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ABSTRACT

MENGBING LI: Extending Dynamic Treatment Regimes to Incorporate Longitudinal
Data Observed Between Decision Times.

(Under the direction of Dr. Michael Kosorok, Thesis Advisor)

Personalized medicine refers to the medical scheme that tailors treatment to individuals

based on individual characteristics, predicted risks, and expected outcomes. Two important

components of personalized medicine involve the estimation of individualized treatment

rules (ITRs) and the design of adaptive clinical trials. Dynamic treatment regimes (DTRs)

are sequential treatment rules for individual patients that are adaptive over their disease

progresses. Much research on estimation of the optimal DTRs has been carried out in the

recent decade, and machine learning methods have been employed in the estimation. It

should be noted that when estimating the optimal DTRs, we usually face the issue of spar-

sity in asynchronously collected data, which standard statistical methods for longitudinal

data may not be applicable. In this thesis, we first review existing two major machine learn-

ing methods, Q-learning and outcome weighted learning, that are applicable to estimating

ITRs with longitudinal data. Then we propose a new learning method that deal with asyn-

chronous sparse longitudinal data when the treatment option is binary. This method uses a

counting process to generate new features, and then utilizes a Q-learning-like approach to

estimate parameters in the decision function. We also discuss advantages and limitations

of the proposed method, as well as possible directions of future research.

ii



ACKNOWLEDGMENTS

I would first like to thank my parents who have offered me emotional and financial

support throughout college. Without them I may not have found myself at UNC, nor had

the courage to pursue whatever subjects I enjoy or to engage in this task.

Importantly, I would like to thank my thesis advisor Professor Michael Kosorok, for

the guidance and advice throughout the process of writing the thesis. I am very grateful

for the precious time and extraordinary patience he offered me when helping me learn the

very basics of machine learning and its applications in clinical trials, guiding me to read

and understand research papers, helping me narrow down my thesis topic, and providing

insights and editorial support for my writing. Thank you Dr. Kosorok, for showing an

interesting brand new research area to me and giving me a good taste of research.

Next, I would like to thank both Professor Gary Koch and Professor Jane Monaco.

Since my junior year, Dr. Koch has been providing me a position at the Biometrics Con-

sulting Lab, where I had the opportunity to get involved in statistical projects that allowed

me to practice the knowledge I learned from classes in real world settings. He has also of-

fered me numerous useful and insightful suggestions on course selection, career planning,

and graduate school applications. I have known Dr. Monaco since my sophomore year,

and it was she and her passion that initially inspired me to pursue biostatistics. Without

her generous help and invaluable advice throughout the past three years, my study at UNC

would not have been so smooth and enjoyable.

Lastly, thank you to my friends and roommates for bringing me wonderful life expe-

riences. Thank you to my professors in the STOR department who I have taken classes

with and who attract me to the wonderful world of statistics. Finally, a big thank you to

UNC-Chapel Hill, of which I am always proud being a Tar Heel.

iii



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DATA SETTINGS AND NOTATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Standard Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Individualized Treatment Rule in Standard Single-Stage Settings . . . . . . . . 5

2.1.2 Dynamic Treatment Regimes in Standard Multi-Stage Settings. . . . . . . . . . . 5

2.1.3 Observational Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Dynamic Treatment Regimes (DTRs) with Additional Longitudinal Data . . . . . . 9

2.2.1 Regularly Spaced Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Irregularly Spaced Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 REINFORCEMENT LEARNING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Reinforcement Learning and Q-Learning Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Estimating the Q-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Extremely Randomized Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 OUTCOME WEIGHTED LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 BACKWARD AND SIMULTANEOUS OUTCOME WEIGHTED LEARNING . . . 23

5.1 Backward Outcome Weighted Learning (BOWL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Simultaneous Outcome Weighted Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



6 PROPOSED METHODOLOGY FOR ADDITIONAL LONGITUDINAL DATA . . 27

7 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



LIST OF FIGURES

2.1 Figure2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Figure2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Figure2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vi



1 INTRODUCTION

Many clinical trials are designed to examine drug effects on the patient population

as a whole in a single stage. However, this unchanged ”one-size-fits-all” scheme can be

problematic in clinical practice because of heterogeneity of patient characteristics and dif-

ferences in patient treatment progression. An ideal optimal treatment regime is expected

to overcome such problems and be individualized and adaptive over time. For example, in

treating patients with psychiatric disorders, clinicians need to consider individual character-

istics which may influence treatment response. Considering the delayed treatment effects

and potential reoccurrence of symptoms, clinicians may also want to relieve the waxing and

waining of patients following long-term treatments, which significantly increase the risks

of severe side effects, psychological and physical stress, as well as economic burden of pa-

tients (Murphy et al. 2006). Therefore, a tailored adaptive treatment design will contribute

to both optimizing treatment effects as well as reducing patient burden.

Dynamic treatment regimes (DTRs), also called adaptive treatment strategies (Murphy

2005), are a general approach to address these concerns. DTRs refer to a sequence of

treatments tailored to a set of covariates, including individual patient characteristics, dosage

level, treatment response, etc. that may or may not be changing over time. Patient status

is reevaluated at each predetermined time point, which breaks up the entire treatment into

many stages, and the treatment given to the patient is decided based on all covariate history

up to that time. The ultimate goal of DTRs is to find a treatment regime that maximizes the

average expected outcome provided that the whole population follow that regime (Kidwell

2015). Under this framework, the one-size-fits-all issue and delayed effects are successfully

addressed. The flexibility and maximal benefit have made DTRs increasingly popular in



clinical practice.

However, although DTRs require patient data collected at each decision point, patient

status and disease progress are not constantly monitored between stages. Additional data

within each stage over time, whether regularly or irregularly collected or not, may aid in

finding better treatment regimes for patients. In a recently conducted study, researchers

appealed to adaptive mobile health (mHealth) to help smokers quit (McClure et al. 2016).

In the study, participants randomized to an adaptive interactive program which provided

real-time, adaptively tailored advice on top of standard self-help content, showed a higher

proportion (76%) of quitting than participants randomized to an non-adaptive program with

standard self-help content (67%). Thus mHealth can serve as a promising intervention to

provide additional data along with treatment in that smart phones are capable of offering

prompt feedback to both smokers and clinicians to make better tailored treatment decisions.

