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ABSTRACT

YUFAN ZHAO: Reinforcement Learning Design for Cancer Clinical Trials

(Under the direction of Dr. Michael Kosorok)

There has been significant recent research activity in developing therapies that are

tailored to each individual. Finding such therapies in treatment settings involving mul-

tiple decision times is a major challenge. In this dissertation, we develop reinforcement

learning trials for discovering these optimal regimens for life-threatening diseases such as

cancer. A temporal-difference learning method calledQ-learning is utilized which involves

learning an optimal policy from a single training set of finite longitudinal patient trajec-

tories. Approximating the Q-function with time-indexed parameters can be achieved by

using support vector regression or extremely randomized trees. Within this framework,

we demonstrate that the procedure can extract optimal strategies directly from clinical

data without relying on the identification of any accurate mathematical models, unlike

approaches based on adaptive design. We show that reinforcement learning has tremen-

dous potential in clinical research because it can select actions that improve outcomes

by taking into account delayed effects even when the relationship between actions and

outcomes is not fully known.

To support our claims, the methodology’s practical utility is firstly illustrated in a

virtual simulated clinical trial. We then apply this general strategy with significant re-

finements to studying and discovering optimal treatments for advanced metastatic stage

IIIB/IV non-small cell lung cancer (NSCLC). In addition to the complexity of the NSCLC

problem of selecting optimal compounds for first and second-line treatments based on

prognostic factors, another primary scientific goal is to determine the optimal time to ini-
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tiate second-line therapy, either immediately or delayed after induction therapy, yielding

the longest overall survival time. We show that reinforcement learning not only success-

fully identifies optimal strategies for two lines of treatment from clinical data, but also

reliably selects the best initial time for second-line therapy while taking into account

heterogeneities of NSCLC across patients.

iv



ACKNOWLEDGMENTS

This dissertation could not have been written without my advisor, Dr. Michael

Kosorok, who led me to this research field and patiently guided me through the dis-

sertation process. I wish to express my deepest appreciation to him for his support,

encouragement and mentoring throughout my doctoral studies.

I also would like to thank the rest of my committee members. I owe many thanks to

Dr. Donglin Zeng for his encouraging inspirations, kind guidance, and enormously helpful

discussions in completing this dissertation. I am deeply grateful to Dr. Mark Socinski

for his in-depth knowledge of non-small cell lung cancer and insightful discussions on

many occasions. I wish to express my sincere thanks to Dr. Jason Fine for his invaluable

advice and kindness throughout this research. I also appreciate very much discussions

with Dr. Yufeng Liu; working with him has been a wonderful learning experience for me.

I was very fortunate to have the opportunity to work at SAS Institute under the

direction of Drs. Bob Rodriguez and Ying So. A special thanks goes to them for their

financial support of my graduate studies and research.

I would also like to thank all of my friends in the Reinforcement Learning Group,

particularly Kai Ding, Yiyun Tang, and Yingqi Zhao, whose friendship has made this

journey more enjoyable and memorable.

Finally, it’s impossible to have completed this journey without the love, support and

encouragement from my dad, Dongtai Zhao, and my mom, Jun Xia. This dissertation is

dedicated to them.

v



CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

1 Introduction 1

2 Literature Review 7

2.1 Adaptive Design and Dynamic Treatment in Clinical Trials . . . . . . . . 7

2.1.1 Adaptive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Dynamic Treatment Regimes . . . . . . . . . . . . . . . . . . . . 9

2.2 Optimal Controls for Drug Scheduling . . . . . . . . . . . . . . . . . . . 11

2.2.1 Mathematical Models for Cancer Treatment . . . . . . . . . . . . 11

2.2.2 Finding Optimal Treatment Solutions . . . . . . . . . . . . . . . . 17

3 Reinforcement Learning, Q-Learning, and Their Approximations 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Reinforcement Learning and Q-Learning . . . . . . . . . . . . . . . . . . 22

3.2.1 Value Functions and the Bellman Equation . . . . . . . . . . . . . 24

3.2.2 Temporal-Difference Learning and Q-Learning . . . . . . . . . . . 27

3.3 Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Support Vector Regression (SVR) . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Extremely Randomized Trees (ERT) . . . . . . . . . . . . . . . . . . . . 38

4 Reinforcement Learning Treatment Strategies for A Virtual Cancer

Trial 45

vi



4.1 Clinical Reinforcement Trials . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 A Virtual Clinical Reinforcement Trial . . . . . . . . . . . . . . . . . . . 47

4.2.1 A Simple Chemotherapy Mathematical Model . . . . . . . . . . . 48

4.2.2 Q-function Estimation and Optimal Regimen Discovery . . . . . . 50

4.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Summary of Virtual Cancer Trial Results . . . . . . . . . . . . . . 55

5 Reinforcement Learning Treatment Strategies Based on Support Vector

Regression in a Non-small Cell Lung Cancer Trial 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Reinforcement Learning Model Refinement . . . . . . . . . . . . . . . . . 71

5.2.1 Patient Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Q-Learning Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Support Vector Regression for Censored Subjects . . . . . . . . . . . . . 75

5.4 Clinical Reinforcement Trial Conduct and Computational Strategy . . . . 78

5.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Data Generating Models . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Clinical Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.3 Simulation Methods and Results . . . . . . . . . . . . . . . . . . . 84

5.6 Summary of NSCLC trial results . . . . . . . . . . . . . . . . . . . . . . 85

6 Concluding Remarks 95

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 99

vii



LIST OF TABLES

1 Summary of main simulation results for a general virtual cancer trial . . 59

2 The scenarios studied in simulation study of an NSCLC virtual cancer trial 90

3 Comparisons between true optimal regimens and estimated optimal regi-

mens for overall survival . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



LIST OF FIGURES

1 Helicopter in autonomous sustained hover . . . . . . . . . . . . . . . . . 40

2 Linear separating hyperplane, margin, and support vectors defined in SVM 41

3 Hinge loss function for SVM . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 ε-insensitive loss function for SVR . . . . . . . . . . . . . . . . . . . . . . 43

5 Procedure used by the ERT algorithm to build a tree . . . . . . . . . . . 44

6 One simple chemotherapy model . . . . . . . . . . . . . . . . . . . . . . . 57

7 Treatment plan and the procedure for estimating Q-functions . . . . . . . 58

8 Plots of averaged value of “wellness” . . . . . . . . . . . . . . . . . . . . 60

9 Plots of averaged value of “tumor size” . . . . . . . . . . . . . . . . . . . 61

10 Plots of averaged value of “wellness + tumor size” . . . . . . . . . . . . . 62

11 Example of the estimated optimal treatment for one patient . . . . . . . 63

12 Bar plots of averaged cumulative survival probability . . . . . . . . . . . 64

13 The averaged optimal sequential therapies . . . . . . . . . . . . . . . . . 65

14 Treatment plan and therapy options for an advanced NSCLC trial . . . . 87

15 Four cases that determine the times T1, C, TM , and T2 . . . . . . . . . . 88

16 Loss functions for ε-SVR-C . . . . . . . . . . . . . . . . . . . . . . . . . . 89

17 Performance of optimal individualized regimens . . . . . . . . . . . . . . 91

18 Sensitivity of the predicted survival to the sample size . . . . . . . . . . . 93

19 Boxplots of the predicted survival computed via Q-learning with ε-SVR-C 94

ix



1 Introduction

Discovering effective therapeutic regimens for life-threatening diseases is one of the central

goals of medical research. Finding powerful and general methodologies for accomplish-

ing this discovery is a major challenge. The prevailing approach is to develop candidate

therapies in the laboratory using basic science and then to test those therapies in animals

and then in human clinical trials. A major problem is that very few candidate treatments

make it to human clinical trials and only about 10% of treatments making it to human

clinical trials demonstrate enough efficacy to be approved for marketing (Hogberg, 2005;

Food and Drug Administration, 2004). Typical regimens for some advanced cancer (such

as breast cancer, lung cancer, and ovarian cancer) patients utilize a single agent in combi-

nation with some platinum-based compound, and consist of multiple stages of treatment

(especially when relapse is common). For example, many studies demonstrate that three

lines of treatment can improve survival for patients with advanced non-small cell lung

cancer (NSCLC). For patients who present with a good performance status and stage

IIIB/IV disease, platinum-based chemotherapy is the primary treatment which can offer

a modest survival advantage over best supportive care alone. Approximately 50–60% of

patients in recent first-line trials received second-line treatment (Sandler et al., 2006).

Some patients who maintain a good performance status and tolerate therapy without

significant toxicities will receive third-line therapy (Stinchcombe and Socinski, 2008).

A widely used approach is to give a maximum dosage of chemotherapy drug for some

period of time, followed by a period of recuperation in which no drug is given. Although

this therapeutic regimen can be easily clinically implemented, this may not be the best

strategy for minimizing tumor burden. Such problems have motivated the vast literature



on drug-scheduling strategies. In the past few years, there has been extensive research on

applications of adaptive design to clinical trials. Many investigators have developed var-

ious adaptive designs to efficiently identify clinical benefits of the treatment, and demon-

strated that conducting adaptive designs can be very promising in clinical development.

In general, adaptive designs for multiple courses of chemotherapy allow modification of

randomization schedules based on varied probabilities of treatment assignment in order to

increase the probability of success. In choosing treatments for successive courses, one of

the popular adaptive designs to do this is the play-the-winner-and-drop-the-loser design,

which is to repeat a treatment that is successful in a given course and otherwise switch to

a different treatment. Thall, Millikan, and Sung (2000) provided a statistical framework

for multi-course clinical trials involving some modifications of the play-the-winner-and-

drop-the-loser strategy. In their proposed design, all treatments after the first course

are assigned adaptively, thus increasing the amount of information available per patient.

Thall et al. (2007) presented a Bayesian adaptive design for a trial comparing two-course

strategies for treating metastatic renal cancer. Each patient is fairly randomized between

two treatments at enrollment, and if a patient suffers a disease progression (s)he is then

re-randomized among three treatments not given initially. One of the common features

of these adaptive designs is the use of parametric models accounting for efficacy, toxicity,

or time to some events (such as survival time). By defining a probability model, it’s easy

to study the design’s operating characteristics under a range of parameterizations and

clinical scenarios. However, as a result, it will lead to all individuals being assigned to

the same level and type of treatment. Therefore, the limitation is not only to ignore the

heterogeneity in treatment across individuals, but also to unsuccessfully incorporate the

heterogeneity needed for optimal individualized treatment across time.

In addition to the challenge of taking into account accrued information in clinical trial

designs, another major challenge is the examination of the long-term benefit of treatment

due to delayed effects. If we consider the larger context of the overall therapeutic strategy,
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in many clinical settings a regimen with a lower initial response rate still can be the best

choice in the long run. This is quite plausible due to the potential for the regimen’s

comparatively better delayed clinical benefit. For finding new treatment regimens with

this motivation, one of the most promising approaches has been referred to variously as

“dynamic treatment regimes” or “adaptive treatment strategies” (Murphy, 2005a). In

contrast with classic adaptive designs, dynamic treatment regimes can allow dosage level

and type to vary with time for subject-specific needs. As a consequence, the optimal

strategy is able to provide information not only on the best treatment choice from the

beginning but also treatment choices that maximize outcomes for a later time. Dynamic

treatment regimes are recently emerging as a new paradigm for the treatment and long

term management of chronic disease, and they have been utilized in some trials such as

sequential multiple assignment randomized trials (SMART) (Murphy, 2005a) and drug

and alcohol dependency studies (Murphy et al., 2007a). However, to date, there are no

clinical trial methodologies for discovering new treatment regimens for life-threatening

diseases. Thus, for diseases like cancer, the use of clinical trials for evaluation and not

discovery remains the prevailing paradigm.

Over the last few decades, machine learning has become an active branch of artificial

intelligence. Some of the fields studied in machine learning involve stochastic sequen-

tial decision processes, commonly referred to as reinforcement learning methods. The

term “reinforcement” comes from studies of animal learning in experimental psychology,

where it refers to the occurrence of an event, in the proper relation to a response, that

tends to increase the probability that the response will occur again in the same situation.

The standard reinforcement learning method considers a performance agent operating in

discrete time, observing at time t the environmental state xt, taking an action at, and

receiving back information from the environment (the next state xt+1 and the instanta-

neous reward rt). The basic process of reinforcement learning involves trying a sequence

at of actions, recording the consequences rt of those actions, statistically estimating the
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relationship between at and rt, and then choosing the action that results in the most

desirable consequence.

In this dissertation, we present a general reinforcement learning framework and related

statistical and computational methods for use in the clinical research arena. Reinforce-

ment learning has been applied to treating behavioral disorders, where each patient typi-

cally has multiple opportunities to try different treatments (Pineau et al., 2007). Murphy

et al. (2007b) suggest Q-learning, which is one of the most important breakthroughs in

reinforcement learning, for constructing decision rules for chronic psychiatric disorders,

since these chronic conditions often require sequential decision making to achieve the

best clinical outcomes. Moreover, reinforcement learning has been successfully applied

to the segmentation of the prostate in transrectal ultrasound images. Due to its use of

knowledge obtained from the previous input image, the reinforcement learning algorithm

is potentially capable of finding the appropriate local value for sub-images and extract-

ing the prostate image (Sahba, Tizhoosh, and Salama, 2008). However, reinforcement

learning has not yet been applied to life-threatening diseases like cancer where individual

patients do not have the luxury to try many different treatments. Our main aim is to

illustrate the application of these methods to the discover of new treatment regimens

for life-threatening diseases such as cancer. This is a paradigm shift from the standard

clinical trial framework which is used for evaluating treatments but not for discovery. We

consider trials in which each patient is randomized among a set of treatments at each

stage and this treatment set consists of a continuous range of possibilities including, for

example a continuous range of dose levels. Therefore, rather than being constrained to

a finite list of pre-specified treatments, our method allows for more general multiplicities

of treatments which may include a continuum of possibilities at each stage. Reinforce-

ment learning design has two attractive features that make it a useful tool for extracting

optimal strategies directly from clinical data. First, without relying on the identifica-

tion of any accurate mathematical models, it carries out treatment selection sequentially
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with time-dependent outcomes to determine which of several possible next treatments

is best for which patients at each decision time. This feature not only helps us account

for heterogeneity in treatment across individuals, but also possibly captures the best

individualized therapies even when the relationship between treatments and outcomes is

not fully known. Secondly, in contrast to focusing on short-term benefits, the proposed

approach improves longer-term outcomes by considering delayed effect of treatments.

Furthermore, we find that reinforcement learning design can extract the optimal treat-

ment strategies while taking into account a drug’s efficacy and toxicity simultaneously,

which is supported by our simulation studies.

The remainder of this dissertation is organized as follows. In Section 2.1, we provide a

literature review of clinical trial design with particular attention given to adaptive design

and dynamic treatment regimes. We review mathematical models which use optimal

control theory to seek the solution in cancer treatments in Section 2.2.

In Section 3.2, we provide a detailed description of reinforcement learning and Q-

learning. In Section 3.3, we first describe a support vector machine (SVM) method

which makes fitting Q-functions feasible for clinical data sets; and then we discuss one of

the extensions of SVM, support vector regression (SVR), associated with its application

to reinforcement learning, in Section 3.4. Another modern technique for estimating Q-

functions, extremely randomized trees (ERT), is presented in Section 3.5.

In Section 4.1, we first propose to develop a new design and analysis method that

utilizes this special technology for a new kind of clinical trial for cancer, “clinical rein-

forcement trials”. To demonstrate the reinforcement learning’s potential in discovering

optimal therapies, in Section 4.2, we apply our proposed method to a virtual random-

ized sequential trial, which is a simulation study consisting of 1000 patients. This study

examines the performance of reinforcement learning via SVR and demonstrates that the

therapy found using Q-learning is superior to any constant-dose regimen.

In Chapter 5, we specialize our overall approach to advanced metastatic stage IIIB/IV
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NSCLC. By studying an extensive simulation, we refine our model to identify optimal

two-line treatment strategies for an NSCLC trial that includes right censored patients.

In addition, we demonstrate that our method can reliably select the best time to initiate

second-line therapy for NSCLC.

Finally, we summarize our proposed methods in Chapter 6 and discuss some challenges

for future research.
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2 Literature Review

2.1 Adaptive Design and Dynamic Treatment in Clinical Trials

2.1.1 Adaptive Design

Due to steeply rising drug development costs and escalating patient safety concerns, there

is increasing pressure on pharmaceutical companies and clinical researchers to reexamine

traditional clinical trial techniques and increase the efficiency and safety of the clinical

trial process. One potential way to address the challenges that are receiving significant

attention from pharmaceutical companies, regulatory agencies, and clinical researchers

involved is through adaptive designs. In recent years, the use of adaptive design methods

in clinical research and development based on accrued data has become very popular

due to its flexibility and efficiency. For instance, in 2006, the United States Food and

Drug Administration (FDA) released a Critical Path Opportunities List that calls for

advancing innovative trial designs, especially for the use of prior experience or accumu-

lated information in trial design. This shows the encouragement for the use of innovative

adaptive design methods in clinical trials and the potential use of other approaches in

clinical research and development, such as Bayesian approaches in phase II/III studies.

Based on the review of interim data, it is not uncommon to modify a trial or statistical

procedures in the middle of the conduct of clinical trials. The purpose is not only to

efficiently identify clinical benefits of the test treatment under investigation, but also to

increase the probability of success of clinical development. An adaptive design is defined



as a design that allows adaptations to design and statistical procedures of the trial after

its initiation without undermining the validity and integrity of the trial (Chow, Chang,

and Pong, 2005). Many recent publications refer to an adaptive design as a clinical trial

design that uses accumulating data to decide on how to modify aspects of the study as

it continues, without compromising the scientific method (Gallo et al., 2006).

