π̃tHπ̃

= λnψ(u)
〈π̃,H[c(u)]〉〈π̃,H[j]〉π̃j

π̃tHπ̃
.

Secondly,

ES(u,Cj,n) =
∑
v∈Cj,n

EW (u, v) =
∑
v∈Cj,n

ρnruv(ψ)H[c(u), j] = λnψ(u)H[c(u), j]π̃j .

Thus,

ã(u,Cj,n|s̄) :=
ES(u,Cj,n)− µ(u,Cj,n|s̄)

λn
= ψ(u)π̃j

(
H[c(u), j]− 〈π̃,H[c(u)]〉〈π̃,H[j]〉

π̃tHπ̃

)
. (B.47)

If u ∈ Ci,n, the expression in the parentheses from the right-hand-side of (B.47) is the i, j-th

element of the matrix H−HΠ̃H/π̃tHπ̃, with Π̃ := π̃π̃t. By Assumption 6, ψ(u)πi > m− for all

u ∈ [n] and i ∈ [K], and π̃j is fixed. Thus, condition (3.16) ensures that 3.15 holds when Cn = Cj,n,

simultaneously across j ∈ [K]. Assumption 6 also ensures that there exists q > 0 such that for all

137

j ∈ [K] and n > 1, |Cj,n| > qn. This allows us to apply Lemma 4 to the sequences Bn = Cn = Cj,n,

for each j ∈ [K]. A union bound proves the result. �

138

Figure B.3: SLPAw, OSLOM, and CCME results from January and Februrary 2015 U.S. airport networks.
Maps created with ggmap (Kahle and Wickham, 2013)

139

Figure B.4: SLPAw, OSLOM, and CCME results from March and April 2015 U.S. airport networks. Maps
created with ggmap (Kahle and Wickham, 2013)

140

Figure B.5: SLPAw, OSLOM, and CCME results from May and July U.S. airport networks. Maps created
with ggmap (Kahle and Wickham, 2013)

141

APPENDIX C

MULTI-LAYER EXTRACTION SUPPLEMENTAL

C.1 Proof of Lemma 15

It is easy to show that for any 2× 2 symmetric matrix A and 2-vectors x, y,

(xTAx)(yTAy)− (xTAy)2 = (x1y2 − x2y1)2det(A)

Fix B ⊆ [n] and let s, ρ, and v correspond to B, as in Definition 13. Then for any ` ∈ [L], using

the fact that κ` := πTP`π and the identity above, we have

vtP`v −
(πtP`π)2

κ`
=
κ`v

tP`v

κ`
− (vtP`π)2

κ`
=

(πtP`π)(vtP`v)− (vtP`π)2

κ`

= (π1(1− ρ)− π2ρ)2 detP`
κ`

= (π1 − ρ)2 detP`
κ`

Recall that q`(B) := s√
2

(
vtP`v − (πtP`π)2/κ`

)
and H∗(B,L) = |L|−1 (

∑
` q`(B))2. Part 1 follows

by summation over L. For part 2, note that π2
1P`(1, 1) + π2

2P (2, 2) > 2π1π2

√
P`(1, 1)P`(2, 2).

Therefore,

κ` = π2
1P`(1, 1) + 2π1π2P`(1, 2) + π2

2P (2, 2)

> 2π1π2

(√
P`(1, 1)P`(2, 2) + P`(1, 2)

)
> 2π1π2

(√
P`(1, 1)P`(2, 2) + P`(1, 2)

)(√
P`(1, 1)P`(2, 2)− P`(1, 2)

)
= 2π1π2δ > π1δ

Thus δ 6 detP`
κ`
6 1

π1δ
. Part 2 follows. �

C.2 Proof of Lemma 16

Define g : 2[n] 7→ R by g(B) := s(B)
2 (ρ(B) − π1)4. Recall the function φ(L) defined in Lemma

15. Note that part 1 of Lemma 15 implies H∗(B,L) = |L|φ(L)g(B). It is therefore sufficient

to show that there exists a constant a > 0 such that for sufficiently small t, B ∈ R(t)c implies

g(B) < g(C1,n)− at. We will show this separately for the π1 < π2 and π1 = π2 cases.

Part 1 (π1 < π2): Define the intervals I1 := [0, π1], I2 := (π1, π2], and I3 := (π2, 1]. We trisect

2[n], the domain of g, with the collections Di,n := {B ⊆ [n] : s(B) ∈ Ii}, for i = 1, 2, 3. We will prove

that the inequality g(B) < g(C1,n)− at holds for all B ∈ R(t) on each of those collections. We will

continually rely on the fact that B ∈ R(t) implies at least one of the inequalities (I) |s(B)−π1| > t

or (II) 1− ρ(B) < t is true.

Suppose B ∈ R(t)c ∩ D1,n and inequality (I) is true. Then s(B) < π1 − t, and

g(B) :=
s(B)2

2
(ρ(B)− π1)4 6

s(B)2

2
(1− π1)4 (since π1 6 1/2)

<
(π1 − t)2

2
(1− π1)4 =

π2
1

2
(1− π1)4 − 2t(1− π1)4 + o(t)

<
π2

1

2
(1− π1)4 − t(1− π1)4 = g(C1,n)− t(1− π1)4 (C.1)

for sufficiently small t. If inequality (II) is true, then

(ρ(B)− π1)4 6 max{(1− t− π1)4, π4
1} = max{(π2 − t)4, π4

1} = (π2 − t)4

for sufficiently small t, as π1 < π2. Therefore,

g(B) 6
π4

1

2
(π2 − t)4 =

π4
1

2
π4

2 − 4π3
2t+ o(t) < g(C1,n)− 2π3

2t (C.2)

for sufficiently small t. Thus for all B ∈ R(t)c ∩ D1,n, g(B) < g(C1,n) − a1t with a1 = min{(1 −

π1)4, 2π3
2}.

143

Suppose B ∈ R(t)c ∩ D2,n and inequality (I) is true. Then s(B) > π1 + t. Note that 0 6

ρ(B)|B| 6 |C1,n|, yielding the useful inequality

0 6 ρ(B) 6 π1/s(B). (C.3)

Subtracting through by π1 gives

(ρ(B)− π1)4 6 max{π4
1, π

4
1(1/s(B)− 1)4} = π4

1(1/s(B)− 1)4.

Therefore,

g(B) 6
s(B)2

2
π4

1(1/s(B)− 1)4 =
π4

1

2
(1/
√
s(B)−

√
s(B))4 <

π4
1

2
(1/
√
π1 + t−

√
π1 + t)4, (C.4)

since F (x) := (1/
√
x−
√
x)4 is decreasing on (0, 1], and s(B) > π1 + t. Note that

d

dt

(
1√
π1 + t

−
√
π1 + t

)4

= −3

(
1√
π1 + t

−
√
π1 + t

)3 [1

2(π1 + t)3/2
+

1

2
√
π1 + t

]
. (C.5)

By Taylor’s theorem, this implies that

(1/
√
π1 + t−

√
π1 + t)4 = (1/

√
π1 −

√
π1)4 − a2t+ o(t) < (1/

√
π1 −

√
π1)4 − a2t/2

for sufficiently small t, where a2 is the right-hand-side of (C.5) at t = 0. Note further that

(1/
√
π1 −

√
π1)4 = (π2/

√
π1)4 = π4

2/π
2
1. Putting these facts together with inequality (C.4), we

obtain

g(B) <
π4

1

2

π4
2

π2
1

− a2t/2 =
π1

2
π4

2 − a2t/2 = g(C1,n)− a2t/2 (C.6)

If inequality (II) is true, ρ(B) < 1− t. If ρ(B) 6 π1, (ρ(B)− π1)4 is maximized when ρ(B) = 0, so

that, since s(B) 6 π2,

g(B) 6
π2

2

2
π4

1 = g(C1,n) +
π2

2

2
π4

1 −
π2

1

2
π4

2 = g(C1,n) +
π2

1π
2
2

2
(π2

2 − π2
1) < g(C1,n)− t (C.7)

144

for sufficiently small t, since π1 is fixed. If ρ(B) > π1, note that inequality (C.3) implies s(B) 6

π1/s(B). Therefore,

g(B) 6
π2

1

2ρ(B)2
(ρ(B)− π1)4 =

π2
1

2
(
√
ρ(B)− π1/

√
ρ(B))4 <

π2
1

2
(
√

1− t− π1/
√

1− t)4 (C.8)

since G(x) := (
√
x−π1/

√
x)4 is increasing on (π1, 1]. A similar Taylor expansion argument to that

yielding inequality (C.6) yields, for a constant a3 depending only on π1,

g(B) <
π2

1

2
(1− π1)4 − a3t/2 = g(C1,n)− a3t/2, (C.9)

for sufficiently small t. Pulling together inequalities (C.6), (C.7), and (C.9), we have that for all

B ∈ R(t)c ∩ D1,n, g(B) < g(C1,n)− a4 with a4 := min{a2/2, 1, a3/2}.

