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ABSTRACT

Variability of North Atlantic annual hurricane frequency during 1951–2010 is studied using a 100-member

ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed

sea surface temperatures (SSTs). The ensemble mean results well capture the interannual-to-decadal vari-

ability of hurricane frequency in best track data since 1970, and suggest that the current best track data might

underestimate hurricane frequency prior to 1966 when satellite measurements were unavailable. A genesis

potential index (GPI) averaged over themain development region (MDR) accounts formore than 80%of the

SST-forced variations in hurricane frequency, with potential intensity and vertical wind shear being the

dominant factors. In line with previous studies, the difference betweenMDR SST and tropical mean SST is a

useful predictor; a 18C increase in this SST difference produces 7.05 6 1.39 more hurricanes. The hurricane

frequency also exhibits strong internal variability that is systematically larger in the model than observations.

The seasonal-mean environment is highly correlated among ensemble members and contributes to less than

10% of the ensemble spread in hurricane frequency. The strong internal variability is suggested to originate

from weather to intraseasonal variability and nonlinearity. In practice, a 20-member ensemble is sufficient to

capture the SST-forced variability.

1. Introduction

A good understanding and an accurate prediction

of tropical cyclone (TC) activity can never be over-

emphasized as these powerful storms cause tremendous

damage to our society every year (Pielke and Landsea

1998; Pielke et al. 2008; Woodruff et al. 2013) in addition

to their potentially important roles in the climate system

(Emanuel 2001; Sriver and Huber 2007; Korty et al.

2008; Hart 2011; Mei et al. 2013). TC activity can be

characterized by various metrics, including annual fre-

quency, tracks, intensity as well as their derivatives [e.g.,

the power dissipation index (PDI; Emanuel 2005) and the

accumulated cyclone energy (ACE; Bell et al. 2000)]. In

this study, we attempt to further our understanding of the

variability and predictability of annual hurricane fre-

quency in the North Atlantic (NA) basin.

While predicting genesis of individual TCs remains

difficult (e.g., Pasch et al. 2006; Halperin et al. 2013),

predictions of annual NA TC/hurricane frequency using

large-scale environmental conditions are good in gen-

eral with the explained variance ranging between 20%Corresponding author: Wei Mei, wmei@email.unc.edu
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and 80% (e.g., Klotzbach and Gray 2009; Knutson et al.

2010; Chen and Lin 2011, 2013;Murakami et al. 2016). A

favorable environment promotes the probability of

TC/hurricane genesis, and thus the environment aver-

aged over the TC peak season is significantly correlated

with annual TC/hurricane frequency. The favorable

environmental conditions include but are not limited to

below-normal sea level pressure, above-normal low-

level vorticity and below-normal vertical wind shear

over the subtropical NA, above-normal rainfall over the

Sahel region of West Africa, and infrequent midlatitude

Rossby wave breaking (e.g., McBride and Zehr 1981;

Landsea and Gray 1992; Goldenberg and Shapiro 1996;

Knaff 1997; Landsea et al. 1999; DeMaria et al. 2001;

Elsner and Jagger 2006; Nolan and Rappin 2008; Kossin

et al. 2010; Klotzbach 2011; Zhao and Held 2012; Daloz

et al. 2012; Patricola et al. 2014; Zhang et al. 2016).

These conditions can be linked to patterns of sea surface

temperature anomalies (SSTAs), as demonstrated in the

Atmospheric Model Intercomparison Project (AMIP)-

type simulations in which atmospheric general circula-

tion models (AGCMs) are subject to observed SSTs.

Furthermore, both observational and modeling efforts

show that differences between tropical NA SSTs and

globally averaged tropical SSTs explain a considerable

fraction of the interannual-to-decadal variability in NA

TC/hurricane frequency (e.g., Knutson et al. 2008; Zhao

et al. 2009; Vecchi et al. 2011).

Despite the fact that annual frequency is arguably the

most predictable aspect of NA hurricanes at seasonal

leads, prediction systems employed by meteorological

agencies are still struggling from time to time. For ex-

ample, Vecchi and Villarini (2014) show that six to nine

hurricanes were expected to occur in year 2013 based on

both statistical and dynamical predictions. In reality,

however, only two hurricanes formed that year. The

failure of the prediction systems may be due to either

our limited understanding of the hurricane–climate in-

teractions, the inherently limited predictability of the

climate system or both.

While TC frequency is constrained by SSTs, it also

exhibits randomness owing to the nonlinear processes

and instabilities in the atmosphere (e.g., Jourdain et al.

2011; Wu et al. 2012; Chen and Lin 2013; Done et al.

2014). Ensemble simulations that differ in initial con-

ditions are employed to incorporate information of in-

ternal variability, and have demonstrated that the

internal variability can be substantial even in simula-

tions with regional climate models where the internal

variability is damped by the prescribed lateral boundary

conditions (e.g., Wu et al. 2012; Done et al. 2014). For

instance, using a regionalmodel, Done et al. (2014) show

that for year 1998 a 16-member ensemble simulates a

range of 6–12 TCs in a subregion of the NA with an

ensemble mean of 8.8 TCs.

