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Abstract
Drug discovery is the process of identifying compounds which have potentially meaningful
biological activity. A major challenge that arises is that the number of compounds to search over
can be quite large, sometimes numbering in the millions, making experimental testing intractable.
For this reason computational methods are employed to filter out those compounds which do not
exhibit strong biological activity. This filtering step, also called virtual screening reduces the
search space, allowing for the remaining compounds to be experimentally tested.

In this paper we propose several novel approaches to the problem of virtual screening based on
Canonical Correlation Analysis (CCA) and on a kernel-based extension. Spectral learning ideas
motivate our proposed new method called Indefinite Kernel CCA (IKCCA). We show the strong
performance of this approach both for a toy problem as well as using real world data with dramatic
improvements in predictive accuracy of virtual screening over an existing methodology.
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1. Introduction
Computer-Aided Drug Discovery (CADD) is an area of research that is concerned with the
identification of chemical compounds that are likely to possess specific biological activity,
that is, the ability to bind certain target biomolecules such as proteins. CADD approaches
are employed in order to prioritize molecules in commercially available chemical libraries
for experimental biological screening. The prioritization of molecules is critical since these
libraries frequently contain many millions of molecules making experimental testing
intractable. The process of using computational methods to filter out those compounds
which are not expected to exhibit strong biological activity is called virtual screening.

Computational methods have been used extensively to assist in experimental drug discovery
studies. In general, there are two major computational drug discovery approaches, ligand
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based and structure based. The former is used when the three-dimensional structure of the
drug target is unknown but the information about a reasonably large number of organic
molecules active against a specific set of targets is available. In this case, the available data
can be studied using chemin-fomatic approaches such as Quantitative Structure-Activity
Relationship (QSAR) modeling [for a review of QSAR methods see A. Tropsha, in
Abraham (2003)]. In contrast, the structure-based methods rely on the knowledge of three-
dimensional structure of the target protein, especially its active site; this data can be obtained
from experimental structure elucidation methods such as X-ray or Nuclear Magnetic
Resonance (NMR) or from modeling of protein three-dimensional structure.

Virtual screening is one of the most popular structure-based CADD approaches where,
typically, three-dimensional protein structures are used to discover small molecules that fit
into the active site (a process referred to as docking) and have high predicted binding
affinity (scoring). Traditional docking protocols and scoring functions rely on explicitly
defined three-dimensional coordinates and standard definitions of atom types of both
receptors and ligands. Albeit reasonably accurate in some cases, structure-based virtual
screening approaches are for the most part computationally inefficient [Warren et al.
(2006)]. As a result of computational inefficiency there is a limit to the number of
compounds which can reasonably be screened by these methods. Furthermore, recent
extensive studies into the comparative accuracy of multiple available scoring functions
suggest that accurate prediction of binding orientations and affinities of receptor–ligand
pairs remains a formidable challenge [Kitchen et al. (2004)]. Yet millions of compounds in
available chemical databases and billions of compounds in synthetically feasible chemical
libraries are available for virtual screening calling for the development of approaches that
are both fast and accurate in their ability to identify a small number of viable and
experimentally testable computational hits.

Recently, we introduced a novel structure-based cheminformatic workflow to search for
Complimentary Ligands Based on Receptor Information (CoLiBRI) [Oloff et al. (2006)].
This novel computational drug discovery strategy combines the strengths of both structure-
based and ligand-based approaches while attempting to surpass their individual
shortcomings. In this approach, we extract the structure of the binding pocket from the
protein and then represent both the receptor active site and its corresponding ligand in the
same universal, multidimensional chemical descriptor space (note that in principle, the
descriptors used for receptors and ligands do not have to be the same, and we will be
exploring the use of different descriptor types in future studies). We reasoned that mapping
of both binding pockets and corresponding ligands onto the same multidimensional
chemistry space would preserve the complementary relationships between binding sites and
their respective ligands. Thus, we expect that ligands binding to similar active sites are also
similar. In cheminformatics applications, the similarity is described quantitatively using one
of the conventional metrics, such as Manhattan or Euclidean distance in multidimensional
descriptor space. Thus, the chief hypothesis in CoLiBRI is that the relative location of a
novel binding site with respect to other binding sites in multidimensional chemistry space
could be used to predict the location of the ligand(s) complementary to this site in the ligand
chemistry space. After generation of descriptors, the dataset is split into training and test sets
and then variable selection is carried out to generate models optimizing this
complementarity between the binding pocket and ligand spaces. These models are then
applied to a binding pocket in a protein of interest to generate a predicted virtual ligand
point which is used as a query in chemical similarity searches to identify putative ligands of
the receptor in available chemical databases. In this paper, we build upon the work of Oloff
et al. (2006) to develop a substantially more advanced and efficient version of CoLiBRI.
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The problem can be generally stated as follows: for a set of n known protein–ligand pairs,
with dX and dY descriptors, respectively, given a new protein we want to be able to predict
what ligand(s) will bind to it. Two virtual drug screens will be used as a benchmark for
testing the methods discussed and developed here:

1. A set of 800 chemically and functionally diverse protein–ligand pairs obtained
from the Protein Data Bank (PDB) database on experimentally measured binding
affinity (PDBbind) [Wang et al. (2004)]. These compounds are described by a set
of 150 chemical descriptors. These descriptors include information related to the
electronic attributes, hydrophobicity and steric properties of the compounds. For a
more detailed discussion on the different types of chemical descriptors, see
Todeschini and Consonni (2009a, 2009b). We will refer to this data set as the 800
Receptor–Ligand pairs (RLP800) data. Results and further details on this and two
additional data sets can be found in Section 1.1.

