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Abstract 

Beth Mole: Exploring the virulence strategy of the soft-rot plant pathogen 
Pectobacterium carotovorum 

(Under the direction of Jeff Dangl and Sarah Grant) 
 
  

In this dissertation, I explore the virulence strategy of Pectobacterium 

carotovorum, a plant pathogen that causes soft rot disease.  P. carotovorum 

infects a wide range of plants, including carrots, beets, and potatoes, and is a 

significant threat to crop production around the world, causing millions of dollars 

worth of crop loss each year.  In this dissertation, I work with an isolate of P. 

carotovorum from the irrigation pond of a potato farm experiencing a soft rot 

outbreak in Wisconsin, U.S.A. In ideal conditions, P. catorovorum can infect the 

tubers, stems and leafs of a potato plant. P. carotovorum causes disease in part 

by secreting an array of enzymes that degrade plant cell walls, which causes the 

characteristic rotting.  However, P. carotovorum spends a significant part of its 

life-history in: soil; on invertebrates that feed on crops; and in both surface and 

ground water, such as the irrigation pond.  Additionally, P. carotovorum possess 

a variety of other virulence factors required for plant infection, including a Type III 

secretion system (T3SS). Type III secretion systems allow a pathogen to deliver 

virulence factors, called effectors, directly into host cells where they can 

manipulate plant defense responses.  The goal of this dissertation is to better 

understand how P. carotovorum transitions from an environmental microbe to a 
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pathogen, and the role of the T3SS in that process. In the first chapter, I review 

how virulence factors, such as plant degrading enzymes and the T3SS, are 

regulated in P. carotovorum, and compare its regulation strategy to that of other 

plant pathogens.  In the second chapter, I present an analysis, published with our 

collaborators, of the genome sequence of P. carotovorum, which we draw upon 

in the subsequent chapters.  The third chapter evaluates transcriptional data 

during tuber, stem and leaf infections and suggests a tissue-specific role for the 

T3SS during infection.  Lastly, the fourth chapter presents data that suggests 

carbon source availability is involved in tissue-specific virulence regulation.  In 

conclusion, this dissertation furthers our understanding of the virulence strategy 

of P. carotovorum.  
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CHAPTER 1: Global virulence regulation networks in Pectobacterium 
carotovorum and model plant pathogens 

 
ABSTRACT: 

This chapter provides an introduction and framework to the dissertation project; 

relevant background of the soft-rot pathogen Pectobacterium carotovorum is 

covered and followed by a comprehensive review of phytopathogen virulence 

strategies. The overall goal of this dissertation is to further our understanding of 

the virulence regulation and strategy of Pectobacterium carotovorum in the 

context of environmental signals and life-history.  P. carotovorum is an 

enterobacteriacea family member and ubiquitous plant pathogen that regulates 

virulence determinants using a complex set of regulators. Generally, 

phytopathogens coordinate multifaceted life histories and deploy stratified 

virulence determinants via complex global regulation networks. The review 

dissects the global regulation of four distantly related model phytopathogens to 

evaluate large-scale events and mechanisms that determine successful 

pathogenesis. Overarching themes include dependence on centralized cell-to-

cell communication systems, pervasive two-component signal transduction 

systems, post-transcriptional regulation systems, AraC-like regulators, and sigma 

factors. Although these common regulatory systems control virulence, each 

functions in different capacities, and to differing ends, in the diverse species. 

Hence, the virulence regulation network of each species determines its survival 

and success in various life-histories and niches. This review will highlight 

unanswered questions about the virulence regulation and strategy of P. 

carotovorum, which will be addressed in the following chapters. 
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INTRODUCTION:  

 
Pectobacterium carotovorum is an economically significant plant pathogen 

and a member of the Enterobacteriacea family. The enterobacteriacea family 

encompasses a wide range of bacterial pathogens that infect plants, animals, 

and fungi, and can be found in soil, water and atmospheric samples. Members of 

this family have had dramatic impacts on human history, such as Yersinia pestis, 

which caused the black plague [1], and Vibrio cholera, which causes cholera, a 

disease still endemic in many regions [2].  Many enterobacteriacea family 

members were sequenced and well studied before the onset of this work, and 

therefore the family is ideal for comparative bacterial genetic and environmental 

studies.  Pectobacterium carotovorum, a plant pathogen in the family, is a further 

ideal candidate because it is ubiquitous in soil, water, and atmospheric samples 

worldwide and can infect species from 24 orders of plants (reviewed in [3]).  P. 

catorovorum can subsist in an environment until ideal conditions arise, such as 

plant damage from hail storms, hot weather and/or high humidity, and can cause 

widespread rot during the growing season or crop storage.  P. carotovorum is a 

significant threat to crop production in the U.S. and is thought to cause millions of 

dollars worth of crop destruction each year. In addition to an agriculturally 

relevant study system, P. carotovorum demonstrates significant genetic variation, 

even among isolates from clonal hosts, such as clonally propogated potatoes [4], 

making it an ideal candidate for biogeographical analysis and comparative 

genetic studies of strains isolated from different hosts. The broad goals of this 
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dissertation are to understand virulence determinants and regulation of P. 

carotovorum in the context of environmental signals and related pathogens.  

 

P. carotovorum is a brute-force and stealth pathogen. P. carotovorum uses a 

variety of virulence factors to elicit disease on a host, which include a type II 

secretion system (T2SS) [5-7], adhesions [8], metalloproteases [9], and a type III 

secretion system (T3SS) [10]. P. carotovorum was first described as a brute-

force pathogen and defined as a necrotroph because it secretes a series of plant-

cell-wall-degrading enzymes (PCWDE) to macerate host cells, which cause 

characteristic rot and ultimately death to the host.  PCWDEs are secreted 

through a T2SS, which is a specialized outer-membrane transport system 

dependent on generalized secretion, Sec- or TAT-dependent systems.  The 

T2SS is responsible for secreting pectate lyases, polygalacturonases, and 

pectinases, which degrade pectin, a principle component of the plant cell walls. 

 

P. carotovorum also possess a T3SS, which delivers virulence factors, 

referred to as effectors, directly into the cytoplasm of a neighboring host 

cell.  Many enterobacteriacea family members, and Gram negative pathogens in 

general, require a T3SS for virulence [11]. Delivered effectors often manipulate 

plant hosts by repressing defense responses and altering nutrient availability 

[12], which allows the bacteria to stealthly persist in the host.  Plants induce 

innate defense responses, such as thickening the cell wall with callose and 

secreting reactive oxygen species, when they detect microbial-associated 
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molecular patterns (MAMPs), like LPS and flagellin (reviewed in [13]). T3SS help 

the invading bacteria evade detection and starvation by delivering effectors that 

inhibit these plant defenses.  Plants, in turn, have adapted to detect delivered 

effectors in the cytoplasm as a means for detecting invading bacteria and 

reinstating defense responses.  Proteins, coined recognition (R) proteins, directly 

or indirectly detect a bacterial effector and can subsequently elicit programmed 

cell death, also known as Hypersensitive Response (HR). This defense response 

can be seen as a dead patch on the leaf at the site of infection and results in 

inhibition of bacterial growth. Since there is evolutionary pressure on the 

pathogen to deliver unrecognized-effectors, and on the plant to continually 

recognize bacterial effectors, bacterial pathogens and their plant hosts are locked 

in an evolutionary arms race.  Many well-studied plant pathogens require a T3SS 

for virulence and large suites of effectors to deliver to host cells.  P. syringae 

species, for example, have been found to encode upwards of 30 effector proteins 

that are delivered via a T3SS [14]. Different P. syringae isolates contain different 

collections of effectors and effectors can be easily acquired by horizontal 

transmission or lost when pressured. 

The T3SS of P. carotovorum is most closely related to that of P. syringae. 

The cluster of genes that encode the secretion apparatus is regulated by an 

alternative sigma factor, HrpL, the homolog of which plays the same role in P. 

syringae [15].   Only one effector has been identified in P. carotovorum, a 

homolog of AvrE in P. syringae, DspE.  The number and variation in P. 

carotovorum effectors is, therefore, still unknown [16]. However, the possession 
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and requirement for a T3SS during pathogenesis suggests that other effectors 

exist.  In the following chapters, we specifically address the role of the T3SS in P. 

carotovorum virulence and identify T3SS delivered effectors.   

 

Virulence determinants, such as the T2SS and the T3SS, in P. carotovorum 

are regulated by a complex global regulation network. An over-arching 

question in our understanding of the pathogenesis of P. carotovorum is how this 

pathogen transitions from an environmental microbe to a plant pathogen of 

various hosts and then coordinately deploys stealth virulence determinants, like 

the T3SS, and brute-force, the T2SS.  Much work has already begun to shed 

light on the wealth of regulators, which P. carotovorum possesses (reviewed in 

[7, 17-21].  The following section of this chapter will review virulence regulatory 

networks of P. carotovorum in relation to other plant pathogens as a foundation 

for this dissertation project.  Chapter three provides comprehensive 

transcriptional profiling of P. carotovorum during multiple infection routes, which 

reveals a requirement of the T3SS during leaf infections, but not other infection 

routes. Chapter four covers novel work that addresses how metabolic cues act 

as key environmental signals in virulence deployment.  The data in this 

dissertation furthers our understanding of the virulence strategy of P. 

carotovorum by identifying metabolic cues and differential virulence expression 

among infection routes.  To understand how this novel data furthers the field, we 

must first review what we know about virulence regulation and strategies of plant 

pathogens. 
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GLOBAL VIRULENCE REGULATION IN PLANT PATHOGENS: 

 

Global virulence regulation networks dictate life-histories and infection 

strategies of plant pathogens. Phytopathogens survive in diverse 

environments, not only as pathogens but also as benign epiphytes on plant 

surfaces or saprophytes in soil and water. Consequently, expression of virulence 

factors and behaviors associated with virulence must be coordinated for energy 

conservation, appropriate disease development, evasion of host defense, and 

eventual dispersal. A phytopathogen’s survival, therefore, relies on a controlled 

global virulence regulation network. In this introductory chapter, we discuss such 

networks in four distantly related and well studied phytopathogens (Figure 1). 

Ralstonia solanacearum (hereafter R.s.) is a hemibiotrophic agent (with initial 

biotrophy followed by necrotrophy during infection) of bacterial wilt diseases 

across a wide host-range (reviewed in [22]). R.s. also exists as a saprophyte in 

soil until it invades the roots of susceptible plants.  R.s. colonizes xylem tissue 

and migrates to aerial parts of the plant where it accumulates and disables the 

plant’s vascular system (Figure 1a).  P. carotovorum (hereafter P.c.) is a 

necrotrophic soft rot pathogen with a large host-range (reviewed in [17]).  P.c. 

can live as an epiphyte or as a saprophyte in soil and ground water until it 

encounters a susceptible host (Figure 1b). Xanthomonas campestris pv. 

campestris (hereafter X.c.c.) is a hemibiotrophic, narrow host-range agent of 
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black rot (reviewed in [23]) (Figure 1c). Pseudomonas syringae (hereafter P.s.) is 

the hemibiotrophic agent of bacterial speck, spot and rot diseases typically 

associated with narrow host range (reviewed in [12]) (Figure 1d). Both P.s. and 

X.c.c. exist as epiphytes on plant surfaces until opportunity allows them to enter 

the intercellular apoplastic space inside leaf tissue. These disease  

Figure 1. 

 

Figure 1.  Disease symptoms of selected phytopathogens. a. Bacterial wilt of 

Ralstonia solanacearum on tomato (courtesy of Caitilyn Allen, University of 

Wisconsin-Madison). b. Stem rot by Pectobacterium carotovorum subsp. 
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carotovorum on potato (courtesy of Amy Charkowski, University of Wisconsin-

Madison).  c. Black rot by Xanthomonas campestris on cabbage (courtesy of 

Max Dow, University of Ireland). d Pseudomonas syringae bacterial spot on 

tomato (courtesy of Marc Nishimura, University of North Carolina-Chapel Hill). 

stages and life-history transitions require information sensed from the 

environment, the host, and the pathogen population. These inputs are received 

and integrated by central regulators to produce survival and virulence outputs 

through a global virulence regulation network. 

The mechanisms that control expression of vital T3SS, toxins, extracellular 

enzymes, and various behaviors are discussed below. This section begins by 

presenting cell-to-cell communication systems and their influence on prominent 

regulators in each species. Then the chapter will compare two-component 

regulators that report information about the environment to central regulator(s) or 

influence distinct aspects of virulence independently. The chapter will finish with 

a discussion of common transcription regulators that control T3SS expression, 

but have global impacts as well. By comparing global virulence regulation 

strategies of these four pathogen groups we can understand common 

mechanisms essential to plant infection and areas of divergence that enable 

each pathogen to take advantage of its biological niche. This chapter will also 

help identify areas of P. c regulation and pathogenesis that will be addressed in 

the coming chapters. 
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I.  Cell-density-dependent regulation of virulence factors is crucial for all 

four phytopathogens. 

Cell-to-cell communication systems enable temporally coordinated gene 

expression within bacterial populations. The infection strategies of 

phytopathogens, which often require swift global changes in gene expression 

and physiology in response to environmental cues, are particularly reliant on cell-

to-cell communication to coordinate critical steps in pathogenesis. Some of the 

communication systems of phytopathogens are paradigmatic quorum sensing 

systems, analogous in mechanism to the conserved LuxR/I system of 

Photobacterium fischeri, while others represent mechanistically distinct systems 

particular to related pathogen groups. Here, we compare the main features and 

functions of cell-to-cell communication systems with respect to central regulators 

in each of our model species. 

 

Cell-to-cell communication in R.s. is responsible for the transition from 

early to late stage infection 

R. s. uses a genus-specific communication system that senses the diffusible 3-

OH-palmitic acid methyl ester (3-OH-PAME) signal. The 3-OH-PAME system 

allows R.s. to make the transition from early to late stage pathogenesis by 

controlling the activity of the global virulence regulator, PhcA (Figure 2a). The 3-

OH-PAME system is encoded by the phc (phenotypic conversion) operon [24] 

which encodes the 3-OH-PAME synthase, PhcB, the membrane-bound sensor, 

PhcS, and a downstream response regulator, PhcR [25]. At low cell-density, or in 



 

10 
 

unconfined conditions, the global virulence regulator, PhcA, is inhibited by the 3-

OH-PAME system. When the bacterial population density reaches ~107 cells/mL 

and/or the concentration of 3-OH-PAME reaches 5nM, 3-OH-PAME binds to the 

membrane-bound sensor PhcS [26] and PhcA is released from repression by 

PhcS. PhcA then either directly or indirectly activates virulence factors required 

for late-stage infection, including exopolysaccharides (EPS) [27], and cellulase 

[24] and represses virulence factors required for early-stage infection including 

the T3SS [28], swimming motility and siderophore expression [29].  

 

The 3-OH-PAME system also up-regulates an HSL-dependent quorum sensing 

system via PhcA activity. The quorum sensing system is encoded by solR and 

solI, which are luxR and luxI homologues, respectively [30]. SolR activates 

expression of at least one gene, aidA. The function of the novel AidA protein is 

unknown, and other SolR-regulated genes have yet to be identified. solR and solI 

are members of the 3-OH-PAME communication system regulon which controls 

the phenotypic switch from a saprophyte and early stage colonizer to a full blown 

pathogen. Because co-regulated genes generally function similarly, the SolR/SolI 

system might be expected to play a role in virulence.  Surprisingly, solI and solR 

mutants have been shown to retain full virulence when inoculated into cut 

petioles [30]; however reduction in the virulence of these mutants might be 

evident if they were tested using different infection conditions such as soil 

soaking, which more closely mimic a natural infection. 

 



 

11 
 

Cell-to-cell communication in P.c. regulates global virulence expression, 

including T3SS and extracellular enzymes, by controlling the expression of 

the regulator, RsmA 

Just as in R.s., the cell-to-cell communication systems of P.c. are central to 

virulence regulation. However, the communication systems are more complex in 

their regulatory mechanisms (and, sadly, their nomenclature). The P.c. cell-to-cell 

communication systems are responsible for regulating the T3SS, PCWDE, and 

antibiotic production. P.c. employs quorum sensing systems that include up to 

three transcription activators which are responsive to two AHL molecules that, in 

turn, are encoded by one synthase (Figure 2b). The LuxI synthase homologue, 

ExpI (also referred to as CarI, AhlI, HslI), was first described by Pirhonene et al. 

[31] as the exoenzyme production inducer. ExpI can synthesize 3-oxo-C6-HSL or 

3-oxo-C8-HSL. Strains that produce both variations of AHL have been 

designated class I strains, while strains that produce only 3-oxo-C6-HSL have 

been designated class II [17]. Once AHL signaling molecules accumulate, they 

can interact with CarR, ExpR1 or ExpR2. The most straightforward of these is the 

CarR regulator. CarR binds 3-oxo-C6-HSL and subsequently binds the carA 

promoter, which controls the car operon that encodes the carbapenem antibiotic 

[32] (Figure 2b). The car operon is also controlled by the transcription regulator, 

Hor, but by unknown means. The other two LuxR homologues, ExpR1 (also 

known as ExpR and EccR) and ExpR2 (also known as VirR), directly inhibit 

virulence in the absence of threshold levels of AHL by up-regulating rsmA [33]. 

RsmA is a member of the post-transcriptional Rsm system and acts to destabilize 
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mRNA transcripts that encode PCWDEs, including cellulase, pectate lyase, and 

protease. The Rsm system also includes, rsmB, which binds to, and down 

regulates RsmA, allowing translation of RsmA-targeted mRNAs. Threshold levels 

of 3-oxo-C8-HSL bind to ExpR1 while 3-oxo-C6-HSL binds to ExpR2.  Binding of 

their cognate AHL inactivates ExpR1 and ExpR2, inhibiting rsmA expression and 

freeing the mRNA transcripts encoding PCWDEs [33, 34]. Mutant P.c. lacking 

expI are unable to produce AHLs and PCWDEs and are consequently avirulent 

[31]. Thus, P.c. quorum sensing feeds into the central coordination of virulence 

for successful infection via novel, synergistic negative regulation by two LuxR 

homologues ExpR1 and ExpR2.  

 

Post-transcriptional Rsm-mediated regulation is significant in both P.c. and P.s.   

 

The Rsm system plays a significant role in the virulence regulation of P.c. but it is 

broadly distributed throughout the eubacteria, and thus might be a common 

central player in virulence regulation [35]. The Rsm system is made up of the 

proteins RsmA, and RsmC and the regulatory RNA rsmB [34]. RsmA is the main  

regulator and targets mRNA transcripts in order to regulate virulence as well as 

cellular functions.  RsmA and the related CsrA from E. coli are thought to act 

similarly; they bind mRNA transcripts using a KH domain and can either stabilize 

or promote the decay of targeted transcripts [36]. CsrA destabilizes messages by 

binding near the ribosome binding site, thereby interfering with translation and 

leading to transcript degradation by RNases [37]. In P.c., RsmA is independently 
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down-regulated by the quorum sensing system and the stationary sigma factor, 

RpoS [38] (Figure 2b). RsmA, in turn, targets and destabilizes the transcripts of 

PCWDEs which are crucial virulence factors [39] and HrpL, the alternative sigma 

factor that regulates expression of the T3SS (reviewed in [17]) (Figure 2b) 

Figure 2. 
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Figure 2. The global virulence regulation of R.s. and P.c. Items in: blue are 

associated with cell-to-cell communication; green are TCST systems; red are 

sigma factors; yellow are part of the Rsm system; and purple are AraC-like 

transcription regulators. Cell-to-cell communication systems are located at the 

top of each figure, TCST systems are located on the bottom, extracellular 

enzymes and EPS regulation are found on the left, T3SS regulation is found on 

the right, and global regulators are situated in the center. Arrows represent 

positive regulation, barred arrows represent negative regulation, dashed arrows 

represent synthesis, and open arrows represent unknown interactions. a. 

Ralstonia solanacearum. PhcA is a global virulence regulator in R.s. controlling 

motility, polygalacturonase, EPS, and the T3SS. PhcA is controlled by a species 

specific cell-to-cell communication system and, in turn, PhcA regulates the 

secondary quorum sensing system. b. Pectobacterium carotovorum subsp. 

carotovorum. The prominent virulence mechanism in P.c.  is the post-

transcriptional Rsm system.  The Rsm system is mediated by cell-to-cell 

communication and the GacA/S TCST system and controls the T3SS and cell 

wall degrading enzymes.   

 

 rsmB (also known as aepH in P.c..) and csrB in E. coli, are non-coding, 

functional RNAs that act as antagonists to RsmA  and CsrA (reviewed in [40]). 

rsmB is up-regulated by the GacA/S TCST system [41] and HexA, a global 

regulator that also inhibits RpoS expression [20]. rsmB is repressed by the KdgR 

regulator which is responsive to breakdown products of plant cell walls, such as 
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2-keto-3-deoxygluconate, KDG [42]. The rsmB structure contains multiple stem 

loops with GGA motifs thought to be binding sites of RsmA [43]. CsrA and csrB 

can be co-purified in a stoichiometry of 18:1, suggesting that each csrB molecule 

binds 18 CsrA molecules and thus efficiently inhibits its binding to target 

transcripts [19].  In P.c. rsmB also efficiently inhibits RsmA.  rsmB exists in two 

forms, a 479 nucleotide, unprocessed form and a processed 259 nucleotide form 

which is thought to sequester RsmA via nine CsrA-like binding motifs [19]. Lastly, 

RsmC, also known as HexY, negatively regulates rsmB and, directly or indirectly, 

activates rsmA expression [18]. RsmC has no known homologues outside of P.c. 

and has no known DNA binding motif. The complete regulon of RsmA and the 

Rsm regulation system is unknown.  

 

The cell-to-cell communication in X.c.c. is crucial to global virulence 

regulation and basic cellular functions and employs cyclic di-GMP as a 

second messenger  

X.c.c. posseses a previously unknown cell-to-cell communication system that 

might be shared among bacterial species [44]. This system relies on a diffusible 

signal factor (DSF) that has been linked to the regulation of motility, toxin and 

oxidative stress resistance, aerobic respiration [45], biofilm dispersal, and 

extracellular enzyme and EPS production [46] (Figure 3a). DSF (cis-11-methyl-2-

dodecenoic acid) is synthesized by products of the rpf virulence regulation cluster 

genes rpfB and rpfF [44]. DSF accumulates in early stationary phase and is 
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sensed by a unique two-component signal transduction system consisting of 

RpfC and RpfG. This leads to degradation of cyclic di-GMP [47]. Cyclic di-GMP  

Figure 3.  

 

Figure 3. The global virulence regulation of X.c.c. and P.s. The coloration, 

layout and arrow designations are the same as Figure 2. a. Xanthomonas 

campestris pv. campstris. The global regulator is the small molecule cyclic di-



 

17 
 

GMP. Cyclic di-GMP is upregulated by cell-to-cell communication via a unique 

TCST system.  Cyclic di-GMP levels subsequently affect biofilm formation, 

extracellular enzymes, EPS and the T3SS. b. Pseudomonas syringae pv. 

tomato. The global regulation system in P.s.t. is the GacA/S TCST system. GacA 

is known to directly or indirectly regulate quorum sensing, coronatine production, 

the T3SS, motility, and pigment production. 

 

was first described as an activator of bacterial cellulose synthase by Ross et al. 

[48] but was subsequently ascribed global regulatory functions (reviewed in [49]). 

Decreased levels of cyclic di-GMP in X.c.c. lead to dispersal of biofilms, 

increased production of EPS and extracellular enzymes, and alterations in T3SS 

expression [50]. Cyclic di-GMP is also involved in the regulation of iron up-take, 

metabolic activities, LPS production, multi-drug resistance and detoxification, but 

the regulatory network(s) responsible for cyclic di-GMP–dependent activation are 

poorly understood. He et al. used microarray data to identify three heirarchal 

transcription regulators (Clp, Zur, FhrR) downstream of cyclic di-GMP activation 

that are involved in EPS, T3SS, and extracellular enzyme production among 

other cellular functions [51] [52].  This novel and pleiotropic regulation system 

links virulence to basic, essential cellular functions. 

