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ABSTRACT 

Ross D. Hunter:  Phantom Dosimetry and Image Quality of Galileos Comfort PLUS Cone Beam 

Computed Tomography 

(Under the direction of John B. Ludlow) 

 

Introduction:  Increasing use of CBCT in many aspects of dental treatment has been 

associated with an elevated concern for the long-term risks of x-ray exposure, especially in 

adolescent patients.  An industry response to this has been to offer lower-exposure and 

collimated field scanning options.  Methods:  Effective doses resulting from various 

combinations of field size/location (FOV), number of image frames, and mAs settings were 

calculated for ATOM child and adult anthropomorphic phantom exposures using the Galileos 

Comfort Plus CBCT unit. Optical Stimulated Dosimetry was used with a previously validated 

protocol.  Image quality data was acquired with the Quart DVT CBCT phantom.  Results:  For 

the same exposures, child doses averaged 32% greater than adult (p=0.0004).  Full field doses 

were greater than mandibular followed by maxillary (p=0.0002).  Dose increased with increasing 

mAs (p>0.0001).  Increasing Contrast Noise Ratio (CNR) was associated with increasing mAs 

(p=0.0106) and frames (p=0.0423), while Modulation Transfer Function (MTF) was not 

(p>0.05).  Conclusions:  An average of 66% reduction in dose can be achieved when using 

standard exposure parameters in comparison with high-definition exposures.  CNR was 

correlated with increasing dose; however, the clinical implication of this requires further study.   
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LITERATURE REVIEW 

The use of ionizing radiation in diagnostic medical examinations has increased over the 

last 20 years to the point where the annual per capita dose to the US population from all sources 

has doubled.
1
  The risk of this exposure is notable, and it has been estimated that from 1.5% to 

2% of all US cancers may be attributed to computed tomography (CT) studies alone.
2
  Cancer, 

being the principal long-term effect of exposure to x-rays, makes this issue an important one.  

Evidence indicates that an adult exposure to x-rays as low as 90 millisieverts (mSv) or a fetal 

exposure of 9-20 mSv is a cancer risk.  A linear-no-threshold hypothesis of x-ray risk fits most 

data for cancer development, but extrapolation of this data must be used to estimate risks from 

the lower doses that are utilized for diagnostic imaging.  The majority of scientists working in 

this area accept this extrapolation as reasonable and prudent.
3
  Although the risk to an individual 

from a single exam may not itself be large, millions of exams are performed each year, making 

radiation exposure from medical imaging an important public health issue. 

A routine CT head scan may have an effective dose of approximately 2 mSv.
4
  Cone 

beam computed tomography (CBCT) examinations have been reported to impart a fraction of 

this dose; however, scans from some units approach 1 mSv, and scans from other units have been 

shown to be equivalent in dose to optimized CT scans.
5
  This range of differences is especially 

important when considering the pediatric and adolescent populations, because cellular growth 

and organ development is associated with increased radiosensitivity of tissues.  In conjunction
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with a longer life expectancy in which cancer can develop, children are two to five times more 

sensitive to radiation carcinogenesis than mature adults.
4, 6

   

The biological effect of exposure to ionizing radiation, expressed as the risk of cancer 

development over a lifetime, is determined from absorbed radiation dose in combination with 

other factors that account for differences in exposed tissue sensitivity and other patient 

susceptibility factors such as gender and age.  Simple measurement of absorbed ionizing 

radiation does not account for sensitivity of tissues or other factors important for determining 

risk.  To address this issue, the International Commission on Radiological Protection (ICRP) 

suggested in 1990 that effective dose (E) be adopted as the best means of comparing dose and 

risk from any exposure to ionizing radiation.
7
  Effective dose was created to provide a dose 

quantity related to the probability of health detriment due to stochastic effects of exposure to low 

doses of ionizing radiation.  Organs and tissues known to be most susceptible to radiation 

damage were assigned weights that represent the relative contribution of each tissue to overall 

risk.  Effective dose, reported in sieverts, was defined as the sum of the products of each tissue-

weighting factor (wT) and the equivalent dose to that tissue (HT), E = Σ wT × HT.   

In 2007, the ICRP published a revision of the tissue-weighting factors used in the 

calculation of effective dose.
8
  This was made possible by the availability of cancer incidence 

data that was not available when the 1990 guidelines were published.  The 1990 ICRP cancer 

risks were computed based on mortality data.  Incidence data provided a more complete 

description of cancer burden than mortality data alone, particularly for cancers that have a high 

survival rate.  Much of the cancer incidence data came from the Life Span Study of Japanese 

atomic bomb survivors, which had been updated with follow-up through 1998 and corrected 

using DS86 bomb dosimetry.  Weighted tissues and organs and revised weights in the 2007 
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recommendations were justified because of accumulated epidemiologic information on the 

tumorigenic effects of radiation that was sufficient to make judgments necessary for estimating 

cancer risks.  Cancer risk in salivary glands and brain were judged to be greater than that of other 

tissues in the remainder fraction, and each was ascribed a wT of 0.01.  A wT value for the 

remainder tissues of 0.12, distributed equally among 13 of 14 named tissues, provided a weight 

of approximately 0.009 each, which was just marginally lower than the wT for the lowest of the 

named tissues.  Of significance for maxillofacial imaging, there was an increase in the risk 

estimation for brain tissues and the addition of salivary glands, oral mucosa, and lymph nodes, 

which may be partially or fully irradiated during maxillofacial examinations.  These changes in 

the calculation of risk from x-ray exposures to the head and neck area prescribed by ICRP have 

resulted in increases in estimated risk to adult patients by as much as 422% from previously used 

1990 calculations.
9
 

A dramatic increase in the use of CBCT has occurred in dentistry during the last decade.  