2. The World Drug Index (WDI) [Daylight (2004)] database which contains
approximately 54,000 drug candidates (ligands). Each compound in the WDI is
described by the same set of 150 chemical descriptors as the RLP800 data.

The accuracy of our prediction is based on how close, in Euclidean distance, our prediction
is to the actual ligand. This is then compared against the distances of all of the ligands in the
space to the actual ligand. A standard measure of predictive accuracy used in the QSAR
literature [Tropsha (2003), Oloff et al. (2006)] is based on ranking these distances, from
smallest to largest. Defining ri to be the rank of our prediction of test ligand i, model
performance is defined as the average rank over each of the new points we are trying to

predict, . This criterion reflects the average size of the search space needed to find
each compound. Here nT denotes the number of new (i.e., test) ligands we are predicting.

The r ̄ effectiveness of the methods studied and developed here is illustrated in Figure 1.
Figure 1(A) is a histogram of the ranks, ri for our novel method which is a variant of
Canonical Correlation Analysis (CCA) we call Indefinite Kernel CCA (IKCCA) (Section 4),
on the RLP800 data.

The previous state of the art for these data sets is r ̄OLOFF (the vertical line furthest to the
right labelled Oloff et al.) which are larger by a factor of 5 to 10 as compared to CCA
(Section 2) and its improvements, KCCA (Section 3) and IKCCA.

As we were primarily interested in comparing our results against those of Oloff et al. (2006)
we did not look into other performance metrics other than mean rank. However, it would be
interesting to pursue other, potentially more relevant measures of binding affinity such as
Kd, Ki and IC50 as was done by Witten and Tibshirani (2009), where CCA is linked to these
performance measures.

While not discussed in this paper, an important unresolved issue in this cheminformatic-
based approach to the prediction of protein–ligand binding is the selection of meaningful
chemical descriptors. The type of chemical descriptors used can have a drastic effect on the
predictive accuracy of an algorithm. One possible approach to addressing this issue would
be to use a recently developed method called Sparse CCA (SCCA), Hardoon and Shawe-
Taylor (2008), Parkhomenko (2008), Witten, Tibshirani and Hastie (2009) and Witten and
Tibshirani (2009). SCCA uses a lasso-like approach to identify sparse linear combinations of
two sets of variables that are highly correlated with each other. An approach based on SCCA
to the prediction of protein–ligand binding may prove to be quite useful in resolving some of
the issues arising from chemical descriptor selection.
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In Section 1.1 we present results and details on the RLP800 data set as well as on two
additional data sets. In Sections 2 and 3 we outline CCA and KCCA, respectively. In
Section 4 we propose a new method, IKCCA, which encompasses nonpositive semi-definite
(PSD) kernels (i.e., indefinite kernels), specifically we consider a class of kernels related to
the Normalized Graph Laplacian used in Spectral Clustering. Finally, in Section 5 we show
how prediction of a new ligand is done using CCA (and its variants).

1.1. Additional drug discovery results
In addition to the real data results discussed in Section 1, we also tested our method on two
additional data sets [which we refer to as Experimental Settings (ES), the reason for which
will become clearer in what follows]. These data (including the RLP800 data) are subsets of
a collection of 1,300 complexes taken from PDBBind [Wang et al. (2004)]. These 1,300
complexes are referred to as the Refined Set (RS), a set of entries that meet a defined set of
criteria regarding crystal structure quality. A representative subsample of 195 of the
complexes is called the Core Set (CS). This is a collection of complexes selected by
clustering the RS into 65 groups using protein sequence similarity and retaining only 3
complexes from each cluster.

The three experimental settings considered are denoted by ES I [this experimental setting
was used in Oloff et al. (2006)], ES II and ES III. In each of these experimental settings the
RS and CS complexes are separated into training and testing sets in such a way as to test
different aspects of our model. In ES I the 637 training and 163 test complexes are randomly
sampled from the RS. ES I is meant to provide a general test of our models performance. In
ES II the training (153 complexes) and testing (36 complexes) sets are sampled from the CS
in such a way that the various protein families in the CS are well represented in both. This
separation is meant to test the performance of our CCA-based methods when the sample size
is small. Finally, in ES III the testing set (162 complexes) is composed of proteins which are
under represented in the training set (1,006 complexes). This is meant to test our methods
ability to correctly identify novel complexes.

A note on how we use the training and testing sets: the tuning parameters for our model are
selected, as discussed in Section 5.2, using only the training set. Once tuning parameters
have been selected, prediction on the testing set is then performed. This is meant to test the
models performance on as-yet unobserved complexes.