 

P.s. cell-to-cell communication impinges on a central regulation system, 

GacA/S, and is needed for both early and late stages of disease 
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Unlike the three systems described above, the cell-to-cell communication system 

of P.s. does not appear to be the first step in the regulatory hierarchy of 

virulence, controlling a regulatory molecule that subsequently integrates many 

virulence responses. Instead, it is the virulence integrating GacA/S TCST system 

(described below) that controls the AhlI/R (LuxI/R-homologous) quorum sensing 

system in combination with the TetR-family transcription activator AefR [53] 

(Figure 3b).  The AhlI/R (LuxI/R-homologues) system is significant for the 

regulation of intercellular host tissue maceration [54] and epiphytic fitness [55] 

because it controls EPS production and swarming motility in diverse 

environments [54]. By regulating swarming motility, quorum sensing becomes a 

means to disperse epiphytic aggregates on the leaf surface. Quorum sensing 

mutants are also unable to macerate tissue at later stages of infection. Therefore, 

the AhlI/R system is significant for regulating virulence at various stages of 

infection.  The complete regulon controlled by AhlI/R, and the mechanisms by 

which it is regulated, are unknown. 

 

II. Two-Component Signal Transduction (TCST) systems provide 

environmental signal input to global virulence regulation 

TCST systems are commonly used by bacteria to sense and adapt to 

extracellular environmental signals. The two common, and very well studied, 

components are a membrane-bound sensor kinase and a cognate, cytoplasmic 

response regulator (reviewed in [56]). Subsequent to signal perception, the 

cytoplasmic response regulator is either activated or inactivated by 
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phosphorylation. The response regulator can carry out a variety of tasks, 

including transcriptional regulation and protein-protein interactions.  In the 

phytopathogens discussed in this review, TCST systems are typically used to 

directly regulate single or a small number of related virulence determinants, while 

only a few TCST systems have global effects on virulence.  

 

TCST systems in R.s., P.c. and X.c.c complement global virulence 

regulation 

 In R. s., it appears that global virulence regulation is coordinated by quorum 

sensing (see above), and TCST systems play ancillary roles in virulence 

regulation. For example, the sensor kinase / response regulator pairs VsrA/D and 

VsrB/C, respectively, both act in combination with PhcA (discussed above) to 

regulate a key virulence factor, EPS (reviewed in [22]), Together, activated VsrD, 

and PhcA activate XpsR, an atypical response regulator [27, 57] (Figure 2a).  

Activated XpsR, together with activated VsrC initiates transcription of the 16kb 

eps operon, responsible for production exopolysaccharide 1 (EPS I) [22, 58]. 

Additionally, R.s. uses the NtrB/C-like TCST system PehS/R. PehS/R acts in 

opposition with VsrC to activate the transcription of pglA, one of three 

polygalacturonases used to degrade the plant cell wall. In addition VscR 

activates swimming and twitching motility (Figure 2a) [59]. 

 

Similarly, P.c. deploys TCST systems that are activated independently from the 

global regulator RsmA and play ancillary roles in virulence regulation. For 
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example, the PehS/R TCST system in P.c. also regulates PCWDEs (Figure 2b) 

as the system with the same name does in R.s. However the PehS/R in P.c. is 

not a member of the NtrB/C family like the R.s. PehS/R. Instead, it is a member 

of the EnvZ/OmpR family of the TCST systems [60]. Notably, this system is 

homologous to the PhoP/Q system that regulates virulence throughout the 

Enterobacteria, suggesting that the theme of ancillary roles for TCST systems in 

virulence regulation extends beyond phytopathogens [60].  

 

The OmpR-family response regulator of Xanthomonas campestris species, 

HrpG, regulates the T3SS [61] (Figure 3a). Although a cognate sensor kinase for 

this response regulator has not been identified, this finding suggests that a TCST 

might be involved in T3SS regulation, in addition to the cyclic di-GMP 

interactions, which are regulated by quorum sensing (discussed above). The lack 

of an identified cognate sensor kinase suggests the possibility of cross-talk 

between multiple systems and/or redundancy in the function of a sensor kinase. 

Future studies on HrpG activation will be useful in understanding this seemingly 

incomplete TCST system, and will define the cues for T3SS system expression.  

 

These are exemplary cases of TCST systems that contribute supplemental 

regulatory function to global virulence regulation networks. However, a recent 

study using reporter gene studies has shown R.s. VsrA is a direct regulator of 

motility, T3SS and quorum sensing, suggesting more than a supplemental role in 

virulence regulation that may involve secondary metabolism [62] (Figure 2a). 



 

21 
 

Although the mechanisms of this regulation are unknown, further studies and 

fully identified regulons of TCST systems might shift our view of their roles in 

global virulence regulation. 

 

The GacA/S and RpfC/G TCST systems are exceptional in their global 

impact on virulence 

 

The GacA/S system is crucial to virulence regulation in both P.c. and P.s. 

 

In contrast to all other TCST systems discussed so far, the GacA/S TCST system 

plays a key global role in virulence regulation. The Gac system is found in a 

variety of Gram-negative bacteria and its name was coined from Pseudomonas 

fluorescens as the global regulator of antibiotic and cyanide production [63], 

although the homologue LemA (lesion manifestation) was identified first in P.s. 

[64]. The Gac system in P.c. and P.s interacts with the Rsm global virulence 

regulation system. Activated GacA increases the expression of the functional 

RNA rsmB, which down regulates RsmA, allowing translation of RsmA targeted 

mRNAs. 

 

The Gac system is the central virulence regulator in P.s. 

 

The GacA/S TCST system is directly or indirectly involved in the regulation of 

every known virulence factor in P.s. including coronatine phytotoxin, EPS, and 
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the T3SS and its effectors [65]. The GacA/S system achieves this breadth by 

positively regulating the quorum sensing system, crucial to motility and EPS 

regulation, and the sigma factors RpoS, RpoN and HrpL (Figure 3b) [65]. The 

Gac system is activated in the host apoplast by a combination of signals, 

including low pH, low osmolarity, sucrose or fructose sugars and a lack of 

complex carbon and nitrogen sources [65, 66]. However the exact signal(s) GacS 

receives and the mechanism of GacA-GacS interaction remain unknown. 

Additionally, the molecular means by which GacA/S regulates downstream 

regulators is largely unknown. Answers to these questions should reveal how a 

pathogen like P.s. relies so heavily on a TCST system that functions in one of 

two states, inactivated or activated, while coordinating quantitative, analogue 

outputs like the expression of virulence factors. 

 

The RpfC/G TCST system in X.c.c. links cell-to-cell signaling to diverse 

behavioral changes 

Unlike in P.s. and P.c., a well-characterized TCST system constitutes the novel 

cell-to-cell communication system of X.c.c. The unique RpfC/RpfG TCST system, 

described above, is not only central to cell-to-cell communication but also to the 

regulation of diverse behaviors mediated via the degradation of cyclic di-GMP 

(Figure 3a).  RpfC is a hybrid membrane-bound, bi-functional sensor kinase 

composed of three distinct functional domains that autophosphorylate and 

phosphorelay to both activate RpfG and repress DSF biosynthesis. RpfG is a 

novel cyclic di-GMP phosphodiesterase that degrades the bacterial second 



 

23 
 

messenger cyclic di-GMP [67, 68]. As mentioned above, cyclic di-GMP has 

global regulatory functions, but the proteins with which it interacts downstream of 

RpfG are only beginning to be identified. Thus, the RpfC/G TCST system 

appears to connect large-scale virulence regulation with cell-to-cell 

communication. However, the many gaps that exist in the network could, when 

discovered, change our perception of the importance of RpfC and RpfG in global 

virulence regulation. 

 

III. T3SS gene expression is regulated by AraC-Type regulators or 

alternative sigma factors.  

 

 AraC-Type Regulators regulate T3SS expression in R.s. and X.c.c. 

 

AraC-type regulators commonly have important virulence regulation roles in 

association with T3SSs in animal and plant bacterial pathogens. Particularly in 

enterobacterial pathogens such as Salmonella, Shigella, Yersinia and E. coli, 

AraC-like regulators are key activators of T3SS expression. Pseudomonas 

aeruginosa also relies on an AraC-like transcription activator, ExsA, to regulate 

the T3SS [69]. Interestingly, neither P.s. nor P.c. use AraC-like proteins to 

regulate their T3SS, while R.s. and X.c.c. do. In R.s., the response regulator 

HrpG responds to contact with the plant cell wall via PrhA and activates the 

expression of the AraC-like HrpB  [28, 70] (Figure 2a). HrpB activates the hrp 

regulon (T3SS) promoters by binding a specific PIP box sequence [71, 72]. HrpB 
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in R.s. also regulates chemotaxis and siderophore expression, and generally 

coordinates expression of virulence genes, but by unknown means [70][73]. In 

Xanthomonas campestris, the response regulator HrpG also activates the 

expression of the AraC-like regulator HrpX [61, 71] (Figure 3a). HrpX and HrpB 

are related, and mutation of HrpX can be complemented by HrpB. While the 

significance of AraC-like regulators is clear in T3SS regulation, the means by 

which they influence global virulence regulation has not been fully established. 

 

Alternative Sigma Factors regulate T3SS and more 

 

A major theme across T3SS regulation in phytopathogens is the use of 

alternative sigma factors. Sigma factors are essential transcription initiation 

factors that direct RNA polymerase to bind specific promoter regions. In P.s. and 

P.c., the alternative sigma factor responsible for activating the expression of the 

whole T3SS and the effectors is HrpL [15]. HrpL is a member of the 

extracytoplasmic function (ECF) sigma factor family, a family significant for 

controlling transcription during stress responses and morphological changes [74]. 

In both P.c. and P.s., another sigma factor, RpoN/sigma-54 activates the 

expression of HrpL (Figures 2b and 3b). Additionally, specific NtrC-like 

transcription activators regulate HrpL expression in both cases: HrpR and HrpS 

in P.s. [44] and HrpS in Erwinia and Pectobacterium species [21, 75] (reviewed in  

[76]). In P.s. HrpR/S activation of the T3SS might be reinforced by the 

transcription activator SalA [65], but repressed by Lon protease via protein 
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degredation by HrpR  [77].The alternative sigma factor, PrhI, in R.s. is regulated 

by the signal transducer PrhR/A, activated by contact with the plant cell wall. PrhI 

then activates expression of the transcription activator PrhJ, which is then 

responsible for activating the expression of HrpG [78] (Figure 2a). While HrpL 

and PrhI have been studied in relation to T3SS regulation, whole genome 

expression profiling studies have begun to expand our knowledge of their 

regulons beyond T3SS gene expression. Most notably, the regulon of HrpL in 

P.s. pv. tomato has recently been expanded to include protein synthesis, 

metabollic genes [79] and might include the coronatine phytotoxin regulator, 

CorR [76].  

 

 

CONCLUDING REMARKS 

 

Phytopathogens coordinate transitions in life-histories and infection strategies by 

collecting information from the host plant, the environment, and their own 

population density. These inputs result in a collection of virulence outputs in each 

species determined by integrated, global regulation networks. The current 

evidence indicates that virulence regulation networks in the phytopathogens we 

profile here center on global regulators and cell-density dependent regulation. 

Complementary TCST systems provide environmental signal inputs to virulence 

regulation networks. AraC-type regulators and alternative sigma factors, 

historically significant for T3SS regulation, have global regulatory impacts which 



 

26 
 

are supplemental to global regulators. Many questions still remain in each 

species, such as the specific environmental factors that trigger regulators; the 

use of DNA microarrays and genome sequences is advancing our knowledge 

quickly. Despite common mechanisms and themes among the phytopathogens 

we discuss, phylogenetic comparisons of their DNA sequences reveals that each 

species is more closely related to non-plant pathogen species than they are to 

each other [80]. Identifying how common mechanisms and horizontally acquired 

virulence determinants have become incorporated into global regulation networks 

might be the next step in understanding a phytopathogens’ success in infection 

processes and their own biological niches. 

 

The main question we wish to address in this dissertation is how P. carotovorum 

coordinately deploys stealth virulence determinants, like the T3SS, and brute-

force, the T2SS, and what environmental signals are inputs to the virulence 

network described above.  This review allows us to identify key regulators in P. 

carotovorum, such as HrpL, rsmB, KdgR, and their downstream outputs, which 

we will use as the basis for dissecting virulence responses. In the following 

chapters, we will discuss data that furthers our understanding of how P. 

carotovorum differentially regulates virulence determinants, like the T3SS, during 

different infection routes using its global virulence network and metabolism 

signals that are inputs to this network. 

 

 



 

27 
 

  LITERATURE CITED: 

 

1. Drancourt, M. and D. Raoult, Molecular insights into the history of 
plague.Microbes Infect, 2002. 4(1): p. 105-9. 

 
2. Nelson, E.J., et al., Cholera transmission: the host, pathogen and 

bacteriophage dynamic. Nat Rev Microbiol, 2009. 7(10): p. 693-702. 
 
3. Charkowski, A.O., Decaying signals: will understanding bacterial-plant 

communications lead to control of soft rot? Curr. Opin. Biotechnol., 2009. 
20(2): p. 178-84. 

 
4. Yap, M.N., J.D. Barak, and A.O. Charkowski, Genomic diversity of Erwinia 

carotovora subsp. carotovora and its correlation with virulence. Appl 
Environ Microbiol, 2004. 70(5): p. 3013-23. 

 
5. Allen, C., S. Reverchon, and J. Robert-Baudouy, Nucleotide sequence of 

the Erwinia chrysanthemi gene encoding 2-keto-3-deoxygluconate 
permease. Gene, 1989. 83(2): p. 233-41. 

 
6. Lagaert, S., T. Belien, and G. Volckaert, Plant cell walls: Protecting the 

barrier from degradation by microbial enzymes. Semin. Cell Dev. Biol., 
2009. 20(9): p. 1064-73. 

 
7. Matsumoto, H., et al., Comparative study of regulatory mechanisms for 

pectinase production by Erwinia carotovora subsp. carotovora and Erwinia 
chrysanthemi. Mol. Plant Microbe Interact., 2003. 16(3): p. 226-37. 

 
8. Rojas, C.M., et al., HecA, a member of a class of adhesins produced by 

diverse pathogenic bacteria, contributes to the attachment, aggregation, 
epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi 
EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A, 2002. 
99(20): p. 13142-7. 

 
9. Marits, R., et al., Regulation of the expression of prtW::gusA fusions in 

Erwinia carotovora subsp. carotovora. Microbiology, 2002. 148(Pt 3): p. 
835-42. 

 
10. Rantakari, A., et al., Type III secretion contributes to the pathogenesis of 

the soft-rot pathogen Erwinia carotovora: partial characterization of the hrp 
gene cluster. Mol Plant Microbe Interact, 2001. 14(8): p. 962-8. 

 



 

28 
 

11. Gophna, U., E.Z. Ron, and D. Graur, Bacterial type III secretion systems 
are ancient and evolved by multiple horizontal-transfer events. Gene, 
2003. 312: p. 151-63. 

 
12. Nomura, K., M. Melotto, and S.Y. He, Suppression of host defense in 

compatible plant-Pseudomonas syringae interactions. Curr Opin Plant 
Biol, 2005. 8(4): p. 361-8. 

 
13. Belkhadir, Y., R. Subramaniam, and J.L. Dangl, Plant disease resistance 

protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant 
Biol, 2004. 7(4): p. 391-9. 

 
14. Chang, J.H., et al., A high-throughput, near-saturating screen for type III 

effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. U.S.A., 
2005. 102(7): p. 2549-54. 

 
15. Chatterjee, A., Y. Cui, and A.K. Chatterjee, Regulation of Erwinia 

carotovora hrpL(Ecc) (sigma-L(Ecc)), which encodes an extracytoplasmic 
function subfamily of sigma factor required for expression of the HRP 
regulon. Mol Plant Microbe Interact, 2002. 15(9): p. 971-80. 

 
16. Toth, I.K. and P.R. Birch, Rotting softly and stealthily. Curr Opin Plant Biol, 

2005. 8(4): p. 424-9. 
 
17. Barnard, A.M. and G.P. Salmond, Quorum sensing in Erwinia species. 

Anal Bioanal Chem, 2007. 387(2): p. 415-23. 
 
18. Cui, Y., et al., rsmC of the soft-rotting bacterium Erwinia carotovora subsp. 

carotovora negatively controls extracellular enzyme and harpin(Ecc) 
production and virulence by modulating levels of regulatory RNA (rsmB) 
and RNA-binding protein (RsmA). J Bacteriol, 1999. 181(19): p. 6042-52. 

 
19. Liu, Y., et al., Characterization of a novel RNA regulator of Erwinia 

carotovora ssp. carotovora that controls production of extracellular 
enzymes and secondary metabolites. Mol Microbiol, 1998. 29(1): p. 219-
34. 

 
20. Mukherjee, A., et al., hexA of Erwinia carotovora ssp. carotovora strain 

Ecc71 negatively regulates production of RpoS and rsmB RNA, a global 
regulator of extracellular proteins, plant virulence and the quorum-sensing 
signal, N-(3-oxohexanoyl)-L-homoserine lactone. Environ Microbiol, 2000. 
2(2): p. 203-15. 

 
21. Wei, Z., J.F. Kim, and S.V. Beer, Regulation of hrp genes and type III 

protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-



 

29 
 

component system, and HrpS. Mol Plant Microbe Interact, 2000. 13(11): p. 
1251-62. 

 
22. Schell, M.A., Control of Virulence and Pathogenicity Genes of Ralstonia 

Solanacearum by an Elaborate Sensory Network. Annu Rev Phytopathol, 
2000. 38: p. 263-292. 

 
23. Crossman, L. and J.M. Dow, Biofilm formation and dispersal in 

Xanthomonas campestris. Microbes Infect, 2004. 6(6): p. 623-9. 
 
24. Brumbley, S.M., B.F. Carney, and T.P. Denny, Phenotype conversion in 

Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a 
putative LysR transcriptional regulator. J Bacteriol, 1993. 175(17): p. 
5477-87. 

 
25. Clough, S.J., et al., A two-component system in Ralstonia (Pseudomonas) 

solanacearum modulates production of PhcA-regulated virulence factors 
in response to 3-hydroxypalmitic acid methyl ester. J Bacteriol, 1997. 
179(11): p. 3639-48. 

 
26. Flavier, A.B., et al., Identification of 3-hydroxypalmitic acid methyl ester as 

a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol 
Microbiol, 1997. 26(2): p. 251-9. 

 
27. Huang, J., et al., Joint transcriptional control of xpsR, the unusual signal 

integrator of the Ralstonia solanacearum virulence gene regulatory 
network, by a response regulator and a LysR-type transcriptional activator. 
J Bacteriol, 1998. 180(10): p. 2736-43. 

 
28. Genin, S., et al., Control of the Ralstonia solanacearum Type III secretion 

system (Hrp) genes by the global virulence regulator PhcA. FEBS Lett, 
2005. 579(10): p. 2077-81. 

 
29. Bhatt, G. and T.P. Denny, Ralstonia solanacearum iron scavenging by the 

siderophore staphyloferrin B is controlled by PhcA, the global virulence 
regulator. J Bacteriol, 2004. 186(23): p. 7896-904. 

 
30. Flavier, A.B., et al., Hierarchical autoinduction in Ralstonia solanacearum: 

control of acyl-homoserine lactone production by a novel autoregulatory 
system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol, 
1997. 179(22): p. 7089-97. 

 
31. Pirhonen, M., et al., A small diffusible signal molecule is responsible for 

the global control of virulence and exoenzyme production in the plant 
pathogen Erwinia carotovora. Embo J, 1993. 12(6): p. 2467-76. 

 



 

30 
 

32. Welch, M., et al., N-acyl homoserine lactone binding to the CarR receptor 
determines quorum-sensing specificity in Erwinia. Embo J, 2000. 19(4): p. 
631-41. 

 
33. Sjoblom, S., et al., Cooperation of two distinct ExpR regulators controls 

quorum sensing specificity and virulence in the plant pathogen Erwinia 
carotovora. Mol Microbiol, 2006. 60(6): p. 1474-89. 

 
34. Cui, Y., et al., ExpR, a LuxR homolog of Erwinia carotovora subsp. 

carotovora, activates transcription of rsmA, which specifies a global 
regulatory RNA-binding protein. J Bacteriol, 2005. 187(14): p. 4792-803. 

 
35. White, D., M.E. Hart, and T. Romeo, Phylogenetic distribution of the global 

regulatory gene csrA among eubacteria. Gene, 1996. 182(1-2): p. 221-3. 
 
36. Whitehead, N.A., et al., The regulation of virulence in phytopathogenic 

Erwinia species: quorum sensing, antibiotics and ecological 
considerations. Antonie Van Leeuwenhoek, 2002. 81(1-4): p. 223-31. 

 
37. Baker, C.S., et al., CsrA regulates glycogen biosynthesis by preventing 

translation of glgC in Escherichia coli. Mol Microbiol, 2002. 44(6): p. 1599-
610. 

 
38. Mukherjee, A., et al., RpoS (sigma-S) controls expression of rsmA, a 

global regulator of secondary metabolites, harpin, and extracellular 
proteins in Erwinia carotovora. J Bacteriol, 1998. 180(14): p. 3629-34. 

 
39. Cui, Y., et al., Identification of a global repressor gene, rsmA, of Erwinia 

carotovora subsp. carotovora that controls extracellular enzymes, N-(3-
oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting 
Erwinia spp. J Bacteriol, 1995. 177(17): p. 5108-15. 

 
40. Romeo, T., Global regulation by the small RNA-binding protein CsrA and 

the non-coding RNA molecule CsrB. Mol Microbiol, 1998. 29(6): p. 1321-
30. 

 
41. Cui, Y., A. Chatterjee, and A.K. Chatterjee, Effects of the two-component 

system comprising GacA and GacS of Erwinia carotovora subsp. 
carotovora on the production of global regulatory rsmB RNA, extracellular 
enzymes, and harpinEcc. Mol Plant Microbe Interact, 2001. 14(4): p. 516-
26. 

 
42. Liu, Y., et al., kdgREcc negatively regulates genes for pectinases, 

cellulase, protease, HarpinEcc, and a global RNA regulator in Erwinia 
carotovora subsp. carotovora. J Bacteriol, 1999. 181(8): p. 2411-21. 



 

31 
 

43. Valverde, C., et al., A repeated GGA motif is critical for the activity and 
stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol 
Chem, 2004. 279(24): p. 25066-74. 

 
44. Wang, L.H., et al., A bacterial cell-cell communication signal with cross-

kingdom structural analogues. Mol Microbiol, 2004. 51(3): p. 903-12. 
 
45. He, Y.W., et al., Genome scale analysis of diffusible signal factor regulon 

in Xanthomonas campestris pv. campestris: identification of novel cell-cell 
communication-dependent genes and functions. Mol Microbiol, 2006. 
59(2): p. 610-22. 

 
46. Dow, J.M., et al., Biofilm dispersal in Xanthomonas campestris is 

controlled by cell-cell signaling and is required for full virulence to plants. 
Proc Natl Acad Sci U S A, 2003. 100(19): p. 10995-1000. 

 
47. Slater, H., et al., A two-component system involving an HD-GYP domain 

protein links cell-cell signalling to pathogenicity gene expression in 
Xanthomonas campestris. Mol Microbiol, 2000. 38(5): p. 986-1003. 

 
48. Ross, P., et al., Regulation of cellulose synthesis in Acetobacter xylinum 

by cyclic diguanylic acid. Nature, 1987. 325: p. 279-281. 
 
49. Romling, U. and D. Amikam, Cyclic di-GMP as a second messenger. Curr 

Opin Microbiol, 2006. 9(2): p. 218-28. 
 
