
EXPRESSION AND COMPOSITION OF OPTIMIZATION-BASED APPLICATIONS
FOR SOFTWARE-DEFINED NETWORKING

Victor Heorhiadi

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2017

Approved by:

Michael K. Reiter

Jay Aikat

Theophilus Benson

Anupam Gupta

Vyas Sekar

c©2017
Victor Heorhiadi

ALL RIGHTS RESERVED

ii

ABSTRACT

Victor Heorhiadi: Expression and Composition of Optimization-based Applications for
Software-Defined Networking

(Under the direction of Michael K. Reiter)

Motivated by the adoption of the Software Defined Networking and its increasing

focus on applications for resource management, we propose a novel framework for

expressing network optimization applications. Named the SDN Optimization Layer

(SOL), the framework and its extensions alleviate the burden of constructing optimiza-

tion applications by abstracting the low-level details of mathematical optimization tech-

niques such as linear programming. SOL utilizes the path abstraction to express a wide

variety of network constraints and resource-management logic. We show that the frame-

work is general and efficient enough to support various classes of applications. We ex-

tend SOL to support composition of multiple applications in a fair and resource-efficient

way. We demonstrate that SOL’s composition produces better resource efficiency than

previously available composition approaches and is tolerant to network variations. Fi-

nally, as a case study, we develop a new application for load balancing network intru-

sion prevention systems, called SNIPS. We highlight the challenges in developing the

SNIPS optimization from the ground up, show SOL’s (conceptually) simplified version,

and verify that both produce nearly identical solutions.

iii

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xii

1 Introduction . 1

1.1 SOL: SDN Optimization Layer . 3

1.2 Chopin: Composition of Multiple Optimization Applications 4

1.3 SNIPS: Scalable Network Intrusion Prevention 5

2 Background and Prior Work . 6

2.1 Software-Defined Networking . 6

2.1.1 SDN Applications . 6

2.1.2 Higher-layer Abstractions for SDN . 7

2.1.3 Composition of Multiple SDN Applications 8

2.2 Optimization . 8

2.2.1 Linear Programming (LP) . 9

2.2.2 Network Optimization . 10

2.2.3 General Optimization Enhancements 10

2.3 Network Security . 11

2.3.1 Network Intrusion Detection and Prevention 11

2.3.2 Security Applications of SDN . 13

3 SOL — SDN Optimization Layer . 14

iv

3.1 Motivation and Challenges . 15

3.1.1 Traffic engineering . 16

3.1.2 Service chaining . 17

3.1.3 Flexible topology management . 18

3.1.4 Network function virtualization . 19

3.1.5 Motivation for SOL . 20

3.2 SOL Overview . 20

3.3 SOL Detailed Design . 23

3.3.1 Preliminaries . 24

3.3.2 Routing requirements . 25

3.3.3 Resource capacity constraints . 26

3.3.4 Node/link activation constraints . 29

3.3.5 Specifying network objectives . 30

3.3.6 Minimizing reconfiguration changes 32

3.3.7 Low-level API . 33

3.4 Path generation and selection . 34

3.5 Examples . 35

3.6 Implementation . 37

3.7 Evaluation . 38

3.7.1 Deployment benchmarks . 39

3.7.2 Optimality and scalability . 40

3.7.3 Comparison to Merlin and DEFO . 42

3.7.4 Developer benefits . 42

3.7.5 Sensitivity . 44

4 Robust Composition of Multiple Optimizations . 46

4.1 Background and Motivation . 47

4.2 Overview . 52

v

4.2.1 High-level approach . 53

4.2.2 Workflow . 54

4.3 Detailed Design . 55

4.3.1 Preliminaries . 56

4.3.2 Online, Unified Optimization . 58

4.3.3 Offline, Coordinated Path Selection . 61

4.4 Implementation . 64

4.5 Evaluation . 65

4.5.1 Resource-efficiency, Fairness and Responsiveness 67

4.5.2 Scalability . 71

5 Scalable Network Intrusion Prevention Using Chopin 73

5.1 Motivation and Challenges . 75

5.1.1 Case for offloading . 75

5.1.2 Challenges in offloading NIPS . 76

5.2 SNIPS System Overview . 79

5.3 SNIPS Optimization . 82

5.3.1 First-principles SNIPS Optimization 82

5.3.2 SNIPS Optimization using Chopin . 88

5.4 Implementation Using SDN . 92

5.4.1 First-principles approach . 92

5.4.2 Deployment with Chopin . 98

5.5 Evaluation . 98

5.5.1 SNIPS and Chopin . 99

5.5.2 SNIPS benefits . 100

5.5.3 Sensitivity Analysis . 103

6 Conclusions . 104

vi

BIBLIOGRAPHY . 105

vii

LIST OF TABLES

3.1 SOL network data input . 24

3.2 Variables internal to the optimization . 24

3.3 Selected constraint template functions . 31

3.4 Common objective functions . 33

3.5 Development effort benefits provided by SOL 43

4.1 Automated composition approaches . 52

viii

LIST OF FIGURES

3.1 Overview of SOL framework . 15

3.2 Traffic engineering applications . 16

3.3 Service chaining applications . 17

3.4 Topology reconfiguration applications . 18

3.5 Offloading network functions . 20

3.6 SOL architecture, overview of the workflow 23

3.7 Customizable functions . 28

3.8 Code to express SIMPLE in SOL . 35

3.9 Deployment benchmarks using the ONOS controller 40

3.10 SOL runtime . 41

3.11 Reconfiguration minimization capabilities for SOL 42

3.12 Runtime of SOL vs. state-of-the-art optimization frameworks 43

3.13 Runtime and optimality gap as function of number of paths 44

4.1 Example composition scenario . 48

4.2 Static resource allocation for composition . 48

4.3 Low-level optimization example . 50

4.4 Drawbacks of uncoordinated path selection 51

4.5 Impact of traffic shifts on the solution . 53

4.6 Chopin operator workflow . 56

4.7 Conceptual composition of two applications 58

4.8 Core components of the linear programming formulation 59

ix

4.9 Offline coordinated path selection . 61

4.10 Scability improvements for coordinated path selection 62

4.11 Integration between Chopin and ONOS . 64

4.12 Time to deploy multiple applications . 67

4.13 Optimality comparison between Chopin and Athens-like voting
framework. 68

4.14 Relative improvement in objective function when using Chopin 69

4.15 Relative error of the objective function in the presence of traffic
estimation errors . 70

4.16 Impact of chosen fairness metric on the objective function 70

4.17 Runtime comparison of the optimal ILP path selection and relaxed
selection. Relaxed paths selection is orders of magnitude faster. 71

4.18 Mean time to execute a single-epoch optimization 71

5.1 Offloading example . 76

5.2 Need to model the impact of inline traffic modifications. 77

5.3 Impact of rerouting to remote locations. 77

5.4 Need to carefully select offload locations in order to account for
the latency for user connections . 78

5.5 Overview of the SNIPS architecture for NIPS offloading 79

5.6 An example to highlight the key concepts in our formulation and
show modeling of the additional latency due to rerouting. 83

5.7 Formulation for balancing the scaling, latency, and footprint of
unwanted traffic in network-wide NIPS offloading. 84

5.8 Potentially conflicting rules with bidirectional forwarding 94

5.9 Example of non-uniform distribution of traffic 94

x

5.10 Ratio of SNIPS and SNIPS-Chopin objective functions 99

5.11 Time to compute optimal solution using original SNIPS and SNIPS-
Chopin optimizations. 100

5.12 Trade-offs between current deployments and SNIPS 101

5.13 Link load as a function of fraction of “unwanted” traffic. 102

5.14 Compute and link load optimality gap as functions of drop rate
deviation . 102

5.15 Trade-offs of choosing different weight factors on Abilene topology 102

xi

LIST OF ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

API Application Programming Interface

CPU Central Processing Unit

DC Data Center

DoS Denial of Service

DPI Deep Packet Inspection

GPU Graphics Processing Unit

IDS Intrusion Detection System

ILP Integer Linear Program

IRC Internet Relay Chat

IPS Intrusion Prevention System

ISP Internet Service Provider

LP Linear Program

MCFP Multi-Commodity Flow Problem

NFV Network Function Virtualization

NIDS Network Intrusion Detection System

NIPS Network Intrusion Prevention System

ONOS Open Network Operating System

RAM Random Access Memory

REST Representational State Transfer

SA Simulated Annealing

SDN Software-Defined Networking

SOL SDN Optimization Layer

SLA Service Level Agreement

TCAM Ternary Content-addressable Memory

xii

TCP Transmission Control Protocol

TE Traffic Engineering

UDP User Datagram Protocol

VM Virtual Machine

xiii

CHAPTER 1: Introduction

As modern networks grow increasingly complex, the demand for fine-grained net-

work control increases. Custom data paths in a datacenter, fault tolerance logic and han-

dling of transport layer protocols are only a few examples that can benefit from better

programmability of the network. Unfortunately, traditional network routing protocols,

commonly implemented in hardware switches and routers, provide little flexibility and

room for experimentation. Software-Defined Networking (SDN) attempts to answer this

challenge by moving all routing logic into software, while still maintaining the benefits

of fast switching fabric.

The SDN view decouples the network into an “intelligent” control plane, a “naive“

data plane, and a standardized communication interface between the two. The con-

trol plane (often referred to as simply the controller) maintains a global view of net-

work topology and is well suited to run custom software. The data plane consists of

multiple packet forwarding devices (e.g., switches) that only execute the instructions

given to them by the controller using a standardized configuration protocol (e.g., Open-

Flow [72]). Such decoupled design enables a high degree of network programmability.

SDN has been shown to be an an enabler for network management applications that

may otherwise be difficult to realize using previously existing control-plane mecha-

nisms. Recent work has used SDN-based applications to implement network configu-

ration for a range of management tasks, far beyond simple routing. For example, traf-

fic engineering (e.g., [82]) is easily achieved with SDN because of its centralized nature.

Service chaining ensures that traffic is dynamically routed through a series of services

(e.g., firewalls or network address translation middleboxes). Network function virtu-

alization (NFV) takes this approach further by virtualizing said services and allowing

1

them to migrate as virtual machines (VMs) to different points in the network. These

types of applications have been made more accessible with the help of SDN.

While this body of work has been instrumental in demonstrating the potential ben-

efits of SDN, realizing these benefits still requires significant effort. In particular, at the

core of many SDN applications are custom optimization problems to tackle various con-

straints and requirements that arise in practice. For instance, an SDN application might

need to account for limited TCAM, link capacities, or middlebox capacities, among other

considerations. Developing such formulations involves a non-trivial learning curve, a

careful understanding of theoretical and practical issues, and considerable manual ef-

fort. Furthermore, when the resulting optimization problems are intractable to solve

with state-of-the-art solvers (e.g., CPLEX or Gurobi), heuristic algorithms must be crafted

to ensure that new configurations can be generated on timescales demanded by the ap-

plication as relevant inputs (e.g., traffic matrix entries) change (e.g., [38, 61]). Without

a common framework for representing network optimization tasks, reusing key ideas

across applications or combining features into a new application is difficult. As such,

many efforts reinvent common building blocks, e.g., ensuring that the rules output by

the optimizations can fit inside the TCAM, or generating volume-aware load-balancing

rules that also maintain flow affinity.

This dissertation aims at eliminating such redundant efforts and includes three ma-

jor components. First, we present the design of SOL: a novel framework that can express

a variety of network optimizations (outlined in Section 1.1 and detailed in Chapter 3).

SOL is designed to support a variety of applications while abstracting away many of the

challenging optimization details, thereby reducing the effort for creating new applica-

tions. Second, we extend SOL to support composition of multiple network management

applications that require optimizations. Our goal is to enable fair, efficient, and fast com-

position of multiple applications without imposing the requirement that applications

should be aware of other “neighboring” applications. The resulting system, Chopin, is

2

outlined in Section 1.2 and detailed in Chapter 4. Finally, to demonstrate the efficacy of

SOL and Chopin features, we present a case study where we construct a novel applica-

tion for managing Network Intrusion Prevention Systems (NIPS), outlined in Section 1.3

and detailed in Chapter 5. The resulting system, SNIPS, leverages an optimization for

balancing workloads across intrusion prevention systems.

1.1 SOL: SDN Optimization Layer

Our goal in creating SOL is to raise the level of abstraction for writing SDN-based

network optimization applications. There are two natural requirements for such a frame-

work: 1) generality to express the requirements for a broad spectrum of SDN applications

(e.g., traffic engineering, policy steering, load balancing, and topology management);

and 2) efficiency to generate (near-) optimal configurations on a timescale that is respon-

sive to application needs. Given the diversity of the application requirements and the

trajectory of prior work in developing custom solutions (e.g., [81, 44, 42, 38, 61, 28, 15,

105, 82, 39]), generality and efficiency appear individually difficult, let alone combined.

We show that it is indeed possible to achieve both generality and efficiency.

To this end, we introduce SOL in Chapter 3, a framework that enables SDN applica-

tion developers to express high-level application goals and constraints. Conceptually,

SOL is an intermediate layer that sits between the SDN optimization applications and

the actual control platform. Application developers can create new network optimiza-

tion capabilities and express their requirements using the SOL API. SOL then generates

configurations that meet these goals, which can be deployed to SDN control platforms.

Key insight of SOL’s design is its utilization of the path abstraction. Both routing poli-

cies and resource allocations are represented as functions of network paths, as opposed

to nodes or links. As a result, SOL is a general framework capable of expressing a vari-

ety of network management goals. We elaborate on this and other benefits of path ab-

straction in Chapter 3.

3

1.2 Chopin: Composition of Multiple Optimization Applications

As SDN gains momentum, it gives rise to increasingly complex network deploy-

ments. In particular, deployments with multiple, specialized network management ap-

plications. SDN needs the ability to compose applications and their functionality on

a single network, considering the growth of application diversity and recent potential

emergence of SDN “app stores” [88, 70, 92].

Such composition presents new challenges in the deployment of multiple applica-

tions. While policy composition has been studied extensively and many solutions are

available [46, 83, 79], optimal resource management remains a hard problem due to a

wide range of applications and their demands (e.g., load balancing, power saving, ser-

vice chaining, etc.) [81, 61, 38].

A high-level network optimization framework, such as SOL, offers a promising al-

ternative for SDN resource management applications. Unfortunately, the original SOL

design is not robust on three key dimensions discussed below, precluding it from being

used as-is for composition:

• Fairness: Multiple applications lead to multi-objective optimizations, i.e., moving

away from a single notion of optimality. Hence, the framework must fairly balance

multiple optimization criteria.

• Resource efficiency: multiple applications introduce variability into the network,

since one application’s routing decisions impact the decision-making process of co-

existing applications by modifying network state. However, optimizations are sen-

sitive to such data uncertainty, possibly causing the solution quality to degrade [7].

• Responsiveness: When resource efficiency suffers from traffic dynamics and compet-

ing applications, traffic allocations must be recomputed to offset these inefficien-

cies. Doing so, however, requires the ability to recompute and redeploy quickly, so

as to be responsive at the timescales needed for the applications.

4

To address aforementioned challenges, we propose Chopin1 in Chapter 4 — a frame-

work that enables robust composition of resource-management SDN applications. Chopin’s

design provides several attractive features. First, Chopin provides transparent composi-

tion. By exposing single-application APIs to the developers, Chopin abstracts composi-

tion details from the development process. The abstraction enables application-agnostic

development. Second, Chopin supports multiple composition modes based on different

fairness metrics (e.g., [34, 54, 3]), providing flexibility for the operator. Finally, Chopin

produces near-optimal composition results in short timescales, in order to respond to

traffic variations.

1.3 SNIPS: Scalable Network Intrusion Prevention

To demonstrate the process and benefits of creating a new application using SOL, we

present a novel approach for managing Network Intrusion Prevention Systems using

SDN in Chapter 5.

We choose NIPS as a case study for a number or reasons. First, the ubiquity of such

systems; NIPS are an integral part of today’s network security infrastructure [111]. Sec-

ond, NIPS require new scaling approaches to process increasing volumes of network

traffic. Third, the complexity of modeling the NIPS scaling problem as an optimiza-

tion problem serves as a good proving ground for Chopin’s capabilities. We present

a first-principles optimization to implement SNIPS capabilities, and compare it with

the Chopin-enabled optimization. We highlight the benefits of using Chopin to create

a complex application such as SNIPS.

Together, SOL, Chopin and SNIPS support the following thesis statement: An op-

timization framework that leverages the network path abstraction can support expression and

composition of complex network optimizations. Such a framework can compute near-optimal,

resource-efficient traffic allocations at network time scales.

1Allusion to Frédéric Chopin, a Polish 19th century classical composer

5

CHAPTER 2: Background and Prior Work

This chapter provides background on Software Defined Networking and optimiza-

tion — two fields around which this dissertation revolves. We also summarize closely

related work on optimization frameworks and network intrusion prevention.

2.1 Software-Defined Networking

Some of the ideas that form Software-Defined Networking, such as control and data

plane separation [103, 59], active [100, 87] and programmable [10] networks, date back

to the 1990s. We, however, focus on the most recent incarnation of SDN, as described

by Open Networking Foundation [27]. This embodiment gained popularity after a work

describing the OpenFlow protocol [63] was published. We highlight that SDN and Open-

Flow are not synonymous and can exist separately from each other. However, Open-

Flow has become a de-facto standard protocol for switch management in the academic

literature.

Of particular relevance to our work are the subsequent improvements to the con-

trollers [78, 32, 8, 71] and applications running atop the controllers, which we describe in

detail below.

2.1.1 SDN Applications

At their core, all SDN applications follow a similar control loop: collect information

about the network, make routing decisions, and change the network state to reflect those

decisions. As an example, Aster*x [35] is an application developed to reactively perform

flow load balancing using SDN. B4 [44] and SWAN [42] devise applications that imple-

6

ment max-min fairness for flow allocation.

Going beyond simple flow management, SDN applications can be used to manage

middleboxes and even create energy savings in the datacenter . For example, Elastic-

Tree [38] and Response [105] leverage redundant path structure in modern datacenters

to power off switches and/or links at low-demand times to reduce energy costs. Scis-

sors [52] tackles power efficiency by reducing packet header sizes.

SIMPLE [81] utilizes SDN to route traffic through a series of middleboxes accord-

ing to a global policy, while maintaining acceptable levels of load on switches, network

links, and middleboxes. Aplomb [93] is a system that leverages network programmabil-

ity to offload middlebox processing outside of the network (e.g., a cloud provider).

2.1.2 Higher-layer Abstractions for SDN

In addition to building new and improved applications, other works explore new

and improved ways of making applications. This includes new programming languages

(e.g., [83, 25]), testing and verification tools (e.g, [53]), semantics for network updates

(e.g., [84]), compilers for rule generation (e.g., [51]), abstractions for handling control

conflicts (e.g., [4]), and APIs for users to express requirements (e.g., [22]).

In this section we focus on systems and languages that allow expression of multi-

ple types of SDN applications. For example, Merlin is a language for network resource

management and captures a number of requirements present in resource management

applications [97]. Merlin uses regular expressions to express routing policies on a set of

packets similar to that of Frenetic framework [25]. In contrast, SOL is designed to does

not limit policies to the set of regular languages and introduces new approaches to solv-

ing resource-management optimization that are orders of magnitude faster than Merlin.

DEFO is another optimization framework that focuses on traffic engineering and ser-

vice chaining applications [36]. Unlike SOL, DEFO is not to a general-purpose frame-

work, but rather is designed to support easy management of carrier-grade networks.

7

DEFO accomplishes using a two-layer architecture and support for networks that are

not OpenFlow-enabled via segment routing.

Finally, Maple [108] allows expression of SDN applications using an “algorithmic

policy”. Conceptually it allows the developer to run a function on each network packet

that determines the packet’s forwarding path. However, Maple does not take into resource-

management constraints.

2.1.3 Composition of Multiple SDN Applications

Composing multiple SDN applications running atop a single controller presents an

a new set of challenges. First, one must ensure that there are no conflicts with respect to

the routing policies different applications are trying to enforce. Second, the applications

are “competing” for a finite set of network resources, each attempting to deploy a solu-

tion that optimizes for its own goal.

Works such as Covisor [46] and Frenetic [25, 67] focus on OpenFlow rule composi-

tion and packet-level policy chain composition. PGA [79], Statesman [99], and PANE [22]

are systems that focus on resolving policy conflicts between applications and enforcing

network invariants.

The closest work that focuses on composition of resource-management applications

is Corybantic [4] and its successor Athens [5]. These systems utilize voting protocols

to generate a global network configuration across applications, and require modified,

composition-aware applications. Chopin, in contrast, does not require applications to

be aware of each other, provides automatic resource conflict resolution, and allows fair

composition of applications.

2.2 Optimization

As we mentioned earlier, SDN enables a centralized control plane to perform all net-

work management decisions. This naturally lends itself to algorithms that produce the

8

best possible solution — global optimization algorithms. In particular, many problems

from the networking domain are modeled using specific subfields of mathematical opti-

mization. In particular, convex optimization, where convex functions are minimized (or

maximized) over convex sets. A special case of convex optimization is linear program-

ming, which we desribe below.

2.2.1 Linear Programming (LP)

Linear programming is a special case of mathematical optimization that limits the

objective and constraint functions to be linear. This ensures that the problem can be

modeled using a system of linear inequalities, which enables fast solution (i.e., solvable

in polynomial time). More formally, a linear program in standard form is expressed as

follows:

maximize f0(x)

Subject to

fi(x) ≤ bi for i = 1..m

x ≥ ~0

where a vector x denotes the decision variables whose values must be assigned to max-

imize (or minimize) f0(x), subject to m constraints fi(x). Each function f0(x) : Rn → R

maps the n-dimensional vector x to a real number and b is a vector of constants. Note

that if any of the variables in x must take on an integer value, the problem becomes an

Integer-Linear Program (ILP) and finding the optimal solution becomes NP-hard [74].

Languages for optimization: Prevalence of linear programming has lead to creation

of various solvers and modeling tools. In particular, CPLEX [43] and Gurobi [33] are two

well known commercial, general-purpose solvers that incorporate state-of-the-art algo-

rithms for solving linear programs. Multiple modeling frameworks/languages such as

9

AMPL [26], Mosek [68], PyOpt [77], and PuLP [66] were built for easier modeling and

expressing of optimization tasks. However, these tools do not specifically target network

optimization.

2.2.2 Network Optimization

Many classic networking problems for which custom algorithms were designed (e.g.,

maximum flow and shortest path routing problems) can also be expressed as linear pro-

grams [1]. In fact, they are simply special cases of a broad class of problems, called net-

work flow problems. As the name implies, the vector of decision variables x refers to the

amount of flow routed along a network edge (or path) while optimizing for a given ob-

jective function. Of particular interest to computer networking is the multi-commodity

flow problem (MCFP) [91]. MCFP computes the best routing for multiple, concurrent

commodities on a given network. A commodity has an origin, a destination and a de-

mand, whilst network links have capacities. Naturally, MCFP presents a convenient ab-

straction for modern IP networks.

Edge and Path formulations: There are two ways of writing network flow problems

using linear programs. The most common is a node-edge (also referred to as node-arc or

node-link) formulation, where the decision variables are the amount flow traveling on

a given edge, and the constraints capture the amount of flow that enters and exits each

node. An alternative approach is the path formulation, where the decision variables rep-

resent fraction of flow on each path. The two are equivalent, but trade off larger num-

bers of variables (the path formulation, since the number of paths in a graph is large)

versus larger numbers of constraints (the node-edge formulation) [1].

2.2.3 General Optimization Enhancements

Due to the applicability of linear programming (and its more general parent, convex

optimization) to many other fields, a number of extensions to both were developed to

10

better model real-world problems.