CBCT allows the acquisition of three-dimensional volumes of the dental arches and surrounding 

tissues at a high spatial resolution and a low radiation dose.  There are a number of different 

dental applications that benefit from the use of CBCT, each with specific requirements regarding 

the size of the acquired volume and the image quality in terms of spatial and contrast 

resolution.
10

  Some have already declared it the new “gold standard” of maxillofacial imaging 

and predict that it will be used by most dental practices within the next decade.
11

   

Along with many other areas of dental practice, CBCT technology has found application 

in orthodontic diagnosis and treatment planning.
12-18

  However, one of the greatest issues facing 

the use of CBCT in orthodontics is justification of the increased doses of ionizing radiation 

administered to patients compared with standard two-dimensional imaging techniques.  Modern 
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digital panoramic and cephalometric radiographs have been reported to administer effective 

doses of 14-24 µSv and 4-5 µSv, respectively.
9, 19

  As stated earlier, a routine medical CT head 

scan can have an effective dose of approximately 2 mSv, whereas most CBCT units have been 

reported to impart a much lower dose.
2
  Available CBCT units from different manufacturers 

have been shown to vary in dose by as much as 10-fold for an equivalent field of view (FOV) 

examination.
5
  In fact, for a large FOV scan, effective dose can range from 68 to 1073 µSv.  In 

addition, adjustments of exposure factors to improve image quality are available in many CBCT 

units and can cause as much as a 7-fold increase in patient dose.
5
   

Recently, Pauwels and his colleagues examined the effective dose range on 14 CBCT 

scanners, using different exposure protocols and geometries.
20

  Their results displayed a range 

from 19 to 368 µSv, illustrating a 20-fold range.  The effective doses for the large FOV scans 

ranged between 68 and 368 µSv.  The effective doses for the medium FOV scans were from 28 

to 265 µSv.  Lastly for the small FOV scans, the effective doses ranged between 19 and 44 µSv.  

The largest contributors to the effective dose were from the remainder tissues (adipose tissue, 

extrathoracic region, lymphatic nodes, muscle, and oral mucosa), followed by the salivary glands 

and thyroid gland.  Contributions of the brain, bone surface, and skin were almost negligible.  

Interestingly, Pauwels et al. used a large amount of dosimeters to collect the absorbed radiation 

data (147 for one phantom, 152 for another phantom), trying to get an even spread over each of 

the radiosensitive organs in the head and neck regions and produce dose estimates that were as 

accurate as possible.  Ludlow responded that while this was a laudable goal, sampling strategy is 

just one of a number of factors that are important in measuring dose.
21

  Just as important are the 

actual location and extent of the radiosensitive organs that are being measured and the location 

of the field of view when exposing the phantom.  He pointed out that results for the NewTom 
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VGi were almost double that of his findings, which were probably due to poor positioning of the 

phantom, causing the thyroid gland to be directly exposed.  Ludlow also stated that while the use 

of additional dosimeters may increase the precision of calculation of organ dose, it does not 

guarantee an increase in the accuracy of the calculation of effective dose.  He recommended the 

development of phantoms that can provide reasonable indicators of effective dose with fewer, 

rather than more dosimeters.   

 In their conclusions, Pauwels et al. stated that further study is required to bring image 

quality into play, on a technical and diagnostic level.
20

  By investigating technical image quality, 

the relation between the exposure from CBCT units and the image quality performance in terms 

of noise, sharpness, contrast and artifacts, diagnostic quality studies could link all quantifications 

of dose and image quality to performance evaluation on a clinical level.  Ludlow and Walker 

explained that because image quality is subjective, the measurement and comparison of image 

quality across CBCT units in diagnostic situations pose complex problems.
22

  Two elements of 

subjective image quality that correlate with objective quality measures include contrast and 

spatial resolution.
23

  Image contrast can be objectively measured with the contrast-to-noise ratio, 

and spatial resolution can be measured by computing a modulation transfer function.   

 As Ludlow and Walker pointed out, the ongoing challenge in the optimization of CBCT 

is to reduce the dose without drastically decreasing image quality and diagnostic information.
22

  

Image quality technical-factor adjustments that select between “high” and “low” image quality in 

many CBCT scanners can cause as much as a 7-fold difference in doses.
5
  One possible way of 

reducing patient risk from CBCT examinations is to limit the area of exposure using variable 

FOVs that are sized for the location of the anatomy of interest.  However, voxel size is linked to 

FOV in many CBCT units, and smaller voxel sizes associated with smaller FOVs can actually 
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increase the dose because of increases in exposure that are needed to maintain an adequate 

contrast-to-noise ratio.
22

  Another potential means of reducing patient risk is to reduce exposure 

for diagnostic tasks that theoretically require lower contrast-to-noise ratios or lower signal 

modulation transfer functions.  For example, checking the root angulation during mid-

orthodontic treatment could apply.  The combination of careful selection of exposure parameters 

and FOV can result in an optimal dose for specific diagnostic tasks in orthodontic practice.  

Contrast-to-noise ratio data in conjunction with modulation transfer function indications of 

resolution limits might be helpful guides in indicating the usefulness of different CBCT scanning 

parameters for specific diagnostic tasks.  Determination of which exposure protocol is 

appropriate for a specific diagnostic task awaits further research. 

 In August of 2013, the American Academy of Oral and Maxillofacial Radiology 

(AAOMR) released a position statement on their clinical recommendations regarding the use of 

