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ABSTRACT

Chia-Yu Kao: A Deep Learning Architecture for Histology Image Classification
(Under the direction of Leonard McMillan)

Over the past decade, a machine learning technique called deep-learning has gained prominence

in computer vision because of its ability to extract semantics from natural images. However, in

contrast to the natural images, deep learning methods have been less effective for analyzing medical

histology images. Analyzing histology images involves the classification of tissue according to

cell types and states, where the differences in texture and structure are often subtle between states.

These qualitative differences between histology and natural images make transfer learning difficult

and limit the use of deep learning methods for histology image analysis.

This dissertation introduces two novel deep learning architectures, that address these limitations.

Both provide intermediate hints to aid deep learning models. The first deep learning architecture is

constructed based on stacked autoencoders with an additional layer, called a hyperlayer. The hyper-

layer is an intermediate hint that captures image features at different scales. The second architecture

is a two-tiered Convolutional Neural Networks (CNN), with an intermediate representation, called a

pixel/region labeling. The pixel/region labels provide a normalized semantic description that can be

used as an input to a subsequent image classifier.

The experiments show that by adding the hyperlayer, the architecture substantially outperforms

fine-tuned CNN models trained without an intermediate target. In addition, the experiments suggest

that the advantages of the labeling classifier are threefold. First, it generalizes to other related

vision tasks. Second, image classification does not require extremely accurate pixel labeling. The

architecture is robust and not susceptible to the noise. Lastly, labeling model captures low-level

texture information and converts them to valuable hints.
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(Gülçehre and Bengio, 2016). It is the same architecture as SMLP-Hints but
with P1NN and P2NN trained jointly in terms of the final classification task. . . . . . . . . . . . 51

5.4 SMLP architecture using pixel labeling hints. Bottom two layers are pixel
labeling layers, while middle two and top two layers are P1NN and P2NN,
respectively. Pixel labeling layer is trained on 5×5 patch extracted from the
image and outputs probabilities for each of the 11 possible Pentomino at every
pixel in the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 (a) Examples of background patch pattern. (b) An example of patch pattern
that is unique to Pentomino 2. (c) An example of patch pattern that is not
unique to any one Pentomino. Both Pentomino 4 and 9 could have such pattern,
leading to ambiguity while labeling the pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



5.6 Confusion matrix of the pixel labeling on all transformations of Pentominoes.
Columns are the predicted results of the pixel labeling model, and rows are the
ground truth of ten Pentominoes with eight transformations plus background
(10), where the numbers represent ten Pentomino type (0-9) and the letters
indicate the eight transformations (a-d, A-D). Lowercase (a-d) are small Pen-
tominoes (scale 3) rotated by four angles and uppercase (A-D) are four rotated
large Pentominoes (scale 4). The values in the confusion matrix are the nor-
malized predicted probabilities of each transform Pentomino being particular
Pentomino type, where white means low probability and black illustrates high
probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Examples of 112 texture images from Brodatz Album. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8 (a) Examples from the generated dataset, where their foreground and back-
ground textures are from the same texture images. (b) Examples with different
foreground and background textures that are hard to distinguish. Foreground
and background textures are randomly selected with replacement and the shape
within the image is also randomly chosen from circle, pentagon, square, trian-
gle and quarter. Two textures are mixed with roughly the same area for each
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.9 The generation process of the new texture dataset. First, two textures are
randomly picked from Brodatz Album and assigned as the foreground or
background texture. The 128 square regions are then cropped from the resized
160 square area at random locations. The two texture images are rotated by
four choices of angles. Finally, the two textures are mixed with roughly the
same pixels in a random shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.10 Model architecture for region labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.11 Model architecture for supervised region labeling model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.12 (a) Samples from generated dataset with the same foreground and background
textures and their false-color images indicating the label with the highest prob-
ability at each pixel. (b) Samples and their false-color images with different
foreground and background textures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 An example of cumulated probability distribution over 729 (27×27) pixels
in the region. The x-axis represents 112 labels. The y-axis is the probability
sum over all pixels in the region, where 729 is the maximum value when the
probabilities of all pixels are 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 (a)(c) are the examples of same and different foreground and background
textures, respectively, in the generated texture dataset. (b)(d) are the false-color
images indicating the label with the highest probability at each pixel. (e)(f) are
the cumulated probability distribution over all pixels in the region. . . . . . . . . . . . . . . . . . . . . 74

xiv



6.3 Comparison between the uncertainty and sparsity score with 320 examples.
Each example contains 10 pixels within a window, showing eight significant
textures appearing within a window. The x-axis represents the sparsity score
while the y-axis shows the uncertainty score. The red line indicates uncertainty
= 0.5. Three examples, P1, P2, and P3 are marked as red crosses in the image.
Different colors and glyphs represent various numbers of textures appeared
in a window. When the uncertainty scores are less than 0.5, samples with
different numbers of significant textures appeared in a window can be clearly
identified by their sparsity scores. For example, if the samples have only one
significant texture appeared in a window, the sparsity scores fall between 0 and
0.15, samples with two significant textures have the sparsity scores between
0.15 and 0.28, and etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Comparison between entropy and the sparsity score with 100 examples. Each
example contains 100 pixels within a window, including 4 cases of different
number of significant textures appeared within a window. The x-axis represents
the sparsity score while the y-axis shows entropy. If the probabilities for all
pixels are varied, different number of significant textures can be distinguished
by using the sparsity score nevertheless entropy cannot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 A cumulative probability distribution over all samples within a mini-batch with
high coefficient for the distinction score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Examples of the same and different textures for foreground and background
with high coefficient on the distinction score. When the coefficient of the
distinction score sets high, the cumulative probability distribution shows that
most of the textures have been recognized within a mini-batch and the false-
color images also reflect the effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 Examples of same and different textures for foreground and background with
high coefficient on the sparsity score. From the cumulative probability dis-
tribution, the number of the textures been recognized within a mini-batch
decreases to one significant peak for the same texture and two significant peaks
for different, when the sparsity score sets high. There are also fewer colors
dominating in the false-color images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 A cumulative probability distribution over all samples within a mini-batch with
lower coefficient for the distinction score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.9 Comparison between the distinction and sparsity score with different coefficient
settings. Note that the x-axis is the mean sparsity score over all samples within
a mini-batch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xv



CHAPTER 1: INTRODUCTION

Histology is the study of anatomy achieved by examining tissue samples under a microscope

(Kayser et al., 2002). It is an essential and ubiquitous technique in biology and it is considered

the gold standard for clinical diagnosis of many diseases (e.g., cancer detection). It also serves as

an auxiliary tool for the identification of functional maladies (Odet et al., 2015; He et al., 2010;

Junqueira and Carneiro, 2005; Mills, 2012).

The recent introduction of automated tissue processing, including automatic scanning and

imaging of slides, has dramatically increased the speed for producing histology slides in the

lab (McCann, 2015). Moreover, modern digitizing methods offer an opportunity to improve

histopathologic procedures and diagnoses. It allows pathologists to view and browse digital versions

of slides conveniently on a computer rather than through a microscope. It also has made histology

images available for analysis via computer vision methods, thus providing new techniques to aid

pathologists to quantify and examine the slides (Litjens et al., 2016).

In spite of these advances, much of the routine analysis for histology images remains a manual

endeavor which relies heavily on the expertise of medical experts for interpretation and understand-

ing (Gurcan et al., 2009). Pathologists can leverage quantitative and categorical parameters, such as

cell types, cell counts, shapes, and lengths, but their final determinations still often depend on a

more global analysis. This overall manual assessment is labor-intensive.

Over the past decade, machine learning techniques, such as deep learning, have shown a lot

of promise for extracting semantics from images in computer vision. Deep learning is a recent

extension to classical neural networks where learning architectures are formed by composing

multiple non-linear transformations, with the goal of yielding more abstract and ultimately more

useful representations (Bengio et al., 2013; Krizhevsky et al., 2012).

1



(a) (b)

Figure 1.1: (a) Natural scene images from Pascal VOC 2012 (Everingham et al., 2011). (b) Stained
histology images of normal/abnormal testis tubules. The objects in natural images generally appear
at different depths, and are distinct from the background. In histology images, the tissue is at a
single depth. Compared to the natural scene images, texture detailed information is essential to
define an object.

1.1 Motivation

The naive application of standard deep learning approaches to solve problems in automated

histology image analysis has, at best, met with limited success. One possible reason is that histology

images are significantly different from natural images. Figure 1.1 points out some of the differences.

In natural images, the colors are more varied and locally coherent making objects generally appear

distinct from the background. Typical image analysis problems on natural images are like finding

the bus in the image or classifying whether an object appears in the image.

On the other hand, histology represents a slice through a volume of tissue. Generally, they have

particular structures with a few colors, and contain a wide variety of textures. An accurate assessment

for automated histology analysis typically requires examining both the mix and configurations of

different cell and tissue types, which locally appear normal and very similar in different states. Also,

analyzing the histology images often involves the classification of tissue in different states, with

similar textures and structure between states.
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The notion of ”normal” varies in different parts of a section, with different structures (blood

vessels, etc) and different physiological states (for example, stages of germ cell differentiation in

the testis and the arrangement of these stages within each tubule). A pathologist must understand

the different aspects of normal histology to be able to discern abnormalities.

To predict the class for a given histology image, the learning model should first identify the

regions where cells are abnormal or out of place. Applying these problems on natural images, it is

more like trying to identify bulls in a herd of cattle. All these significant differences in histology

images make transfer learning from natural images to histology images nearly impossible and also

increase the difficulty for its classification.

