
Improved Generalized Estimating Equations For

Incomplete Longitudinal Binary Data, Covariance

Estimation In Small Samples, And Ordinal Data

by
Jamie Perin

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Biostatistics, School of Public Health.

Chapel Hill
2009

Approved by:

Dr. John Preisser, Advisor
Dr. Ceib Philipps, Committee Member
Dr. Bahjat Qaqish, Committee Member
Dr. Beth Reboussin, Committee Member
Dr. Pranab K. Sen, Committee Member



ABSTRACT
JAMIE PERIN: Improved Generalized Estimating Equations For

Incomplete Longitudinal Binary Data, Covariance Estimation In Small
Samples, And Ordinal Data.

(Under the direction of Dr. John Preisser.)

The focus of this research is to improve existing methods for the marginal modeling

of associated categorical outcomes. Generalized estimating equations, based on quasi-

likelihood, is in wide use to make inference on marginal mean parameters, especially

for categorical data. In the case that response data are not all observed, generalized es-

timating equations give inconsistent parameter estimates when missingness depends on

observed or unobserved outcomes. Inverse-probability weighted generalized estimating

equations give valid results if missingness depends only on observed outcomes, and a

missingness model is correctly specified. For our first topic we propose specific forms

of semi-parametric efficient estimators in marginal models when dropouts for longitu-

dinal binary data are missing at random. The efficiency of inverse-probability weighted

generalized estimating equations is also explored in this setting.

The other specific topics of concern in this research are related to extensions of gen-

eralized estimating equations that allow for modeling associations between categorical

outcomes. Although associations are often considered nuisances, it is not uncommon

that they are scientifically relevant. It may be of interest in this case to model associa-

tions on covariates defined by characteristics of clusters or outcome pairs. Alternating

logistic regressions model marginal means of correlated binary outcomes while simulta-

neously allowing for an association model that parameterizes the odds ratio for outcome

pairs. Our second topic concerns point and variance estimation of association parame-

ters for finite samples. Bias adjustments in estimating outcome variance have recently

been introduced for small samples in generalized estimating equations. We propose an
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extension of these adjustments to odds ratio parameters in alternating logistic regres-

sions.

The remaining topic of our research concerns generalized estimating equations for

ordinal data, for which alternating logistic regressions has recently been adapted. An al-

ternate formulation of alternating logistic regressions based on orthogonalized residuals

has been introduced for binary data resolving some problems in the existing procedure,

including lack of invariance of the variance estimator to observation order. In our final

topic we define this alternate formulation of alternating logistic regressions for corre-

lated ordinal data, and examine its efficiency with regards to estimating within-cluster

association parameters.
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Introduction and Literature Review

1.1 Introduction

The focus of this research is to improve existing methods for the marginal modeling

of associated or clustered categorical outcomes. Clustering often arises in medical

research, for example in cohort surveys following individuals over time, in clinical trials

where multiple outcomes are measured for each subject, or in community based trials.

The correlation between outcomes needs to be accounted for in order to make valid

inference on the impact of covariates on marginal mean parameter estimates, even

when this association is not scientifically relevant. In this case the dependence of

outcome variables on each other is a nuisance, however, this dependence is often of

direct scientific interest, for instance, in determining sample size. As the distributions

of clustered binary or categorical data are generally not characterized by a small number

of parameters as in Gaussian data, methods to model data without fully specifying their

joint distributions have been developed.

Liang and Zeger (1986) introduced generalized estimating equations, based on the

quasi-likelihood of Wedderburn (1974). Liang and Zeger’s method is in wide use to make

inference on marginal mean parameters, especially in the case of categorical data. This

method is convenient computationally, however, it has limitations for estimating mean

parameters when data are incomplete. In the case that response data are not all ob-

served, generalized estimating equations as specified by Liang and Zeger give asymptot-



ically biased parameter estimates when missingness depends on observed or unobserved

outcomes. Generalized estimating equations yield unbiased estimates only in the case

that data observation is not dependent on other outcomes, or is “missing completely at

random” (Little, 1988). Inverse-probability weighted generalized estimating equations

give valid results if missingness depends only on observed outcomes, i.e. data is “missing

at random” (Rubin, 1976) This research explores the efficiency of inverse-probability

weighted generalized estimating equations when dropouts in marginal models for in-

complete longitudinal binary data are missing at random and proposes specific forms

of semi-parametric efficient estimators in this setting. This issue is addressed in §1.2

and §2.

The other specific topics of concern in this research are related to extensions of

generalized estimating equations that allow for modeling associations between binary

and categorical outcomes. Although associations are often considered nuisances, it is

not uncommon that they are scientifically relevant. It may be of interest in this case to

model associations on covariates defined by characteristics of clusters or outcome pairs.

For example, in a community trial relating to underage drinking, it may be of interest to

model the association of drinking-related outcomes based on age. Accommodating this

parameterization, estimating equations have been defined for associations characterized

by correlations, in addition to estimating equations characterized by odds ratios. In

particular, alternating logistic regressions were defined by Carey, Zeger, and Diggle

(1993) to model marginal means of correlated binary outcomes while simultaneously

allowing for an association model that parameterized the odds ratio for outcome pairs.

Our second topic concerns alternating logistic regressions for finite samples. Bias

adjustments in estimating the variance of Yi have recently been introduced for small

samples in generalized estimating equations. We propose an extension of these adjust-

ments to alternating logistic regressions when there is a small number of clusters, a
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methodology and circumstance not uncommon in community trials.

The remaining topic of our research concerns generalized estimating equations for

ordinal data. Alternating logistic regressions for ordinal data was introduced by Hea-

gerty and Zeger (1996). An alternative formulation of alternating logistic regressions

for binary data was defined by Zink and Qaqish (2009) that resolves the dependence of

the variance estimator on the ordering of observations within clusters. In §1.3 and §4

a formulation of ALR is defined for ordinal data based on the orthogonalized residuals

of Zink and Qaqish (2009).

1.2 Literature review for marginal modeling with

estimating equations of incomplete longitudinal

binary data

1.2.1 Bias of generalized estimating equations and approaches

when data are missing at random

Let Yi be a longitudinal binary outcome, so that Yi = (Yi1, . . . , YiT )′ for binary

Yit. Our research is concerned with analysis where outcome Yi is not completely

observed, and the relationship between the marginal mean of Yit and covariate vector

Xi = (Xi1, . . . , XiT ) is of interest. It is often the case in longitudinal data that Yi is

monotonically incomplete, so that for Yit observed then Yij is also observed for j < t.

Let Ȳit := (Yi1, . . . , Yi(t−1))
′ represent the history of Yi at t. In the case that Yi is

monotonically incomplete, then for Yit observed, Ȳit is also observed. Let the marginal

mean of Yit be restricted by

E(Yit|Xi) = gt(Xi,β), t = 1, . . . , T , (1.1)
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for known functions gt(·, ·). For known Xi, the marginal mean of Yit is then fully

specified by the p× 1 parameter vector β.

Quasi-Likelihood was defined by Wedderburn (1974), in which inference is made for

marginal mean parameter β for a given relationship between the marginal mean and

variance of a random variable, without specifying a joint distribution. Liang and Zeger

(1986) expanded quasi-likelihood to clustered data, in which inference for parameters

related to the mean of longitudinal binary data could be made without specifying a full

joint likelihood, which is computationally infeasible for cluster sizes that are not small.

The generalized estimating equations methodology proposed by Liang and Zeger

(1986) has recently come into wide use to estimate marginal mean parameters such as

β in (1.1), especially for correlated binary data. This is despite the known drawback

that their parameter estimates are inconsistent for data that are observed conditional

on outcome data, or are not missing completely at random (MCAR) (Preisser et al.,

2002). In the case that Yit is not MCAR,

E(Yit|Rit = 1, Xi) 6= E(Yit|Xi) ,

where Rit is an indicator that Yit is observed, so that generalized estimating equations

can be biased for E(Yit|Xi). This is in contrast to maximum likelihood, which has

unbiased parameter estimates for broader missing data conditions, including data that

are missing at random. While a joint likelihood can be specified for longitudinal binary

data, the model complexity for large cluster sizes can be prohibitive (Preisser et al.,

2000). Methods based on maximum likelihood have been developed for this case, includ-

ing generalized linear mixed models (Breslow and Clayton, 1993), although the param-

eters are not comparable to those of marginal methods (Zeger et al., 1988). Marginal

methods are used when the expectation E(Yit|Xi), the unconditional or population level

mean, is of direct interest. Our research does not include maximum likelihood methods,
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instead concentrating on semi-parametric methodology. Also outside the scope of this

research is data that is not missing at random, or non-ignorably missing, a scenario for

which both generalized estimating equations and maximum likelihood model parameter

estimates are biased.

Because generalized estimating equations are widely used and are known to have

inconsistent parameter estimates for data that are missing at random, various solutions

have been proposed in the literature for longitudinal binary data. Lipsitz et al. (2000)

introduced an extension of generalized estimating equations valid under MCAR in which

correlation parameters are estimated using a multivariate normal likelihood. Lipsitz et

al. showed that when correlations of binary variates were estimated (inconsistently)

with a Gaussian likelihood, as opposed to the all-available-pairs method used by Liang

and Zeger (1986), the bias of the resulting estimator was reduced for data that were

missing at random, for clusters of size two.

Fitzmaurice et al. (2001) compared the bias of parameter estimates when data are

missing at random (MAR) for several different marginal methods valid under MCAR

(but not MAR), including the Gaussian estimation described above of Lipsitz et al.

(2000). The bias comparison of Fitzmaurice et al. (2001) was primarily for association

parameters, although bias in mean parameter estimates was also examined, finding

asymptotic bias in GEE for both mean and association parameters. Included in their

comparison was an extension of generalized estimating equations proposed by Lipsitz

and Fitzmaurice (1996) estimating the correlation of binary variates with conditional

residuals, and second-order generalized estimated equations proposed by Liang et al.

(1992).

In addition to these methods, Paik (1997) proposed an a daptation for semi-parametric

inference in the case of incomplete data, where unobserved Yit are imputed. Paik pro-

posed that Yit can be sequentially imputed using the expectation of Yit conditional
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on the dropout pattern of Yi estimated by a sample average. In the case that there

is little data with exactly the same history, the conditional expectation can be mod-

eled. For data that are MCAR or MAR, Paik’s method yields estimates of β that are

asymptotically unbiased.

Also yielding consistent estimates of β for MAR data in marginal models is the

pattern mixture model proposed by Fitzmaurice and Laird (2000). Pattern mixture

models stratify incomplete data by response pattern and model data within strata.

The final model is then an average across the different patterns of incompleteness,

weighted by the marginal probabilities for each pattern. Fitzmaurice and Laird (2000)

used pattern mixture models to make inference in generalized estimating equations for

consistent estimation of β (under correct marginal model specification) when data are

not MCAR.

Approaches in the statistical literature that adjust GEE for consistency under MAR

include both the careful estimating of outcome correlation and modeling or imputing

data within missingness strata. The former approach has the advantage that corre-

lation modeling is straightforwardly accommodated in the existing methodology and

also that bias was shown empirically to be reduced for some small cluster analyses

(Fitzmaurice et al., 2001; Lipsitz et al., 2000). Although bias in β̂ can be reduced

for MAR data when the outcome correlation is correctly specified (Liang and Zeger,

1986), their asymptotic bias for clustered data in general is in question, especially

for complex clustered data or for clusters that are not small. Even in the case that

these estimators were consistent for β, they are not necessarily the estimates with the

smallest variance, as GEE estimates do not have the smallest variance. For the lat-

ter approach, imputation and modeling data within missingness strata are advantaged

in their accommodation of different missing data patterns. Although imputation and

pattern mixture modeling yield consistent estimators of β, they require assumptions
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about conditional distributions that are not of direct interest. In multiple imputation,

it is not necessarily obvious that a multivariate distribution exists that accommodates

both the conditional means and the marginally specified mean and covariance (Paik,

1997). A disadvantage for pattern mixture models is that the natural parameters of

interest are not directly available (Fitzmaurice and Laird, 2000). A disadvantage for

both pattern mixture models and imputation is that their estimates of marginal mean

parameters are not the most efficient.

1.2.2 Inverse-probability weighted estimators

While Fitzmaurice and Laird (2000) modeled Yi conditional on missingness, another

method is a selection model approach (Little, 1995) that conversely models missing-

ness conditional on observed Yi. Introduced by Robins, Rotnitzky, and Zhao (1995),

this methodology proposes generalized estimating equations weighted by the inverse of

the conditional observation probability, and so is called inverse-probability weighted

estimating equations.

The class of estimators based on inverse-probability observation weights as intro-

duced by Robins et al. (1995) are consistent for β when Yi is MAR, given that a model

for the observation probability of Yit is correctly specified. A particular estimator in

this class has come into wide use as a practical adaptation to the estimator introduced

by Liang and Zeger (1986) in the case that data are not MCAR, receiving considerable

interest among researchers in statistical methods and practice (Troxel, 1998; Hogan

et al., 2004; Preisser et al., 2000; Miller et al., 2001; Yi and Cook, 2002; Ziegler et al.,

2003; Jansen et al., 2006). This estimator as introduced by Robins et al. (1995) is

defined in detail in §2.2.2.

Although there is a large variety of methods available for analyzing incomplete

longitudinal binary data in the statistical literature, we have focused here on efficient
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estimators for β in semi-parametric methods. Semi-parametric models are widely used

for incomplete correlated binary data, whose joint distribution can be intractable for

large cluster sizes, however, the most efficient semi-parametric estimator has not been

implemented. For a comprehensive review of incomplete longitudinal binary data and

related analysis methods see Hogan et al. (2004).

1.2.3 Inverse-probability weighted estimators and semi-

parametric efficiency

Efficiency in semi-parametric models when Yi is completely observed was examined

by Chamberlain (1987), who showed that the multivariate generalization of the quasi-

likelihood estimator in the class of estimators defined by Liang and Zeger (1986) asymp-

totically attains the semi-parametric variance bound when the variance of Yi is known.

The semi-parametric variance bound for estimators of β is the supremum of the set of

variances for all parametric submodels for the distribution of Yi (Tsiatis, 2006).

The estimator defined by Liang and Zeger (1986) likewise attains the semi-parametric

variance bound for complete data, under mild regulatory conditions, when substituting

an estimate of the variance of Yi, as shown by Newey (1990). This is equivalent to

Liang and Zeger’s estimator when the structure of the covariance matrix is correctly

specified, so that their estimator is asymptotically the most efficient when Yi is com-

pletely observed. An efficient estimator for complete data was also specified by Qu et al.

(2000), based on a modified generalized estimating equations using a decomposition of

the working covariance matrix. This estimator’s efficiency was maintained even when

the covariance of Yi was misspecified.

For longitudinal data, however, it is not uncommon that Yi is incomplete. For

example, in a cohort survey over T observation times, a subject may be lost to follow-

up at time t ≤ T . When data are incomplete, the process determining missingness can
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be relevant to the validity or efficiency of inference on β under restriction (1.1). The

process that determines whether Yi is observed at t and Yi itself may be independent

conditional on covariate Xi. This condition is commonly known as “missing completely

at random” or MCAR. Let Rit be an indicator that Yi is observed at t. Formally, for

conditional observation probability is defined

λit := P (Rit = 1|Ri(t−1) = 1,Yi,Xi) .

The MCAR condition is equivalent to a restriction on λit, or that

λit = P (Rit = 1|Ri(t−1) = 1,Xi) , t = 2, . . . , T .

It is also possible that Rit and Yit are independent conditional on previously observed

Yi, or history Ȳit. This condition is commonly known as “missing at random” or

MAR, identified by Rubin (1976). The MAR condition is equivalent to the restriction

on λit that

λit = P (Rit = 1|Ri(t−1) = 1,Xi, Ȳit) , t = 2, . . . , T .

The MCAR condition is more restrictive than MAR, so that MAR data are not nec-

essarily MCAR. It is also possible that the conditional observation of Yit is dependent

on its value, meaning that Yi is not MCAR or MAR. In this case Yit is “non-ignorably

missing”, or “not missing at random” (NMAR), and

P (Rit = 1|Ri(t−1) = 1,Yi,Xi) 6= P (Rit = 1|Ri(t−1) = 1,Xi, Ȳit) ,

for t = 2, . . . , T .

When parts of response vector Yi are missing completely at random (MCAR), the
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estimator defined by Qu et al. (2000) has the minimum asymptotic variance among all

consistent estimators in the class of linear unbiased estimating functions. The estimator

defined by Liang and Zeger (1986) also has the minimum asymptotic variance in this

class as long as the covariance structure is correctly specified. However, when data are

MCAR, there exists an estimator under model (1.1) that improves on GEE by exploiting

information available via a missing data model (Robins and Rotnitzky, 1995).

This estimator is in the class of estimators identified by Robins et al. (1995) which

are consistent for β under MAR. The estimator identified by Robins and Rotnitzky

(1995) has an asymptotic variance that attains the semi-parametric bound for estima-

tors of β when Yi is MCAR or MAR. Although this estimator depends on unknown

quantities, and hence is unavailable for analysis, Robins and Rotnitzky outlined an

iterative procedure whose solution for β has a limiting distribution equivalent to that

of the most efficient semi-parametric estimator of β. This procedure requires that aux-

iliary models be chosen for certain conditional expectations relating to Yit, Ȳit, Rit and

Rij for j ≥ t. Robins and Rotnitzky (1995) implemented this estimator for continuous

data, using likelihood-based models for the auxiliary quantities needed in their esti-

mation of β. This semi-parametric efficient estimator has not been implemented for

binary data.
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1.3 Literature review for alternating logistic

regressions in finite samples and for ordinal data

1.3.1 Alternating logistic regressions and orthogonalized resid-

uals

Consider data with K clusters indexed by i = 1, . . . , K. Cluster i has ni binary obser-

vations denoted by Yij, j = 1, . . . ni, related to a covariate vector Xij through

logit(µij) = X′ijβ , (1.2)

where µij = E(Yij|Xij). Let Yi = (Yi1, . . . , Yini)
′ and µi = (µi1, . . . ,µini)

′. Also let Γi

represent var(Yi). First order generalized estimating equations were defined by Liang

and Zeger (1986) for the consistent estimation of β, by solving

Uβ =
K∑

i=1

D′iV
−1
i { Yi − µi(β) } = 0 , (1.3)

where Di = ∂µi/∂β
′ and Vi = diag(σ

1/2
ijj ) Ri diag(σ

1/2
ijj ), for σijj = µij(1 − µij). The

matrixRi is a working correlation matrix approximating corr(Yi) and σijj = µij(1−µij).

Alternating logistic regressions was introduced by Carey, Zeger, and Diggle (1993)

for correlated binary data, that estimates β with first order generalized estimating

equations (GEE) and characterizes Γi by pairwise odds ratio

ψijk =
P (Yij = 1, Yik = 1)P (Yij = 0, Yik = 0)

P (Yij = 1, Yik = 0)P (Yij = 0, Yik = 1)
.
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Alternating logistic regressions (ALR) models correlated binary data with (1.2) and

log(ψijk) = Z′ijkα , (1.4)

where Zijk is a covariate vector for the pair of outcomes Yij and Yik. The odds ratio ψijk

is modeled through the parameter α, which is consistently estimated in a second set of

estimating equations based on the expectations of Yij conditional on Yik, j < k < ni.

Let ζi be a vector with elements ζijk = E(Yij|Yik) and Ri be the residual vector

with elements Rijk = Yij − ζijk. In alternating logistic regressions, α is estimated by

the solution to

Uα,ALR =
K∑

i=1

∂ζ ′i/∂αDiag{ζi(1− ζi)}Ri = 0 . (1.5)

The resulting estimates of α and β are asymptotically joint multivariate normal, given

that the α model accurately represents the outcome covariance. If the outcome co-

variance is misspecified, the resulting estimate of β is still consistent. A sandwich

estimator is available for the variance of α̂. The ALR estimate of α is invariant to the

order of observations within cluster, however, the robust estimate of var(α̂) is not. SAS

version 8.2 calculated covariance estimates for ALR by permuting the observations in

Yi and taking an average. In addition to this drawback, because the derivative matrix

is stochastic, standard estimating equation theory is not applicable to (1.5) (Zink and

Qaqish, 2009).

Also modeling Γi with (1.4), Zink and Qaqish (2009) defined orthogonalized resid-

uals, which estimate β using first order generalized estimating equations and estimate

α using estimating equations based on the expectations of cross-products YijYik condi-
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tional on Yij and Yik, j < k < ni. Define µijk = E[YijYik] and

σijj := var(Yij) = µij(1− µij) σijk := cov(Yij, Yik) = µijk − µijµik.

In the framework of orthogonalized residuals (Zink and Qaqish, 2009), estimates for α

in (1.4) are obtained from the solution to

Uα =
K∑

i=1

S ′iP
−1
i Ti = 0 , (1.6)

where the vector Ti has elements Tijk such that

Tijk = YijYik − { µijk + bijk:j(Yij − µij) + bijk:k(Yik − µik) } ,

for

dijk = σijjσikk − σ2
ijk

bijk:j = µijk(1− µik)(µik − µijk)/dijk, and

bijk:k = µijk(1− µij)(µij − µijk)/dijk .