CBCT in orthodontic treatment.
24

  At the beginning of the statement, they listed diagnostic uses 

of CBCT in orthodontics, which include dental structural anomalies
25-30

, anomalies in dental 

position
31-34

, compromised dento-alveolar boundaries
35-37

, asymmetry
38-40

, anteroposterior 

discrepancies
41-43

, vertical discrepancies
44, 45

, transverse discrepancies
44, 46

, TMJ signs and/or 

symptoms
47-49

, dentofacial deformities and craniofacial anomalies
50-52

, conditions that affect 

airway morphology
53-55

, specific surgical procedures, orthodontic mini-implants used as 

temporary anchorage devices
56-58

, and maxillary expanders.
59, 60

  Then, they suggested four 

guidelines regarding the use of CBCT in orthodontic treatment.  First, image appropriately 

according to the clinical situation.  In other words, the decision to perform a CBCT examination 

should be based on the patient’s history, clinical examination, available radiographic imaging, 

and the presence of a clinical condition for which the benefits to the diagnosis and treatment plan 
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outweigh the risks of exposure to radiation, especially in the case of a child or young adult.  They 

recommend avoiding the use of CBCT to obtain data that can be provided by alternative non-

ionizing modalities, e.g., to produce virtual orthodontic study models.  They also point out that 

few authors have presented higher levels of evidence and measured the impact of CBCT on 

orthodontic diagnosis and treatment planning decisions.  One recent article looked at this topic 

and found that treatment plans were only affected in cases of unerupted teeth, severe root 

resorption, and severe skeletal discrepancies.  No benefit was found in cases where CBCT scans 

were used to examine abnormalities of the temporomandibular joint, airway space, or dental 

crowding.
61

  Another study conducted dosimetry of the SureSmile (OraMetrix, Richardson, TX) 

scan protocol using an i-CAT Next Generation CBCT unit.
19

  They found that a SureSmile scan 

of both arches in an adult imparts an effective dose of 148 µSv.  This would correspond to an 

effective dose of between 148 and 198 µSv for the average pediatric orthodontic patient, 

according to Ludlow and Walker.
22

  No research has been conducted to validate enhanced 

treatment outcomes associated with the SureSmile protocol, in defense of its increased radiation 

exposure.  This leads to the second guideline from the AAOMR. 

The second guideline is to assess the radiation dose risk.  Orthodontists must be 

knowledgeable of the radiation risk of performing CBCT scans and be able to communicate this 

risk to their patients.  Because CBCT exposes patients to ionizing radiation that may pose 

elevated risks to some patients (pregnant or younger patients), orthodontists must explain and 

disclose to patients the radiation exposure risks, benefits, and alternatives.  Third, they 

recommend minimizing the patient radiation exposure.  Specifically, one should perform CBCT 

imaging with acquisition parameters adjusted to the nominal settings consistent with providing 

appropriate images of task-specific diagnostic quality for the desired diagnostic information.  
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Suggestions include using a pulsed exposure mode, optimizing exposure settings (mA, kVp), 

reducing the number of basis projection images, and employing dose reduction protocols (e.g., 

reduced resolution) when possible.  Lastly, the AAOMR recommends maintaining professional 

competency in performing and interpreting CBCT studies.  Orthodontists must be able to 

exercise judgment by applying professional standards to all aspects of CBCT, while improving 

their skills through lifelong learning in regards to the performance and interpretation of CBCT 

examinations. 
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INTRODUCTION  

 

 Since its introduction into dentistry in 1998, the use of cone beam computed tomography 

(CBCT) in orthodontics has increased tremendously.
17

  Coupled with the increased use of CBCT 

has been the heightened concern regarding the long-term risks of ionizing radiation.  Cancer is 

the principal long-term biologic effect of exposure to radiation.  Thus, one of the major issues 

facing orthodontists today is the justification of the increased doses of ionizing radiation 

administered to patients via CBCT versus the traditional two-dimensional imaging techniques. 

 According to a 2007 review paper from the New England Journal of Medicine, an 

estimated 1.5% to 2% of all cancers in the United States may be attributable to the radiation from 

computed tomography (CT).
2
  A routine medical CT examination of the head can have an 

effective dose of approximately 2 mSv.
4
  Most CBCT examinations have been reported to 

produce a much lower dose; however, some CBCT units from various manufacturers differ in 

their doses by a factor of 10 for an equivalent field of view (FOV), with the higher doses being 

comparable to optimized CT scans.
5
  Even though the risk to a patient from a single CT or CBCT 

examination may be low, millions of exams are performed each year, making radiation exposure 

from medical and dental imaging an important public health issue. 

 Radiation exposure is especially important for the pediatric and adolescent populations 

that are most often treated by orthodontists.  The cellular growth and organ development seen in 

these populations are associated with increased radiosensitivity of tissues.  In addition, these 
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patients have a longer life expectancy in which cancer can develop.  Overall, children are two to 

five times more susceptible to radiation carcinogenesis than mature adults.
4, 6

 

 The quality of CBCT images is also an important factor for orthodontists to consider.  

CBCT image quality is observer dependent and subjective.  Being subjective, the measurement 

and comparison of image quality across CBCT units are difficult to address.  Two areas of 

subjective image quality that correlate with objective quality measures are contrast and spatial 

resolution.  Image contrast has been objectively measured using the contrast-to-noise ratio, and 

spatial resolution has been measured by computing a modulation transfer function.
22

  The quality 

of the CBCT scan is an important consideration for the orthodontist because of how it affects 

patient dose.  It has been reported that making selections between “low” and “high” image 

quality in some CBCT units can cause a 7-fold increase in effective dose.
5
  The challenge in the 

optimization of CBCT is to reduce the dose without drastically affecting image quality and 

diagnostic information.  One potential way to reduce patient risk of ionizing radiation is to limit 

the area of exposure using variable FOVs that are appropriately sized for the anatomy of interest.  

However, as Ludlow and Walker pointed out, voxel size is linked to FOV in many CBCT units, 

and smaller voxel sizes associated with smaller FOVs can actually increase the dose because of 

increases in exposure that are necessary to maintain an adequate contrast-to-noise ratio.
22

  

Another potential way to decrease the risk is to reduce exposure for diagnostic tasks that do not 

require high contrast-to-noise ratios or signal modulation transfer functions.  The combination of 

careful selection of FOV and exposure parameters can result in an optimal dose for the 

orthodontist’s specific diagnostic task. 

 The purpose of this study was to evaluate doses resulting from various combinations of 

FOV size, location, and exposure parameters using child and adult phantoms with the Galileos 
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Comfort Plus CBCT unit (Sirona USA, Charlotte, NC).  A second aim was to measure contrast-

to-noise ratio and modulation transfer function as quantitative measurements of image quality for 

the various exposure options offered by the Galileos unit. 
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MATERIALS AND METHODS 

 The Galileos Comfort Plus CBCT unit (Sirona USA) was investigated in this study.  

