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Abstract

LINGXING YAO: Viscoelasticity at Microscopic and Macroscopic Scales:
Characterization and Prediction.

(Under the direction of M. Gregory Forest and Sorin M. Mitran.)

In this dissertation, we build mathematical tools for applications to the transport

properties of human lung mucus.

The first subject is the microscopic diffusive transport of micron-scale particles in

viscoelastic fluid. Inspired by the technique of passive microrheology [58], we model

the motion of Brownian beads in general viscoelastic fluids by the generalized Langevin

equation (GLE) with a memory kernel (the diffusive transport modulus). The GLE is a

stochastic differential equation, which admits a discrete formulation as an autoregressive

(AR) process. We further use exponential series for the memory kernel in the GLE, in

which case the GLE has an explicit formulation as a vector Ornstein-Uhlenbeck process.

In this framework, we can develop fast and accurate direct algorithm for pathogen

transport in viscoelastic fluids, and the Kalman filter and maximum likelihood method

give a new method for inversion of the memory kernel from experimental position time

series. The framework is illustrated with multimode Rouse and Zimm chain models.

In the second topic, we revisit the classical oscillatory shear wave model of Ferry

et al. [23], and extend the theory for active microrheology of small volume samples of

viscoelastic fluids. In Ferry’s original setup, oscillatory motion of the bottom plate gen-

erates uni-directional shear waves propagating in the viscoelastic fluid. Our colleague

David Hill built a device to handle small volume viscoelastic samples. We extend the

Ferry analysis to include finite depth and wave reflection off the top plate. We further

consider nonlinear viscoelastic constitutive laws.

The last problem considered is the numerical simulation of viscoelastic fluid flow,

which will eventually be used to predict bulk transport of mucus layers. We start with

the analysis of the system of model equations and demonstrate the difficulty of a robust

numerical scheme. We develop an extension of projection method, which involves a new
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treatment of stress evolution based on stress splitting in the numerical scheme and show

the advantage over previous work.
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Chapter 1

Introduction: basic concepts and

methodology

The main concerns of this thesis surround the rheology of human lung mucus. The

research presented here has arisen from the Virtual Lung Project (VLP) in UNC, whose

long term goal is [33]: to develop an integrated computational model that will be able to

predict and evaluate truly effective therapeutic strategies . The specific topics addressed

are: (1) bulk rheological characterization; (2) diffusive transport of pathogens; and (3)

bulk hydrodynamic transport.

Human lung mucus covers and protects most of the airway surface in the lung. The

mucus layer is transported in healthy humans by coordinated cilia, and in compromised

situation, by cough. The clearance of pathogen strapped in mucus is a critical defense

mechanism of the lung system. The three topics addressed in this thesis contribute to

the overall predictive goal of the VLP, namely to model the simultaneous flow of the

mucus layer and the diffusion of pathogens inside the mucus layer.

One of the key points in the study of lung system is that the length scales of the

objects vary from micron/nano meter to centimeter. Even a focus on just mucus layer

presents multi scale challenges. As a consequence of this complexity of structure, the

rheological properties manifest different characterization at corresponding scales and

then request proper treatments based on those features. For the main subjects we

want to address: the stochastic characterization of diffusion of pathogen in mucus layer

makes the tools of statistical analysis more plausible; and the clearance of mucus layer



of human lung, will be likely better modeled by the hydrodynamic transport equations

coupled with bulk constitutive laws of polymeric system.

According to the fact of scale dependence, we are trying to identify our targets at mi-

cro and macro scales, and then present the corresponding statistical and deterministic

methods. At microscopic scale, Mason and Weitz [58] initiated the passive microrhe-

ology protocol to measure the complex modulus with micron size beads embedded in

material as tracers. Mason and Weitz’s method (M-W method) was originally intended

to infer bulk viscoelastic properties from diffusive fluctuations of tracer beads. This

was later realized to be problematic, since a probe particle will modify the local en-

vironment depending on chemical interactions of the viscoelastic media. Hence, the

method is ideal for studying diffusive properties, one of the key issues in human lung

defense. As proposed by Forest and Elston [26], we start the study from the dynamics

of single bead in complex fluid and model the randomness of the material response with

prescribed stochastic process, the formulation will help us set up framework that allow

us do easy inversion based on time evolution of bead positions and then reveal the local

environment detected by the beads, and we also get fast and stable direct prediction

based on those information we collect. The deterministic information, or say ensembles

average, could also be calculated easily [26].

Inversion of rheological property in controlled experiments is always important in the

characterization of viscoelasticity. Our colleagues (D. Hill and Richard Superfine from

VLP) build micro, parallel-plate rheometer, and use bead tracking to measure shear

wave propagation features. We then study the active microrheology of the experiment

of the device. We note the problem we are faced is small volume samples of viscoelastic

fluids, and special care should be taken for the finite dimension. We revisit the classical

oscillatory shear wave model of Ferry et al. [23, 1], and extend it to include the effect

of finite depth within linear viscoelasticity and then to include the nonlinearity with

nonlinear constitutive laws.

The last topic we treat here is the transport of the mucus layer itself. Due to the

highly elastic effect from polymeric intergradient of mucus, the transport show strong

non-Newtonian (viscoelastic) signatures. For numerically solving the non-newtonian

behavior of the mucus flow, it is very important to cast proper numerical scheme to

fully resolve the system. There are lots of previous works on the issue of numerical study

of viscoelastic transport (cf. [67], there is a nice summary about numerical schemes

proposed), and they all face difficulty of getting stable results for high Weissenberg
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number fluid flow. We present a new scheme which handles the time evolution of

velocity profile together with stress growth based on the correct physical interpretation

of stress components, and we treat the update of the whole system physically and

expect the better performance of our new method. We will show the numerical results

to verify our proposals.

In the Introduction, we present the basic background and give the fundamental con-

cepts. In Chapter 2, we review the passive microrheology and present our treatment of

microscopic diffusion in viscoelastic materials based on the generalized Langevin equa-

tion model. In Chapter 3, we focus on inverse methods to determine bulk rheological

properties of the mucus layer, based on an extension of Ferry’s classical shear wave

experiment [24] to finite depth and nonlinearity. In Chapter 4, we give a new numer-

ical scheme based on a proper treatment of the elastic stress in a canonical nonlinear

model of viscoelastic flow. We conclude in Chapter 5 with a list of current and future

projects.

1.1 Motivation: the Virtual Lung Project

The discussion in this section is based on the UNC Virtual Lung Project (VLP)

[33].

The lung system behaves as the interface for the air and human body: it inhales

air and then exchanges oxygen. During breathing, various foreign objects including

bacteria, viruses, and dust particles enter and must be cleared. Pathogens are usually

trapped by lung mucus and cleared by mucus transport. Between the mucus layer and

the lung tissue, periciliary liquid (PCL) lies, which serves as a bathing solution for the

cilia.

From the above description, we see it is critical to keep lung system functional and

healthy. But there are some diseases causing failure of mucus transport and increase the

probability for people of getting infections. Cystic fibrosis (CF) is one kind of genetic

diseases that makes patients’ cilia lose functionality and prevents cilia development.

Without functional cilia, mucus transport in lung system will be very difficult and the

defense functionality of lung system is greatly jeopardized. Traditional treatment for

cystic fibrosis patients focus on the modification of transport properties of the ASL to

speed up the mucus clearance. The VLP aims to develop a computational model to
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the efficiency of drugs delivery, and the improvement on therapeutic treatment for CF

patients’ pulmonary system. For example, the model of the transport of drugs through

the airway surface liquids (mucus and PCL) by diffusive and advective processes will

make a better understanding of drug delivery in lung available and help to improve the

drug efficiency by a better prediction of diffusive behavior of drugs.

In human mucus, the diffusive transport properties are greatly affected by different

types of biological macromolecules, which are usually called mucin. Those high disper-

sity and high molecular weight bio-polymers contribute to the elastic properties of the

mucus and make the thin mucus layer viscoelastic in nature. So the model of diffu-

sive transport of small particles in the mucus layer demands the capability describing

diffusion in complex material. We will use the first part of this manuscript to present

the method we proposed for this model problem. And we note here that the model we

set up is capable of modeling viscoelastic diffusion and presents easy inversion on the

parameters that are required to reconstruct diffusive properties.

For the mucus clearance, hydrodynamic transport is very important. We know

one driving source is from epithelial cilia which grow on the surface of living cells

and are immersed in the PCL layer, which is low viscosity fluid. Those thousands

of cilia are about 7µm long and beat in a frequency of 10 ∼ 15Hz. Single cilium

beating costs biological energy (ATP) and forms fast stroke and slow relaxation cycle

during one period of beat. When the beating of large amount of cilia synchronizes,

the collective motion forms a metachronal wave with much longer wave length than

cilia height at the bottom of mucus layer and supply the primary driving source to the

mucus transport. At the current stage of research progress, the details of momentum or

stress communication between cilia and mucus movement remain quite primitive, i.e.,

the boundary conditions for the mucus and PCL/cilia interface is not fully understood

yet. Instead, we focus on a simple problem where the mucus layer is isolated, and we

study its flow by virtue of different driving force. These models and codes are used

in conjunction with experiments by David Hill and Rich Superfine to first characterize

the viscoelastic properties of mucus, and then to use those constitutive equations to

simulate bulk transport. We note another driving force of mucus clearance is from the

air drag induced by cough. The maximal air flow speed of cough could reach meter per

second, but the continuous branching of the lung system will significantly reduce the

of air speed, and we know this driving is not the primary driving force.

In healthy lung system, the advection transport of mucus is propelled by cilia beat-
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ing and air drags, as we mentioned above. Those cilia are immersed in the PCL and

the PCL is low viscosity newtonian fluid and makes the beating more effective. Ex-

periments on cell cultures show that the cilia beating generates shear velocity profile

in mucus layer and the cilia force exerted on the mucus layer display asymmetric cycle

that form metachronal waves and the propulsion force or stress will be transformed

to mucus layer. The major difficulty now is that the stress applied by cilia directly

on the mucus is not clear due to lack of detail understanding of interaction between

cilia tip and mucus layer. Even there are some experimental evidences showing there

might be a thin layer ‘lubricant’ underneath mucus layer and above cilia tips, whether

the cilia carpet slide under mucus or actually the tips penetrate into the mucus layer

is not confirmative. Blake’s [77] contraction layer model will make more sense if the

lubricant layer is confirmed. At the moment, it will be wise for us to isolate the model

to the motion of the mucus layer itself, and to take reasonable assumption on the stress

level exerted by cilia wave to the mucus layer to close the model system. We will take

a nonlinear viscoelastic model and computation of the mucus flow phenomena as the

second part of the thesis. The full coupling of cilia motion and mucus flow will be our

future research topic.

1.2 Fundamentals of viscoelasticity

Since the models being applied are all based on the viscoelasticity of the material,

we will present basic conceptual pictures in this part of introduction. All the contents of

this section are fundamental rheological concepts and can be found in standard rheology

textbooks. The restate of those concepts is just for the preparation to the derivation

of model later, and the references we are following here are mainly those classics of

Bird[7], Ferry[24], Larson[46] and Macoscko[54].

The key feature of viscoelastic materials is their response to the stress/force applied

to them. For viscous fluid, we know the shear stress τ is proportional to the velocity

vx (velocity along x coordinate) gradient, with a constant ηs (viscosity, constant in the

sense independent on the velocity or the gradient),

τxy = ηs
dvx
dy

. (1.1)
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We note in viscoelastic materials, the configurations of molecules are much more com-

plicated than in simple viscous fluid, and the dimension of the molecules in viscoelastic

fluids are usually very large compared to molecules in simple fluid. While under strain

or stress, the change of configuration of those huge macromolecules will store stress and

relax. This feature leads to the fact that the response of viscoelastic material to stress

depends not only on current deformation state, but also on whole deformation history

of the material, and this relation is usually casted as

τxy(t) =

∫ t

−∞
G(t− s)dvx(s)

dy
ds, (1.2)

where G(t) describes the dependence of history of deformation and is usually called

relaxation modulus, and we can define η0, the zero shear rate viscosity as

η0 =

∫ ∞
0

G(t)dt (1.3)

We note G(t), determined by viscoelasticity of materials, can be complicated func-

tion. And we also see if G(t) is replaced by Dirac Delta function, e.g. G(t) = ηsδ(t),

the relation (1.2) is reduced to (1.1), hence the viscous stress is recovered. To better

understand this concept, we choose the simple Maxwell model as an illustration. Ac-

cording to the Maxwell model, relaxation modulus G(t) of the Maxwell material is (λ

is the relaxation time)

G(t) = G0e
− t
λ (1.4)

By taking derivative with respect to time t on both sides of (1.2), the relation can

be written as
dτxy
dt

+
1

λ
τxy = G0γ̇ = G0

dvx
dy

, (1.5)

where γ̇ is the rate of strain. The equation of (1.5) for Maxwell model defines the

evolution of the extra stress component τxy.

In general, the shear modulus is the characterization of the viscoelasticity of mate-

rials and can not be assumed as a simple exponential function. The main focus on the

modeling of complex fluid is to get the modulus information and other related proper-

ties can be derived afterwards. For the purpose of numerical simulation, this modulus

6



is also important since it defines the relationship between the stress components and

the rate of strain, which is the key part for describing the fluid transport. We note

that the shear modulus can be approximated by a series of exponential functions with

relaxation time, λi, and the weighting constants Gi (the Maxwell modes)

G(t) =
N∑
i=1

Gie
−t/λi (1.6)

In the experimental side of reality, the transformation signals of G(t) are more easily

measured and then more important. The physical interpretation of the transformation

can be explained based on the viscoelastic response to sinusoidal input information.

And the formal mathematical definition can be formulated by the unilateral Fourier

transformation, and is termed as complex modulus which is the shear modulus infor-

mation in the frequency domain

G∗(ω) =iω

∫ ∞
0

G(s)e−iωsds = G
′
+ iG

′′

=

∫ ∞
0

ωG(s) sinωsds+ i

∫ ∞
0

ωG(s) cosωsds

(1.7)

in which G
′
(ω) is termed as storage modulus and G

′′
as loss modulus. And we can also

define complex viscosity η∗

η∗(ω) = η
′ − iη′′ =

G∗

iω
=
G
′′

ω
− iG

′

ω
(1.8)

where η
′

is dynamic viscosity.

Most of the frequency dependent experiments will give us complex modulus at dis-

crete frequency, and for the purpose of simulation of complex fluid flow, we expect to

invert those experimental information back to time domain for our model calculation.

Currently, the commonly used inversion techniques usually posit formula of shear mod-

ulus and fit with unknown time and modulus. For example, the most popular inversion

of relaxation spectrum takes the approximation of the series of Maxwell model and the

7



important complex modulus is

G′ = ω

∫ ∞
0

G(s) sinωsds
Maxwell
=⇒

N∑
k=0

Gk
ω2λ2

k

1 + ω2λ2
k

(1.9)

G
′′

= ω

∫ ∞
0

G(s) cosωsds
Maxwell
=⇒

N∑
k=0

Gk
ωλk

1 + ω2λ2
k

. (1.10)

We should note all the concepts here are at macroscopic state and are used when

we present the inversion of viscoelasticity by shear wave model in the thesis.

1.3 Proposals at micro and macro scales

1.3.1 Small length scale problem

The microscopic structure of material determines the local environment of small

particles embedded in the material. For modeling purpose, we assume micron size

passive beads embedded in mucus can detect the signal corresponding to the diffusive

property at the length of interest, and then we can use tracer particles to refer the

fluids information. We want to model the tracer dynamics so we can further predict

the diffusion of drug or bacteria in mucus. Instead of dealing with macroscopic rheo-

logical problem, the idea of microrheology, introduced by Mason and Weitz, of using

thermal fluctuation of tracer embed in complex fluid to infer the rheological property at

microscopic scales, is sketched in the following first. And then, inspired by the idea of

microrheology, we focus on the simulation and inverse characterization of viscoelastic

system at small scales, and propose our tools to microscopic diffusions.

In the model of the diffusion of Brownian particles in viscous fluids, one can think

the tiny disturbances to Brownian beads are the collective effects of huge number

simultaneous interactions arising from collisions between beads and small molecules

of viscous fluid. Naturally, one would assume the random effect can be averaged to a

force randomly applied on the tracer by the viscous fluid. Then the motion of Brownian

particles is determined by this random driving force and the drag force experienced by

the particles. Those two type of forces are actually from the same origin and Einstein

8



established the their relation with the well known fluctuation dissipation (F-D) relation

[13, 40]. We note the mathematical model for Brownian particle is the well known

Langevin equation [13, 9].

Following this conceptual picture of molecule collisions, we can expect the behavior

of the passive tracer dispersed in complex fluids is more complicated than that of

Brownian particles immersed in viscous fluid. We know, in the surrounding environment

of beads in complex fluid, there are not only small molecules which apply fast dissipative

forces to the tracer, but also some bigger (compared in size to the bead itself) objects

which will cause elastic retardation of the bead motion. The immediate consequence

is that the drag force on the retarded tracers will not be just proportional to the

velocity as in viscous fluid, but usually dependent on the history of the tracer velocity

too. The more proper way of describing this erratic motion is proposed long time

ago, which is a phenomenological description by the generalized Langevin equation (cf.

[41, 40, 92, 13, 29]), with a kernel function representing the memory effect of materials

on the bead velocity and a random force modeling the randomly driving sources of the

fluid. As analogous to the case of the Brownian motion in viscous fluids, we expect the

connection between the random force f and the memory effect. And at least at or near

the equilibrium state, the general fluctuation dissipation (F-D) theorem informs us the

correspondence [13, 41, 29].

Starting from the model of the generalized Langevin equation, Mason and Weitz

[58, 57] introduced the idea of microrheology. In that theoretical work, they made the

assumption that the Stokes-Einstein relation can be extended to all frequency instead

of only zero frequency, which is usually referred as the generalized Stokes-Einstein rela-

tion. They also ignored the inertia effect of small tracer beads (radius a) in the model

by arguing the inertia can be neglected as long as the frequency (ω) is not high enough

to make the inertia important to their experiments. Together with some causality as-

sumptions on the correlation of force and velocity, they established the correspondence

between the complex modulus of the material, G∗(ω), and the unilateral Fourier trans-

formation (Fu) of the mean square displacement (MSD, 〈42r(t)〉) of passive tracers

[58]:

G∗(ω) =
kBT

πaiωFu{〈4r2(t)〉}
, (1.11)

where kB is the Boltzmann constant and T is the temperature.