Given these issues, I hypothesize that in order for a deep learning architecture for automated

histology image analysis to capture high level semantic information, it must first learn small-scale

image features, like color, shape, and texture. Deep learning is known for learning a hierarchy of

filters that extract higher level of representations as the model goes up in the hierarchy. Features at

the first few layers tend to pick out low-level properties of the input image like spatial frequency,

texture, edges, or color. As the network goes up the hierarchy, the low-level properties start

composing together, and become more recognizable objects like mouth, eyes, or noses. However, as

the depth of neural network becomes deeper, a new research problem emerges. Because classical

deep learning architectures only propagate the learned features from one previous layer, lots of

valuable representations learned in the early layers are lost as they pass through layer by layer

(He et al., 2016). This low-level information, considered as critical features for histology images

analysis, are learned from the early layers in deep learning. Perhaps it would be valuable to preserve

this information for subsequent layers.

In this dissertation, I propose two deep learning architectures to infer intermediate feature

representations for histology image analysis. First, I proposed a novel deep learning architecture

that introduces an intermediate layer to combine feature representations at different scales, under

the assumption that if the decision layer (softmax layer) makes the decision based on the features

learned at all scales, instead of the previous layer only, it might improve the performance. This
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work inspired me that some low-level features the model identified correspond to the cell types at

some level.

Taking one step further, I assumed that if I label the image with the probable cell type on a

per pixel basis and feed the results to the traditional network, low-level representations can be

preserved and the performance should be improved further as well. Recently researchers have

proposed that, rather using deep-neural networks to solve difficult problems directly, it might be

beneficial to decompose learning problems into smaller, intermediate tasks that provide hints for

learning more complex concepts (Bengio et al., 2009b; Karpathy and Van De Panne, 2012). The

paradigm of learning intermediate objectives for a high-level task, called curriculum learning

(Bengio et al., 2009b; Kumar et al., 2010a; Lee and Grauman, 2011), is an emergent topic in deep

learning and computer vision (Chen and Gupta, 2015; Dong et al., 2016; Gong et al., 2016; Pentina

et al., 2015). Recent research (Hinton et al., 2006; Jiang et al., 2014) also shows that curriculum

learning (Bengio et al., 2009b; Kumar et al., 2010b) can use an intermediate hint feature layer to

steer difficult-to-learn objective functions towards effective solutions.

I therefore hypothesize that if the model can directly label the small-scale representations, like

cell types, at each pixel or a given region in a histology image, and provide these labels as hints to

the classifier about what possible tissue type the particular histology image would be, the model

would learn better. I proposed a second deep architecture which applies the curriculum learning

paradigm by introducing an intermediate learning task, learning a pixel/region labeling to provide

hints to subsequent image classification task.

1.2 Thesis Statement

By introducing an intermediate learning objectives in a deep learning network, one can improve

classification accuracy of histology image analysis. The intermediate objectives act as hints or

indirect supervision for higher level learning task.

For example, a pixel/region labeling may be a practical hint layer for deep learning. Intermediate

objectives might also allow us to capture and preserve low-level representations, specifically texture
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information. These types of labeling hints can generalize to other vision problems and be realized

in either supervised or unsupervised settings.

1.3 Outline of Contributions

In defense of the thesis statement, this work explores how to construct a deep learning architec-

ture with an informative intermediate layer. In completing the work, I have achieved the following

goals:

Using a Hyperlayer to Combine Features Across Scales. A novel deep learning architecture

for features learning and automated histology image analysis is presented. Using a stacked

convolutional autoencoders, an intermediate layer, hyperlayer, is added between convolutional

layers and hidden layers to collect the features from different scales. The work is described in Kao

and McMillan (2017) and details are provided in Chapter 3.

Pixel Labeling as an Intermediate Learning Objective. I proposed a novel deep learning

architecture for image classification that propagates specific domain knowledge from the pixel

level to the image level in the spirit of curriculum learning. A labeling model is introduced to

transform the information embedded in the image from color space to the probabilities of a small

set of meaningful labels for each pixel. It serves as an intermediate hint, providing prior knowledge,

for subsequent classification task. The details of the architecture are introduced in Kao et al. (2017)

and Chapter 4.

Generalizing Pixel Labeling Approach. In order to demonstrate that pixel labeling model

generalizes, I demonstrate it on two designed toy problems. One is the Pentomino problem, which

is taken directly from the original curriculum learning paper, to evaluate whether the pixel labeling

layer can accomplish a similar improvements to the Pentomino dataset learning task with the hint

layers used in the original paper. The other toy problem is designed to demonstrate that pixel
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labeling model is beneficial for classifying texture-like dataset. More details about the work are

depicted in Kao et al. (2017) and Chapter 5.

Unsupervised Pixel Labeling Layer. I extended the labeling model to learn in an unsupervised

fashion by introducing an unsupervised learning objective considering the correlation relationships

among the labels. Three regularization terms, uncertainty, sparsity, and distinction, are designed to

refine the label assignments by iteratively constructing an expected output distribution during the

unsupervised labeling training. The work is detailed in Chapter 6.

Conclusion. Chapter 7 concludes this thesis and discusses potential areas for future research.
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CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Introduction

Deep learning is a machine learning technique which has demonstrated notable successes in the

last ten years (LeCun et al., 1998; Szegedy et al., 2015; He et al., 2016). Its outstanding ability to

learn feature representations from data makes it the first choice for solving many machine learning

problems. Deep learning is an extension of classical neural networks which utilizes multiple layers

to learn important features and representations.

This chapter aims at presenting a broad overview of several common forms of neural network

architectures, including the fundamentals of the networks and their use in computer vision tasks.

The section explores the extensions of the neural network architectures. One is about the nature of

convolutional neural networks, which has successfully been applied to analyzing visual imagery.

The other is autoencoder, a special form of unsupervised learning of efficient codings. The chapter

also outlines current research trends in curriculum based learning.

In addition, many deep learning techniques and applications have been described, as well as

some work on automated histology analysis systems (Litjens et al., 2016; Cireşan et al., 2013, 2012).

My work is at the intersection of these two areas. This chapter summarizes the development of

automated histology image analysis systems and the previous work in deep learning, and concludes

with a discussion of previous work on automated histology image analysis using deep learning.

2.2 Classical Neural Networks

Neural networks are an information processing paradigm inspired by the brain’s structure

(McCulloch and Pitts, 1943; Widrow and Hoff, 1960; Rosenblatt, 1962; Rumelhart and Mcclelland,

1986). The basic unit in neural networks is a neuron, as shown in Figure 2.1. Neural networks are
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composed of neurons connected by directed edges. An edge from node j to node i propagates the

activation aj from j to i. Each edge has a weight wji associated with it to indicate the strength

and sign of the connection. Each neuron i computes a weighted sum of its inputs, and applies an

activation function g to the sum, which derives the output ai = g(
∑d

j=1wjiaj).

Figure 2.1: A sample unit i with input dimension d.

Neural networks are often modeled as distinct layers of neurons, called hidden layers. The

neurons in neural networks only receive the input from the neurons in the immediately preceding

layer. Given an input, the value will be propagated forward through the network layer by layer

until reaching the output layer. This process of taking layers of features and feeding the features to

another hidden layers is called feed-forward propagation.

Finally, the output is compared to the training data with an error evaluation function in the

output layer. The errors and weights are used to tease apart which parts of the network contributed

to misprediction and guide adjustment of the parameters in pursuit of better prediction. Neural

networks can be trained to perform regression or classification tasks.

2.3 Deep Learning

Deep learning is a recent extension to classical neural networks. Deep learning architectures

typically are formed by composing multiple non-linear transformations, with the goal of yielding

more abstract and ultimately more useful representations (Bengio et al., 2009a). In recent years, deep
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learning architectures have become popular, since they have outstanding performance in different

computer vision and pattern recognition tasks (Hinton, 1990; Bengio et al., 2013; Krizhevsky et al.,

2012; Farabet et al., 2013).

Convolutional neural networks have been especially successful in representation discovery.

LeCun et al. proposed LeNet, which is used to read zip codes, digits, etc. AlexNet (Krizhevsky

et al., 2012) is the next notable CNN used in computer vision, which has a very similar architecture

to LeNet but has many more layers and parameters. Notably, a breakthrough in AlexNet is that

multiple convolutional layers in AlexNet were stacked on top of each other whereas previous

architectures included only a single convolutional layer.

VGGNet (Simonyan and Zisserman, 2014) demonstrated that for the task of image classification,

deeper networks generally have better performance. There were 16 convolution and fully-connected

layers in their best performing network. GoogleNet (Szegedy et al., 2015) proposed the concept

of an inception module that dramatically reduces the number of parameters in the network. Also,

instead of using fully-connected layers as in the upper layers of CNN, it uses average pooling to

eliminate a large number of parameters.

Network depth is crucial in neural network architectures. Intuitively, deeper networks should

perform no worse than their shallower counterparts. However, very deep networks degrade in

performance. To address this issue, ResNet (He et al., 2016) bypassed signal from one layer to next

via adding a shortcut connections with identity mapping, Wide residual network (Zagoruyko and

Komodakis, 2016) decreased depth and increased width of residual networks, and ResNeXt (Xie

et al., 2017) aggregated a set of transformations with the same topology.

2.3.1 Convolutional Neural Networks (CNN)

CNNs are similar to classical feed-forward neural networks. Both learn sets of weights and

biases, and each neuron receives inputs, performs a dot product, and applies a non-linearity to the

result to generate an output. However, CNNs are very different from their special structures.
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Unlike traditional neural networks, CNNs have repetitive blocks of neurons that are applied

over each patch of the image. The weights for these repetitive blocks are shared. By using this

special structure, CNNs are able to exploit spatial invariance in recognition. For example, a cat

might appear many places in an image. For traditional neural networks, which do not have repeated

weights across space, the group of neurons receiving inputs from the upper right corner of the image

will have to learn to represent the cat independently from the group of neurons connected to the

lower left corner. Meanwhile, we also need sufficient images of cats such that the network can train

on several examples of cats at every possible image location separately. In addition, because the

weights in CNNs are applied over each patch of the image, the training process will detect local

patterns.