Another example that illustrates the usefulness of collecting additional patient data be-

tween stages is treatment for Type I diabetes (T1D). Young adults with T1D often strug-

gle with glycemic control and weight management (Liu et al. 2010). Compared to other

adults with T1D, those young adults are more likely to experience extra energy loss result-

ing from glucosuria (Anderbro et al. 2010), increased resting energy expenditure (Schober

et al. 2011), as well as increased level of metabolic activity (Wadden et al. 2002) due

to their physiological characteristics. In addition, young adults with T1D are exposed to

an increased risk of weight gain resulting from intense hunger, which is associated with

recurrent hypoglycemia and poor glycemic self-control (Pinhas-Hamiel and Levy-Shraga

2013). Usually, these patients visit physicians on a regular basis and seek feedback and

updated treatment options based on their status at the visit. With the above factors in mind,

monitoring real-time energy expenditure and weight change between their clinical visits is

potentially helpful for physicians to make better decisions on treatments. Thus it can be

expected that collecting additional longitudinal data on patient status is a useful approach
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to optimizing glycemic control and weight management.

Although the scheme may seem promising, carrying out such a process requires many

efforts. On one hand, even though rapidly developing technologies greatly facilitate the

data collection processes through, for example, smart phones, electronic wristbands, and

other portable devices, there is no existing protocol specifying rules and restrictions of the

data collection process. On the other hand, challenges of analyzing the data are significant.

First, finding the optimal DTR usually requires machine learning methods. In (Zhao

et al. 2009), the authors applied reinforcement learning, specifically Q-learning, to discov-

ering the optimal treatment regime in clinical trials for life-threatening diseases. Q-learning

is a model-free temporal difference learning algorithm that deals with infinite-state Markov

Decision Processes (MDP). Rather than learning the MDP, Q-learning instead learns the

value of each state and the optimal policy directly by only using existing states and avail-

able actions in each state. The goal of Q-learning is to optimize the Q-function, which is

the expected discounted reward after executing an action at the current state and following

the policy in all states afterwards. Support vector regression and extremely randomized

trees were used to estimate the Q-function. The method did not rely on precise dynamic

mathematical models, and successfully incorporated delayed effects of treatments, drug

efficacy, and drug toxicity into improving long-term clinical outcomes.

(Zhao et al. 2012) was among the first to use machine learning techniques for clas-

sification in estimating optimal treatment rules. The authors proposed outcome weighted

learning (OWL) in estimating individualized treatment rules (ITR) with binary options. The

method directly finds the optimal ITR that maximizes the clinical outcome using prognostic

variables without modeling the conditional means. (Zhao et al. 2015) proposed two new

nonparametric machine learning methods for estimating the optimal DTR. One is called

backward outcome weighted learning (BOWL), which treats estimating the optimal DTR

as a sequence of weighted classification problems. It starts from the last stage, estimating
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the optimal decision rule in future stages first and then the optimal decision rule in the pre-

ceding stages by restricting analysis to patients who followed exactly all future treatment

rules. The other is called simultaneous outcome weighted learning (SOWL), which sees

estimating the optimal DTR as a single classification problem. It finds the optimal DTR

by directly maximizing the expected average reward. All the above methods are useful in

a standard DTR design, but may not be directly applicable to the newly proposed scheme

where additional longitudinal data are collected between stages.

Second, since we would like to monitor real-time changes in patient status, it is very

likely that data are collected at irregularly spaced time points and are distributed sparsely

(Cao et al. 2015). Given a patient, the sparsity refers to the small number of covariates and

response variables that are observed at the same time, leading to asynchronous data and

violating assumptions for standard methods for analyzing longitudinal data. Thus special

methods such as the one proposed by (Cao et al. 2015) should be considered.

The rest of this thesis is organized as follows. In chapter 2, we introduce individualized

treatment rule for the single-stage and multiple-stage decision settings. We also introduce

the general setting of dynamic treatment regimes with additional data collected between

stages. Each setting will be discussed separately for regularly spaced data and irregularly

spaced data. In chapters 3 and 4, we present Q-learning and outcome weighted learning

respectively, which are existing machine learning methods for estimating the optimal DTR

using. Chapter 5 presents two new algorithms based on outcome weighted learning that

estimate the optimal DTR sequentially and simultaneously, respectively. In chapter 6, we

discuss potential methods to deal with the sparsity in our data. Potential extensions and

future are discussed in chapter 7.
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2 DATA SETTINGS AND NOTATIONS

2.1 Standard Settings

2.1.1 Individualized Treatment Rule in Standard Single-Stage Settings

In the usual standard setting, we only collect patient data at a single time point. We

denote available information of each patient as a tuple (Xn, An, Yn), where n = 1, . . . , N ,

and each tuple is an independent and identically distributed trajectory of (X,A, Y ). Here

X is a p-dimensional random vector of covariates. We consider a setting where treatment

assignments A ∈ A are independent of patient covariates X , where A is the collection

of treatments received. A can be of any form including binary, discrete, and continuous.

Y is the observed clinical outcome, which may also be called the reward depending on

the context, and is coded so that larger values correspond to better outcomes. We assume

Y is bounded. Let D be the collection of all possible treatment rules. An individualized

treatment rule (ITR) is a map d : X → A. An optimal ITR, denoted as dopt, is a rule that

maximizes the expected outcome if implemented by the entire population. Thus our goal

is to quantify the relationship between (X,A, Y ) so that the maximum Y can be achieved.

Depending on the type of treatment assignments, we can apply regression methods, such

as the generalized linear regression, to establish the desired relationship.

2.1.2 Dynamic Treatment Regimes in Standard Multi-Stage Settings

In a K-stage setting, we collect patient data at K decision time points. We can repre-

sent each patient’s available information as (Xn1, An1, Xn2, An2, . . . , XnK , AnK , Yn) where

n = 1, . . . , N and each tuple is an independent and identically distributed trajectory of

(X1, A1, X2, A2, . . . , XK , AK , Y ) sampled at random from a distribution P . Here for each

k = 1, . . . , K, Ak ∈ Ak is the treatment assignment at the kth stage where Ak is the



collection of treatment assignments at stage k. Xk is the available patient information

after treatment assignment Ak−1 but prior to the kth stage. Y is the final outcome after

all stages of treatments and is coded so that larger values correspond to better outcomes.

Let Hk = (X1, A1, . . . , Ak−1, Xk) ∈ Hk be the history information up to stage k with

H1 = X1, andDk be the collection of available treatments at stage k. A dynamic treatment

regime (DTR) is a sequence of decision rules d = (d1, . . . , dK) where each dk is a map

from Hk to Dk. Our goal is to find the optimal DTR dopt that maximizes the expected

average outcome if the rule is implemented by the entire population in the future (Zhao

2015).