Volume scans for this unit range from a 15 cm sphere for the full FOV, to a truncated sphere 

with a height of 8.5 cm for the maxillary and mandibular collimated FOVs.  The unit operates at 

98 kVp with a pulsed exposure.  The unit rotates through a complete rotation angle of 180º over 

a scan time of 14 seconds.  The voxel size for the unit is 0.25 cm
3
.  The transition from full FOV 

to collimated FOVs is accomplished using a simple mechanical switch on the unit.  The unit also 

provides standard scans (HD off) with 200 basis images or high-definition scans (HD on) with 

500 basis images. 

 Two head and neck phantoms were used in the study.  Adult dosimetry was acquired 

using a tissue equivalent phantom simulating the anatomy of an average adult male (Atom Max 

Model 711 HN, CIRS Inc., Norfolk, VA).  The phantom includes detailed 3D anthropomorphic 

anatomy including bone, brain, sinuses, nasal cavities, teeth, larynx, and a trachea.  The bones 

contain both cortical and trabecular separation.  The phantom was modified by making slots to 

accept Nanodot dosimeters at sites corresponding to internal tissues of interest.  A skin surface 

dosimeter in the back of the neck was positioned at the vertical center of the designated slice 

level and taped in position.  Lens of the eye dosimeters were centered over an inset in the 

anatomic location for the lens and taped in position.  Internal dosimeters were positioned 

vertically with the upper edge of the dosimeter holder flush with the surface of the selected slice 

level and held in position by friction of the dosimeter case and the phantom material at the 
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sampled anatomic location.  Adult phantom dosimeter anatomic locations and phantom levels are 

seen in Figure 1.  During scanning, the phantom was oriented with the phantom section planes 

approximately parallel to the scan rotation plane, parallel to Frankfort horizontal.  A phantom 

position simulating positioning of a patient on the chin rest was used.  

 Child dosimetry was acquired using a tissue equivalent phantom simulating the anatomy 

of a ten-year old child (Atom Model 706 HN, CIRS Inc., Norfolk, VA).  Tissues simulated in 

this ATOM phantom include average bone tissue, average soft tissue, brain, sinuses, spinal cord, 

and spinal disks.  Simulated bone tissue matches age-related density. Dosimeter anatomic 

locations and child phantom levels are seen in Figure 2.  In addition, the scan parameters used 

for CBCT scans of the child and adult phantoms are given in Table 1.  

 Optically stimulated luminescent (OSL) dosimeters (Nanodot, Landauer, Inc., Glenwood, 

IL) were used to record the radiation doses.  Each dosimeter was encased in a light-tight plastic 

holder measuring approximately 1 mm x 10 mm x 10 mm.  This case prevented loss of energy 

through stimulation by ambient light.  The OSL dosimeters were cleared and prepared for data 

collection by exposing them to a low UV emitting light source for 24 hours, in accordance with 

the manufacturer’s instructions.  The dosimeters were read using the portable MicroStar reader 

(Landauer, Inc., Glenwood, IL).  The reader was calibrated before use.  Following calibration, 

photon counts from dosimeters were recorded with an accuracy of about +/- 2%.  Photon counts 

were converted to dose using an energy specific conversion factor.  Doses reported by the reader 

were adjusted for energy response using a third-order polynomial calibration curve derived from 

side-by-side comparisons of recorded doses from an ion chamber and OSL dosimeters over a 

range of 80 – 120 kVp using an adjustable kVp source.  For this study, the OSL sensitivity at 98 
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kVp was estimated at 0.91 (mean kV estimated as 66).  Dividing recorded dosimeter value by 

energy sensitivity was used to calculate actual dose. 

 Two to ten exposures were utilized for each dosimeter run to provide a more reliable 

measure of radiation in the dosimeters.  Collimated FOVs require more exposure repetition 

because more dosimeters are outside of the field of direct exposure and absorb only small 

quantities of scatter radiation.  Doses recorded by the MicroStar reader were subsequently 

divided by the number of scans to determine the exposure per examination for each dosimeter.  

 Doses from the OSL dosimeters at different positions within a tissue or organ were 

averaged to express the average tissue-absorbed dose in micrograys (µGy). The products of these 

values and the percentage of a tissue or organ irradiated in a radiographic examination (Table 2) 

were used to calculate the equivalent dose (HT) in microsieverts (µSv).
8
  

 For bone, the equivalent dose to the whole-body bone surface was calculated using the 

summation of the individual equivalent doses to the calvarium, the mandible, and the cervical 

spine. The determination of these equivalent doses is based on the distribution of bone 

throughout the body: the calvarium contains 11.8%, the mandible, 1.3%, and the cervical spine, 

3.4%.
62

  Distribution of adult bone marrow was calculated using an average of data from Christy 

for 25 and 40 year olds.
63

  The calvarium contains 7.7%, the mandible, 0.8%, and the cervical 

spine, 3.8% of the adult marrow distribution. The 10 year-old child marrow distribution was 

calculated as 11.6% for the calvarium, 1.1% for the mandible, and 2.7% for the cervical spine, 

for a total of 15.4% of the total body marrow.  Following the technique of Underhill et al,
62

 three 

locations within the calvarium were averaged to determine calvarial dose.  For bone, a correction 

factor based on experimentally determined mass energy attenuation coefficients for bone and 
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muscle irradiated with mono-energetic photons was applied.  An effective beam energy 

estimated to be two-thirds of the peak beam energy of the x-ray unit was used to determine the 

bone-to-muscle attenuation ratios.  A linear fit (R
2
=0.996) of ratios from 40 to 80 kV from 

published data produced the following equation: bone-to-muscle attenuation ratio = -0.0618 x kV 

peak x 2/3 + 6.9406.
64

  Values calculated from this equation provided a bone-to-muscle 

attenuation ratio of 2.88 at 66 kV (98 kV peak). 