Measurements on positions of thermally passive tracers in viscoelastic fluids can be
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ensemble averaged to get the MSD. From the MSD information we can determine the

complex modulus thereafter with the relation (1.11). After obtaining complex modulus,

the discrete relaxation spectrum in time domain can be obtained by the standard in-

verse characterization methods developed in bulk rheology. This methodology is quite

successful for some applications as they reported in the series of papers [58], but con-

cerns about the applicability to material with heterogeneity and biological system are

soon raised[43], and people realize the particle diameter relative to the equilibrium

length scales of the polymer solution [85]. For the biological system we are interested

in, the way of expressing this situation is that the bead fluctuations reflect the lin-

ear viscoelastic moduli of the host soft matter, the bead geometry, and bead-solvent

chemical interactions.

When we revisit this microrheology framework from the very beginning, we real-

ize that the generalized Langevin equation is a proper model equation for Brownian

motion in viscoelastic materials because it can include the memory effect on velocity

retardation in the dynamics of passive tracers. Then the fluctuation dissipation theo-

rem should be the key point of characterizing complex fluid systems since it gives the

explicit connection between material property (thermal force of material to the tracer)

and the measurable dynamics (tracer trajectories of positions). If we can link model

descriptions of the material property and the memory effect based on the underlying

law of fluctuation dissipation theorem, we will establish the proper way of connecting

material property and measurable dynamics.

Inspired by the passive microrheology idea, we model the motion of Brownian beads

(or similar objects) by the generalized Langevin equation and we can choose proper

stochastic process to represent the random force. The memory kernel corresponding to

the random process will be the determined based on the fluctuation dissipation theorem

to close our model system. The parameters defining the stochastic process will also be

fitting parameters in the model system to recover the material property.

In this framework, we study the GLE from the point of view of stochastic equation

and take it as a representation for time evolution of bead positions. The time series

of potions can then be analyzed with powerful statistical tools established for other

statistical subjects. Since there are stable and accurate regression tools available, we

will get good fitting inversion results in this statistical model. We will explain this

idea and focus on the modeling and analysis in the first problem discussed in this

dissertation.

10



1.3.2 Study of bulk properties

At continuum level, the hydrodynamic momentum equation governs the motion of

fluids

ρ(
∂v

∂t
+ (v ·∇)v) = ∇ · (−pI + τ ), (1.12)

where ρ is the material density and p is the hydrostatic pressure. τ in (1.12) is the

extra stress, which can include viscous and elastic parts and is described by proper

constitutive laws according to choices of material models. For experimental and the-

oretical investigations of complex material, different type of constitutive relations are

proposed to capture the characteristics of viscoelasticity, and at macroscopic scale,

they are mainly presented either in differential equation form or integral equations.

For example, the Oldroyd-B differential constitutive law is defined as

λ1
∇
τ +τ = 2η0(D + λ2

∇
D), (1.13a)

Or the linear integral constitutive law

τ (t) =

∫ t

−∞
G(t− s)D(s)ds, (1.13b)

where G(t) is shear modulus. In (1.13a), the convected derivative
∇
τ is defined as

∇
τ=

∂τ

∂t
+ (v · ∇)τ −∇v · τ − τ · ∇vT , (1.14)

and rate of strain tensor D is defined as:

D =
1

2
(∇v +∇vT ). (1.15)

With incompressibility constraint ∇ · v = 0, equations (1.12) and (1.13a) or (1.12)

and (1.13b) will give us complete system for viscoelastic model. And we further note

with dimension reduction, the system will be greatly simplified and analyzed in detail.

By virtual of the simplification, we will study the shear wave model as a tool of inversion

for viscoelastic property and prediction of one dimension transport.

11



For more general situations, no matter which type of constitutive equations adopted,

we have to solve the momentum equation and the evolution equation for extra stress as

a whole system, and analytical results are usually not available. So we try to use the

numerical solution as a tool for flow predictions. From previous results presented in the

literature, we see it is very difficult to get stable numerical results for viscoelastic fluid

dynamics problems. When people set up numerical schemes to simulate those appli-

cations like polymer processing, film generation, and injection molding, they face the

‘mysterious’, so called ‘high Weissenberg number’, difficulty [67, 35]. The Weissenberg

number basically describes the extent of how elastic the fluid can be, and is usually

defined as

We =
UL

λ
, (1.16)

where λ is the relaxation time and U is a characteristic fluid velocity and L is a char-

acteristic length.

Finite element, finite difference, and finite volume methods are proposed to get

numerical solutions of viscoelastic fluid flow, but almost all of them encounter the fail-

ure of convergence at high Weissenberg number, where the fluid is believed with high

elasticity. The methods capturing the hyperbolicity of the system soon were suggested

[35], and the well-poseness property of the discretization was taken into consideration

too. After decades of exploration, finite element method gains most achievements and

is the most popular tool for numerical simulations of polymer processing now. There

are streaming-upwind/Petrov-Galerkin (SUPG), elastic viscous stress splitting (EVSS)

schemes proposed and quite successfully achieve computational results for higher Weis-

senberg number flow, but they can not remove the finite Weissenberg barrier.

There are various sources of errors introduced by numerical procedures, and the

predominant one is caused by the violation of the incompressibility constraint during the

computation. In such cases of violation, spurious waves will be generated by numerical

errors and propagate in the system, and finally contaminate the numerical solution.

We propose [61] a new systematic treatment for the evolution of extra stress, by which

we can explain the reason of convergence breakdown in previous numerical works. Our

scheme ensures the incompressibility constraint satisfied at each time step even for

highly elastic fluids, and then the ‘high Weissenberg’ difficulty is overcome. We will

discuss the analysis and numerical scheme in detail in the last part of the dissertation.
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Chapter 2

Microscopic scale: the

Microrheology in time domain

In the Introduction, we emphasize our first focus on small scale thermal diffusion

in mucus. Our goal is to construct a model so we can explore the diffusion property

of materials by parameter inversion and so we can also simulate diffusive processes by

using those model parameters.

The inspiring proposal of passive microrheology initiated by Mason and Weitz[58]

extend the rheological study of materials to micro scale. The experimental measure-

ments of passive microrheology are not on bulk deformation of materials but noisy

and small amplitude disturbance of micron/nano meter size thermally fluctuated beads

embedded in soft matters. (cf. [58, 28]) The method is ideally suited for characteri-

zation of a microscopic viscoelastic modulus governing diffusive transport of Brownian

particles and is chosen as our starting point of study here.

Microrheology is now a popular method for applications in molecular and cellular

biology for its capacity of dealing with the microscopic length scales and experiment

sample with small quantities. The fundamental idea behind passive microrheology is

to establish the connection between the strength of thermal fluctuations experienced

by a Brownian particle and the storage and loss properties of the surrounding medium.

As in viscous fluids, the exploration corresponds to measuring the diffusion coefficient

of a small spherical particle with known radius, and thus the fluid viscosity by the

Stokes drag law. For viscoelastic fluids as we are dealing with, Mason and Weitz [58]

reach the relation (1.11) with passive microrheology technique. The theoretical model



utilized for the Brownian particles are the generalized Langevin equation (GLE), and

the generalized Stokes-Einstein relation. Mason and Weitz illustrated the inference of

frequency-dependent loss (viscous) and storage (elastic) moduli by frequency binning

and ensemble averaging of mean-square displacement of tracer beads. The microscopic

shear modulus function, is recovered in the frequency (Laplace transform) domain,

presumably providing the same information gained with bulk rheometers (cf. [24]).

Now people believe the bead geometry (compared to the equilibrium length scale of

polymeric material) and the phobicity or attraction of polymer chains to beads affect the

bead fluctuation too and the direct inference from bead dynamics may actually include

the effect of viscoelastic moduli and bead-solution chemical interactions [85, 43, 26].

However, the application that motivates our research is a direct and inverse description

of the diffusion of individual pathogenic particles (e.g., bacteria, environmental partic-

ulate, proteins) in biological liquids, cells, and tissues. We can restrict our interest in

the diffusive transport property of a specific pathogen and we want to recover it by the

GLE model of Brownian beads with the path data.

The goal of direct simulation of diffusive transport requires the physical properties

expressed in time domain instead of in frequency domain. We notice that in frequency-

space methods as proposed in the original microrheology framework (the inertial is

also neglected there), we are faced with the problem of recovery from Laplace (or uni-

lateral Fourier) transform information of the modulus. Inversion of Laplace transforms

is known as a difficult subject with many sources of numerical and analytical inaccuracy.

This practice difficulty is not critical for getting values of storage and loss moduli at

discrete frequencies as in transformation of microrheology, but it is potentially fatal

for numerical Laplace inversion of the entire time-dependent function. This issue of

accuracy, first from converting time series path data to frequency space, and then

from inverting back to the time domain, is one motivating reason for us to pursue

a time-domain inverse characterization of the memory kernel, based directly on the

primitive experimental time series data. Another motivation for time-domain methods

is the possibility of inversion from much smaller data sets, e.g., single paths which may

not be sufficient for frequency binning whereas statistical analysis of individual time

series data may prove sufficient. Finally, for very small volume materials there will be

constraints on the amount of sample path data that can be collected, which may not

be statistically significant for ensemble averaging.

For these reasons above, we have explored here new time-domain methods, which
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enable us to direct model and invert diffusive property in time domain. These tools

will subsequently be applied to model anomalous diffusion in pulmonary liquids, which

is the context in which this work began as part of the Virtual Lung Project at UNC.

We will present proof-of-principle illustrations of our time-domain methods, for the

generalized Langevin models. We will lay out the theoretical framework and then

illustrate the method with example of data numerically generated by GLE model, and

the comparison between ‘exact’ and recovered parameters is followed. We also compute

mean-squared-displacement statistics directly from our formulation of the GLE, and

show agreement with ensemble averaging of path data.

The model here is based on the discrete treatment of (generalized) Langevin equa-

tion. Basically we just take the discretization of the stochastic equation (SDE) as

autoregressive (AR) process. And the inverse characterization strategy utilized here

is the maximum likelihood estimation (MLE) which is developed for time series anal-

ysis. The tools will give us estimates of the diffusive transport parameters directly

from single or multiple time trajectories of Brownian particles; and standard errors for

those estimated parameters; and we could also get goodness of fit criteria. Thus, the

methods convey whether the presumptive memory kernels accurately fit the data, or in

practice, how many discrete modes are needed to get a best fit. To carry the analysis,

we consider an exponential series approximation to the memory kernel, which turns

out to be particularly efficient for both inversion and direct simulations. As we notice

here, the framework we propose here could be combined with ensemble averaging of

the original microrheology method to get better results.

We note here that the results reported in this chapter are mainly from the collabo-

ration with John Fricks, Tim Elston, and Greg Forest, the work is summarized in [26].

In the following text, we will first recall the Langevin equation for Brownian beads in

viscous fluids as an introduction to the statistical concepts and physical quantities we

are adopting. The emphasis there is to address the treatment of stochastic process and

discuss the simple version of fluctuation dissipation theory for later extension. Then

we extend our study to beads in viscoelastic fluid and introduce generalized Langevin

equation, where the important fluctuation dissipation theorem is presented and uti-

lized. We present the detailed discussion for a single mode case as illustration of the

methodology. After present the framework, we then show the deterministic prediction

by virtual of the new GLE formulation and demonstrate with examples of simulating

viscoelastic material with Zimm/Rouse polymer chain. The inversion scheme of MLE
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based on the formulation then is proposed, and tested for numerical generated data.

At last, we discuss the case where external deterministic force presents.

2.1 Viscous model: Langevin equation

The Langevin equation is the model equation describing the motion of dilute solution

of Brownian particles in viscous fluid. The dilute assumption is made to avoid the bead-

bead interaction for the particles; and in that circumstance, the source of force upon

Brownian particles are only due to the molecules of solvent, which are much smaller

than the Brownian beads. The Langevin equation takes the point of view from Newton

second law and divides the force into two pieces: resistance force proportional to the

bead velocity; and random force. We can see the resistance to the particle motion is an

average effect of the instantaneously collisions between small solvent molecules and the

Brownian particle, and we just assume the simple Stokes drag law hold for this case;

and the remain part of the total force is random in nature due to the uncertainty of

the collisions. Given a bead of diameter a, and mass m, the Langevin equation for its

velocity v (1d) is formulated as

m
dv

dt
= −ξv + f(t), (2.1)

where ξ is the friction coefficient given by the Stokes drag law ξ = 6πaη, η is the

viscosity of the fluid, and f represents the random force on the bead, which acts as the

propelling source for the Brownian beads. If we denote the position of beads x(t), then

we should have

v(t) =
dx(t)

dt
, (2.2)

and

x(t) = x(0) +

∫ t

0

v(s)ds. (2.3)

2.1.1 Solution to Langevin equation

The analysis in this subsection could be found in any standard statistical physics

text, the purpose of restating it is to prepare us for the model formulation and the

introduction of the statistical treatment we provide for the GLE model next.
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We can expect there is underlying relationship between the friction force and the

random force in Langevin equation of (2.1) because the two forces have the same

origin: molecule collisions. To better understand these two related subjects, f(t) is

mathematically treated as a stochastic process in time. We want to impose necessary

physical assumptions on the random process and then given the property of f , we try

to further understand the property of v(t) of the Brownian system. Then we may find

out the relationship between the random force and the drag resistance, and make our

understanding clear.

As expected, the fluctuating force f should be averaged to zero when the system is

in steady state, since no preference could be assumed then. Also, in viscous solvent, we

could assume the characteristic time of solvent collision is much smaller than the beads

motion, so the random force is Delta correlated in time. With those assumptions taken,

it is natural to use white noise for the random force f(t), and then equation (2.1) is

the Ornstein-Uhlenbeck process. And from texts, [13, 41, 92], we can see (equipartition

law for equilibrium is used)

〈f(0)f(t)〉 = kBTξδ(t), (2.4)

where δ(t) is the Dirac Delta function. This equation defines the connection between

the force correlation and the Stokes drag law (friction coefficient), and is the inspiring

relation for our further extension to more general problems.

The Ornstein-Uhlenbeck process (2.1) can be written in stochastic integration form

(take α = ξ/m)

v(t) = e−αtv(0) +

∫ t

0

e−α(t−s)f(s)ds, (2.5)

which is a quadrature solution to stochastic differential equation (2.1). And the velocity

autocorrelation function is

〈v(s)v(s+ t)〉 = kBTe
−αt. (2.6)

The mean square displacement (MSD) can also be evaluated:

〈(x(t)− x(0))2〉 =
2kBT

αm

[
t− 1

α
(1− e−αt)

]
. (2.7)
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By analyzing (2.7), we can see the ballistic and diffusive behavior.

The solution (2.5) describes the single particle dynamics, and we can see from (2.6)

and (2.7) that all the average information of (2.5) of the Langevin equation could be

derived given the Brownian bead property (a and m) and viscous fluid property (η).

2.1.2 Discrete Langevin equation : AR representation

Whenever the Brownian particle is observed, the experimental results are on discrete

time points. To simulate the experimental path data, we want to realize the system

with a discrete model of Langevin equation (2.1) with time step ∆. The usual way of

simulating is to model the velocity of Brownian particles in viscous fluids by discretizing

(2.1) using an Euler approximation:

vn = (1− α∆)vn−1 + σ
√

∆ε̃n, (2.8)

where vn = v(n∆), σ =
√

2kBTξ/m2, and ε̃n are standard normal random variables

and independent each other at different times. So vn is actually represented as a first

order autoregressive (AR) process, in which the current velocity vn is dependent on

previous one and a normal random variable.

We notice the nice properties that the Ornstein-Uhlenbeck process (2.1) has: it

is Gaussian, Markovian, and stationary. So we try to take the advantage of those

properties and explore the solution (2.5), to avoid discretization error. Similar as (2.8),

we present the exact discrete version of Langevin equation (2.1):

vn = e−α∆vn−1 + εn, (2.9)

where εn is a sequence of independent Gaussian normal random variables with variance

s(∆) = σ2 1− e−α∆

2α
. (2.10)

We see (2.8) is the first order approximation of (2.9). (By using Taylor expansion about

∆ in (2.9) , we get (2.8) back.)

Compared to (2.8), the advantages of the discretization (2.9) are obvious. We can
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generate particle trajectories accurately at each time step, the probability distribution

is exact without numerical approximate error. This way of discretization will be used

repeatedly for more complicated model process in following text, and we will construct

accurate direct simulation model and inversion based on this discrete representation.

2.1.3 Full system of position & velocity

In real bead tracking experiments, observations are usually on positions of Brownian

particles and the velocity is calculated by numerically differentiation. To avoid the error

introduced by differencing data, as proposed in [26], we will formulate a system equation

to include position dynamics in our representation too.

If we couple (2.3) and (2.1) and write them into vector form as

d

dt
Y (t) = AY +KW (t), (2.11)

where

Y =

(
x(t)

v(t)

)
, A =

(
0 1

0 −α

)
, K =

(
0 0

0 σ

)
, (2.12)

and W (t) is a 2d Gaussian white noise process. The quadrature solution to equation

(2.11) is [66]

Y (t) = eAtY (0) +

∫ t

0

eA(t−s)KW (s)ds. (2.13)

We notice the matrix exponential eA and eAt can be formulated as

eA =

(
1 e−α

0 e−α

)
, eA∆ =

(
1 ∆e−α∆

0 e−α∆

)
, (2.14)

Similarly as in scalar case for velocity Langevin equation, the process (2.11) is Gaussian

and uniquely defined by its mean and covariance. Given an initial condition Y0 = Y (0)

and a time step increment ∆, we can determine the exact distribution of Y1 = Y (∆)

and by iteration define a vector AR process, as in (2.9) above. For general iteration, we

note that conditioning on Yn−1, the distribution of Yn is Gaussian with mean eA∆Yn−1
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and covariance matrix [66, 31]

S(∆) =

∫ ∆

0

eA(∆−s)KKT eA
T (∆−s)ds. (2.15)

From the definition of covariance matrix, it is straightforward to generate exact

realizations of the stochastic process at finite time intervals, with the assumption that

we can accurately calculate S. For A, K in (2.12) and the property of eA in (2.14), it is

trivial calculation on 2 by 2 matrix to get matrix form of S and we put its components

here:

S11 =
1

4α3

(
− 1− 24e4αα(1 +4e4αα)+

e24α(1 + 24(−1 + e4α)α(1 +4(−1 + e4α)α ))
)
,

S12 =
e4α(−1− 24e4αα + e24α(1 + 24(−1 + e4α)α))

4α2
,

S21 = S12,

S22 =
e24α(−1 + e24α)

2α

(2.16)

For a particle starting from state Yn−1, we generate a Gaussian vector εn with

covariance matrix S of (2.15) and add it to the dependent part of eA∆Yn−1 to get Yn,

and then the simple iteration formulated as:

Yn = eA∆Yn−1 + εn. (2.17)

Thus, we have an autoregressive (AR) representation for the vector process Y0, ..., YN

analogous to the scalar process (2.9).