The matrix Si is defined so that Si = E [−∂Ti/∂α
′] and Pi is an approximate vari-

ance of Ti, parameterized with an exchangeable correlation. When this exchangeable

correlation is assumed to be zero, the resulting α̂ is equivalent to that estimated with

alternating logistic regressions (Zink and Qaqish, 2009). Unless otherwise noted, we use

orthogonalized residuals in this case that the resulting parameter estimates are equal

to those in alternating logistic regressions. The orthogonalized residuals formulation

of alternating logistic regressions is preferred due to its superior analytic qualities, e.g.

its variance estimate is invariant to the permutation of cluster observations (Zink and
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Qaqish, 2006).

Both orthogonalized residuals and alternating logistic regressions have inefficient

estimates of α relative to second order estimating equations (Liang et al., 1992; Zink

and Qaqish, 2009), which estimate β and α parameters simultaneously. There is a

considerable advantage computationally to the separate estimate of α and β as in

alternating logistic regressions, due to the inversion of matrices of order n2, as opposed

to inverting matrices of order n4 as in second order estimating equations, for clusters

of size n (Carey et al., 1993). Orthogonalized residuals also has this computational

advantage. However, orthogonalized residuals can also gain efficiency in α̂ compared to

alternating logistics regressions by assuming a non-diagonal structure for the covariance

of Ti in (1.6), and because the residual Ti has a small correlation with Yi (Zink and

Qaqish, 2009).

Software for the implementation of orthogonalized residuals in SAS/IML and R has

been developed and is publicly available (By et al., 2008). In addition, diagnostics for

the effect of individual clusters and observations on α̂ have been developed (Preisser

et al., 2008).

Although α̂ in orthogonalized residuals is consistent for α, the poor performance

of empirical sandwich estimators when applied with a small number of clusters (e.g.,

less than 40) in GEE applications where primary interest is in β in (1.2) (Sharples

and Breslow, 1992) may also be pertinent when the main focus is estimating α with

alternating logistic regressions or orthogonalized residuals.

1.3.2 Estimating equation procedures with improved finite sam-

ple properties

Alternating logistic regressions is generally used when there is direct interest in the

association between elements of the response vector Yi. However, there is often also
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a need to estimate the variance of Yi as a nuisance in estimating the variance of β̂.

Adjustments in estimating the variance of Yi have recently been introduced in this

setting, where it is only estimated as a nuisance parameter.

Letting the variance of Yi be represented by Γi, the true variance of the estimator

for β that is the solution to (1.3) is

(
K∑

i=1

D′iV
−1
i Di

)−1( K∑

i=1

D′iV
−1
i Γi V

−1
i Di

)(
K∑

i=1

D′iV
−1
i Di

)−1

.

The matrices Di and Vi are estimated as part of the model in estimating β, however, Γi

is typically estimated by the observed Γ̂i = (Yi− µ̂i)(Yi− µ̂i)′. Substituting Γ̂i for Γi,

this estimator is consistent for var(β̂) and is commonly referenced as the “sandwich”

or “robust” variance estimator (Liang and Zeger, 1986). The robust variance estimator

for correlated data is known to be biased in small samples, and yields inflated test sizes

by underestimating the true variance of β̂ (Mancl and DeRouen, 2001).

Likewise, Γ̂i is consistent for var(Yi) while E(Γ̂i) 6= Γi. Mancl and DeRouen (2001)

proposed an adjustment for the sandwich variance estimator of var(β̂) with an alternate

estimate of Γi based on a Taylor series expansion of Yi − µ̂i around β. Let Hij =

Di(
∑K

l=1 D
′
lV
−1
l Dl)

−1D′jV
−1
j , where the leverage of cluster i is the matrix Hii (Preisser

and Qaqish, 1996). The adjustment of Mancl and DeRouen substitutes

(Ini −Hii)
−1Γ̂i(Ini −Hii)

−1 ′

as an estimate of Γi in place of Γ̂i.

Kauermann and Carroll (2001) proposed an adjustment to the estimate of Γi also

based on a Taylor series expansion of Yi − µ̂i, that

(Ini −Hii)
−1/2Γ̂i(Ini −Hii)

−1/2 ′
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be used in place of Γ̂i in the sandwich estimator of var(β̂). Lu et al. (2007) compared

the proposed covariance estimator adjustments of Mancl and DeRouen and Kauermann

and Carroll in general and specifically for correlated binary data. They concluded that

the adjustment of Mancl and DeRouen may overestimate Γi in some scenarios, although

test sizes were often closer to nominal with Mancl and DeRouen’s adjustment due to

substantial variance of estimated Γi.

Pan and Wall (2002) and Fay and Graubard (2001) proposed degree of freedom

adjustments when estimating var(β̂) in small samples to correct for inflated test sizes,

however, the success of adjustments to the degrees of freedom has been limited (Lu

et al., 2007; Braun, 2007). Degree of freedom adjustments will not be addressed here

in relation to alternating logistic regression and orthogonalized residuals.

While these adjustments to the estimation of Γi in small samples have mostly been

applied as a means to estimating var(β̂), they are also related to methods extending

generalized estimating equations in which Γi is modeled more explicitly. For correlated

binary data, Prentice (1988) introduced a method to model intra-cluster correlations.

Alternating logistic regressions (Carey et al., 1993) is another widely used method to

model the associations in correlated binary data.

Sharples and Breslow (1992) proposed an adjustment to Prentice’s method for cor-

related binary data in small samples. The estimating equations proposed by Pren-

tice to estimate the intra-cluster correlation employ the residual Rijk − ρijk where

Rijk = r̂ij r̂ik and r̂ij = (Yij− µ̂ij)/(µ̂ij(1− µ̂ij))1/2. Sharples and Breslow proposed that

R̃ijk = rijrik/{(1 − hij)(1 − hik)} be used in place of Rijk, where hij and hik are the

j and k diagonal elements of the leverage matrix Hii defined by Preisser and Qaqish

(1996).

Preisser et al. (2008) proposed an alternate adjustment to the Prentice estimating

equations for intra-cluster correlations in small samples. Their proposed finite sample
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adjustment substitutes R̃ijk for Rijk in the estimating equations for intra-cluster corre-

lations, where R̃i has elements R̃ijk = Gij.R̂i.k. The vector Gij. corresponds to the jth

row of Gi = ( Ini − Hii )
−1 for Hii = Di (

∑K
l=1 D

′
lV
−1
l Dl)

−1D′iV
−1
i and R̂i.k is the kth

column of an empirical covariance matrix, such that R̂i.k = (r̂i1r̂ik, . . . , r̂ini r̂ik)
′.

Preisser et al. (2008) also applied finite sample corrections analogous to those of

Mancl and DeRouen (2001) and Kauermann and Carroll (2001) in estimating var(β̂) to

the variance estimates for the parameters governing intra-cluster correlations. Preisser

et al. concluded that the behavior of intra-cluster correlation estimates in small sam-

ples can be improved by bias-corrected estimating equations and sandwich variance

estimates.

Intra-cluster correlations are a common method of quantifying association in Yi.

Pairwise odds ratios are likewise a commonly used quantification for outcome associa-

tion, also standing to benefit from less biased estimation in small samples. Alternating

logistic regressions employ pairwise odds ratios in modeling associations, and can be

useful in the case that outcome association is of direct interest and when the number of

clusters is small, as in a community trial, where association can be used to determine

appropriate sample sizes.

1.3.3 Alternating logistic regressions for ordinal data

Let Oi be an ordinal measurement for i = 1, . . . , K. The possible realizations of Oi are

defined for Oi = c, c ∈ 1, . . . , C + 1, so that for C = 1, Oi is binary. For a vector of

covariates Xi, the distribution of Oi is typically modeled with

logit{P (Oi ≤ c)} = δc + X′iβ , c = 1, . . . , C. (1.7)
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While the relationship between Xi and P (Oi ≤ c) may depend on response level c, it

is more common in applications to assume that Xi, P (Oi ≤ c), and hence β are not

related to c. This is called the proportional odds model or assumption. Our interest

is in the model defined by (1.7) for correlated responses (see (4.1) of §4.2), where the

probability P (Oij ≤ c) is modeled for ordinal outcome Oij in cluster i = 1, . . . , K, for

j = 1, . . . , ni, with each Oij on the scale 1, . . . , C + 1. There are a number of modeling

approaches available for analyzing correlated ordinal data, including those based on

marginal methods and subject specific hierarchical models.

Likelihood-based methods for correlated ordinal data have recently been introduced.

A likelihood-based model for bivariate ordinal data using the Plackett distribution was

proposed by Dale (1986), and Molenberghs and Lesaffre (1994) extended Dale’s method

to apply to multivariate ordinal data. Lesaffre and Molenberghs (1991) proposed a

likelihood-based probit model for multivariate ordinal data. Glonek and McCullagh

(1995) introduced an alternate class of models for multivariate categorical data using

the multivariate logistic transform of McCullagh and Nelder (1989) to analyze the

dependency of the joint distribution on covariates.

In contrast to maximum likelihood methods, estimating equations for marginal mod-

els do not use the full joint distributions of ordinal outcomes to estimate the model for

correlated data analogous to (1.7). A certain class of marginal model has recently come

into wide use for correlated data with the advent of generalized estimating equations,

as defined by Liang and Zeger (1986).

The application of generalized estimating equations to ordinal or categorical data

has received considerable attention in the statistical literature to date. Liang, Zeger

and Qaqish (1992) defined a marginal model for categorical data using generalized es-

timating equations based on response vectors and vectors of response cross-products.

Lipsitz, Kim and Zhao (1994) also proposed estimating equations for clustered categor-
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ical data based on the estimating equations of Liang and Zeger. Lipsitz et al. (1994)

outlined the iterative estimation of the covariance for a select number of structures (ex-

changeable, 1-dependence, banded, and unstructured) based on a method of moments

approach.

Marginal methods based on generalized estimating equations for ordinal data have

also been examined by Clayton (1992), particularly in comparison to maximum likeli-

hood. Gange, Linton, Scott, et al. (1995) applied generalized estimating equations for

bivariate ordinal data, and Miller, Davis, and Landis (1993) showed that under certain

assumptions generalized estimating equations estimators are equal to those of weighted

least squares for correlated ordinal data.

Also based on generalized estimating equations (Liang and Zeger, 1986) alternating

logistic regressions was introduced by Carey, Zeger, and Diggle (1993) in the analysis

of multivariate binary data. Their method was extended to multivariate categorical

data by Heagerty and Zeger (1996). Let Oij be represented by the indicator variables

Yijc = I(Oij ≤ c) , c = 1, . . . , C . For the vector ζi with elements ζi(j,k)(a,b) = E(Yija|Yikb)

and residual vector Ri with elements Ri(j,k)(a,b) = Yija − ζi(j,k)(a,b), Heagerty and Zeger

(1996) defined the estimating equations

Uα =
K∑

i=1

∂ζ ′i/∂α Diag{ζi(1− ζi)}Ri ,

in an adaptation of alternating logistic regressions to ordinal data. Heagerty and Zeger

(1996) compared the efficiency for estimating α of alternating logistic regressions and

different marginal methods for categorical data, including second order estimating equa-

tions (Liang et al., 1992). In this proposal we seek a new Uα expression for ordinal

outcomes that resolves certain deficiencies in the Heagerty and Zeger (1996) formula-

tion, in particular, lack of invariance of the corresponding sandwich variance estimator
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to the ordering of observations within cluster.

Second order estimating equations for ordinal data solve simultaneously for mean

and association parameters. This method can be computationally burdensome for large

clusters, having a matrix of dimension Cn+C2
(
n
2

)
to invert, where n is the cluster size.

Heagerty and Zeger (1996) also considered alternating logistic regressions and first

order generalized estimating equations, where mean and association parameters are

estimated separately. First order generalized estimating equations are less burdensome

computationally for large clusters, and have high efficiency for correlation parameters

when association is not strong.

In contrast to marginal methods, which model parameters at the population level,

random effects have also been used to model correlated ordinal data for subject-specific

effects. A random effects model for correlated ordinal data was proposed by Ezzet

and Whitehead (1991) that is fit with Gaussian quadrature. Agresti and Lang (1993)

proposed a model for ordinal data with subject-specific cutpoints that is fit using con-

ditional maximum likelihood. A model proposed by Crouchley (1995) for correlated

ordinal data assumes an underlying response variable, that specifies a full joint likeli-

hood and yields a closed form for parameter inference and estimation. These methods

using random effects to model correlated ordinal data will not be considered in full,

as the focus of our research is on marginal methods. For a comprehensive review of

models for correlated ordinal data, see Agresti (2003).
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Semi-parametric Efficient

Estimation for Incomplete

Longitudinal Binary Data with

Application to Smoking Trends

2.1 Introduction

Although smoking rates in the United States have generally been tracked using cross-

sectional surveys (Wagenknecht et al., 1998), smoking status has also been modeled

based on longitudinal data, specifically from the ongoing Coronary Artery Risk Devel-

opment in young Adults (CARDIA) study (Preisser et al., 2000). A special problem

with analyzing the CARDIA data, common with many cohort surveys, is the level

of dropout of study participants, which for some groups approaches 20% by the first

follow-up visit. Although widely used methods for analyzing correlated binary data are

not valid unless certain dropout conditions are met, recent advances in statistical meth-

ods have introduced consistent and efficient estimators for marginal mean parameters

under a variety of conditions for missing data.

The Coronary Artery Risk Development in young Adults (CARDIA) study is a



population-based multicenter cohort study collecting data related to cardiovascular

health begun in 1986. Binary smoking status (yes/no) in the CARDIA study was as-

sessed at years 0, 2, 5, 7, 10 and 15 after study initiation. Applying weights based

upon the estimated probability of dropout, Preisser et al. (2000) used inverse probabil-

ity weighted estimators (Robins, Rotnitzky, and Zhao, 1995) to analyze smoking data

from the CARDIA study for years 1986-1993. The results of these analyses indicated

that smoking rates for white men and women were significantly declining, while changes

in smoking rates for black men and women were not statistically different from zero,

although estimated trends were positive.

The importance of addressing dropout for the CARDIA study population is shown

in an analysis of an updated and expanded data set for years 1986-2001 (through year

15), where interest is in the marginal mean smoking prevalence model logit[µit] =

β0 + βt, t = 1, . . . , 6, with β1 = 0. A possible analysis for longitudinal binary data

is to use generalized estimating equations (GEE) for parameter and standard error

estimation, which ignores the dropout mechanism and assumes dropouts are missing

completely at random (MCAR). A GEE analysis assuming an independent correlation

structure of 5,077 young adults with a baseline (Year 0) exam, by ethnicity and gender

group, yields estimates (standard errors) β6 of −.33(.091), −.39(.076), −.66(.089), and

−.76(.089) for black men, black women, white men, and white women respectively.

These estimates suggest significant declines in smoking for all groups and correspond

roughly to the observed differences in log odds of smoking between baseline year 0 and

year 15. Figure 2.1 shows the observed smoking rates among the CARDIA subjects at

all six observation times.

Although widely used for correlated binary data, there is evidence that these GEE

estimators are likely biased for β. First, in their analysis of the CARDIA data up

to year 7, Preisser et al. (2000) reported that baseline smokers were more likely to
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drop out than baseline non-smokers, meaning that data up to year 7 are not missing

completely at random. In addition, in the logistic model logit[E(Rit) ] = β0 +β1Yi(t−1),

where Rit is an indicator that subject i is observed at t, and Yi(t−1) is last observed

smoking status, β1 estimates (standard errors) are -.15 (.044), -.17 (.043), -.35 (.057),

and -.30 (.055) for black men, black women, white men, and white women respectively.

That all these parameter estimates are significantly different from zero strongly suggests

that the CARDIA data are not missing completely at random, implying that GEE is

underestimating smoking rates, since non-smokers are more likely to be observed at

the next observation time. In this paper, we extend these analyses applying inverse

probability weighted estimators to the fifteen year CARDIA data.

Many applications, as in the CARDIA analysis, require inference on an outcome

variable Yit given observed covariates, for subject i over observation times t = 1, . . . , T .

Extensive literature is available on the analysis of data Yit under the restriction

E(Yit|Xi) = gt(Xi,β) (2.1)

known up to the p × 1 parameter vector β, where the function gt(·, ·) is known for

t = 1, . . . , T . Analysis for β depends on assumptions about the distribution of Yi =

(Yi1, . . . , YiT )′ given the p × T covariate matrix Xi. Semi-parametric analysis makes

minimal assumptions about this distribution, and is in wide use to quantify association

between Yit and Xi.

Generalized estimating equations (Liang and Zeger, 1986) extended the quasi-

likelihood method of Wedderburn (1974) to provide asymptotically optimal estimation

of β when the structure of the working or assumed covariance matrix is correctly speci-

fied and all Yit are observed (Chamberlain, 1987). An efficient estimator in this setting

was also specified by Qu et al. (2000), based on a decomposition of the working co-

variance matrix, whose efficiency was maintained even when the covariance of Yi was
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misspecified.

When elements of response vector Yi are MCAR, the estimator defined by Qu et al.

(2000) has the minimum asymptotic variance among all estimators in the class of linear

unbiased estimating functions. The estimators defined by Liang and Zeger (1986) also

have the minimum asymptotic variance in this class as long as the covariance structure

is correctly specified. However, when data are MCAR, there exists an estimator under

model (2.1) in an expanded class that improves on GEE by exploiting information

available via a missing data model (Robins and Rotnitzky, 1995). Additionally, this

estimator belongs to a class of estimators that are consistent and asymptotically normal

under the milder condition that data are missing at random (MAR) in the sense of

Rubin (1976). In contrast, the estimators of Liang and Zeger and Qu et al. are consistent

and asymptotically normal only under the more restrictive condition that Yi is MCAR.

While relaxing the MCAR condition, and without any additional distributional

assumptions about Yi beyond (2.1), Robins, Rotnitzky, and Zhao (1995) proposed

a class of weighted generalized estimating equations, also called inverse probability

weighted estimators. The estimators in this class are consistent for β when data are

MAR and the model for the missingness mechanism is correctly specified. Robins,

Rotnitzky, and Zhao proposed a relatively computationally simple estimator within

this class based on observation-level weights that has received considerable interest

among researchers in statistical methods and practice (Troxel, 1998; Hogan et al.,

2004; Preisser et al., 2000; Preisser et al., 2002; Miller et al., 2001; Yi and Cook,

2002; Ziegler et al., 2003; Jansen et al., 2006). An alternative computationally simple

weighted GEE estimator (Fitzmaurice et al., 1995; Molenberghs and Verbeke, 2005)

based on cluster-level weights has been found to be less efficient (O’Hara Hines, R. J.

et al., 1999; Preisser et al., 2002).

Within the class proposed by Robins, Rotnitzky, and Zhao, Robins and Rotnitzky
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(1995) defined the estimating equations whose solution for β has a limiting distribution

equivalent to that of the most efficient semi-parametric estimator of β. They provide

simulated results for a continuous outcome, showing improved efficiency relative to the

computationally simpler GEE for MCAR data.

This paper is concerned with optimal estimation for binary data under minimal

distributional assumptions for Yi in the presence of missing data. We introduce, and

provide here in detail, the form of the computationally complex semi-parametric ef-

ficient estimator of Robins and Rotnitzky (1995) for longitudinal binary data, with

specific algorithms for estimator generation, and assess its efficiency with respect to

the Robins et.al. (1995) inverse probability weighted estimator. Given its complexity,

the details of this estimator for a simple case with small cluster size and for a general

case will be presented separately.

This paper also expands the results of an analysis of seven-year smoking trends

we have previously undertaken (Preisser et al., 2000), applying the semi-parametric

efficient estimator to trend data out to fifteen years. In the observation of smoking

trends, the baseline smokers tended to drop out at greater rates than non-smokers (i.e.,

suggesting Yit is not MCAR), a situation where standard GEE is no longer consistent.

A GEE analysis would exaggerate the rate of decline in smoking, while a weighted

GEE analysis up-weights observed data from smokers at later time points and provides

a larger (and more likely valid) estimate of the slope.

The semi-parametric efficient estimator for when Yit is a binary outcome and β is

a parameter associated with a change in proportion over time is defined in Section 2.

Details of this estimator for a simple case are presented first, followed by those for

a more general case. A comparison study of estimators of β using simulated data is

presented in Section 3. In the simulation study, we consider the generation of correlated

binary data having different joint distributions of Yi with the same first and second
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moments. An analysis of 15-year smoking trends from 1986 to 2001 in the CARDIA

data in presented in Section 4, and Section 5 provides conclusions.

2.2 Methods

2.2.1 Model

Let Yit be a binary measurement for subject i = 1, . . . , K at fixed measurement times

t = 1, . . . , T . The complete outcome for subject i, Yi = (Yi1, . . . , YiT )′, is a vector with

T elements, and the explanatory covariate vector Xi is completely observed. This is the

case, for example, when the covariates are non-stochastic functions of known quantities

such as time, or are observed at baseline. Let Vi be an observed auxiliary covariate

vector, not included in the marginal mean model of Yit and whose elements are not

contained in Xi. Let Rit = 1 if subject i is observed at time t and Rit = 0 otherwise.

The marginal mean E(Yit|Xi) is defined by the functional form (2.1), with an unknown

p× 1 parameter β.