Multi-objective optimization: Extensive literature exists on multi-objective opti-

mization (e.g., [98, 17]). The goal of multi-objective optimization is to compute solutions

that simultaneously optimize multiple objectives. In many cases, finding a solution that

is optimal for all objectives is impossible, and therefore new notions of optimality must

be introduced (e.g., pareto optimality, ordered optimization).

Robust optimization: The field of robust optimization [7] develops ways of “pro-

tecting” optimizations against uncertain data. More specifically, it deals with the cases

where the values used in constraint or objective functions fi(x), i = 0..m are not known

but can be bound. In networking this takes on the form of network design validation

against failures [14] or (semi-)oblivious routing [6, 56, 58]. Unfortunately, such tech-

niques can be overly conservative and computationally intensive, especially with multi-

ple resources involved in addition to bandwidth.

2.3 Network Security

Since this dissertation presents a case study focused on managing network security

appliances (in particular, Intrusion Prevention Systems), we present a cursory overview

of literature on NIPS followed by works that explore the interplay between SDN and

network security.

2.3.1 Network Intrusion Detection and Prevention

The goal of network intrusion detection and prevention is to flag (and respectively,

block) malicious behavior on the network. Coarsely, such systems can be divided into

two categories, signature matching (looking for known attacks using pattern matching,

e.g., [76, 85]) and anomaly detection [18]. Of interest to us are signature matching sys-

tems, since they are commonly deployed.

11

Signature matching systems face a continuous scaling struggle, due to computation-

ally expensive expression matching, commonly called deep packet inspection (DPI). Un-

like network forwarding, which operates on data- and network-layer headers, DPI re-

quires processing packet payloads to guard against application-layer attacks. Such high

costs make it difficult for NIPS to keep up with the “line rate” of a network, requiring

novel scaling approaches besides faster hardware.

2.3.1.1 Scaling approaches

Traditional NIPS/NIDS scaling: There are several complementary approaches for

scaling NIPS, including algorithmic improvements [96], using specialized hardware

such as TCAMs (e.g., [112, 64]), FPGAs (e.g., [60]), or GPUs (e.g., [106, 45]).

On-path offloading: Work by Sekar et al. explores on-path offloading [90, 89], where

the traffic is either processed or ignored by different NIPS machines along a routing

path. They employ a centralized optimization framework to optimally balance the pro-

cessing responsibilities across a network. One of the benefits of network offloading is

the ability to load-balance without access to internals of NIPS software. Thus the load-

balancing can be accommodate a variety of NIPS types, including legacy and propri-

etary solutions.

Off-path offloading: Recent efforts make the case for virtualizing NIPS-like func-

tions [30] and demonstrate the viability of off-path offloading using public cloud

providers [93]. Heorhiadi et al. developed a system which focuses on offloading for

passive monitoring system, where the traffic is simply replicated to a datacenter or

cloud provider [40]. However, this prior work does not model rerouting or the impact

on user-perceived latency, making them less applicable to intrusion prevention.

12

2.3.2 Security Applications of SDN

Recent work has recognized the potential of SDN for security tasks. For example,

FRESCO uses SDN to simplify botnet or scan detection [95]. Bohatei [20] is a system that

leverages SDN to provide elastic denial of service (DoS) defense. SPIFFY [49] focuses on

a specific type of DoS attack caused by link flooding and presents a way to mitigate the

attack using SDN. We treat such work as completely orthogonal to contributions pro-

posed in this thesis. Other systems, such as SIMPLE [81] and SoftCell [47], use SDN for

steering traffic through a desired sequence of waypoints. Because they also consider op-

timal resource management, we view them as “client” applications that can benefit from

our contributions.

13

CHAPTER 3: SOL — SDN Optimization Layer 1.

We start by developing a baseline framework that allows expression of different

types of network optimizations. The high-level overview is shown in Figure 3.1. Recall

that two major challenges in developing a framework such as SOL is creating a general

abstraction capable of supporting a variety of applications and generating efficient solu-

tions.

The key insight in SOL to achieve generality is that many network optimization

problems can be expressed as path-based formulations. Paths are a natural abstraction

for application developers to reason about intended network behaviors and to express

policy requirements. For example, we can use paths to specify service chaining require-

ments (e.g., each path includes a firewall and intrusion-detection system, in that order)

or redundancy (e.g., each includes two intrusion-prevention systems, in case one fails

open). Finally, it is easy to model device (e.g., TCAM space, middlebox CPU) and link

resource consumption based on the volume of traffic flowing through paths that tra-

verse that device or link.

The natural question is whether the generality of path-based formulations precludes

efficiency. Indeed, if implemented naively, optimization problems expressed over the

paths that traffic might travel will introduce efficiency challenges since the number of

paths grows exponentially with the network size. Our key insight is that by combining

infrequent, offline preprocessing with simple, online path-selection algorithms (e.g., short-

est paths or random paths), we can achieve near-optimal solutions in practice for all ap-

plications we considered. Moreover, SOL is typically far more efficient than solving the

optimization problems originally used to express these applications’ requirements.

1This chapter is excerpted from previously published work [41]

14

SOL

Control platform, e.g., ONOS

SDN Applications
e.g., Service chaining, Traffic engineering

Solver (e.g., CPLEX)

app.allocateFlow(…)
app.addLinkCapacityConstraint(…)
app.addNodeCapacityConstraint(…)

…
app.generateRoutes()

Network data Network routes
SO

L
 A

PI

Figure 3.1: Developers use the SOL high-level APIs to specify optimization goals and
constraints. SOL generates near-optimal solutions and produces device configura-
tions that are input to the SDN control platform.

We have implemented SOL as a Python-based library that interfaces with ONOS [8]

and prototyped numerous SDN applications in SOL, including SIMPLE [81], Elastic-

Tree [38], Panopticon [61].

Our evaluations on a range of topologies show that: 1) SOL outperforms several ap-

plications’ original optimization algorithms by an order of magnitude or more, and is

even competitive with their custom heuristics; 2) SOL scales better than other network

management tools like Merlin [97]; 3) SOL substantially reduces the effort required (e.g.,

in terms of lines of code) for implementing new SDN applications by an order of magni-

tude; and 4) optional SOL extensions can reduce route churn substantially across recon-

figurations with modest impact on optimality.

3.1 Motivation and Challenges

First, we describe representative network applications that could benefit from a

framework such as SOL. We highlight the need for careful formulation and algorithm

development involved in prior efforts, as well as the diversity of requirements they en-

tail.

15

N1 N3

N4N2

N5

500 Mbps

100 Mbps

1 Gbps

100 Mbps

100 Mbps 500 Mbps

C1: N1→N5
1 Gbps

C2: N2→N5
100 Mbps

Satisfy demands C1, C2 100%; minimize maximum link utilization

50
0M

bp
s

Figure 3.2: Traffic engineering applications

3.1.1 Traffic engineering

Traffic engineering (TE) is a canonical application that was an early driving appli-

cation for SDN [44, 42]. Figure 3.2 shows an example where traffic classes C1 and C2

need to be routed completely while minimizing the load on the most heavily loaded

link. A TE application takes as input traffic demands (e.g., the traffic matrix between

WAN sites), a specification of the traffic classes and priorities, and the network topology

and link capacities. It determines how to route each class to achieve network-wide ob-

jectives, e.g., minimizing network link load [24] or weighted max-min fairness [44, 42].

Challenges: Simple goals like link congestion can be represented and solved via

max-flow formulations [1]. However, the expressivity and efficiency quickly breaks

down for more complex objectives such as max-min fairness, which multiple research

efforts have sought to address [42, 16, 44]. When max-flow like formulations fail, design-

ers invariably revert to “low-level” techniques such as linear programs (LP) or combi-

natorial algorithms. Neither is ideal—using/tuning LP solvers is painful as they expose

a very low-level interface, and combinatorial algorithms require significant theoretical

expertise. Finally, translating the algorithm output into actual routing rules requires care

to install volume-aware rules to truly reap the benefits of the optimization [109].

16

IPS (200 Mbps)FW (100 Mbps)

N1 N3

N4N2

N5

500 Mbps

100 Mbps
500 Mbps

100 Mbps

100 Mbps 100 Mbps

C1: N1→N5
Web, 100 Mbps

FW→Proxy
Satisfy policy routes; do not overload middleboxes

C2: N1→N5
Other, 50 Mbps

FW→IPS

C4: N2→N5
Other, 100 Mbps

IPS
IPS (200 Mbps)

FW (100 Mbps)

Proxy (200 Mbps)

C3: N2→N5
Web, 100 Mbps

Proxy

50
0M

bp
s

Figure 3.3: Service chaining applications

3.1.2 Service chaining

Networks today rely on a wide variety of middleboxes (e.g., IDS, proxy, firewall) for

performance, security, and external compliance capabilities (e.g., [93]). The goal of ser-

vice chaining is to ensure that each class of traffic is routed through the desired sequence

of network functions. For example, in Figure 3.3, class C1 is required to traverse a fire-

wall and proxy in order. Such policy routing rules must be suitably encoded within the

available TCAM on SDN switches [81]. Since middleboxes are often compute-intensive,

they can get easily overloaded and thus operators would like to balance the load on

these appliances [81, 29]. The key inputs to such applications are the service chaining re-

quirements of different classes, traffic demands, and the available middlebox processing

resources. The application then sets up the forwarding rules such that the service chain-

ing requirements are met while respecting the switch TCAM and middlebox capacities.

Furthermore, as many of these middleboxes are stateful, these rules must ensure flow

affinity.

Challenges: Service chaining introduces more complex requirements when com-

pared to TE applications. First, modeling the consumption of switch TCAM introduces

discrete components into the optimization, which impacts scalability [81]. Second, such

service processing requirements fall outside the scope of existing network flow abstrac-

17

N1 N3

N4N2

N5

500 Mbps

100 Mbps

500 Mbps

100 Mbps

100 Mbps 100 Mbps

C1: N1→N5
100 Mbps

C2: N2→N5
100 Mbps

Decide which links/nodes to deactivate
and route traffic at low cost/energy

50
0

M
bp

s

Figure 3.4: Topology reconfiguration applications

tions [15]. Third, service chaining highlights the complexity of combining different re-

quirements; e.g., reasoning about the interaction between the load balancing algorithm

and the switch TCAM constraints is non-trivial [47]. Existing service chaining efforts

developed custom heuristics [12] or new theoretical extensions [15]. Furthermore, as ob-

served previously, ensuring flow affinity can be quite tricky [40, 39].

3.1.3 Flexible topology management

SDN enables topology modifications that would be difficult to implement with ex-

isting control plane capabilities. For instance, ElasticTree [38] and Response [105] use

SDN to dynamically switch on/off network links and nodes to make datacenters more

energy efficient. In Figure 3.4, these applications might shut down node N3 during pe-

riods of low utilization, if classes C1 and C2 can be routed via N4 without significantly

impacting end-to-end performance. Topology reconfiguration is especially feasible in

rich topologies with multiple paths between every source and destination. Such appli-

cations take as input the demand matrix (similar to the TE task) and then compute the

nodes and links that should be active and traffic-engineered routes to ensure perfor-

mance SLAs.

Challenges: The on-off requirement on the switches/links once again introduces dis-

crete constraints, yielding integer-linear optimizations that are theoretically intractable

18

and difficult to express using max-flow like abstractions. Solving such problems re-

quires significant computation even on small topologies and thus forces developers to

design new, heuristic solving strategies; e.g., ElasticTree uses a greedy bin-packing algo-

rithm [38].

3.1.4 Network function virtualization

Prior work has leveraged SDN capabilities to offload or outsource network func-

tions to leverage clusters or clouds [93, 30, 82]. This is especially useful for expensive

deep-packet-inspection services (as we show in [39], and Chapter 5). The key decision

here is to decide how much of the processing on each path to offload to the remote dat-

acenter — e.g., in Figure 3.5, how much of class C1 traffic should be routed to the dat-

acenter between N4 and N5 for IPS processing, versus processing it at N3. Offload-

ing can increase user-perceived latency and impose additional load on network links.

Moreover, some active functions (e.g., WAN optimizers or IPS) induce changes to the

observed traffic volumes due to their actions. Thus, optimizing such offloading must

take into account the congestion that might be introduced, as well as latency impact and

any traffic volume changes induced by such outsourced functions. Further generaliza-

tions have considered not only offloading middlebox services but also elastically scaling

them [73, 28, 69, 9], exacerbating these issues.

Challenges: Such offloading and elastic scaling opportunities introduce new di-

mensions to optimization that are difficult to capture. For instance, offloading requires

rerouting the traffic and thus optimizations must model the impact on link loads, down-

stream nodes, and TE objectives. If done naively, this can introduce non-linear depen-

dencies since the actions of downstream nodes depend on control decisions made up-

stream. The active changes to traffic volumes by some functions (e.g., compression for

redundancy elimination or drops by IPS) also introduce non-linear dependencies in the

optimization. Finally, elastic scaling introduces a discrete aspect to the problem similar

19

N1 N3

N4N2

N5

C1: N1→N5
100 Mbps,

IPS

C2: N2→N5
500 Mbps,

IPS

Offload expensive functions to remote “clouds”

Figure 3.5: Offloading network functions

to the topology modification application, further decaying the problem’s tractability.

3.1.5 Motivation for SOL

Drawing on the above discussion, we summarize a few key considerations:

• Network applications have diverse and complex optimization requirements; e.g.,

service chaining requires us to reason about valid paths while topology modifica-

tion needs to enable/disable nodes.

• Designers of these applications have to spend significant effort in expressing and

debugging these problems using low-level optimization libraries.

• It can take non-trivial expertise to ensure that the problems can be solved fast

enough to be relevant for operational timescales, e.g., recomputing TE every few

minutes or periodically solving the large integer-linear programs (ILPs) support-

ing topology reconfiguration (e.g., [38]).

3.2 SOL Overview

Our overarching vision in developing SOL is to raise the level of abstraction in de-

veloping new SDN applications and specifically to eliminate some of the black art in

20

developing SDN-based optimizations, making them more accessible for deployment

by network managers. To do so, SOL abstracts away low-level details of optimization

solvers and SDN controllers, allowing the developer to focus on the high-level applica-

tion goals (recall Figure 3.1). SOL takes as inputs the network topology, traffic patterns,

and optimization requirements in the SOL API. It then translates these into constraints

for optimization solvers such as CPLEX or Gurobi. Finally, SOL interfaces with exist-

ing SDN control platforms such as ONOS to install the forwarding rules on the SDN

switches. SOL does not require modifications to the existing control or data plane com-

ponents of the network. Our vision for SOL stands in stark contrast to the state of affairs

today, in which a developer faces programming a new SDN optimization either directly

for a generic and low-level optimization solver such as CPLEX or using a heuristic al-

gorithm designed by hand, after which she must translate the decision variables of the

optimization to device configurations.

Path abstraction: For SOL to be useful and robust, we need a unifying abstraction

that can capture the requirements of diverse classes of SDN network optimization ap-

plications described in the previous section. SOL is built using paths through a network

as a core abstraction for expressing network optimization problems. This is contrary to

how many optimizations are formulated in the literature — using a more standard edge-

centric approach [1]. In our experience, however, an edge-centric approach forces com-

plexity when presented with additional requirements, especially ones that attempt to

capture path properties [61, 38].

In contrast, path-based formulations capture these requirements more naturally. For

instance, much of the complexity in modeling service chaining or network function of-

floading applications from Section 3.1 is in capturing the path properties that need to

be satisfied. With a path-based abstraction, we can simply define predicates that specify

valid paths — e.g., those that include certain waypoints or that avoid a certain node (to

anticipate that node’s failure). In addition, we can model path-based resource use with

21

ease. For example, usage of TCAM space in a switch corresponds to a traffic-carrying

path traversing that switch (and thus a rule to accommodate that path). Without the

path abstraction, modeling such constraints is difficult (cf., [81]). Finally, expressing con-

straints on nodes and edges does not introduce increased difficulty compared to edge-

centric approach.

Scalability: In a pure flow-routing scenario, an edge-based formulation admits sim-

ple algorithms that guarantee polynomial-time execution. Path-based formulations, on

the other hand, are often dismissed because of their inefficient appearance — after all,

in the worst case, the number of paths in the network is exponential in the network size

— or due to the complexity of algorithms to solve path based formulations (column-

generation, decompositions, etc. [1]). However, in many practical scenarios, the num-

ber of valid paths (as defined by the application) is likely to be significantly smaller.

Furthermore, multipath routing can provide only so much network diversity before its

value diminishes [62]. So, the set of paths that need to be considered is not large.

SOL leverages an off-line path generation step to determine valid paths (step 1 of

Figure 3.6). Since for most applications, the set of valid paths is fairly static and does not

need to be recomputed every time the optimization is run, we expect this step is infre-

quent. Next, SOL selects a subset of these paths (step 2) using a selection strategy (see

Section 3.4) and runs the optimization with only the selected paths as input (step 3), to

ensure that the optimization completes quickly. We show in Section 3.7 that this strat-

egy still permits inclusion of sufficiently many paths for the optimization to converge

to a (near) optimal value. So, while the efficiency of path-based optimization is a valid

theoretical concern, in practice we show that there are practical heuristics to address this

issue.

Generating device configurations: SOL translates the decision variables from the

SOL optimization to network device configurations to implement appropriate flow rout-

ing (step 4 of Figure 3.6). The algorithm utilized in SOL to perform this translation is

22

SOL
Online

Path selection Optimization

Dataplane configuration

2

Rule generation

4

Rules for p1p1

Rules for p2p2

Offline path
generation

1 3

Traffic vol on p1p1

Traffic vol on p2p2

Figure 3.6: SOL architecture, overview of the workflow

based on that in previous work [109, 39]. However, because the optimization is path-

based, the algorithm is more straightforward and requires fewer steps.

3.3 SOL Detailed Design

In this section, we present the detailed design of SOL. We focus on the high-level API

that the SDN application developer would use to express applications via SOL, and the

impact of these API calls on the SOL’s internal representation of the optimization prob-

lem. Note, however, that the developer “thinks” in terms of the high-level API rather

than low-level details of dealing with the solver-level variables, how paths are identi-

fied, etc.

A developer begins a new optimization in SOL by instantiating an opt object via the

getOptimization function and then building the optimization using constraint tem-

plates, which we explain below (summary of the templates if provided in Table 3.3 on

page 31).

23

nodes Set of all nodes, part of the topology
links Set of all links, part of the topology
classes Set of all traffic classes
paths(c) Paths available for class c ∈ classes; output by path-selection stage (Sec-

tion 3.4)

Table 3.1: Network data input

Variable Description

D
ec

is
io

n

xc,p Fraction of class-c flows allocated to path p ∈ paths(c); non-integer
bp Is path p used; binary
bv Is node v used; binary
bl Is link l used; binary

capvar r
v Capacity allocated for resource r at node v; non-integer

D
er

iv
ed ac Fraction of c’s “demand” routed; non-integer

load r
l Amount of resource r consumed by flows routed over link l; non-integer

load r
v Amount of resource r consumed by flows routed via node v; non-integer

Table 3.2: Variables internal to the optimization

3.3.1 Preliminaries

Data inputs: There are two basic data inputs that the developer needs to provide to

any network optimization. First, the network topology is a required input, specified as

a graph with nodes and links. It also contains metadata of node/edge types or prop-

erties; e.g., nodes can have designated functions like “switch” or “middlebox”. Second,

SOL needs a specification of traffic classes, where each class c has associated ingress and

egress nodes and some expected traffic volume. Each class can (optionally) be associ-

ated with a specification of the “processing” required for traffic in this class, e.g., ser-

vice chaining. Finally, to each traffic class c is associated a set paths(c) available to route

flows in class c; paths(c) is output by a path-selection preprocessing step described in

Section 3.4.

Internal variables: SOL internally defines a set of variables summarized in Fig-

ure 3.2. We reiterate that the developer does not need to reason about these variables

and uses a high-level mental model as discussed earlier. There are two main kinds of

24

variables:

• Decision variables that identify key optimization control decisions. The most fun-

damental decision variable is xc,p, which captures traffic routing decisions and de-

notes the fraction of flow for a traffic class c that path p ∈ paths(c) carries. This

variable is central to various types of resource management applications as we will

see later. To capture topological requirements (e.g., Section 3.1.3), we introduce

three binary decision variables bp, bv, and bl that denote whether each path, node

or link (respectively) is enabled (= 1) or disabled (= 0). The variable capvar r
v is the

SOL-assigned allocation of resource-r to node v.

• Derived variables are functions defined over the above decision variables that serve

as convenient “shorthands”. ac denotes the total fraction of flow for class c that is

carried by all paths. The load variables load r
v and load r

l model the consumption of

resource r on node v and link l, respectively.

3.3.2 Routing requirements

Routing constraints control the allocation of flow in the network. AllocateFlow cre-

ates the necessary structure for routing the traffic through a set of paths for each traffic

class. Some network applications try to satisfy as much of their flow demands as pos-

sible (e.g., max-flow) while others (e.g., TE) want to “saturate” demands. For example,

a developer of a TE application (Section 3.1.1) would like to route all traffic though the

network, and thus she would add the following high-level routing constraint templates

to her empty opt object:

opt.AllocateFlow()

opt.RouteAll()

In contrast, a simple max-flow would only need AllocateFlow since there is no require-

ment on saturating demands in that case.

25

The EnforceSinglePath(C) constraint forces a single flow-carrying path

per class c ∈ C, preventing flow-splitting and multi-path routing. Finally,

FlowAffinityConstraint(Cpair) ensures that for each pair of traffic classes c1, c2 ∈ Cpair

equal amount of processing from each class occurs at the same nodes, thus maintaining

flow affinity for processing that requires session-level (as opposed to flow-level) granu-

larity.

Internals: AllocateFlow ensures that the total traffic flow across all chosen paths for

the class c matches the variable ac .

∀c ∈ classes :
∑

p∈paths(c)

xc,p = ac

Similarly, RouteAll implies:

∀c ∈ classes : ac = 1

EnforceSinglePath ensures that only a single path is used for routing traffic, and is

expressed as follows:

∀c ∈ classes :
∑

p∈paths(c)

bp = 1

FlowAffinityConstraint ensures that the load on each processing node con-

tributed by each path in both forward and reverse directions is equal:

∀c1, c2 ∈ Cpair∀v :
∑

p∈paths(c1):v∈p

xc1,p =
∑

p∈paths(c2):v∈p

xc2,p

3.3.3 Resource capacity constraints

As we saw in Section 3.1, SDN optimizations have to deal with a variety of capac-

ity constraints for network resources such as link bandwidth, switch rules, and middle-

box CPU and memory. SOL allows users to write custom resource management logic

26

by specifying several “cost” functions, depicted in Figure 3.7. These functions prescribe

how to compute the cost of routing traffic through a link, a node, or a given path. SOL

provides default implementations of these for common tasks, but allows the user to

specify their own logic, as well, as we will show later (Section 3.5).

These cost functions can then be passed into constraint templates. For example,

to add a constraint that limits link usage, the user can invoke the template function

LinkCapacityConstraint with a resource that we are constraining (e.g., ‘bandwidth’),

a map of links to their capacities,2 and optionally, a custom linkCapFn to compute the

cost of traffic on a link.

opt.LinkCapacityConstraint (’bandwidth’,

{(1,2): 10**7, (2,3): 10**7},

defaultLinkFunction)

This indicates that bandwidth should not exceed 10 Mbps for links 1-2 and 2-3. Note

that the default function is purely for illustration; the developer can write her own

linkCapFn (recall Figure 3.7).

NodeCapacityPerPathConstraint generates constraints on the nodes that do not

depend on the traffic, but rather on the routing path. That is, the cost of routing at a

node does not depend on the volume or type of traffic being routed; it depends on the

path and its properties. The best example of such usage is accounting for the limited

rule space on a network switch (e.g., Section 3.1.2). If a path is “active”, the rule must be

installed on each switch to support the path.