2.2 Brownian particle in viscoelastic media

As for the problem of Brownian particle thermally driven in viscoelastic fluids, we

have to extend the standard Langevin equation model to deal with the complexity

arising from the delayed retardation. When we discuss the situation of typical vis-

coelastic materials in which the embedded Brownian particle’s surrounding molecules

are comparable to Brownian bead themselves in size, the standard Langevin Equation
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(2.1) will fail to capture effect of the velocity retardation on the drag force. In order

to incorporate the effect that drag force is accumulatively dependent on the history of

Brownian bead’s velocity, the time dependent drag coefficient function is introduced

and we then have the generalized form of Langevin Equation, the generalized Langevin

equation (GLE) to work with.

2.2.1 Generalized Langevin equation

Compared with (2.1), in which the drag law is assumed proportional to velocity,

the phenomenological description of generalized Langevin equation introduces the con-

volution of velocity history as followed

m
dv(t)

dt
= −

∫ t

0

ψ(t− τ)v(τ)dτ +R(t), (2.18)

where ψ(t) now is a function in time and is usually called memory function or kernel,

and the random force R here is not white noise any more but colored random process.

In [29], one special example of generalized Langevin equation is discussed thor-

oughly: the kernel function is simple exponential decay:

m
dv(t)

dt
= −

∫ t

0

G0e
−(t−s)/λv(τ)dτ +R(t). (2.19)

By using Fourier transformation, Hansen el. [29] give explicit velocity autocorrelation

function as

〈v(t)v(s)〉 =
c2λ3

m2β(1− β)
e

1−β
2λ
|t−t′| − c2λ3

m2β(1 + β)
e

1+β
2λ
|t−t′|, (2.20)

and then the mean square displacement formula is followed

〈[x(t)− x(t′)]2〉 =
4kBT

m

{ 2λ

1− β2
|t− t′| − 2λ2(3 + β)

(1− β2)2

+
λ2

β(1− β2)2

(
e−

1−β
2λ
|t−t′|(1 + β)3 − e−

1+β
2λ
|t−t′|(1− β)3

)}
,

(2.21)
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where β =
√

1− 4cλ2 and c = 6πaG0/m. For sufficiently short times, the MSD (2.21)

exhibits ballistic behavior, 〈[x(t)− x(0)]2〉 ≈ kBTt
2/m, and for sufficiently long times,

diffusive scaling emerges, 〈[x(t) − x(0)]2〉 ≈ 2kBTt/mλc. For intermediate times, a

power law fit of the MSD yields a range of exponents depending on the window in

which one chooses to fit.

We note the parameter β can be purely imaginary, as pointed out in [29], which is

clear from the formula (2.21). Oscillations are predicted in the velocity correlation and

MSD whenever physical parameters obey 4cλ2 > 1. The direct numerical evidence of

oscillation is the appearance of a pair of complex eigenvalues for matrix A.

This GLE model phenomenon predicts high frequency (short time) oscillations in

Brownian bead path data, even after ensemble averaging of path time series, which

translates to a source of high frequency error of MSD in experiment measurement

because of the phase mismatch between these inherent oscillations and experimental

sampling time. The relatively large error bars of MSD at high frequencies thus appear to

be inherent for GLE processes with exponential series kernels, and cannot be eliminated

by simply running the experiments for longer times.

2.2.2 Fluctuation-Dissipation theory

Even the drag law in complex fluids depends velocity retardation, and is more

complicated than the case of viscous fluids, we still expect the direct connection between

the memory kernel φ(t) and the random force R(t) in the GLE (2.18). The result, which

is given by the fluctuation dissipation theorem, is intensively discussed in [41, 92].

The fluctuation dissipation theorem can be formulated as following [41, 40, 92]

〈R(t)R(s)〉 = kBTψ(t− s), t > s, (2.22)

where kB is the Boltzmann constant and T is the temperature. We note the relation

(2.4) can be viewed as the special case of this relation with the Delta function as the

memory kernel, and we also notice if ψ(t) = δ(t), the generalized Langevin will reduce

to standard Langevin (2.1).

This fluctuation dissipation theorem gives the direct link between random force R

and kernel function ψ(t) at thermal equilibrium state. This theory then essentially
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connects the dynamics of embedded beads with material property, and if one of R and

ψ is given, we can figure out the other by using fluctuation dissipation theory. For

our purpose of direct and inverse characterization, if we can construct proper random

force R and kernel function φ that satisfy GLE and FD, with undetermined fitting

parameters, we then can solve the GLE dynamics system, and we will have the ability

to manipulate the inversion and then predict the direct simulation.

To simplify the statistical calculation, we will normalize the generalized Langevin

equation (2.18) by using FD theory (2.22) to

dv(t)

dt
= −

∫ t

0

ξ(t− τ)v(τ)dτ +

√
kBT

m
f(t), (2.23)

where correlation of force f follows

〈f(t)f(s)〉 = ξ(t− s), t > s. (2.24)

Throughout the remainder of this chapter when we refer to the memory kernel, we will

mean ξ(·), which is ψ in (2.18) scaled by 1/m.

2.2.3 Reformulation of the GLE

As we can expect, the generalized Langevin equation (2.18) with general type kernel

function ψ is hard to solve. Back in 60s of last Century, Zwanzig (cf. [90, 91, 63, 62])

developed the ‘projection operator’ technique to solve GLE formally for general type

memory kernel function. But for our purpose, it is awkward to work in that formal

framework. Our intention of solving the model problem is, as proposed by Forest and

Elston [26]: if we can construct a series random processes to model the random force,

and if we can impose the correlation function of those processes as the kernel ξ in

(2.23) by using fluctuation dissipation theorem, we then can also ‘solve’ the generalized

Langevin equation, and the order of accuracy is determined by the approximation of

the random force, or kernel function.

In this section, we show that for a certain class of memory kernels, specifically a

sum of exponentials, the generalized Langevin equation can be expressed as a set of

coupled linear SDEs of the same form as (2.11), in which the velocity and position
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are the first two components. Therefore, all Langevin equation properties and tech-

niques carry over immediately to the GLE. In particular, we can: 1) apply maximum

likelihood methods for parameter estimation by taking advantages of random system

representation; 2) exactly simulate the stochastic process instead of low-order numeri-

cal integration; and 3) write down explicit formulas for statistical quantities of interest,

such as autocorrelation functions for position and velocity.

So we suppose the memory kernel in GLE of (2.23) is a single exponential function

with physical parameter,

ξ(t) = ce−
t
λ , c =

6πaG

m
, (2.25)

which corresponds in “bulk” linear viscoelasticity to a single-mode Maxwell fluid with

modulus G and relaxation time λ. (Note: λG = η0 is the zero strain rate viscosity of a

simple Maxwell fluid.) In (2.25), a is the particle radius. The noise F (t), (2.23-2.24),

for an exponential kernel can be expressed as an Ornstein-Uhlenbeck process,

dF (t)

dt
= −1

λ
F (t) +

√
2c

λ
f(t), (2.26)

where f(t) is white noise. Note that the Langevin equation is obtained in the limit

λ→ 0, that is, (2.26) becomes (with ξ0 = 6πaη0)

F (t) =

√
2ξ0

m
f(t). (2.27)

Analogous to the scalar Ornstein-Uhlenbeck process (2.1) and by taking advantage

of (2.25), the system (2.23-2.26) may be solved explicitly. Again, to apply the statistical

tools we adopted in previous section, we try to setup vector version of AR process for

the GLE, analogous to the Langevin case (2.9). To see this, we define the auxiliary

variable Z(t)

Z(t) =

∫ t

0

e−
t−τ
λ V (τ)dτ, (2.28)

which yields
dZ(t)

dt
= −1

λ
Z(t) + V (t). (2.29)
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Now, the full system can be written in matrix form as

d

dt
Y (t) = AY (t) +KW (t) (2.30a)

with

A =


0 1 0 0

0 0 −c
√

kBT
m

0 1 − 1
λ

0

0 0 0 − 1
λ

 , K =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0
√

2c
λ

 (2.30b)

Y (t) = (X(t), V (t), Z(t), F (t))T , (2.30c)

and W (t) is a vector of independent white noise processes.

This system (2.30a)-(2.30c) is identical in form to (2.11), and therefore another

vector Langevin equation, whose quadrature solution is given by (2.13) and (2.15)

with these Y , A and K. Following the Langevin example above, we can now generate

the corresponding viscoelastic AR process for a Brownian particle with this specified

memory kernel, starting from Y0 = Y (0).

More generally, suppose the memory kernel ξN(t) is given by an N -mode exponential

series:

ξN(t) = c1e
− t
λ1 + c2e

− t
λ2 + ...+ cNe

− t
λN , (2.31)

where ci = 6πaGi/m. Similarly, the total noise FN(t) can be written as

FN(t) = F1(t) + F2(t) + ...+ FN(t), (2.32)

where each Fi(t) is an independent Ornstein-Uhlenbeck process characterized by the

ith relaxation time λi. That is,

dFi(t)

dt
= − 1

λi
Fi(t) +

√
2ci
λi
fi(t), (2.33)

where fi(t), i = 1, ..., N are independent white noise processes.

Therefore, FN(t) is a mean-zero Gaussian process with covariance consistent with
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the fluctuation-dissipation theorem,

< FN(t)FN(s) >= c1e
− t−s
λ1 + c2e

− t−s
λ2 + ...+ cNe

− t−s
λN . (2.34)

This formulation of the GLE yields once again a vector Langevin process of the form

(36), with the following definitions for Y , A and K:

Y =



X(t)

V (t)

Z1(t)

...

ZN (t)

F1(t)

...

FN (t)



, A =



0 0 1 ... 0 0 ... 0

0 0 −c1 ... −cN
√

kBT
m ...

√
kBT
m

0 1 −1/λ1 ... 0 0 ... 0

... ... ... ... ... ... ... ...

0 1 0 ... −1/λN 0 ... 0

0 0 0 ... 0 −1/λ1 ... 0

... ... ... ... ... ... ... ...

0 0 0 ... 0 0 ... −1/λN



, (2.35)

K =



0 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0

... ... ... ... ... ... ... ...

0 0 ... 0 0 0 ... 0

0 0 ... 0 0
√

2c1
λ1

... 0

... ... ... ... ... ... ... ...

0 0 ... 0 0 0 ...
√

2cN

λN



(2.36)

Again, an exact solution of this system is given in the form (2.13) and (2.15) with

these matrix formulas. Thus, all properties of the Langevin equation have been ex-

tended to the GLE for the class of N-mode exponential series kernels. Likewise, the

machinery from Section 2 applies for generating direct realizations of GLE processes

and performing statistical analysis of time series for partial observations (of position).

These formulas are valuable to the extent we can numerically calculate the matrix
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exponential eA. The special form of A, equation (2.35), lends itself to an explicit

and straightforward determination of the eigenvalues and eigenvectors, for any mode

number N . Furthermore, this calculation only has to be done once, both to generate

the direct process (or statistics of the process), and to perform parameter inversion for

each N . The procedure of computing the spectrum and then the covariance matrix are

given in the Appendix of [26].

2.2.4 Analysis on the covariance matrix S

We discuss how the covariance matrix S in equation (2.15), with (2n+ 2)× (2n+ 2)

coefficient matrices A andK defined as in equation (2.35), can be numerically calculated

accurately and efficiently. The only difficulty is in finding all 2n + 2 eigenvalues of A;

the remaining steps are straightforward. First we factor out the simple zero eigenvalue

with the position equation coupled. For simplicity, we introduce parameters

ci =
6πaGi

m
=

6πaηi
mλi

, σi =

√
kBT

m
, κi =

√
2ci
λi
. (2.37)

Clearly, n eigenvalues, {−1/λi}ni=1, are obvious. The remaining n+1 are determined

by the roots of the polynomial equation

P (x) = x
n∏
i=1

(x+
1

λi
) +

n∑
i=1

ci

n∏
j 6=i

(x+
1

λj
) = 0. (2.38)

If we rewrite the above polynomial (2.38) by dividing it with
∏n

i=1(x + 1/λi), we

have a new function

Q(x) = x+
n∑
i=1

ci
x+ 1/λi

, (2.39)

which has the same roots as P (x). Recall 0 < λ1 · · · < λn. Clearly Q(x) changes sign,

and therefore has one zero, in each interval (−1/λi,−1/λi+1). These are easily found

by iteration. This yields n− 1 eigenvalues, denoted {xi}n−1
i=1 , and only 2 remain.
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The polynomial P (x) of Eq. (2.38) has the form (2.38) as

P (x) = (x2 + bx+ c)
n−1∏
i=1

(x− xi) = 0, (2.40)

where c and b are given explicitly from {−1/λi}ni=1, {xi}n−1
i=1 :

c = (−1)n−1 P (0)∏n−1
i=1 xi

=

∑n
i=1 ci

∏n
j 6=i

1
λj∏n−1

i=1 |xi|
> 0,

b = −c− 1 +

∏n
i=1(1 + 1

λi
)(1 +

∑n
i=1 ci

1
1+ 1

λi

)∏n
i=1(1− xi)

> 0.

(2.41)

This completes the calculation of all 2n+ 2 eigenvalues. The sign of b2− 4c determines

the 2 remaining zeros, and all eigenvalues have non-negative real part. If the two roots

are complex conjugates, A is only diagonalizable in the complex space.

Similarly, for the matrix As in equation (2.15), where s is a scalar, all the eigenvalues

scale explicitly with s and the eigenvectors remain the same.

For n = 1, 2, 3, there are analytical formulas for the roots of the polynomial. In the

single mode case, n = 1, the eigenvalues are

ω1 = −1

λ
, ω2 = −1

2
(1/λ+

√
1

λ2
− 4α), ω3 = −1

2
(1/λ−

√
1

λ2
− 4α), (2.42)

with easily calculated eigenvectors. The covariance matrix S (2.15) can thus be calcu-

lated in closed form.

For general n, from equation (2.40) and (2.41), a very fast and efficient numerical

scheme is found for the eigenvalues and eigenvectors. Given this detailed spectral

information for A, we can pre-compute the covariance matrix S, as follows:

First we assume the matrix A has full span of eigenvectors R (its inverse is R−1),

A = RΛR−1, A2 = AA = RΛR−1RΛR−1 = RΛ2R−1 (2.43)

where Λ is a diagonal matrix whose diagonal components are the eigenvalues of A.
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By definition,

eA =
∞∑
n=0

An

n!
=
∞∑
n=0

RΛnR−1

n!
= R(

∞∑
n=0

Λn

n!
)R−1 = ReΛR−1, (2.44)

where we see eΛ is diagonal and the covariance matrix S can be written as

S =R
(∫ ∆

0

eΛuR−1KKT (R−1)T eΛTusdu
)
RT

=R
(∫ ∆

0

eΛsMeΛsds
)
RT ,

(2.45)

where we define M = (R−1K)(R−1K)T .

Next, we consider the integral representation for the covariance matrix. We take

advantage of the above properties of the matrix A, as follows. Denoting by eωis the ith

diagonal component of the diagonal matrix eΛs, where wi is the ith eigenvalue of matrix

A, and Mij the ith row and jth column component of matrix M , we see immediately

eΛsMeΛs =(Mije
wis)(2n+1)×(2n+1)e

Λs

=(Mije
(wi+wj)s)(2n+1)×(2n+1),

(2.46)

where Mije
(wi+wj)s is the ith row, and jth column component of the integrand matrix.

So, in general

S = R
(
Mij

∫ ∆

0

e(ωi+ωj)sds
)
RT

= R
(
Mij

e(ωi+ωj)∆ − 1

ωi + ωj

)
RT ,

(2.47)

and after all the eigenvalues ωi of A are determined, the integral form of S can be

pre-calculated according to the above result and the integration of the matrix function

can be avoided.

If we include the bead position X(t) in the system of equations, the eigenvalues of

A′ include {−1/λi}ni=1, and the remaining 2n + 2 are determined by the roots of the
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polynomial equation

Pd(x) = x
(
x

n∏
i=1

(x+
1

λi
) +

n∑
i=1

ci

n∏
j 6=i

(x+
1

λj
)
)

= 0. (2.48)

Compared to the system in the previous subsection, the only difference is an extra zero

eigenvalue and all other analytical results carry over.

2.3 Direct simulation: theory and examples

From the result of (2.47), we can avoid the numerical integration of the covariance

matrix, and this is a great advantage, derived from the vector AR representation for-

mulation of GLE, for the direct simulation of Brownian bead trajectory in viscoelastic

fluids. We can see the simulation has lots of applications in pathogen transport in

biological soft materials.

Analogous to (2.17), vector form of GLE (2.30a) can be formulated to a discrete

process in the same way: starting from Y0 = Y (0), the iteration is defined as

Yn = eA∆Yn−1 + εn, (2.49)

where matrix A is defined in (2.30b), and most importantly, the covariance matrix of

the vector normal random noise εn is determined (2.47). If we have fixed constant

time steps in a simulation, which is the usual case, covariance S can be calculated only

once for the simulation, so the only cost of numerical calculation in the simulation is

matrix vector multiplication. Also, fast and accurate parallel subroutines for matrix

multiplications can be applied to increase the performance of the simulation.

2.3.1 Numerical calculation of correlation function

We can calculate the velocity correlation function (and the position correlation

function if we include the position X(t) into our original vector SDE) since the velocity

is the first component of the vector Y (t).
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So

〈Y (t)Y (t′)〉 =〈
(
eAtY (0) +

∫ t

0

eA(t−s1)KW (s1)ds1

)
(
eAt

′
Y (0) +

∫ t′

0

eA(t′−s2)KW (s2)ds2

)T
〉

=〈eAtY (0)(eAt
′
Y (0))T 〉+

〈
∫ t

0

ds1

∫ t′

0

ds2e
A(t−s1)KW (s1)(eA(t′−s2)KW (s2))T 〉

(2.50)

By applying the property of correlation of white noise, we could get

〈Y (t)Y (t′)〉 =eAt〈Y0Y
T

0 〉eA
T t′

+

∫ t

0

∫ t′

0

ds1ds2e
A(t−s1)K(δ(s1−s2)I)KT eA

T (t′−s2)
(2.51)

It is clear that our analysis of the eigensystem of matrix eA would help here, and we

just recall

eA = ReΛR−1, (2.52)

where R is the eigenvector matrix and R−1 is its inverse, and Λ is a diagonal matrix

whose diagonal components correspond to the eigenvalues of matrix A. Since the first

term at the right side of above (2.51) will be usually zero, we would rewrite (2.51) as

〈Y (t)Y (t′)〉 = R
(∫ t

0

∫ t′

0

δ(s1 − s2)eΛ(t−s1)Me−Λ(t′−s2)ds1ds2

)
RT (2.53)

where M = (R−1K)(R−1K)T .