We can formalize the process through potential outcomes. We will use lowercase let-

ters ak to denote the realized treatment at stage k. An overbar will be used to denote events

that happened in the past, and an underbar will be used to denote events that will happen

in the future. Thus we have ak = (a1, a2, . . . , ak), and ak = (ak, ak+1, . . . , aK). Note that

d = d. Let X∗(ak) be a patient’s potential covariate status at the start of stage k provided

the sequence of treatments (a1, a2, . . . , ak) was assigned. Let Y ∗(aK) be a patient’s poten-

tial outcome at the end of the study provided the sequence of treatments (a1, . . . , aK) was

followed. In the above framework, we can write h1 = x1, a1 = d1(x1), x2 = X∗(d1) =

X∗(a1), h2 = (x1, a1, x2) = (x2, a1), a2 = d2(h2), x3 = X∗(d2) = X∗(a2), . . . , aK−1 =

dK−1(hK−1), xK = X∗(dK−1) = X∗(aK−1), hK = (xK , aK−1), aK = dK(hK) and Y ∗(aK) =

Y ∗(d) = Y ∗(d). Our optimal DTR will be a rule with the property E{Y ∗(d)} ≤ E{Y ∗(dopt)}

for any d ∈ {(d1, . . . , dK) | dk ∈ Dk}.

In order analyze the DTR setup mathematically, we need several assumptions: (1)

causal consistency, or stable unit treatment value assumption (SUTVA) (2) sequential ig-

norability, or no unmeasured confounders, or conditional exchangeability; (3) positivity

(Zhao 2015).

6



1. Causal consistency: we assume that the potential outcome under a sequence of treat-

ments is the same as the observed outcome under this sequence of assigned treat-

ments. Mathematically we can express this assumption as for ∀k = 1, . . . , K, if

Ak−1 = ak−1 then Xk = X∗(ak−1), and if AK = aK then Y = Y ∗(aK).

2. Sequential ignorability: we assume that given the history information of patient co-

variates and treatment assignments up to stage k, the treatment assignment at the

next stage k + 1 is independent of potential outcomes of the individual under any

treatment options across all stages. Mathematically, we have ∀ak ∈ Ak, Ak ⊥⊥

{X1, X
∗
2 (a1), . . . , X

∗
K(aK−1), Y

∗(aK)} | HK .

3. Positivity: we assume that for any tuples of history information of patient covari-

ates and treatment assignments up to stage k that have a positive probability to be

observed, the corresponding treatment regime will have a positive probability to be

observed. Mathematically, we have ∀k if P [Hk = (xk, ak−1)] > 0, then with proba-

bility 1 P [Ak = ak | Hk] > 0.

7



Figure 2.1: Standard data setting for dynamic treatment regimes

2.1.3 Observational Setting

Settings mentioned above are both experimental. However in many circumstances,

observational data play a major role. For example, research on cancers and diabetes are

not likely to involve human experimental data due to ethical issues, and thus studying on

such diseases heavily rely on observational data. Electronic health record (EHR) provides

insightful information for clinical diagnosis and clinical research but is also observational.

There are multiple benefits of using observational data (Kidwell 2015). First, obtaining

observational data is usually the first step to understand disease characteristics and treat-

ment effects. Second, using observational data is less likely to be concerned with ethical

problems, such as research on cancers. Moreover, observational data are generally cheaper

to collect than experimental data. In addition, especially for rare disease, it is more feasible

to use observational data considering the small number of patients.

In order to make causal inference from observational data, we need to check whether

assumptions are satisfied. The sequential ignorability assumption cannot be checked since
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in observational studies, we cannot guarantee that covariate history up to any stage k is fully

available. Besides, statistical methods for adjusting for confounding may not be applicable

to time-varying treatment. Furthermore, deriving unbiased estimates for observational data

is subject to model specification, even though this assumption may be weakened if using

doubly robust methods (Kidwell 2015).

Considering these issues with observational settings, in this thesis we only consider the

simpler settings where the assumptions for standard statistical methods are nicely specified.

2.2 Dynamic Treatment Regimes (DTRs) with Additional Longitudinal Data

2.2.1 Regularly Spaced Data

We consider a setting similar to DTRs with K stages except that additional data are

collected across each stage. In addition to the treatment stages in a DTR, we allow an

optional pre-treatment stage before stage one, which we will call stage 0. No treatment

assignment is made in stage 0, but we may include preliminary patient data before the

first treatment collected through electronic health record or mHealth etc. At each stage

k = 0, 1, . . . , K, patient data are collected atMk randomly selected time points. For k ≥ 1,

we use m = 0 to denote the time when covariates measured right after treatment Ank is

assigned to patient n. To simplify the notations, we also allow m = 0 in the pre-treatment

stage, even though no treatment assignments are made. We assume that covariates of all

patients are measured at the same time, i.e. for each k, we obtain information on covariates

of each patient n at m = 0, . . . ,Mk.

We use a p−dimensional vector Xm
nk to represent the available information of patient

n at time m in stage k. For patient n in stage k, the available covariate information

is Xnk = (X0
nk, . . . , X

Mk
nk )T . Data of all patients in stage k will be denoted as Xk =

(X1k,X2k, . . . ,XNk)
T . Let Yn be the final clinical outcome which is coded so that larger

values correspond to better outcomes. Then similar to the standard DTRs, we can represent

each patient’s information as (Xn0,Xn1, An1,Xn2, An2, . . . ,XnK , AnK , Yn)T where each
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tuple is an independent and identically distributed trajectory of (X0, X1, A1, X2, A2, . . . ,

XK , AK , Y ). Let Hk = (X0, X1, A1, . . . , Ak−1, Xk) ∈ Hk be the history information up

to stage k with H1 = (X0, X1), and Dk be the collection of available treatments at stage

k. A dynamic treatment regime (DTR) in this setting, similar to before, is a sequence of

decision rules d = (d1, . . . , dK) where each dk is a map from Hk to Dk. Our goal is again

to find the optimal DTR dopt that maximizes the expected average outcome if the rule is

implemented by the entire population in the future.

To formalize the process through potential outcomes, we can use the same notations as

in standard DTRs, except that x0 is added to all history variables. In addition, we make the

same three assumptions for this modified setting, i.e. SUTVA, sequential ignorability, and

positivity.