Internals: LinkCapacityConstraint and NodeCapacityConstraint rely on

linkCapFn and nodeCapFn, respectively, to compute the cost of using a particular re-

source at a link or node if all of the class-c traffic was routed to it. Internally, the load is

multiplied by the xc,p variable to capture the load accurately, then the load is capped by

a user-provided lnCap (ndCap), which is a mapping of links (nodes) to capacities for a

2When capacities should be allocated by the optimization itself, a capacity of TBA (meaning To Be Allo-
cated) can be specified, instead.

27

linkCapFn(l, c, p, r): Amount of resource type r consumed if all class-c traffic is allocated to path p 3 l for
link l

nodeCapFn(v, c, p, r): Amount of resource r consumed if all class-c traffic is allocated to path p 3 v for
node v

nodeBudgetFn(v): Cost of using node v; required with BudgetConstraint

routingCostFn(p): Cost of routing along path p; required with minRoutingCost

predicate(p): Determine whether any given path is valid by returning True or False

Figure 3.7: Customizable functions

given resource r.

∀l in lnCap :

load r
l =

∑
c

∑
p∈paths(c):l∈p

xc,p × linkCapFn(l, c, p, r)

load r
l ≤ lnCap[l]

Node capacity equations function similarly, and operates on nodes instead of links:

∀v in ndCap :

load r
v =

∑
c

∑
p∈paths(c):v∈p

xc,p × nodeCapFn(v, c, p, r)

load r
v ≤ ndCap[v]

The NodeCapacityPerPathConstraint functions a bit differently, as it depends on

enabled paths:

∀v in ndCap :

load r
v =

∑
c

∑
p∈paths(c):v∈p

bp × nodeCapFn(v, c, p, r)

load r
v ≤ capvar r

v

if ndCap[v] 6= TBA then capvar r
v = ndCap[v]

28

3.3.4 Node/link activation constraints

Next set of constraints, when used, allow developers to logically model the act of en-

abling or disabling nodes, links, and paths; e.g., for managing energy or other costs (e.g.,

Section 3.1.3). We identify two possible modes of interactions between these topology

modifiers, and the optimization developer can choose the one that is most suitable for

their context. 1) RequireAllNodesConstraint captures the property that disabling

a node disables all paths that traverse it; and 2) RequireSomeNodesConstraint cap-

tures the property that enabling a node permits any path traversing it to be enabled,

as well. The latter version is suitable when, e.g., a node can still route traffic even if

its other (middlebox) functionality is disabled, and so a path containing that node is

potentially useful as providing middlebox functions if at least one of its nodes is en-

abled. There are analogous constraint templates for links. A third constraint template,

PathDisableConstraint, restricts a path to carry traffic only if it is enabled.

For example, a developer trying to implement the application from Section 3.1.3

can model the requirements for shutting off datacenter nodes by adding the

RequireAllNodesConstraint and PathDisableConstraint templates:

opt.RequireAllNodesConstraint (trafficClasses)

opt.PathDisableConstraint (trafficClasses)

Other efficiency considerations may enforce a budget on the number of enabled

nodes, to model constraints on total power consumption of switches/middleboxes, cost

and budget of installing/upgrading particular switches, etc. These are captured via the

BudgetConstraint template function.

Internals: Internally, these topology modification templates are achieved using the

binary variables we introduced earlier. Specifically, the above requirements can be for-

29

malized as follows:

∀p ∈ paths(c) :

RequireAllNodesConstraint ∀v ∈ p : bp ≤ bv

RequireSomeNodesConstraint bp ≤
∑

v∈p bv

PathDisableConstraint xc,p ≤ bp

Naturally, similar constraints are constructed for links. Note that

PathDisableConstraint is crucial to the correctness of the optimization in that it

enforces that no traffic traverses a disabled path.

BudgetConstraint allows the developer to cap the number of enabled nodes in the

topology according to a custom cost function. More formally,

∑
v∈nodes

bv × nodeBudgetFn(v) ≤ k

In its simplest form, where nodeBudgetFn returns 1, this constraint simply allows up to

k nodes to be enabled.

3.3.5 Specifying network objectives

The goal of SDN applications is eventually to optimize some network-wide objective,

e.g., maximizing the network throughput, balancing load, or minimizing total traffic

footprint. Table 3.4 lists the most common objective functions, drawing on the applica-

tions considered in Section 3.1. For instance, the developer of a TE application may want

to implement the objective of minimizing the maximum link load and thus add the fol-

lowing code snippet:

opt.setPredefinedObjective (minMaxLinkLoad, ’bandwidth’)

Other optimizations (e.g., Section 3.1.4) may need to minimize the total routing

30

Group Function Description

AllocateFlow Allocate flow in the network
RouteAll Route all traffic demandsRouting
EnforceSinglePath (C) For each c ∈ C, at most one p ∈ paths(c) is enabled.
LinkCapacityConstraint (r, lnCap, linkCapFn) If l is in lnCap, then limit utilization of link resource r on link l to

lnCap[l].
NodeCapacityConstraint (r, ndCap, nodeCapFn) If v is in ndCap, then limit utilization of node resource r on node v

to ndCap[v].
NodeCapacityPerPathConstraint (r, ndCap,
nodeCapFn)

If v is in ndCap, then limit utilization of node resource r on node v
by enabled paths to ndCap[v].

Capacities

CapacityBudgetConstraint (r, N , totCap) Limit total type-r resources allocated to nodes in N ⊆ nodes to
totCap. Used when SOL is allocating capacities.

RequireAllNodesConstraint (C) For each c ∈ C and each p ∈ paths(c), p can be enabled iff all
nodes on p are enabled.

RequireSomeNodesConstraint (C) For each c ∈ C and each p ∈ paths(c), p can be enabled iff some
node on p is enabled.

RequireAllEdgesConstraint (C) For each c ∈ C and each p ∈ paths(c), p can be enabled iff all links
on p are enabled.

PathDisableConstraint (C) For each c ∈ C and each p ∈ paths(c), p can carry traffic only if it
is enabled.

Topology
control

BudgetConstraint (nodeBudgetFn, k) Total cost of enabled nodes, as computed using nodeBudgetFn, is
at most k.

Objective setPredefinedObjective (name) Set one of the predefined functions as the objective (see Table 3.4).

Table 3.3: Selected constraint template functions for building optimizations; see Figure 3.7 for linkCapFn, nodeCapFn,
and nodeBudgetFn

31

cost and include a minRoutingCost objective. This objective is parameterized with

routingCostFn(p); i.e., developers can plugin their own cost metrics such as number

of hops or link weights. As shown, we also provide a range of natural load-balancing

templates.

3.3.6 Minimizing reconfiguration changes

As the network state changes, the optimization can be recomputed to adjust traffic

allocations along forwarding paths. Traditionally, there are no guarantees on the sim-

ilarity of newly computed solution and previous solution. This can result in signifi-

cant amount of network churn, where traffic is reallocated to different paths unneces-

sarily. To mitigate network churn, SOL supports an additional constraint, for simplic-

ity dubbed “mindiff”. The goal of mindiff is to limit the fraction of traffic that migrates

from one path to another with respect to a previous solution.

We express the churn per class using the difference between flow fractions on each

path:

∀c Churnc =
∑

p∈paths(c)

z

ε ≥ xc,p − x̂c,p

ε ≤ −xc,p + x̂c,p

where x̂c,p is the fraction of traffic on path p for traffic class c in the previous solution.

The global network churn is computed as follows:

Diff =
1

|classes|
∑

c∈classes

Churnc

and can be either constrained globally (e.g., Diff ≤ .3, less than 30% of traffic migrates)

32

maxAllFlow maximize
∑

c∈classes

ac

minMaxNodeLoad (r) minimize max
v∈nodes

load r
v

minMaxLinkLoad (r) minimize max
l∈links

load r
l

minRoutingCost
∑
c,p

routingCostFn(p)× xc,p

Table 3.4: Common objective functions

or added to the objective function to be minimized. If adding to the objective function,

an appropriate weight must be specified to avoid sacrificing the primary objective’s op-

timality.

3.3.7 Low-level API

While the SOL API described above is general and expressive enough to capture the

diverse requirements of the broad spectrum of applications, we also expose a low-level

API that gives more control to the user by giving access to the SOL internal variables.

Advanced users can use this API for further customization.

For instance, API calls enable the names of the internal variables in Figure 3.2 to be

retrieved and their values determined. Similarly, using the defineVar (name, coeffs , lb,

ub) function, the user can create a new variable with name name, specify numeric lower

and upper bounds (lb and ub), and equate it to a linear combination of any other existing

variables as specified by coeffs , a map from variable names to numeric coefficients. This

is a useful primitive when specifying complex objectives. SOL also allows setting a cus-

tom objective function that is a linear combination of any existing variables, allowing for

multi-objective optimization. This is done using the setObjective (coeffs , dir) function

call, which accepts a mapping coeffs of variable names to their coefficients. The binary

input dir indicates whether the objective should be minimized or maximized.

33

3.4 Path generation and selection

Given these constraint templates, the remaining question is how we populate the

path set paths(c) for each traffic class c to meet two requirements. First, each p ∈

paths(c) should satisfy the desired policy specification for the class c. Second, paths(c)

should contain paths for each class c that make the formulation tractable and yet yield

near-optimal results. We describe how we address each concern next.

Generation: First, to populate the paths, SOL does an offline enumeration of all sim-

ple (i.e., no loops) paths per class.3 Given this set, we filter out the paths that do not sat-

isfy the user-defined predicate predicate, i.e., where predicate(p) =True only if p is

a valid path. Note that we can generalize this to allow different predicates per class, but

do not do so for ease of explanation.

In practice, we implement the predicate as a flexible Python callable function rather

than constrain ourselves to specific notions of path validity (e.g., regular expressions as

in prior work [97]). Using this predicate gives the user flexibility to capture a range of

possible requirements. Examples include waypoint enforcement (forcing traffic through

a series of middleboxes in order); enforcing redundant processing (e.g., through mul-

tiple IDS, in case one fails open); and limiting network latency by mandating shorter

paths.

Selection: Using all valid paths per class may be inefficient since the number of

paths grows exponentially with the size of the network, meaning that the LP/ILP

that SOL generates will quickly become too large to solve in reasonable time. SOL

thus provides path selection algorithms that choose a subset of valid paths (number

of paths denoted as selectNumber) that are still likely to yield near-optimal results

in practice. Specifically, two natural methods work well across the spectrum of ap-

plications we have considered: (1) shortest paths for latency-sensitive applications

(selectStrategy = shortest) or (2) random paths for applications involving load

3This is to simplify the forwarding rules without resorting to tunneling or packet tagging [81].

34

1 SIMPLE_predicate = functools.partial(waypointMboxPredicate, order=(’fw’,’ids’))
2 def SIMPLE_NodeCapFunc(node,tc,path,resource,nodeCaps):
3 if resource==’cpu’ and node in nodeCaps[’cpu’]:
4 return tc.volFlows*tc.cpuCost/nodeCaps[resource][node]
5 capFunc = functools.partial(SIMPLE_NodeCapFunc, nodeCaps=nodeCaps)

7 def SIMPLE_TCAMFunc(node, tc, path, resource):
8 return 1
9 # Path generation, typically run once in a precomputation phase

10 opt = getOptimization()
11 pptc = generatePathsPerTrafficClass(topo, trafficClasses, SIMPLE_predicate, 10, 1000,

functools.partial(useMboxModifier, chainLength=2))
12 # Allocate traffic to paths
13 pptc = chooserand(pptc, 5)
14 opt.addDecisionVariables(pptc)
15 opt.addBinaryVariables(pptc, topo, [’path’,’node’])
16 opt.addAllocateFlowConstraint(pptc)
17 opt.addRouteAllConstraint(pptc)
18 opt.addLinkCapacityConstraint(pptc, ’bandwidth’, linkCaps, defaultLinkFuncNoNormalize)
19 opt.addNodeCapacityConstraint(pptc, ’cpu’, {node: 1 for node in topo.nodes() if ’fw’ or

’ids’ in topo.getServiceTypes(node)}, capFunc)
20 opt.addNodeCapacityPerPathConstraint(pptc, ’tcam’, nodeCaps[’tcam’], SIMPLE_TCAMFunc)
21 opt.setPredefinedObjective(’minmaxnodeload’,’cpu’)
22 opt.solve()
23 obj = opt.getSolvedObjective()
24 pathFractions = opt.getPathFractions(pptc)
25 c = controller()
26 c.pushRoutes(c.getRoutes(pathFractions))

Figure 3.8: Code to express SIMPLE [81] in SOL

balancing (selectStrategy = random). SOL is flexible to incorporate other selection

strategies, e.g., picking paths with minimal node overlap for fault tolerance. We find

random works well for many applications that require load balancing. We conjecture this

is because choosing random paths on sufficiently rich topologies yields a high degree of

edge-disjointedness among the chosen paths, yielding sufficient degrees of freedom for

balancing loads.

3.5 Examples

Next, we show end-to-end examples to highlight the ease of using the SOL APIs to

write existing and novel SDN network optimizations. These examples are actual Python

code that can be run, not just pseudocode. By comparison, the code is significantly

higher-level and more readable than the equivalent CPLEX code would be, as it does

not need to deal with large numbers of underlying variables and constraints.

35

Service chaining (Section 3.1.2): As a concrete instance of the service chaining ex-

ample, we consider SIMPLE [81]. SIMPLE involves the following requirements: route all

traffic through the network, enforce the service chain (e.g., “firewall followed by IDS”)

policy for all traffic, load balance across middleboxes, and do so while respecting CPU,

TCAM, and bandwidth requirements. Figure 3.8 shows how the SIMPLE optimiza-

tion can be written in ≈ 25 lines of code. This listing assumes that topology and traffic

classes have been set up, in the topo and trafficClasses objects, respectively.

The first part of the figure shows function definitions and the path generation step,

which would typically be performed once as a precomputation step. We start by defin-

ing a path predicate (line 1) for basic enforcement through middleboxes by using the

SOL-provided function with the middlebox order. The next few lines (lines 2–4) show a

custom node capacity function to normalize the CPU load between 0 and 1. This com-

putes the processing cost per traffic class (number of flows times CPU cost) normal-

ized by the current node’s capacity. Similarly, the TCAM capacity function captures

that each path consumes a single rule per switch (line 7). The user gets the optimiza-

tion object (line 10), and generates the paths (line 11), obtaining the “paths per traffic

class” (pptc) object. The path generation algorithm is parameterized with the custom

SIMPLE_predicate, a limit on path length of 10 nodes, and a limit on the number of

paths per class of 1000. It is also instructed to evaluate every possible use of two mid-

dleboxes on a routing path for inclusion as a distinct path in the output.

The remaining lines show what would be executed whenever a new allocation of

traffic to paths is desired. Line 13 selects 5 random paths per traffic class; lines 14–20

add the routing and capacity constraints. We use the default link capacity function

for bandwidth constraints, and our own functions for CPU and TCAM capacity. Be-

cause the CPU capacity function normalizes the load, the capacity of each node is now 1

(line 19). The program selects a predefined objective to minimize the CPU load (line 21)

and calls the solver (line 22). Finally, the program gets the results and interacts with the

36

SDN controller to automatically install the rules (line 26).

ElasticTree [38]: We only show the most important differences between ElasticTree

and SIMPLE. There is no requirement on paths, and so nullPredicate is used for path

generation. We use link binary variables (see line 1 below) and the node/link activa-

tion constraints (lines 2–4). Finally, we use the low-level API (recall Section 3.3.7) to

define power consumption for switches and links (lines 5, 6, wherein “opt.bn(node)”

and “opt.be(u, v)” retrieve the names of variables bnode and b(u,v) from Figure 3.2, respec-

tively) and use these variables to define a custom objective function (line 7).

1 opt.addBinaryVariables(pptc,topo,[’path’,’node’,’edge’])

2 opt.addRequireAllNodesConstraint(pptc)

3 opt.addRequireAllEdgesConstraint(pptc)

4 opt.addPathDisableConstraint(pptc)

5 opt.defineVar(’SwitchPower’, {opt.bn(node):switchPower[node] for node in topo.nodes()})

6 opt.defineVar(’LinkPower’, {opt.be(u, v): linkPower[(u, v)] for u, v in topo.links()})

7 opt.setObjectiveCoeff({’SwitchPower’: .75, ’LinkPower’: .25}, ’min’)

3.6 Implementation

Developer interface: We currently provide a Python API for SDN optimization that

is an extended version of the interface described in Section 3.3.

Invoking solvers: We use CPLEX (via its existing Python API) as our underlying

solver. This choice largely reflects our familiarity with the tool, and we could substi-

tute CPLEX with other solvers like Gurobi. SOL offers APIs to exploit solver capabili-

ties to use a previously computed solution and incrementally find a new solution. This

approach is typically faster than starting from scratch and so is useful for faster reconfig-

urations. SOL also allows hard-limiting of the optimization runtime, albeit affecting the

optimality of the solution.

Path generation: Path generation is an inherently parallelizable process; we simply

launch separate Python processes for different traffic classes. We currently support two

path selection algorithms: random and shortest. It is easy to add more algorithms as

37

new applications emerge.

Rule generation and control interface: We implement applications for ONOS [8]

and use custom REST API to allow remote batch installation of the relevant rules. We

generate the rules based on the optimization output, using network prefix splitting to

implement the fractional responsibilities represented by the xc,p variables. This step is

similar to prior work that map fractional processing and forwarding responsibilities

onto network flows (e.g., [109, 50]). The only difference is that in case of flow affinity

constraints, the IP prefix splitting is done on the source addresses for the “forward”

traffic class, and on the destination addresses for the “reverse” traffic class. For mid-

dleboxes attached to a single switch using a single port, packet tagging can be used to

avoid loops. With ONOS, we leverage path intents [8]: while not required, it facilitates

easier integration.

Minimizing reconfiguration changes: Networks are in flux during reconfigurations

with potential performance or consistency implications, and thus it is desirable to mini-

mize unnecessary configuration changes. SOL supports constraints that bound (or min-

imize) the logical distance between a previous solution and the new solution. Following

the optimization constraints, the rule generation logic can employ techiques described

in previous work [50] to help minimize the number of flows that have to be assigned a

new route.

3.7 Evaluation

In this section we show that SOL

• performs well with the ONOS controller;

• computes optimal solutions for published applications order(s) of magnitude

faster than their original optimizations; allows to minimize traffic churn

• is either faster or has richer functionality than state-of-the-art related work;

38

• significantly reduces development effort in comparison to manually coding opti-

mization applications; and

• scales well, because it computes near-optimal solutions using few paths per traffic

class.

Setup: We evaluate the effect of using SOL to implement three existing SDN appli-

cations: ElasticTree [38], SIMPLE [81], and Panopticon [61]. For each application, we

implemented the original formulation presented in prior work or obtained the origi-

nal source code. We refer to these as “original” formulations (and solutions). We chose

topologies of various sizes from the TopologyZoo dataset [55]; when indicating a topol-

ogy, we generally include the number of nodes in the topology in parentheses, e.g.,

“Abilene (11)” for the 11-node Abilene topology. For ElasticTree, we also constructed

FatTree topologies of various sizes [2]. We synthetically generated traffic matrices using

a uniform traffic matrix for the FatTree networks and a gravity-based model [86] for the

TopologyZoo topologies. We used randomly sampled values from a log-normal distri-

bution as “populations” for the gravity model. Unless otherwise specified, we used 5

paths per traffic class when running SOL. All times below refer to computation on com-

puters with 2.4GHz cores and 128GB of RAM. For deployment benchmarks, we used the

default Mininet [65] virtual machine to emulate topologies.

3.7.1 Deployment benchmarks

We setup a variety of emulated networks using Mininet and ONOS. We measured

time for SOL to run the optimization for a traffic engineering goal and compute and

install network routes. Figure 3.9a shows the times to perform each step. SOL exhibits

low optimization and route generation times, making route installation the most time-

consuming part of the configuration process. This bottleneck is caused by the number of

rules that must be installed and by the controller platform. Figure 3.9b shows the time

39

Abilene (11)
Quest (20)

Geant2012 (40)

Bellcanada (48)
Dfn (58)

Internode (66)
0

4

8

12

16
Ti

m
e

(s
)

Optimization
Route generation

Route installation

(a) Time for SOL to configure the network
using the ONOS controller for a traffic engi-
neering application.

Abilene (11)
Quest (20)

Geant2012 (40)

Bellcanada (48)
Dfn (58)

Internode (66)
0

3

6

9

12

Ti
m

e
(s

)

ONOS SOL

(b) Route generation & installation time
of SOL traffic engineering app vs. ONOS
all-pair shortest paths

Figure 3.9: Deployment benchmarks using the ONOS controller

to generate and install routes for a traffic engineering application using SOL, in contrast

to installing shortest path routes using methods available in ONOS. The difference is

insignificant, and exists due to the additional optimization time and because of the mul-

tiple paths per source-destination pair in the SOL case.

3.7.2 Optimality and scalability

Comparing to optimal: Next, we examine how well SOL’s results match original so-

lutions, which are optimal (by definition). In all cases except ElasticTree, SOL finds the

optimal solution. Due to complexity of ElasticTree’s optimization, SOL suffers a 10% op-

timality gap: the relative error in the objective value computed by SOL (i.e., relative to

the true optimal objective value).

SOL solution times are at least one order of magnitude faster than solving the origi-

nal formulations, and are often two or even three orders of magnitude faster. Figure 3.10

shows run times to find original solutions. The runtime was capped at 30 min (1800 s),

after which the execution was aborted. Several original formulations did not complete

in that time, such as SIMPLE for topologies Bellcanada and larger, and Panopticon for

Ion and larger. The topologies for which original solutions could not be found are indi-

40

10-2
100
102
104

Ti
m

e
(s

)

Panopticon
Original SOL

Abilene (11)
Quest (20)

Geant2012 (40)

Bellcanada (48)
Dfn (58)

Ion (125)
Colt (153)

10-2
100
102
104

Ti
m

e
(s

)
SIMPLE

Figure 3.10: Optimization runtime of SOL and original formulations; gray regions
show where original formulation could not be solved within 30 mins

cated in the gray regions in Figure 3.10.

Comparing to specialized heuristics: We found that SOL performs fairly well even

compared to specialized heuristics. Specifically, we compared the performance of SOL

to the custom heuristic for SIMPLE, obtained from its authors. The runtime of SOL is

comparable to that of the SIMPLE heuristic algorithm, with a performance gap of at

most 3 seconds on the largest topologies we considered (up 58 nodes, namely the “Dfn”

topology). We believe the benefit of not having to design custom heuristics outweighs

this performance gap.

Responding to traffic changes: We explore the benefits of the reconfiguration min-

imization capabilities of SOL, for simplicity dubbed “mindiff.” We first computed an

optimal solution for a traffic engineering application; then, a random permutation of the

traffic matrix triggered the re-computation with mindiff enabled. When computing the

new solution, we assigned 4× greater priority to the TE objective than the mindiff ob-

jective. Figure 3.11a shows that with mindiff enabled, up to an additional 35% of total

traffic stays on its original paths across reconfigurations, versus being reassigned to new

paths by the optimal solution. Naturally, SOL sacrifices some optimality in the original

TE objective (shown in Figure 3.11b).