The results for each of these experimental settings is summarized in Table 1. The columns
labeled “Train” and “Test” correspond to the size of the training/testing sets for each
particular experimental setting. The column labeled “Embed” corresponds to the total
number of ligands against which our prediction is to be ranked. The remaining columns
correspond to the method used and the average rank performance (defined in Section 1) of
that method. The second row, second column in each cell labeled “RS + WDI” shows the
results for each method on the Reduced Set plus the World Drug Index. These results are
meant to more accurately mimic an actual drug screen by having a larger test set to search
against. As the method used in Oloff et al. (2006) failed to provide useful results for the ES
II and ES III experimental settings, no results are reported here. Generally speaking, in all
cases IKCCA, using the NGL kernel, outperformed the other methods. All the CCA-based
methods provide considerable improvement over the previous approach.

Looking a bit closer at the results it is interesting to note that while all three CCA-based
methods performed worse on the ES II data, KCCA had the largest drop in performance.
This can be seen by comparing the average rank performance against the total number of
ligands we are searching against. The decrease in performance in all cases more than likely
has to do with the small size of the training set. In the case of KCCA, its considerable
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decrease in performance, we suspect, may have to do with not having a large enough
training sample to reliably select the bandwidth parameter σ. For IKCCA the adaptive nature
of the local kernel is probably what allows it to perform well in the low sample size setting.

2. Canonical correlation analysis
CCA [Hotelling (1936)] naturally lends itself to the problem of predicting the binding
between proteins and ligands. This can be understood for the following reasons: first,
traditional methods of prediction, for example, regression, assume a direction of dependence
between the variables to be predicted and the predictive variables. Here we have a
symmetric, not causal, type of relationship: the binding between a protein and its ligand is
inherently co-dependent. Second, in addition to capturing the dependence structure we are
looking to model, CCA is well suited to the type of prediction we are interested in
performing. To understand this, consider the following (see also Section 2.2.1 for a more
detailed discussion). The objective of CCA is to find directions in one space, and directions
in a second space such that the correlation between the projections of these spaces onto their
respective directions is maximized. These directions are commonly referred to as canonical
vectors. Let us assume that a set of directions are found so that the corresponding
projections of proteins and of ligands are strongly correlated. Predicting a new ligand given
a new protein would begin with projecting the new protein into canonical correlation space.
Then, assuming the same correlation structure holds for this new point, prediction of the
new ligand would amount to interpolating its location in ligand space based on the location
of the protein in protein space. This will be discussed in greater detail in Section 5. Next we
provide a brief discussion on the details of CCA and KCCA.

2.1. Canonical correlations
Let xi ∈ ℝdX and yi ∈ ℝdY, i = 1,…, n, denote a protein–ligand pair. The sample of pairs is
collected in matrices X ∈ ℝn×dX and Y ∈ ℝn×dY with xi and yi as the descriptors for a row.

The objective of CCA is to find the linear combinations of the columns of X (proteins), say
XwX and the linear combinations of the columns of Y (ligands), say YwY such that the
correlation, corr(XwX, YwY) is maximized. Without loss of generality assume that the
matrices X and Y have been mean centered. Letting SXX = XT X, SYY = YT Y and SXY = XT

Y the CCA optimization problem is

(2.1)

Subsequent directions are found by imposing the additional constraints

 for i ≠ j and , i, j =
1, …, p, p = min(dX, dY).

In order to avoid issues arising from multicollinearity and singularity of the covariance
matrices we impose a penalty [Vinod (1976)] on the directions wX and wY so that the
constraints in (2.1) are modified to be

(2.2)
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where κ ∈ ℝ is a regularization parameter.

The predictive accuracy of this approach was discussed in Section 1, with results
summarized in Figure 1. Recall that the lines in these figures labeled CCA correspond to the
average predicted rank using CCA, which improved upon Oloff et al. (2006) shown by the
lines labeled a such.

2.1.1. The geometry of CCA—An appealing aspect of CCA is its intuitive geometric
interpretation [Anderson (2003) and Kuss and Graepel (2002)]. A geometric perspective
lends itself to a better understanding of the general behavior of CCA, and provides further
evidence of its applicability to the protein–ligand matching problem.

Taking a closer look at the ith canonical correlation, ρi, i = 1,…, p (p = min(dX, dY)), in the
optimization problem shown in (2.1), it can be seen that this quantity is in fact equal to the

cosine of the angle between  and  (  and  are commonly referred to as
canonical variates). With this in mind maximizing the cosine (i.e., correlation) can

equivalently be thought of as minimizing the angle between  and . Furthermore, it can be
shown that minimizing the angle is equivalent to minimizing the distance between pairs of
canonical variates,

subject to the constraints described in (2.1). Note that viewed in this way, in canonical
correlation space, this amounts to finding a system of coordinates such that the distance
between coordinates is minimized. This is a sense in which CCA is an appropriate approach
to the protein–ligand matching problem.

As will be seen in Sections 3 and 4, this geometric interpretation of CCA extends naturally
to KCCA and IKCCA. Note that the regularized variant of CCA does not have the same
geometric interpretation, nonetheless viewing regularized CCA in this manner still provides
useful insight into its behavior.

2.2. Toy examples
2.2.1. Toy example 1: Motivating CCA—Consider the protein–ligand matching
problem as outlined above. For this toy example we set n = 10 and d = 2. Suppose the
descriptors for this toy example are Molecular Weight (MW) and Surface Area (SA) of the
molecule. Recall that each row of X(10×2) and each row of Y(10×2) corresponds to an
observation, a protein or a ligand, respectively, and the columns correspond to the
descriptors MW and SA. The pairs are identified by a unique label, corresponding to IDs
from the Protein Data Bank (PDB) (www.pdb.org). Figure 2 shows the two toy data sets.