Given the context, a simple CNN is implemented as a repeated sequence of layers, including

convolutional layers, pooling layers, and fully-connected layers (LeCun et al., 1989, 1998). The

convolutional layer is a core building block in CNNs. A linear filter in convolutional layer is

repeated across overlapping windows of the input signal, where all repeated units share the same

parameters and form a feature map. To form a feature map, a function is repeated across subregions

of the entire image, where the function hk = σ(x ∗W k + bk) with parameters W and b. σ is an

activation function, and * denotes convolution. Given a two-dimensional image x and a filter

W of size h×w, the convolution operator is computed by overlaying the filter on top of the

image and summing the elementwise products between the image and the filter: (x ∗W k)i,j =∑h
m=1

∑w
n=1 xi+m−1,j+n−1W

k
m,n.

A convolutional filter provides strong response on short snippets of data that exhibits a specific

short pattern. In contrast to traditional computer vision, these patterns need not to be decided

beforehand but can be learned from the data. Owing to the short length of the pattern, a convolutional

filter has a small number of parameters. Outputs of multiple convolutional filters can themselves

processed by another set of convolutional filters. These higher level convolutional filters tend to

detect larger patterns in the original image.
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Another important concept in CNNs is a pooling layer, which is a form of non-linear down-

sampling. The pooling layer partitions the convolutional outputs into disjoint regions and outputs a

single summary statistic (frequently the maximum value, in which case it is called “max-pooling”)

over these regions to obtain the pooled convolved features. The use of pooling is to decrease the

spatial size of the representation and reduce computation in subsequent layers.

The lower levels of CNNs are composed of alternating convolutional layers and pooling layers.

The upper layers are generally fully-connected layers as in traditional hidden layers models.

Compared to other computer vision algorithms, CNNs use relatively little pre-processing.

CNNs are responsible for learning spatial filters that are frequently hand-engineered in traditional

algorithms. Therefore, a CNN’s major advantage is that it is less dependent on prior knowledge

and human effort in selecting features. CNNs can also learn general features. For example, they

can be trained on one classification database, and then be applied to different tasks, so the need for

learning task-specific features is minimized. Another feature of CNNs is that they often learn a

hierarchy of filters, extracting higher level of representations as the model goes up the hierarchy.

Filters in the first few layers tend to pick out low-level properties of the input image like edges, or

color combinations. As the network progresses up the hierarchy, more complicated filters begin to

emerge.

2.3.2 Autoencoder

An autoencoder is an unsupervised learning algorithm that is used for dimensionality reduction

and feature discovery. An autoencoder is a feed-forward neural network that attempts to discover

a set of features that are able to reconstruct its input (Bengio et al., 2007; Poultney et al., 2007).

An autoencoder maps an input x to an output (reconstruction) r through an internal representation

or code h. The model consists of two parts: an encoder that tries to find the code to represent

the input with the function h = fθ(x) = σ(Wx+ b) with parameter θ = {W, b} , and a decoder

that produces a reconstruction with function x̃ = fθ′(h) = σ(W ′h+ c) with θ′ = {W ′, c}. Two
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parameter sets are usually constrained to be of the form W ′ = W T , using the same weights for

encoding the input and decoding the latent representation.

The reconstruction error can be measured in many ways, depending on the assumptions on the

input distribution. As an example, the squared error ‖x− x̃‖2 is a commonly used error metric. The

objective is to make the code h capture the main factors of variation in the data. If the hidden layer

is linear and the mean-squared error metric is used to train the network, the autoencoder would

behave just like principal component analysis (PCA) (Karhunen and Joutsensalo, 1995). On the

other hand, using a non-linear hidden layer, one can achieve encodings that differ from PCA, and

are able to capture different aspects of the input distribution (Japkowicz et al., 2000).

Denoising autoencoders are a very common class of non-linear autoencoders where the au-

toencoder attempts to reconstruct the input from a corrupted version of it (Vincent et al., 2010).

The idea is to force the hidden layer to discover more robust features and prevent it from learning

the identity mapping. The corruption process is stochastic, and in one implementation it simply

randomly assigns a subset of the inputs to zero. Then, the denoising autoencoder tries to predict the

corrupted values from the uncorrupted ones.

2.3.3 Curriculum Learning

Curriculum learning is a machine learning technique inspired by the way humans and animals

learn. The idea of curriculum learning is that the learning process begins by learning simple concepts

and progresses through information with increasing difficulties to learn more complex concepts

(Bengio et al., 2009b). Gülçehre and Bengio (Gülçehre and Bengio, 2016) state that learning deep

architectures is easier when some hints or indirect supervision are given about the function that the

intermediate levels should complete. They also demonstrate that introducing an intermediate layer

affects both the speed of convergence of the training process, and decrease the generalization error.
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2.4 Automated Histology Image Systems

There has been considerable work on applying classification methods for analyzing histology

data (Sirinukunwattana et al., 2016). The research on automated histology analysis systems focuses

on analyzing the tissue as either an entire sample or at a cellular level (Arif and Rajpoot, 2007;

Zhong et al., 2017; Chang et al., 2013). The approaches at the cellular level attempt to detect

different cell classes based on the shape and texture of the nuclei.

Techniques from machine learning, such as k-nearest neighbor, support vector machines,

genetic algorithms, etc. have been used to extract such features in order to to classify normal and

abnormal tissues (Hattel et al., 2013; Nateghi et al., 2014; Kather et al., 2016; Zohra and Mohamed,

2009; Lannin et al., 2016). A few examples include the classification of Circulating Tumor Cells

via random forests and support vector machines (Svensson et al., 2015), classification of diagnosing

abnormal lung sounds using k-nearest neighbor (Chen et al., 2015), on-line monitoring of yeast

cell density and viability via support vector machines (Wei et al., 2007), quantification of textural

differences between cancer cells and blood cells (Phillips et al., 2012b,a), and classification of

colonic tissue by means of a genetic algorithm (Amin et al., 2003).

Abnormalities can cause visible changes in the texture along with discernible changes in spatial

arrangement and differences in cell shapes. Dalle et al. (2009) and Cosatto et al. (2008) exploited

the properties of nuclei, such as shape, texture, and size, for grading in breast cancer images. To

train a classifier for mitotic and non-mitotic cells, Malon and Cosatto (2013) used a combination of

color, texture, and shape. Based on the appearance of the tumor and normal nuclei, Nguyen et al.

(2011) were able to classify nuclei and identify glands for screening prostate cancer.

2.5 Deep Learning on Automated Histology Image Systems

Recent studies have shown that deep learning methods show promise for analyzing histopatho-

logical image datasets (Sirinukunwattana et al., 2016). Hafemann et al. (2014) demonstrated that a

CNN is capable of surpassing traditional classification approaches. Wang et al. (2014a) was able to
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classify mitotic cells by using a cascaded classifier trained on a combination of hand-crafted features

and features learned through CNN. Wang et al. (2014b) expended the work on mitosis detection

by combining handcrafted and convolutional neural network features. Other applications of CNN

include learning a hierarchical part-based representation for breast cancer detection (Cruz-Roa

et al., 2014), automated grading of gliomas (Ertosun and Rubin, 2015), and epithelium and stroma

segmentation and classification (Xu et al., 2016a). Last, Xu et al. (2016b) used a stacked sparse

autoencoder to learn a high level representation of nuclear and non-nuclear objects.

Typical histology image classification methods focus on either detecting cell types (Svensson

et al., 2015; Wei et al., 2007), or classifying images in their entirety (Amin et al., 2003). The task

for detecting cell types attempts to learn the features from local low-level information, like color,

and classify different types of cells based on learned features. Since cell-type detection focuses on a

small local area, it is often not sufficient enough to infer larger scale structural anomalies.

However, the results can be regarded as meaningful semantics for the cells within the surround-

ing structures, which is beneficial for classifying the larger structures. Most of the classification

models distinguish abnormal structures by learning the features indirectly from low-level infor-

mation (Dalle et al., 2009; Cosatto et al., 2008; Malon and Cosatto, 2013). The disadvantage

of these models is that they are not able to directly recognize the cell types contributing to the

abnormal structures since they only take low-level information into consideration. I believe that

an intermediate labeling of low level structure, such as cell type, will significantly improve the

performance of classifying abnormal structures.
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CHAPTER 3: USING A HYPERLAYER TO COMBINE FEATURES ACROSS SCALES

3.1 Introduction

Sperm concentration, morphology, and motility are common parameters measured in semen

analysis for the clinical diagnosis of infertility (World Health Organization et al., 2010; Odet et al.,

2015) However, a rich and complementary source of information for assessing male infertility is

found via direct examination of histology images from testis cross sections. The mouse provides a

powerful experimental model for addressing some limitations of human studies and for examining

testis histology which helps unravel the underlying bimolecular causes of infertility.

A testis histology image can be segmented into a units known as seminiferous tubules. The

visual state of each tubule is indicative of many aspects of spermatogenesis, including the stage

of spermatogenesis and structural abnormalities (Meistrich and Hess, 2013; Lanning et al., 2002;

Oakberg, 1956). Figure 3.1 shows a representative testis histology, stained with Periodic acid–Schiff

(PAS) and hematoxylin. This histology image can be decomposed into 248 tubules. Most tubules

exhibit normal stages of spermatogenesis as shown in Figure 3.1. Even normal stages can vary with

different structures and arrangements.