Figure 2.2: Data setting for dynamic treatment regimes with regularly spaced additional
longitudinal data
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2.2.2 Irregularly Spaced Data

In real clinical practice, patients covariates are rarely measured at regular gaps. Instead,

nearly all patients’ measuring time are different. Here we use irregularly spaced data to

refer to the corresponding setting where at least one patient’s covariates are observed at a

different time than other patients’ covariates, i.e. the data are asynchronous. In addition,

given a stage, the number of observations for different patients may be different. Like the

regularly spaced setting, we also allow stage 0, which is the optional pre-treatment stage

before stage one. Suppose for patient n, we measure covariates at timemn = 0, 1, . . . ,Mnk

at stage k. For k ≥ 1, we use m = 0 to denote the time when covariates measured right

after treatmentAnk is assigned to patient n. To simplify the notations, we also allowm = 0

in the pre-treatment stage, even though no treatment assignments are made.

As before, we use a p−dimensional vector Xmn
nk to represent the covariates of patient

n at time m in stage k. For patient n in stage k, the available covariate information is

Xnk = (X0
nk, . . . , X

Mnk
nk )T . Data of all patients in stage k will be denoted as Xk =

(X1k,X2k, . . . ,XNk)
T . Let Yn be the final clinical outcome which is coded so that larger

values correspond to better outcomes. Then similar to the standard DTRs, we can represent

each patient’s information as (Xn0,Xn1, An1,Xn2, An2, . . . ,XnK , AnK , Yn) where each tu-

ple is an independent and identically distributed trajectory of (X0, X1, A1, X2, A2, . . . , XK ,

AK , Y ). Although the proposed notations lead us to a similar situation to the previous one

where data are regularly spaced, it is dangerous to apply this simple data representation to

our analysis because the data are too sparse for most existing methods to be valid.

Considering the small amount of literature dealing with this complicated situation,

which is closest to the reality, most of our attention in this thesis will be paid to the pre-

vious two multi-stage situations, where the data are not sparse or are regularly spaced for

simplicity.
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Figure 2.3: Data setting for dynamic treatment regimes with irregularly spaced additional
longitudinal data
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3 REINFORCEMENT LEARNING

We first review the statistical methods dealing with the standard DTRs. In treating

life-threatening diseases such as breast cancer and lung cancer, many effective treatments

involves multiple stages that are adaptive to patient performance. There are at least three

challenges for statistical designs of adaptive treatment or trials. First, many existing designs

are based on parametric models to account for efficacy, toxicity, and time to some events.

For example, (Thall et al. 2000) provided a statistical framework for multi-stage treatment

or clinical trials with modifications of the play-the-winner-and-drop-the-loser strategy, in

which a successful treatment is repeated while an unsuccessful one is replaced by another

treatment. Second, as a result of the parametric models, the heterogeneity in treatment

across individuals is ignored and the heterogeneity needed for optimizing individualized

treatment rule is not incorporated. Third, long-term benefits of the treatment or trials are

not successfully evaluated due to delayed effects. Considering these challenges, the authors

of (Zhao et al. 2009) presented a general reinforcement learning framework and related

statistical methods for discovering new treatment regimes.

3.1 Reinforcement Learning and Q-Learning Backgrounds

The basic idea of reinforcement learning is to maximize the outcomes, called the re-

wards in this context, by telling the learning agent whether an action is “good” or “bad”

when it tries among all available actions. In our DTR context, we useX andA to denote the

space of patient covariates and the space of treatments respectively. In the reinforcement

learning context, the random variablesX andA are called “state” and “action” respectively.

Define the time-dependent random variables states Xk = {X0, X1, . . . , Xk} with realized

values xk = {x0, x1, . . . , xk}, and actions Ak = {A0, A1, . . . , Ak} with realized values



ak = {a0, a1, . . . , ak}. The state variables may or may not include past actions, i.e. Xk

may include Ak−1. The distribution P from which the finite longitudinal trajectories are

randomly sampled consists of the unknown distribution of eachXk conditional on previous

(Xk−1, Ak−1) with conditional densities {f0, . . . , fK}. The expectations of the conditional

distributions with respect to the distribution P are denoted as E. For k = 0, 1, . . . , K,

we define the history information up to stage k for a patient as Hk = (Xk, Ak−1). Define

the outcome of a patient’s treatment after stage k as Yk = R(Xk, Ak, Xk+1) = R(Hk+1)

where R is a (possibly random) map from the space of states and actions to the space of

real numbers. The realized value of the reward after stage k is yk = R(xk, ak, xk+1). Our

goal is to find ak to maximize the expected discounted return:

ỹk = yk + γyk+1 + γ2yk+2 + · · ·+ γKyk+K =
K−k∑
i=0

γiyk+i

where γ ∈ [0, 1] is the discount rate. Intuitively, if γ is closer to 1, the future rewards are

weighted more strongly.

A key element of the reinforcement learning framework is an exploration policy that

maps past states and past actions to the probability that the next action a is taken given

the past states and past actions, i.e. p : hk 7→ pt(a | hk). We can write dk(hk) = ak if

the policy is deterministic but not non-stationary where dk is the decision rule in stage k.

Denote the distribution of training data as Pd when the policy d is used to generate actions,

and the corresponding expectations as Ed. The optimal sequence of treatment, or optimal

policy here, maximizes the expectations with respect to the sum of the rewards over the

time trajectories. We can represent our problem using a value function based on the state

history hk. The value function is the expected total future rewards of a patient conditional

on hk, i.e.

Vk(hk) = Ed

[
K−k∑
i=0

γiYk+i | Hk = hk

]
.
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Then the optimal value function is

V ∗k (hk) = max
d∈D

Vk(hk) = max
d∈D

Ed

[
K−k∑
i=0

γiYk+i | Hk = hk

]
.

In reinforcement learning, value functions are supposed to satisfy some recursive relation-

ships. Therefore we can write the optimal policy dopt as

doptk (hk) ∈ argmax
ak

E
[
Yk + γV ∗k+1(Hk+1) | Hk = hk, Ak = ak

]
.

In reality, it is common that the optimal policy is not directly computable, and there-

fore the authors suggest using an alternative temporal-difference (TD) learning approach,

specifically Q-learning which estimates a Q-function instead of the value function. Q-

learning is an effective model-free algorithm that allows us to estimate the optimal strate-

gies when we have insufficient knowledge about the distribution of the random variables.

The optimal time-dependent Q-function is

Q∗k(hk, ak) = E
[
Yk + γV ∗k+1(Hk+1) | Hk = hk, Ak = ak

]
.

Since

V ∗k (hk) = max
ak

Q∗k(hk, ak),

we have the optimal policy satisfying

doptk (hk) = argmax
ak

Q∗k(hk, ak).