From Figure 2 it can be seen that the distribution of points in the two spaces are quite similar
in the sense that the location of corresponding points in the two spaces are close. The points
connected to 11gs (red) by dashed black lines are its three nearest neighbors. The cyan
points are neighbors shared in both spaces and the blue and purple points are mismatched.
Two of three neighbors are shared in common (in the Euclidean sense).

Consider the case where the red point in ligand space is not observed and the task is to
predict its value. Using the weighted average (see Section 5 for details on the derivation of
the weights) of the points in ligand space that correspond to the nearest neighbors of the
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point 11gs in the protein space (points highlighted in cyan and purple in ligand space) would
yield a relatively poor prediction despite the strong apparent similarity between the two
distributions of points.

Next suppose that instead of carrying out the prediction of a new ligand in the original data
space we carry out our prediction in canonical correlation space. Solving for wX and wY in
(2.1), gives us the canonical vectors shown in Figure 3. What is important to notice is how
the distribution of points along the first and second canonical directions in both protein and
ligand space are quite similar. This is due to the property of alignment that arises naturally
from maximizing the correlation.

Figure 4 shows the projections of the data onto the first two canonical vectors (note that
separate directions are found in protein and ligand space). We can see that with the slight
modification in alignment that has resulted from the CCA projections, the point 11gs now
shares the same neighbors in both spaces. In particular note that now the predicted value in
the projected ligand space is closer to the actual value (again using the weighted average).

This example was deliberately chosen to illustrate the case where CCA is effective.
However, in most cases the relationship between points in different spaces may be far more
complicated, as we now illustrate.

2.2.2. Toy example 2: CCA challenge—We now consider an example where the
relationship between spaces is more complex. Suppose that we have the same general
framework as in Section 2.2.1 but rather than having both protein and ligand space

characterized by MW and SA, we now have that the space of proteins has descriptors  and

 and that the space of ligands has descriptors  and , shown in Figure 5. As before the
observation highlighted in red, 1a94, corresponds to a new protein whose corresponding
ligand we are trying to predict. The point highlighted in cyan is one of the 3-nearest
neighbors of 1a94 in both spaces. Those points highlighted in purple (and blue) are nearest
neighbors in only the protein (and ligand) spaces, respectively. The point Lnew in the ligand
space, highlighted in green is a weighted average of the nearest neighbors of the point 1a94
in protein space. Using Lnew as a prediction of the new ligand would not provide a
particularly accurate prediction.

As before, we use CCA to try and find a linear combination of the descriptors which best
align the two spaces. Figure 6 is a plot of the projections onto the first and second canonical
variates in protein and ligand space. The color scheme is the same as in Figure 5. As can be
seen, standard CCA does not seem to be able to find a good alignment between the two
spaces, which is confirmed by the relatively low values of the canonical correlations, 0.79
and 0.54, respectively, for the first and second directions.

In Section 3 we show how mappings into a kernel induced feature space can be used to
improve prediction. This will lead to our discussion of KCCA.

3. Kernel canonical correlation
3.1. Toy example 2: CCA challenge (motivating KCCA)

Returning to the example in Section 2.2.2, suppose it is believed that some type of
functional relationship exists between the descriptors across spaces that is best characterized
by looking at the second order polynomials of the descriptors within each space, that is,

Samarov et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2011 November 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.1)

Figure 7 shows plots of proteins and ligands embedded into this three dimensional space. As
can be seen there are now two neighbors shared in common between spaces (colored in
cyan). Furthermore the prediction of the new observation, Lnew (in green) by a weighted
average of its three nearest neighbors in feature space is, by comparison, much closer to the
actual value than the corresponding prediction in object space.

As before CCA is used on this transformed data, now in feature space, to align the space of
proteins and ligands. Figure 8 shows a plot of the projected data. Note that now both the new
protein and its ligand (highlighted in red) share three neighbors and that the distribution of
points within each of the spaces is quite similar. The quality of the alignment is further
confirmed by looking at the canonical correlation values which are near 1 for each of the
first two directions. Since the value of the third canonical correlation is considerably smaller
(approximately 0.2) we only project onto the first two directions.

It is worth noting that, as a result of overfitting, the kernel canonical correlation values can
sometimes be artificially large due to strong correlation between features in kernel space.
Regularization methods for helping to control these effects in the kernel case will be
discussed in Section 3.2.

In general, finding explicit mappings such as those in (3.1) is impractical or simply not
possible as in some cases this would require an infinite dimensional feature space. As we
will see in the following section, kernels allow us to avoid such issues.