Again, by analyzing the components of the above matrix integral, we notice that

(eΛ(t−s1)Me−Λ(t′−s2))i,j = Mije
λi(t−s1)+λj(t

′−s2), (2.54)

where λi is the ith eigenvalue of matrix A, and Mij represents the ith row and jth

column component of the matrix M defined above.

Indeed, in the formula of calculating the autocovariance matrix (2.53), we can re-
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arrange the integration a little to

〈Y (t)Y (t′)〉 = R
(∫ ∞

0

∫ ∞
0

δ(s1 − t− s2 + t′)eΛs1MeΛs2ds1ds2

)
RT , (2.55)

and the (i, j) component of the integral of matrix is

∫ ∞
0

∫ ∞
0

ds1ds2δ(s1− t−s2 + t′)Mije
λis1+λjs2

=


Mij
−eλi(t−t′)
λi + λj

For t′ > t > 0

Mij
−eλj(t′−t)
λi + λj

For 0 < t′ < t

(2.56)

Now we can get the correlation of velocity (and position) directly from (2.56), if

we know the relaxation spectrum, since the integrals are easily computed and the

eigenvector matrix are determined after we get the relaxation spectrum is prescribed.

This result means we can evaluate the MSD and velocity correlation function given

the memory kernel spectrum, and it then provides us an easy way to study the effect

of memory kernel modes on the scaling law of MSD. Based on the result of (2.56) ,

we can see the velocity (and position) correlation function is the coupling effect of the

different relaxation mode. And the coupling is surely nonlinear and we may discuss it

with spectral analysis of the matrix and get more information.

2.3.2 Example of Rouse and Zimm chain models

We consider special cases of polymeric material of Rouse and Zimm model here,

as the examples to illustrate the use of the GLE model to model dynamics of beads

in viscoelastic fluids. A classical model describing polymer dynamics due to Rouse

(cf. [69, 8, 45, 70]) yields a special class of N -mode moduli for which GLE diffusive

transport properties are explicitly solvable. A 4-mode Rouse kernel is implemented

now to further illustrate the AR and maximum likelihood direct and inverse strategy,

and to benchmark our direct simulations against exact MSD scaling laws. In the Rouse

model, polymer chains are treated as spherical masses connected by Hookean springs

of equilibrium length b. Beads in Rouse chain only interact with each other through

the connecting springs and are not affected by the solvent effect of the motion of other
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beads. The Zimm model (cf. [89, 8, 70]) incorporates hydrodynamic interactions

among the beads, which leads to different exponential relaxation spectra; a Zimm

kernel is presented next. Yet more complex molecular models incorporate overlap

and entanglements of the polymer chains, or even chemical interactions between the

Brownian particle and its local environment. Our focus of the examples here is to model

the fluctuations, not to dissect the various sources; thus, our goal is to find the best

GLE kernel to fit measured fluctuations, or to simulate fluctuations for a prescribed

kernel.

In the Rouse model, each bead has friction coefficient ξb and the shear modulus and

relaxation time of the ith mode are given by [46]:

Gi = G0 = νkBT, λi =
ξb

16kBTβ2
b sin2(iπ/2(N + 1))

, (2.57)

where ν is the number density of the polymer chain and βb = 3/(Nb2). In the ex-

ample to follow, we choose ν = 2%, which is roughly on the same magnitude as

mucin concentration in healthy human mucus. We now specify all parameter val-

ues in the 4-mode Rouse-GLE model. The passive bead is 1µm in diameter of mass

m = 1.05 × 10−9mg. The single modulus parameter (each exponential has the same

modulus or pre-factor) is given by G0 = G = 1.035 × 10−5mg/ms2µm, so that our

parameters are c = ci = 6πaG0/m = 4.44 × 10−4(ms)−2. The Rouse relaxation times

are (2.57): λ1 = .02415, λ2 = .04294, λ3 = 0.09661, and λ4 = .3864 in units of ms.

In Figure 2.3.2, we show the ensemble of sample paths simulated from the GLE mode

with the above parameters, and we also show the corresponding numerical evaluation

of MSD based on (2.56) formulation. This figure verifies that GLE model phenomenon

predicts high frequency (short time) oscillations in experimental path data. And we

can see with number of modes increases, the amplitude of oscillation decreases and the

starting time of oscillation is always less than the smallest relaxation time.

Unlike (2.57) for the Rouse model, there is no exact formulation of relaxation spec-

trum for Zimm model, but we have approximate formulation of corresponding spectrum

[70, 20]. The approximation of relaxation spectrum for Zimm model is formulated as

[70]

λi ≈ λ0

(N
i

)3ν

(2.58)
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Figure 2.1: MSD comparison in different number of modes. The MSD results if we
superimpose different number of modes with fixed c = 1.74 · 105(ms)−2. The 1 mode
curve is the MSD of the longest relaxation time λ1 = 0.3864ms, as reported in section
2.3.2, of the example of Rouse chain. To increase the number of modes, we add one
more mode whose relaxation time is smaller than the current smallest. The effect is
clear that the oscillation is less in magnitude and the MSD expectation is also less.
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where we denote the shortest relaxation time

λ0 =
ξbb

2

kBT
, (2.59)

and ν ≈ 0.59 is the scaling exponent.

We now illustrate the methods are not “mode limited”, by running direct simu-

lations for beads of the same size and mass as in Figure 2.3, but with a GLE diffu-

sive transport modulus specified by a 22-mode Zimm kernel. The model posits 1100

monomers along each polymer chain, which we divide into 22 sub-units, which gives 22

modes and an explicit relaxation spectrum. Figure 2.2 shows the MSD statistics, again

generated both by ensemble averaging of paths and by the autocorrelation formula

(2.56). The simulations predict a MSD power law scaling exponent of 0.62 when fitted

between the shortest and longest relaxation spectra, which reasonably approximates

the 2
3

theoretical value of the Zimm model.

2.4 Inversion based on the GLE formulation

The formulation of the vector AR process for the discrete GLE allows us to apply

standard statistical to analyze the time dynamics of bead position and velocity. We will

present the inversion method used in [26] for diffusive modulus based on this formulation

of the GLE.

2.4.1 The MLE method on the velocity of Langevin equation

We now turn to maximum likelihood methods which give a general framework to

obtain point estimators and standard errors for the model parameters, α and σ, given a

time series v0, v1, ..., vN . The presentation is organized and illustrated for the Langevin

model (2.9) by Fricks in our paper [26], to show how the general procedure of MLE

for the inversion of diffusive transport property. This subsection of presentation only

shows the way of MLE optimization. The real inversion on experimental measurements,

which are positions instead of velocity, will be discussed in next subsection.

The likelihood function is computed from the joint probability density for an ob-

served velocity time series. Noting that the time series is Markov, that the conditional
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Figure 2.2: MSD of the GLE with a 22-mode Zimm kernel. The smallest relaxation
time is 0.2885ms, and then the Zimm relaxation spectrum is calculated by (2.58), which
gives the longest 29.77ms; the two vertical lines mark the time span between them, over
which a power law of 0.6142 fairly approximates the theoretical Zimm model value of
2
3
. (comparison of ensemble average and numerical prediction is also presented)
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distribution of vn given vn−1 is normal with mean e−α∆vn−1 and variance (2.10), and

assuming that the initial velocity v0 is known, the likelihood function is given by

L(α, σ) = g(v1, ..., vN |v0, α, σ)

=
N∏
n=1

h(vn|vn−1, v0, α, σ)

= (2πs(α, σ))−n/2 exp

(
−

N∑
n=1

(
vn − e−α∆vn−1

2S(α, σ)

)2
)
,

where g(·|v0, α, σ) is the joint density of v1, ..., vN and h(·|·, v0, α, σ) is the transition

density for the process. Given a sequence of velocity measurements, the likelihood

function is numerically maximized to obtain estimates, α̂ and σ̂, for α and σ. Hereafter

in the paper, parameter estimates are denoted by ·̂.
One of the benefits of maximum likelihood estimation is that under fairly general

conditions to be given in the Appendix of [26], asymptotic probability distributions for

these estimators may be obtained. Note that while α is not random, α̂ depends on

the random time series v0, ..., vN and is a random variable; given a new time series one

obtains a new realization of the random variable. In the present context, we know a

priori that the estimator α̂ is asymptotically (for long time series, i.e. large number of

observations N) normal with mean equal to the true parameter α and variance of α̂

equal to (−∂2
α logL(α, σ))−1. We obtain an estimate for the variance of α̂ by numerically

calculating the derivative of the log likelihood function at the maximized value.

We emphasize that model parameters may be estimated from a single time series of

the process; this will be illustrated in the proof-of-principle illustrations below. If that

single particle path is sufficiently long, then the Mason-Weitz approach and our ap-

proach should be consistent (a final example addresses this point). Ensemble averaging

in the time and frequency domains can be performed as well, following the Mason-

Weitz protocol, if there are sufficient sample paths or if a single path is sufficiently

long. The methods introduced here can be applied even if the data set is not large; this

corresponds either to a large ∆ or a low number of iterations in the discrete process.

We will return to this issue below in a discussion of over- and under- resolution of the

underlying stochastic process, and in comparisons of quality of fits versus number of

observations.
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2.4.2 Kalman filter for systems including positions

After we have cast the Langevin/GLE model in the form of a vector AR process,

which include both velocity and position components, we are in position to calculate

the appropriate likelihood function for estimating parameters, given a time series of

particle positions x0, x1, ..., xN . In this section, the Kalman protocol for the likelihood

function is outlined by Fricks in our paper [26] and the content here is just a complete

restate.

We outline key steps in the derivation of the likelihood function, The derivation

relies on ideas from the Kalman filter, which was developed to estimate the current

state of a dynamical system from noisy time series data of partial observations of the

process. (This use of the Kalman filter as a method to calculate the likelihood function

has become standard and further discussion can be found in [31] and [11].) Recall

discrete observations generated from the Langevin equation satisfy (2.17), where the

noise has a covariance structure given by (2.15). Experimentally, only the position of

the particle is observed, and no other components of the vector Y . That is, at the nth

time interval the observable is

xn = CYn, C =
(

1 0
)

(2.60)

Assuming that the model parameters, Θ, are known, a Kalman filter is generally used

to recursively estimate the current state, Yn, given the observations x1, ..., xn. Using

this and the AR structure of the process, we may also give a predictive density for Yn+1

given x1, ..., xn. From this we may obtain the density of xn+1 given x1, ..., xn which we

denote by h(xn+1|xm,m < n+ 1,Θ, x0). We may then decompose the joint density for

the time series into a product of these conditional densities and obtain

g(x1, x2, ..., xN |Θ, x0) =
N∏
n=2

h(xn|xm,m < n,Θ, x0). (2.61)
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Because the process is Gaussian, the above equation can be rewritten as

− logL(Θ) = − log g(x1, x2, ..., xN |Θ, x0)

=
1

2

N∑
n=1

(
log2π + logQn−1 +

(xn − x̂n|n−1)2

Qn−1

)
, (2.62)

where the conditional mean and variance of xn given x1, ..., xn−1 are

x̂n|n−1 = CeA∆Ŷn−1 (2.63)

and

Qn−1 = CRn−1C
t, (2.64)

respectively, and the matrix Rn is defined in the Appendix of [26]. Therefore, once we

have x0, x1, ..., xN we may numerically maximize this likelihood function with respect

to the parameters to obtain an estimate for Θ. An important feature of this Kalman

derivation of the likelihood function is that it may be calculated recursively; this dra-

matically reduces the time necessary to calculate the likelihood function since we do

not have to calculate the full covariance matrix of the entire time series.

Of course, this method requires numerical calculation of the matrices S and exp(A∆),

but this calculation only has to be done once for each trial parameter set in the maxi-

mization process. This numerical calculation is, of course, trivial for 2×2 systems, but

presents a potential limitation for the GLE, which we will soon formulate in this precise

vector AR setting, and where the matrix size scales with the number of exponential

modes. Below, we overcome this potential limitation due to the special form of the

matrices that arise for GLEs with exponential kernels.

As with the univariate case, there are asymptotic results for the distribution of our

maximum likelihood estimators Θ̂. Under certain reasonable conditions given in the

Appendix of [26], Θ̂ is asymptotically normal with mean Θ and covariance given by

cov(Θ̂) = (−∇ logL(Θ))−1 which may be approximated by numerical evaluation of the

quantity (−∇ logL(Θ̂))−1. Thus, to build a 1 − α confidence interval for θm, we start

with

P (−zα/2 ≤
Θ̂m − θm
cov(Θ̂)m,m

≤ zα/2) ≈ 1− α, (2.65)
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where zα/2 is the value that satisfies P (Z > zα/2) = α/2 and Z is a standard Gaussian

random variable. We use the notation Am,n to denote the element in the mth row and

nth column of the matrix A. With some algebra, we have

θm ∈ (Θ̂m − zα/2cov(Θ̂)m,m, Θ̂m + zα/2cov(Θ̂)m,m), (2.66)

which is the desired confidence interval for θm.

Figure 2.3: MSD of GLE sample paths for a 4-mode Rouse diffusive transport modulus.
200 paths are generated for a 1 µm diameter bead at 293K. The Rouse relaxation times
are λ1 = .02415, λ2 = .04294, λ3 = 0.09661, and λ4 = .3864 in units of ms, with a shear
modulus G0 = 1.035×10−5mg/ms2µm. To benchmark analytical scaling laws, a linear
fit between the two vertical blue dashed lines (from the shortest to longest relaxation
times) confirms the MSD power law of .5 for the Rouse model. The short-term ballistic
and long-term diffusive scaling are also confirmed.
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2.5 Comparison between MLE and M-W framework

The inverse characterization framework proposed in this dissertation focuses on

single path information in the time domain, which is a complement to the transform

space formulation of Mason and Weitz [58, 57, 56]. We now compare the two approaches

on data generated above for the 4-mode Rouse kernel. To make a fair comparison, we

simulate an experiment which gathers many bead paths.

As defined in [24], the complex modulus has the form:

G∗(ω) = iω

∫ ∞
0

G(s)e−iωsds = G
′
+ iG

′′
, (2.67)

where G(t) is the shear relaxation modulus of bulk linear viscoelasticity. If we associate

the shear modulus with the 4-mode Rouse kernel, the corresponding storage and loss

moduli are:

G′(ω) =
4∑
i=1

G0ω
2λ2

i

1 + ω2λ2
i

, G′′(ω) =
4∑
i=1

G0ωλi
1 + ω2λ2

i

, (2.68)

where G0 and λi are defined earlier, equation (2.57).

The experimental data are generated from 4-mode Rouse model as given in 2.32, and

Figure 2.3, consisting of 200 paths of 1µm size beads shows the MSD of the example.

The results of inversion in previous sections which introduce the maximum likelihood

framework, give us relaxation spectrum with different number of modes. In Figure 2.4,

we show the complex modulus recovered by those modes (finished by Fricks as in [26]).

We note the 4-mode maximum likelihood fit is very accurate for the 4 mode Rouse

model that we input as the example.

The MSD information in Figure 2.3 is then transformed and analyzed in the fre-

quency domain with the Mason-Weitz protocol. For the transformation of the MSD

data, the approximate algebraic expansion [56] is used to obtain the complex shear

modulus. To compare the inversion in the time domain with the maximum likelihood

methods, a nonlinear regression method proposed in [64] is used to convert the loss

and storage modulus in the frequency domain to a relaxation spectrum of generalized

Maxwell type in the time domain.

The complex modulus is calculated from Eq. (2.68) with varying number of modes.

The complex modulus obtained with 4 modes fit is very accurate compared to the
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original input, and the 3 modes fitting result is very close to the result of 4 modes fit

so we did not include it in the figure. The 1 and 2 modes fit results, relaxation time

and shear modulus, are statistically optimal (residuals are minimal) but the relaxation

modulus recovered are not close to the real values.

Figure 2.5 shows the comparison of the storage and loss moduli recovered by the

Maximum Likelihood (ML) method (the best 4-mode fit as determined from the data)

and the Mason-Weitz (M-W) transformation method. Compared to M-W method, the

ML method more accurately recover G′ and G′′. We note that the inherent oscillations

at relatively short times in the MSD turn out to make it difficult for the M-W trans-

formation protocol to capture the high frequency information; we anticipate the error

caused by this part of the MSD statistics is the largest source of error in the M-W

modulus inversion.

Figure 2.6 shows the relaxation spectrum recovered by the two methods. We notice

the transformation tends to overestimate the relaxation time and the modulus. The

reason of the overestimate may due to the fact that the transformation intend utilize

MSD information that is beyond the longest relaxation time, and the results suggest

oscillatory high frequency error inherent in the transformation may accumulate errors.
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Figure 2.4: Storage and loss moduli results of different number of exponential modes:
recovered by the MLE inverse procedure.
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Figure 2.5: The storage and loss moduli recovered from the same numerical GLE data
with a 4-mode Rouse kernel, by the Maximum Likelihood (ML) method and the Mason-
Weitz method. The ML results correspond to a best 4-mode exponential kernel fit.
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Figure 2.6: Comparison of shear relaxation modulus and relaxation time recovered by
M-W method and MLE method. And we note the recovery of MLE is almost exact.
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Chapter 3

Shearwave modeling and

computation

After the discussion of microscopic diffusive transport phenomena, we move on to

bulk properties of viscoelastic fluid. As we mentioned in the introduction chapter,

the transport of the mucus layer involves bulk rheological properties of mucus and we

present suitable experimental tools and analytical analysis.

By noticing the driving forces of mucus transport: the coordinated cilia beating

and tidal breathing cycles, we first revisit the classical shear wave model of Ferry and

collaborators [23, 25, 1]. In Ferry’s model, oscillatory motion of plate generates uni-

directional shear waves propagating in viscoelastic media, and the damped wave profile

was recorded by birefringence techniques. The measurements of Ferry’s experiment are

on the wave length and the attenuation length of the shear waves. Based on those

measurements, the characteristic storage and loss modulus information can be deduced

by the Ferry’s model equation, in which we assume the oscillation of wave is damped

out before they reach the opposite plate. This experimental setup is appealing to us

since the pulmonary mucus layer experiences similar oscillatory transport. We expect

the inversion based on this shear wave setup gives us proper characteristics of the mucus

layer so we can apply them in direct numerical simulations and make predictions more

accurate.

We note that the problem we are faced is in small volume biological fluid, and the

reflection of deformation/stress propagation from top boundary makes it necessary to

consider the finite depth effect in the model and then Ferry’s original model setup



has to be extended to the case of finite domain. In the following, we will introduce

analytical solution for the finite channel depth model, which is a extension of the linear

shear wave model. We also point out here the fact that the normal stress components

are completely neglected in the linear shear wave model. Because the normal stress

is usually believed occurring in pulmonary liquid transport, we also extend the linear

shear wave model by using Giesekus constitutive law, in which the nonlinearity effect

of shear thinning can be considered. The results presented in this chapter are inspired

by the experiment of D. Hill and R. Superfine, and are collaboration work with Sorin

M. Mitran, M. Gregory Forest, Brandon Lindley and David B. Hill[60].

3.1 Shear wave models

We consider a layer of incompressible fluid of height H̃, moved by an oscillating

lower flat plate, and whose upper surface remains flat and parallel to the bottom plate.