While previous studies have led to our recognition of

the importance of internal variability in hurricane fre-

quency, the simulations in these studies cover a rela-

tively short period (typically no longer than 30 years)

and have a small ensemble size (usually no more than 5

members for global simulations), which may hinder a

full understanding of the internal variability. In this

study, we shall use an unprecedentedly large ensemble

of simulations to study both the forced and internal

variability in NA hurricane frequency for the period of

1951–2010. Simulations from the early period make it

possible to validate TC frequency in current best track

data when satellite measurements were not available,

and the large ensemble makes it possible to address

questions that cannot be answered before regarding the

internal variability, such as the number of ensemble

members that are sufficient to capture the variability in

observed hurricane frequency. After presenting the data

and methods in use (section 2), we study the forced

variability in simulated hurricane frequency using the

ensemble mean, compare it with observations, and

identify the controlling factors (section 3). We then in-

vestigate and discuss the internal variability and pre-

dictability of hurricane frequency in section 4.

2. Data and methods

a. Observational and reanalysis data

The observed hurricane frequency is obtained from

the National Hurricane Center best track dataset

(McAdie et al. 2009; Landsea and Franklin 2013) and

TC data with wind speed-dependent corrections by

Professor K. Emanuel (ftp://texmex.mit.edu/pub/emanuel/

HURR/tracks/), both of which provide the location and

intensity of NA hurricanes at 6-h intervals since 1851.

SSTs and atmospheric variables [including sea level pres-

sure, temperature, specific and relative humidity, and

850- and 200-hPa winds] from three reanalysis datasets

[including the Japanese 55-year Reanalysis (JRA-55;

Kobayashi et al. 2015), the National Centers for Envi-

ronmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR)Reanalysis-1 (NCEP–NCAR-1;

Kalnay et al. 1996), and the European Centre for Medium-

Range Weather Forecasts (ECMWF) twentieth-century

reanalysis (ERA-20C; Poli et al. 2016)] are used to

compute a genesis potential index (GPI) defined in

Emanuel (2010):

GPI5
ajhj3[max(V

PI
2 35, 0)2]

x4/3(251V
sh
)4

, (1)
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where h is the 850-hPa absolute vorticity, VPI is the TC

potential intensity, x is the 600-hPa entropy deficit, and

Vsh is the magnitude of the 250–850-hPa wind shear

vector [see also Korty et al. (2012) and Tang and

Emanuel (2012) for a detailed discussion of these con-

tributing factors]. To be consistent with the simulations

described below, only the observational data during

1951–2010 (1958–2010 for JRA-55) are used.

b. Simulated hurricane frequency

We use the historical simulations from the Database

for Policy Decision Making for Future Climate Change

(d4PDF) (Mizuta et al. 2017), with the Meteorological

Research Institute AGCM, version 3.2 (Mizuta et al.

2012), of 60-km resolution. The model is forced by ob-

served monthly mean SST and sea ice concentration

(COBE-SST2; Hirahara et al. 2014) and climatological

monthly sea ice thickness, following the procedure of

the AMIP. The simulations cover the period of 1951–

2010, and consist of 100 members that differ in initial

conditions and slightly in the imposed SSTs [‘‘small

perturbations of SST based on SST analysis error are

added to the observed SSTs’’; see the appendix of

Mizuta et al. (2017) for more details on how the initial

conditions and SSTs are perturbed]. The simulations

reproduce interannual and decadal variability in large-

scale atmospheric circulation related to SST variability

in the Pacific andAtlanticOceans (Kamae et al. 2017a,b;

Ueda et al. 2018).

The 60-km model generates TC-like disturbances.

They are detected and tracked using sea level pressure,

850-hPa relative vorticity, 850-hPa, 300-hPa and surface

wind speed, warm-core temperature, and duration of the

tracking, following Murakami et al. (2012); an exami-

nation of randomly selected events shows that they re-

semble TCs in observations. As illustrated in Yoshida

et al. (2017), the simulations well capture many statistics

and climatological characteristics of observed TCs, in-

cluding relative probability distribution of annual TC

genesis frequency over the global ocean and geo-

graphical distribution of climatological TC occurrence

[Fig. 2 in Yoshida et al. (2017)]. We note, however, that

Emanuel and Sobel (2013) document that atmospheric

model simulations forced only with observed SSTs may

not produce correct surface fluxes and surface wind

speeds, and may thereby affect TC-related thermody-

namic parameters (particularly potential intensity) and

TC activity.

Hurricane frequency is commonly underestimated in

both global and regional climate simulations when the

criterion (i.e., 32.5 m s-1 for the maximum surface wind

speed during the lifetime of a TC) for observations is

employed (Walsh et al. 2015), owing in part to different

average time periods and the relatively low resolution of

the model (e.g., Bacmeister et al. 2018; Li and Sriver

2018). Here we adjust this threshold value for the sim-

ulations to be 12ms21 by matching the simulated TC

number to the observed hurricane number during 1970–

2010 (i.e., ;6.15 per year). In other words, TCs with a

lifetime peak intensity greater than 12m s21 are termed

hurricanes in the simulations. Using a different thresh-

old value (e.g., 16m s21; Walsh et al. 2007) produces

similar results in all the aspects discussed later except

the number of hurricanes.

Because the SSTs used to force the model differ

slightly from one ensemble member to the next, we

remove the effect of such SST differences on hurricane

frequency and recover the internal variability due to

differences in initial conditions using a statistical re-

lationship obtained based on the ensemble mean of the

simulations. Specifically, as shown in the next section,

hurricane frequency is strongly correlated with the dif-

ference between SSTs averaged over the main devel-

opment region (MDR; 88–208N, 258–808W; see the blue

box in the inset of Fig. 2) of NA hurricanes and global

tropical mean SSTs [we refer to this difference as rela-

tive SSTs; see Vecchi and Soden (2007) and Johnson and

Xie (2010) for a discussion of the physical mechanisms].