One-step Q-learning has the recursive form

Qk(hk, ak) = E

[
Yk + γmax

ak+1

Qk+1(Hk+1, ak+1) | Hk = hk, Ak = ak

]
. (3.1)

15



We let Q̂k be the estimator of the optimal Q-functions for k = 0, 1, . . . , K. According

to (3.1), Qk should be estimated backwards recursively from the last stage to the first stage.

We can let Q̂K+1 = 0 for convenience, and obtain Q̂K first, then Q̂K−1, . . . , Q̂1, Q̂0. Each

Qk can be viewed as a function of the states, actions, and a set of time-varying parame-

ters θ, denoted as Q̂k(hk, ak; θ). Once we obtain the sequence of estimated Q-functions

{Q̂0, Q̂1, . . . , Q̂K}, we are able to estimate the optimal policies via

d̂k = argmax
ak

Q̂k(hk, ak; θ)

for k = 0, 1, . . . , K.

3.2 Estimating the Q-Function

Fitting the Q functions has quite a few challenges. For example, the optimization prob-

lem in (3.1) is not smooth. The dimension of the state variables may be high. Action

variables may also be of high dimension or even continuous. To deal with the difficul-

ties, the authors presented two methods, support vector regression (SVR) and extremely

randomized trees (ERT), for fitting Q-functions and learning the optimal policies.

3.2.1 Support Vector Regression

SVR is a flexible approach for regression problems, and the basic ideas of SVR are

similar to those of SVM. To fit the settings of SVR into a more familiar framework, we

denote the given training data {(zn, yn) ∈ Ω × R : n = 1, . . . , N}, where Ω = {X,A :

X ∈ X , A ∈ A} and R is the real line representing the set of numerical rewards. We define

the attributes znk ∈ Xk×Ak for each n = 1, . . . , N and k = 0, 1, . . . , K. Each total future

numerical outcome ynk.

To guarantee the data are separable when the dimension grows high, the data zn are

first mapped by a non-linear transformation Φ into the feature space. The Q function

acts similarly to a hyperplane f(z) that is fitted to the mapped data. We first suppose

the function f is linear. Let f(z) = wTΦ(zn) + b and the ε-insensitive loss function
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L(f(zn, yn) = (|f(zn) − yn| − ε)+, ε > 0. Other loss functions may also be appropriate.

Then SVR solves the following optimization problem:

min
w,b,ξ,ξ′

1

2
‖w‖2 + C

N∑
n=1

(ξn + ξ′n),

subject to wTΦ(zn) + b− yn ≤ ε+ ξn,

yn −wTΦ(zn) + b ≤ ε+ ξ′n,

ξn, ξ
′
n ≥ 0, n = 1, . . . , N,

(3.2)

where ξn and ξ′n are slack variables, and C is the cost of error, also called the tuning param-

eter. The goal of the above setup is to discover a function that has at most ε deviation from

the actual values yn for all training data.

The authors also provide a framework for non-linear kernels. Kernels are a class of non-

negative functions that measure the similarity between features of the individuals, requiring

no knowledge of the non-linear transformation. The kernel function K : Ω × Ω → R is

continuous, symmetric, and positive definite. We can associate with it a unique reproducing

kernel Hilbert space (RKHS)HK which is the completion of the linear span of all functions

{K(·, z) : z ∈ Ω}, with norm induced by the inner product. So we can define K(zi, zj) =

Φ(zi)
TΦ(zj). Equation (3.2) can be rewritten as

min
λ,λ′

1

2
(λ− λ′)TK(zi, zj)(λ− λ′) + ε

N∑
i=1

(λ− λ′) +
N∑
i=1

yi(λ− λ′)

subject to
N∑
i=1

(λ− λ′) = 0, 0 ≤ λi, λ
′
i ≤ C, i = 1, . . . , N.

Solving for the optimal λ and λ′, we get the approximating function

f(z) =
N∑
i=1

(λ− λ′)K(xi, z) + b.
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3.2.2 Extremely Randomized Trees

The other method to estimate the Q-function mentioned by the authors is the ERT,

which was originally proposed by (Ernst et al. 2005). This nonparametric method uses

random forests and builds each tree by randomizing both attribute and cut-point choice

when splitting a tree node. The parameters include the number of trees, the maximum

number of cut-direction tests at each node, and the minimum number of elements to split a

leaf. See (Ernst et al. 2005) for more details about the algorithm.

3.3 Discussion

To demonstrate the use and effectiveness of the proposed methods, the authors apply

the methods to a simulated sequential multiple assignment randomized trial (SMART).

The result shows that the Q-learning approach using either SVR or ERT performs better in

discovering the optimal policy with roughly equal computational costs.

On discrete state spaces, the proposed method can be applied to any type of treatment,

including for example, continuous dose ranges and binary options. It does not depend on

specific accurate mathematical models. It takes into consideration drug efficacy and toxic-

ity simultaneously and improves the long-term outcomes. The method is also applicable to

high-dimensional attributes with relatively low computational burden. On the other hand,

some potential future improvements include for example, robustness to the model of the re-

ward function, incorporation of patient and physician preference, and addressing reversible

toxicity of the drug.
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4 OUTCOME WEIGHTED LEARNING

A common approach to estimate individualized treatment rules with binary treatment

options in a one-stage setting is regression. However, most regression-based methods are

parametric or semi-parametric to estimate and optimize the conditional means. (Zhao et al.

2012) proposed a new method to avoid modeling the conditional means, but to estimate

directly the decision rule that maximizes clinical response.

Using the same notations as in previous sections, the proposed method applies to binary

treatment assignments A ∈ A = {−1, 1}, and each patient’s prognostic variables are

X = (X1, . . . , Xp)
T ∈ X . We assume the reward R is bounded and is coded so that larger

values correspond to better clinical outcomes. The optimal ITR is the rule that maximizes

the expected reward if implemented by the entire population. We let the distribution of

(X,A,R) be P and the expectation with respect to P be E. Given any treatment rule d, we

denote the distribution of (X,A, Y ) as P d and the expectation with respect to P d as Ed.

Under the assumption of positivity, i.e. P (A = a) > 0 for A = −1 and 1, we have P d

being absolutely continuous with respect to P and

dP d

dP
=
I{a = d(x)}
P (A = a)

Thus the expected reward under the rule d, also called the value function associated with d,

is

V(d)
.
= Ed(Y ) =

∫
Y dP d =

∫
R
dP d

dP
dP = E

[
I{A = d(X)}
Aπ + (1− A)/2

Y

]



where π = P (A = 1). As a result, the optimal ITR is

dopt ∈ argmax
d

E

[
I{A = d(X)}
Aπ + (1− A)/2

Y

]
.