Suppose B ∈ R(t)c ∩ D3,n. Note that |B| − |C2,n| 6 |B ∩ C1,n| 6 |C1,n|. Dividing through by

|B| yields the useful inequality

1− π2/s(B) 6 ρ(B) 6 π1/s(B). (C.10)

Subtracting inequality (C.10) by π1 gives

π2(1− 1/s(B)) 6 ρ(B)− π4
1 6 π1(1/s(B)− 1).

Since π1 < π2, this implies that (ρ(B)− π1)4 6 π4
2(1− 1/s(B))4. Therefore,

g(B) 6
s(B)2

2
π4

2(1/s(B)− 1)4 =
π4

2

2
(1/
√
s(B)−

√
s(B))4 <

π4
2

2
(1/
√
π2 −

√
π2)4, (C.11)

since F (x) := (1
√
x−
√
x)4 is decreasing on I3 := (π2, 1] and s(B) ∈ I3. Note that

√
π2− 1/

√
π2 =

−π1/
√
π2. Therefore,

g(B) <
π4

2

2

π4
1

π2
2

=
π2

2

2
(0− π1)4 = g(C2,n) < g(C1,n)− t

145

for t sufficiently small. Thus, for a := min{a1, a4, 1}, for sufficiently small t we have

g(B) < g(C1,n)− at whenever B ∈ R(t). This completes the proof in the case π1 < π2.

Part 2 (π1 = π2): Recall that when π1 = π2 we define R(t) by

R(t) := {B ⊆ [n] : |s(B)− π1| ∨ ρ(B) ∨ [1− ρ(B)] 6 t}

Hence we will use the fact that B ∈ R(t) implies at least one of the inequalities (I) |s(B)− π1| > t

or (II) t < ρ(B) < 1− t is true. Define the intervals I1 := [0, π1], I2 := (π1, 1]. We bisect 2[n], the

domain of g, with the collections Di,n := {B ⊆ [n] : s(B) ∈ Ii}, for i = 1, 2. We will prove that the

inequality g(B) < g(C1,n)− at holds for all B ∈ R(t) on each of those collections.

SupposeB ∈ R(t)c∩D1,n and inequality (I) is true. Then the same derivation yielding inequality

(C.1) gives g(B) < g(C1,n)− t(1− π1)4 for sufficiently small t. If inequality (II) is true, then

(ρ(B)− π1)4 6 max{(1− t− π1)4, (π1 − t)4} = max{(π2 − t)4, (π1 − t)4} = (π2 − t)4,

since π1 = π2. Therefore, inequality (C.2) remains intact. Both inequalities hold on I2 as well,

for the roles of π1 and π2 may be interchanged, and the derivations treated symmetrically. This

completes the proof in the case π1 = π2. �

C.3 Proof of Lemma 18

Recall the definitions of set modularity and population set modularity from Definitions 4.2

and 4.9. Define W :=
∑

`∈[L] Q̂`(B) and w :=
∑

`∈[L]Q`(B). Note that by Part 1 of Lemma 15,

q`(B) > 0 regardless of B, a fact which will allow the application of Lemma 35 in what follows. We

have Ĥ(B,L) = |L|−1W 2
+, H(B,L) = |L|−1w2, and for any B such that |B| > nε,

Pn
(∣∣Ĥ(B,L)−H(B,L)

∣∣ > 4|L|t
n2

+
52|L|
κn

)
= Pn

(∣∣W 2
+ − w2| > 4|L|2t

n2
+

52|L|2

κn

)

6 Pn
(

max
`∈[L]

∣∣Q̂`(B)−Q`(B)
∣∣ > t

n2
+

13

κn

)
6 4|L| exp

(
−κ2 εt2

16n2

)

146

for large enough t > 0, where the first inequality follows from Lemma 35 for large enough n, and

the second inequality follows from Lemma 38 and a union bound. Applying a union bound over

sets B ∈ Bn yields the result. �

C.4 Proof of Lemma 21

Assume first that k > 1. By definition, B ∈ Nn,k(A) implies that at least one of dh(B,C1) 6

A · n · bn,k−1 or dh(B,C2) 6 A · n · bn,k−1 is true. Suppose the first inequality holds. Since

dh(B,C1) = |B \ C1|+ |C1 \B|, we have the inequality

∣∣|B| − nπ1

∣∣ =
∣∣|B| − |C1|

∣∣ 6 ∣∣|B| − |B ∩ C1| − |C1|+ |B ∩ C1|
∣∣ 6 ∣∣|B| − |B ∩ C1|

∣∣
+
∣∣|C1| − |B ∩ C1|

∣∣ = |B \ C1|+ |C1 \B| 6 A · n · bn,k−1

Alternatively, if dh(B,C2) 6 A ·n · bn,k−1, we have the same bound for
∣∣|B|−nπ2

∣∣. Therefore, since

π1 6 π2, B ∈ Nn,k(A) implies that |B| > nπ1 − A · n · bn,k−1. Since bn,k−1 = o(1) as n → ∞ and

ε < π1, this implies that for large enough n, Nn,k(A) ⊆ Bn(ε). By Lemma 18, therefore, for large

enough n, we have

Pn

(
sup

Nn,k(A)

∣∣∣Ĥ(B,L)−H(B,L)
∣∣∣ > 4|L|t

n2
+

52|L|
κn

)
6 4|L||Nn,k(A)| exp

(
−κ2 εt2

16n2

)
(C.12)

for all t > 0. We now bound the right-hand side of inequality (C.12) with t replaced by tn :=

n
1+ 1

2k (log n)
1− 1

2k . Note that

t2n
n2

=
1

n2
n

2+ 1

2k−1 (log n)
2− 1

2k−1 = n · n
1

2k−1−1
(log n)

1− 1

2k−1 log n = n · bn,k−1 log n.

147

Furthermore, by Corollary 34 (see Appendix C.5) we have |Nn,k(A)| 6

2 exp [3A · n · bn,k−1 log (1/bn,k−1)]. These facts yield the bound

|Nn,k(A)| exp

(
−κ2 εt2n

16n2

)
6 2 exp

{
−κ2 ε

16
n · bn,k−1

[
log n− 16

κ2ε
3A log (1/bn,k−1)

]}

6 2 exp
(
−κ2 ε

32
n · bn,k−1 log n

)
(for large n, since 1/bn,k−1 = o(n))

< 2 exp
(
−κ2 ε

32
nγ1−ε

n log n
)

where the final inequality follows from the choice of k satisfying 1
2k−1 < ε. Therefore,

4|L||Nn,k(A)| exp

(
−κ2 εt2n

16n2

)
6 2 exp

{
−κ

2ε

32
nγ1−ε

n log n+O(log |L|)
}

(C.13)

for large enough n. Notice now that tn/n
2 = bn,k vanishes slower than 1/n, and is therefore the

leading order term in the expression 4|L|tn
n2 + 52|L|

κn (see equation C.12). Hence for large enough n

we have 4|L|tn
n2 + 52|L|

κn 6 5|L|bn,k. Combining this observation with lines (C.12) and (C.13) proves

the result in the case k > 1.

If k = 1, assume A = ε. By definition, then (see Definition 20), Nn,k(A) = Bn(ε). Returning to

inequality (C.12), we note that log |Bn(ε)| = O(n), and thus we can derive the bound (C.13) with

the same choice of tn := n
1+ 1

2k (log n)
1− 1

2k = n
√
n log n. The rest of the argument goes through

unaltered. �

C.5 Technical Results

Lemma 33. Fix π1 ∈ [0, 1]. For each n, let C1 ⊆ [n] be an index set of size bnπ1c. Let C2 := [n]\C1.

Let γn ∈ [0, 1] be a sequence such that γn → 0 and nγn →∞. Then for large enough n,

|N(C1, γn)| 6 exp{3nγn log(1/γn)}

Proof. Define the boundary of a neighborhood of C ⊆ [n] by

∂N(C, r) := {B ⊆ [n] : dh(B,C) = bnrc}.

148

Note that any B ⊆ [n] may be written as the disjoint union B = {C2 ∩ B} ∪ {C1 ∩ B}. Since

C1 ∩ B = C1 \ {C1 \ B}, for fixed k ∈ [n] it follows that each set B ∈ ∂N(C, k/n) is uniquely

identified with choices of |C2 ∩B| indices from C2 and |C1 \B| indices from C1 such that

|B ∩ C2|+ |C1 \B| = |B \ C1|+ |C1 \B| = dh(B,C1) = k

Therefore, we have the equality

|∂N(C1, k)| =
k∑

m=0

[(
|C2|
m

)
+

(
|C1|
k −m

)]
(C.14)

Note that for positive integers K,N with K < N/2, properties of the geometric series yield the

following bound:

(
N

K

)−1 K∑
m=0

(
N

m

)
=

K∑
m=0

(N −K)!K!