We quantified the relationship between ensemble mean

hurricane frequency and ensemble mean relative SSTs,

and then for each individual year we used this rela-

tionship to remove the differences in hurricane fre-

quency among the 100 simulations attributable to the

differences in relative SSTs; note that this adjustment

does not change the ensemblemean values. The effect of

the differences in the imposed SSTs turns out to be

minor relative to the effect of internal variability, and

removing this effect slightly reduces the spread of the

simulated hurricane frequency (not shown). We ap-

proximate the ensemble mean as the forced response in

hurricane frequency to observed SSTs, and the deviation

of individual member simulations after the adjustment

from the ensemble mean as the internal variability.

3. Forced variability

The ensemble mean of the simulations skillfully re-

produces the interannual-to-decadal variations in ob-

served hurricane frequency since the late 1960s (Fig. 1a).

The correlation coefficient between the red and black

curves during 1970–2010 is 0.84 (this high level of cor-

relation is largely from interannual variability and is

insensitive to the length of the simulations, as shown in

Fig. 1b), and the red curve is located within the gray

area, which shows the range of one standard deviation

of the ensemble simulations. In particular, the model

1 JUNE 2019 ME I ET AL . 3155



simulates the enhanced hurricane activity since the mid-

1990s, and is able to capture hurricane frequency during

years of extremely high activity like 2005 and 2010.

These results demonstrate the strong SST control of NA

hurricane activity, in line with previous studies (e.g.,

Zhao et al. 2009; Vecchi et al. 2011; Chen and Lin 2011,

2013; Camargo et al. 2013; Mei et al. 2014). It is worth

pointing out that although environmental conditions in

2005 were highly favorable for hurricane occurrence,

atmospheric internal variability contributed to a signif-

icant portion of the observed 15 hurricanes since model

ensembles are rarely able to reproduce the observed

high value (e.g., Vitart et al. 2007; Smith et al. 2010;

Vecchi and Knutson 2011; Mei et al. 2014; Camp et al.

2015; Roberts et al. 2015; Manganello et al. 2016).

Prior to 1966 when satellite measurements were not

available, however, hurricane frequency in the best

track data is generally less than the ensemble mean

hurricane frequency (i.e., the red and dashed brown

curves are located below the black curve in Fig. 1a). This

suggests that during the early part of the study period,

current best track data might underestimate hurricane

numbers by approximately one per year. [Further ex-

aminations of hurricanes with intensity of category 2 and

greater and of category 3 and greater (not shown) sug-

gest that the current best track data do not underesti-

mate the frequency of hurricanes of category 2 and

greater, and the missing storms have intensity around

category 1.]

To test the robustness of the result regarding the un-

derestimation of hurricane frequency in the current best

track data prior to 1966, we computedGPI averaged over

the MDR using the three reanalysis datasets described in

section 2, and compared these indices with observed hur-

ricane frequency (Fig. 2). TheMDRGPIwell captures the

year-to-year variations in observed hurricane frequency

during 1970–2010, with the correlation coefficient ranging

between 0.72 and 0.79 (the correlation skill of the ensem-

ble of the three GPIs is 0.81). But before the mid-1960s,

hurricane frequency derived fromGPI in all three datasets

is consistently higher than hurricane frequency in the best

track data. While we note that potentially considerable

uncertainties exist in the reanalysis data during the early

time period (e.g., Emanuel 2007; Saunders et al. 2017),

the consistency of the results among the three reanalysis

datasets and with our atmospheric ensemble simulations

provides further evidence for the possible underestimate

of hurricane frequency in the best track data during that

time period (Fig. 1a). These results are also in line with

Chang and Guo (2007) and Vecchi and Knutson (2011),

which are based on analyses of hurricane tracks and

reporting ship track density.

To understand the physical mechanisms underlying the

variability in the simulated hurricane frequency, we com-

puted the MDR GPI using simulated atmospheric fields

together with the prescribed SSTs. The ensemble mean

MDRGPI accounts for 81%of the variability in ensemble

mean hurricane frequency (r5 0:90) during the entire

FIG. 1. (a) A comparison of simulated (ensemble mean; black curve) and observed (color curves) annual hur-

ricane frequency in theNorthAtlantic (NA) basin between 1951 and 2010. The gray shading shows the spread of the

model results, represented by the standard deviation of the results from the 100 ensemble members. The dashed

brown curve shows the hurricane frequency from the NOAA/National Hurricane Center best track data, and the

red curve shows the hurricane frequency from the best track data compiled by Prof. K. Emanuel with wind speed–

dependent corrections. (b) Box-and-whisker plots of the distribution of the correlation coefficients between sim-

ulated and observed hurricane frequency as a function of the number of model years. Boxes show the interquartile

range, whiskers show the 5%–95% interval, and outliers are marked with crosses. The calculations were performed

by randomly selectingN (N5 5, 10, 15, . . . , 35, 40) years out of the entire 41 years (i.e., during 1970–2010) for both

the simulated and observed hurricane frequency, computing their correlation coefficient, and for each N value

repeating this procedure 2000 times to obtain a distribution.
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study period (1951–2010). This, along with the above cal-

culations on the basis of reanalysis datasets, suggests that

in an ensemble sense seasonal-mean GPI in the MDR is a

good measure of annual hurricane frequency. We further

examined the individual factors involved in the GPI

computation and found that all four components play

important roles, with potential intensity and vertical wind

shear dominating (Table 1). Similar conclusions were

found in the calculations based on reanalysis datasets

(Table 2), in line with previous studies (e.g., Bruyère et al.
2012). These results are also consistent with previous

studies showing that in the NA thermodynamic and dy-

namical factors affect hurricane activity in a cooperative

way (e.g., Emanuel 2007; Kossin and Vimont 2007;

Vimont and Kossin 2007; Mei et al. 2014).