It is also assumed that the missingness pattern of Yit is monotonic, so that for

Rit = 1 and 1 ≤ j < t, Rij = 1, and that all subjects are observed at t = 1 (i.e.,

P (Ri1 = 1) = 1 for all i). The conditional probability that Yit is observed is λit ≡

P (Rit = 1|Ri(t−1) = 1,Wi) for Wi = (X′i,V
′
i,Y

′
i)
′. Let Ȳit represent the history of

Yi at time t, so that Ȳit = (Yi1, . . . , Yi(t−1))
′, and define W̄it = (X′i,V

′
i, Ȳ

′
it)
′. Unless

stated otherwise, we assume missingness in Yit is MAR, i.e.,

λit = P (Rit = 1|Ri(t−1) = 1,Wi) = P (Rit = 1|Ri(t−1) = 1,W̄it) , t = 2, . . . , T . (2.2)

2.2.2 Estimator class

Let wit =
{
P (Rit = 1|W̄it)

}−1
and ∆i = Diag{Ritwit}. For a p× T matrix Di(β)
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of arbitrary functions of Xi and β, εit = Yit − gt(Xi,β) and εi = (εi1, . . . , εiT )′, define

the class of estimating equations

K∑

i=1

Di(β) ∆i εi(β) = 0 , (2.3)

indexed by Di(β). There exists a solution to (2.3) for β, β̃, that is consistent for β such

that
√
K(β̃ − β) is asymptotically normal under mild regulatory conditions (Robins

et al., 1995).

Let gi(β) = (g1(Xi,β), . . . , gT (Xi,β))′ and let Ci be a working covariance matrix of

εi(β) given Xi. The estimator that solves (2.3) for Di(β) = {∂gi(β)/∂β}′C−1
i , with a

correctly specified model for λit, was described by Robins et al. (1995). This estimator,

valid when data is MAR, is denoted by β̂W . The solution is obtained by iteratively

reweighted least squares (IRLS) with the updated step:

β̂
(r+1)
W = β̂

(r)
W +

( K∑

i=1

Di(β) {∂gi(β)/∂β}
)−1

K∑

i=1

Di(β) ∆i εi(β) . (2.4)

The estimator described by Liang and Zeger (1986) is the IRLS solution to

K∑

i=1

{∂g∗i (β)/∂β}′C∗ −1
i ε∗i (β) = 0 , (2.5)

where the vector ε∗i (β) represents the observed residuals for subject i, C∗i is the con-

formable submatrix of Ci, and g∗i (β) the subset of gi(β) corresponding to ε∗i (β). Let

β̂G denote the solution to (2.5). The estimator β̂G is consistent for β given that Yi are

MCAR, i.e., that

P (Rit = 1|Ri(t−1) = 1,Wi) = P (Rit = 1|Ri(t−1) = 1,Xi) , t = 2, . . . , T . (2.6)
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Condition (2.6) implies but is more restrictive than (2.2). Under their respective missing

data assumptions, β̂G and β̂W are consistent even under misspecified working covari-

ance matrices.

2.2.3 Most efficient estimator

For β̃ varying across different specifications of Di(β), and given a correctly specified

model for λit governed by a q× 1 parameter α, the β̃ with the smallest variance in the

class of estimating equations given by (2.3) is defined by the optimal Di(β), Dopt
i (β).

As defined in Theorem 1 in Robins and Rotnitzky (1995),

Dopt
i (β) = {∂gi/∂β}A−1

i , (2.7)

where Ai = E[ Ui U
′
i |Xi ] and Ui is defined by

Ui = ∆iεi −
T∑

t=1

(Rit − λitRi(t−1))witGit . (2.8)

The T ×1 vector Git has jth element equal to E(εij|Ri(t−1) = 1,W̄it) for t ≤ j ≤ T and

0 for 1 ≤ j ≤ t−1. The vector Ui is the weighted residual (∆iεi) minus the projection

of that residual on the space defined by the missingness model (Robins and Rotnitzky,

1995).

All estimators for β in the class defined by (2.3) have correctly specified models

for the conditional observation probabilities λit, t = 2, . . . , T . However, given a nested

series of correctly specified models for λit, with increasing dimension of α, the asymp-

totic variance of an estimator of β that is the solution to (2.3) using a particular

specification of Di(β) is known not to increase (Robins et al., 1995). Furthermore,

when Qit = Dopt
i (β) wit Git is included as an additional covariate vector in a correctly

specified model for λit, there is no further efficiency gain from additional covariates in
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λit (Robins et al., 1995). For a p × 1 parameter vector δ and ξ = (α′, δ′)′, the best

estimator of β utilizes the estimate of λit that is modeled by

logit λopt
it (ξ) = logit λit(α) + δ′ Qit , (2.9)

where λit(α) is a correct model for λit. The estimator β̂opt that is the solution to the

estimating equation employing Dopt
i (β) and λopt

it is asymptotically the most efficient

estimator in the class of estimators defined by (2.3). Additionally, the asymptotic

variance of β̂opt attains the semi-parametric variance bound for regular estimators of β

(Robins and Rotnitzky, 1995).

Because the quantities Ai and Git are not known, β̂opt is not available for data

analysis; however, Ai and Git can be estimated from the observed data with ancillary

models. Consistency of the resulting β estimate does not depend on correct specification

of these models; however, their quality does effect the amount of efficiency gained. Let

Âi and Ĝit be consistent estimates of Ai and Git, and let β̂A be the solution for β in

the estimating equations employing D̂opt
i (β) = {∂gi/∂β}Â−1

i and λ̂opt
it . The estimator

β̂A has an asymptotic distribution equal to that of β̂opt (Robins and Rotnitzky, 1995).

The variance of
√
K(β̂A − β) can be consistently estimated by

K

{
K∑

i=1

D̂opt
i ∆(α̂) ∂gi/∂β

}−1 K∑

i=1

ŨiŨ
′
i

{(
K∑

i=1

D̂opt
i ∆(α̂) ∂gi/∂β

)′}−1

, (2.10)

where Ũi is defined by

Ũi = D̂opt
i ∆i(α̂) ε̂i −

(
K∑

i=1

D̂opt
i ∆i(α̂) ε̂i P̂

′
i

)(
K∑

i=1

P̂i P̂
′
i

)−1

P̂i ,

and P̂i =
∑T

t=1(Rit−λ̂itRi(t−1))∂ logitλit/∂α, evaluated at α̂ (Robins et al., 1995). Due

to the inherent complexity in the estimation of the T ×T matrix Ai, different methods
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are recommended for estimating Ai depending on T , the number of observation times

for each subject, and the variability of Xi across subjects. An estimator of Ai needed

to determine β̂A when T is small and Xi is constant across subjects is described below,

separately from the description of another method for estimating Ai given larger T and

for any Xi.

2.2.4 Efficiency of β̂G

While β̂A is asymptotically the most efficient of all regular and consistent semi-

parametric estimators of β satisfying (2.1), attaining the semi-parametric variance

bound (Robins and Rotnitzky, 1995), there are conditions regarding the distribution

of Yi for which β̂G is as efficient as β̂A under MCAR. Specifically, the asymptotic

variances of β̂G and β̂A are equivalent when

E(Yij|Ȳit = ȳit) = µij + cov(Yij, Ȳit) var(Ȳit)
−1 (ȳit − µ̄it) (2.11)

for j ≥ t (Robins and Rotnitzky, 1995), where µij = E(Yij) and µ̄it = (µi1, . . . , µi(t−1))
′.

Equation (2.11) is a conditional linear property that relates the higher order moments

of a multivariate distribution to its first and second order moments. Indeed, (2.11)

is a property of the multivariate normal distribution. It follows that the asymptotic

variance of β̂G attains the semi-parametric variance bound for MCAR data that satisfy

the linearity property (2.11). While (2.11) may not hold in practical settings, except

perhaps in an approximate sense, we show in section 3 that its utility is as an algorithm

to flexibly generate correlated binary data in simulation studies.

2.2.5 Estimation in a simple case

In order to estimate β, ancillary models for estimating Ai and Git need to be
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specified, in addition to estimating parameters in λit. Robins and Rotnitzky (1995)

used maximum likelihood and least squares to estimate Ai and Git. In the case that

the number of observation times T is small, ≤ 4, Xi is constant across subjects, and

there is no auxiliary covariate Vi, we show here that Git and Ai can be estimated

without using complex models.

Given a preliminary estimate of β, Yij − gj(Xi, β̂) can be regressed on the history

of Yi at t to estimate Git, so that Ĝit has elements

Ĝitj = Ê(Yij − gj(Xi, β̂)|Yi1 = y1, . . . , Yi(t−1) = yt−1, Ri(t−1) = 1) =

∑
i I(Yi1 = y1, . . . , Yi(t−1) = yt−1)Rijwij Yij∑
i I(Yi1 = y1, . . . , Yi(t−1) = yt−1)Rijwij

− gj(Xi, β̂) , t ≤ j ≤ T ,

and Ĝitj = 0 for 1 ≤ j < t.

In addition to Ĝit, an estimate for λit is also needed in order to estimate Ai. All

the information in Ȳit is readily incorporated as covariates in a saturated model for

λit as long as T is small, with no comparative advantage of modeling λit with (2.9).

Including all previously observed values of Yi and all crossproducts of Yi, λ
opt
it (α) has

(2T − 2) nuisance parameters. For example, consider the case where Yit is observed at

up to four time points. Let y?it = 2yit − 1. The saturated model for the missingness of

subject i is determined by the conditional probabilities of observed response at times

t = 2, 3, 4,

logit(λi2) = α2,0 + α2,1y
?
i1

logit(λi3) = α3,0 + α3,1y
?
i1 + α3,2y

?
i2 + α3,3y

?
i1y

?
i2

logit(λi4) = α4,0 + α4,1y
?
i1 + α4,2y

?
i2 + α4,3y

?
i3 + α4,4y

?
i1y

?
i2

+α4,5y
?
i1y

?
i3 + α4,6y

?
i2y

?
i3 + α4,7y

?
i1y

?
i2y

?
i3 .

These models for λit and Git allow that Ai be estimated with Âi, the sample covariance
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of

Ûi = ∆i(α̂) εi(β̂)−
T∑

t=1

{
Rit − λit(α̂)Ri(t−1)

}
wit(α̂) Ĝit (2.12)

across subjects i = 1, . . . , K, where wit(α̂) = {∏t
j=1 λit(α̂)}−1. The matrix Dopt

i (β)

can then be estimated by D̂opt
i (β) = {∂gi/∂β}Â−1

i . First computing λopt
it (α̂), the

iterated solution to (2.3) substituting D̂opt
i (β), β̂A, has an asymptotic distribution that

is equivalent to the most efficient semi-parametric estimator of β, β̂opt.

2.2.6 Estimation in the general case

The procedure outlined above for estimating the component Ai of β̂A is for a rel-

atively simple case. This section will outline in detail a procedure for estimating Ai

under more general circumstances, for larger T and Xi varying across subjects, result-

ing in an estimator, β̂A, that is an approximation of the semi-parametric estimator.

Ancillary models for estimating Ai and Git need to be specified for this general case,

in addition to estimating λit.

In order to estimate Git, note that elements Gitj are expectations of residuals at

times j given the history over t ≤ j, quantities which are not readily available from the

model for the mean of Yit marginal to Xi or from the model for λit. It can be shown

that, under MAR, Gitj can also be written (Robins and Rotnitzky, 1995)

Gitj = E(w−1
i(t−1)wij εij|W̄it, Rij = 1)× P (Rij = 1|W̄it, Ri(t−1) = 1) . (2.13)

Note that factors in the second part of (2.13) are not available from the missingness

model except when j = t. A regression will be specified for the first factor in (2.13)

and an additional model will be specified for the second factor. Note also that while

there is a loss of efficiency in the resulting estimator of β if the models for these factors
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are misspecified, the estimator remains consistent.

In the first factor, assuming that the conditional expectation is known up to an

m× 1 parameter vector τtj, so that

E(w−1
i(t−1)wij εij|W̄it, Rij = 1) = τ ′tjW̄it , 1 < t ≤ j ≤ T ,

the parameter τtj can be estimated by weighted least squares. To estimate the second

factor in (2.13), it is also assumed that the conditional probability ζitj = P (Rij =

1|W̄it, Ri(t−1) = 1) is known up to an m × 1 parameter vector χjt, corresponding to

some vector W̄∗
it , a subset of W̄it . This factor can then be estimated from the logistic

model logit(ζitj) = χ′tj W̄∗
it . Then Ĝit has elements

Ĝitj = τ̂ ′tj W̄it × ζitj(χ̂tj) , 1 < t ≤ j ≤ T , (2.14)

and Ĝitj = 0 for 1 ≤ j < t. Although the model for β̂A does not directly specify

the covariance of outcome Yi, this relationship is determined indirectly through the

conditional expectations E(Yij|Yit) in Gitj.

In addition to Ĝit, estimates for λit and Ai are also needed to estimate β. Because

Ai is symmetric, there are T (T + 1)/2 distinct elements of Ai, each of which can be

estimated with a univariate regression model of each element of matrix ÛiÛ
′
i on a

vector of cluster-level covariates included in Xi, denoted by X
(b)
i . Plugging in Ĝit and

preliminary estimates α̂ and β̂, the vector Ui is predicted as in (2.12). Given two

elements of Ûi, Ûij and Ûik, assume that E[UijUik|X(b)
i ] = θ′jk X

(b)
i . The parameter θjk

can be estimated by least squares, so that

θ̂jk =

(
K∑

i=1

X
(b) ′
i X

(b)
i

)−1 K∑

i=1

X
(b) ′
i Ûij Ûik , (2.15)
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and each element of Ai is estimated by θ̂′jkX
(b)
i . Then D̂opt

i (β) = {∂gi/∂β}Â−1
i , and

the best estimate of λit, λ
opt
it , is determined by (2.9). The solution to (2.3) substituting

D̂opt
i (β) and λopt

it (ξ̂), β̂A, is obtained by iterating through a sequence of estimation for

β̂A, ξ̂, Ĝit, Âi, and D̂opt
i (β), until convergence of β̂A. The estimator β̂A has an asymp-

totic distribution that is equivalent to the most efficient semi-parametric estimator of

β, β̂opt, given correct specification of Ai and Git as indicated in Section 2.3, and we ex-

pect that nearly-correct specification of Ai and Git will lead to nearly semi-parametric

efficient estimators. As with β̂W , correct specification of the model for λit is required

for consistency of β̂A.

2.3 Simulation

2.3.1 Simple case

In conjunction with the methods for when T is small and Xi is constant across

clusters, a simulation study was conducted with the aim of demonstrating the gain in

efficiency of β̂A over β̂G and β̂W . For T = 4, one thousand replicates of K = 1000

response vectors Yi = (Yi1, . . . , Yi4)′ were generated with exchangeable correlation ρ =

corr(Yit, Yij), for ρ = 0, 0.2, 0.6, or 0.7. An exchangeable structure was chosen as it is

used to analyze the CARDIA data in Section 4. The generating distribution had mean

µit given by

logit[µit] = β0 + βT

(
t− 1

T − 1

)
, t = 1, . . . , T (2.16)

for β = (β0, βT )′ fixed at (−0.7, 0.2). These parameter values would represent small

increases in smoking rates over time if applicable to the CARDIA data.

For these fixed first and second moments, two separate sets of Yi were generated:
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one with a distribution satisfying the conditional linear restriction (2.11), generated

using the algorithm of Qaqish (2003), and one with a distribution in violation of (2.11).

Qaqish (2003) identified the conditional linear family of distributions of correlated

binary data defined by (2.11). Given the means and correlations, the higher order

moments of the distribution in the conditional linear family of distributions defined by

(2.11) are fixed. This distribution family is a subset of all possible correlated binary

data distributions (Qaqish, 2003).

Let µ1234 = E(Yi1Yi2Yi3Yi4) and µjkl = E(YijYikYil). Then for T = 4, given third

order moments µ123, µ124, µ134, µ234 and fourth order moment µ1234, the specification

of Yi is complete. For the distribution of Yi in violation of (2.11), these were chosen so

that violation of (2.11) would be extreme. The moments for the generating distributions

of Yi are shown in Table 2.1.

In addition to generating Yi, missingness of Yit was generated by

logit
[
P (Rit = 1|Ri(t−1) = 1, Yi(t−1) = yi(t−1))

]
= α0 + α1y

?
i(t−1) , (2.17)

for different amounts of average dropout at each t: 10% (α0 = 2.2), 20% (α0 = 1.4),

and 40% (α0 = 0.4). Note that for dropout rates 10%, 20%, and 40%, the cumulative

dropout at T = 4 is 27%, 49%, and 78%. The missingness mechanism was also varied

across the relationship between Rit and Yi(t−1), to simulate MCAR (α1 = 0), a weak

MAR relationship (α1 = −0.2), or a strong MAR relationship (α1 = −0.5).

For each replicate of sample size K = 1000 clusters, β̂G, β̂W and β̂A were computed

in the following analysis model for the mean of Yit,

logit[µit] = β0 + βt , t = 1, . . . , T , (2.18)

with β1 = 0. The estimator β̂G was determined using both an exchangeable and
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an independent correlation structure. For β̂W , the correct missingness model (2.17)

was used; note, that for the unrestricted means model (2.18), the solution β̂W does not

depend upon the assumed correlation model, given that it is constant across all subjects.

We focus here on parameter β4, comparing time T to time 1. Relative efficiency of β̂4

is measured by a ratio of mean squared errors, e.g., Ê[ (β̂A4 − β4)2 ] / Ê[ (β̂W4 − β4)2 ]

for estimator β̂W4, and similarly for β̂G4.

Table 2.2 provides efficiency results under MCAR. The efficiency of β̂G under a

working independence correlation structure is poor for large ρ, as expected (Fitzmau-

rice, 1995). For Yi satisfying (2.11) (case (A)) with one thousand clusters, the relative

efficiencies of optimal β̂G using an exchangeable working correlation structure are near

100, while β̂W loses efficiency for increasing ρ and dropout rate. For data violating

(2.11) (case (B)), both β̂G and β̂W are inefficient, with efficiency slightly higher for β̂G,

and with efficiency losses directly related to dropout rate. For non-zero correlation and

dropout rate of 40%, β̂A is unstable due to the difficulty of accurately estimating the

weights; this explains the efficiencies in excess of 100 in Table 2.2. Numerical insta-

bility can be measured by calculating the maximum weight over all observations for a

data set (Robins et al., 1995). Table 2.3 shows that β̂A may have considerably larger

maximum weights than β̂W and the instability increases with dropout rate and with

the magnitude of ρ.

The efficiency of β̂W with respect to β̂A under MAR is in Table 2.4. The relative

efficiency of β̂W for data satisfying the condition (2.11) was higher than that for data

in violation of (2.11), except for ρ > 0.6 and strong MAR. For data satisfying the

conditional linear restriction (2.11), β̂W has efficiency comparable to β̂A for ρ ≤ 0.2;

exceptions where efficiency exceeds 100 illustrate finite sample performance where again

instability was an issue (see Table 2.3). For data satisfying (2.11) and ρ ≥ 0.6, the

observed mean squared error of β̂W is almost always more than that of β̂A. Generally,
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the efficiency loss of β̂W increases as ρ and dropout rate increase. For data violating

(2.11), β̂W is inefficient for all scenarios with efficiency inversely related to dropout

rate, and lowest for the combination of large correlation and dropout.

The observed relative bias of β̂G and β̂W in the simulations of Tables 2.2 and 2.4

(not shown) was negligible, except that β̂G is biased under MAR, similar to that seen

by Preisser et al. (2000). The bias of β̂A was comparable to that of β̂W . Simulations

were also conducted using data generated by the algorithm of Emrich and Piedmonte

(1991). Results for these simulations were similar to those for data generated using the

algorithm of Qaqish and are not shown.

2.3.2 Extended case

One thousand replicate data sets each consisting of K = 1000 clusters having Yi

with cluster size T = 6 were randomly generated, with an exchangeable correlation

structure and mean µit restricted by (2.16) and β = (β1, βT )′ fixed at (−0.7, 0.2).

All Yit were generated with the algorithm of Qaqish (2003), with the exchangeable

correlation ρ = {0, 0.2, 0.6, 0.7}.

Missingness of Yit was generated by (2.17) so that Yit is MAR. The parameter α1

was varied so that generated Rit yielded Yit MCAR (α1 = 0), mildly MAR (α1 = −.2)

or severely MAR (α1 = −.5), for 10%, 20%, and 40% average dropout at each t.

The cumulative dropout at T = 6 respectively for these dropout rates is 41%, 67%, and

92%. A cluster-level binary covariate Vi was generated based on the attained education

of CARDIA subjects. Education in the CARDIA data is correlated with smoking

such that those with a college degree are less likely to have reported smoking. The

auxiliary covariate Vi given Yi was generated with means 0.1, 0.5, and 0.3 respectively

for
∑T

t=1 Yit = T , 0 or otherwise (i.e. always smoking, never smoking, or mixed).

Because there were no cluster-level covariates besides an intercept in Xi, Ai was
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estimated as described for a simple case, and not by (2.15). The auxiliary covariate

Vi was not used in the analysis for data simulated under MCAR, in Table 2.2, and

under MAR, data were analyzed both with and without Vi. When Vi was used, β̂A

was estimated with Vi in the model for λit and also in the model for Gitj, as specified

by (2.13), and β̂W used Vi in the model for λit.

The estimator β̂W , fit with an exchangeable correlation structure, and with a cor-

rectly specified model for λit, is computed for all simulated data scenarios. For MCAR

Yit, the estimator β̂G was also calculated, with both independent and exchangeable cor-

relation structures. Efficiency of these estimators is compared to that of β̂A. Results

comparing the relative efficiency of β6 estimates in mean (2.16) for Yit are provided in

Tables 2.2 and 2.4.