(N −m)!m!
=

K∑
m=0

K∏
j=m+1

j

N − j + 1

<

K∑
m=0

(
K

N −K + 1

)m
<

N − (K − 1)

N − (2K − 1)
(C.15)

For sufficiently small K/N , the right-hand side of inequality (C.15) is less than 2, and thus∑K
m=0

(
N
m

)
< 2

(
N
K

)
if K � N . We apply this inequality to equation (C.14). Choose n large

enough so that nγn <
1
2 min{|C1|, |C2|}, which is possible since γn → 0. Then for fixed k 6 nγn,

we have that |∂N(C1, k)| < 2
[(|C2|

k

)
+
(|C1|
k

)]
for large enough n. By another application of the

inequality derived from (C.15), using the fact that nγn = o(n), we therefore obtain

|N(C1, γn)| =
bnγnc∑
k=0

|∂N(C1, k)| <
bnγnc∑
k=0

2

[(
|C2|
k

)
+

(
|C1|
k

)]

< 4

[(
|C2|
bnγnc

)
+

(
|C1|
bnγnc

)]
6 8

(
n

bnγnc

)

As
(
N
K

)
6
(
N ·e
K

)K
, we have

|N(C1, γn)| 6 exp {log(8) + nγn [log(e) + log(1/γn)]} 6 exp{3nγn log(1/γn)}

149

for large enough n, since 1/γn →∞. �

Here we give a short Corollary to Lemma 33 which directly serves the proof of Lemma 21.

Recall Nn,k(A) from Definition 20 in Section 4.2.3.3.

Corollary 34. Fix an integer k > 1. For large enough n,

|Nn,k(A)| 6 2 exp [3A · n · bn,k−1 log (1/bn,k−1)]

Proof. The corollary follows from a direct application of Lemma 33 toN(C1, A·bn,k−1) andN(C2, A·

bn,k−1). �

Lemma 35. Let x1, . . . , xk ∈ (0, 1) be fixed and let X1, . . . , Xk be arbitrary random variables.

Define W :=
∑

iXi and w :=
∑

i xi. Then for t sufficiently small, P(|W 2
+ − w2| > 4k2t) 6

P(maxi |Xi − xi| > t).

Proof. Define Di := |Xi−xi| and fix t < mini xi. Then if maxiDi 6 t, all Xi’s will be positive, and

thus W+ = W and |W − w| 6 kt, by the triangle inequality. Therefore maxiDi 6 t implies that

|W 2
+ − w2| = |(W − w)2 + 2w(W − w)| 6 k2t2 + 2wkt 6 k2t2 + 2k2t (C.16)

Thus by the law of total probability, we have

P(|W 2
+ − w2| > 4k2t) 6 P({|W 2

+ − w2| > 4k2t} ∩ {max
i
Di 6 t}) + P(max

i
Di > t)

Inequality (C.16) implies that for sufficiently small t, the first probability on the right-hand side

above is equal to 0. The result follows. �

In what follows we state and prove Lemma 38, a concentration inequality for the modularity

of a node set (see Definition 4.2) from a single-layer SBM with n nodes and two communities. We

first give a few short facts about the 2-community SBM. For for all results that follow, let s, ρ,

and v (see Definition 13) correspond to the fixed set B ⊆ [n] in each result (though sometimes we

will make explicit the dependence on B). Define a matrix V by V (i, j) := P (i, j)(1 − P (i, j)) for

i = 1, 2, where P is the probability matrix associated with the 2-block SBM.

150

Lemma 36. Consider a single-layer SBM with n > 1 nodes, two communities, and parameters P

and π1. Fix a node set B ⊆ [n] with |B| > αn for some α ∈ (0, 1). Then

1.
∣∣∣E[Y (B)]−

(|B|
2

)
vtPv

∣∣∣ 6 3|B|/2

2.
∣∣∣E [∑u∈B d̂(u)

]
− |B|nvtPπ

∣∣∣ 6 |B|
3. Var

[∑
u∈B d̂(u)

]
6 9|B|n

Proof. For part 1, note that by definition,

E [Y (B)] =
∑

u,v∈B:u<v

P
(

(u, v) ∈ Ê
)

=
1

2

∑
u6=v:u,v∈B

P
(

(u, v) ∈ Ê
)

The right-hand sum can be expressed the sum of the entries of a 2×2 symmetric block matrix with

zeroes on the diagonal. In this matrix, the upper diagonal block is of size |B∩C1| with off-diagonal

entries equal to P (1, 1). The lower diagonal block is of size |B ∩C2| with off-diagonal entries equal

to P (2, 2). The off-diagonal blocks have entries equal to P (1, 2). Therefore, summing over blocks

and accounting for the zero diagonal, we have

E [Y (B)] =
1

2

[
|B ∩ C1|2P (1, 1) + |B ∩ C1||B ∩ C2|P (1, 2) + |B ∩ C2|2P (2, 2)

]
− 1

2

[
|B ∩ C1|P (1, 1) + |B ∩ C2|P (2, 2)

]

By dividing and multiplying by |B|2 and collapsing cross-products, we get

E [Y (B)] =
|B|2

2

[
vtPv − ρP (1, 1) + (1− ρ)P (2, 2)

|B|

]

=

(
|B|
2

)[
1 +

1

|B| − 1

] [
vtPv − ρP (1, 1) + (1− ρ)P (2, 2)

|B|

]

=

(
|B|
2

)[
vtPv − ρP (1, 1) + (1− ρ)P (1, 2)

|B|
+

vtPv

|B| − 1
− ρP (1, 1) + (1− ρ)P (2, 2)

|B|(|B| − 1)

]

Part 1 follows by carrying out the multiplication by
(|B|

2

)
in the last expression.

151

For part 2, let P (·, i) denote the i-th column of P . Note that E
[
d̂(u)

]
= nπTP (·, cu)−P (cu, cu),

with cu ∈ {1, 2} denoting the community index of u. Therefore,

E

[∑
u∈B

d̂(u)

]
=
∑
u∈B

E
[
d̂(u)

]
=

∑
u∈B∩C1

E
[
d̂(u)

]
+

∑
u∈B∩C2

E
[
d̂(u)

]

= |B ∩ C1|
[
nπTP (·, 1)− P (1, 1)

]
+ |B ∩ C2|

[
nπTP (·, 2)− P (2, 2)

]
= |B|

[
nρπTP (·, 1) + n(1− ρ)πTP (·, 2)− ρP (1, 1)− (1− ρ)P (2, 2)

]
= |B|nvtPπ − |B|

[
ρP (1, 1) + (1− ρ)P (2, 2)

]
which completes part 2.

Finally, for part 3, we have

Var

[∑
u∈B

d̂(u)

]
= Var [2Y (B)] +

∑
u,v:u∈B,v∈BC

Var
[
X̂(u, v)

]
. (C.17)

We address these two terms separately. For the first term, a calculation analogous to that from

part 1 yields that |Var [Y (B)]−
(|B|

2

)
vtV v| 6 3|B|/2. Defining v̄ := (ρ(BC), 1− ρ(BC))t, it is easy

to show that
∑

u,v:u∈B,v∈BC Var
[
X̂(u, v)

]
= |B||BC |vtV v̄, which is simply the sum of variances of

all edge indicators for edges from B to BC . Applying these observations to equation (C.17), we

have

Var

[∑
u∈B

d̂(u)

]
6 4

(
|B|
2

)
vtV v + 12|B|/2 + |B||BC |vTV v̄

6 |B|
[
2(|B| − 1)vtV v + 6 + |BC |vtV v̄

]
6 9|B|n

�

Lemma 37. Under a single-layer SBM with n > 1 nodes, two communities, and parameters P and

π1, define κ := πTPπ. Then for large enough n, P
(∣∣2|Ê| − n2κ

∣∣ > t+ 4n
)
6 2 exp

{
− t2

n2

}
for any

t > 0.

152

Proof. Note that |Ê| = Y ([n]). Thus part 1 of Lemma 36 with B = [n] yields
∣∣∣E[|Ê|]−

(
n
2

)
κ
∣∣∣ 6 3n/2

for large enough n. As n2/2 =
(
n
2

)
+ n/2, by the triangle inequality,

∣∣∣∣E[|Ê|]− n2

2
κ

∣∣∣∣ 6 ∣∣∣∣E[|Ê|]−
(
n

2

)
κ

∣∣∣∣+
n

2
6 2n

Thus for any t > 0, Hoeffding’s inequality gives

P
(∣∣∣2Ê − n2κ

∣∣∣ > t+ 4n
)
6 P

(∣∣∣2Ê − n2κ
∣∣∣ > t+ 2

∣∣∣∣E[|Ê|]− n2

2
κ

∣∣∣∣)

6 P
(∣∣∣2Ê − 2E[|Ê|]

∣∣∣ > t
)
6 2 exp

{
−2

t2

4
(
n
2

)} 6 2 exp{−t2/n2}

�

Lemma 38. Consider a single-layer 2-block SBM having n > 1 nodes and parameters P and π.