Both SSTs in the tropical NA and in the equato-

rial Pacific associated with El Niño–Southern Oscilla-

tion (ENSO) are important in modulating annual NA

hurricane frequency (Patricola et al. 2014): their corre-

lation coefficients with hurricane frequency are 0.57 and

20.47, respectively, for the results based on the ensemble

mean of the simulations (Table 1). As a result, the SSTs

in the MDR relative to the global tropical mean SSTs

(termed relative SSTs) appear to be a more useful pre-

dictor than SSTs in individual regions (Table 1), consis-

tent with previous observational and modeling studies

(e.g., Knutson et al. 2008; Zhao et al. 2009; Vecchi and

Knutson 2011; Zhao and Held 2012). In our simulations,

relative SSTs explain nearly the same portion of year-to-

year variance in hurricane frequency (;75%) as theGPI,

achievedmainly through the effect of potential intensity.

A regression analysis shows that the MDR needs to be

1.578 6 0.248C warmer than the entire tropics to gen-

erate hurricanes in the NA, and that a 18C increase in

the relative SSTs produces 7.056 1.39 more hurricanes

(Fig. 3); the uncertainties (i.e., 0.248C and 1.39 hurri-

canes per 8C warming) are represented by the standard

deviation of the results from the 100 ensemblemembers

(not shown).

4. Internal variability

In addition to the forced interannual-to-decadal vari-

ability, hurricane frequency also exhibits strong internal

variability, as indicated by the model spread shown in

Fig. 1a. On average, the spread is larger during more ac-

tive years (the correlation coefficient between the spread

and the ensemble mean is 0.84). Next we will use the 100-

member ensemble to further explore the internal vari-

ability. Specifically, here we seek to answer the following

two questions: (i) Are observations equivalent to one

model realization? (ii)Howmanymembers are needed to

capture the signal?We will also briefly discuss the sources

of the internal variability in hurricane frequency.

a. Are observations equivalent to one model
realization?

We examine this issue by comparing the properties

of the observations and simulations. The year-to-year

variability (represented by standard deviation) in ob-

served hurricane frequency during 1970–2010 is 2.86,

TABLE 1. Correlation coefficients between ensemble-mean annual hurricane frequency and various ensemble-mean environmental

factors averaged over the main development region (MDR) during 1951–2010 in the simulations.

GPI

Potential

intensity

Vertical

wind shear

850-hPa

vorticity

600-hPa entropy

deficit

MDR

SSTs

Niño-3.4
index

Relative

SSTs

Hurricane

frequency

0.90 0.85 20.84 0.78 20.78 0.57 20.47 0.87

Relative SSTs 0.91 0.95 20.86 0.64 20.82 0.79 20.30 1.00

FIG. 2. A comparison of the standardized anomalies (base pe-

riod: 1970–2010) in the genesis potential index (GPI) averaged

over the main development region (MDR) of NA hurricanes

(black and gray curves) and annual hurricane frequency in the best

track datasets (red and dashed brown curves) between 1951 and

2010. The black and gray curves are obtained from three reanalysis

datasets: JRA-55 (1958–2010; black), the NCEP–NCAR-1 (1951–

2010; gray), and ERA-20C (1951–2010; light gray). The red and

dashed brown curves correspond to the color curves in Fig. 1a. Blue

box in the inset denotes the MDR.
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whereas the average variability in individual mem-

bers of the simulations is 3.18; the variability for the

ensemble mean is 1.99. This suggests that individual

members exhibit slightly larger variance than obser-

vations, and correspondingly, the ensemble range of

the simulations fully covers the observations and X%

ensemble range contains more than X% of the obser-

vations (X5 1, 2, . . . , 98, 99) (not shown); and that

averaging across individual simulations reduces levels

of noise and results in a smaller variance in the en-

semble mean.

We then calculated the correlation coefficient be-

tween the observations and each of the individual en-

semble members and obtained a probability density

function (PDF) of the correlation coefficient being

centered between 0.5 and 0.6 (red curve in Fig. 4a).

Similarly, we calculated the correlation coefficient be-

tween one ensemble member and the other 99 members

and obtained a PDF for each individual member (gray

curves in Fig. 4a); the averaged PDF shown as the black

curve is centered between 0.3 and 0.4. This implies that

individual simulations are more similar to observations

than to each other.

We also obtained a PDF of the correlation coefficient

between the observations and an ensemble mean of

randomly selected 50 members (out of the 100 mem-

bers) by repeating this calculation 2000 times (magenta

curve in Fig. 4a). Similar PDFs were obtained for the

correlation coefficient between each individual ensem-

ble member and an ensemble mean of randomly se-

lected 50 members (out of the remaining 99 members)

(light blue curves in Fig. 4a); blue curve shows the av-

eraged PDF. The median values of the PDF for the

observations and of the averaged PDF for model simu-

lations are 0.84 and 0.6, respectively. In other words, the

variance explained by a 50-member ensemble mean in

the observations is twice that in one realization of model

simulations.