Commonly considered adaptive design methods in clinical trials include, but are

not limited to: adaptive randomization design, group sequential design, sample size

re-estimation design, play-the-winner-and-drop-the-loser design, adaptive dose finding

design, adaptive treatment-switching design, hypothesis-adaptive design, and adaptive

seamless phase II/III trial design. As we mentioned earlier in Chapter 1, we concentrate

on the patient’s treatment which often involves multiple courses of chemotherapy. In

choosing treatments for successive courses, the design common to this is the play-the-

winner-and-drop-the-loser design, which is to repeat a treatment that is successful in a

given course and otherwise switch to a different treatment. Thall et al. (2000) provided

a statistical framework for multi-course clinical trials involving some modifications of

the play-the-winner-and-drop-the-loser strategy. In their proposed design, all treatments

after the first course are assigned adaptively, thus increasing the amount of information

available per patient.

Most adaptive designs for multiple courses of chemotherapy allow modification of

randomization schedules based on varied and/or unequal probabilities of treatment as-

signment in order to increase the probability of success. For instance, a randomized

two-course, three-treatment acute leukemia trial with adaptive randomization has been

developed in a Bayesian framework by Thall, Sung, and Estey (2002). A simulation study

with the goal of selecting one best treatment, or selecting a best ordered pair of treat-

ments has been investigated by Thall et al. (2000). In addition, in a lymphocyte infusion

trial (Thall, Inoue, and Martin, 2002), an adaptive decision process was evaluated by

determining the infusion time that has the highest probability of treatment success. One
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of the common features of all of these adaptive designs is the use of parametric models

accounting for efficacy, toxicity, or time to some events (such as survival time). By defin-

ing a probability model, it is easy to study the design’s operating characteristics under a

range of parameterizations and clinical scenarios; however, all of these approaches will re-

sult in all individuals being assigned to the same level and type of treatment. Therefore,

the limitation of these approaches is not only to ignore the heterogeneity in treatment

across individuals, but also to unsuccessfully incorporate the heterogeneity needed for

optimal individualized treatment across time. Another common feature of all of these

adaptive designs is the use of accrued information. These designs choose all treatments

after the first one adaptively based on the patient’s outcomes in earlier courses, and thus

they don’t waste important information from previous patients. However, in some cases,

treatments may show not only an immediate effect to patients but also a delayed effect

to patients over time. To date, there are no adaptive designs for incorporating delayed

effect in sequential decisions. The lack of these two characteristics in adaptive designs is

the most important motivation for our proposed reinforcement learning design.

2.1.2 Dynamic Treatment Regimes

Dynamic treatment regimes, which are also called adaptive treatment strategies (Murphy,

2005a), are recently emerging as a new paradigm for the treatment and long term man-

agement of chronic disease. In contrast with classic adaptive design, dynamic treatment

regimes can allow dosage level and type to vary with time for subject-specific needs. Dy-

namic treatment regimes have been conducted in some trials such as sequential multiple

assignment randomized trials (SMART) (Murphy, 2005a) and drug and alcohol depen-

dency studies (Murphy et al., 2007a). Murphy (2003) provided a method for estimating

optimal decision rules which will produce the optimal mean response at the end of the

time period for each individual. Robins (2004) proposed models and developed methods
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for making inference about the optimal regime in a multiple courses trial as well.

Using the notation of Murphy (2005a), let a1, a2, . . . , ak be defined as a sequence of

k treatment decisions for each individual patient at time t in {1, 2, . . . , k}. Sj denotes

the patient’s status at the beginning of the time interval j, in other words, it is the

intermediate outcome available after decision aj−1 and prior to decision aj. The response

at the end of the time period is denoted by Y . Thus, the order of event occurrence is

S1, a1, S2, a2, . . . , Sk, ak, Sk+1, Y . Additionally, for convenience, we use a bar sign over a

variable to denote that variable and all past values of the same variable, for example,

S̄j = {S1, S2, . . . Sj} and āj = {a1, a2, . . . aj}. Also, an adaptive treatment strategy is a

sequence of decision rules, denoted as d1, d2, . . . , dk. It is important to recognize that each

rule dj is based on the information available at time j, that is, S̄j, āj−1, and aj. In many

cases, the backward induction framework (from dynamic programming) is used to find

the optimal decision rules by maximizing mean response for each time point. Formally,

in the simplest case, when k = 2, the optimal adaptive treatment strategy is given by

(d∗1, d
∗
2), where

d∗2(s̄2, a1) = argmax
a2

Eā2 [Y |S̄2 = s̄2].

If we define

V2(s̄2; a1) = max
a2

Eā2 [Y |S̄2 = s̄2],

then the optimal decision at time 1 could be expressed as follows:

d∗1(s1) = argmax
a1

Ea1 [V2(S̄2; a1)|S1 = s1].

Again, if denote

V1(s1) = max
a1

Eā1 [V2(S̄2; a1)|S1 = s1],

then the mean of Y when the optimal rules (d∗1, d
∗
2) are used to assign treatment is given

by

E[V1(S1)] = E
[

max
a1

Ea1

[
max
a2

Eā2 [Y |S̄2]|S1

]]
,

10



which is consistent with the expectation formula in Robins’s paper. Murphy (2003)

proposed semiparametric methods for estimating the optimal rules through the available

experimental or observational longitudinal data, when the multivariate distribution of

(S̄k, Y ) is unknown. The parametric part was used to estimate those optimal rules

by modeling the regret function, while the second part consisting of high or infinite

dimensional parameters was modelled as a collection of nuisance parameters. Following

Murphy’s first approach, Robins (2004) investigated a number of estimating equations for

finding optimal decision rules using structural nested mean models. Moodie, Richardson,

and Stephens (2007) showed that Murphy’s approach and Robins’s are closely related,

further more, Murphy’s model is a special case of Robins’s.

One of the most important advantages of these dynamic treatment regimes is the con-

sideration of treatment delayed effects to patients. An optimal rule provides information

not only on the best treatment choice from the beginning but also treatment choices that

maximize outcomes for a later time. The ascertainment of the optimal adaptive treatment

strategy is an optimization problem receiving attention by many researchers. Dynamic

programming combined with computational methodology is one of the most promising

approaches for finding optimal decisions. In particular, we will introduce in Chapter

3 reinforcement learning and its application to deal with this optimal individual-based

regime finding problem.

2.2 Optimal Controls for Drug Scheduling

2.2.1 Mathematical Models for Cancer Treatment

Modern treatment methods for cancer include improved traditional surgery, chemother-

apy and radiotherapy as well as immunotherapy. Modelling of the treatment process is

11



viewed as a potentially powerful tool in the development of improving treatment reg-

imens. While biomedical research concentrates on the development of new drugs and

experimental (in vitro) and clinical (in vivo) determinations of their treatment sched-

ules, analysis of mathematical models can assist in testing various treatment strategies

and searching for optimal ones.

Mathematical models for cancer chemotherapy treatments have a long history and

have attracted extensive research over the past several decades. Several approaches to

modelling chemotherapeutic induced cell-kill (killing of tumor cells) have been developed.

One of the early approaches was by Schabel, Skipper, and Wilcox (1964) who proposed

that cell-kill due to a chemotherapeutic drug was proportional to the tumor population.

It states that for a fixed dose, the reduction of large tumors occurred more rapidly

than for smaller tumors. Skipper’s concept is referred to as the log-kill mechanism.

Mathematically, the general form of the model under investigation is depicted by the

differential equation:

Ṅ(t) = rN(t)F (N)−G(N(t), t),

where N is the tumor size, r is the growth rate of the tumor, F (N) is the generalized

growth function. For Skipper’s model, Gompertzian growth is applied:

F (N) = ln
(Θ

N

)
.

And the function G(N(t), t) is the cell kill term, describing the pharmacokinetic (PK)

and pharmacodynamic (PD) effects if the drug on the system. In Skipper’s log-kill (i.e.,

percentage kill) hypothesis,

G(N, t) = δu(t)N,

where δ is the magnitude of the dose and the control, and u(t) describes the time depen-

dent pharmacokinetics of the drug. In some diseases, for example, Hodgkin’s disease and

acute lymphoblastic leukemia, Norton, and Simon (1977; 1986) found Skipper’s model to

be inconsistent with clinical observations. The reduction in large tumors was slower than

12



in histologically similar smaller tumors. Therefore, Norton and Simon hypothesize that

the cell-kill is proportional to the growth rate (e.g., exponential, logistic, or Gompertz)

of the tumor. In Norton-Simon’s hypothesis,

G(N, t) = δu(t)F (N).

A third hypothesis notes that some chemotherapeutic drugs must be metabolized by an

enzyme before being activated. This reaction is saturable due to the fixed amount of

enzyme. Thus, Holford, and Sheiner (1981) developed the Emax model which describes

cell-kill in terms of a saturable function of Michaelis-Menton form. In the Emax model,

G(N, t) =
δu(t)N

K +N
.

The model considered by Matveev and Savkin (2002) is a more complex one, wherein

the negative effects of the tumor cells on the healthy cell population are also considered.

This is a vital addition to the earlier three models which did not consider the interac-

tion between the tumor and the healthy cells. It should be noted that the healthy cell

population is also assumed to follow a Gompertz growth model with the cytotoxic drug

killing both the cancerous as well as normal cells. The set of differential equations for

this mathematical model is:

Ṅ(t) = αNln
θN
N
− L1(c)N

L̇(t) = βLln
θL
L
− L2(c)L− Ξ(N)L

c = c(t) ∈ [0, cmax],

where N(t) is the population of the tumor cells, L(t) is the population of the normal

(healthy) cells, θN is the maximum allowable size of the tumor, θL is the normal size of

the healthy cell population and c(t) (the control) is the concentration of the cytotoxic

drug at the tumor site. The inhibiting effect of the cancerous cells on the healthy cells

is captured by the −Ξ(N)L term. The function Ξ(·) is a strictly increasing function
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of N and is continuously differentiable on the interval [0,∞]. Some other theoretical

studies and mathematical works have been conducted to investigate cancer treatment.

For information on T cell sensitivity, see Chan, George, and Stark (2003). For more

related models, see Panetta and Kirschner (1998), Swan (1986; 1990), de Pillis and

Radunskaya (2001), and Murray (1990a; 1990b).

More recently, de Pillis et al. (2007a) investigated a mathematical model of tumor-

immune interactions with chemotherapy, and strategies for optimally administering treat-

ment. In their model, two immune components (effector-immune cells and circulating

lymphocytes) were included. They used the count of circulating lymphocytes in a pa-

tient’s bloodstream as a reflection of the strength of the patient’s overall immune health.

The system of differential equations describing the growth, death, and interactions of cell

populations with a chemotherapy treatment is given by

Ṫ (t) = aT (1− bT )− c1NT −KTMT

Ṅ(t) = α1 − fN + g
T

h+ T
N − pNT −KNMN

Ċ(t) = α2 − βC −KCMC

Ṁ(t) = −γM + VM(t),

where T (t) is the tumor cell population, N(t) is the effector-immune cell population, C(t)

is the circulating lymphocyte population, and M(t) is the chemotherapy drug concentra-

tion.

In addition to chemotherapy, recently, immunotherapies are quickly becoming an

important component in the multi-pronged approaches being developed to treat certain

forms of cancer. Immunotherapy refers to the use of natural and synthetic substances

to stimulate the immune response. The goal of immunotherapy is to strengthen the

body’s own natural ability to combat cancer by enhancing the effectiveness of the immune

system. See, for example, Farrar et al. (1999), Morecki et al. (1996), Muller et al. (1998),

O’Byrne et al. (2000), and Stewart (1996). Immunological therapies include the use of
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antigen and nonantigen specific agents such as cytokins. Cytokines have been used to

treat melanoma, leukemia, lymphoma, neuroblastoma, Kaposi’s sarcoma, mesothelioma,

brain cancer, cancer of the kidney, and cancer of the cervix. Interleukin-2 (IL-2) is a

cytokine that was approved by the US Food and Drug Administration (FDA) in 1992

for treatment of metastatic renal cell (kidney) cancer. IL-2 helps immune system cells

reproduce more rapidly once they are in the patient, and it became the first cytokine

approved for use alone in treating advanced cancer. Clinical trials of mixed chemo-

immunotherapy are developed for metastatic melanoma treatment. For instance, a series

of sequential Phase II trials were conducted at M.D. Anderson Cancer Center (Buzaid

2000; Buzaid and Atkins 2001). These trials were based on integrating of IL-2 and

interferon-alpha (IFN-α) with the CVD (cisplatin, vinblastine, and dacarbazine) regimen.

One of the first attempts to consider effects of immunotherapy within an appropri-

ate mathematical model was made by Kirschner and Panetta (1998). de Pillis, Gu,

and Radunskaya (2006) proposed and analyzed a mathematical model governing cancer

growth on a cell population level with combination immunotherapy, chemotherapy and

vaccine treatment. This model’s characteristics are useful not only to gain a broad un-

derstanding of the specific system dynamics, but also to help guide the development of

combination therapies. The model describes the kinetics of four populations (tumor cells

and three types of immune cells), as well as two drug concentrations in the bloodstream,

using a series of coupled ordinary differential equations (ODEs) based on the model de-

veloped by de Pillis and Radunskaya (2003) in their previous study. The populations at

time t are denoted by:

• T (t), tumor cell population,

• N(t), total NK cell population,

• L(t), total CD8+T cell population,

• C(t), number of circulating lymphocytes (or white blood cells),
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• M(t), chemotherapy drug concentration in the bloodstream,

• I(t), immunotherapy drug concentration in the bloodstream.

Bringing together the specific forms for each cell growth and interaction term leads

to the full system of ODEs:

Ṫ (t) = aT (1− bT )− cNT −DT −KT (1− e−M)T (2.1)

Ṅ(t) = eC − fN + g
T 2

h+ T 2
N − pNT −KN(1− e−M)N (2.2)

L̇(t) =−mL+ j
D2T 2

k +D2T 2
L− qLT + (r1N + r2C)T

− uNL2 −KL(1− e−M)L+
pILI

gI + I
+ vL(t) (2.3)

Ċ(t) = α− βC −KC(1− e−M)C (2.4)

Ṁ(t) = −γM + vM(t) (2.5)

İ(t) = −µII + vI(t) (2.6)

D = d
(L/T )l

s+ (L/T )l
, (2.7)

where the time denoted functions vL(t), vM(t), and vI(t) are the drug intervention terms

for tumor infiltrating lymphocyte (TIL), chemotherapy drug, and interleukin-2 (IL-2),

respectively.

To obtain data which could mimic real-life clinical data, we will use time-domain

simulations of a nonlinear ODE model. In Section 4.2, we will provide more detailed

discussion for the main characteristics of our proposed model, before defining the data

generation procedure itself.
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2.2.2 Finding Optimal Treatment Solutions

Given a set of mathematical models (for example, ODEs), optimal control theory is one

of the mathematical optimization methods for deriving control policies. It was originally

introduced by Pontryagin et al. (1962) as a convenient method of finding a control law

for a given system such that a certain optimality criterion is achieved. A control problem

usually includes an objective functional that is a function of state and control variables.

The objective functional takes one or more functions as an argument and returns a

number.

There exists the inevitable trade-offs involved in cancer treatment because many anal-

yses show that large amounts of chemotherapy will kill the tumor, but it may also kill the

patient. In the context of mathematically modelling cancer growth with chemotherapy,

because of this implicit understanding that chemotherapy has damaging side effects, it

is common to frame an optimal control problem so that the total amount of drug is min-

imized (Matveev and Savkin 2002; Fister and Panetta 2003). It is appealing to use an

optimal control strategy to accomplish this, since the solution of it may cure the patient

as fast as possible with the minimized dose level.

A simple abstract framework goes as follows. Given a dynamical system with input

of IL-2 u1(t), input of chemotherapy u2(t), and the size of the tumor at the end of the

treatment period C(t), define an objective functional to be minimized. The objective

functional is the sum of the path costs, which usually take the form of an integral over

time, and the terminal costs, which is a function only of the terminal state, tf . Thus,

this objective functional typically takes the form

J(u1, u2) =

∫ t=tf

t=0

λ1u1(t) + λ2u2(t)dt+ C(tf ).

Here, finding the optimal treatment strategy is the equivalent of minimizing J .

In optimal control theory, establishing the existence of the solution is the first task.

Mathematically, using the fact that the solution to each state equation is bounded, the
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existence of an optimal control for many problems can be determined using the theories

developed by Fleming and Rishel (1975), Seierstad and Sydsaeter (1987), and Hartl et

al. (1995) (Filippov-Cesari’s theorem). Then, characterizing the optimal control can be

accomplished by using Pontryagin’s maximum principle (a necessary condition) (Pon-

tryagin et al., 1962), by solving the Hamilton-Jacobi-Bellman equation (a sufficient con-

dition), or by using other conditions from Kamien and Schwarz (1991) or the generalized

Legendre-Clebsch conditions (Krener, 1977).

Although optimal control theory is promising, in some situations finding the solution

can be very challenging. The optimal solution depends on the complexity of the mathe-

matical model, the objective functional and the state constraints. One disadvantage of

optimal control is its sensitivity to the choice of objective functionals. For instance, Fis-

ter and Donnelly (2005) demonstrated qualitatively different treatment strategies based

on the use of different objective functionals. These differences show the importance of

defining an objective functional that most accurately reflects the toxicities of a particular

drug along with the objective of the treatment strategy. Some objective functionals can

be theoretically analyzed more tractably than others. de Pillis et al. (2007a) provided

an example to illustrate this. In their study, they analyzed two types (quadratic and

linear controls) of objective functionals for the models of chemotherapy. In the quadratic

case, the control quickly moves to a small value, then gradually decreases, however in the

linear control it is essentially turned off (appears to be the so-called bang-bang control).

Since the amount of drug being delivered to the patient is small, the quadratic control

treatment is comparable to the linear bang-bang control case in that the tumor is reduced

by the same magnitude over the same time frame. Treatments based on both functionals

were successful in reducing the tumor. Although the quadratic and linear controls have

similar behavior in the administration of the chemotherapy drug, applying the control

in a linear fashion to their model is somewhat problematic. When dealing with linear

controls, singular representations are difficult to determine, and the possibility of a sin-
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gular control can not be ruled out. So in most situations, suitable objective functionals

need to be defined to capture the tumor cell population and the amount of drug used for

the therapy. It will be important to choose the correct functional and the appropriate

constraints since it is difficult to say exactly what these are before analyzing the model.