50. Fouhy, Y., et al., Cell-cell signaling, cyclic di-GMP turnover and regulation 

of virulence in Xanthomonas campestris. Res Microbiol, 2006. 157(10): p. 
899-904. 

 
51. He, Y.W., et al., Xanthomonas campestris cell-cell communication 

involves a putative nucleotide receptor protein Clp and a hierarchical 
signalling network. Mol Microbiol, 2007. 

 
52. Hsiao, Y.M., et al., Clp and RpfF up-regulate transcription of pelA1 gene 

encoding the major pectate lyase in Xanthomonas campestris pv. 
campestris. J Agric Food Chem, 2009. 57(14): p. 6207-15. 

 
53. Quinones, B., C.J. Pujol, and S.E. Lindow, Regulation of AHL production 

and its contribution to epiphytic fitness in Pseudomonas syringae. Mol 
Plant Microbe Interact, 2004. 17(5): p. 521-31. 

 
54. Quinones, B., G. Dulla, and S.E. Lindow, Quorum sensing regulates 

exopolysaccharide production, motility, and virulence in Pseudomonas 
syringae. Mol Plant Microbe Interact, 2005. 18(7): p. 682-93. 



 

32 
 

55. Monier, J.M. and S.E. Lindow, Differential survival of solitary and 
aggregated bacterial cells promotes aggregate formation on leaf surfaces. 
Proc Natl Acad Sci U S A, 2003. 100(26): p. 15977-82. 

 
56. Beier, D. and R. Gross, Regulation of bacterial virulence by two-

component systems. Curr Opin Microbiol, 2006. 9(2): p. 143-52. 
 
57. Huang, J., et al., A complex network regulates expression of eps and 

other virulence genes of Pseudomonas solanacearum. J Bacteriol, 1995. 
177(5): p. 1259-67. 

 
58. Garg, R.P., et al., Multicomponent transcriptional regulation at the 

complex promoter of the exopolysaccharide I biosynthetic operon of 
Ralstonia solanacearum. J Bacteriol, 2000. 182(23): p. 6659-66. 

 
59. Allen, C., J. Gay, and L. Simon-Buela, A regulatory locus, pehSR, controls 

polygalacturonase production and other virulence functions in Ralstonia 
solanacearum. Mol Plant Microbe Interact, 1997. 10(9): p. 1054-64. 

 
60. Flego, D., et al., A two-component regulatory system, pehR-pehS, controls 

endopolygalacturonase production and virulence in the plant pathogen 
Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact, 2000. 
13(4): p. 447-55. 

 
61. Wengelnik, K., G. Van den Ackerveken, and U. Bonas, HrpG, a key hrp 

regulatory protein of Xanthomonas campestris pv. vesicatoria is 
homologous to two-component response regulators. Mol Plant Microbe 
Interact, 1996. 9(8): p. 704-12. 

 
62. Schneider, P., et al., The global virulence regulators VsrAD and PhcA 

control secondary metabolism in the plant pathogen Ralstonia 
solanacearum. Chembiochem, 2009. 10(17): p. 2730-2. 

 
63. Laville, J., et al., Global control in Pseudomonas fluorescens mediating 

antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl 
Acad Sci U S A, 1992. 89(5): p. 1562-6. 

 
64. Hrabak, E.M. and D.K. Willis, The lemA gene required for pathogenicity of 

Pseudomonas syringae pv. syringae on bean is a member of a family of 
two-component regulators. J Bacteriol, 1992. 174(9): p. 3011-20. 

 
65. Chatterjee, A., et al., GacA, the response regulator of a two-component 

system, acts as a master regulator in Pseudomonas syringae pv. tomato 
DC3000 by controlling regulatory RNA, transcriptional activators, and 
alternate sigma factors. Mol Plant Microbe Interact, 2003. 16(12): p. 1106-
17. 



 

33 
 

 
66. Rahme, L.G., M.N. Mindrinos, and N.J. Panopoulos, Plant and 

environmental sensory signals control the expression of hrp genes in 
Pseudomonas syringae pv. phaseolicola. J Bacteriol, 1992. 174(11): p. 
3499-507. 

 
67. Dow, J.M., et al., The HD-GYP domain, cyclic di-GMP signaling, and 

bacterial virulence to plants. Mol Plant Microbe Interact, 2006. 19(12): p. 
1378-84. 

 
68. Ryan, R.P., et al., Cell-cell signaling in Xanthomonas campestris involves 

an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc 
Natl Acad Sci U S A, 2006. 103(17): p. 6712-7. 

 
69. Francis, M.S., H. Wolf-Watz, and A. Forsberg, Regulation of type III 

secretion systems. Curr Opin Microbiol, 2002. 5(2): p. 166-72. 
 
70. Valls, M., S. Genin, and C. Boucher, Integrated regulation of the type III 

secretion system and other virulence determinants in Ralstonia 
solanacearum. PLoS Pathog, 2006. 2(8): p. e82. 

 
71. Koebnik, R., et al., Specific binding of the Xanthomonas campestris pv. 

vesicatoria AraC-type transcriptional activator HrpX to plant-inducible 
promoter boxes. J Bacteriol, 2006. 188(21): p. 7652-60. 

 
72. Mukaihara, T., et al., Genetic screening of Hrp type III-related 

pathogenicity genes controlled by the HrpB transcriptional activator in 
Ralstonia solanacearum. Mol Microbiol, 2004. 54(4): p. 863-75. 

 
73. Occhialini, A., et al., Genome-wide analysis of gene expression in 

Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory 
switch controlling multiple virulence pathways. Mol Plant Microbe Interact, 
2005. 18(9): p. 938-49. 

 
74. Helmann, J.D., The extracytoplasmic function (ECF) sigma factors. Adv 

Microb Physiol, 2002. 46: p. 47-110. 
 
75. Hutcheson, S.W., et al., Enhancer-binding proteins HrpR and HrpS 

interact to regulate hrp-encoded type III protein secretion in Pseudomonas 
syringae strains. J Bacteriol, 2001. 183(19): p. 5589-98. 

 
76. Tang, X., Y. Xiao, and J.M. Zhou, Regulation of the type III secretion 

system in phytopathogenic bacteria. Mol Plant Microbe Interact, 2006. 
19(11): p. 1159-66. 



 

34 
 

77. Losada, L.C. and S.W. Hutcheson, Type III secretion chaperones of 
Pseudomonas syringae protect effectors from Lon-associated 
degradation. Mol Microbiol, 2005. 55(3): p. 941-53. 

 
78. Brito, B., et al., A signal transfer system through three compartments 

transduces the plant cell contact-dependent signal controlling Ralstonia 
solanacearum hrp genes. Mol Plant Microbe Interact, 2002. 15(2): p. 109-
19. 

 
79. Ferreira, A.O., et al., Whole-genome expression profiling defines the HrpL 

regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo 
reconstruction of the Hrp cis clement, and identifies novel coregulated 
genes. Mol Plant Microbe Interact, 2006. 19(11): p. 1167-79. 

 
80. de Souza, J.T., M. Mazzola, and J.M. Raaijmakers, Conservation of the 

response regulator gene gacA in Pseudomonas species. Environ 
Microbiol, 2003. 5(12): p. 1328-40. 

 
 



 
 

CHAPTER 2 : Niche-specificity and the variable fraction of the 
Pectobacterium pan-genome 

 
ABSTRACT: 

In this chapter, we compare genome sequences of three closely related soft rot 

pathogens that vary in host range and geographical distribution to identify genetic 

differences that could account for lifestyle differences. This work was done in 

collaboration with Jeremy Glasner, Nicole Perna, and Amy Charkowski at the 

University of Wisconsin.  My contribution to this work includes preparing DNA 

that was used for genome sequencing, assisting with the annotation of the 

genome, and manuscript preparation. The isolates compared, Pectobacterium 

atrosepticum SCRI1043, Pectobacterium carotovorum WPP14 and 

Pectobacterium brasiliensis 1692, represent diverse lineages of the genus. Pc 

and Pb genome contigs generated by 454 pyrosequencing ordered by reference 

to the previously published complete circular chromosome of Pa genome, and 

each other, account for 96% of the predicted genome size. Orthologous proteins 

encoded by Pc and Pb are about 95% identical to each other and 92% identical 

to Pa.  Multiple alignment using Mauve identified a core genome of 3.9 Mb 

conserved among these Pectobacterium species. Each core genome is 

interrupted at many points by species-specific insertions or deletions (indels) that 

account for about 0.9-1.1 Mb. We demonstrate that the presence of a hrpK-like 

type III secretion system dependent effector protein in Pc and Pb, and its 

absence from Pa is insufficient to explain variability in their response to infection 

in a plant. Additional genes that vary among these species include those 

encoding peptide toxin production, enzyme production, secretion proteins, and 
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antibiotic production, as well as differences in more general aspects of gene 

regulation and metabolism that may be relevant to pathogenicity.  

 

INTRODUCTION 

 

Comparative genomics can reveal physiological and functional variation among 

bacteria that provides insight into their ability to exploit distinct ecological niches. 

For plant pathogenic bacteria, key factors related to interaction with a plant host 

have emerged from comparisons with closely related animal-associated bacteria. 

For example, identification of gene clusters, or islands, that distinguish a single 

plant-pathogenic Pectobacterium genome from those of other enterobacteria that 

infect animals, like Escherichia and Salmonella, revealed known and novel 

virulence factors, many of which are also found in more distantly related plant 

pathogens [1, 2]. Comparison of more closely related genomes can be 

particularly useful for illuminating niche adaptation, in part simply because the 

level of observed genetic variation is lower, simplifying reconstruction of both the 

evolutionary history and the phenotypic consequences of individual 

polymorphisms. Intra-specific comparisons of genomes from strains of both 

Pseudomonas syringae and Xanthomonas campestris with diverse host ranges 

revealed differences including the type and number of type III secreted proteins 

[3-5]. These can affect host range either by suppressing host defenses, enabling 

the growth of a pathogen, or conversely, they can trigger a strong resistance 
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response blocking pathogen growth if an individual type III secreted protein is 

recognized by a cognate resistance protein in the host [6].  

 

There are no previous intra-specific genome sequence comparisons for plant-

associated enterobacteria, but several groups of animal-associated 

enterobacteria have been sampled fairly extensively. Early comparisons revealed 

that only 40% of the total distinct protein coding sequences are shared among 

the model Escherichia coli K12 strain, an enterohemorrhagic strain, and a 

uropathogenic strain [7] despite the fact that over 3.5 Mb of the 4.5-5.5 Mb core 

genome is conserved among all three. This pattern has been observed in other 

groups of bacteria [8, 9] leading to the concept of a pan-genome, or the complete 

collection of genes in the species, only a fraction of which are found in any given 

strain. Importantly, as additional genomes (lineages) of a species are added to 

comparisons, the fraction of genes conserved, or core genome, declines 

relatively slowly for most bacteria, reflecting the relative stability of core metabolic 

and information processing related gene-content. In contrast, some 

“cosmopolitan” species, like E. coli and Streptococcus agalactiae have a much 

larger and dynamic pan-genome, with the variable fraction composed of the sum 

total of many distinct lineage-specific gene clusters, or islands, acquired through 

horizontal gene transfer. Mathematical models predict that even relatively well-

sampled lineages like E. coli will continue to yield novel genes as more strains 

are sequenced [10]. For plant-pathogenic enterobacteria, with one published 

genome sequence, characterization of the pan-genome is in its infancy. 
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The soft rot pectobacteria (previously known as Erwinia carotovora) are 

economically important plant pathogenic enterobacteria. Pectobacterium species 

cause a spectrum of disease symptoms, termed wilt, soft rot, and blackleg on a 

wide range of monocot and dicot host plants. These diseases are responsible for 

large economic losses during potato and ornamental production. Pectobacterium 

have been isolated from numerous plant hosts, soil, and both surface and ground 

water [11, 12]. Pectobacterium have also been found in association with a variety 

of invertebrates, ranging from fruit flies to snails [13-15]. These invertebrates play 

an important role in the spread of soft rot bacteria between plant hosts and may 

also respond to the plant pathogen. For example, Basset et al. [16] showed that 

fruit flies have an immune response when inoculated with Pectobacterium. 

 

The genus Pectobacterium was recently resurrected and four Erwinia carotovora 

subspecies were renamed as different Pectobacterium species; P. atrosepticum, 

P. betavasculorum, P. carotovorum, and P. wasabiae [17]. Concurrently, a 

potential fifth species, originally named E. carotovora subsp. brasiliensis was 

described as causing blackleg on potatoes in Brazil [18]. This species is 

phylogenetically distinct from the other four Pectobacterium species [19] and will 

be referred to herein as P. brasiliensis. The pathogens P. carotovorum [20], P. 

atrosepticum [21], P. brasiliensis [22] and P. wasabiae [23] all cause disease on 

potato. Multiple species may cause disease in the same field, and even on the 

same individual plant. Pc is found in many climates worldwide, Pa is found in 
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cool climates worldwide, and Pb has only been reported in Brazil, Israel, and the 

United States, but is likely to have a wider distribution [19]. Of the potato-infecting 

species, Pc, Pb, and Pw have all been reported to cause disease on other plant 

species and are thus broad host range pathogens, while Pa appears to be limited 

to potato and closely related solanaceous crops. The genetic differences that 

limit the host range of Pa in comparison to other Pectobacterium species are 

unknown.  

 

In order to identify variation between subspecies that could provide clues to the 

nature of differences in host range, nutritional requirements and species niches 

in the Pectobacteria, we compared the genome sequences of three isolates that 

were phlyogentically well distributed. A phylogenetic analysis based on 

sequencing fragments of seven housekeeping genes from bacterial soft rot 

isolates collected from diverse locations around the world revealed that the 

Pectobacterium species could be classified into a monophyletic group distinct 

from the broad host range soft rot pathogen Dickeya [24] and the tree pathogen 

Brenneria. The pectobacteria could be divided into 5 clades related by 

monophyletic descent [19]. We chose the previously sequenced strain Pa 

SCRI1043 representing Clade V, Pc WPP14 representing Clade II and Pb 1692 

representing Clade I. Conserved genes from these species were, on average, 

95% identical. This degree of homology allowed us to assemble multiple 

sequence contigs derived by 454 platform pyrosequenceing (Roche life sciences) 

and Newbler analysis of genomic DNA from Pb and Pc into ordered genome 
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sequences by alignment with the genome of Pa SCRI1043. Although we used 

the Pa SCRI1043 genome to establish the structure of the other two genomes, 

the depth of sequence economically available with pyrosequencing allowed us to 

identify and position genes unique to each species as well as conserved 

sequences.  

 

Comparison of the three genomes revealed a common core genome, 

(representing approximately 80% of the nucleotides in each species) dotted with 

islands carrying diverse sequences. The genes in unique islands were enriched 

for proteins of DNA replication, mostly of phage origin, and in regulatory genes. 

Unlike the xanthomonads and Pseudomonas syringae, and even the blight 

causing Erwinia amylovora, [25] the predicted type III secreted proteins were 

highly conserved within the group. Variability that could be associated with 

differences in host range was seen in genes for type IV secretion systems, 

putative phytotoxins, taxis and motility genes, and cell surface proteins.  

 

MATERIALS AND METHODS 

 

Genomic analysis of Pc and Pb 

Pc strain WPP14 [26] and Pb strain 1692 [18] were streaked from frozen cultures 

onto LB plates. Genomic DNA was isolated [27] from cultures of Pc and Pb 

grown in LB broth in shaking incubators at 25 and 37 degrees Celsius 

respectively. Pc was sequenced in three standard runs on a 454 GS20 by 454 
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Life Sciences (Branford, CT) and assembled with Newbler software version 

1.0.51.02. Pb was sequenced in two standard runs on a GS20 by the 

Washington University Genome Center and assembled with Newbler software 

version 1.0.53.12. Contigs were reordered using Projector 2.0 [28] and Mauve 

2.0 [29] which was also employed for multiple genome alignment. Primer pairs 

for 188 gaps in the Pc genome sequence were designed using Projector 2.0 and 

used in PCR with Pc genomic DNA. Selected PCR products were sequenced by 

standard dye-deoxy sequencing on an ABI capillary sequencer. 

 

We used a combination of TBLASTN [30] searches with predicted proteins from 

Pa SCRI1043 [1] and Glimmer2 [31] to predict ORFs in the Pc and Pb genomes. 

Manual inspection of predicted ORF was used to remove some ORFs that 

overlapped other ORFs and small ORFs (<250 bp) that lacked significant 

BLASTP (E-value <0.00001) matches against the GenPept database. We used 

InterProScan [23] to identify protein domains in the Pectobacterium genomes 

and obtained Gene Ontology (GO) (Ashburner et al. 2000) terms associated with 

each domain from the InterPro to GO term mapping available from the GO 

website.  

 

Sequence data and analyses are available for download from the ASAP 

database [32]. 
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Expression of Pc hrpK in Pa 

We PCR amplified the hrpK gene from Pc, including a 135 bp upstream region 

relative to the translation start site of hrpK that contains a putative HrpL-binding 

motif, using primers P0492 (5’-taa gag tca gga gct agt gtg gcg gag ctc agg gtt-3’) 

and P0493 (5’-taa gct ggc gca tta gcg cga att cgg aat att g-3’). The PCR 

frogment was cloned into pCPP50 [33], resulting in plasmid p50hrpK. This 

plasmid was electroporated into Pa and a single ampicillin resistant colony was 

isolated for hypersensitive response assays.  

 

Deletion of hrpK from Pc 

Regions flanking the Pc hrpK gene were PCR amplified with the left primer set 

P0504 (5’- gtg ctg gat ccg cta ata tca tca tac-3’) and P0505 (5’-cgt act ctg cga 

agc ttc ccg tcc cca ttc tgc tgt tgt ca-3’) and right primer set P0506 (5’-gga agc ttc 

gca gag tac gat tcc caa acc gcg cta atg c-3’) and P0507 (5’-gtc tgc cgg atc cac 

gtt taa cga t-3’). These two PCR fragments were used for as templates for 

crossover PCR with primers P0504 and P0507. The 2.9-kb product was cloned 

into pGEMT-easy (Promega, Madison, WI), resulting in a plasmid 

pTAhrpK_ABCD. A chloramphenicol resistance and GFP cassette obtained 

from pTAgfp::cm was cloned into the HindIII site of pTAhrpK_ABCD, producing 

pTAhrpK::gfp::cm This plasmid was electroporated into Pc for allelic-exchange 

mutagenesis following the methods described by Ried and Collmer [34]. The 

hrpK deletion mutation was confirmed by PCR and Southern blot analysis. 
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Methods for electroporation, restriction endonuclease digestion, PCR, cloning 

and Southern blotting were performed as described in Sambrook et al. [27]. 

 

Hypersensitive response assay in Nicotiana tabacum 

An assay for the hypersensitive response [17] was performed essentially as 

described in Bauer et al. (Bauer et al. 1994). Six to seven week old N. tabacum 

cv Xanthi leaves were infiltrated with either Pa, Pa with p50hrpK, Pc, PchrpK or 

water as a negative control. Plants were visually assayed for HR elicitation after 

24 hours. 

 

RESULTS AND DISCUSSION 

 

We used 454-platform massively parallel pyrosequencing [35] to generate draft 

genome sequences for Pc and Pb. Comparisons to a published complete 

genome for Pa, and to each other allowed us to order and orient the large 

number of contigs onto a scaffold based on the Pa sequence, thereby 

constructing virtual genomes for Pc and Pb and facilitating examination of higher 

order features, such as the presence, absence, or rearrangement of gene islands 

(Figure 1). 

 

 

Assembly and ordering contigs in the draft genomes. Summary statistics are 

shown in Table 1. Three runs of the 454 GS20 instrument on a DNA preparation 
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for Pc resulted in 116,320,270 bp of usable sequence, or 23.3-fold coverage of 

the genome assuming a final size of 5 Mb, similar to Pa and most other 

enterobacteria. Two runs using the same instrumentation yielded 86,099,090 bp 

and level of 17.2-fold coverage for Pb. De novo assembly for each genome was 

performed using the standard Newbler assembler resulting in 4,746,006 bp and 

4,775,163 bp in contigs greater than 500 bp in length for Pc and Pb, respectively. 

We employed two approaches to predict the order and orientation of the large 

number of contigs from each draft genome, Projector 2.0 [28] and Mauve 2.0 

[29]. 

Figure 1. Mauve alignments of the Pa genome and the draft genomes of Pb 

and Pc before (top image) and after (bottom image) contig reordering.  Each 

alignment has three panels, one for each genome (Pa, Pb, Pc), composed of 

colored segments corresponding to the boundaries of locally collinear blocks with 

lines connecting the center of homologous blocks in each genome.  Vertical red 

lines in the Pb and Pc panels indicate contig boundaries. A significant number of 

small, unordered lineage-specific contigs appear as a dense red region at the 

end of the Pb and Pc genome panels. The reduction in the number of locally 

collinear blocks from 361 in the top alignment to 50 in the bottom alignment and 

increase in average block length is clearly visible. 
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Figure 1. 

 

 

Projector 2.0 uses BLAST searches of strategic segments of each contig against 

a complete (or draft) reference genome to predict their relative locations and also 

outputs a list of PCR primer pairs designed to link adjacent contigs. We tested 
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188 pairs of primers with Pc and confirmed 84 predicted contig linkages (data not 

shown). It is likely that more could be confirmed by optimizing PCR conditions.  

 

Upon aligning the Projector 2.0 ordered contig sets for both draft genomes with 

the complete Pa genome, we observed that Mauve detected additional contigs 

that could be ordered, including several cases where the Pc and Pb contigs 

could be ordered relative to each other even if they were not homologous to 

regions of Pa. Starting with the Projector 2.0 ordered set, we iteratively aligned 

and reordered contigs until no additional members of existing locally collinear 

blocks were found. After running both Projector 2.0 and Mauve, order and 

orientation can be predicted for a total of 273/731 Pc contigs and 169/1370 Pb 

contigs. These ordered contigs account for 96.6% and 96.8% of their respective 

genomes. Figure 1 compares Mauve alignments for the unordered and ordered 

contig sets. The final alignment of ordered contigs is available through ASAP and 

was used for a variety of the analyses described below. 

 

Comparison of Pc draft genome with physical chromosome map. A 

preliminary physical map of the Pc chromosome was constructed using 

restriction enzyme mapping, mutagenesis, and DNA hybridization [26] and this 

map was compared to the assembled draft sequence. Yap et al. [26] digested Pc 

genomic DNA with I-CeuI, which recognizes a conserved sequence in bacterial 

23S rRNA genes, and observed seven I-CeuI fragments by pulsed field gel 
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electrophoresis (PFGE), suggesting that Pc, like most Pectobacterium strains, 

encodes seven rRNA operons. Sizes of the smallest six fragments were 

estimated and compared to the draft genome alignment. All six fragments could 

be identified in the draft genome and all were roughly the same size as observed 

by PFGE, thus the draft genome sequence appears to represent the majority of 

the genome sequence. The physical map obtained by Yap et al. [26] also 

correctly represented the order of the seven I-CeuI fragments in the WPP14 

genome.  
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Figure 2. 

 

Figure 2. Venn diagram illustrating the total amounts of shared and lineage-

specific nucleotide sequence observed in the Mauve multiple alignment 

and predicted orthologous genes.  Gene fragments resulting from likely 

sequence errors in the two draft genomes leads to gene count differences 

between species even within orthologous regions.  For simplicity, the gene count 

for Pa is shown for all shared regions except the comparison between Pc and 

Pb, where counts are shown for both species. 