The appreciable differences in the PDFs shown

above between observations and model simulations

indicate that the observations and simulations are quite

different: the signal-to-noise ratio (SNR) is smaller

in model simulations than in the observations, and

the observations have a higher predictability than

the model.

The discrepancy between the observations and model

simulations can also be quantified using the ratio of

predictable components (RPC; Eade et al. 2014) that

compares levels of predictability in models and in

observations:

RPC5
PC

obs

PC
model

$
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
ensemble=s

2
member

p , (2)

where the predictable component of the observations

(PCobs) is defined as the correlation coefficient between

the ensemble mean and the observations (r), and the

predictable component of themodel (PCmodel) is derived

from the ratio of the variance of the ensemble mean

(s2
ensemble) and the average variance of individual en-

semble members (s2
member). An RPC value greater than

(smaller than) 1 indicates the model is underconfident

(overconfident) or overdispersive (underdispersive).

The RPC value for the simulations of hurricane fre-

quency here is 1.35, and is insensitive to the number of

model years and number of ensemble members (Fig. 5).

This suggests that the model simulations are under-

confident and hurricane frequency in the real world is

TABLE 2. Correlation coefficients between observed annual hurricane frequency and various environmental factors averaged over the

MDR in three reanalysis datasets during 1970–2010.

GPI Potential intensity Vertical wind shear 850-hPa vorticity 600-hPa entropy deficit

JRA-55 0.78 0.76 20.73 0.34 20.66

NCEP–NCAR-1 0.79 0.73 20.69 0.45 20.33

ERA-20C 0.72 0.75 20.74 0.57 20.60

FIG. 3. Scatterplot of ensemble-mean annual hurricane fre-

quency vs. relative SSTs (defined as the difference between the

MDR SSTs and global tropical mean SSTs) during 1951–2010.

Solid blue line shows the linear regression, with dashed blue curves

showing the 95% confidence bands.
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more predictable than that in the model world, which

are consistent with the above findings based on a com-

parison of the PDFs of correlation coefficients.

b. Howmanymembers are needed in order to capture
the observed variability?

1) RESULTS FROM THE LARGE ENSEMBLE AGCM
SIMULATIONS

The correlation coefficient between individual en-

semble members and the observations ranges between

0.3 and 0.7, as shown in Fig. 4a. Next we shall understand

the impact of ensemble size on the skill of the ensem-

ble mean in capturing the observed variability, by

analyzing a large number of combinations of ensemble

members based on the entire 100 members. A sampling

method was employed to randomly and independently

select N (N5 5, 10, 20, 30, . . . , 90, 100) members to

form an ensemble, and the correlation coefficient be-

tween the resulting ensemblemean and the observations

was then calculated. For each value of N, the sampling

was repeated 2000 times to obtain a distribution of

correlation values.

Figure 6a shows the distribution of correlation co-

efficients as a function of ensemble size as a box-

and-whisker plot. As the ensemble size increases, the

correlation coefficient increases and its range narrows

since larger amounts of random variations are averaged

out. The increase in the average correlation coefficient is

rapid at the beginning as the ensemble size increases

FIG. 4. (a) PDF of the correlation coefficients between annual hurricane frequency in one simulation and that in

the other 99 simulations (gray curves), between annual hurricane frequency in observations and that in individual

simulations (red curve), between annual hurricane frequency in one simulation and that in an ensemble mean of 50

randomly selected simulations (light blue curves), and between annual hurricane frequency in observations and

that in an ensemble mean of 50 randomly selected simulations (magenta curve) during 1970–2010. Black curve

shows the average of the gray curves, and blue curve shows the average of the light blue curves. (b) As in (a), but for

GPI. Note that a bin interval of 0.1 is used in plotting curves in (a) except the magenta curve, and a bin interval of

0.02 is used in plotting the magenta curve in (a) and all curves in (b).

FIG. 5. Box-and-whisker plots of the distribution of the ratio of predictable components (RPCs) of the annual

hurricane frequency as a function of the number of (a) model years and (b) ensemble size.
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from 1 to 20, and then the increase slows down with the

correlation coefficient progressively converging toward

0.84, which is the correlation coefficient between the

mean of all ensemble members and the observations.

We then replaced the observations with the 100-

member ensemble mean and repeated the analysis

since this ensemble mean might be closer to the signal

than the observations. The distribution of correlation

coefficients exhibits similar behaviors but with the cor-

relation coefficient approaching 1 (Fig. 6b). It is evident

from Fig. 6 that an ensemble of 20 simulations should be

sufficient to skillfully simulate the forced/observed var-

iability in hurricane frequency.

2) RESULTS FROM A TOY MODEL

We create a toy model described below to explain the

behaviors of the correlation skill of the ensemble mean.

This toy model consists of two components: the signal

and the noise, and is used to generate an ensemble

of time series. Here, we define the signal as x5
sin(2t/p)/std[sin(2t/p)]1 10, which has a mean value of

10 and unit variance, with t being the time ranging be-

tween 1 and 60. We then write the ith ensemble member

yi as yi 5 x1 �i with �i, an independent normal random

variable representing the noise, ;N(0, s2
� ). This last

assumption is based on the result that the deviations

from the ensemble mean of individual simulations

nearly follow a normal distribution (not shown).

We set s� 5 1:25 and the corresponding SNR is 0.8. To

be consistent with theAGCM simulations, we generated

100 members, which are shown as gray curves in Fig. 7a.