Since we can see in the above formula that the right hand side is location invariant in Y ,

we may assume Y is nonnegative with out loss of generality.

To estimate the optimal ITR, we can equivalently find

dopt ∈ argmin
d

E

[
I{A 6= d(X)}
Aπ + (1− A)/2

Y

]
(4.1)

since Y is assumed to be bounded. The right hand side of (4.1) can be viewed as mini-

mizing a weighted classification error, where each misclassified A using X is weighted by

Y
Aπ+(1−A)/2 . We would like to find a decision function f such that d(x) = sign{f(x)} with

I{a = d(x)} = I{af(x) > 0}. We can therefore approximate (4.1) by the empirical value

PN
[
I{A 6= sign{f(X)}}
Aπ + (1− A)/2

Y

]
=

1

N

N∑
i=1

Yi
Aiπ + (1− Ai)/2

I{A 6= sign{f(Xi)}} (4.2)

where PN denotes the empirical measure of the observed data. However, equation (4.2)

involves minimizing a discontinuous and nonconvex 0-1 loss. One common solution is to

use a surrogate loss function, such as the hinge loss. Then to minimize equation (4.2), we

can instead minimize

1

N

N∑
i=1

Yi
Aiπ + (1− Ai)/2

(1− Aif(Xi))
+ + λN ‖f‖2 (4.3)

where x+ = max(x, 0) and ‖f‖ is some norm of f .

Linear Decision Rule for Optimal ITR Suppose f is a linear decision function with

f(x) = βTx + β0. The corresponding decision rule to assign a patient with prognostic
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value X to treatment 1 is βTx + β0 > 0 and −1 otherwise. We let the norm in equation

(4.3) be the Euclidean norm. Following the usual SVM, we can rewrite equation (4.3) as

max
β,β0,‖β‖=1

C

subject to Ai(β
Tx+ β0) ≥ C(1− ξi),

ξi ≥ 0,
∑ Ri

πi
ξi < s,

(4.4)

where C > 0 is the classifier margin, πi = πI{Ai = 1} + (1− π)I{Ai = −1} = P (A =

1|Xi) and s is a constant depending on λN . Note that equation (4.4) is equivalent to

min
1

2
‖β‖2 + κ

N∑
i=1

Ri

πi
ξi

subject to Ai(β
Tx+ β0) ≥ (1− ξi),

ξi ≥ 0,

where κ is a tuning parameter. After introducing Lagrange multipliers and algebraic ma-

nipulations, we obtain a dual problem

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjAiAjX
T
i Xj

subject to 0 ≤ αi ≤ κRi/πi, i = 1, . . . , N,

N∑
i=1

αiAi = 0.

(4.5)

This dual problem involves a quadratic objective function. Finally we obtain

β̂ =
∑
α̂i>0

α̂iAiXi,

and estimate β̂0 using the marginal points (0 < α̂i, ξ̂i = 0).
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Nonlinear Decision Rule for Optimal ITR In most cases the decision rule is likely to

be nonlinear due to the complicated structure of the space of prognostic variables. We use

the kernel function K, as introduced in section 3.2.1, to find the decision function f . Since

f(x) comes from the associated RKHS HK , it can be written as a linear combination of

K(·, x), i.e. f(x) =
∑m

i=1 αiK(·, xi). We can show that the optimal decision function is

given by
N∑
i=1

α̂iAiK(X,Xi) + β̂0,

where (α̂1, . . . , α̂N) solves the same dual problem as in equation (4.5)

The authors also establish several properties of the optimal ITR estimated by OWL.

First, the risk associated with the optimal decision rule under 0-1 loss is the Bayes risk.

Second, Fisher consistency is established to justify the validity of using the surrogate loss

function, hinge loss, in OWL. Third, the excess risk of f under 0-1 loss is no larger than

the risk of f under hinge loss. Fourth, the value of the estimated optimal decision function

f̂N is a consistent estimator of the true optimal value function.

OWL is the first to introduce machine learning methods that directly estimate the opti-

mal ITR without appealing to any accurate mathematical models of the conditional means.

It also avoids overfitting compared to other two-stage methods. Furthermore, the conver-

gence rate of OWL is nearly the optimal for nonparametric SVM on completely separated

data.
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5 BACKWARD AND SIMULTANEOUS OUTCOME WEIGHTED LEARNING

In previous sections, we introduced Q-learning for estimating the optimal dynamic

treatment regime. It estimates the Q-functions using the data first, and then maximizes

or minimizes the function to infer the optimal DTRs. However, this two-step regression-

based method encounters some issues when facing high-dimensional data. To resolve such

issues, (Zhao et al. 2015) proposed two new dynamic statistical learning approaches to

estimating the optimal DTR. One method is called backward outcome weighted learning

(BOWL), which treats optimal DTR estimation as a sequence of weighted classification

problems. It uses outcome weighted learning to identify a sequence of optimal decision

rules in a backward recursive fashion. The other method is called simultaneous outcome

weighted learning (SOWL), which treats optimal STR estimation as a single classification

problem. It uses outcome weighted learning to identify the optimal decision rules at all

stages simultaneously.

5.1 Backward Outcome Weighted Learning (BOWL)

We suppose the three assumptions for DTRs with experimental data hold: causal con-

sistency, sequential ignorability, and positivity. The treatment option is binary Ak ∈ A =

{−1, 1}. Covariate history up to stage k is denoted with an overbarXk = {X0, X1, . . . , Xk},

with realized values xk = {x0, x1, . . . , xk}. The actions taken up to stage k is denoted as

Ak = {A0, A1, . . . , Ak} with realized values ak = {a0, a1, . . . , ak}. Similar to outcome

weighted learning in the previous chapter, we would like to maximize the value associated



with a decision rule d, which is

V(d) =

∫
Y
dP d

dP
dP = E

[
Y
∏K

j=k+1 I{Aj = dj(Hj)}∏K
j=k πj (Hj, Aj)

]
. (5.1)

The idea behind BOWL is through backward estimation based on future optimal de-

cision rules that are available. Suppose that we have obtained all optimal treatment rules

after stage k, denoted as doptk+1 = (doptk+1, . . . , d
opt
K ). Then the optimal decision rule at stage k

should maximize

E

[
Y
∏K

j=k+1 I{Aj = doptj (Hj)}∏K
j=k πj (Hj, Aj)

I{Ak = dk(Hk)}

∣∣∣∣∣Hk = hk

]
.