Fix α ∈ (0, 1) and B ⊆ [n] such that |B| > αn. Then for large enough n we have

Pn
(∣∣∣Q̂(B)−Q(B)

∣∣∣ > t

n2
+

8

κn

)
6 4 exp

(
−κ

2αt2

16n2

)
(C.18)

for any t > 0.

Proof. With notation laid out in Section 4.1.2, define

Q̃(B) := n−1

(
|B|
2

)−1/2

(Y (B)− µ̃(B)) (C.19)

where

µ̃(B) :=

∑
u,v∈B:u<v

d̂(u)d̂(v)

n2κ
(C.20)

We will prove the inequality in three steps: Step 1 : bounding
∣∣Q̂(B)− Q̃(B)

∣∣ in probability; Step

2 : deriving a concentration inequality for Q̃(B); and Step 3 : showing that
∣∣∣E [Q̃(B)

]
−Q(B)

∣∣∣ is

eventually bounded by a constant.

153

Step 1. As
∑

u,v∈B;u<v d̂(u)d̂(v) 6
∑

u∈B d̂(u)2, we have

∑
u,v∈B;u<v

d̂(u)d̂(v) 6
√ ∑
u,v∈B;u<v

d̂(u)d̂(v)

√∑
u∈B

d̂(u)2 6 n

(
|B|
2

)1/2

|Ê|

Therefore,

∣∣∣Q̂(B)− Q̃(B)
∣∣∣ = n−1

(
|B|
2

)−1/2∣∣∣(2|Ê| − n2κ)
∑

u,v∈B;u<v d̂(u)d̂(v)

2|Ê|n2κ

∣∣∣ 6 ∣∣2|Ê| − n2κ
∣∣

2n2κ
(C.21)

Combining the inequality in (C.21) with Lemma 37, for any t > 0,

P
(∣∣∣Q̂(B)− Q̃(B)

∣∣∣ > t

2n2
+

2

κn

)
6 P

(∣∣∣2|Ê| − n2κ
∣∣∣ > κt+ 4n

)
6 2 exp

(
−κ

2t2

n2

)
. (C.22)

Step 2. This step relies on McDiarmid’s concentration inequality. Recall from Section 4.1.1 that

X̂(u, v) denotes the indicator of edge presence between nodes u and v. Note that node pairs have

a natural, unique ordering along the upper-diagonal of the adjacency matrix. Define ord{u, v} =

2(u − 1) + (v − 1), for {u, v} ∈ [n]2 with u < v (e.g. ord{1, 2} = 1, ord{1, 3} = 2, etc.). For all

n > 1 and i 6 n(n− 1)/2, define Ẑ(i) := X̂(u, v) such that ord{u, v} = i. If ord{u, v} = i, we call

{u, v} the “i-th ordered node pair”. Define the set

I(B) := {i : the i-th ordered node pair has at least one node in B}

and let Ẑ(B) := {Ẑ(i) : i ∈ I(B)}. Note that the proxy score Q̃(B) is a function f(z1, z2, . . .) of

the indicators Ẑ(B).

Consider a fixed indicator set Z(B). For each j ∈ I(B), define Zj(B) := {Zj(i) : i ∈ I(B)}

with

Zj(B) :=

Zj(i) = 1− Z(i), i = j

Zj(i) = Z(i), i 6= j

(C.23)

To apply McDiarmid’s inequality, we must bound ∆(j) := |f(Z(B)) − f(Zj(B))| uniformly over

j ∈ I(B). Fix j ∈ I(B) and let {u′, v′} be the j-th ordered edge. Without loss of generality, we

assume Z(j) = 1. Since f(Z(B)) = Q(B), f(Z(B)) has a representation in terms of Y (B) and

154

µ̃(B). We let Y j(B) and µ̃j(B) correspond to f(Z(B)j). Notice that

n

(
|B|
2

)1/2

∆(j) =
∣∣Y (B)− Y j(B)−

[
µ̃(B)− µ̃j(B)

]∣∣ (C.24)

We bound the right hand side of equation (C.24) in two cases: (i) u′, v′ ∈ B, and (ii) u′ /∈ B, v′ ∈ B.

In case (i), Y (B)− Y j(B) = 1, and

µ̃(B)− µ̃i(B) =

∑
u,v∈B;u6=v

d(u)d(v)− dj(u)dj(v)

n2κ
=
d(u′)d(v′)− dj(u′)dj(v′)

n2κ

=
d(u′)d(v′)− (d(u′)− 1)(d(v′)− 1)

n2κ
=
d(u′) + d(v′)− 1

n2κ
,

which is bounded in the interval (0, 1) for large enough n. Thus in case (i), ∆(j) 6 2
(|B|

2

)−1/2
by

the triangle inequality, for large enough n. In case (ii), Y (B)− Y ′(B) = 0, and

µ̃(B)− µ̃j(B) =

∑
u,v∈B;u6=v

d(u)d(v)− dj(u)dj(v)

n2κ
=

∑
u∈B;u6=v′

d(u)
[
d(v′)− dj(v′)

]
n2κ

=

∑
u∈B;u6=v′

d(u)

n2κ
6
n|B|
n2κ

6 κ−1

Hence due to equation (C.24), we have for sufficiently large n that

∆(j) 6 n−1

(
|B|
2

)−1/2

·max{2, κ−1} 6 n−1

(
|B|
2

)−1/2

· 2 · κ−1 (C.25)

for all j ∈ I(B), as κ 6 1. Since |I(B)| =
(|B|

2

)
+ |B||BC | 6 n|B|, McDiarmid’s bounded-difference

inequality implies that for sufficiently large n,

P
(∣∣∣Q̃(B)− E

[
Q̃(B)

] ∣∣∣ > t

n

)
= 2 exp

(
−t2

n|B|∆(j)

)
6 2 exp

(
−κ2n

2
(|B|

2

)
t2

4n3|B|

)

6 2 exp

(
−κ2 (|B| − 1)t2

8n

)
6 2 exp

(
−κ2αt

2

16

)

155

for any t > 0. Replacing t by t/n gives

P
(∣∣∣Q̃(B)− E

[
Q̃(B)

] ∣∣∣ > t

n2

)
6 2 exp

(
−κ2 αt

2

16n2

)
(C.26)

Step 3. Turning our attention to E[Q̃(B)], recall that n
(|B|

2

)1/2
Q̃(B) = Y (B) − µ̃(B) and that

µ̃(B) :=
∑

u,v∈B;u<v d̂(u)d̂(v)/(n2κ). As in previous lemmas, we will shorthand the quantities

s(B), ρ(B), and v(B), by s, ρ, and v (respectively). Note that

E

2 ·
∑

u,v∈B;u<v

d̂(u)d̂(v)

 = E

[∑
u∈B

d̂(u)

]2

−
∑
u∈B

d̂2(u)

= Var

[∑
u∈B

d̂(u)

]
+ E

[∑
u∈B

d̂(u)

]2

−
∑
u∈B

E
[
d̂2(u)

]
(C.27)

Part 3 of Lemma 36 gives Var
[∑

u∈B d̂(u)
]
6 9sn2. Furthermore, for u ∈ Ci we have

E
[
d̂2(u)

]
= Var

[
d̂(u)

]
+ E

[
d̂(u)

]2

= nπTV (·, i)− V (i, i) + n2
[
πTP (·, i)− P (i, i)

]2
,

and therefore
∑

u∈B E
[
d̂2(u)

]
6 2sn3. Finally, Part 2 of Lemma 36 gives∣∣∣E [∑u∈B d̂(u)

]
− |B|nvTPπ

∣∣∣ 6 |B|. By expansion, this implies there exists a constant a

with |a| < 3 such that for large enough n, E
[∑

u∈B d̂(u)
]2

= s2n4(vtPπ)2 + as2n3. Therefore

overall, line (C.27) implies there exists a constant b with |b| < 6 such that for large enough n,

E
[
2 ·
∑

u,v∈B;u<v d̂(u)d̂(v)
]

= s2n4(vTPπ)2 + bsn3. Therefore, using the definition of µ̃(B),

E [µ̃(B)] = s2n4 (vtPπ)2 + b(sn)−1

2n2κ
=

(
sn

2

)[
1 +

1

sn− 1

] [
(vtPπ)2

κ
+

b

κsn

]

=

(
sn

2

)[
(vtPπ)2

κ
+

b

κsn
+

(vtPπ)2

κ(sn− 1)
+

b

κsn(sn− 1)

]

=

(
sn

2

)[
(vtPπ)2

κ
+

1

κsn

(
b+

sn(vtPπ)2 + b

sn− 1

)]
=

(
sn

2

)[
(vtPπ)2

κ
+

c1

κsn

]
(C.28)

156

for a constant c1 with |c1| < 8, for large enough n. Now, part 1 of Lemma 36 gives that∣∣∣E[Y (B)]−
(|B|

2

)
vtPv

∣∣∣ 6 3|B|/2 for large enough n. Thus there exists a constant c2 with |c2| < 3

such that for large enough n, E[Y (B)] =
(|B|

2

) [
vtPv + c2

sn

]
. Thus

nE
[
Q̃(B)

]
=

(
|B|
2

)−1/2

(E[Y (B)]− E[µ̃(B)]) =
sn√

2

[
vtPv − (vtPπ)2

κ
+

1

sn
(c1/κ+ c2)

]

∗

(√
1− 1

sn

)
=
sn√

2

[
vtPv − (vtPπ)2

κ

]
+
c1/κ+ c2√

2

(√
1− 1

sn

)

Thus there exists a constant c with |c| 6 |c1|/κ + |c2| < 8/κ + 3 such that for large enough n,

E[Q̃(B)] = Q(B) + c/n. This completes Step 3.

