

Figure S1. Statistical differences in metagenome composition. Metagenome hit counts were first normalized using GASIC. Normalized counts were then analyzed using LEfSe with default parameters, to identify significant differences at species level between the microbial communities compared.

a) Comparison non-progressing site baselines to healthy sites of healthy patients

b) Comparison progressing site baselines to healthy sites of healthy patients

Baseline inactive Health

Lactobacillus

a: Actinomyces georgiae b: Actinomyces_naeslundii c: Actinomyces_oris d: Actinomyces_sp_oral_taxon_175 e: Actinomyces sp oral taxon 180 f: Actinomyces_sp_oral_taxon_181 g: Actinomyces_sp_oral_taxon_448 h: Actinomyces_sp_oral_taxon_848 i: Bacillus subtilis j: Gemella moribillum k: Gemella sanguinis I: Bacteroidetes_oral_taxon_272 m: Bifidobacterium breve n: Bifidobacterium_dentium o: Bifidobacterium longum p: Parascardovia_denticolens q: Lautropia mirabilis r: Dolosigranulum pigrum s: Granulicatella adiacens t: Granulicatella_elegans u: Finegoldia_magna v: Parvimonas_micra w: Parvimonas_sp_oral_taxon_393 x: Peptoniphilus lacrimalis y: Peptoniphilus sp oral taxon 375 z: Peptoniphilus_sp_oral_taxon_386 a0: Peptoniphilus sp oral taxon 836 a1: Atopobium_sp_oral_taxon_199 a2: Atopobium_sp_oral_taxon_810 a3: Eggerthella_lenta a4: Enterobacter hormaechei a5: Proteus_mirabilis a6: Enterococcus durans a7: Enterococcus_faecalis a8: Enterococcus italicus a9: Enterococcus saccharolyticus b0: Eubacterium infirmum b1: Eubacterium_limosum b2: Eubacterium_saburreum b3: Eubacterium_saphenum b4: Pseudoramibacter_alactolyticus b5: Capnocytophaga_gingivalis b6: Capnocytophaga granulosa b7: Capnocytophaga ochracea b8: Capnocytophaga sp oral taxon 380 b9: Fusobacterium_necrophorum c0: Fusobacterium_nucleatum c1: Oribacterium_sp_oral_taxon_108

AREWS Aesochizabium Porphyromona 942940180E 6 6 6 9 20 8 80 14 2 9 Propionibacterium Propionibacterium

Eggerthella

Atopobium

Enterobacter

Proteus

peptostreptococ

Finegoldia Dolosigranulum ^{Lautropia}

c2: Lactobacillus acidophilus c3: Lactobacillus brevis c4: Lactobacillus buchneri c5: Lactobacillus casei c6: Lactobacillus crispatus c7: Lactobacillus_fermentum c8: Lactobacillus iners c9: Lactobacillus jensenii d0: Lactobacillus johnsonii d1: Lactobacillus paracasei d2: Lactobacillus pentosus d3: Lactobacillus plantarum d4: Lactobacillus reuteri d5: Lactobacillus rhamnosus d6: Leptotrichia shahii d7: Rothia dentocariosa d8: Rothia_mucilaginosa d9: Rothia_sp_oral_taxon_188 e0: Mycoplasma_fermentans e1: Neisseria_flavescens e2: Neisseria_sicca e3: Neisseria_sp_oral_taxon_20 e4: Paenibacillus_sp_oral_taxon_786 e5: Aggregatibacter_sp_oral_taxon_458 e6: Haemophilus_aegyptius e7: Filifactor alocis e8: Peptostreptococcus anaerobius e9: Peptostreptococcus stomatis f0: Mesorhizobium loti f1: Porphyromonas asaccharolytica f2: Porphyromonas_endodontalis f3: Porphyromonas_sp_oral_taxon_278 f4: Porphyromonas_sp_oral_taxon_279 f5: Prevotella buccae f6: Prevotella buccalis

f9: Prevotella_loescheii g0: Prevotella_melaninogenica g1: Prevotella_micans g2: Prevotella_multiformis g3: Prevotella_oralis g4: Prevotella oulorum g5: Prevotella saccharolytica g6: Prevotella sp oral taxon 472 g7: Prevotella_sp_oral_taxon_473 g8: Propionibacterium_acnes g9: Propionibacterium_avidum h0: Propionibacterium propionicum h1: Propionibacterium sp oral taxon 192 h2: Pseudomonas_fluorescens h3: Pseudomonas_stutzeri h4: Staphylococcus warneri h5: Lactococcus lactis h6: Streptococcus anginosus h7: Streptococcus constellatus h8: Streptococcus downei h9: Streptococcus gordonii i0: Streptococcus_infantarius i1: Streptococcus_infantis i2: Streptococcus_mitis i3: Streptococcus_oralis i4: Streptococcus pneumoniae i5: Streptococcus_pyogenes i6: Streptococcus_sp_oral_taxon_56 i7: Streptococcus_sp_oral_taxon_58 i8: Streptococcus_sp_oral_taxon_71 i9: Jonquetella_anthropi j0: Pyramidobacter piscolens j1: Centipeda_periodontii j2: Megasphaera micronuciformis j3: Mitsuokella_multacida j4: Mitsuokella_sp_oral_taxon_131 j5: Selenomonas infelix j6: Selenomonas_noxia j7: Selenomonas_sp_oral_taxon_138 j8: Veillonella_parvula j9: Stenotrophomonas maltophilia k0: Stenotrophomonas sp k1: Candidate_division_SR1