The superscript˜will be used to denote quantities in physical units. The bottom plate

Figure 3.1: Shear wave model setup

z

x

y

sin(t)

is set to harmonic motion as illustrated in Figure 3.1.

A reference viscosity η̃0 is set for the fluid of interest of density ρ̃, namely the

zero strain-rate viscosity of the fluid. The reference length Ã = Ṽ0/ω̃ is the maxi-

mum displacement of the driven bottom plate; the reference time ω̃−1 is set by the

plate frequency; and the reference stress η̃0ω̃ is the viscous plate shear stress. With
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those characteristic scales, the non-dimensional velocity of the bottom plate is given

by vx(0, t) = sin(t), where vx(y, t) denotes the velocity component of the fluid in the

direction of plate motion at height y. As in Ferry’s analysis, it is a property of the

model equations that with this scaling, we can focus on the 2-parameter space of val-

ues of storage and loss moduli, and make general statements about errors in recovering

the moduli that depend only on the pair of values, independent of the imposed fre-

quency. Also a viscoelastic material relaxation time λ̃ is identified. And the following

dimensionless parameters arise in our model equations:

• Reynolds number Re = ρ̃ω̃Ã2/η̃0

• Deborah number λ = λ̃ω̃

• Bulk shear strain γ = Ã/H̃

When we consider the motion of the fluid bounded by a lower flat plate and an

upper parallel flat boundary, which may be either stationary or free to move (with

some unknown attenuation and phase lag with respect to the driven lower plate), we

can, by symmetry, restrict all flow and stress variables as functions only of t and the

height y between the two flat surfaces. In particular, the fluid pressure p, and velocity

components are

p = p(y, t), vx = vx(y, t), vy = 0, vz = 0. (3.1)

And for this dimension reduction, the continuity condition is satisfied automatically.

Also from vx(y, t), we can deduce particle displacement X(y, t) at height y between the

two plates:

X(y, t) =

∫ t

0

vx(y, s)ds+X(y, 0), (3.2)

for given initial condition X(y, 0).

And we know the momentum balance equation (without external force) of differen-

tial form gives (in dimensionless form)

∂v

∂t
+ (v ·O)v =

1

Re
O · π, (3.3)

in which π is viewed as the stress tensor of the fluid. And the total stress π is usually
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written as

π = −pI + τ (3.4)

where p represents the isotropic part of the total fluid stress, and together with a

constitutive law describing the extra stress, τ , which likewise is assumed to depend

only on t and y,

τ = τ (y, t), with τxz = τyz = 0. (3.5)

To close the system for (p, vx, τ )(y, t), we need the constitutive equations for the

extra stress τ . We will discuss a hierarchy of laws from standard texts [24, 7, 46] in

the following sections.

3.1.1 Stokes second problem

For viscous fluids, the Navier-Stokes constitutive law is

τ = 2D, (3.6)

where D ≡ 1
2
(Ov + OvT ) is the rate of strain tensor (the viscosity coefficient does not

appear due to the scaling we choose in previous subsection).

From (3.1), it immediately follows that


τxy = η0

∂vx
∂y

,

τxx = τyy = τxz = τyz = τzz ≡ 0

(3.7)

The momentum equation (3.3) reduces to


∂vx
∂t

=
1

Re

∂2vx
∂y2

∂p

∂y
= 0.

(3.8)

49



3.1.2 Shear wave model in linear viscoelastic fluids

The constitutive law of linear viscoelasticity (the Lodge model) is

τ = 2

∫ t

−∞
G(t− t′)D(y, t′)dt′, (3.9)

where G(t) is the shear relaxation modulus function. In physical units we should have

G̃ = η̃0ω̃G.

Again, by virtue of (3.1), D has only xy (yx) nonzero components, and therefore

(3.9) reduces to 
τxy =

∫ t

−∞
G(t− t′)∂vx

∂y
(y, t′)dt′,

τxx = τyy = τxz = τyz = τzz = 0.

(3.10)

While the momentum equation (3.3) reduces to

∂vx
∂t

=
1

Re

∂τxy
∂y

, (3.11a)

∂p

∂y
= 0. (3.11b)

From (3.10) and (3.11a), we can derive a equation for vx as:

∂vx
∂t

=
1

Re

∫ t

∞
G(t− s)∂

2vx
∂y2

(y, s)ds, (3.12)

and then shear stress is obtained from (3.10).

We note here for special shear modulus G(t), like a single mode Maxwell model,

G(t) = (ηp/λ)e−t/λ (nondimensional form), the equation (3.12) simplified to a damped

wave equation (cf [7, 24]),

∂2vx
∂t2
− ηp
λRe

∂2vx
∂y2

+
1

λ

∂vx
∂t

= 0. (3.13)

Furthermore, it is clear that the shear stress τxy also satisfies the identical damped wave

50



equation (3.13).

3.1.3 Upper Convected Maxwell and Giesekus models

The standard nonlinear regimes model is treated in classical texts [7, 46]. Either one

consider the K-BKZ class of integral constitutive laws, generalizing (3.10), or one applies

differential laws, the choice made here. The general approach involves approximation

of the shear modulus G(t) by a truncated exponential series. This is equivalent to

decomposition of the extra stress into a finite sum,

τ =
k∑
i=1

τ i, (3.14)

where each τ i obeys a Maxwell-type evolution equation, with nonlinearity appearing in

the upper convected derivative and other nonlinear terms for capturing specific nonlin-

earity effect. We will include the Giesekus model which is a nonlinear extension from

Maxwell model and includes shear thinning effect. For the remainder of this chapter, we

restrict to a single Maxwell-type mode; the extension to any finite k is straightforward

and the numerical cost increases proportional to the number of modes.

The Maxwell-type evolution equation for the extra stress is

τ + λ
∇
τ + aτ · τ = 2ηpD, (3.15)

where ηp = η̃p/η̃0 is the polymer viscosity in physical unit η̃p scaled with the reference

viscosity η̃0, and
∇
τ is the upper convected derivative of the extra stress,

∇
τ =

∂τ

∂t
+ (v · ∇) τ − (∇v)T · τ − τ · (∇v). (3.16)

We note here [60], the polymeric stress τ is produced by D and transported by v, and

is nonlinearly excited by the Giesekus nonlinear term aττ . The “mobility parameter”

a can vary: a = 0 is the upper convected Maxwell (UCM) model; a = 0.5 is the Leonov

model; in general, 0 ≤ a ≤ 1, and the mobility parameter is to be fitted from data with

λ.
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From (3.1), even though D has only xy, yx nonzero terms, there are new nonlinear

terms from
∇

τ and τ · τ to balance the normal stresses τxx, τyy, so that they cannot be

ignored. The single mode constitutive law (3.15) then reduces to



∂τxx
∂t
− 2

∂vx
∂y

τxy + τxx = −a
λ

(τ 2
xx + τ 2

xy)

∂τxy
∂t
− (τyy +

ηp
λ

)
∂vx
∂y

+ τxy = −a
λ
τxy(τxx +τyy)

∂τyy
∂t

+ τyy = −a
λ

(τ 2
xy + τ 2

yy)

τyz = τxz = 0

(3.17)

The momentum equation once again is reduced to (3.11a-3.11b) for velocity and pres-

sure.
∂vx
∂t

=
1

Re

∂τxy
∂y

, (3.18a)

∂p

∂t
=
∂τyy
∂y

. (3.18b)

As pointed out in [60], we can see from (3.17), the nonlinearity in this system is

from the upper convected derivative,
∇
τ , and the shear thinning term aτ 2. As in the

Newtonian fluid case, there is no convective nonlinearity in the momentum equation

itself. An important indicator of nonlinearity is the shear-induced generation of a non-

zero first normal stress difference, N1 = τxx − τyy. The presence of a normal stress

gradient along the y-direction then generates a pressure gradient, absent in the linear

model. Indeed, if we neglect all nonlinear terms from (3.17) the two normal stress

components τxx, τyy, obey identical ordinary differential equations

∂τxx
∂t

+
1

λ
τxx = 0,

∂τyy
∂t

+
1

λ
τyy = 0. (3.19)

So the linear viscoelasticity model can not capture the normal stress in the shear wave

flow. And we also see any initial normal stress relaxes exponentially fast and does not

propagate nor couple to the shear stress or wave.
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The coupled system (3.17) and (3.11a - 3.11b) can be written in the form,

∂q

∂t
+ A(q)

∂q

∂y
= ψ(q), (3.20)

with

q =


vx

τxx

τxy

τyy

 , A(q) =−


0 0 1

ρ
0

2τxy 0 0 0

η0/λ+τyy 0 0 0

0 0 0 0

 , ψ =
−1

λ


0

τxx + a λ
η0

(τ 2
xx + τ 2

xy)

τxy(1 +a λ
η0

(τxx +τyy))

τyy + a λ
η0

(τ 2
xy + τ 2

yy)

 ,

together with the pressure equation in (3.11b) and τxz = τyz = 0.

3.2 Analytical results

It is always good to have the model equations solved analytically, so we can apply

parameter inversion and direct prediction on the model. For the model equations we

presented above, there are analytical results for the case of viscous and linear viscoelas-

tic model for semi-infinite and finite depth problem, and we will discuss them in this

section. The solutions can be obtained via Fourier methods by ignoring the transients.

We note the transient problem can be solved by Laplace methods. The known solutions

to viscous case and linear viscoelastic in semi-infinite domain cases are reviewed here

to complete the presentation and for comparison to the extensions we made on linear

viscoelastic model with finite depth domain that appear absent in the literature. The

discussion of nonlinear model of UCM and Giesekus will be presented in next section

for their own characteristics.

3.2.1 Solution to the viscous problem

The long time solution for viscous model is widely available (e.g. [71]) and recalled

for completeness as well as comparison with generalizations.

Semi-infinite domain solution. Upon positing a solution of the form vx(y, t) =

Im{v̂x(y)eit} (note the time is in unit of ω̃−1, so the physical frequency is ω̃/2π), the
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solution is given by

vx(y, t) = Im{e−δ0yeit} = e−α0y sin(t− β0y), (3.21)

which obeys the far-field boundary condition limy→∞ v(y, t) = 0. We introduce here

δ0 = α0 + iβ0 = (1 + i)
√
Re/2. The Reynolds number, Re = ρ̃ω̃Ã2/η̃0, determines

both the penetration (1/α0) and oscillation length scales (2π/β0), through α0 = β0 =√
Re/2. The velocity field produces a particle displacement

X(y, t) = X(y, 0) + e−αy[cos(βt)− cos(t− βy)]. (3.22)

The viscous stress is given by τxy = ∂vx/∂y,

τxy = Im{−δ0e
−δ0yeit} = sin(t− β0y + 5π/4)e−α0y

√
Re, (3.23)

which shows a constant phase difference between the shear stress and the velocity.

Finite-depth channel with stationary top plate. The no-slip boundary con-

dition at the top of the channel needs vx(y = H, t) = 0. The solution is simply

vx(y, t) = Im
{
eit

sinh[δ0(H − y)]

sinh[δ0H]

}
. (3.24)

3.2.2 Solution to linear viscoelastic problems

We summarize solutions to (3.11a-3.11b) for boundary conditions representative of

experimental configurations. In all the following cases the bottom plate velocity is

assumed to be vx(0, t) = sin(t).

Semi-infinite domain solution[24, 7]. If the fluid height is much larger than the

wavelength of the transverse shear waves, the boundary condition

vx(y =∞, t) = 0, (3.25)

is appropriate. Neglecting the transient, a solution of the form vx(y, t) = Im{v̂x(y)eit}
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is posited and may be obtained by Fourier method. Combining (3.10) and (3.11a), we

have
∂vx
∂t

=

∫ t

−∞
G(t− s)∂

2vx(y, s)

∂y2
ds (3.26)

Inserting the posited velocity in (3.26), and eliminating the eit term, we have the

ordinary differential equation for v̂

d2v̂x
dy2
− iRe

η∗
v̂x = 0. (3.27)

where the nondimensional complex viscosity η∗ follows the definition as in (1.8), η∗ =∫∞
0
G(s) exp(−is)ds = η′ − iη′′.
We note the condition at infinity (3.25) ensure one of the solutions to (3.27) is

selected as

vx(y, t) = Im{eite−δy} = e−αy sin(t− βy), (3.28)

where the notation δ = α+ iβ =
√
iRe/η∗ (α, β ∈ R) has been introduced which leads

to

α =
1

|η∗|

√
Re

2
(|η∗| − η′′), β =

η′

|η∗|

√
Re/2

|η∗| − η′′
. (3.29)

It is clear that 0 < α ≤ β, with equality only in the viscous limit η′′ = 0 such that

α = β =
√
Re/2. The greater the elastic component η′′, the larger the difference

between oscillation wavelength 2π/β and the attenuation length 1/α.

Recall we have the relation between complex modulus and complex viscosity in

dimensional units, G̃∗ = iω̃η̃∗, while in dimensionless unit, G∗ = iη∗, we can recover

G∗ from (3.29):

G′ =
(β2 − α2)Re

(α2 + β2)2
, G′′ =

2αβRe

(α2 + β2)2
. (3.30)

From this nondimensional formulation, we can recover the formulas in Ferry, Sawyer,

and Ashworth [25].

As for the particle displacement X(y, t), we have the formulation

X(y, t) = X(y, 0) + e−αy[cos(βy)− cos(t− βy)]. (3.31)
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And the shear stress is obtained from (3.10) and (3.28)

τxy(y, t) = Im{−δη∗eite−δy} = sin(t− βy + ϕ+ π)e−αy
√
|η∗|Re. (3.32)

Since the normal stress is not considered here, the normal stress components are as-

sumed zero too in this linear model. And we can see from (3.32) the phase shift of the

shear stress with respect to the velocity (3.28) is ϕ + π, where ϕ = arctan(β/α), 0 ≤
ϕ ≤ π/2.

As pointed out in [60], the comparison to viscous solution is informative. The ratio

of the viscid to viscoelastic penetration lengths (α/α0) reveals that when η′′ = 0, we

obtain the expected increase in penetration depth as η′ increases: a more viscous fluid

leads to more momentum transfer from the oscillating plate! As the fluid elasticity η′′

increases, the penetration depth ratio decreases. Some of the momentum imparted to

the fluid by the oscillating plate is now radiated as an elastic shear wave, hence the

penetration depth is smaller. The ratio of viscid to viscoelastic wavelengths (β/β0) is

also instructive. For viscoelastic fluids (η′′ > 0) the wavelength reflects the competition

between diffusive and radiative momentum transfer. At a given η′ an initial increase in

the elasticity decreases the wavelength. In this range the motion is over damped and

the decrease in penetration depth dominates the wavelength. At greater values of η′′

the radiative momentum transfer (through shear waves) becomes dominant and there

is an increase in the wavelength. The maximum viscoelastic shear stress is greater than

the purely viscous stress by a factor of
√
|η∗| and exhibits a different phase shift, ϕ+π

instead of 5π/4.

Finite channel depth. When the fluid is bounded above at y = H by a solid, flat

plate moving at velocity vH(t) the no-slip boundary condition is

vx(y = H, t) = vH(t) . (3.33)

The Fourier method assumes steady state solution and requires the form of top bound-

ary vH(t) = VHe
it with VH complex constant giving the amplitude of top plate motion
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(e.g. VH(t)=r exp(iθ), where r and θ are real constant), and gives us the solution

vx(y, t) =
e−y α

(1 + e4H α − 2 e2Hα cos(2Hβ))

(
e2 (H+y)α sin(2Hβ − y β − t)

− e4H α V0 sin(y β − t)− e3Hα+2 y α r sin(Hβ − y β − θ − t)

+ e3H α r sin((H + y) β − θ − t ω)− e2H α sin(2H β − y β + t)

+ e2 y α sin(y β + t) + eH α r sin(H β − y β + θ + t)

− e(H+2 y)α r sin((H + y) β + θ + t)
)
,

(3.34)

which can be rewritten in the form proposed by Mitran as:

vx(y, t) = Im
{
V0e

iωt sinh [δ(H − y)]

sinh (δH)
+ vH(t)

sinh (δy)

sinh (δH)

}
. (3.35)

And the stationary top plate solution is included here with VH = 0. (This ”textbook”

solution does not appear to be in the literature; it is given here for explicit compar-

ison with the semi-infinite solution, and since it is the basis for finite-depth inverse

characterization.)

We note here the infinite half-plane solution is recovered from (3.35), since

sinh [δ(H − y)]

sinh (δH)
= e−δy − 2 sinh(δy)

e−2δH

1− e−2δH
, (3.36)

and (note δ = α + iβ and α > 0)

lim
H→∞

sinh [δ(H − y)]

sinh (δH)
= e−δy. (3.37)

So taking the limit of H to the infinity, setting vH(t) = 0 and taking the imaginary

part of the result gives (3.28).

The shear stress is given by

τxy(y, t) = Im
{
− δη∗ cosh[δ(H − y)]

sinh(δH)
eit
}
. (3.38)
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Finite channel depth, flat fluid boundary above. The boundary condition in

this case is continuity of tangential stress within the viscoelastic fluid τyx(H, t) with

that from the adjacent fluid τH(t). Since we neglect the transients, the adjacent fluid

must exhibit a tangential stress dependence of the form τH(t) = THe
it to be consistent

with the Fourier method. This leads to

dv0
x

dy
(y = H) =

τH(t)

η∗
e−iωt (3.39)

and the solution

vx(y, t) = Im
{
V0e

iωt sinh [δ(H − y)]

sinh (δH)
+
τH(t)

δη∗
sinh (δy)

sinh (δH)

}
. (3.40)

This solution is relevant if one solves the model equations for the fluid layer above, or

designs an experiment with a controlled dynamic shear stress at the interface. (This

solution is proposed by Mitran [60] and likewise appears not to have been previously

published.) It should be noted however that ensuring that the top fluid layer has the

simple harmonic tangential stress H(t) = THe
it is difficult to realize experimentally. If

the adjacent fluid exerts negligible stress upon the viscoelastic fluid layer TH ≈ 0, then

the formula

vx(y, t) = Im
{
V0e

iωt sinh [δ(H − y)]

sinh (δH)

}
, (3.41)

is proper. Otherwise, it is to be expected that H(t) contains other frequencies besides

the fundamental frequency used in the bottom plate forcing, and solution (3.40) should

be used.