Completion of the proof: We now recall the results of the three steps:

(i) For large enough n, we have P
(∣∣∣Q̂(B)− Q̃(B)

∣∣∣ > t
2n2 + 2

κn

)
6 2 exp

(
−κ

2t2

n2

)

(ii) P
(∣∣∣Q̃(B)− E

[
Q̃(B)

] ∣∣∣ > t
n2

)
6 2 exp

(
−κ2 αt

2

16n2

)
(iii) There exists c with |c| < 8/κ+ 3 such that for large enough n, E

[
Q̂(B)

]
= q(B) + c/n

Noting that α/16 < 1, we apply a union bound to the results of steps (i) and (ii):

P
(∣∣∣Q̂(B)− E

[
Q̃(B)

] ∣∣∣ > t

n2
+

2

κn

)
6 4 exp

(
−κ

2αt2

16n2

)
(C.29)

Applying the inequality |x− a| > |x| − |a| with (iii) and some algebra gives the result. �

157

APPENDIX D

ACME SUPPLEMENTAL

D.1 Pre-processing gene read counts

Let xij denote elements of the original count matrix, where i = 1, . . . , n indexes samples and

j = 1, . . . , T indexes genes. Let li =
∑

j xij be the library size for sample i. The overall entrywise

mean is x̄ =
∑
i

∑
j xij

Tn . The final normalized count matrix elements are cij =
xij
li
T x̄. This process

results in a standardized matrix with constant column sums. Similar normalization is performed

by software such as DESeq2 (Love et al., 2014), but with additional attention to nonlinear scaling

relationships.

D.2 Sampling scheme for residual and goodness-of-fit tests

We created a sub-sampled eQTL data set comprised of equally-sized groups of null, weak,

medium, and strong eQTLs. To determine the groups, we used the detection p-value associated

with the QN-linear model (described in Section 5.1.1) as an a priori measure of eQTL association

strength within a fixed dataset. Although our intention is to provide a new effect size measure,

this prior stratification provides a refined view of ACME-eQTL model behavior at various levels

of association evidence. The four groups of cis-eQTL pairs were defined as follows: “null” eQTLs

with − log10 p-value in [0, 5); “weak” eQTLs with − log10 p-value in [5, 10); “medium” eQTLs with

− log10 p-value in [10, 15); and “strong” eQTLs with − log10 p-value in [15,∞). The sub-sampled

data were obtained by sampling 10,000 pairs from each group, uniformly-at-random.

D.3 Framework for direct null simulation

The preliminary data set used in Section 2.3 contained data from 40,000 unique gene-SNP

pairs. When calculating the residual diagnostics presented in that section, we saved the estimated

residual vectors (computed by the ACME fit) from each gene-SNP pair. We used these to create 25

null-data replications of each of the 40,000 pairs from the preliminary data. For a fixed gene-SNP

pair, we went through the following steps:

1. Recalled s the real allele count vector, β̂0 the ACME-estimated value of β0 from the prelimi-

nary data, and σ̂ the ACME-estimated value of σ from the preliminary data

2. For r = 1, . . . , 25, constructed a vector of realistic errors εr by

εr = σ̂ε∗r +Nr(0, σ̂/10)

where ε∗r is a randomly selected stored residual vector from one of the 40,000 gene-SNP pairs,

scaled to have variance 1. The addition of Nr(0, σ̂/10) is a “jitter” (indepenent within r and

between all 40,000 pairs) to ensure that no two chosen mock-residual vectors are equivalent,

while allowing them to retain any inherent non-Normality.

3. Constructed the j-th replication of null gene expression data

gr = exp
{

log(β̂0) + Zγr + εr
}

where γr is Np(0p, Ip) and independent within r and between all 40,000 pairs.

D.4 Tests of normality and homoskedasticity

This section contains the results from tests for normality and homoskedasticity of residuals,

for each cis-QTL group, and for all single-pair eQTL models considered in this paper. For each

of the 10,000 gene-SNP pairs in each eQTL group (see in Appendix D.2 above), we calculated

the p-value for the canonical Shapiro-Wilk test for normality, and the p-value for the canonical

Bartlett test for homoskedasticity. Figure D.1 displays boxplots of these p-values on the − log10

scale. We see that residuals for the linear model with raw gene expression (“RAW”) are less

normal and less homoskedastic than the residuals for the log-based models (ACME-eQTL, log-

linear (“LL”), and log-ANCOVA (“ANCOVA”)). This is particularly true for weak eQTLs, for

which error assumptions are most important for Type I error control. The dark-red lines in the

figure represent the typical FDR cut-off applied to each bin of the data.

159

Figure D.1: Boxplots of − log10 Shapiro-Wilk and Bartlett p-values from all models. Above, “AOV”
denotes the log-ANCOVA model, “LL” the log-linear model, and “RAW” the standard linear model with
un-transformed gene expression. The dark red dashed line indicates the FDR α = 0.1 significance cut-off for
the particular bin.

D.5 QN-linear regression vs. ACME-eQTL regression

An illustration of the information loss incurred by the QN-linear model approach to eQTL

analysis can be made by considering two gene-SNP pairs, each with eQTL evidence that is similar

under QN transformation, but disparate on the log scale. We chose one such pair from real data,

displayed in Figure D.2. While the estimated ACME-eQTL effect size of pair 2 is ten times greater

than that of pair 1, the effect sizes from linear regression with QN-transformed expression are

nearly the same. Furthermore, the baseline expression of pair 1 is far greater than that of pair 2,

a feature that is obscured by the QN transformation.

D.6 ACME-eQTL fitting algorithm

Here we describe the iterative algorithm used to identify parameters β0 and β1 that approx-

imately maximize the likelihood of the ACME-eQTL model. For a particular gene-SNP pair,

maximizing the likelihood is equivalent to minimizing the sum of squares

∑
i

(yi − log(β0 + β1si)− 〈Zi, γ〉)2 (D.1)

160

Figure D.2: eQTL data from two selected gene-SNP pairs from Adipose tissue. The fitted lines correspond
to the estimated parameters from each model.

over the parameters β0, β1 and γ. The iterative algorithm operates by carrying out least-squares

regression on an approximating linear model. Denoting the natural effect size β1/β0 by η, under

the ACME-eQTL model the conditional mean of yi given Zi and si is given by

E[yi|Zi, si] = log(β0) + log(1 + siη) +ZT
i γ (D.2)

A first-order Taylor approximation of log(1 + siη) around η at an estimate η̂j gives

E[yi|Zi, si] ≈ log(β0) + log(1 + si η̂
j) +

si
1 + s η̂j

(η − η̂j) +ZT
i γ (D.3)

We use this approximation to motivate a linear model, in which the response variable is di :=

yi− log(1 + si η̂
j). Define θ0 := log(β0) and θ1 := η− η̂j . Then subtracting log(1 + si η̂

j) from each

side of Equation D.3 yields the following linear model in the parameters θ0, θ1, and γ:

di = θ0 +
si

1 + si η̂j
θ1 +ZT

i γ + εi (D.4)

After fitting this model at the jth iteration, we set η̂j+1 to θ̂1 + η̂j , and repeat the procedure. This

is repeated until |η̂j − η̂j+1| is close to machine precision. As the likelihood (D.1) is convex, we can

161

expect convergence, since the algorithm is similar to a Gauss-Newton procedure. The last estimates

of θ0 and θ1 are then used to obtain estimates of β0 and β1 via the equations β̂0 = exp{θ̂0} and

β̂1 = β̂0η̂.

We set the initial estimate of η to 0. If for any j, 1 + siη̂
j is negative for any index i, we divide

η̂j by 2 and restart the j-th iteration.