The thick black curve shows their ensemble mean, and

the red curve shows the signal; these two curves nearly

overlap with each other with a correlation coefficient

FIG. 6. Box-and-whisker plots of the distribution of the correlation coefficients (a) between annual hurricane

frequency in simulations and that in observations, and (b) between annual hurricane frequency in simulations and

that in the 100-member ensemble mean as a function of ensemble size.

FIG. 7. (a) An example from the toy model described in the text with a signal-to-noise ratio (SNR) of 0.8: red

curve shows the signal, gray curves show 100 time series that are randomly generated by the toy model, and black

curve shows the average of the gray curves. (b) Box-and-whisker plots of the distribution of the correlation co-

efficients between the randomly generated time series and the signal as a function of ensemble size based on the toy

model results. Green dots show the results from the theoretical arguments [i.e., Eq. (7)].
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greater than 0.99. We then employed the sampling

method described above to examine the dependence of

the correlation skill on the ensemble size. The behavior

of the correlation values shown in Fig. 7b (the boxes and

whiskers) is similar to the results from the AGCM

simulations shown in Fig. 6. The correlation skill im-

proves quickly when the ensemble size increases from 1

to 20, accompanied by a reduction in the range.

3) THEORETICAL ARGUMENTS

In this subsection, we further study the behaviors of

the correlation skill of the ensemblemean on the basis of

theoretical arguments. Let x be the signal, and yi the

given variable (e.g., hurricane frequency in this study) in

the ith ensemble member: yi 5 x1 �i with �i, an in-

dependent normal random variable representing the

noise,;N[0, var(�i)]. Then the correlation coefficient ren
between the ensemble mean of N members y and the

signal x can be written as

r
en
5

cov(x, y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(x)var(y)

p 5

1

N
�
N

i51

cov(x, y
i
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(x)var(y)
p

5
1

N
�
i51

N

2
64 cov(x, y

i
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(x)var(y
i
)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(y

i
)

var(y)

s 3
75

5
1

N
�
i51

N

2
4r

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(y

i
)

var(y)

s 3
5’ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(y)

var(y)

s
, (3)

where var and cov denote variance and covariance, re-

spectively; ri is the correlation coefficient between the

ith ensemble member and the signal; and r represents

the mean value of N correlation coefficients for indi-

vidual ensemble members (i.e., ri).

We can further write the variance of the ensemble

mean as

var(y)5 var(x)1 2cov(x, �)1
1

N
var(�)1

1

N2�
i 6¼ j

cov(�
i
, �

j
)

5 var(y)2
N21

N
var(�)1

1

N2�
i 6¼ j

cov(�
i
, �

j
)

’ var(y)2
N2 1

N
var(�) ,

(4)

where var(y) is the mean of the variance of individual

ensemble members, and var(�) is the mean of the noise

variance in individual members.

Substituting

r5
1

N
�
i51

N

2
64 cov(x, y

i
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(x)var(y
i
)

p
3
75’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(x)

var(y)

s
, (5)

var(y)’ var(x)1 var(�) , (6)

and Eq. (4) into Eq. (3), we obtain

r
en
’ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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N2 1
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var(�)

var(y)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

11
1

N

var(�)

var(x)

vuuut . (7)

For a finite var(�)/var(x), whenN/ 1‘, ren 5 1. This

is what we expected, since an infinite number of en-

semble members can fully remove the noise, no matter

how small the SNR is. We can also roughly estimate the

number of ensemble members that we need to achieve

a certain correlation skill (rthreshold) as N’ [r2threshold/

(12 r2threshold)][var(�)/var(x)].

Results based on Eq. (7) with var(�)/var(x) ’
(1/0:8)2 5 1:5625 (i.e., SNR 5 0.8) for various N values

are shown as green dots in Fig. 7b. The theoretical values

well match the toy model results. Figure 8a shows the

correlation skill as a function of ensemble size for five

selected SNR values obtained from the theoretical argu-

ments. In all cases, the rate of the increase in correlation

skill is large when the ensemble size is small. And in

general, the correlation skill improves more quickly for a

larger SNR when N increases from 1 to 20. For example,

the correlation coefficient increases from ;0.4 to ;0.9

for a SNRof 0.5, and increases from;0 to;0.1 for a SNR

of 0.02. This is consistent with the expectation that when

the SNR is large, the ensemble mean of a small number of

member simulations is sufficient to capture the signal,

whereas a much larger number of ensemble members are

needed to reproduce the signal for a very small SNR.

Figure 8b illustrates the dependence of the correlation

skill on the inverse of SNR for a fixed ensemble size N.

We set N to be 100, and for each SNR we repeated the

calculations of the correlation skill 100 times. Black dots

show the results for the correlation skill based on the toy

model and red dots show the theoretical values. The

mean values of the correlation coefficient between in-

dividual members and the signal in the toy model (i.e., r)

are shown as blue dots. r quickly drops as SNRdecreases

from 1 to 0.05, and gradually approaches 0 afterward.

Both the theoretical and toy model results demonstrate

that using an ensemble mean of 100 members can con-

siderably improve the correlation skill. For example,

for a SNR of 0.1, a single member only captures 1% of

the variability in the signal, whereas an ensemble mean

of 100 members captures 50% of the variability.
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c. Sources of internal variability in hurricane
frequency

In AMIP-type GCM simulations, internal variability

in NA hurricane frequency may originate from the fol-

lowing four aspects: 1) differences in seasonal-mean

atmospheric environment, 2) intraseasonal variations in

atmospheric environment, 3) differences in wave activ-

ity (including structure and amplitude) that is associated

with the African easterly jet and midlatitude fronts, and

4) internal nonlinear processes associated with deep

convection and interactions between disturbances and

their synoptic environment. The contribution of differ-

ences in the imposed SSTs is small, as discussed before.