Limitations of linear viscoelastic model. The Lodge type constitutive equation

(3.10) is valid for small strain limit

max |Dxy| = max
∣∣∣∂X
∂y

∣∣∣ = max
∣∣∣ ∂
∂y

∫ t

0

vx(y, s)ds
∣∣∣� 1. (3.42)

For semi-infinite domain solution (3.31), the strain is

max |Dxy| = e−αy{α[cos(t− βy)− cos(βy)] + β[sin(t− βy) + sin(βy)]}, (3.43)
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with initial condition X(y, 0) = 0. The reasonable assumption is that the maximum

strain is obtained at lower plate y = 0,

max |Dxy(y = 0, t)| = −α(1− cos t)− β sin t. (3.44)

And the maximum is obtained when cos t = α/
√
α2 + β2 and sin t = −β/

√
α2 + β2,

and we have

max |Dxy| =
√
α2 + β2 − α. (3.45)

Notice
√
α2 + β2 =

√
Re/|η∗|, the small strain limit becomes

√
Re

|η∗|

(
1−

√
|η∗ − η′′

2|η∗|

)
� 1. (3.46)

The elastic limit of fluid behavior corresponds to η′′ � η′, so the condition becomes

Re� η′′,

in this limit. We revert the relation into physical units to highlight the significance of

these limits. Recall that Re = ρ̃ω̃Ã2/η̃0 and G̃′ = ω̃η̃′′. The condition in the elastic

limit is then

ρ̃(ω̃Ã)2 � G̃′, (3.47)

or, physically, that the dynamic pressure induced by the oscillating plate must be much

less than the elasticity modulus of the fluid. In the viscous limit η′ = 1, η′′ = 0, the

small-strain condition becomes Re� 1. In the physical terms this states that

Ã� d̃ =
√
ω̃/2η̃/ρ̃,

or that the amplitude of the oscillating bottom plate, Ã must be much less than the

viscous penetration depth d̃. If viscous and elastic effects are roughly equal, then the

59



small strain condition becomes

Re << min(η′, η′′).

The coefficients (η′, η′′) obtained from fitting experimental data to the formulas above

should be checked against these limits to ascertain whether non-linear effects are in-

significant. In the finite depth linear and nonlinear models, one can calculate the local

strain from the numerical solutions, which generically will be maximal in the first half-

wavelength of the shear deformation at the lower plate.

3.3 Solutions to nonlinear model at special limits

The model equations with nonlinear viscoelastic constitutive law discussed above are

hyperbolic in nature. We will analyze the hyperbolicity of the system here to prepare

the presentation of numerical scheme proper for hyperbolic system, and we specially

mention the way of imposing consistent boundary conditions for those system. Also,

we have to point out the analysis on the nonlinear model are difficult and the analytical

solutions are usually very hard to get. We will only consider one exactly solvable case

here.

3.3.1 Hyperbolic structure

We now turn to a consideration of nonlinear effects by solving (3.20). The matrix

A from (3.20) has eigenvalues µ1 = µ2 = 0, µ3 = − c, µ4 = c with

c =

√
ηp + λτyy
λRe

denoting the velocity of propagation of shear waves transverse to the flow direction.

It’s clear that for elastic fluid whose normal stress component τyy > ηp/λ, the system

(3.20) is hyperbolic; if the stress condition is violated, say τyy < ηp/λ, the system will
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be elliptic with complex c. The associated right eigenvectors of A are

R =
[
r1 r2 r3 r4

]
=


0 0 c −c
0 1 2τxy 2τxy

0 0 c2Re c2Re

1 0 0 0

 . (3.48)

The eigenvectors form a basis for c > 0, hence the system (3.20) is hyperbolic. The

structure of this system is particularly simple with multiplicity two non-propagating

characteristic speed. This allows considerable analytical progress. Consider a local

linearization in which use average values (denoted by an overbar) for the eigenvectors

R̄ =


0 0 c̄ −c̄
0 1 2τ̄xy 2τ̄xy

0 0 c̄2Re c̄2Re

1 0 0 0


The characteristic variables of the problem are

w =


w1

w2

w3

w4

 = R̄−1q =


0 0 0 1

0 1 − 2τ̄xy
c̄2Re

0
1
2c̄

0 1
2c̄2Re

0

− 1
2c̄

0 1
2c̄2Re

0



vx

τxx

τxy

τyy

 =


τyy

τxx − 2τ̄xy
c̄2Re

τxy
1
2c̄
vx + 1

2c̄2Re
τxy

− 1
2c̄
vx + 1

2c̄2Re
τxy

 ,

and (3.20) can be rewritten in terms of these variables as

∂w

∂t
+ Λ

∂w

∂y
= φ (3.49)
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with Λ = diag {µ1, µ2, µ3, µ4} and φ = R−1ψ,

φ = −1

λ


τyy + a

(
τ 2
xy + τ 2

yy

)
τxx + a

(
τ 2
xy + τ 2

xx

)
− 4τ̄xy σ

σ

σ

 , σ =
1

2c̄2Re
τxy (1 + a (τxx + τyy)) .

The forcing term φ can be rewritten as a function of the characteristic variables φ =

φ(w) by using

q =


vx

τxx

τxy

τyy

 = R̄w =


0 0 c̄ −c̄
0 1 2τ̄xy 2τ̄xy

0 0 c̄2Re c̄2Re

1 0 0 0



w1

w2

w3

w4

 =


c̄(w3 − w4)

w2 + 2τ̄xy(w3 + w4)

c̄2(w3 + w4)Re

w1

 . (3.50)

3.3.2 Characteristic boundary conditions

The hyperbolic structure of the problem indicates that the compatible boundary

conditions must be used in numerical simulations. The non-propagating quantities

w1 = τyy and w2 = τxx − 2τ̄xy
c̄2Re

τxy can be freely specified on both bottom and top

boundaries. Subsequent values must be determined by solving the following ODE at

each boundary

∂ω1

∂t
=− 1

λ
[τyy + a(τ 2

xy + τ 2
yy)],

∂ω2

∂t
=− 1

λ
[τxx + a(τ 2

xy + τ 2
xx)− 4τ̄xyσ].

(3.51)

At the bottom plate (y = 0) only the in-going characteristic variable w4 = − 1
2c̄
vx +

1
2c̄2Re

τxy quantity can be specified since it is propagating into the fluid from the the fluid

domain. The other characteristic variable w3 = 1
2c̄
vx + 1

2c̄2Re
τxy propagates from within

the fluid domain towards the boundary and must be determined as part of the solution

procedure. Conversely, at the top boundary (y = H) w3 can be given as a boundary

condition and w4 must be evaluated from the solution procedure. Typically, we wish to

give boundary conditions in terms of the physical variables. The essence of the above
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discussion is that we cannot impose both velocity vx and shear stress τxy at boundaries.

To do so would determine both w3 and w4 in violation of characteristic information

propagation directions. We list common cases of compatible boundary conditions.

1. Velocity and normal stresses. At the bottom plate we specify vx and propagation

from within the channel as specified by the characteristic equation

∂ω3

∂t
− c∂ω3

∂y
= −σ

λ
, (3.52)

to give w3. This allows τxy = 2c̄2Re
(
w3 − 1

2c̄
vx
)

to be computed. We solve

(3.51) to obtain w1, w2. By using (3.50), we then can specify τyy and τxx thereby

obtaining all the variables of the q vector. At the top plate we proceed anal-

ogously, by specifying vx but obtaining τxy from the w4 component as τxy =

2c̄2Re
(
w4 + 1

2c̄
vx
)
. The ω4 component is determined from propagation within

the fluid by solving
∂ω4

∂t
+ c

∂ω4

∂y
= −σ

λ
. (3.53)

2. Tangential and normal stresses. At both boundaries we specify τxy. Solving (3.51)

gives ω1, ω2 and hence τyy, τxx. At the bottom boundary, velocity vx is obtained

from the propagating ω3 component by solving (3.52) and at the top from the ω4

component obtained by solving (3.53).

3. Non-reflective top boundary condition. To simulate an infinite domain we can set

the in-coming characteristic at y = H to zero, w3 = 0. Numerically, care must

be taken so there are no spurious reflections of the ω4 component at the y = H

boundary.

Also, it is worth to point out we can mimic cilia beating pattern by impose asym-

metric lower boundary condition. As showed in Figure 3.3.2, we model this motion by

the plate velocity in one period T

V (t) =


Vpower sin(πt/τ1), 0 ≤ t ≤ τ1

0, τ1 ≤ t ≤ τ1 + τ2

−Vreturn sin(π(t− (τ1 + τ2))/τ3), τ1 + τ2 ≤ t ≤ τ1 + τ2 + τ3,

(3.54)
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where τ1 + τ2 + τ3 = T = 2π (in dimensionless form, and the dimensional period

Figure 3.2: Schematic sketch of asymmetric lower boundary condition for velocity, with
effect of net shift to the right showed

t
0 T

vx(y = 0, t)

τ1

Vpower

τ2 τ3

Vreturn

T̃ = 2π/ω̃). We can see, from (3.54), (Vpower, τ1) and (Vreturn, τ3) give us the parameter

sets to adjust the net drift to right which mimics the slip boundary condition at bottom

‘plate’. And since

4x|power =

∫ τ1

0

Vpower sin(πt/τ1)dt =
2τ1

π
Vpower, (3.55)

and

4x|return = −2τ3

π
Vreturn, (3.56)

the no-slip boundary condition implies τ1Vpower = τ3Vreturn. Otherwise the average net

drift velocity could be determined by

Vdrift =
2

π

τ1Vpower − τ3Vreturn
τ1 + τ2 + τ3

. (3.57)

There are several ways to parameterize the net drift with those numbers: one is to

keep the velocity amplitude same and then adjust time spend on forward, relax and

backward, eg. τ1 = T/2, τ3 = T/2− τ2 with 0 ≤ τ2 ≤ T/2; another one is to set τ1 = τ3

and then τ2 = 0, then Vpower = αVreturn with 0 < α ≤ 1.

The analysis of boundary conditions not only sheds light on the model study for

finite depth shear wave, but also useful to our numerical analysis for full 2d simulation,
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in which the hyperbolic part of the problem again need similar treatment to maintain

the numerical procedure stable and convergent. We will talk about this in next chapter.

3.3.3 Upper Convected Maxwell solution

For general nonlinear viscoelastic model, the analytical solution is hard to obtain,

but here we present an analytical solution for UCM model.

We recall the UCM model system is, a = 0 in (3.20),



∂vx
∂t
− 1

Re

∂τxy
∂y

= 0

∂τxx
∂t
− 2τxy

∂vx
∂y

= −1

λ
∂τxy
∂t
− (

ηp
λ

+ τyy)
∂vx
∂y

= −1

λ
τxy

∂τyy
∂t

= −1

λ
τyy

(3.58)

with an immediate solution for τyy(y, t) = τyy(y, 0) exp(−t/λ). The analytical solu-

tion given by Mitran via Riemann method [60] is shown below. (In the analysis, the

assumption τyy(y, 0) = 0 is taken)

vx(y, t) =
1

2
e−

t
2λu(y, t), (3.59)

with

u(y, t)=
1

2
[U(y−ct)+ U(y+ct)]+

∫ y+ct

y−ct
[K(s, y, t)U(s)+L(s, y, t)V (s)]ds, (3.60)

and

K(s, y, t)=− t

8λ2c

J1(r(s, y, t))

r(s, y, t)
, L(s, y, t)=

1

2c
J0(r(s, y, t)). (3.61)

And function U(y) in (3.59) is solved from

U(y) = µ

∫ 0

y

M(s, y)U(s)ds+ F (y), (3.62a)
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M(s, y) = − y√
y2 − s2

J1

( 1

2λc

√
y2 − s2

)
(3.62b)

F (y) = −4e−y/(2λc) sin
y

c
, µ =

1

2λc
. (3.62c)

And the shear stress τxy is given by

τxy(y, t) =
Re

2
e−t/2λ

∫ y

y+ct

[∂u
∂t

(s, t)
1

2λ
u(s, t)

]
ds. (3.63)

After knowing vx and τxy, we can construct the solution for the normal stress com-

ponent τxx from (3.58).

The upshot of this solution formula is that we can capture the nonlinearity of normal

stress generation in shear flow, and this effect is completely ignored in the linear model.

3.4 High resolution numerical computation

3.4.1 Numerical scheme

For the more general nonlinear constitutive laws of Giesekus type with shear thin-

ning (a 6= 0), closed-form solutions do not exist, so numerical methods are employed. A

primary purpose of this study is to provide a basis for inverse characterization of non-

linear viscoelastic properties. Hence it is desirable to minimize any artificial dissipation

and dispersion that might arise in a numerical computation, which is the baseline for

matching with experimental data through parameter fitting. For this purpose, we apply

a high-resolution algorithm [15] for hyperbolic PDEs as implemented in the Clawpack

[17] or Bearclaw packages [16]. We present the salient points of the numerical method

here for completeness. It is a finite volume, Godunov-type method in which the jumps

between adjacent finite volume cell averages are propagated in accordance with local

wave speeds. Consider an uniform discretization of the interval [0, H] with step size h.

The cell center coordinates are yj = (j − 1/2)h for j = 1, 2, ...,m with h = H/m, and

the cell edge coordinates are yj−1/2 = (j − 1)h for j = 1, 2, ...,m + 1. The cell finite
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volume average is

Qn
j =

1

h

∫ y+1/2

y−1/2

q(y, tn)dy. (3.64)

The numerical method presented here is based on [48].

We first rewrite the system (3.20) with operators

qt = (A+ B)(q), A = −A(q)
∂

∂x
,B = −ψ(q), (3.65)

where A is the convective operator and B is the source term operator. Computation of

(3.65) is split into two steps with Strang splitting:

q(t+ ∆t) = e(A+B)∆tq(t) ≈ eB∆t/2eA∆teB∆t/2q(t). (3.66)

The source term of the splitting is qt = B(q), a system of ordinary differential equations

which is advanced by using a second order Runge-Kutta scheme. For the convective

part of equation, jumps between adjacent cells as propagating waves are first presented.

The jump at the j − 1/2 cell interface ∆Qn
j−1/2, is decomposed on the eigen basis

R̄ = R((Qn
j +Qn

j−1)/2)

∆Qn
j−1/2 =Qn

j −Qn
j−1 =

4∑
l=3

αlj−1/2r
l
j−1/2,W l

j−1/2 =αlj−1/2r
l
j−1/2, l=3, 4. (3.67)

Note only the r3, r4 eigen mode from (3.48) are propagating in the system, hence number

of waves nw = 2, W3,4
j−1/2 are required. The α coefficients are

α3
j−1/2 =

∆Q3,j−1/2

2c̄2
j−1/2Re

−
∆Q1,j−1/2

2c̄2
j−1/2

, α4
j−1/2 =

∆Q3,j−1/2

2c̄2
j−1/2Re

+
∆Q1,j−1/2

2c̄2
j−1/2

, (3.68)

with Q1, Q3 the 1, 3 components of Q. Cell average values are updated by

Qn+1
j = Qn

j −
∆t

h
(W4

j−1/2 +W3
j+1/2), (3.69)

along with second order corrections (details can be found in [47]). The program based on
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this numerical scheme is setup within Bearclaw. In the spirit of Literate Programming

[37], all software details are available both in Bearclaw package and on a website [32].

3.4.2 Experimental design guidelines

The high resolution numerical method presented above enables us to test various

boundary conditions. We can apply the numerical algorithm to show the effect of

experimentally relevant boundary conditions. In the results we showed, parameters are

chosen H = 10, ηp = 1, λ = 4, Re = 1, a = 0 and τyy = 0. Results are presented in

Figure 3.3 by showing superimposed snapshots of vx(y, tn), τxx(y, tn), τxy(y, tn) at times

tn = n∆t, n = 0, 1, ..., 30, with time increment ∆t = 1.9. Also shown are subsequent

time positions of tracer beads initially placed at X(y, 0) = 0. Since τyy = 0 in these

simulations the normal stress difference is directly given by τxx, N1 = τxx − τyy = τxx.

Open-cell experiment. In an open-cell experimental setup the viscoelastic fluid

is typically in contact with the surrounding air which is assumed to exert a negligible

tangential stress upon the viscoelastic layer. The top boundary at y = 0 is assumed

to be flat. Hence the boundary condition τxy(H, t) = 0 is set. Results for this case are

shown in Figure 3.3. Note that the nonlinear interaction terms in the UCM model lead

to large values of τxx, larger than those for τxy near the plate.

Stationary top plate. A closed-cell experimental setup is advantageous in ensur-

ing isolation of the sample and surrounding medium. Typical results are shown in Fig.

10 when the top plate is kept at zero velocity vx(H, t) = 0. An interesting observation

is that the velocity and stress profiles are very similar to those obtained in the open-

cell experiment. The main difference is the much smaller range of motion exhibited by

tracer beads when the top plate is stationary by comparison to the open-cell experi-

mental setup. If signal-to-noise ratio of tracer bead positions becomes a concern at low

strain thresholds, then the open-cell setup is preferable.

Asymmetric lower boundary condition

To demonstrate the ability to mimic cilia beating pattern, we show the computation

results with lower boundary velocity assigned as in (3.54). The simulation parameters

of the above example are also used here, and we set Vpower = 3, Vreturn = 1, τ1 = 3.14,

τ2 = τ3 = 1.57.

In Figure 3.4, solid wall velocity boundary condition is applied at top plate, and

consistent normal stress boundary condition as discussed in section 3.3.2 are also ap-
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Figure 3.3: Numerical results with symmetric lower boundary condition v(y = 0, t) =
sin(t), with open-cell boundary condition at top plate (τxy = 0 assigned at the top).
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plied. The results on bead deformation indicate there is no bead movement at top

plate, and the normal stress at bottom plate are much higher than tangential stress.

In Figure 3.5, open-cell boundary condition is applied at top plate, and velocity is

calculated consistently according to section 3.3.2. We clearly see net transport of tracer

beads and again, the normal stress at bottom plate are much higher than tangential

stress. This model setup and boundary condition enable us to study the mucus layer

transport by cilia driving, and can predict the rate of net transport for mucus.
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Figure 3.4: Numerical results of the asymmetric lower boundary condition, with
Vpower = 3, Vreturn = 1, τ1 = 3.14, τ2 = τ3 = 1.57, and the stationary plate boundary
condition at top plate (v(y = H, t) = 0).
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Figure 3.5: Numerical results with the asymmetric lower boundary condition, with
Vpower = 3, Vreturn = 1, τ1 = 3.14, τ2 = τ3 = 1.57, and the open-cell boundary condition
at top plate (the tangential stress τxy = 0 is at the top boundary)
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Chapter 4

Numerical simulation at continuum

level

As mentioned in the introduction chapter, transport of mucus layer itself is an

important issue for lung functionality and one of our primary interests. Transport of

the mucus layer is a cooperative outcome of the pulmonary system, and cilia beating

and tidal breathing cycles are the main driving forces of the transport. Due to the

fact of lacking understanding to details of the coupling between cilia/PCL and the

mucus layer, we will simplify the model system to consider only the mucus layer itself

with prescribed boundary conditions, which hopefully represents the stress/velocity

communication from adjacent layers.