D.7 Derivation of effect size standard error

Defining θ0 := log(β0) and η := β1/β0, the ACME-eQTL model may be expressed

yi = θ0 + log(1 + ηsi) +ZT
i γ + εi (D.5)

for samples i = 1, . . . , n. As discussed in Section 5.1.3.2, we use “effect size” to refer to η. Let ε̂i

be the estimated residual for patient i from (D.5). Let C be an orthonormalization of the matrix

(1n,Z
T), and define P := (In−CCT). Letting y, log(1 +ηs), and ε̂ be n×1 vectors corresponding

to the full set of sample data, we have

ε̂ = P [y − log(1 + ηs)] , (D.6)

as the matrix P residualizes the effect of θ0 and γ. Thus, the log-likelihood for the full model may

be expressed in terms of η, P , σ2 only:

− logL(y; s, η, P, σ2) =
n

2
log(2πσ2) +

σ−2[y − log(1 + ηs)]TP TP [yi − log(1 + ηs)] (D.7)

We now derive an approximate observed Fisher information for η, using (D.6). Note that

d
dη ε̂ = −P s

1+ηs and d2

(dη)2
ε̂ = P s2

(1+ηs)2
(where all operations to vectors are component-wise). Define

162

d := y − log(1 + ηs). Then

−I(η) =
d2

(dη)2

[
1

2
log
(
2πσ2

)
+

1

2σ2
ε̂T ε̂

]

=
1

2σ2
2
[
ε̂′′T ε̂+ ε̂′T ε̂′

]
=

1

σ2

[(
s2

(1 + ηs)2

)T
Pd+

(
s

1 + ηs

)T
P

s

1 + ηs

]
,

since P is idempotent. The asymptotic standard error for the model can then be estimated by√
−I(η̂)−1 with σ2 replaced by σ̂2. Uncertainty in the remaining parameters and their effect on

η is propagated through P . To check the accuracy of the standard error, we computed a purely

numerical Hessian matrix for the log-likelihood and the full Fisher observed information matrix,

verifying a close numerical match to the derivation above.

163

BIBLIOGRAPHY

L. A. Adamic and N. Glance. The political blogosphere and the 2004 us election: divided they
blog. In Proceedings of the 3rd international workshop on Link discovery, pages 36–43. ACM,
2005.

C. Aicher, A. Z. Jacobs, and A. Clauset. Learning latent block structure in weighted networks.
Journal of Complex Networks, page cnu026, 2014.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic block-
models. In Advances in Neural Information Processing Systems, pages 33–40, 2009.

R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

E. Almaas, B. Kovacs, T. Vicsek, Z. Oltvai, and A.-L. Barabási. Global organization of metabolic
fluxes in the bacterium escherichia coli. Nature, 427(6977):839–843, 2004.

R. Andersen, D. F. Gleich, and V. Mirrokni. Overlapping clusters for distributed computation.
In Proceedings of the fifth ACM international conference on Web search and data mining, pages
273–282. ACM, 2012.

C. J. Anderson, S. Wasserman, and K. Faust. Building stochastic blockmodels. Social networks,
14(1-2):137–161, 1992.

A. Ansari, O. Koenigsberg, and F. Stahl. Modeling multiple relationships in social networks.
Journal of Marketing Research, 48(4):713–728, 2011.

K. G. Ardlie, D. S. Deluca, A. V. Segrè, T. J. Sullivan, T. R. Young, E. T. Gelfand, C. A.
Trowbridge, J. B. Maller, T. Tukiainen, M. Lek, et al. The genotype-tissue expression (gtex)
pilot analysis: Multitissue gene regulation in humans. Science, 348(6235):648–660, 2015.

L. Bao, X. Xia, and Y. Cui. Expression qtl modules as functional components underlying higher-
order phenotypes. PloS one, 5(12), 2010.

A.-L. Barabasi and Z. N. Oltvai. Network biology: understanding the cell’s functional organization.
Nature reviews genetics, 5(2):101–113, 2004.

M. J. Barber. Modularity and community detection in bipartite networks. Physical Review E, 76
(6):066102, 2007.

M. Barigozzi, G. Fagiolo, and G. Mangioni. Identifying the community structure of the
international-trade multi-network. Physica A: statistical mechanics and its applications, 390
(11):2051–2066, 2011.

A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex
weighted networks. Proceedings of the National Academy of Sciences of the United States of
America, 101(11):3747–3752, 2004.

T. E. Bartlett. Co-modularity and co-community detection in large networks. arXiv preprint
arXiv:1511.05611, 2015.

164

F. Battiston, V. Nicosia, and V. Latora. Structural measures for multiplex networks. Physical
Review E, 89(3):032804, 2014.

T. M. Beasley, S. Erickson, and D. B. Allison. Rank-based inverse normal transformations are
increasingly used, but are they merited? Behavior genetics, 39(5):580–595, 2009.

E. A. Bender. The asymptotic number of non-negative integer matrices with given row and column
sums. Discrete Mathematics, 10(2):217–223, 1974.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological),
pages 289–300, 1995.

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under
dependency. Annals of statistics, pages 1165–1188, 2001.

M. Berlingerio, M. Coscia, and F. Giannotti. Finding and characterizing communities in multi-
dimensional networks. In Advances in Social Networks Analysis and Mining (ASONAM), 2011
International Conference on, pages 490–494. IEEE, 2011.

M. Berlingerio, F. Pinelli, and F. Calabrese. Abacus: frequent pattern mining-based community
discovery in multidimensional networks. Data Mining and Knowledge Discovery, 27(3):294–320,
2013.

P. J. Bickel and A. Chen. A nonparametric view of network models and newman–girvan and other
modularities. Proceedings of the National Academy of Sciences, 106(50):21068–21073, 2009.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure
and dynamics. Physics reports, 424(4):175–308, 2006.

S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-
Nadal, Z. Wang, and M. Zanin. The structure and dynamics of multilayer networks. Physics
Reports, 544(1):1–122, 2014.

K. Bodwin, K. Zhang, and A. Nobel. A testing-based approach to the discovery of differentially
correlated variable sets. arXiv preprint arXiv:1509.08124, 2015.

B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. European Journal of Combinatorics, 1(4):311–316, 1980.

U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner. Maximizing
modularity is hard. arXiv preprint physics/0608255, 2006.

I. Cabreros, E. Abbe, and A. Tsirigos. Detecting community structures in hi-c genomic data.
arXiv:1509.05121, 2015.

A. Cardillo, J. Gómez-Gardenes, M. Zanin, M. Romance, D. Papo, F. del Pozo, and S. Boccaletti.
Emergence of network features from multiplexity. arXiv preprint arXiv:1212.2153, 2012.

S. E. Castel, A. Levy-Moonshine, P. Mohammadi, E. Banks, and T. Lappalainen. Tools and best
practices for data processing in allelic expression analysis. Genome biology, 16(1):1, 2015.

A. Celisse, J.-J. Daudin, L. Pierre, et al. Consistency of maximum-likelihood and variational
estimators in the stochastic block model. Electronic Journal of Statistics, 6:1847–1899, 2012.

165

B. L. Chamberlain et al. Graph partitioning algorithms for distributing workloads of parallel
computations. University of Washington Technical Report UW-CSE-98-10, 3, 1998.

J. Chen and B. Yuan. Detecting functional modules in the yeast protein–protein interaction net-
work. Bioinformatics, 22(18):2283–2290, 2006.

M. Chen, K. Kuzmin, and B. K. Szymanski. Extension of modularity density for overlapping
community structure. In Advances in Social Networks Analysis and Mining (ASONAM), 2014
IEEE/ACM International Conference on, pages 856–863. IEEE, 2014.

D. S. Choi, P. J. Wolfe, and E. M. Airoldi. Stochastic blockmodels with a growing number of
classes. Biometrika, page asr053, 2012.

F. Chung and L. Lu. Connected components in random graphs with given expected degree se-
quences. Annals of combinatorics, 6(2):125–145, 2002.

F. R. Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks.
Physical review E, 70(6):066111, 2004.

A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law distributions in empirical data. SIAM
review, 51(4):661–703, 2009.

A. Coja-Oghlan and A. Lanka. Finding planted partitions in random graphs with general degree
distributions. SIAM Journal on Discrete Mathematics, 23(4):1682–1714, 2009.

A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition model.
Random Structures and Algorithms, 18(2):116–140, 2001.

G. Csárdi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006.

L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing community structure identification.
Journal of Statistical Mechanics: Theory and Experiment, 2005(09):P09008, 2005.

M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter, S. Gómez, and
A. Arenas. Mathematical formulation of multilayer networks. Physical Review X, 3(4):041022,
2013.

M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall. Identifying modular flows on
multilayer networks reveals highly overlapping organization in interconnected systems. Physical
Review X, 5(1):011027, 2015.

B. Devlin and K. Roeder. Genomic control for association studies. Biometrics, 55(4):997–1004,
1999.

C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph parti-
tioning and data clustering. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International
Conference on, pages 107–114. IEEE, 2001.