The relative efficiencies of β̂W and β̂G for MCAR data are in Table 2.2. For small

and moderate dropout, β̂W , β̂G and β̂A have similar behavior to that seen for data

satisfying condition (2.11) with cluster size T = 4. For data satisfying condition (2.11)

and ρ ≥ 0.6, the efficiency of β̂W with respect to β̂A is lower for T = 6 than for T = 4,

showing the effect of cumulatively greater dropout for T = 6. Under 40% dropout, the

observed increase of efficiency in β̂G and β̂W is due to the breakdown of asymptotic

behavior in β̂A due to instability caused by difficulty in estimating observation weights.

At 40% dropout, only 8% of subjects are observed at follow-up time 6.

The relative efficiency of β̂W for MAR data is in Table 2.4. The efficiency of

β̂W with Vi relative to β̂A with Vi is not shown, since it was very similar to the

efficiency of β̂W without Vi relative to β̂A without Vi. In general the efficiency of β̂W

declines with increasing correlation between Yit and Yij, and with increasing severity

and rate of dropout. Under 40% dropout and small ρ, β̂A is outperformed by β̂W .

Overall, however, these results quantify the considerable efficiency that can be gained

by the additional computation in β̂A, an approximation of the semi-parametric efficient
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estimator, relative to the estimators β̂W and β̂G.

In addition to the data simulated with T = 6, limited simulations for T = 10 were

also run. We considered visit-specific conditional dropout rate of 10%, ρ = {0.2, 0.6},

for both MAR-weak and MAR-strong. Some instability was observed in β̂A for this

dropout rate with K = 1000 clusters. However, the simulated efficiency of β̂W com-

pared to β̂A for T = 10 showed a clear advantage of β̂A over β̂W at ρ = 0.6, in the

range of 84-90% (not shown), with K = 2000 clusters. For this cluster size and dropout

rate, approximately a third of subjects have complete data.

2.4 Application

2.4.1 Estimation of 15-year smoking trends

The adaptive estimator described in the previous section is used to analyze binary

smoking status in the CARDIA study for follow-up years between 1986 and 2001, with

cluster sizes as large as 6, by ethnicity/gender group. Only the monotonically missing

data will be included for subjects with smoking status observed at baseline, i.e., if

subject i is not observed at time t, then observations for subject i at times greater than

t will be ignored. A total of 1,946 person-exams out of 25,709 were omitted to create

a monotone dataset. The strong assumptions needed to gain efficiency by including

these data justify their omission (Robins et al., 1995).

This analysis aims to estimate the change in smoking rates within gender and eth-

nicity over fifteen years. For an indicator that subject i was a smoker at time t (Yit),

assume the mean E(Yit) = µit is given by (2.18) for t = 1, . . . , 6. At each t > 1, βt

represents the log odds ratio of the smoking rate within group at time t compared to

time 1.

In order to assess the change in smoking rates between times 1 and 6, the CARDIA
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data were analyzed for t = 1, . . . , 6 with β̂A using observation weights determined by

(2.9), including smoking status at the previous observation time as a predictor. Last

observed smoking status had estimated coefficients (standard errors) of -0.15(.04), -

0.17(.04), -0.35(.06), and -0.30(.06) in the models for λit respectively for black men,

black women, and white men and women, generally supporting MAR versus MCAR.

The resulting β̂A6 and β̂W6 are presented in Table 2.5, along with analogous β̂G6 that

assumed an exchangeable covariance structure. Correlations decay slightly over time

in the CARDIA data, but not as fast as those in an autoregressive structure. An

exchangeable correlation structure is used here as an approximation for the large cor-

relations maintained over time in the CARDIA data (Preisser et al., 2000). The ob-

servation weights for β̂W were determined using only the previously observed outcome.

Additional analysis results are provided including subject age and education (Vi) as

predictors in the missingness model for λit, and, for β̂A, also in the model for the

conditional expected value of Yit as described by (2.13).

As shown in Table 2.5, the estimates of β6 for black women, and white men and

women are significantly less than zero for all β̂G6, β̂W6 and β̂A6, indicating a decrease in

smoking rates. For black men, β̂W6 and β̂A6 without Vi estimate a significantly negative

trend, although the trend estimated by β̂W6 and β̂A6 when Vi is included is smaller

and not significantly different from zero. When Vi is included, β̂A6 had max(ŵit) of

3.7, 3.2, 4.0, and 5.3 for black men, black women, white men, and white women. The

β̂A6 including auxiliary covariate Vi correspond to estimated decreases in the smoking

rates from 1986 (t = 1) to 2001 (t = 6) of 2.4, 4.0, 6.7 and 8.7 percentage points for

black men, black women, white men, and white women, respectively.

The Center for Disease Control (CDC) has also reported declines in the smoking

rates for the ethnicity and gender groups in the CARDIA study for the same time period

(MMWR, 1994; MMWR, 2003), although their declines are of greater magnitude. The
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CDC has used cross-sectional surveys to estimate that between 1987 and 2001, the rate

of smoking decreased from 28.8 to 22.8 percent in the general U.S. population. The

CDC also reported a decline in the smoking rate of 10.6 percentage points for blacks,

5.1 percentage points for whites, and declines of 6.0 percent and 5.8 percent for men

and women, respectively (MMWR, 1994; MMWR, 2003).

In addition to the above analysis results for the CARDIA data, estimates of β6 were

adjusted to reflect changes in smoking rates for corresponding ethnicity/gender groups

of the same age nationwide. Table 2.6 has estimates of β6 from sixteen different models,

i.e., for each ethnicity/gender group, and also by age and education, each divided into

two categories. These are estimated with β̂A including the auxiliary covariate Vi, and

the age and education standardized estimate of β6 is determined by a weighted average

of β̂A across age and education groups. The weights for each group were determined

by the proportion of each race/gender group in the U.S. population having a college

degree for each birth cohort as reported by the U.S. Census (Preisser et al., 2000). The

adjusted estimates of β̂A6 for the U.S. population correspond to estimated decreases

in the smoking rates of 2.2, 3.7, 6.7 and 9.3 percentage points for black men, black

women, white men, and white women, respectively.

The variance estimator for β̂A in (2.10) is consistent for the true variance of β̂A;

however, the estimated variances shown in Table 2.5 are somewhat at odds with cor-

responding efficiencies estimated in the simulation study. Use of β̂A6 gave estimated

variances that were between 25% and 50% smaller than estimated variances of β̂W6.

These differences are larger than the gains of between 6% and 19% efficiency observed

in the simulation scenario most similar to the CARDIA data analysis.

2.4.2 Sensitivity to MAR

In addition to the above analysis of the CARDIA subjects over six observation
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times, the sensitivity of this analysis to the assumptions made about subject dropout

is of interest. Sensitivity of β̂A in particular to the missing at random assumption can

be gauged by assuming dropout that is not missing at random, and then estimating β

with β̂A. As in Rotnitzky et al. (1998), the procedure used here to gauge sensitivity

of β̂A to this assumption is based on fixing a parameter in the missingness model that

corresponds to a violation of MAR and estimating the remaining parameters, and then

evaluating estimates of smoking trends over a range of values for the MAR violation

parameter. .

As defined in (2.2), data Yi is MAR if the conditional observation probability λit is

not dependent on Yit. If λit depends on Yit, which may not be observed, then the data

are not MAR and

P (Rit = 1|Ri(t−1) = 1,Wi) 6= P (Rit = 1|Ri(t−1) = 1,W̄it) , t = 2, . . . , 6 . (2.19)

Assuming that λit is conditionally dependent on Yit, and also that λit depends on history

Ȳit only through the previously observed response Yi(t−1), then λit can be modeled by

logit{λit} = α0t + α1Yit + α2Yi(t−1) +α′3Xi . (2.20)

Hence the nature of the relationship between λit and Yit, and the degree to which MAR

is violated, is determined by α1. When α1 6= 0, data Yit are not MAR. The probabilities

λit for t = 2, . . . , 6 will be estimated from the CARDIA data for a range of fixed α1,

and used to estimate β with β̂A. This estimate β̂A is consistent given α1, and so the

difference in β̂A from the original estimate in the previous section reflects the possible

impact of data that violate the missing at random assumption.

For fixed α1, the regression coefficients α0t, α2, and α3 in (2.20) cannot be estimated

directly. These parameters can instead be estimated with the observed probability πit,
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distinct from λit, where

πit = P (Rit = 1|Ri(t−1) = 1, Yi(t−1),Xi)

=
∑

y∈(0,1)

P (Yit = y |Ri(t−1) = 1, Yi(t−1),Xi) P (Rit = 1|Ri(t−1) = 1, Yit = y, Yi(t−1),Xi)} .

For µit(Yi(t−1)) = E(Yit|Ri(t−1) = 1, Yi(t−1),Xi) and ηt = α0t + α2Yi(t−1) +α3Xi ,

πit = {1− µit(Yi(t−1))} logit−1(ηt) + µit(Yi(t−1)) logit−1(ηt + α1)

= logit−1(ηt) + µit(Yi(t−1)) {logit−1(ηt + α1)− logit−1(ηt)}

= logit−1(ηt)
{

1 + µit(Yi(t−1)) b(ηt, α1)
}
,

where b(ηt, α1) = (exp(α1)− 1)/(1 + exp(ηt + α1)). So,

logit(πit) = ηt + log

{
1 + µit(Yi(t−1)) b(ηt, α1)

1 + exp(ηt)µit(Yi(t−1)) b(ηt, α1)

}
. (2.21)

Thus a logistic model with an offset holds for πit, through which estimates for α0t, α2,

and α3 can be obtained iteratively. Observation weights are needed to estimate the

conditional expected value µit(Yi(t−1)) = E(Yit|Ri(t−1) = 1, Yi(t−1),Xi), because

E(Yit|Ri(t−1) = 1, Yi(t−1),Xi) 6= E(Yit|Rit = 1, Yi(t−1),Xi)

by the assumption made in (2.20). Explicitly, for fixed α1, λit as specified in (2.20)

can be estimated with λ̂it = λit(η̂t, α1) in the algorithm: (1.) Using ordinary logistic

regression, estimate µit(Yi(t−1)) by regressing observed Yit on Yi(t−1) and Xi. (2.) Ini-

tialize η̂t by estimating πit without an offset. (3.) Determine value of offset in (2.21)

and re-estimate ηt and πit. (4.) Estimate µit(Yi(t−1)) with a weighted logistic regression,

using observation weights wit = 1/λ̂it. (5.) Repeat steps 3 and 4 until convergence of

α̂0t, α̂2, and α̂3.

43



Using α̂0t, α̂2, and α̂3 to estimate λit, β can be estimated with the semi-parametric

efficient estimator described above in Section 2.3. In this manner, the sensitivity to

the MAR assumption of the CARDIA analysis with β̂A, incorporating auxiliary co-

variate Vi, was assessed. This estimate modeled λit with the covariates of the richest

missingness model used in the analysis of the CARDIA data for T = 6, with smoking

rate determined by (2.18) over six observation times and with observation probabilities

determined by fixed α1. Values of α1 were considered from -0.5 (odds ratio exp(α1) =

0.61) to 0.5 (odds ratio 1.65) by 0.1 increments, although the range of most interest is

for α1 < 0. In the CARDIA analysis, negative α1 represents higher dropout for those

who are smoking at time t, after adjusting for Ȳit.

Figure 2.2 shows the difference between smoking rates at time 6 and time 1, g6(Xi, β̂A)−

g1(Xi, β̂A), with 95% confidence intervals for fixed α1. For all ethnicity/gender groups,

the results suggest that changes in smoking rates are biased away from zero in the MAR

analysis of Section 4.1, relative to the case where dropout is in fact not MAR and α1 < 0,

i.e., where current smokers are more likely to drop out than are current non-smokers.

The estimate for black men is the most sensitive to the missing at random assumption

among race/gender groups, and has the widest range for g6(Xi, β̂A) − g1(Xi, β̂A) de-

pending on α1. For α1 ≤ −0.2 (odds ratio 0.82), β̂A estimated a significant increase

in smoking rates for black men. For black women, g6(Xi, β̂A)− g1(Xi, β̂A) was signifi-

cantly greater than zero for α1 ≤ −0.3 (odds ratio 0.74). The analogous thresholds for

white men and white women are -0.4 (odds ratio 0.67) and -0.5 (odds ratio 0.61).

2.5 Conclusions

The primary purpose of this paper was to define a specific form for the asymptotically

semi-parametric efficient estimator, applying it to the CARDIA survey data, and to

assess the efficiency of β̂W , a computationally simple inverse probability weighted esti-
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mator, relative to that estimator for longitudinal binary data with dropout. We show

that there is efficiency to be gained upon β̂G and β̂W in the presence of incomplete

data, although the computation of the semi-parametric efficient estimator β̂A is not

straightforward, especially for large clusters. The percent efficiency gain depends on

the nature of the data being analyzed. For small clusters, in the case where dropout rate

and correlation is high, efficiency can be markedly increased even under circumstances

where β̂G is consistent for β.

The asymptotic distribution of β̂A is equivalent to that of the semi-parametric

efficient estimator of β, β̂opt, but the amount of data needed to obtain a stable estimate

of β̂A appears to be substantial. For a moderate number of small clusters (K = 500, not

reported) some mild instability was observed for β̂A at 20% dropout, with additional

instability observed at 40% dropout. Extrapolation suggests that β̂A could be practical

for smaller numbers of clusters given less severe dropout (e.g., ≤ 10% per visit), but

not for high dropout. In contrast, the simulations of Preisser et al. (2002), which were

similar to the scenarios considered here, suggest that β̂W can be reliably used for K =

200 even under severe dropout. Under MCAR, simulation results for K=1000 (Table 2)

and for K=200 (Preisser et al. (2002, Table 9) suggest that β̂W is less efficient than GEE

under a correctly specified correlation structure, at least for the models considered. The

efficiency of β̂W may be improved under MCAR by considering auxiliary covariates in

the missingness model (Robins & Rotnitzky, 1995). Whether efficiency improvements

relative to β̂G are worth the effort under MCAR is uncertain.

A distinct disadvantage of the weighted GEE approaches considered in this paper

is that they require monotone patterns of dropout, and thus do not use all the avail-

able data. One possible modification to these procedures would be to multiply impute

response data at the intermittent missing time points, prior to application of the β̂W

and β̂A estimators. Alternatively, under a framework of allowing for the observation
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of longitudinal responses in continuous time, Lin et al. (2004) propose a class of in-

verse intensity-of-visit process-weighted estimators in marginal regression models that

allow for arbitrary patterns of missing data. Maximum likelihood provides yet an-

other alternative estimation approach for marginal regression models valid under MAR

dropouts (Galecki et al., 2001). While this approach easily adapts to situations with

intermittently missing data and does not require estimating the missing data model, it

is not computationally feasible for larger cluster sizes without strong assumptions on

higher order moments. Finally, maximum likelihood random effects models for binary

data are popular (Breslow and Clayton, 1993), although they have parameters with

subject-specific interpretations as opposed to the marginal interpretations of the mod-

els considered here. For a general review of handling dropout in longitudinal studies,

see Hogan et al. (2004).

A second contribution of this paper was to extend a previously undertaken analysis

of smoking trends among young adults from 7 years to 15 years. The new analysis

of 15 year smoking trends confirmed the violation of the MCAR assumption and the

accompanying importance of accounting for dropout in a frequentist analysis. In con-

tradiction to CDC reports, this new analysis found that the decrease in smoking from

1987 to 2001 was more extreme for whites than blacks. The 15 year decline in smoking

among the black cohort was estimated to be about 3 percentage points in this article,

whereas the CDC reports a cross-sectional decline greater than 10 percentage points

over the same period. Furthermore, examination of the assumption that dropout is

MAR suggests that the actual decline in smoking rates in the United States may have

been smaller than estimated by the new analysis reported here, drawing a less optimistic

conclusion from a public health perspective than that offered by the CDC.

For T = 6, simulation results under MAR and (2.11) are notably discordant with

the CARDIA analysis, where the estimated gain in precision from β̂A relative to β̂W
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exceeded expectations based upon simulated efficiency gain. This discrepancy may be

due to the nature of the CARDIA data, which does not necessarily satisfy (2.11). An

analysis of the first four observation times in the CARDIA study (not shown) yielded

an estimated efficiency gain similar to that observed in the simulations for T = 4.

In sum, given evidence for use of an inverse probability weighted estimator relative

to standard GEE, the issue becomes choosing an estimator in the class described by

(2.3). For correlated binary data consisting of a moderate number of clusters, i.e. in

the hundreds, the relatively simple, inefficient inverse probability weighted estimator

of Robins, Rotnitzky and Zhao (1995) will continue to be an attractive and feasible

alternative to GEE. For data consisting of a large amount of clusters numbering in

the thousands, the more computationally complex semi-parametric efficient estimator

of Robins and Rotnitzky (1995) may be worth the effort in terms of efficiency gain in

scenarios with high dropout and large intra-cluster correlation.

In the case that the semi-parametric efficient estimator is of interest, auxiliary

models need to be specified. Although consistency of β̂A is not jeopardized by mis-

specification of these models, the associated efficiency gain of β̂A may be diminished.

Correctly specified models maximize the amount of efficiency gained relative to more

accessible estimators.
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Figure 2.1: The observed smoking rates among CARDIA participants over fifteen years,
by ethnicity and gender: (a) is for black men, (b) is for black women, (c) is for white
men, and (d) is for white women. These data are based on 23,763 exams from 5,077
young adults (4.68 exams/person). A total of 1,946 observed exams that occurred
after a missed exam were omitted to create a monotone missingness pattern needed to
accommodate the weighted GEE methodology. Including all observed exams, results
in GEE-independence estimates of the log odds ratio of smoking in 2001 versus 1986 of
-0.19 (0.075), -0.29 (0.063), -0.57(0.079), and -0.72 (0.079) for black men, black women,
white men and white women respectively.

Table 2.1: Third and fourth order moments for the multivariate binary distributions
used to generate Yi in the simulation experiment for T = 4. Distribution (A) satisfies
condition (2.11), while distribution (B) is in violation of (2.11).

ρ = 0 ρ = 0.2 ρ = 0.6 ρ = 0.7

(A) (B) (A) (B) (A) (B) (A) (B)

µ123 0.04 0.10 0.09 0.06 0.22 0.18 0.25 0.22
µ124 0.04 0.10 0.10 0.06 0.22 0.18 0.25 0.23
µ134 0.05 0.11 0.10 0.06 0.23 0.19 0.26 0.23
µ234 0.05 0.11 0.10 0.06 0.23 0.19 0.26 0.23

µ1234 0.02 0.10 0.06 0.00 0.20 0.11 0.24 0.18
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Table 2.2: Efficiency of β̂GT and β̂WT with respect to β̂AT under MCAR, for T = 4, 6 and
1,000 clusters. Distribution (A) satisfies linearity condition (2.11), while distribution
(B) has conditionally non-linear moments, violating condition (2.11).

T = 4, (A) T = 4, (B) T = 6, (A)

Dropout β̂GT β̂WT β̂GT β̂WT β̂GT β̂WT

Rate ρ Indep Exch Indep Exch Indep Exch

0.1 0 100 100 100 96 95 95 100 100 100

0.2 98 99 98 95 96 95 101 100 101
0.6 85 100 96 86 98 95 78 101 93
0.7 78 100 97 76 96 92 65 101 91

0.2 0 101 100 101 90 89 89 100 100 100
0.2 96 100 98 89 92 91 99 100 98
0.6 82 100 95 71 92 87 68 101 86
0.7 65 99 92 58 92 88 55 103 84

0.4 0 101 101 101 73 72 72 103 102 103
0.2 97 103 99 77 83 80 105 112 107
0.6 71 100 83 51 83 70 60 124 76
0.7 56 100 84 56 90 79 40 125 60
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Table 2.3: Distribution among 1000 simulation runs of Max(ŵit), T = 4, K = 1000 for selected scenarios.

Dropout β̂W β̂A
Type Rate ρ Max(wit) Mean 50th 75th 95th 99th Mean 50th 75th 95th 99th

MCAR 0.2 0 2.0 2.0 2.0 2.0 2.1 2.2 2.2 2.2 2.3 2.5 2.8
0.7 2.0 2.0 2.0 2.0 2.1 2.2 2.4 2.3 2.5 2.8 3.4

0.4 0 4.7 4.9 4.9 5.1 5.5 5.9 6.2 5.9 6.6 8.5 10.7
0.7 4.7 4.9 4.9 5.1 5.5 6.0 7.8 6.9 8.5 13.7 21.5

MAR 0.2 0 2.2 2.2 2.2 2.3 2.4 2.6 2.4 2.3 2.5 2.9 3.2
Weak 0.7 2.2 2.2 2.2 2.3 2.4 2.5 2.4 2.4 2.5 3.0 3.7

0.4 0 6.0 6.1 6.5 6.5 7.2 7.7 7.4 6.7 7.9 11.6 17.3
0.7 6.0 6.1 6.0 6.5 7.2 8.0 8.3 7.4 8.8 14.5 22.6

MAR 0.2 0 2.8 2.8 2.8 2.9 3.1 3.2 2.9 2.8 3.2 3.8 4.4
Strong 0.7 2.8 2.8 2.8 2.9 3.1 3.3 2.9 2.9 3.1 3.5 4.2

0.4 0 9.3 9.3 9.2 10.1 11.3 12.4 11.4 9.7 12.5 21.0 36.0
0.7 9.3 9.4 9.3 10.2 11.6 12.4 11.5 10.4 12.5 18.9 29.4

* In all analyses, the minimum ŵit is 1.0.
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Table 2.4: Efficiency of β̂WT with respect to β̂AT under MAR, for T = 4, 6 and K =
1000, all without auxiliary covariate Vi. Distribution (A) satisfies condition (2.11),
while distribution (B) is in violation.