Another limitation of optimal control is that usually only the simple models with a

small number of variables can be analyzed theoretically. When the mathematical models

are very complex with a large number of variables and parameters, it is difficult to

seek optimal bang-bang solutions successfully. For example, see the model (2.1)–(2.7) of

mixed immuno-chemotherapy of tumor in de Pillis et al. (2006; 2007b). Although there

are conditions in which the controls exist singularly, and this may be the best strategy

for minimizing a tumor burden, the characterizations of the singular control can not be

explicitly determined in some settings.
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3 Reinforcement Learning, Q-Learning, and Their

Approximations

3.1 Introduction

Our goal in this chapter is to introduce the reinforcement learning theory, which will

be used to discover optimal therapies in clinical cancer trials. From a computer science

perspective, reinforcement learning is the first field to address the computational issues

that arise when learning from interaction with an environment in order to achieve long-

term goals (Sutton and Barto, 1998). Moreover, in contrast with adaptive design and

optimal control introduced in previous chapters, reinforcement learning (Q-learning) is a

model-free method which can be used for finding individualized therapies. This approach

we explore is much more focused on goal-directed learning from interaction with the

environment than other approaches to machine learning.

Multiple scientific fields have made contributions to reinforcement learning — ma-

chine learning, operations research, control theory, psychology, and neuroscience, to name

but a few. Reinforcement learning has been applied successfully in a number of area,

and has produced some successful practical applications. These applications range from

robotics and control to industrial manufacturing and combinatorial search problems such

as computer game playing (Kaelbling, Littman, and Moore, 1996). One example is that

reinforcement learning has been used to teach an autonomous controller to fly a helicopter

upside down (see Figure 1), demonstrating unequivocally the potential of reinforcement

learning for solving problems that are complex and counter-intuitive (Ng et al., 2006).



Another most convincing application is TD-gammon, a system that learns to play the

game of Backgammon by playing against itself and learning from the results, described

by Gerald Tesauro in (Tesauro, 1994; 2002). TD-gammon reaches a level of play that is

superior to even the best human players. Recently, there has been some interest in the

application of reinforcement learning algorithms to problems from the fields of manage-

ment science and operations research. In an interesting paper by Gosavi, Bandla, and

Das (2002), reinforcement learning is applied to airline yield management, and the aim

is to find an optimal policy for the denial/acceptance of booking requests for seats in

various fare classes. A second example is Crites and Barto (1998), where reinforcement

learning is used to find a (sub)optimal control policy for a group of elevators. In both

the above papers, the authors report that reinforcement learning based methods out-

perform the best and most often used standard algorithms. A marketing application is

described in Pednault, Abe, and Zadrozny (2002), where a target selection decision in

direct marketing is seen as a sequential problem.

This chapter is organized as follows. In Section 3.2, we describe the definition of

reinforcement learning in a simplified setting, one that does not involve multiple agents

to act in more than one situation. In Section 3.2.1, we show why the value function

(function of states or state-action pairs) is the unique solution to the Bellman equation.

The temporal-difference learning is introduced and discussed in Section 3.2.2. At the

end of Section 3.2.2, we take a step closer to the Q-learning problem, which is one of the

most important breakthroughs in reinforcement learning. In addition, in Section 3.3–3.5,

we discuss three recent flexible techniques from the machine learning literature, support

vector machines (SVM), support vector regression (SVR), and extremely randomized

trees (ERT), as our main methods to fit Q-functions and to learn an optimal policy using

a training data set.
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3.2 Reinforcement Learning and Q-Learning

Inspired by related psychological theory in computer science, reinforcement learning is a

sub-area of machine learning. A detailed account of the history of reinforcement learn-

ing is found in Sutton and Barto (1998). The basic process of reinforcement learning

involves trying a sequence of actions, recording the consequences of those actions, statis-

tically estimating the relationship between actions and consequences, and then choosing

the action that results in the most desirable consequence. In our reinforcement learning

design, the thing a patient interacts with is called the “environment”, which may indicate

the complex system consisting of the human body and more sources of error and greater

restrictions on what can be measured. While these interactions continually happen, we

choose a sequence of actions applied to the patient and the environment responds to

those actions and provides feedback. To be specific, we use S and A to denote random

variables, where S represents the set of environmental “states” and A represents the

set of possible “actions”. Here “states” may represent individual patient covariates and

“actions” can be denoted by various treatments or dose levels. Both variables can be

discrete or continuous. Define time-dependent variables St = {S0, S1, . . . , St}, and simi-

larly, define At = {A0, A1, . . . , At}. We use lower case letters, such as s and a, to denote

the realized values of the random variables S and A, respectively. Also, for convenience,

define st = {s0, s1, . . . , st}, and similarly, at = {a0, a1, . . . , at}. We assume the finite

longitudinal trajectories are sampled at random according to a distribution P . Such a

distribution is composed of the unknown distribution of each St conditional on previous

(St−1,At−1). We denote these unknown conditional densities as {f0, . . . , fT}, and denote

expectations with respect to the distribution P as E.

As a consequence of a patient’s treatment, after each time step t, the patient receives

a numerical reward rt. This could be denoted as a function, which maps to a single

number the key elements: previous state st, action at, and current state st+1. When
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t = 0, 1, . . . , T , this process can be described by

rt = R(st, at, st+1).

Reinforcement learning is learning what to do, how to map situations from state space

S to action space A, and depending on what our goal is, how to choose at to maximize

or minimize the expected discounted return:

Rt = rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T =
T∑

k=0

γkrt+k.

In this equation, γ is the discount rate (0 ≤ γ ≤ 1), which means, rewards that are

received in the future are geometrically discounted according to γ. Additionally, we can

interpret γ in another way. It can be seen as a control to balance the agent’s immediate

rewards and future rewards. If γ = 0, we easily see that Rt = rt, and we only need to

learn how to choose at so as to maximize or minimize the immediate reward rt. As γ

approaches 1, we take future rewards into account more strongly. In the extreme case,

when γ = 1, we fully maximize or minimize rewards over the long run.

Another key element of a reinforcement learning system is an exploration “policy”,

p, which maps state st and action at−1 to the probability pt(a | st, at−1) (the probability

that action a is taken given history {st, at−1}). If the policy is possibly non-stationary

and non-Markovian but deterministic, we denote πt(st, at−1) = at. In other words, policy

πt as a step in a sequence of decision rules {π1, . . . , πT} is an action. Let the distribution

Pπ denote the distribution of training data whereby the policy π is used to generate

actions. Then we can denote expectations with respect to the distribution Pπ by an Eπ.

Let Π be the collection of all policies, and expectation Eπ ranges are over π ∈ Π. For

simplicity and with no loss of generality, in our study, we mainly concentrate on the goal

of discovering which treatment yields a maximized reward for a patient. So seeking the

policy that maximizes the expectations with respect to the sum of the rewards over the

time trajectories is the ultimate goal of the study.
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3.2.1 Value Functions and the Bellman Equation

Efficiently estimating the value function is the most important component of almost all

reinforcement learning algorithms. The value function is defined as a function of a state

or state-action pair, and the function represents the total amount of reward an agent can

expect to accumulate over the future, starting from a given state. Recalling that Π is

the set of all policies, we define the value function V (s) to be the expected return when

starting in s under a policy π ∈ Π. This is formally denoted as

V (s) = Eπ

[
Rt | st = s

]
= Eπ

[ T∑

k=0

γkrt+k | st = s
]
. (3.1)

We are more interested in defining the time-dependent value function for history (st, at−1),

that is,

Vt(st, at−1) = Eπ

[ T∑

k=0

γkrt+k | St = st,At−1 = at−1

]
. (3.2)

Equation (3.1) and (3.2) are called the state-value functions for policy π and the action-

value function for policy π in Sutton and Barto (1998, page 69), respectively.

A fundamental property of value functions used throughout reinforcement learning is

that they satisfy particular recursive relationships. To see this, first let T =∞, then we

extend equation (3.2) as follows,

Vt(st, at−1) = Eπ

[ ∞∑

k=0

γkrt+k | St = st,At−1 = at−1

]

= Eπ

[
rt + γ

∞∑

k=0

γkrt+k+1 | St = st,At−1 = at−1

]

= Eπ

[
rt + γVt+1(St+1,At) | St = st,At = at

]

=
∑

at

πt(st+1, at)
∑

s′

Pass′
[
Ra
ss′ + γVt+1(s′)

]
,

where

Pass′ = Pr{st+1 = s′ | st = s, at = a}

and

Ra
ss′ = E

[
rt | st = s, at = a, st+1 = s′

]
.
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The last two equations are two forms of the Bellman equations for Vt(st, at−1). The Bell-

man equation was first introduced by Bellman (1957). The Bellman equation expresses

the relationship between the value of a state and the values of its successor states: the

value of the start state is equivalent to the value of the expected next state plus the

expectation of the reward along the way. It is worth noting that the value function

Vt(st, at−1) is the unique solution to its Bellman equation.

Before we consider seek the best policy to maximize the reward, we describe the

optimal value function and optimal policy here first. The optimal value function is

simply defined as

V ∗t (st, at−1) = max
π∈Π

Vt(st, at−1) = max
π∈Π

Eπ

[ T∑

k=0

γkrt+k | St = st,At−1 = at−1

]
.

The optimal policy is defined as a policy which yields the value function Vt(st, at−1) with

the highest value. Although there may be more than one, we denote all the optimal

policies by π∗. Based on the existence of an optimal policy, we can establish the Bellman

optimality equation, which expresses the fact that the value of a state under an optimal

policy must equal the expected return for the best action from the state. Thus, the

Bellman optimality equation for V ∗t (st, at−1) is derived as follows:

V ∗t (st, at−1) = max
at

Eπ∗
[ ∞∑

k=0

γkrt+k | St = st,At−1 = at−1

]

= max
at

Eπ∗
[
rt + γ

∞∑

k=0

γkrt+k+1 | St = st,At−1 = at−1

]

= max
at

E
[
rt + γV ∗t+1(St+1,At) | St = st,At = at

]

= max
at

∑

s′

Pass′
[
Ra
ss′ + γV ∗t+1(s′)

]
.

It is clear that the optimal policy, π∗, must satisfy

π∗t (st, at−1) ∈ argmax
at

E
[
rt + γV ∗t+1(St+1,At) | St = st,At = at

]
.
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Modern techniques in mathematical and computational areas have stimulated the

developments of many methods for estimating the optimal value functions or optimal

policies. Many of the existing methods can be categorized into one of the following

two classes: dynamic programming and temporal-difference learning (Sutton and Barto,

1998). Bellman (1957) first provided the “dynamic programming” term to show how

these methods are useful to a wide range of problems. Minsky (1961) first described the

connection between dynamic programming and reinforcement learning. In classical dy-

namic programming methods, “policy evaluation” and “policy improvement” (Bellman

1957; Howard 1960) refer to the computation of the value function and the improved

policy, respectively. The computation in both methods requires an iterative process.

Combining these two methods together, we obtain two other methods called “policy it-

eration” and “value iteration” (Puterman and Shin 1978; Bertsekas 1987). Although

dynamic programming can be applied to many types of problems, it is restricted to solv-

ing reinforcement learning problems under the Markov assumption. If this assumption

is violated, it may not be possible to find an exact solution. Additionally, dynamic pro-

gramming for solving reinforcement learning problems requires knowledge of a complete

and accurate model of the environment. Specifically, for instance, it requires Pass′ to

be fully observed. This may be unrealistic in the clinical trial setting because of the

heterogeneity in the model across individual patients.

In contrast, in reinforcement learning an agent does not necessarily know the reward

function and the state-transition function. Both the reward and the new state that result

from an action are determined by the environment, and the consequences of an action

must be observed by interacting with the environment. In other words, reinforcement

learning agents are not required to possess a model of their environment. This aspect

distinguishes reinforcement learning from dynamic programming. In the next section

we will discuss temporal-difference learning, which is a reinforcement learning algorithm

that does not need such a model to find an optimal policy in an MDP.
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3.2.2 Temporal-Difference Learning and Q-Learning

In the previous section we have defined optimal value functions and optimal policies, and

we have reviewed the Bellman optimality equation and dynamic programming methods

for obtaining an optimal policy based on the Markov property, assuming that we already

have a model of the environment. Actually, even if we have a complete and accurate

model of the environment’s dynamics, it is usually not possible to directly compute an

optimal policy by just solving the Bellman optimality equation. This section examines

model-free learning, that is, temporal-difference (TD) learning, which was first introduced

by Sutton (1988).

One fundamental expression of TD-learning is the incremental implementation. This

implementation requires less memory for estimates and less computation. The general

form is

new estimate← old estimate + stepsize
[
target− old estimate

]
.

Specifically, if we replace estimate with value function, target with reward function, and

denote stepsize as α, then in this case TD learning becomes

Vt(St,At−1)← Vt(St,At−1) + α
[
rt + γVt+1(St+1,At)− Vt(St,At−1)

]
. (3.3)

Roughly speaking, the TD method bases its incremental implementation in part on

an existing estimate. Recalling the Bellman equation in the previous section, we know

that

Vt(st, at−1) = Eπ

[ ∞∑

k=0

γkrt+k | St = st,At−1 = at−1

]

= Eπ

[
rt + γ

∞∑

k=0

γkrt+k+1 | St = st,At−1 = at−1

]

= Eπ

[
rt + γVt+1(St+1,At) | St = st,At = at

]
.

In these equations, under a policy π, each V represents the true value of a state-action

pair, but this is not known. Thus, in (3.3), the TD target uses the current estimate V
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instead of the true V . TD learning as discussed above is also known as TD(0) learning,

which is a special case of TD(λ) learning. Almost any TD(λ) learning belongs to the

“eligibility traces” problem. For more details on these issues, see Sutton and Barto (1998)

and Kaelbling, Littman, and Moore (1996).

One of the most important off-policy TD-learning methods is Watkins’ Q-learning

(Watkins, 1989; Watkins and Dayan, 1992). Q-learning handles discounted infinite-

horizon Markov decision process (MDP). It requires no prior knowledge, is exploration

insensitive and easy to implement, and is so far one of the most popular and seems to

be the most effective model-free algorithm for learning from delayed reinforcement. In

the situation where we don’t have any information about the transition function or the

probability distribution of the random variables, such a model-free method can be used

to find optimal strategies from the unknown system.

Q-learning no longer requires estimating the value function, it estimates a Q-function

instead. The algorithm therefore utilizes such a Q-function which calculates the quality

of a state-action combination as follows:

Q : S × A→ R.

The motivation of Q-learning is that once the Q functions have been estimated, we only

need to know the state to determine an action, without the knowledge of a transition

model that tells us what state we might go to next. Before learning has started, Q returns

a fixed value which is chosen by the designer. Then, at each time point t, the learner

is given a reward value which is calculated for each combination of a state st ∈ St, and

action at ∈ At. The core of the algorithm is a simple value iteration update. It assumes

the old value and makes a correction based on the new information as follows (Sutton

and Barto, 1998):

Qt(st, at)← Qt(st, at) + αt(st, at)×
[
rt + γmax

at+1

Qt+1(st+1, at+1)−Qt(st, at)

]
,

where rt is the current reward given at time t, αt(st, at) ∈ (0, 1] the learning rate (or
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learning step-size). αt(st, at) is a constant which determines to what extent the newly

acquired information will override the old information, that is, how fast learning takes

place. A factor of 0 will make the learner not learn anything, while a factor of 1 would

make the learner fully update based on the most recent information. We can interpret γ as

a control to balance a learners’ immediate rewards and future rewards. As γ approaches

1, we take future rewards into account more strongly. In the following context, we let

γ = 1, which means we fully maximize rewards over the long run. For simplicity of

computation, we ignore the step-size (let αt(st, at) = 1) for the rest of the article. All

results hold with minor modifications when the step-size effects are considered.

From a statistical perspective, the optimal time-dependent Q-function is

Q∗t (st, at) = E
[
rt + γV ∗t+1(St+1) | St = st,At = at

]
.

Note that since

V ∗t (st) = max
at

Q∗t (st, at−1, at),

it is relatively easy to determine an optimal policy, which satisfies

π∗t (st, at−1) = argmax
at

Q∗t (st, at−1, at).

One-step Q-learning has the simple recursive form

Qt(St,At)← rt + γmax
at+1

Qt+1(St+1,At, at+1). (3.4)

Under some appropriate and rigorous assumptions, Qt has been shown to converge to Q∗

with probability 1 (Watkins and Dayan, 1992). More general convergence results were

proved by Jaakkola, Jordan, and Singh (1994) and Tsitsiklis (1994).

In learning a non-stationary non-Markovian policy with one set of finite horizon tra-

jectories (training data set)

{S0, A0, r0, S1, A1, r1, . . . , AT , rT , ST+1},

we denote the estimator of the optimal Q-functions based on this training data by Q̂t,

where t = 0, 1, . . . , T . According to the recursive form of Q-learning in (3.4), we must
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estimate Qt backwards through time t = T, T − 1, . . . , 1, 0, that is, estimate QT from the

last time point back to Q0 at the beginning of the trajectories. And we set QT+1 equal

to 0 in the first equation, yielding

QT (ST ,AT )← rT + γmax
aT+1

QT+1(ST+1,AT , aT+1).

In order to estimate each Qt, we denote Qt(st, at; θ) as a function of a set of parameters

θ, and we allow the estimator to have different parameter sets for different time points t.

Once this backwards estimation process is done, we save the sequence {Q̂0, Q̂1, . . . , Q̂T}

for estimating optimal policies,

π̂t = argmax
at

Q̂t(st, at; θt),

where t = 0, 1, . . . , T , and thereafter use these optimal policies to test or predict for a

new data set.

There are many other promising learning methods based on modification or extension

of Q-learning, for example, Blatt, Murphy, and Zhu (2004) proposed A-learning. How-

ever, some properties of these methods have not yet been carefully investigated. Due

to the simple equation expressions and the minimal amount of computation, we restrict

our attention to Q-learning for discovering effective therapeutic regimens in our clinical

settings.