A. L. Dixon, L. Liang, M. F. Moffatt, W. Chen, S. Heath, K. C. Wong, J. Taylor, E. Burnett,
I. Gut, M. Farrall, et al. A genome-wide association study of global gene expression. Nature
genetics, 39(10):1202–1207, 2007.

166

N. Du, B. Wang, B. Wu, and Y. Wang. Overlapping community detection in bipartite networks.
In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology-Volume 01, pages 176–179. IEEE Computer Society, 2008.

N. Durak, T. G. Kolda, A. Pinar, and C. Seshadhri. A scalable null model for directed graphs
matching all degree distributions: In, out, and reciprocal. In Network Science Workshop (NSW),
2013 IEEE 2nd, pages 23–30. IEEE, 2013.

K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen. Modularity and extreme edges of the
internet. Physical review letters, 90(14):148701, 2003.

M. Fan, K.-C. Wong, T. Ryu, T. Ravasi, and X. Gao. Secom: A novel hash seed and community
detection based-approach for genome-scale protein domain identification. PLoS ONE, 7:e39475,
06 2012.

D. Fasino and F. Tudisco. Generalized modularity matrices. Linear Algebra and its Applications,
502:327–345, 2016.

S. Ferriani, F. Fonti, and R. Corrado. The social and economic bases of network multiplexity:
Exploring the emergence of multiplex ties. Strategic Organization, 11(1):7–34, 2013.

M. Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):298–305,
1973.

S. E. Fienberg, M. M. Meyer, and S. S. Wasserman. Analyzing data from multivariate directed
graphs: An application to social networks. Technical report, DTIC Document, 1980.

S. E. Fienberg, M. M. Meyer, and S. S. Wasserman. Statistical analysis of multiple sociometric
relations. Journal of the american Statistical association, 80(389):51–67, 1985.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

S. Fortunato and D. Hric. Community detection in networks: A user guide. Physics Reports, 659:
1–44, 2016.

E. R. Gamazon, H. E. Wheeler, K. P. Shah, S. V. Mozaffari, K. Aquino-Michaels, R. J. Carroll,
A. E. Eyler, J. C. Denny, D. L. Nicolae, N. J. Cox, et al. A gene-based association method for
mapping traits using reference transcriptome data. Nature genetics, 47(9):1091–1098, 2015.

Y. Gilad, S. A. Rifkin, and J. K. Pritchard. Revealing the architecture of gene regulation: the
promise of eqtl studies. Trends in genetics, 24(8):408–415, 2008.

M. Girvan and M. E. Newman. Community structure in social and biological networks. Proceedings
of the national academy of sciences, 99(12):7821–7826, 2002.

D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for
local community methods. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 597–605. ACM, 2012.

M. K. Goldberg, M. Hayvanovych, and M. Magdon-Ismail. Measuring similarity between sets
of overlapping clusters. In Social Computing (SocialCom), 2010 IEEE Second International
Conference on, pages 303–308. IEEE, 2010.

167

E. Grundberg, K. S. Small, Å. K. Hedman, A. C. Nica, A. Buil, S. Keildson, J. T. Bell, T.-P. Yang,
E. Meduri, A. Barrett, et al. Mapping cis-and trans-regulatory effects across multiple tissues in
twins. Nature genetics, 44(10):1084–1089, 2012.

R. Guimera and L. A. N. Amaral. Functional cartography of complex metabolic networks. Nature,
433(7028):895–900, 2005.

P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network analysis.
Journal of the american Statistical association, 97(460):1090–1098, 2002.

P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
networks, 5(2):109–137, 1983.

Y. Huang, S. Wuchty, M. T. Ferdig, and T. M. Przytycka. Graph theoretical approach to study
eqtl: a case study of plasmodium falciparum. Bioinformatics, 25(12):i15–i20, 2009.

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, and T. P.
Speed. Exploration, normalization, and summaries of high density oligonucleotide array probe
level data. Biostatistics, 4(2):249–264, 2003.

A. Z. Jacobs and A. Clauset. A unified view of generative models for networks: models, methods,
opportunities, and challenges. arXiv:1411.4070, 2014.

R. K.-X. Jin, D. C. Parkes, and P. J. Wolfe. Analysis of bidding networks in ebay: aggregate
preference identification through community detection. In Proceedings of AAAI workshop on
plan, activity and intent recognition (PAIR), 2007.

D. Kahle and H. Wickham. ggmap: Spatial visualization with ggplot2. The R Journal, 5(1):
144–161, 2013.

B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1):016107, 2011.

D. I. Kim, P. K. Gopalan, D. Blei, and E. Sudderth. Efficient online inference for bayesian nonpara-
metric relational models. In Advances in Neural Information Processing Systems, pages 962–970,
2013.

M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter. Multilayer
networks. Journal of complex networks, 2(3):203–271, 2014.

A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection algorithms on
directed and weighted graphs with overlapping communities. Physical Review E, 80(1):016118,
2009.

A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping and hierarchical commu-
nity structure in complex networks. New Journal of Physics, 11(3):033015, 2009.

A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. Fortunato, et al. Finding statistically significant
communities in networks. PloS one, 6(4):e18961, 2011.

R. Langone, C. Alzate, and J. A. Suykens. Modularity-based model selection for kernel spectral
clustering. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages
1849–1856. IEEE, 2011.

168

P. Latouche, E. Birmelé, and C. Ambroise. Overlapping stochastic block models with application
to the french political blogosphere. The Annals of Applied Statistics, pages 309–336, 2011.

J. Lei, A. Rinaldo, et al. Consistency of spectral clustering in stochastic block models. The Annals
of Statistics, 43(1):215–237, 2015.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community
structure in large social and information networks. In Proceedings of the 17th international
conference on World Wide Web, pages 695–704. ACM, 2008.

J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In Proceedings of
the SIGCHI conference on human factors in computing systems, pages 1361–1370. ACM, 2010a.

J. Leskovec et al. Stanford network analysis project. ht tp://snap. stanford. edu, 2010b.

Y. Li, M. Liang, and Z. Zhang. Regression analysis of combined gene expression regulation in acute
myeloid leukemia. PLoS Comput Biol, 10(10):e1003908, 2014.

X. Liu and T. Murata. Community detection in large-scale bipartite networks. Information and
Media Technologies, 5(1):184–192, 2010.

J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad, R. Hasz, G. Walters, F. Garcia,
N. Young, et al. The genotype-tissue expression (gtex) project. Nature genetics, 45(6):580–585,
2013.

M. I. Love, W. Huber, and S. Anders. Moderated estimation of fold change and dispersion for
rna-seq data with deseq2. Genome biology, 15(12):1, 2014.

D. Lusseau and M. E. Newman. Identifying the role that animals play in their social networks.
Proceedings of the Royal Society of London B: Biological Sciences, 271(Suppl 6):S477–S481, 2004.

D. J. McCarthy, Y. Chen, and G. K. Smyth. Differential expression analysis of multifactor rna-seq
experiments with respect to biological variation. Nucleic acids research, page gks042, 2012.

P. Mohammadi, S. E. Castel, A. A. Brown, and T. Lappalainen. Quantifying the regulatory effect
size of cis-acting genetic variation using allelic fold change. 2016.

M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence. Random
structures & algorithms, 6(2-3):161–180, 1995.

M. Morley, C. M. Molony, T. M. Weber, J. L. Devlin, K. G. Ewens, R. S. Spielman, and V. G.
Cheung. Genetic analysis of genome-wide variation in human gene expression. Nature, 430(7001):
743–747, 2004.

P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela. Community structure in
time-dependent, multiscale, and multiplex networks. science, 328(5980):876–878, 2010.

A. J. Myers, J. R. Gibbs, J. A. Webster, K. Rohrer, A. Zhao, L. Marlowe, M. Kaleem, D. Leung,
L. Bryden, P. Nath, et al. A survey of genetic human cortical gene expression. Nature genetics,
39(12):1494–1499, 2007.

C. G. A. R. Network et al. Genomic and epigenomic landscapes of adult de novo acute myeloid
leukemia. The New England journal of medicine, 368(22):2059, 2013.

169

M. E. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256,
2003a.

M. E. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256,
2003b.

M. E. Newman. Analysis of weighted networks. Physical Review E, 70(5):056131, 2004a.

M. E. Newman. Detecting community structure in networks. The European Physical Journal
B-Condensed Matter and Complex Systems, 38(2):321–330, 2004b.

M. E. Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006a.

M. E. Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006b.

M. E. Newman. Communities, modules and large-scale structure in networks. Nature Physics, 8
(1):25–31, 2012.

M. E. Newman. Spectral methods for community detection and graph partitioning. Physical Review
E, 88(4):042822, 2013.

M. E. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
review E, 69(2):026113, 2004.

M. E. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks.
Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572, 2002.

V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending the definition of modularity
to directed graphs with overlapping communities. Journal of Statistical Mechanics: Theory and
Experiment, 2009(03):P03024, 2009.