41

Abilene (11)
Quest (20)

Geant2012 (40)

Bellcanada (48)
Dfn (58)

Ion (125)
Colt (153)

0.00
0.08
0.16
0.24
0.32
0.40
0.48

Tr
af

fic
 s

hi
ft

Mindiff Optimal

(a) Fraction of traffic reassigned to different
paths with and without “mindiff”

Abilene (11)
Quest (20)

Geant2012 (40)

Bellcanada (48)
Dfn (58)

Ion (125)
Colt (153)

0.00

0.05

0.10

0.15

0.20

0.25

O
pt

im
al

ity
 g

ap

(b) Optimality gap when using “mindiff”

Figure 3.11: Traffic shift and optimality gap when using reconfiguration minimization
capabilities of SOL

3.7.3 Comparison to Merlin and DEFO

Merlin [97] tackles problems of network resource management similar to SOL. While

the goals and formulations of Merlin and SOL are quite different, we use this compari-

son to highlight the generality of SOL and the power of its path abstraction. Specifically,

Merlin uses a more heavyweight optimization that is always an ILP and operates on a

graph that is substantially larger than the physical network. We implemented the exam-

ple application taken from the Merlin paper using both SOL and Merlin. Figure 3.12a

shows that SOL outperforms Merlin by two or more orders of magnitude.

DEFO [36] is an optimization framework that aims to simplify traffic engineer-

ing [36]. We obtained the DEFO authors’ implementation and compared the optimiza-

tion times of DEFO and SOL on a simple traffic engineering application. DEFO and SOL

exhibit comparable runtimes (see Figure 3.12b). However, DEFO lacks the ability to ex-

press more complex applications and objectives and to filter paths by arbitrary predi-

cates.

3.7.4 Developer benefits

SOL is a much simpler framework for encoding SDN optimization tasks, versus de-

veloping custom solutions by hand. In an effort to demonstrate this simplicity some-

42

Abilene (11)
Quest (20)

Geant2012 (40)

Bellcanada (48)
Dfn (58)

Ion (125)
Colt (153)

10-2

100

102

104
Ti

m
e

(s
)

Merlin SOL

(a) Optimization runtimes of SOL and Mer-
lin; gray region indicates where Merlin did
not complete in 30 mins

Abilene (11)
Quest (20)

Geant2012 (40)
Bellcanada (48)

0.0

0.4

0.8

1.2

1.6

Ti
m

e
(s

)

DEFO SOL

(b) Optimization runtimes of SOL and
DEFO, for a traffic engineering application

Figure 3.12: Runtime of SOL vs. state-of-the-art optimization frameworks

what quantitatively, Table 3.5 shows the number of lines of code (LOC) in our SOL im-

plementations of various applications (“SOL lines of code”), and the ratio of the LOC

of the original formulations to the LOC for our SOL implementations (“Estimated im-

provement”). We acknowledge that lines-of-code comparisons are inexact, but we do

not know of other ways of comparing “development effort” without conducting user

studies.

Name SOL lines of code Estimated improvement

ElasticTree 16 21.8×
Panopticon 13 25.7×
SIMPLE 21 18.6×

Table 3.5: Development effort benefits provided by SOL

We believe that the improvements in Table 3.5 are conservative. First, producing

original formulations is a much more complex and delicate process than writing SOL

code. We primarily attribute this difference to needing to account for CPLEX (or other

solvers, e.g., [33, 68]) particulars at all; with SOL, these particulars are completely hid-

den from the developer. Second, SOL translates its optimization results to device con-

figurations, whereas this functionality is not even included in our scripts for producing

original formulations. Producing device configurations from original solutions would

require designing an extra algorithm to map the variables in each formulation to rele-

43

0.0
0.8
1.6
2.4
3.2
4.0

Ti
m

e
(s

)

Panopticon

0.00

0.01

O
pt

. g
ap

5 10 15 20 25 30 50
Number of paths (per class)

0
5

10
15
20
25

Ti
m

e
(s

)

SIMPLE

5 10 15 20 25 30 50
Number of paths (per class)

0.00

0.05

O
pt

. g
ap

Abilene (11)
Quest (20)

Geant2012 (40)
Bellcanada (48)

Dfn (58)

Figure 3.13: Runtime and optimality gap as function of number of paths; optimality is
achieved in most cases with as few as 5 paths per class

vant device configurations.

3.7.5 Sensitivity

SOL solutions require the specification of both the number (selectNumber) and type

(shortest or random) of paths to select per traffic class. In this section, we quantify how

sensitive SOL is to these parameters.

Number of Paths: Figure 3.13 shows the SOL’s runtime and optimality gap as a

function of the number of paths per class for two applications: SIMPLE and Panopticon.

Unsurprisingly, with a larger number of paths, SOL’s runtime increases. However, this

is not a significant concern, since we find optimal solutions at selectNumber as low as 5.

These numbers are representative of all applications and topologies we have considered.

Path selection strategy: We evaluated different selection strategies across topologies

and applications. Our results were consistent with our experiences more generally that

most problems lend themselves to a fairly obvious path selection strategy: those with

need for load balancing are likely to benefit from random and those that are latency-

44

sensitive benefit from shortest. If in doubt, however, both strategies can be attempted.

Path selection and generation costs: Since path selection is part of the optimization

cycle, we ensure that path selection times are small, ranging from 0.1 to 3 seconds across

topologies. Path selection is preceded by a path generation phase that enumerates the

simple paths per class. Path generation is moderately costly for large topologies, e.g.,

taking <300 s for the largest presented topology, when parallelized to 60 threads. How-

ever, we emphasize that path generation can be relegated to an offline precomputation

phase that is only performed once.

45

CHAPTER 4: Robust Composition of Multiple Optimizations

In this chapter we build upon SOL’s foundation to enable efficient composition of

multiple network optimization applications. One of the limitations of SOL as presented

in Chapter 3 is its focus on deployment of a single application only. As we will show

in Section 4.1, naive extension to support multiple applications leads to suboptimal out-

comes. To provide robust composition of multiple SDN applications, we present the de-

sign (sections 4.2 and 4.3) and evaluation (Section 4.5) of Chopin, a system for compos-

ing multiple network management applications.

Today, most such resource management applications are expressed as standalone

applications written in low-level optimization tools or using custom solvers. As such,

these optimizations assume full control of the network and are constructed without re-

gard for other applications, their resources, or traffic demands. Furthermore, optimiza-

tions (as presented to the solver) retain little to no semantic information about the net-

work, resources, and intent of the optimization. Since composing optimizations at this

level is impractical, previous work has avoided direct composition by taking “black

box” approaches to composition: by partitioning resources between applications via

topology virtualization [94, 57], or by requiring optimizations to be aware of other ap-

plications [4, 5]. The former is prone to producing suboptimal results, while the latter

adds to developer burden, especially given the diverse set of applications imminent in

the SDN ecosystem [92, 88].

To achieve these features, Chopin builds on top of SOL, utilizing its path-based opti-

mization abstraction. To ensure that the resulting solution is optimal and fair, Chopin

composes multiple applications into a unified optimization. To gain robustness while

maintaining responsiveness to traffic changes, Chopin introduces an offline coordinated

46

path selection, a step that prunes the set of available paths for scalability, while maintain-

ing efficiency in the online optimization. We further improve the tractability of coordi-

nated path selection using traffic matrix clustering and relaxed path search.

We have implemented a Chopin prototype using Python and a Chopin service in

Java for the ONOS controller. We show that using the unified optimization and coor-

dinated path selection Chopin achieves better optimality than naive approaches by as

much as 10%. Chopin also outperforms black-box composition based on voting mecha-

nisms in optimality by a factor of 2 and runtime by as much as an order of magnitude.

Finally, we analyze Chopin’s scalability improvements by showing that with traffic ma-

trix clustering and relaxed path search we achieve an order of magnitude speedup while

sacrificing ≈ 1% in optimality.

4.1 Background and Motivation

In this section we show example use cases of composing multiple resource-

management applications and highlight the shortcomings of existing work. If two ap-

plications run their respective optimizations and attempt to implement the solution

naively using an SDN controller, they run the risk of interfering with each other and

overloading network resources. Hence, a composition step is necessary to facilitate

proper resource sharing. We broadly divide the existing composition approaches into

two classes, white-box and black-box, based on how they treat the optimizations. We

highlight the limitations of both, by examining individual techniques and their short-

comings.

As a concrete example, consider Figure 4.1. Suppose the administrator desires to in-

stall two different applications: one to balance the load of web traffic on network links,

and another to ensure that SSH traffic traverses a firewall and, subject to this constraint,

travels minimal-latency paths. For clarity we examine only traffic traveling between

nodes N1 and N5; it is easy to see that the optimal solution is for App1 to use path N1-

47

N1 N2

N3

N4

N5

App1: N1→N5 Web, demand 100KB/s, minimize link load
App2: N1→N5 SSH, demand 50KB/s, minimize latency, req. firewall

100KB/s 100KB/s

100KB/s

50KB/s

50KB/s

Figure 4.1: Composition scenario: two applications to be deployed and their opti-
mizations to be applied to Web and SSH traffic (respectively).

App2 View: N1→N5 SSH, demand 50KB/s, minimize latency, req. firewall

33KB/s 33KB/s

33KB/s

17KB/s

17KB/s

N1 N2

N3

N4

N5

App1 View: N1→N5 Web, demand 100KB/s, minimize link load

67KB/s 67KB/s

67KB/s

33KB/s

33KB/s

Figure 4.2: Static resource allocation provides an over-constrained view of links, re-
sulting in a failure to enforce the firewall policy and sub-optimal latency for SSH
traffic.

N2-N4-N5 and for App2 to use path N1-N3-N5.

Black box composition: We classify an approach as “black box” if the optimizations

are executed separately and only their inputs are modified to produce a correct result.

Two common techniques are static resource allocation and ordered optimization [17].

Static allocation divides the resources, and each application is presented with a

“view” of a topology based on those allocations. The allocations are computed propor-

tionally to application priority (e.g., the amount of traffic that belongs to the applica-

tion). For example, in Figure 4.2, resources are divided proportionally by traffic volume,

where App1 perceives links to have 2
3

of their physical capacity, while App2 perceives

48

links with 1
3

of their capacity. When the optimizations are executed, due to link con-

straints, 1
3

of SSH traffic is forced to take the path N1-N2-N4-N5, which lacks a firewall

and is longer than N1-N3-N5 — resulting in a failed policy enforcement and suboptimal

latency.

Ordered optimization solves problems sequentially. After the first optimization is ex-

ecuted, the capacity of the network is adjusted by subtracting the resources consumed

and the next optimization is run using the network with residual capacities. In our ex-

ample, after App1 is run, due to link load-balancing, residual capacity of the network is

identical to that of App2 view in Figure 4.2: links with capacity 17KB/s and 33KB/s. This

capacity is insufficient to correctly route the SSH traffic. While simply re-ordering the

applications can alleviate this problem, for larger number of applications exploring all

possible orderings to find the best solutions is impractical.

Voting schemes make improvements to the ordered optimization strategy. Examples

include systems such as Corybantic [4] and Athens [5] which make applications aware of

the other applications and allow them to vote on each others resource-management pro-

posals to negotiate a fairer solution. We strive to solve the composition problem without

imposing this awareness requirement on application developers. Additionally, as we

will show in Section 4.5, voting approaches can also produce resource-inefficient results.

White box composition: We classify approaches as “white box” if the multiple ap-

plications are used to construct another, integrated optimization. Constructing a single

optimization eliminates any discrete ordering of applications or explicit negotiation be-

tween them, resulting in more degrees of freedom when making routing decisions.

Manually re-designing the application optimization(s) for composition is a powerful

method, but requires a non-trivial amount of effort and expertise, making this approach

difficult to scale. It is also prone to errors, making it unsuitable in a production environ-

ment where applications are expected to work out-of-the-box.

Low-level composition merges the optimization encodings as they would be given

49

1 Minimize
2 y_cpu
3 Subject To
4 R0: x_4_0_0 + x_4_1_0 - a_4_0 = 0
5 R1: x_4_0_1 + x_4_1_1 - a_4_1 = 0
6 ...
7 R10: x_1_0_0 + x_1_1_0 - a_1_0 = 0
8 R12: - 0.00074 x_4_0_0
9 - 0.00074 x_4_1_0

10 - 7.581e-04 x_5_0_0
11 + y_cpu_0 >= 0
12 R14: y_cpu - y_cpu_0 >= 0

Figure 4.3: Excerpt from an optimization source, as given to the Gurobi solver. Lack of
semantic information complicates composition and making decisions about resource
management.

to the solver (e.g., Gurobi). However, the low-level code (example shown in Figure 4.3)

has little semantic information about the topology, traffic, or network resources. For ex-

ample, it is unclear what quantity the variable x_4_0_0 represents, nor can it be easily

mapped to a variable in another application’s optimization. Furthermore, different types

of constraints have different resolution policies. For example constraint R1 is a flow con-

servation constraint and must not be arithmetically combined with others, while R12 is

a load-computation constraint and must be “added” to load-computation constraints

from other applications. Naively merging low-level optimizations has no clear meaning.

High-level composition leverages network optimization frameworks such as

SOL [41], Merlin [97], and Maple [108]. Composing applications written in these frame-

works is viable because these frameworks retain semantic information about the opti-

mization that could permit the automatic reconciliation of multiple applications’ specifi-

cations, making it an app-agnostic and potentially robust approach.

Committing to a composition strategy leveraging high-level frameworks leaves mul-

tiple options for how to calculate the composition, however. In order to ensure that ap-

plications can be responsive to traffic changes and other events, frameworks like SOL

offload a significant portion of the computation to an offline step, where the online part

50

N1 N2

N3

N4

N5

App1: N1→N5 Web, demand 100KB/s, minimize link load
App2: N1→N5 SSH, demand 50KB/s, minimize latency, req. firewall

100KB/s 100KB/s

100KB/s

50KB/s
50KB/s

N6

50KB/s

50KB/s

Figure 4.4: Uncoordinated path selection can result in no available solution. Both ap-
plications choose shortest paths (in bold), sufficient per application, but lack capacity
in a composition scenario.

of the problem is “trimmed down” to be solvable quickly.

Failing to account for composition in the offline part of the computation can result in

a final solution that is resource-inefficient. To see this, consider SOL’s offline step, which

involves selecting a subset of network paths over which the online optimization will be

performed. For example, both SOL and Merlin support, and suggest, computing short-

est paths offline and then performing online optimization only over these paths. How-

ever, in a multi-app scenario, this can lead to infeasible or resource-inefficient solutions.

Consider a network in Figure 4.4: two applications are required to choose two paths,

and they pick the shortest available. While sufficient for each application on its own, the

total capacity of the paths is too low to carry traffic from both applications. A better so-

lution would consider the resource demands of each application in the path selection

step.

Summary: A summary of automated approaches and their features is given in Ta-

ble 4.1. Black-box approaches either produce resource-inefficient results or, in the case

of voting, require developers to be application-aware. (Voting also lacks responsiveness,

as we show in Section 4.5.) We are aware of no low-level white-box composition tech-

51

Approach App-
unaware

Fair Responsive Resource-
efficient

Bl
ac

k-
bo

x
Static alloca-
tion
Ordered
Voting

Low-level
High-level
uncoordinated

W
hi

te
-

bo
x

Chopin

Table 4.1: Automated composition approaches and desired features. Filled circle in-
dicates satisfactory result. Unfilled circle indicates unsatisfactory result or unknown
implementation.

niques, nor do we know how to implement composition at a low level, and so we have

indicated this hypothetical alternative as unsatisfactory across the board. Existing high-

level frameworks provide the semantic information needed to compose applications’

objectives fairly (as we do here), but their lack of coordination during preprocessing

(which is needed for responsiveness) can lead to resource-inefficiency or even infeasi-

bility, as discussed above.

4.2 Overview

We draw a distinction between the application developer and the network opera-

tor. Developers write their optimizations by specifying the traffic and resources they

desire to manage and their optimization goals. Our overarching goal is to provide fair,

resource-efficient, and responsive compositions of resource management applications

while maintaining APIs that do not expose composition to the developer. The operator,

in contrast, configures the composition of applications (e.g., specifying what fairness

metric to use) and global network constraints (such as maximum utilization of each re-

source). Chopin combines demands from the developers and the operator, constructs

and solves a unified optimization (using a linear programming solver), and produces a

52

e1 e2

100KB/s 80KB/s

Total 150KB/s

App1

150KB/s

50KB/s 70KB/sApp2

N1 N2

N3

N4

N5

100KB/s 100KB/s

100KB/s

50KB/s

App1: N1→N5 Web, demand expected 100KB/s, minimize link load
App2: N1→N5 SSH, demand expected 50KB/s, minimize latency, req. firewall
 total. 150KB/s

50KB/s

N6

50KB/s

50KB/s

Figure 4.5: Traffic shift from time epoch e1 to e2 causes a policy violation if path N1-
N6-N5 is not chosen, despite the total volume of traffic remaining the same.

solution that can be deployed using an SDN controller.

4.2.1 High-level approach

In light of the discussion in Section 5.1, we begin by choosing the high-level, white-

box approach. We adopt the path abstraction proposed in the previous chapter 3 as a

general, unifying “language” upon which the unified optimization is constructed. We

ensure that paths are selected in a coordinated manner, specific to the set of applications

being composed, by introducing an offline, coordinated path-selection step.

Unfortunately, multiple applications exacerbate the challenges associated with of-

fline path selection. Specifically, they add another level of complexity to the optimiza-

tion, since an application’s routing decisions are reflected in the network state, which in

turn drives the decision making of co-located applications. Consider the network in Fig-

ure 4.5, where a traffic volume shift occurs between time epochs e1 and e2. Despite the

total volume of traffic being the same, App2 cannot route traffic according to policy as

path N1-N2-N4-N5 does not conform to the policy and path N1-N6-N5 was not selected

during preprocessing. Multi-app path selection needs to account for such potential traf-

53

fic shifts between applications to avoid infeasibility pitfalls.

To remedy this, we update the coordinated selection to choose paths that are tolerant

to traffic variations. If the traffic pattern shifts at a later time, only small flow allocation

adjustments will be necessary, without the need to re-select the paths. Performing co-

ordinated path selection is computationally difficult due to the large number of paths

in the optimization the and high dimensionality of the traffic matrix. We introduce two

heuristic scalability improvements (described in Section 4.3.3): traffic matrix clustering

and relaxed path search, aimed at maintaining the tractability of the offline coordinated

path-selection problem.

4.2.2 Workflow

Application development: The developers express their optimizations using a

declarative application model. They specify the type of traffic their application manages,

an objective function, and how the traffic consumes network resources. For example, an

application for minimizing latency of SSH traffic (recall Section 5.1) would specify the

following:

Traffic All SSH traffic

Objective Minimize latency

Constraints Route all traffic

Resource costs Bandwidth: 1KB per flow

Policy Path contains firewall

Since Chopin adopts a path-based optimization model, the declarative model

can support a variety of network management applications expressible using paths

(e.g., [61, 38, 81, 39, 93]). Resource consumption per flow (e.g., for modeling bandwidth

usage), per path (e.g., for modeling TCAM constraints) and other types of path-based

54

constraints can be expressed in Chopin, though this is not the focus of our work. We re-

fer the reader to work by Heorhiadi et al. [41].

Offline coordinated path selection: The operator collects the applications she wishes

to deploy and generates network paths that conform to the applications’ policies (step

Ê in Figure 4.6). We assume that policy conflicts between applications can be resolved

prior to running Chopin (e.g., with a tool like PGA [79]). She specifies global resource

utilization limits, and the type of fairness with which to combine the applications. She

then generates a collection of traffic matrices, one per epoch (step Ë), which is used as an

input to the path-selection process. The temporal variability of the traffic matrix across

epochs dictates the robustness of the solution and can be generated from past observa-

tions or using synthetic models (e.g., [101]). The coordinated path selection (step Ì) se-

lects a set of paths for each application, by composing the applications and choosing the

paths that produce best results across the per-epoch traffic matrices. Paths are saved in

the path store for use in the online deployment phase.

Online deployment: After preprocessing, the operator proceeds to deploy the appli-

cations (step Í). Chopin constructs an optimization suited to current network demands

and reflecting the desired fairness metric. When running the optimization, Chopin will

retrieve appropriate paths from the path store and use them as input to the optimiza-

tion. The solution is converted to network rules and can be deployed via network con-

troller (step Î) using techniques described in previous work [109].

4.3 Detailed Design

In this section we detail the workings of selected steps in the workflow of Figure 4.6.

We focus on the steps that represent our primary technical innovations, namely step Í

(described in Section 4.3.2) and then step Ì (described in Section 4.3.3). We begin in Sec-

tion 4.3.1 with defining terminology that facilitates these discussions.

55

Offline pre-processing

Path
Generation

Path
store

Apps

Operator

➊

Traffic
Volum

es

➋

Robust Coordinated
Path Selection

➌

Deployment (online)

Optimization ➍
Rule

Generation
➎

Figure 4.6: End-to-end operator workflow. The operator collects applications, gen-
erates a traffic matrix, performs robust path selection, and deploys the applications.
Modules containing main Chopin contributions highlighted in bold.

4.3.1 Preliminaries

Composition is performed by combining individual elements of the applications in

a systematic way. Each application declares its traffic classes and policy, which are used

to generate valid network paths. Traffic is routed along these paths, consuming network

resources as specified by applications’ resource costs. Resource consumption, in turn, is

reflected in the applications’ objective functions. Precise notation follows below.

Traffic classes: A traffic class c is a subset of all traffic arriving at a designated ingress

node c.in, exiting at a designated egress node c.out, and matching the specification

c.flowspec (e.g., specified by IP 5-tuple). Each class c also has an associated volume esti-

mate in number of flows per time epoch e, denoted c.vol[e]. We assume that traffic classes

do not overlap, i.e., if C is the set of all traffic classes, then for any c1, c2 ∈ C, c1 ∩ c2 = ∅.

(Non-overlapping classes can be ensured by simply decomposing traffic into sufficiently

56

fine-granted classes, e.g., [79].) A traffic matrix TM e for epoch e holds the value

∑
c ∈ C : c.in = in

∧ c.out = out

c.vol[e]

at location TM e[in, out].

Applications: For our purposes, an application App is specified as a set of traffic

classes App.classes ⊆ C that it manages; a set of permissible paths App.paths[in, out] for

carrying traffic classes c ∈ App.classes such that c.in = in and c.out = out ; an average

per-flow amount App.cost[r] of resource r consumed by traffic associated with this appli-

cation; an objective function App.obj specified in terms of those resource costs and the

network topology (e.g., maximizing flow, minimizing resource load); and various con-

straints that characterize allowable allocations of the traffic in App.classes to the network.

The set App.paths[in, out] is generated in step Ê of Figure 4.6 to contain the paths that

satisfy a predicate specified by the app developer (as a function that Chopin evaluates

on candidate paths, as in SOL). Each node N on path p ∈ App.paths[in, out] has a fixed

resource-r capacity N.cap[r], specified in the same units as App.cost[r]. Similarly, each link

L on path p ∈ App.paths[in, out] has a fixed resource-r capacity L.cap[r].

It is convenient to define the per-flow cost for resource r associated with traffic class

c to be

c.cost[r] = max
App: c∈App.classes

App.cost[r]

and the allowable paths for c to be

c.paths =
⋂

App: c∈App.classes

App.paths[c.in, c.out]

which we assume to be nonempty.

57

CompositionApp1
Objective

Constraints
Traffic classes

Resource costs

App2
Objective

Constraints
Traffic classes

Resource costs

Union of Traffic Classes

Resource costs

Union of Constraints

Fairness (Objectives)

Resource load
constraints

Unified, Online Optimization

Figure 4.7: Conceptual composition of two applications: unified optimization pro-
vides resource efficiency. Fairness is applied to the application objectives. Traffic
classes and resource costs are used to compute resource load constraints.

4.3.2 Online, Unified Optimization

Chopin achieves fair and resource-efficient composition by creating a single unified

optimization, which allows simultaneous optimization over multiple criteria. For ex-

ample, decision making for middlebox load balancing and link load balancing occurs

simultaneously. Figure 4.7 provides a conceptual view for the composition process: a

single online optimization is constructed from the application building blocks provided

using the declarative model. A fairness measure is applied to the applications’ objec-

tive functions. Application-specific constraints (such as flow conservation constraints)

are combined unmodified, while resource load constraints are computed from the traffic

classes and resource costs provided by each application. Figure 4.8 describes the mathe-

matical underpinnings of the optimization. We emphasize that for this subsection, e is a

constant, and E denotes the singleton set E = {e}. This is relaxed in Section 4.3.3.