Figure 3.2 shows seminiferous tubules exhibiting defects, including vacuoles, abnormal germ

cells, loss of germ cells, and the unexpected sloughing of materials into the normally clear lumen of

the tubule. In many aspects, normal tubules look very similar to abnormal ones. For example, the

visual appearances of a tubule with vacuoles might look normal if you examine it locally as shown

in Figure 3.2(b). Also, local structures and cells might seem normal but appear in the wrong place

like Figure 3.2(e). Classifying a tubule as normal or not needs to consider the overall context and

different scales of cells. Because of this subtlety, significant training is required before a human

observer can differentiate between them.
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Figure 3.1: A composite testis image from lab mice with normal seminiferous tubules. Tubules 1, 2,
3, and 4 are shown at greater magnification.

(a) (b) (c) (d) (e)

Figure 3.2: Examples of tubule with different abnormalities. (a) a normal tubule (b) a tubule with
many vacuoles (c) a tubule with abnormal germ cells (red arrow) (d) tubule with complete germ cell
loss and one large vacuole (few vacuoles in the manual labeling scheme) (e) a tubule with germ
cells in lumen.

To solve this problem, I propose a novel deep learning architecture where an additional layer,

called a hyperlayer, is created that combines with convolutional layers to capture high level semantic

information and small scale image features. The proposed approach does not follow traditional

convolutional network architecture where each layer’s outputs feed only to the next and the top

layer only is used for classification, which may be too coarse to reveal the nuance among different

stages of tubules.

The deep learning architecture composes multiple linear and non-linear transformations of the

data to infer a more abstract and useful representation (Cruz-Roa et al., 2013). The attraction of this
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approach is that feature extraction is part of the learning process. My goal is to build a learning

architecture which can extract the appropriate features, visualize the features learned by the model,

and classify the tubules based on the features learned.

In the architecture, the learning network is able to capture features of an image from different

levels of abstraction and scale and thus provide a more complete description for the classification

process. Inspired by deep learning in image classification, the novel deep learning architecture

combines convolutional autoencoders, a hyperlayer, and a softmax classifier for tubule classification

and visual representation.

3.2 Approach

The proposed architecture for testis histology image learning, visualization of learning process,

feature combination, and classification is based on deep learning network architecture depicted in

Figure 3.3(a). I employed stacked convolutional autoencoders (Masci et al., 2011) for classification,

which includes unsupervised pre-training stage (green block) and supervised fine-tuning stage (blue

block). In pre-training stage, the architecture was trained via convolutional autoencoders one layer

at a time. Once all layers are pre-trained, the network goes through to the second fine-tuning stage,

where I added the hyperlayer to capture features from all layers/scales from the first stage. As for

visualization of learning process, I reconstructed the image with learned features via deconvolutional

networks. Each module is corresponding to the layers in the architecture described in the following

sections.

3.2.1 Feature Learning via Stacked Convolutional Autoencoder

Convolutional autoencoder architectures are similar to standard autoencoders, except the

weights in convolutional neurons are shared to achieve spatial/position independence (Masci et al.,

2011). Several convolutional autoencoders can be stacked to form a deep learning architecture.

Each layer takes the max-pooling of the hidden outputs from the layer below as its input, and

performs unsupervised pre-training. The pre-training process first takes the input x and maps
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it to the k-th feature map using the function hk = σ(x∗Wk+bk) with parameters, W and b.

σ is an activation function, and * denotes the 2D convolution. Afterward, the feature maps

are used to reconstruct the input by mapping back with the function y = σ(
∑
hk ∗ W̃ k + c)

with parameters W̃ and c. Those parameters are optimized by minimizing the differences

between input and the reconstructed representation. The learned features from convolutional

autoencoders are used to initialize a convolutional neural network with identical topology.

Once the first stage unsupervised pre-training is done, the network goes through the convolu-

tional neural network in the second fine-tuning stage as shown by the blue dash lines in Figure 3.3(a).

Figure 3.3: (a) Overview of our deep learning architecture, where the building blocks within green
box are convolutional anto-encodes performed in the first stage of classification, and all building
blocks within blue box compose a whole learning framework for the fine-tuning stage. Decon-
volutional networks indicated in green dotted lines goes through whole framework to reconstruct
the image from the top most layer. (b) Example of a hyper layer with weights 3, 2, and 1 on
convolutional layer 1, 2, and 3, respectively. (c) Example of upsampling operation on pool size
2×2 in deconvolutional networks. Pool-sized neighborhoods are filled with the absolute max value
within that area.
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3.2.2 Hyperlayer construction

In the fine-tuning stage, unlike a traditional stacked autoencoder architecture, I added an

intermediate layer, called a hyperlayer, between convolutional layers and hidden layers to collect

features from different layers. When pooling is applied, these features can be considered different

scales. A hyperlayer is a fully connected layer which concatenates extracted feature maps from

every convolutional layer below and outputs the representative neurons of the corresponding layer

to above layer. In addition, hyperlayer is allowed to specify the importance of every convolutional

layer by configuring the weights for each of them. Figure 3.3(b) illustrates an example of the

hyperlayer with weights 3, 2, and 1 on features collected from convolutional layer 1, 2, and 3,

respectively. Combining all features across multiple layers provides a representation with features

derived from different scales of details to the classifier layer.

3.2.3 Automated Classification via Softmax Classifier

Beyond the hyper layer, I constructed three hidden layers to decrease the number of neurons in

the framework and build a logistic regression classifier in the end of the architecture. The classifier

was trained by minimizing the negative log-likelihood. The output of the classifier is the probability

that the input x is a member of a class i, and then I chose the class whose probability is maximal as

our model’s prediction.

3.2.4 Image Representation via Deconvolutional Networks

I used convolutional autoencoders to learn the features that can best reconstruct their input in a

layer-wise fashion. Therefore, the reconstructed image reflects the features learned from the model

in layers. To see the features learned from the whole framework including classification, I exploited

deconvolutional networks (Zeiler et al., 2011) to reconstruct the image from the classifier layer. The

concept of the deconvolutional network is very similar to convolutional autoencoders, except for

the max-pooling part. In deconvolutional network, to reconstruct the image I have to upsample the

results of max-pooling to form the hidden representation and then I can reconstruct the input, while
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autoencoders can directly take the hidden representation to reconstruct the input. In the model,

upsampling is operated by using the max value in the pool-sized for all neighborhoods. An example

of upsampling is depicted in Figure 3.3(c).

3.3 Experimental Setup

In this section, I introduce a histology image dataset, that the hyperlayer is applied to, and

show how I conducted the experiments on this dataset. Here I also present the architecture for the

hyperlayer classifier, including the number of layers, the type of the layers, the size for the filters,

and the weights for the convolutional layers.

3.3.1 Histology Image Dataset

The approach is evaluated on the histology images of mice, which are collected from a panel

of multiparental lines, called Collaborative Cross (CC), from five classical inbred strains (A/J,

C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HILtJ) and three wild-derived strains (CAST/EiJ,

PWK/PhJ, and WSB/EiJ). During the generation of the CC mice, a large portion of the CC lines

stopped producing offspring leading to a high extinction rate (Odet et al., 2015; Collaborative Cross

Consortium et al., 2012). Odet et al. (2015) observed that the large fraction of extinction was due

to male infertility. To facilitate a better understanding of varied breeding performance in the CC,

a separate study of each of the eight founder strains of the CC was undertaken (Odet et al., 2015;

Shorter et al., 2017).

The histology images from male breeders were stained with PAS and hematoxylin, and scanned

with 20x magnification. A custom interactive image analysis tool was developed for annotating the

digitized histology images. The tool automatically identifies seminiferous tubule centers based on a

random-forest classifier (Odet et al., 2015). We used the interactive tool to annotate the classes of

each tubule, and the final annotation information was kept in a database. From 1,417 testis histology

images, 52,122 tubule image patches of size 100×100 were extracted for the tubule classification.
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The dataset contains five categories: normal seminiferous tubules, tubules with few/many

vacuoles, tubules with abnormal germ cells, tubules with germ cells in the lumen, and tubules

germ cell loss. Examples of tubules in each of these five categories are shown in Figure 3.2. The

five categories are not mutually exclusive, and non-trivial to classify. The images were manually

annotated by an expert in male reproduction, and their status was labeled in each of these five

categories. I conducted two experiments on individual subset of the dataset, each of them has

10,000 tubule sub-images in total. To increase the statistical power, I replicated some classes of

abnormal tubules by rotating them into one of four different angles, and randomly picked equal

amount of images for each class to keep the dataset unbiased. The first experiment took the images

from normal tubules without germ cell loss and tubules with many vacuoles with various degrees of

germ cell loss. 5,000 images were used for both classes. The second one uses the subset of normal

tubules, tubules with many vacuoles and various degrees of germ cell loss, tubules with the last

stage of germ cell loss, and tubules with both many vacuoles and the last stage of germ cell loss,

2,500 images for each of them.

3.3.2 Building the Classifier

I partitioned the images into three subsets: training dataset, test dataset, and validation dataset.

The datasets was randomly partitioned into 6 equal sized subsamples. Validation and testing datasets

each used a partition, and the remaining 4 were used as training data. I trained the approach on data

in training dataset, and classified the tubules in test dataset. Hyperparameter values were optimized

by random search. I randomly selected the number of hidden units from [50, 100, 200, 300, 500,

1024, 2048] and randomly selected the learning rates within the interval of [0.001, 0.5]. As for the

classifier, I had three convolutional autoencoders layers, one hyperlayer, and three fully-connected

hidden layers. The combination of optimized hyperparameters is listed in Table 3.1. I normalized all

images so that their red, green, and blue channels fell between -1 and 1, and used hyperbolic tangent

as the activation function. This normalization maintains a consistent input range for all layers. Note
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Table 3.1: The hyperparameter settings for all layers in the learning architecture. Layer type: I -
input, C - convolutional layer, MP - max-pooling layer, H - hyper layer, FC - fully-connected hidden
layer, LG - logistic regression layer.