This places the constraint that we only consider patients who follow exactly the optimal

treatment regime in all stages after the k-th stage. Equivalently, the optimal treatment

regime dopt is a map from Hk to {−1, 1} that minimizes the empirical analogue of the

above expression:

E

[
Y
∏K

j=k+1 I{Aj = doptj (Hj)}∏K
j=k πj (Hj, Aj)

I{Ak 6= dk(Hk)}

]
. (5.2)

This can be viewed as an optimization problem with 0-1 loss or a weighted misclassification

problem, where the weights are defined by

Y
∏K

j=k+1 I{Aj = doptj (Hj)}∏K
j=k πj (Hj, Aj)

.

To develop an estimation procedure, the authors replace the 0-1 loss function with a convex

surrogate loss function φ(t). Let fk : Hj → R denote the decision function in stage k, so

that dk(hk) = sign(fk(hk)). Then we can minimize the following expression with respect
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to fk:

PN

[
Y
∏K

j=k+1 I{Aj = doptj (Hj)}∏K
j=k πj (Hj, Aj)

φ (Akfk(hk))

]
+ λk,N ‖fk‖2 , (5.3)

where λk,N is a tuning parameter controlling the amount of penalization. Since we do not

know the future optimal DTR, we need to estimate the decision function from the last stage

and proceed backwards. The BOWL algorithm is presented as follows:

Algorithm 1 BOWL

Input: Patient history up to stage k : Hk = (Xk, Ak−1)

Output: Decision rule dk at stage k

1: for k ← K,K − 1, . . . , 1 do

2: if k = K then f̂k ∈ argminfk

{
PN
[

Y
πk(Hk,Ak)

φ (Akfk(hk))
]

+ λk,N ‖fk‖2
}

3: d̂k(hk)← sign(f̂k(hk))

4: elsef̂k ∈ argminfk

{
PN
[
Y

∏K
j=k+1 I{Aj=d̂j(Hj)}∏K

j=k πj(Hj ,Aj)
φ (Akfk(hk))

]
+ λk,N ‖fk‖2

}
5: d̂k(hk)← sign(f̂k(hk))

6: end if

7: end for

In the above algorithm, the minimization problem is similar to that in outcome weighted

learning in the previous section.

5.2 Simultaneous Outcome Weighted Learning

Unlike BOWL which estimates the optimal decision rules sequentially, SOWL com-

pletes the task at all stages simultaneously. However, maximizing (5.1) involves a discon-

tinuous, non-convex 0-1 loss function, which may cause computational complexity. For

k = 1, . . . , K, let Zk = Akfk(Hk). In SOWL, noticing that
∏K

j=k+1 I{Aj = d̂j(Hj)} is

equivalent to
∏K

j=k+1 I {Zk > 0}, the authors replace the 0-1 loss function with hinge loss

ψ(Z1, . . . , ZK) = min(Z1 − 1, . . . , ZK − 1, 0) + 1, which is smooth and concave. Then
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the objective function to maximize is

PN

[
Y ψ(Z1, . . . , ZK)∏K
j=k πj (Hj, Aj)

]
− λN

K∑
k=1

‖fk‖2 , (5.4)

where λN is a tuning parameter controlling the amount of penalization. The detailed com-

putational algorithm is presented in (Zhao et al. 2015) and we will omit the details here.

5.3 Discussion

Both BOWL and SOWL aim at maximizing directly the expected long-term outcome.

Compared to regression-based Q-learning, they are more robust because they do not rely-

ing on models of the Q-function for the optimal DTRs. When the number of stages is large,

SOWL may face som numerical instability because is involves defining a multi-dimensional

surrogate loss. In this case, BOWL may have more benefits. On the other hand, SOWL al-

lows one to examine the estimation at the same time rather than sequentially using BOWL.
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6 PROPOSED METHODOLOGY FOR ADDITIONAL LONGITUDINAL DATA

The main purpose of this section is to provide a genuine framework for estimating

the optimal individualized treatment regime when sparse asynchronous longitudinal data

are present. Here we only consider binary treatment options A ∈ A = {−1, 1} in a

randomized study. We assume that patient covariates are time-varying and can be viewed

as a function of time, i.e. X = X(t), and therefore patient history can also be viewed as

a time-varying variable Hk(t) = (X(t)0, X(t)1, A1, . . . , Ak−1, X(t)k) ∈ Hk. To define

the optimal ITR, we make the same three assumptions for dynamic treatment regimes: (1)

causal consistency; (2) sequential ignorability; and (3) positivity. Define

Q(h, a) = E[Y | H(t) = h(t), A = a].

To model on the conditional mean, we will fit a linear model with the intercept of the

form

E [Y | H(t) = h(t), A = a] = α + βTh(t) + a{γ + δTh(t)}, (6.1)

where α and β are unknown regression parameters of the main effects, and γ and δ are

unknown regression parameters of the interaction effects.

The basic idea behind our methodology is to apply a counting process approach to

generate new features using a set of basis functions in each stage, and the optimal treatment

rule is estimated with the new features by a Q-learning-like procedure. We use a counting

process for the observation times of the covariates to represent the asynchronous data of



our setting. In stage k for each patient n = 1, . . . , N , define

Fnk(t)
.
=

Mnk∑
j=1

I{T jnk ≤ t} (6.2)

where T jnk, j = 1, . . . ,Mnk are the observation times for the covariates in stage k and

Mnk <∞with probability 1. Thus the actual observations on the covariates areX(T 1
nk), . . . , X(TMnk

nk ).

For each stage k = 1, . . . , K, let Ψk = {Φkl(t; θkl) : θkl ∈ Θ, l = 1, . . . , Lk} be a

collection of normalized basis functions chosen to model patient covariates X(t). Each

Φkl(·; θkl) is indexed by an unknown parameter θkl, either a vector or a scalar, in the

parameter space Θ. We require each Φkl(·; θkl) be of the form φ(·;θkl)
c(θkl)

where c(θkl) is a

constant that averages the effect of the chosen basis function on the covariates over the

entire time period with respect to the counting process. If the basis function is a ker-

nel function, then ckl(θkl) =
∫

Φkl(t; θkl)dFnk(t). Take the radial basis function ker-

nel ΦRBF (t; θ) = c(θ)exp(−θ ‖t− t′‖)2 as an example, which downweights the obser-

vations made distant in time to a given time point t′. Assuming time t ≥ 0, c(θ) =∫∞
0
exp(−θ ‖t− t′‖)2dt =

√
π
θ
Φ(
√

2θt′) where Φ here is the standard normal cumula-

tive distribution function. On the other hand, if the basis function is a natural basis, then

ckl(θkl) =
∫
dFnk(t). These bases include cos(θt), sin(θt), and a+ θt, etc. The basis func-

tions are to be chosen by the investigator depending on the research questions of interest as

well as data structure.