Resource load and objectives: To standardize resource consumption, all resource-r

loads and objectives must be normalized to a standard range of [0, 1], using the resource-

r capacity N.cap[r] per node N and L.cap[r] per link L. Load on resources is expressed

per traffic class using the network paths available for that traffic class. (We describe

how to compute available paths in Section 4.3.3.) For example, for resources relevant

58

maximize
Objective =

∑
i

wi × Appi.obj[E] (4.1)

subject to, for all e ∈ E,

· · ·

NLoad c
N [r, e] =

∑
p∈c.paths:

N∈p

xc,p,e
c.cost[r]× c.vol[e]

N.cap[r]
(4.2)

0 ≤ xc,p,e ≤ 1 (4.3)

NLoadN [r, e] =
∑
c∈C

NLoad c
N [r, e] (4.4)

NLoad [r, e] = max
N

NLoadN [r, e] (4.5)

NLoad [r, e] ≤ NLimit [r] (4.6)
· · ·

∑
c∈C

∑
p∈c.paths

bc,p ≤ |C| × NumPaths (4.7)

0 ≤ xc,p,e ≤ bc,p (4.8)
bc,p ∈ {0, 1} (4.9)

Figure 4.8: Core components of the linear programming formulation of the unified
optimization. An example resource load computation is described in Equation 4.2–
Equation 4.6, where E is a singleton set (containing the current epoch index) in the
online optimization and E = {1, . . . ,NumEpochs} in the offline path selection. Offline
path selection also adds Equation 4.7–Equation 4.9.

to nodes, we define the resource-r load NLoad c
N [r, e] induced by traffic class c on node

N during epoch e by Equation 4.2, where N ∈ p represents that node N lies on path p

and where xc,p,e is a variable representing the fraction of flows of traffic class c routed on

path p during epoch e. Then, we define the load on a resource r at node N as the sum of

loads imposed by all traffic classes (Equation 4.4), and require these loads for all nodes

to be at most NLimit [r] (Equation 4.6), an operator-specified constant. Links are treated

similarly.

Chopin supports a number of predefined objective functions to maximize. Note that

because objectives are normalized, any min optimization can be converted to a max opti-

59

mization by using 1−App.obj as the new App.obj. For example, a maximization objective

that minimizes the load on node resource r is

App.obj[E] = 1−max
N

∑
c∈App.classes

NLoad c
N [r, e] (4.10)

The combined optimization objective for the composed applications is computed ac-

cording to a specified fairness metric (see below) and maximized, subject to the con-

straints of all of the applications.

Fairness metrics: To ensure that no single application dominates the solution,

Chopin is capable of supporting a variety of fairness metrics (also known as welfare

functions). Two natural ways of enforcing fairness are at the objective level and at the

resource level. We opt for applying the fairness metrics to the applications’ objectives,

for two reasons. First, the objectives allow for a unified way of enforcing fairness across

applications. Second, mandating fair use of resources can result in non-linear equations

with respect to xc,p,e variables, thus sacrificing many of the scalability benefits of linear

programming optimizations.

For the objectives, most linear functions can be directly incorporated into the opti-

mization. For example, weighted combination of objective functions results in a utilitar-

ian solution, shown in Equation 4.1, where wi is a weight assigned to each application.

Another common linear metric is maximizing the minimum objective (i.e., Rawlsian

difference principle [34]):

maximize Objective = min
i
Appi.obj[E] (4.11)

At the price of higher computational cost (due to their quadratic nature), the relative

mean deviation and variance functions [3] can be supported. As a special case, Chopin

supports proportional fairness [54] — a commonly used fairness metric. Proportional

60

App1 App2 Offline ILP

Union of Constraints

Fairness (Objectives)

Resource load constraints

Union of ConstraintsUnion of Constraints

Resource load constraintsResource load constraints

NumEpochs}Operator

Traffic variability

N
u
m
E
p
o
c
h
s

App1

volume

App2

volume
}

Figure 4.9: Offline coordinated path selection provides robustness by constructing
a unified optimization with sets of constraints for each epoch, ensuring resource-
efficiency and fairness in each epoch.

fairness is defined as:

maximize Objective =
∑
i

logAppi.obj[E] (4.12)

Since a log function cannot be directly incorporated into a linear program, Chopin im-

plements a piece-wise linear approximation, based on work by Camponogara et al. [11].

4.3.3 Offline, Coordinated Path Selection

A key innovation in Chopin is selecting paths in an offline phase to ensure that the

available paths are (i) rich enough to offer adequate capacity to support all applications

but also (ii) few enough to permit the online, unified optimization above to be solved

fast enough to ensure responsiveness on network timescales. For this purpose, we lever-

age the unified optimization described in Section 4.3.2 to construct a path selection inte-

ger linear program (ILP). The resulting ILP chooses paths capable of achieving resource-

efficiency under traffic variations (as specified by the operator) by creating a set of con-

straints per traffic matrix epoch (overview shown in Figure 4.9).

Formally, this is achieved by augmenting the unified optimization with additional

constraints, shown as Equation 4.7–Equation 4.9 in Figure 4.8, and broadening the opti-

61

Scalable Coordinated Path Selection

Traffic Matrices TMs

Clustering

Relaxed path
search

Figure 4.10: Overview of the two-step scalability improvement of coordinated path
selection: traffic matrix is clustered and used as input to the offline optimization,
where the ILP is replaced by a series of optimizations using relaxed path search.

mization to maximize per-application objectives across epochs E = {1, . . . ,NumEpochs},

i.e., where

App.obj[E] =
1

NumEpochs

∑
e∈E

App.obj[{e}]

(see Equation 4.1). Equation 4.7 specifies a global limit on the number of paths used. The

cap is computed using a baseline of NumPaths paths per traffic class, although the final

number of paths per traffic class can deviate from NumPaths to achieve better results.

Equation 4.8 ensures that only chosen paths are allowed to carry flow.

Tractability: The resulting ILP presents tradeoffs between resource-efficiency and

scalability. A larger number of epochs provides a solution more accommodating to traf-

fic variations and thus typically yielding better resource-efficiency, at the cost of runtime

and memory needed to perform offline path selection. Similarly, an increase in the net-

work size and so the number of paths (and thus number of binary bc,p variables) renders

computing a true-optimal solution intractable. To address these challenges, we propose

two scalability improvements, clustering and relaxed path search, shown in Figure 4.10

and described below.

Clustering speedup: To reduce the problem size, we must reduce the number of

traffic matrices (epochs), yet do so without significantly reducing the variability they

represent. We exploit the fact that network traffic volumes (and their synthetic mod-

els) exhibit patterns that we can preserve if we employ a clustering technique. Hence,

62

we cluster traffic classes across epochs based on their volumes. Specifically, if 〈c1, c2, . . .〉

is a fixed ordering of the traffic classes, then we cluster the vectors {〈c1.vol[e], c2.vol[e],

c3.vol[e], . . .〉}e∈E. We have experimented with a number of clustering techniques and

find that k-means clustering [37] is the most scalable approach. However, the output of

k-means clustering is a set of centroids that represent the average traffic volumes for each

cluster, causing path selection to not consider the worst-case scenario. This is acceptable

in some cases, however for added robustness, we also implement a hierarchical cluster-

ing algorithm with Ward’s linkage [110]. Ward’s algorithms allows us to group traffic

volumes based on their similarity into clusters, leaving us with the possibility of apply-

ing a custom reduction function (e.g., max). Meaning, that given NumClusters groups of

traffic classes, we can use the worst-case volumes from each group, not the mean.

Relaxed path search: Unfortunately, even with the clustering described above, solv-

ing the ILP remains a challenge. Increases in the number of paths (due to topology size

or number of traffic classes) quickly makes computing a solution impractical due to time

and memory consumption. To combat this, we introduce an iterative path search ap-

proach that does not require solving an ILP.

The intuition behind iterative search is that routing with multiple traffic paths per

traffic class is of limited value for topologies with sufficiently many traffic classes. This

has been analytically shown for routing problems with a single resource and objec-

tive function [1, 62] and we observe similar behavior empirically for multi-application,

multi-epoch optimizations. Therefore, we exploit the diminishing returns of adding

more paths to the optimization by iteratively increasing number of available paths per

traffic class until the objective value no longer improves. At the end, we choose a union

of flow-carrying paths across epochs as the set of available paths for the online stage.

The success of iterative path search hinges on the heuristic logic responsible for

choosing paths to be added in the next iteration. A natural approach is to adopt a

greedy heuristic (e.g., based on path length or edge-disjointness). However, we find

63

ONOS

Chopin service

App

➊Topology data

➋Register
event

➌Recompute routes

➍Path
intents

Chopin optimizer

Chopin library
REST APIONOS services

Operator

Composition
Configuration

Figure 4.11: Integration between Chopin and ONOS. ONOS applications register
with the Chopin service which triggers a computation using the Chopin optimizer.
The solution is converted to path intents and returned to the application.

that this heuristic does not perform as expected in the multi-application scenario. Our

view is that multi-objective optimization necessitates a multi-criteria heuristic. There-

fore, our heuristic scores the paths based on length and “resource-richness”. That is, it

favors shorter paths that maximally augment the resources available to the application

(based on the applications’ objective functions). This biases the selection towards lower

latency and link consumption (as bandwidth is a shared resource among all applica-

tions), and yet provides sufficient freedom to load balance the applications’ resources of

interest.

Note that a related approach is to use a more boiler-plate search strategy, e.g., sim-

ulated annealing (SA) [104]. With SA, a fixed number of different paths is evaluated in

each iteration, until the objective value can no longer be improved. While valid, in our

experience this approach takes more iterations to converge, due to its randomized na-

ture and not exploiting the diminishing returns property.

4.4 Implementation

Chopin Library: The Chopin library is built using Python and can be used for com-

posing optimizations and generating solutions as described in Section 4.3. The library

64

requires a linear programming solver; our prototype uses Gurobi [33].

Chopin Optimizer: Atop the library we built the Chopin optimizer, a standalone

component capable of receiving composition requests from an SDN controller (or other

applications). The optimizer exposes an HTTP REST API, allowing the integrations to be

built in a multitude of languages and runtimes.

Integration with ONOS: For our prototype, we implement a Chopin service in the

ONOS controller. Figure 4.11 depicts an architectural view of the ONOS component and

its interaction with the Chopin optimizer. The Chopin service is deployed inside ONOS

and receives network data (e.g., states of devices and links) from other ONOS services

(step Ê). A newly deployed application registers with the service and provides its opti-

mization requirements (step Ë). This starts the re-computation process, which utilizes

the REST API to communicate with the optimizer to request the composition of all ap-

plications registered up to this point (step Ì). The Chopin service parses the solution

received from the optimizer, generates appropriate intents and returns them the appli-

cation(s) (step Í). The service also allows the administrator to specify global network

constraints that will act across applications. This architecture ensures that the Chopin

service conforms to ONOS’ event-driven nature and maintains applications’ unaware-

ness of other applications.

4.5 Evaluation

In this section, we evaluate Chopin using emulated and trace-driven simulations.

Specifically, we describe the following results:

• end-to-end validation using the ONOS controller (Figure 4.12)

• resource-efficiency improvements over static allocation and voting approaches

(Figure 4.13)

• resource-efficiency benefits over uncoordinated path selection (Figure 4.14)

65

• low impact of traffic volume clustering on final solution (Figure 4.15)

• impact of different fairness metrics have on the solution (Figure 4.16)

• runtime improvements in scalability of path selection due to the clustering and

annealing techniques (Section 4.5.2).

Setup: We chose topologies of various sizes from the TopologyZoo dataset [55];

when indicating a topology, we generally include the number of nodes in the topol-

ogy in parentheses, e.g., “Abilene (11)” for the 11-node Abilene topology. We also con-

structed FatTree topologies of various sizes [2]. We refer to these as “kX” where X de-

notes the arity of the FatTree, as defined in prior work. We synthetically generated traf-

fic matrices using a modulated gravity model [86] and introduced a temporal variation

between applications’ traffic volumes using a Dirichlet distribution [48] across a 100

epochs. We choose the Dirichlet distribution because it generates a worst-case variability

in traffic shifts between applications (e.g., 0/100% to 100/0% split between two appli-

cations) while maintaining fixed traffic volume across epochs. We also performed tests

with other variability models (e.g., [101]) and observed similar results.

Unless otherwise specified, we used two canonical applications—a traffic engineer-

ing application that minimizes link load and a service chaining application that min-

imizes middlebox load. The applications had no overlapping traffic classes and were

composed applications using a utilitarian fairness metric, with the weights equaling the

fraction of traffic that belonged to the application. The service chaining application re-

quired a chain of two middleboxes – a firewall and an IDS. Times below refer to compu-

tation on computers with 2.4GHz cores and 128GB of RAM, except deployment bench-

marks, where we used Mininet [65] in a virtual machine to emulate the topologies.

End-to-end validation: We setup different topologies using the Mininet emulator

and ONOS controller. We deployed up to four applications (specifically, four copies of

the traffic-engineering application with disjoint traffic classes) on each topology. Fig-

66

1 2 3 4
Number of applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
(s

)

Abilene (11) Compuserve (14) Oxford (20)

Figure 4.12: Time to deploy multiple applications as a function of number of appli-
cations. Includes time for online optimization and computing and installing ONOS
path intents.

ure 4.12 shows the worst-case time to deploy the applications, meaning each new appli-

cation triggered a full re-computation for all traffic classes for all applications. Even the

worst-case deployment (i.e., configuring the network from scratch) maintains network

time-scale responsiveness.

4.5.1 Resource-efficiency, Fairness and Responsiveness

Next, we use trace-driven simulations to evaluate the benefits of using Chopin

for resource-efficiency, fairness, and responsiveness and compare it to black-box ap-

proaches. We also evaluate the potential benefits of using Chopin’s coordinated path

selection approach compared to prior work [41].

Resource-efficiency vs. black-box approaches: We compare Chopin to black-box ap-

proaches: naive static allocation and Athens [5] — arguably the closest practical work

in this space. We created a simulator that implements the Athens voting protocols and

modified our applications to be aware of all other applications present. We considered

a set of paths and their flow allocations to be a “proposal” that is submitted for voting.

67

Abilene (11)

Quest (2
0)

k4 (20)

Geant2012 (40)
k6 (45)

Dfn (58)
k8 (80)

Topology

0.5

0.6

0.7

0.8

0.9
N

or
m

al
iz

ed
 o

bj
ec

tiv
e

Voting Chopin

Figure 4.13: Optimality comparison between Chopin and Athens-like voting frame-
work.

Each application was allowed to submit a proposal it considered best for its own objec-

tive function. Figure 4.13 shows the objective function (higher is better) for each topol-

ogy and different composition approaches. Each box in the figure represents a composi-

tion strategy executed 100 times (i.e., across 100 epochs), with boxes covering objective

values between the 25th and 75th percentiles and whiskers extending to min and max

values. Chopin outperforms other approaches by as much as 60%, and naive voting fails

to converge in some cases (e.g., Quest and Geant2012 topologies).

Benefits of coordinated path selection: We compared solutions obtained using

shortest paths and solutions produced by Chopin. Figure 4.14 shows the relative im-

provement over the baseline objective computed using shortest paths. Bars represent the

improvement averaged across 100 epochs, with error bars indicating the standard de-

viation. For all topologies, Chopin produces a more resource-efficient solution than the

naive shortest-path selection strategy.

Traffic estimation sensitivity: We also evaluated the impact of traffic estimation er-

rors on traffic matrix clustering and paths selection. To do so, we generated traffic ma-

68

Abilene (11)

Quest (2
0)

k4 (20)

Geant2012 (40)
k6 (45)

Bellcanada (48)
Dfn (58)

k8 (80)

Topology

0

10

20

30

40
R

el
at

iv
e

im
pr

ov
em

en
t,

%

Figure 4.14: Relative improvement in objective function when using Chopin as op-
posed to static allocation methods with shortest paths per application. Averaged
across 100 epochs.

trices for different topologies and used them to perform paths selection as described

in Section 4.3. We then introduced noise to the traffic matrices by changing the volumes

of each traffic class across different epochs. The noise was relative to the mean traffic

volume of a traffic class and was sampled from a truncated normal distribution (with

µ = 0 and and σ = 0.2). Figure 4.15 depicts the relative error of using Chopin’s pre-

selected paths compared to the optimal solution (using all paths for each epoch, perfect

knowledge or the TM) for topologies where optimal solution could be computed in rea-

sonable time. The boxplots show median, 1st and 3rd quartiles, with whiskers extending

to 1.5× the interquartile range. This indicates that in most cases the error is quite small,

≤ 2%, with some exceptions.

Impact of fairness metrics on objectives: To explore the effect of different fairness

metrics on the objective functions of individual applications we composed two appli-

cations using two fairness metrics: weighted and max-min fairness (see Section 4.3.2).

Figure 4.16 shows objectives of two applications across different topologies and fairness

69

Abilene (11)

Quest (2
0)

k4 (20)

Geant2012 (40)

Topology

0

2

4

6

R
el

at
iv

e
er

ro
r,

%

Figure 4.15: Relative error of the objective function in the presence of traffic estima-
tion errors, compared to an optimal solution (i.e., using all paths).

Abilene (11)

Quest (20)
k4 (20)

Geant2012 (40)
k6 (45)

Dfn (58)

Topology

0.6

0.8

1.0

No
rm

ali
ze

d
ob

jet
ive

Fairness = Weighted

Abilene (11)

Quest (20)
k4 (20)

Geant2012 (40)
k6 (45)

Dfn (58)

Topology

Fairness = Max-Min
Traffic Engineering Service Chaining

Figure 4.16: Impact of chosen fairness metric on the objective function of each appli-
cation

metrics. Max-min fairness is arguably the “most fair”, ensuring equal objectives but not

achieving the best load balancing for either of the applications. However weighted fair-

ness maximizes the global objective, but does so at a cost of application inequality (e.g.,

favoring the link load balancing on the k4, k6, and Dfn topologies). This result high-

lights that Chopin is flexible and gives the operator the ability to customize the solution,

be it to achieve overall network resource-efficiency or fairness across applications’ objec-

tives.

70

Abilene (11)
k4 (20)

Quest (2
0)

Geant2012 (40)
k6 (45)

Bellcanada (48)
Dfn (58)

k8 (80)

Topology

101

102

103

Ti
m

e
(s

)

ILP Relaxed

Figure 4.17: Runtime comparison of the optimal ILP path selection and relaxed selec-
tion. Relaxed paths selection is orders of magnitude faster.

Abilene (11)
k4 (20)

Quest (20)

Geant2012 (40)
k6 (45)

Dfn (58)

10 2

10 1

100

Ti
m

e
(s

)

Number of Applications = 2

Abilene (11)
k4 (20)

Quest (20)

Geant2012 (40)
k6 (45)

Dfn (58)

Number of Applications = 3

Abilene (11)
k4 (20)

Quest (20)

Geant2012 (40)
k6 (45)

Dfn (58)

Number of Applications = 4

Abilene (11)
k4 (20)

Quest (20)

Geant2012 (40)
k6 (45)

Dfn (58)

Number of Applications = 5
Shortest paths Chopin

Figure 4.18: Mean time to execute a single-epoch optimization. Chopin scales simi-
larly to using SOL in conjunction with static allocation across topologies and num-
bers of applications.

4.5.2 Scalability

Path selection benchmarks: To show runtime benefits of Chopin’s path selection,

we compare using the optimal ILP described in Section 4.3 and relaxed path selection.

Not using the ILP allows orders of magnitude faster offline path selection (Figure 4.17)

whereas the ILP is difficult to compute for all but the smallest topology.

Online optimization benchmarks: Finally we demonstrate that Chopin’s online

component is also scalable. We composed different combinations of applications (traf-

fic engineering, service chaining, latency minimization), up to 5 total, using Chopin and

static allocation with SOL single-application optimization framework. Both setups used

the same number of paths, 5 per traffic class. Figure 4.18 depicts the mean time (across

100 epochs) to construct and solve the unified optimization (in case of Chopin) or series

71

of optimizations (in case of static allocation) across a number of topologies, for different

numbers of applications. The runtimes are similar, and follow the same patterns across

topologies and numbers of applications. However, Chopin achieves better optimality

(recall Figure 4.14).

72

CHAPTER 5: Scalable Network Intrusion Prevention Using Chopin 1

NIPS deployments face a constant battle to handle increasing volumes and process-

ing requirements. Today, network operators have few options to tackle NIPS overload

— overprovisioning, dropping traffic, or reducing fidelity of the analysis. Unfortunately,

none of these options are attractive in practice. Thus, NIPS scaling has been, and contin-

ues to be, an active area of research in the intrusion detection community with several

efforts on developing better hardware and algorithms (e.g., [96, 112, 102, 107]). While

these efforts are valuable, they require significant capital costs and face deployment de-

lays as networks have 3 to 5 year hardware refresh cycles.

A promising alternative to expensive and delayed hardware upgrades is to offload

packet processing to locations with spare compute capacity. Specifically, recent work has

considered two types of offloading opportunities:

• On-path offloading exploits the natural replication of a packet on its route to dis-

tribute processing load [90, 89].

• Off-path offloading utilizes dedicated clusters or cloud providers to exploit the

economies of scale and elastic scaling opportunities [93, 40].

Such offloading opportunities are appealing as they flexibly use existing network

hardware and provide the ability to dynamically scale the deployment. Unfortunately,

current solutions either explicitly focus on passive monitoring applications such as flow

monitors and NIDS [90, 40] and ignore NIPS-induced effects, e.g., on traffic volumes [89,

81, 93]. Specifically, we observe three new challenges in NIPS offloading that fall outside

the scope of these prior solutions:

1Portions of this chapter have appeared in previously published work [39].

73

• Interaction with traffic engineering: Offloading NIPS to a datacenter means that

we are effectively rerouting the traffic. This may affect network congestion and

other traffic engineering objectives.

• Impact on latency: NIPS lie on the critical forwarding path of traffic. Delays intro-

duced by overloaded NIPS or the additional latency induced by offloading can

thus affect the latency for user applications.

• Traffic volume changes: NIPS actively change the traffic volume routed through

the network. Thus, the load on a NIPS node is dependent on the processing actions

of the upstream nodes along the packet forwarding path.

To address these challenges and deliver the benefits of offloading to NIPS deploy-

ments, we present the SNIPS (scalable NIPS) system. Furthermore, we present two ways

to develop the SNIPS optimization:

1. A first-principles approach (described in Section 5.3.1) to capture the above effects

and balance the tradeoffs across scalability, latency increase, and network conges-

tion. We show that it is feasible to capture these complex requirements and effects

through a linear programming (LP) formulation that is amenable to fast computa-

tion using off-the-shelf solvers.

2. A Chopin version of the SNIPS application (Section 5.3.2) that leverages the high-

level APIs and composition features of Chopin. We show that it is feasible to

achieve nearly identical results to that of a custom formulation without the intri-

cate knowledge of the LP formulation.

Finally, the evaluation section (Section 5.5), presents both the results obtained from a

first-principles approach and Chopin approach. For the original formulation, we show

that computation takes ≤2 seconds for a variety of real topologies, enabling SNIPS to

react in near-real-time to network dynamics. The SNIPS-Chopin approach produces

74

nearly identical results while also achieving faster optimization runtimes (by nearly or-

der of magnitude) and greatly simplifying the SDN deployment.