T = 4, (A) T = 4, (B) T = 6, (A)

Dropout MAR MAR MAR MAR MAR MAR
Rate ρ Weak Strong Weak Strong Weak Strong

0.1 0 100 100 96 93 100 100

0.2 100 100 93 99 100 96
0.6 96 92 92 96 93 92
0.7 95 94 92 95 94 92

0.2 0 100 100 91 86 100 101
0.2 99 100 91 89 98 96
0.6 93 86 88 92 85 81
0.7 93 88 89 89 81 73

0.4 0 102 106 78 62 104 106
0.2 97 97 81 88 104 108
0.6 78 71 73 77 93 70
0.7 75 65 73 71 76 77
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Table 2.5: Estimates of β6 (×100) and estimated standard errors.

without Vi with Vi

Group β̂G6 β̂W6 β̂A6 β̂W6 β̂A6

Black Males -11.0 -16.5 -14.8 -12.5 -10.4

(7.02) (7.67) (6.21) (7.84) (6.30)

Black Females -20.5 -22.3 -22.1 -18.4 -19.3
(5.53) (6.21) (5.16) (6.29) (5.22)

White Males -36.9 -43.3 -39.0 -40.3 -37.9
(6.67) (7.67) (6.64) (7.70) (6.69)

White Females -53.5 -58.2 -55.9 -54.1 -49.9
(7.04) (7.97) (6.87) (7.99) (6.81)

Estimates in bold are significantly different from zero.

Exchangeable correlation was used with β̂G6; Estimates
of ρ range from 0.67 to 0.76.

Table 2.6: Estimates of β6 (×100) and estimated standard errors, by cohort and at-
tained education using the semi-parametric efficient estimator β̂A6.

Birth Cohort Birth Cohort U.S.

1963 - 1967 1955 - 1962 Estimate

No Degree College Degree No Degree College Degree

Black Males -0.1 (12.25) 11.5 (52.42) -16.0 (7.92) -24.4 (23.70) -9.8 (6.73)

Black Females 2.5 (10.56) -6.7 (27.76) -30.5 (6.57) -24.3 (20.32) -17.6 (5.41)
White Males -22.1 (17.41) -47.8 (33.70) -32.6 (8.21) -66.9 (18.40) -36.2 (7.41)
White Females -27.9 (15.86) -39.3 (26.53) -59.1 (9.51) -61.6 (16.69) -49.2 (7.22)
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Figure 2.2: The estimated difference between smoking rates at time 6 and smoking
rates at time 1, g6(Xi, β̂A)− g1(Xi, β̂A), with 95% confidence intervals, on the y-axis,
as a function of α1 along the x-axis. There is a solid reference line at ĝ6 − ĝ1 = 0. The
dashed reference line is for ĝ6 − ĝ1 estimated when α1 = 0, equivalent to the CARDIA
analysis for six time points. When α1 6= 0, MAR is violated. Graph (a) is for black
men, (b) is for black women, (c) is for white men, and (d) is for white women.

53



Alternating Logistic Regressions

With Improved Finite Sample

Properties

3.1 Introduction

Associations in correlated binary data are often considered nuisances, however, it is

not uncommon that they are scientifically relevant. It may be of interest in this case

to model associations more carefully, for example, with covariates defined by traits of

clusters or outcome pairs. Accommodating correlation models, estimating equations

have been defined for associations characterized by correlations (Prentice, 1988), in

addition to estimating equations characterized by odds ratios. Alternating logistic

regressions (ALR) was defined to this purpose by Carey, Zeger, and Diggle (1993) to

model marginal means of correlated binary outcomes while simultaneously allowing for

a flexible association model based on pairwise odds ratios.

Although ALR is useful for making simultaneous inference on marginal mean and

association parameters, its use, like the use of estimating equation approaches in gen-

eral, is subject to concerns regarding their performance in small samples (Emrich and

Piedmonte, 1992). The use of estimating equations for association estimation in small

samples may result in confidence interval coverage below the nominal level (Evans et al.,



2001; Sharples and Breslow, 1992). Because estimation of correlation parameters in es-

timating equation procedures are dependent on asymptotic behavior, there may also

be bias in their use for small samples (Preisser et al., 2008).

There is limited published information on the finite sample performance of ALR

association parameter estimates, however, recent literature suggests that the estimat-

ing equations for ALR could be improved with appropriate finite sample adjustments

(Preisser et al., 2008). The observed poor performance of estimating equations can be

partly attributed to the behavior of sandwich variance estimators, which is consistent

while also known to underestimate the actual variance of parameter estimates in small

samples (Sharples and Breslow, 1992; Mancl and DeRouen, 2001).

Adjustments for empirical covariance estimators have recently been introduced and

have been shown to improve coverage and variance estimation in first order generalized

estimating equations (GEE) (Kauermann and Carroll, 2001; Mancl and DeRouen, 2001;

Lu et al., 2007). In addition to these methods to improve sandwich variance estima-

tors, small sample bias corrections to the estimating equations of Prentice (1988) were

proposed by Sharples and Breslow (1992) and Lu et al. (2007), who both focused on

inference for marginal mean parameters. Preisser et al. (2008) were instead concerned

with inference for intracluster correlation parameter estimates, demonstrating marked

improvement in a bias-adjusted procedure for samples with as few as twenty clusters.

The demonstrated improvement in the estimation and inference for intracluster

correlation parameter estimates (Preisser et al., 2008) and the improvement in variance

estimation of Mancl and DeRouen (2001) and Kauermann and Carroll (2001) together

suggest that there may be utility in an extension of these approaches to ALR. First,

by improving the estimation of the variance of association parameter estimates, and

second, by reducing the bias of those parameter estimates.

Correcting for the bias in sandwich estimators may not be sufficient to ensure ad-
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equate coverage in small samples, as Kauermann and Carroll (2001) showed for inde-

pendent data. In part because of this, it is not expected that the bias of parameter

estimates can be totally eliminated, or that the coverage of confidence intervals reach

their nominal level. Despite this, the expectation is that applicability of ALR can be

significantly increased by finite sample adjustments to estimating equations and their

empirical variance estimates. The aim of this paper is to examine two kinds of finite-

sample bias adjustments for ALR, bias corrections in covariance estimators and bias

corrections in estimating equations. The impact of these adjustments will be examined

on the inference for marginal association model parameters in correlated binary data

for which ALR is defined, in simulated data and also in an application to a cluster trial

to reduce underage drinking.

3.2 Finite sample corrections for ALR

Consider a vector of correlated binary outcomes for subject or cluster i = 1, . . . , K,

so that Yi = (Yi1, . . . , Yini)
′ for binary Yij, 1 ≤ j ≤ ni. Let µij = E(Yij|Xi) rep-

resent the marginal mean of Yij conditional on covariate Xi. The marginal mean

µi = (µi1, . . . , µini)
′ is assumed known up to a p × 1 parameter β. As defined by

Liang and Zeger (1986), let β̂ represent the solution for β in the estimating equation

Uβ =

K∑

i=1

D′iV
−1
i {Yi − µi(β) } = 0 , (3.1)

where Di = ∂µi/∂β
′ and Vi is the working covariance matrix of Yi. Under mild

regulatory conditions, β̂ is consistent for β such that
√
K(β̂ − β) is asymptotically

multivariate normal with respect to K.

In this setting where Yi has binary elements, the variance Vi can be characterized
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by the pairwise odds ratios

ψijk =
P (Yij = 1, Yik = 1)P (Yij = 0, Yik = 0)

P (Yij = 1, Yik = 0)P (Yij = 0, Yik = 1)
, 1 ≤ j < k ≤ ni .

Assuming that, given a covariate vector Zijk for the pair of outcomes Yij and Yik,

log(ψijk) = Z′ijkα , (3.2)

the odds ratio ψijk can be modeled through the parameter α. Carey et al. (1993)

defined alternating logistic regressions (ALR), where α is estimated in a separate esti-

mating equation based on expectations of Yij conditional on Yik, for 1 ≤ j < k ≤ ni.

The resulting α̂ is consistent such that
√
K(α̂ − α) is asymptotically normal with

respect to K.

Another procedure for estimating α in (3.2) was defined by Zink and Qaqish (2009),

whose α̂ is equal to the estimate for α in ALR in a special circumstance. Because the

variance estimate for α̂ in ALR depends on the ordering of elements in Yi, a problem

resolved by the representation of Zink and Qaqish (2009), the Zink and Qaqish method,

known as orthogonalized residuals, will be used here.

Zink and Qaqish (2009) defined a second set of estimating equations for α based

on the expectations of cross-products YijYik conditional on Yij and Yik. For µijk =

E[YijYik], σijj = µij(1 − µij), and σijk = cov(Yij, Yik) = µijk − µijµik, orthogonalized

residuals estimates α through the residual vector Ti, where Ti has elements Tijk such

that

Tijk = YijYik − { µijk + bijk:j(Yij − µij) + bijk:k(Yik − µik) } ,
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where

dijk = σijjσikk − σ2
ijk

bijk:j = µijk(1− µik)(µik − µijk)/dijk, and

bijk:k = µijk(1− µij)(µij − µijk)/dijk .

In the framework of orthogonalized residuals (Zink and Qaqish, 2009), estimates for α

in (3.2) are obtained from the solution to

Uα =
K∑

i=1

S ′iP
−1
i Ti = 0 . (3.3)

The matrix Si is defined so that Si = E [−∂Ti/∂α
′] and Pi is an approximate variance

of Ti parameterized with an exchangeable correlation. When this exchangeable corre-

lation is assumed to be zero, the resulting α̂ is equivalent to that estimated with ALR

(Zink and Qaqish, 2009).

3.2.1 Bias-corrected estimating equations

A finite sample correction in the Prentice (1988) framework for estimating the asso-

ciation for correlated binary data was suggested by Preisser et al. (2008), for which

there is a related correction to orthogonalized residuals. The uncorrected estimate T̂ijk

substituting µ̂ijk, σ̂ijj , σ̂ikk, and σ̂ijk is consistent but not necessarily unbiased for Tijk,

thus the solution α̂ to the estimating equation (3.3) may also be biased, with bias

largest for small samples.

In the Prentice approach, association among elements of Yi is characterized by

correlations ρijk = corr(Yij, Yik), as opposed to pairwise odds ratios. Prentice defined

estimating equations for correlation parameter α based on the cross-product vector
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Ri = (Ri12, Ri13, . . . , Ri(ni−1)ni)
′, where Rijk = rijrik, and rij = (Yij − µij)/

√
σijj

(Prentice, 1988). Preisser et al. suggested that R̃i be substituted for Ri in the es-

timating equations for α, where R̃i has elements R̃ijk = Gij.R̂i.k. The vector Gij.

corresponds to the jth row of Gi = ( Ini − H1i )
−1 for cluster leverage matrix H1i =

Di (
∑K

i=1 D
′
iV
−1
i Di)

−1D′iV
−1
i (Preisser and Qaqish, 1996) and R̂i.k = (r̂i1r̂ik, . . . , r̂ini r̂ik)

′,

where r̂ij = rij(µ̂ij).

To apply this finite sample bias correction to the framework of orthogonalized resid-

uals, note that Tijk, expressed above in terms of cross-products YijYik, can also be

expressed in terms of correlations Rijk, so that Tijk, the elements of vector Ti, are

equivalently written

Tijk = σ
1/2
ijj σ

1/2
ikk (Rijk − ρijk) − (bijk:j − µik)(Yij − µij)− (bijk:k − µij)(Yik − µik) . (3.4)

Let T̃i be an estimate of Ti in which R̃ijk is substituted for Rijk in (3.4). Only R̂ijk is

corrected; correcting (Yij− µ̂ij) and (Yik− µ̂ik) in T̂i has negligible effect. The vector T̃i

can be substituted for estimate T̂i, with elements T̂ijk, in (3.3) for less biased estimation

of α when the number of clusters is small.

The finite sample corrected estimating equations of Preisser et al. (2008) are based

on a Taylor series expansion of residual Yi − µ̂i around β. This finite sample correc-

tion substituting R̃ijk = Gij.R̂i.k will be referenced as matrix multiplicative adjusted

estimating equations (MMEE).

3.2.2 Bias-corrected covariance estimation

Letting Ω =
(∑K

i=1 D
′
iV
−1
i Di

)
, the covariance matrix of β̂ is consistently estimated by

Ω−1

(
K∑

i=1

D′iV
−1
i B1i {Yi − µi(β)} {Yi − µi(β)}′B′1iV −1

i Di

)
Ω−1 . (3.5)
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The covariance matrix of α̂ is likewise consistently estimated by

(
K∑

i=1

S ′iP
−1
i Si

)−1( K∑

i=1

S ′iP
−1
i B2i Ti T

′
i B
′
2iP
−1
i Si

)(
K∑

i=1

S ′iP
−1
i Si

)−1

. (3.6)

Substituting B1i = Ini in (3.5) and B2i = Imi in (3.6) gives the sandwich estimators

for the covariance of β̂ and α̂ in their standard form, where mi is the number of

observation pairs in cluster i. These variance estimators will henceforth be referred to as

BC0. Substituting B1i = (Ini −H1i)
−1 in (3.5) for H1i = Di (

∑K
i=1 D

′
iV
−1
i Di)

−1D′iV
−1
i

yields the sandwich estimator for cov(β̂) described by Mancl and DeRouen (2001).

Substituting B2i = (Imi − H2i)
−1 in (3.6), where H2i = Si (

∑K
i=1 S

′
iP
−1
i Si)

−1 S ′iP
−1
i ,

yields the sandwich estimator for cov(α̂) analogous to Mancl and DeRouen’s estimator

for cov(β̂). The variance estimators with Mancl and DeRouen’s adjustment will be

referred to as BC2, following the notation used by Lu et al. (2007). Both BC0 and

bias-corrected BC2 will be used to estimate the variance of α̂ in the analysis of simulated

and actual data.

3.3 Simulation

Clustered binary random variates will be generated and analyzed to determine the

advantage of estimating association parameter α with finite sample adjusted ALR

compared to standard ALR. Taking the analysis of the underage drinking analysis

as a starting point, each realization will have K = 20, 40, 80, or 120 clusters with

n = 30 observations each. Unlike the data used later in an application, the number of

observations across clusters will be held constant. Variates Yi = (Yi1, . . . , Yin)′ will be

generated with mean µij = E(Yij|X1ij, X2ij), 1 ≤ j ≤ n, such that

logit(µij) = β0 + β1X1ij + β2X2ij + β3X1ijX2ij . (3.7)
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This marginal mean represents the prevalence of an outcome for two groups at two

times, where X1ij = 1 for an intervention community and 0 otherwise, and X2ij is an

indicator for posttest. The parameter β0 is the log prevalence of the last 30-day alcohol

use in the control group at baseline. The parameter β1 represents an initial difference

between intervention and control communities, while the parameter β3 represents the

difference in effect between intervention and control communities over time.

Parameters (β1, β2, β3)′ will be fixed at (0,−0.10,−0.25)′ and β0 will be varied within

(−0.5, 0.25)′. These Yi will be generated with marginal means (3.7) such that their

association is restricted by

log(ψijk) = α1 Z1ijk + α2 Z2ijk . (3.8)

The covariate vector Zijk = (Z1ijk, Z2ijk)
′ is either (1, 0)′ when X2ij = X2ik, so that α1

represents the log odds ratio within time, or Zijk = (0, 1)′ when X2ij 6= X2ik, so that

α2 represents the log odds ratio between times. The parameter α = (α1, α2)′ is varied

within {(0.1, 0.05)′, (0.05, 0.025)′}, as associations in cluster trials tend to be small and

to degrade over time.

All data is generated with the algorithm of Qaqish (2003) after converting odds

ratios to correlations (Mardia, 1967; Preisser et al., 2002). In the analysis of data

simulated with (3.7) and (3.8), each realization of simulated data will be analyzed

using standard ALR and re-analyzed using the proposed bias-corrected ALR. Standard

errors in both cases will be estimated using standard sandwich estimators and the bias-

corrected sandwich estimator, so that the bias of α̂ and the coverage of nominally 95%

confidence intervals will be examined.
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3.3.1 Simulation results

Bias of α̂ in both standard ALR and MMEE estimates is in Table 3.1. The α̂1 in

standard ALR always underestimates α1, by as much as two thirds when K = 20.

Even for K = 80, α1 is underestimated by standard ALR by as much as 15%. The

bias of α̂1 in MMEE adjusted ALR is generally negative, and between 1% and 8% at

K = 20, reducing somewhat for larger K. The absolute bias for α̂1 in MMEE adjusted

ALR is always less than that of standard ALR.

The between time association estimate α̂2 was also generally underestimated by

standard ALR, although relatively by less than for α̂1. At K = 20 clusters and β0 =

−0.5, the bias of α̂2 in standard ALR outperforms that of MMEE adjusted ALR, which

overestimates α2. When K = 80 clusters, α2 is mostly underestimated by standard

ALR, by as much as 7%, while the bias of α̂2 in MMEE adjusted ALR is close to 5%.

Bias in MMEE adjusted ALR for α̂2 compared to α̂1 is relatively constant across K,

with greater relative magnitude.

The relative bias of variance estimators BC0 and BC2 is shown in Table 3.2 for

both α1 and α2 association parameter variance estimates. The average of BC0 and

BC2 across simulations is compared to the Monte Carlo variance of α̂1 and α̂2 in order

to estimate bias. Note that in general relative bias declines with larger K, and that

variance estimator BC2 is less biased than BC0 for both standard ALR and MMEE

adjusted ALR. Note also that the relative performance of BC0 and BC2 is consistent

across estimating equation standard or adjusted ALR.

Coverage of uncorrected and bias-corrected nominally 95% confidence intervals for α̂

in both standard ALR and MMEE is shown in Table 3.3. Confidence interval coverage

for the case that β0 = −0.5 and α = (0.05, 0.025)′ is also shown in Figure 3.1. It is

notable first of all that for α̂1, even at K = 80 clusters the standard ALR procedure

without variance adjustment as it is commonly implemented is below nominal coverage
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rates, staying close between 91% and 92%. The coverage of MMEE adjusted ALR

is larger in every case, from one to two percentage points, and never exceeding the

nominal level.

In fact for the within time association α1, the coverage for MMEE always exceeds

that of standard ALR, by a margin upwards of 5% in some cases. When K = 20, the

coverage of standard ALR confidence intervals is very low both with and without vari-

ance estimator adjustment BC2. Note that variance adjustment BC2 always increases

coverage (Preisser et al., 2008).

For the between time association α2, the coverage of standard ALR confidence inter-

vals is markedly improved. There is less contrast between the coverage rates standard

ALR and MMEE in this case than for α̂1, however, standard ALR is still generally

outperformed by the confidence intervals of MMEE adjusted ALR. The coverage for

α̂2 is very close to the nominal level of 95% at K = 80 for all examined methods, and

generally only a few points below nominal at K = 40. In some cases coverage negligibly

exceeds the nominal level, especially for K = 120.

3.4 Example

The Enforcing Underage Drinking Laws (EUDL) Program is a nonrandomized commu-

nity intervention trial begun in 1998 as part of a federal initiative to reduce underage

drinking (Wolfson et al., 2004). The intervention was evaluated with a nested cross

sectional design based on repeated random telephone surveys of individuals aged 16 to

20 years from 202 communities, half of which were comparison communities matched

by a propensity score based on U.S. Census data. The primary outcomes were binary,

including self-reported last 30-day alcohol use.

A subset of the data is analyzed consisting of baseline and year one follow-up data

from 38 communities. Cluster sizes range from 27 to 41 with mean size 35.4. The goal
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of this analysis is to estimate the pairwise odds ratio of the binary outcome self-reported

last 30-day alcohol use, while also assessing the effect of the intervention.

Let Yij be a binary indicator of last-30 day alcohol use for subject j = 1, . . . , ni in

community i. The model for marginal mean µij = E[Yij |Xij] for Xij = (X1ij , X2ij, X3ij,

X∗ ′ij )
′ is given by

logit(µij) = β0 + β1X1ij + β2X2ij + β3X3ij + X∗
′
ijβ
∗ , (3.9)

where X1ij = 1 for an intervention community and 0 for a control community, X2ij = 1

for posttest and 0 for baseline, X3ij = X1ijX2ij , and X∗ij is a vector of covariates not

related to time or intervention. The pairwise odds ratio ψijk for outcomes Yij and Yik

in community i is modeled with (3.8) where (Z1ijk, Z2ijk)
′ = (0, 1)′ when X2ij = X2ik,

and (Z1ijk, Z2ijk)
′ = (1, 0)′ when X2ij 6= X2ik. The first pairwise odds ratio (exp{α1})

is among individuals in the same community at a specific time point, and the second

(exp{α2}) is among individuals in the same community at different time points. Data

from the EUDL Trial is modeled here with (3.8) and (3.9) using both the estimating

equations of standard ALR and the estimating equations with a finite sample correction

defined in Section 3.2. The parameter estimates from the model defined by (3.8) and

(3.9) and their standard errors as estimated by both BC0 and BC2 are in Table 3.4.