 The proportion of skin surface area in the head and neck region directly exposed during 

maxillofacial CBCT imaging was estimated as 5% of the total body to calculate the radiation-

weighted dose to the skin following the procedure from Ludlow et al.
65

  Similarly, muscle and 

lymphatic nodes exposures were estimated to represent 5% of the total body complement for 

these tissues.  The proportion of the esophageal tract that is exposed was set at 10%.  Other 

tissues of interest were calculated at 100%. 

 The effective dose (E) is a calculation that permits comparison of the detriment of 

different exposures to ionizing radiation to an equivalent detriment produced by a full body dose 

of radiation.  Effective dose, expressed in microsieverts, is calculated using the equation:             

E = ∑ wT x HT, where E is the summation of the products of the tissue weighting factor (wT), 

which represents the relative contribution of that organ or tissue to the overall risk, and the 

radiation-weighted dose, HT.
8
  The whole-body risk is found by the summation of the radiation-

weighted doses to all tissues or organs exposed.  The International Commission on Radiological 

Protection (ICRP) weighting factors in Table 2 were used to calculate effective doses.
8
  These 

factors included 14 independently weighted tissues and a group of 14 remainder tissues.
62

  Since 

the uterus and cervix are present only in females, and the prostate only in males, the number used 

in the weighted averaging of the remainder tissues was 13. 
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 Analysis of variance (ANOVA) of effective dose results was used to assess the data for 

significant differences due to phantom type (adult, child), collimation (maxillary, mandibular, 

full field), and scan protocol (HD on, HD off).  Tukey’s HSD test was used to determine which 

factors were significantly different from the others.  An alpha value of 0.05 was chosen for all 

tests. 

 Image quality indicators associated with FOV, scanning angle, kilovolt peak, and voxel 

size were acquired using a QUART DVT_AP phantom and QUART DVT_TEC software 

(QUART, Zorneding, Germany) (Figure 3).  The phantom consisted of 16-cm-diameter 

cylindrical slabs of acrylic plastic with polyvinyl chloride and air elements configured to permit 

measurements of polymethyl methacrylate (PMMA) voxel, PMMA noise, homogeneity, 

contrast, contrast-to-noise ratio, modulation transfer function 10%, modulation transfer function 

50%, and Nyquist frequency.  The measurements were calculated in a user-guided, 

semiautomatic manner from two DICOM slices selected from the volume.  Each volume was 

measured three times, from which averages and standard deviations for each parameter were 

calculated. 
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RESULTS 

 The effective doses for the various combinations of parameters for the Galileos Comfort 

Plus CBCT unit are reported in Table 3.  ANOVA of the combined child and adult phantom 

effective dose data demonstrated that for the same exposures, the child doses averaged 32% 

greater than the adult doses (p = 0.0004).  These results are illustrated in Figures 4 and 5, with 

the high-definition setting turned on and off, respectively.  

 The Tukey’s HSD test demonstrated that the effective doses from the full field of view 

scans were significantly greater than the mandibular field of view scans, followed by the 

maxillary field of view scans (p = 0.0002).  These differences can be detected in Figures 6 

through 9, corresponding to the phantom type and high-definition settings.  The coefficient of 

determination values (R²) in the figures range from 0.944 to 0.999, demonstrating a very high 

reproducibility of the experimental data.  

Figures 4 through 9 also illustrate that as the mAs increased, so did the effective dose (p 

< 0.0001).  This is why the effective doses continued to increase from the child setting up to the 

large adult setting.  It also explains why the high-definition scans, with greater mAs values, 

corresponded to higher effective doses. 

 Figures 10 and 11 provide equivalent doses to tissues and organs used in the calculation 

of effective dose.  Absorbed dose in the thyroid was significantly greater in the child phantom 
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than in the adult phantom (p < 0.0001) and comprised a greater percentage of the overall 

absorbed dose. 

Table 4 contains average parameter values and standard deviations from the analysis of 

the QUART phantom images.  As expected, increasing contrast-to-noise ratios were associated 

with increasing mAs (p = 0.0106) and basis images (p = 0.0423), while modulation transfer 

function was not (p>0.05). 
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DISCUSSION 

 In this study, we placed OSL dosimeters inside an adult ATOM phantom and a 10-year-

old pediatric ATOM phantom to collect dosimetry data from the Galileos Comfort Plus CBCT 

unit.  Ludlow and Walker validated the use of these dosimeters and phantoms, thus allowing 

these materials to provide data that are applicable to the majority of orthodontic patients.
22

  What 

we found was that for the same exposure settings, effective doses were an average of 32% higher 

in the child phantom than in the adult phantom.  Taking a closer look at the data, specifically the 

equivalent doses, reveals that the increase in effective dose in the child was mostly due to the 

simulated anatomic position of the thyroid (Figure 12).  The values calculated for thyroid dose in 

the adult ATOM phantom were based on readings from two dosimeters positioned at level 10, 

where the bulk of the lobes and the isthmus of the thyroid gland would be located.  However, for 

the child phantom, thyroid dose calculations were based on an average of two dosimeters in level 

9 and one dosimeter in level 8.  The rationale for this difference in dose measurement was based 

on the proximity of the thyroid gland to the lower border of the mandible, which is closer in 

children than in adults (Figure 12).  This proximity means that direct exposure of the thyroid is 

more likely in children than in adults when the base of the FOV is situated just below the chin.  

In addition, the intensity of scatter radiation from jaw structures to the thyroid will also increase 

with the reduced distance of these structures in a child.  Figures 13 and 14 are representative 

multi-planar renderings of the volumes taken of the child and adult phantoms during full FOV 

scans.  With the thyroid positioned more superior in the child relative to the inferior border of the 

mandible, these images illustrate why it receives more radiation than that of the adult. 
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 Since the thyroid has a tissue weight of 0.04, this organ provides a significant 

contribution to the calculation of effective dose for head and neck exposures.  Clinically, direct 

thyroid exposure can be reduced by rotating the chin upward and positioning the lower border of 

the mandible parallel to the rotational plane of the beam (parallel to the floor).  Unfortunately, 

this strategy was not possible due to the rigid phantoms used in this study.  It is important to 

consider that for those concerned with cephalometric analyses, this technique would not place 

the patient’s head in natural head position.  Also, this strategy employs the use of a chin cup, 

which may cause difficulties for analyzing the soft tissue profile, chin, neck, and throat forms. 