5.1 Motivation and Challenges

We begin by briefly describing the idea of offloading for scaling passive monitoring

solutions. Then, we highlight the challenges in using this idea for NIPS deployments

that arise as a result of NIPS-specific aspects: NIPS actively modify the traffic volume

and NIPS placement impacts the end-to-end latency.

5.1.1 Case for offloading

Avoiding overload is an important part of NIPS management. Some NIPS process-

ing is computationally intensive, and under high traffic loads, CPU resources become

scarce. Modern NIPS offer two options for reacting to overload: dropping packets or

suspending expensive analysis modules. Neither is an attractive option. For example,

Snort by default drops packets when receiving more traffic than it can process — in tests

in our lab, Snort dropped up to 30% of traffic when subjected to more traffic than it had

CPU to analyze — which can adversely impact end-user performance (especially for

TCP traffic). Suspending analysis modules decreases detection coverage. In fact, this

behavior under overload can be used to evade NIPS [75]. As such, network operators

today have few choices but to provision their NIDS/NIPS to handle maximum load.

For example, they can upgrade their NIPS nodes with specialized hardware accelerators

(e.g., using TCAM, GPUs, or custom ASICs). While this is a valid (if expensive) option,

practical management constraints restrict network appliance upgrades to a 3–5 year cy-

cle.

A practical alternative to avoid packet drops or loss in detection coverage is by ex-

ploiting opportunities for offloading the processing. Specifically, prior work has exploited

this idea in the context of passive monitoring in two ways: 1) on-path offloading to other

75

Offloading

N1

N3

N2

N4

Path1: N1  N4

Path2: N3  N4

D

Figure 5.1: An example of the on- and off-path offloading opportunities that have
been proposed in prior work for passive monitoring solutions.

monitoring nodes on the routing path [90, 89] and 2) off-path offloading by replicating

traffic to a remote datacenter [93, 40].

To make these more concrete, consider the example network in Figure 5.1 with 4

nodes N1–N4, with traffic flowing on two end-to-end paths P1:N1 → N4 and P2:N3 →

N4.2 In a traditional deployment, each packet is processed at its ingress on each path: N1

monitors traffic on P1 and N3 monitors traffic on P2. An increase in the load on P1 or P2

can cause drops or detection misses

With on-path offloading, we can balance the processing load across the path (i.e., N1,

N2, and N4 for P1 and N2, N3, and N4 for P2) to use spare capacity at N2 and N4 [90, 89].

This idea can be generalized to use processing capacity at off-path locations; e.g., N1 and

N2 can offload some of their load to the datacenter; e.g., a NIDS cluster [102] or cloud-

bursting via public clouds [93].

5.1.2 Challenges in offloading NIPS

Our goal is to extend the benefits of offloading to NIPS deployments. Unlike pas-

sive monitoring solutions, however, NIPS need to be inline on the forwarding path and

they actively drop traffic. This introduces new dimensions for both on-path and off-path

2For brevity, in this section we use an abstract notion of a “node” that includes both the NIDS/NIPS func-
tionality and the switching/routing function.

76

N1	

N3	

N2	
 N4	

Path1:	
 N1	
 à	
 N4	

100	
 pkts,	
 40%	
 bad	

Path2:	
 N3	
 à	
 N4	

100	
 pkts,	
 0%	
 bad	

LinkCap	
 =	
 200	
 LinkCap	
 =	
 200	

LinkCap	
 =	
 200	

Cap = 40 for all nodes

Figure 5.2: Need to model the impact of
inline traffic modifications.

Need to account for rerouting

Path1: N1  N4
200 pkts, 10% bad

N3

LinkCap = 200 LinkCap = 200

LinkCap = 200

N1 N2 N4

D

Figure 5.3: Impact of rerouting to remote
locations.

offloading that falls outside the scope of the aforementioned prior work.

Suppose we have a network administrator who wants to distribute the processing

load across the different nodes to: 1) operate within the provisioned capacity of each

node; 2) meet traffic engineering objectives with respect to link loads (e.g., ensure that

no link is loaded to more than 30%); 3) minimize increased latency due to rerouting;

4) ensures that the unwanted traffic is dropped as close to the origin as possible sub-

ject to 1), 2), and 3). We extend the example topology from earlier to highlight the key

challenges that arise in meeting these goals

NIPS change traffic patterns: In Figure 5.2, each NIPS N1–N4 can process 40 pack-

ets and each link has a capacity to carry 200 packets. Suppose P1 and P2 carry a total of

100 packets and the volume of unwanted traffic on P1 is 40%; i.e., if we had no NIPS re-

source constraints, we would drop 40% of the traffic on P1. In order to meet the NIPS

load balancing and traffic engineering objectives, we need to model the effects of the

traffic being dropped by each NIPS node. If we simply use the formulations for passive

monitoring systems and ignore the traffic drop rate, we may incorrectly infer that there

is no feasible solution—the total offered load of 200 packets exceeds the total NIPS ca-

pacity (160). Because P1 drops 40 packets, there is actually a feasible solution.

Rerouting: Next, let us consider the impact of off-path offloading to a datacenter.

Here, we see a key difference between NIDS and NIPS offloading. With NIDS, we repli-

cate traffic to the datacenter D. With NIPS, however, we need to actively reroute the traf-

77

N1	

N3	

N2	

N4	

200ms	

20ms	
 30ms	

30ms	

10ms	

100ms	

D1	

D2	

Figure 5.4: Need to carefully select offload locations in order to account for the latency
for user connections

fic. In Figure 5.3, the traffic on P1 exceeds the total NIPS capacity even after accounting

for the drop rate. In this case, we need to reroute a fraction of the traffic on P1 to the dat-

acenter from N2. If we were replicating the traffic, then the load on the link N2-N4 would

be unaltered. With rerouting, however, we are reducing the load on N2-N4 and introduc-

ing additional load on the links between N2 and D (and also between D and N4). This

has implications for traffic engineering as we need to account for the impact of rerouting

on link loads.

Latency addition due to offloading: NIDS do not actively impact user-perceived

performance. By virtue of being on the critical forwarding path, however, NIPS offload-

ing to remote locations introduces extra latency to and from the datacenter(s). In Fig-

ure 5.4, naively offloading traffic from N1 to D1 or from N3 to D1 can add hundreds of

milliseconds of additional latency. Because the latency is critical for interactive and web

applications (e.g., [31]), we need systematic ways to model the impact of rerouting to

minimize the impact on user experience.

Conflict with early dropping: Naive offloading may also increase the footprint of un-

wanted traffic as traffic that could have been dropped may consume extra network re-

sources before it is eventually dropped. Naturally, operators would like to minimize this

impact. Let us extend the previous scenario to case where the link loads are low, and D1

and D2 have significantly higher capacity than the on-path NIPS. From a pure load per-

78

	

	

	

	

	

Network-­‐Wide	

	
 Op/miza/on	

Traffic	

Classes	

NIPS	
 	

Footprints	

NIPS,	
 DC	

	
 Hardware	

Topology	
 	

&	
 Rou?ng	

N1	

N3	
 N2	

D1	

Class	
 c	
 =	
 HTTP,	
 N1	
 à	
 N3	

c.in=	
 N1;	
 c.out	
 =	
 N3	

c.Path	
 =	
 <N1,	
 N2,	
 N3>	

Figure 5.5: Overview of the SNIPS architecture for NIPS offloading

spective, we might want to offload most of the traffic to D1 and D2. However, this is in

conflict with the goal of dropping unwanted traffic early.

Together, these examples motivate the need for a systematic way to capture NIPS-

specific aspects in offloading including: (1) changes to traffic patterns due to NIPS ac-

tions; (2) accounting for the impact of rerouting in network load; (3) modeling the im-

pact of off-path offloading on latency for users; and (4) balancing the tension between

load balancing and dropping unwanted traffic early.

5.2 SNIPS System Overview

In order to address the challenges from the previous section, we present the design

of the SNIPS system. Figure 5.5 shows a high-level view of the system. The design of

SNIPS is general and can be applied to several contexts: enterprise networks, datacen-

ter networks, and ISPs, though the most common use-case (e.g., as considered by past

network security literature) is typically for enterprise networks.

We envision a logically centralized controller that manages the NIPS deployment as

shown, analogous to many recent network management efforts (e.g., [13]). Network ad-

ministrators specify high-level objectives such as bounds on acceptable link congestion

79

or user-perceived latency. The controller runs a network-wide optimization and trans-

lates these high-level goals into physical data plane configurations.

This network-wide optimization is run periodically (e.g., every 5 minutes) or trig-

gered by routing or traffic changes to adapt to network dynamics. To this end, it uses

information about the current traffic patterns and routing policies using data feeds that

are routinely collected for other network management tasks [21]. Based on these inputs,

the controller runs the optimization procedures (described later) to assign NIPS process-

ing responsibilities. We begin by describing the main inputs to this NIPS controller.

• Traffic classes: Each traffic class is identified by a specific application-level port

(e.g., HTTP, IRC) and network ingress and egress nodes. Each class is associated

with some type of NIPS analysis that the network administrator wants to run. We

use the variable c to identify a specific class. We use c.in and c.out to denote the

ingress and egress nodes for this traffic class; in particular, we assume that a traffic

class has exactly one of each. For example, in Figure 5.5 we have a class c consist-

ing of HTTP traffic entering at c.in = N1 and exiting at c.out = N3. Let S (c) and

B(c) denote the (expected) volume of traffic in terms of the number of sessions

and bytes, respectively. We use Match(c) to denote the expected rate of unwanted

traffic (which, for simplicity, we assume to be the same in sessions or bytes) on the

class c, which can be estimated from summary statistics exported by the NIPS.

• Topology and Routing: The path traversed by traffic in a given class (before any

rerouting due to offloading) is denoted by c.path. For clarity, we assume that the

routing in the network is symmetric; i.e., the path c.path = Path(c.in, c.out) is

identical to the reverse of the path Path(c.out , c.in). In our example, c.path =

〈N1,N2,N3〉. Our framework could be generalized to incorporate asymmetric rout-

ing as well. For simplicity, we restrict the presentation of our framework to assume

symmetric routing.

80

We use the notation Nj ∈ Path(src, dst) to denote that the NIPS node Nj is on the

routing path between the source node src and the destination node dst . In our ex-

ample, this means that N1,N2,N3 ∈ Path(N1,N3). Note that some nodes (e.g., a

dedicated cluster such as D1 in Figure 5.5) are off-path; i.e., these do not observe

traffic unless we explicitly re-route traffic to them. Similarly, we use the notation

l ∈ Path(src, dst) to denote that the link l is on the path Path(src, dst). We use

|Path(src, dst)| to denote the latency along a path Path(src, dst). While our frame-

work is agnostic to the units in which latency is measured, we choose hop-count

for simplicity.

• Resource footprints: Each class c may be subject to different types of NIPS analy-

sis. For example, HTTP sessions may be analyzed by a payload signature engine

and through web firewall rules. We model the cost of running the NIPS for each

class on a specific resource r (e.g., CPU cycles, memory) in terms of the expected

per-session resource footprint F r
c , in units suitable for that resource (F r

c for Foot-

print on r). These values can be obtained either via NIPS vendors’ datasheets or

estimated using offline benchmarks [19].

• Hardware capabilities: Each NIPS hardware device Nj is characterized by its re-

source capacity Cap r
j in units suitable for the resource r. In the general case, we

assume that hardware capabilities may be different because of upgraded hardware

running alongside legacy equipment.

We observe that each of these inputs (or the instrumentation required to obtain them)

is already available in most network management systems. For instance, most central-

ized network management systems today keep a network information base (NIB) that

has the current topology, traffic patterns, and routing policies [21]. Similarly, the hard-

ware capabilities and resource footprints of the different traffic classes can be obtained

with simple offline benchmarking tools [19]. Note that our assumption on the availability

81

of these inputs is in line with existing work in the network management literature. The

only additional input that SNIPS needs is Match(c), which is the expected drop rate for

the NIPS functions. These can be estimated using historical logs reported by the NIPS;

anecdotal evidence from network administrators suggests that the match rates are typ-

ically quite stable [80]. Furthermore, SNIPS can provide significant benefits even with

coarse estimates. In this respect, our guiding principle is to err on the conservative side;

e.g., we prefer to overestimate resource footprints and underestimate the drop rates.

Note that SNIPS does not compromise the security of the network relative to a tra-

ditional ingress-based NIPS deployment. That is, any malicious traffic that would be

dropped by an ingress NIPS will also be dropped in SNIPS; this drop may simply occur

elsewhere in the network as we will see.

Given this setup, we describe the optimization formulations for balancing the trade-

off between the load on the NIPS nodes and the latency and congestion introduced by

offloading.

5.3 SNIPS Optimization

We first describe how to construct a custom SNIPS optimization using linear pro-

gramming, followed by a Chopin application to achieve the same functionality.

5.3.1 First-principles SNIPS Optimization

Given the inputs from the previous section, our goal is to optimally distribute the

NIPS processing through the network. To this end, we present a linear programming

(LP) formulation. While LP-based solutions are commonly used in traffic engineer-

ing [90, 23], NIPS introduce new dimensions that make this model significantly differ-

ent and more challenging compared to prior work [90, 40]. Specifically, rerouting and

active manipulation make it challenging to systematically capture the effective link and

82

I	
 E	
 N	

D	

Path(N,E)

Path(N,D) Path(D,E)

Path(I,N)

Class	
 c	
 =	
 I	
 à	
 E	

Volume	
 =Sessions(c)	

c.Path	
 =	
 Path(I,N)	
 U	
 Path(N,E)	

pc,I	
 pc,E	
 oc,N	

pc,N	

Match(c)	
 *	
 pc,I	
 	
 Match(c)	
 *	
 pc,N	
 	
 Match(c)	
 *	
 pc,E	
 	

Match(c)	
 *	
 oc,N	
 	

dropped dropped dropped

pc,I	
 pc,N	
 pc,E	
 oc,N	
 Sessions(c)
0 1

Figure 5.6: An example to highlight the key concepts in our formulation and show
modeling of the additional latency due to rerouting.

NIPS loads using the optimization models from prior work, and thus we need a first-

principles approach to model the NIPS-specific aspects.

Our formulation introduces decision variables that capture the notion of processing

and offloading fractions. These variables, defined for each node along a routing path, con-

trol the number of flows processed at each node. Let pc,j denote the fraction of traffic on

class c that the router Nj processes locally and let oc,j ,d denote the fraction of traffic on

class c that the NIPS node Nj offloads to the datacenter d. For clarity of presentation, we

assume there is a single datacenter d and thus drop the d subscript; it is easy to gener-

alize this formulation to multiple datacenters, though we omit the details here due to

space considerations.

Intuitively, we can imagine the set of traffic sessions belonging to class c entering

the network (i.e., before any drops or rerouting) as being divided into non-overlapping

buckets, e.g., either using hashing or dividing the traffic across prefix ranges [109, 90,

102]. The fractions pc,j and oc,j represent the length of these buckets as shown in Fig-

ure 5.6.

Figure 4.8 shows the optimization framework we use to systematically balance the

trade-offs involved in NIPS offloading. We illustrate the key aspects of this formulation

83

Minimize: (1− α− β)× NLdCost + α× HopsUnwanted + β × LatencyInc, subject to:

∀c :
∑

Nj∈c.path

pc,j + oc,j = 1 (5.1)

∀r, j : NLd j,r =
∑

c:Nj∈c.path

pc,j × S (c)× F r
c (5.2)

∀r, j : NLd j,r ≤ Cap r
j (5.3)

∀r :
∑

c

∑
Nj∈c.path

oc,j × S (c)× F r
c ≤ DCapr (5.4)

∀r, j : NLdCost ≥ NLd j,r (5.5)

∀l : BG l =
∑

c:l∈c.path

B(c) (5.6)

∀l : LLd l ≤ MaxLLd × LCap l (5.7)

LatencyInc =
∑

c

∑
Nj∈c.path

oc,j × S (c)×
(
|Path(Nj, d)|+ |Path(d, c.out)|

−|Path(Nj, c.out)|

)
(5.8)

HopsUnwanted =
∑

c

∑
Nj∈c.path

pc,j × S (c)×Match(c)× |Path(c.in,Nj)|

+
∑

c

∑
Nj∈c.path

oc,j × S (c)×Match(c)×
(
|Path(c.in,Nj)|
+|Path(Nj, d)|

)
(5.9)

∀l : LLd l = BG l +
∑

c

∑
Nj :Nj∈c.path
∧ l∈Path(Nj ,d)

oc,j × B(c)

+
∑

c:l∈Path(d,c.out)

∑
Nj∈c.path

oc,j × B(c)× (1−Match(c))

−
∑

c

∑
Nj≺c l

oc,j × B(c)−
∑

c

∑
Nj≺c l

pc,j × B(c)×Match(c) (5.10)

Figure 5.7: Formulation for balancing the scaling, latency, and footprint of unwanted
traffic in network-wide NIPS offloading.

using the example topology in Figure 5.6 with a single class c of traffic flowing between

the ingress I and egress E. This toy topology has a single data center D and traffic being

offloaded to D from a given node N.

Goals: As discussed earlier, NIPS offloading introduces several new dimensions:

(1) ensure that the NIPS hardware is not overloaded; (2) keep all the links at reason-

able loads to avoid unnecessary network congestion; (3) add minimal amount of extra

latency for user applications; and (4) minimize the network footprint of unwanted traf-

fic. Of these, we model (2) as a constraint and model the remaining factors as a multi-

84

criterion objective.3

Note that these objectives could possibly be in conflict and thus we need to system-

atically model the trade-offs between these objectives. For instance, if are not worried

about the latency impact, then the optimal solution is to always offload traffic to the dat-

acenter. To this end, we model our objective function as a weighted combination of fac-

tors (1), (3), and (4). Our goal here is to devise a general framework rather than mandate

specific values of the weights. We discuss some natural guidelines for selecting these

weights in Section 5.5.

Coverage (Equation 5.1): Given the process and offload variables, we need to ensure

that every session in each class is processed somewhere in the network. Equation 5.1

captures this coverage requirement and ensures that for each class c the traffic is an-

alyzed by some NIPS on that path or offloaded to the datacenter. In our example, this

means that pc,I, pc,N, pc,E, and oc,N should sum up to 1.

Resource Load (Equation 5.2–Equation 5.5): Recall that F r
c is the per-session pro-

cessing cost of running the NIPS analysis for traffic on class c. Given these values, we

model the load on a node as the product of the processing fraction pc,j , the traffic vol-

ume along these classes and the resource footprint F r
c . That is, the load on node Nj due

to traffic processed on c is S (c) × pc,j × F r
c . Since our goal is to have all nodes operat-

ing within their capacity, we add the constraint in Equation 5.3 to ensure that no node

exceeds the provisioned capacity. The load on the datacenter depends on the total traffic

offloaded to it, which is determined by the oc,j values, i.e., oc,N in our example of Fig-

ure 5.6. Again, this must be less than the capacity of the datacenter, as shown in Equa-

tion 5.4. Furthermore, since we want to minimize resource load, Equation 5.5 captures

the maximum resource consumption across all nodes (except the datacenter).4

3The choice of modeling some requirement as a strict constraint vs. objective may differ across deploy-
ments; as such, our framework is quite flexible. We use strict bounds on the link loads to avoid conges-
tion.

4At first glance, it may appear that this processing load model does not account for reduction in pro-
cessing load due to traffic being dropped upstream. Recall, however, that pc,j and oc,j are defined as
fractions of original traffic that enters the network. Thus, traffic dropped upstream will not impact the

85

Latency penalty due to rerouting (Equation 5.8): Offloading means that traffic

takes a detour from its normal path to the datacenter (and then to the egress). Thus,

we need to compute the latency penalty caused by such rerouting. For any given

node Nj , the original path c.path can be treated as the logical concatenation of the path

Path(in,Nj) from ingress in to node Nj and the path Path(Nj, out) from Nj to the egress

out . When we offload to the datacenter, the additional cost is the latency from this

node to the datacenter and datacenter to the egress. However, since this traffic does

not traverse the path from Nj to the egress, we can subtract out that latency. In Fig-

ure 5.6, the original latency is |Path(I,N)| + |Path(N,E)|; the offloaded traffic incurs a

latency of |Path(I,N)| + |Path(N,D)| + |Path(D,E)|which results in a latency increase of

|Path(N,D)| + |Path(D,E)| − |Path(N,E)|. This models the latency increase for a given

class; the accumulated latency across all traffic is simply the sum over all classes (Equa-

tion 5.8).

Unwanted footprint (Equation 5.9): Ideally, we want to drop unwanted traffic as

early as possible to avoid unnecessarily carrying such traffic. To capture this, we com-

pute the total “network footprint” occupied by unwanted traffic. Recall that the amount

of unwanted traffic on class c is Match(c) × B(c). If the traffic is processed locally

at router Nj , then the network distance traversed by the unwanted traffic is simply

|Path(c.in,Nj)|. If the traffic is offloaded to the datacenter by Nj , however, then the net-

work footprint incurred will be |Path(c.in,Nj)|+ |Path(Nj, d)|. Given a reasonable buck-

eting function, we can assume that unwanted traffic will get mapped uniformly across

the different logical buckets corresponding to the process and offload variables. In our

example, the volume of unwanted traffic dropped at N is simply Match(c) × B(c) × pc,N.

Given this, we can compute the network footprint of the unwanted traffic as a combina-

tion of the locally processed and offloaded fractions as shown in Equation 5.9.

Due to processing coverage constraint, we can guarantee that SNIPS provides the

processing load model.

86

same the security functionality as provided by a traditional ingress NIPS deployment.

That is, any malicious traffic that should be dropped will be dropped somewhere under

SNIPS. (And conversely, no legitimate traffic will be dropped.)

Link Load (Equation 5.6, Equation 5.7, Equation 5.10): Last, we come to the tricki-

est part of the formulation — modeling the link loads. To model the link load, we start

by considering the baseline volume that a link will see if there were no traffic being

dropped and if there were no offloading. This is the background traffic that is normally

being routed. Starting with this baseline, we notice that NIPS offloading introduces both

positive and negative components to link loads.

First, rerouting can induce additional load on a given link if it lies on a path between

a router and the datacenter; either on the forward path to the datacenter or the return

path from the data center to the egress. These are the additional positive contributions

shown in Equation 5.10. In our example, any link that lies on the path Path(N,D) will

see additional load proportional to the offload value oc,N. Similarly, any link on the path

from the data center will see additional induced load proportional to oc,N×(1−Match(c))

because some of the traffic will be dropped.

NIPS actions and offloading can also reduce the load on some links. In our exam-

ple, the load on the link N-E is lower because some of the traffic has been offloaded from

N; this is captured by the first negative term in Equation 5.10. There is also some traf-

fic dropped by the NIPS processing at the upstream nodes. That is, the load on link N-E

will be lowered by an amount proportional to (pc,I + pc,N) × Match(c). We capture this

effect with the second negative term in Equation 5.10 where we use the notation Nj ≺c l

to capture routers that are upstream of l along the path c.path.

Together, we have the link load on each link expressed as a combination of three fac-

tors: (1) baseline background load; (2) new positive contributions if the link lies on the

path to/from the datacenter, and (3) negative contributions due to traffic dropped up-

stream and traffic being rerouted to the data center. Our constraint is to ensure that no

87

link is overloaded beyond a certain fraction of its capacity; this is a typical traffic engi-

neering goal to ensure that there is only a moderate level of congestion at any time.

Solution: Note that our objective function and all the constraints are linear functions

of the decision variables. Thus, we can leverage commodity linear programming (LP)

solvers such as CPLEX to efficiently solve this constrained optimization problem. In Sec-

tion 5.4 we discuss how we map the output of the optimization (fractional pc,j and oc,j

assignments) into data plane configurations to load balance and offload the traffic.