We address the first aspect by calculating the SNR used

in Mei et al. (2014, 2015), shown in Table 3 for hurricane

frequency, GPI, and its four components:

R5
s
F

s
I

, (8)

where sF is the standard deviation of the ensemble mean

andsI is the standard deviation of the departures from the

ensemblemean in all ensemblemembers. A large value of

R suggests relatively weak internal variability. It is evident

that in general large-scale atmospheric state (particularly

potential intensity and vertical wind shear) has weaker

internal variability than hurricane frequency, so does the

GPI (Table 3). Adjustments of hurricane frequency and

GPI by removing contributions of differences in imposed

SSTs among members slightly reduce the internal vari-

ability, as expected. In both cases, the ratio of theR value

for GPI to that for hurricane frequency is ;3. Consis-

tently, correlation coefficients between simulated GPIs

among ensemble members are much larger and much

more narrowly distributed than hurricane frequency (cf.

Fig. 4b and Fig. 4a).

We further quantified that on average in individual

simulations 63% (37%) of the year-to-year variance in

simulated annual hurricane frequency is due to internal

(externally forced) variability, while for simulated GPI

these two fractions are 14% and 86%, respectively.

Thus, the internal variability in GPI may account for

nearly 10% of the internal variability (or 6% of the total

variability) in hurricane frequency. All these results

suggest that seasonal-mean large-scale environment

exhibits weak internal variability, and contributes little

to the internal variability in hurricane frequency, con-

sistent with Done et al. (2014).

In addition, we note that the R value of TC frequency

is around 1.6 in Mei et al. (2014), whereas it is only

0.76 in the present study. In addition to differences in

model configurations, the primary reasons for such a big

FIG. 8. (a) Correlation skill of the ensemblemean as a function of ensemble size for five selected SNR values (red:

1; black: 0.5; green: 0.2; magenta: 0.1; and blue: 0.05) obtained from the theoretical arguments [i.e., Eq. (7)].

(b) Correlation skill of the ensemble mean as a function of the inverse of SNR obtained from the theoretical

arguments (red dots) and from an ensemble of 100 simulations using the toy model (black dots; repeated 100 times

for each SNR value). Blue dots show the averaged correlation skill when only one member out of the 100-member

ensemble generated by the toy model is used [i.e., r in Eq. (5)].

TABLE 3. Signal-to-noise ratio (SNR) of annual hurricane frequency and GPI and its four components calculated using Eq. (8) and

model simulations for the period of 1951–2010; SNR values calculated using adjusted hurricane frequency and GPI are shown in the

parentheses.

Hurricane frequency GPI Potential intensity Vertical wind shear 850-hPa vorticity 600-hPa entropy deficit

0.74 (0.76) 2.04 (2.47) 2.41 1.37 0.66 1.16
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difference may include 1) the ensemble has a much

larger size here than in Mei et al. (2014) (100 versus 3),

and 2) the simulations cover a longer period of time in

the present study (60 versus 30 years). As demonstrated

in Fig. 9a, increasing the ensemble size reduces R,

achieved by both decreasing sF and increasing sI in

Eq. (8), and a small ensemble size may substantially

overestimate the SNR. We also repeated the calcula-

tions of R using the d4PDF simulations during 1979–

2008, which is the study period in Mei et al. (2014). We

found that decreasing the length of the simulations does

not significantly affect the median or mean value of R,

although it increases the range of R owing to the sam-

pling (Fig. 9b).

The above comparison of the R value between hur-

ricane frequency and GPI suggests that the internal

variability in hurricane frequency is dominated by the

other three aspects mentioned above rather than the

seasonal-mean environment. This can be further illus-

trated by Fig. 10a, which shows PDFs of correlation

coefficients between hurricane frequency and various

large-scale variables including GPI in individual simu-

lations. For the convenience of comparison, the results

for the ensemble mean are shown as solid dots. In line

with the ensemble mean, in general potential intensity

and vertical wind shear are the controlling factors of the

variability in hurricane frequency in individual simula-

tions, and GPI and relative SST are relatively good

predictors. However, the variance in hurricane fre-

quency explained by GPI in individual simulations

(;30%) is substantially smaller than in the ensemble

mean (80%), suggesting that an identical GPI may

FIG. 9. Box-and-whisker plots of the distribution of SNR calculated using Eq. (8) as a function of ensemble size

(a) during 1951–2010 and (b) during 1979–2008.

FIG. 10. (a) PDF of the correlation coefficients between annual hurricane frequency and MDR GPI (red), rel-

ative SST (blue), potential intensity (PI; green), vertical wind shear (black), 600-hPa entropy deficit (gray), and 850-

hPa vorticity (brown) in individual simulations during 1951–2010. Color dots show the results for the ensemble

mean; note the black and green dots almost overlap with each other. (b) Box-and-whisker plots of the distribution

of the correlation coefficients between annual hurricane frequency and MDR GPI in simulations as a function of

ensemble size during 1970–2010. Green dots show the results from the three reanalysis datasets (i.e., JRA-55,

NCEP–NCAR-1, and ERA-20C).
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produce different numbers of hurricanes from one

member simulation to the next. Similar results apply to

the relative SSTs and the four components of GPI.