Figure S2. Statistical differences in normalized metatranscriptome composition comparing non-progressing site baselines to healthy sites of healthy patients. Metagenome hit counts were first normalized using GASIC. Metatranscriptome normalized counts were then analyzed using LEfSe with default parameters, to identify significant differences in activity at species level between the microbial communities compared.

f7: Prevotella histicola

f8: Prevotella_intermedia

Baseline active Health

a: Actinomyces_cardiffensis b: Actinomyces_georgiae c: Actinomyces_graevenitzii d: Actinomyces odontolyticus e: Actinomyces_sp_oral_taxon_171 f: Actinomyces_sp_oral_taxon_180 g: Actinomyces_sp_oral_taxon_181 h: Actinomyces_sp_oral_taxon_848 i: Arcanobacterium_haemolyticum 📕 j: Mobiluncus_mulieris k: Bacillus_clausii 🛯 🛛 : Bacillus subtilis m: Lysinibacillus_fusiformis n: Gemella_haemolysans 🛿 o: Gemella_moribillum p: Gemella_sanguinis 📕 q: Bifidobacterium_animalis r: Bifidobacterium_breve s: Bifidobacterium dentium t: Parascardovia_denticolens u: Ochrobactrum_anthropi v: Campylobacter showae w. Cardiobacterium_hominis x: Cardiobacterium_valvarum 🛿 y: Dolosigranulum_pigrum z: Granulicatella adiacens a0: Granulicatella_elegans a1: Brevundimonas_diminuta a2: Parvimonas_sp_oral_taxon_110 a3: Peptoniphilus_indolicus a4: Peptoniphilus_sp_oral_taxon_375 a5: Peptoniphilus_sp_oral_taxon_386 a6: Peptoniphilus_sp_oral_taxon_836 a7: Comamonas_testosteroni a8: Delftia acidovorans a9: Atopobium_parvulum b0: Atopobium_rimae b1: Atopobium sp oral taxon 199 b2: Olsenella_uli b3: Corynebacterium_matruchotii b4: Corynebacterium urealyticum b5: Kytococcus_sedentarius

Wesorhizobium muinetzedinoiqorg eijatjedijedj b6: Enterobacter_cancerogenus b7: Enterococcus_casseliflavus b8: Enterococcus faecalis b9: Enterococcus_italicus c0: Enterococcus_saccharolyticus c1: Eubacterium_infirmum c2: Pseudoramibacter_alactolyticus c3: Fusobacterium_gonidiaformans c4: Fusobacterium_nucleatum c5: Catonella_morbi c6: Johnsonella ignava c7: Oribacterium_sp_oral_taxon_108 c8: Oribacterium_sp_oral_taxon_78 c9: Lactobacillus acidophilus d0: Lactobacillus brevis d1: Lactobacillus_buchneri d2: Lactobacillus_crispatus d3: Lactobacillus gasseri d4: Lactobacillus_iners d5: Lactobacillus_jensenii d6: Lactobacillus oris d7: Lactobacillus_pentosus d8: Lactobacillus_plantarum d9: Lactobacillus reuteri e0: Lactobacillus_salivarius e1: Leptotrichia_hofstadii e2: Microbacterium_sp_oral_taxon_186 e3: Rothia_aeria e4: Rothia_dentocariosa e5: Rothia_mucilaginosa e6: Moraxella_catarrhalis e7: Mycobacterium_tuberculosis e8: Mycoplasma hominis e9: Neisseria_polysaccharea f0: Neisseria_sp_oral_taxon_14 f1: Paenibacillus_sp_oral_taxon_786 f2: Filifactor_alocis f3: Peptostreptococcus anaerobius