We note that this basic formulation can be extended in many ways. For instance, ad-

ministrators may want different types of guarantees on NIPS failures: fail-open (i.e., al-

low some bad traffic), fail-safe (i.e., no false negatives but allow some benign traffic to be

dropped), or strictly correct. SNIPS can be extended to support such policies; e.g., mod-

eling redundant NIPS or setting up forwarding rules to allow traffic to pass through.

5.3.2 SNIPS Optimization using Chopin

The previous section exemplifies the non-trival effort required to correctly model

SNIPS requirements using an optimization. We now show how SNIPS can be imple-

mented using Chopin. When describing the Chopin version we focus on the high-level

goals of the system and demonstrate how they can be easily expressed in Chopin.5 We

highlight that with Chopin many intricate details of the original-SNIPS linear program

become unnecessary or abstracted away. We construct the updated SNIPS application

by diving it into three major components: load balancing, latency, and unwanted foot-

print minimization. Then we utilize the composition capabilities of Chopin to find the

optimal solution.

5The API used in this chapter uses different naming conventions from that described in Chapter 3 due to
evolution of the codebase. However it is functionally equivalent.

88

5.3.2.1 Predicates and paths

First, we must enforce the required IPS policy by constructing a path predicate that

marks the path to be valid if it passes through an IPS. Alternatively, we express this as

the following statement: at least one node (middlebox) in the path is capable of IPS functional-

ity. In code, this is expressed as follows:

1 def ips_predicate(path, topology):

2 return any([’ips’ in topo.get_service_types(n) for n in path.mboxes()])

5.3.2.2 Load balancing and latency calculations

We divide SNIPS into three separate applications, and utilize the composition ca-

pabilities of Chopin to compose them (recall Chapter 4). First, we define the load-

balancing application as follows (appropriately provisioned topology and paths per traf-

fic class (pptc) are assumed):

1 b = AppBuilder()

2 loadapp = b.name(’snips_load’).pptc(pptc) �

3 .add_constr(Constraint.ROUTE_ALL) �

4 .add_constr(Constraint.MBOX_AFFINITY, tc_pairs) �

5 .objective(Objective.MIN_NODE_LOAD, ’cpu’) �

6 .add_resource(’cpu’, cpu_func, NODES) �

7 .add_resource(’bandwidth’, bw_func, LINKS).build()

This ensures that all traffic is routed (Constraint.ROUTE_ALL), defines the cost for

how CPU and bandwidth is consumed and the objective function of minimizing the

CPU load. Additionally, we enforce middlebox processing affinity for traffic class pairs

tc_pairs (recall the stateful processing of bi-directional sessions challenge from Sec-

tion 5.4.1.1).

The key to the correct optimization is modeling the anticipated malicious traffic drop

89

and its effect on bandwidth consumption. This logic is expressed in the bw_func, which

is defined as follows:

1 def bw_load_with_drop(tc, path, link, drop_rates, cost):

2 u, v = link

3 nodes = list(path.nodes())

4 # malicious traffic drop point

5 mbox = path.mboxes()[0]

6 # load after the middlebox (and thus drop)

7 if nodes.index(u) >= nodes.index(mbox):

8 return tc.volFlows * (1 - drop_rates[mbox]) * cost

9 else: # load before the middlebox (no drop)

10 return tc.volFlows * cost

12 # Curry the function with appropriate drop rate and cost parameters

13 bw_func = functools.partial(bw_load_with_drop,

14 drop_rates=defaultdict(lambda: .1), cost=1)

Note that bw_load_with_drop contains the logic previously captured by Equa-

tion 5.6, Equation 5.7, and Equation 5.10. Furthermore, it does so in a more straightfor-

ward manner, where for any given network path, the link load imposed by the traffic

can be split into two cases: before the drop and after the drop.

Since all the applications operate on the same traffic classes, our subsequent latency

and unwanted applications can be even simpler, and only contain objective functions

with appropriate cost functions. Latency application will minimize the overall latency:

1 b = AppBuilder()

2 b.name(’snips_latency’).pptc(pptc).objective(Objective.MIN_LATENCY)

3 latencyapp = b.build()

The unwanted traffic footprint is a variant of latency computation with a custom cost

90

function, where the cost of a path is equal to the number of hops until the unwanted

traffic is processed (and dropped), which in our case, is the location of the first IPS mid-

dlebox in the path:

1 def unwanted_func(path, malicious_fraction=.1):

2 ips = path.mboxes()[0]

3 return list(path.nodes()).index(ips) * malicious_fraction

5 b = AppBuilder()

6 b.name(’snips_unwanted’).pptc(pptc).objective(Objective.MIN_LATENCY,

cost_func=unwanted_func)

7 unwanted = b.build()

The resulting applications are composed using the Chopin’s capabilities to produce

the solution. Detailed quantitative comparison is presented in Section 5.5.

5.3.2.3 Advantages of Chopin optimization

First, the Chopin optimization removes an implicit assumption that each traffic class

has a single routing path. This allows a more general solution, given sufficiently large

number of selected paths. Second, the cost logic is easier to comprehend (and also ad-

just). In the first-principles approach the developer must manually handle processing

and offload fractions and be explicitly aware of the datacenter capacity and load. In the

Chopin optimization, there is only one processing fraction per path and the optimiza-

tion automatically chooses best routing. Additionally, complex re-routing logic is not

necessary, as the traffic will be routed on the best path possible automatically.

91

5.4 Implementation Using SDN

In this section, we describe how to implement SNIPS using SDN. The controller in-

stalls rules on the switches using an open API such as OpenFlow [72] to specify for-

warding actions for different flow match patterns. The flow match patterns are exact

or wildcard expressions over packet header fields. The ability to programmatically set

up forwarding actions enables a network-layer solution for NIPS offloading that does not

require NIPS modifications and can thus work with legacy/proprietary NIPS hardware.

5.4.1 First-principles approach

We want to set up forwarding rules to steer traffic to the different NIPSes. That is,

given the pc,j and oc,j values, we need to ensure that each NIPS receives the designated

amount of traffic. In order to decouple the formulation from the implementation, our

goal is to translate any configuration into a correct set of forwarding rules.

As discussed in Section 5.2, each traffic class c is identified by application-level ports

and network ingress/egress. Enterprise networks typically use structured address as-

signments; e.g., each site may be given a dedicated IP subnet. Thus, in our prototype we

identify the class using the IP addresses (and TCP/UDP port numbers). Note that we

do not constrain the addressing structure; the only requirement is that hosts at different

locations are assigned addresses from non-overlapping IP prefix ranges and that these

assignments are known.

For clarity, we assume that each NIPS is connected to a single SDN-enabled switch.

In the context of our formulation, each abstract node Nj can be viewed as consisting of a

SDN switch Sj connected to the NIPS NIPS j .6

6For “inline” NIPS deployments, the forwarding rules need to be on the switch immediately upstream of
the NIPS and the NIPS needs to be configured to act in “bypass” mode to allow the remaining traffic to
pass through untouched.

92

5.4.1.1 Challenges in using SDN

While SDN is indeed an enabler, there are three practical challenges that arise in our

context. We do not claim that these are fundamental limitations of SDN. Rather, SNIPS

induces new requirements outside the scope of traditional SDN/OpenFlow applica-

tions [13] and prior SDN use cases [109, 81].

Stateful processing: NIPS are stateful and must observe both forward and reverse

flows of a TCP/UDP session for correct operation. In order to pin a session to a specific

node, prior solutions for NIDS load balancing use bidirectional hash functions [40, 102].

However, such capabilities do not exist in OpenFlow and we need to explicitly ensure

stateful semantics.

To see why this is a problem, consider the example in Figure 5.8 with class c1

(c1.in=S1 and c1.out = S2) with pc1,NIPS1=pc1,NIPS2=0.5. Suppose hosts with gateways S1

and S2 are assigned IP addresses from prefix ranges Prefix 1=10.1/16 and Prefix 2=10.2/16

respectively. Then, we set up forwarding rules so that packets with src = 10.1.0/17,

dst=10.2/16 are directed to NIPS NIPS1 and those with src=10.1.128/17, dst=10.2/16 are

directed to NIPS2 as shown in the top half of Figure 5.8. Thus, the volume of traffic each

NIPS processed matches the SNIPS optimization. Note that we need two rules, one for

each direction of traffic. 7

There is, however, a subtle problem. Consider a different class c2 whose c2.in = S2

and c2.out = S1. Suppose pc2,NIPS1 = 0.25 and pc2,NIPS2 = 0.75. Without loss of generality,

let the split be src = 10.2.0/18, dst = 10.1/16 for NIPS1 and rest to NIPS2 as shown in

bottom half of Figure 5.8. Unfortunately, these new rules will create conflict. Consider a

bidirectional session src = 10.1.0.1, dst = 10.2.0.1. This session will match two sets of

rules; e.g., the forward flow of this session matches rule 1 on S1 while the reverse flow

matches rule 4 (a reverse rule for c2) on S2. Such ambiguity could violate the stateful

7For clarity, the example only shows forwarding rules relevant to NIPS; there are other basic routing rules
that are not shown.

93

S1
S2

NIPS1

SrcIP,	
 DstIP	
 Fwd	

1 10.1.0/17,	
 10.2/16	
 NIPS1	

2 10.2/16,	
 10.1.0/17	
 NIPS1	

3 10.2.0/18,	
 10.1/16	
 NIPS1	

4 10.1/16,	
 10.2.0/18	
 NIPS1	

NIPS2

10.2/16 10.1/16

SrcIP,	
 DstIP	
 Fwd	

1	
 10.1.128/17,	
 10.2/16	
 NIPS2	

2	
 10.2/16,	
 10.1.128/17	
 NIPS2	

3	
 10.2.128/17,	
 10.1/16	
 NIPS2	

4	
 10.2.64/18,	
 10.1/16	
 NIPS2	

5	
 10.1/16,10.2.128/17	
 NIPS2	

6	
 10.1/16,	
 10.2.64/18	
 NIPS2	

pc1,N1 fwd

pc1,N1 rev

pc1,N2 fwd

pc 1,N2 rev

c1: Src = 10.1/16, Dst = 10.2/16; pc1,N1 = 0.5 pc1,N2 = 0.5
 c2: Src = 10.2/16, Dst = 10.1/16; pc2,N1 = 0.25 pc2,N2 = 0.75

pc2,N1 fwd
pc2,N1 rev

pc2,N2 fwd

pc2,N2 fwd

pc2,N2 rev

pc 2,N2 rev

N1 N2

Figure 5.8: Potentially conflicting rules with bidirectional forwarding rules for state-
ful processing. The solution in this case is to logically merge these conflicting classes.

N1

<SrcIP,	
 DstIP>	
 Fwd	

10.1.0/17,	
 10.2/16	
 NIPS1	

10.2/16,	
 10.1.0/17	
 NIPS1	

N2

10.2/16 10.1/16

<SrcIP,	
 DstIP>	
 Fwd	

10.1.128/17,	
 10.2/16	
 NIPS2	

10.2/16,	
 10.1.128/17	
 NIPS2	

Naïve:

pc1,N1 = pc1,N2 = 0.5 Traffic	
 Volumes	

10.1.0/17	
 -­‐-­‐	
 10.2.0/17	
 	
 =	
 0.2	

10.1.128/17	
 -­‐-­‐	
 10.2.0/17	
 	
 =	
 0.2	

10.1.0/17	
 -­‐-­‐	
 10.2.128/17	
 	
 	
 =	
 0.1	

10.1.128/17	
 -­‐-­‐	
 10.2.128/17	
 =	
 0.5	

Intended	
 =	
 0.5	

Actual	
 	
 =	
 	
 0.3	

Intended	
 =	
 0.5	

Actual	
 	
 =	
 	
 0.7	

	
 	

NIPS1 NIPS2

S1 S2

Figure 5.9: NIPS loads could be violated with a non-uniform distribution of traffic
across different prefix subranges. The solution in this case is a weighted volume-
aware split.

processing requirement if the forward and reverse directions of a session are directed to

different NIPS.

Skewed volume distribution: While class merging ensures stateful processing, us-

ing prefix-based partitions may not ensure that the load on the NIPS matches the opti-

mization result. To see why, consider Figure 5.9 with a single class and two NIPS, NIPS1

and NIPS2, with an equal split. The straw man solution steers traffic between 10.1.0/17–

10.2/16 to NIPS1 and the remaining (10.1.128/17–10.2/16) to NIPS2. While this splits

the prefix space equally, the actual load may be skewed if the volume is distributed as

shown. The actual load on the NIPS nodes will be 0.3 and 0.7 instead of the intended

0.5:0.5. This non-uniform distribution could happen for several reasons; e.g., hotspots of

activity or unassigned regions of the address space.

94

Potential routing loops: Finally, there is a corner case if the same switch is on the

path to/from the data center. Consider the route: 〈in, . . ., Soffload , . . ., Si, Sj , . . ., Sd , d, Sd ,

. . ., Si, Sj , . . ., out〉. With flow-based forwarding rules, Sj cannot decide if a packet needs

to be sent toward the datacenter d or toward egress out . (Note that this is not a problem

for Sd itself; it can use the input interface on which the packet arrived to determine the

forwarding action.)

We could potentially address some of these issues by modifying the optimization

(e.g., choose a loop-free offload point for (2) or rewrite the optimization with respect to

merged classes for (1).) Our goal is to decouple the formulation from the implementa-

tion path. That is, we want to provide a correct SDN-based realization of SNIPS without

making assumptions about the structure of the optimization solution or routing strate-

gies.

5.4.1.2 Our approach

Next, we discuss our approaches to address the above challenges. At a high-level,

our solution builds on and extends concurrent ideas in the SDN literature [81, 47, 109].

However, to the best of our understanding, these current solutions do not handle con-

flicts due to stateful processing or issues of load imbalance across prefixes.

Class merging for stateful processing: Fortunately, there is a simple yet effective so-

lution to avoid such ambiguity. We identify such conflicting classes—i.e., classes c1 and

c2 with c1.in = c2.out and vice versa8—and logically merge them. We create a merged

class c ′ whose pc′,j and oc′,j are (weighted) combinations of the original responsibili-

ties so that the load on each NIPS NIPS j matches the intended loads. Specifically, if the

resource footprints F r
c1

and F r
c2

are the same for each resource r, then it suffices to set

pc′,j =
S(c1)×pc1,j

+S(c2)×pc2,j

S(c1)+S(c2)
. In Figure 5.8, if the volumes for c1 and c2 are equal, the effec-

8If the classes correspond to different well-known application ports, then we can use the port fields to dis-
ambiguate the classes. In the worst case, they may share some sets of application ports and so we could
have sessions whose port numbers overlap.

95

tive fractions are pc′,NIPS1 = 0.5+0.25
2

and pc′,NIPS2 = 0.5+0.75
2

. We can similarly compute the

effective offload values as well. If the resource footprints F r
c1

and F r
c2

are not the same

for each resource r, however, then an appropriate combination can be computed using

an additional optimization.

Volume-aware partitioning: A natural solution to this problem is to account for the

volumes contributed by different prefix ranges. While this problem is theoretically hard

(being reducible to knapsack-style problems), we use a simple heuristic described below

that performs well in practice, and is quite efficient.

Let PrefixPair c denote the IP subnet pairs for the (merged) class c. That is, if c.in

is the set Prefix in and c.out is the set Prefix out , then PrefixPair c is the cross product of

Prefix in and Prefix out . We partition PrefixPair c into non-overlapping blocks PrefAtomc,1

. . . PrefAtomc,n. For instance, if each block is a /24 × /24 subnet and the original

PrefixPair is a /16 × /16, then the number of blocks is n = 216×216
28×28 = 65536. Let S (k)

be the volume of traffic in the k th block.9 Then, the fractional weight for each block is

wk = S(k)∑
k′ S(k ′)

.

We discretize the weights so that each block has weight either δ or zero, for some

suitable 0 < δ < 1. For any given δ, we choose a suitable partitioning granularity so

that the error due to this discretization is minimal. Next, given the pc,j and oc,j assign-

ments, we run a pre-processing step where we also “round” each fractional value to be

an integral multiple of δ.

Given these rounded fractions, we start from the first assignment variable (some pc,j

or oc,j) and block PrefAtomc,1. We assign the current block to the current fractional vari-

able until the variable’s demand is satisfied; i.e., if the current variable, say pc,j , has the

value 2δ, then it is assigned two non-zero blocks. The only requirement for this proce-

dure to be correct is that each variable value is satisfied by an integral number of blocks;

this is true because each weight is 0 or δ and each variable value is an integral multiple

9These can be generated from flow monitoring reports or statistics exported by the OpenFlow switches
themselves.

96

of δ. With this assignment, the volume of traffic meets the intended pc,j and oc,j values

(modulo rounding errors).

Handling loops using packet tagging: To handle loops, we use packet tags similar

to prior work [81, 47]. Intuitively, we need the switches on the path from the datacenter

to the egress to be able determine that a packet has already been forwarded. Because

switches are stateless, we add tags so that the packet itself carries the relevant “state”

information. To this end, we add an OpenFlow rule at Sd to set a tag bit to packets that

are entering from the datacenter. Downstream switches on the path to out use this bit (in

conjunction with other packet header fields) to determine the correct forwarding action.

In the above path, Sj will forward packets with tag bit 0 toward d and packets with bit 1

toward out .

Given these building blocks we translate the LP solution into an SDN configuration

in three steps:

1. Identify conflicting classes and merge them.

2. Use a weighted scheme to partition the prefix space for each (merged) class so that

the volume matches the load intended by the optimization solution.

3. Check for possible routing loops in offloaded paths and add corresponding tag

addition rules on the switches.

We implement these as custom modules in the POX SDN controller [78]. We choose

POX mostly due to our familiarity; these extensions can be easily ported to other plat-

forms. One additional concern is how packets are handled during SNIPS rule updates

to ensure stateful processing. To address this we can borrow known techniques from the

SDN literature [84].

97

5.4.2 Deployment with Chopin

Deployment is also greatly simplified since Chopin rule generation engine (re-

call Section 3.6) contains logic for volume-aware traffic splitting, flow affinity, and mid-

dlebox loop handling. Hence Chopin deployment does not require re-inventing custom

SDN deployment logic.

In addition, SNIPS can benefit from the robustness features of Chopin’s composi-

tion (recall Chapter 4), such as tolerance to traffic variations, not captured in the original

SNIPS formulation.

5.5 Evaluation

We split the evaluation section into two parts:

1. comparison of original SNIPS and Chopin-based optimizations; followed by

2. evaluation of the SNIPS benefits with respect to previous work.

Setup: We use realistic network topologies from the TopologyZoo dataset [55]. Due

to the absence of public traffic data, we use a gravity model to generate the traffic matrix

specifying the volume of traffic between every pair of network nodes for the AS-level

topologies. For simplicity, we consider only one application-level class and assume there

is a single datacenter located at the node that observes the largest volume of traffic.

We configure the node and link capacities as follows. We assume a baseline ingress

deployment (without offloading or on-path distribution) where all NIPS processing oc-

curs at the ingress of each end-to-end path. Then, we compute the maximum load across

all ingress NIPS and set the capacity of each NIPS to this value and the datacenter ca-

pacity to be 10× this node capacity. For link capacities, we simulate the effect of routing

traffic without any offloading or NIPS-induced packet drops, and compute the maxi-

mum volume observed on the link. Then, we configure the link capacities such that the

maximum loaded link is at ≈ 35% load.

98

Abilene (11)

Oxford (20)
Arn (30)

Geant2012 (40)
Dfn (58)

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e
ra

tio

Latency Load Unwanted

Figure 5.10: Ratio of objective functions of SNIPS optimization and Chopin-based
optimization for different metrics. Values ≤ 1 indicate that Chopin-based optimiza-
tion achieves better (lower) value.

5.5.1 SNIPS and Chopin

We start by comparing the results produced by the original SNIPS optimization and

the SNIPS-Chopin optimization for identical topology and traffic matrix. Figure 5.10

shows the ratio of objective function value produced by the SNIPS optimization to the

SNIPS-Chopin optimization. In this setup, both optimizations used equal weights across

different objective functions and the Chopin version used 5 preselected paths using

the relaxed path search (as described in Section 4.3.3). Values equal to 1 indicate iden-

tical solutions. Values ≥ 1 show that tailored first-principles optimization outperforms

SNIPS-Chopin and vise versa. In all evaluated topologies, SNIPS-Chopin performs near-

identically to the original formulation, and in one case (Abilene topology) even outper-

forms the first-principles optimization. This is due to the fact that Chopin is not limited

to using a single routing path, but instead can choose multi-path routing, exploiting

spare capacity in the network. This can negatively impact the unwanted traffic footprint

(e.g., Oxford and Geant2012 topologies). However, the penalty is small, ≤ 5%.

99

Abilene (11)

Oxford (20)
Arn (30)

Geant2012 (40)
Dfn (58)

0

10 2

10 1

Ti
m

e
(s

)

SNIPS-Orig SNIPS-SOL

Figure 5.11: Time to compute optimal solution using original SNIPS and SNIPS-
Chopin optimizations.

We also compare the runtime of both optimizations, as solved by the same Gurobi

solver. Figure 5.11 shows that the Chopin optimization is significantly faster in some

cases (e.g., Abilene, Oxford topologies). This is due to the offline selection of optimal

paths.

5.5.2 SNIPS benefits

In evaluating SNIPS we highlight the performance benefits over other NIPS architec-

tures and provide some system benchmarks for the SDN implementation.

We start with a baseline result with a simple configuration before evaluating the sen-

sitivity to different parameters. For the baseline, we set the SNIPS parameters β = α =

0.333; i.e., all three factors (latency, unwanted hops, load) are weighted equally in the

optimization. We fix the fraction of unwanted traffic to be 10%. For all results, the maxi-

mum allowable link load is 40%.

Improvement over current NIPS architectures: We compare the performance of

100

Abilene (11)

Oxford (20)
Arn (30)

Geant2012 (40)
Dfn (58)0.0

0.2

0.4

0.6

0.8

1.0
NI

PS
 L

oa
d

Abilene (11)

Oxford (20)
Arn (30)

Geant2012 (40)
Dfn (58)0.00

0.01

0.02

0.03

Un
wa

nt
ed

Abilene (11)

Oxford (20)
Arn (30)

Geant2012 (40)
Dfn (58)0.00

0.02

0.04

0.06

0.08

0.10

La
te

nc
y

In
cr

ea
se

Ingress Path Path+ Ingress+DC SNIPS

Figure 5.12: Trade-offs between current deployments and SNIPS

SNIPS against today’s Ingress NIPS deployments. As an intermediary point, we also

consider three other deployments: 1) Ingress+DC deployment, where all processing/of-

floading happens at the ingress of each path and the datacenter. 2) Path deployment,

modeling the on-path deployment described in [89]; and 3) Path+: identical to Path ex-

cept each node has an increased capacity of DCapr/N .

Figure 5.12 shows three normalized metrics for the topologies: load, added latency,

and unwanted footprint. For ease of presentation, we normalize each metric by the max-

imum possible value for a specific topology so that it is between 0 and 1.10 Higher val-

ues indicate less desirable configurations (e.g., higher load or latency).

By definition, the Ingress deployment introduces no additional latency and has no

unwanted footprint, since all of the processing is at the edge of the network. Such a de-

ployment, however, can suffer overload problems as shown in the result. SNIPS offers a

more flexible trade-off: a small increase in latency and unwanted footprint for a signif-

icant reduction in the maximum compute load. We reiterate that SNIPS does not affect

the security guarantees; it will drop all unwanted traffic, but it may choose to do so after

a few extra hops. In some topologies (e.g., Geant2012) SNIPS can reduce the maximum

load by 5× compared to a naive ingress deployment while only increasing the latency

by 2%. Note that these benefits arise with a very simple equi-weighted trade-off across

10Hence the values could be different across topologies even for the ingress deployment.

101

the three objective components; the benefits could be even better with other configura-

tions.