Increasing the size of ensemble members can quickly

reduce the effect of noise and make it possible to build

the connections between seasonal-mean environment

and hurricane frequency (Fig. 10b). This has impor-

tant implications for seasonal predictions of hurricane

activity.

We also show in Fig. 10b the correlation coefficients

between observed hurricane frequency and GPI in the

three reanalysis datasets between 1970 and 2010 (green

dots). The stronger correlations in observations suggest

stronger climate control of hurricane activity in reality

than in model simulations. We further notice that the

RPC value for the simulations of MDR GPI is 0.98,

significantly different from the value for hurricane fre-

quency (i.e., 1.35; see section 4a). This suggests that the

model is faithful in simulating the observed variability in

seasonal-mean large-scale environment, but hurricane

frequency in individual member simulations contains

too much noise compared to the observations. Quanti-

fying the respective contributions of the three aspects

mentioned above may shed light on this issue.

5. Summary and conclusions

This study has examined the forced and internal var-

iability in annual North Atlantic (NA) hurricane fre-

quency between 1951 and 2010 using an ensemble of 100

simulations performed using an atmospheric general

circulation model (AGCM) with a resolution of 60 km.

Forced by observed sea surface temperatures (SSTs),

the model is skillful at reproducing the observed

interannual-to-decadal variability in hurricane fre-

quency during 1970–2010, demonstrating the strong SST

control of NA hurricane activity.

Prior to the mid-1960s when satellite measurements

were unavailable, the ensemble mean hurricane fre-

quency in the simulations is higher than frequency in

current best track data, suggesting a possible un-

derestimate of one hurricane per year in the latter. This

is further corroborated by calculations of a genesis po-

tential index (GPI) averaged over the main develop-

ment region (MDR) using three reanalysis datasets

and a comparison of the obtained GPI with hurricane

frequency in the best track data.

Correlations of hurricane frequency with the MDR

GPI and its four components in the simulations reveal

the dominance of potential intensity and vertical wind

shear, which is consistent with observations. Further

calculations show that relative SSTs (defined as the

difference betweenMDRSSTs and global tropicalmean

SSTs) is a good predictor of annual hurricane frequency,

with 18C increase in relative SSTs producing 7.056 1.39

more hurricanes; the effect of relative SSTs is achieved

primarily by potential intensity.

We then proceeded to investigate the internal vari-

ability in hurricane frequency using the unprecedented

large ensemble size. By comparing correlations between

observations and simulations with those between simu-

lations and calculating the ratio of predictable compo-

nents, we show that the modeled hurricane frequency

differs from that observed. Specifically, model simula-

tions appear to contain more noise, making the model

overdispersive. As a result, 1) individual simulations are

more similar to observations than each other, and 2)

observations have a higher predictability than themodel

and the model is underconfident.

We also explored the impact of ensemble size on the

correlation skill of the simulations, and found that 20

members are sufficient to capture the forced variability

in NA hurricane frequency. The behaviors of the cor-

relation skill of the ensemble mean in the AGCM sim-

ulations can be well explained using a toy model and

theoretical arguments. The latter two tools allow us to

further study the dependence of the correlation skill on

signal-to-noise ratio (SNR). The results suggest that for

other variables with a smaller SNR (e.g., hurricane lifetime

peak intensity), many more members are needed. In

addition, we note that the ensemble size also affects the

estimation of SNR: a small ensemble size can substantially

underestimate the internal variability.

The sources of internal variability in hurricane fre-

quency were also briefly discussed. By comparing the

SNR of hurricane frequency with that of seasonal-mean

atmospheric environment, we show that seasonal-mean

environment contributes little (;10%) to the internal

variability in simulated hurricane frequency. This is

further supported by the evidence that the correlation

between GPI and hurricane frequency in individual

simulations is much weaker than in ensemble mean.

(This implies that it could be problematic to predict

hurricane frequency using GPI in any one individual

simulation; instead, GPI predicts the hurricane fre-

quency averaged over 20 or more simulations.) The in-

ternal variability in hurricane frequency is thus primarily

from 1) intraseasonal variations in atmospheric envi-

ronment; 2) weather variability (including structure and

amplitude) associated with the African easterly jet and

midlatitude fronts; and 3) internal nonlinear processes

associated with deep convection and interactions be-

tween disturbances and their synoptic environment

(e.g., Reasor et al. 2005). A quantification of the re-

spective contributions of these three factors, which may

also gain insights into the understanding of why the
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model is faithful in simulating the variability of seasonal-

mean environment but produces excessive noise in

hurricane frequency, is left for a future study. In par-

ticular, around 80% of NA hurricanes originate from

African easterly waves (AEWs) in observations (e.g.,

Russell et al. 2017), whereas a recent modeling study

suggests that a similar climatology of NA TCs can form

even if all AEWs are removed (Patricola et al. 2018). It

will be of great interest to examine the extent to which

the activity of AEWs contributes to the strong internal

variability in simulated hurricane frequency.

As mentioned in section 2, one caveat of this study is

that prescribing SST perturbs the surface energy fluxes

onwhich real hurricanes depend. It remains unclear how

this affects model-generated storms. Future experi-

ments using coupled models—or even those coupled to

only a mixed layer ocean—would offer relief from this

concern. In addition, it is desirable to test our results

with global or regional models of higher resolutions

[such as the Nonhydrostatic Icosahedral Atmospheric

Model (NICAM; Satoh et al. 2014)].
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