 The use of CBCT units in orthodontics has been a controversial topic in recent history.  

In November 2010, a New York Times article expressed concern over the trend to use high-dose, 

high-resolution three-dimensional scans on young orthodontic patients.
66

  Relevant to this issue, 

the results of our study demonstrate that effective doses were one-third greater in the child 

phantom than in the adult phantom.  Compounding this greater dose of radiation is the fact that 

due to the increased radiosensitivity of tissues in children, the risk is an additional two to five 

times higher for a pediatric patient.
6
  The relative risk of developing fatal cancer based on 2007 

ICRP calculations, as a result of the effective doses seen in our study with the HD scans, equals 9 

in a million for the adult and 27 in a million for the child.
8
  The corresponding risk associated 

with developing thyroid cancer, based on the calculated equivalent doses in our study, equals 2 

in a thousand for the adult and 11 in a thousand for the child.  This is important information to 

consider when determining what type of diagnostic imaging might be best for a given patient. 

 The default exposure settings for the Galileos Comfort Plus unit are child exposure, HD 

on, full FOV.  This is an important setting because inexperienced operators may utilize default 

settings without consideration of diagnostic task or patient size.  For the child phantom, this 
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resulted in an effective dose of 122 µSv.  When the HD off setting was selected for this same 

situation, the effective dose dropped to 39 µSv.  Upon review of proper patient settings and 

FOV, our data demonstrate that optimization of exposure parameters can greatly reduce patient 

dose.  In fact, the standard protocol (HD off) provided a substantial 67.2% reduction in dose 

compared to the high-definition scans in the child phantom, and a 66.9% reduction in dose in the 

adult phantom.  Thus, when HD off protocols can be used, they will provide a clinically 

meaningful reduction in dose.  The largest HD off dose in this study was 72 µSv for the full 

FOV, small adult setting (98 kVp, 10 mAs) on the child phantom.  To put it into perspective, this 

dose is just over 8 days of per capita background radiation in the United States.  It is also 28 

times less than a typical medical CT head scan.
4
   

As for the FOV options for the child phantom, the mandibular FOV provided a 20.3% 

reduction in dose compared to the full FOV, and the maxillary FOV provided a 41.4% reduction 

in dose compared to the full FOV.  Similarly for the adult phantom, the average effective dose 

for the mandibular FOV was 15.0% less than the full FOV, and the maxillary FOV was 23.5% 

less than the full FOV.  Therefore, if a full FOV scan is not necessary, a substantial decrease in 

radiation dose can be appreciated by the patient. 

 It is important to remember that in trying to lower the dose of ionizing radiation 

administered to patients, significant reductions are meaningless if image quality deteriorates to 

the point of not being diagnostic.  As optimization and dose reduction become more of an 

emphasis for CBCT manufacturers, the effects on image quality will require attention.  

Evidence-based research establishing the usability of low-dose and low-quality scans for 

diagnostic purposes in orthodontics is limited.  Having said that, a potential application could be 

a mid-treatment scan to evaluate root angulations, instead of the typical progress panoramic 
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radiograph.  More studies are needed to support that other important information in two-

dimensional imaging or higher-dose scans, e.g. periodontal conditions, changes in root length, 

and changes in morphology that could indicate root resorption, are not lost in these low-dose 

scans. 

 In August of 2013, the American Academy of Oral and Maxillofacial Radiology 

(AAOMR) released a position statement on their clinical recommendations regarding the use of 

CBCT in orthodontic treatment.
24

  At the beginning of the statement, they listed diagnostic uses 

of CBCT in orthodontics, which include dental structural anomalies
25-30

, anomalies in dental 

position
31-34

, compromised dento-alveolar boundaries
35-37

, asymmetry
38-40

, anteroposterior 

discrepancies
41-43

, vertical discrepancies
44, 45

, transverse discrepancies
44, 46

, TMJ signs and/or 

symptoms
47-49

, dentofacial deformities and craniofacial anomalies
50-52

, conditions that affect 

airway morphology
53-55

, specific surgical procedures, orthodontic mini-implants used as 

temporary anchorage devices
56-58

, and maxillary expanders.
59, 60

  Then, they suggested four 

guidelines regarding the use of CBCT in orthodontic treatment.  First, image appropriately 

according to the clinical situation.  In other words, the decision to perform a CBCT examination 

should be based on the patient’s history, clinical examination, available radiographic imaging, 

and the presence of a clinical condition for which the benefits to the diagnosis and treatment plan 

outweigh the risks of exposure to radiation, especially in the case of a child or young adult.  They 

recommend avoiding the use of CBCT to obtain data that can be provided by alternative non-

ionizing modalities, e.g., to produce virtual orthodontic study models.  They also point out that 

few authors have presented higher levels of evidence and measured the impact of CBCT on 

orthodontic diagnosis and treatment planning decisions.  One recent article looked at this topic 

and found that treatment plans were only affected in cases of unerupted teeth, severe root 



23 

resorption, and severe skeletal discrepancies.  No benefit was found in cases where CBCT scans 

were used to examine abnormalities of the temporomandibular joint, airway space, or dental 

crowding.
61

  Another study conducted dosimetry of the SureSmile (OraMetrix, Richardson, TX) 

scan protocol using an i-CAT Next Generation CBCT unit.
19

  They found that a SureSmile scan 

of both arches in an adult imparts an effective dose of 148 µSv.  This would correspond to an 

effective dose of between 148 and 198 µSv for the average pediatric orthodontic patient, 

according to Ludlow and Walker.
22

  No research has been conducted to validate enhanced 

treatment outcomes associated with the SureSmile protocol, in defense of its increased radiation 

exposure.  This leads to the second guideline from the AAOMR. 