K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic blockstructures. Journal
of the American Statistical Association, 96(455):1077–1087, 2001.

S. C. Olhede and P. J. Wolfe. Degree-based network models. arXiv preprint arXiv:1211.6537, 2012.

T. Opsahl and P. Panzarasa. Clustering in weighted networks. Social networks, 31(2):155–163,
2009.

G. Palla, A.-L. Barabási, and T. Vicsek. Quantifying social group evolution. Nature, 446(7136):
664–667, 2007.

S. Paul and Y. Chen. Community detection in multi-relational data with restricted multi-layer
stochastic blockmodel. arXiv preprint arXiv:1506.02699, 2015.

S. Paul and Y. Chen. Null models and modularity based community detection in multi-layer
networks. arXiv preprint arXiv:1608.00623, 2016.

L. Peel, D. B. Larremore, and A. Clauset. The ground truth about metadata and community
detection in networks. arXiv preprint arXiv:1608.05878, 2016.

T. P. Peixoto. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks.
Physical Review E, 92(4):042807, 2015.

170

J. Platig, P. Castaldi, D. DeMeo, and J. Quackenbush. Bipartite community structure of eqtls.
arXiv preprint arXiv:1509.02816, 2015.

P. Pons and M. Latapy. Computing communities in large networks using random walks. In Com-
puter and Information Sciences-ISCIS 2005, pages 284–293. Springer, 2005.

P. Pons and M. Latapy. Computing communities in large networks using random walks. J. Graph
Algorithms Appl., 10(2):191–218, 2006.

M. A. Porter, J.-P. Onnela, and P. J. Mucha. Communities in networks. Notices of the AMS, 56
(9):1082–1097, 2009.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM journal on matrix analysis and applications, 11(3):430–452, 1990.

J. E. Powell, A. K. Henders, A. F. McRae, J. Kim, G. Hemani, N. G. Martin, E. T. Dermitzakis,
G. Gibson, G. W. Montgomery, and P. M. Visscher. Congruence of additive and non-additive
effects on gene expression estimated from pedigree and snp data. PLoS Genet, 9(5):e1003502,
2013.

U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community
structures in large-scale networks. Physical Review E, 76(3):036106, 2007.

M. Rantalainen, C. M. Lindgren, and C. C. Holmes. Robust linear models for cis-eqtl analysis.
PloS one, 10(5):e0127882, 2015.

J. Reichardt and S. Bornholdt. Clustering of sparse data via network communitiesa prototype
study of a large online market. Journal of Statistical Mechanics: Theory and Experiment, 2007
(06):P06016, 2007a.

J. Reichardt and S. Bornholdt. Clustering of sparse data via network communitiesa prototype
study of a large online market. Journal of Statistical Mechanics: Theory and Experiment, 2007
(06):P06016, 2007b.

T. Richardson, P. J. Mucha, and M. A. Porter. Spectral tripartitioning of networks. Physical
Review E, 80(3):036111, 2009.

M. Rocklin and A. Pinar. On clustering on graphs with multiple edge types. Internet Mathematics,
9(1):82–112, 2013.

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic block-
model. The Annals of Statistics, pages 1878–1915, 2011.

M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123, 2008.

S. Sahebi and W. W. Cohen. Community-based recommendations: a solution to the cold start
problem. In Workshop on Recommender Systems and the Social Web, RSWEB, 2011.

P. Sarkar and A. W. Moore. Dynamic social network analysis using latent space models. ACM
SIGKDD Explorations Newsletter, 7(2):31–40, 2005.

A. A. Shabalin. Matrix eqtl: ultra fast eqtl analysis via large matrix operations. Bioinformatics,
28(10):1353–1358, 2012.

171

A. A. Shabalin, V. J. Weigman, C. M. Perou, and A. B. Nobel. Finding large average submatrices
in high dimensional data. The Annals of Applied Statistics, pages 985–1012, 2009.

S. Shirinivas, S. Vetrivel, and N. Elango. Applications of graph theory in computer science an
overview. International Journal of Engineering Science and Technology, 2(9):4610–4621, 2010.

G. K. Smyth. Nonlinear regression. Encyclopedia of environmetrics, 2002.

T. A. Snijders and K. Nowicki. Estimation and prediction for stochastic blockmodels for graphs
with latent block structure. Journal of classification, 14(1):75–100, 1997.

N. Stanley, S. Shai, D. Taylor, and P. J. Mucha. Clustering network layers with the strata multilayer
stochastic block model. IEEE Transactions on Network Science and Engineering, 3(2):95–105,
2016.

O. Stegle, L. Parts, M. Piipari, J. Winn, and R. Durbin. Using probabilistic estimation of expression
residuals (peer) to obtain increased power and interpretability of gene expression analyses. Nature
protocols, 7(3):500–507, 2012.

J. H. Steiger and A. R. Hakstian. The asymptotic distribution of elements of a correlation matrix:
Theory and application. British Journal of Mathematical and Statistical Psychology, 1982.

B. E. Stranger, A. C. Nica, M. S. Forrest, A. Dimas, C. P. Bird, C. Beazley, C. E. Ingle, M. Dunning,
P. Flicek, D. Koller, et al. Population genomics of human gene expression. Nature genetics, 39
(10):1217–1224, 2007.

S. Szymczak, M. O. Scheinhardt, T. Zeller, P. S. Wild, S. Blankenberg, and A. Ziegler. Adaptive
linear rank tests for eqtl studies. Statistics in medicine, 32(3):524–537, 2013.

U. von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American
Statistical Association, 82(397):8–19, 1987.

H.-J. Westra, M. J. Peters, T. Esko, H. Yaghootkar, C. Schurmann, J. Kettunen, M. W. Chris-
tiansen, B. P. Fairfax, K. Schramm, J. E. Powell, et al. Systematic identification of trans eqtls
as putative drivers of known disease associations. Nature genetics, 45(10):1238–1243, 2013.

J. J. Whang, P. Rai, and I. S. Dhillon. Stochastic blockmodel with cluster overlap, relevance selec-
tion, and similarity-based smoothing. In Data Mining (ICDM), 2013 IEEE 13th International
Conference on, pages 817–826. IEEE, 2013.

J. D. Wilson, S. Wang, P. J. Mucha, S. Bhamidi, A. B. Nobel, et al. A testing based extraction
algorithm for identifying significant communities in networks. The Annals of Applied Statistics,
8(3):1853–1891, 2014.

J. D. Wilson, J. Palowitch, S. Bhamidi, and A. B. Nobel. Community extraction in multilayer
networks with heterogeneous community structure. arXiv preprint arXiv:1610.06511, 2016.

F. A. Wright, A. A. Shabalin, and I. Rusyn. Computational tools for discovery and interpretation
of expression quantitative trait loci. Pharmacogenomics, 13(3):343–352, 2012.

172

F. A. Wright, P. F. Sullivan, A. I. Brooks, F. Zou, W. Sun, K. Xia, V. Madar, R. Jansen, W. Chung,
Y.-H. Zhou, et al. Heritability and genomics of gene expression in peripheral blood. Nature
genetics, 46(5):430–437, 2014.

J. Xie, B. K. Szymanski, and X. Liu. Slpa: Uncovering overlapping communities in social networks
via a speaker-listener interaction dynamic process. In Data Mining Workshops (ICDMW), 2011
IEEE 11th International Conference on, pages 344–349. IEEE, 2011.

J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in networks: The state-
of-the-art and comparative study. ACM Computing Surveys (csur), 45(4):43, 2013.

L. Xin, E. Haihong, J. Song, M. Song, and J. Tong. Book recommendation based on community
detection. In Pervasive Computing and the Networked World, pages 364–373. Springer, 2014.

Y. Zhao, E. Levina, and J. Zhu. Community extraction for social networks. Proceedings of the
National Academy of Sciences, 108(18):7321–7326, 2011.

Y. Zhao, E. Levina, J. Zhu, et al. Consistency of community detection in networks under degree-
corrected stochastic block models. The Annals of Statistics, 40(4):2266–2292, 2012.

Y.-H. Zhou and F. A. Wright. Hypothesis testing at the extremes: fast and robust association for
high-throughput data. Biostatistics, page kxv007, 2015.

Y.-H. Zhou, K. Xia, and F. A. Wright. A powerful and flexible approach to the analysis of rna
sequence count data. Bioinformatics, 27(19):2672–2678, 2011.

Z. Zhu, F. Zhang, H. Hu, A. Bakshi, M. R. Robinson, J. E. Powell, G. W. Montgomery, M. E.
Goddard, N. R. Wray, P. M. Visscher, et al. Integration of summary data from gwas and eqtl
studies predicts complex trait gene targets. Nature genetics, 2016.

I. Zwiener, B. Frisch, and H. Binder. Transforming rna-seq data to improve the performance of
prognostic gene signatures. PloS one, 9(1):e85150, 2014.

173