 

Gene prediction, annotation, and comparative genomics. In order to 

minimize redundant effort and maximize consistency across genomes, we used a 

comparative approach to genome annotation. TBLASTN searches using the 

predicted proteins from the complete Pa genome as queries against the draft 

genomes, were used to identify and annotate the boundaries of all intact open 
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reading frames. This analysis also revealed many gene fragments that would be 

annotated as pseudogenes if they occurred in complete genomes; however, we 

expect that in these draft genomes, most of these disrupted reading frames are 

caused by sequencing errors arising from both known [35] and potentially 

uncharacterized sources of error associated with pyrosequencing and/or 

assembly. PCR and resequencing using traditional Sanger sequencing chemistry 

confirmed that 10 out of 10 examples were sequencing errors (data not shown). 

We filtered Glimmer 2 results to remove predicted open reading frames that 

overlapped the set inherited from Pa in order to identify lineage-specific ORFs. 

Orthologs were predicted using pair-wise reciprocal BLASTP searches retaining 

only best hits that include greater than 60% of both predicted proteins and show 

greater than 55% identity. Proteins with a second match that had an E-value 

within one order of magnitude were labeled homologs rather than orthologs. 

Additionally, shorter (30-60% aligned) matches with comparable levels of 

sequence identity to orthologs were labeled homologs. This allowed us to 

accommodate gene fragments. Annotations for Pc and Pb genes with Pc 

orthologs were propagated directly without further manual review. Annotations for 

lineage-specific genes were generated using the RAST server 

(http://rast.nmpdr.org/). Genes found exclusively in Pc or Pb and genes found in 

both, but absent from Pa, that also had a significant match (E-value > 0.00001) to 

a potentially informative (did not contain “unknown”, “hypothetical”, “phage”, “orf”, 

”transposase”) GenPept entry, were flagged for manual review by human 
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experts. All annotations, automated and manual, and orthologs relationships, 

were managed and distributed using ASAP [36]. 

 

Alignment of the three Pectobacterium genomes using Mauve (Figures 1 and 2) 

revealed that approximately 77% of the complete Pa chromosome is present in 

Pb and Pc. This is comparable to the fraction of core genome relative to the total 

pan-genome in the previous three E. coli strain comparison [7], but the variable 

fraction of the pan-genome is more evenly distributed among the three 

Pectobacterium strains and subset genome pairs. Roughly 5.4 % of the Pb and 

Pc sequences match each other, but are not conserved with Pa. This is close to 

double the amount of sequence shared by Pa and either Pb or Pc, but not both, 

supporting the closer relationship of Pb and Pc observed by Ma et al. [19]. This 

estimate of the size of the core genome based on genome alignment is more 

reliable than what can be achieved by counting BLASTP-predicted homologs, in 

part because it includes intergenic regions and in part, because it is more robust 

with regard to pseudogenes and sequencing errors. An extreme example is 

illustrated in Fig. S1, which shows a region encoding two large (>7000 amino 

acids each) predicted components of a non-ribosomal synthase in Pa. No 

homologous proteins are detected in either Pb or Pc even though DNA 

sequences homologous to almost the entire 42 kb region are present in both 

draft genomes. The large number of relatively small contigs found in this region 

of the draft genomes suggests that this type of highly repetitive gene poses 

assembly problems with short pyrosequencing reads. Keeping this caveat in 
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mind, at least 3251 of 4492 predicted Pa genes have orthologs (or close 

homologs) in all three species, and an additional 177 and 192 genes have 

matches in Pb or Pc, respectively. Likely sequencing errors are expected to have 

an even greater impact on inference of orthologs between the two draft 

genomes, where we detect 190-195 conserved genes. Average amino acid 

identity between Pc and Pb is higher (95%) than observed between orthologs of 

either Pc or Pb, and Pa (92%) underscoring the closer relationship between 

these two lineages. We strongly suggest that users consult the multiple 

alignment if they are interested in conservation of a particular gene or region. 

 

Pectobacterium islands and lineage-specific islands. Bell et al. [1] described 

17 islands in the Pa genome absent from other enterobacteria. We examined the 

extent to which these particular islands are conserved among the three 

Pectobacterium species (Figure 3). We also defined islands that differentiate 

these three genomes using the Mauve alignment. Supplementary Fig. 1 shows 

the number of regions greater than 10 kb found in only one or two, but not all 

three Pectobacterium genomes. For the two draft genomes, we allowed islands 

to span multiple ordered contigs. Frequently, small islands can be gathered into 

larger “variable regions” that correspond to a likely single evolutionary event, 
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Figure 3. 

 

Figure 3. Circular diagram comparing three Pectobacterium genomes.  This 

plot is shown using the coordinate system of the complete Pa genome.  The 

outer ring illustrates the position of HAI (black boxes) previously reported by Bell 

et al. 2004.  The next ring represents the Pa genome with blue corresponding to 

regions conserved across all three genomes and red corresponding to regions 

present in only one or two of the three genomes. The next ring represents the Pc 

genome and the inner most ring is the Pb genome. 

 

such as acquisition of a prophage, and/or a cluster of genes related to a common 

biological process, such as O-antigen synthesis. Analysis of the functional 

classes (GO terms) of genes represented in gene islands specific to one or two 

genomes (see Figure 4) revealed that the predicted function for genes in indels 
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were in similar proportions to those in the core genome with the exceptions of 

genes for DNA replication and genes for transcriptional regulation. The 

abundance of genes for phage in the indels accounts for the overrepresentation 

of genes for DNA replication. The abundance of unique transcriptional regulatory 

genes could reflect species adaptation to specific environments.   

Figure 4. 

 

Figure 4. Pie charts comparing Gene Ontology categories between genes 

found in all Pectobacterium genomes and genes unique to one of the three 

genomes.  These pie charts show the distribution of genes in GO term 

categories. The chart on the left shows the distribution for all genes in all three 

Pectobacterium genomes and the chart on the right shows the distribution for 

genes unique in one of the three Pectobacterium species. The key in the middle 

shows the color code for the GO term categories shown in the pie charts. 

 

Manual review of the computational predictions and visual inspection using the 

Mauve alignment viewer produced Supplementary Figure 1, which describes the 

42 variable regions (VR001-VR042). This list includes both regions with a 
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computational predicted island longer than 10 kb, and clusters of shorter islands 

that collectively span a region greater than 10 kb in at least one of the 

Pectobacterium species. Genes at the end of each island are listed, as well as 

putative functions for the genes encoded in the island. The Pa horizontally 

acquired islands identified by Bell et al. [1] are indicated in parentheses. The 

variable region (VR_000) designations provide an identifier for a polymorphic 

region flanked by conserved chromosome irrespective of whether or not there 

are islands (homologous or nonhomologous) at that location. More details about 

the content and biological significance of these regions are described below. Pa 

ORFs are referred to using the designation given in Bell et al. ([1]) and ORFs in 

the draft genome sequences are indicated by their ASAP feature ID number. 

When orthologous ORFs are present in all three genomes, only the Pa ORF 

number is used.    

 

Many previously defined Pa HAIs are not conserved in Pc, Pb or both. The 

results presented in the previous section demonstrate that while the HAIs 

differentiate Pa from other closely related animal-associated enterobacterial 

genomes [1], a substantial number of genes in those regions are not essential 

determinants of plant pathogenicity, or even the specific soft-rot phenotypes 

associated with Pectobacterium species as a group. Some of the HAIs identified 

previously in Pa are entirely absent from both Pb and Pc, including HAI2, HAI3, 

HAI4 and HAI9. Although many of these are phage-related, HAI2 includes genes 

for a type IV pilus, as well as the cfa cluster (PA0511-0614). For other HAIs, 



 

55 
 

parts are conserved in one or the other new genomes, but not both. Our multiple 

alignment suggests that several have undergone rearrangements in one or more 

genomes. Large parts of HAI14, including the nitrogen fixation genes, are 

present only in Pa. Both Pa and Pb encode metabolic genes and transporters at 

the same relative chromosomal position, but also a phage suggesting this 

location may also be a frequent site of insertion of horizontally acquired genes. 

The HAI7 Type IV system of Pa (PA1598-1679) is replaced by two different 

insertions in Pc and Pb as expected if this is a hot spot for variation (see VR016 

in supplemental Figure 1); however, Pb has T4SS (AED 4454-4501) genes, as 

part of an apparent integrated plasmid at a different site. In contrast HAI5, HAI6, 

HAI8, HAI15 and HAI 17 are completely or largely conserved among all three 

genomes. These HAI encode exoplysaccharide and the O antigen (HAI5); a non-

ribosomal peptide phytotoxin (HAI6); the Type 3 Secretion System (T3SS) and 

HecAB agluttinin (HAI8), the aggA agglutination adhesion island (HAI15); and a 

phage insertion (HAI17).  

 

Host range determinants in Pectobacterium. Soft rot pathogens are notorious 

as broad host range pathogens capable of decaying a broad range of monocot 

and dicot plants. P. atrosepticum is notable because it is a well-characterized 

narrow host range pathogen, found widely on potato and rarely on other 

solanaceous crops. In other bacterial plant pathogens, such as Xanthomonas 

and Pseudomonas, where individual strains can often only infect a few plant 

hosts, pathogenesis is often restricted by recognition of T3SS effectors by host 
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plants. Thus, in these systems, in at least some cases, host range limitation is 

due to host recognition of genes encoded by the pathogen and not because the 

pathogen is lacking genes required to infect a particular host species.  

 

The draft genome sequences of Pb and Pc provide some insight into the host 

range limitations of Pa. Unlike Pseudomonas and Xanthomonas pathogens, the 

Pectobacterium appear to encode few T3SS effector proteins, so it is unlikely 

that these proteins are limiting the host range of Pa to potato. In fact, the Pa 

T3SS is even more restricted than Pb and Pc (see below). The most striking 

difference among the three species is that Pa encodes genes for production of a 

putative phytotoxin that are lacking from the other two species (VR004 in 

supplemental Figure 1). The action or recognition of this toxin by other plant 

species could restrict the host range of Pa in a similar manner as seen with many 

toxin-producing fungal pathogens. The genomes of the broad host range Pb and 

Pc pathogens appear to encode more plant cell wall degrading enzymes, an 

additional polyketide and peptide synthetase, and several large genes of 

unknown function, all of which could contribute to pathogenesis on a wide range 

of plant species. These draft genome sequences do not clearly show if the 

limitation of Pa to potato is due to this pathogen lacking mechanisms required for 

pathogenesis on other species or due to Pa inducing defenses of other species, 

but the draft genomes do provide a number of high priority targets for answering 

this fundamental question about soft rot pathogenesis.   
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Plant cell wall degradation  

Three Pectobacterium genomes encode nearly identical type II secretion 

systems and similar sets of plant cell wall degrading enzymes. 

Pectobacterium wilt and rot symptoms are caused by enzymes, including pectate 

lyases, polygalacturonases, cellulases, and a rhamnogalacturonase, which 

degrade the structural components of the plant cell wall [37]. Multiple layers of 

regulation control synthesis of plant cell wall degrading enzymes in soft rot 

pathogens and the known regulators, including KdgR, ExpRI, RexZ, Crp, and H-

NS, are conserved among the three Pectobacterium. Yet, there are also 

important differences in regulators among the three strains, with Pa encoding two 

tandem copies of pecT and lacking an AraC-family transcriptional regulator likely 

to regulate the pectin methyl esterase gene pmeB. In addition, PecSM and Pir, 

key regulators found in Dickeya [38, 39] are not present in Pectobacterium. 

 

Most of the plant cell wall degrading enzymes, as well as Svx, a protein of 

unknown function homologous to X. campestris AvrXca, are secreted through the 

type II secretion system (T2SS) [40]. All three Pectobacterium species encode 

homologous T2SS gene clusters in the same locus and all three also encode a 

pectate lyase and a polygalacturonase adjacent to the T2SS gene cluster. All 

three species also encode orthologous plant cell wall degrading enzymes 

including ten pectate lyases, one pectin lyase, four polygalacturonases, two 

cellulases, and one rhamnogalacturonase (Table 2). The soft rot and stem rot  
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symptoms caused by these three species are similar and the conservation of the 

plant cell wall enzymes is likely to account for much of the similarity in symptoms.   

Both Pc and Pb encode putative cell wall degrading enzymes that are not 

present in Pa. For example, both Pc and Pb have an indel that consists of a 

GntR regulatory protein homolog (ADT-0003398; AED-0003444), a putative 

permease that could import the digested polymer (ADT-0002526; AED-0001909), 
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a gene encoding a putative polysaccharide deacetylase (ADT-0003396; AED-

0003442), and a Asp/Glu racemase (ADT-0003397; AED-0003443), which could 

degrade a host polymer. In addition, Pc encodes a cluster of enzyme homologs 

most closely related to Clostridium genes that may also play a role in plant cell 

wall degradation, including a glycoside hydrolase and a xylan beta-1,4-

xylosidase (ADT-0002737-8). Pectolytic Clostridium species are often present in 

decaying root and tuber crops along with Pectobacterium, thus it is not surprising 

that there would be evidence of horizontal gene transfer between these genera. 

In addition to the two genes mentioned above, 11 additional Pc genes and two 

Pb genes are most similar to Clostridium genes. 

 

Metalloproteases contribute to Pectobacterium virulence and multiple 

Pectobacterium gene islands encode novel proteases. Pectobacterium 

proteases also contribute to plant cell wall degradation [41] (see Supplemental 

Table 1) and numerous proteases not found in related animal pathogens are 

present in Pectobacterium. Those proteases that have been experimentally 

examined are secreted via a type 1 secretion system (T1SS) [42, 43]. Many of 

the Pectobacterium proteases are also found in Dickeya and a few are present in 

P. syringae, suggesting that their importance in virulence may be under-

estimated. Plants defend against proteases by production of enzymes inhibitors 

[44]; the presence of numerous proteases in gene islands and the likely co-

evolution of microbial peptidases and plant inhibitors are reminiscent of the co-

evolution of type III effector proteins and plant disease resistance genes.   
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Suppression of Plant Defenses – the T3SS and phytotoxins.  

All three species encode homologous type III secretion systems, but P. 

atrosepticum lacks hrpK.. In contrast to hemibiotrophic plant pathogens such 

as Pseudomonas syringae and X. campestris, the T3SS of pectobacteria does 

not appear to be essential for growth on potato, since Pw does not encode a 

T3SS but can cause disease on potato (Kim et al., in prep). However the T3SS 

does contribute to virulence of other Pectobacterium species [45, 46]. Mutation of 

genes required for the secretion apparatus or conserved effector proteins from 

Pa 1039 leads to a reduction in virulence on potato [46]. The T3SS of the three 

sequenced Pectobacterium species are homologous and in the same locus. All 

genes known to be required for functional T3SS are present in all three species, 

however, only two of the three, Pc and Pb, elicit a type III-dependent 

hypersensitive response [17] on tobacco plants, which indicates that resistance 

genes in tobacco recognize and respond to type III effector proteins delivered 

from Pectobacterium.  

 

We examined the three genomes for differences in putative T3SS effectors to 

account for this difference. All three Pectobacterium species encode homologs to 

T3SS secreted proteins identified in Pa. Both Pc and Pb, but not Pa, encode 

HrpK, a T3SS-secreted protein that aids in translocation of effectors across the 

plant cell wall in P. syringae [47]. Mutation of hrpK in Pc WPP14 did not eliminate 

the ability of this strain to elicit the HR and expression of the Pc WPP14 hrpK 
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gene from a plasmid in Pa did not confer HR elicitation onto Pa (not shown). 

Thus, the lack of HR elicitation by Pa SCRI1043 is not due to lack of hrpK. 

 

Other secretion systems – T4SS, T5SS 

Plant pathogenic bacteria encode numerous secretion systems that contribute to 

virulence in addition to the T1SS, T2SS, and T3SS. The T4SS, which is required 

for plasmid conjugation and which, like the T3SS, is capable of secreting proteins 

to the extracelllular milieu and of translocating proteins into host cells, is present 

in different locations in Pa (HAI17; VR016 Supplementary Figure 1) and Pb 

(VR028 AED4454-4501). A remnant of a T4SS is present in Pc (ADT-0003337). 

Currently, it is not possible to predict which proteins travel the T4SS, thus, 

although it appears that the Pa T4SS may contribute to virulence [1], whether or 

not proteins secreted via the T4SS are conserved among Pa and Pb remains 

unknown. 

 

The type five secretion system (T5SS), which includes auto-transporter and two-

partner secretion, is the simplest of the secretion systems [48]. T5SS play 

important roles in pathogenicity of many bacterial pathogens, including Dickeya, 

where the T5-secreted HecA hemagglutinin promotes attachment to leaf surfaces 

[49]. Several large proteins encoded in Pectobacterium indels are likely to be 

secreted via T5SS, including serine protease, hemolysin, and hemagglutinin 

homologs.  
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Polyketide and peptide synthetases 

Secondary metabolites produced by polyketide and/or peptide sythetases are 

important fitness and virulence factors in P. syringae, where these exceptionally 

large proteins produce toxins active against plants and microbes as well as 

siderophores critical for obtaining iron. The cfa locus (HAI2) of Pa is absent from 

Pb and Pc. A Pa region in HAI6 encodes genes (PA1487-1488) similar to the 

pore-forming phytotoxin syringomycin synthetase  from P. syringae [50] and is 

conserved among all three genomes, but fragmented in the two draft genomes. 

In addition, Pc and Pb encode a polyketide or peptide synthetase system not 

found in Pa (VR006; ADT-0002503-2509), which is most similar to ones from 

distantly related Gram-positive bacteria and cyanobacteria, including several that 

produce toxins. This variability in secondary metabolite production capabilities 

suggests differences in how the Pectobacterium species interact with either their 

plant hosts or competing microbes, and calls for further characterization of the 

synthesis products, analysis of the distribution of these systems among 

Pectobacterium isolates, and cross-species growth inhibition assays. 

 

Motility and Taxis 

The Pectobacterium species are all capable of swimming and swarming and the 

entire flagellar gene cluster is encoded in one locus, similar to that of D. dadantii 

and Yersinia, but differing from E. coli and S. enterica. Pectobacterium encodes 

two flagellin homologs. In all three Pectobacterium, one of the flagellin genes is 

located in the midst of the flagella gene cluster while the second flagellin is 
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encoded elsewhere in a locus that contains numerous indels and rearrangments. 

All three flagellin genes encode a flg22 peptide sequence, suggesting that 

Pectobacterium could activate Fls2-mediated defenses in Arabidopsis and other 

host plants able to recognize this particular flagellin peptide.  

 

One hallmark that sets plant pathogens apart from animal pathogens is the large 

number of taxis proteins encoded in plant pathogens. Related enteric animal 

pathogens encode five to 12 methyl-accepting chemotaxis (MCPs) receptors, 

while in contrast, all of the soft rot pathogens encode over 30 MCPs, with Pa, Pc, 

and Pb encoding 36, 39, and 34 taxis receptors, respectively. Taxis receptors 

function as heterotrimers of homodimers [51]. Thus, the five receptors commonly 

found in E. coli could form up to 35 different combinations of heterotrimers, 

although some combinations are more likely than others due to an approximately 

10-fold higher concentration of two of the receptors in comparison to the other 

three. The high number of receptors found in plant pathogens means that 

thousands of combinations of heterotrimers are possible. 

 

Invertebrate interactions 

Many enterobacteria have intimate interactions with insects and since the early 

part of the 1900s, insects have been suspected of spreading soft rot disease. For 

example, Pectobacterium has been cultured from corn maggot eggs and mouth 

parts (reviewed in [52]), and transgenic plants with resistance to corn maggots 

also suffer less from soft rot pathogens. The related pathogen, D. dadantii 3937 
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is notable in that it encodes four Bacillus thuringiensis toxin homologs, at least 

one of which is active against aphids [53]. The genetics of interactions between 

Pectobacterium and invertebrates have only been recently been examined. A 

single locus, which includes Evf and its regulator, Evr, improves survival of 

Pectobacterium in fruit fly guts [54] [16]. None of the sequenced Pectobacterium 

strains encode either a Bacillus toxin homolog or an Evf. Pa, Pb, and Pc all 

encode the regulator Evr, although in Pa evr is a pseudogene. Pa may have an 

additional mechanism for invertebrate interactions since it encodes a cluster of 

genes homologous to the hemin storage proteins required by Yersinia for 

transmission by fleas [55]. 

  

Competition with other microbes – antibiotics, bacteriocins  

The Pectobacterium species differ in the mechanisms they use to compete with 

other microbes in the environment. Some strains of Pectobacterium produce the 

carbapenem antibiotic 1-carbapen-2-em-3-carboxylic acid (Car), an indication 

that Pectobacterium is in competition with potato endophytes and secondary 

invaders for resources [56]. Of the three sequenced strains, the car genes are 

only found in Pb. Pectobacterium strains also produce multiple forms of 

carotovoricin, a phage-tail-like bacteriocin which kills closely related strains and 

species [57, 58]. Pa encodes two bacteriocin resistance proteins, which are not 

homologous to each other, and only one of these two is also found in Pc and Pb. 

Both Pc and Pb encode one gene homologous to the Yersinia bacteriocin 

pesticin (ASAP ID ADT-0002424; AED-0003952) and a second, unrelated 
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bacteriocin homolog is adjacent to the pesticin homolog in Pb (AED-0003953). 

No bacteriocins are apparent in the Pa genome.  

 

Variability in nutrient acquisition and metabolism 

Pectobacterium strains vary in the carbon sources they can use [26] and 

numerous Pectobacterium indels appear to be involved in metabolite uptake or 

degradation, providing a genetic explanation for some of these differences. For 

example, Pa and Pb, but not Pc, encodes galactonate and gluconate metabolism 

islands as well as a sucrose isomerase. Thus these Pa and Pb strains are likely 

to be able to metabolize more different common plant sugars than Pc. This 

variation suggests that competition among Pectobacterium strains goes beyond 

how well they attack plants and includes which plant nutrients they are able to 

metabolize.  

 

A protein family unique to the soft rot erwinia 

A family of large proteins ranging between 515 and 732 residues was found in all 

of the soft rot enterobacterial genomes, but is lacking from all other genomes in 

Genbank. Two members of this protein family are found in Pa (ECA1185; 

ECA1186) and Pb (AED-0003594; 2989), while Pc encodes three members 

(AADT-002625; 3321; 4109) and D. dadantii 3937 encodes one homolog (ABF-

0020188). These proteins each have a conserved F5/8 type C domain that may 

aid in binding galactose [59]. Other proteins with this domain bind to cell 
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membranes, thus these proteins could be involved in interactions with the plant 

cell wall or cell membrane.  

 

CONCLUSIONS  

 

We characterized the pan-genome of Pectobacterium by comparing three 

genomes from strains that are well separated phylogenetically within the genus. 

Using 454 platform pyrosequencing, to a depth of approximately 20-fold genome 

coverage allowed assembly into roughly 200 contigs representing approximately 

95% of each draft genome. The availability of a high quality assembled genome 

from a related type strain made it possible for us to align the 200 contigs of each 

genome into a useful chromosome assembly using the Mauve program. The 

genes unique to each isolate were identified and aligned making the information 

most useful for genome comparison available at an affordable cost.  However, 

without completing the genome sequences by closing gaps and resequencing 

regions of low coverage or ambiguous sequence, it is not possible to rule out the 

existence of missing or erroneous data, determine the extent of rearrangements 

among chromosomes, and identify extrachromosomal elements. As the use of 

454 and other “next generation” sequencing technologies increases, it is 

important to weigh the costs and benefits of collecting additional data such as 

dual- ended sequences of fragments, optical map information, or directed 

sequences of gaps by standard PCR or cloning methods. Currently, the costs of 

collecting of this additional data are roughly equivalent to the costs of obtaining 
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the initial sequence data and warrant consideration when completion of the 

genome is critical for comparison or interpretation of sequence data. In the case 

of the Pectobacterium genomes presented here, little was known about the pan-

genomic content of members of this genus before this report, and analysis of 

partially completed genomes was sufficient to identify major differences between 

isolates that will form the basis for further characterization to see if they explain 

phenotypic variation.  

