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ABSTRACT

DAN SHEN: Sparse PCA Asymptotics and Analysis of Tree Data.
(Under the direction of J. S. Marron and Haipeng Shen.)

This research covers two major areas. The first one is asymptotic properties of Principal

Component Analysis (PCA) and sparse PCA. The second one is the application of functional

data analysis to tree structured data objects.

A general asymptotic framework is developed for studying consistency properties of PCA.

Assuming the spike population model, the framework considers increasing sample size, in-

creasing dimension (or the number of variables) and increasing spike sizes (the relative size of

the population eigenvalues). Our framework includes several previously studied domains of

asymptotics as special cases, and for the first time allows one to investigate interesting connec-

tions and transitions among the various domains. This unification provides new theoretical

insights.

Sparse PCA methods are efficient tools to reduce the dimension (or number of variables)

of complex data. Sparse principal components (PCs) can be easier to interpret than con-

ventional PCs, because most loadings are zero. We study the asymptotic properties of these

sparse PC directions for scenarios with fixed sample size and increasing dimension (i.e. High

Dimension, Low Sample Size (HDLSS)). We find a large set of sparsity assumptions under

which sparse PCA is still consistent even when conventional PCA is strongly inconsistent. The

consistency of sparse PCA is characterized along with rates of convergence. The boundaries

of the consistent region are clarified using an oracle result.

Functional data analysis has been very successful in the analysis of data lying in standard

Euclidean space, such as curve data. However, with recent developments in fields such as

medical image analysis, more and more non-Euclidean spaces, such as tree-structured data,

present great challenges to statistical analysis. Here, we use the Dyck path approach from

probability theory to build a bridge between tree space and curve space to exploit the power
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of functional data analysis to analyze data in tree space.
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Chapter 1

Introduction

This thesis contains two major areas. The first one is to study asymptotic properties of

Principal Component Analysis (PCA) and sparse PCA. The second one is to apply functional

data analysis to tree structured data objects.

High dimensionality has become a common feature of data encountered in many diver-

gent fields, such as genomics, economics and finance. This provides modern challenges for

statistical analysis. To cope with the high dimensionality, dimension reduction and sparsity

constraints become interesting.

One approach is PCA. This is an important visualization and dimension reduction tool

for high dimensional data. In Chapter 2, we develop a general asymptotic framework for

studying consistency properties of PCA. Our frame-work includes several previously studied

domains of asymptotics as special cases and allows one to investigate interesting connections

and transitions among the various domains. More importantly, it enables us to investigate

asymptotic scenarios that have not been considered before, and gain new insights into the

consistency, subspace consistency and strong inconsistency regions of PCA and the boundaries

between them. We also establish the corresponding convergence rate within each region.

Under general spike covariance models, larger dimension (or the number of variables) tends

to discourage the consistency of PCA, while larger sample size and/or spike information

(the relative size of the population eigenvalues) tends to encourage PCA consistency. Our

framework nicely illustrates relationships among these three types of information in terms

of dimension, sample size and spike size, and rigorously characterizes how their relationships



affect PCA consistency.

High Dimension, Low Sample Size (HDLSS) asymptotics are based on the limit as the

dimension d → ∞ with the sample size n being fixed. It was originally studied by Casella

and Hwang (1982) in the context of James-Stein estimation. Ahn et al. (2007) first studied

the HDLSS asymptotic properties of PCA. A comprehensive result of this type is Jung and

Marron (2009). As shown in Johnstone and Lu (2009), exploitation of sparsity helps to recover

consistency, even in contexts where conventional PCA is inconsistent. In Chapter 3, we study

the asymptotic properties of sparse PCA in HDLSS settings, as in Shen et al. (2012a). Under

the previously studied spike covariance assumption, we show that sparse PCA is consistent

under the same large spike condition that was used to gain insight into for conventional

PCA. Under a broad range of small spike conditions, we identify a large, new set of sparsity

assumptions where sparse PCA is consistent, but conventional PCA is strongly inconsistent.

The boundaries of the consistent region are clarified using an oracle result.

The second part of this dissertation studies tree structured data objects. Statistical anal-

ysis, including PCA, of data on non-Euclidean spaces, such as tree space, can be challenging,

as seen in Wang and Marron (2007). An approach is to build a bridge between trees space (a

non-Euclidean space) and curve space (standard Euclidean space). Then, we can exploit the

power of functional data analysis to explore statistical properties of tree data sets. The Dyck

path representation, a tool for asymptotic analysis of point processes, Harris (1952), provides

such a bridge. Besides the Dyck path representation, we also develop a novel branch length

representation to connect tree space and curve space. In addition, we present a pruned tree

idea to statistically analyze properties of tree structured data at a range of scales. Projection

is a fundamental tool in classical Functional Data Analysis (FDA), see Ramsay and Silverman

(2002, 2005). We project on PC directions (Jolliffe, 2002) to explore population variation. In

addition, partial least squares (PLS) (Wold et al., 1984), and canonical correlation analysis

(CCA) directions (Härdle and Simar, 2007), are used here to study population relationship

with age, and we use the Distance Weighted Discrimination (DWD) direction (Marron et al.,

2007; Qiao et al., 2010), to explore population relationships with gender.
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Chapter 2

A General Framework for Consistency of

PCA

2.1 Introduction

Principal Component Analysis (PCA) is an important visualization and dimension reduction

tool which finds orthogonal directions reflecting maximal variation in the data. This allows

the low dimensional representation of data, by projecting data onto these directions. PCA is

usually obtained by an eigen decomposition of the sample variance-covariance matrix of the

data. Properties of the sample eigenvalues and eigenvectors have been analyzed under several

domains of asymptotics.

In this thesis, we develop a general asymptotic framework to explore interesting transitions

among the various asymptotic domains. The general framework includes the traditional

asymptotic setups as special cases, which allows careful study of the connections among the

various setups, and more importantly it investigates scenarios that have not been considered

before, and offers new insights into the consistency (in the sense that the angle between

estimated and population eigen direction tends to 0, or the inner product tends to 1) and

strong-inconsistency (where the angle tends to π
2 , i.e., the inner product tends to 0) properties

of PCA, along with some technically challenging convergence rates.

Existing asymptotic studies of PCA roughly fall into three domains:

(a) The first domain of asymptotics is the classical one, under which the sample size n→∞



and the dimension d is fixed (hence the ratio n
d →∞). For example, see Girshick (1939);

Lawley (1956); Anderson (1963, 1984); Jackson (1991).

(b) The second domain considers random matrix theory, where both the sample size n and

the dimension d increase to infinity, with the ratio n
d → c, a constant mostly assumed

to be within (0,∞). Representative work includes Biehl and Mietzner (1994); Watkin

and Nadal (1994); Reimann et al. (1996); Hoyle and Rattray (2003) from the statistical

physics literature, as well as Johnstone (2001); Baik et al. (2005); Baik and Silverstein

(2006); Onatski (2006); Paul (2007); Nadler (2008); Johnstone and Lu (2009); Lee et al.

(2010b); Benaych-Georges and Nadakuditi (2011) from the statistics literature.

(c) The third domain is high dimension low sample size (HDLSS) asymptotics, which

is based on the limit, as the dimension d→∞, with the sample size n being fixed (hence

the ratio n
d → 0). HDLSS asymptotics was originally studied by Casella and Hwang

(1982), and recently rediscovered by Hall et al. (2005). PCA has been studied using the

HDLSS asymptotics by Ahn et al. (2007); Jung and Marron (2009).

PCA consistency and (strong) inconsistency, defined in terms of angles, are important

properties that have been studied before. A common technical device is the spike covariance

model, initially introduced by Johnstone (2001). This model has been used in this context

by, for example, Nadler (2008); Johnstone and Lu (2009); Jung and Marron (2009). An

interesting, more general model has been considered by Benaych-Georges and Nadakuditi

(2011).

Under the spike model, the first few eigenvalues are much larger than the others. A major

point of the present chapter is that there are three critical features whose relationships drive

the consistency properties of PCA, namely

(1) the sample information: the sample size n, which has a positive contribution to, i.e.

encourages, the consistency of the sample eigenvectors.

(2) the variable information: the dimension d, which has a negative contribution to, i.e.

discourages, the consistency of the sample eigenvectors.
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(3) the spike information: the relative sizes of the several leading eigenvalues, which also

has a positive contribution to the consistency.

Our general framework considers increasing sample size n, increasing dimension d, and

increasing spike information, and clearly characterizes how their relationships determine the

consistency and strong-inconsistency regions of PCA, along with the boundary between these

two regions. In addition, our theorems demonstrate the transitions among the existing do-

mains of asymptotics, and for the first time to the best of our knowledge, enable one to

understand the connections among them. Note that the classical domain ((a) above) assumes

increasing sample size n while fixing dimension d; the random matrix domain ((b) above)

assumes increasing sample size n and increasing dimension d, while fixing the spike informa-

tion; the HDLSS domain ((c) above) fixes the sample size, and increases the dimension and

the spike information, and thus are all boundary cases of our general framework.

(A) Single Spike - Example 1.1 (B) Multi Spike - Example 1.2 
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Figure 2.1: General consistency areas for PCA

Our theorems and corollaries are proven for general single and multiple component spike

models, which are formally stated in Sections 2.2 and 2.3. For illustration purposes, we now

consider two example models: the single-component spike model in Example 2.1.1 and the

multiple-component spike model in Example 2.1.2. Within the context of these illustrating

examples, we point out below the significant contributions of our results in comparison with
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existing results. The comparisons and connections are graphically illustrated in Figure 2.1.

Here some strong assumptions are made for the purpose of convenient comparison. For these

two models, the three types of information and their relationships can be mathematically

quantified by two indices, namely the spike index α and the sample index γ.

Example 2.1.1. (Single-component spike model) Assume that X1, . . . , Xn are random sample

vectors from a d-dimensional normal distribution N(0,Σ), where the sample size n ∼ dγ

(γ ≥ 0 is defined as the sample index) and the covariance matrix Σ has the eigenvalues as

λ1 ∼ dα, λ2 = · · · = λd = 1, α ≥ 0,

where the constant α is defined as the spike index.

Our Corollary 2.2.1, applied to this example, shows that the maximal sample eigenvector

is consistent when α + γ > 1 (the grey region in Panel (A)), and strongly inconsistent when

0 ≤ α + γ < 1 (the white triangle in Panel (A)). Our Theorem 2.3.1 explored behavior on

the diagonal boundary α+ γ = 1. These very general new results connect with many existing

ones:

• Previous Results I - the classical domain:

Theorem 1 of Anderson (1963) implied that for fixed dimension d and finite eigenvalues,

when the sample size n→∞ (i.e. γ →∞, the limit on the vertical axis), the maximal

sample eigenvector is consistent. This case is the upper left corner of Panel (A) of

Figure 2.1.

• Previous Results II - the random matrix domain:

(a) The results of Johnstone and Lu (2009) appear on the vertical axis in Panel (A)

where the spike index α = 0 (as they fix the spike information): the first sample

eigenvector is consistent when the sample index γ > 1 and strongly inconsistent

when γ < 1.

(b) Nadler (2008) explored the interesting boundary case of α = 0, γ = 1 (i.e. d
n → c

for a constant c). This result appears in Panel (A) as the single solid circle γ = 1

6



on the vertical axis.

• Previous Results III - the HDLSS domain:

(a) The theorems of Jung and Marron (2009) are represented on the horizontal axis in

Panel (A) when the sample index γ = 0 (as they fix the sample size): the maximal

sample eigenvector is consistent with the first population eigenvector when the spike

index α > 1 and strongly inconsistent when α < 1.

(b) Jung et al. (2012) deeply explored limiting behavior at the boundary α = 1, γ = 0.

This result appears in Panel (A) as the single solid circle α = 1 on the horizontal

axis.

• Our Results hence nicely connect existing domains of asymptotics, and give a much

more complete characterization for the regions of PCA consistency, subspace consis-

tency, and strong inconsistency. We also investigate the consistency of the other sample

eigenvectors, and asymptotic properties of all the sample eigenvalues. Furthermore, we

provide a new general connection between Previous Results II (a) and III (b), by doing a

deeper explanation of assumptions on the boundary case - α+ γ = 1. We also establish

technically challenging convergence rates within each region, which have not been studied

before.

Example 2.1.2. (Multiple-component spike model) Assume that the covariance matrix Σ in

Example 2.1.1 has the following eigenvalues

λj =


cjd

α if j ≤ m,

1 if j > m,

α ≥ 0,

where m is a finite positive integer, the constants cj , j = 1, · · · ,m, are positive and satisfy

that cj > cj+1 > 1, j = 1, · · · ,m− 1.

Our Corollary 2.2.3, when applied to this example, shows that the first m sample eigen-

vectors are individually consistent with corresponding population eigenvectors when α + γ >

7



1, γ > 0 (the grey region in Panel (B)), instead of being subspace consistent (Jung and Mar-

ron, 2009), and strongly inconsistent when α + γ < 1, the white triangle in Panel (B). This

very general new result connects with many others in the existing literature:

• Previous Results I - the classical domain:

Theorem 1 of Anderson (1963) implied that for fixed dimension d and finite eigenvalues,

when the sample size n → ∞ (i.e. γ → ∞, the limit on the vertical axis), the first m

sample eigenvectors are consistent, while the other sample eigenvectors are subspace

consistent. This case is the upper left corner of Panel (B) of Figure 2.1.

• Previous Results II - the random matrix domain:

Paul (2007) explored asymptotic properties of the first m eigenvectors and eigenvalues

in the interesting boundary case of α = 0, γ = 1, i.e., d
n → c with c ∈ (0, 1). This

result appears in Panel (B) as the solid circle γ = 1 on the vertical axis. Paul and

Johnstone (2007a) considered a similar framework but from minimax risk analysis per-

spective. Nadler (2008); Johnstone and Lu (2009) did not study multiple spike models.

• Previous Results III - the HDLSS domain:

The theorems of Jung and Marron (2009) are valid on the horizontal axis in Panel (B)

where the sample index γ = 0. In particular, for this example, their results showed

that the first m sample eigenvectors are not separable when the spike index α > 1 (the

horizontal dotted red line segment), instead they are subspace consistent with their cor-

responding population eigenvectors, and are strongly inconsistent when the spike index

α < 1 (the horizontal solid line segment). They and Jung et al. (2012) did not study

the asymptotic behavior on the boundary - the single open circle (α = 1, γ = 0) on the

horizontal axis.

• Our Results cover the classical domain, and are stronger than what Jung and Marron

(2009) obtained: the increasing sample size enables us to separate out the first few lead-

ing eigenvectors and characterize individual consistency, while only subspace consistency

was obtained by Jung and Marron (2009). Convergence rates will also be established.
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The rest of Chapter 2 is organized as follows. Section 2.1.1 first introduces our nota-

tions and several relevant consistency concepts, and then provides intuitive explanations of

our eigenvalue assumptions and the corresponding results. Section 2.2 presents the main

theoretical results of Chapter 2, stating the asymptotic properties of the sample eigenvalues

and eigenvectors under our general framework. Section 2.2.1 first considers the most general

cases: multiple spike models with tiered eigenvalues. Sections 2.2.2 and 2.2.3 then discuss the

implications and insights learned for single-component and multiple-component spike models

(without tiered eigenvalues), respectively. Section 2.3 then investigates the property of PCA

on the boundary between consistency and strong inconsistency regions under single spike

models. Section 2.5 contains the technical proofs of the main theorems. Section 2.4 presents

the some future work that we plan to investigate.

2.1.1 Notation

Let the population covariance matrix be Σ, whose eigen decomposition is

Σ = UΛUT ,

where Λ is the diagonal matrix of population eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd, and U is the

matrix of corresponding eigenvectors U = [u1, . . . , ud].

First, we make the following assumption about our sample:

Assumption 2.1.1. X1, . . . , Xn are a random sample from a d-dimensional normal distri-

bution N(0,Σ).

Denote the data matrix by X = [X1, . . . , Xn]d×n and the sample covariance matrix by

Σ̂ = n−1XXT . Then, Σ̂ can be similarly decomposed as

Σ̂ = Û Λ̂ÛT , (2.1)

where Λ̂ is the diagonal matrix of sample eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d and Û is the matrix

of corresponding sample eigenvectors where Û = [û1, . . . , ûd].
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Below we introduce asymptotic notations that will be used in our theoretical studies.

Assume that {ξn : n = 1, . . . ,∞} is a sequence of random variables, and {an : n = 1, . . . ,∞}

is a sequence of constant values.

• Denote ξn = oa.s (an) if limn→∞
ξn
an

= 0 almost surely.

• Denote ξn = Oa.s (an) if limn→∞

∣∣∣ ξnan ∣∣∣ ≤ c almost surely, for some constant c > 0.

• Denote ξn
a.s∼ an if c2 ≤ limn→∞

ξn
an
≤ limn→∞

ξn
an
≤ c1 almost surely, for two constants

c1 ≥ c2 > 0.

2.1.2 Concepts

Below we list six important concepts relevant for consistency and strong inconsistency, some

of which are modified from the related concepts given by Jung and Marron (2009); Shen et al.

(2012a).

Let ūj be any sample based estimator of uj for j = 1, . . . , n ∧ d. For example, ūj = ûj ,

the jth sample eigenvector.

• Consistency: ūj is consistent with its population counterpart uj if |< ūj , uj >|=

1 + oa.s(1), i.e the angle between ūj and uj tends to 0.

• Consistency with convergence rate an: ūj is consistent with uj with the conver-

gence rate an if |< ūj , uj >|= 1 + Oa.s(an). For example, an =
(
nλ1
d

) 1
2
.

• Strong inconsistency: ūj is strongly inconsistent with uj if |< ūj , uj >|= oa.s(1), i.e

the angle between ūj and uj tends to π
2 .

• Strong inconsistency with convergence rate an: ūj is strongly inconsistent with

the convergence rate an if |< ūj , uj >|= Oa.s(an).

Let H be an index set, e.g. H = {m+ 1, · · · , d}. Suppose j ∈ H.

• Subspace consistency: ūj is subspace consistent with uj if

angle (ūj , span{uk, k ∈ H}) = oa.s(1),
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where span{uk, k ∈ H} is the linear span generated by {uk, k ∈ H}.

• Subspace consistency with convergence rate an: ūj , j ∈ H, is subspace consistent

with uj with convergence rate an if

angle (ūj , span{uk, k ∈ H}) = Oa.s(an).

2.1.3 Assumptions

Our main theorems in Section 2.2.1 are very general, but also quite complicated. Insights and

connections to previous work come from various special cases, which are carefully studied as

corollaries in Sections 2.2.2 and 2.2.3. For these corollaries and main theorems, it is useful to

develop a sequence of eigenvalue assumptions of increasing complexity.

Single Component Spike Models

Here we assume the maximal eigenvalue λ1 dominates the other eigenvalues. The other

eigenvalues are assumed to be asymptotically equivalent. For simplicity of notation, we

assume they are asymptotically equivalent to 1. More specifically,

Assumption 2.1.2. As n→∞, the population eigenvalues satisfy

• λ2
λ1
→ 0, λ2 ∼ · · · ∼ λd ∼ 1.

As discussed in the Introduction, we consider the delicate balance among the positive

sample information n, the positive spike information λ1, and the negative variable information

d, and characterize the various PCA consistency and strong-inconsistency regions.

Corollary 2.2.1 suggests that the asymptotic properties of the sample eigenvalues and

eigenvectors depend on the relative strength of the positive information and the negative in-

formation, as measured by two ratios. First, d
nλ1

, corresponding to d1−(α+γ) in Example 2.1.1,

determines whether the maximal sample eigenvalue is separable from the other eigenvalues,

and further determines the consistency of the maximal sample eigenvector. Second, d
n deter-

mines the strong inconsistency of the higher order sample eigenvectors.
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The following discussion and the scenarios in Corollary 2.2.1 are arranged according to a

decreasing amount of positive information:

• Corollary 2.2.1(a): If the amount of positive information dominates the amount of

negative information up to the maximal eigenvalue, i.e. d
nλ1
→ 0, the maximal sample

eigenvector is consistent, and the other sample eigenvectors are subspace consistent.

• Corollary 2.2.1(b): In addition, if the amount of negative information dominates the

amount of positive information for the eigenvalues whose indices are greater than 1, i.e.

d
n →∞, then the corresponding sample eigenvectors are strongly-inconsistent.

• Corollary 2.2.1(c): On the other hand, if the amount of negative information always

dominates, i.e. d
nλ1
→∞, then the sample eigenvalues are asymptotically indistinguish-

able, and the sample eigenvectors are strongly inconsistent.

Corollary 2.2.1 considers the cases where n → ∞. Parallel results can be obtained for

the fixed n cases (i.e. the HDLSS domain) as summarized in Corollary 2.2.2. In comparison

with Jung and Marron (2009), we make more general assumptions on the population eigen-

values, and obtain the corresponding convergence rate results, which were not considered

in Jung and Marron (2009).

Under the HDLSS domain, Assumption 2.1.2 on the eigenvalues becomes

Assumption 2.1.3. As d→∞, the population eigenvalues satisfy

• λ2
λ1
→ 0, λ2 ∼ · · · ∼ λd ∼ 1.

Multiple Component Spike Models

We now state a parallel series of assumptions for multiple spike models with m dominating

spikes where m ∈ [1, n ∧ d], and each of the first m eigenvalues is uniquely identifiable.

Assumption 2.1.4. As n→∞, the population eigenvalues satisfy

• limn→∞
λj
λi
< 1, 1 ≤ i < j ≤ m,
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• λm+1

λm
→ 0,

• λm+1 ∼ · · · ∼ λd ∼ 1.

In the same spirit as Corollary 2.2.1, Corollary 2.2.3 states asymptotic properties of the

sample eigenvalues and eigenvectors in a trichotomous manner, separated by the size of d
nλj

,

which again measures the relative strength of positive and negative information. We arrange

the scenarios below and in Corollary 2.2.3 in the order of decreasing amount of positive

information:

• Corollary 2.2.3(a): If the amount of positive information dominates the amount of

negative information up to the mth spike, i.e. d
nλm
→ 0, then each of the first m sample

eigenvectors is consistent, and the additional ones are subspace consistent.

• Corollary 2.2.3(b): Otherwise, if the amount of positive information dominates the

amount of negative information only up to the hth spike (h ∈ [1,m]), i.e. d
nλh
→ 0 and

d
nλh+1

→ ∞, then each of the first h sample eigenvector is consistent, and each of the

remaining higher-order sample eigenvectors is strongly-inconsistent.

• Corollary 2.2.3(c): Finally, if the amount of negative information always dominates, i.e.

d
nλ1
→ ∞, then the sample eigenvalues are asymptotically indistinguishable, and the

sample eigenvectors are strongly inconsistent.