The second guideline is to assess the radiation dose risk.  Orthodontists must be 

knowledgeable of the radiation risk of performing CBCT scans and be able to communicate this 

risk to their patients.  Because CBCT exposes patients to ionizing radiation that may pose 

elevated risks to some patients (pregnant or younger patients), orthodontists must explain and 

disclose to patients the radiation exposure risks, benefits, and alternatives.  Third, they 

recommend minimizing the patient radiation exposure.  Specifically, one should perform CBCT 

imaging with acquisition parameters adjusted to the nominal settings consistent with providing 

appropriate images of task-specific diagnostic quality for the desired diagnostic information.  

Suggestions include using a pulsed exposure mode, optimizing exposure settings (mA, kVp), 

reducing the number of basis projection images, and employing dose reduction protocols (e.g., 

reduced resolution) when possible.  In our study, we have illustrated how decreasing the mAs 

and reducing the number of basis images can greatly reduce the effective dose.  Lastly, the 

AAOMR recommends maintaining professional competency in performing and interpreting 

CBCT studies.  Orthodontists must be able to exercise judgment by applying professional 
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standards to all aspects of CBCT, while improving their skills through lifelong learning in 

regards to the performance and interpretation of CBCT examinations. 

 The AAOMR commented that CBCT acquisition technology continues to develop and a 

number of innovations are proposed to improve image quality, increase utility, and reduce 

radiation output.  With regards to image quality, they advise that such innovations should be 

assessed critically and verified by independent published research.
24

  The QUART DVT 

phantom is the first commercially available phantom to comply with standards for image quality 

testing of CBCT units.  These standards were developed in Germany, which is where the 

phantom was manufactured.  We evaluated the effect of the standard (HD off) and high-

definition settings on the objective components of image quality contrast-to-noise ratio and 

modulation transfer function using the QUART DVT phantom.  Our data demonstrated that as 

the milliamperes and basis images increased, the contrast-to-noise ratios increased as well.  The 

average contrast-to-noise ratio was 4.0 for the high-definition scans, versus only 2.1 for the 

standard scans.  Differences in contrast-to-noise ratio have been shown to generally correlate 

with observer impressions of an image.
67

  As the contrast-to-noise ratio increases, the general 

impression of how an image appears improves.  As expected, the modulation transfer function 

was not affected by the milliamperes or the basis images.  The reduction of milliamperes and 

basis images from the high-definition to the standard settings reduced the effective dose to the 

phantoms by 67%, but only reduced the contrast-to-noise ratio by 50%.  Thus, the reduction of 

milliamperes and basis images was an effective way to reduce patient dose in exchange for a 

modest reduction in the image quality, as measured by the contrast-to-noise ratio.  In contrast, 

the objective measure of resolution, the modulation transfer function, was not as sensitive to the 

effects of milliamperes and basis images.  Although contrast-to-noise ratio and modulation 
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transfer function can be correlated to subjective image quality, additional research to evaluate 

their influences on diagnostic efficacy is needed.
23
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CONCLUSIONS 

1. Use of fewer basis images and smaller FOVs in the Galileos Comfort Plus unit result in 

significant patient dose reductions over alternative high-definition and larger FOVs 

settings. 

2. Effective dose for a given FOV may be increased for pediatric patients due to an increase 

in thyroid exposure to ionizing radiation. 

3. Contrast-to-noise ratio data in conjunction with modulation transfer function indications 

of resolution limits might be helpful guides in determining the usefulness of different 

scanning parameters for specific diagnostic tasks. 
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TABLES 

 

Table 1.  Scan parameters for Galileos Comfort Plus programs and exposure settings. 

FOV HD Program 
setting 

kVp mA Phantom 

Full On Child 98 15 C 

Full On Teen 98 20 A, C 

Full On Small Adult 98 25 A, C 

Full On Large Adult 98 30 A 

Full Off Child 98 6 C 

Full Off Teen 98 8 A, C 

Full Off Small Adult 98 10 A, C 

Full Off Large Adult 98 12 A 

Maxilla On Child 98 15 C 

Maxilla On Teen 98 20 A, C 

Maxilla On Small Adult 98 25 A, C 

Maxilla On Large Adult 98 30 A 

Maxilla Off Child 98 6 C 

Maxilla Off Teen 98 8 A, C 

Maxilla Off Small Adult 98 10 A, C 

Maxilla Off Large Adult 98 12 A 

Mandible On Child 98 15 C 

Mandible On Teen 98 20 A, C 

Mandible On Small Adult 98 25 A, C 

Mandible On Large Adult 98 30  A 

Mandible Off Child 98 6 C 

Mandible Off Teen 98 8 A, C 

Mandible Off Small Adult 98 10 A, C 

Mandible Off Large Adult 98 12 A 
     FOV, Field of view; HD, High-definition; Phantom: A, Adult; C, Child. 
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Table 2.  Estimated percentage of tissue irradiated. 

 

Fraction 

Irradiated 

Adult (%) 

OSL ID 

(see Figure 1) 

Fraction 

Irradiated 

Child (%) 

OSL ID 

(see Figure 2) 

Bone marrow 12.2  15.4  

   Mandible 0.8 14, 15 1.1 15, 16 

   Calvaria 7.7 1, 3, 5 11.6 1, 2, 3 

   Cervical spine 3.8 20 2.7 20 

Thyroid 100 22, 23 100 21, 22, 23 

Esophagus 10 24 10 24 

Skin 5 7, 8, 16 5 8, 9, 14 

Bone surface 16.5  16.5  

   Mandible 1.3 14, 15 1.3 15, 16 

   Calvaria 11.8 1, 3, 5 11.8 1, 2, 3 

   Cervical spine 3.4 20 3.4 20 

Salivary glands 100  100  

   Parotid 100 12, 13 100 12, 13 

   Submandibular 100 17, 18 100 17, 18 

   Sublingual 100 19 100 19 

Brain 100 2, 4, 6 100 4, 5, 6 

Remainder     

   Lymphatic nodes 5 

11-13, 17-19, 

21-24 5 

12-13, 17-19, 

21-24 

   Muscle 5 

11-13, 17-19, 

21-24 5 

12-13, 17-19, 

21-24 

   Extrathoracic 

     region 100 

9-13, 17-19, 

21-24 
100 

10-13, 17-19, 

21, 24 

   Oral mucosa 100 11-13, 17-19 100 12-13, 17-19 
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Table 3.  Effective doses (µSv) for the child and adult phantoms by exposure protocol and 

field of view. 