 

We found that each strain differed in approximately 11-18% of the genome. 

Regulatory genes were more abundant in the class of uniquely represented 

genes. This diversity in gene regulatory mechanisms may reflect adaptation to 

specific ecological niches where each organism must respond to different 

environmental stimuli such as varying temperatures and alternative stressful 

conditions. Not surprisingly, these regulators are often clustered with other strain-

specific genes, suggesting potential targets of regulation, and many of these 

variable genes encode products involved in metabolic processes. 

 

A number of genomic differences that we identified might have consequences for 

virulence of the organisms. We found variation in the content of plant cell wall 

degrading enzymes, the most obvious players in causing the symptoms of soft-

rot disease, as well as diversity in the content of genes encoding 

metalloproteases, which are also important for degradation of host cell walls. 

Each strain has unique genes for production of phytoxins, another likely 
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determinant of host-range. Differences in the secretion abilities of these 

organisms are suggested by variation in the presence and location of type IV 

(and other) secretion systems among the genomes. Each genome had a large 

but not fully overlapping collection of genes for motility and chemotaxis. Genes 

for surface proteins such as O-antigens, pili and adhesins showed significant 

variability among genomes for factors that could either suppress or trigger host 

defenses. A large fraction of genes that differ between these organisms are of 

unknown function, including a family of proteins that appears unique to the soft 

rot pathogens. Figuring out which of the factors identified in this study are key 

determinants of the phenotypic differences between these pathogens will require 

sequencing of additional genomes and experimental characterization of gene 

functions, particularly sensitive assays for even subtle roles in virulence. The Pa, 

Pb and Pc isolates examined in this report represent relative extremes with 

respect the phylogenetic diversity within this genus, and their genomes vary 

considerably in genomic content. Resolving which changes are responsible for 

niche specialization is challenging given the magnitude of genomic differences. 

Sequences of a few additional members of the genus, particularly isolates more 

closely related to each of the groups already sampled or isolates with similar 

phenotypes would likely help pinpoint a smaller number of important factors.   
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CHAPTER 3: Transcription profiling during multiple routes of potato 
infection reveal a tissue-specific role for the T3SS in Pectobacterium 

carotovorum 
 

ABSTRACT: 

In this chapter, we present data that will be published in a comparative study of 

the expression patterns of P. carotovorum during multiple conditions that trigger 

virulence. We look at transcriptional profiles during tuber, stem, and leaf 

infections, and when the T3SS is artificially triggered.  We provide data that 

suggests the T3SS and associated genes are required for virulence in the leaf, 

but not stem or tuber infections. Further, we show through confocal microscopy 

and qRT data that the genes of the T3SS are expressed during the first 7 hours 

of leaf infection.  In order to understand the significance of a T3SS during leaf 

infection, we used a promoter-trap screen (Differential Fluorescence Induction 

screen) and DNA microarrays to determine the regulon of HrpL, the alternative 

sigma factor responsible for regulation of the T3SS cluster and known effectors.  

We show that despite the requirement for the T3SS during leaf infections, only 8 

genes, in addition to the T3SS apparatus genes are co-regulated with T3SS. 

Lastly, we use DNA arrays to determine the transcriptional profiles during stem 

and tuber infections to understand key virulence factors associated with those 

infection routes, which do not require a T3SS.  The data suggests that the T3SS 

is not delivering a large suite of effector genes and is a leaf- specific virulence 

factor. 
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INTRODUCTION: 

 

P. carotovorum is a necrotrophic pathogen that causes soft rot disease on plant 

species from over 24 orders of angiosperms.  It is a ubiquitous pathogen that 

survives in soil, both surface and ground water, and has been associated with a 

variety of invertebrates [1-4]. Soft rot diseases that develop from P. carotovorum 

infections lead to economically significant losses of crops such as carrot, 

tobacco, and potato.  P. carotovorum causes soft rot disease, in part, by 

secreting over 16 plant macerating enzymes that target plant cell sugars such as 

polygalacturonase [5-7]. These enzymes degrade plant cell walls and cause the 

characteristic rotting seen on infected plants.  In addition to macerating enzymes, 

P. carotovorum possess adhesions [8], antimicrobial peptides [9], 

metalloproteases[10], and a T3SS that it may use to infect a host and establish 

disease [11]. 

T3SS are used by Gram-negative bacterial pathogens of both animals and 

plants [12]. The T3SS translocates virulence proteins, referred to as effector 

proteins, into host cells where they interact and interfere with components of host 

defense responses (reviewed in [13, 14]). Delivered effectors may inhibit basal 

defense responses, which can be triggered by microbe-associated molecular 

patters (MAMPs) such as flagellin and LPS [15].  T3SS effectors thus can 

subvert defenses, allowing the pathogen to persist. Plant hosts, however, have 

evolved to use the presence of effectors as a means of recognizing infection and 

thus re-establishing defense responses [16].  Plant Resistance proteins (R 
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proteins) can directly or indirectly sense a delivered effector and re-instate a 

defense response, referred to as a hypersensitive response (HR), which leads to 

programmed cell death and inhibition of bacterial growth [17].   Pathogens such 

as P. syringae strains may possess a suite of effectors. Effector suites can 

include upwards of 30 genes, individuals of which can be gained by horizontal 

acquisition events or  just as easily lost by selective pressure in a host with a 

corresponding R protein [18].  Thus, phytopathogens and their hosts are often 

described as being locked in an evolutionary arms race [19]. 

The T3SS itself is assembled from proteins which retain structural 

similarity to bacterial flagellum proteins (reviewed in [20]). The genes encoding 

the T3SS typically lie in clusters of structural and regulatory genes called hrp (HR 

and Pathogenicity) clusters and they tend to be flanked by genes encoding 

secreted effectors and their chaperones [21]. The structural genes of the T3SS 

are highly conserved in diverse species, but the regulators linked within the 

complexes are variable (reviewed in [22]). Phylogenetic comparisons suggest 

that T3SS have been acquired by horizontal transmission in diverse plant and 

animal pathogens at independent stages in their evolutionary histories [19, 23]. 

Two distinct clades of T3SS emerge in model phytopathogens; Group I in 

Pectobacterium and Pseudomonas species and Group II T3SS in Ralstonia and 

Xanthomonas species [24]. In P. carotovorum and P. syringae, an alternative 

sigma factor, hrpL, is the main regulator of genes in the hrp cluster [21, 25], 

which is likely due to linkage to the T3SS encoded on similar pathogenicity 

islands that were incorporated into the ancestors of these bacteria independently. 
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 In P. syringae, HrpL is known to regulate not only the hrp cluster, but all effector-

encoding genes.  In P. carotovorum, HrpL is also known to regulate the hrp 

cluster and the one identified effector-encoding gene, dspE. 

The role of the T3SS in P. carotovorum pathogenesis is poorly defined.  Unlike 

the generally biotrophic pathogen P. syringae, P. carotovorum does not need to 

continually subvert host defenses since infection results in death of the host by 

macerating enzymes.  It has been suggested that P. carotovorum uses its T3SS 

early during infection to suppress defense responses prior to generating a 

sufficient amount of macerating enzymes to establish disease on the host [26].  

In this chapter, we address the contribution of the T3SS to P. carotovorum during 

different infection routes and define the regulon of HrpL to identify potential 

additional effectors.  Our findings suggest that the T3SS in P. carotovorum is 

expressed and required for virulence during leaf infection, but HrpL regulates a 

small number of genes outside the hrp cluster.     

 

METHODS: 

 

Bacterial strains, plasmids and media. Bacterial strains were maintained in 

Lysogeny Broth (LB) agar or 2xYT broth, containing appropriate antibiotics.  The 

compositions of LB medium, M9 Minimal Media, 2xYT media are published in 

Sambrook and Russell [27].   The Minimal Media for hrpL repression was 

described in Chang et al. 2005 [28].  When required, antibiotics and drugs were 

supplemented at the following concentrations: ampicillin (Amp), 100 ug/mL; 
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chloramphenicol (Cm), 30 ug/mL; gentamycin (Gm), 25 ug/mL; kanamycin (Km), 

30 ug/mL; rifampicin (Rif), 100 ug/mL; spectinomycin (Spec), 50 ug/mL; and 

tetracycline (Tet), 5 ug/mL.  Media was solidified with 1.5% BD Bacto-agar. 

Cultures were grown at 28ºC and, if in liquid, shaken at 250 r.p.m.) 

 

DNA manipulations. Standard procedures were used for: plasmid and 

chromosomal DNA isolation; electroporation; restriction endonuclease digestions; 

ligations; gel electrophoresis; and tri-parental mating.  Enzymes were obtained 

from either New England Biolabs or Invitrogen.  Nucleotide sequences were 

determined by the UNC-CH Genome Analysis Facility and sequences were 

analyzed using BLAST. 

 

Virulence assays on potato and A. thaliana leaves. Cultures were grown over 

night in rich media, washed twice in 10 mM MgCl2, and re-suspended at 104 

CFU/mL in 10 mM MgCl2.  Cultures were infiltrated into the leaves of either 4-5 

week old Yukon gold potatoes or 4-5 week old A. thaliana using a needle-less 

syringe.  At subsequent time points, infected leaves were cored with a gauge 3 (6 

mm diameter) corer and the tissue ground in the presence of 10 mM MgCl2. The 

CFU/mL of present bacteria was quantified by titration and plating on LB plates 

with the appropriate antibiotics. Each experiment contained 4 internal replicates. 

 

Plasmids. pBAD::hrpLWPP14 construction: hrpLWPP14 (hrpL) was PCR 

amplified by using Pfu (Stratagene) then cloned into pCFS40 as described in 
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Chang et al. 2005 [28]. pBAD::hrpL exhibited tight regulation in the absence of 

arabinose and high expression in the presence of arabinose in minimal media for 

native hrpL repression (data not shown).  200 mM of arabinose was optimal for 

hprL induction. Differential Fluorescence Induction (DFI) Vectors: Construction 

was described in Chang et al. 2005 [28]. Briefly, pBBR1-MCS2 was modified to 

carry RNA terminators, and mutant GFP3, which has an excitation peak 

corresponding to the argon laser (488 nM) of the FACS. Three stop codons in 

each frame were annealed and cloned upstream from the Shine-Delgarno 

sequence as an EcoRI-XbaI fragment, yielding vector 125.1. PCR products were 

directly cloned into EcoRI-BamHI digested 125.1 vector following the sticky-end 

PCR protocol, resulting in DFI vectors.  

 

Library Construction for Promoter-Trap Screen. DNA was extracted from P 

carotovorum WPP14, purified by using Epicentre MasterPure DNA extraction kit, 

and partially digested with either Tsp509I, or AluI, BstUI, HaeIII, and RsaI. 

Fragments from 1–1.6 kb, 1.6–3 kb, and 3–4 kb were extracted and cloned into 

either EcoRI- or SmaI-digested and shrimp alkaline phosphatase (SAP)-treated 

DFI vectors. E. coli colonies carrying approximately 66,000 library fragments 

were pooled and mated en masse by modified triparental mating with WPP14 + 

pBAD::hrpL and pRK2013. 

 

The DFI Screen. The screen was done as described in Chang et al. 2005 [28]. 

Briefly, we screened the DFI library under the inducing conditions of 200 mM 
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arabinose for 22 h before FACS screening.  FACS was performed on a MoFlo 

(Cytomation) and analysis was performed on a FACscan from Becton Dickinson. 

One mL of culture was diluted into 400 μl of 1× PBS. HrpL-inducible gene 

fragments were identified with 4 subsequent sorts. The first, in the absence of 

induction, the least fluorescent cells (30%) were collected. These cells were 

grown in inducing conditions and a small population (less than 2% of total 

population) of highly-fluorescent cells was collected; these two sorts were 

repeated, except final fluorescent cells were collected in individual wells of a 364 

well plate. Individual library clones were grown in these plates, their library 

fragments were amplified from the DFI vector, and amplicons were sequenced.  

 

Sequencing library clones: Approximately 2600 clones were sequenced. 

Candidate HrpL-induced gene fragments were amplified from cells harboring the 

DFI plasmids using Taq polymerase and primers, HYZ163 and HYZ166 [28]. 

PCR products were treated with 5 units of exonuclease I and 0.5 unit of SAP at 

37°C for 40 min and heat terminated at 80°C for 30 min. Sequences were aligned 

to the WPP14 genome sequence. 

 

Construction of the P. carotovorum mutants. To delete hrpL we used splicing 

over-lap extension (SOE) PCR to create a construct with the Cm cassette 

flanked by 1 kb of sequence surrounding hrpL on each side.  Briefly, a 1 kb 

region upstream of hrpL was amplified using SOE primers containing a RE site 

for the insertion of a Cm cassette on the 3’ end. A 1 kb downstream region was 
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amplified similarly with the RE site on the 5’ end with SOE primers. These 

amplicons were then fused together in a two-step SOE PCR reaction and the 

SOE product was cloned into pCR2.1 Topo TA cloning vector (ampR)  

(Invitrogen) to make pCR2.1SOEhrpL, which was then digested with RE.  The 

Cm cassette was amplified from pKD3 using modified primers from [29] to 

contain RE sites on both ends. The Cm cassette was then digested with RE and 

ligated to the linear pCR2.1SOEhrpL to make pCR2.1∆hrpL. This plasmid was 

introduced into electro-competent P. carotovorum WPP14 by electroporation. 

The resulting WPP14: pCR2.1∆hrpL strain was then grown in potassium 

phosphate buffer supplemented with Cm, but not Amp.  After over-night growth, 

the cultures were transferred to 2xYT supplemented with Cm and passaged for 3 

days, at which point the cultures were replica plated on LB plates that contained 

either Cm and Amp or just Cm to identify strains that had lost the plasmid but 

undergone double-homologous recombination for marker exchange. The 

resulting deletion-insertion mutants were verified by PCR analysis and 

sequencing. 

 

A. thaliana Growth Conditions. A. thaliana were grown in under short-day 

lighting conditions in a Conviron Growth Chamber at 23ºC. 

 

Potato growth conditions and inoculation methods. Certified seed potatoes 

(Solanum tuberosum subsp. tuberosum var. Superior) were grown in a growth 

chamber at 26 ˚C with a 12 hour photoperiod.  Stems of 4 weeks-old plants were 
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inoculated by stabbing a needle and injecting a  bacterial suspension of  WPP14 

(0.3 OD600, which is 1.5x108 CFU/ml) [30, 31]. To prepare the bacterial 

suspensions, cells from 24 hour-old bacterial cultures grown on LB agar medium 

incubated at 37˚C were suspended in water. Each potato stem was inoculated in 

five different sites approximately 3 cm from each other. After inoculation, plants 

were placed into plastic bags and incubated at 26˚C for 13.5 hours, at which time 

the bacteria are in log phase growth in stems. For tuber inoculation, potato tubers 

(Solanum tuberosum subsp. tuberosum var. Superior) were surface sanitized by 

soaking them in 0.5% bleach for 10 minutes. Tubers were rinsed with distilled 

water and allowed to dry at room temperature for 24 hours. Tubers were 

inoculated with bacterial suspension of P. carotovorum (0.3 OD600) using 10 µl 

sterile tips. There were at least 15 inoculation sites per tuber. Tubers were then 

placed into plastic bags and incubated at 26˚C for 10 hours, at which time the 

bacteria are in log phase growth in tubers. For leaf infections, cultures of bacteria 

at OD600 =1.0 were used to infiltrate leaves. After given time points leaves were 

harvested for RNA extraction. 

 

Bacterial sample collection from plants and RNA isolation. For bacterial cells 

collection from stems and tubers, approximately 90 and 75 inoculations sites, 

respectively, were sampled. Plant material was placed in 3 cooled sterile RNAse-

free mortars pre-filled with 17.5 ml of DEPC water and 1.25 ml of ice cold 

EtOH/Phenol stop solution (5% water-saturated phenol pH<7.0) to stabilize 

cellular RNA and stop degradation. Plant samples were gently ground with a 
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sterile RNAse-free pestle. Supernatants were collected in two 15 ml falcon tubes 

and a modified hot SDS/hot phenol method [35] was followed. Briefly, bacterial 

supernatants were harvested at 8,000 rpm for 2 minutes at 4 C. The 

supernatant was aspirated and the pellet frozen in dry ice-alcohol mix.  Pellets 

were resuspended in 1.6 ml of lysis buffer (TE: 10 mM Tris - 1 mM EDTA,  pH 

8.0) and 0.5 mg/ml  Ready-Lyse™ Lysozyme Solution (Epicentre 

Biotechnologies, Madison, WI) and 160 µl of 10% SDS solution, mixed and 

incubated at 65 ˚C for 2 minutes. Then, 176 µl of 1 M NaOAc (pH 5.2) was added 

and mixed with the lysate. Equal volumes of lysate were transferred to RNase-

free 2 ml microfuge tubes and mixed by inversion with water saturated phenol. 

Tubes were incubated in 65 °C waterbath for 6 minutes. Then, tubes were placed 

on ice to chill for 2 minutes and centrifuged at 14,000 rpm for 10 min at 4 °C. The 

aqueous layer was then transferred to a new 2 ml microfuge tube containing an 

equal volume of chloroform. Tubes were mixed by inversion, and then 

centrifuged at 14,000 rpm for 10 minutes at 4 °C. The aqueous layer was split 

into equal volumes in 1.5 ml Eppendorf tubes and ethanol precipitated by adding 

1/10 volume of 3M NaOAc (pH 5.2), 1 mM EDTA and 2 volumes of cold EtOH to 

each sample. Samples were mixed and placed at -80 0C overnight. RNA was 

pelleted by centrifugation at 14,000 rpm for 30 minutes at 4 0C. Then, pellets 

were washed with ice cold 80% EtOH and spun down at 14, 000 rpm for 10 

minutes. Supernatant was removed and pellets were air dried for 30 minutes in 

the fume hood. Pellets were resuspended with DEPC-treated water. All 

resuspended samples were pooled together (100 µl) and DNA contamination 
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was removed using Turbo DNA-free (Ambion, Inc.) with the rigorous protocol and 

5 µl of enzyme. Additional cleanup of the sample was performed using RNeasy 

Mini Kit (Qiagen, Valencia, CA). Purity and concentration of the RNA was verified 

with a spectrophotometric analysis (NanoDrop ND-1000; NanoDrop 

technologies, Wilmington, DE). RNA integrity was measured using an Agilent 

2100 Bioanalyzer (Agilent Technologies, Inc.). RNA was stored at -80 0C until 

use.  

 

Transcription profile conditions:  pBAD: hrpL was moved into WPP14∆hrpL 

via trip-parental mating.  WPP14∆hrpL and WPP14∆hrpL; pBAD: hrpL were 

grown in hrp-repressing minimal media for a total of 22 hrs.  The media was 

supplemented with 200 mM arabinose for 0, 1, 3, or 5, hours prior to RNA 

extraction. Qiagen’s RNeasy extraction kit with Bacteria Protect was used and 

RNA was DNAse treated with Roche DNaseI in the presence of RNase Inhibitor. 

 

Microarray and experimental design. A tiled array containing a total of 355,201 

probes and covering 10X the draft genome of P. carotovorum WPP14 [32, 33] 

was designed by Jeremy Glasner. Probes are 40 to 60 bp long, with an average 

melting temperature of 79˚C and with an average spacing of 12 bp being 

alternated between the forward and reverse strands. The experiment was 

designed including 4 biological replications of bacterial RNA obtained from stem-

bacterial interaction and 3 biological replications for the tuber-bacterial 

interaction. 
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cDNA synthesis and microarray hybridization.  Bacterial RNA samples were 

submitted to the Expression Center at the Biotechnology Center at University of 

Wisconsin-Madison for cDNA synthesis, labeling, hybridization, washing, array 

scanning and data extraction. All the process was done following the Version 2.0 

of NimbleGen user’s guide for NimbleChip X1, which include the use of the 

Invitrogen Superscript Double-Stranded cDNA Synthesis Kit for cDNA synthesis 

and the 5' Cy3-labeled Random 50 Nanomers (9mer "Wobble") (TriLink  

Biotechnologies) for the labeling step. Labeled samples were hybridized to the P. 

carotovorum WPP14 1-plex NimbleExpress GeneChip array according to the 

NimbleGen Expression Protocol.  Array scanning was done using the Axon 

4000B scanner and the data were extracted using NimbleScan software. 

 

Data analysis and statistical methods. Raw hybridization probe signals of all 

samples were normalized using quantile normalization as described by Bolstad, 

et al. [34] using NimbleScan software.  Normalized raw signal values of each 

CDS were extracted from the data using Microsoft Access Software, then a 

median value of probes corresponding to each annotated feature were 

calculated.  Partek Genomics Suite Software, version 6.4 (Partek Incorporated, 

St. Louis, Mo) was used to analyze the data by principal component assay 

(PCA), analysis of variance (ANOVA) and false discovery rate (FDR). PCA 

analysis was conducted to reduce dimensionality of the dataset and visually 

evaluate differences or similarities among biological replicates that allow them to 
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be grouped together. Differentially expressed genes (DEG) were calculated using 

ANOVA analysis with an additional FDR calculation to correct false positive rate. 

DEG were then listed using a cutoff value of 0.01. Axon 4000B scanner and the 

data were extracted using NimbleScan software. 

 

Confocal Microscopy.  Cultures were grown over night in rich media, washed 

twice in 10 mM MgCl2 and re-suspended at an OD600 of 1.0 and infiltrated into 

leaves of 4-5 week old A. thaliana using a needle-less syringe.  Potato leaves 

were not used because they were too thick to properly mount on microscope 

slides and visualize with confocal microscope.  A Zeiss confocal microscope was 

used to visualize fluorescent bacteria in planta and images were captured and 

viewed with LSM imagebrowser software (Zeiss).   

 

qRT-PCR done at UW. To validate the transcriptome profiling of the experiment, 

a quantitative real-time PCR (qRT-PCR) was carried out on selected candidate 

genes. Bacterial RNA was isolated as described above. Primers were designed 

based on the draft genome sequence of WPP14 using the BeaconDesigner 

software (Premier Biosoft International, Palo Alto, CA, U.S.A). Primers were 

designed in regions of little secondary template structure. Sequence primers are 

shown in Table 1.  Primer efficiency was determined using dilution series of 

target DNA [36].  RNA samples were tested for residual DNA contamination 

using qRT-PCR and primers for targeting the proC gene in WPP14. RNA 
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samples that showed threshold cycles (Ct) values >30 cycles were considered to 

be sufficiently free of chromosomal DNA contamination.  

cDNA synthesis was performed using iScript cDNA synthesis kit according 

to the manufacturer’s instructions (Bio-Rad Laboratories, Hercules, CA, U.S.A.). 

Briefly, cDNA synthesis was performed with 500 ng of total RNA in 15 µl of 

DEPC-water, 4 µl of 5X iScript reaction mix that contains a blend of oligo dT and 

random hexamer primers and 1 µl of iScript reverse transcriptase. The reaction 

conditions were performed at 25 C for 5 min., 42 C for 30 min., and 85 C for 5 

min. Three independent biological replicates samples per experimental condition 

were used for the cDNA synthesis. Two iScript reactions were performed for 

each RNA sample and for each cDNA sample, two reactions were run in two 

wells of 25µl reaction.  Expression of mRNA was determined by qRT-PCR using 

MyiQ detection system (Bio-Rad Laboratories). PCR conditions were 95C for 3 

min; 40 cycles of 95C for 10 s and 500C for 45 s; and 1 cycle of 95C for 1 min 

and 55C for 1 min; followed by a dissociation curve with 80 cycles of 55C for 10 

s with a 0.5C increase per cycle. Primer-dimers and single presence of a 

product per reaction were evaluated using the dissociation (Melt) curve analysis 

built in the MyiQ detection system software.  