In this chapter, we model the viscoelasticity of mucus by Oldroyd-B differential

constitutive law, and couple the corresponding extra stress evolution to momentum

balance equation; with the assumption of incompressibility for mucus, we have the

continuity equation to close the system of velocity, pressure, and stress components

from viscous and elastic effect. To predict mucus flow, we study numerical schemes for

the system, and discuss their stability of those numerical methods. In the literature,

previous works on numerical methods for viscoelastic flows show loss of stability due to

highly elastic effect of viscoelastic system and the necessity of particular care to treat

the elastic stress components of the system was pointed out in summaries of previous

numerical work [67, 35]. We will go through the physical and mathematical properties

of the equation system and then present our choice of model for extra stress evolu-

tion; and we also try to identify the difficulty in simulation while restating numerical



methods proposed previously in the literature. By analyzing the detailed procedure

of discretization to the system and considering the special constraint on the discrete

variables, we present a new numerical scheme to simulate unsteady Oldroyd-B fluid

flow. We show the underlying physical and mathematical interpretation of the method

and also point out its advantage over previous classical numerical approaches. Also,

to overcome the nonphysical assumption of the microscopic foundation of Oldroyd-B

model, the Hookean dumbbell, we also study the FENE-P dumbbell and its constitutive

equation. Based on approximation expansion of the stress of FENE-P, we can analyze

the nonlinear correction to the numerical method we proposed for Oldroyd-B model.

The results presented in this chapter are collaboration work with Sorin Mitran [61].

4.1 Viscoelastic fluid flow models

The momentum equation of viscoelastic flow for velocity v is formulated as (in

dimensional units)

ρ(
∂v

∂t
+ (v · ∇)v) = ∇ · π + f (4.1)

where ρ is the fluid density, the total stress tensor is denoted by π and f is the external

force applied to fluid flow. Furthermore, the total stress is usually decomposed into

isotropic part of pressure p, and the extra stress tensor τ :

π = −pI + τ . (4.2)

When incompressibility assumption is taken, we have the continuity constraint equation

for the velocity

∇ · v = 0. (4.3)

To close the system of equations (4.1)–(4.3) for viscoelastic fluid flow, we have to include

a governing equation for extra stress τ . The constitutive equations describing the

evolution of extra stress τ are proposed both in integral and differential equation form

in literature, (cf. [7, 46, 45]), and they are used to capture relation between strain/rate-

of-strain vs. stress response for viscoelastic material. We will apply constitutive laws

in differential form in this chapter, and those in integral form are not our topics here.
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4.1.1 Note on viscous case

We notice the situation in which only viscous stress is considered in (4.2),

τ s = ηs(∇v +∇vT ), (4.4)

where ηs is fluid viscosity. From (4.2) and (4.4), we will have standard Navier-Stokes

(NS) equation in (4.1).

ρ(
∂v

∂t
+ (v · ∇)v) = −∇p+ ηs∇2v + f . (4.5)

With continuity equation (4.3) and (4.5), we have the incompressible Navier-Stokes

equation, which is the standard model for viscous fluid flow. The above momentum

equation (4.5) can be written in dimensionless form (without external force f):

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∇2v, (4.6)

where Re = ρUL/ηs with characteristic fluid velocity of the flow U and the character-

istic length of the flow problem L.

As pointed out in literature[14, 81], the incompressible Navier-Stokes equation ad-

mits mixed type properties with hyperbolic, elliptic and parabolic part existing in the

same system. The elliptic part of the equation needs the full coupling of discretization of

variables in numerical scheme to solve the equation, which means very expensive com-

putational work required. The idea of splitting procedure based on Helmholtz-Hodge

decomposition [14] allows decoupling of the computation of velocity and pressure field,

and then leads to much more efficient numerical scheme of projection method by Chorin

and Temam [15, 81], whose procedure is as followed: (given previous time step values

of vn and p)

(i) Advance velocity without pressure (we take the first order in time projection as

example) to get intermediate velocity v∗:

Re
(v∗ − vn
4t

)
= ∇2vn −Re(vn · ∇)vn; (4.7)
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(ii) Update pressure to ensure the incompressibility constraint

Re
(vn+1 − v∗

4t

)
= −∇pn+1. (4.8)

One of the variants of projection method is named gauge method and discussed in

detail in [21, 22]. In which the auxiliary variable

a = u−∇φ (4.9)

is introduced, and (4.6) is formulated as

at + (u·∇)u+∇
(
∂tφ−

1

Re
4φ+ p

)
=

1

Re
∇2a. (4.10)

So the gauge variable φ can be defined as

∂tφ−
1

Re
4φ+ p = 0. (4.11)

The formulation enables easy assignment of boundary condition and eliminate the nu-

merical boundary layer for pressure update, and we will extend this idea later to solve

the viscoelastic flow later.

4.1.2 Constitutive law for extra stress

The striking feature of viscoelastic/polymeric materials, compared to viscous fluids,

is the manifestation of elastic effect. Since the polymer composition of those materials

is responsible for the elastic characteristics, proper model of polymer chains is the

key for understanding the relevant physical properties. The simplest molecular scale

models for flexible polymers are those elastic dumbbells, which are commonly used in

the analysis for rheology of polymeric system. Figure 4.1 shows a typical dumbbell, in

which 2 beads with mass m are connected by a spring and the vector Q = r2 − r1 is

used to represent the orientation and length of a dumbbell.

If the spring, in a dumbbell is assumed Hookean (Spring force is proportional to de-
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Figure 4.1: Dumbbell model

1

2

O = (0, 0)

r1

r2

formation, F = HQ with spring constant H, and spring itself is infinitely extensible.),

we call the dumbbell Hookean dumbbell. One can derive macroscopic stress constitu-

tive equation based on careful calculation of ensemble average of Hookean dumbbell

dynamics [8, 46], and the bulk stress contribution from elastic dumbbell τ p is written

as the constitutive equation

λ1
O
τ p +τ p = 2ηpD, (4.12)

where λ1 is relaxation time, ηp is polymer viscosity, the convected time derivative
∇
τ is

defined as
O
τ=

∂τ

∂t
+ (v · ∇)τ − (τ∇v +∇vTτ ), (4.13)

and the rate of strain tensor D is

D =
1

2
(∇v +∇vT ). (4.14)

We note τ p defined in (4.12) only account for the polymeric part of contribution

to extra stress, and for this Hookean dumbbell model, the viscous component, τ s of

equation (4.4), of the extra stress

τ = τ s + τ p (4.15)

should also be included in the momentum equation (without external force)

ρ(
∂v

∂t
+ (v · ∇)v) = −∇p+ ηs∇2v +∇ · τ p. (4.16)
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We also note here (4.15) is named as Oldroyd-B constitutive equation, and by using

O
I= 2D, (4.17)

we can reformulate this constitutive law (4.15) into one equation for τ

τ + λ1
O
τ= 2η0(D + λ2

O
D), (4.18)

where λ2 is named retardation time and η0 is zero shear viscosity.

Obviously we can derive the relationship between the parameter sets, (η0, λ2) and

(ηs, ηp):

ηs =
λ2

λ1

η0, ηp = (1− λ2

λ1

)η0. (4.19)

By assigning special values of time constant, we will have

i) λ2 = 0, Upper Convected Maxwell model;

ii) λ2 = λ1, viscous case (Naiver-Stokes stress-rate of strain relation).

And we can define β = λ2/λ1 to count the weight of viscous and elastic stress contri-

bution. It is also seen that since we would rather not to have negative viscosity, the

retardation parameter would be always smaller than relaxation time λ2 < λ1.

We note here that all the physical parameters in the constitutive equation (4.18)

have their physical interpretations[8, 45]:

ηp =
nkBTξ

4H
, (4.20)

where n is number density of dumbbells, ξ = 6πηsa is friction coefficient for beads of

radius a in dumbbell, and H is spring constant. Relaxation time is

λ1 =
ξ

4H
, (4.21)

and retardation time is

λ2 =
ηsξ

4(ηs + ηp)H
. (4.22)
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Now equations (4.3), (4.12), and (4.16) close the equation system for our viscoelastic

problems. And the nondimensional parameter groups from those equations are as

followed:

i) Weissenberg number: We = λ1U
L

, where U is characteristic speed of flow, and L is

characteristic length of the problem;

ii) Deborah number: De = λ1

T0
, where T0 is characteristic time of flow.

As specified in [7], We and De characterize the elastic effect over viscous effect, and

the high Weissenberg/Deborah numbers always indicate highly elastic scenario. [4]

The dimensionless version of the system is

Re
{∂v
∂t

+ v · ∇v
}

= −∇p+ β∇2v +∇ · τ p, (4.23a)

We
{∂τ p
∂t

+ (v · ∇τ p −∇vTτ p − τ p∇v)
}

= (1− β)D− τ p. (4.23b)

∇ · v = 0. (4.23c)

Analysis done on (4.23a)-(4.23b) [67, 35] shows that it is mixed type of equations

in the system: the convective directive of momentum and constitutive equations give

hyperbolicity, and elliptic part is from incompressible constraint, and the diffusion

in momentum equation surely indicates parabolic signature. To ensure stability and

accuracy, proper treatments on all characteristics are required while devising numerical

scheme. And the first thought to everybody is to extend the current numerical schemes

successful for viscous case to viscoelastic problems.

4.1.3 Current numerical scheme and the difficulty

Previous results on numerical simulation reveal a high Weissenberg number diffi-

culty [35, 67]: iterative methods will lose convergence and accuracy at high Weissenberg

number, and the reason is attributed either to limitations of models or to numerical

approximation errors [67]. Numerical studies have concentrated on deriving stable and

accurate methods proper for capturing elastic effect of model system. In literature

(survey and summary can be found in [67, 34]) , elastic viscous stress splitting (EVSS)
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and its variants (EVSS-G, DEVSS, and DEVSS-G) are proposed by researchers mainly

based on finite element (FE) discretization to handle the extra stress properly. Numer-

ical methods (cf. [86, 82], and summary in [67]) based on finite difference (FD) and

finite volume (FV) framework are also proposed to solve viscoelastic system.

Since the obvious success on solving Navier-Stokes equation, projection method

has been carried over without modification for viscoelastic fluid flow computation. To

demonstrate the steps of solving evolution equation, we show the treatment for velocity

and extra stress coupling with Van Kan’s scheme [36] of using projection technique (cf.

[15, 81, 5]): given previous value for vn, τ np , and pn, the constitutive equation is used

first to update polymeric stress components

We
{τ n+1

p − τ np
4t

+ (v · ∇τ p −∇vTτ p − τ p∇v)n
}

= (1− β)Dn − τ np (4.24)

We is the Weissenberg number. And then an auxiliary velocity variable v∗ is calculated

from momentum equation by neglecting pressure

Re
{v∗ − vn
4t

+ vn · ∇vn
}

= β∇2v∗ +∇ · τ np . (4.25)

To ensure the incompressibility constraint, the auxiliary velocity field is projected to

the divergence free function space

vn+1 − v∗

4t
= −∇pn+1

∇ · vn+1 = 0,

(4.26)

and pressure field p is updated to new time level during the above update of velocity.

Based on the way of handling the constitutive (4.24) and momentum (4.25) equa-

tions, different methods we mentioned at the beginning of this subsection can be for-

mulated. To reveal the source of error in numerical procedure, we will discuss details

of the system and then we will propose our new treatment in the following.
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4.2 Extension of the projection method for viscoelas-

tic fluid flows

The governing equations for the viscoelastic model, can be rearranged into a system,

we will write the system in quasilinear form to show the characteristics of hyperbolic

and elliptic/parobolic part. We also identify the limit of stress components for type

change in the system. We first present the system in hyperbolic form and then try to

maintain the incompressibility with modified gauge method presented.

4.2.1 System of model equations

We define field variable q for velocity and stress components as

q = (vx, vy, τxx, τxy, τyy)
T . (4.27)

And the system of (4.3), (4.12), and (4.16) can be reformulated into hyperbolic form,

by putting the continuity equation (4.3) aside for a moment,

∂q

∂t
+A

∂q

∂x
+B

∂q

∂y
= C(

∂2q

∂x2
+
∂2q

∂y2
) +ψ(q) + φ, (4.28)

with

A =



vx 0 −1/ρ 0 0

0 vx 0 −1/ρ 0

−2(τxx + ηp/λ) 0 vx 0 0

0 −(τxx + ηp/λ) 0 vx 0

0 −2τxy 0 0 u


, (4.29a)

B =



vy 0 0 −1/ρ 0

0 vy 0 0 −1/ρ

−2τxy 0 vy 0 0

−(τyy + ηp/λ) 0 0 vy 0

0 −2(τyy + ηp/λ) 0 0 vy


, (4.29b)
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and terms of right hand side

C =



ηs
ρ

0 0 0 0

0 ηs
ρ

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, (4.29c)

φ = (−1

ρ

∂p

∂x
,−1

ρ

∂p

∂y
, 0, 0, 0)T . (4.29d)

and

ψ(q) =



ηs
ρ
∇2u− 1

ρ

∂p

∂x
ηs
ρ
∇2v − 1

ρ

∂p

∂y

−1

λ
τxx

−1

λ
τxy

−1

λ
τyy


(4.29e)

The eigensystem of coefficient matrix A and B are explicitly determined, and we give

them as followed. Eigenvalues of matrix A are γA∓ = vx ∓
√

(ηp/λ+ τxx)/ρ , and we

have the corresponding eigenvectors ξA∓

ξA∓ = (0,±
√
ρ(
ηp
λ

+ τxx), 0, ρ(
ηp
λ

+ τxx), 2ρτxy)
T . (4.30)

For eigenvalue γA = vx, the corresponding eigenvector is

ξA = (0, 0, 0, 0, 1)T . (4.31)

And eigenvalues ξA∓ = vx ∓
√

2ρ(ηp/λ+ τxx) have eigenvectors

χA∓ = (±1, 0,
√

2ρ(ηp/λ+ τxx), 0, 0)T . (4.32)
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The eigenvalues of matrix B γB∓ = vy ∓
√

(ηp/λ+ τyy)/ρ have corresponding eigenvec-

tors

ξB∓ = (±
√
ρ(
ηp
λ

+ τxx), 0, 2ρτxy, ρ(
ηp
λ

+ τxx), 0)T . (4.33)

γB = vy has eigenvector

ξA = (0, 0, 1, 0, 0)T . (4.34)

And eigenvalues ξB∓ = vy ∓
√

2ρ(ηp/λ+ τyy) have eigenvectors

χB∓ = (0,±1, 0, 0,
√

2ρ(ηp/λ+ τyy))
T . (4.35)

From the eigenvalues and eigenvectors, we see the system (4.28) is hyperbolic as long

as the condition
ηp
λ
> τxx, and

ηp
λ
> τyy. (4.36)

As proved in [35], the hyperbolicity condition is always satisfied for Oldroyd-B model

with ηs > 0, and we then have to maintain this property in our numerical procedure.

As mentioned in [82], to keep the incompressibility constraint valid, the longitudinal

wave should not be propagating in the system. This fact is critical for devising stable

and accurate numerical scheme. As suggested by [82], the natural choice is to modify

the projection method for the Navier-Stokes equation to incorporate the elastic stress

of the system and render the algorithm suitable for viscoelastic fluid flow. We will

introduce our attempt of modification in the following.

4.2.2 Gauge formulation

Our investigation of modification on the projection method to solve viscoelastic

system starts with the gauge formulation [21, 22]. We try to manipulate the original

gauge variable of the method to obtain a suitable numerical scheme for our purpose.

As suggested by the formulation of (4.16), the divergence of extra stress affects the

momentum equation as an elastic source. Then our original emphasis on modification

of the gauge formulation is to include the history of stress divergence into the auxiliary

variable, so we can combine the computation of velocity and the divergence of stress
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to introduce the dimensional auxiliary variable a,

a = v +∇φ− 1

ρ

∫ t

0

∇ · τ p. (4.37)

Then the equation of (4.16) can be rewritten as

∂a

∂t
+ (v · ∇)v =

ηs
ρ
∇2a+

ηs
ρ
∇2 1

ρ

∫ t

0

∇ · τ pds (4.38a)

∇ · a = ∇2φ− 1

ρ
∇ ·
∫ t

0

∇ · τ pds (4.38b)

∂φ

∂t
− ηs

ρ
∇2φ =

1

ρ
p (4.38c)

where φ is called gauge variable. System of equations (4.38a)–(4.38c) and (4.12) now

is in gauge formulation.

The whole idea of modifying the projection procedure is to count for the effect of

elastic stress to velocity filed. Now we use the above gauge representation of the system

to obtain the projection steps. For simplicity, we first choose a local impact of the extra

stress on the auxiliary of velocity, so as defined in previous section, we give the variable

(from here, we use τ to denote τp for simplicity)

a = v +∇φ− 1

ρ

∫ t

tn

∇ · τ (s)ds , v + r (4.39)

and the gauge variable
∂

∂t
φ =

1

ρ
(p+ ηs∇2φ). (4.40)

So originally defined filed variables (cell centered) include auxiliary variable a =

(ax, ay), stress tensor τ = (τxx, τxy, τyy), velocity v = (u, v), gauge variable φ, and

pressure p. New time level value of velocity and pressure are updated from auxiliary

and gauge variables.

Given all the values at previous step, which means all cell centered and edge centered

variables are up to date and for the initial setup the auxiliary velocity at edge have to

satisfy the divergence free condition, we intend to calculate the update for next step as
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followed

1. We need to construct the hyperbolic formula to take care of auxiliary velocity a

and the extra stress τ at the same time.

at + (v · ∇)v = 0

τ t + (v · ∇)τ = τ (∇v) + (∇v)Tτ − 1

λ
τ +

2ηp
λ

D
(4.41)

while we notice our velocity gradient defined as

∇v =

∂u∂x ∂v

∂x
∂u

∂y

∂v

∂y

 (4.42)

With the help of v = a− r, we would have

at + (v · ∇)a =((a− r) · ∇)r

τ t + (v · ∇)τ =τ (∇v) + (∇v)Tτ − 1

λ
τ +

2ηp
λ

D
(4.43)

We notice the source term in the above hyperbolic equation involves the filed

variable itself, but they could be specified after the wave propagation is applied

by the source term splitting result. Furthermore the advection velocity is edge

centered to capture the correct physics flux. And the velocity v should be cell

centered, since it acts as the source term for the equation.