3.2. Kernel canonical correlation analysis
KCCA [Bach and Jordan (2002), Lai and Fyfe (2000), Hardoon, Szedmak and Shawe-
Taylor (2004)] extends CCA by finding directions of maximum correlation in a kernel
induced feature space. Let φX and φY be the feature space maps for proteins and ligands,
respectively. The sample of pairs, now mapped into feature space, are collected in matrices
ΦX and ΦY with φX(xi) and φY (yi) as their respective row elements. The objective, as before,
is to find linear combinations, ΦXwX and ΦY wY such that the correlation, corr(ΦXwX, ΦY
wY), is maximized. Note that because wX and wY lie in the span of ΦX and ΦY, these can be

re-expressed by the linear transformations wX = ΦXαX and wY = ΦY αY. Letting 

and  with kX and kY being the associated kernel functions for each space,
respectively, the CCA optimization problem in (2.1) now becomes

(3.2)

Here the subscript  in  is included to emphasize the fact that the space of functions we
are considering are in a RKHS. Subsequent directions are found by including the additional

constraints that  for i ≠ j, and , i, j =
1,…, n.
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In order to avoid trivial solutions, we penalize the directions αX and αY modifying the
constraints in (3.2) to be

(3.3)

Here κ is a regularization parameter.

Note that the geometric interpretation of (unregularized) KCCA, provided that data have
been centered in feature space, is the same as CCA. The only difference lies in the fact that
the space in which this geometry is observed is in feature space rather than object space.

In order for KCCA to be understood as maximizing correlation in feature space centering
must be performed in feature space. Centering in feature space can be done as follows. Let

 where J is an n × n matrix of ones, then

We assume throughout that the kernel matrices are centered.

The predictive accuracy of this approach was discussed in Section 1, with results
summarized in Figure 1. Recall that the cyan line in Figure 1 corresponds to the average
predicted rank using KCCA which is an improvement over both Oloff et al. (2006) and
CCA.

3.3. Toy example 3: KCCA challenge
We saw in Section 3.1 that KCCA was able to overcome some of the obstacles encountered
by standard CCA. Where KCCA begins to encounter problems is when the distribution of
points within a space is nonstandard and/or heterogeneous. To illustrate this consider the
example shown in Figure 9, as with the protein–ligand matching problem, there is a one-to-
one correspondence between points in the two spaces.

The underlying structure between these spaces is illustrated in Figure 10. The top row of
plots tells us about how the distribution of points on the right (cluster space) relates to the
distribution of points on the left (smiley face space). The bottom set of plots tells us about
how the distribution of points on the left is related to distribution of points on the right.

If we were to look at the two spaces as marginal distributions, there is a distinct impression
of the three clusters in the left, and two in the right. The joint distribution, however, has six
distinct groups. Looking at the plots on the left in Figure 10, each of the three clusters is in
fact composed of two subclusters. Likewise, each of the two clusters in the plots on the right
are composed of three subclusters. Ideally, the projections onto the KCCA directions would
identify each of these six groups, shown in Figure 11.

Using an RBF kernel with σ = 1/2 we look at the first five canonical directions. Ideally, what
we would see is a separation of each of the groups as well as a strong alignment between
each of the spaces. What we find looking at Figure 12, a scatter plot matrix of the first five
kernel canonical variates (KCV), is that while the leading correlations are large (0.98, 0.97,
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0.95, 0.80, 0.75), we are not able to find the structure in the data we were looking for, that is,
separating out the six groups (with each of the colors corresponding to one of the six
groups). Note that only the projections in the smiley face space are shown since the cluster
space projections look essentially the same.

In the context of the protein–ligand matching problem this type of situation presents a
potential problem. Suppose a new point, say in the space with the smiley face, is projected
into KCCA space. As can be seen in Figure 12, there is a great deal of overlap between each
of the six subgroups in the projected space. In particular note that each of the overlapped
groups is composed of, respectively, the left eye, right eye and mouth. The reason this type
of behavior presents a problem is that each of the eyes and the mouth are actually composed
of two different subpopulations where each of the populations correspond to very different
groups in the space with the two clusters. So while we may be able to accurately predict the
location of a new point in KCCA space the interpretation of its surrounding neighbors may
not be so meaningful.

4. Indefinite kernel canonical correlation analysis
A potential shortcoming of standard KCCA, which was illustrated in the example presented
in Figure 9, is that standard positive definite kernels can be limited in their ability to capture
nonstandard heterogeneous behavior in the data. A more general class of kernels which is
better suited to handle this type of behavior takes the form

(4.1)

Here N (x) denotes some neighborhood of the observation x, such as a k(∈ ℤ+) nearest
neighborhood or a fixed radius ε(> 0)-neighborhood. Kernels of this form restrict attention
to the local structure of the data and allow for a flexible definition of similarity.

Our motivation for considering this class of kernels in the context of the protein–ligand
matching problem is the following. In the RLP800 dataset there are approximately 150
important subgroups in the data. These subgroups correspond to unique proteins, or more
specifically their binding pockets, which typically have three or four different conformations
specific to a particular ligand. Exploitation of this group structure in the data can help
improve prediction. This can be accomplished by using a “local kernel” function that allows
us to capture these groups more readily than, say, the RBF kernel. The intuition here follows
from the example presented in Section 3.3 where we saw that the type of groups that an RBF
kernel will be able to find will be dictated by the choice of the bandwidth parameter σ. The
local kernel overcomes this by adjusting locally to the data. By adjusting to the data locally
it is better able to exploit this group structure.

In summary, given a new protein, its projection in this local kernel CCA space will be more
likely to fall into a group of similar proteins. Then, as before, the goal is that the ligands
associated with this group of proteins provide an accurate representation of the ligand we are
trying to predict.