For absolute quantification, target gene abundance was determined using 

standard curve estimation in each plate. This method allows estimation of the 

actual quantity of the mRNA in the sample avoiding differences in primer 

efficiency and product fluorescence. The mean of the starting quantity (SQ) ratios 

for each target gene were internally normalized using the absolute expression 
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mean values of gene ffh, which abundance also showed to be stable under 

different experimental conditions according to the Excel-based software program 

BestKeeper [36, 37]. In order to determine significant high or low expressed 

genes relative to the expression of the gene hrpL, a pair-wise comparison was 

performed to calculate p-values using the unpaired two-tailed t-test with 95% 

confidence interval using Prism 5.0a software (GraphPad Software, Inc.). 

For relative expression analysis, target gene abundance was internally 

normalized to four reference genes (dspE, pelB, hrcC and ffh) which were 

previously checked for mRNA stability under different experimental conditions 

using the BestKeeper program. Target transcripts amounts were reported as 

relative expression ratio (RER) of target transcript in stems relative to tubers.  

RER was estimated as the difference between Ct values which was calculated 

using the equation 2–ΔΔCt as previously modified [36, 38]. Statistical analysis of 

RER values of selected genes were conducted using the unpaired two-tailed t-

test with 95% confidence interval using Prism 5.0a software (GraphPad 

Software, Inc.). 

Table 1. qRT-PCR primer sequences and efficiency 

Gene name Primer name Primer sequence (5’→3’, forward 

to reverse) 

Efficiency 

(%)A 

Ffh  P0 TGGAAACATTGGCAGAGC … 

  GACTAACAAGACATCGTAGAAC 105 

BudB  P0 TTGAATCTGCTGATGAAC … 

  CAATGGTTATCGGAATAATC 99.5 
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NarI P0 TTGACATCTATCCTTACCT … 

  CCTTTCTTATCCAGCATT 93.2 

Evr P0 GCTTCTAATAAACAAATCA … 

  CGTTCTTCTTCTAATAGTA 98.2 

pelB P0 CTCCGTAACAACAACATT … 

  GTACTCTTCCAGTCATCT 102.3 

fliC P0 CGAATCTACCATTACTAACCT … 

  AGTCAGCGTCTTCAATAC 98.5 

dspE P0 GTCCTATACCAACCTCAG … 

  GCAACGAAGAGAACAAAT 98.8 

hrpN P0 CAGGAGTTGAACAACATTAG … 

  CCATCTTACGGTCTTCTT 88.8 

hrpL P0 AATGACCTATCTGGAAGT … 

  TTGAAATAATTGCGAACC 95.3 

hrpW P0 AGGTAACTGGAACTTGAA … 

  TTCGTCAGGTTGATGTTA 95.6 

hrcC P0 GCCTATTCTGCCGAACAA … 

    GCACCAAATCCACACCAT 99.9 

A: Primer efficiencies were calculated from dilution curve using the MyiQ Clycer 

software 

 

qRT-PCR done at UNC. RNA was reverse transcribed into cDNA using the 

Ambion RETROscript kit.  Briefly,  2ug of RNA was primed with random 
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decamers and reverse transcribed with the MMLV-RT.  cDNA was then diluted 

and relative quantities of specific transcripts were determined using SYBR Green 

RT-PCR Reagents.  Fluorescence of double-stranded DNA is measured by a 

DNA engine, Opticon 2 Continuous Fluorescence Detector (MJ Research) and 

values are analyzed using Opticon Monitor 3 software (MJ Research). Relative 

gene expression is determined by normalizing to a P. carotovorum house-

keeping gene, ffh, which encodes a signal recognition particle protein, and was 

identified as an optimally stable control gene for qRT PCR analysis by Takle, 

Toth, and Brurberg [39]. 

 

RESULTS AND DISCUSSION: 

 

Virulence assays indicate that the HrpL regulon is required for virulence.  In 

order to determine the contribution of the T3SS on virulence, we adapted a leaf 

virulence assay and compared wild-type growth in leaves to that of a hrpL 

mutant.   Briefly, 4-5 week old A. thaliana and Yukon gold potato leaves were 

infiltrated with a dilute culture (104 CFU/mL) of P. carotovorum by a needle-less 

syringe.  Figure 1a and 1b show that in three days after infiltration, in both plants, 

the hrpL mutant was severely attenuated in virulence with 3 logs less growth 

compared to wild type. We also saw a reduced incidence of maceration 

symptoms in the leaves of both hosts (data not shown). Here we’ve established 

A. thaliana as a model host, in that it mimic the disease and growth patterns of P. 

carotovorum in the native host, potato.  Thus, A. thaliana is a relevant host and is 
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used for other analysis in this chapter and we suggest it as a useful tool for future 

work on P. carotovorum pathogenesis. Given this pathology data on a native and 

model host, we found that the HrpL-regulon, and by association, T3SS-related 

virulence factors, are required for full disease and growth on host leaves.   

 

Figure 1 

 

Figure 1. hrpL mutant is defective in growth on leaves. Potato (A) and A. 

thaliana (B) hand infiltration of Pcc WPP14, the hrpL operon, or the vgu operon 

mutant carrying pC50:hrpL with 104 CFU/mL initial inoculum, into leaves of 4-5 

week old plants. Experiment has four internal replicates and was repeated three 

times; error bars indicate two times standard error. 

 

Interestingly, when we infected potato tubers with wild-type and mutant and 

measure the area of macerated tissue, we saw no difference between a wild type 

P. carotovorum and a hrpL mutant [40], suggesting that the role of the HrpL-
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regulon in virulence is specific to the given infection route and that a different 

virulence strategy is required for tuber infection. 

 

Promoter-trap screen to identify HrpL regulated genes.  In order to identify 

additional T3SS effectors and novel T3SS-associated virulence factors, we 

adapted a FACS-based promoter trap screen developed by Chang et al. 2005 

[28] to identify T3S effectors in Pseudomonas syringae. Previous studies of the 

T3SS in P. carotovorum had identified the alternative sigma factor, HrpL, as the 

master regulator of the T3SS and the known effector, DspE [21].  Additionally, in 

P. syringae, a homologous HrpL is known to regulate the expression of all known 

effectors.  Therefore, we exploited HrpL as a likely regulator of unidentified T3S 

effectors and associated virulence factors. We cloned hrpL from P. carotovorum 

WPP14 into a pBAD vector, with hrpL expression under the regulation of the 

araBAD promoter, which is inducible with arabinose.  We then constructed a 

genome library of WPP14 in a differential fluorescent induction vector (DFI), 

where the library fragments were cloned downstream of a promoter-less gfp 

gene [28]. The library fragments ranged from 1-4kb in size using either Tsp509I 

(an isoschizomer of EcoR1) or a set of blunt enzymes (AluI, BstUI, HaeIII, and 

RsaI).  dspE was also cloned into the DFI vector to serve as a positive control for 

induction, and peak fluorescence after hrpL induction.  dspE and the library 

clones in the DFI vector were mobilized by tri-parental mating into WPP14, which 

already carried hrpL on the arabinose-inducible pBAD plasmid.  Cultures were 
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sorted by FACS with 4 tandem sorts to enrich for hrpL-dependent fluorescing 

cells.  

Approximately 2600 clones were captured and their library fragments were 

sequenced and aligned to the genome.  Sequences aligned to 37 regions ( <4kb 

in length) of the genome.  17% of the sequences aligned to an arabinose operon 

responsive to the induction conditions and were therefore disregarded. Randomly 

selected clones representing each region were independently grown with and 

without induction and re-screened by FACS to verify HrpL-dependent 

fluorescence. We found a 20% false-positive rate (determined by the number of 

sequences that aligned to false genome regions (not HrpL-inducible) divided by 

the total number of sequences) and verified 17 representative genome regions 

as HrpL-inducible. Genome region information and the direction of the library 

fragment in the DFI vector allowed us to identify the full length ORF that was 

indicated as HrpL-regulated.  Genes identified as HrpL-dependent by FACS re-

screening were also verified by using qRT-PCR to determine HrpL-dependent 

expression of the native gene. This identified additional false-positives for a total 

of 25% false-positives coming out of the FACS screen.  False-positives identified 

this way appeared to have HrpL-induction as an artifact of cloning and fusing to 

gfp in the DFI vector. 

 The 6 genome regions identified and verified (representing 58% of the 

sequenced library clones) all aligned to known HrpL-dependent genes and 

operons within the cluster of genes that encode the T3S apparatus (Table 2).  

The region that was represented the most, with 784 clones identified, was the 12 
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member operon within the T3SS cluster.  Known hrp cluster members and 

predicted HrpL binding sites were based on the Lehtimaki et al. 2003 published 

description of the T3SS cluster [41].  dspE, the one known effector gene 

previously identified, was represented in the screen 329 times.  hrpA, encoding a 

T3SS-associated pilin, and hrpF, a putative T3SS translocon, were represented 

the least with only 6 and 4 representative clones, respectively. They appear to be 

lowly and constitutively expressed and therefore not optimally found in this type 

of screen.  Only one known HprL-regulated gene was not identified in the screen, 

hrpN.  We cloned hrpN into the DFI vector to assess its fluorescent profile with 

and without hrpL induction from pBAD:hrpL using FACS.  We found that hrpN 

expression was inducible via HrpL, however its basal expression level was high 

(higher than 30% of the fluorescence of the library) and therefore was lost during 

the screen.  Additionally, HrpN is an exceptional harpin known to be regulated by 

multiple transcription factors in P. carotovorum and close relative E. 

chrysanthemi, including regulators KdgR and PecS [42-44]. 

 Thus, although the HrpL-promoter trap screen did not identify any new 

HrpL-regulated genes that could be candidates for T3S effectors or associated 

virulence factors, it did identify known HrpL-regulated genes, validating the utility 

and concept of the screen in Pectobacterium species. 
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Table 2: 

Gene Function Number of clones 
Minimum number of 

independent inserts

hrpQ/J  

ADT-0002852 

Type III secretion 

operon 
784 74 

hrpA  

ADT-0001735 

Type III secretion 

operon 
5 2 

hrpF 

ADT-0001736 

Type III secretion 

operon 
6 2 

hrpW  

ADT-0002859 

Type III secretion 

accessory protein 
149 16 

hrpK 

ADT-0002735 

Type III secretion 

accessory protein 
196 17 

dspE 

ADT-0003862 

Type III effector 
329 19 

 

Table 2: HrpL regulated genes found in the DFI screen.  T3SS accessory 

genes are involved in apparatus assembly.  When a hrp cluster operon was 

identified, the first gene of the operon is listed.  

 

Transcriptional profiling identifies the HrpL regulon. To further explore the 

HrpL regulon, we employed a tiled NimbleGen array to identify up- and down-

regulated members of the HrpL regulon. We compared the transcription profiles 
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of a hrpL mutant carrying an empty pBAD vector and a hrpL mutant strain over-

expressing hrpL from the pBAD promoter.  Based on FACS data from the 

previously discussed screen, we found that the activity of HrpL-responsive 

promoters peaked after 4 hours of induced HrpL expression from pBAD:hrpL 

(Figure 2). Therefore, we profiled transcription of both strains after 0, 1, 3 and 5 

hours of arabinose induction (with a total growth time of 22 hours for all induction 

time points). Array data was analyzed using EBarrays package in R statistical 

environment [45, 46].  EBarrays provides three different distribution models with 

posterior probability calculated to account for false-discovery rate.  Using all 

three models from this package, we found that 100 genes were differentially 

expressed between the two strains throughout the time course.  Thirty seven 

genes were identified in all three time points and they are shown in Figure 3.  

Twenty nine of the 37 genes that were identified in all the time points are genes 

known to be involved in T3SS, most of which are found within 

Figure 2. 
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Figure 2: Graphs showing the mean fluorescence of P. carotovorum when 

expressing GFP from the promoter of dspE in the presence of 200 mM arabinose 

and either pBAD or pBAD:hrpL. Figure 2A shows the percentage of the 

population that has fluorescence over 100, a point determined to be definitively 

above background fluorescence. Figure 2B shows the mean fluorescence of the 

whole population.  Time points indicate the duration of arabinose induction. All 

cultures were grown in minimal media for 18 hours.  

 

the T3SS gene cluster. HrpN was also identified in this cluster of genes, 

however, it has higher basal expression level in the absence of HrpL over-

expression. The remaining 8 genes identified as differentially expressed in all 

three time points were previously not known to be regulated by HrpL or to be 

associated with the T3SS.   

 Two of the 8 genes were down-regulated by HrpL induction. These two 

genes, a putative hexuronate transporter and a putative glycosyl hydrolase, were 

shown by Van Gijsegem et al. [47] to be involved in virulence on African violets 

and up-regulated by a lacI-like repressor, designated LfaR in Erwinia 

chrysanthemi. LfaR, however, was not identified as differentially expressed 

between the hrpL mutant and the hrpL over-expression strain.  

The remaining 6 novel genes found to be up-regulated by HrpL include a 

protein with unknown function, designated ytfK in a wide-variety of other 

Enterobacteria, and a putative oxidoreductase. HrpL up-regulates a 59 aa 

putative exported protein, which is only found in Pectobacterium species and  
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Figure 3. 

 

 

Figure 3: Thirty-seven genes identified in the HrpL regulon. A heat map 

made using MultiExperiment Viewer indicating the relative expression of genes 

found to be significantly differentially expressed between the two strains in all of 

the time points.  Green indicates relatively low expression, black indicates neutral 

expression, and red indicates relatively high expression.  The gene designations 
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from their ASAP annotations (introduced in Chapter 2) are shown on the right. 

The genes ordered in hierarchal clustering based on their expression patterns 

 

Dickeya zeae.  A poorly-understood metalloprotease, prt1, was also identified as 

up- regulated by HrpL.  Prt1 is known to be involved in disease and expressed in 

planta, but its exact function remains unclear.  Lastly, two regulators were 

identified:  One is a lysR-like regulator located within the T3SS cluster of genes, 

suggesting it may have a secondary role of regulation for associated T3SS 

genes; the other is a hypothetical protein, found to contain GGDEF and GAF 

domains, which are each implicated in c-di-GMP signaling.  Second messengers 

such as cAMP and c-di-GMP have been well established in other organisms as 

critical regulators of a phenotypic switch between motility and virulence. There 

has previously been no work on small molecule signaling in P. carotovorum, but 

this finding suggests it may use c-di-GMP as a second messenger during 

pathogenesis. 

Table 3 

Genes Differentially Expressed 1 Hr After Induction FOLD CHANGE 

ADT-0000817_galK_galactokinase 2 down 

ADT-0000589_trpE_anthranilate synthase component  2 down 

ADT-0000818_galT_galactose-1-phosphate uridylyltra 2 down 

ADT-0000590_trpG_anthranilate synthase component  2 down 

ADT-0003084__Phospho-2-dehydro-3-deoxyheptonate  2 down 

ADT-0003085__Phospho-2-dehydro-3-deoxyheptonate 2 down 

ADT-0003927__Outer membrane protein F precursor 2 down 
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ADT-0000591_trpD_anthranilate phosphoribosyltransferase 2 down 

ADT-0002737__Beta-xylosidase 2 down 

ADT-0002884__Putative sporulation protein 3 down 

ADT-0002885__Putative sporulation protein 4 down 

ADT-0001287__succinate-semialdehyde dehydrogenase 2 up 

ADT-0002736__Xyloside transporter XynT 2 up 

ADT-0003752__Transcriptional regulator, AraC family 3 up 

ADT-0003861__HecB precursor 5 up 

ADT-0002861__Probable transcriptional regulator 6 up 

  

Genes Differentially Expressed 3 Hr After Induction FOLD CHANGE 

ADT-0002358__methyl-accepting chemotaxis protein 2 down 

ADT-0000886__hypothetical protein 2 down 

ADT-0004458_tRNA-Ile_tRNA-Ile(GAU) 2 down 

ADT-0002429__hypothetical protein 2 down 

ADT-0000027__methyl-accepting chemotaxis protein 2 down 

ADT-0000048_metE_5-methyltetrahydropteroyltrigluta 3 down 

ADT-0001893_fruK_1-phosphofructokinase 4 down 

ADT-0003384__putative short chain dehydrogenase 2 up 

ADT-0000446__hypothetical protein 2 up 

ADT-0004037_ibpB_heat shock protein B 2 up 

  

Genes Differentially Expressed 5 Hr After Induction FOLD CHANGE 

ADT-0004008_prtW_metalloprotease 3 down 

ADT-0000886__hypothetical protein 3 down 

ADT-0002429__hypothetical protein 3 down 

ADT-0000027__methyl-accepting chemotaxis protein 2 down 
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ADT-0000884__hypothetical protein 2 down 

ADT-0000430_fliC_flagellin 2 down 

ADT-0001964__hypothetical protein 2 down 

ADT-0000885__hypothetical protein 2 down 

ADT-0002358__methyl-accepting chemotaxis protein 2 down 

ADT-0004237__hypothetical protein; Hypothetical secreted protein 2 down 

ADT-0000879__putative membrane protein 2 down 

ADT-0000881__putative lipoprotein 2 down 

ADT-0000883__hypothetical protein 2 down 

ADT-0003621__Methyl-accepting chemotaxis protein I 2 down 

ADT-0002772_cheD_methyl-accepting chemotaxis protein 2 down 

ADT-0002654__probable exported protein YPO2987 2 down 

ADT-0000882__hypothetical protein 2 down 

ADT-0002777_flgK_flagellar hook-associated protein 2 down 

ADT-0000435_fliZ_putative alternative sigma factor 2 down 

ADT-0000428_flgL_flagellar hook-associated protein 2 down 

ADT-0003787__Flagellar motor switch protein fliG 2 down 

ADT-0001641_fliF_flagellar M-ring protein 2 down 

ADT-0002771__Methyl-accepting chemotaxis protein  2 down 

ADT-0003012__Methyl-accepting chemotaxis protein  2 down 

ADT-0000878__putative chaperone 2 down 

ADT-0001767__methyl-accepting chemotaxis protein 2 down 

ADT-0002861__Probable transcriptional regulator 4 up 

ADT-0002065__putative exported protein 3 up 

ADT-0001823__hypothetical protein 3 up 

ADT-0000644_pepT_peptidase T 3 up 

ADT-0000772__hypothetical protein 2 up 

ADT-0003884_ompW_outer membrane protein W 2 up 
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ADT-0004037_ibpB_heat shock protein B 2 up 

ADT-0004254_nirB_nitrite reductase [NAD(P)H] large 2 up 

ADT-0000446__hypothetical protein 2 up 

ADT-0004038_ibpA_heat shock protein A 2 up 

ADT-0002217_nirD_nitrite reductase [NAD(P)H] small 2 up 

ADT-0002423__hypothetical protein 2 up 

ADT-0003804__hypothetical protein 2 up 

ADT-0000344__putative membrane protein 2 up 

ADT-0000771__putative haloacid dehalogenase-like  2 up 

ADT-0003572__putative exported protein 2 up 

ADT-0003263_aegA_anaerobically expressed oxidoreductase 2 up 

ADT-0001521__hypothetical protein 2 up 

Table 3: Genes found to be in the HrpL stimulon: Gene identification numbers 

were determined by the annotation described in Chapter 2. Highlighting indicates 

genes that were found in two time points. 

  

Genes found to be differentially expressed in only one or two of the time points 

are shown in Table 3.  Interestingly, in the later time points, there are multiple 

methyl-accepting chemotaxis proteins and flagellar genes down regulated.   It 

has been previously reported in other bacteria that motility was down-regulated 

while the T3SS is expressed [48-52]. This, however, is the first instance 

documented in P. carotovorum which indicates the master-regulator of T3SS, 

HrpL, is involved in down-regulating motility. 

 Together, this data indicates that the HrpL-regulon of P. carotovorum is 

small relative to those of P. syringae, the plant-pathogen with the 
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phylogenetically closest T3SS.  However, multiple known virulence regulators 

were identified here as downstream of HrpL activity, suggesting a broader role 

for HrpL in virulence regulation and an integration of the T3SS into the complex 

virulence regulation network of P. carotovorum.  

 

Confocal Microscopy to confirm HrpL activity in vivo. To complement our 

pathology data of the HrpL regulon’s role in planta, we used confocal microscopy 

to visualize the activity of a HrpL-responsive reporter during leaf infection.  Here 

we used a dspE promoter fusion to gfp (in our DFI vector) from our promoter –

trap screen. This construct was carried by wild-type P. carotovorum, which was 

then infiltrated into A. thaliana leaves. Here, A. thaliana leaves were used due to 

their relative thinness compared to potato leaves, which made it easier to 

visualize fluorescent bacteria with confocal microscopy. In Figure 4, fluorescence 

is visualized 7 hours after infiltration, indicating native HrpL induction and activity 

and T3SS expression in vivo.  Importantly, also in Figure 4, when our dspEpro-gfp 

fusion was carried in a hrpL mutant, we do not see this fluorescence at any of the 

sampled time points, indicating that the fluorescence we saw before was due to 

HrpL activity. This again indicates that the T3SS is expressed in planta and is 

expressed early in infection.  Later time-points using confocal microscopy were 

not taken due to tissue maceration and for fear that the stability and long half-life 

of GFP would skew interpretations of the timing of expression. 
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Quantitative Real-Time PCR indicates that HrpL and the T3SS are 

expressed early in infection.  To understand specific stages of leaf infection, 

we used quantitative RT-PCR to look at expression of key virulence factors and 

regulators during a time course spanning early infection.  Bacterial RNA was 

extracted from infected potato leaves at various time points and relative 

Figure 4: 

 

Figure 4. Confocal microscopy images of A. thaliana mesophyl cells 7 

hours after infection with P. carotovorum. A. mesophyl cells with no P. 

carotovorum.  B.  mesophyl cells infected with WPP14. C. Mesophyl cells 

infected with WPP14hrpL, DFI:dspEproGFP as a negative control. D. Mesophyl 

cells infected with 200 mM Arabinose and WPP14, DFI:dspEproGFP and 

pBAD:hrpL as a positive control. E and F. Mesophyl cells infected with WPP14, 

DFI:dspEproGFP. 
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expression of hrpL, the effector dspE, harpins hrpN and hrpW, pelB and fliC were 

selected to generally observe the timing of expression of the T3SS, T2SS, and 

motility during early leaf infections. hrpN and hrpW encode harpin proteins that 

are secreted, but not translocated, by the T3SS and known to elicit defense 

responses in A. thaliana. HrpN is regulated by HrpL, but also by repressors that 

respond to plant signals (KdgR and PecT). pelB encodes a pectate lyase, 

secreted via the T2SS. fliC encodes the flagellin subunit.  Figure 5 shows qRT-

PCR data of gene expression 7 hours after infection of potato leaves. hrpL and 

genes downstream of hrpL, dspE and hrpW are up-regulated, while hrpN, which 

is regulated by multiple transcription factors, is not seen to be up-regulated.  It is 

surprising that this harpin is not co-expressed with the T3SS here since the locus 

is within the hrp cluster and is regulated by HrpL.  However, transcriptional data 

from tubers and stems also indicate that HrpN is expressed independently from 

the T3SS, which may be due to the action of hrpN repressors [42, 43]. Similar to 

hrpN, pelB and fliC are also lowly expressed during early leaf infection.  This data 

suggests that while the T3SS is expressed, P. carotovorum are non-motile and 

not secreting macerating enzymes via a T2SS.  This observation is in 

accordance with the down-regulaton of flagellar genes in later time points of the 

DNA array (described above) and with transcriptional profiling of P. carotovorum 

done in stem and tubers, where we see motility and T2SS genes relatively highly 

expressed and T3SS genes relatively lowly expressed. Before the data in this 

chapter is submitted for publication, this experiment will be repeated with a 0 time 
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control to better assess relative expression levels.  However, from preliminary 

data where 0 time points were taken, we know that hrpL and dspE are not 

expressed in the minimal media used prior to leaf infiltration. 