Corollary 2.2.3 considers the cases where n→∞. Corresponding results can be obtained

for the fixed n cases in Corollary 2.2.4. Assumption 2.1.4 then becomes

Assumption 2.1.5. As d→∞, the population eigenvalues satisfy

• limd→∞
λj
λi

= 0, 1 ≤ i < j ≤ m+ 1,

• λm+1 ∼ · · · ∼ λd ∼ 1.
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Multiple Component Spike Models with Tiered Eigenvalues

Finally, we consider models where the m dominating eigenvalues can be grouped into r tiers.

Within tiers, eigenvalues are either of the same limit, or in some cases have the same order.

Below we first consider cases with an increasing sample size n. To fix ideas, assume that

there are ql eigenvalues in the lth tier, and the positive integers ql satisfy
∑r

l=1 ql = m. Define

q0 = 0, qr+1 = d−
∑r

l=1 ql, and the index set of the eigenvalues in the lth tier as

Hl =

{
l−1∑
k=0

qk + 1,
l−1∑
k=0

qk + 2, · · · ,
l−1∑
k=0

qk + ql

}
, l = 1, · · · , r + 1. (2.2)

In addition, we assume the eigenvalues in the lth tier have the same asymptotic behavior,

represented in terms of a sequence δl(> 0), in the sense that



limn→∞
λ1
δ1

= · · · = limn→∞
λq1
δ1

= 1,

limn→∞
λq1+1

δ2
= · · · = limn→∞

λq1+q2
δ2

= 1,

...

limn→∞
λq1+···qr−1+1

δr
= · · · = limn→∞

λq1+···+qr
δr

= 1.

(2.3)

We impose the following assumption on the eigenvalues:

Assumption 2.1.6. As n → ∞, the population eigenvalues satisfy (2.3) and the following

properties:

• limn→∞
δj
δi
< 1, 1 ≤ i < j ≤ r,

• λm+1

λm
→ 0,

• λm+1 ∼ · · · ∼ λd ∼ 1.

Under the above setup, our main Theorem 2.2.1 suggests that the eigenvalues with the

same limiting behavior can not be individually estimated consistently; their estimates are

either subspace consistent with the linear space spanned by them, or the estimates are strongly

inconsistent. Convergence rates depend on the eigenvalue ratios among the tiers, defined as

al = max1≤k≤l
δk+1

δk
, for l = 1, · · · , r, where δr+1 = 1.
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Now for the fixed n cases, we assume that as d → ∞, the first m eigenvalues fall into r

tiers according to the following assumption (2.4):



λ1 ∼ · · · ∼ λq1 ∼ δ1,

λq1+1 ∼ · · · ∼ λq1+q2 ∼ δ2,

...

λq1+···qr−1+1 ∼ · · · ∼ λm ∼ δr.

(2.4)

We then make the following eigenvalue assumption:

Assumption 2.1.7. As d → ∞, the population eigenvalues satisfy (2.4) and the following

properties:

• limd→∞
δj
δi

= 0, 1 ≤ i < j ≤ r,

• λm+1

λm
→ 0,

• λm+1 ∼ · · · ∼ λd ∼ 1.

Different from (2.3) of Theorem 2.2.1, now with a fixed sample size n, the eigenvalues in the

same tier are assumed to be of the same order, rather than of the same limit as assumed when

n increases to ∞ (Theorem 2.2.1). Theorem 2.2.2 shows that one can no longer separately

estimate the eigenvalues of the same order when n is fixed, which is feasible with an increasing

n as long as they do not have the same limit as stated in Theorem 2.2.1.

2.2 Asymptotic Properties of PCA

We state main theorems for multiple-component spike models with tiered eigenvalues in

Section 2.2.1, and corollaries for simpler single and multiple spike models in Sections 2.2.2

and 2.2.3, respectively. Technical proofs will be provided in Section 2.5.

2.2.1 Multiple Component Spike Models with Tiered Eigenvalues

Theorems 2.2.1 and 2.2.2 in this section consider the most general models: the m dominating

eigenvalues are grouped into r tiers, where the eigenvalues within the same tier are either the
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same or have the same limit or are of the same order, and the eigenvalues within different tiers

have either different limits or are of different orders. The theorems show that the eigenvalues

in the same tier can not be individually estimated consistently.

Theorem 2.2.1. Under Assumptions 2.1.1 and 2.1.6, the results below hold.

(a) If d
nδr
→ 0, then the sample eigenvalues satisfy


λ̂j
λj

a.s−→ 1, 1 ≤ j ≤ m,

λ̂j
a.s∼ d

n , m+ 1 ≤ j ≤ [n ∧ (d−m)],

λ̂j = Oa.s

(
d
n

)
, [n ∧ (d−m) + 1] ≤ j ≤ n ∧ d;

(2.5)

(There is no need to consider the last scenario above if [n ∧ (d −m) + 1] > n ∧ d.) In

addition, the sample eigenvectors satisfy

 angle (ûj , span{uk, k ∈ Hl}) =
[
oa.s (al) ∨Oa.s

(
d
nδl

)] 1
2
, j ∈ Hl, 1 ≤ l ≤ r,

angle (ûj , span{uk, k ∈ Hr+1}) =
[
oa.s (ar) ∨Oa.s

(
d
nδr

)] 1
2
,m+ 1 ≤ j ≤ n ∧ d,

(2.6)

which shows that the sample eigenvector whose index is in Hl, l ∈ [1, r], is subspace

consistent with the linear space spanned by the population eigenvectors whose labels are

in Hl, with convergence rate
(
al ∨ d

nδl

) 1
2
; each of the rest sample eigenvectors is subspace

consistent with the linear space spanned by Hr+1, with convergence rate
(
ar ∨ d

nδr

) 1
2
.

(b) If there exists a constant h, 1 ≤ h ≤ r, such that d
nδh
→ 0 and d

nδh+1
→ ∞, then the

sample eigenvalues satisfy


λ̂j
λj

a.s−→ 1, j ∈ Hl, 1 ≤ l ≤ h,

λ̂j
a.s∼ d

n ,
∑h

l=1 ql < j ≤ n ∧ d;
(2.7)
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in addition, the sample eigenvectors satisfy

 angle (ûj , span{uk, k ∈ Hl}) =
[
oa.s (al) ∨Oa.s

(
d
nδl

)] 1
2
, j ∈ Hl, 1 ≤ l ≤ h,

|< ûj , uj >|2= Oa.s

(
nλj
d

)
,

∑h
l=1 ql < j ≤ n ∧ d,

(2.8)

which shows that the sample eigenvector whose index is in Hl, 1 ≤ l ≤ h, is subspace

consistent with the space spanned by the population eigenvectors whose labels are also in

Hl, with the convergence rate
(
al ∨ d

nδl

) 1
2
; each of the rest of the sample eigenvectors is

strongly inconsistent, with the convergence rate
(
nλj
d

) 1
2
.

(c) If d
nδ1
→∞, then the sample eigenvalues satisfy

λ̂j
a.s∼ d

n
, j = 1, · · · , n ∧ d; (2.9)

in addition, the sample eigenvectors satisfy

|< ûj , uj >|2= Oa.s

(
nλj
d

)
, j = 1, · · · , n ∧ d, (2.10)

which shows that the sample eigenvector ûj is strongly inconsistent with uj, with the

convergence rate (
nλj
d )

1
2 , j = 1, · · · , n ∧ d, respectively.

The following comments can be made for the results of Theorem 2.2.1.

• The cases covered by Theorem 2.2.1 were not studied by Paul (2007), which required

the eigenvalues to be individually estimable.

• The asymptotic properties of the sample eigenvectors in Theorem 2.2.1 will not change

under more general assumptions on the population eigenvalues. For example, if limn→∞λm+1 =

· · · = limn→∞λd = c with c being a constant, the condition λm+1

λm
→ 0 can be relaxed to

assuming only that λm is at least a constant away from λm+1 such that limn→∞λm > c;

in addition, if d
n → 0 or ∞, the result “λ̂j

a.s∼ d
n” can be strengthened to “λ̂j

a.s−→ c dn”.

• In Theorem 2.2.1, the dimension d can be fixed. In addition, consider limn→∞λ1 < ∞
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and the eigenvalues satisfying (2.3). Then, the results of Theorem 2.2.1(a) are consis-

tent with the classical asymptotic subspace consistency results implied by Theorem 1

of Anderson (1963).

The above Theorem 2.2.1 considers the cases where n→∞. We can obtain parallel results

for the fixed n cases (i.e. the HDLSS domain) as summarized below in Theorem 2.2.2. Note

that we make more general assumptions on the population eigenvalues than Jung and Marron

(2009), and obtain the corresponding convergence rate results, which were not considered

before.

It is first worth pointing out that with n being fixed, we will consider convergence in prob-

ability, instead of almost surely. Consequently, we need to modify the convergence notations

introduced in Section 2.1.1 to the following:

• Denote ξd = op (ad) if limd→∞
ξd
ad

= 0 in probability.

• Denote ξd = Op (ad) if limd→∞

∣∣∣ ξdad ∣∣∣ ≤ z in probability, where the random variable z

satisfies P(0 < z <∞) = 1.

• Denote ξd
p∼ ad if z2 ≤ limd→∞

ξd
ad
≤ limd→∞

ξd
ad
≤ z1 in probability, where the two

random variables satisfy P(0 < z2 ≤ z1 <∞) = 1.

The consistency concepts in Section 2.1.2 are modified correspondingly.

Theorem 2.2.2. Under Assumptions 2.1.1 and 2.1.7, the results below hold.

(a) If there exists a constant h, 1 ≤ h ≤ r, such that d
δh
→ 0 and d

δh+1
→ ∞, then the

sample eigenvalues satisfy

 λ̂j
p∼ λj , j ∈ Hl, 1 ≤ l ≤ h,

nλ̂j
d

p−→ K,
∑h

l=1 qh < j ≤ n, with K = limd→∞ d
−1
∑d

j=m+1 λj ;
(2.11)

in addition, the sample eigenvectors satisfy

 angle (ûj , span{uk, k ∈ Hl}) =
[
Op

(
al ∨ d

nδl

)] 1
2
, j ∈ Hl, 1 ≤ l ≤ h,

|< ûj , uj >|2= Op

(
nλj
d

)
,

∑h
l=1 qh < j ≤ n,

(2.12)
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which shows that the sample eigenvector whose index is in Hl, 1 ≤ l ≤ h, is subspace

consistent with space spanned by the population eigenvector whose labels are also in Hl,

with the convergence rate
(
al ∨ d

nδl

) 1
2
, l = 1, · · · , h. For

∑h
l=1 qh < j ≤ n, the sample

eigenvector ûj is strongly inconsistent with uj, with the convergence rate
(
nλj
d

) 1
2
.

(b) If d
δ1
→∞, then the sample eigenvalues satisfy

nλ̂j
d

p−→ K, j = 1, · · · , n; (2.13)

in addition, the sample eigenvectors satisfy

|< ûj , uj >|2= Op

(
nλj
d

)
, j = 1, · · · , n, (2.14)

which shows that the sample eigenvector ûj is strongly inconsistent with uj, with the

convergence rate (
nλj
d )

1
2 , j = 1, · · · , n, respectively.

The results of Theorem 2.2.2 suggest that, for the population eigenvalues in each tier

(which are of the same order), the corresponding sample eigenvalues can not be separated

asymptotically; on the other hand, for the eigenvalues from different tiers, the corresponding

sample eigenvalues can be separated asymptotically. Hence, if each tier only has one eigen-

value, i.e. r = m and q1 = · · · = qr = 1, the sample eigenvalues are asymptotically separable,

in which case we can strengthen the result “λ̂j
p∼ λj” in (2.11) to “

λ̂j
λj

p−→ χn2
n ”, as stated in

(2.15) of Corollary 2.2.2 and (2.16) of Corollary 2.2.4.

2.2.2 Single Component Spike Models

We now consider special cases of Theorem 2.2.1 with m = 1, which are stated in the following

Corollary 2.2.1 for single-component spike models.

Corollary 2.2.1. Under Assumptions 2.1.1 and 2.1.2, the following holds.

(a) If d
nλ1
→ 0, then the sample eigenvalues satisfy (2.5) with m = 1. In addition, (2.6)
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suggests that û1 is consistent with the convergence rate
(

d
nλ1

) 1
2
, and for j = 2, · · · , n∧d,

ûj is subspace consistent with convergence rate
(

d
nλ1

) 1
2
.

(b) If d
nλ1
→ 0 and d

n →∞, then it follows from (2.7) that

λ̂1

λ1

a.s−→ 1; λ̂j
a.s∼ d

n
, 2 ≤ j ≤ n ∧ d,

and (2.8) suggests that û1 is consistent with convergence rate
(

d
nλ1

) 1
2
; for j ∈ [2, n∧d],

ûj is strongly inconsistent with rate
(
nλj
d

) 1
2
.

(c) If d
nλ1
→∞, then (2.9) and (2.10) remain the same: for j = 1, · · · , n ∧ d, λ̂j

a.s∼ d
n , and

ûj is strongly inconsistent with convergence rate (
nλj
d )

1
2 .

Having stated the main results for single-component spike models, we now offer several

remarks regarding the conditions assumed in Corollary 2.2.1 and the connections with the

existing results about PCA consistency.

• In Corollary 2.2.1, the dimension d can be fixed. In addition, assume limn→∞λ2 = · · · =

limn→∞λd = c < limn→∞λ1 < limn→∞λ1 <∞ (for a constant c), which corresponds to

the classical asymptotic framework considered by Anderson (1963). Theorem 1 of An-

derson (1963) implies that the maximal sample eigenvector is consistent, and the rest of

the sample eigenvectors are subspace consistent with their corresponding eigenvectors,

which is consistent with our Corollary 2.2.1(a).

• Assuming fixed λ1 and d
n → c with c being a constant, Nadler (2008); Johnstone and Lu

(2009); Benaych-Georges and Nadakuditi (2011) obtained the results in Previous Results

II - the random matrix domain in Example 2.1.1, which indicate that, as n → ∞, the

maximal sample eigenvector û1 is consistent when d
n → 0, and inconsistent when d

n →

∞. Our Corollary 2.2.1 includes this as a special case. In addition, Corollary 2.2.1 offers

more than just relaxing the fixed λ1 assumption: it characterizes how an increasing λ1

interacts with the ratio d
n , derives the corresponding convergence rate, and also studies
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the asymptotic properties of the higher order sample eigenvalues and eigenvectors, all

of which have not been investigated before.

• The asymptotic properties of the sample eigenvectors as in Corollary 2.2.1 remain

valid under more general assumptions on the population eigenvalues. For example,

if limn→∞λ2 = · · · = limn→∞λd = c with c being a constant, the condition λ2
λ1
→ 0

can be relaxed to assuming only that λ1 is at least a constant away from λ2 such that

limn→∞λ1 > c. Hence, for the models considered by Johnstone and Lu (2009), our

results of the maximal sample eigenvector are the same as theirs. In addition, if d
n → 0

or ∞, the result “λ̂j
a.s∼ d

n” in Corollary 2.2.1 can be strengthened to “λ̂j
a.s−→ c dn”.

Considering the fixed n cases (i.e. the HDLSS domain), Theorem 2.2.2 reduces to the

following Corollary 2.2.2 for single spike models.

Corollary 2.2.2. Under Assumptions 2.1.1 and 2.1.3, the following holds.

(a) If d
λ1
→ 0, then (2.11) is strengthened to


λ̂1
λ1

p−→ χn2
n ,

nλ̂j
d

p−→ K, 2 ≤ j ≤ n, with K = limd→∞

∑d
j=2 λj
d ,

(2.15)

and (2.12) suggests that û1 is consistent with convergence rate
(

d
nλ1

) 1
2
, and for j ∈ [2, n],

ûj is strongly inconsistent with convergence rate
(
nλj
d

) 1
2
.

(b) If d
λ1
→ ∞, then (2.13) becomes

nλ̂j
d

p−→ K, for j = 1, · · · , n, and (2.14) suggests that

ûj is strongly inconsistent with convergence rate (
nλj
d )

1
2 .

Note that in (2.15): if n→∞, then we have
χn2
n

a.s−→ 1. This is consistent with the results

in (a) and (b) of Corollary 2.2.1, where λ̂1
λ1

a.s−→ 1.

2.2.3 Multiple Component Spike Models

We now consider multiple component spike models with m dominating spikes that are in-

dividually identifiable. Corollary 2.2.3 follows from Theorem 2.2.1 by setting r = m and
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q1 = · · · = qr = 1, i.e. each of the m tiers only contains one eigenvalue.

Corollary 2.2.3. Under Assumptions 2.1.1 and 2.1.4, the following holds.

(a) If d
nλm
→ 0, then (2.5) remains valid for the sample eigenvalues. (2.6) then suggests that

ûj, j ∈ [1,m], is consistent with convergence rate
(
aj ∨ d

nλj

) 1
2
, and ûj, j ∈ [m+1, n∧d],

is subspace consistent with convergence rate
(
am ∨ d

nλm

) 1
2
.

(b) If there exists a constant h, 1 ≤ h ≤ m, such that d
nλh
→ 0 and d

nλh+1
→∞, then (2.7)

becomes

λ̂j
λj

a.s−→ 1, 1 ≤ j ≤ h; λ̂j
a.s∼ d

n
, h+ 1 ≤ j ≤ n ∧ d,

and (2.8) suggests that ûj, j ∈ [1, h], is consistent with convergence rate
(
aj ∨ d

nλj

) 1
2
,

and ûj, j ∈ [h+ 1, n ∧ d], is strongly inconsistent with convergence rate
(
nλj
d

) 1
2
.

(c) If d
nλ1
→∞, then (2.9) and (2.10) remain the same: for j = 1, · · · , n ∧ d, λ̂j

a.s∼ d
n , and

ûj is strongly inconsistent with convergence rate (
nλj
d )

1
2 .

We now discuss the conditions needed in the corollary and how the results connect with

existing results in the literature.

• In Corollary 2.2.3, the dimension d can be fixed. In addition, consider limn→∞λm+1 =

· · · = limn→∞λd = c < limn→∞λm < limn→∞λ1 < ∞. Then, Corollary 2.2.3(a) is

consistent with the classical results implied by Theorem 1 of Anderson (1963).

• Considering fixed λ1, · · · , λm and d
n → c, where c ∈ (0, 1), Paul (2007) obtained the

results in Previous Results II - the random matrix domain in Example 2.1.2. As one can

see, our Corollary 2.2.3 relaxes the assumptions of d
n → c ∈ (0, 1) and that λ1, · · · , λm

are fixed. In addition, we characterize how increasing λ1, · · · , λm interact with the ratio

d
n along with the corresponding convergence rates, and study the asymptotic properties

of the higher order sample eigenvalues and eigenvectors, all of which have not been

investigated before.
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• The asymptotic properties of the sample eigenvectors in Corollary 2.2.3 will not change

under more general assumptions on the population eigenvalues, as discussed after The-

orem 2.2.1.

Corollary 2.2.4 below considers fixed n, and follows from Theorem 2.2.2.

Corollary 2.2.4. Under Assumptions 2.1.1 and 2.1.5, the following holds.

(a) If there exists a constant h, 1 ≤ h ≤ m, such that d
λh
→ 0 and d

λh+1
→ ∞, then (2.11)

is strengthened to 
λ̂j
λj

p−→ χ2
n
n , 1 ≤ j ≤ h,

nλ̂j
d

p−→ K, h+ 1 ≤ j ≤ n.
(2.16)

(2.12) then suggests that ûj, j ∈ [1, h], is consistent with convergence rate
(
aj ∨ d

nλj

) 1
2
,

and ûj, j ∈ [h+ 1, n], is strongly inconsistent with convergence rate
(
nλj
d

) 1
2
.

(b) If d
λ1
→∞, then (2.13) and (2.14) remain valid: for j = 1, · · · , n,

nλ̂j
d

p−→ K, and ûj is

strongly inconsistent with convergence rate (
nλj
d )

1
2 .

We remark that in (2.16), if n → ∞, then we have
χn2
n

a.s−→ 1. This is consistent with the

result
λ̂j
λj

a.s−→ 1, j ∈ [1, h], in (a) and (b) of Corollary 2.2.3.

2.3 Balanced Positive and Negative Information

The theorems and corollaries in Section 2.2 characterize the asymptotic properties of PCA

under our general framework when either positive information or negative information dom-

inates the other one. We now consider the transient cases where positive information and

negative information is balanced, i.e. of the same asymptotic order. Theorem 2.3.1 states

the corresponding results for single component spike models. We also discuss the connection

with existing results in Nadler (2008); Jung et al. (2012). Similar considerations for multiple

component spike models are also very interesting, but beyond the scope of the present thesis.
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Theorem 2.3.1. In addition to Assumption 2.1.1, we also assume that as n → ∞, the

population eigenvalues have the following properties:

• λ2
λ1
→ 0,

• λj → cλ, j = 2, · · · , d, for a constant cλ.

If d
nλ1
→ c ∈ (0,∞), then the sample eigenvalues satisfy


λ̂1
λ1

a.s−→ 1 + ccλ,

n
d λ̂j

a.s−→ cλ, 2 ≤ j ≤ n ∧ d;
(2.17)

in addition, the sample eigenvectors satisfy

 |< û1, u1 >|2= 1
1+ccλ

+ oa.s(1),

|< ûj , uj >|2= Oa.s(
n
d ), 2 ≤ j ≤ n ∧ d,

(2.18)

which shows that the limiting angle between the maximal sample eigenvector û1 and u1 is

between 0 and π
2 , and each of the additional sample eigenvector ûj is strongly inconsistent

with uj, with the convergence rate
(
n
d

) 1
2 .

Below we comment on the results of Theorem 2.3.1.

• Theorems 2.2.1 and 2.3.1 together completely characterizes the phase transition behav-

ior of the maximal sample eigenvector û1 as d
nλ1

converges to a different limit: as n→∞,

û1 starts from being consistent when d
nλ1
→ 0, to being in-between consistency and

strong inconsistency (with the limiting angle between 0 and π
2 ) when d

nλ1
→ c ∈ (0,∞),

and finally to being strongly inconsistent when d
nλ1
→∞.

• The results nicely complement existing results of Nadler (2008); Jung et al. (2012): Nadler

(2008) considered cases with a constant λ1 and d
n → c ∈ (0,∞) as n→∞, and derived

the absolute inner product between û1 and u1; Jung et al. (2012) studied scenarios with

fixed n and d
λ1
→ c ∈ (0,∞) as d→∞, and showed that the absolute inner product is

random.
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In the context of the illustrating Example 2.1.1, the results of Nadler (2008) correspond

to the point on the horizontal axis with α = 0 and γ = 1; the results of Jung et al. (2012)

are for the point on the vertical axis with α = 1 and γ = 0; finally, our results are for

the solid line with α+ γ = 1, which separates the consistency and strong-inconsistency

regions.