Layer Type Maps Neurons Filter size Weights
0 I 1 100×100 - -
1 C 50 50×50 13×13 50
2 MP 50 25×25 2×2 -
3 C 100 25×25 9×9 100
4 MP 100 13×13 2×2 -
5 C 150 13×13 3×3 150
6 MP 150 7×7 2×2 -
7 H 900 - -
8 FC 512 - -
9 FC 100 - -

10 FC 50 - -
11 LG 2 - -

that when I convolved the input, the surrounding missing part are padded symmetrically with the

input to keep the dimension of output image equivalent to the input.

3.3.3 Classification Performance and Comparison

To evaluate the experiment results, I compared the approach against traditional CNN and

standard stacked convolutional autoencoders (which does not include the hyperlayer) with same

hyperparameters.

3.4 Experimental Results

I present the results of applying hyperlayer on a histology image dataset in this section. The

results indicates that hyperlayer can effectively improve the accuracy, precision and recall, and

specificity compared to traditional CNN.
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Table 3.2: Comparison of classification performance on the first dataset (normal / many vacuoles),
where SCAE is Stacked Convolutional AutoEncoders. I compared the method with traditional CNN
and SCAE with same parameters. The best results are in bold typeface. Accuracy is the ratio of
correctly predicted observation to the total observations. Precision is the ratio of correctly predicted
positive observations to the total predicted positive observations. Recall measures the proportion of
positives that are correctly identified, while specificity measures the proportion of negatives that are
correctly identified.

Accuracy Precision Recall Specificity
CNN 0.901 0.348 0.862 0.904
SCAE 0.973 0.981 0.964 0.982
Proposed methods 0.986 0.987 0.984 0.988

Table 3.3: Comparison of classification performance on the second dataset (normal / many vacuoles
/ last stage of germ cell loss / many vacuoles and last stage of germ cell loss). The hyperparameters
are same in these three methods. The best results are in bold typeface.

CNN SCAE Proposed methods
Error rate 5.269 3.533 2.150

3.4.1 Automatic Classification Performance

Table 3.2 shows the classification performance results in terms of accuracy, precision, recall,

and specificity on the first dataset. Table 3.3 compares the error rate among traditional CNN,

SCAE, and our approach on the second dataset. The results show that incorporating a hyperlayer

outperforms the canonical methods on a testis histology dataset. This suggests that the proposed

architecture has captured and learned the important features. Including a hyperlayer preserves the

details at the lower layer which are critical in our dataset, while the traditional CNN or standard

stacked convolutional autoencoders method loses information as data propagates to the end of the

learning process.

Table 3.4 illustrates the examples of classification results in the first experiment. For each,

I report the image patch, corresponding prediction result and the ground truth. For a subset of

normal tubules I misclassified them as tubules with vacuoles, as well as the other way around, these

misclassifications, when examined manually are extremely difficult to determine whether they are
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Table 3.4: Examples of our models classification results compared to the ground truth. The normal
tubules that the model identified with vacuoles are arguable since most appear to exhibit vacuole-like
features.

Normal (True) Vacuoles (True)

Normal
(Predicted)

Vacuoles
(Predicted)

normal tubules or tubules with vacuoles. They are in essence ambiguous in terms of vacuoles.

Even for biologists with expertise in this area, they probably would not always reach a consistent

classification result.

3.4.2 Image Reconstruction with Deconvolutional Networks

Table 3.5 shows the results of image reconstructions via deconvolutional networks. I normalized

the images before learning the features to alleviate the color variations stemming from hematoxylin

staining. I highlight the values below zero in red and above in green. Because of max-pooling

following by the convolutional layer, the resolution of the images decreases as the layer goes up.

In addition to the max-pooling layer, convolution operation smooths the image while applying the

filter over the whole image. Therefore, I observed that the reconstructed image became blurrier

at the higher layer as expected. The reconstructed image generated via deconvolutional networks

takes the weight after fine-tuning stage and propagates the results through the bottom layer. I adopt

the tuned weights to reconstruct the image, and hence, the image reflects the classification features

learned from the model.
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Table 3.5: Examples of reconstructed images generated from the deconvolutional networks by
taking the hidden representation of the particular layer and cascading it back to the original image.
Notice how the reconstructed image becomes blurrier at higher layer because max-pooling and
convolution tend to decrease the resolution and smooth the images at higher layers.

Original
Image

Norm
Image Layer 1 Layer 2 Layer 3

Normal

Vacuoles

3.5 Conclusion

I present a novel deep learning architecture for features learning and automated tubule classifica-

tion for testis histology images. Based on stacked convolutional autoencoders, I insert a hyperlayer,

collecting features from every convolutional layer below to the classifier. The approach outperforms

canonical deep networks and shows an improvement over the existing methods. Plus, I construct an

extension of the architecture to see how well the features learned by reconstructing the images from

top to bottom. The work helps provide a better understanding of the prediction produced by the

automated classifier.

Although the proposed architecture has exhibited the improvement on the classification problem,

it may show concerns when the networks go deeper. Because the hyperlayer collects the learned

representations from all convolutional layers above, the architecture does not scale very well.

When the architecture becomes deeper, the inputs from all convolutional layers might become

overwhelming. This might increase the training time and the need for immense amount of available

memory during training. Since not all representations are equally important to the task, one solution

might combine the critical representations from one or few convolutional layers instead. In this case,
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the model is able to preserve the important information from the early layers and the scalability

would not be an issue anymore.

The other disadvantage of the proposed architecture is that I use autoencoder to learn the

features in the unsupervised pretraining process. The features learned from autoencoder may not

meaningful semantics since the unsupervised learning process of autoencoder is optimized by

minimizing the difference between the input and the reconstructed output. Thus, the nature of

autoencoder, the learned features may not be specific enough to help classify the normal tubules in

different stages. To address the problem, the concept of combining low-level representations, texture

particularly, and learning meaningful semantics, from a single convolutional layer is explored further

in Chapter 4.
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CHAPTER 4: PIXEL LABELING AS AN INTERMEDIATE LEARNING OBJECTIVE

4.1 Introduction

In Chapter 3, I presented a deep learning architecture with an additional intermediate layer,

called a hyperlayer, to preserve low-level representations. This addition proved to be beneficial to

the learning task in that it improved the classification accuracy of tubules from histology images.

This suggests that some of the low-level representations the model identified might correspond

to the cell types in the histology images, which is a common approach used by pathologist when

assessing histology images.

Figure 4.1 shows the examples of normal and abnormal tubule histology images and correspond-

ing false-color images with the different colors illustrating regions composed of different cell types

at each pixel. For these two examples, the original histology images have similar colors, shapes,

and textures, but the cell types are significantly different. I therefore hypothesize that instead of

combining the low-level representations to the model, if the model can infer cell types information

based on the low-level representations to the particular deep learning architecture, it should be more

informative and useful.

Meanwhile, recent research (Hinton et al., 2006; Jiang et al., 2014) shows that curriculum

learning (Bengio et al., 2009b; Kumar et al., 2010b) can use an intermediate hint feature layer

to steer difficult to learn objective functions towards effective solutions. This motivated me to

explore combining the cell-type information as an intermediate hint layer in an effort to improve the

classification performance.

Given local context, a per pixel annotation might help address the histology classification

problem. Per pixel annotations are commonly used in medical-image-analysis tasks (Gurcan et al.,

2009; Massar et al., 2011; Riordan et al., 2015) including feature extraction (Boucheron, 2008;
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(a) (b) (c) (d)

Figure 4.1: (a)(c) Examples of true-color testis histology cross sections of normal and abnormal
tubules. (b)(d) False-color images indicating possible cell types at each pixel.

Gil et al., 2002; Sims et al., 2003), image segmentation (Boucheron et al., 2007; Can et al., 2008;

Fernandez et al., 2005), and classification (Doyle et al., 2006). The joint analysis of individually

labeled pixels has also been shown to aid in summarizing entire regions of an image (Massar et al.,

2011).

Therefore, I propose to apply the curriculum learning paradigm by introducing an intermediate

learning task that attempt to learn a supervised pixel labeling to provide hints to subsequent image

classification layers. This architecture requires additional annotations beyond the larger meta-

classification task. Specifically, it will require the selection of labels that partitions pixels into a

small number of classes. Instead of directly classifying the images, the model first learns a label

for the center pixel given the context of its neighbors. The image classifier then uses these labels

to classify the images. I demonstrate my approach on a task of detecting abnormalities in medical

histology images. In my application, I use region, cell, and tissue type as intermediate pixel labels.

The main contributions of this work are a novel deep learning architecture for image classi-

fication that propagates specific domain knowledge from the pixel level to the image level in the

spirit of curriculum learning. Extensive experiments show that our architecture outperforms other

traditional deep-learning approaches.

4.2 Approach

My goal is to learn intermediate representations that can improve the precision and recall of

an image classifier. Inspired by curriculum learning (Gülçehre and Bengio, 2016), I trained an
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Figure 4.2: The classification task is divided into two subtasks, a per-pixel labeling and an image
classification. The pixel labeling model is trained using a CNN trained on 23×23 image patches,
whose output is a likelihood function of 18 possible labels. Once learned, this model is applied to
every pixel of an image (65×65) and then used as input to train the image classifier.

intermediate layer to infer class labels for every pixel based on textures and structure, which are

then used as a hint for our meta task, image classification. This effectively divides our classifier into

two learning subtasks, a per-pixel labeling and an image-level classification as shown in Figure 4.2.

The first learning task infers a per-pixel label from a fixed palette. The pixel-labels are learned

from small patches surrounding a central pixel and are separately annotated by a domain expert. The

deep-learning architecture transforms the three-channel pixel intensities into label probabilities for

meaningful classes, which, in the histology domain, includes cell and tissue types, cell layers, and

various classes of empty regions. After the pixel labeling model is learned, the model is then applied

to predict all images in the image classification dataset. Finally, an optimized image classification

model can be learned based on the hints provided by the intermediate pixel labeling layer. The

details of the pixel labeling model and image classification model are described in the following

sections.