3.3 Support Vector Machines (SVM)

As we mentioned earlier in Chapter 2, either adaptive design or optimal control must

proceed by using explicit mathematical models. This requirement yields a limitation for

discovering optimal dynamic treatment regimens that are tailored to individual patient

needs. Thus we introduced a powerful technique from computer science and statistics

— reinforcement learning, specifically Q-learning — to our clinical trial design setting.
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Q-learning could circumvent this situation by its emphasis on learning through the indi-

vidual’s interaction with its environment, without relying on any complete models of the

environment. We call this application to clinical trial design as “Reinforcement Learning

Design” or “Q-learning Design”.

In Section 3.3–3.5, our main aim is to estimate the Q-function for finding the cor-

responding optimal policy. However, challenges may arise due to the complexity of the

structure of true Q-function, including the high-dimension of the states variable S, the

high-dimension of the action variable A, or when the action space is continuous. In order

to obtain the estimator of interest, many authors consider different approaches in re-

cent years. Murphy (2005b), Blatt, Murphy, and Zhu (2004) and Tsitsiklis and van Roy

(1996) showed that Q-learning estimating can be viewed as approximating least squares

value iteration. The parameters θt for the t-th Q-function satisfy

θt ∈ argmin
θ

En

[
rt + max

at+1

Qt+1(St+1,At, at+1; θt+1)−Qt(St,At; θ)
]2

.

This is consistent with the one-step update of Sutton and Barto (1998) with γ = 1,

and furthermore, it is generalized to permit function approximation and non-stationary

Q-functions. Another simple and standard estimating form is in Murphy et al.’s (2007)

method. They claimed that Q-learning is a generalization of the familiar regression

model. In their sequential multiple assignment randomized trial (SMART) design, there

are only two treatment decisions. Thus construction of the decision rules should be

addressed from the second decision to the first decision (backwards). For instance, in

the second decision, two treatment options are available. If we denote A2 as the second

decision, it is coded as 1 if the switch is assigned and is coded as 0 if augmentation is

assigned. Based on the SMART data, the regression model for Q2 is

Q2(S,A2; θ) = β0 + β1S + (β2 + β3S)A2,

where θ = (β0, β1, β2, β3) and S indicates the state value (a summary of side effects) up to

the end of the first decision point. When the dimension of actions is low, linear regression
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methods should be adequate, but in more extreme cases these methods can be question-

able. Considering the one possible set {a0, a1, . . . , an} with n ≥ 3, the linear regression

method may only yield the optimal decision as a0 or an due to the maxaQ(S,A, a; θ)

term in the Q-learning implementation, therefore, quadratic regression or higher order

polynomial regression may be desired for estimating the Q-function. The complex and

unclear structure of the Q-function has motivated the vast literature on nonparametric

machine learning and statistical methods.

In this section, we introduce support vector machines (SVMs) as our main technique

for fitting Q-functions. The foundation of SVMs was developed by Vapnik (1995). SVMs

have received increasing attention from the statistical community as well as from com-

puter science and engineering, and they keep gaining popularity due to many attractive

features and promising empirical performance. The SVM paradigm is originally designed

for the classification problem, and it provides a compromise between the parametric and

the nonparametric approaches. SVMs are often involved in the solution of learning the

relationship between the x and y variables in a training data set {(xi,yi) ∈ X×Y }ni=1. In

Q-learning, the variable X may be replaced by {S,A} that represents states and actions

information, and Y may be replaced by r that represents numerical rewards. In this

section, we first illustrate the basic ideas of SVM for the typical two-group classification

problem. Then we briefly discuss support vector regression (SVR) as an extension of

SVM in Section 3.4.

The classification problems solved by SVMs can be restricted to consideration of

the two-class problem without loss of generality. A classification task usually involves

training and testing data which consist of some data instances. Each instance in the

training set contains one “class label” (y) and several “attributes” (x). SVM is used as

a statistical technique for classifying samples {(Φ(xi), yi) ∈ X × Y }ni=1, where yi = +1

or yi = −1 indicates the two possible classes, and Φ is a function mapping the attributes

xi into a “feature space”. This nonlinear transformation Φ guarantees that any data set
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becomes arbitrarily separable as the data dimension grows (Cover 1965).

Denoting wTΦ(x) + b = 0 as any separating hyperplane in the feature space, we can

rescale w and b so that the following equations hold for i = 1, . . . , n:

wTΦ(xi) + b




≥ 1, if yi = +1

≤ −1, if yi = −1.

The distance between two classes 2/‖w‖ is called the margin. SVM works, roughly,

by finding the hyperplane in the feature space which separates the yi = +1 class from

the yi = −1 class with the largest margins. If the mapped data have become linearly

separable, the following equation has to be solved by maximizing the margin:

min
w,b
‖w‖2

subject to yi(w
TΦ(xi) + b) ≥ 1, i = 1, . . . , n. (3.5)

Consider the solution of equation (3.5), and denote it by w∗ and b∗. Points Φ(xi) that

satisfy

yi

[
(w∗)TΦ(xi) + b∗

]
= 1

are called support vectors (a sparse solution). As seen in Figure 2, SVMs calculate a

linear hyperplane by looking for margin maximation, so the solution only depends on

the support vectors (Cortes and Vapnik 1995). Usually support vectors just represent

a small fraction of the sample, therefore, this fact implies that, the evaluation of the

decision function D∗(x) = (w∗)TΦ(xi) + b∗ is computationally efficient. This attractive

property is especially useful when dealing with data sets with a low ratio of sample size to

dimension (for example, microarray data analysis). SVMs take advantage of this sparsity

in the data and are effective even for problems where the data is of dimensionality as

large as the number of samples.

A positive definite function, K(x1,x2) =
∑∞

i=1 λiΦi(x1)TΦi(x2) called the kernel

(Mercer 1909), plays an important role in SVMs. If we restrict f(x) = wTΦ(x) to
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belong to a reproducing kernel Hilbert space (RKHS), then these functions can be ex-

pressed in an alternative form f(x) =
∑

j αjK(xj,x), with w replaced by
∑

j αjΦ(xj).

As a result, the knowledge of the explicit mapping Φ and the vector w is not needed,

we need only know the kernel K in its close form. Some basic examples of kernels (with

some kernel parameters) are:

1. Linear kernel K(x,y) = xTy: the mapping is the identity.

2. Polynomial kernel K(x,y) = (γxTy + c)d, γ > 0: which maps the data into a finite

dimensional vector space.

3. Gaussian kernel or Radial Basis Function (RBF) K(x,y) = exp(−γ‖x − y‖2):

which maps the data into an infinite dimensional space.

4. Sigmoid kernel K(x,y) = tanh(γxTy + c): which is a multi-layer perceptron.

We now consider the more general case where the mapped data remain nonseparable.

Let L indicate a loss function, then SVMs address this nonseparability problem by finding

a function f that minimizes an empirical error of the form
∑n

i=1 L(f(xi), yi). The specific

loss function is called hinge loss (Figure 3), defined as

L(f(xi), yi) = (1− yif(xi))+, (3.6)

with (x)+ = max(x, 0). Many authors (Ivanov 1976; Phillips 1962; Tikhonov and Arsenin

1977) express the search for a max-margin classifier as a convex optimization problem that

maximizes the margin between the data points with a hinge loss penalization for miss-

classified or almost miss-classified data points. The most widely used setting minimizes

Tikhonov’s regularization functional, which consists of solving the optimization problem:

min
f∈HK

1

n

n∑

i=1

(1− yif(xi))+ + µ‖f‖2
K , (3.7)

where µ > 0 controls the trade-off between the fit of the solution f to the data (measured

by L) and the approximation capacity of the function space that f belongs to (measured
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by ‖f‖K). Based on the work of Kimeldorf and Wahba (1970), it is easy to show that

(3.7) can be restated as

min
w,b

1

n

n∑

i=1

(1− yi(wTΦ(xi) + b)+ + µ‖w‖2. (3.8)

In order to avoid the nondifferentiable problem due to the hinge loss function in (3.6),

Lin et al. (2002) demonstrated that solving problem (3.8) is equivalent to solving

min
w,b,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi

subject to yi(w
TΦ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n, (3.9)

where ξi are called slack variables and C = 1/2µn. Although (3.9) is the most widely used

SVM formulation, in practice, it is usually changed to a standard optimization problem

(convex and quadratic) equipped with Lagrange multipliers (λi):

min
λ

1

2

n∑

i=1

n∑

j=1

λiλjyiyjK(xi,xj)−
n∑

i=1

λi

subject to
n∑

i=1

yiλi = 0,

0 ≤ λi ≤ C, i = 1, . . . , n.

In conclusion, SVMs operate within the framework of regularization theory by min-

imizing an empirical risk. SVMs are consistent (with good asymptotic properties), and

their empirical error converges to the expected error, and under some conditions, con-

verges to the Bayes optimal rule. A significant advantage of the SVM is that sparse

solutions to classification problems are usually obtained. This fact facilitates the appli-

cation of SVMs to problems that involve data with high dimensional attributes.

In Q-learning, we define attributes xit ∈ St × At, i = 1, . . . , n, t = 0, . . . , T , where

St = {S0, S1, . . . , St} and At = {A0, A1, . . . , At}, and we assign the label index yit to each

reward value rit. In many cases the reward function maps (st, at, st+1) to a set which
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consists of some discrete integer number, and if the size of the set is larger than 2, it

is a multicategory classification problem. These kind of problems are often treated as

a sequence of binary classifications. For example, the “one versus rest” approach solves

k binary problems through sequential training. But this method may be suboptimal

and may yield poor performance due to the absence of a dominating class (Lee, Lin

and Wahba 2004). Liu and Shen (2006) proposed a novel multicategory ψ-learning to

treat all classes simultaneously. ψ-learning can deliver accurate multi-class prediction

and outperform its SVM counterpart. Other multi-class classification methods can be

found in Crammer and Singer (2001; 2003) and Lee, Lin and Wahba (2004). However,

when the number of the classes is large (more than 4) or in the extreme case where rt is

continuous, and the numerical value is not only the label index but it has meaning, then

the multicategory learning methods mentioned above may not be adequate. Therefore,

support vector regression (SVR), one of the most popular extensions of SVM, is motivated

and discussed in the next section.

3.4 Support Vector Regression (SVR)

SVMs were developed to solve the classification problem, but recently they have been

extended to the domain of regression problems (Vapnik, Golowich, and Smola 1997).

From a mathematical perspective, the support vector regression function is also derived

within the RKHS context. In contrast with SVM, one of the popular loss functions

involved in SVR is known as the ε-insensitive loss function (Figure 4), which is defined

as

L(f(xi), yi) = (|f(xi)− yi| − ε)+,

where ε > 0 (Vapnik, 1995). That is, as long as the absolute difference between the actual

and the predicted values is less than ε, the empirical loss is zero, otherwise there is a cost

which grows linearly. SVR is more general and flexible than least-square regression, since
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it allows a predicted function that has at most ε deviation from the actually obtained

targets yi for all the training data. Other possible loss functions include quadratic loss,

Laplace loss, and Huber loss. Similar to equation (3.7), by using the ε-insensitive loss

function, the following optimization problem arises:

min
f∈HK

1

n

n∑

i=1

(|f(xi)− yi| − ε)+ + µ‖f‖2
K . (3.10)

Once more, similar to (3.8), problem (3.10) can be restated as

min
w,b

1

n

n∑

i=1

(|wTΦ(xi) + b− yi| − ε)+ + µ‖w‖2. (3.11)

Since the ε-insensitive loss function is also nondifferentiable, (3.11) can be solved by

appropriate optimization methods, that is,

min
w,b,ξ,ξ′

1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ′i),

subject to (wTΦ(xi) + b)− yi ≤ ε+ ξi,

yi − (wTΦ(xi) + b) ≤ ε+ ξ′i,

ξi, ξ
′
i ≥ 0, i = 1, . . . , n. (3.12)

In practice, the following dual convex quadratic formulation with Lagrange multipliers

(λi) is used:

min
λ,λ′

1

2
(λ− λ′)TK(xi,xj)(λ− λ′)−

n∑

i=1

(yi − ε)λ′i +
n∑

i=1

(yi + ε)λi,

subject to

n∑

i=1

(λi − λ′i) = 0,

0 ≤ λi, λ
′
i ≤ C, i = 1, . . . , n. (3.13)

The ideas underlying SVR are similar but slightly differ from those within the margin-

based classification scheme. In ε-insensitive SVR (3.12), the slack variables ξi and ξ′i allow

for some data points in the feature space to stay outside the confidence band determined
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by ε. In other words, the goal is to find a function that has at most ε deviation from the

actually obtained targets yi for all the training data. Errors with deviation larger than ε

are not accepted. Once the above formulation is solved to get the optimal λi and λ′i, the

approximation function at x is given by:

f(x) =
n∑

i=1

(λ′i − λi)K(xi,x) + b. (3.14)

There are several examples where SVR are successfully used in practice, and they

perform better than other classification methods. See Chen, Chang, and Lin (2001)

and Smola and Scholkopf (2004). To achieve good performance by using SVM/SVR,

some procedures such as data scaling, kernel and related parameter selection need to be

examined very carefully. We discuss those procedures in detail in our simulation example

in Section 4.2.

3.5 Extremely Randomized Trees (ERT)

The complex and unclear structure of the Q-function has also partly motivated the vast

literature on nonparametric statistical methods and machine learning. Ernst, Geurts,

and Wehenkel (2005) and Geurts, Ernst, and Wehenkel (2006) proposed an extremely

randomized trees (ERT) method, which is called the Extra-Trees algorithm, for batch

mode reinforcement learning. Unlike classical classification and regression trees such as

Kd-tree or pruned CART tree, this nonparametric method builds a model in the form of

the average prediction of an ensemble of regression trees (called a random forest). More-

over, each tree built by this algorithm consists of strongly randomizing both attribute

and cut-point choice while splitting a tree node. In addition to the number of trees G,

this method depends on one parameter, called K, the maximum number of cut-direction

tests at each node, and nmin, the minimum number of elements at each leaf required to

split a node. The choice of an appropriate value of G depends on the resulting compro-
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mise between computational requirements and prediction accuracy. K determines the

strength of the randomization, for K = 1, the splits are chosen totally independent of the

output variable. A larger nmin yields smaller trees but higher bias. The ERT algorithm

builds G trees using the training data set. To determine a test at a node for each tree,

this algorithm randomly selects K attributes with K randomized cut-points. A score

is calculated for each test and then the one which has the highest value is kept. The

algorithm stops splitting a node when the number of elements in the node is less than

nmin. The complete ERT algorithm is given in Figure 5.

Compared to standard tree-based regression methods, ERT successfully leads to sig-

nificant improvements in precision. Additionally, it can dramatically decrease variance

while at the same time decreasing bias, and it is very robust to outliers. ERT has been

recently demonstrated in a simulation of HIV infection (Ernst et al., 2006) and adaptive

treatment of Epilepsy (Guez et al., 2008). While this algorithm reveals itself to be very

effective to extract a well-fitted Q from the data set, it has one drawback: the computa-

tional efficiency is relatively low especially with increasing sample size of patients in the

training data set.
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Figure 1: Helicopter in autonomous sustained hover (Ng et al., 2006).
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Figure 2: Linear separating hyperplane, margin, and support vectors defined in Support

Vector Machines (SVM).
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FIG. 2. (a) Nonseparable mapped data in the feature space. (b) Normalized hyperplane for the data in (a).

how SVMs make the problem well-posed. As a conse-

quence, the decision function calculated by the SVM

will be unique, and the solution will depend continu-

ously on the data.

The specific loss function L used within the SVM

approach is L(yi, f (xi )) = (1 − yif (xi ))+, with

(x)+ = max(x,0). This loss function is called hinge

loss and is represented in Figure 3. It is zero for well

classified points with |f (xi )| ≥ 1 and is linear other-

wise. Hence, the hinge loss function does not penalize

large values of f (xi ) with the same sign as yi (under-

standing large to mean |f (xi )| ≥ 1).

This behavior agrees with the fact that in classifi-

cation problems only an estimate of the classification

boundary is needed. As a consequence, we only take

into account points such that L(yi, f (xi )) > 0 to deter-

mine the decision function.

To reach well-posedness, SVMs make use of regu-

larization theory, for which several similar approaches

have been proposed [33, 60, 73]. The widest used

setting minimizes Tikhonov’s regularization function-

al [73], which consists of solving the optimization

problem

min
f ∈HK

1

n

n∑

i=1

(
1 − yif (xi )

)
+ + μ‖f ‖2

K,(3.1)

where μ > 0, HK is the RKHS associated with the

kernel K , ‖f ‖K denotes the norm of f in the RKHS

and xi are the sample data points. Given that f be-

longs to HK , it takes the form f (·) = ∑
j αjK(xj , ·).

As in Section 2, f (x) = 0 is a hyperplane in the fea-

ture space. Using the reproducing property 〈K(xj , ·),
K(xl , ·)〉K = K(xj ,xl) (see [3]), it holds that ‖f ‖2

K =
〈f,f 〉K = ∑

j

∑
l αjαlK(xj ,xl).

In (3.1) the scalar μ controls the trade-off between

the fit of the solution f to the data (measured by L) and

the approximation capacity of the function space that f

belongs to (measured by ‖f ‖K ). It can be shown [11,

FIG. 3. Hinge loss function L(yi, f (xi )) = (1 − yif (xi ))+: (a) L(−1, f (xi )); (b) L(+1, f (xi )).

Figure 3: Hinge loss function L(f(xi), yi) = (1− yif(xi))+. In (a), L(f(xi),−1); in (b),

L(g(xi),+1).
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other classification methods and in their worst case,

SVM performance is at least similar to the best non-

SVM method. For instance, in protein subcellular

location prediction [31], we have to predict pro-

tein subcellular positions from prokaryotic sequences.

There are three possible location categories: cyto-

plasmic, periplasmic and extracellular. From a pure

classification point of view, the problem reduces to

classifying 20-dimensional vectors into three (highly

unbalanced) classes. Prediction accuracy for SVMs

(with a Gaussian kernel) amounts to 91.4%, while

neural networks and a first-order Markov chain [75]

have accuracy of 81% and 89.1%, respectively. The re-

sults obtained are similar for the other problems. It is

important to note that there is still room for improve-

ment.