2.4 Future Work

There are several interesting problems that we will explore in the future. One is to extend

our theorems to more general distributions. Another is to build the similar framework to

study the asymptotic properties of functional PCA (Dauxois et al., 1982; Bosq, 2000; Hall

and Hosseini-Nasab, 2006).

2.5 Proofs

In this section we provide technical proofs for the theorems and corollaries stated in Sec-

tion 2.2. The theorems fall into two groups: (1) Theorems 2.2.1, 2.3.1, and Corollar-

ies 2.2.1, 2.2.3 consider increasing sample size; (2) Theorem 2.2.2, and Corollaries 2.2.2, 2.2.4

consider the HDLSS settings where the sample size is fixed. Hence we only prove Theo-

rems 2.2.1 and 2.3.1 in details below, and point out how the proof can be adjusted to prove

Theorem 2.2.2.

In this thesis, we study the consistency and strong inconsistency of PCA through the

angle or the inner product between a sample eigenvector and the corresponding population

eigenvector. Hence, below in Section 2.5.1, we first describe an invariance property of this

angle that will simplify our mathematical proof, and then state in Section 2.5.2 two lemmas

that will be used in the proof. The proof process itself is organized as follows: some intuitive

ideas are presented first in Section 2.5.3 to help understanding the proof, and then we prove the

asymptotic properties of the sample eigenvalues and the sample eigenvectors in Sections 2.5.4

and 2.5.5, respectively.
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2.5.1 Invariance Property of the Angle

e1 

e2 

u1 

u2 

(A) (B) 

Figure 2.2: Independent between the angle and the basis choice

We note that the angle between the sample eigenvector and its population counterpart

doesn’t depend on the specific choice of the basis for the d-dimensional space. Because of this

independence, we will choose the population eigenvectors ui, i = 1, . . . , d, as the basis of the

d-dimensional space. Under this basis, the population covariance matrix of Xi, i = 1, . . . , n,

can be written as the following diagonal matrix:

Σ = Λ =


λ1 · · · 0

...
. . .

...

0 · · · λd

 . (2.19)

This will simplify our mathematical analysis. Equivalently, without loss of generality, for the

rest of the chapter, we assume that Xi, i = 1, . . . , n, has the d-dimensional normal distribution

with zero mean and the diagonal covariance matrix as in (2.19).

Now we use a toy example in Figure 2.2 to illustrate this invariance property of the angle.

Assume that Xi has a 2-dimensional normal distribution with two eigenvectors u1 and u2,

which are plotted in Panel (A) of Figure 2.2 under a specific basis set of e1 and e2. The θ

denotes the angle between u1 and its estimate û1. If we choose u1 and u2 as the new basis for
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the 2-dimensional space, the angle between û1 and u1 remains the same, as shown in Panel

(B) of Figure 2.2.

2.5.2 Lemmas

The following two lemmas are needed to prove the theorems. The first one is about the

asymptotic properties of the largest and smallest eigenvalues of the Wishart distribution,

seen in Geman (1980); Silverstein (1985). The second one is the Wielandt’s Inequality (Rao,

2002), which can be used to study asymptotic properties of eigenvalues of a random matrix.

Lemma 2.5.1. Assume that B = 1
sVsV

T
s , where Vs is an m × s random matrix composed

of iid standard normal random variables. As s → ∞ and m
s → c ∈ [0,∞), the largest and

smallest non-zero eigenvalues of B, denoted as λ1(B) and λm∧s(B), converge almost surely

to (1 +
√
c)2 and (1−

√
c)2, respectively.

Remark: The results in the thesis cited are for c ∈ (0,∞), which can be easily extended

to include the case of c = 0 by simple coupling arguments, as in (38) of Johnstone and Lu

(2009).

Lemma 2.5.2. (Wielandt’s Inequality). If A,B are m × m real real symmetric matrices,

then for all k = 1, . . . ,m,



λk(A) + λm(B)

λk+1(A) + λm−1(B)

...

λm(A) + λk(B)


≤ λk(A+B) ≤



λk(A) + λ1(B)

λk−1(A) + λ2(B)

...

λ1(A) + λk(B)


.

2.5.3 Intuitive ideas

To help understand the formal proof in Sections 2.5.4 and 2.5.5, we first offer some intuitive

discussion about the rationales behind our proof, which makes use of the connection between

the sample covariance matrix Σ̂ and its dual matrix Σ̂D.
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To fix ideas, define Zi = Λ−
1
2Xi for i = 1, . . . , n. Then, the Zis are iid standard d-

dimensional normal distribution. Denote the jth entry of Zi as zi,j for j = 1, . . . , d. For a

fixed j, define

Z̃j = (z1,j , · · · , zn,j)T , (2.20)

which are iid standard n-dimensional normal distribution.

Note that the dual matrix of the sample covariance matrix can be expressed as

Σ̂D = n−1XTX =
1

n

d∑
j=1

λjZ̃jZ̃
T
j ,

which has the same non-zero eigenvalues as the sample covariance matrix. Hence, we can

study the asymptotic properties of the sample eigenvalues through the dual matrix, which we

elaborate on below.

Single Component Spike Models

For simplicity, we start with single component spike models, and WLOG, assume that the

eigenvalues satisfy λ1 > λ2 = · · · = λd = 1. Then, the dual matrix can be rewritten as

Σ̂D =
λ1

n
Z̃1Z̃

T
1 +

1

n

d∑
j=2

Z̃jZ̃
T
j .

Denote the two summands in the above expression as A and B, respectively.

To understand the asymptotic properties of the sample eigenvectors, we first need to

understand the asymptotic properties of the sample eigenvalues. For that purpose, we first

note that the rank of the matrix A is 1, which suggests that A has only one non-zero eigenvalue,

denoted as λ1(A) = n−1λ1Z̃
T
1 Z̃1. Furthermore, note that the matrix nB has the Wishart

distribution, see e.g. (Muirhead (1982), p82); hence, Lemma 2.5.1 in Section 2.5.2 enables

us to understand the asymptotic properties of the largest and smallest eigenvalues of the

matrix nB, as well as the range of its non-zero eigenvalues. Finally, once we understand the

asymptotic properties of the eigenvalues of A and B, Wielandt’s Inequality (Lemma 2.5.2)

allows us to study the asymptotic properties of the eigenvalues of the dual matrix Σ̂D.
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Two ratios, d
nλ1

and d
n , play crucial roles in the consistency of the sample eigenvectors.

First, the ratio d
nλ1

affects which one of the matrices A and B plays a dominating role in

determining the maximal eigenvalue λ̂1 of Σ̂D, which then affects the consistency of the

maximal sample eigenvector û1: if d
nλ1
→ 0, λ̂1 is determined by the matrix A and can be

clearly separated from the other sample eigenvalues, which leads to the consistency of û1; if

d
nλ1
→∞, λ̂1 is determined by the matrix B and can not be clearly separated from the other

sample eigenvalues, which makes û1 strongly inconsistent; if d
nλ1
→ c ∈ (0,∞), then it is not

clear which one matrix is dominating, and û1 is neither consistent nor strong inconsistent.

In addition, the ratio d
n determines the consistency of the other sample eigenvectors:

If d
n → 0, they are subspace consistent with the subspace spanned by the corresponding

population eigenvectors ui, i ≥ 2; If d
n →∞, then they are strongly inconsistent.

Multiple Component Spike Models

We now discuss the general ideas behind the proof for multiple component spike models. For

simplicity, we assume that the first m eigenvalues can be grouped into two tiers, such that

λ1 = · · · = λq = δ1 � λq+1 = · · · = λm = δ2 � λm+1 = · · · = λd = 1. Then, the dual matrix

can be written as

Σ̂D =
1

n

q∑
j=1

δ1Z̃jZ̃
T
j +

1

n

m∑
j=q+1

δ2Z̃jZ̃
T
j +

1

n

d∑
j=m+1

Z̃jZ̃
T
j .

We denote the sum of the first two matrices in the above decomposition as A, and the third

matrix as B.

Using similar arguments to those in Section 2.5.3, the consistency properties of the sample

eigenvectors will depend on three ratios, d
nδ1

, d
nδ2

and d
n , in the following manner:

• The ratio d
nδ1

determines the consistency of the sample eigenvectors in the first tier: If

d
nδ1
→ 0, the first q sample eigenvalues can be clearly separated from the other sample

eigenvalues, which results in the subspace consistency of the corresponding sample vec-

tors; If d
nδ1
→∞, these sample eigenvalues can not be clearly separated from the others,

and it follows that the corresponding sample eigenvectors are strongly inconsistent.
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• The ratio d
nδ2

determines the consistency of the eigenvectors in the second tier: If

d
nδ2
→ 0, the sample eigenvalues in the second tier are separable from the others,

and the corresponding sample eigenvectors are subspace consistent; If d
nδ2
→ ∞, the

sample eigenvalues in the second tier are separable from the others, which makes the

corresponding sample eigenvectors strongly inconsistent.

• Finally, the ratio d
n determines the consistency of the other sample eigenvectors: If

d
n → 0, the other sample eigenvectors are subspace consistent with the subspace spanned

by the ui, i ≥ m+ 1; If d
n →∞, they are strongly inconsistent.

Different combinations of the limits of the three ratios will give us the various scenarios

considered in Theorem 2.2.1.

2.5.4 Asymptotic Properties of the Sample Eigenvalues

We are now in a position to formally prove Theorem 2.2.1. In this section, we first derive the

asymptotic properties of the sample eigenvalues, which will be used in studying the consistency

of the sample eigenvectors in Section 2.5.5.

We consider general cases where the first m eigenvalues can be grouped into r tiers, and

WLOG assume that λ1 = · · · = λq1 = δ1, · · · , λ∑r−1
k=0 qk+1 = · · · = λm = δr where q0 = 0

and qk are positive integers for k ≥ 1. In addition, we assume that each ratio δj/δi, where

1 ≤ i < j ≤ r, converges to a constant less than 1 as n→∞. (The following arguments can

be extended to cases where only the upper limits of the ratios exist as stated in the theorems,

through taking a converging subsequence of the diverging sequence of n.)

Now we will show the asymptotic properties of the sample eigenvalues as stated in The-

orem 2.2.1. For that end, we first note that the dual matrix can be rewritten as the sum of

two matrices as follows

Σ̂D = A+B, with A =
1

n

m∑
j=1

λjZ̃jZ̃
T
j , B =

1

n

d∑
j=m+1

λjZ̃jZ̃
T
j , (2.21)

where Z̃j is defined in (2.20).
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We then establish the asymptotic properties of the eigenvalues of A and B below in Lem-

mas 2.5.3 and 2.5.4, respectively. Finally, the asymptotic properties of the sample eigenvalues

of Σ, which are the same as the eigenvalues of the dual matrix, naturally follow (Section 2.5.4).

Asymptotic Properties of the Eigenvalues of the Matrix A

Lemma 2.5.3. As n→∞, the eigenvalues of the matrix A in (2.21) satistfy

λk(A)

λk

a.s−→ 1, for k = 1, · · · ,m. (2.22)

Proof. We first construct the dual matrix A∗ of the matrix A. For i = 1, · · · , n, let X∗i be the

m-dimensional random vector formed by the firstm entries ofXi, i.e. X∗i = (Im, 0m×(d−m))Xi.

Then, X∗i is normal with mean zero and the following covariance matrix Σ∗:

Σ∗ = Λ∗ =


λ
− 1

2
1 · · · 0

...
. . .

...

0 · · · λ
− 1

2
m

 .

Defined the sample covariance matrix of X∗i as

A∗ =
1

n

m∑
j=1

X∗i (X∗i )T

= λ1


1
n

∑n
i=1 z

2
i,1 · · · (λmλ1 )

1
2

1
n

∑n
i=1 zi,1zi,m

...
. . .

...

(λmλ1 )
1
2

1
n

∑n
i=1 zi,1zi,m · · · λm

λ1
1
n

∑n
i=1 z

2
i,m

 , (2.23)

where the zi,j ’s are defined in (2.20) and are iid standard normal random variables.

Note that the above matrix A∗ is the dual matrix of A, then A and A∗ share the same

non-zero eigenvalues. Below we study the eigenvalues of the dual matrix A∗.
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The iid properties of the zi,j ’s suggest that

1

n

n∑
i=1

zi,kzi,l
a.s−→

 1 1 ≤ k = l ≤ m

0 1 ≤ k 6= l ≤ m
, as n→∞,

which can be combined with (2.23) to suggest that

1

λ1
A∗

a.s−→


1 · · · 0

...
. . .

...

0 · · · bm

 , as n→∞,

where bk = limn→∞
λk
λ1
≤ 1, k = 1, · · · ,m. It then follows that

λ1(A)

λ1
=
λ1(A∗)

λ1

a.s−→ 1, as n→∞.

Similarly, for k = 2, · · · ,m, we have that

λ1( 1
n

∑m
j=k λjZ̃jZ̃

T
j )

λk

a.s−→ 1, as n→∞. (2.24)

Next we try to derive upper and lower bounds for λk(A). First, Lemma 2.5.2 suggests

that, for k ≥ 2,

λk(A) = λk(
1

n

m∑
j=1

λjZ̃jZ̃
T
j ) ≤ λ1(

1

n

m∑
j=k

λjZ̃jZ̃
T
j ) + λk(

1

n

k−1∑
j=1

λjZ̃jZ̃
T
j ). (2.25)

Since the rank of 1
n

∑k−1
j=1 λjZ̃jZ̃

T
j is at most k − 1, then it follows that

λk(
1

n

k−1∑
j=1

λjZ̃jZ̃
T
j ) = 0,

which can be combined with (2.24) to show that

λk(A)

λk
≤ 1, as n→∞. (2.26)
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Now for the lower bound, the expression (5.9) in Jung and Marron (2009) suggests that

λ1(
λk
n
Z̃kZ̃

T
k ) + λn(

1

n

m∑
j=k+1

λjZ̃jZ̃
T
j ) ≤ λk(A). (2.27)

Given that the rank of 1
n

∑m
j=k+1 λjZ̃jZ̃

T
j is at most m with m < n, then we know that

λn(
1

n

m∑
j=k+1

λjZ̃jZ̃
T
j ) = 0, (2.28)

which, together with (2.27), suggests that as n→∞,

λk(A)

λk
≥ 1

λk
λ1(

λk
n
Z̃kZ̃

T
k ). (2.29)

In addition, note that as n→∞,

1

λk
λ1(

λk
n
Z̃kZ̃

T
k ) =

1

n
Z̃Tk Z̃k

a.s−→ 1, (2.30)

which, together with (2.29), gives that

λk(A)

λk
≥ 1, as n→∞. (2.31)

The combination of (2.26) and (2.31) suggests (2.22).

Asymptotic Properties of the Eigenvalues of B

Lemma 2.5.4. As n→∞, the eigenvalues of the matrix B as defined in (2.21) satisfy

λk(B)
a.s∼ d

n
, k = 1, · · · , n ∧ (d−m), (2.32)

Proof. We start with assuming that λm+1 = · · · = λd = 1. WLOG, we assume that d
n has a

limit as n → ∞. (Otherwise, we can always choose a subsequence of {n} such that d
n has a
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limit.) Furthermore, we assume that d
n → c ≤ 1. (If c > 1, we can consider the dual matrix

of B, whose dimension is (d−m)-by-(d−m), and study its eigenvalues.)

Define V = [Z̃m+1, Z̃m+2, · · · , Z̃d], whose dimension is n-by-(d−m). It then follows that

B = 1
nV V

T = d−m
n ( 1

d−mV V
T ).

Lemma 2.5.1 suggests that λ1( 1
d−mV V

T )
a.s
λ n∧(d−m) ( 1

d−mV V
T )

a.s∼ 1. It follows that

λk(B) =
d−m
n

λk(
1

d−m
V V T )

a.s∼ d

n
, k = 1, · · · , n ∧ (d−m), as n→∞,

which then yields (2.32).

The above arguments remain valid for cases where λm+1 ∼ λd ∼ 1.

Asymptotic Properties of the Sample Eigenvalues

We now study the asymptotic properties of the sample eigenvalues λ̂j , for j = 1, · · · , n ∧ d,

which are the same as the eigenvalues of the dual matrix Σ̂D, denoted as λj(Σ̂D) = λj(A+B).

According to Lemma 2.5.2, we have that

λj(A) + λn(B) ≤ λ̂j ≤ λj(A) + λ1(B),

which suggests

1

λj
λj(A) +

1

λj
λn(B) ≤ λ̂j

λj
≤ 1

λj
λj(A) +

1

λj
λ1(B). (2.33)

In addition, note that Lemma 2.5.4 shows that 1
λj
λn(B) ≤ 1

λj
λn∧(d−m)(B)

a.s∼ d
λjn

and

1
λj
λ1(B)

a.s∼ d
λjn

. Below we consider three scenarios separately.

First, if there exists h ∈ [1, r] such that d
nδh
→ 0, then d

nλj
→ 0, for j ∈ Hl, l = 1, · · · , h,

where Hl is the index set of the eigenvalues in the lth tier. Thus, we have

1

λj
λn(B)

a.s−→ 0, and
1

λj
λ1(B)

a.s−→ 0, j ∈ Hl, l = 1, · · · , h. (2.34)
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The above (2.34), together with (2.33) and Lemma 2.5.3, leads to

λ̂j
λj

a.s−→ 1, j ∈ Hl, l = 1, · · · , h. (2.35)

Secondly, if d
nδh
→ ∞, then we have d � n and n ∧ (d − m) = n. For j ∈ Hl, l ≥ h,

Lemma 2.5.2 suggests that

n

d
λj(A) +

n

d
λn(B) ≤ n

d
λ̂j ≤

n

d
λj(A) +

n

d
λ1(B). (2.36)

Lemma 2.5.3, together with the condition d
nδh
→ ∞, suggests that n

dλj(A)
a.s−→ 0 for j ∈ Hl

and l ≥ h. Using Lemma 2.5.4, we have that n
dλn−m(B)

a.s∼ 1 and n
dλ1(B)

a.s∼ 1. The above,

combined with (2.36), suggests that

λ̂j
a.s∼ d

n
,

h−1∑
l=1

ql < j ≤ n ∧ d, a.s. (2.37)

Finally, if d
nδr
→ 0, (2.34) suggests that

λ̂j
λj

a.s−→ 1, 1 ≤ j ≤ m. In addition, Lemma 2.5.2

suggests that

n

d
λj+n−n∧(d−m)(A) +

n

d
λn∧(d−m)(B) ≤ n

d
λ̂j ≤

n

d
λj(A) +

n

d
λ1(B). (2.38)

Note that rank of A is less than or equal to m and it means that for j > m, λj+n−n∧(d−m)(A) =

λj(A) = 0. Furthermore, from Lemma 2.5.4, we have that n
dλ1(B)

a.s∼ n
dλn∧(d−m)(B)

a.s∼ 1.

Combining above with (2.38), we have λ̂j
a.s∼ d

n , m + 1 ≤ j ≤ n ∧ (d −m). For j ∈ [n ∧ (d −

m) + 1 ≤ j ≤ n ∧ d], given that λ̂j ≤ λ̂n∧(d−m), it follows that λ̂j = Oa.s(
d
n).

The above arguments can be summarized as follow: if d
nδr
→ 0,


λ̂j
λj

a.s−→ 1, 1 ≤ j ≤ m

λ̂j
a.s∼ d

n , m+ 1 ≤ j ≤ n ∧ d−m

λ̂j = Oa.s(
d
n), n ∧ (d−m) + 1 ≤ j ≤ n ∧ d

. (2.39)

Note that if n ∧ (d−m) + 1 > n ∧ d, the last term disappears.
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Combining (2.35), (2.37), and (2.39), we can get the corresponding results (2.5), (2.7),

and (2.9) in Theorem 2.2.1.

2.5.5 Asymptotic Properties of the Sample Eigenvectors

We are now ready to derive the asymptotic properties of the sample eigenvectors

ûj = (û1,j , · · · , ûd,j)T , j = 1, · · · , n ∧ d.

First, we state two results that simplify the proof. As discussed in Section 2.5.1, we choose

the population eigevectors uj (j = 1, · · · , d) as the basis of the d-dimensional space; it then

follows that uj = ej where the j-th component of ej equals to 1 and all the other components

equal to zero. This yields that

|< ûj , uj >|2=|< ûj , ej >|2= û2
j,j , (2.40)

and for any index set H,

cos [angle (ûj , span{uk, k ∈ H})] =
∑
k∈H

û2
k,j . (2.41)

Define

Ûi,j = (ûk,l)k∈Hi,l∈Hj , 1 ≤ i, j ≤ r + 1, (2.42)

where Hi is defined in (2.2), i = 1, · · · , r + 1. Then, the sample eigenvectors matrix can be

rewrote as following.

Û = [û1, û2, · · · , ûd] =



Û1,1 Û1,2 · · · Û1,r+1

Û2,1 Û2,2 · · · Û2,r+1

...
...

...

Ûr+1,1 Ûr+1,2 · · · Ûr+1,r+1


. (2.43)
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Scenario (b) in Theorem 2.2.1

Now consider the scenario (b) in Theorem 2.2.1 in that there exists a constant h ∈ [1, r], such

that d
nδh
→ 0 and d

nδh+1
→∞. Define al = max1≤k≤l

δk+1

δk
, l = 1, · · · , r. From (2.41), in order

to show subspace consistent with the convergence rate
(
al ∨ d

nδl

) 1
2

in (2.7), we just need to

show ∑
k∈Hl

û2
k,j = 1 + oa.s(al) ∧Oa.s(

d

nδl
), j ∈ Hl, l = 1, · · · , h. (2.44)

The following proof is just to show (2.44) for l = 1. For l = 2, · · · , h, the process is similar

and we skip it to avoid the repetition.

Note that for l = 1, the left part of equation (2.44) is just the sum of square column

elements of matrix Û1,1, where Û1,1 is defined (2.42). Thus, in order to show (2.44) for l = 1,

we just need to show that the sum of square column elements of matrix Û1,1 converges to 1

with the convergence rate a1 ∨ d
nδ1

. The following proof contains two steps: the first one is

to show sum of square column elements of matrix Û1,1 converges to 1; the second step is to

show the convergence rate a1 ∨ d
nδ1

.

Now, we will show that the sum of square column entries of the matrix Û1,1 converges

to 1. Let Z = (Z1, · · · , Zn), where Zi = Λ−
1
2Xi as defined in Section 2.5.3. Denote S =

(sk,l)d×d = Λ−
1
2 Û Λ̂

1
2 where Û is the sample eigevector matrix and Λ̂ is the sample eigenvalue

matrix defined in (2.1), the eigendecomposition of the sample variance matrix Σ̂. We can

show that

SST =
1

n
ZZT .