Child Phantom 

HD OFF ON 

mAs 6 8 10 15 20 25 

Full 39 52 72 122 160 202 

Man 29 44 55 99 136 159 

Max 21 32 42 72 98 115 

Adult Phantom 

HD OFF ON 

mAs 8 10 12 20 25 30 

Full 36 47 61 112 140 168 

Man 31 40 48 97 122 143 

Max 28 36 43 86 111 133 

OFF = 200 basis images; ON = 500 basis images. 
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Table 4.  QUART phantom image measurements.  

Scan setting Child Teen Sm Adult Lg Adult Child HD Teen HD Sm Adult HD Lg Adult HD 

Basis images 200 200 200 200 500 500 500 500 

kVp 98 98 98 98 98 98 98 98 

mAs 6 8 10 12 15 20 25 30 

Averages of 3 measurements 
           PMMA Voxel 798.3 788.7 784.0 784.6 777.8 776.5 779.4 776.1 

    PMMA Noise 157.7 140.7 127.0 117.2 93.6 84.1 76.2 72.7 

    Homogeneity 9.3 15.3 20.7 21.0 20.0 22.0 20.0 26.0 

    Contrast 232.2 256.7 300.3 289.7 284.6 281.6 282.8 294.0 

    CNR 1.6 1.9 2.5 2.5 3.5 3.9 3.9 4.6 

    MTF 10% 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

    MTF 50% 0.7 0.8 0.7 0.8 0.8 0.8 0.8 0.8 

    Nyquist Frequency 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.7 

Standard deviations 
            PMMA Voxel 27.5 3.2 4.8 3.2 3.0 4.3 8.6 3.7 

    PMMA Noise 12.8 1.3 2.0 0.9 1.1 1.3 2.8 1.1 

    Homogeneity 7.0 3.8 5.1 6.2 4.4 5.2 10.5 8.7 

    Contrast 139.5 65.1 74.2 67.0 54.7 42.6 80.2 88.0 

    CNR 0.8 0.5 0.6 0.2 0.8 0.4 1.2 1.0 

    MTF 10% 0.3 0.2 0.1 0.2 0.0 0.1 0.1 0.1 

    MTF 50% 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 

    Nyquist Frequency 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
PMMA, Polymethylmethacrylate; CNR, contrast-to-noise ratio; MTF, modulation transfer function. 

 

 

 

 

 

 

 

 

 



31 

FIGURES 

 

Figure 1.  Adult phantom dosimeter locations. 

OSL 
ID No. 

Adult phantom location 
(level of OSLD location) 

 
Phantom Levels 

 

 

1 Calvarium anterior (2) 
2 Mid brain (2) 

3 Calvarium left (3) 

4 Mid brain (3) 

5 Calvarium posterior (4) 

6 Pituitary (4) 

7 Right lens of eye (4-5) 

8 Left lens of eye (4-5) 

9 Right ethmoid (5) 

10 Left maxillary sinus (6) 

11 Oropharyngeal airway (7) 
12 Right parotid (7) 

13 Left parotid (7) 

14 Right ramus (7) 

15 Left ramus (7) 

16 Left back of neck (8) 
17 Right submandibular gland (8) 

18 Left submandibular gland (8) 

19 Center sublingual gland (8) 

20 Center C spine (8) 

21 Lateral neck - left (9) 
22 Thyroid – left (10) 

23 Thyroid - right (10) 

24 Esophagus (10) 
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Figure 2.  Child phantom dosimeter locations. 

OSL 
ID No. 

Child phantom location 
(level of OSLD location) 

 
Phantom Levels 

 
 

1 Calvarium anterior (2) 

2 Calvarium left (2) 

3 Calvarium posterior (2) 

4 Mid brain (2) 

5 Mid brain (3) 

6 Pituitary (4) 

7 Right orbit (4) 

8 Right lens of eye (4-5) 

9 Left lens of eye (4-5) 

10 Right maxillary sinus (5) 
11 Left nasal airway (5) 

12 Right parotid (6) 

13 Left parotid (6) 

14 Left back of neck (6) 

15 Right ramus (7) 

16 Left ramus (7) 

17 Right submandibular gland (7) 

18 Left submandibular gland (7) 

19 Center sublingual gland (7) 

20 Center C spine (8) 
21 Thyroid superior–left (8) 

22 Thyroid – left (9) 

23 Thyroid – right (9) 

24 Esophagus (9) 
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Figure 3.  QUART DVT_AP phantom. 

 

 

 

Figure 4.  Effective doses for the child and adult phantoms at the same high-definition 

settings.  
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Figure 5.  Effective doses for the child and adult phantoms at the same standard settings.  

 

 

 

Figure 6.  Effective doses for the child phantom at the high-definition settings. 
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Figure 7.  Effective doses for the child phantom at the standard settings.   

 

 

 

Figure 8.  Effective doses for the adult phantom at the high-definition settings. 
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Figure 9.  Effective doses for the adult phantom at the standard settings. 
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Figure 10.  Equivalent dose measurements (µGy) for the child phantom. 
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Figure 11.  Equivalent dose measurements (µGy) for the adult phantom. 
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Figure 12.  Comparison of thyroid level in child and adult. 

* * 

Thyroid position in child Thyroid position in adult 
* A.D.A.M. medical images http://www.adamimages.com 

 

Figure 13.  Positioning of the child phantom for the full field of view scan. 
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Figure 14.  Positioning of the adult phantom for the full field of view scan. 
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