Note first that there is little discernable difference in marginal mean parameter

estimates between standard ALR and MMEE. Because the fitting algorithm of these

procedures share an estimating equation for β, this result is not unexpected. The dif-

ference in the approaches of standard ALR and MMEE are their methods of estimating

α in the usual context of generalized estimating equations, and so any differences in β̂

would be attributed to differences in α̂. The intervention effect represented by β3 in

model (3.9) is non-significant across all standard ALR and MMEE estimates, as was

expected from the results of previous analyses (Preisser et al., 2008).
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The BC2 estimator provides larger standard error estimates than BC0, applying

to both the marginal mean model and the association model for pairwise odds ratios.

Because residual vectors are typically underestimated and the robust variance estimator

of Liang and Zeger (1986) is known to underestimate the true variance of β̂ (Mancl

and DeRouen, 2001), this is in agreement with expectations.

Note also the parameter estimates in Table 3.4 for the pairwise odds ratio model.

MMEE estimates of within-time and between-time α̂1 and α̂2 are notably larger than

their corresponding standard ALR estimates, by 33 % and 35%, respectively. This

reflects the reduction of bias in α̂ obtained with MMEE, as summarized by simulated

data in Table 3.1, and the corresponding observed tendency of standard ALR to un-

derestimate association parameters.

Although the standard error estimates depend on the estimation method used, BC0

or BC2, these differences in the EUDL analysis are not as marked as those determined

by the estimating equation method, standard ALR or MMEE. Point estimates for the

odds ratios corresponding to these α̂ with their 95% confidence intervals, both for BC0

and BC2, are shown in Figure 3.2.

In addition to these results, Table 3.5 is included with α̂ and estimated standard

errors in the equivalent association model (3.8) for nine different dichotomous outcomes

collected in the EUDL study. The α̂ in these models varies widely across standard

ALR and ALR with the proposed MMEE adjustment, although in general α̂ is not

significantly different from zero. Each outcome is described briefly in Table 3.5, and a

detailed description is available in Preisser et al. (2007). The mean for each outcome

is modeled with (3.9) as in the above analysis, and also using a model with only an

intercept.
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3.5 Discussion

Data was simulated so that the circumstances of analysis would resemble a cluster

survey repeated over time, where cluster sizes are large and associations within clusters

are small. Although the variations considered in simulated data may fairly represent

the EUDL trial, there are many circumstances where alternating logistic regressions

are often used that cannot be represented or interpolated from the results here. Large

associations in particular were not considered, and neither were data with small clusters

or with varying cluster sizes. Large clusters present a particular challenge from the

standpoint of analysis, however, and the adjustments proposed here were shown in the

simulation study to be useful in that they estimate association parameters with less

bias than standard ALR, consistently across K and for varying marginal means.

Although the proposed adjustment to the estimating equations of ALR did not al-

ways provide association parameter estimates with less bias than standard ALR, the

reduction in bias was often marked. In addition, the variance estimators in the adjusted

estimating equations were less biased than those of standard ALR. Variance estimates

were additionally improved by using an extension of the bias-corrected variance esti-

mator introduced by Mancl and DeRouen (2001).

These two effects (reduced bias of association parameter estimates, improved vari-

ance estimation) both contributed to the coverage rates of nominally 95% confidence

intervals. The coverage of 95% confidence intervals in standard ALR for simulated

data was observed approaching 80%; in this scenario the adjusted estimating equations

coverage, although still below nominal levels, was improved to approximately 90%.

Results from these analyses with simulated data indicate that the proposed small

sample adjusted ALR is an appropriate analysis for the chosen subset of underage

drinking data, and possibly for other repeated cluster survey data. Overall this paper

has shown that ALR can be applied with increased accuracy to small samples, and that
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the proposed method improves inference for association parameters in repeated binary

data when applying alternating logistic regressions.

Table 3.1: Estimated bias, ( Average {α̂−α} ), in alternating logistic regressions (ALR)
for standard ALR and ALR with a multiplicative matrix adjustment using R̃ijk =

Ĝi[j, ]Ĉi[, k] (MMEE). These results are for 1000 simulations of 40, 80, or 120 clusters
each, with cluster size n = 30.

Bias α̂1 Bias α̂2

β0 α ALR MMEE ALR MMEE

K = 20

-0.50 (0.38) (0.1, 0.05)′ -.0424 -.0040 -.0007 .0047
(0.05, 0.025)′ -.0323 .0022 -.0002 .0025

0.25 (0.56) (0.1, 0.05)′ -.0354 .0015 -.0059 -.0010
(0.05, 0.025)′ -.0357 -.0040 -.0049 -.0026

K = 40

-0.50 (0.38) (0.1, 0.05)′ -.0198 -.0006 .0012 .0039
(0.05, 0.025)′ -.0146 .0026 -.0008 .0005

0.25 (0.56) (0.1, 0.05)′ -.0185 -.0002 -.0037 -.0012
(0.05, 0.025)′ -.0179 -.0021 -.0020 -.0008

K = 80

-0.50 (0.38) (0.1, 0.05)′ -.0102 -.0006 .0014 .0027
(0.05, 0.025)′ -.0067 .0018 -.0018 -.0012

0.25 (0.56) (0.1, 0.05)′ -.0085 .0006 -.0003 .0009
(0.05, 0.025)′ -.0086 -.0007 -.0016 -.0010

K = 120

-0.50 (0.38) (0.1, 0.05)′ -.0060 .0004 .0013 .0022
(0.05, 0.025)′ -.0056 -.0000 -.0011 -.0007

0.25 (0.56) (0.1, 0.05)′ -.0061 -.0000 -.0015 -.0006
(0.05, 0.025)′ -.0051 .0002 -.0005 -.0001
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Figure 3.1: Coverage of nominally 95% confidence intervals for standard ALR and ALR
with proposed MMEE adjustment, using both BC0 and BC2 variance estimates. Plot
(a) is for α̂1 (within time) and plot (b) is for α̂2 (between time).

68



O
dd

s 
R

at
io

0.8

1.0

1.2

1.4

Within Between

Figure 3.2: Odds Ratio estimates of within and between time associations in the EUDL
data. The estimates marked with a circle are those of standard ALR, and those marked
with a triangle are estimated with ALR and a finite sample correction. Both BC0 and
BC2 are represented in 95% confidence intervals; BC0 yields the smaller interval in all
cases.
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Table 3.2: Estimated percent relative bias in standard alternating logistic regressions
(ALR) and in ALR with proposed MMEE adjustment, of variance estimators BC0 and
BC2. These results are for 1000 simulations of 40, 80, or 120 clusters each, with cluster
size n = 30. Bias is measured relative to the Monte Carlo variance of α̂.

Bias v̂ar(α̂1) Bias v̂ar(α̂2)

ALR MMEE ALR MMEE

β0 α BC0 BC2 BC0 BC2 BC0 BC2 BC0 BC2

K = 20

-0.50 (0.38) (0.1, 0.05)′ -10.6 -0.8 -10.3 -0.5 -18.6 -9.7 -18.6 -9.7
(0.05, 0.025)′ -20.5 -11.9 -20.5 -11.8 -18.4 -9.5 -18.4 -9.5

0.25 (0.56) (0.1, 0.05)′ -14.2 -4.9 -14.3 -5.0 -16.3 -7.3 -16.3 -7.3
(0.05, 0.025)′ -14.5 -5.2 -14.5 -5.2 -17.1 -8.2 -17.1 -8.1

K = 40

-0.50 (0.38) (0.1, 0.05)′ -8.1 -3.3 -7.9 -3.1 -1.5 3.6 -1.5 3.7
(0.05, 0.025)′ -13.2 -8.7 -13.2 -8.7 -5.0 -0.1 -5.0 0.0

0.25 (0.56) (0.1, 0.05)′ -11.8 -7.3 -12.0 -7.5 -12.3 -7.7 -12.3 -7.7
(0.05, 0.025)′ -10.0 -5.3 -10.0 -5.4 -4.3 0.7 -4.3 0.7

K = 80

-0.50 (0.38) (0.1, 0.05)′ 1.6 4.2 1.9 4.5 -0.3 2.2 -0.3 2.3
(0.05, 0.025)′ -8.5 -8.1 -8.4 -6.1 3.4 6.1 3.4 6.1

0.25 (0.56) (0.1, 0.05)′ -6.7 -4.4 -6.7 -4.3 -6.7 -4.3 -6.7 -4.3
(0.05, 0.025)′ -9.3 -7.0 -9.4 -7.1 -6.7 -4.3 -6.7 -4.3

K = 120

-0.50 (0.38) (0.1, 0.05)′ 1.6 3.3 1.7 3.5 7.5 9.3 7.6 9.4
(0.05, 0.025)′ -2.6 -0.9 -2.5 -0.8 -3.8 -2.1 -3.7 -2.0

0.25 (0.56) (0.1, 0.05)′ -5.1 -3.5 -5.0 -3.4 -0.6 1.1 -0.5 1.2
(0.05, 0.025)′ -8.7 -7.1 -8.7 -7.2 -0.5 1.1 -0.5 1.2
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Table 3.3: Coverage of nominal 95% confidence intervals in alternating logistic regres-
sions (ALR) for standard ALR and ALR with a multiplicative matrix adjustment using
R̃ijk = Ĝi[j, ]Ĉi[, k] (MMEE), for both BC0 and BC2 standard error estimators. These
results are for 1000 simulations, with cluster size n = 30.

Coverage α̂1 Coverage α̂2

ALR MMEE ALR MMEE

β0 α BC0 BC2 BC0 BC2 BC0 BC2 BC0 BC2

K = 20

-0.50 (0.38) (0.1, 0.05)′ 80.6 82.4 89.2 90.6 90.9 92.4 91.3 93.1
(0.05, 0.025)′ 81.4 82.9 87.2 89.1 89.7 92.2 89.8 92.2

0.25 (0.56) (0.1, 0.05)′ 83.0 83.8 88.6 90.1 90.8 92.5 91.2 92.8
(0.05, 0.025)′ 80.4 82.2 88.7 90.4 91.2 93.1 91.7 93.5

K = 40

-0.50 (0.38) (0.1, 0.05)′ 87.6 88.3 91.7 92.7 94.7 95.7 95.1 95.5
(0.05, 0.025)′ 87.1 87.7 91.0 91.6 93.7 94.3 93.4 94.3

0.25 (0.56) (0.1, 0.05)′ 88.8 90.1 92.3 92.5 91.8 92.4 92.2 93.1
(0.05, 0.025)′ 86.2 87.6 90.9 91.5 93.7 94.2 93.8 94.5

K = 80

-0.50 (0.38) (0.1, 0.05)′ 92.4 92.5 94.1 94.3 95.2 95.5 95.2 95.4
(0.05, 0.025)′ 91.5 91.6 93.2 93.4 95.0 95.2 94.9 95.5

0.25 (0.56) (0.1, 0.05)′ 91.3 92.1 92.9 92.9 93.6 93.8 93.5 94.2
(0.05, 0.025)′ 90.8 90.9 92.5 92.9 93.4 94.1 93.6 93.8

K = 120

-0.50 (0.38) (0.1, 0.05)′ 93.1 93.1 94.6 94.9 95.2 95.4 95.2 95.3
(0.05, 0.025)′ 93.0 93.3 94.2 94.3 94.3 94.9 94.7 94.8

0.25 (0.56) (0.1, 0.05)′ 92.7 92.7 94.3 94.4 94.3 94.5 94.5 94.6
(0.05, 0.025)′ 92.3 92.8 93.7 94.0 94.2 94.6 94.1 94.3
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Table 3.4: Parameter estimates and their standard errors for self-reported last 30-day
alcohol use among youth in the community trial to reduce underage drinking (EUDL)
based upon the uncorrected sandwich estimator (BC0) and the bias-corrected (BC2)
covariance estimator comparing uncorrected estimating equations (ALR) and the ad-
justed estimating equations (MMEE)

ALR MMEE

Parameter Est. BC0 BC2 Est. BC0 BC2

Marginal mean model
Intercept (β0) -0.576 0.152 0.164 -0.576 0.152 0.164
Intervention (β1) 0.029 0.205 0.225 0.030 0.205 0.225
Posttest (β2) -0.085 0.156 0.165 -0.084 0.157 0.165
Intvn × Post (β3) -0.018 0.281 0.298 -0.022 0.281 0.298
Male gender 0.103 0.116 0.116 0.121 0.115 0.119
Age = 18 0.619 0.126 0.131 0.624 0.126 0.131
Age = 19/20 1.206 0.137 0.141 1.204 0.137 0.141
Michigan -0.143 0.125 0.137 -0.144 0.125 0.138
Ohio -0.662 0.262 0.326 -0.664 0.261 0.323

Pairwise Odds Ratio model
Within (α1) 0.110 0.055 0.056 0.146 0.061 0.063
Between (α2) -0.034 0.061 0.063 -0.022 0.067 0.069
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Table 3.5: Association parameter estimates in the model (3.8) for the pairwise odds
ratio for different dichotomous outcomes in the EUDL data, when the full model for
the marginal mean is used as specified by (3.9), and a model with only an intercept,
i.e., logit(µij) = β0.

Full Model Intercept Model

Measure (Prevalence) α ALR MMEE ALR MMEE

Binge drinking (0.1980)

Within 0.04 (.059) 0.09 (.070) 0.05 (.062) 0.06 (.070)
Between 0.03 (.065) 0.05 (.074) 0.06 (.060) 0.07 (.064)

DWI drive (0.0578)

Within -0.25 (.113) -0.13 (.128) -0.12 (.140) -0.10 (.155)
Between -0.04 (.117) -0.01 (.133) 0.02 (.123) 0.04 (.130)

Past 30-day alcohol use (0.4212)

Within 0.11 (.050) 0.15 (.061) 0.14 (.062) 0.15 (.065)
Between -0.03 (.058) -0.02 (.067) 0.01 (.066) 0.02 (.067)

Past 7-day alcohol use (0.2459)

Within 0.03 (.060) 0.07 (.068) 0.07 (.070) 0.07 (.074)
Between 0.02 (.046) 0.03 (.054) 0.05 (.056) 0.05 (.058)

Attempt to purchase alcohol (0.0536)

Within 0.07 (.207) 0.23 (.279) 0.15 (.186) 0.17 (.209)
Between -0.01 (.182) 0.05 (.220) 0.10 (.183) 0.12 (.200)

Nonviolent consequences to alcohol use (0.3658)

Within 0.02 (.040) 0.04 (.045) 0.05 (.046) 0.05 (.049)
Between 0.03 (.037) 0.04 (.046) 0.04 (.043) 0.04 (.048)

Perception of alcohol use among peers (0.55242)

Within 0.03 (.045) 0.06 (.046) 0.04 (.046) 0.04 (.045)
Between -0.01 (.046) -0.00 (.047) -0.02 (.049) -0.01 (.046)

Perception of getting caught by police (0.3990)

Within 0.01 (.040) 0.04 (.046) 0.04 (.051) 0.05 (.052)
Between 0.03 (.037) 0.04 (.041) 0.05 (.046) 0.05 (.047)

Commercial source of alcohol (0.0720)

Within -0.15 (.123) -0.03 (.140) -0.03 (.129) -0.01 (.135)
Between 0.13 (.122) 0.17 (.144) 0.26 (.139) 0.28 (.152)
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Alternating Logistic Regressions for

Ordinal Data

4.1 Introduction

Methodology for the analysis of multivariate data is currently a very active area in the

statistical literature. Although continuous response models have received a lot of this

attention, correlated categorical responses also arise in various biomedical applications.

Ordinal response models provide a generalization to multilevel outcomes for methods

available specifically for correlated binary data.

There are a number of methods for modeling correlated ordinal or multinomial data

that have been proposed in the statistical literature. These methods include those based

on marginal methods (Prentice and Zhao, 1991; Liang et al., 1992; Heagerty and Zeger,

1996) and subject specific heirarchical models (Ezzet and Whitehead, 1991; Agresti

and Lang, 1993; Crouchley, 1995). Likelihood-based methods for correlated multino-

mial or ordinal data were proposed by Dale (1986), who introduced a likelihood-based

model for bivariate ordinal data using the Plackett distribution, and whose method

was extended to multivariate multinomial data by Molenberghs and Lesaffre (1994). A

likelihood-based probit model for correlated multinomial data was proposed by Lesaffre

and Molenberghs (1991), and Glonek and McCullagh (1995) introduced an alternate

class of models for correlated multinomial data using the multivariate logistic trans-



form of McCullagh and Nelder (1989). The method proposed by Glonek and McCullagh

(1995) analyzes the dependency of the joint distribution of multinomial outcomes on

covariates.

In contrast to maximum likelihood methods, estimating equations for marginal mod-

els do not employ the full joint distributions of multinomial outcomes to estimate model

parameters. A certain class of marginal model has come into wide use for correlated

data with the advent of generalized estimating equations, introduced by Liang and

Zeger (1986).

The application of generalized estimating equations to ordinal or categorical data

has received considerable attention in the statistical literature to date. Liang, Zeger

and Qaqish (1992) defined a marginal model for multinomial data using generalized

estimating equations based on response vectors and vectors of response cross-products.

Lipsitz et al. (1994) also proposed estimating equations for clustered categorical data

based on the estimating equations of Liang and Zeger (1986). Lipsitz et al. (1994)

outlined the iterative estimation of the covariance for a select number of structures (ex-

changeable, 1-dependence, banded, and unstructured) based on a method of moments

approach.

Marginal methods based on generalized estimating equations for ordinal data have

also been examined by Clayton (1992), particularly in comparison to maximum likeli-

hood. Gange, Linton, Scott, et al. (1995) applied generalized estimating equations to

bivariate ordinal data, and Miller, Davis, and Landis (1993) showed that under certain

assumptions generalized estimating equations estimators are equal to those of weighted

least squares.

Also based on generalized estimating equations (Liang and Zeger, 1986) alternating

logistic regressions (ALR) was introduced by Carey, Zeger, and Diggle (1993) in the

analysis of multivariate binary data. Heagerty and Zeger (1996) defined estimating
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equations for the associations of correlated multinomial data in an adaptation of ALR

to ordinal data. Heagerty and Zeger (1996) compared the efficiency for estimating

association parameters with ALR and different marginal methods for categorical data,

including second order estimating equations (Liang et al., 1992).

Second order estimating equations for ordinal data solve simultaneously for mean

and association parameters. This method can be computationally burdensome for

large clusters, having a matrix of dimension Cn + C2
(
n
2

)
to invert, where C + 1 is the

number of multinomial response levels, and n is the cluster size. First order generalized

estimating equations are less burdensome computationally for large clusters, and have

high efficiency for association parameters when outcome correlation is not large.

There are certain deficiencies in the ALR Heagerty and Zeger (1996) defined for

correlated multinomial outcomes, as there are in the ALR defined for correlated binary

outcomes. In particular, although the Heagerty and Zeger (1996) estimate of associ-

ation parameter α is invariant to the order of observations within cluster, the robust

estimate of var(α̂) is not. In addition to this drawback, because the derivative matrix

is stochastic, standard estimating equation theory is not applicable.

Zink and Qaqish (2009) defined estimating equations for association parameters in

binary data which yield parameter estimates equal to the ALR α̂ in special case, while

resolving the disadvantages of estimating α with ALR. The aim of this research is to

extend the method of Zink and Qaqish (2009) to multinomial outcomes. This method-

ology is defined in detail in Sections 2 and 3. An analysis with the orthogonalized

residual methodology using data from a study of post-operative altered sensation is

described in Section 4. A small simulation study is described in Section 5.
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4.2 Alternating logistic regressions for ordinal data

Let Oij be ordinal measurement j in cluster i, for i = 1, . . . , K, where cluster i has

ni observations. This measurement has C + 1 levels or possible realizations, so that

Oij = c for some c ∈ 1, . . . , C + 1. Now let Yij be a vector representation of Oij with

binary elements

Y
(c)
ij = I(Oij ≤ c) , c = 1, . . . , C ,

so that Yij = (Y
(1)
ij , . . . , Y

(C)
ij )′. Ordinal data is often modeled by assuming proportional

odds (McCullagh, 1980; Stokes et al., 1995). For covariate vector Xij, the proportional

odds model assumes that the Xij effect is the same across levels of Oij. This model for

data Oij is specified by

logit
(
E[Y

(c)
ij |Xij]

)
= δc + X′ijβ , 1 ≤ c ≤ C, 1 ≤ j ≤ ni . (4.1)

The proportional odds assumption is easily relaxed by assuming a more general form for

E[Y
(c)
ij |Xij]. Unless otherwise noted, (4.1) is assumed for the mean of Oij. Interest here

is in a marginal model for Oij, so that only mean and variance structures are explicitly

specified for Oij as in the generalized estimating equations of Liang and Zeger (1986).