Considering the k-th diagonal entry of the matrices on the two sides and noting that sk,j =

λ
− 1

2
k λ̂

1
2
j ûk,j , we have the following

1

n

n∑
i=1

z2
i,k =

d∑
j=1

s2
k,j = λ−1

k

d∑
j=1

λ̂j û
2
k,j , k = 1, · · · , d. (2.45)

As shown earlier, 1
n

∑n
i=1 z

2
i,k

a.s−→ 1, which suggests that û2
k,j ≤

λk
λ̂j

as n→∞. Then, as shown
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in Section 2.5.4, the sample eigenvalues λ̂j satisfy (2.7), which suggests that

û2
k,j =

 Oa.s(
λk
λj

) j ∈ Hl, l = 1, · · · , h

Oa.s(
nλk
d ) j =

∑h
l=1 ql + 1, · · · , n ∧ d

. (2.46)

In addition, the k-th diagonal entry of STS is less or equal than its largest eigenvalues.

Since STS share the same non-zero eigenvalues as 1
nZ

TZ, we have

λ̂j

d∑
k=1

λ−1
k û2

k,j =
d∑

k=1

s2
k,j ≤ λmax(

1

n
ZTZ), j ∈ Hl, l = 1, · · · , h. (2.47)

The cross products matrix ZTZ has a standard n-dimensional Wishart Wn(d, I) distribution

with d degrees of freedom and identity covariance matrix, see e.g. (Muirhead (1982), p82).

Using lemma 2.5.2, we have

λmax(
1

n
ZZT )

a.s∼ (
d

n
). (2.48)

Using (2.35), (2.47), and (2.48), we have

d∑
k=m+1

û2
k,j = Oa.s(

d

nλj
), j ∈ Hl, l = 1, · · · , h. (2.49)

Since λj � d
n , j =

∑h
l ql + 1, · · · ,m, (2.46) and (2.49), then we have

d∑
k=
∑h
l ql+1

û2
k,j = Oa.s

(
d

nλj

)
, j ∈ Hl, l = 1, · · · , h. (2.50)

Note that λk = δ1, k ∈ H1. and then from (2.45), for k ∈ H1,

1 + oa.s(1) =
1

n

n∑
i=1

z2
i,k = λ−1

k

d∑
j=1

λ̂j û
2
k,j = δ−1

1

d∑
j=1

λ̂j û
2
k,j

≤ δ−1
1

∑
j∈H1

λ̂1û
2
k,j + δ−1

1

∑
j /∈H1

λ̂q1+1û
2
k,j (2.51)

= δ−1
1 (λ̂1 − λ̂q1+1)

∑
j∈H1

û2
k,j + δ−1

1 λ̂q1+1.
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In addition, from (2.35), we have δ−1
1 (λ̂1 − λ̂q1+1)

a.s−→ δ−1
1 (δ1 − δ2) = (1− c) and δ−1

1 λ̂q1+1 =

c+ oa.s(1), where c = limn→∞
δ2
δ1
< 1.

Combining above with (2.51), we have

1 + oa.s(1) ≤ (1− c)limn→∞
∑
j∈H1

û2
k,j + c

≤ (1− c)limn→∞
∑
j∈H1

û2
k,j + c ≤ 1,

which yields
∑

j∈H1
û2
k,j = 1+oa.s(1), k ∈ H1. It means that the sum of square row elements

of Û1,1 converges to 1. Since the sum of square row or column elements of Û1,1 is less than or

equal to 1, it follows that the sum of square column elements of Û1,1 converges to 1.

The second step is to show that the sum of square column elements of Û1,1 converge to 1

with the convergence rate a1∨ d
nδ1

. Since we have showed that the sum of square row elements

of Û1,1 converges to 1, it follows that the sum of square row elements of Û1,2 converges to 0.

Furthermore, the sum of the square column elements of Û1,2 converges to 0, as following:

∑
k∈H1

û2
k,j = oa.s(1), j ∈ H2. (2.52)

WLOG, we assume that δ3
δ2
→ 0. If the limit is greater than 0, we can combine index H2 and

H3 together to check whether δ4
δ2
→ 0 converges to 0. If not, we still combine index together

until the big jump appears. Since δ3
δ2
→ 0, (2.46) and (2.50), it follows that

∑
k∈H3∪···Hr+1

û2
k,j = oa.s(1), j ∈ H2. (2.53)

From (2.52) and (2.53), we have

∑
k∈H2

û2
k,j = 1 + oa.s(1), j ∈ H2,

It means that sum of square column elements of Û2,2 converges to 1. Since the sum of square

row or column elements of Û2,2 is less than or equal to 1, it follows that the sum of square
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row elements of Û2,2 converges to 1, as following

∑
j∈H2

û2
k,j = 1 + oa.s(1), k ∈ H2. (2.54)

Since λ̂j
a.s−−→ λj = δ2, j ∈ H2 and (2.54), it follows that for k ∈ H2

1 + oa.s(1) =
1

n

n∑
i=1

z2
i,k = λ−1

k

d∑
j=1

λ̂j û
2
k,j

≥ δ−1
2

∑
j∈H1

λ̂j û
2
k,j + δ−1

2

∑
j∈H2

λ̂j û
2
k,j

= δ−1
2

∑
j∈H1

λ̂j û
2
k,j + 1 + oa.s(1),

which yields δ−1
2

∑
j∈H1

λ̂j û
2
k,j = oa.s(1), k ∈ H2. Since λ̂j

a.s−−→ λj = δ1, j ∈ H1, it follows

that ∑
j∈H1

û2
k,j = oa.s(

δ2

δ1
), k ∈ H2,

which yields ∑
k∈H2

û2
k,j = oa.s(

δ2

δ1
), j ∈ H1. (2.55)

In addition, from (2.46) and (2.50), we have

∑
k∈H3∪···Hr+1

û2
k,j = oa.s(

δ2

δ1
), j ∈ H1. (2.56)

From (2.55), (2.56) and δ2
δ1
� d

nδ1
, we have

∑
k∈H1

û2
k,j = 1 + oa.s(

δ2

δ1
) = 1 + oa.s(a1) ∧Oa.s(

d

nδ1
), j ∈ H1.

Until now, we showed that the sum of square column elements of Û1,1 converge to 1 with

the convergence rate a1 ∨ d
nδ1

and it means that (2.44) is established for l = 1. The proof of

(2.44) is similar for l = 2, · · · , h. Thus, we have showed the subspace consistent in (2.8) in

Theorem 2.2.1.
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Now, we will show the strong inconsistency in (2.8) in Theorem 2.2.1. Using (2.46), we

have

|< ûj , uj >|2= û2
j,j = Oa.s

(
nλj
d

)
, j =

h∑
l=1

ql + 1, · · · , n ∧ d. (2.57)

Until now, we have finished the proof of scenario (b) in Theorem 2.2.1.

Scenario (a) in Theorem 2.2.1

Having proved the scenario (b) above, now consider the scenario (a) where d
nδr
→ 0. Then

(2.44) in Section 2.5.5 becomes

∑
k∈Hl

û2
k,j = 1 + oa.s(al) ∧Oa.s(

d

nδl
), j ∈ Hl, l = 1, · · · , r, (2.58)

which yields ∑
k∈Hl

û2
k,j = 1 + oa.s(ar) ∧Oa.s(

d

nδr
), m+ 1 ≤ j ≤ n ∧ d. (2.59)

From (2.41), (2.58) and (2.59), we have (2.6) in Theorem 2.2.1. Until now, we have finished

the proof of scenario (a) in Theorem 2.2.1

Scenario (c) in Theorem 2.2.1

Finally, for the scenario (c) where d
nδ1
→ 0, using (2.46), we have

|< ûj , uj >|2= û2
j,j = Oa.s

(
nλj
d

)
, j = 1, · · · , n ∧ d.

Thus, (2.10) in Theorem 2.2.1 is established.

Having finished the proof of Theorem 2.2.1, the proofs of Corollaries 2.2.1 and 2.2.3

naturally follow as they are special cases of Theorem 2.2.1.

2.5.6 Proof of Theorem 2.2.2 and Corollaries 2.2.2, 2.2.4

Considering the HDLSS setup, the proofs of Theorem 2.2.2 and Corollaries 2.2.2, 2.2.4 are

similar to the above one in Section 2.5.5. One major difference is to replace the following
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result with diverging sample size n

1

n

n∑
i=1

z2
i,k

a.s−−→ 1, as n→∞,

with this one that holds for fixed sample size n and diverging dimension d:

1

n

n∑
i=1

z2
i,k = Op(1), as d→∞.

Such a replacement should be performed in the appropriate places of the proof for Theo-

rem 2.2.1.

2.5.7 Proof of Theorem 2.3.1

Under the assumption of Theorem 2.3.1, Lemma 2.5.3 is still established, where m = 1.

Lemma 2.5.4 becomes the following lemma:

Lemma 2.5.5. Under the assumption of Theorem 2.3.1, as n → ∞, the eigenvalues of the

matrix B as defined in (2.21) satisfy

n

d
λk(B)

a.s−−→ cλ, k = 1, · · · , n ∧ (d− 1), (2.60)

Proof. Note that under the assumption of Theorem 2.3.1, we have d
n → ∞. If λj → cλ,

j = 2, · · · , d and d
n → 0 or ∞, “

a.s∼ ” in Lemma 2.5.4 can be replace by “
a.s−−→ ” and (2.60) is

established.

Asymptotic Properties of Sample Eigenvalues

Now, we will show the asymptotic properties of sample eigenvalues. According to Lemma 2.5.2,

we have that

λj(A) + λn(B) ≤ λ̂j ≤ λj(A) + λj(B), (2.61)
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which suggests

1

λ1
λ1(A) +

1

λ1
λn(B) ≤ λ̂1

λ1
≤ 1

λ1
λ1(A) +

1

λ1
λ1(B). (2.62)

Note that under the assumption of Theorem 2.3.1, we have d
n →∞ and then n∧(d−1) = n.

Then Lemma 2.5.5 showed that 1
λ1
λn(B) = 1

λ1
λn∧(d−1)(B) or 1

λ1
λ1(B)

a.s−−→ cγ
d
nλ1
→ ccγ . In

addition, Lemma 2.5.3 showed that 1
λ1
λ1(A)

a.s−−→ 1. Thus, from (2.62), we have

λ̂1

λ1

a.s−−→ 1 + ccλ, n→∞. (2.63)

Since rank of A equal to 1, it follows that λj(A) = 0 for j ≥ 2. Note that Lemma 2.5.5 showed

that λn(B) = λn∧(d−1)(B) or λ1(B)
a.s−−→ cγ

d
n . Using (2.61), we have

n

d
λ̂1

a.s−−→ cλ, n→∞. (2.64)

From 2.63 and 2.64, we have (2.17) in Theorem 2.3.1. Until now, we have finished the proof

of asymptotic properties of sample eigenvalues in Theorem 2.3.1.

Asymptotic Properties of Sample Eigenvectors

Now, we will show the asymptotic properties of sample eigenvectors. Let m = 1 and then

r = 1 and q1 = 1. Using (2.46), we have

|< ûj , uj >|2= û2
j,j = Oa.s

(
nλj
d

)
= Oa.s

(n
d

)
, j = 2, · · · , n ∧ d. (2.65)

The first diagonal entry of STS (λ̂1
∑d

k=1 λ
−1
k û2

k,1 =
∑d

k=1 s
2
k,1) is between its smallest than

largest eigenvalue. Then (2.47) becomes

λmin(
1

n
ZTZ) ≤ λ̂1

d∑
k=1

λ−1
k û2

1,k ≤ λmax(
1

n
ZTZ),
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which yields

λ−1
1 λmin(

1

n
ZTZ) ≤ λ−1

1 λ̂1

d∑
k=1

λ−1
k û2

1,k ≤ λ−1
1 λmax(

1

n
ZTZ), (2.66)

Note that n
d → 0 and using Lemma 2.5.1, we have λ−1

1 λmin( 1
nZ

TZ) or λ−1
1 λmax( 1

nZ
TZ)

a.s−−→
d
nλ1

= c+ o(1). Using (2.17) and assumption of population eigenvalues in Theorem 2.3.1, we

have λ−1
1 λ̂1

∑d
k=1 λ

−1
k û2

k,1
a.s−−→ 1+ccλ

cλ
(1− û2

1,1). Thus, from (2.66), we have

|< û1, u1 >|2= û2
1,1 =

1

1 + ccλ
+ oa.s(1) (2.67)

From (2.65)and (2.67), we get (2.18). Until now, we finished the proof of Theorem 2.3.1.
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Chapter 3

Consistency of Sparse PCA in HDLSS

3.1 Introduction

Principal Component Analysis (PCA) is an important visualization and dimension reduction

tool for High Dimension, Low Sample Size (HDLSS) data. However, the linear combinations

found by PCA typically involve all the variables, with non-zero loadings, which can be chal-

lenging to interpret. To overcome this weakness, we will study sparse PCA methods that

generate sparse principal components (PCs), i.e. PCs with only a few non-zero loadings.

Several sparse PCA methods have been proposed to facilitate the interpretation of HDLSS

data, see for example Zou et al. (2006); d’Aspremont et al. (2007); Shen and Huang (2008);

Leng and Wang (2009); Witten et al. (2009); Johnstone and Lu (2009); Ma (2012); Lee et al.

(2012, forthcoming).

Sparse PCA is primarily motivated by modern data sets of very high dimension; hence

we prefer the statistical viewpoint of the HDLSS asymptotics. Such asymptotics are based

on the limit as the dimension d→∞ with the sample size n being fixed, as originally studied

by Casella and Hwang (1982) in the context of James-Stein estimation, and more recently

by Hall et al. (2005); Ahn et al. (2007); Jung and Marron (2009); Yata and Aoshima (2012);

Ahn et al. (2012, forthcoming); Jung et al. (2012) in various multivariate analysis contexts.

Conventional PCA was first studied using HDLSS asymptotics by Ahn et al. (2007), and much

more thoroughly analyzed by Jung and Marron (2009); Jung et al. (2012), with more recent

development in Yata and Aoshima (2012). Chapter 3 is the first that studies the HDLSS



asymptotic properties of Sparse PCA, and takes the statistical lessons learned from this type

of asymptotics in a timely and orthogonal direction from that of Jung and Marron (2009);

Jung et al. (2012).

One main contribution of this chapter is a clear and complete characterization of HDLSS

asymptotic conditions about sparse PCA consistency, inconsistency, as well as strong inconsis-

tency. First of all, we identify in Sections 3.2 and 3.3 sparsity conditions where conventional

PCA is strongly inconsistent (for scenarios with relatively small population eigenvalues as

carefully studied in Jung and Marron (2009); Jung et al. (2012), and also noted by Lee et al.

(2010b)), yet sparse PCA methods are consistent. Furthermore, the mathematical boundaries

of the sparse PCA consistency are clearly established in Section 3.4, through showing that an

oracle version of sparse PCA is marginally inconsistent on the boundaries, and strongly incon-

sistent beyond the consistent region. The formulation of strong inconsistency has not yet been

studied in the random matrix literature (Johnstone and Lu, 2009; Amini and Wainwright,

2009). Following the random matrix work, we also focus on the single component spiked

covariance model. Our results depend on a spike index, α, which measures the dominance

of the first eigenvalue, and on a sparsity index, β, which measures the number of non-zero

entries of the maximal eigenvector. The two indices α and β are formally defined later in

Example 3.1.1 of Section 3.1.1.

Our results offer major new insights relative to those of Jung and Marron (2009); Jung

et al. (2012) (when restricting to the maximal eigenvector), who studied HDLSS asymptotic

properties of conventional PCA without considering sparsity. This thesis clearly character-

izes the benefit of imposing sparsity constraints when the maximal eigenvector is sparse, by

revealing a new domain of consistency within the inconsistent region of conventional PCA.

In addition, actual rates of convergence are obtained, which are not studied by Jung and

Marron (2009); Jung et al. (2012). Our key theoretical findings in connection with the ear-

lier results are intuitively illustrated below for the exemplary model of Example 3.1.1. (Our

results remain valid for more general single component spike models as shown in Sections 3.2

to 3.4.) The consistency and inconsistency results for Example 3.1.1 are summarized below

as functions of α and β, and illustrated graphically in Figure 3.1:
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Figure 3.1: Consistent areas for PCA and sparse PCA

• Previous Results (grey rectangle): Jung and Marron (2009) showed that the first

empirical PCA eigenvector is consistent with the maximal eigenvector when the spike

index α is greater than 1, only involving the horizontal axis.

• Consistency (white triangle): We will show that sparse PCA is consistent even

when α is less than or equal to 1 (hence PCA is either strongly inconsistent (Jung and

Marron, 2009) or marginally inconsistent (Jung et al., 2012)), as long as α is greater

than the sparsity index β, involving both horizontal and vertical axes. This is done in

Section 3.2 for a simple thresholding method and in Section 3.3 for the RSPCA method

of Shen and Huang (2008).

• Strong Inconsistency (black triangle) and Marginal Inconsistency (red diag-

onal line): In Section 3.4 we show that even an oracle sparse PCA procedure is strongly

inconsistent, when α is smaller than β, and marginally inconsistent when α = β, the

boundary between the consistent and strongly inconsistent regions.
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Besides the HDLSS asymptotics, other asymptotic frameworks have been used to study

sparse PCA. Under the random matrix framework where both n and d tend to infinity, John-

stone and Lu (2009); Amini and Wainwright (2009) considered the single spike covariance

model (originally proposed by Johnstone (2001)). In particular, Johnstone and Lu (2009)

showed that conventional PCA is consistent if and only if d(n)/n → 0; furthermore, when

log(d ∨ n)/n→ 0, they proved that PCA could regain consistency when being performed on

a subset of variables with the largest sample variances. Note that our asymptotic framework

of d → ∞ with n fixed is not considered by Johnstone and Lu (2009), who also modeled

the sparsity differently from us. Amini and Wainwright (2009) further restricted the maximal

eigenvector to have k non-zero entries, and studied support set recovery properties of the

thresholding subset PCA procedure of Johnstone and Lu (2009) and the DSPCA procedure

of d’Aspremont et al. (2007). Different from Amini and Wainwright (2009), the thesis studies

asymptotic properties of estimating the actual maximal eigenvector, instead of its support

set. Hence, our results are complementary to those of Amini and Wainwright (2009), as

elaborated below in the context of Example 3.1.2. Paul and Johnstone (2007b) developed the

augmented sparse PCA procedure along with its optimal rate of convergence property. Ma

(2012) proposed an iterative thresholding procedure for estimating principal subspaces, and

established its nice theoretical properties. Considering the sample size n→∞ with dimension

d fixed, Leng and Wang (2009) proposed an adaptive lasso sparse PCA, and established its

consistency for selecting non-zero loadings.

Asymptotics on sparsity have been investigated in other high dimensional settings, such

as regression and variable selection by Meinshausen and Bühlmann (2006); Candes and Tao

(2007); van de Geer (2008); Bickel et al. (2009); Meier et al. (2009); Omidiran and Wain-

wright (2010); Obozinski et al. (2011), sparse covariance matrix estimation by Bickel and

Levina (2008a,b); El Karoui (2008), classification by Bühlmann (2006), and density estima-

tion by Bunea et al. (2010), for example.
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3.1.1 Notation and Assumptions

All quantities are indexed by the dimension d in the current chapter. However, when it will

not lead to confusion, the subscript d will be omitted for convenience. Recall above, let the

population covariance matrix be Σ. The eigen-decomposition of Σ is

Σ = UΛUT ,

where Λ is the diagonal matrix of the population eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd and U is

the matrix of corresponding population eigenvectors so that U = [u1, · · ·, ud].

Recall Assumption 2.1.1 that X1, . . . , Xn are random samples from a d-dimensional normal

distribution N(0,Σd). Denote the data matrix by X = [X1, . . . , Xn]d×n and the sample

covariance matrix by Σ̂ = n−1XXT . Then, the sample covariance matrix Σ̂ can be similarly

decomposed as

Σ̂ = Û Λ̂ÛT ,

where Λ̂ is the diagonal matrix of the sample eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d and Û is the

matrix of the corresponding sample eigenvectors so that Û = [û1, . . . , ûd].

Let ūj be any sample based estimator of uj , e.g. ūj = ûj for j = 1, . . . , d. Recall three

consistency concepts from Section 2.2.1:

• Consistency: The direction ūj is consistent with its population counterpart uj if

Angle(ūj , uj) ≡ arccos(|< ūj , uj >|)
p−→ 0, as d→∞, (3.1)

where < ·, · > denotes the inner product between two vectors.

• Strong Inconsistency: The direction ūj is strongly inconsistent with its population

counterpart uj if Angle(ūj , uj)
p−→ π

2 , as d→∞.

• Consistency with convergence rate dι: The direction ūj is consistent with its

population counterpart uj with the convergence rate dι if |< ūj , uj >|= 1 + op(d
−ι),

where the notation Gd ≡ op(d−ι) means that dιGd
p−→ 0, as d→∞.
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In addition, we consider another important concept in the current chapter:

• Marginal Inconsistency: The direction ūj is marginally inconsistent with uj if

Angle(ūj , uj) converges to a (possibly random) quantity in (0, π
2 ), as d→∞.

We now use two illustrative examples to highlight our key theoretical results. The ex-

amples are chosen mainly for intuitive illustration. Our theorems cover more general single

component spike models (Sections 3.2 to 3.4).

Example 3.1.1. Assume that X1, . . . , Xn are random sample vectors from a d-dimensional

normal distribution N(0,Σd), where the covariance matrix Σd has the eigenvalues as

λ1 = dα, λ2 = . . . = λd = 1, α ≥ 0. (3.2)

This is a special case of the single component spike covariance Gaussian model considered

before by, for example, Johnstone (2001); Paul (2007); Johnstone and Lu (2009); Amini and

Wainwright (2009).

Without loss of generality (WLOG), we further assume that the first eigenvector u1 is

proportional to the d-dimensional vector

u̇1 = (

bdβc︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T ,

where 0 ≤ β ≤ 1 and bdβc denotes the integer part of dβ. For example, if β = 0, the first

population eigenvector becomes u1 = (1, 0, . . . , 0)T . (Note that in general the non-zero entries

do not have to be the first bdβc elements, nor do they need to have equal values.)