4.2.1 Pixel Labeling Layer

In the pixel labeling layer, I predefined a set of labels for identifying the pixels in an image, and

selected the window size of the neighboring pixels for constructing a feature vector at the given

pixel. The goal of this intermediate layer is to categorize the pixels in an image into a small number

of defined labels and output the distributions of label probabilities at each pixel in an image.
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Figure 4.3: Supervised labels are predefined for characterizing each pixel. The labels define the
structure of a testis from outside of the testis to the center of the tubule, varied from different kinds
of empty space to specific cell types.

4.2.1.1 Supervised Pixel Labels

I selected 18 supervised labels with domain specific meanings, and hand labeled random

uniformly spatial patches from the image training dataset by an expert. Each was visually distinct and

commonly observed in testis cross sections. As illustrated in Figure 4.3, they included background

regions outside of the cross section, tunica, interstitial space, Leydig cells, blood vessel, basal lamina,

Sertoli cytoplasm, spermatogonia and early-stage spermatocytes, late-stage spermatocytes, early-

stage spermatids, late-stage spermatids, seminiferous tubule lumen, rete testis, PAS accumulations,

tumors, cells in lumen, vacuoles, and other. The image patches are largely not contained within the

training images used for the tubule classification. Each patch indicates the cell-type, tissue-type,

anatomical region, background, or staining artifacts of the center pixel.

4.2.1.2 Window Selection

Pixel labeling assigns a vector of label likelihoods to the center pixel given the intensities of its

neighborhood as context. I selected size window centered at the given pixel and the pixels inside

the window are regarded as neighbors. With regard to selecting the window size, I discovered that if

it is too big, the window contains lots of neighbors which are irrelevant to the center pixel. On the
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other hand, if the window size was too small, the information is not sufficient to accurately label the

center pixel. In this paper, I chose square window of size N×N , centered at the given pixel. To

decide the optimal N , I exhaustively tested on the validation dataset and choose the one with the

best performance. I found that the window size of 23 performs best in the experiments since it is not

too large to contain the whole tissue and not too small that cannot distinguish the small cell type.

4.2.1.3 Data Normalization

It is important to normalize the intensities of data so that the data dimensions are of approx-

imately the same scale. Many researchers have been proposed solutions to the normalization

problems in computer vision and deep learning (Ioffe and Szegedy, 2015; Shimodaira, 2000). In

this section, I opted for an approach that maps the histogram distribution of all pixel intensities in

the training and testing dataset to a template histogram distribution, where the highest and lowest

value of three color channels are the same. I tried standard quantile normalization, and it did not

show significant difference but more computational efforts. Extensive experiments with different

template histogram distributions suggest that normalization is crucial to the proposed approach,

since the representations with similar texture but different colors might indicate different cell types.

4.2.1.4 Pixel Labeling Model

I used a standard CNN with a single convolutional layer, a max-pooling layer, whose outputs

formed a hidden layer feeding a fully-connected second layer with a softmax nonlinearity as shown

in Table 4.1. The convolutional layer learned coefficients for 60 3×3 kernels with a stride of one

pixel. Max-pooling was used to forward one feature from each 2×2 neighborhood to the next

level, 1,000 hidden units, after applying a 30% dropout rate. The detailed configuration of the pixel

labeling model are also listed in Table 4.1. The resulting model takes the input patch pi and maps it

to the k-th feature map using the following function:

hk = maxpool(σ(Wk ∗ pi + bk)) (4.1)
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Table 4.1: The configuration details of our two-tiered architecture, pixel labeling model and image
classification model. Layer type: Conv - convolutional layer, FC - fully-connected layer.

Pixel Labeling Image Classification
Input

23×23
Input

65×65
Cov-60

3×3
Cov-60

9×9
Maxpooling

2×2
Conv-60

7×7
Maxpooling

2×2
Conv-60

5×5
Maxpooling

2×2
FC-1000 FC-500

softmax

where W and b are weights and bias, and * denotes the 2D convolution. σ is a point-wise nonlinearity

hyperbolic tangent function, while maxpool is a function that partitions the convolutional outputs

into regions and outputs a maximum value for each subregion. After a fully-connected layer, the

output of patch pi is defined as follows:

pi = σ(UH+ c) (4.2)

where H is the flattened k-feature maps, and U and c are weights and bias. I used hyperbolic tangent

for activation function σ.

I trained the model with the intermediate target Y . Let li be the normalized prediction vector

from the classifier for pixel i, and L is the number of labels defined in pixel labeling layer. I utilized

the softmax loss function by computing normalized predicted probability distributions over labels

li,y.

li,y = p(li = yi|pi) =
exp(Wᵀ

ypi)∑|L|
k=1 exp(W

ᵀ
kpi)

(4.3)
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where W refers to the corresponding prediction function parameter. For the overall loss on a patch

pi, the model learns the parameters by minimizing the negative log-likelihood given all the labels in

the training dataset D:

losspi = −
|D|∑
i=0

logP (li = yi|pi) (4.4)

Finally, when the pixel labeling model is trained, the predicted label probability li,y for patch pi,

which will be propagated to subsequent layers, can be either presented as a probability distribution

of labels from softmax output at pixel i or a hard target vector with li,y = 1 if pixel i is labeled as yi,

and 0 otherwise. For training maximally discriminative features for the image classification, I chose

to use a probability distribution of labels in the pixel labeling layer.

4.2.2 Image Reference

Once pixel labels are learned, I applied them to all images in the image classification dataset.

The model converts three-channeled pixel intensities to label probabilities to serve as hints for the

image classification. Pixel labeling model only needs to be trained on a sparse data, but it predicts

dense label at every pixel for the subsequent image classification task.

4.2.3 Image Classification

For image classification, I aim to obtain an optimized image classification model based on

the hints provided by intermediate pixel labeling layer. This is achieved by learning a CNN with

probability distributions of meaningful labels on small cell type as input and output the predicted

image class as the results. Table 4.1 shows the details of the configuration in the image classification

model. I trained the parameters by minimizing the negative log-likelihood on target z, and computed

the normalized predicted probability distributions for every image xj over classes cj,z:

cj,z = p(cj = zj|xj) =
exp(Wᵀ

zxj)∑|C|
k=1 exp(W

ᵀ
kxj)

(4.5)
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where W is a temporary weight matrix used to learn the features and |C| is the number of classes in

classification model. For each image xj , the class is produced by:

cj = argmax
z∈C

cj,z (4.6)

Finally, the predicted class of a given image is assigned with the argmax of the probability distribu-

tion of all classes.

4.3 Experiment Setup

In order to evaluate the effectiveness of my pixel labeling model on histology images, I applied

it to a large dataset. This section shows how I prepared the datasets for both pixel labeling task and

the meta classification task.

4.3.1 Histology Image Dataset

I demonstrated the pixel labeling approach on testis histology images of mice. The histology

images were stained with PAS and hematoxylin, scanned at 20x magnification, and reduced by

12.5% in both directions giving an effective magnification of 2.5x. A testis histology image was

pre-segmented into units called seminiferous tubules. The first phase of the seminuferous tubule

pre-segmentation process was the automatic off-line identification of seminiferous tubule centers

based on a random-forest classifier that used local-color histograms at each pixel as features, details

provided in the paper (Odet et al., 2015). A Web-based interactive tool was developed to correct

both missed and mislabeled centers, and for experts to annotate features of each tubule, including

abnormalities such as vacuoles and the loss of germ cells.

The dataset of the experiments here is composed of pre-segmented tubule images derived from

the pre-segmentation process, and each tubule image sample is centered by the label point. Figure

3.2 shows samples of histology images of seminiferous tubules. The objective of the experiment

was to classify the state of germ-cell loss and identify abnormalities in each tubule. This problem is
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challenging because an accurate assessment requires examining both the mix and configurations of

differing cell and tissue types, which locally appear normal. However, cells can be out of place,

expected cell types might be missing, or the morphology of one-cell type might change due to the

absence of others.

Figure 4.4: Above image is the screenshot of interactive tool designed for labeling patches. The
squares with different colors represent 18 predefined labels. Images below are the patch examples
in the labeling dataset, where black cross indicates the center of the tubule.

4.3.2 Pixel Labeling Layer

For the pixel labeling model, I collected a training dataset by randomly picking small 23×23

patch pixels from 243 histology images with the objective of uniformly sampling each of the

pixel-label classes with approximately 1,500 examples. Figure 4.4 illustrates the system designed

for labeling the patches, and the patch examples in the pixel learning dataset as well. The patch
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samples include multiple cells and other surrounding information, but generally contained less

than 12% of a tubule. The label was assigned for the center pixel while the surrounding 528 pixels

provided context. Human experts are able to perform this task, determining the cell, tissue, or region

of origin for a 23×23 patch, with ease.

The final dataset was composed of approximately 21,000 patches in total. Note that while

21,000 patches might seem large, consider that every histology image contains millions of patches,

thus the training set is very sparse. The dataset was then partitioned into six equal-sized subsamples,

where validation and testing datasets each used a partition, and the remaining 4 were used as training

data.

4.3.3 Image Classification Layer

For image classification, I used a set of tubule images of size 65×65 pixels extracted from

1,417 testis histology images. There were approximately 200 tubules per histology image. Each

tubule image was centered by the label point and cropped to a window size of 50×50 from the 2.5x

histology image. Then, the tubule images were resized to 65×65 for better resolution. Generally,

a window size of 50×50 in the 2.5x histology image will include the whole tubule. If we set the

size too small, the information of the boundary of the tubule will be cropped; on the other hand,

the window might include too much information not belonging to a tubule. The details of testis

histology images are explicated in section 3.3.1.