Let µij = E[Yij|Xij] and µi = (µ′i1, . . . ,µ
′
ini

)′. For the observed vector Yi =

(Y′i1, . . . ,Y
′
ini

)′, generalized estimating equations (Liang and Zeger, 1986) estimates

the mean parameter β with the solution to

Uβ =
K∑

i=1

D′iV
−1
i (Yi − µi) = 0 , (4.2)
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where Di = ∂µi/∂β and µi is determined by (4.1). In addition to (4.1), another

assumption determines the structure of variance matrix Vi ≈ var(Yi). In alternating

logistic regressions (ALR) for binary data, Carey et al. (1993) parameterized Vi in

terms of odds ratios for response pairs. Heagerty and Zeger (1996) defined ALR for

ordinal data by using odds ratios

ψ
(a,b)
ijk =

P (Y
(a)
ij = 1, Y

(b)
ik = 1) P (Y

(a)
ij = 0, Y

(b)
ik = 0)

P (Y
(a)
ij = 1, Y

(b)
ik = 0) P (Y

(a)
ij = 0, Y

(b)
ik = 1)

,

for 1 ≤ a, b ≤ C and 1 ≤ j < k ≤ ni. ALR assumes a model for ψ
(a,b)
ijk governed by a q

dimensional parameter α for covariate vector Z
(a,b)
ijk , where

log
(
ψ

(a,b)
ijk

)
= Z

(a,b) ′
ijk α , 1 ≤ j < k ≤ ni , 1 ≤ a, b ≤ C . (4.3)

The model for data Oij is jointly specified by (4.1) and (4.3). The odds ratio ψ
(a,b)
ijk

determines the conditional expected value ζ
(a,b)
ijk = E[Y

(a)
ij |Y (b)

ik ] (Mardia, 1967). While

estimating β through (4.2), ALR uses another set of estimating equations based on the

conditional residuals Y
(a)
ij − ζ (a,b)

ijk to estimate association parameter α. Let ζijk and ζi

be vectors of conditional expectations such that

ζijk = (ζ
(1,1)
ijk , . . . , ζ

(1,C)
ijk , ζ

(2,1)
ijk , . . . , ζ

(C,C)
ijk )′ ,

and

ζi = (ζ ′i12, . . . , ζ
′
i1ni

, ζ ′i23, . . . , ζ
′
i(ni−1)ni

)′ .

Also let the vector Y∗i represent the observations associated with ζi, so that Y∗ij =

(Yij ⊗ 1C) and Y∗i = (Y∗ ′i1 , . . . ,Y
∗ ′
i1 ,Y

∗ ′
i2 , . . . ,Y

∗ ′
i(ni−1))

′. As defined by Heagerty and
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Zeger (1996) in ALR for multilevel data, α is estimated by the solution to

Uα,ALR =
K∑

i=1

∂ζ ′i/∂αDiag{ζi(1− ζi)} (Y∗i − ζi) = 0 . (4.4)

Estimates of β and α are obtained by iterating between (4.2) and (4.4). The

resulting estimates α̂ and β̂ are consistent for α and β such that for θ = (β′,α′)′,
√
K(θ̂−θ) is asymptotically multivariate normal with mean zero, given that (4.3) and

(4.1) hold. If (4.3) does not hold, the outcome covariance is misspecified, and β̂ is still

consistent for β. Sandwich estimators based on (4.2) and (4.4) are available for the

variances of β̂ and α̂ (Heagerty and Zeger, 1996).

A generalization of ALR for binary data was defined by Zink and Qaqish (2009)

resolving the dependence of variance estimates on observation order. While other

marginal methods are available for analyzing correlated ordinal data (Liang, Zeger,

and Qaqish, 1992; Molenberghs and Lesaffre, 1994), we will only consider the method

defined by Zink and Qaqish (2009), called orthogonalized residuals. For a comprehen-

sive review of marginal methods for correlated data, see Agresti (1999).

4.3 Orthogonalized residuals

Like ALR, orthogonalized residuals (ORTH) is an extension of Liang and Zeger’s (1986)

method, estimating marginal mean parameter β with the solution to (4.2). Unlike

ALR, where association parameter α estimation is based on conditional expectations

E[Y
(a)
ij |Y (b)

ik ], α estimation is instead based on expectations of cross-products Y
(a)
ij Y

(b)
ik

conditional on Y
(a)
ij and Y

(b)
ik , for 1 ≤ a, b ≤ C and 1 ≤ j < k < ni. Define

µ
(a,b)
ijk = E[ Y

(a)
ij Y

(b)
ik ]
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and µ
(a)
ij = E[Y

(a)
ij ]. Let T

(a,b)
ijk be a residual based on the conditional expectation

E[ Y
(a)
ij Y

(b)
ik | Y

(a)
ij , Y

(b)
ik ], such that

T
(a,b)
ijk = Y

(a)
ij Y

(b)
ik − E[ Y

(a)
ij Y

(b)
ik | Y

(a)
ij , Y

(b)
ik ]

= Y
(a)
ij Y

(b)
ik − { µ

(a,b)
ijk + b

(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) } ,

for

d
(a,b)
ijk = σ

(a)
ijjσ

(b)
ikk − σ

(a,b) 2
ijk

b
(a,b)
ijk:j = µ

(a,b)
ijk (1− µ(b)

ik )(µ
(b)
ik − µ

(a,b)
ijk )/d

(a,b)
ijk

b
(a,b)
ijk:k = µ

(a,b)
ijk (1− µ(a)

ij )(µ
(a)
ij − µ(a,b)

ijk )/d
(a,b)
ijk ,

and

σ
(a)
ijj := var(Y

(a)
ij ) = µ

(a)
ij (1− µ(a)

ij ) σ
(a,b)
ijk := cov(Y

(a)
ij , Y

(b)
ik ) = µ

(a,b)
ijk − µ

(a)
ij µ

(b)
ik .

Let the vector Ti have elements T
(a,b)
ijk such that

Ti = (T
(1,1)
i12 , . . . , T

(1,C)
i12 , T

(2,1)
i12 , . . . , T

(C,C)
i(ni−1)ni

)′ .

For matrices Si = E [−∂Ti/∂α
′] and Pi ≈ var(Ti), the ORTH estimate of α is the

solution to

Uα,ORTH =
K∑

i=1

S′iP
−1
i Ti = 0 . (4.5)

The variance of Ti is approximated by Pi, having elements cov(T
(a,b)
ijk , T

(c,d)
ij′k′ ) = 0 for

j 6= j ′ or k 6= k′, so that Pi is block diagonal. Here a ∧ c = min(a, c), and Pi has
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nonzero elements cov(T
(a,b)
ijk , T

(c,d)
ijk ), 1 ≤ a, b ≤ C and 1 ≤ c, d ≤ C, such that

cov(T
(a,b)
ijk , T

(c,d)
ijk ) = µ

(a∧c, b∧d)
ijk − b(a,b)

ijk:jµ
(a∧c, d)
ijk − b(c,d)

ijk:jµ
(a∧c, b)
ijk − b(a,b)

ijk:kµ
(c, b∧d)
ijk (4.6)

−b(c,d)
ijk:kµ

(a, b∧d)
ijk + (µ

(c)
ij b

(c,d)
ijk:j + µ

(d)
ik b

(c,d)
ijk:k − µ

(c,d)
ijk )µ

(a,b)
ijk

+(µ
(a)
ij b

(a,b)
ijk:j + µ

(b)
ik b

(a,b)
ijk:k − µ

(a,b)
ijk )µ

(c,d)
ijk + b

(a,b)
ijk:jb

(c,d)
ijk:kµ

(a,d)
ijk

+b
(c,d)
ijk:jb

(a,b)
ijk:kµ

(c,b)
ijk + b

(a,b)
ijk:jb

(c,d)
ijk:jµ

(a∧c)
ij + b

(a,b)
ijk:kb

(c,d)
ijk:kµ

(b∧d)
ik

−(µ
(a)
ij b

(a,b)
ijk:j + µ

(b)
ik b

(a,b)
ijk:k)(µ

(c)
ij b

(c,d)
ijk:j + µ

(d)
ik b

(c,d)
ijk:k) + µ

(a,b)
ijk µ

(c,d)
ijk .

For this approximation of var(Ti), ORTH estimates of β and α are obtained by iterating

between (4.2) and (4.5). The resulting α̂ and β̂ are consistent for θ = (β′,α′)′, such

that
√
K(θ̂ − θ) is asymptotically multivariate normal with mean zero, given that

the model defined by (4.3) and (4.1) holds. A heuristic argument for the asymptotic

distribution of
√
K(θ̂ − θ) is given in an appendix. Also addressed in an appendix is

the derivation of (4.6), and (4.6) in the case of binary responses (C = 1), which reduces

to the ORTH defined by Zink and Qaqish (2009).

For multilevel data (C > 1), it can be shown that when Pi is a diagonal matrix with

non-zero elements (a = c, b = d) given by (4.6), the resulting α̂ is the same as that

in ALR for multilevel data defined by Heagerty and Zeger (1996). The block diagonal

matrices in Pi have off diagonal elements defined in (4.6) that account for the variance

between T
(a,b)
ijk and T

(c,d)
ijk , when a 6= c or b 6= d. These are cross product residuals

concerning the same pair of multinomial observations, Oij and Oik. Because Y
(a)
ij and

Y
(c)
ij are correlated, as well as Y

(b)
ik and Y

(d)
ik , the actual covariance between T

(a,b)
ijk and

T
(c,d)
ijk is nonzero. Therefore the working covariance in Uα, ORTH is closer to the actual

covariance than that in Uα, ALR, meaning that the ORTH α̂ should be more efficient

than the ALR α̂ by the tenets of estimating function theory (Qin and Lawless, 1994).

Both orthogonalized residuals and alternating logistic regressions have inefficient
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estimates of α relative to second order estimating equations (Liang et al., 1992; Zink

and Qaqish, 2009), which estimate β and α parameters simultaneously. There is a

considerable computational advantage to estimatingα and β separately, where matrices

of order n2 are inverted, instead of inverting matrices of order n4 as in second order

estimating equations, for clusters of size n (Carey et al., 1993).

Although it is expected that ORTH and ALR would be less efficient than second

order estimating equations, it is also expected that ORTH could gain efficiency in α̂

compared to ALR, by assuming a non-diagonal structure for the covariance of Ti in

(4.5), and also because the residual Ti has a small correlation with Yi (Zink and Qaqish,

2009). In addition to this increased precision, the method proposed here has several

advantages relative to the method proposed by Heagerty and Zeger (1996). First, unlike

the Heagerty and Zeger (1996) estimate, the resulting v̂ar(α̂) based on (4.5) is invariant

to the ordering of elements within cluster. The ORTH α̂ is also estimated with a non-

stochastic derivative matrix, allowing the application of standard estimating equation

theory.

4.4 Example

The methods described above will be illustrated in an analysis of clinical trial data from

the sensory retraining study. This study was designed to compare the perceived altered

sensation for post operative patients in two treatment groups. Both groups received the

standard treatment following a bilateral sagittal split osteotomy, a surgical procedure

on the mandible, while one group also received the treatment of sensory retraining

exercises (Phillips et al., 2007). Ordered outcomes for altered sensation were measured

at 6, 13, and 26 weeks after surgery. There were 93 patients in the standard treatment

group and 91 patients in the sensory retraining group. Overall 178 (97%) patients had

observed outcomes at all visits.
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The following model represents multiple categorical outcomes observed over time,

where j indexes outcome and t indexes observation time, with response Oijt = c for

some c ∈ 1, . . . , C + 1. Let Y
(c)
ijt represent Oijt as binary element

Y
(c)
ijt = I(Oijt ≤ c) , c = 1, . . . , C .

For the example of sensory retraining data, Oijt is an ordinal measurement of altered

sensation with seven levels (C = 6) where Oijt = 1 indicated the most favorable outcome

and Oijt = 7 the least favorable. These seven levels were collapsed into three levels

(C = 2) for this analysis.

Perceived altered sensation was measured with Oijt where Oi1t (j = 1) measured

the loss of lip sensitivity, Oi2t (j = 2) measured the level of unusual feelings, and Oi3t

(j = 3) measured numbness. Each of these responses was recorded before surgery and

at three subsequent times. The initial responses are not used in this analysis because

there is very little variation in pre-surgical measurements of altered sensation. Time

or visit is indexed by t, for one (t = 1), three (t = 2), and six (t = 3) months after

surgery. The following model definitions include covariate Ti, an indicator that subject

i received the experimental sensory retraining treatment.

In the analysis of the sensory retraining data, the marginal mean of binary indicators

Y
(c)
ijt are restricted by

logit
(
E[Y

(c)
ijt |Xij]

)
= δc + β0j + β1t + β2tTi + β1jt + β2jtTi + (4.7)

β3Gi + β4Ji ,

for 1 ≤ c ≤ C and 1 ≤ j, t ≤ 3 with the restriction that β01 = β11 = β11t = β21t = 0.

This model is saturated in time and treatment for each outcome.

Note that this is a proportional odds model, where the response/covariate relation-
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ship is independent of response level c. Covariate Ti = 1 if subject i was in the sensory

retraining group, and 0 otherwise, Gi = 1 if subject i received genioplasty as part of

surgery (0 otherwise), and Ji = 1 if the surgery for subject i involved only one jaw (0

otherwise) (Phillips et al., 2007).

This model allows that the marginal mean of each outcome vary by treatment group

over time. This model also allows that the odds of altered sensation differ initially by

genioplasty or number of jaws in surgery, however, the corresponding rate of change in

the odds of altered sensation over time is not allowed to vary in this model.

In addition to (4.7), the model for Y
(c)
ijt includes a restriction on the pairwise odds

ratio between Y
(a)
ijt and Y

(b)
iks , where indices j, k represent outcome, s, t index observation

time, and 1 ≤ a, b ≤ C. A preliminary model saturated by outcome pair (j, k) can be

written

log
(
ψ

(a,b)
ijk,st

)
= α012I(j = 1, k = 2; s = t) + α013I(j = 1, k = 3; s = t) + (4.8)

α023I(j = 2, k = 3; s = t) + α111I(j = 1, k = 1; s 6= t) +

α122I(j = 2, k = 2; s 6= t) + α133I(j = 3, k = 3; s 6= t) +

α112I(j = 1, k = 2; s 6= t) + α113I(j = 1, k = 3; s 6= t) +

α123I(j = 2, k = 3; s 6= t) ,

for j ≤ k and s ≤ t, omitting the case that j = k and s = t. In a Wald test

that α112 = α113 = α123 and α111 = α122 = α133, the observed test statistic is 2.50

(p = 0.645) with four degrees of freedom. This test result indicates that associations

between outcomes observed at different times can be expressed with two odds ratios, one

representing the same outcome observed at different times, and the other representing

84



different altered sensation outcomes observed at different times, reducing (4.8) to

log
(
ψ

(a,b)
ijk,st

)
= α012I(j = 1, k = 2; s = t) + α013I(j = 1, k = 3; s = t) + (4.9)

α023I(j = 2, k = 3; s = t) + α1I(j = k; s 6= t) + α2I(j 6= k; s 6= t) ,

for j ≤ k and s ≤ t, except the case that j = k and s = t. The Wald test that

α012 = α013 = α023 has test statistic 14.30 (p < 0.001) with two degrees of freedom,

indicating that further model reduction is not appropriate.

The above model for the pairwise odds ratio ψ
(a,b)
ijk,st allows the association between

Y
(a)
ijt and Y

(b)
iks to vary by response pair (j, k) within time, and specifies two log odds

ratios for response pairs between times. In the model with restrictions (4.7) and (4.9),

to test whether the effect of time and treatment vary for different outcomes, a Wald

test that β1jt = 0 for j, t = 2, 3 and that β2jt = 0 for j = 2, 3, 1 ≤ t ≤ 3 can be used.

This test has observed statistic 7.87 with ten degrees of freedom and p = 0.642, so the

marginal mean model can be reduced to

logit
(
E[Y

(c)
ijt |Xij]

)
= δc + β0j + β1t + β2tTi + (4.10)

β3Gi + β4Ji ,

for 1 ≤ c ≤ C and 1 ≤ j, t ≤ 3 with the restriction that β01 = β11 = 0. The resulting

parameter estimates for this model using both ALR as defined by Heagerty and Zeger

(1996) and the proposed orthogonalized residuals for ordinal data are in Table 4.1.

Note that positive parameter estimates from (4.10) in Table 4.1 are associated with

smaller, or more favorable, values of Oijt. Note also that although the change over time

of different altered sensation measurements did not vary, the measurements themselves

varied, with patients most likely to have favorable (small) measurements for unusual

feelings (β02), and least likely to have favorable measurements for numbness (β03).
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The effect of the sensory retraining exercises on altered sensation relative to standard

treatment is represented by β2t, t = 1, 2, 3. Although none of these parameter estimates

are significantly different from zero by themselves (at 0.05), a Wald test that β2t = 0

for t = 1, 2, 3 has an observed statistic of 10.67 with three degrees of freedom and

p = 0.014. This result indicates that the course of altered sensation over time for the

two treatment groups was significantly different.

The parameter estimates for the odds ratio model are also in Table 4.1. Given the

log scale, these estimates represent odds ratios from 6.5 (exp{α̂012}) to 15.2 (exp{α̂023}).

The parameter α012 is the log odds of having more lip sensitivity (i.e. a more favorable

result) given that unusual feelings are reduced within observation time, while α023 is

the log odds of having reduced unusual feelings given that numbness is reduced within

observation. Likewise, α013 is the log odds of increased lip sensitivity given that numb-

ness is reduced within visit, and α1 is the log odds that one altered sensation measure-

ment will be lower given that another is lower at a different visit. The orthogonalized

residuals estimate of α = (α012, α013, α023, α1, α2)′ corresponds to the odds ratios

(95% confidence intervals): 6.52 (4.37,9.72), 15.69 (9.88,24.92), 12.27 (7.70,19.56), 6.13

(4.51,8.33), and 3.87 (2.90,5.15) for α̂012, α̂013, α̂023, α̂1 and α̂2.

Also of interest in this analysis is whether the precision of association parameter

estimates in the orthogonalized residual formulation is improved relative to ALR as

proposed by Heagerty and Zeger (1996). The ratios of estimated variances for parameter

estimates in Table 4.1 are 101, 85, 87, 93 and 91% for α̂012, α̂013, α̂023, α̂1 and α̂2,

respectively, where a ratio of less than 100% indicates that the variance estimated with

the orthogonalized residuals is smaller than that for ALR.
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4.5 Simulation

A small simulation experiment was conducted to investigate the relative efficiency of

ALR to ORTH in a finite sample modeled similarly to the sensory retraining study.

Categorical response data Oij will be generated with three (C = 2) levels for subject

i = 1, . . . , K and outcome j = 1, 2, 3. Generated data will be similar to that observed

in the sensory retraining study, with the marginal mean of Y
(c)
ij = I(Oij ≤ c) dependent

on j and dichotomous covariate Ti, indicating treatment group, such that

logit
(
E[Y

(c)
ij |Xij]

)
= δc + β0j + β2jTi , (4.11)

for j = 1, 2, 3 and c = 1, 2, where β01 = 0. Half of all subjects will have Ti = 1, and

the remaining half will have Ti = 0. This data generating model represents the full

marginal mean (4.7) considered in the sensory retraining analysis at one observation

time, disregarding covariates other than Ti. For β2j = 0, j = 1, 2, 3, there is no effect

of Ti. For β21 = β22 = β23, the effect of Ti is the same across outcome j.

In addition to the marginal mean (4.11), the data generating mechanism includes

the association between outcomes Y
(c)
ij and Y

(d)
ik within subject, specified by the log

odds ratio

log
(
ψ

(a,b)
ijk

)
= α012I(j = 1, k = 2) + α013I(j = 1, k = 3) + (4.12)

α023I(j = 2, k = 3) ,

for 1 ≤ j < k ≤ 3, a = 1, 2 and b = 1, 2. Data will be generated by spec-

ifying the first two moments of (Oi1, Oi2, Oi3)′ with parameters δ = (δ1, δ2)′, β =

(β02, β03, β21, β22, β23)′, and α = (α012, α013, α023)′ taken from an analysis of the sensory

retraining data at the last observation time, where δ̂ = (−0.5, 2.4)′, β̂ = (0.5,−0.6, 0.6, 0.2, 0.4)′
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and α̂ = (2.2, 2.9, 3.0)′. Data generation is based on the method defined by Gange

(1995) for correlated ordinal data given these δ, β, and α, for K = 100 or 200 sub-

jects. The correct models (4.11) and (4.12) are used to analyze each of one thousand

realizations, and α and the standard errors of α̂ will be estimated with both orthogo-

nalized residuals and ALR for ordinal data as defined by Heagerty and Zeger (1996).

In order to evaluate the relative performance of orthogonalized residuals and ALR,

they will be compared in the estimated bias of α̂, as well as the Monte Carlo standard

errors of α̂. The relative efficiency of α̂ from the two methods in particular is of interest,

and will be approximated here by the ratio of Monte Carlo variances of α̂, where the

Monte Carlo variance of α0jk is

1000∑

s=1

(α̂
(s)
0jk − ᾱ0jk)

2/999 ,

for ᾱ0jk =
∑1000

s=1 α̂
(s)
0jk/1000. In addition to these results for α̂, results relating to the

estimated standard errors of α̂ will also be included. The bias of the standard error

estimates relative to the Monte Carlo standard errors of α̂ will be estimated, as well

as the coverage of nominally 95% confidence intervals for α̂, estimated by the percent

of 95% confidence intervals that include the true value of α.