We formally define α as the spike index that measures the strength of the spike, and β

as the sparsity index that quantifies the sparsity of the maximal eigenvector u1, where bdβc

is the number of its non-zero elements. Under Model (3.2), Jung and Marron (2009) showed

that the first empirical eigenvector (the PC direction) û1 is consistent with u1 when α > 1;

however for α < 1, it is strongly inconsistent. Jung et al. (2012) then showed that û1 is in

between consistent and strongly inconsistent on the boundary when α = 1. Again, one main
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point of the thesis is an exploration of conditions under which sparse methods can lead to

consistency even when the spike index α ≤ 1, by exploiting sparsity.

Example 3.1.2. Our theorems are also applicable to the sparse single-component spike model

considered by Amini and Wainwright (2009), although we have a different focus from them

as illustrated below. The covariance matrix Σd can be expressed using our notation as

Σd = (λ1 − 1)z∗z∗T +

Ibdβc 0

0 Γd−bdβc

 ,

where the first eigenvalue λ1 > 1, the first bdβc entries of the maximal eigenvector are non-

zero with values of ±1/
√
bdβc, and Γd−bdβc is a symmetric positive semi-definite matrix with

the maximal eigenvalue λmax(Γd−bdβc) ≤ 1. For this example, consider cases where all eigen-

values of Γd−bdβc are one. Hence, the eigenvalues of Σd are λ1 > 1 = λ2 = · · · = λd.

Amini and Wainwright (2009) focused on the consistent recovery of the support set of the

maximal eigenvector z∗. We, however, are interested in the consistency of the actual direction

vector. We note that the two types of consistency are not equivalent. For the above model,

the two results are summarized below.

• Assuming fixed λ1 and n, d→∞, Amini and Wainwright (2009) showed that the support

set can be recovered if n > cu(bdβc)2 log(d − bdβc), while it can not be recovered if

n < cl(bdβc)2 log(d− bdβc), where cu and cl are two constants.

• For fixed n, λ1 = dα and d→∞, our Theorems 3.2.2 and 3.3.4 show that sparse PCA

is consistent when α > β, although the support set may not be consistently recovered

(Theorem 3 of AW); and our Theorem 3.4.1 indicates that sparse PCA is strongly

inconsistent when α < β, even when one knows the exact support set.

3.1.2 Roadmap

The organization of the rest of this chapter is as follows. For easy access to the main ideas,

Section 3.2 proves the consistency of a simple thresholding (ST) method that generates sparse
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PC directions, under the sparsity and small spike conditions where the conventional PCA is

strongly inconsistent. Section 3.3 then generalizes these ideas to establish the consistency

of the RSPCA method of Shen and Huang (2008). Section 4.5 identifies the region and

its boundaries where the strong inconsistency and marginal inconsistency of an appropriate

oracle sparse PCA procedure are proved. Section 3.5 reports simulation results to illustrate

both consistency and strong inconsistency of PCA and sparse PCA. Section 3.6 concludes

Chapter 3 with some discussion of future work. Section 3.8 contains the proofs of the main

theorems.

3.2 Consistency of Simple Thresholding Sparse PCA

In Example 3.1.1, the first eigenvector of the sample covariance matrix û1 is strongly inconsis-

tent with u1 when α < 1, because it attempts to estimate too many parameters. Sparse data

analytic methods assume that many of these parameters are zero, which can allow greatly

improved estimation of the first PC direction u1. Here, this issue is explored in the con-

text of sparse PCA. The sample covariance matrix based estimator, û1, can be improved by

exploiting the fact that u1 has many zero elements.

We first study a natural simple thresholding (ST) method where entries with small abso-

lute values are replaced by zero. (Starting with the ST approach makes it easier to demon-

strate the key ideas that are also useful for establishing the consistency of a more sophisticated

sparse PCA method in Section 3.3.) In HDLSS contexts, it is challenging to apply threshold-

ing directly to û1, because the number of its entries grows rapidly as d→∞, which naturally

shrinks their magnitudes given that û1 has norm one. Thresholding is more conveniently

formulated in terms of the dual covariance matrix (Jung et al., 2012).

Denote the dual sample covariance matrix by S = 1
nX

TX and the first dual eigenvector

by ṽ1. The sample eigenvector û1 is connected with the dual eigenvector ṽ1 through the

following transformation,

ũ1 = (ũ1,1, . . . , ũd,1)T = Xṽ1, (3.3)

and the sample estimate is then given by û1 = ũ1/‖ũ1‖ (Jung et al., 2012).
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Given a sequence of threshold values ζ, define the thresholded entries as

ŭk,1 =


ũk,1 if |ũk,1| > ζ,

0 if |ũk,1| ≤ ζ,

for k = 1, . . . , d. (3.4)

Denote ŭ1 = (ŭ1,1, . . . , ŭd,1)T and normalize it to get the simple thresholding (ST) estimator

ûST
1 = ŭ1/‖ŭ1‖.

For the model in Example 3.1.1, given an eigenvalue of strength α ∈ (0, 1), (recall that λ1 =

dα and û1 is strongly inconsistent), below we explore conditions on the threshold sequence ζ

under which the ST estimator ûST
1 is in fact consistent with u1. First of all, the threshold ζ can

not be too large; otherwise all the entries will be zeroed out. It will be seen in Theorem 3.2.1

that a sufficient condition for this is ζ ≤ d
γ
2 , where γ ∈ (0, α). Secondly, the threshold ζ can

not be too small, or pure noise terms will be included. A parallel sufficient condition is shown

to be ζ ≥ logδ(d)λ
1
2
2 , where δ ∈ (1

2 ,∞).

Below we formally establish conditions on the eigenvalues of the population covariance

matrix Σd and the thresholding parameter ζ, which give consistency of ûST
1 to u1. The proofs

are provided in Section 3.8.

To fix ideas, we first consider the extreme sparsity case u1 = (1, 0, . . . , 0)T . Suppose that

λ1 ∼ dα, in the sense that 0 < c1 ≤ limd→∞
λ1
dα ≤ limd→∞

λ1
dα ≤ c2, for two constants c1 and

c2. WLOG, assume
∑d

j=2 λj ∼ d. As in Jung and Marron (2009), denote the measure of

sphericity for {λ2, · · · , λd} as

ε2 ≡
(
∑d

j=2 λj)
2

d
∑d

j=2 λ
2
j

,

which can be used as the basis of a hypothesis test for equality of eigenvalues, and assume

the ε2-condition: ε2 � 1
d , i.e

(dε2)−1 =

∑d
j=2 λ

2
j

(
∑d

j=2 λj)
2
→ 0, as d→∞. (3.5)

Now we need to impose the following conditions on the eigenvalues:
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• Assume that the ε2-condition (3.5) is satisfied, which guarantees that the dual matrix

Sd has a limit. Hence the first dual eigenvector v̂1 will have a limit and it will then help

build up the consistency of ûST
1 .

• In addition, we need the second eigenvalue λ2 to be an obvious distance away from the

first eigenvalue λ1. If not, it will be hard to distinguish the first and second empirical

eigenvectors as observed by Jung and Marron (2009), among others. In that case the

appropriate amount of thresholding on the first empirical eigenvector becomes unclear.

Therefore, we assume that λ2 ∼ dθ, where θ < α.

Theorem 3.2.1. Suppose that X1, . . . , Xn are random samples from a d-dimensional normal

distribution N(0,Σd) and the first population eigenvector u1 = (1, 0, . . . , 0)T . If the following

conditions are satisfied:

(a) λ1 ∼ dα, λ2 ∼ dθ, and
∑d

j=2 λj ∼ d, where θ ∈ [0, α) and α ∈ (0, 1],

(b) the ε2-condition (3.5) is satisfied,

(c) logδ(d) d
θ
2 ≤ ζ ≤ d

γ
2 , where δ ∈ (1

2 ,∞) and γ ∈ (θ, α),

then the simple thresholding estimator ûST
1 is consistent with u1.

In fact, u1 = (1, 0, . . . , 0)T in Theorem 3.2.1 is a very extreme case. The following theorem

considers the general case u1 = (u1,1, . . . , ud,1)T , where only bdβc elements of u1 are non-zero.

WLOG, we assume that the first bdβc entries are non-zero just for notational convenience.

Define

Zi ≡ (z1,i, . . . , zd,i)
T = (XT

i u1, . . . , X
T
i ud)

T , i = 1, . . . , n. (3.6)

We can show that Zi are iid N (0,diag{λ1, . . . , λd}) random vectors. Let

Wi ≡ (w1,i, . . . , wd,i)
T = (λ

− 1
2

1 z1,i, . . . , λ
− 1

2
d zd,i)

T , i = 1, . . . , n, (3.7)

and the Wi are iid N(0, Id) random vectors, where Id is the d-dimensional identity matrix.

The following conditions are also needed to ensure the consistency of ûST
1 :
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• The non-zero entries of the population eigenvector u1 need to be a certain distance away

from zero. In fact, if the non-zero entries of the first population eigenvector are close

to zero, the corresponding entries of the first empirical eigenvector would also be small

and look like pure noise entries. Thus, we assume

max1≤k≤bdβc|uk,1|−1 ∼ d
η
2 , where η ∈ [0, α).

• From (3.6), we have

Xi =

d∑
j=1

zj,iuj , i = 1, . . . , n.

Since z1,i has the largest variance λ1, then z1,iu1 contributes the most to the variance

of Xi, i = 1, . . . , n. Note that z1,iu1 is consistent with u1, and so z1,iu1 is the key to

making the simple thresholding method work. So we need to show that the remaining

parts

Hi ≡ (h1,i, . . . , hd,i)
T =

d∑
j=2

zj,iuj , i = 1, . . . , n (3.8)

have a negligible effect on the direction vector ûST
1 .

• Suppose that the Hi are iid N(0,∆d), where ∆d = (mkl)d×d. A sufficient condition to

make their effect negligible is the following mixing condition of Leadbetter et al. (1983):

|mkl| ≤ mkk
1
2mll

1
2 ρ|k−l|, 1 ≤ k 6= l ≤ bdβc, (3.9)

where ρt < 1 for all t > 1 and ρt log(t) −→ 0, as t → ∞. This mixing condition

can guarantee that max1≤i≤n|h1,i| has a quick convergence rate, as d → ∞. It enables

us to neglect the influence of Hi for sufficiently large d and make zj,iu1 the dominant

component, which then gives consistency to the first population eigenvector u1. Thus

the thresholding estimator ûST
1 becomes consistent.

55



We now state one of the main theorems:

Theorem 3.2.2. Assume that X1, . . . , Xn are random samples from a d-dimensional normal

distribution N(0,Σd). Define Zi, Wi and Hi as in (3.6), (3.7), and (3.8) for i = 1, . . . , n.

The first population eigenvector is u1 = (u1,1, . . . , ud,1)T with uk,1 6= 0, k = 1, . . . , bdβc, and

otherwise uk,1 = 0.

If the following conditions are satisfied:

(a) λ1 ∼ dα, λ2 ∼ dθ, and
∑d

j=2 λj ∼ d, where θ ∈ [0, α) and α ∈ (0, 1],

(b) the ε2-condition (3.5) is satisfied,

(c) max1≤k≤bdβc|uk,1|−1 ∼ d
η
2 , where η ∈ [0, α),

(d) Hi satisfies the mixing condition (3.9), i = 1, . . . , n ,

(e) logδ(d) d
θ
2 ≤ ζ ≤ d

γ
2 , where δ ∈ (1

2 ,∞) and γ ∈ (θ, α− η),

then the thresholding estimator ûST
1 is consistent with u1.

We offer a couple of remarks regarding Theorem 3.2.2. First of all, the theorem naturally

reduces to Theorem 3.2.1 if we let the sparsity index β = 0. More importantly, this theorem,

and the following ones in Sections 3.2 to 3.4, show that the concepts depicted in Figure 3.1

hold much more generally than just the models in Examples 3.1.1 and 3.1.2. In particular, in

the above theorem, setting θ = 0 and η = β would give the results plotted in Figure 3.1.

In addition, for different thresholding parameter ζ, the ST estimator ûST
1 is consistent

with different convergence rate, as stated in the following theorem. The notation ζ = o(dρ)

below means that ζd−ρ → 0 as d→∞.

Theorem 3.2.3. For the thresholding parameter ζ = o(d
α−η−κ

2 ), where κ ∈ [0, α − η − θ),

the corresponding thresholding estimator ûST
1 is consistent with u1, with a convergence rate of

d
κ
2 .
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3.3 Consistency of RSPCA

As noted in Section 3.1, several sparse PCA methods have been proposed in the literature.

Here we perform a detailed HDLSS asymptotic analysis of the sparse PCA procedure devel-

oped by Shen and Huang (2008). For simplicity, we refer to it as the regularized sparse PCA,

or RSPCA for short. All the detailed proofs are again provided in Section 3.8.

We start with briefly reviewing the methodological details of RSPCA. (For more details,

see Shen and Huang (2008).) Given a d-by-n data matrix X, consider the following penalized

sum-of-squares criterion:

‖X − uvT ‖2F + Pζ(u), subject to ‖v‖ = 1, (3.10)

where u is a d-vector, v is a unit n-vector, ‖ · ‖F denotes the Frobenius norm, and Pζ(u) =∑d
j=1 pζ (|uj,1|) is a penalty function with ζ ≥ 0 being the penalty parameter. The penalty

function can be any sparsity-inducing penalty. In particular, Shen and Huang (2008) consid-

ered the soft thresholding (or L1 or LASSO) penalty of Tibshirani (1996), the hard thresh-

olding penalty of Donoho and Johnstone (1994), and the smoothly clipped absolute deviation

(SCAD) penalty of Fan and Li (2001).

Without the penalty term or when ζ = 0, minimization of (3.10) can be obtained via singu-

lar value decomposition (SVD) (Eckart and Young, 1936), which results in the best rank-one

approximation of X as ũ1ṽ
T
1 , where ũ1 and ṽT1 minimize the criterion (3.10). The normal-

ized ũ1 turns out to be the first empirical PC loading vector. With the penalty term, Shen

and Huang (2008) define the sparse PC loading vector as û1 = ũ1/‖ũ1‖ where ũ1 is now

the minimizer of (3.10) with the penalty term included. The minimization now needs to be

performed iteratively. For a given ṽ1 in the criterion (3.10), we can get the minimizing vector

as ũ1 = hζ (Xṽ1), where hζ is a thresholding function that depends on the particular penalty

function used and the penalty (or thresholding) parameter ζ. See Shen and Huang (2008) for

more details. The thresholding is applied to the vector Xṽ1 componentwise.

Shen and Huang (2008) proposed the following iterative procedure for minimizing the

criterion (3.10):
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The RSPCA Algorithm

1. Initialize:

(a) Use SVD to obtain the best rank-one approximation ũ1ṽ
T
1 of the data matrix X,

where ṽ1 is a unit vector.

(b) Set ũold
1 = ũ1 and ṽold

1 = ṽ1.

2. Update:

(a) ũnew
1 = hζ

(
Xṽold

1

)
.

(b) ṽnew
1 =

XT ũnew1

‖XT ũnew1 ‖ .

3. Repeat Step 2 setting ũold
1 = ũnew

1 and ṽold
1 = ṽnew

1 until convergence.

4. Normalize the final ũnew
1 to get û1, the desired sparse loading vector.

There exists a nice connection between the ST method of Section 3.2 and RSPCA with

hard thresholding. The ST estimator ûST
1 is exactly the sparse loading vector û1 obtained from

the first iteration of the RSPCA iterative algorithm, when the hard thresholding penalty is

used. Such connection suggests that we can extend the proofs for the theorems regarding the

property of the ST estimator to establish consistency theorems for RSPCA below. Although

nicely connected, RSPCA actually performs better numerically over ST as we will illustrate

in Section 3.5.

Below we develop conditions under which the RSPCA estimator û1 is consistent with

the population eigenvector u1 when a proper thresholding parameter ζ is used. All three

of the soft thresholding, hard thresholding or SCAD penalties are considered. To prove the

consistency of RSPCA, we first establish in Theorem 3.3.1 the consistency of the first-step

RSPCA estimator obtained during the initial iteration, which can then be used to show in

Theorem 3.3.4 that the follow-up updated RSPCA estimator remains consistent. Convergence

rates are given in Theorems 3.3.2 and 3.3.5.
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The following Theorem 3.3.1 states conditions when the first-step RSPCA estimator û1

is consistent with u1 under a proper thresholding parameter ζ. Given the aforementioned

connection between ST and RSPCA, the consistency conditions are the same as those needed

for the consistency of ST. See the discussion of Theorem 3.2.2 for the implications of these

conditions.

Theorem 3.3.1. Under the assumptions and conditions of Theorem 3.2.2, the first-step

sparse loading vector û1 is consistent with u1.

Similar to the ST estimator (Theorem 3.2.3), for different parameters ζ, the RSPCA

estimator û1 is consistent with u1 with different convergence rates. The result is given in the

following Theorem 3.3.2.

Theorem 3.3.2. For the thresholding parameter ζ = o(d
α−η−κ

2 ), where κ ∈ [0, α− η− θ), the

sparse loading vector û1 in Theorem 3.3.1 is consistent with u1, with a convergence rate of

d
κ
2 .

To obtain an updated estimate for v1 we set ûold
1 to be the consistent first-step RSPCA

estimate, and obtain ṽnew
1 = XT ûold

1 /‖XT ûold
1 ‖. Theorem 3.3.3 below studies the asymptotic

properties of ṽnew
1 .

Theorem 3.3.3. Assume that ûold
1 is consistent with u1 with the convergence rate d

κ
2 , where

κ ∈ [1− α,∞). If the ε2-condition is satisfied, then

ṽnew
1

p−→ W̃1

‖W̃1‖
, as d→∞,

where W̃1 = (w1,1, · · ·, w1,n) follows a standard n-dimensional normal distribution N(0, In)

and the wj,i are defined in (3.7).

Given the above established asymptotic properties of ṽnew
1 , we can now study the asymp-

totic properties of the updated RSPCA estimator

ûnew
1 =

ũnew
1

‖ũnew
1 ‖

, with ũnew
1 = hζ(Xṽ

new
1 ), (3.11)
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as defined in the iterative RSPCA algorithm. The following Theorem 3.3.4 shows that, with

a proper choice of ζ, the updated RSPCA estimator ûnew
1 remains to be consistent with the

population eigenvector u1.

Theorem 3.3.4. Under the assumptions and conditions of Theorems 3.2.2 and 3.3.3, the

updated loading vector ûnew
1 (3.11) is consistent with u1.

The following Theorem 3.3.5 studies the convergence rate property of ûnew
1 . For different

ζ, ûnew
1 is consistent with u1 with different convergence rates.

Theorem 3.3.5. For the thresholding parameter ζ = o(d
α−η−κ

2 ), where κ ∈ [0, α− η− θ), the

updated sparse loading vector ûnew
1 in Theorem 3.3.4 is consistent with u1, with convergence

rate d
κ
2 .

Theorems 3.3.2 and 3.3.5 imply that, if α − η − θ > 1 − α, then by choosing the thresh-

olding parameter to be ζ = o(d
α−η−κ

2 ), we can make the updated RSPCA loading vector

ûnew
1 consistent with u1 at every updating step.

Interestingly, Theorems 3.2.3 and 3.3.5 suggest that the ST estimator and the RSPCA

estimator share the same rate of convergence. However, we note that the RSPCA estimator

has better finite sample performance than ST: RSPCA is more stable due to the multiple iter-

ations involved in the estimation, which reduce the estimation variability. The improvement

of RSPCA over ST is illustrated in Figure 3.4.

3.4 Strong Inconsistency and Marginal Inconsistency

We have shown that we can attain consistency using sparse PCA, when the spike index α is

greater than the sparsity index β. This motivates the question of consistency using sparse

PCA when α is smaller than or equal to β. To answer this question, we consider an oracle

estimator which “knows” the exact positions of the zero entries of the maximal eigenvector

u1. We will show that even this oracle estimator is strongly inconsistent when α is smaller

than β, and marginally inconsistent when α = β. Compared with this oracle sparse PCA,
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threshold methods can perform no better because they also need to estimate location of the

zero entries; hence threshold methods will also be inconsistent.

To make this precise, we study the procedure to generate the oracle estimator for general

single component models. Similar to Sections 3.2 and 3.3, assume that the first bdβc entries

of the maximal eigenvector u1 are non-zero and the rest are all zero: u1 = (u1,1, . . . , ud,1)T ,

where uk,1 6= 0, k = 1, . . . , bdβc; otherwise uk,1 = 0.

Let X∗i = (x1,i, . . . , xbdβc,i)
T ∼ N(0,Σ∗bdβc), where Σ∗bdβc is the covariance matrix of X∗i ,

i = 1, . . . , n. Then, the eigen-decomposition of Σ∗bdβc is

Σ∗bdβc = U∗bdβcΛ
∗
bdβc(U

∗
bdβc)

T ,

where Λ∗d is the diagonal matrix of eigenvalues λ∗1 ≥ λ∗2 ≥ . . . ≥ λ∗bdβc, and U∗bdβc is the matrix

of the corresponding eigenvectors so that U∗bdβc = [u∗1, . . . , u
∗
bdβc].

Since the last d − bdβc entries of the maximal eigenvector u1 equal zero, it follows

that the first eigenvector u∗1 of Σ∗bdβc is formed by the non-zero entries of u1, i.e. u∗1 =

(u1,1, . . . , ubdβc,1)T . So we have

u1 = ((u∗1)T ,

d−bdβc︷ ︸︸ ︷
0, . . . , 0)T . (3.12)

Consider the following data matrix X∗bdβc = [X∗1 , . . . , X
∗
n], and denote the sample covari-

ance matrix by Σ̂∗bdβc = n−1X∗bdβcX
T
bdβc. Then, the sample covariance matrix Σ̂∗bdβc can be

similarly decomposed as

Σ̂∗bdβc = Û∗bdβcΛ̂
∗
bdβc(Û

∗
bdβc)

T ,

where Λ̂∗bdβc is the diagonal matrix of the sample eigenvalues λ̂∗1 ≥ λ̂∗2 ≥ . . . ≥ λ̂∗bdβc, and Û∗bdβc

is the matrix of the corresponding sample eigenvectors so that Û∗bdβc = [û∗1, . . . , û
∗
d].
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Then, we define the oracle (OR) estimator as

ûOR
1 = ((û∗1)T ,

d−bdβc︷ ︸︸ ︷
0, . . . , 0)T . (3.13)

The following theorem formally states its inconsistency properties.

Theorem 3.4.1. Assume that X1, . . . , Xn are random samples from a d-dimensional normal

distribution N(0,Σd).

(a) If λ1 ∼ dα, λ2 ∼ dθ, λd ∼ 1 and
∑d

j=2 λj ∼ d, where α < β and θ ∈ [0, β2 ), then the

oracle estimator ûOR
1 in (3.13) is strongly inconsistent with u1.