This improved performance exploiting group structure in the data comes at some price. In
particular, the problem encountered with this class of kernels is that they are frequently
indefinite (see the discussion following Definition 4.1). As a result of the indefiniteness,
many of the properties and optimality guarantees no longer hold.
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Indefinite kernels have recently gained increased interest [Ong, Canu and Smola (2004a),
Haasdonk (2005), Chen and Ye (2008), Luss and d’Aspremont (2008)] where, rather than
defining K to be a function defined in a RKHS, K is defined in a space characterized by an
indefinite inner product called a Krein space. In Section 4.1 we provide an overview of
some of the definitions and theoretical results about Krein spaces [following the discussion
of Ong, Canu and Smola (2004a)].

Before discussing IKCCA, we will need to provide some definitions and theorems related to
indefinite inner product spaces, that is, Krein spaces [more details can be found in Ong,
Canu and Smola (2004a)].

4.1. Indefinite kernels
Definition 4.1 (Inner product)—Let  be a vector space on the scalar field. An inner
product  on  is a bilinear form where for all f, g, h ∈ , α ∈ ℝ:

•  = ;

•  = α  + ;

•  = 0 for all g ∈  implies ⇒ f = 0.

The importance of  being a vector space on a scalar field is that it allows for a flexible
definition of an inner product (i.e., the scalar in one of the dimensions could be complex or
negative as we will see below). An inner product is said to be positive if for all f ∈ ,  ≥
0. It is called a negative inner product, if for all f ∈ ,  ≤ 0. An inner product is called
indefinite if it is neither strictly positive nor strictly negative.

Remark 4.1—To illustrate how indefinite inner products arise in the context of our
problem, consider the following. Suppose we have a symmetric kernel function K, which is
indefinite, the implication of this is that the resulting kernel matrix  is indefinite
and that it therefore contains positive and negative eigenvalues. Let K = UΛUT be the
eigendecomposition of K, where U are the eigenvectors and Λ is the diagonal matrix of
eigenvalues starting with the p positive eigenvalues, followed by the q negative ones and the
n – p – q eigenvalues equal to 0. To see how K can be interpreted as a matrix composed of
inner products in this indefinite inner product space consider the following representation of
its eigendecomposition:

Let M = diag(1p, −1q) and Φ be equal to the first p + q columns of U|Λ|1/2. Define the ith
row of Φ to be equal to

We then have a kernel matrix composed of elements
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(4.2)

From (4.2) we can see that unlike PSD kernels where aT Ka ≥ 0 for any a ∈ ℝn, with
indefinite kernels aT Ka can take on any value, making optimization over such a quantity
challenging.

Despite this difference, many of the properties that hold for reproducing kernel Hilbert
spaces (RKHS), such as (and perhaps most importantly) the reproducing property
[Schölkopf and Smola (2002)], also hold for these indefinite inner product spaces [see Ong,
Canu and Smola (2004b) for details]. The key difference lies in the fact that rather than
minimizing (maximizing) a regularized risk functional, as in the RKHS setting, the
corresponding optimization problem becomes that of finding a stationary point of a similar
risk functional.

4.2. Indefinite kernel canonical correlation
Section 4.1 provided some insight into the challenges that arise from dealing with indefinite
kernels. In particular, Remark 4.1 points to the fact that the solution that we find may not be
globally, or even locally, optimal (as it may be a saddle point). The form of the IKCCA
problem we present in this section is motivated by the discussion of the previous section and
the works of Ong, Canu and Smola (2004b) and Luss and d’Aspremont (2008). In particular,
the addition of a stabilizing function on the indefinite inner product  as discussed in
Ong, Canu and Smola (2004b) led us to consider introducing a constraint on the behavior on
the indefinite kernels matrix itself.

In the following, let ||·||F denote the Frobenius norm. Define M ≽ 0 to mean that the matrix
M is positive semi-definite and let λX, λY ∈ ℝ+ ∪ ∞ be tuning parameters (discussed in

more detail later this section). Here  and  are the (potentially) indefinite kernels and KX
and KY will be the positive semi-definite approximations of these kernels. With this notation
in mind, we now define the IKCCA optimization problem:

(4.3)

where  and . Note that this optimization problem and the

KCCA optimization problem are only equivalent when the kernel matrices  and  are
positive semi-definite (see the Supplementary Material [Samarov et al. (2011)] for details on
the equivalency between the optimization problem in (4.3) and (3.2) and a proof of Theorem
4.3).
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Theorem 4.2—Letting λX, λY → ∞, the optimization problem in (4.3) is concave in  and

, i = 1,…, n, and convex in KX and KY.

See the Supplementary Material for a proof. Let (X)+ denote the positive part of the matrix

X, that is, , where λi and vi are ith eigenvalue–eigenvector pair of
the matrix X. With this in mind, we have the following theorem.

Theorem 4.3—Letting λX, λY → ∞, and given the optimization problem in (4.3) the
optimal values for KX and KY are given by

(4.4)

The proof of Theorem 4.3 makes use of the following lemma. Let M0 ∈ ℝn×n be a known,
square, not necessarily positive-definite matrix, and M ∈ ℝn×n a square, unknown matrix,
then:

Lemma 4.1—The solution to the optimization problem

is

The proofs of Theorem 4.3 and Lemma 4.1 can be found in the Supplementary Material.