To correct for exposure differences, all raw rgb images were normalized by scaling each color

channel independently between -1 and 1. In our experiments, the training datasets for pixel labeling

and image classification model were independent; most patches used for pixel labeling layer were

not drawn from tubules that were used for image classification.

The tubule-classification dataset included five tubule categories: normal, those with few/many

vacuoles, those with abnormal germ cells, those with varied degrees of germ cell loss (loss of

Elongated Spermatids (ES), loss of ES and Round Spermatids (RS), loss of ES, RS, and earlier, and

Sertoli Cell only), and those with germ cells in lumen. Each tubule in our training set was manually
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Figure 4.5: The tubule-classification dataset includes five tubule categories: normal, vacuoles,
abnormal germ cell, germ cell loss, as well as germ cell in lumen. Different text background colors
represent varied degree of individual category. The dataset of each experiment contains different
combinations of five categories. Five experiments include (1) normal / many vacuoles (2) normal
/ few / many vacuoles (3) normal / Sertoli cell only (4) five stages of germ cell loss (5) normal /
germ cell in lumen. The table lists the combinations of five categories for each class defined in five
experiments.
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Table 4.2: Tubule count distribution over all categories.

Class Count
Unclassified 250,655
No germ cell loss 37,134
Loss of ES 689
Loss of ES and RS 147
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia) 227
Sertoli cell only 274
No germ cell loss, Abnormal germ cells 1,004
Loss of ES, Abnormal germ cells 298
Loss of ES and RS, Abnormal germ cells 104
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Abnormal germ cells 69
No germ cell loss, Few vacuoles 1,364
Loss of ES, Few vacuoles 394
Loss of ES and RS, Few vacuoles 152
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Few vacuoles 605
Sertoli cell only, Few vacuoles 455
No germ cell loss, Abnormal germ cells, Few vacuoles 107
Loss of ES, Abnormal germ cells, Few vacuoles 123
Loss of ES and RS, Abnormal germ cells, Few vacuoles 48
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Abnormal germ cells, Few vacuoles 88
No germ cell loss, Many vacuoles 18
Loss of ES, Many vacuoles 17
Loss of ES and RS, Many vacuoles 29
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Many vacuoles 1,240
Sertoli cell only, Many vacuoles 1271
Loss of ES, Abnormal germ cells, Many vacuoles 3
Loss of ES and RS, Abnormal germ cells, Many vacuoles 10
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Abnormal germ cells, Many vacuoles 92
No germ cell loss, Germ cells in lumen 891
Loss of ES, Germ cells in lumen 45
Loss of ES and RS, Germ cells in lumen 6
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Germ cells in lumen 9
No germ cell loss, Abnormal germ cells, Germ cells in lumen 16
Loss of ES, Abnormal germ cells, Germ cells in lumen 3
Loss of ES and RS, Abnormal germ cells, Germ cells in lumen 5
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Abnormal germ cells, Germ cells in lumen 1
No germ cell loss, Few vacuoles, Germ cells in lumen 20
Loss of ES, Few vacuoles, Germ cells in lumen 11
Loss of ES and RS, Few vacuoles, Germ cells in lumen 7
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Few vacuoles, Germ cells in lumen 13
No germ cell loss, Abnormal germ cells, Few vacuoles, Germ cells in lumen 2
Loss of ES, Abnormal germ cells, Few vacuoles, Germ cells in lumen 5
Loss of ES and RS, Abnormal germ cells, Few vacuoles, Germ cells in lumen 1
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Abnormal germ cells, Few vacuoles, Germ cells
in lumen

4

Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Many vacuoles, Germ cells in lumen 5
Sertoli cell only, Many vacuoles, Germ cells in lumen 1
Loss of ES, RS and earlier germ cells (spermatocytes and/or spermatogonia), Abnormal germ cells, Many vacuoles, Germ
cells in lumen

2

Normal rete testis 905
Abnormal rete testis 205
Normal blood vessel 3,494
Abnormal blood vessel 304
Tumor 2
Cyst 12
PAS+accumulations 191
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Figure 4.6: CNN without hints: the classification task is trained without intermediate target and
directly backpropagate the parameters from top to bottom.

annotated by an expert in male reproduction, indicating different categories and combinations. From

1,417 testis histology images, 302,777 tubule image patches were identified by the pre-segmentation

process, where 37,134 patches are labeled normal out of 52,122 labeled patches, more information

of tubule counts listed in Table 4.2. I conducted five experiments over abnormal tubules labeled

with various types of qualitative and quantitative germ-cell loss, along with normal controls. The

dataset settings for five experiments are depicted in Figure 4.5.

I designed five individual datasets for five different experiments, and each was composed of

7,000 images. The effective size of any class can be increased by rotations and reflections, and this

was done where needed to achieve a balanced training dataset. Each dataset was partitioned into

six equal sized subsamples, with one used for validation, one for testing, and the remaining four

for training. The abnormal tubule types were not independent (a single tubule can be labeled as

multiple classes).

To evaluate our experimental results, I compared my approach to a classical deep-network

VGG-16 (Simonyan and Zisserman, 2014) and a second CNN model with an equivalent topology to

our network. For VGG-16, the input images were extracted from the original 20x histology image

and resized to 224 × 224 (a requirement of the model). The VGG-16 was initialized with weights

from a pre-trained model and the entire network was fine-tuned for our tasks. The compared CNN

model is illustrated in Figure 4.6. It was designed to have the same architecture and number of

parameters as our two-stage curriculum learning model, but without hints. Its weights were trained
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Table 4.3: Pixel labeling results. In the top 3 scores, our pixel labeling model can predict above
90% accuracy.

Label Top 1 Top 2 Top 3
Background 91.99% 97.09% 99.03%
Tunica 98.23% 99.33% 99.78%
Interstitial Space 67.71% 86.10% 95.29%
Leydig Cells 76.54% 88.39% 93.36%
Vessel 87.98% 96.15% 98.32%
Basal lamina 85.91% 92.15% 96.07%
Sertoli 89.10% 95.50% 96.68%
Spermatogonia 84.62% 88.46% 94.23%
Spermatocytes 79.85% 92.72% 96.36%
Early Spermatids 77.48% 94.19% 97.58%
Late Spermatids 73.70% 89.57% 96.68%
Lumen 83.86% 93.01% 97.11%
Rete 73.99% 91.89% 97.14%
PAS accumulation 95.25% 97.62% 99.52%
Abnormal/Tumor 0% 0% 0%
Other 80.48% 94.46% 97.83%
Cells in Lumen 81.75% 91.73% 95.86%
Vacuole 86.84% 95.93% 98.56%

using classical back-propagation. It directly predicted tubules classes using the same training images

as our model.

4.4 Experiment Results

This section presents the results of pixel labeling and tubule classification. The results demon-

strate that the pixel labeling model outperforms traditional CNN. Also, the sensitivity analysis on

pixel labeling accuracy to image classification performance is presented in this section. The results

show that the image classification model is very robust and does not require extremely accurate

pixel labeling.
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Figure 4.7: Confusion matrix of pixel labeling. Rows are the ground truth, and the columns are the
predicted results.

4.4.1 Pixel Labeling Results

The results of our pixel-labeling are reported in Table 4.3 according to the rank of the training

label among the estimated label likelihoods. For the top 1 score, the accuracy varies from 67% to

98%. But, when the top 3 of 18 predictions are considered all labels are above 90% of accuracy. The

low accuracy of the other category reflects a lack of consistent training examples. Since background,

rete testis, lumen, vacuoles, and interstitial space patch classes all characterize different types of

empty space, they are often confused, leading to reduced accuracy. In fact, they can even confuse

experts without sufficient context. However, in cases where they are distinguishable, they provide

valuable information for localizing the target pixel. Figure 4.7 illustrates the confusion matrix

between assigned and predicted labels. Rows are the ground truth while columns are the prediction

results. Here the relative confusion between similar label types (background, rete testis, lumen,

41



Table 4.4: Sensitivity analysis of pixel labeling classifier on five categories, where rows are the
corrupted rate on pixel labeling results.

0% 10% 20% 30%
(1) Normal / many vacuoles 99.138% 98.621% 98.621% 98.534%
(2) Normal / few / many vacuoles 75.862% 72.845% 73.103% 73.103%
(3) Normal / Sertoli cell only 99.138% 98.103% 98.362% 98.103%
(4) Five stages of germ cell loss 58.103% 54.310% 53.448% 53.276%
(5) Normal / germ cell in lumen 96.121% 96.121% 96.121% 96.121%

vacuoles, and interstitial space) is evident. Physically adjacent label classes also tend to be confused

as suggested by the relatively high probabilities of confusion along super and sub diagonals.

Note that the pixel labeling is not directly used by the classifier. Instead, a vector of pixel-label

probabilities are provided as hints for downstream image classification. I hypothesize, and have

some evidence based on limited testing, that image classification does not require extremely accurate

pixel labeling as discussed in Section 4.4.2.

Visualizations of the pixel-label probabilities within an tubule image are shown in Figure 4.8.

The images in Figure 4.8(b)(c) show the probability maps of particular labels, and (d) illustrates the

label with the highest probability at each pixel. After labeling, it becomes evident that the testis

separates into many different classes, which helps answer higher level problems such as which are

normal and which are abnormal.

4.4.2 Sensitivity Analysis of Pixel Labeling Classifier

I hypothesized that image classification does not require extremely accurate on pixel labeling.