We now begin to construct new features for each patient’s covariates using Lk basis

functions. We view the new feature as a function of the parameter θl by defining

X̃ l
nk(θkl)

.
=

∫
Φkl(t; θkl)Xnk(t)dFnk(t) (6.3)

with appropriate choice of bandwidth. The intuition behind the above definition is that

given a time t, each new feature contains more information about the covariate observations
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made before and close in time to t, than those made after or distant in time to t. This allows

for using all covariate information we observe but focusing on time points of more interest.

Let θk = (θk1, . . . , θkLk
). We use

Unk(θk) = (X̃1
nk(θ1), . . . , X̃

Lk
nk (θLk

))T

to denote the vector of new features of patient n in stage k, generated using the collection

of kernels in Ψ. We also denote the collection of new features of all patients in stage k

by Uk(θ) = (U1k(θ), . . . , UNk(θ))
T . As before, we use an overbar to denote events that

happened in the past, so Uk(θ) = (U1(θ1), . . . , Uk(θLk
)). The history data up to stage k

with the new features is then denoted as H̃k(θ) = (Uk(θ), Ak−1).

As in reinforcement learning which was described in Chapter 3, One-step Q-learning

has the recursive form

Qk(h̃k(θ), ak) = E

[
Yk + max

ak+1

Qk+1(H̃k+1(θ), ak+1) | H̃k(θ) = h̃k(θ), Ak = ak

]
, (6.4)

where Yk = Y if k = K and Yk = 0 otherwise in our case.

We let Q̂k be the estimator of the optimal Q-functions for k = 0, 1, . . . , K. According

to (6.4), Qk should be estimated backwards recursively from the last stage to the first stage.

We can let Q̂K+1 = 0 for convenience, and obtain Q̂K first, then Q̂K−1, . . . , Q̂1, Q̂0. Note

that the estimated Q-values are functions of the unknown parameter µ = (α, β, γ, δ, θ)T ,

and we would also like to obtain estimates µ̂k = (α̂k, β̂k, γ̂k, δ̂k, θ̂k) of the parameter. We

may estimate the parameter using least-square simultaneously when estimating the optimal

policy, so then

µ̂k ∈ argmin
µ

PN
[
Yk + max

ak+1

Q̂k+1(H̃k+1(θ), ak+1; µ̂k+1)−Qk(h̃k(θ), ak;µ)

]2
(6.5)
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Notice that
max
ak+1

Q̂k+1(H̃k+1(θ), ak+1; µ̂k+1)

= max
ak+1

[
α + βT h̃k+1(θ) + a{γ + δT h̃k+1(θ)}

]
=α + βT h̃k+1(θ) +

∣∣∣γ + δT h̃k+1(θ)
∣∣∣ .

Plugging in the linear model, we can rewrite the estimating procedures in (6.5) as:

When k = K + 1,minµ PN
(
Y − α− βT h̃k(θ)− ak{γ + δT h̃k(θ)}

)2
;

When k ≤ K,

min
µ

PN
(
α̂k + β̂Tk h̃k(θ) +

∣∣∣γ̂k + δ̂Tk h̃k(θ)
∣∣∣

−αk−1 − βT h̃k−1(θ)− ak−1{γk−1 + δTk−1h̃k−1(θ)}
)2
.

(6.6)

After obtaining parameter estimates µ̂k for all k = 1, . . . , K, the optimal decision rule

for each stage can be estimated by

d̂k

(
H̃k = h̃k

)
= sign

(
γ̂k + δ̂Tk h̃k(θ̂k)

)
.

In order to determine our basis functions, the parameter θ is required to be identifiable,

which means the one-to-one correspondence between the parameter and the basis function.

Following our notation, we can express identifiability as Φ(t; θ) = Φ(t; θ0) ∀t if and only

if θ = θ0. In some cases, the parameter θ may not be identifiable if we do not restrict the

range of the parameter space. Consider the example of a linear basis Φ(t; a, b) = a+ bt. To

construct a new feature by (6.3), we calculate X̃ =
∫

(a + bt)X(t)dF (t). However, when

estimating the parameters using (6.6), there may be multiple solutions to (a, b). One way

to resolve this issue is to restrict the solution (a, b) to the unit circle using parametrization

a = sin(θ), b = cos(θ), where θ ∈ [0, 2π). The actual way of ensuring identifiability

depends upon the form of the chosen basis functions.
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7 DISCUSSION

In this thesis, we introduced individualized treatment regimes in single-stage and multi-

stage settings, and a new setting where each patient’s data are not collected at the same time.

We described three types of recently developed machine learning method to estimate the

optimal treatment rules in single-stage settings and dynamic treatment regimes. First, we

introduced a regression-based nonparametric reinforcement learning method, Q-learning,

which estimates the optimal decision rule by directly maximizing the Q-function sequen-

tially backwards. Second, we reviewed outcome weighted learning for estimating indi-

vidualized treatment rule in single-stage settings with binary treatment options. Third, we

presented two nonparametric extensions of outcome weighted learning to dynamic treat-

ment regimes. Backward outcome weighted learning and simultaneous outcome weighted

learning estimate the optimal DTR directly by maximizing the long-term expected outcome

over all possible DTRs.

We proposed a novel machine learning method to estimate the optimal DTR using

sparse asynchronous data from a sequential randomized trial when the treatment option

is binary. The method effectively deals with sparsity in asynchronous data by employing

a counting process on patient covariates, and constructing new features with basis func-

tions. It can handle the potentially complex structure in autocorrelation of covariates. We

postulated a linear model on the expected long-term outcome given covariate history and

treatment history, and applied Q-learning for estimation. Parameter estimation was com-

pleted through sequential backward least-square regression and the optimal decision was

determined by the sign of the decision function.



However, our method may be subject to model misspecification, which may affect con-

sistency of the estimates and stability of the method. Such misspecification may come

from choices of basis functions and modeling of the conditional mean. Some of the con-

cerns with potential model misspecification can potentially be addressed through extending

the proposed longitudinal data approach to outcome weighted learning, including BOWL

and SOWL, which is a good topic for future research. In addition, we assume the data we

have are experimental. Applying this method to observational data may require modify-

ing some assumptions on causal relationships of the covariates. Moreover, we also expect

some future work to test the proposed method on simulated data and real data. Extending

the treatment option from binary to multiple discrete options and continuous options is also

a promising direction for future research.
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