4.5.1 Simulation results

The bias and Monte Carlo standard error of α̂ is in Table 4.2. Note that the bias of

α̂ is reduced with increasing K (as expected), and that the bias of ORTH is always

less than the bias of ALR, although the percent relative bias of α̂ never exceeds 4%

for either method. The Monte Carlo standard error for α̂ in ORTH is also always less

than that for ALR. The estimated efficiency of ALR relative to ORTH ranges from 92

to 97%.
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The bias of standard error estimators and the coverage of nominally 95% confidence

intervals are shown in Table 4.3. Although the difference in coverage rates of ORTH

and ALR confidence intervals is not large, it is notable that the coverage for ORTH

is always the same or larger than for ALR. Also note that the bias of standard error

estimators is always less than zero, so that the standard error of α̂ was underestimated

by both ORTH and ALR. The bias of the ORTH standard error estimator, however, is

always closer to zero than the bias of the ALR estimator. With respect to the Monte

Carlo standard errors, the percents relative bias of the ALR standard error estimates

are -15, -11, -10, -6, -6, and -14%, while those for the ORTH standard error estimates

are -13, -10, -7, -4, -5, and -12%.

4.6 Conclusions

Data was simulated so that the circumstances of analysis would resemble the sensory

retraining clinical trial at the last observation time, where cluster sizes are small and

associations within clusters are large. The simulated data may reasonably characterize

the sensory retraining data but was not intended to characterize a broad range of analy-

ses with ordinal data. Data with small associations between clustered observations, for

instance, were not considered, and neither was data with large clusters or with varying

cluster sizes.

Large cluster sizes in particular can affect analysis results and can pose a significant

challenge in accounting for associations. A small efficiency gain was noted here for

simulated data even with a cluster size of three, and an estimated gain in precision in

the analysis of the sensory retraining data suggest that more efficiency might be gained

with larger cluster sizes for ORTH relative to ALR as defined by Heagerty and Zeger

(1996). In efficiency and all other measures considered here, the association parameter

estimated by ORTH was shown to have at least as desirable and often more desirable
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Table 4.1: Estimates and estimated standard errors for marginal mean and pairwise log
odds ratio parameters with ALR and orthogonalized residuals in the Sensory Retraining
example. ALR estimates were calculated by the Heagerty and Zeger (1996) formulation,
and the ORTH estimates are those proposed above.

ALR ORTH

δ1 -1.956 0.2394 -1.951 0.2392
δ2 0.633 0.2294 0.635 0.2293
β02 0.234 0.0999 0.233 0.1000
β03 -0.795 0.0947 -0.795 0.0947
β12 0.667 0.1299 0.661 0.1296
β13 1.392 0.1749 1.387 0.1748
β21 -0.302 0.2394 -0.303 0.2394
β22 0.369 0.2425 0.370 0.2426
β23 0.362 0.2388 0.362 0.2389
β3 0.324 0.2099 0.324 0.2100
β4 0.433 0.2025 0.434 0.2025

α012 1.927 0.2035 1.874 0.2043
α013 2.399 0.2580 2.508 0.2378
α023 2.762 0.2523 2.753 0.2359
α1 1.740 0.1623 1.814 0.1565
α2 1.376 0.1532 1.353 0.1464

qualities than the ALR estimate, including bias in α̂ and the standard error estimator,

and coverage of 95% confidence intervals.

An advantage of ORTH over ALR is that the representation of the estimating

equations for α in a standard form (i.e., equation (4.5)) permitted the use of non-

diagonal working covariance matrix Pi to provide a more efficient estimator of α. We

conjecture that further efficiency gains are possible by introducing non-zero off-diagonal

block elements of Pi, for example, through a working correlation structure as proposed

by Zink and Qaqish (2009) for binary data.
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Table 4.2: ALR and ORTH estimates of association parameter α = (α012, α013, α023)′

for simulated ordinal data. For data with K = 100 or 200 clusters, each with j = 3
outcomes, having marginal mean (4.11) and association (4.12).

Bias of α̂ Monte Carlo SE ALR Est.

K ALR ORTH ALR ORTH Efficiency

α̂012

100 0.038 0.027 0.519 0.508 95.8
200 0.019 0.015 0.353 0.347 96.6

α̂013

100 0.077 0.067 0.581 0.564 94.2
200 0.037 0.031 0.389 0.374 92.4

α̂023

100 0.108 0.098 0.633 0.623 96.9
200 0.063 0.054 0.480 0.465 93.8

Table 4.3: Coverage of ALR and ORTH confidence intervals for α̂ = (α̂012, α̂013, α̂023)′,
as well as the average bias of the associated standard error estimates, in simulated
ordinal data. For data with K = 100 or 200 clusters, each with j = 3 outcomes, having
marginal mean (4.11) and association (4.12).

Coverage of 95% CI Bias of ŜE

K ALR ORTH ALR ORTH

α̂012

100 91.1 92.2 -0.0769 -0.0646
200 92.9 92.9 -0.0382 -0.0351

α̂013

100 93.7 94.1 -0.0556 -0.0421
200 94.6 94.8 -0.0238 -0.0147

α̂023

100 95.2 95.5 -0.0355 -0.0289
200 92.6 93.3 -0.0673 -0.0569
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Summary and Future Research

5.1 Summary of research

5.1.1 Semi-parametric efficient estimation for incomplete lon-

gitudinal binary data

For our first research topic we defined a specific form for the asymptotically semi-

parametric efficient estimator for longitudinal binary data. This estimator was applied

to data from a fifteen year cohort survey, and the efficiency of weighted generalized

estimating equations, a computationally simple inverse probability weighted estimator,

was assessed relative to that estimator for longitudinal binary data with dropout. We

show that there is efficiency to be gained upon generalized estimating equations and

the weighted generalized estimating equations in the presence of incomplete data. Al-

though the computation of the semi-parametric efficient estimator is not necessarily

straightforward, especially for large clusters, the percent efficiency gain can be signifi-

cant depending on the nature of the data being analyzed. For small clusters, in the case

where dropout rate and correlation is high, efficiency can be markedly increased even

under circumstances where generalized estimating equations is consistent for marginal

mean parameters.



5.1.2 Alternating logistic regressions with improved finite sam-

ple properties

We proposed adjustments to alternating logistic regressions and illustrated their use

with data from a cluster survey repeated over time, where cluster sizes are large and

associations within clusters are small. Analysis for cluster survey data often includes

an interest in association parameter inference, where alternating logistic regressions

is especially useful. The proposed adjustment to the ALR estimating equations did

not always provide association parameter estimates with less bias than standard ALR,

however, the reduction in bias was often marked. In addition, the variance estimators

in the adjusted estimating equations were less biased than those of standard ALR.

Variance estimates were additionally improved by using an extension of the bias-

corrected variance estimator introduced by Mancl and DeRouen (2001). Results with

simulated data indicate that the proposed small sample adjusted ALR is an appropri-

ate analysis for the chosen subset of underage drinking data, and possibly for other

repeated cluster survey data. Overall we have shown that ALR can be applied with

increased accuracy to small samples, and that the proposed method improves inference

for association parameters in repeated binary data when applying alternating logistic

regressions.

5.1.3 Orthogonalized residuals for ordinal data

We proposed an extension of an alternate formulation of alternating logistic regressions

for ordinal data. This alternate formulation of ALR improves upon that defined by

Carey et al. (1993) by resolving the dependence of the sandwich variance estimate on

observation order, and represents the association estimating equations in the standard

estimating equations format. In addition to these improvements, the proposed method
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was shown to increase the efficiency with which association parameters were estimated

with simulated data relative to the ALR for ordinal data proposed by Heagerty and

Zeger (1996). In efficiency and also for other considered measures, including coverage

of approximate confidence intervals, the association parameters estimated by ORTH

were shown to have at least as desirable and often more desirable qualities than the

ALR estimate defined by Heagerty and Zeger (1996).

5.2 Future research

5.2.1 Semi-parametric efficient estimation for incomplete lon-

gitudinal binary data

A distinct disadvantage of the weighted GEE approaches we considered is their require-

ment that incomplete data be monotonically missing, and thus do not use all available

data. There are existing methods for intermittently missing data, including multiple

imputation (Paik, 1997), and those of Lin et al. (2004), who propose a class of inverse

intensity-of-visit process-weighted estimators in marginal regression models that allow

for arbitrary patterns of missing data. A possible extension of our proposed procedure

would be to impute response data at the intermittently missing time points, prior to

application of the inverse-probability weighted semi-parametric efficient estimator.

5.2.2 Alternating logistic regressions with improved finite sam-

ple properties

The variations considered in our analysis with alternating logistic regressions and sim-

ulated data may fairly represent a cluster survey repeated over time, but there are

circumstances where alternating logistic regressions are often used that cannot be rep-
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resented or interpolated from our results. Large associations in particular were not

considered, and neither were data with small clusters or with varying cluster sizes. The

proposed adjustments were shown in our simulation study to be useful in that they

estimate association parameters with less bias than standard ALR, consistently across

K and for varying marginal means, but may not be the most desirable for small cluster

sizes or when associations are relatively large. The most effective analysis of correlated

binary data for making inference on association parameters in this setting is an out-

standing issue. The usefulness and possible improvement upon standard ALR in this

case would complement our research so far on related topics.

5.2.3 Orthogonalized residuals for ordinal data

We observed a small efficiency gain for simulated data for small cluster sizes, and an

estimated gain in precision in the analysis of the sensory retraining data suggest that

more efficiency might be gained with larger cluster sizes for ORTH relative to ALR as

defined by Heagerty and Zeger (1996). Additional efficiency could be gained from a

different specification of the covariance matrix in the association estimating equations.

In orthogonalized residuals Zink and Qaqish (2009) for binary data, the variance in

the association estimating equations was defined such that a non-zero exchangeable

correlation could be estimated. This correlation would not necessarily be of analytic

interest, although its estimation for ordinal data could improve further upon the effi-

ciency of association parameter estimates by more accurately representing the actual

variance of the association residual.
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Appendix

Asymptotic distribution of ORTH estimators

The distribution of θ = (β′,α′)′, is developed, in the proposed method of orthogonal-

ized residuals for ordinal data. Marginal mean parameter β is a p×1 vector, and α is a

q×1 vector of marginal association parameters. The estimating equations for marginal

mean and association parameters are

Uβ(θ) =
K∑

i=1

Uβi(θ) =
K∑

i=1

D′iV
−1
i (Yi − µi) = 0 ,

Uα(θ) =

K∑

i=1

Uαi(θ) =

K∑

i=1

S′iP
−1
i Ti = 0 .

For Uβ, matrix Di = ∂µi/∂β and Vi = var(Yi). For estimating equation Uα, Pi ≈

var(Ti), and the vector Ti has elements T
(a,b)
ijk such that

T
(a,b)
ijk = Y

(a)
ij Y

(b)
ik − { µ

(a,b)
ijk + b

(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) } .

The partial derivative matrix Si = E [−∂Ti/∂α
′] = is defined by vectors E

[
−∂T (a,b)

ijk /∂α
]

such that

E

[
−
∂T

(a,b)
ijk

∂α

]
=

{
1

µ
(a,b)
ijk

+
1

µ
(a)
ij − µ(a,b)

ijk

+
1

µ
(b)
ik − µ

(a,b)
ijk

+
1

1− µ(a)
ij − µ(b)

ik + µ
(a,b)
ijk

}−1

Z′ijk .

The following is a general heuristic argument that
√
K(θ̂− θ) is asymptotically multi-

variate normal. For a more technical illustration, see pages 76-78 of the dissertation of

Richard Zink (2003) for the asymptotic behavior of orthogonalized residuals for binary
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data. Define Ui(θ) = (U′βi(θ),U′αi(θ))′ and U(θ) =
∑K

i=1 Ui(θ).

Theorem 1.
√
K(θ̂− θ) converges in distribution to MVN (0,Σ) for matrix Σ, as

K →∞.

Corollaries:

(i)
√
K(θ̂ − θ)

p−→ −
√
K
[
∂
∂θ

U(θ)
]−1

U(θ).

(ii) K−
1
2 U(θ) converges in distribution to MVN

(
0, limK→∞K−1

∑K
i=1 Γi

)
, for Γi =

var( Ui(θ) ).

(iii) K−1 d
dθ

U(θ) converges in probability to K−1 D , where D = E
[
∂
∂θ

U(θ)
]
.

Proof Theorem 1 . Note that

√
K(θ̂ − θ)

p−→ −
√
K

[
∂

∂θ
U(θ)

]−1

U(θ)

= −
√
K

[
K−1 ∂

∂θ
U(θ)

]−1

K−1U(θ)

= −
[
K−1 ∂

∂θ
U(θ)

]−1

K−
1
2 U(θ) . (A.1)

Given (ii) and (iii) and by Slutsky’s Theorem (Sen and Singer (1993), Theorem

3.4.3), (A.1) converges in distribution to MVN
(
0, limK→∞KD−1

(∑K
i=1 Γi

)
D−1

)
, so

√
K(θ̂ − θ)

D−→ MVN

(
0, lim

K→∞
KD−1

(
K∑

i=1

Γi

)
D−1

)
.
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Corollary (i). Expanding U(θ̂) about θ̂,

0 = U(θ̂) ≈ U(θ) +
∂

∂θ
U(θ) (θ̂ − θ) +

1

2
(θ̂ − θ)′

[
∂2

∂θ ∂θ′
U(θ)

]
(θ̂ − θ) .

Under regularity conditions, the third term on the right converges in probability to 0

by the Weak Law of Large Numbers (WLLN; Sen and Singer (1993), Theorem 2.3.7),

so that

(θ̂ − θ) = −
[
∂

∂θ
U(θ)

]−1

U(θ) + op(1)

√
K(θ̂ − θ)

p−→ −
√
K

[
∂

∂θ
U(θ)

]−1

U(θ) .

Corollary (ii). E [Ui(θ)] = 0 and var( Ui(θ) ) = Γi. Under certain regularity condi-

tions, by the multivariate central limit theorem, (Serfling (1980), Theorem B, p30),

K−
1
2 U(θ)

D−→ MVN

(
0, lim

K→∞
K−1

K∑

i=1

Γi

)
.

Corollary (iii). Let E
[
∂
∂θ

U(θ)
]

=
∑K

i=1 Di = D. If the Markov condition (Sen and

Singer (1993), Theorem 2.3.7) holds for each element of ∂
∂θ

U(θ), then the Markov

condition holds for the matrix ∂
∂θ

U(θ), and

K−1 d

dθ
U(θ)

p−→ K−1 D .
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Variance in ORTH association estimating equations

Note that residual T
(a.b)
ijk is defined for 1 ≤ j < k ≤ ni and 1 ≤ a, b ≤ C such that

T
(a,b)
ijk = Y

(a)
ij Y

(b)
ik − { µ

(a,b)
ijk + b

(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) } ,

and E
(
T

(a,b)
ijk

)
= 0. Noting that E

(
Y

(a)
ij Y

(b)
ik Y

(c)
ij Y

(d)
ik

)
= E

(
Y

(a∧c)
ij Y

(b∧d)
ik

)
= µ

(a∧c,b∧d)
ijk ,

therefore cov(T
(a,b)
ijk , T

(c,d)
ijk ) is determined by

E
(
T

(a,b)
ijk , T

(c,d)
ijk

)
=

(
Y

(a)
ij Y

(b)
ik − { µ

(a,b)
ijk + b

(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) }

)
×

(
Y

(c)
ij Y

(d)
ik − { µ

(c,d)
ijk + b

(c,d)
ijk:j(Y

(c)
ij − µ(c)

ij ) + b
(c,d)
ijk:k(Y

(d)
ik − µ

(d)
ik ) }

)

= E
(
Y

(a)
ij Y

(b)
ik Y

(c)
ij Y

(d)
ik

)

−E
(
Y

(a)
ij Y

(b)
ik { µ

(c,d)
ijk + b

(c,d)
ijk:j(Y

(c)
ij − µ(c)

ij ) + b
(c,d)
ijk:k(Y

(d)
ik − µ

(d)
ik ) }

)

−E
(
Y

(c)
ij Y

(d)
ik { µ

(a,b)
ijk + b

(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) }

)

+E
(
{ µ(a,b)

ijk + b
(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) }

× { µ(c,d)
ijk + b

(c,d)
ijk:j(Y

(c)
ij − µ(c)

ij ) + b
(c,d)
ijk:k(Y

(d)
ik − µ

(d)
ik ) }

)

= µ
(a∧c,b∧d)
ijk

−µ(c,d)
ijk E

(
Y

(a)
ij Y

(b)
ik

)
− b(c,d)

ijk:jE
(
Y

(a∧c)
ij Y

(b)
ik

)
+ µ

(c)
ij b

(c,d)
ijk:jE

(
Y

(a)
ij Y

(b)
ik

)

−b(c,d)
ijk:kE

(
Y

(a)
ij Y

(b∧d)
ik

)
+ µ

(d)
ik b

(c,d)
ijk:kE

(
Y

(a)
ij Y

(b)
ik

)

−µ(a,b)
ijk E

(
Y

(c)
ij Y

(d)
ik

)
− b(a,b)

ijk:jE
(
Y

(a∧c)
ij Y

(d)
ik

)
+ µ

(a)
ij b

(a,b)
ijk:jE

(
Y

(c)
ij Y

(d)
ik

)

−b(a,b)
ijk:kE

(
Y

(c)
ij Y

(b∧d)
ik

)
+ µ

(b)
ik )b

(a,b)
ijk:kE

(
Y

(c)
ij Y

(d)
ik

)

+E
(
{ µ(a,b)

ijk + b
(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) }

× { µ(c,d)
ijk + b

(c,d)
ijk:j(Y

(c)
ij − µ(c)

ij ) + b
(c,d)
ijk:k(Y

(d)
ik − µ

(d)
ik ) }

)
.
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It can be shown that

E
(
{ µ(a,b)

ijk + b
(a,b)
ijk:j(Y

(a)
ij − µ(a)

ij ) + b
(a,b)
ijk:k(Y

(b)
ik − µ

(b)
ik ) }

× { µ(c,d)
ijk + b

(c,d)
ijk:j(Y

(c)
ij − µ(c)

ij ) + b
(c,d)
ijk:k(Y

(d)
ik − µ

(d)
ik ) }

)

= −(µ
(a)
ij b

(a,b)
ijk:j + µ

(b)
ik b

(a,b)
ijk:k) (µ

(c)
ij b

(c,d)
ijk:j + µ

(d)
ik b

(c,d)
ijk:k) + µ

(a,b)
ijk µ

(c,d)
ijk

+b
(a,b)
ijk:jb

(c,d)
ijk:jE

(
Y

(a∧c)
ij

)
+ b

(a,b)
ijk:kb

(c,d)
ijk:kE

(
Y

(b∧d)
ik

)

+b
(a,b)
ijk:jb

(c,d)
ijk:kE

(
Y

(a)
ij Y

(d)
ik

)
+ b

(c,d)
ijk:jb

(a,b)
ijk:kE

(
Y

(c)
ij Y

(b)
ik

)
.

Collecting terms and substituting the above, cov(T
(a,b)
ijk , T

(c,d)
ijk ) simplifies to

µ
(a∧c, b∧d)
ijk − b(a,b)

ijk:jµ
(a∧c, d)
ijk − b(c,d)

ijk:jµ
(a∧c, b)
ijk − b(a,b)

ijk:kµ
(c, b∧d)
ijk

−b(c,d)
ijk:kµ

(a, b∧d)
ijk + (µ

(c)
ij b

(c,d)
ijk:j + µ

(d)
ik b

(c,d)
ijk:k − µ

(c,d)
ijk )µ

(a,b)
ijk

+(µ
(a)
ij b

(a,b)
ijk:j + µ

(b)
ik b

(a,b)
ijk:k − µ

(a,b)
ijk )µ

(c,d)
ijk + b

(a,b)
ijk:jb

(c,d)
ijk:kµ

(a,d)
ijk

+b
(c,d)
ijk:jb

(a,b)
ijk:kµ

(c,b)
ijk + b

(a,b)
ijk:jb

(c,d)
ijk:jµ

(a∧c)
ij + b

(a,b)
ijk:kb

(c,d)
ijk:kµ

(b∧d)
ik

−(µ
(a)
ij b

(a,b)
ijk:j + µ

(b)
ik b

(a,b)
ijk:k)(µ

(c)
ij b

(c,d)
ijk:j + µ

(d)
ik b

(c,d)
ijk:k) + µ

(a,b)
ijk µ

(c,d)
ijk ,

the form shown in (4.6).

ORTH binary equivalence

Non-zero elements of variance matrix Pi ≈ var(Ti), for 1 ≤ a, b, c, d ≤ C have the

form given above and in (4.6), for integer valued C ≥ 1. When outcome Oij is binary,

C = 1 and the block diagonal matrices in Pi are scalars. Non-zero elements of Pi

in this case are variances of elements Tijk. Also for binary Oij and Oik, with C = 1,
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a = b = c = d = 1, reducing (4.6) to

var(Tijk ) = µijk − bijk:jµijk − bijk:jµijk − bijk:kµijk

−bijk:kµijk + (µijbijk:j + µikbijk:k − µijk)µijk

+(µijbijk:j + µikbijk:k − µijk)µijk + bijk:jbijk:kµijk

+bijk:jbijk:kµijk + bijk:jbijk:jµij + bijk:kbijk:kµik

−(µijbijk:j + µikbijk:k)(µijbijk:j + µikbijk:k) + µijkµijk

= µijk − 2bijk:jµijk − 2bijk:kµijk

+2(µijbijk:j + µikbijk:k − µijk)µijk + 2bijk:jbijk:kµijk

+b2
ijk:jµij + b2

ijk:kµik − (µijbijk:j + µikbijk:k)
2 + µ2

ijk ,

which after some manipulation is equivalent to

var(Tijk) =
µijk(µij − µijk)(µik − µijk)(1− µik − µij + µijk)

µijµik(1− µij − µik + 2µijk)− µ2
ijk

.
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