2. The extra stress is updated here to include the diffusion effect and it should be

before the momentum equation time splitting, but for the first round of test we

ignore this part and take the auxiliary extra stress obtained in the first step as

the one we would have for the next time level.

3. Crank-Nicolson step is utilized to get the approximate velocity via momentum

equation (cell centered) and in this step, we have to take care of the modification of

auxiliary velocity variable and the extra stress (cell center). If f(t) ,
∫ t
tn
∇·τds/ρ,

we have
an+1 − a∗

4t
=

1

2

ηs
ρ

(
∇2(an+1 + a∗) +∇2(fn+1 + f ∗)

)
(4.44)
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4. Gauge projection is applied and then the gauge update for gauge variable and

pressure is calculated. So velocity is updated and the extra stress is updated to

the new level.

∇2φ = ∇ · a+
1

ρ
∇ ·
∫ t

tn

∇ · τ (s)ds (4.45)

5. Then the edge centered velocity is interpolated from the intermediate velocity

calculated from the above steps to make sure the edge velocity divergence free.

Boundary conditions are not clear. If we set all the derivative of stress component

τ zero on the boundary, then we would have the similar boundary condition for a as

in the Navier-Stokes case:

a · nn = vB · nn, a · nτ =
∂φ

∂nτ
+ vB · nτ , (4.46)

Before every computation step, boundary condition for a and τ have to be imposed.

The boundary conditions of v are naturally chosen and they will have impact on the

boundary condition of a by equation (4.37).

We also notice the right hand side of equation (4.45) includes divergence of a, which

tells us the need of boundary condition update of it. Also we know

∇ · (∇ · τ ) =
∂2τxx
∂x2

+ 2
∂2τxy
∂x∂y

+
∂2τyy
∂y2

, (4.47)

so the ghost value of stress components are also needed in computation.

The algorithm shows obvious elastic flow pattern in driven cavity compared to

viscous result and results are showed in Figure 4.2 and 4.3. And for small Deborah

number calculation, the computation converge to steady state, but it can not achieve

convergent results for highly elastic fluid flow.
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Figure 4.2: Simulation of cavity for Oldroyd-B model. Note the solid wall boundary
conditions are assigned to all walls, and the top wall is moving to the right with velocity
1. Red solid lines are streamline with Re = 100, We = 0.1, and time step 4t = 0.01.
Green dash line is the stream line of viscous flow with same Reynolds number. Top
plot show the comparison after 10 step computations of Oldroyd-B flow; and bottom
plot show the comparison after 20 steps.
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Figure 4.3: Simulation of cavity problem with Oldroyd-B constitutive law. Note the
solid wall boundary conditions are assigned to all walls, and the top wall is moving
to the right with velocity 1. Red solid lines are streamline with Re = 100, We = 0.1,
and time step 4t = 0.01. Green dash line is the stream line of viscous flow with
same Reynolds number. Top plot show the comparison after 50 step computations of
Oldroyd-B flow; and bottom plot show the comparison after 60 steps.
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4.3 Analysis on extra stress and the new numerical

scheme

To verify the validity of a numerical scheme, we need to check whether main physical

feature is captured properly in the computation and results. From the analysis of

1d shear wave model of last chapter, we know there should be elastic shear waves

propagating in the system so correct numerical schemes should capture this phenomena.

The analysis on the shear wave inspires us in considering the linearized version

(neglect all source terms and convective terms) of (4.28). After the linearization, we

end up with 
∇ · v = 0

ρ
∂v

∂t
= −∇p+∇ · τ

∂τ

∂t
=
ηp
λ

D

, (4.48)

which leads to a wave equation of v in 2 dimensional computational domain.

As to the gauge formulation of above section, we see the shear generating part,

which is divergence of stress tensor, is included in the auxiliary variable and does not

affect the momentum transport directly, so it fails to do so since the elastic waves are

not retained in the computation.

From the above argument, we can see when we look into the feature of propagation

of elastic wave in Oldroyd-B material, one fundamental question for a numerical scheme

is whether it can capture the wave propagation correctly. By analyzing (4.48), we have

ρ
∂2v

∂t2
=−∇(

∂p

∂t
) +

ηp
λ

(∇2v +∇(∇ · v))

=−∇ṗ+ c2
t∇2v + (c2

l − c2
t )∇(∇ · v),

(4.49)

where ct is transverse wave speed and cl is longitudinal wave speed. It is clear now, from

basic elasticity theory [44], we know there are indeed two elastic waves found: trans-

verse waves will not change volume of material and longitudinal wave makes volume

change with wave propagations. So we try to identify the components, which gener-

ate shear waves, in stress, and we also want to keep track of the stress elements that

violate the incompressibility condition so we can avoid the violation during computa-
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tion. The force-carrying part that remains is the one of interest. The key aspect of the

method of Double-Projection proposed [61] is to now extract from this force-carrying

part the elastic displacement. Then the elastic displacement is corrected to eliminate

longitudinal modes. So the questions raised here:

1. can the stress be divided into two parts nicely (or could we find the function

space); and

2. is the projection step enough to enforce the incompressibility constraint and to

ensure the extra stress evolution.

And we will answer those questions in the following.

4.3.1 Stress tensor decomposition

Based on the observations to the system, we are trying to identify the source of error

in numerical algorithm. Due to the analysis on property of elasticity as above, the first

thing we notice is that clearly any time discretization of numerical procedure which

introduces spurious modes will cause numerical instability, hence should be taken care

of. From this point of view, Mitran proposes the idea of devising numerical procedure

to eliminate those modes and point out [61] the main concern is on the procedure of

elastic stress update in the numerical computation. The divergence-free part does not

affect the momentum equation and hence can be neglected.

The idea of elastic waves isolation depends on how well we can decompose extra

stress tensor and grab the force generating part of it. And we learned from previous

literature that it is possible to split a symmetric tensor into two parts. We note here

that there may be multiple choices for the decomposition of extra stress tensor, and

our first intuition is to isolate the divergence free part and the remainder. From the

references we found [83, 65], we have the following theorem :

Theorem 1 (Symmetric Tensor Decomposition) Suppose the domain Ω ∈ R3

and the boundary of Ω is defined by ∂Ω. The outward unit normal vector on ∂Ω is

denoted by n. We take ∂TΩ and ∂uΩ as supplementary subsets of ∂Ω. Given symmet-
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ric tensor S in C1(Ω), S could be uniquely decomposed into

S = T + E (4.50)

where T and E are symmetric tensor field on Ω and they satisfy, respectively,

∇ ·T = 0, T · n|∂TΩ = 0 (4.51a)

E =
1

2
(∇u+∇uT ), u|∂uΩ = 0 (4.51b)

where the introduced filed variable u = (ux, uy) representing deformation could be de-

termined by

∇2u+∇(∇ · u) = 2∇ · S (4.52a)

with boundary conditions

1

2
(∇u+∇uT ) · n|∂TΩ = −S · n, u|∂uΩ = 0 (4.52b)

Taking the theorem, we can find the deformation equation that determines the

longitudinal wave part of extra stress tensor is actually the equilibrium state equation

of body force with Poisson ratio taken as zero. So now the fact we are facing is if we

want to decouple the extra stress τ , we will have to use the divergence of extra stress

tensor as the effective body force to calculate the equilibrium deformation and then we

will have the two parts of the tensor. Based on our observations here, Mitran leads us

to a numerical scheme that suppress introduction of spurious modes in discretization

and is introduced in the following [61].
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4.3.2 Numerical scheme based on the stress decomposition

So we propose double projection method to eliminate spurious wave propagating in

the hyperbolic system and keep incompressibility condition satisfied. Given all variables

at previous time level, vn, pn, and τ n, the first step is to get auxiliary polymeric stress

τ ∗

We
(τ ∗ − τ n
4t

)
= (1− β)2Dn − τ n −We

(
(v · ∇)τ − τ∇v − (∇v)Tτ

)n
. (4.53)

And by applying theorem of last subsection, we decompose the auxiliary stress into

shear generating part and divergence free part τ ∗ = α+ β∗, where β∗ satisfies

β∗ =
1

2

(
∇u∗ + (∇u∗)T

)
, (4.54)

and can be treated as the stress field induced by microscopic dumbbell spring deforma-

tion u, and filed variable u∗ is determined by

∇2u+∇(∇ · u) = 2∇ · τ ∗, with u|∂Ω = 0. (4.55)

So we can update the deformation variable u∗ into divergence free space by first

projection

∇2φ = −∇ · u∗, (4.56a)

and then

un+1 = u∗ +∇φ. (4.56b)

And finally the force carrying part of the stress tensor should be updated as

τ n+1 =
1

2

(
∇un+1 + (∇un+1)T

)
(4.56c)
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Now we are ready for the velocity update

Re
(v∗ − vn
4t

)
= β∇2v −Re(vn · ∇)vn +∇ · τ n+1. (4.57)

And pressure is computed by

∇2p =
Re

4t
∇ · v∗, (4.58)

and finally velocity is updated to the divergence free space

vn+1 = v∗ − 4t
Re
∇pn+1. (4.59)

The merit of this algorithm is explicit update for polymeric stress with respect to de-

formation field, which helps to maintain the incompressibility constraint and eliminate

the violation caused by extra stress for every time step. Essentially, the longitudinal

part of wave generated by numerical discretization is removed by this explicit treat-

ment and we expect much more stable and accurate numerical results based on this

algorithm.

And this analysis also sheds lights on further development of numerical scheme: the

ones that do not generate spurious modes should be considered.

4.3.3 Analysis on the FENE-P model

The Hookean dumbbell gives explicit formula for bulk constitutive equation, but its

drawback is obvious: in physical reality, the polymer chain can not be extended beyond

its own length; and we can expect the force generated by spring will be greatly larger

when polymer chain is in extended state. Hence the Hookean force law F = HQ is not

appropriate and a nonlinear force is proposed (cf. [8])

F =
HQ

1− (〈Q〉/Q0)2
Q < Q0, (4.60)

where Q0 is the maximum extension length of dumbbell polymer. This is called finitely

extensible nonlinear elastic (FENE) spring force and the corresponding dumbbell is

named FENE dumbbell. Due to the nonlinearity of spring force, the closed-form en-
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semble average of force in calculation of stress can not be obtained, and the derivation

of constitutive equation for FENE dumbbells then requires an approximation. The

popular approximation due to Peterlin [8, 34] leads to the resulting constitutive law

(FENE-P), formulated as

τ = νkBTλH
∇
α, (4.61a)

where ν is the number density of dumbbells and the structural tensor α [8]

α = H
〈QQ〉
kBT

, (4.61b)

is determined by
α

1− tr(α)
b

+ λH
∇
α =

b

b+ 2
I, (4.61c)

where b = HQ2
0/kBT and tr represents the trace operator for second order tensor.

From the formulation of constitutive equation of FENE-P, the stress tensor should

have nonlinear dependence on gradient of deformation u instead of just linear pro-

portionality. To treat FENE-P model in a similar framework as we did for Hookean

dumbbells, we want to expand the stress tensor linearly with respect to small physical

parameter and apply the tool we already have. In [3], dimensionless parameter b is

treated as the ratio of squared end-to-end distance of chain to its equilibrium value, so

1/b is usually small number. Also, as showed in [3], the expansion of stress tensor τ

with respect to 1/b is presented,

τ = τ 0 +
1

b
τ 1 +

1

b2
τ 2 + · · · , (4.62)

which makes a natural candidate for our purpose.

Actually, in [3], the expansion of structural tensor α

α = α0 +
1

b
α1 +

1

b2
α2 + · · · , (4.63)

leads the expansion in (4.62).

From those expansions and the constitutive equations, in [3], explicit equations for
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α0 and α1 are given

α0 + λH
∇
α0 = I; (4.64)

and

α1 + λH
∇
α1 = β0, (4.65)

where

β0 = (tr(α0))α0 + 2α2
0. (4.66)

And the differential equations for τ 0 and τ 1 are also given

τ 0 = νkBT (I −α0), (4.67)

and

τ 1 = −νkBT (α1 + β0). (4.68)

If we plug τ 0 of (4.67) into equation for α0 of (4.64), we clearly see τ 0 is actually

the Hookean dumbbell stress and satisfies the Oldroyd-B constitutive law:

λH
∇
τ 0 + τ 0 = λHνkBTD. (4.69)

So higher order terms in (4.62) describe deviation of FENE-P stress tensor from Hookean

dumbbell, and the leading order of structural tensor α is the corresponding deformation

field for Hookean dumbbell. After we rewrite the differential equation for τ 1

τ 1 + λH
∇
τ 1 = λH(νkBT )

∇
β0, (4.70)

we see the only difference of (4.69) and (4.70) is in the right hand side, which can be seen

as the source term of the stress, of the equations. And we also see the nonlinearity of

stress tensor on the structure tensor is carried on by the source term of their equations.

When we devise a numerical scheme for FENE-P dumbbell model, we can take the

expansion and truncate with finite terms (take two here, τ = τ 0 + τ 1/b). And then

the numerical approximation scheme are proposed with minus modification from the

one we have in section 4.3.2 for Hookean dumbbell.
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So given previous step values for vn, p, and τ n = τ 0 + τ 1, we can advance τ ∗0 by

(4.69), and the corresponding deformation field can be obtained by solving (4.55) and

the force carrying part of the stress is τ n+1
0 = ∇un+1

0 + (∇un+1
0 )T .

To include higher order term τ 1 of (4.62) from FENE-P stress, we should calculate

the force carrying part with our decomposition technique applied again for τ 1. Also,

note from τ n+1
0 , we can determine α0 by (4.67)

αn+1
0 = I − 1

νkBT
τ n+1

0 , (4.71)

and then βn+1
0 is up to date.

The τ ∗1 can be advanced by (4.70), and the corresponding deformation field un+1
1 is

obtained again by solving (4.55) with stress term of τ 1. And finally τ n+1
1 = ∇un+1

1 +

(∇un+1
1 )T is calculated. And the approximation τ n+1 = τ n+1

0 + τ n+1
1 /b is proceeded

and plugged into (4.57) for velocity update. And the rest of the numerical scheme

is again projection of velocity to divergence free space as what we have in 4.3.2 after

(4.57).

We note the approximation to the nonlinear stress (4.62) could be carried on in

this way of expansion, but we expect dramatically increase of computation work. We

suspect it will be enough for most application to include just the first order correction

of stress, and we will verify our conjecture in future work.
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Chapter 5

Conclusions

In this dissertation, we first study the diffusive transport for micron-scale particles in

viscoelastic fluids. A time-domain statistical framework is presented for two purposes:

as an inversion toolkit for recovery of the diffusive transport modulus in a generalized

Langevin equation from experimental time series of tracer positions; and, as a direct

simulation toolkit for pathogen diffusion of single particles and statistical correlations.

These direct and inverse algorithms combine into a general package for anomalous dif-

fusive transport of pathogens in soft matter, which we anticipate to be complementary

to the Mason-Weitz experimental and theoretical protocol [58, 57, 56]. These tools are

presently being applied to characterization of pulmonary liquids and DNA solutions

with our colleagues Superfine, Hill, and Cribb in the Virtual Lung Project at UNC.

An open question relates to the range of power law behavior that is possible for

GLE models with the class of N -mode exponential kernels is considered in this work.

So far, we have reproduced the classical Rouse and Zimm MSD scalings on intermediate

timescales between the shortest and longest relaxation times for kernels with the Rouse

and Zimm relaxation spectra. However, there are limited theoretical results for general

exponential series kernels. Our preliminary numerical studies show a wide range of

power law behavior is possible as the relaxation spectrum and the respective weights

for each mode are varied.

These tools are viewed as a foundation for further extensions of the single-bead and

two-bead models and experiments [16, 50]. The ability to separate local bead-fluid

interactions from the bulk viscoelastic modulus, and to identify heterogeneity from

single particle and two-particle statistical correlations, are key future applications of



these tools.

Also, we notice the fluctuation dissipation theorem for the GLE with time depen-

dent external force applied is presented in [10]. When this modified F-D theory is

combined with our statistical tools here, we will be able to model the microscopic dif-

fusive transport coupled with time dependent chemical interactions, which will be a

promising application to biological systems.

In the discussion of chapter 3, we have extended the Ferry shear wave analysis to

include finite depth within linear viscoelasticity, and then to include nonlinearity with

constitutive laws of Maxwell type, for purposes of inverse characterization experiments

in low volume samples of biological fluids. The linear models are exactly solvable with

the Fourier method, allowing for an explicit formula for the inverse characterization of

a known viscoelastic material due solely to finite depth effects. At frequencies and bulk

strains typical for conditions encountered by the airway surface liquid in the lung, errors

in the recovery of storage and loss moduli are enormous when fitted to inappropriate

theoretical models[60]. If the fluid behaves nonlinearly as controlled bulk strain from

the driven plate is ramped up, either due to convective nonlinearity or shear thinning,

we present the system of model equations and numerical method that solves them with

high order of accuracy to make predictions. The boundary analysis for the resulting

hyperbolic system sheds lights in numerical simulation of more general cases (2d, 3d, and

unsteady), and we also notice that the application of asymmetric lower plate boundary

condition predicts net transport with proper upper plate stress boundary conditions,

which will be useful for future study of lung mucus clearance.

These modeling tools have been developed in context with a new device, a micro,

parallel-plate rheometer, which allows both types of velocity controls to exist on the

opposing flat interface to the driven plate. The present work has illustrated recovery

of linear and nonlinear viscoelastic parameters as well as predictions of the onset of

nonlinear effects at threshold values of the imposed strain from the driven plate. In

future work, we will apply these modeling tools to experiments on biological liquids.

The last topic we discussed is the numerical analysis for viscoelastic fluid flow, which

is important to the prediction of fluid transport for the lung mucus layer. We present

detailed numerical analysis on the model system incorporating Oldroyd-B constitutive

law. With the analysis of the underlying physical and mathematical interpretation

of general numerical methods, we point out that the most plausible reason for the

breakdown of convergence is the violation of the incompressibility during the update
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of elastic stress of numerical procedures. Therefore the new double-projection method

is proposed. The method is based on the decomposition of the stress tensor τ , and the

separation of τ into two parts serves to eliminate from consideration the divergence free

part. The force-carrying part of the decomposition is the one of interest. The key aspect

of the double-projection method is to extract from this force-carrying part the elastic

displacement. Then the elastic displacement is corrected to eliminate longitudinal

modes. The extension of the double-projection to the FENE-P dumbbell model is also

discussed. By applying expansion approximation to the stress in the FENE-P dumbbell,

we can update the nonlinear stress and corresponding deformation field iteratively, and

again we can maintain the incompressible condition satisfied. The implementation and

application details of our new method will be our future work.
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