Regarding image processing, we will overview two

well-known problems: handwritten digit identification

and face recognition. With respect to the first problem,

the U.S. Postal Service data base contains 9298 sam-

ples of digits obtained from real-life zip codes (divided

into 7291 training samples and 2007 samples for test-

ing). Each digit is represented by a 16 × 16 gray level

matrix; therefore each data point is represented by a

vector in R
256. The human classification error for this

problem is known to be 2.5% [22]. The error rate for

a standard SVM with a third degree polynomial kernel

is 4% (see [22] and references therein), while the best

known alternative method, the specialized neural net-

work LeNet1 [39], achieves an error rate of 5%. For

this problem, using a specialized SVM with a third

degree polynomial kernel [22] lowers the error rate

to 3.2%—close to the human performance. The key to

this specialization lies in the construction of the deci-

sion function in three phases: in the first phase, a SVM

is trained and the support vectors are obtained; in the

second phase, new data points are generated by trans-

forming these support vectors under some groups of

transformations, rotations and translations. In the third

phase, the final decision hyperplane is built by training

a SVM with the new points.

Concerning face recognition, gender detection has

been analyzed by Moghaddam and Yang [45]. The data

contain 1755 face images (1044 males and 711 fe-

males), and the overall error rate for a SVM with a

Gaussian kernel is 3.2% (2.1% for males and 4.8%

for females). The results for a radial basis neural net-

work [63], a quadratic classifier and FLDA are, respec-

tively, 7.6%, 10.4% and 12.9%.

Another outstanding application of SVMs is the de-

tection of human faces in gray-level images [56]. The

problem is to determine in an image the location of

human faces and, if there are any, return an encoding

of their position. The detection rate for a SVM using

a second degree polynomial kernel is 97.1%, while for

the best competing system the rate is 94.6%. A number

of impressive photographs that show the effectiveness

of this application for face location can be consulted

in [57].

5. EXTENSIONS OF SVMS: SUPPORT
VECTOR REGRESSION

It is natural to contemplate how to extend the kernel

mapping explained in Section 2 to well-known tech-

niques for data analysis such as principal component

analysis, Fisher linear discriminant analysis and clus-

ter analysis. In this section we will describe support

vector regression, one of the most popular extensions

of support vector methods, and give some references

regarding other extensions.

The ideas underlying support vector regression are

similar to those within the classification scheme. From

an intuitive viewpoint, the data are mapped into a fea-

ture space and then a hyperplane is fitted to the mapped

data. From a mathematical perspective, the support

vector regression function is also derived within the

RKHS context. In this case, the loss function involved

is known as the ε-insensitive loss function (see [76]),

which is defined as L(yi, f (xi )) = (|f (xi )−yi |−ε)+,

ε ≥ 0. This loss function ignores errors of size less

than ε (see Figure 6). A discussion of the relation-

ship of the ε-insensitive loss function and the ones

used in robust statistics can be found in [28]. Using

this loss function, the following optimization problem,

similar to (3.1) (also consisting of the minimization of

FIG. 6. The ε-insensitive loss function L(yi, f (xi )) =
(|f (xi ) − yi | − ε)+, ε > 0.

Figure 4: ε-insensitive loss function L(f(xi), yi) = (|f(xi)− yi| − ε)+.
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ERNST, GEURTS AND WEHENKEL

Build a tree(T S )
Input: a training set T S

Output: a tree T ;

• If

(i) #T S < nmin, or

(ii) all input variables are constant in T S , or

(iii) the output variable is constant over the T S ,

return a leaf labeled by the average value 1
#T S ∑l o

l .

• Otherwise:

1. Let [i j < t j] = Find a test(T S).

2. Split T S into T S l and T S r according to the test [i j < t].

3. Build Tl = Build a tree(T S l) and Tr = Build a tree(T S r) from these subsets;

4. Create a node with the test [i j < t j], attach Tl and Tr as left and right subtrees of this
node and return the resulting tree.

Find a test(T S )
Input: a training set T S

Output: a test [i j < t j]:

1. Select K inputs,{i1, ..., iK}, at random, without replacement, among all (non constant) input
variables.

2. For k going from 1 to K:

(a) Compute the maximal and minimal value of ik in T S , denoted respectively iT S
k,min and

iT S
k,max.

(b) Draw a discretization threshold tk uniformly in ]iT S
k,min, i

T S
k,max]

(c) Compute the score Sk = Score([ik < tk],T S)

3. Return a test [i j < t j] such that S j = maxk=1,...,K Sk.

Figure 26: Procedure used by the Extra-Trees algorithm to build a tree. The Totally Randomized
Trees algorithm is obtained from this algorithm by setting K = 1 and by dropping the
stopping condition (iii).

548

Figure 5: Complete algorithm used by extremely randomized trees (ERT) to build a

random forest (Geurts et al., 2006). T S denotes training set, (il, ol) denotes input-output

pair.
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4 Reinforcement Learning Treatment Strategies for

A Virtual Cancer Trial

4.1 Clinical Reinforcement Trials

In the previous chapter, we introduced reinforcement learning to cancer clinical trials.

The main advantage offered by using reinforcement learning in clinical trials is that

discovery is included in the trial itself, not just evaluation as is the case for standard

Phase III clinical trials. There are a number of ways this discovery occurs, but one of the

key ways is by the manner in which patient differences are leveraged to enable discovery

of effective treatments missed by standard clinical trial designs. Suppose, for example,

we have two drugs, A and B, and a continuous biomarker X which varies from patient to

patient. Suppose also that when X is less than or equal to its median value M , treatment

A is twice as effective as treatment B; but that when X is greater than M , treatment

A is half as effective as treatment B (i.e., it is harmful). In a standard randomize trial,

the benefit of treatment A would be washed out and completely undetected. However, if

we leveraged individual differences, we would find out that treatment A is very effective

when given to people for whom X ≤M but not given when X > M . Thus the proposed

approach is not just a nuanced improvement over standard clinical trials but a paradigm

shift in methods for discovering effective treatments.

In this section, we propose a new design and analysis method for a new kind of

clinical trial for life threatening diseases, “clinical reinforcement trials”. The design for

these trials consists of three aspects:



First, a finite, reasonably small set of decision times is identified. These times could

be either specific time points measured from trial onset or decision points in the treat-

ment process such as the starting times of a each new line of cancer treatment. For

example, in the simulation study below, we create a synthetic cancer treatment setting

where patients are monitored monthly for six months and treatment for each month is

determined based on patient biomarker values available at the beginning of the month.

As a second example, in NSCLC, it may be more appropriate to have one decision time

at the beginning of the first line of treatment, a second decision time at the beginning of

the second line of treatment, and possibly a third decision time at the beginning of the

third line of treatment. The third line is currently only available for certain patients and

there is only one FDA approved third line treatment, and so decision possibilities are

severely limited at the third decision time. Note that the decision time in this instance is

really a stage of treatment and not a calendar time. Other decision time sets, including

hybrid variants of the previous two examples, are also possible.

Second, for each decision time, a set of possible treatments to be randomized is

identified. The choice of treatments can be a continuum as mentioned earlier or a finite

set and can include restrictions which may be functions of observed variables such as

biomarkers. For example, in our simulations we restrict the dose of chemotherapy at

the first decision time to be above a threshold so that all patients are guaranteed some

initial treatment. When the set of treatments is finite, the proposed design reduces to a

SMART design.

Third, a utility function is identified which can be assessed at each time point and

which contains an appropriately weighted combination of outcomes available at each

interval between decision times and at the end of the final treatment interval. In our

simulation study below, we use a combination of tumor size and overall patient health

as our utility function.

Once the design has been determined, patients are then recruited into the study
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and randomized to the treatment set under the protocol restrictions at each decision

point, outcome measures used to compute patient state and utility are obtained, and

each patient is followed through to completion of the protocol or until the end of the

trial. The patient data is collected and Q-learning is applied, in combination with either

SVR or ERT applied at each time point as described above, to estimate the optimal

treatment rule as a function of patient variables and biomarkers, at each decision time.

We allow the Q-functions to differ from decision time to decision time. We will show

in the simulation study below that our proposed approach is able to generate treatment

rules that lead to improved patient outcomes. One open question which we will pursue

in a later paper is sample size guidelines. Fortunately, it appears from our simulation

studies that the sample sizes required are similar to and not larger than the sizes required

for typical phase III trials.

4.2 A Virtual Clinical Reinforcement Trial

In this section we simulate a sequentially randomized clinical reinforcement trial as a

numerical example to examine the performance of the proposed design and methodol-

ogy. To demonstrate that the optimal therapy found using Q-learning is superior to any

other regimens, the treatments at each course are specified in terms of a continuum of

dose levels of a single drug, and the comparisons we consider are between the optimal

regimen identified from our proposed clinical reinforcement trial procedure and various

constant-dose regimens. We first present a simple mathematical model for disease and

chemotherapy which we will be using for our study. We then present the specific im-

plementation of Q-learning which we will use for the simulation. This section concludes

with a presentation of the results of the simulation study.
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4.2.1 A Simple Chemotherapy Mathematical Model

As discussed in Section 2.2.1, there exists a large volume of literature concerning math-

ematical models of chemotherapy. To construct a set of training data reflecting a hy-

pothetical cancer trial, we need a simple chemotherapy mathematical model capable

of describing the fundamental principles governing tumor progression and responses to

therapy. The goal for a chemotherapy mathematical model is to allow for sufficient com-

plexity so that the model will qualitatively generate clinically observed in vivo tumor

growth patterns, while simultaneously maintaining sufficient simplicity to admit analy-

sis. Thus, inspired by discussions in Section 2.2.1, a sophisticated model we present must

exhibit: (1) tumor growth in the absence of chemotherapy; (2) patients’ negative wellness

outcomes in response to chemotherapy; (3) the drug’s capability for killing tumor cells

while also increasing toxicity; (4) an interaction between tumor cells and patient well-

ness. To obtain data which satisfy these requirements, we propose a system of ordinary

difference equations (ODE) modeled as follows:

Ẇt = a1(Mt ∨M0) + b1(Dt − d1),

Ṁt =
[
a2(Wt ∨W0)− b2(Dt − d2)

]
× 1{Mt > 0}, (4.1)

where time (with month as unit) t = 0, 1, . . . , T − 1. Note that these changing rates

yield a piecewise linear model over time. Without loss of trade-off between toxicity and

efficacy, the piecewise linear model can be implemented very easily. For simplicity, we

here consider tumor size instead of number of tumor cells. Mt denotes the tumor size

at the specified time, M0 indicates the value of tumor size when the patient is at the

beginning of the study. Wt measures the negative part of wellness (toxicity), similarly, W0

indicates the initial value of patient’s wellness. Dt denotes the chemotherapy drug level.

The value of other different parameters for the model are fixed as: a1 = 0.1, a2 = 0.15,

b1 = 1.2, b2 = 1.2, d1 = 0.5 and d2 = 0.5. The indicator function term 1{Mt > 0} in

(4.1) represents the feature that when tumor size is absorbed to 0, the patient has been
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cured, and there is no future recurrence of the tumor. Note that this model is not meant

to reflect a specific cancer but to reflect a generic plausible cancer created for illustration.

Before generating simulated clinical data, it is easy to notice that the dynamic model

has two state variables (Wt, Mt) and one action (treatment) variable (Dt). The state

variables can be obtained via:

Wt+1 = Wt + Ẇt,

Mt+1 = Mt + Ṁt,

where t = 0, 1, . . . , T − 1 are the T decision times we will utilize in our simulated trial

design. We generate a simulated clinical reinforcement trial with N = 1000 patients

(replicates) with each simulated patient experiencing 6 months (T = 6) of treatment

based on this ODE model. The initial values W0 and M0 for each patient are gener-

ated from independent uniform (0, 2) deviates. The treatment set consists of doses of a

chemotherapy agent with acceptable dose range of [0, 1], where the value 1 corresponds

to the maximum acceptable dose. The values chosen for chemotherapy drug level D0 are

simulated from the uniform (0.5, 1) distribution, moreover, D1, . . . , D5 are drawn accord-

ing to a uniform distribution in the interval (0, 1). Thus our treatment set is restricted

differently at decision time t = 0 than at other decision times to reflect a requirement

that patients receive at least some drug at onset of treatment. Various other distribu-

tion settings for the action space are possible, and clinical researchers have tremendous

flexibility when designing clinical reinforcement trials.

Figure 6 provides a disease progression example of one patient to show dynamic treat-

ment results with influence of different levels of chemotherapy drug. The system is clearly

sensitive to the chemotherapy dosing regimen. Note that when the dose level switches

to low, the tumor size grows to a dangerous level. Moreover, the toxicity increases (de-

creases) once the dosage is changed to a higher (lower) level. By applying reinforcement

learning to this crude computer model, we aim at uncovering the ideal regimen which

has the best trade-off between efficacy and toxicity.
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4.2.2 Q-function Estimation and Optimal Regimen Discovery

We now return to Q-learning. Based on the proposed ODE model, we can generate a

simulated clinical trial that provides a set of simulated finite horizon trajectories (the

training data),

{S0i, Ai0, ri0, Si1, Ai1, ri1, . . . , Ai5, ri5, Si6}1000
i=1 ,

where each two-dimensional state variable St consists of (Wt,Mt), and each continuous

action variable At is a dose level Dt. In terms of optimality criterion, we seek effective

regimens that maximize a sum of numerical rewards over six months. We assume each

reward only depends on the states observed right before and after each action, that is,

when t = 0, 1, . . . , 5,

rt = R(st, at, st+1).

We decompose this reward function rt into three parts: R1(Dt,Wt+1,Mt+1) due to sur-

vival status, R2(Wt, Dt,Wt+1) due to wellness effects, and R3(Mt, Dt,Mt+1) due to tumor

size effects. It can be described by:

R1(Dt,Wt+1,Mt+1) = −60, if patient died,

otherwise,

R2(Wt, Dt,Wt+1) =





5 if Wt+1 −Wt ≤ −0.5,

−5 if Wt+1 −Wt ≥ 0.5,

0 otherwise,

R3(Mt, Dt,Mt+1) =





15 if Mt+1 = 0,

5 if Mt+1 −Mt ≤ −0.5, but Mt+1 6= 0,

−5 if Mt+1 −Mt ≥ 0.5,

0 otherwise.
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In most phase III clinical trials, the primary endpoint of clinical interest is the overall

survival (OS), that is why we put −60 as a high penalty for patient’s death. Additionally,

we assigned the relative high value 15 as a bonus when a patient is cured.

We assume that survival status depends on both toxicity and tumor size. For each

time interval (t− 1, t], t = 1, . . . , 6, we define the hazard function as λ(t), where

logλ(t) = µ0 + µ1Wt + µ2Mt,

and µ0, µ1, and µ2 are constant pre-specified parameters. In particular, assigning µ1 =

µ2 = 1 indicates that we consider wellness and tumor size to have an equally weighted

influence on the survival rate. The survival function is

∆F (t) = exp [−∆Λ(t)],

where ∆Λ(t) =
∫ t
t−1

λ(s)d(s) is the cumulative hazard function. The reason the term

R1(Dt,Wt+1,Mt+1) is expressed as a function of Wt+1 and Mt+1 is that the hazard func-

tion is only determined by the states at the end of each time interval. The conditional

probability of death for each time interval is p = 1 −∆F (t). The survival status (with

death coded as 1) is drawn according to a Bernoulli distribution B(p). Overall, by letting

γ = 1 (we would like to fully consider maximizing rewards in the long run), the one-step

Q-learning with recursive form is utilized:

Qt(St, At)← rt + max
at+1

Qt+1(St+1, At, at+1),

where rt = R1(Dt,Wt+1,Mt+1) +R2(Wt, Dt,Wt+1) +R3(Mt, Dt,Mt+1), t = 0, . . . , 5.

To obtain the estimator Q̂t, we apply SVR and ERT respectively for fitting Qt back-

ward, and save the results as {Q̂5, Q̂4, . . . , Q̂0}. Figure 7 illustrates the treatment plan

and relevant Q-function estimation procedures. Because of the inner product property

of the kernel in SVM/SVR, scaling the data before applying SVR is very important.

Another advantage for scaling is to avoid states with greater numeric ranges dominating

those with smaller numeric ranges. In our simulation studies, every variable is scaled to
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zero mean and unit variance, and the center and scale values are saved and used for later

predictions. To do fitting of Q̂t via SVR, we select the Gaussian kernel (or Radial Basis

Function), K(x,y) = exp (−ζ‖x− y‖2), because the Gaussian kernel can nonlinearly

map samples into a higher dimensional space. Consequently, it can handle the case when

the relation between rewards (labels) and states and actions (attributes) is nonlinear. In

the SVR approach there are two hyperparameters involved with the Gaussian kernel: ζ

and the tuning parameter C. To maximize the performance of the proposed method, we

apply a grid search to choose C and ζ by using cross-validation. Trying exponentially

growing sequences of C and ζ is recommended as a practical method to identify good

hyperparameters. Specifically, for each t in our simulated example, given a straightfor-

ward coarse grid search with C = 2−5, 2−3, . . . , 215 and ζ = 2−15, 2−13, . . . , 23, we apply

cross-validation to each candidate pair (C, ζ), and then select the pair that yields the

highest cross-validation rate. To fit Q̂t via ERT, we need to be careful with the choice

of parameters G, K and nmin. Based on empirical studies, Geurts et al. (2006) suggest

that the default value of K should be equal to the number of attributes in the regression

problem. Thus we fix K as the dimension of state variables plus the dimension of action

variables, which is equal to 3 in our case. To maintain good precision and small bias, G

and nmin have been chosen equal to 50 and 2, respectively.

In order to evaluate how the above estimated treatment policies perform, we generate

an additional 200 patients having initial values W0 and M0 randomly chosen from the

same uniform distribution adopted in the training data. Based on the sequential estima-

tor {Q̂5, Q̂4, . . . , Q̂0}, when t = 0, 1, . . . , 5, the individualized optimal policy calculations

are carried out using:

π̂t = argmax
at

Q̂t(st, at; θ̂t).