Figure 5 

 

 

Figure 5: Relative expression of key virulence regulators and factors during 

early leaf infection. The expression of the T3SS-regulator, hrpL (dark blue) the 

T3SS helper genes, hrpW ( green) and hrpN (orange), the T3SS effector-

encoding gene, dspE (red), and the gene encoding the flagellin subunit, fliC (light 

blue), and the pectate lyase-encoding gene, pelB (purple).  Expression is relative 

to the house-keeping gene, ffh.  Error bars represent standard error. This 

experiment needs to be repeated.  

 

Microarray data of transcription profiles during tuber and stem infection. 

My collaborators Amy Charkowski and María del Pilar Márquez used 

transcriptional profiling of WPP14 during tuber and stem infections to identify 

virulence factors important for stem and tuber infection routes.  The microarray 
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data analysis and verifying qRT-PCR are still being completed.  Preliminary 

results indicate that the transcriptional profiles of WPP14 during stem and tuber 

infection were largely the same and genes relatively highly expressed in both 

stem and tuber infections principally included those involved in motility and 

secretion of plant cell wall degrading enzymes, including the T2SS apparatus 

encoding genes. HrpL and the T3SS-associated genes were weakly expressed 

in both stem and tuber infections. A set of 139 genes were found to be 

differentially expressed between the two infection routes: 74 were specifically 

highly expressed in stem, and 65 in tuber infections. Genes specifically induced 

during the WPP14-stem interaction include a nitrate transport and metabolism 

operon, an osmotically inducible lipoprotein, the global regulator rpoS, a negative 

regulator of multidrug resistance, and a phosphate transport system.  Genes 

specifically induced during the WPP14-tuber interaction include a glycerol-3-

phosphate transport system, a putative type IV pilus protein, a metallopeptidase, 

and a two-component signal transduction system involved in citrate catabolism.  

Although more analysis and discussion is required, the data generally indicates 

that the T3SS is not expressed during these infection conditions, macerating 

enzyme production and motility are necessary, and that each interaction also 

produces tissue-specific virulence and fitness-related expression patterns. 

 

CONCLUSION: 

In this chapter, we explored the transcriptional profiles of P. carotovorum and the 

role of T3SS during infection. We found that the T3SS and associated virulence 
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factors are required for virulence on the leaves of A. thaliana and potato.   In 

accordance with this finding, we used confocal microscopy to visualize in planta 

expression of the T3SS during leaf infections and found that levels of GFP could 

be seen after 7 hours of infection.  We used a promter-trap screen and DNA 

microarray to determine that HrpL, the master regulator for the T3SS, regulates 

only 8 genes in addition to known T3SS hrp cluster genes.  Further 

transcriptional analysis indicates that the T3SS is expressed very early upon 

infection in leaves.  These results suggest a tissue- and timing-specific role for 

the T3SS during pathogenesis and that the T3SS of P. carotovorum has a 

relatively small HrpL regulon and has been incorporated into the pathogenesis 

strategy differently than in P. syringae, which has a similar system. 
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CHAPTER 4: Gluconate metabolism is required for virulence of the soft-rot 
pathogen Pectobacterium carotovorum 

 
ABSTRACT: 

P. carotovorum is a ubiquitous soft rot pathogen that uses global virulence 

regulators to coordinate pathogenesis in response to undefined environmental 

conditions. This chapter discusses metabolic and nutrient signals that influence 

the global network of virulence regulators in P. carotovorum, introduced in the 

introductory chapter. We characterize an operon in P. carotovorum required for 

gluconate metabolism and virulence.  The operon contains four genes that are 

highly conserved among proteobacteria (initially annotated ygbJKLM), one of 

which was previously mis-annotated as encoding a type III secreted effector, 

(ygbK, also annotated as hopAN1).  A mutant with a deletion-insertion within this 

operon is unable to metabolize gluconate, a precursor for the pentose phosphate 

pathway.  The mutant exhibits attenuated growth on the leaves of its host of 

isolation, potato, and those of Arabidopsis thaliana, but hyper-macerates potato 

tubers and is deficient in motility.  Lastly, the mutant is deficient in normal 

regulation of KdgR and FlhD, global virulence regulators that are responsive to 

cell wall pectin breakdown products and largely undefined environmental signals, 

respectively.  The mis-regulation of virulence via known global virulence 

regulators in our ygbJ-M operon mutant suggests a role for host-derived 

catabolic intermediates in P. carotovorum pathogenesis. We rename this operon 

in P. carotovorum vguABCD for virulence and gluconate metabolism.  
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INTRODUCTION 

 

Pectobacterium carotovorum subsp. carotovorum is a plant-associated 

Enterobacteriaceae family member found worldwide in surface waters, soil, 

carrier invertebrates, as well as plant hosts [1-4]. P. cartovorum can infect a 

range of plants to cause soft-rot disease and is responsible for significant 

economic losses in potato production each year. The strain Pcc WPP14, which 

we discuss here, was isolated from the irrigation pond of a Wisconsin state 

potato farm suffering from a rot outbreak after a hailstorm. P. carotovorum can 

infect a host plant by multiple routes and can elicit disease on leaves and stems, 

as well as in tubers. Soft-rot outbreaks are generally triggered by environmental 

factors such as rain and/or hot weather and can strike during tuber storage 

leading to total crop loss.  

 

Pectobacterium are often described as brute-force pathogens as their virulence 

strategy relies heavily on Plant Cell Wall Degrading Enzymes (PCWDE), which 

are secreted via a Type II secretion system (T2SS) [5-7]. Cellulases, pectate-

lyases, and polygalacturonase are responsible for the characteristic rotting 

symptoms of infection by P. carotovorum and, consequently, its necrotrophic life-

history [8]. However, P. carotovorum uses an array of virulence determinants in 

addition to the T2SS [9], including antibiotics, metalloproteases, adhesins, and a 

Type III Secretion System (T3SS), which are all tightly controlled by a well-
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studied network of regulators (reviewed in [9-16]). For example, at least three 

regulators manipulate the production of PCWDE, KdgR, HexA, and RsmA. 

 

One key regulator is KdgR, a repressor that blocks transcription of PCWDE 

genes in the absence of pectin-breakdown products [17, 18]. KdgR is a rare 

example where we understand how known extracellular signals directly influence 

the characterized signaling cascades [19]. The actions of KdgR feed into the 

Rsm post-transcriptional regulation system [20], a central component of virulence 

regulation modules in P. carotovurom, which is a system homologous to the Csr 

system in E. coli [21, 22]. KdgR negatively regulates rsmB, a functional RNA that 

sequesters RsmA. RsmA binds to and regulates translation of target transcripts 

[23], including PCWDE gene transcripts. In the presence of pectin breakdown 

products, KdgR de-represses PCWDE genes and rsmB expression, leading to 

PCWDE transcription and sequestration of RsmA by rsmB and consequent 

PCWDE translation. However, the Rsm system is influenced by multiple 

regulators including the acyl homoserine lactone receptor ExpR [24, 25], and 

regulates multiple virulence factors [26] including the T3SS and toxins in addition 

to the PCWDE [27, 28]. Thus a complex network of concerted and antagonistic 

regulators determines virulence expression in the variety of environments and 

host tissues in which P. carotovorum is found. 

 

Presumably, several environmental conditions are monitored in order to transition 

from an environmental microbe in soil or surface water to the leaf, stem, or tuber 



 

118 
 

of a host plant and progress through stages of infection [29-32]. Just as KdgR is 

responsive to pectin-breakdown products, many of the other virulence regulators 

that feed into the Rsm system are responsive to environmental cues that have 

yet to be identified. The FlhDC hexomeric complex is another key virulence 

regulator that acts downstream of environmental signals and upstream of the 

Rsm system [33]. Considered the master regulator of motility, FlhDC interacts 

with multiple virulence regulators, including the two-component system, GacA/S, 

and a LysR-like transcriptional regulator, HexA [34, 35]. FlhDC and HexA are 

both thought to be responsive to unknown extracellular environmental factors, 

and HexA, in turn, regulates rsmB expression. The sensor kinase GacS is 

thought to detect cell density, growth phase and other undetermined 

environmental factors, while its cognate response regulator GacA is itself 

regulated by medium composition and growth phase [33, 36, 37]. GacA regulates 

toxins, PCWDE and rsmB downstream of signaling from GacS [38]. In addition to 

regulating HexA and GacA/S, FlhDC in E. coli is responsible for regulating a shift 

to aerobic respiration and genes involved in the Entner-Doudoroff pathway, an 

alternative glycolysis pathway [39, 40]. Thus, the activity of FlhDC not only 

provides a clear regulatory link between virulence and motility [41], but 

metabolism and environmental conditions as well.  

 

In this chapter, we characterize a P. carotovorum operon required for gluconate 

metabolism that modulates the expression of key virulence regulators and affects 

virulence in plants. In 2002, Boch et al. employed an IVET screen in P. syringae 
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for T3SS virulence determinants, in which they identified a gene they designated 

ipx53 [42]. ipx53 was considered a potential type III effector for a short time, and 

given the name HopAN1. Unlike other T3SS effectors, this gene is highly 

conserved in enterobacteria and plant pathogens [43-45]. The hopAN1 homolog 

of Pcc  WPP14 exists in an operon of four genes encoding, in order: an 

oxidoreducatase, hopAN1, a class II aldolase and an isomerase [46] (Fig. S1). 

The operon is highly conserved in enterobacteria and the four genes were 

named ygbJKL and M in E. coli. The designation ygb is the temporary name for 

genes of unknown function [47]. We have therefore named the Pcc operon 

vguABC and D for virulence and gluconate. The vgu operon is required for 

gluconate metabolism.  In P. carotovorum, glucose may be oxidized to 2,5-

diketogluconate and subsequently reduced to gluconate which can be 

metabolized through the pentose phosphate pathway as it is in related species 

[48]. The predicted functions of the vgu operon-encoded proteins suggest a 

pathway similar to the pentose phosphate pathway. In the Pcc WPP14 vgu 

mutant described here, key virulence regulators flhD, kdgR, and rsmB are mis-

expressed during infections. Thus, we provide evidence suggesting that 

gluconate catabolic products affect virulence determinants by modulating known 

regulators.  

 

MATERIALS AND METHODS 

Bacterial strains, plasmids and media: Bacterial strains were maintained in 

Lysogeny Broth (LB) agar or 2xYT broth, containing appropriate antibiotics, 
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Sambrook and Russell, 2001. The Minimal Media for hrpL repression was 

described in [49]. Tuber extract media was made by autoclaving 200 g of 

chopped Yukon gold potatoes with 200 mL of water. After autoclaving the water-

potato slurry was centrifuged at 12,000Xg for 30 min. The supernatant was 

diluted 1:5 in M9 Minimal media lacking a carbon source. When required, 

antibiotics and drugs were supplemented at the following concentrations: 

ampicillin [39] 100 g/mL; chloramphenicol (Cm), 30 g/mL; gentamycin (Gm), 

25 g/mL; kanamycin (Km), 30 g/mL; rifampicin (Rif), 100 g/mL; spectinomycin 

(Spec), 50 g/mL; and tetracycline (Tet), 5 g/mL. Media was solidified with 1.5% 

wt/vol BD Bacto-agar. Cultures were grown at 28 ºC and, if in liquid, shaken at 

250 rpm) 

 

DNA manipulations 

Standard procedures were used for: plasmid and chromosomal DNA isolation; 

electroporation; restriction endonuclease digestions; ligations; gel 

electrophoresis; and tri-parental mating. Enzymes were obtained from either New 

England Biolabs or Invitrogen. Nucleotide sequences were determined by the 

UNC-CH Genome Analysis Facility and sequences were analyzed using BLAST. 

 

Construction of the P. carotovorum vgu operon mutant 

To replace the vgu operon, we used splicing over-lap extension (SOE) PCR [50] 

to create a construct with a Cm cassette flanked by 1 kb of sequence 

surrounding vguB on each side. Briefly, a 1 kb region upstream of vguB was 
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amplified using SOE primers containing a SalI site for the insertion of a Cm 

cassette on the 3’ end, and a 1 kb downstream region was amplified similarly 

with the SalI site on the 5’ end with SOE primers  (shown as primers 1 and 2 in 

Table S1). These amplicons were then fused together in a two-step SOE PCR 

reaction and the SOE product was cloned into pCR2.1 Topo TA cloning vector 

(ampR) (Invitrogen) to make pCR2.1SOEvgu, which was then digested with SalI. 

The Cm cassette was amplified from pKD3 using modified primers from [51] to 

contain SalI sites on both ends (primers 3 and 4 in Table S1) The Cm cassette 

was then digested with SalI and ligated to the linear pCR2.1SOEvgu to make 

pCR2.1∆vgu. This plasmid was introduced into P. carotovorum WPP14 by 

electroporation. The resulting Pcc WPP14::pCR2.1∆vgu strain was then grown in 

potassium phosphate buffer supplemented with Cm, but not Amp. After over-

night growth, the cultures were transferred to 2XYT supplemented with Cm and 

passaged for three days, at which point the cultures were replica plated on LB 

plates that contained either Cm and Amp, or just Cm, to identify strains that had 

lost the plasmid but undergone double-homologous recombination for marker 

exchange. The resulting deletion-insertion mutants were verified by PCR analysis 

and sequencing across the entire four-gene operon. 

 

Supplemental Table 1. List of primers used. 
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Complementation of vgu operon mutant 

The four-gene operon and a 500 bp region encompassing the operon promoter 

region were amplified with pfx polymerase (Invitrogen) with primers 5 and 6 

(Table S1): Gel electrophoresis with a 1% (wt/vol) agarose (Invitrogen ultrapure 

agarose) was used to view and isolate the resulting amplicon. Gel extraction 

buffers and protocols were supplied from Qiagen Gel extraction kit (Qiagen). The 

isolated amplicon was then incubated in the presence of Taq polymerase 

(Invitrogen) and PCR reaction mix without primers for five minutes at 70 C in 

order to add overhanging As on the blunt amplicon. The amplicon was then 

cloned into pCR2.1 TA cloning vector (Invitrogen TA cloning kit) according to 

manufacturer’s protocol. The resulting plasmid was then conjugated into the P. 

carotovorum vgu operon mutant via tri-parental mating with E. coli helper strain 

pRK2013. The resulting complementation strain was isolated on Cm and Kan 

plates and verified by PCR from vector borne M13 primers (Invitrogen). 

 

A. thaliana and Potato Leaf Infection Assay 

Cultures were grown overnight in 2XYT media, washed twice in 10 mM MgCl2, 

and resuspended at 104 CFU/mL in 10 mM MgCl2. Cultures were hand infiltrated 

with a needle-less 1 ml syrinage into the leaves of either 4-5 week old Yukon 

gold potatoes or 4-5 week old A. thaliana. At subsequent time points, infected 

leaves were cored with a gauge 3 (6 mm diameter) cork borer and the tissue 

ground in the presence of 10 mM MgCl2. The CFU/mL of present bacteria was 

quantified by titration and plating on LB plates with the appropriate antibiotics. 
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Tuber Maceration Assay 

Tubers were injected with 10 L of resuspended at a concentration of 108 

CFU/mL. Bacteria were inoculated into 15 mm holes in the tuber, made with a 

pipette tip. The infected tubers were then placed in a plastic bag, which was 

sealed and kept at 28 ºC for 5 days. After 5 days, the soft, macerated tissue 

surrounding each injection sight was carefully scooped out using a metal spatula 

and weighed. Each experiment contained 10 internal replicates. 

 

Motility Assays 

Motility media recipes were described in [52]. Swimming motility media contained 

Tryptone (10 g/L), NaCl (5 g/L) and Bacto-Agar (BD) at 0.3% wt/vol. Swarming 

motility media contained Nutrient Broth (8 g/L), and Bacto-Agar at 0.5% wt/vol. 

Twitching motility media contained Tryptone (10 g/L), Yeast Extract (5 g/L), NaCl 

(10 g/L) and Bacto-agar at 1% wt/vol. Each motility plate contained 50 mLs of 

motility media with appropriate antibiotics. Plates were inoculated with 106 CFU 

of bacteria and incubated for 18 hours at room temperature, at which point the 

diameter of the colony was measured. 

 

RNA Extraction 

From leaves: A. thaliana or potato leaves were infiltrated with wild-type Pcc 

WPP14 cultures at an OD600 of 1.0 (approximately 4x108 CFU/mL) using a 

needle-less syringe. Two and a half hours post infection, 10 leaves were 
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collected, ground in the presence of Qiagen Protect Bacteria and homogenized 

over a Qiashredder column before RNA was extracted using the RNeasy kit 

(Qiagen). 

 

From tuber extract media: Cultures were grown in rich media overnight, 

centrifuged and washed in 10 mM MgCl2. Bacteria was resuspended at an OD600 

of 0.5 (2x108 CFU/mL) and grown for 3 hrs, shaking at 28 ºC. Bacteria were then 

harvested in the presence of Protect Bacteria and RNA was extracted with the 

RNeasy mini kit (Qiagen) However, the protocol was modified to include an RNA 

precipitation step with LiCl after lysis but before the ethanol precipitation and 

RNA being bound to the column. This step allowed for the removal of excessive 

sugars present in the tuber extract media. 

 

qRT-PCR 

RNA was reverse transcribed into cDNA using the Ambion RETROscript kit. 

Briefly, 2 ug of RNA was primed with random decamers and reverse transcribed 

with the MMLV-RT. cDNA was then diluted and relative quantities of specific 

transcripts were determined using SYBR Green RT-PCR Reagents. 

Fluorescence of double-stranded DNA was measured by a DNA Engine, Opticon 

2 Continuous Fluorescence Detector (MJ Research) and values were analyzed 

using Opticon Monitor 3 software (MJ Research). Relative gene expression was 

determined by normalizing to a P. carotovorum housekeeping gene, ffh, which 
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encodes a signal recognition particle protein, and was identified as an optimally 

stable control gene for qRT-PCR analysis by [53]. 

 

Carbon Source Utilization Assays 

 

Biolog GN2 plates, which contain 95 discrete carbon sources, were inoculated 

with P. carotovorum Pcc WPP14, the vgu operon mutant, and the complemented 

vgu operon mutant. Briefly, cells were grown in LB media at 28C for 24 hours, 

washed twice in 10 mM MgCl2, and resuspended in 10 mM MgCl2 to a final 

concentration of 0.4 OD600. Aliquots of 150 µL were added to each well. The 

plates were sealed and allowed to incubate statically at room temperature for 24 

hours. Each plate contained a negative control that lacked a carbon source to 

ensure that metabolic activity of stored carbon reserves was not being measured. 

In response to respiration, tetrazolium in each well can become reduced to 

produce a distinctive purple color indicating the oxidization of the available 

carbon source Carbon utilization was additionally tested by growth in M9 Salts 

and 100 mM of a specific carbon source.  Bacteria were grown in liquid 2XYT 

culture over night, washed in M9 salts two times and resuspended at OD600 of 

0.04 in the M9 Salts with a carbon source.  The culture was then incubated for 

18-20 hours at 28C, while shaking, and the OD600 was measured again.  

 

Gas Chromatography coupled to Mass Spectrometry 
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Preparation and methods for GC-MS analysis was as described [54]. Cultures of 

wild type and the vgu operon mutant were grown from single colonies in LB 

media overnight. The next day, over-night cultures were used to inoculate 100 

mLs of potato extract media and grown to an OD600 of 0.4 in approximately 4 

hours, shaking at 250 r.p.m at 28 C. Cellular metabolism was immediately 

quenched by addition of methanol at -45 C. Intracellular metabolites were 

extracted with chloroform as described in [55]. At -45 C chloroform was added to 

the methanol/water mixture to break the cell walls and denature enzymes. The 

water/methanol phase was then lyophilized and derivatized with 10 uL of 56 

mg/mL ethoxyamine hydrochloride solution in pyridine and 20 uL of pyridine. The 

samples were then incubated at 40 C for 90 min. The samples were then 

silylated for 50 min at 40 C with 70 uL of N-Methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA). The derivatized extracts were prepared 

for GC-MS analysis by the addition of ethyl acetate as a carrier and filtering in the 

presence of acetyl nitrile to ensure the absence of metal ions. Samples were 

analyzed with an Agilent 6850 gas chromatograph coupled to an Agilent 5973 

mass selective detector. The 5 uL aliquots of extract were injected into a capillary 

column (30 m_.25 mm i.d., 0.25 m film thickness) at 250 C. The initial 

temperature of the gas chromatograph was 50 C and held for three min before 

ramping to 250 C at 10 C per minute.  Helium was used as a carrier gas. 

Detection was achieved using MS detection in electron impact mode and full 

scan monitoring mode (m/z 10_550). Data was analyzed using ChemStation 

(Enhanced Software). 
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RESULTS 

 

The vguABCD operon is widely distributed in proteobacteria. The structure 

of the vguA-D operon in P. carotovorum is generally conserved in enterobacteria. 

A similar operon also exists in more distantly related plant pathogenic bacteria 

although one or two of the ORFs are missing in some species. The conservation 

of the operon structure in select proteobacteria is illustrated in Supplemental 

Figure S1. Many of the chromosome regions are flanked by other genes 

predicted to be involved in sugar metabolism, such as epimerases and 

decarboxylases. The conserved genomic structure of this operon suggests its 

products could be involved in a metabolic function. 

 

The vgu operon mutant has significantly attenuated growth on potato and 

Arabidopsis leaves. To determine if the vgu operon has a role in virulence, we 

constructed a deletion-insertion mutation that replaces vguB with a 

chloramphenicol cassette, which has a polar effect and disrupts the expression of 

both the up and downstream overlapping genes in the operon as determined by 

RT-PCR. This mutation does not affect expression of the downstream gluconate 

permease gene, gntP (data not shown). The mutation was confirmed by PCR 

and re-sequencing of the entire vgu operon. The vgu operon mutant had the  
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Figure S1. 

 

Supplemental Figure 1. vgu operon organization is conserved in 

enterobacteria. Phylogenetic tree constructed using maximum-likelihood 

estimation with a molecular clock of vguB homologs from select species, which 

represent the range of vgu distribution. Coupled to the tree is a cartoon depiction 
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of the chromosome region in which the vgu homolog lies. The structure of the 

vguABCD operon in P. carotovorum is generally conserved in species with the 

closest vguB homologs. The operon is often flanked by a DeoR-like transcription 

regulator on one side and a gluconate permease on the other. However, some 

species lack the complete operon, such as Yersinia enterocolitica, Yersinia 

intermedia, and Yersinia mollaretti , which appear to only carry the vguB homolog 

and the vguC putative aldolase in the region. Interestingly, Burkholderia 

phymatum contains two copies of the vguA oxidoreductase gene, but lacks the 

vguC and vguD genes, two genes at the 3’ side of the operon. Nearly all of the 

chromosome regions are flanked by other genes predicted to be involved in 

sugar metabolism, such as epimerases and decarboxylases.  

 

same growth rate in both rich and minimal media types as wild type (Figure S2). 

To determine if the vgu operon is involved in virulence, we compared growth of 

the wild type to that of the vgu operon mutant in its native host, potato (Fig. 1A), 

as well as a model host, A. thaliana (Fig. 1B). In both potato and A. thaliana 

leaves, Pcc WPP14 grew to 108 CFU/mL by three days post  infection. In potato 

leaves, the vgu operon mutant grew three logs less than Pcc WPP14 by three 

days post infection, illustrating a severe attenuation in virulence. Similarly, in A. 

thaliana leaves, the vgu operon mutant grew two logs less than Pcc WPP14 by 

three days post infiltration on leaves of both hosts. The vgu operon mutant failed  

 

 



 

130 
 

Figure S2. 

 

Supplemental Figure 2. Growth of the vgu operon mutant in rich (2XYT) and 

minimal media.  The optical density600 of both wild type (strain WPP14) and the 

vgu operon mutant were both started in liquid cultures at 0.1 OD600 and 

monitored over the course of 8 hours for growth.  