0.0 0.1 0.2 0.3 0.4

Fraction of Malicious Flows

0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

M
ax

Li
nk

Lo
ad

Without modeling drops Modeling drops

Figure 5.13: Link load as a function of
fraction of “unwanted” traffic.

0.01 0.02 0.03 0.04 0.05

Drop rate standard deviation (σ)

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007

O
pt

im
al

it
y

G
ap

Compute load Link Load

Figure 5.14: Compute and link load op-
timality gap as functions of drop rate
deviation; estimated drop rate = distribu-
tion mean µ = 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

NIPS Load

0.30
0.45
0.60
0.75
0.90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Unwanted

0.000
0.004
0.008
0.012
0.016
0.020

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Latency

0.450
0.465
0.480
0.495
0.510
0.525

Figure 5.15: Visualizing trade-offs in choosing different weight factors on Abilene
topology.

Impact of modeling traffic drops: SNIPS provides a higher fidelity model compared

to past works in NIDS offloading because it explicitly incorporates the impact of traffic

drops. We explore the impact of modeling these effects. For this result, we choose the

Internet2 topology and use our simulator to vary the fraction of malicious flows in the

network. Figure 5.13 shows the maximum observed link loads, averaged over 50 sim-

ulation runs. In addition to directly using the SNIPS-recommended strategy, we also

consider a naive setup that does not account for such drops.

There are two key observations. First, the max link load is significantly lower with

SNIPS which means that SNIPS can exploit more opportunities to offload under over-

load compared to the naive model. Second, by assuming no drops, “no drop” setup ig-

102

nores the HopsUnwanted factor, thus potentially obstructing the link to the datacenter

with unwanted traffic that could have been dropped at an earlier point in the network

(this effect is represented in Figure 5.13).

5.5.3 Sensitivity Analysis

Sensitivity to weights: As an illustrative result, we show the result of varying the

weighting factors for the Abilene topology in Figure 5.15. (We show only one topology

due to space limitations). In the figure, darker regions depict higher values, which are

less desirable. Administrators can use such visualizations to customize the weights to

suit their network topology and traffic patterns and avoid undesirable regions. In partic-

ular, our equi-weighted configuration is a simple but reasonable choice (e.g., mostly low

shades of gray in this graph).

Sensitivity to estimation errors: We also show that the parameter estimation (such

as drop rate) for our framework need not be precise. For this, we choose to run a num-

ber of simulations with imperfect knowledge of the drop rate. In that case, the drop rate

is sampled from a Gaussian distribution with mean of 0.1 (the estimated drop rate) and

changing standard deviation σ. Figure 5.14 shows the relative gap for compute and link

loads, between values predicted by the optimization with exact drop rate knowledge

and the simulated values. This result shows that even with large noise levels the differ-

ence in load on links and nodes is insignificant.

103

CHAPTER 6: Conclusions

With many appealing capabilities, Software-Defined Networking continues to gain

popularity. However, its successful adoption depends on the ease with which new ap-

plications can be created and deployed. This dissertation explores one particular class

of applications well-suited to the SDN paradigm — optimization applications. We in-

vestigated a variety of such applications and their requirements, and shown that a gen-

eral and efficient framework can be built to express them. The framework (SOL) and its

extensions (Chopin) provide numerous features: rapid application prototyping, gener-

alized heuristics for fast solution computation, simplified deployment, and automated

robust application composition.

We evaluated SOL and Chopin by expressing multiple existing applications and de-

veloping a new one (SNIPS), showing benefits in both usability and efficiency. Based on

the empirical evidence, we conclude that: a path-based optimization framework supports ex-

pression and composition of different applications, and generates resource-efficient solutions.

If enterprises and Internet Service Providers choose to embrace SDN as their core

network technology, we hope that this work will help make that a vision a reality. The

tools made available to the public as a result of this research lower the barrier of entry

to the adoption of SDN. We deem efficient and flexible networks to be at the foundation

of modern computer infrastructure. Hence we are optimistic that enabling innovation in

this space has the potential to impact users beyond solely the tech community.

We also believe that this work paves the way for future research in SDN and opti-

mization. For example, is it possible to show a theoretical approximation bound on the

solution given certain path selection strategies? Are there resource-management appli-

cations that cannot be (efficiently) expressed using the path abstraction? What are the

104

usability concerns for the given framework from a network operator’s point of view?

We leave these questions to be addressed in future work.

105

BIBLIOGRAPHY

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. Prentice hall, 1993.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In ACM SIGCOMM Computer Communi-
cation Review, 2008.

[3] Anthony B Atkinson. On the measurement of inequality. Journal of economic theory,
2(3):244–263, 1970.

[4] Alvin AuYoung, Sujata Banerjee, Jeongkeun Lee, Jeffrey C Mogul, Jayaram
Mudigonda, Lucian Popa, Puneet Sharma, and Yoshio Turner. Corybantic: To-
wards the modular composition of SDN control programs. In ACM HotNets, 2013.

[5] Alvin AuYoung, Yadi Ma, Sujata Banerjee, Jeongkeun Lee, Puneet Sharma, Yoshio
Turner, Chen Liang, and Jeffrey C Mogul. Democratic resolution of resource con-
flicts between sdn control programs. In ACM CoNEXT, pages 391–402. ACM, 2014.

[6] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Optimal
oblivious routing in polynomial time. In ACM Symposium on Theory of Computing,
pages 383–388. ACM, 2003.

[7] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Princeton University Press, 2009.

[8] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.
ONOS: towards an open, distributed SDN OS. In Proceedings of the third workshop
on Hot topics in software defined networking, pages 1–6. ACM, 2014.

[9] Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Koral. Deep packet
inspection as a service. In ACM CoNEXT, pages 271–282, 2014.

[10] Andrew T Campbell, Herman G De Meer, Michael E Kounavis, Kazuho Miki,
John B Vicente, and Daniel Villela. A survey of programmable networks. ACM
SIGCOMM Computer Communication Review, 29(2):7–23, 1999.

[11] Eduardo Camponogara and Luiz Fernando Nazari. Models and algorithms for
optimal piecewise-linear function approximation. Mathematical Problems in Engi-
neering, 2015.

[12] Zizhong Cao, Murali Kodialam, and TV Lakshman. Traffic steering in software
defined networks: planning and online routing. In ACM SIGCOMM Workshop on
Distributed Cloud Computing, pages 65–70, 2014.

[13] Martín Casado et al. Ethane: Taking control of the enterprise. In ACM SIGCOMM,
2007.

106

[14] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. Robust validation of net-
work designs under uncertain demands and failures. In USENIX Symposium on
Networked Systems Design and Implementation, 2017.

[15] Moses Charikar, Yonatan Naamad, Jennifer Rexford, and Kelvin Zou.
Multi-Commodity Flow with In-Network Processing. Manuscript,
www.cs.princeton.edu/~jrex/papers/mopt14.pdf.

[16] Emilie Danna, Subhasree Mandal, and Arjun Singh. A practical algorithm for bal-
ancing the max-min fairness and throughput objectives in traffic engineering. In
IEEE Conference on Computer Communications, pages 846–854, 2012.

[17] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. Multi-objective optimiza-
tion. In Decision Sciences: Theory and Practice, pages 145–184. CRC Press, 2016.

[18] Dorothy E Denning. An intrusion-detection model. IEEE Transactions on software
engineering, (2):222–232, 1987.

[19] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. Predicting the
resource consumption of network intrusion detection systems. In Symposium on
Recent Advances in Intrusion Detection, 2008.

[20] Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bohatei:
Flexible and elastic DDoS defense. In USENIX Security Symposium, pages 817–832,
2015.

[21] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rex-
ford, and Fred True. Deriving traffic demands for operational IP networks:
methodology and experience. ACM/IEEE Transactions on Networking, 9, 2001.

[22] Andrew Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krish-
namurthi. Participatory networking: An API for application control of SDNs. In
ACM SIGCOMM, August 2013.

[23] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP routing
protocols. IEEE Communications Magazine, 40, 2002.

[24] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights.
In IEEE Conference on Computer Communications, volume 2, 2000.

[25] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A network programming lan-
guage. In ACM SIGPLAN Notices, volume 46, pages 279–291, 2011.

[26] Robert Fourer, David M Gay, and Brian W Kernighan. AMPL: A mathematical pro-
gramming language. AT&T Bell Laboratories Murray Hill, 1987.

[27] Open Networking Fundation. Software-defined networking: The new norm for
networks. 2:2–6, 2012.

107

www.cs.princeton.edu/~jrex/papers/mopt14.pdf

[28] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl, Xiaoyang
Gao, Ashok Anand, Theophilus Benson, Vyas Sekar, and Aditya Akella. Stratos:
A network-aware orchestration layer for virtual middleboxes in clouds. arXiv
preprint arXiv:1305.0209, 2013.

[29] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. OpenNF: Enabling innovation in
network function control. In ACM SIGCOMM, 2014.

[30] Glen Gibb, Hongyi Zeng, and Nick McKeown. Outsourcing network functionality.
In ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2012.

[31] Google Research: No Mobile Site = Lost Customers. http://www.forbes.com/
sites/roberthof/2012/09/25/google-research-no-mobile-site-lost-
customers/.

[32] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick
McKeown, and Scott Shenker. NOX: towards an operating system for networks.
ACM SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[33] Gurobi. http://www.gurobi.com/.

[34] Peter J Hammond. Equity, arrow’s conditions, and rawls’ difference principle.
Econometrica: Journal of the Econometric Society, pages 793–804, 1976.

[35] Nikhil Handigol, Mario Flajslik, Srini Seetharaman, Nick McKeown, and Ramesh
Johari. Aster*x: Load-balancing as a network primitive. In 9th GENI Engineering
Conference, pages 1–2, 2010.

[36] Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence
Filsfils, Thomas Telkamp, and Pierre Francois. A declarative and expressive
approach to control forwarding paths in carrier-grade networks. In ACM SIG-
COMM, 2015.

[37] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[38] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. ElasticTree: Saving energy
in data center networks. In USENIX Symposium on Networked Systems Design and
Implementation, pages 19–21, 2010.

[39] V. Heorhiadi, S. K. Fayaz, M. K. Reiter, and V. Sekar. SNIPS: A software-defined
approach for scaling intrusion prevention systems via offloading. In 10th Interna-
tional Conference on Information Systems Security, December 2014.

[40] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. New opportunities for load
balancing in network-wide intrusion detection systems. In ACM CoNEXT, 2012.

108

http://www.forbes.com/sites/roberthof/2012/09/25/google-research-no-mobile-site-lost-customers/
http://www.forbes.com/sites/roberthof/2012/09/25/google-research-no-mobile-site-lost-customers/
http://www.forbes.com/sites/roberthof/2012/09/25/google-research-no-mobile-site-lost-customers/

[41] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. Simplifying software-defined
network optimization using SOL. In USENIX Symposium on Networked Systems
Design and Implementation, pages 223–237, 2016.

[42] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven
WAN. In ACM SIGCOMM, pages 15–26, 2013.

[43] ILOG, IBM. Cplex. https://www.ibm.com/us-en/marketplace/ibm-ilog-
cplex, 2016.

[44] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experi-
ence with a globally-deployed software defined WAN. In ACM SIGCOMM, pages
3–14, 2013.

[45] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: a highly-scalable
software-based intrusion detection system. In ACM Conference on Computer and
Communications Security, 2012.

[46] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. Covisor: A com-
positional hypervisor for software-defined networks. In USENIX Symposium on
Networked Systems Design and Implementation, pages 87–101, 2015.

[47] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. Softcell: Scalable and
flexible cellular core network architecture. In ACM CoNEXT, 2013.

[48] Norman L Johnson, Samuel Kotz, and N Balakrishnan. Continuous multivariate
distributions, volume 1, models and applications, volume 59. New York: John Wiley &
Sons, 2002.

[49] Min Suk Kang, Virgil D Gligor, and Vyas Sekar. SPIFFY: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks. Symposium on Network
and Distributed System Security, 2016.

[50] N Kang, M Ghobadi, J Reumann, and A Shraer. Efficient traffic splitting on SDN
switches. In ACM CoNEXT, 2015.

[51] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimizing the
one big switch abstraction in software-defined networks. In ACM CoNEXT, pages
13–24, 2013.

[52] Kalapriya Kannan and Subhasis Banerjee. Scissors: Dealing with header redun-
dancies in data centers through SDN. In Workshop on Systems Virtualiztion Manage-
ment, pages 295–301. IEEE, 2012.

109

https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex

[53] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:
Static checking for networks. In USENIX Symposium on Networked Systems Design
and Implementation, 2012.

[54] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control for communi-
cation networks: shadow prices, proportional fairness and stability. Journal of the
Operational Research society, 49(3):237–252, 1998.

[55] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet
topology zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765 –1775,
October 2011.

[56] Murali Kodialam, TV Lakshman, and Sudipta Sengupta. Traffic-oblivious routing
in the hose model. IEEE/ACM Transactions on Networking, 19(3):774–787, 2011.

[57] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, et al. Net-
work virtualization in multi-tenant datacenters. In USENIX Symposium on Net-
worked Systems Design and Implementation, pages 203–216, 2014.

[58] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, and Robert
Soulé. Kulfi: Robust traffic engineering using semi-oblivious routing. arXiv
preprint arXiv:1603.01203, 2016.

[59] TV Lakshman, T Nandagopal, R Ramjee, K Sabnani, and T Woo. The softrouter
architecture. In ACM HotNets, volume 2004. Citeseer, 2004.

[60] Janghaeng Lee, Sung Ho Hwang, Neungsoo Park, Seong-Won Lee, Sunglk Jun,
and Young Soo Kim. A high performance NIDS using FPGA-based regular ex-
pression matching. In ACM Symposium on Applied Computing, 2007.

[61] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, Anja Feldmann, et al.
Panopticon: Reaping the benefits of incremental sdn deployment in enterprise net-
works. In USENIX Annual Technical Conference, 2014.

[62] Xuan Liu, Sudhir Mohanraj, Michal Pioro, and Deep Medhi. Multipath routing
from a traffic engineering perspective: How beneficial is it? In IEEE International
Conference on Network Protocols, pages 143–154, 2014.

[63] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication Re-
view, 38(2):69–74, 2008.

[64] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu. Fast reg-
ular expression matching using small TCAMs for network intrusion detection and
prevention systems. In USENIX Security Symposium, 2010.

[65] Mininet. http://mininet.org/.

110

http://mininet.org/

[66] Stuart Mitchell, Michael O’Sullivan, and Iain Dunning. Pulp: a linear program-
ming toolkit for python, 2011.

[67] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, David Walker,
et al. Composing software defined networks. In USENIX Symposium on Networked
Systems Design and Implementation, volume 13, pages 1–13, 2013.

[68] Mosek. https://mosek.com/.

[69] Network functions virtualisation – introductory white paper. http://
portal.etsi.org/NFV/NFV_White_Paper.pdf.

[70] Navid Nikaein, Eryk Schiller, Romain Favraud, Kostas Katsalis, Donatos
Stavropoulos, Islam Alyafawi, Zhongliang Zhao, Torsten Braun, and Thanasis Ko-
rakis. Network store: Exploring slicing in future 5G networks. In International
Workshop on Mobility in the Evolving Internet Architecture, pages 8–13. ACM, 2015.

[71] Opendaylight SDN controller. http://www.opendaylight.org/.

[72] Openflow standard. http://www.openflow.org/documents/openflow-spec-
v1.1.0.pdf.

[73] S. Palkar, C. Lan, S. Han, K. Jang, S. Ratnasamy, L. Rizzo, and S. Shenker. E2: A
runtime framework for network functions. In ACM Symposium on Operating Sys-
tems Principles, 2015.

[74] Christos H Papadimitriou. On the complexity of integer programming. Journal of
the ACM (JACM), 28(4):765–768, 1981.

[75] Antonis Papadogiannakis, Michalis Polychronakis, and Evangelos P. Markatos.
Tolerating Overload Attacks Against Packet Capturing Systems. In USENIX An-
nual Technical Conference, 2012.

[76] Vern Paxson. Bro: a system for detecting network intruders in real-time. In Proc.
USENIX Security, 1998.

[77] Ruben E. Perez, Peter W. Jansen, and Joaquim R. R. A. Martins. pyOpt: A Python-
based object-oriented framework for nonlinear constrained optimization. Struc-
tures and Multidisciplinary Optimization, 45(1):101–118, 2012.

[78] POX Controller. http://www.noxrepo.org/pox/about-pox/.

[79] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
PGA: Using graphs to express and automatically reconcile network policies. ACM
SIGCOMM, 45(4):29–42, 2015.

[80] Private communication with UNC administrators, 2013.

111

http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.opendaylight.org/
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.noxrepo.org/pox/about-pox/

[81] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Min-
lan Yu. SIMPLE-fying middlebox policy enforcement using SDN. In ACM SIG-
COMM, 2013.

[82] Saqib Raza, Guanyao Huang, Chen-Nee Chuah, Srini Seetharaman, and Jatin-
der Pal Singh. Measurouting: a framework for routing assisted traffic monitoring.
ACM/IEEE Transactions on Networking, 20(1):45–56, 2012.

[83] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David
Walker. Modular SDN programming with Pyretic. ;login: Magazine, 38(5):128–134,
2013.

[84] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In ACM SIGCOMM, 2012.

[85] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa,
volume 99, pages 229–238, 1999.

[86] Matthew Roughan. Simplifying the synthesis of internet traffic matrices. ACM
SIGCOMM Computer Communication Review, 35, 2005.

[87] Beverly Schwartz, Alden W Jackson, W Timothy Strayer, Wenyi Zhou, R Dennis
Rockwell, and Craig Partridge. Smart packets for active networks. In Open Archi-
tectures and Network Programming Proceedings, 1999, pages 90–97. IEEE, 1999.

[88] SDN app store. https://marketplace.saas.hpe.com/sdn, January 2017.

[89] Vyas Sekar, Ravishankar Krishnaswamy, Anupam Gupta, and Michael K. Reiter.
Network-wide deployment of intrusion detection and prevention systems. In
ACM CoNEXT, 2010.

[90] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ramana Rao Kom-
pella, and David G. Andersen. CSAMP: a system for network-wide flow monitor-
ing. In USENIX Symposium on Networked Systems Design and Implementation, 2008.

[91] Farhad Shahrokhi and David W Matula. The maximum concurrent flow problem.
Journal of the ACM (JACM), 37(2):318–334, 1990.

[92] Kevin Shatzkamer. App store portal providing point-and-click deployment
of third-party virtualized network functions, April 4 2014. US Patent App.
14/245,193.

[93] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In ACM SIGCOMM, 2012.

[94] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru M Parulkar. Can the production network be the
testbed? In USENIX Symposium on Operating Systems Design and Implementation,
volume 10, pages 1–6, 2010.

112

https://marketplace.saas.hpe.com/sdn

[95] Seugwon Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and
Mabry Tyson. FRESCO: Modular composable security services for software-
defined networks. In Symposium on Network and Distributed System Security, 2013.

[96] Randy Smith, Cristian Estan, and Somesh Jha. XFA: Faster signature matching
with extended automata. In IEEE Symposium on Security and Privacy, 2008.

[97] Robert Soule, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. Merlin: A language for provisioning
network resources. In ACM CoNEXT, 2014.

[98] Ralph E Steuer. Multiple criteria optimization: theory, computation, and applications.
Wiley, 1986.

[99] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. A network-state management service. In ACM SIGCOMM, SIGCOMM ’14,
pages 563–574, New York, NY, USA, 2014. ACM.

[100] David L Tennenhouse, Jonathan M Smith, W David Sincoskie, David J Wetherall,
and Gary J Minden. A survey of active network research. IEEE communications
Magazine, 35(1):80–86, 1997.

[101] Paul Tune and Matthew Roughan. Spatiotemporal traffic matrix synthesis. ACM
SIGCOMM Computer Communication Review, 45(4):579–592, 2015.

[102] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian
Tierney. The NIDS cluster: scalable, stateful network intrusion detection on com-
modity hardware. In Symposium on Recent Advances in Intrusion Detection, 2007.

[103] Jacobus E Van der Merwe, Sean Rooney, L Leslie, and Simon Crosby. The tempest-
a practical framework for network programmability. IEEE network, 12(3):20–28,
1998.

[104] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated
annealing: Theory and applications, pages 7–15. Springer, 1987.

[105] Nedeljko Vasić, Prateek Bhurat, Dejan Novaković, Marco Canini, Satyam Shekhar,
and Dejan Kostić. Identifying and using energy-critical paths. In ACM CoNEXT,
2011.

[106] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P.
Markatos, and Sotiris Ioannidis. Regular expression matching on graphics hard-
ware for intrusion detection. In Symposium on Recent Advances in Intrusion Detec-
tion, 2009.

[107] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. MIDeA: a multi-
parallel intrusion detection architecture. In ACM Conference on Computer and Com-
munications Security, 2011.

113

[108] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hu-
dak. Maple: simplifying SDN programming using algorithmic policies. ACM
SIGCOMM Computer Communication Review, 43(4):87–98, 2013.

[109] R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing gone
wild. In Hot-ICE, 2011.

[110] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236–244, 1963.

[111] World intrusion detection and prevention markets. http://www-935.ibm.com/
services/us/iss/pdf/esr_intrusion-detection-and-prevention-
systems-markets.pdf.

[112] Fang Yu, T. V. Lakshman, Martin Austin Motoyama, and Randy H. Katz. SSA: a
power and memory efficient scheme to multi-match packet classification. In ACM
Symposium on Architectures for Networking and Communications Systems, 2005.

114

http://www-935.ibm.com/services/us/iss/pdf/esr_intrusion-detection-and-prevention-systems-markets.pdf
http://www-935.ibm.com/services/us/iss/pdf/esr_intrusion-detection-and-prevention-systems-markets.pdf
http://www-935.ibm.com/services/us/iss/pdf/esr_intrusion-detection-and-prevention-systems-markets.pdf

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	SOL: SDN Optimization Layer
	Chopin: Composition of Multiple Optimization Applications
	SNIPS: Scalable Network Intrusion Prevention

	Background and Prior Work
	Software-Defined Networking
	SDN Applications
	Higher-layer Abstractions for SDN
	Composition of Multiple SDN Applications

	Optimization
	Linear Programming (LP)
	Network Optimization
	General Optimization Enhancements

	Network Security
	Network Intrusion Detection and Prevention
	Security Applications of SDN

	SOL — SDN Optimization Layer
	Motivation and Challenges
	Traffic engineering
	Service chaining
	Flexible topology management
	Network function virtualization
	Motivation for SOL

	SOL Overview
	SOL Detailed Design
	Preliminaries
	Routing requirements
	Resource capacity constraints
	Node/link activation constraints
	Specifying network objectives
	Minimizing reconfiguration changes
	Low-level API

	Path generation and selection
	Examples
	Implementation
	Evaluation
	Deployment benchmarks
	Optimality and scalability
	Comparison to Merlin and DEFO
	Developer benefits
	Sensitivity

	Robust Composition of Multiple Optimizations
	Background and Motivation
	Overview
	High-level approach
	Workflow

	Detailed Design
	Preliminaries
	Online, Unified Optimization
	Offline, Coordinated Path Selection

	Implementation
	Evaluation
	Resource-efficiency, Fairness and Responsiveness
	Scalability

	Scalable Network Intrusion Prevention Using Chopin
	Motivation and Challenges
	Case for offloading
	Challenges in offloading NIPS

	SNIPS System Overview
	SNIPS Optimization
	First-principles SNIPS Optimization
	SNIPS Optimization using Chopin

	Implementation Using SDN
	First-principles approach
	Deployment with Chopin

	Evaluation
	SNIPS and Chopin
	SNIPS benefits
	Sensitivity Analysis

	Conclusions
	BIBLIOGRAPHY