(b) If λ1/d
α → c ∈ (0,∞) and λj → cλ, j = 2, · · · , d, where α = β, then the oracle

estimator ûOR
1 in (3.13) is marginally inconsistent with u1 in that

|< ûOR
1 , u1 >|⇒

(
1 +

cλ
cχ2

n

)− 1
2

, (3.14)

where ⇒ denotes convergence in distribution, and χ2
n denotes the chi-squared distribu-

tion with n degrees of freedom.

3.5 Simulations for Sparse PCA

We perform simulation studies to illustrate the performance of the ST method and the RSPCA

with the hard thresholding penalty. We fix the sample size at n = 25 and consider a range

of the dimension d = 500, 1000, 2500, 5000, 10000. The diverging d allows us to study

the convergence behavior of the methods. To generate the data matrix X, we first need

to construct the population covariance matrix for X that approximates the conditions of

Theorems 3.2.2 and 3.3.1 when the spike index α is greater than the sparsity index β.

For the population covariance matrix, we consider the motivating model in Example 3.1.1

for the first population eigenvector and the eigenvalues, where the first eigenvalue λ1 = dα

and the rest equal one, i.e. λj = 1, j ≥ 2. For the additional population eigenvectors uj ,
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2 ≤ j ≤ bdβc, let the last d− bdβc entries of these eigenvectors be zero. In particular, let the

eigenvectors uj , 2 ≤ j ≤ bdβc, be proportional to

u̇j = (

j−1︷ ︸︸ ︷
1, . . . , 1,−j + 1, 0, . . . , 0)T .

After normalizing u̇j , we get the j-th eigenvector uj = u̇j/‖u̇j‖. For j > bdβc, let the j-th

eigenvector have just one non-zero entry in the j-th position such that uj = (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)T .

Then the data matrix is generated as

X = d
α
2 u1z

T
1 +

d∑
j=2

ujz
T
j ,

where the zj follows the n-dimensional standard normal distribution.

We select twenty spike and sparsity pairs (α, β) with α = {0.2, 0.4, 0.6, 0.8} and β =

{0, 0.1, 0.3, 0.5, 0.7}, which are shown in Figure 3.1. We perform simulation for all twenty

pairs under each specific dimension d, a total of 100 simulation setups. For each triplet

(α, β, d), we generate 100 realizations of X. Results for four representative (α, β) pairs (in-

dicated by the squares in Figure 3.1) are reported below for the case of d = 10000, unless

indicated otherwise. Additional simulation results can be found in online supplement (Shen

et al., 2012b).

First of all, the plots in Figure 3.2 summarize the results for the pair (α, β) = (0.6, 0.1),

corresponding to one of the square dots in the white (consistent) triangular area of Figure 3.1.

For each replication of X and a range of the thresholding parameter ζ, we obtained the

ST estimator ûST
1 and the RSPCA estimator û1. Then we calculate the angle between the

estimates ûST
1 (or û1) and the true eigenvector u1 through (3.1). Plotting this angle as a

function of the thresholding parameter ζ gives the curve in Panel (A) of Figure 3.2. Since

ST and RSPCA perform very similarly in this case, only the RSPCA plots are shown in

Figure 3.2. The 100 simulation realizations generate the one-hundred curves in the panel. We

rescale the thresholding parameter as log10(ζ + 10−5), to help reveal clearly the tendency of
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the angle curves as the thresholding parameter increases.
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Figure 3.2: Performance summary of RSPCA

In these angle curves, the angles with ζ = 0 (essentially the left edge of each curve)

correspond to those obtained by the conventional PCA. Note that these angles are all over

40 degrees which confirms the results of Jung and Marron (2009) that when the spike index

α < 1, the conventional PCA is not consistent for u1. As ζ increases, the angle remains stable

for a while, then decreases to almost 0 degree, before eventually starting to increase to 90

degrees. The plot suggests that RSPCA does improve over PCA for a range of ζ. When ζ

is large enough, all the entries of the RSPCA estimator will be zeroed out, so the estimator

eventually becomes a d-dimensional zero vector, and the angle to u1 goes to 90 degree.

Theorem 3.3.4 suggests a consistent range of the thresholding parameter ζ, i.e. when ζ is

inside this range, RSPCA would give a consistent estimator for u1. The boundaries of this

consistent range are indicated by the dashed and solid vertical lines in the angle plot. The

range is very reasonable in the current case as the angles inside it are all small, and this offers

an empirical validation for our asymptotic results.

Zou et al. (2007) suggest the use of the Bayesian Information Criterion (BIC) (Schwarz,

1978) to select the number of the non-zero coefficients for a lasso regression. Lee et al. (2010a)

apply this idea to the sparse PCA context. Below we want to investigate how BIC performs

numerically.
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According to Lee et al. (2010a), for a fixed ṽ1, minimization of (3.10) with respect to ũ1

is equivalent to minimizing the following penalized regression criterion:

‖X − ũ1ṽ
T
1 ‖2F + Pζ(ũ1) = ‖Y − (Id

⊗
ṽ1)ũ1‖2 + Pζ(ũ1), (3.15)

where Y = (X1, . . . , Xd)T , with Xi being the i-th row of X, and
⊗

is the Kronecker product.

Following Lee et al. (2010a), we define the BIC for (3.15) as

BIC(ζ) =
‖Y − Ŷ ‖2

ndσ̂2
+

log(nd)

nd
d̂f(ζ), (3.16)

where σ̂2 is the ordinary-least squares estimate of the error variance, and d̂f(ζ) is the degree

of sparsity for the thresholding parameter ζ, i.e. the number of non-zero entries in ũ1. For

every step of the iterative procedure of RSPCA, we can use BIC (3.16) to select the thresh-

olding parameter and then obtain the corresponding sparse PC direction, until the algorithm

converges.

For every angle curve in the angle plots of Figure 3.2, we use a blue circle to indicate the

thresholding parameter ζ that is selected by BIC during the last iterative step of RSPCA,

and the corresponding angle. In the current α = 0.6, β = 0.1 context, BIC works well, and

all the BIC-selected ζ values are very close, so the 100 circles are essentially over plotted on

each other. BIC also works well for the other spike and sparsity pairs (α, β) we considered

where α > β, as shown in Shen et al. (2012b).

Another measure of the success of a sparse estimator is in terms of which entries are ze-

roed. Type I Error is the proportion of non-zero entries in u1 that are mistakenly estimated

as zero. Type II Error is the proportion of zero entries in u1 that are mistakenly estimated as

non-zero. Similar to the angle curves in Panel (A), there are one hundred Type I Error and

Type II Error curves in Panels (B) and (C) of Figure 3.2, respectively. The dashed and solid

vertical lines are the same as those in Panel (A). Note that for all the thresholding parameters

in the range indicated by the lines, the errors are very small, which is again consistent with

the asymptotic results of Theorem 3.3.4. The circles again are selected by BIC and they
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correspond to the same thresholding parameter, as in the angle plots. Thus, BIC works well

here. BIC also generates similarly very small errors for the other spike and sparsity pairs

(α, β) in Figure 3.1 that satisfy α > β.

In addition to Theorem 3.3.4’s consistency region, our Theorem 3.3.5 shows that û1 con-

verges at a different rate for different thresholding parameter ζ. We empirically demonstrate

this below in Figure 3.3 for the case of α = 0.8 and β = 0.5. We choose two threshold

values ζ1 and ζ2 just inside the RSPCA consistency region. Theorem 3.3.5 suggests that û1

corresponding to ζ1 would converge faster as the dimension d increases, which is exactly the

case in Figure 3.3. Similar phenomena can be observed for the other (α, β) scenarios as well

as for the ST estimator, as shown in our online supplement (Shen et al., 2012b).
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Figure 3.3: Demonstration of convergence for growing d

Next we compare the performance among PCA, ST and RSPCA. In almost all cases, ST

and RSPCA give better results than PCA and in some extreme cases, the three methods

have similar poor performance. Although in most cases both ST and RSPCA have similar

performance, however, there are some cases (for example when α = 0.4 and β = 0.3), where

RSPCA performs better than ST. For every simulation replication, we use BIC to select

the thresholding parameter and obtain the ST and RSPCA estimators. We then calculate

the angle, Type I Error and Type II Error for the three estimators, as well as the difference
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between ST and RSPCA (ST minus RSPCA). The 100 values of each measure are summarized

using box plots in Figure 3.4.

PCA ST RSPCA Diff

0

20

40

60

80

(A) Angle

PCA ST RSPCA Diff

0

0.2

0.4

0.6

0.8

1

(B) Type I Error

PCA ST RSPCA Diff
-0.001 

0.0005

0.002

(C) Type II Error

Figure 3.4: Comparison of PCA, ST and RSPCA

Panel (A) of Figure 3.4 shows the box plots of the angles between the maximal eigenvector

and the estimates obtained by PCA, ST and RSPCA, as well as the differences between the

angles corresponding to ST and RSPCA. Note that the PCA angles are large, compared with

ST and RSPCA, indicating the worse performance of PCA. The angle of ST seems larger

than RSPCA. For a deeper view of this comparison, the pairwise differences are studied in

the fourth box plot of the panel. The angle differences are almost always positive, with some

differences bigger than 50 degrees, which suggests that RSPCA has a better performance than

ST. Similar conclusions can be made from the box plots of the errors in Panels (B) and (C).

The box plot for PCA is not shown in Panel (C) because the corresponding Type II Error

almost always equals one, which is far outside the shown range of interest.

The observed improvement of RSPCA over ST deserves some discussion, in connection

with Theorems 3.2.3 and 3.3.5 that suggest the same rate of convergence for the two. This

simulation compares finite sample performance between the two methods, and we believe the

observed (and anticipated) improvement is due to the multiple iterations involved in RSPCA

that reduce the variability and make the estimation more stable. Hence such improvement

appears asymptotically in the constant coefficient, rather the rate.
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Finally, Theorems 3.2.2 and 3.3.4 consider the condition that the spike index α is greater

than the sparsity index β. When α is smaller than β, neither ST nor RSPCA is expected to

give consistent estimation for the first population eigenvector u1, as discussed in Section 3.4.

For the spike and sparsity pairs (α, β) such that α < β, the simulation results also confirm this

point. Here, we display the simulation plots for the spike and sparsity pair (α, β) = (0.2, 0.7)

in Figure 3.5 as a representative of such simulations. Since ST and RSPCA have very similar

performance here, we just show the simulation results for RSPCA. Similar to Figure 3.2, the

circles in Figure 3.5 correspond to the thresholding parameter selected by BIC. From the angle

plots, we can see that the angles, selected by BIC, are close to 90 degrees, which suggests the

failure of BIC in this case. In fact, all the angle curves are above 80 degrees. Thus, neither ST

nor RSPCA generates a reasonable sparse estimator. This is a common phenomenon when

the spike index α is smaller than the sparsity index β. It is consistent with the theoretical

investigation in Section 3.4.
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Figure 3.5: Performance summary of RSPCA

Furthermore, the corresponding Type I Error, generated by ST or RSPCA with BIC, is

close to one. This further confirms that BIC doesn’t work when the spike index α is smaller

than the sparsity index β. ST and RSPCA with ζ = 0 is just the conventional PCA, and

typically will not generate a sparse estimator. This entails that the Type I Error and Type

II Error, corresponding to ζ = 0, respectively equals zero and one. As the thresholding
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parameter increases, more and more entries are thresholded out; hence Type I Error increases

to one and Type II Error decreases to zero.

3.6 Discussion

In this chapter, we consider single-component Gaussian spike models under the HDLSS

asymptotic framework where the sample size n is fixed, the dimension d and the maximal

eigenvalue λ1 both go to infinity. As a comparison, Johnstone and Lu (2009) consider cases

that n and d go to infinity together with n/d converging to a constant, while fixing λ1. The

sizes of n and λ1 contribute positively to (i.e. encourage) the consistency of PCA and sparse

PCA, while the dimension d contributes negatively to (i.e. discourages) the consistency. It is

interesting in future work to explore the transition from the random matrix asymptotic do-

main of Johnstone and Lu (2009) to our HDLSS domain of asymptotics. It is also interesting

to consider a multiple component spike model as in Paul and Johnstone (2007b); Jung and

Marron (2009); Ma (2012). One technical challenge is to figure out what kind of sparsity as-

sumptions (in terms of strength and location) can be simultaneously imposed on the multiple

components to make the theoretical setup meaningful in practice. Simultaneous selection of

the multiple thresholding parameters involved would be challenging as well. Shen and Huang

(2008) suggested to apply RSPCA to extract the leading sparse PCs in a sequential manner,

to allow different amounts of sparsity for each PC, which has been shown to have practical

advantages.

We also hope to extend our theorems to more general distributions. However, this will be

challenging as sparse PCA methods may not work in some extreme non-Gaussian cases, as

illustrated in the following example.

Example 3.6.1. Let α ∈ (0, 1) and X = (x1, . . . , xd)
T , where {xj , j = 1, . . . , d} are indepen-

dent discrete random variables distributed as follows:

x1 =


d
α
2 , with probability 1

2 ,

−d
α
2 , with probability 1

2 ;
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xj =


d
α+1
4 , with probability d−

α+1
2 ,

−d
α+1
4 , with probability d−

α+1
2 , for j = 2 . . . , d

0, with probability 1− 2d−
α+1
2 .

Then X has mean 0 and variance-covariance matrix as

Σd = dαu1u
T
1 +

d∑
j=2

uju
T
j , with uk = (0, . . . , 0,

k︷︸︸︷
1 , 0, . . . , 0)T .

Suppose that we only have sample size n = 1, i.e. X1 = (x1,1, . . . , xd,1)T , then the first

empirical eigenvector

û1 = (û1,1, . . . , ûd,1)T =
1√∑d
j=1 x

2
j,1

(x1,1, . . . , xd,1)T .

Under this condition, we can prove that P (argmaxk|ûk,d| = 1) goes to zero as d → ∞. This

suggests that the absolute value of the first entry of û1 can not be greater than the others

with probability 1, so we can not always threshold out the right entries which would result

in the failure of sparse PCA. We perform simulation studies to numerically demonstrate this

point, which can be found in our online supplement (Shen et al., 2012b).

3.7 Future Work

There are several interesting problems that we will explore in the future. One is to extend

sparse PCA method to other PCs and to study their asymptotic properties. Another is to

study the performance of the sparse PCA methods in Johnstone and Lu (2009) and Amini

and Wainwright (2009).
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3.8 Proofs

3.8.1 Proofs of Theorem 3.2.2 and Theorem 3.2.3

In order to prove Theorem 3.2.2 and Theorem 3.2.3, we use the dependent extreme value result

from Lemma 6.1.1 and Theorem 6.1.3 of Leadbetter et al. (1983). An immediate consequence

of these is:

Proposition 3.8.1. Suppose that the standard normal sequence {ξi, i = 1, . . . , bdβc} satisfies

the mixing condition (3.9). Let the positive constants {ci} be such that
∑bdβc

i=1 (1 − Φ(ci)) is

bounded and such that Cbdβc = min1≤i≤bdβc ci ≥ c(log(bdβc))
1
2 for some c > 0.

Then

P

bdβc⋂
i=1

{ξi ≤ ci}

− bdβc∏
i=1

Φ(ci) −→ 0, as d→∞ (3.17)

holds, where Φ is the standard normal distribution function. If further

bdβc∑
i=1

(1− Φ(ci)) −→ , as d→∞, (3.18)

holds for some  ≥ 0, then

P

bdβc⋂
i=1

{ξi ≤ ci}

 −→ e−, as d→∞. (3.19)

Proposition 3.8.1 is used to control the right side of (3.8) through the following Lemma.

Lemma 3.8.1. Suppose that ξi ∼ N(0, δi,i) satisfies the mixing condition (3.9), where δij is

the covariance of the normal sequence {ξi}, i, j = 1, · · · , bdβc. If Cbdβc ≥ (log(bdβc))δmax1≤i≤bdβcδ
1
2
ii ,

where δ ∈ (1
2 ,∞), then

C−1
bdβcmax1≤i≤bdβc|ξi|

p−→ 0, as d→∞. (3.20)
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Proof. Note that for every τ > 0

P
[
C−1
bdβcmax1≤i≤bdβc|ξi| > τ

]
= P

[
max1≤i≤bdβc|ξi| > Cbdβcτ

]
(3.21)

≤ P
[{

max1≤i≤bdβcξi > Cbdβcτ
}⋃{

max1≤i≤bdβc(−ξi) > Cbdβcτ
}]

≤ P
[
max1≤i≤bdβcξi > Cbdβcτ

]
+ P

[
max1≤i≤bdβc(−ξi) > Cbdβcτ

]
= 2P

[
max1≤i≤bdβcξi > Cbdβcτ

]
≤ 2

1− P

bdβc⋂
i=1

{
ξiδ
− 1

2
ii ≤ c(log(bdβc))δ

} ,

where c is a positive constant. Since

bdβc∑
i=1

(
1− Φ

(
c(log(bdβc))δ

))
−→ 0, as d→∞,

it follows from Proposition 3.8.1 that

P

bdβc⋂
i=1

{
ξiδ
− 1

2
ii ≤ c(log(bdβc))δ

} −→ 1, as d→∞. (3.22)

From (3.21) and (3.22), we can get

C−1
bdβcmax1≤i≤bdβc|ξi|

p−→ 0, as d→∞.

Now we will begin the proof of Theorem 3.2.2 and Theorem 3.2.3. Denote X̃j = (xj,1, · ·

·, xj,n)T , Z̃j = (zj,1, · · ·, zj,n)T , W̃j = (wj,1, · · ·, wj,n)T and H̃j = (hj,1, · · ·, hj,n), j = 1, · · ·, d.

Note that

| < ûTh1 , u1 > | =
|
∑[dβ ]

j=1 µ̆j,1µj,1|√∑d
j=1(µ̆j,1)2

=
λ
− 1

2
1 |

∑[dβ ]
j=1 µ̆j,1µj,1|

λ
− 1

2
1

√∑d
j=1(µ̆j,1)2

. (3.23)
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Since X̃j = µj,1Z̃1 + H̃j , j = 1, · · ·, d, it follows that ṽT1 X̃j = µj,1ṽ
T
1 Z̃1 + ṽT1 H̃j , which yields

µ̆j,1 = µj,1ṽ
T
1 Z̃11{|ṽT1 X̃j |>λ}

+ ṽT1 H̃j1{|ṽT1 X̃j |>λ}

= µj,1ṽ
T
1 Z̃1 + µj,1ṽ

T
1 Z̃11{|ṽT1 X̃j |≤λ}

+ ṽT1 H̃j1{|ṽT1 X̃j |>λ}
,

and

[dβ ]∑
j=1

µ̆j,1µj,1 =

[dβ ]∑
j=1

µ2
j,1ṽ

T
1 Z̃11{|ṽT1 X̃j |>λ}

+

[dβ ]∑
j=1

µj,1ṽ
T
1 H̃j1{|ṽT1 X̃j |>λ}

= ṽT1 Z̃1 +

[dβ ]∑
j=1

µ2
j,1ṽ

T
1 Z̃11{|ṽT1 X̃j |≤λ}

+

[dβ ]∑
j=1

µj,1ṽ
T
1 H̃j1{|ṽT1 X̃j |>λ}

.

It follows that

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆j,1µj,1| ≤ λ
− 1

2
1

[dβ ]∑
j=1

µ2
j,1|ṽT1 Z̃1|+ λ

− 1
2

1

[dβ ]∑
j=1

|µj,1ṽT1 H̃j | (3.24)

= |ṽT1 W̃1|+
[dβ ]∑
j=1

n∑
i=1

λ
− 1

2
1 |µj,1hj,i|,

and

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆j,1µj,1| (3.25)

≥ λ−
1
2

1 |ṽ
T
1 Z̃1| − λ

− 1
2

1

[dβ ]∑
j=1

µ2
j,1|ṽT1 Z̃1|1{|ṽT1 X̃j |≤λ} − λ

− 1
2

1

[dβ ]∑
j=1

|µj,1ṽT1 H̃j |

≥ |ṽT1 W̃1| − |ṽT1 W̃1|
[dβ ]∑
j=1

µ2
j,11{|ṽT1 X̃j |≤λ}

−
[dβ ]∑
j=1

n∑
i=1

λ
− 1

2
1 |µj,1hj,i|,
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and

λ
− 1

2
1

√√√√ d∑
j=1

µ̆2
j,1 ≤ λ

− 1
2

1

√√√√√ [dβ ]∑
j=1

µ̆2
j,1 + λ

− 1
2

1

√√√√√ d∑
j=[dβ ]+1

µ̆2
j,1 (3.26)

≤ λ−
1
2

1

√√√√√ [dβ ]∑
j=1

(
µj,1ṽT1 Z̃1

)2
+ λ

− 1
2

1

√√√√√ [dβ ]∑
j=1

(ṽT1 H̃j)2 + λ
− 1

2
1

d∑
j=[dβ ]+1

|µ̆j,1|

= |ṽT1 W̃1|+

√√√√√ [dβ ]∑
j=1

λ−1
1 (

n∑
i=1

|hj,i|)2 +

+
d∑

j=[dβ ]+1

n∑
i=1

λ
− 1

2
1 |hj,i|1{∑n

i=1 |hj,i|>λ},

and

λ
− 1

2
1

√√√√ d∑
j=1

µ̆2
j,1 ≥ λ

− 1
2

1

√√√√√ [dβ ]∑
j=1

µ̆2
j,1 (3.27)

≥ |ṽT1 W̃1| − |ṽT1 W̃1|

√√√√√ [dβ ]∑
j=1

µ2
j,11{|ṽT1 X̃j |≤λ}

−

√√√√√ [dβ ]∑
j=1

λ−1
1 (

n∑
i=1

|hj,i|)2.