Points x ∈ ℝdX and y ∈ ℝdY are projected onto their first p canonical directions as follows:

first compute their kernelization, using the indefinite kernel functions  and ,

Then calculate

where  and .
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4.3. Toy example 3: KCCA challenge (motivating IKCCA)
We now return to the example in Section 3.3 using the kernel defined in (4.1) with weights
(4.5). Note that this kernel is closely related to the Normalized Graph Laplacian (NGL)
kernel used in Spectral Clustering; see von Luxburg (2007) for an overview of Spectral
Clustering methods. From Figure 13, it can be seen that we are now able to capture the
underlying structure of the data, identifying each of the six subpopulations:

and

(4.5)

Here Nk (xi) is the symmetric k-neighborhood of the point xi [i.e., if xj ∈ Nk (xi) then xi ∈ Nk
(xj)] and

where  is the kth neighbor of the point xi.

Looking at plots of the first four eigenvectors (Figures 14 and 15) in both the smiley face
space and the cluster space, we can see how the behavior of the eigenvectors causes the
segmentation of the data that we observe in Figure 13. First, we discuss how these figures
are generated and then what it is they are telling us.

1. Generate an equally spaced dimensional grid spanning the range of values in each
space.

2. Calculate the kernel representation and projection of each grid point into IKCCA
space.

3. Use the projected values to assign color intensities to each point in the grid of each
space (darker for negative values, lighter for positive values).

4. Plot the grid and for each point using the colors calculated from the previous step.

The important thing to note in both of these figures is the distribution of positive and
negative projected values and how these are driving the segmentation, which we observe in
Figure 13. For example, in Figure 14 the first canonical variate segments out one of the
faces (red) from the other (blue).

5. Ligand prediction
5.1. Prediction

Let us define the projected values of the observations in protein and ligand space onto their

first p canonical vectors as , and
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, i = 1,…, n. The predicted value of  is calculated as
follows [using a modification of the LLE algorithm of Saul and Roweis (2003)]:

1. Compute the k neighbors of the data point  (the projected value of xnew into
canonical correlation space). Define Nk (x) to be the k nearest neighbors of the
point x.

2. Compute weights βnew,j that best reconstruct the data point  from its
neighbors, minimizing the cost

(5.1)

3. The new observation is then calculated as

Recall that CCA finds directions which best align two spaces. Thus, assuming that directions

 and , i = 1,…, p, have been found such that the correlation between spaces is strong,
using the weights βnew,j found in protein space should provide a reliable estimate of .

5.2. Tuning parameter selection
Values for the tuning parameters, κ = κX = κY (the regularization parameter), p = pX = pY (the
number of dimensions we are projecting into), kLLE (the neighborhood for the LLE-based
prediction), σ (for the RBF kernel) and kNGL (for the NGL kernel) are found by searching
over a suitable 3 × 3 × 3 × 3 grid for each. The final set of parameters are selected based on
which produces the lowest average rank (discussed in Section 1).
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Fig. 1.
(A) A histogram showing the IKCCA ranks, ri, resulting from prediction on the test data
from the RLP800 dataset. (B) Performance on the WDI data.
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Fig. 2.
Toy example data. The points highlighted in red correspond to the protein–ligand pair 11gs,
and the points connected to it by dashed black lines are its three nearest neighbors in each
space. The observations highlighted in cyan are neighbors in both spaces, and those
highlighted in blue and purple are neighbors only in the protein, and ligand spaces,
respectively. The green point Lnew in the ligand space corresponds to a weighted average
(discussed in Section 5) of the cyan points and the purple point, that is, of the nearest
neighbors of 11gs in the protein space.
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Fig. 3.
The direction vectors and the projected value of each point. The top row of plots shows the
first direction vector and the projections onto it. The bottom row of plots show the second
direction vector and the projection onto it.
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Fig. 4.
Projection of the data in Figure 2 onto the first and second canonical vectors. In contrast to
Figure 2, the point 11gs now shares the same neighbors in both spaces and the predicted
value in green is much closer to the actual value.
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Fig. 5.
A plot of the data generated such that the underlying relationship between points is
nonlinear. The observation highlighted in red, 1a94, is the new observation which we are
trying to predict. The points joined to it by dashed black lines are its nearest neighbors. The
points highlighted in cyan correspond to points that are nearest neighbors of 1a94 in both
spaces. Points highlighted in purple and blue correspond to points that are only neighbors in
either protein or ligand space, respectively. The point labeled Lnew in ligand space
corresponds to a weighted average of the points 1a08, 1a09 and 1a1b, that is, the nearest
neighbors of the point 1a94 in protein space.
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Fig. 6.
A plot of the data projected onto the first two canonical vectors in both protein and ligand
spaces. The directions found by standard CCA do not provide a good alignment between the
two spaces.
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Fig. 7.
A plot of protein and ligand data in feature space. The color scheme is the same as in Figure
5. Looking at the plots on the top and bottom (corresponding to protein and ligand space,
respectively), the overall correspondence between points in protein space and ligand space is
much better than in the original (object) space. This improved mapping will allow CCA to
do a better job aligning the two spaces.
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Fig. 8.
This is a plot of the projection of the data in protein and ligand feature space onto the first
and second canonical vectors (note that we do not project onto the third canonical vector as
the corresponding canonical correlation is relatively small, approximately 0.2). As can be
seen, not only does the new observation 1a94 (red) have three neighbors in common in both
protein and ligand space but the prediction of the new ligand using a weighted average, Lnew