 

to produce maceration symptoms typically seen during P. carotovorum infection 

on leaves of both hosts. These begin as a rotting lesion spreading out from the 

site of infiltration over the course of the growth experiment. Both attenuation of 

growth and lack of maceration mutant phenotypes were rescued with the vgu 

operon cloned with its native promoter in the entry clone pCR2.1 and mated into 

the vgu operon mutant strain (Fig. 1).  
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Figure 1 

 

Figure 1. VguA-D mutant is defective in growth on leaves. Potato (A) and A. 

thaliana (B) hand infiltration of Pcc WPP14, the vgu operon, or the vgu operon 

mutant carrying pCR2.1:vgu operon with 104 CFU/mL initial inoculum, into leaves 

of 4-5 week old plants. Experiment has four internal replicates and was repeated 

three times; error bars indicate two times standard error. 
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Figure 2 

 

Figure 2. The vgu operon mutant hypermacerates infected potato tubers. 

Potato tubers were inoculated with either 10 mM MgCl2, Pcc WPP14, the vgu 

operon mutant, or this mutant mutant carrying pCR2.1:vgu operon. 106 CFU were 

injected into a 1.5 mm hole and tubers were incubated at 28 oC for five days. 

Experiment has ten internal replicates, error bars are two times standard error 

and was repeated twice. 

 

The vgu operon mutant hyper-macerates potato tubers compared to wild 

type. To determine if the vgu operon mutant was also defective in tuber 

maceration, we compared wild type maceration to that of the vgu operon mutant. 

Each tuber was infected with three strains: Pcc WPP14, the vgu operon mutant, 

and the complemented vgu operon mutant, as well as a negative control for 

maceration, 10 mM MgCl2 buffer. The wild type and the vgu operon mutant 

carrying the complementation clone both macerated just over 1 gram of potato 

tuber in 5 days, while the vgu operon mutant macerated over 3 grams of potato 
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tuber (Fig. 2). The concentration of bacteria per mg of tissue was approximately 

1X109 for both the mutant and wild type. This indicated that the vgu operon 

mutant is hyper-macerating, suggesting a mis-regulation of the expression of 

plant cell wall degrading enzymes that characterize soft rotting diseases. This 

hyper-virulence in the tuber was unexpected, given the attenuated virulence 

phenotypes on leaves reported above.  

 

The vgu mutant is deficient in swimming motility. Previous studies of P. 

carotovorum and other phytopathogens have demonstrated co-regulation of 

motility modes during pathogenesis. Therefore, we compared the vgu operon 

mutant to the wild type on twitching, swarming and swimming motility agar plates.  

Figure 3 

 

 

Figure 3. The vgu operon mutant is defective in swimming motility. 

Swimming motility plates were inoculated with 106 CFU into the center of the 

plate, each with 50 mL of motility agar and appropriate antibiotics. Plates were 
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grown for 18 hrs at room temperature. Experiment has four internal replicates 

and was repeated three times, error bars indicate two times standard error. 

 

 

The vgu operon mutant was able to swarm and twitch like wild type Pcc WPP14, 

however, the vgu operon mutant exhibited significant reduction in swimming 

plates. On motility plates, the wild type and the vgu mutant carrying the 

complementation clone swam almost twice the diameter of the vgu operon 

mutant (Fig. 3). This indicates that the vgu operon mutant is also unable to 

properly swim and / or perform chemotaxis.  

 

The vgu operon is neither HrpL-regulated, nor up-regulated in leaves. vguB 

has homology to the P. syringae gene annotated as hopAN1. The name HopAN1 

indicates that the gene potentially encodes a type III effector protein [56]. We 

determined if HrpL, the alternative sigma factor responsible for T3SS regulation 

in P. carotovorum [57], regulates vguB transcription in Pcc WPP14. Cultures of 

Pcc WPP14 containing the native hrpL ORF cloned into pCF430, where hrpL is 

under the control of the arabinose-inducible promoter [49], were grown with or 

without 200 mM arabinose in hrpL-repressing media. qRT-PCR was used to 

assess the relative expression of vgu and a known HrpL-dependent T3SS 

effector, dspE (Fig. 4A). In the presence of over-expressed hrpL, dspE 

expression increased over 200-fold compared to the absence of hrpL over-
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expression. vgu expression, however, was not significantly altered by hrpL over-

expression. By contrast to the P. syringae  hopAN1 gene, vgu expression is not  

 

Figure 4 

 

Figure 4. Expression of the vgu operon is independent of T3SS regulation. 

(A) qRT-PCR data showing relative expression of vgu and dspE expressed in 

Pcc WPP14 carrying pCF430 with hrpLWPP14. Cultures were grown in hrp-

repressing minimal media and hrpL expression was induced with 200 mM 

Arabinose. (B) qRT-PCR data showing relative expression of vgu and hrpL 

expressed in Pcc WPP14. Strains were grown either in hrp-repressing minimal 
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media overnight or infiltrated into A. thaliana leaves at 108 CFU/mL with RNA 

extraction 2.5 hpi. Expression is relative to the ffh housekeeping gene. 

 

induced in infected plants. We infiltrated A. thaliana leaves with wild-type Pcc 

WPP14 cultures with approximately 4x108 CFU/mL. RNA was extracted 2.5 

hours post-infection. Simultaneously, a Pcc WPP14 culture was grown in hrp-

repressing minimal media to the same concentration as the infiltrated culture and 

RNA was extracted. qRT-PCR performed using RNA from infected leaves or 

culture indicated that hrpL transcription increased ~7-fold in leaves compared to 

expression in the hrp-repressing minimal media (Fig. 4B). The expression of 

vguB, however, was not altered in leaves compared to minimal media, and 

showed low-level expression in both conditions.  

 

The vgu operon mutant exhibits altered expression of key virulence 

regulators in leaf infections and in the presence of tuber extract. Our in vivo 

virulence assays indicated that virulence of the vgu operon mutant was 

attenuated in the leaf, yet over-active in the tuber. To address the virulence 

regulation changes that could account for this observation, we used qRT-PCR to 

assess the expression level of known virulence regulators in both conditions. In 

leaves, the mutant exhibited higher mRNA levels of the pectin-breakdown 

responsive repressor, kdgR, and the T3SS helper protein hrpN than wild type 

(Fig. 5A).  In the presence of tuber extract, we found that the master regulator of 

motility, flhD [33] and the LysR-like transcription regulator, hexA [34] were 
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severely down-regulated in the vgu mutant compared to wild type (Fig. 5B). 

Though weakly expressed relative to the ffh control, the key virulence regulator 

rsmB was also down regulated 8-fold in the vgu operon mutant compared to the 

complementation strain in the presence of tuber extract (Fig. 5B). Following leaf 

infection, flhD and rsmB were both expressed at very low levels in the vgu 

operon mutant (Fig. 5A).  

Figure 5 

 

Figure 5. The vgu operon is required for normal expression of key virulence 

regulators in leaf and tuber extract. qRT-PCR data showing relative 

expression of key virulence regulators and determinants in, Pcc WPP14, the vgu 

operon, or the vgu operon mutant carrying pCR2.1:vgu operon, from leaf 

infection conditions after 2.5 hours and in the presence of tuber extract after 

three hrs of growth. Expression is relative to the ffh housekeeping gene. 
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The vgu operon is required for gluconate metabolism. To address whether the 

vgu operon is involved in sugar metabolism, as BLAST analysis suggests, we 

used a phenoarray plate to assess the metabolic phenotype of our vgu mutant in 

relation to wild type. The Biolog GN2 phenoarray plate indicated that wild type 

Pcc WPP14 was capable of using all carbon sources tested with the exception of 

D-gluconate (carbon sources tested are listed in Table S3). The ability to grow on 

gluconate was rescued by the expression of the full operon in trans in the 

complementation strain. In P. carotovorum, gluconate is a precursor sugar for the 

pentose phosphate pathway [48] and the first enzyme in the vgu operon has 

similiarity to the first enzyme in the pentose phosphate pathway, 6-

phosphogluconate dehydrogenase. However, the mutant was able to grow 

identically to wild type on carbon sources that are sugar intermediates of the 

pentose phosphate pathway, xylulose and ribulose. This may indicate that the 

defect in the vgu mutant is limited to early steps in the pentose phosphate 

pathway or that these pentose sugars can be metabolized through multiple 

pathways. In preliminary assays using gas chromatograph coupled to mass 

spectrometry to compare the metabolite profiles of wild type and the operon 

muntant, the mutant was deficient in the accumulation of pentose sugars 

including erythropentose, a pentose phosphate intermediate. It was also deficient 

in some hexose sugars, galactopyranuronic acid and the glucose structure 

glucopyanose When grown in either minimal or rich media, the vgu operon 

mutant does not have growth defects relative to wild type. 
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DISCUSSION 

 

We demonstrated that the vgu operon is involved in gluconate metabolism and is 

required for proper regulation of virulence via key virulence regulators KdgR, 

FlhD, HexA, and the rsm system. Subsequently, a mutant lacking the vgu operon 

has attenuated virulence in leaves, hyper-macerated potato tubers, and is 

deficient in motility. The inability of the mutant to grow on gluconate and its lack 

of intermediate pentose sugars from gluconate metabolism suggest that the vgu 

operon encodes enzymes for gluconate metabolism. Our findings strongly 

indicate that gluconate metabolism is critical for virulence expression through 

previously identified regulators.  

 

Gluconate metabolism in P. carotovorum 

 

In environments with high glucose concentrations, some bacteriaoxidize glucose 

extracellularly to gluconate or 2-ketogluconate, through membrane-bound 

dehydrogenases. When glucose is depleted in the environment, the oxidized 

glucose can be transported into the cell and phosphorylated in an ATP-

dependent manner, forming 6-phosphogluconate or 2-keto-6-phosphogluconate, 

respectively. These phosphorylated, intracellular sugars can then be used for the 

Entner-Dourdoroff (Liu et al.) pathway, an alternative to the Embden-Meyerhof-

Parnas (EMP) glycolysis pathway, or the pentose phosphate shunt [48, 58, 59].  
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Table S2. 

 

Supplemental Table 2. Growth of Pcc WPP14 and the vgu operon mutant in 

simple sugars as a sole carbon source.  

 

The genome of P. carotovorum encodes genes for ketoaldonic acid metabolism  

and may oxidize extracellular glucose to 2,5-diketogluconate, which can be 

reduced to gluconate in two separate pathways [48]. However, once in the cell, 
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6-phosphogluconate may solely be metabolized through the pentose phosphate 

pathway, since enzymes for the ED pathway were not found in significant levels 

in a related species [48]. Generally, if 6-phosphogluconate were to be 

metabolized through the pentose phosphate shunt, it would first be converted to 

ribulose 5-phosphate by the enzyme 6-phosphogluconate dehydrogenase. The 

first gene in the vgu operon has high similarity to 6-phosphogluconate 

dehydrogenase. Fitting with this prediction, preliminary GC-MS data indicates 

that ribulose does not accumulate in the mutant. 

 

The ribulose 5-phosphate resulting from the first step of the pathway, is further 

re-arranged by transaldolases and isomerases to 6-glucose-phosphate and 

glyceraldehyde 3-phosphate. Although vguB, the second gene in the operon, 

does not have similarity to any other protein with a known function, the last two 

operon members encode a putative aldolase and isomerase. It should be noted 

that the P. catorovorum genome contains genes that are predicted to encode all 

other enzymes typically involved in the pentose phosphate pathway, and also 

encodes two gluconate transporters, one of which is encoded just downstream of 

the vgu operon. However, these other enzymes are dispersed around the 

genome and many are neither within an operon nor clustered with other 

metabolic genes. Our observation that the vgu operon mutant is incapable of 

metabolizing gluconate suggests that these other predicted enzymes are either 

not expressed in the conditions we tested or are involved in different pathways. 

In preliminary assays using gas chromatography coupled to mass spectrometry 
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to compare the metabolite profiles of wild type and the operon muntant, the 

mutant was deficient in the accumulation of pentose sugars including 

erythropentose, a pentose phosphate intermediate. Therefore, based on our 

evidence that the vgu operon is required for gluconate metabolism and the 

operon member’s homology to enzymes in the pathway, we predict that the vgu 

operon is involved in a pathway similar to the pentose phosphate pathway.  

 

The pentose phosphate pathway is also a main method for generating reducing 

power, via the production of NADPH, which is mainly used to prevent oxidative 

stress.  Plant hosts produce reactive oxygen species as a defense against 

invasion [60].  However, in oxidative stress assays using hydrogen peroxide, the 

operon mutant was not more sensitive than wild type to oxidative stress.  

Additionally, the operon mutant did not produce different pH conditions in 

macerated tuber tissue or in medium, suggesting that the virulence phenotypes 

of the mutant are not due to stress conditions in the host. 

 

Gluconate metabolism affects the expression of key regulators 

Previous studies identified a complex network of transcriptional and post-

transcriptional virulence regulators (for reviews, see [10, 61, 62], which regulate  

the T2SS and macerating enzymes, the T3SS, motility, quorum sensing, and 

antibiotic production. In leaves, the vgu operon mutant over-expresses kdgR, the 

transcriptional repressor known to regulate hrpN and genes encoding macerating 

enzymes [17]. KdgR activity is responsive to pectin breakdown products and 



 

143 
 

KdgR releases from target promoters after binding to catabolic intermediates of 

pectin degradation, such as 2-keto-3-deoxygluconate [17, 63, 64].  Thus in the 

presence of pectin and its catabolic intermediates, such as polygalacturonate 

(PGA), KdgR’s repressor activity is blocked and KdgR targets, such as genes 

encoding macerating enzymes and hrpN, are expressed.  Previous work by 

Nasser et al. indicated that the presence of gluconate, and presumably the 

catabolic intermediates of gluconate, inhibits the production of macerating 

enzymes in the presence of inducers PGA and galacturonate.   Thus, in the vgu 

mutant deficient in gluconate metabolism, we see hyper-maceration and an 

increase in hrpN expression.  HrpN is a T3SS-associated helper protein, known 

to induce plant defense responses. Over-expression of HrpN would induce plant 

defense responses sufficient to explain the vgu mutant’s dramatic loss of 

virulence on leaves.   A model for this activity is shown in Figure 6A, in which 

KdgR’s repressor activity is blocked by pectin breakdown products, but sustained 

with the addition of gluconate.  From our data and the previously published data 

by Nasser et al., we hypothesize that the catabolic pathways for pectin and 

gluconate are antagonistic. The increase that we see in kdgR expression in the 

vgu mutant is presumably due to auto-regulation of the repressor, however there 

is no previously known data on kdgR regulation. 

 

 In tuber extract media, the vgu operon mutant shows no relative changes in 

kdgR or hrpN expression.  However, the vgu mutant does show down-regulation 
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of flhD, hexA and rsmB in tuber extract compared to wild type. These genes are 

Figure 6. 

 

Figure 6. Hypothetical model of the vgu operon’s role in virulence via FlhDC 

regulation in potato tubers and kdgR regulation in potato or A. thaliana leaf 

infection.  

 

lowly expressed in both wild type and mutant during leaf infection..  The 

heterodimeric complex, FlhDC, was first identified as the master regulator of 

motility [65] in E. coli, and regulates the switch from aerobic respiration to 

anaerobic respiration [39]. FlhDC interacts with HexA, a LysR-like transcription 

factor, as well as the Rsm system [66].  HexA directly binds the promoters of 

genes encoding extracellular enzymes and its down-regulation was previously 

reported to cause a hyper-macerating phenotype [34]. Likewise, down-regulation 

of flhD, the master regulator of the flagellar system, in the vgu operon mutant can  
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explain the deficiency in motility that we observed in the vgu operon mutant on 

motility plates. Previous studies, however, have indicated that FlhD and HexA 

activity are antagonistic [66]. This begs an explanation for how both could be 

down-regulated simultaneously in our vgu operon mutant. The answer may lie in 

unresolved environmental factors that can putatively influence the expression of 

both flhD and hexA. For example, flhD is regulated by FliT, which is responsive 

to unknown environmental factors [66]. Similarly, hexA expression is also 

mediated by unknown environmental factors through an unknown mechanism 

[66]. In Figure 6B, we propose a model for the influence of the vgu operon and 

inferred gluconate catabolic intermediates on these key regulators during tuber 

infection that correlates the observed phenotypes, expression data and published 

regulatory network information [33, 61].  

 

Although it is surprising that the vgu operon mutant is attenuated for virulence in 

the leaf, while being hyper-virulent in the tuber, the two in planta environments 

are very different. The tuber environment is anaerobic and contains a high level 

of starch, thus is a glucose rich environment, whereas the apoplastic spaces of 

the leaf are aerobic and nutrient-poor [67]. Demonstrably, nutrient availability and 

other environmental factors have dramatic effects on virulence expression. For 

instance, hrpN is regulated by the alternative sigma factor HrpL in addition to 

KdgR. HrpL is activated by a two-component system, HrpX/Y that is responsive 

to unknown exogenous metabolites. In tubers, HrpL is not up-regulated by 



 

146 
 

HrpX/Y and thus does not activate hrpN, which we see in our wild type 

expression. 

 

CONCLUSION 

 

The life history of P. carotovorum, spanning from a saprophytic environmental 

microbe to an opportunistic phytopathogen, suggests strong pressure to sense 

shifts in the environment and to respond accordingly. Despite the large amount of 

data on the network of regulators that tightly control expression of virulence 

factors in P. carotovorum, it is still unclear what and how different environmental 

signals are monitored to determine virulence network expression. Here, we 

identified a metabolic pathway necessary for gluconate metabolism that acts as a 

direct or indirect cue for virulence regulation. 
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Chapter 5: Discussion 

 

An over-arching question in the study of P. carotovorum pathogenesis is how it 

transitions from an environmental microbe to a pathogen of various plant hosts 

and then coordinately deploys stealth virulence determinants, like the T3SS, and 

brute-force, like the T2SS [1].  In the chapters of this dissertation, I reviewed 

existing literature on the network of regulators that govern virulence in P. 

carotovorum, examined its transcriptional profiles during different infection 

routes, and identified a sugar metabolic pathway that acts as a differential 

environmental input to virulence responses. In this short discussion chapter I 

review the questions that have been answered, identify new and unanswered 

questions, and briefly posit the next hypotheses and some experimental designs 

that might be used to address them.   

 

A central question addressed in the third chapter was what role the T3SS plays 

in the life-history of a macerating necrotroph such as P. carotovorum. In 

phytopathogens, T3SS generally function to manipulate host defenses so that 

the pathogen can grow unabated while keeping the host alive [2-5].  However, P. 

carotovorum kills its host with macerating enzymes [6], making the adaptive 

process of host-manipulation seem unnecessary. Using a combination of a 

promoter-trap screen [7] and a DNA microarray, we identified a small set of 

genes that are co-regulated with the T3SS in order to identify additional T3SS 

effectors. Two of the eight genes we found to be co-regulated with the T3SS may 
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encode candidate translocated effector proteins, one of which is a hypothetical 

protein and the other a putative transported protein. However, the other newly-

identified HrpL regulon members do not look like likely candidates for T3SS 

effectors, for example genes predicted to encode prokaryotic transcription 

factors. Additionally, the transcriptional profiles of P. carotovorum during different 

infections indicate that the T3SS is only expressed and required for infection 

during leaf invasions. This agrees with my pathology data, which indicate that a 

T3SS deficient mutant has no attenuated virulence in tubers, but significant 

attenuation in leaf infections [8]. Lastly, data from our collaborators indicates that 

the known T3SS effector delivered by P. carotovorum, DspE, functions as a 

cytotoxin, does not alter host defenses, and is not recognized by R proteins in 

Nicotiana benthamiana (unpublished data). More specifically, the transcriptional 

profile of N. bethamiana infected with P. carotovorum matches that of N. 

benthamiana infected with a T3SS-deficient P. syringae strain, rather than a 

strain expressing a T3SS and delivering a suite of effectors that are suppressing 

defense responses.  

 

From this data, we can now hypothesize that the T3SS in P. carotovorum is not 

required for suppression of basal defense responses, but has been adapted in 

this necrotrophic pathogen to simply and quickly deliver toxins to cells at the site 

of invasion during early stages of leaf infection. The leaf apoplast is a nutrient-

poor environment [9], thus reaching a quorum for macerating enzyme production 
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and successful host invasion may be a slow process that requires the actions of 

a T3SS to essentially bide time. 

 

This is not the case, perhaps, in the starch- (glucose) -rich tuber or the stem 

where P. carotovorum can invade the sucrose-rich phloem. Nutrient availability, 

more specifically, carbon sources, have long been established as key 

environmental signals for invasion, and particularly for deployment of T3SS [5, 

10, 11].  However, P carotovorum may use carbon source availability to not only 

delineate host and non-host environments, but also to finely distinguish between 

infection routes and adjust infection strategy to deploy virulence determinants 

accordingly. 

 

In the fourth chapter, I began to address this hypothesis by studying an operon in 

P. carotovorum that was previously associated with T3SS expression in P. 

syringae [12] and appeared to encode enzymes involved in sugar catabolism, as 

predicted by BLAST analysis.  I found that the vgu operon is required for 

gluconate metabolism, and in its absence many key virulence regulators 

(introduced in chapter 1) were misregulated and virulence responses 

downstream were accordingly disrupted in planta. Additionally, our data are in 

agreement with previously reported data [13] that indicates that the gluconate 

metabolic pathway acts antagonistically to the pectin catabolic pathway, which is 

also known to be a signal for virulence responses, via KdgR activity [14-18]. 

These data support the idea that carbon sources are finely monitored upstream 



157 
 

of virulence regulation and that metabolic fluxes are regulated by intertwined 

catabolic pathways.   

 

Of course, many questions are raised and remain unanswered by these data.  

Further work should investigate the function and potential virulence contribution 

of the HrpL-regulated genes identified in chapter 3.  These novel T3SS-

associated virulence determinants could help us better understand how this 

common virulence system has been adapted for the pathogenesis strategy of P. 

carotovorum.  In particular, a few of the candidates encode proteins that have 

homology to transcription regulators, suggesting secondary levels of virulence 

regulation that have been integrated from this horizontally acquired system.  

Deletion mutations in these genes and subsequent pathology assays could 

assess their contribution to virulence regulation, transcriptomic studies could 

identify regulon members, and computational anylsis could be used to identify 

targeted cis elements.  

 

The most striking unanswered questions from the discussion in chapter 3 is the 

identity of specific carbon sources monitored in P. carotovorum and how those 

signals are perceived and translated to inputs for the virulence regulation 

network.  Correlating the transcriptional profile data given here from in planta 

conditions with transcriptome data under different carbon source availability 

conditions may be one way to identify other genes involved in metabolism and 

virulence signaling.  However, a more direct experimental approach might be to 
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clarify metabolic pathways using isotope tracing, which involves feeding carbon 

isotope labeled substrates (examples might be galacturonate, the main 

component of pectin, or maltose, a disaccharide of glucose) to P. carotovorum 

and tracing the fate of the isotope with mass spectrometry or nuclear magnetic 

resonance (NMR) and inferring metabolic flux ratios [19]. Comparing the 

metabolic flux ratios of wild type P. carotovorum to that of the vgu operon mutant 

given a labeled substrate upstream of gluconate metabolism (which the mutant 

can metabolize, such as glucose) would clarify the role of the vgu operon in 

gluconate metabolism and identify coupled metabolic pathways. This would also 

identify catabolic intermediates that may act as direct signals for virulence 

regulators.  Enzyme assays and functional analysis of key enzymes or candidate 

signal receptors by making point mutations of conserved domains could further 

refine our understanding of the proteins responsible for metabolism and virulence 

signaling.  

 

In direct response to the over-arching question addressed in this dissertation, the 

data presented suggest that: carbon source discernment are key factors 

determining how P. carotovorum transitions from an environmental microbe to a 

pathogen of various infection routes; and that P. carotovorum coordinately 

deploys the T3SS only during the early stages of leaf infections, before resorting 

to brute-force virulence determinants, such as the T2SS. 
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