Next we will show that

[dβ ]∑
j=1

n∑
i=1

λ
− 1

2
1 |µj,1hj,i| = op(d

− ς
2 ),where ς ∈ [0, α− η − θ). (3.28)

Since Hi = (h1,i, · · ·, hd,i)T =
∑d

k=2 zk,iµk, i = 1, · · ·, n, it follows that hj,i =
∑d

k=2 µj,kzk,i =∑d
k=2 µj,kλ

1
2
kwk,i ∼ N(0, σ2

j,i), where σ2
j,i ≤ λ2, j = 1, · · ·, [dβ], i = 1, · · ·, n. Thus, for fix τ

P

 [dβ ]∑
j=1

n∑
i=1

d
ς
2λ
− 1

2
1 |µj,1hj,i| ≥ τ

 ≤ P
[dβ ]⋃
j=1

{
n∑
i=1

|µj,1hj,i| ≥ d−
ς
2λ

1
2
1 τµ

2
j,1

}
≤

[dβ ]∑
j=1

n∑
i=1

P

[
|hj,i| ≥ n−1d−

ς
2λ

1
2
1 τ |µj,1|

]
≤

[dβ ]∑
j=1

n∑
i=1

P
[
|hj,iσ−1

j,i | ≥ c
∗d

α−η−θ−ς
2

]
= 2n[dβ]

∫ +∞

cd(α−η−θ−ς)/2

1√
2π

exp

{
−x

2

2

}
dx −→ 0, as d→∞,
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where c is constant. Similar, we can show that

[dβ ]∑
j=1

λ−1
1 (

n∑
i=1

|hj,i|)2 = op(d
ς
2 ), (3.29)

and

d∑
j=[dβ ]+1

n∑
i=1

λ
− 1

2
1 |hj,i|1{∑n

i=1 |hj,i|>λ} = op(d
− ς

2 ), (3.30)

where ς ∈ [0, α− η − θ). Finally, we want to show that

[dβ ]∑
j=1

µ2
j,11{|ṽT1 X̃j |≤λ}

= op(d
− ς
′

2 ), (3.31)

where ς
′

satisfies that d
ς
′
+η−α
2 λ = o(1). Since we can always find a subsequence of { λ1∑d

j=2 λj
}

and make it convergent to a nonnegative constant, for simplicity, we just assume that limd→∞
λ1∑d
j=2 λj

=

C. If C = 0, then the spike index α < 1 and Jung and Marron (2009) shows that

c−1
d Sd

p−→ In, as d→∞,

where cd = n−1
∑d

j=1 λj . Since the eigenvector ṽT1 of c−1
d Sd can be chosen so that they are

continuous from Acker (1974), it follows that ṽT1 ⇒ v1, as d → ∞, where ⇒ denotes the

convergence in distribution and v1 is the first eigenvector of n-dimensional identity matrix. If

C = 0, then the spike index α = 1 and Jung et al. (2012) shows that ṽT1 ⇒ W̃1

‖W̃1‖
, as d→∞.

Therefore, we have

| ṽT1 W̃1 |⇒| vT1 W̃1 | or ‖ W̃1 ‖, as d→∞. (3.32)
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Since d
ς
′
+η−α
2 λ = o(1), d

ς
′
+η−α
2

∑n
i=1 max1≤j≤[dβ ]|hj,i| = op(1), and

[dβ ]∑
j=1

d
ς
′

2 µ2
j,11{|ṽT1 X̃j |≤λ} ≤

[dβ ]∑
j=1

d
ς
′

2 µ2
j,11{|µj,1ṽT1 Z̃1|≤|ṽT1 H̃j |+λ}

≤
[dβ ]∑
j=1

d
ς
′

2 µ2
j,11{

|ṽT1 W̃1|≤λ
− 1

2
1 max

1≤j≤[dβ ]
|µj,1|−1

(∑n
i=1 max

1≤j≤[dβ ]
|hj,i|+λ

)}

≤
cd

ς
′
+η−α
2

∑n
i=1 max1≤j≤[dβ ]|hj,i|+ cd

ς
′
+η−α
2 λ

|ṽT1 W̃1|
,

where c is a constant, it follows that (3.31) is established. Then we have

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆j,1µj,1| = |ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 ), (3.33)

from (3.24), (3.25), (3.28), and (3.31) , and

λ
− 1

2
1

√√√√ d∑
j=1

µ̆2
j,1 = |ṽT1 W̃1|+ op(d

−min{ς,ς′ }
2 ), (3.34)

from (3.26), (3.27), (3.29), (3.30) and (3.31). Furthermore, we will have

| < ûTh1 , u1 > | =
|ṽT1 W̃1|+ op(d

−min{ς,ς′ }
2 )

|ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 )

= 1 + op(d
−min{ς,ς′ }

2 ),

from (3.23), (3.32), (3.33), and (3.34). It means that ûTh1 is consistent with u1 with con-

vergence rate d−
min{ς,ς′ }

2 . Note that d
ς
′
+η−α
2 λ = o(1). If λ = o(d

α−η−ς
2 ), then we can take

ς
′

= ς. Then ûTh1 is consistent with u1 with convergence rate d
ς
2 . This finishes the proof of

Theorem 3.2.2 and Theorem 3.2.3.

3.8.2 Proofs of Theorem 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5

The proof of Theorem 3.3.1 and 3.3.2 are similar as they appears in Section 3.8.2. The proof

of Theorem 3.3.3 is shown in Section 3.8.2. Theorem 3.3.4 and 3.3.5 are again similar with
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the proof shown in Section 3.8.2.

Proofs of Theorem 3.3.1 and Theorem 3.3.2

Assume that û1 =
ŭp1
‖ŭp1‖

and the entries of ŭp1 have the formula µ̆pj,1 = µ̃j,11{|µ̃j,1|>λ′} +

ςj1{|µ̃j,1|>λ}, where µ̃j,1 is defined in (3.3), λ
′

= λ or aλ and | ςj |< cλ (c is a constant).

Denote µ̆j,1 = µ̃j,11{|µ̃j,1|>λ′}, then µ̆pj,1 = µ̆j,1 + ςj1{|µ̃j,1|>λ}. Note that

| < µ̂1, µ1 > | =
|
∑[dβ ]

j=1 µ̆
p
j,1µj,1|√∑d

j=1(µ̆pj,1)2
=
λ
− 1

2
1 |

∑[dβ ]
j=1 µ̆

p
j,1µj,1|

λ
− 1

2
1

√∑d
j=1(µ̆pj,1)2

. (3.35)

In addition, we have

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆j,1µj,1| − cλλ
− 1

2
1

[dβ ]∑
j=1

| µj,1 |≤ λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆pj,1µj,1| ≤ (3.36)

≤ λ−
1
2

1 |
[dβ ]∑
j=1

µ̆j,1µj,1|+ cλλ
− 1

2
1

[dβ ]∑
j=1

| µj,1 |,

and

λ
− 1

2
1

√√√√ d∑
j=1

(µ̆j,1)2 − cλλ−
1
2

1

√√√√ d∑
j=1

1{|µ̃j,1|>λ} ≤ λ
− 1

2
1

√√√√ d∑
j=1

(µ̆pj,1)2 ≤ (3.37)

≤ λ−
1
2

1

√√√√ d∑
j=1

(µ̆j,1)2 + cλλ
− 1

2
1

√√√√ d∑
j=1

1{|µ̃j,1|>λ}.

Since λ
′

satisfies the condition (e) in Theorem 3.2.2, it follows that µ̆j,1 has the same property

as µ̆j,1 in the proof of Theorem 3.2.2. Recall (3.33) and (3.34) from the proof of Theorem 3.2.2

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆j,1µj,1| = |ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 ), (3.38)
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and

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆j,1µj,1| = |ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 ), (3.39)

Where ς ∈ [0, α−η− θ) and ς
′

satisfies d
ς
′
+η−α
2 λ = o(1). Since (recall β ≤ η) d

ς
′

2 λλ
− 1

2
1

∑[dβ ]
j=1 |

µj,1 |≤ d
ς
′

2 λλ
− 1

2
1 d

β
2 ≤ cd

ς
′
+η−α
2 λ = o(1), it follows that

λλ
− 1

2
1

[dβ ]∑
j=1

| µj,1 |= o(d−
ς
′

2 ). (3.40)

Thus, (3.36), (3.38) and (3.40) together illustrate that

λ
− 1

2
1 |

[dβ ]∑
j=1

µ̆pj,1µj,1| = |ṽ
T
1 W̃1|+ op(d

−min{ς,ς′ }
2 ) (3.41)

Now, we will show that

λλ
− 1

2
1

√√√√ d∑
j=1

1{|µ̃j,1|>λ} = op(d
− ς
′

2 ). (3.42)

For fixed τ ,

P

dς′λ2λ−1
1

d∑
j=[dβ ]+1

1{|µ̃j,1|>λ} ≥ τ


≤

d∑
j=[dβ ]+1

P
[
1{|µ̃j,1|>λ} ≥ d

−ς′λ−2λ1d
−1τ

]

≤
d∑

j=[dβ ]+1

n∑
i=1

P
[
| hj,iσ−1

j,i |> cdθλ
]

≤ n(d− [dβ])

∫ ∞
cdθλ

1√
2π

exp

{
−x

2

2

}
dx −→ 0, as d→∞,
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which yields

√√√√√λ2λ−1
1

d∑
j=[dβ ]+1

1{|µ̃j,1|>λ} = op(d
− ς
′

2 ). (3.43)

In addition, since λλ
− 1

2
1 d

β
2 = o(d−

ς
′

2 ) and (3.43), it follows that

λλ
− 1

2
1

√√√√ d∑
j=1

1{|µ̃j,1|>λ}

≤ λλ−
1
2

1

√√√√√ [dβ ]∑
j=1

1{|µ̃j,1|>λ} + λλ
− 1

2
1

√√√√√ d∑
j=[dβ ]+1

1{|µ̃j,1|>λ}

≤ λλ−
1
2

1 d
β
2 +

√√√√√λ2λ−1
1

d∑
j=[dβ ]+1

1{|µ̃j,1|>λ},

we have (3.42). Then, we can get

λ
− 1

2
1

√√√√ d∑
j=1

(µ̆pj,1)2 = |ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 ). (3.44)

from (3.37),(3.39) and (3.42). Furthermore, we have

| < û1, u1 > | =
|ṽT1 W̃1|+ op(d

−min{ς,ς′ }
2 )

|ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 )

= 1 + op(d
−min{ς,ς′ }

2 ),

from (3.35),(3.41) and (3.44). This means that ŭp1 is consistent with u1 with convergence rate

d−
min{ς,ς′ }

2 . Note that d
ς
′
+η−α
2 λ = o(1). If λ = o(d

α−η−ς
2 ), then we can take ς

′
= ς. Therefore,

ŭp1 is consistent with u1 with convergence rate d
ς
2 .

• Let ŭsoft1 = hsoftλ (X(d)ṽ1), then the entries ŭsoftj,1 of ŭsoft1 has the formula ŭsoftj,1 =

µ̃j,11{|µ̃j,1|>λ} − sign(µ̃j,1)λ1{|µ̃j,1|>λ}.

• Let ŭhard1 = hhardλ (X(d)ṽ1), then the entries ŭhardj,1 of ŭhard1 has the formula ŭhardj,1 =

µ̃j,11{|µ̃j,1|>λ}.
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• Let ŭSCAD1 = hSCADλ (X(d)ṽ1), then the entries ŭSCADj,1 of ŭSCAD has the formula

ŭSCADj,1 = µ̃j,11{|µ̃j,1|>aλ} + ςj1{|µ̃j,1|>λ}, where | ςj |< aλ.

Since ŭsoft1 ,ŭhard1 and ŭSCAD1 are just special cases of ŭp1, it follows that û1 (the normalized

vector of ŭsoft1 , ŭhard1 or ŭSCAD1 ) is consistent with u1 with convergence rate d
ς
2 .

Proof of Theorem 3.3.3

note that

ṽnew1 =
λ
− 1

2
1 XT

(d)(û
old
1 − u1) + λ

− 1
2

1 XT
(d)u1

‖ λ−
1
2

1 XT
(d)(û

old
1 − u1) + λ

− 1
2

1 XT
(d)u1 ‖

=
λ
− 1

2
1 XT

(d)(û
old
1 − u1) + W̃1

‖ λ−
1
2

1 XT
(d)(û

old
1 − u1) + W̃1 ‖

.

Jung and Marron (2009) shows that λ̂1
d

p−→ c, as d → ∞, where c is a constant. Since

‖ ûold1 −u1 ‖= op(d
ς
2 ), where ς ≥ 1−α, it follows that λ

− 1
2

1 λ̂
1
2
1 ‖ ûold1 −u1 ‖= op(1). Therefore,

we have

‖ λ−
1
2

1 XT
(d)(û

old
1 − u1) ‖≤ nλ−

1
2

1 λ̂
1
2
1 ‖ û

old
1 − u1 ‖= op(1),

which yields

λ
− 1

2
1 XT

(d)(û
old
1 − u1) + W̃1 = W̃1 + op(1),

and

‖ λ−
1
2

1 XT
(d)(û

old
1 − u1) + W̃1 ‖ ≤ ‖ λ−

1
2

1 XT
(d)(û

old
1 − u1) ‖ + ‖ W̃1 ‖

= ‖ W̃1 ‖ +op(1).
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Thus,

ṽnew1 =
λ
− 1

2
1 XT

(d)(û
old
1 − u1) + W̃1

‖ λ−
1
2

1 XT
(d)(û

old
1 − u1) + W̃1 ‖

=
W̃1 + op(1)

‖ W̃1 ‖ +op(1)

p−→ W̃1

‖ W̃1 ‖
, as d→∞.

Proof of Theorem 3.3.4 and Theorem 3.3.5

Note that ṽnew1
p−→ W̃1

‖W̃1‖
, as d→∞ from Theorem 3.3.3, then we just need to replace û1 with

ũnew1 and ṽ1 with ṽnew1 in the proofs of Theorem 3.3.4 and Theorem 3.3.5 to get Theorem 3.3.4

and Theorem 3.3.5.

3.8.3 Proof of Theorem 3.4.1

Since X∗i = (Ibdβc, (0)bdβc×(d−bdβc))Xi, where Ibdβc denotes the bdβc-dimensional identity ma-

trix and (0)bdβc×(d−bdβc) is the bdβc-by-(d− bdβc) zero matrix, j = 1, . . . , n, it follows that

Σ∗bdβc = (Ibdβc, (0)bdβc×(d−bdβc))Σd(Ibdβc, (0)bdβc×(d−bdβc))
T ,

which yields

λ∗1 = λ1, λ2 ≥ λ∗j ≥ λd, j = 2, . . . , bdβc. (3.45)

Therefore,

∑bdβc
j=2 λ

∗
j

2

(
∑bdβc

j=2 λ
∗
j )

2
≤ bdβcλ2

2

(bdβc)2λ2
d

=
O(dβ)O(d2θ)

O(d2β)
= o(1), (3.46)

and

λ∗1∑bdβc
j=2 λ

∗
j

≤ λ1

bdβcλd
=
O(dα)

O(dβ)
= o(1). (3.47)
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If we rescale λ∗j , j = 1, . . . , bdβc, (3.46) satisfies the ε2 assumption of Jung and Marron (2009)

and (3.47) satisfies the assumption λ1 = O(dα) and
∑d

j=2 λj = O(d), where α < 1. For this

case, Jung and Marron (2009) have shown that û∗1 is strongly inconsistent with u∗1. This

means that the oracle estimator ûOR
1 is strongly inconsistent with u1.

For the boundary case of α = β, WLOG, we assume that λ1 = cdα and λj = cλ, j =

2, · · · , d. Then (3.45) becomes

λ∗1 = λ1 = cdα, λ∗j = cλ, j = 2, . . . , bdβc.

Note that the dimension of X∗i is bdβc = bdαc. If we treat the effective dimension bdαc as d

in Jung et al. (2012), it then follows that

|< û∗1, u
∗
1 >|⇒

(
1 +

cλ
cχ2

n

)− 1
2

.

The above, together with (3.12) and (3.13), leads to the inconsistency of ûOR
1 (3.14).
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Chapter 4

Analysis of Tree Data

4.1 Introduction

The tree structured data objects, i.e. the brain artery trees (Aylward and Bullitt, 2002) in Sec-

tion 4.2, are important in medical image analysis. The application of the statistical analysis,

i.e. PCA, to the tree data can be challenging because the tree space is a non-Euclidean space,

as seen in Wang and Marron (2007). We present an approach, the Dyck path representation,

to build a bridge between tree space (a non-Euclidean space) and curve space (standard Eu-

clidean space). Then, we can exploit the power of functional data analysis to study statistical

properties of tree data sets. Besides the Dyck path representation, we also develop a novel

branch length representation to connect tree space and curve space. Furthermore, we present a

pruned tree idea to statistically analyze properties of tree structured data at a range of scales.

Projection is a fundamental tool in classical Functional Data Analysis (FDA), see Ramsay

and Silverman (2002) and Ramsay and Silverman (2005). We project on PC directions (Jol-

liffe, 2002) to explore population variation, and further transform the variation in terms of

trees, as in Section 4.5.1. In addition, partial least square (PLS) (Wold et al., 1984), and

canonical correlation analysis (CCA) directions (Härdle and Simar, 2007), are used here to

study population relationship with age. we also use distance weighted discrimination (DWD)

direction (Marron et al., 2007; Qiao et al., 2010) , and Direction-Projection-Permutation

(DiProPerm) test (Wichers et al., 2007), to explore population relationship with gender.



4.1.1 Roadmap

The organization of the rest of Chapter 4 is as follows. Section 4.2 described the tree data

that we analyzed in this chapter. Section 4.2.1 presented several correspondence methods, i.e

the descendant correspondence, to embed the brain artery trees into 2 dimension, and Section

4.2.2 discussed the equivalence relation and equivalence class idea to summarize the tree data

to help the statistical analysis. Section 4.3 showed four tree representation methods, such as

the combinational approach in Section 4.3.1, the phylogenetic trees in Section 4.3.2, the Dyck

path representation in Section 4.3.3, and the branch length representation in Section 4.3.4.

Section 4.4 discussed some existed analytic methods, such as the combinational approach in

Section 4.4.1 and the phylogenetic methods in Section 4.4.2, and their analysis results. Sec-

tion 4.5 showed the Dyck path analysis and details were presented in Section 4.5.1. Section 4.5

presented the pruned tree idea and showed the Dyck path and branch length analysis under

the pruned trees structure in Section 4.6.1 and 4.6.2 respectively. The Section 4.7 gave out

the conclusion and discussed some analysis results. The section 4.8 presented the some future

work that we plan to finish in the future.

4.2 Data Description

A driving real data example is a set of blood artery trees. This data set is from a study of

Magnetic Resonance Angiography (MRA) brain images (Dumoulin and Hart, 1986), of a set

of 98 human subjects. Covariates of interest include both gender and age (from 19 to 79).

The raw data can be found at Handle (2008). One slice of a 3 dimensional MRA image is

shown in Panel (A) of Figure 4.1 and it highlights regions of blood flow as white. These white

regions are aggregated in 3 dimensions by a tube tracking algorithm and then combined into

brain artery trees, as in Aylward and Bullitt (2002). The result is shown in Panel (B) of

Figure 4.1. These trees are colored according to the region of the brain (using color indicated

in the caption in Figure 4.1) and are studied separately. The information stored in these

color trees is very rich. Every color tree contains a set of branch segments which further

contain a sequence of spheres, as calculated in Aylward and Bullitt (2002). Each sphere has
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Panel (A) Panel (B)

Figure 4.1: A single slice MRA image for one person
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Figure 4.2: The binary tree from the back (gold) tree

a center with x, y, z coordinates, indicating the location of the center of the brain artery and

its local radius , indicating the arterial thickness at that point. These spheres are shown in

the visual rendering in Panel (B) of Figure 4.1.
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4.2.1 Correspondence

In order to represent the topology of each tree, e.g. the back (gold) tree in Figure 4.1,

several methods have been proposed in Aydin et al. (2009) to represent the 3 dimensional

trees, in Figure 4.1, as simple binary trees embedded in 2 dimensions. This embedding is

called correspondence, following standard terminology from image and shape analysis, see

e.g. Dryden and Mardia (1998). The descendant correspondence method in Aydin et al.

(2009) is used here to represent 3 dimensional trees, e.g. the back tree in Figure 4.1, as

simple binary trees, e.g. as shown in Figure 4.2. Most tree branches are vessel segments

between two neighboring splitting points of blood vessels. A leaf branch is the vessel segment

between the end point of a blood vessel and its nearest splitting point. The arc length of

each vessel segment, following the vessel curve, is defined to be the branch length. Every

non-leaf branch of the trees in Figure 4.1 connects its children branches to its parent. The

descendant correspondence method of 2 dimensional embedding puts the branch that has

more descendant branches to the left, generating the binary tree in Figure 4.2. The blue line

segments in Figure 4.2 represent tree branches and their length is the corresponding branch

length. The root branch at the bottom of Figure 4.2 corresponds to the initial fat gold tree

trunk shown near the bottom of Figure 4.1. We will focus on binary trees of this type and

try to explore population structure of 98 such objects. An alternative representation is the

thickness correspondence method of Aydin et al. (2009) that can also be used to represent

a 3 dimensional tree as a simple binary tree. It might be interesting to study thickness

correspondence in the future.

4.2.2 An Equivalence Relation

A more formal approach to correspondence in populations of tree structured objects is based

on the mathematical notion of equivalence relation, see e.g. Wikipedia (2011b). Equivalence

relations partition populations into equivalence classes, see e.g. Wikipedia (2011a). A very

useful equivalence relation is defined through flipping. A flip can occur at each tree vertex,

and is a switch of its children branches, as shown in Figure 4.3. Tree 1 is equivalent to Tree
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Tree 4Tree 3

flip this vertex  

Tree 1
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flip
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Figure 4.3: Equivalence from the flipping indicated by the colored arrows

2 and Tree 3 by flipping at the vertex indicated by the red and yellow arrows respectively, as

shown in Figure 4.3. Tree 2 is equivalent to Tree 4 by flipping at the vertex indicated by blue

arrow. These four binary trees are members of the same equivalence class. Flipping defines

an equivalence relation and thus defines equivalence classes. After identifying the equivalence

classes, we select the most representative tree for each class. For example, the descendent

correspondence selects the tree, with more left branches than right, as the representative

tree (e.g. Tree 1 in Figure 4.3). This makes every branch of the binary tree (e.g. Tree 1 )

have more left descendant branches than right. We define such a property as the descendant

correspondence property. A possible approach to get the most representative model is through

the concept of invariant as discussed in chapter 4 of Dryden and Mardia (1998).
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4.3 Tree Representation

Statistical analysis, including PCA, has been very successful in curve data analysis, as seen

in Ramsay and Silverman (2002) and Ramsay and Silverman (2005). An important reason

behind this success is that curve space is a standard Euclidean space. However, tree space is

strongly non-Euclidean space, as seen in Wang (2005) and the fundamental tools of functional

data analysis, such as PCA, linear subspace, projection, are no longer available. Since PCA

has been a broadly useful tool to explore variation in data, including curve data, it is very

useful to propose analogues of PCA in tree space to explore the variation of tree populations.

Since these fundamental tools for functional data analysis require data mathematical repre-

sentation of the data, we first consider how to represent tree data. Several tree representation

methods will be introduced in the following.

4.3.1 Combinatorics Approach

Wang and Marron (2007) developed a novel mathematical framework for the statistical anal-

ysis of tree objects and generalized PCA techniques (based on optimization problems) to tree

objects to analyze the variation of the population tree structure. However, Wang and Marron

(2007) solved the resulting optimization problems only for small toy examples and did not

develop a general solution. Aydin et al. (2009) further analyzed these optimization problems

and gave a general solution, based of the PCA like notion of tree-lines. Then, Aydin et al.