The entire algorithm for Q-function estimation and optimal regimen discovery is

summarized as follows:

1. Inputs: a set of training data consisting of attributes x (states st, actions at) and
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index y (rewards rt), i.e., {(st, at, rt)i, t = 0, . . . , T, i = 1, . . . , N}.

2. Initialization: Let t = T + 1 and Q̂T+1 be a function equal to zero on St ×At.

3. Iterations: repeat computations until stopping conditions are reached (t = 0):

(a) t← t− 1.

(b) Qt is fitted with the support vector regression (SVR) or extremely randomized

trees (ERT) through the following recursive equation:

Qt(st, at) = rt + max
at+1

Qt+1(st+1, at+1).

(c) Use cross-validation to choose tuning parameters C and ζ to fit Qt via SVR

with Gaussian kernel; choose plausible values of parameters K,G, nmin, and

fit Qt via ERT (K = 3, G = 50, nmin = 2 in our simulation).

4. Given the sequential estimates of {Q̂0, Q̂1, . . . , Q̂5}, the sequential individualized

optimal polices {Â0, . . . , Â5} for new patients in the testing dataset can be predicted

one by one.

4.2.3 Simulation Results

In our analysis, we first evaluate the operating characteristics of 10 different constant

doses (0.1, 0.2, . . ., 0.9, 1.0). For comparison, we also evaluate patients’ subsequent

outcomes (Wt and Mt) conducted by our estimated optimal regimens. In addition, we

examine the properties of cumulative survival probability and the computed optimal

strategies. All of these numbers are averaged over 200 repeated simulations. When the

simulated testing trial ends at t = 6, all the results of our comparison are summarized in

Table 1.
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We used a sample size of 1000 for our simulated clinical reinforcement trial and esti-

mated the optimal treatment policy using both SVR and ERT. For the sake of simplicity,

unless stated explicitly otherwise, we only show figure results for the SVR method, since

we obtain very similar results when we estimate optimal therapy using ERT. On Figure 8

and 9, trajectories (wellness and tumor size, respectively) that would have been observed

by putting the patients on constant-dose regimens have been plotted. Note that the

wellness measure has been inverted so that larger values represent worse health. This is

to make comparisons with tumor size more direct. We test the behavior of estimated op-

timal regimens on 200 new simulated patients by comparing the outcomes using π̂t from

the Q̂t (t = 0, . . . , 5) against the results obtained using 10 different fixed Dt (t = 0, . . . , 5)

in the ODE model. As shown in both Figure 8 and Figure 9, the optimal regimens de-

rived from Q-learning do not have better performance compared to some constant dosing

regimens. This is not beyond our expectation. Because when higher dose level decreases

tumor size, it can bring a higher toxicity simultaneously, and vice versa. However, due

to our reward functions structure, the estimated optimal policies have an appealing fea-

ture to seek a good balance between toxicity and efficacy. Figure 10 illustrates that the

estimated optimal regimen is absolutely superior to any constant-dose regimen when we

combine toxicity and efficacy (Wt+Mt) as one comparison criterion. Table 1 agrees with

this conclusion by respectively presenting W6 + M6 = 3.269 (SVR) or W6 + M6 = 3.194

(ERT) as the lowest number compared to the others. Most notably, although the regi-

men derived from simulated data shows suboptimal results in the first three months, it

achieves the best performance eventually. These findings agree well with reinforcement

learning’s substantially powerful long-run capabilities.

Figure 11 provides the dynamic optimal regimen for an individual patient as well

as the effect values (toxicity and efficacy) in the whole trial. This simulated patient

comes into the trial with initial condition W0 = 0.30 and M0 = 1.05. Optimal therapy

begins with a very high dose D0 = 1.00 aimed at reducing the patient’s tumor burden.
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The patient is then monitored for the following month and then treated with another

two consecutive high doses (D1 = 0.74, D2 = 1.00). In the third month, the tumor size

suddenly reaches 0, i.e., the patient has been cured. As expected, we find that the dosage

to be administrated rapidly reduces to 0 in the following months. Patients who recover

after three months will not receive high dosing anymore because the high dose will likely

result in unnecessarily high toxicity. As we can see, rather than the constant dose level

for each t, optimal therapy usually has an up-and-down structure due to its adaptive

properties. This is an important result to demonstrate that the optimal policy can be

approximated very well by reinforcement learning.

At last, compared to all fixed-level doses, Table 1 and Figure 12 clearly show that

the therapy found using the Q-learning approach with either SVR and ERT has better

performance in terms of cumulative survival probability (CSP) over 6 months. Table 1

also shows that both SVR and ERT appear to perform equally well with comparable

computational burden. Additionally, we plot the average optimal strategies (regimens)

in Figure 13. As we can see, rather than the constant dose level for each t, optimal

therapy usually has an up-and-down structure due to its adaptive feature.

4.2.4 Summary of Virtual Cancer Trial Results

We have developed a reinforcement learning method for discovering effective therapeutic

regimens in clinical trial design. To investigate the validity of such a purely data (model-

free) driven approach, we have generated clinical data by relying on a set of hypothetical

(and simplistic) but plausible ODE models. Based on these simulated data, we have found

that reinforcement learning is indeed able to identify individualized optimal regimens in

clinical trials which consists of multiple courses of treatment. Such regimens can reduce

tumor burden while taking into account a drug’s toxicity. Treatment delay effects, which

is an important issue that must be considered for longer term outcomes, are fully assessed
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by this method. Another appealing feature of our approach is the incorporation of Q-

learning methodology with SVR and ERT. Hence even in a data set comprised of high-

dimensional attributes, our method is capable of obtaining promising results without

much computational burden.

Since a choice of reward function plays a crucial role in reinforcement learning, there-

fore, it is very important to consider alternative rewards directly reflecting primary end-

points (such as overall survival, progression-free survival, side effects, etc.) in clinical trial

designs. One of many feasible approaches is to perform retrospective analysis to identify

clinical factors that influence the outcome of patients treated with chemotherapy drugs,

and to build a model that can be used in practice to predict long-term survival in this

patient population. Such a model may assist us in building a more plausible reward

function, and thereafter determining a regimen which is as close as possible to an opti-

mal policy. To conduct such clinically relevant reward functions, we believe that close

collaboration with clinical researchers is required. An interesting illustrative example of a

related strategy is shown by Ernst et al. (2006). They consider discounted instantaneous

costs (which is a continuous function directly associated with actions) as their reward

function: the rationale behind this comes from a validated and identified HIV model

(Adams et al., 2004).

Since the work of this study is motivated by the clinical question of proper treatment

for Stage IIIB/IV NSCLC, as examined by several clinical trials conducted at the UNC

Lineberger Comprehensive Cancer Center (LCCC), an important application is to refine

our model to more accurately reflect NSCLC and the associated treatment issues. The

goal of the study is to compare strategies for multiple lines of treatment for patients

with advanced NSCLC who have not been treated previously with systemic therapy.

In Chapter 5 we will apply reinforcement learning to discover individualized optimal

regimens while restricting attention to first-line and second-line only, since there is only

one approved agent (Erlotinib) indicated for third-line treatment (Shepherd et al., 2005).
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Figure 6: Representation of the disease progression for a patient treated with a ran-

domized chemotherapy drug. The solid curve represents the negative part of patient’s

wellness, the dashed curve represents the tumor size, and the dotted curve represents the

randomized treatment.

57



W0, M0 W1, M1 W4, M4 W5, M5 W6, M6

D0 D1 D4 D5

Q̂0 = r0 + max Q̂1

Q̂1 = r1 + max Q̂2

Q̂4 = r4 + max Q̂4

Q̂5 = r5

r0 r1 r4 r5

1

Figure 7: Treatment plan and the procedure for obtaining the sequential estimator

{Q̂5, Q̂4, . . . , Q̂0}.
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Figure 8: Plots of averaged value of “wellness” for 10 different constant-dose regimens

compared to optimal regimen. The results are based on 200 patients. Dashed curves

represent the constant-dose regimens, and a solid curve represents the optimal regimen.
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Figure 9: Plots of averaged value of “tumor size” for 10 different constant-dose regimens

compared to optimal regimen. The results are based on 200 patients. Dashed curves

represent the constant-dose regimens, and a solid curve represents the optimal regimen.
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Figure 10: Plots of averaged value of “wellness + tumor size” for 10 different constant-

dose regimens compared to optimal regimen. The results are based on 200 patients.

Dashed curves represent the constant-dose regimens, and a solid curve represents the

optimal regimen.
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Figure 11: Representation of the optimal treatment for a patient with W0 = 0.30 and

M0 = 1.05. The optimal treatment sequence (Dt ∈ {1.00, 0.74, 1.00, 0.04, 0.01, 0.01})
is computed by the reinforcement learning methods on clinical data generated by 1000

patients. The solid curve represents the negative part of patient’s wellness, the dashed

curve represents the tumor size, and the dotted curve represents the estimated optimal

regimen.
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Figure 12: Bar plots of averaged cumulative survival probability at 6 months for 10

different constant-dose regimens compared to optimal regimen. The results are based on

200 patients.
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Figure 13: The averaged optimal sequential therapies (Dt ∈ {0.72, 0.51, 0.27, 0.43, 0.32,

0.30}) for 200 patients. Dashed curves represent constant-dose regimens, and a solid

curve represents the optimal regimen.
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5 Reinforcement Learning Treatment Strategies Based

on Support Vector Regression in a Non-small Cell

Lung Cancer Trial

5.1 Introduction

In Chapter 4 we utilized reinforcement learning to discovery optimal regimen for a virtual

cancer trial. In this chapter, we will further extend our methodology to directly address

the assessment of first and second lines of treatment in advanced non-small cell lung

cancer (NSCLC).

There has been significant recent research activity in developing therapies that are tai-

lored to each individual. Finding such therapies in treatment settings involving multiple

decision times is a major challenge. For example, in treating advanced NSCLC, patients

typically experience two or more lines of treatment, and many studies demonstrate that

three lines of treatment can improve survival for patients. Discovering tailored therapies

for these patients is a very complex issue since effects of covariates (such as established

prognostic factors or biomarkers) must be modelled within the multi-stage structure. In

this dissertation, we present a new kind of NSCLC clinical trial, based on reinforcement

learning methods from computer science, that statistically finds an optimal individualized

treatment plan at each decision time which is a function of available patient prognostic

information.

For NSCLC patients who present with a good performance status and stage IIIB/IV

disease, platinum-based chemotherapy is the primary treatment which offers a modest



survival advantage over best supportive care (BSC) alone. First-line treatment primarily

consists of doublet combinations of platinum compounds (cisplatin or carboplatin) with

gemcitabine, pemetrexed, paclitaxel, or vinorelbine (Scagliotti et al., 2008; Sandler et

al., 2006; Pirker et al., 2008). These drugs modestly improved the therapeutic index

of therapy, but no combination seemed superior. More recently, the addition of beva-

cizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), to

carboplatin and paclitaxel has been shown to produce a higher response rate and longer

progression-free survival and overall survival times (Sandler et al., 2006). However, this

phase III study was only designed to investigate patients with histologic evidence of

non-squamous cell lung cancer. Therefore, in first-line treatment of NSCLC trial, a

very important clinical question is what tailored treatment to administer based on each

individual’s prognostic factors (including the patient’s histology type, toxicity profile,

smoking history, and VEGF level, etc.), among many approved first-line treatments.

All patients with advanced NSCLC who initially received a platinum-based first-line

chemotherapy inevitably experience disease progression. Approximately 50-60% of pa-

tients on recent phase III first-line trials received second-line treatment (Sandler et al.,

2006). Similar to the first-line regimen, three FDA approved second-line agents (doc-

etaxel, pemetrexed, and erlotinib) appear to have similar response and overall survival

efficacy but very different toxicity profiles (Shepherd et al., 2000; Ciuleanu et al., 2008;

Shepherd et al., 2005). The choice of agent should also mainly depend on a number

of factors, including the patient’s comorbidities, toxicity from previous treatments, and

the risk for neutropenia. A better understanding of prognostic factors in the second-line

setting may allow clinicians to better select patients for second-line therapy and lead to

better designed second-line trials.

The current standard treatment paradigm is to initiate second-line therapy at the

time of disease progression. Recently there have been two phase III trials that have

investigated other possible timings of initiating second-line therapy (Fidias et al., 2007;
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Ciuleanu et al., 2008). Both of these trials have revealed a statistically significant im-

provement in the progression-free survival, and a trend towards improved survival for the

earlier use of second-line therapy. However, in terms of considering overall survival as

the primary endpoint, a nonsignificant difference has been also revealed by these two tri-

als. Stinchcombe and Socinski (2009) claimed that even under the best of circumstances

not all patients will be benefit from the early initiation of second-line therapy. Hence

the proper selection of patients is also critical to determining the proper time for initi-

ation. Hence, despite the difficulty of discovering the individualized superior therapies

in second-line treatment, another primary challenge is to determine the optimal time

to initiate second-line therapy, either to receive treatment immediately after comple-

tion of platinum-based therapy, or to delay to another time prior to disease progression,

whichever results in the largest overall survival probability. The goal is to provide pa-

tients with non-cross-resistant therapies capable of obtaining better response rates and

longer survival time.

Some patients who maintain a good performance status and tolerate therapy without

significant toxicities will receive third-line therapy (Stinchcombe and Socinski, 2008).

Since there is only one FDA approved agent (Erlotinib) available for third-line treatment,

we restrict our attention to finding optimal therapies for first-line and second-line only.

Figure 14 illustrates the treatment plan and clinically relevant patient outcomes.

Therapy begins with first-line platinum-based doublets aimed at improving survival and

palliating disease-related symptoms without undue toxicity. The patient is then deliv-

ered to no more than 8 cycles of treatment as recommended by the American Society

of Clinical Oncology (ASCO). Socinski and Stinchcombe (2007) suggest the standard

initial duration of platinum-based therapy should be 3 to 4 cycles since four of the five

trials investigating the duration of platinum therapy in the first-line setting have revealed

equivalent survival with the shorter duration of therapy. Due to the effects of the ini-

tial treatment, generally patients experience disease progression within a median of 3-6
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months, and the median survival time observed is 8 to 10 months (Schiller et al., 2002;

Sandler et al., 2006). Approximately 30–40% of patients survive 1 year, and less than

15% survive 2 years (Bunn and Kelly, 1998). If the first line of treatment is successfully

completed without progression or death, then a second line of therapy is administered

sometime between the completion of first-line treatment and the time of first evidence of

disease pregression. Patients with a good performance status in second-line trials have a

median survival duration of approximately 9 months (Stinchcombe and Socinski, 2008).

Given the noncurative nature of chemotherapy in advanced NSCLC, the overall survival

time is defined as the primary endpoint.

The primary scientific goal of the trial is to select optimal compounds for first and

second-line treatments as well as the optimal time to initiate second-line therapy based

on prognostic factors yielding the longest averaged survival time. We create such new

trial based on a reinforcement learning method, called Q-learning, for maximizing the

averaged survival time of subgroup patients as a function of prognostic factors, treatment

decisions, and optimal timing. We take the reinforcement learning approach because de-

cisions must be made adaptively to various individuals during the trial, and this problem

is especially acute in multi-stage treatment. In Chapter 4 we introduced Q-learning to

cancer clinical communities and created a clinical reinforcement trial for discovering ef-

fective therapeutic regimens. By taking into account a drug’s efficacy and toxicity simul-

taneously, we demonstrated that reinforcement learning methodology not only captures

the optimal individualized therapies successfully, but also is able to improving longer-

term outcomes by considering delayed effects of treatment. While the trial proposed in

Chapter 4 used to identify the optimal treatment shares similarity to some cancers, the

structure (referred to optimal timing) is very different from NSCLC, so significant re-

finement for different optimal strategies identification is needed. Another challenge may

also arise due to the right censoring phenomena in realistic trials, and we will address

this issue in our new clinical reinforcement trial for NSCLC. In addition, in Chapter 4
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we just utilized simplistic integer numbers as the reward function in Q-learning to trade

off efficacy against toxicity. Thus it is important to consider some more plausible utility

functions such as progression-free survival, overall survival, or quality of life to reflect the

primary endpoint directly. In general cases, based on different reward functions chosen

by clinicians, optimal treatment strategies found by a clinical reinforcement trial could

be possibly more than one. In our NSCLC trial, we focus our attention on overall sur-

vival and treat it as the reward function, since this is arguably the most crucial clinical

outcome, although quality of life is also important.

The design has two main components: a clinical reinforcement trial for fair randomiza-

tion of patients among the different therapies in first and second-line treatments, as well

as time of initiating second-line therapy, and a confirmatory phase III trial for finding and

validating the optimal individualized therapies. Each new patient in the confirmatory

trial is more likely to be assigned at appropriate treatments and timing having longest

overall survival time, based on the performance of estimated optimal policies which are

learned from the clinical reinforcement trial. In order to successfully handle the complex

fact of heterogeneity in treatment across individuals and the possibility of right censored

individuals in an NSCLC trial, we incorporate a modified SVR called ε-SVR-C within a

Q-learning framework to fit Q-functions for each decision point.

The remainder of this chapter is organized as follows. In Section 5.2 – 5.3, we provide

a detailed description of the patient outcomes and refined Q-learning framework, followed

by an introduction to ε-SVR-C for estimating Q-functions with censored observations.

The NSCLC trial conduct and related computational issues are presented in Section 5.4.

In Section 5.5, we present a simulation study of the design to discover individualized

optimal treatment strategies. We close with a summary in Section 5.6.
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5.2 Reinforcement Learning Model Refinement

5.2.1 Patient Outcomes

Let t1 and t2 denote the decision time of first and second line treatment, respectively.

Given first-line chemotherapy, the indicator of the time to disease progression is denoted

by TP . t2 is also the time at the completion of first-line treatment, and is a fixed value

usually less than TP and determined by the number of cycles delivered in the first line of

chemotherapy. Denote the time of initiating second-line therapy by TM . Thus, according

to the description of treatment plan in Section 5.1, TM ∈ [t2, TP ]. At the end of first-line

therapy, t2, clinicians make a decision when to start TM . We let TD denote the time of

death from the start of therapy, i.e., the overall survival time. For patients who have

died before t2, let T1 denote the time from t1 to patient’s death. In this case, TD = T1.