highlighted in green on the plot on the right is close to the actual value of 1a94.
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Fig. 9.
A toy example illustrating the cases when the distribution of points within a space is
nonstandard and heterogeneous.
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Fig. 10.
These plots highlight how the distribution of points in one space is related to the distribution
of points in the other. Looking at the plots on the left in Figure 10, each of the three clusters
is in fact composed of two subclusters. Likewise, each of the two clusters in the plots on the
right are composed of three subclusters.
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Fig. 11.
In this plot each of the six underlying subgroups shown in Figure 10 is highlighted.
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Fig. 12.
Scatterplot matrix of the first five KCCA direction vectors for the data shown in Figure 9.
Each of the colors in this plot corresponds to one of the six underlying subpopulation in the
data (see Figure 10 for details).
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Fig. 13.
Continuation from the example in Section 4.3. This is a scatter plot matrix of the projections
onto the first five IKCCA variates (IKCV) using the kernel in (4.1) with weights (4.5).
Unlike the projections shown in Figure 12, here we are able to separate out the six groups.
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Fig. 14.
A plot of the first four indefinite kernel canonical direction vectors in the smiley face space
from the example in Section 4.3 using the kernel in (4.1) with weights (4.5). These plots
allow us to visualize how the canonical vectors separate out each of the clusters.
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Fig. 15.
A plot of the first four indefinite kernel canonical directions vectors in the cluster space from
the example in Section 4.3 using the kernel in (4.1) with weights (4.5).

Samarov et al. Page 31

Ann Appl Stat. Author manuscript; available in PMC 2011 November 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Samarov et al. Page 32

Ta
bl

e 
1

Th
is

 ta
bl

e 
su

m
m

ar
iz

es
 th

e 
pe

rf
or

m
an

ce
 o

f t
he

 m
et

ho
d 

di
sc

us
se

d 
in

 O
lo

ff
 e

t a
l. 

(2
00

6)
 a

s w
el

l a
s t

he
 m

et
ho

ds
 d

ev
el

op
ed

 in
 th

is
 p

ap
er

 o
n 

th
e 

C
oL

iB
R

I,
N

am
e 

an
d 

C
lu

st
er

 d
at

a 
se

ts
. T

he
 c

ol
um

ns
 la

be
le

d 
“T

ra
in

” 
an

d 
“T

es
t”

 c
or

re
sp

on
d 

to
 th

e 
nu

m
be

r o
f t

ra
in

in
g 

an
d 

te
st

in
g 

sa
m

pl
es

 fo
r a

 g
iv

en
 d

at
a 

se
t. 

Th
e

co
lu

m
n 

la
be

le
d 

“E
m

be
d”

 c
or

re
sp

on
ds

 to
 th

e 
to

ta
l n

um
be

r o
f l

ig
an

ds
 a

ga
in

st
 w

hi
ch

 o
ur

 p
re

di
ct

io
n 

is
 to

 b
e 

ra
nk

ed
. T

he
 re

m
ai

ni
ng

 c
ol

um
ns

 c
or

re
sp

on
d 

to
th

e 
m

et
ho

d 
us

ed
 a

nd
 th

e 
av

er
ag

e 
ra

nk
 p

er
fo

rm
an

ce
 o

f t
ha

t m
et

ho
d.

 N
ot

e 
th

at
 a

s t
he

 m
et

ho
d 

us
ed

 in
 O

lo
ff

 e
t a

l. 
(2

00
6)

 fa
ile

d 
to

 p
ro

vi
de

 u
se

fu
l r

es
ul

ts
 fo

r
th

e 
N

am
e 

an
d 

C
lu

st
er

 d
at

a 
se

ts
, n

o 
re

su
lts

 w
er

e 
re

po
rte

d.
 In

 a
ll 

ca
se

s I
K

C
C

A
, u

si
ng

 th
e 

N
G

L 
ke

rn
el

, o
ut

pe
rf

or
m

ed
 th

e 
ot

he
r m

et
ho

ds
. I

n 
al

l c
as

es
 th

e
C

C
A

-b
as

ed
 m

et
ho

ds
 p

ro
vi

de
 c

on
si

de
ra

bl
e 

im
pr

ov
em

en
t o

ve
r t

he
 p

re
vi

ou
s a

pp
ro

ac
h

Se
tti

ng
T

ra
in

T
es

t
E

m
be

d
O

lo
ff

C
C

A
K

C
C

A
IK

C
C

A

ES
 I

R
S

63
7

16
3

80
0

18
.1

10
7.

5
4.

5

R
S 

+ 
W

D
I

54
,1

21
31

0
67

56
30

ES
 II

R
S

15
3

36
18

9
N

A
8

13
.7

5
3.

5

R
S 

+ 
W

D
I

53
,9

94
N

A
27

5.
1

1,
55

8
92

.9

ES
 II

I
R

S
1,

00
6

16
2

1,
16

8
N

A
11

.9
7.

4
4.

4

R
S 

+ 
W

D
I

54
,1

20
N

A
53

24
.3

18
.2

Ann Appl Stat. Author manuscript; available in PMC 2011 November 23.