(2009) applied these PCs to analyze the variation of a set of tree objects.

4.3.2 Phylogenetic Trees

Another way of representing trees is the phylogenetic tree approach, see Holmes (1999) for a

good introduction. Phylogenetic trees aim to describe family relationships. Closeness in the

phylogenetic tree corresponds to fairly recent common ancestors. Sisters in the phylogenetic

tree defined by the same ancestor are called clades or monophyletic groups and are relatively

similar. Finding such groups is one goal of a phylogenetic tree study. Holmes (1999); Li

et al. (2000); Holmes (2003a) present several methods to analyze phylogenetic trees that may
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be able to give some hints for the statistical analysis of population of blood vessel trees in

Figure 4.1.
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Figure 4.4: Dyck path of a tree
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4.3.3 Dyck Path Representation

The main challenge for application of functional data analysis to tree populations in Fig-

ure 4.1 is the non-Euclidean property of tree space. This leaves fundamental concepts that

underly functional data analysis, such as linear subspace, projection, and linear combination,

unavailable. In contrast to the ideas of Wang and Marron (2007); Aydin et al. (2009), who

developed a novel mathematical framework for statistical analysis of tree objects, we instead

build a bridge between tree space and curve space and then exploit the power of functional

data analysis to analyze populations of tree objects. We establish a one-to-one correspon-

dence between binary trees and curves. The variation of these curves is studied using PCA.

This gives an analog of PCA to explore the variation of tree objects. Furthermore, we find

meaningful subspaces and project these tree curves into these subspaces to study interesting

properties of trees, for example, the relationship between tree structure and gender or age.

The Dyck path representation, see Harris (1952), is such a bridge that makes a tree uniquely

correspond to a curve, as shown in Figure 4.4.

The Dyck path representation can be understood as follows. Assume that an ant starts

from the root and walks around the individual tree following a sequence of time points as

shown in Panel (A) to Panel (F) of Figure 4.4. The tree and the ant are shown in the top half

of each panel, together with a piecewise line showing the ant’s progress at the time represented

by each panel. We record the number of time steps that the ant passed as the x-coordinate

value and the branch height (i.e. distance to the root) as the y-coordinate value. The curve,

connecting these coordinate points (x, y), is the Dyck path of the tree, shown in the bottom

half of each panel. This section just shows the Dyck path of one binary tree. The extension

of the Dyck path idea to a set of trees will be developed in Section 4.5.

4.3.4 Branch Length Representation

The Dyck path representation built a bridge between tree space and curve space and thus

makes it possible to use functional data analysis to analyze tree structured data objects. The

Dyck path representation recorded the branch height above the root that the ant passes, as
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Figure 4.5: The branch length representation

shown in Figure 4.4. An alternative to recording the height of each branch is to record just

the length of each branch. This generates an alternative bridge between tree space and curve

space called the branch length representation.

This can be understood as follows. Assume that we start from the left most branch and

record the branch lengths following a sequence of time points as shown in Panel (A) to Panel

(I) of Figure 4.5. The tree and recorded (red) branch is shown in the top half of each panel,

together with a piecewise line showing recording progress at the time represented by each

panel. We record the number of time steps as the x-coordinate value and the branch length

as the y-coordinate value. The piecewise linear curve, connecting these coordinate points

(x, y), is the branch length representation of the tree. This section shows only the branch

length representation of one binary tree. The extension of the branch length representation

idea to a set of trees will be developed in Section 4.6.2.
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4.4 Existing Data Analytic Methods

There are many different types of tree structured data objects, such as the brain artery trees

in Figure 4.1, the phylogenetic trees in Holmes (1999); Li et al. (2000); Holmes (2003a), and

the airway trees of Sonka et al. (1994). We will introduce some analysis methods and results

on brain artery trees and phylogenetic tree analysis.

4.4.1 Combinational Analysis

The goal of exploring populations of tree structured data objects motivated Wang and Marron

(2007) to develop a set of tree-population analogs of standard functional data analysis, such as

PCA. The foundations were laid on some particular optimization problems and their solution

generates the analysis method. One limitation of the work of Wang and Marron (2007) was

the lack of a general solution for the optimization problem. Aydin et al. (2009) gave the

complete solution of it, and developed a linear time computational method. Furthermore,

Aydin et al. (2009) applied the developed method to 73 brain artery trees similar to that

in Figure 4.1. That method provided some very interesting clinical findings. They found

significant correlation between age and structure in the left sub-population tree in Figure 4.1.

4.4.2 Phylogenetic Methods

Holmes (1999) presents a large number of interesting statistical problems developed in the bi-

ological literature on estimating and evaluating phylogenetic trees. Holmes (1999) translates

the problems in biology using statistical terms to help statisticians understand these prob-

lems. In addition, three main families of tree-building methods, such as maximum likelihood,

distance-based methods, and maximum parsimony, are presented there. Holmes (1999) also

outlined some relative strength and weakness of these methods. The bootstrap, described

in Holmes (2003a), is a very popular method among biologists to evaluate a tree. Holmes

(1999) discussed this method’s feature and pointed out its drawback in phylogentic tree con-

texts. Furthermore, Holmes (2003b) uses distances and measures on a natural space of trees

to represent relationship between phylogenetic trees in geometrical terms and suggests some
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coherent ways to try to solve the problems of inference on the tree space.

4.5 Dyck Path Analysis

Until now, 98 brain artery trees of the type shown in Figure 4.1 have been transformed into

Panel (A)

Tree 1 Tree 2Support Tree 

Tree 1/Support Tree Tree 2/Support Tree

Panel (B)

Tree 1

x

y
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Tree 1
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y
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x
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x
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x

y

Figure 4.6: The support tree of individual

binary trees as shown in Figure 4.2. We want to explore the relationship between these binary
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trees and to study population properties, such as gender and age. In order to compare the

binary trees, we put them into a common structure context, called the support tree. The

support tree is the union of individual trees’ branches where branch length information is

deliberately neglected. Panel (A) of Figure 4.6 is a toy example that illustrates how to define

the support tree of a set of individual trees. We first neglect the branch length information

of the individual trees, and then take the union of these trees’ branches to get the support

tree’s branches. We set the branches of the support tree to have unit length. The support

tree contains the total topological structure of the full set of individual trees. After finding

the support tree, we can put each individual tree into a support tree structure context. The

individual tree under the support structure context is the tree that keeps its original branches

and sets the other branches of the support tree to be missing. This is illustrated in Panel

(A) of Figure 4.6, where Tree 1, Tree 2 and the support tree are shown in the top half panel,

and Tree 1 and Tree 2 under the support tree structure are shown in the bottom half panel,

where the grey branches are missing branches. The length of these missing branches is taken

to be zero. The rest of Figure 4.6 is discussed below.

The real individual binary tree, shown in Figure 4.2, is shown under the support tree

structure in the top panel of Figure 4.7. The green flat parts are missing branches. To

indicate variation in the population, two other trees are shown in the remaining panels. Each

tree has many missing branches under the support tree structure and the missing branches’

position is very different among different trees. This is a common feature of all 98 population

trees.

Now, we will extend the method of the Dyck path from Section 4.3.3 to the case of

individual binary trees under the support tree structure. The toy example in Figure 4.6

illustrates this process. The Dyck path of tree 1 is a piecewise curve, connecting the coordinate

points (x, y) where the x-coordinate is the number of time steps that the ant walks around

tree 1 and the y-coordinate is the corresponding branch height. Since the grey branch of tree

1 is missing, as shown in Panel (A) of Figure 4.6, the segment of the Dyck path corresponding

to that branch is a flat curve as shown in Panel (E) and (F) of Figure 4.6. The collection of

the Dyck paths for all 98 binary (back) trees is shown in Figure 4.8. The color of each the
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Figure 4.7: Three support individual binary (back) trees
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Figure 4.8: The Dyck path curves of the 98 support binary (back) trees

Dyck path corresponds to age, ranging from magenta (young) to red (old).

From the definition of the Dyck path, we found that every branch of the support tree

should be passed twice, leading that the height of this branch appears twice in the Dyck

path curves in Figure 4.8. The right bound of the x-coordinate range is twice of the number
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of branches of the support tree. In addition, since there are many missing branches for

the individual trees under the support tree structure context, as shown in Figure 4.7, there

are many flat parts on these Dyck path curves, as shown in Figure 4.8. In addition, the

population binary trees have some extreme long branches, shown in Figure 4.7, leading that

the Dyck paths and their mean curve have jumps in Figure 4.8. The binary tree in Figure 4.2

is transformed from the back (gold) tree in Figure 4.1, using descendant correspondence. It

makes the binary tree has more left descendant branches than right and such a property is

kept by the binary trees under the support structure in Figure 4.7. It leads that the left part

of the Dyck path curves in Figure 4.8 is taller than right.

4.5.1 Functional Data Analysis

Now, the functional data analysis can be applied to analyze this population of the Dyck

path curves, representing back tree. First, we perform PCA of these Dyck path curves, as

shown in Figure 4.9. The color of the curves corresponds to the age of the population, as in

Figure 4.8. The plot in the first row and column in Figure 4.9 is the raw Dyck path curves,

as in Figure 4.8. The plot in the first row and the second column in Figure 4.9 is the mean

curve of the Dyck paths. Subtracting the mean from each Dyck path gives residual, i.e. the

centered curves, shown in the first row and the third column plot. The bottom curve in the

scree plot (Cattell, 1966; Jolliffe, 2002) in the first row and the fourth column shows empirical

eigenvalues, and the top curve is the cumulative empirical eigenvalues. There is no clear low

dimensional structure revealed by the scree plot. For these centered Dyck path curves, we get

the PC1 direction through standard SVD (Jolliffe, 2002), and project these centered Dyck

path curves on the PC1 direction to generate the plot in the second row and the first column

in Figure 4.9. These PC1 projection curves, show that most of this dominant component of

variation on the right side. This suggests that variation in the right part of trees drives the

dominant component. We will further explore this variation in Figure 4.10. The second plot

in the second row provides a different view of the projection in the first plot. This time they

added to the sample mean and only the largest (i.e. component with maximal score, dashed)

is shown, together with the smallest (dotted). Subtracting the PC1 projection data in the
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Figure 4.9: PCA of the Dyck path curves

first plot of the second row to the residual data in the third plot of the first row generates

the PC1 residual curves in the third plot in the second row. Smooth histogram, i.e. kernel

density distribution (Wand and Jones, 1995), of PC1 projection scores, the inner product

between the centered Dyck path vectors and the PC1 direction vector, is shown in the fourth

plot in the second row. The x-coordinate value corresponds to the projection score value and

the y-coordinate is the jitter, corresponding to the age order (from young to old), to avoid

overlapping of the points in the plot. The kernel distribution of PC1 scores seems a bimodal

distribution.

If we replace the PC1 direction with the PC2, PC3 and PC4 directions, we get the

third, fourth, and fifth row plots. The first plot in the third row shows that the main PC2

variation is from left to middle, disjoint with the PC1 main variation part. The kernel density

distribution of the PC2 projection scores in the last plot in the third row seems no obvious
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Figure 4.10: Five PC1 projection trees

bimodal distribution. The PC3 projection curve plot in the fourth row and the first column

shows that the main variation part is between middle and right and seems disjoint with the

PC1 main variation part. The kernel density distribution in the fourth row and column also

have not obvious bimodal distribution. The PC4 projection curve plot in the last row and

the first column shows that the variation is mainly due to the right and middle party. The

kernel density distribution in the last row and column looks like the normal distribution.

In Figure 4.9, we explored the variation of the Dyck paths through functional PCA. Next

we interpret this PC decompositional variation in terms of binary trees, as in Figure 4.10.

These five binary trees from top to bottom correspond to the five PC1 projection points,

which have -2, -1, 0, 1, and 2 standard deviation distance to the mean of the projection points

respectively. Since the entries of the projection point vectors may have a negative value, it

follows that some branches of the binary trees, indicated by the color red in Figure 4.10,

have a negative length. This makes these trees invalid, i.e, this linear representation of the
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Figure 4.11: DiProPerm test on the DWD scores

data actually leaves tree space. In addition, these binary trees have essentially no flat parts

(missing branches) which is very different from each population tree, as shown in Figure 4.7.

Comparing these five trees, we found that the main difference is on the right part. Thus the

most variation on the PC1 direction is due to branches in the right part of the binary trees.

This is consistent with the result in the second row and the first column plot in Figure 4.9

that shows that the most variation is due to the right of the Dyck paths. We also did the

same type of analysis on other PCs direction to study the variation of the binary trees. The

results are also consistent with the results in the PC projection curve plot in the first column

in Figure 4.9.

Besides exploring the variation of the binary trees, we are also interested in studying the

relationship between tree structure and gender. Now we explore this relationship using the

Dyck paths. Gender difference can be highlighted using two class discrimination methods.

Distance weight discrimination (DWD) in Marron et al. (2007) and Qiao et al. (2010) is an

efficient tool to study such problems, especially in high dimension. We project the Dyck paths

on the DWD direction in the high dimensional space, and explore the projection scores in

the following way. Similar with the functional PCA, we generate the kernel estimate of the

projection scores in the left, panel (A) of Figure 4.11, along with the kernel estimate for the

scores of the male, red curve, and the female, blue curve, respectively. In fact, the red and

blue curves are rescaled kernel estimates of the male and female respectively and the rescaled
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Figure 4.12: Five five DWD projection trees

coefficients are proportional to their population number. From these kernel density estimate

curves, it seems that the male population has the bigger mean DWD scores than the female.

The 2-sample t-test statistic of 5.97 for the average difference between the male and female

DWD scores also suggests this might be statistically significant.

We did the Direction-Projection-Permutation (DiProPerm) test, described in Wichers

et al. (2007), to rigorously explore this. The DiProPerm test uses a random permutation of

the class labels to split the data into two groups, e.g the male and female group, and the DWD

direction is recomputed for the relabeled data. For each random permutation, we calculated

the 2-sample t-test statistic for the male and female DWD scores, and the statistic values

are shown as the black dots in the left panel of Figure 4.11. The empirical p-value, which

is essentially the percentage of random t-test statistic values greater than the real value, is

shown in the left panel. The Gaussian fit p-value in the right panel is calculated based on

the upper probability of the Gaussian distribution using the mean and standard deviation of
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the simulated t-statistic. When the empirical p-value equal to 0, we need to use he Gaussian

fit p-value to explore the statistical significance. The DiProPerm empirical p-value (0.398),

shown in the right panel plot of Figure 4.11, implies that the DWD projection scores actually

show no significant difference between male and female.

Similar as we did in Figure 4.10, we replace the PC1 direction with the DWD direction,

to generate five binary trees in Figure 4.12. There does not appear to be a systematic visual

difference among these five binary trees, which suggests that tree structure in the DWD

direction is driven by artifacts of the sampling noise. This is consistent with the results

implied by the empirical p-value of the DiProPerm test in Figure 4.11.

Furthermore, we have used PLS (with age) and CCA (with age) direction to generate

similar binary trees to explore the age relationship, as we did in Figure 4.10 and 4.12. They

are not shown here, because there were no meaningful results.

4.6 Pruned Trees

Dyck path and branch length representation build a bridge between tree space (non-Euclidean

space) and curve space (Euclidean space), which makes it possible to apply functional data

analysis to explore tree data. However, the binary trees under the support tree structure

have a large number of missing branches, as in Figure 4.6, which brings many challenges to

the statistical analysis. To address challenges, we present a novel idea, the pruned tree. For

n = 1, · · · , 98, the level n pruned tree is the union of the individual trees’ branches, which

appear in at least n individuals. The branch length information of the pruned tree is neglected

and is set to be 1. The red tree in Figure 4.13 is the level 35 pruned tree and the whole tree

is the support tree. In fact, the support tree is the level 1 pruned tree. For each pruning

level, we defines individual pruned trees. Assume that each individual tree has been put into

the support tree structure, as in Figure 4.7. Then, the individual pruned tree, e.g. the red

tree in Figure 4.14, is the tree that keeps the branches of the level 35 global pruned tree, i.e.

the red tree in Figure 4.13. The red tree in the top panel shown using only branches in the

level 35 global pruned tree gives the red tree in the bottom panel. Note that many missing
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Figure 4.13: The 35 level pruned (Back) tree

branches in the top panel of Figure 4.14 disappear under the pruned tree structure.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

D
is

ta
n
c
e
 f
ro

m
 R

o
o
t

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

D
is

ta
n
c
e
 f
ro

m
 R

o
o
t

Figure 4.14: The individual (back) tree under the pruned tree structure.

The descendant correspondence method puts the branch that has more descendant branches

to the left. This makes the binary tree in Figure 4.2 and 4.8 have the descendant correspon-

dence property. We now show that individual pruned trees also have such a property. Since

individual pruned trees have the same branches as the pruned tree, we just need to show that

the level n pruned tree, e.g. the red tree in Figure 4.13, has the descendant correspondence

property.

Theorem 4.6.1. Each level n pruned tree keeps the descendant correspondence property.
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Proof. For every branch, we consider its first generation descendant branches. Assume that

the first generation branch on the left is pruned out. Then the first generation right branch,

having the same parent branch, is also pruned out. If not, some individual tree has more

right branches than left. This is conflicts with the descendant correspondence property of the

individual trees under support structure. Repeat this for the next generation branches until

the top leaf branch. This finishes the proof of theorem 4.6.1.
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Figure 4.15: The Dyck paths of the level 35 pruned binary (back) trees

4.6.1 Dyck Path Analysis

The pruned tree structure decreases the number of missing branches of the binary trees,

as in Figure 4.7, and can help improve the efficiency of the statistical analysis. As we did

in Section 4.5, we first transform the individual trees under the different level pruned tree

structure to the Dyck paths, as in Figure 4.15. The color of the Dyck paths corresponds to

age, ranging from magenta (for young) to red (for old), and it is same as in Figure 4.8 and 4.9.

The Dyck path curves under the pruned tree structure still have the flat parts because the

individual pruned trees still have missing branches. The left part of the Dyck paths is taller

than right because of the descendant correspondence property of the individual pruned trees.

As in Section 4.5.1, we use the DiProPerm test to study the relationship between the Dyck

paths and gender. The kernel density estimates of the male, red curve, female, blue curve

and the union of the DWD scores, black curve, are shown in the left panel of Figure 4.16.
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Figure 4.16: DiProPerm test on the DWD scores

It seems that the male population has the bigger mean DWD scores than the female from

these kernel estimates. The 2-sample t-test statistic of 5.51 also suggests that the statistical

significant difference of mean DWD scores exists between the male and female. Then, we used

DiProPerm test to rigorously explore it. DiProPerm empirical p-value (0.55), shown in the

right panel of Figure 4.11, implies that the DWD projection scores actually show no significant

difference between male and female. Comparing the DiProPerm test in Figure 4.16 and 4.11,

we found the result now to be slightly closer significant (p = 0.55) than before (p = 0.86)

empirical p-value decreases a little.

This suggests that the pruned tree structure decreases the influence of the missing branches

and slightly clarifies the gender difference. In addition, We just found that Dyck paths under

pruning level 21 for right tree have significant difference in statistics (p-value is less than 0.05)

between male and female.

4.6.2 Branch Length Analysis

The branch length representation in Section 4.3.4 is another bridge, connecting tree space

and curve space, and will be applied to a set of individual pruned trees. Since the length

of missing branches is set to be 0, the branch length representation curve of each individual

pruned tree should go down to 0 when recording the missing branches, as in Figure 4.17. The

plot in Figure 4.17 is the branch length curves of 98 individual trees under level 35 pruning.

The color corresponds to age, ranging from magenta (for young) to red (for old), which is
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Figure 4.17: The branch length curves of the (level 35) pruned binary (back) trees
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Figure 4.18: DiProPerm test on the DWD scores

the same as in Figure 4.8, 4.9 and 4.15. The y = 0 flat part of the branch length curves

in Figure 4.17 is due to missing branches. The right bound of the x-coordinate range is

the number of branches of the individual pruned trees. It is half of the right bound of the

x-coordinate range in the Dyck paths in Figure 4.15 because every branch is passed twice in

the Dyck paths. The y-coordinate is the branch length in these curves, as in Figure 4.17, in

contrast to the branch height shown in the Dyck path curves, as in Figure 4.15. It follows

that the top bound of y-coordinate range is smaller in Figure 4.17 than in Figure 4.15.

We also use the DiProPerm test to study the relationship between the branch length

curves and gender. The left panel plot in Figure 4.18 is the kernel density estimate of the

male, red curve, female, blue curve, and the union of the DWD scores, black curve, and it is

the same as in Figures 4.11 and 4.16. The male population seems to have the bigger mean
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DWD scores than the female The 2-sample t-test statistic of 9.32 also suggests that the DWD

scores have significant difference in statistics between the male and female. However, the

empirical p-value (0.75), shown in the right panel plot of Figure 4.11, implies that such a

difference is not significant in statistics.

4.7 Conclusion and Discussion

Chapter 4 presented the Dyck path and branch length representation methods that build a

bridge between tree space (non-Euclidean space) and curve space (Euclidean space). These

two methods make it possible to apply the functional data analysis to tree data. Since the

binary trees, as in Figure 4.7, have many missing branches that bring many challenges to the

statistical analysis, this thesis presents a novel idea, the pruned tree, which helps to decrease

the number of missing branches and increase the efficiency of the statistical analysis.

PCA helps us explore the variation of the Dyck paths, as in Figure 4.9. However, the

curve PC view is hard to interpret Another interpretation view of the variation in each PC

direction, in terms of binary trees, is shown in Figure 4.10. The same method is also applied

to the DWD direction, as in Figure 4.12. The DiProPerm test of the Dyck path curves (right

tree) under the level 21 pruned tree shows that the empirical p-value is smaller than 0.05.

This suggests that there may exist significant differences between male and female on the

DWD projection scores. We will further explore different pruning levels.

4.8 Future Work

There are several interesting problems that we will explore in the future. The first one is to

compare the performance of the Dyck path and branch length representation under different

pruning levels. In addition, we will study the relationship between the projection scores,

based on all of PCs, PLS and CCA, and age.

The second one is to combine individual Front, Back (i.e the binary trees in Figure 4.7),

Left and Right binary trees together, and then do Dyck path and branch length analysis.

Finally, for individual pruned trees, we will calculate their branch number (the number of

106



all non-missing branches), total branch length (the total length of all branches), and average

branch length (the ratio between the total branch length and the branch number). We will

explore whether these three indices have some difference between male and female and their

relationship with age under the different pruning levels.
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