81000 2007 996686 60 WENN

Prevotella

seuowopnasd

Delftia

Comamonas

a 8 3 4 5 4 3 a 2

Peptoniphilus

Brevundimonas

Ochrobactrum

 $\overline{\Delta}$

Granulicatella Cardiobacterium

Dolosigranulum

aderxm

Jeff Perteriococcus Corynebacteri Atopobium

peptostreptococci

Eubacteri

Microbacterium

Mycobacterium Rothia

f5: Mesorhizobium loti f6: Porphyromonas_asaccharolytica f7: Prevotella_bivia f8: Prevotella_buccae f9: Prevotella_denticola g0: Prevotella histicola g1: Prevotella_intermedia g2: Prevotella melaninogenica g3: Prevotella_micans g4: Prevotella_nigrescens g5: Prevotella_oris g6: Prevotella pallens g7: Prevotella salivae g8: Prevotella_sp_oral_taxon_317 g9: Prevotella veroralis h0: Propionibacterium_acnes h1: Propionibacterium_avidum h2: Propionibacterium_propionicum h3: Propionibacterium_sp_oral_taxon_192 h4: Pseudomonas aeruginosa h5: Pseudomonas_fluorescens h6: Pseudomonas_pseudoalcaligenes h7: Pseudomonas stutzeri h8: Candidate_division_TM7 h9: Sanguibacter_keddieii i0: Staphylococcus_epidermidis i1: Lactococcus_lactis i2: Streptococcus_agalactiae i3: Streptococcus_australis i4: Streptococcus cristatus i5: Streptococcus_downei i6: Streptococcus_gordonii i7: Streptococcus_infantarius i8: Streptococcus_intermedius i9: Streptococcus_oligofermentans j0: Streptococcus_peroris j1: Streptococcus_pneumoniae j2: Streptococcus_sobrinus j3: Streptococcus_sp_oral_taxon_56 j4: Streptococcus_sp_oral_taxon_58 j5: Dialister_microaerophilus j6: Megasphaera micronuciformis j7: Mitsuokella_multacida j8: Selenomonas_flueggei j9: Selenomonas_infelix k0: Selenomonas_sp_oral_taxon_137 k1: Stenotrophomonas maltophilia

Figure S3. Statistical differences in normalized metatranscriptome composition comparing progressing site baselines to healthy sites of healthy patients. Metagenome hit counts were first normalized using GASIC. Metatranscriptome normalized counts were then analyzed using LEfSe with default parameters, to identify significant differences in activity at species level between the microbial communities compared.

f4: Peptostreptococcus_stomatis

Figure S4. Venn Diagram showing overlaping differentially expressed genes comparing baseline and progression with and without normalization. We normalized the expression hit counts against species frequencies estimated using GASIC. Original, differentially expressed genes using raw hits of the metatranscriptome. Venn diagram was obtained using the Venny webpage tool (http://bioinfogp.cnb.csic.es/tools/venny/).

Figure S5. GO terms associated with changes in gene expression profiles in major periodontal pathogens members of the red complex during periodontal disease progression. GO terms were assigned to differentially expressed genes in progression and summaryzed using REVIGO. a) GO terms associated with up-regulated genes in active sites b) GO terms associated with down-regulated genes in active sites.

Figure S6. GO enrichment analysis comparing healthy sites from healthy individuals and baselines in progressing and non-progressing sites.. Enriched terms obtained using 'GOseq' were summarized and visualized as a scatter plot using REVIGO. a) Summarized GO terms related to biological processes in inactive baselines.

b) Summarized GO terms related to biological processes in health when compared with inactive baselines.
c) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological processes in active baselines.
d) Summarized GO terms related to biological pr

B

Figure S7. GO terms associated with changes in gene expression profiles in major periodontal pathogens members of the red complex when comparing baselines of active and inactive sites. GO terms were assigned to differentially expressed genes in progression and summaryzed using REVIGO. a) GO terms associated with up-regulated genes in active sites baselines b) GO terms associated with down-regulated genes in active sites baselines.

Figure S8. GO terms associated with changes in gene expression profiles in members of the orange complex when comparing baselines of active and inactive sites. GO terms were assigned to differentially expressed genes in progression and summaryzed using REVIGO. a) GO terms associated with up-regulated genes in active sites baselines b) GO terms associated with down-regulated genes in active sites baselines.

Figure S9. GO terms associated with changes in gene expression of putative virulence factors in the oral community during periodontitis progression. GO terms were assigned to differentially expressed putative virulence factors in progression and summaryzed using REVIGO. a) GO terms enrichment analysis of virulence factors in the whole community b) GO terms associated with up-regulated virulence factors in the red complex c) GO terms associated with up-regulated virulence factors in the orange complex

Figure S10. GO terms enrichment analysis of virulence factors comparing baselines. GO terms enrichment was performed using GOseq and summaryzed using REVIGO.

A) GO terms over-represented in progressing sites baselines B) GO terms over-represented in non-progressing sites baselines.

Figure S11. GO terms enrichment analysis of virulence factors in the orange complex comparing baselines. GO terms enrichment was performed using GOseq and summaryzed using REVIGO. GO terms over-represented in baselines of progressing sites.

Figure S12. Correlation Circle plots of sPLS analysis. Correlation Circle plots were obtained to assess correlation of the evolution of bleeding on probing (BOP), increase in pocket depth (Δ PD) and increase in clinical attachment level (Δ CAL). A) 3D representation of gene expression associations with evolution of clinical traits (components 1 to 3). B) Gene expression associations with evolution of clinical traits components.

Percentage of hits corresponding to viral sequences

Figure S13. Percentage of hits corresponding to viral sequences. Sequences were aligned against a database containing all viral sequences in NCBI. Bars represent the percentage of hits that corresponded to viral sequences.

Figure S14. Statistical differences in viral composition of transcript libraries. Hit counts were analyzed using LEfSe with default parameters, to identify significant differences at species level between the microbial communities compared. Comparison progressing site baselines to end point of the same sites.