Similarly, for patients who live beyond t2, let T2 denote the time from t2 to patient’s

death. Thus, for this kind of patient, TD = t2 + T2. Note that TD may less than TM .

Because of the possibility of right censoring, we define the patient’s censored time by

C and the indicator of censoring by δ. Right censoring may be due to several reasons,

including an adverse event so severe that therapy cannot be continued or the patient

chooses not to receive further therapy. We assume for simplicity that censoring is in-

dependent of death in this thesis. For convenience, we let YD = I(TD ∧ C > t2) and

ν = Pr(YD = 1), so T2 is defined only if YD = 1 and δ = 0. Denoting the last follow-up

time by T 0, we then can define T 0 = TD ∧ C ∧ t2 + I(TD ∧ C > t2)(T2 ∧ (C − t2)). The

settings for determining T1, C, TM , and T2 are summarized in Figure 15, including the

possibilities of death or right censoring either before or after second-line therapy.

Denote patient covariate values at the ith line by Oi = (Oi1, . . . , Oiq) for i = 1, 2.

Such covariates can include prognostic variables or biomarkers thought to be related

to outcome. In first-line therapy, we assume that the death time T1 depends on the
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covariates O1 and possible treatment D1 according to a possible function

[T1 | O1, D1] ∼ f1(O1, D1;α1),

where decision D1 only consists of a finite set of agents d1. If the patient survives long

enough to be treated by second-line therapy, we assume that the disease progression time

TP follows another distribution

[TP | O1, D1] ∼ f2(O1, D1;α2).

In addition, to account for the effects of initial timing of second-line therapy on survival,

T2 is given by

[T2 | O2, D1, D2, TM ] ∼ f3(O2, D1, D2, TM ;α3),

where D2 consists of a finite set of agents d2 and TM is a continuum of initiation times

for second-line therapy as described above. Therefore, this study is designed to identify

the the initiation time, TM , that is associated with the best combination of treatments

d1 and d2, while maintaining longest survival TD. Due to heterogeneities among patients,

biomarker-treatment interactions, and the large number of possible shapes of T2 as func-

tions of TM , functions f1, f2, and f3 can be linear or non-linear and may vary between

different groups of patient. Thus, incorporating Oi into model fi (i = 1, 2, 3) is quite

challenging, and such model-based approaches can easily become intractable (Thall et

al., 2007). Another important issue is accounting for delayed effects of first-line therapy.

It is possible that the treatment having a short disease progression time TP , by admin-

istering first-line therapy, is a good strategy for two-stage treatment protocols in terms

of overall survival time. Thall et al. (2007) claimed that the conventional model-based

approaches are not capable of handling this situation very well. Based on clinical data,

reinforcement learning is not only a model-free method which carries out treatment se-

lection sequentially with time-dependent outcomes to determine optimal individualized

therapy, but it can also improve longer-term outcomes by taking into account delayed

effects of treatments.
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5.2.2 Q-Learning Revisited

As mentioned in Section 3.2.2, the Q-learning (Watkins, 1989; Watkins and Dayan, 1992)

is one of the most widely used reinforcement learning methods. The core of the algorithm

is a simple value iteration update. It assumes the old value and makes a correction based

on the new information as follows (Sutton and Barto, 1998):

Qt(st, at)← Qt(st, at) + αt(st, at)×
[
rt + γmax

at+1

Qt+1(st+1, at+1)−Qt(st, at)

]
, (5.1)

where rt is the current reward given at time t, αt(st, at) ∈ (0, 1] the learning rate (or

learning step-size). We let γ = 1 to fully maximize rewards over the long run. For

simplicity of computation, we ignore the step-size (let αt(st, at) = 1) for the rest of the

article. All results hold with minor modifications when the step-size effects are considered.

Then model (5.1) can be simplified to one-step simple recursive form

Qt(st, at)← rt + max
at+1

Qt+1(st+1, at+1). (5.2)

The Q-learning algorithm attempts to find a policy π that maps states to actions the

learner ought to take in those states. π is possibly deterministic, non-stationary, and

non-Markovian. We denote the optimal policy by π∗t , which satisfies

π∗t = argmax
at

Qt(st, at).

In Chapter 4 we performed a simulation study of a simple Q-learning approach with

6 decision time points for discovering optimal dosing for treatment of a generic cancer.

While the results were encouraging, there remains much work to do before these meth-

ods can be applied to realistic cancer scenarios. For example, in Chapter 4, the choice

of treatments at each decision time point is taken from a continuum of dosing levels.

However, in NSCLC treatment with two decision time points, the action variables in the

second stage become two-dimensional (d2 and TM). Due to this significantly different

structure, a new methodology and model are needed. Moreover, the presence of cen-
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soring in the reward outcome means that a fundamentally new approach is required for

estimating the Q functions.

In our clinical setting we respectively denote state and action random variables by Oi

and Di for i = 1, 2. This is consistent with notations of prognostic factors or biomarkers

and treatment options used in Section 5.2.1. As mentioned in Section 5.1, we consider

survival time as the primary reward function. Specifically, by performing a treatment

d1, where d1 ∈ D1, the patient can transit from first line to second line. Such treatment

associated with prognostic factors provides the patient a progression time TP and T1 (T1

is defined only if YD = 0). TP is only used for determining TM . Moreover, D2, which

consists of two dimensional action variables including a possible discrete action (agent) d2

mixed with a continuous action (time) TM , provides the patient a survival time T2. While

taking into account possible right censoring in the first stage, such a reward function can

be formally defined as T1 ∧ C, plus the corresponding censoring indicator, if YD = 0 or

t2 if YD = 1, where T1 satisfies

T1 ∼ R1(o1, d1).

In the second stage, the reward function is defined by T2 ∧ (C − t2), where T2 satisfies

T2 ∼ R2(o2, d1, d2, TM).

Functions R1 and R2 coincide with f1 and f3 and are not observable in realistic trials. In

Q-learning, because for every state there are a number of possible treatments that could

be taken, each treatment within each state has a value according to how long the patient

will survive due to completion of that treatment. The scientific goal of our study is to find

an optimal policy to maximize patients’ overall survival time TD. This is accomplished

by learning which treatment (including starting time for second-line therapy) is optimal

for each state.

While learning a non-stationary non-Markovian optimal policy with one set of finite
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horizon trajectories (also called a training data set)

{O1, D1, TD ∧ C ∧ t2, O2, D2, T2 ∧ (C − t2), δ},

we denote the estimation of the optimal Q-functions based on this training data by Q̂t,

where t = 1, 2, 3. According to the recursive form of Q-learning in (5.2), we must estimate

Qt backwards through time, that is, use the estimate Q3 from the last time point back

to Q1 at the beginning of the trial. For convenience we set Q3 equal to 0. In order to

estimate each Qt, we denote Qt(Ot, Dt;θt) as a function of a set of parameters θt, and

we allow the estimator to have different parameter sets for different time points t. Once

this backwards estimation process is done, we save the sequence of Q̂1 and Q̂2, and we

thereafter use them to respectively estimate optimal treatment policies

π̂1 = argmax
d1

Q̂1(o1, d1;θ1)

and

π̂2 = arg max
d2,TM

Q̂2(o2, d2, TM ;θ2),

for new patients in a testing dataset. These estimated optimal policies should also be

evaluated in a follow-up confirmatory phase III trial comparing the optimal policy or

policies with the standard of care.

5.3 Support Vector Regression for Censored Subjects

A strength with Q-learning is that it is able to compare the expected survival of the

available treatments without requiring a model of the relationship. To achieve this, the

main task is to estimate the Q functions for finding the corresponding optimal policy.

However, challenges may arise due to the complexity of the structure of the true Q

function, specifically, the non-smooth maximization operator in recursive equations (5.2).

In the previous chapter we applied SVR as our main method to fit Q functions and

learn optimal policies using a training data set. Instead of the hinge loss function used
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in SVM, one of the popular loss functions involved in SVR is known as the ε-insensitive

loss function (Vapnik, 1995), which is defined as

L(f(xi), yi) = (|f(xi)− yi| − ε)+, (5.3)

where ε > 0.

Note that we have in the prior chapter assumed that all patients are followed up until

they die. In conducting an NSCLC trial, a common problem is the right censoring caused

by patients who do not complete the study and drop out of the study without further

measurements. Possible reasons for patients dropping out of the study include, adverse

reactions, lack of improvement, unpleasant study procedures, and other factors related

or unrelated to the trial procedure and treatments. For simplicity, we assume that right

censoring is independent of death.

In general, we denote interval censored data by (xi, li, ui)
n
i=1. If the patient experiences

the death event and TD is observed rather than being interval censored then we include

TD and denote such observation as (xi, yi). In other words, when we observe TD exactly

(δ = 0), we let li = ui = yi. Note that by letting ui = +∞ we can easily obtain a right

censored observation (xi, li,+∞).

One naive way to handle censored data within Q-learning by using SVR is to consider

only those samples for which the survival time TD are known exactly. Such an approach

which totally ignores censored data will reduce the sample size for statistical analysis and

inference. Thus the more patients that are censored, or the earlier they are censored,

the more unreliable the results will be. An SVR procedure that targets interval censored

subjects was introduced by Shivaswamy, Chu, and Jansche (2007). The key component

of their procedure is a loss function, defined as

L(f(xi), li, ui) = max(li − f(xi), f(xi)− ui)+.

However, this loss function dose not have ε-insensitive properties, that is, it does not

allow ε or other deviations from the predicted f(xi), especially when li = ui = yi. In
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this article, we propose a modified SVR algorithm with ε-insensitive loss function (called

ε-SVR-C) to make use of both survival time TD and censoring time C in the data set

and to reduce the potential bias which may caused by performing a classical SVR with

censored data.

Given the interval censored data set (xi, li, ui)
n
i=1, our modified loss function is defined

as

L(f(xi), li, ui) = max(li − ε− f(xi), f(xi)− ui − ε)+. (5.4)

The main difference between (5.3) and (5.4) is that yi is separated into two parts which

are replaced by li and ui, respectively. We remark that this loss function does not penalize

values of f(xi) if it is between li−ε and ui+ε. On the other hand, the cost grows linearly

if this output is more than ui + ε or less than li − ε. Figure 16 shows the loss function

of the modified SVR. Note that when ui = +∞, this loss function becomes one sided,

which means there is no empirical error if f(xi) ≥ li − ε. In addition, when the data is

not observed as censored, our modified SVR algorithm reduces to the classical SVR.

The parameter ε can be useful if the desired accuracy of the approximation can

be specified beforehand. Note that when ε = 0, our approach reduces to the method

proposed by Shivaswamy et al. (2007). Based on some small simulation studies, the

performance of our method is not very sensitive to the choice of ε (say, from 0 to 0.1).

This means, in our study, ε-SVR-C’s performance is very close to Shivaswamy et al.

(2007)’s method. However, since ε-insensitive tube is useful to control the proportion of

support vectors involved in approximation, we prefer ε-SVR-C throughout this thesis.

Denoting index sets L = {i : li > −∞} and U = {i : ui < +∞}, the corresponding

modified SVR optimization formulation is:

min
w,b,ξ,ξ′

1

2
‖w‖2 + C

(∑

i∈L

ξi +
∑

i∈U

ξ′i

)
,

subject to (wTΦ(xi) + b)− ui ≤ ε+ ξi, i ∈ U,

li − (wTΦ(xi) + b) ≤ ε+ ξ′i, i ∈ L,
77



ξi ≥ 0, i ∈ L; ξ′i ≥ 0, i ∈ U.

Similarly to classical SVR, the dual can be presented as follows by introducing Lagrange

multiplier λi:

min
λ,λ′

1

2
(λ− λ′)TK(xi,xj)(λ− λ′)−

∑

i∈L

(li − ε)λ′i +
∑

i∈U

(ui + ε)λi,

subject to
∑

i∈L

λ′i −
∑

i∈U

λi = 0,

0 ≤ λi, λ
′
i ≤ C, i = 1, . . . , n.

Once the above formulation is solved to get the optimal λi and λ′i, the approximate

function at x is given by:

f(x) =
n∑

i=1

(λ′i − λi)K(xi,x) + b.

Based on results for non-censored Q-learning with classical SVR, it is expected that the

ε-SVR-C behaves similarly, with the estimated policies π̂ being more robust to censored

data and being more optimal than results where the censored patients are simply ignored.

To verify this comparison, a small simulation study will be reported in Section 5.5.

5.4 Clinical Reinforcement Trial Conduct and Computational

Strategy

Different populations of patients with NSCLC appear to have different clinical and molec-

ular characteristics, so clinical trials that investigate the activity of different agents, and

incorporate patient selection based on clinical factors, are required. The goal of this

clinical reinforcement trial is to compare two-line treatment strategies for patients with

NSCLC who have not been treated previously with systemic therapy. As mentioned in

Section 5.1, while many new single agents with potential clinical efficacy currently are

being produced at an increasing rate, the number of doublet combinations in the first
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line that can be evaluated clinically is limited. Considering the number of possible agents

that may be of interest in the second line, the limitations are far greater.

Without loss of generality, suppose for simplicity that strategies are based on four

FDA approved therapies (either single agents or doublets), which we denote by Ai, i =

1, . . . , 4. In our study we assume that the second line treatment must be different from

the first. When designing the trial, two of the four agents A1 and A2 are selected for

first-line treatment, while A3 and A4 are selected for second line. A total of n patients

are recruited into the trial and fairly randomized at enrollment between A1 and A2, and

each patient is followed through to completion of first-line treatment, given the patient is

not dead or lost to follow-up from the study. We fix this duration t2 − t1 as 2.8 months,

although other lengths are possible, depending on the number of cycles of treatment.

At the end of first-line treatment, patients are randomized again between agents A3 and

A4. Moreover, another important clinical decision that needs to make at this point is

when to initiate the second-line treatment. Thus, the initiation for second-line treatment

could be randomized to as early as t2 or as late as TP (recall that TP denotes the time of

patient’s disease progression). At the end of the trial, the patient data is collected and

Q-learning is applied, in combination with SVR applied at each time point, to estimate

the optimal treatment rule as a function of patient variables and biomarkers, at t1 and

t2.

The trial described above was motivated by the desire to compare several agents as

well as timing in a randomized fashion, the belief that different agents combined with

different timing given consecutively may have interactive effects for separate population

of patients, and the desire to determine a sound basis for selecting individualized optimal

strategies for evaluation in a future clinical trial. Computationally, the entire algorithm

for Q-function estimation and optimal treatment discovery is summarized as follows:

1. Inputs: If t = 1, a set of training data consists of attributes xi (states o1, actions

d1) and index yi (rewards T1 ∧ C), i.e., {(o1, d1, T1 ∧ C, δ)i, i = 1, . . . , n}; if t = 2,
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a set of training data {(o2, d2, TM , T2 ∧ (C − t2), δ)j, j = 1, . . . , n
′}, where n

′ ≤ n

since patients may die or be censored before second-line therapy.

2. Initialization: Let Q̂3 be a function equal to zero.

3. Q2 is fitted with ε-SVR-C through the following equation:

Q2(o2, d2, TM) = T2 ∧ (C − t2).

4. Q1 is fitted with ε-SVR-C through the following equation:

Q1(o1, d1) = T1 ∧ C ∧ t2 + YD × max
d2,TM

Q2(o2, d2, TM).

5. For the SVR computations in steps 3 and 4, if a Gaussian kernel is applied,

we use a straightforward coarse grid search with C = 2−5, 2−3, . . . , 215 and ζ =

2−15, 2−13, . . . , 23, evaluated at each candidate pair (C, ζ), and then select the one

that yields the highest cross-validation rate.

6. Given Q̂1 and Q̂2, the individualized optimal polices π̂1 and π̂2 for application to

future patients are computed.

7. Evaluate π̂1 and π̂2 in a confirmatory phase III trial to compare the optimal policies

with the standard of care.

5.5 Simulation Study

To demonstrate that the tailoring therapy for NSCLC found by using the proposed

clinical reinforcement trial is superior, we employ an extensive simulation study to assess

the proposed approach on virtual clinical trials of patients, and then evaluate using Phase

III trial-like comparisons between the estimated optimal regimen and the various possible

fixed treatments.
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5.5.1 Data Generating Models

Based on historical research, it is well known that the rate of disease progression or

death for patients with advanced NSCLC increases over time. Consequently, in order

to generate simulation data, we simply consider that TP , T1, and T2 follow different

exponential distributions. Many alternative models are also possible.

Let exp(x) denote an exponential distribution with mean ex. For a patient given

first-line treatment d1, we assume death time distribution

[T1 | D1] ∼ exp(αD1 + βD1W1 + κD1M1 + τD1W1M1). (5.5)

If T1 > t2, we assume disease progression time distribution

[TP | D1] ∼ exp(αPD1
+ βPD1

W1 + κPD1
M1 + τPD1

W1M1). (5.6)

Given t2, TM is uniformly generated from [t2, t2 + 4] (4 months interval). If TP ≤ TM ,

then let TM = TP . In addition, for a patient given second-line treatment d2 and initiation

time TM , we assume the death time

[T2 | D1, D2] ∼ exp(αD12 + βD12W2 + κD12M2 + h(TM ;ϕ)). (5.7)

Given TD = T1 or t2 + T2 and patient censored probability pc, we generate right cen-

sored time C uniformly from interval [t1, t1 + 24] (2 years interval), where the censoring

indicator is drawn according to a Bernoulli distribution B(pc). Note that in our simu-

lation study we straightforwardly use exponential pdfs (5.5)–(5.7) to replace (f1, f2, f3),

which are mentioned in the notation of Section 5.2.1. For the sake of simplicity, in these

density functions only two state variables such as quality of life (QOL) and tumor size

are considered as patient prognostic factors or biomarkers to be related to outcome, and

they are denoted by Wt and Mt (t = 1, 2), respectively. We consider these two factors

because they are patient based, easy to be measured, can predict therapeutic benefit after

treatment of chemotherapy, and more importantly, they are significant prognostic factors
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for survival (Socinski et al., 2007). In addition, state variables for the next decision are

generated by simple dynamic models W2 = W1 + TMẆ1 and M2 = M1 + TMṀ1.

Recall that ν is the probability for the event that the patient can live beyond t2. The

parameter vector for patients who only experience first-line treatment is

θ1 = (αD1 , βD1 , κD1 , τD1),

otherwise, it is

θ2 = (αPD1
, βPD1

, κPD1
, τPD1

, ν, αD12 , βD12 , κD12 ,ϕ).

Parameter vectors θ1 and θ2 as well as the shape of time-related function h(TM ;ϕ) vary

among different patients. Note that two patients who receive different decisions with the

same first-line treatment, say (A1, A3) and (A1, A4), both contribute data for learning in

stage 1.

5.5.2 Clinical Scenarios

To construct a set of scenarios reflecting the interaction between two lines of treatment,

we temporarily assume that a large portion of patients survive long enough to be treated

by second-line therapy, that is, we specified ν = 0.8 for all patients. Except for ν, each

clinical scenario under which we will evaluate the design in the simulation study is built

by a unique set of fixed values of (αPD1
, βPD1

, κPD1
, τPD1

, αD12 , βD12 , κD12). The remaining

fixed parameter values needed for the simulations are those that determine how T2 varies

as a function of TM . To implement this, we specified four corresponding model-based

cases of each function h(TM ;ϕ) in terms of their numerical values at each TM . All of these

underscore the importance of specifying the optimal regimen to target a subpopulation

of patients with distinct characteristics.

Hence, to facilitate interpretation of reinforcement learning strategies for capturing

individualized therapies, four scenarios are specified and summarized in Table 2. In group
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1 and 4, initial timing of second-line therapy for survival time (T2) are functions that

form an inverse-U (quadratic) shape with TM , while initial timing in group 2 and 3 for T2

are functions that linearly decrease and increase with TM , respectively. Each group thus

consists of a combination (Ai, Aj) as well as TM timing from Table 2 (where i = 1, 2 and

j = 3, 4), with the fixed values of αPD1
, βPD1

, κPD1
, τPD1

, αD12 , βD12 , κD12 , and ϕ as described

above.

Note that whatever combination of two-line treatment (Ai, Aj) is evaluated, all pa-

tients within one group share the same trend of T2 versus TM . However, we assume there

is only one strategy that will yield the longest survival time in each group. For conve-

nience, we denote “1, 2, 3” as the location of optimal initiation of second-line therapy,

defined as “immediate, intermediate, delayed”, respectively. For example, as claimed

in the last column in Table 2, A1A32 indicates that the two-line treatments (A1, A3)

along with an intermediate initiation time point is the optimal regimen for group 1.

The inverse-U-shaped function T2 for TM corresponds to the case where patients have

relatively low QOL at enrollment but relatively large tumor size, hence, this optimal

intermediate initiation of second-line therapy is recommended to delay treatment in a

short time for patients who may have severe symptoms and low tolerance of chemother-

apy, but not to be fully delayed due to the possibility of death. In scenario 2, due to the

good QOL and large tumor size at enrollment, it is optimal for the second-line therapy to

begin immediately after first-line therapy, hence, A1A41 is the optimal regimen for these

patients. Similarly, in scenario 3, treatment A2A33 is considered the superior treatment

since we believe fully that delaying the initiation of second-line therapy at the time of

disease progression will improve survival and palliate symptoms. Although scenario 4

has optimal regimen A2A42, due to the flat shape of T2 versus TM , there is no significant

improvement between delaying and not delaying the initiation of second-line therapy.
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5.5.3 Simulation Methods and Results

First, according to various (W1,M1) as described in Table 2, a clinical reinforcement trial

of size N = 100 is generated for each group (total n = 400), and we repeat this simulation

for 10 times. Q̂1 and Q̂2 are computed via the algorithm given in Section 5.3. Then

predicted optimal strategies are computed via an independent phase III confirmatory

trial of size 100 per group, generated from the same mechanism as its corresponding

reinforcement trial. For comparison, we assign all test patients to (Ai, Aj)×{immediate,

intermediate, delayed}, which consists of 12 combinations in total. Patients’ outcomes

(overall survival) conducted by our estimated optimal regimens and 12 different fixed

regimens are all evaluated. All of these results are averaged over 400 patients in each

regimen in the confirmatory trial. As shown in Figure 17, among regular regimens, by

assigning all testing patients to A2A33 will yield the averaged longest survival as 14.71

months. It thus appears that, in terms of adaptively selecting best strategies for each

group, the optimal regimen obtained by Q-learning with ε-SVR-C is superior due to

the averaged survival of 16.45 months (with standard deviation 0.063) over 10 trials.

Because of this encouraging result, it is worthwhile to deeply investigate whether our

approximations are close to the exact solution. To carefully examine this comparison,

we assign patients of each group to the corresponding true optimal regimen described

in Table 2. Since the reinforcement trial was simulated 10 times with a size of 400, the

minimum, maximum, and mean values of averaged predicted survival for each group are

computed based on these 10 trials, respectively. The results are summarized in Table 3.

The averaged predicted survival over all groups is shown as 16.446, this number along

with minimum 16.065 and maximum 16.624 are all pretty close to true optimal survival

16.554. In terms of estimation, under each of the scenarios 1–3 our methods perform very

similarly and slightly underestimates the true optimal survival. In contrast, our method

slightly overestimates the true optimal survival in scenario 4.
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Second, although our Q-learning method with N = 100 per group using ε-SVR-C

leads to an apparently small bias for estimating individualized optimal regimens, an

examination of performance influenced by the sample size is worthwhile. We repeated

the simulations 10 times for each specified sample size while varying N from 2 to 600 per

group. The results are illustrated in Figure 18, which shows that the method’s reliability

is very sensitive to N when N ≤ 80, with the averaged survival for the estimated optimal

strategy increasing from 14.017 when N = 2 to 16.320 when N = 80. The boxplots

also show that both the deviation and estimation bias of predicted survival are getting

smaller when the sample size becomes larger. When N ≥ 100, our methods appear to

do a very reliable job of selecting the best strategy. Hence, in the setting we study here,

the sample sizes required to reach excellent approximation are similar to and not larger

than the sizes required for typical phase III trials.

Third, in order to compare performance of the ε-SVR-C for censored subjects to non-

censored and ignoring the censored cases, from 400 training samples over 10 simulations

run, we randomly select a fraction of the samples (based on censored data simulation

described in Section 5.5.1) so that they become right censored patients. We repeat the

comparisons with reinforcement trial which has 25%, 50%, and 75% censored proportion,

respectively. The boxplots are presented in Figure 19. Evidently, in terms of averaged

predicted survival in all cases, the ε-SVR-C algorithm outperforms the method which

totally ignores cencored data, particularly when the censored proportion is large.

5.6 Summary of NSCLC trial results

We have proposed an adaptive reinforcement learning design for conducting a clinical

trial of multiple lines of treatment in a group of patients with advanced NSCLC. The

incorporation of Q-learning with the proposed ε-SVR-C appears to successfully identify

optimal treatment strategies tailored to a proper subpopulation of patients. While our
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method has been utilized for the two decision points at hand, the general principals and

algorithms of this approach could be applied, with suitable modification, to design future

trials having similar goals but for possibly different diseases.

We provided an explicit simulation to evaluate the performance of ε-SVR-C in rein-

forcement trials. Our analysis and simulation conclude that the Q-learning procedure

with ε-SVR-C can handle censored data and simultaneously maintain good estimation,

and is a practical choice for reinforcement learning designs with higher levels of censoring.

When there are no censored subjects, the ε-SVR-C reduces to classical SVR. When there

are large portion of censored subjects, the ε-SVR-C is much more robust and effective

than the naive method which just simply ignores the censored data. More simulations

and theoretical studies of ε-SVR-C are needed in the future.
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Figure 14: Treatment plan and therapy options for an advanced NSCLC trial.
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YD = 0, δ = 0, T 0 = T1
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Figure 15: The four cases that determine the times T1, C, TM , and T2. In each case, the

time of last follow-up is indicated by a right triangle. Note that all times originate at t1

except T2 which originates at t2.
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Figure 16: Loss functions of ε-SVR-C for interval censored data (a) and right censored

data (b).
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Table 2: The scenarios studied in the simulation. Sample size = 100/group.

Group State Variables Status Timing Optimal Regimen

1

W1 ∼ N(0.25, σ2)

W1 ↓M1 ↑ A1A32M1 ∼ N(0.75, σ2)

2

W1 ∼ N(0.75, σ2)

W1 ↑M1 ↑ A1A41M1 ∼ N(0.75, σ2)

3

W1 ∼ N(0.25, σ2)

W1 ↓M1 ↓ A2A33M1 ∼ N(0.25, σ2)

4

W1 ∼ N(0.75, σ2)

W1 ↑M1 ↓ A2A42M1 ∼ N(0.25, σ2)
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11.36 13.18 13.32 11.96 13.50 13.70 12.61 14.61 14.71 11.16 13.01 13.31  16.45

Overall Survival

0
5

10
15

20
25

A1A31 A1A32 A1A33 A1A41 A1A42 A1A43 A2A31 A2A32 A2A33 A2A41 A2A42 A2A43  optimal

Figure 17: Performance of optimal individualized regimens versus other 12 combinations.

The same confirmatory phase III trial was used in this comparison. The 12 bars in the

left indicate results of 12 different fixed regimens, while the bar in the right indicate

results of optimal regimens. The optimal regimens will yield averaged survival time of

16.45 months with standard deviation 0.063 (over 10 trials), which is longer than all fix

regimens.
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Table 3: Comparisons between true optimal regimens and estimated optimal regimens for

overall survival (month). Each training dataset is of size 100/group with 10 simulation

runs. Testing dataset is of size 100/group.

Optimal True Predicted survival

Group regimen survival Min Mean Max

1 A1A32 14.773 14.072 14.593 14.769

2 A1A41 15.343 14.941 15.197 15.341

3 A2A33 17.614 17.060 17.417 17.576

4 A2A42 18.487 18.188 18.578 18.810

Average 16.554 16.065 16.446 16.624
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Figure 18: Sensitivity of the predicted survival to the sample size.
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Figure 19: Boxplots of the predicted survival computed via Q-learning with ε-SVR-C

based on a reinforcement trial with 25% (a), 50% (b), and 75% (c) fraction of right cen-

sored subjects. In each case ((a),(b), or (c)), based on the same trial, 3 boxplots indicate

performance of non-censored, right-censored, and for ignoring censoring, respectively.
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6 Concluding Remarks

6.1 Overview

In this dissertation, we have developed a groundbreaking new approach to cancer clinical

trials which uses reinforcement learning (Q-learning) techniques from computer science

to discover optimal tailoring treatment regimens for cancer. The idea of using reinforce-

ment learning in clinical trials is a paradigm shift from the standard approach — of

selecting the best treatment from a small set of pre-defined treatment options assigned

to an assumed-to-be-homogeneous group of patients — to evaluating a continuum of

treatment options and optimizing over a varied range of patients with different clinical

histories and symptoms. Our work was motivated by real NSCLC trial examples from

University of North Carolina Lineberger Comprehensive Cancer Center protocol 9719,

“Phase III randomized trial comparing a defined duration versus continuous administra-

tion of combination chemotherapy in advanced non-small cell carcinoma of the lung”,

and protocol 2003, “Phase II randomized trial comparing weekly adminstration of taxol

with IIIB/IV non-small cell lung cancer”.

In Chapter 4, we performed a simulation study of a simple reinforcement learning

approach for discovering optimal dosing for treatment of a generic cancer. The disease

model is based on a simple differential equation that balances a simulated chemotherapy

agent’s efficacy and toxicity. By utilizing Q-learning, the clinical reinforcement trial

was able to find the best treatment rule for dosing of the agent based on biomarkers

available from the patient. Our approach uses SVR and ERT to fit Q functions at each

decision point. Clearly, the optimal treatment is superior by 6 months after initiation



of treatment, although it is not optimal at 2 months. This demonstrate the ability of

reinforcement learning to not only adapt to individual patient needs but to discover the

proper tradeoff between short and long term effects of treatment.

In Chapter 5, we significantly refined our reinforcement learning model for an ad-

vanced NSCLC trial to account for changes of the best two lines of treatment along with

optimal times of initiating second-line therapy across patients. Our ε-SVR-C method

incorporated with Q-learning models overall survival in the timing, covariate effects,

and appropriate patient heterogeneity, while taking into account right censored patients

in the loss function of SVR using all information. Our approach is powerful since co-

variate effects of patient are embedded in the design within the multi-stage structure.

Our simulations show that the method does a good job of assigning patients in favor

of a superior treatment, and that it does this reliably within subgroups when there is

treatment-covariate interaction. Simulation studies also demonstrate that our method re-

quires relatively small sample sizes to approximate true optimal therapies, and sensitivity

studies indicate that the correct selection probabilities increase with sample size.

6.2 Future Research

There are a number of challenges we expect to face in future research. First of all,

in Chapter 4 we have defined the reward as a straightforward function to map states

and actions into some integer numbers (15, 5, 0, −5 and −60). This simplistic reward

function construction along with the Q-learning represents an attractive way for trading

off efficacy against toxicity and death. However, it is unclear how changing these numbers

affects the resulting optimal regimens identified during discovery of effective therapeutic

strategies. Understanding the robustness of Q-learning to numerical reward choices is an

interesting problem and clearly deserves further investigation.

Secondly, in Chapter 4 we observed that with sample size N = 1000 for a clinical
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reinforcement trial, using SVR or ERT leads to an apparently small bias for estimat-

ing optimal regimens. The evidence for this is the confirmed success of the discovered

treatment regimen on an independent sample of 200 simulated patients. Similarly, in

Chapter 5 we studied the prediction accuracy of our method with varying sample sizes in

an NSCLC trial. The posterior analysis shows that with sample size N ≥ 100 per group

our method can yield a small estimation bias. Althoug both results indicate that good

estimation can be achieved when sample size is relatively small, this assumption may be

violated in many settings due to the complexity associated with the performance of the

approximation on the Q function, the high-dimensional state or action space, the horizon

time T , the connection with SVR or ERT, and more importantly, estimation accuracy.

Therefore, an interesting but potentially difficult question would be: how to determine an

appropriate sample size for a clinical reinforcement trial, which allows utilizing the SVR

or ERT to fit Q and can be guaranteed to reliably obtain a treatment policy that is very

close to the true optimal one? This sample size calculation is related to the statistical

learning error problem. Recently, there has been considerable interest in studying the

generalization error for Q-learning. Murphy (2005) derived finite sample upper bounds

in a closely related setting which depend on the number of observations in the training

set, the number of decision points, the performance of the approximation on the training

set, and the complexity of the approximation space. We believe further development of

this theory is needed to better understand how the performance of Q-learning with SVR

is related to the sample size of the training data in clinical reinforcement trials. We hope

that this dissertation will serve to stimulate interest in these issues.

In Chapter 5, we discussed some possible extensions of our method regarding the

right censored observations. We would like to briefly revisit this issue that arose and

discuss how it relates to more realistic problems in NSCLC clinical trials. We mentioned

that right censored cases include patients who drop out of the study without further

measurements, and we mentioned that the classical SVR method may need to be modified
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to ε-SVR-C to account for such right censored observations. By doing this, Q2 is fitted

with ε-SVR-C through:

Q2(o2, d2, TM) = T2 ∧ (C − t2), (6.1)

and furthermore, Q1 is fitted with ε-SVR-C through:

Q1(o1, d1) = T1 ∧ C ∧ t2 + YD × max
d2,TM

Q2(o2, d2, TM). (6.2)

This assumption of independent censoring may too simplistic to handle more complex

situations in NSCLC trials. For example, given first-line therapy, some patients determine

to drop out of the study due to adverse reactions or lack of improvement and are not

willing to participate the second-line therapy. However, these dropout patients can still

be followed-up until the patients’ death or administrative censoring. That is, O2 can not

be measured during this processes but TD or C can be. Such issues have motivated the

development of a possible alternative to the Q-learning procedure described in Chapter

5.

To achieve this alternative, we propose a modified Q-leaning design incorporated

with ε-SVR-C. Let D denote the indicator of a dropout event. D = 1 indicates patients

dropout at or before t2 without any measurements as well as without evaluation of second-

line therapy. In place of Q2 in (6.1), we then define Q
′
2 at t2 for patients who have status

D = 1, which is fitted with ε-SVR-C through:

Q
′

2(o1, d1) = T2 ∧ (C − t2). (6.3)

Compared to (6.1), o1 and d1 are embedded in Q
′
2. In addition, the corresponding Q1 is

modified as:

Q1(o1, d1) = T1 ∧ C ∧ t2

+ YD ×
[
D ×Q′2(o1, d1) + (1−D)× max

d2,TM

Q2(o2, d2, TM)
]
. (6.4)

Note that equation (6.4) is reduced to (6.2) when D = 0. This extension for accounting

for patients who dropout but who are followed would be conceptually straightforward if
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the indicator D is observed. Thus, when D is unknown, a continuing challenge will be to

develop methods which model D efficiently to ensure that Q-learning is viable in these

settings.

In future research, we also plan to address the following issues:

(1) NSCLC clinical trial design. We will develop a protocol for a Stage IIIB/IV NSCLC

clinical reinforcement trial. This will include identifying and refining all of the

needed aspects which have been described in Chapter 5. Part of this process will

involve identifying what and how to randomize at various decision points in a

manner that is consistent with standards of clinical practice and avoids randomizing

to inferior treatments. This approach is quite new and may involve several iterations

before a suitable and efficient design is achieved.

(2) Adaptation to other cancers. The general principals and methods of this approach

are very adaptive to other cancers in addition to NSCLC, such as breast and colon

cancers, and we plan to develop general guidelines to pursue this. As part of this,

we expect to be able to start identifying specific other cancer treatment questions,

and then to use the differences between these cancers to formulate a general process

for developing reinforcement trials in a broad range of cancer settings.

(3) Creation of software tools. Clearly, we will develop user-friendly software to imple-

ment our reinforcement learning method freely for public use. We will also develop

software for the clinical trial design and analysis of clinical reinforcement trials. We

believe both of these phases will be valuable to other clinical researchers.
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