The pixel labeling layer is rather regarded as a vector of probabilities that provide hints for image

classification. To test this hypothesis, I conducted experiments on five tubule categories with

various corruption rates as shown in Table 4.4. I corrupted the input by assigning neutral pixel label

probabilities at random locations and fed the corrupted results to the classification model. From

Table 4.4, although accuracy decreases as the corruption rate increases, classification accuracy is

only slightly reduced. The pixel labeling model not only consider all label probabilities at the center
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(a) (b)

(c) (d)

Figure 4.8: Visualizations of the learned pixel labeling model. (a) Example of a true-color testis
histology cross section. (b)(c) The probability map for a single pixel-label class (basal lamina and
vacuole). Brighter colors indicate higher probabilities. (d) is a false-color image indicating the label
with the highest probability at each pixel where pink represents vacuoles, yellow indicates lumen
and magenta is tunica. Pink, yellow and magenta clearly highlight regions where the pixel labeling
is accurate. Concentric rings of labels within tubules are also mostly as expected.
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Table 4.5: Comparison of classification performance on six datasets. I compared my method with
VGG-16 and CNN without hints. The best results are in bold typeface.

Random VGG-16 CNN Ours
Normal / many vacuoles 50% 68.845% 89.444% 99.138%
Normal / few / many vacuoles 33% 38.879% 62.688% 75.862%
Normal / Sertoli cell only 50% 60.862% 86.787% 99.138%
Five stages of germ cell loss 20% 21.983% 44.699% 58.103%
Normal / germ cell in lumen 50% 93.966% 90.751% 96.121%

pixel but also take all label probabilities in a neighborhood into consideration when training the

classification. In addition, the pixel labeling layer does not give hard labels only to the classification

model, instead, a probability distribution of all labels, so that even if the labeling results have lower

accuracy, they still provide valuable information to the subsequent task.

4.4.3 Classification Results

For medical images, a tissue contains multiple cell types which may be associated to form

specific structures, such as blood vessels or seminiferous tubules. Classifying a tissue involves an

overall assessment of cells contained in the tissue. Therefore, if a classifier that can capture the

features of cell types in the tissue, the classification performance is apt to improve significantly. Table

4.5 shows the classification performance in terms of accuracy on six sub-datasets. In the first, third,

and fifth experiments, the features of normal tubules and the last stage of the corresponding category

are more distinct, thus the classification performs better. In the second and fourth experiments

which involve quantitative categories, the ambiguities among stages cause the performance to drop

off. Nonetheless, our approach outperforms classical methods without hints by more than 10%

of accuracy. This suggests that predicting appropriate intermediate feature targets makes learning

easier and generalizes to other tasks. I also hypothesize that appropriate intermediate features

are not trivially inferred by classical deep-learning architectures as illustrated by our CNN model.

Moreover, deep networks like VGG-16 have similar problems. They tend to learn many features

unrelated to the final task when leads to poor performance in our experiments.
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Figure 4.9: Examples of our classification results compared to the ground truth. The examples
in first two columns are normal tubules, followed by tubules with few vacuoles, and tubules with
many vacuoles. The normal tubules that the model identified with vacuoles are pardonable since
most appear to exhibit vacuole-like features. The tubules with vacuoles that the model classified as
normal tended to have few vacuoles, thus, leading to ambiguity.

Figure 4.10 shows the image classification results of five experiments. In particular, Figure 4.9

illustrates the examples of classification results in the second experiment. The normal tubules the

model identifies as tubules with few/many vacuoles, or the other way around, are extremely hard to

classify. Since there are no clear thresholds in terms of the size and the number of the vacuoles in

the tubules defined for these classes, it is very challenging to distinguish boundary cases. In the

forth experiment, which distinguishes degrees of germ cell loss, it is difficult to distinguish the

boundary cases between adjacent progressive states. For instance, the examples of class 1 is easy to

get confused with the ones of class 0 and 2, and class 3 with class 2 and 4, etc.

4.5 Conclusion and Discussion

In this chapter, I have presented a practical hidden layer, pixel labeling layer, for curriculum

learning. I demonstrate that the pixel labeling model can provide robust and meaningful represen-

tations to the subsequent task and challenging task, such as classifying medical images, can be

learned efficiently. Also, I demonstrate that our network with hints outperforms other state-of-the-art

approaches on the medical image dataset. To evaluate whether the pixel labeling generalizes, I

applied the pixel labeling model to different vision problems, which is presented in Chapter 5.
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Figure 4.10: Image classification results of five experiments. The results of five experiments are
arranged in five rows. The first five columns show the examples of true positive and true negative,
while the false positive/negative examples are illustrated in the last five columns. The text below
image shows the class of the truth versus prediction, where blue means correct prediction while red
is wrong. The numbers are different classes within each experiment defined in Figure 4.5. In the
second and forth experiments, they include degrees of abnormalities, leading to the difficulty to
distinguish the boundary cases among states. For instance, image in row four and column seven has
features similar to the confused class 0, and image in column eight and class 1 are very much alike.

Still, many challenges remain. Currently, the selection of meaningful labels and the dataset for

pixel labeling layer are manually defined by the experts. In addition, I plan to learn the labels by

using statistical information of the data, and let the data itself suggest the labels for the intermediate

layer, which is introduced in chapter 6. Lastly, more work is needed to develop a better solution of

generating a suitable dataset for pixel labeling layer automatically.
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CHAPTER 5: GENERALIZING PIXEL LABELING APPROACH

5.1 Introduction

Inspired by curriculum learning (Gülçehre and Bengio, 2016), I introduced in Chapter 4 an

intermediate learning layer, which learns a supervised pixel labeling to provide hints to subsequent

image classification layers. I demonstrated that pixel labeling model can provide useful and

meaningful hints to the subsequent tasks, and I also showed that the model with the hints learned

from pixel labeling layer outperforms other approaches.

In this chapter, I address the question of whether the pixel labeling methods I have developed

generalize to other problems? To test if my model generalizes, I introduce two toy problems. One is

the Pentomino problem, which is adapted from the original curriculum learning paper (Gülçehre

and Bengio, 2016), that tries to classify whether the types of three Pentominoes in an image are the

same or not. I added a pixel labeling layer to their model architecture and used their Pentomino

dataset for comparison. The pixel-labeling approach predicts a probability vector for every pixel

within an aperture window and provides the predicted probabilities to the following tasks as the

intermediate hints. The goal of the toy problem is to evaluate whether the pixel labeling layer

can accomplish a similar improvement in the Pentomino learning task when compared to the hint

layers used in the original paper. The results show that pixel labeling improves the Pentomino

classification performance either with or without their proposed hints.

However, since the Pentomino problem uses binary images as shown in Figure 5.1(a), the

Pentomino dataset misses an important characteristic that I believe is crucial to the pixel-labeling

used in the histology image dataset, which is that the state of a biological organism is reflected

by local variability in pixel intensities and textures. In addition, Pentomino types are simple,

monochrome, and many local patterns are shared among different Pentomino types. This makes the
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Pentomino problem a less ideal model for local context. Therefore, I designed a second toy problem

that is equally hard to learn and can be benefit from labeling hints. The new dataset is generated by

randomly selecting two textures from a well known texture dataset, Brodatz Album (Brodatz, 1966),

representing foreground and background textures in an image. The leaving objective of this second

toy problem is whether the foreground and background textures in an image are the same or not.

The goal of this toy problem is to validate whether the labeling model can generalize to datasets

where texture carries significant information and can make significant improvements in terms of

classification performance.

5.2 Pentomino Dataset

In order to evaluate the generalization of the pixel labeling model, I first demonstrated it on a

toy Pentomino dataset for object recognition using 64×64 binary images. I chose the Pentomino

dataset because it was used by the Gülçehre and Bengio (2016) in a setting of curriculum learning.

Also, it is simple and can generate countless images for use as ground truth that I can easily apply

to our model. The implementation of dataset generation is based on the source code provided by

Gülçehre and Bengio (2016).

5.2.1 Problem Definition

Figure 5.1(a) illustrates the ten types of Pentominoes used in the dataset. The foreground

pixels are labeled as 1 (white), and background pixels as 0 (black). Each task image contains three

Pentominoes and the ultimate goal of this task is to classify if all the Pentominoes in an image are

of the same type or not. To avoid the dataset from being biased, the number of samples with the

same or different Pentomino types were equal. Three of 16 different block positions are selected

at random, without replacement, and Pentominoes are each placed into the chosen blocks. Figure

5.1(b) is an example of an image where all Pentominoes are of the same type, while Figure 5.1(c)

includes different Pentomino types.
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Figure 5.1: (a) Different types of Pentominoes used in the dataset (Gülçehre and Bengio, 2016).
Example images from our modified dataset showing (b) same Pentomino type and (c) different
Pentomino types.

5.2.2 Experiment Setup

In this section I describe how to apply a pixel labeling layer to the original model architecture

designed in Gülçehre and Bengio (2016). Also, I will show the configuration details for generating

the Pentomino dataset for the experiments.

5.2.2.1 Block Size Selection

In their original paper, Gülçehre and Bengio (2016) divided a 64×64 uniform grid image into

8×8 blocks of 8×8 pixels. Unlike their setup, the size of a block in my dataset is twice as big as

theirs, leading to a total of 16 blocks (4×4) with block size of 16×16 pixels. In both cases, the

Pentomino is centered in the block without translation. A Pentomino is guaranteed to be entirely

contained within a block, so there are no overlaps between Pentominoes.

In the pixel labeling model, I chose to employ a small aperture window of size 5×5 pixels.

Figure 5.2 illustrates examples of aperture window on the sample images in red squares. The pixel

labeling model predicts the possible Pentomino type on the center pixel of the aperture window
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Figure 5.2: Red square in the images are example of aperture windows using in the pixel labeling
model. The pixel labeling model predicts the possible Pentomino type on the center pixel of the
aperture window in the context of its surrounding neighbors.

given its surrounding neighbors. I centered an aperture window on each pixel in the image. Each

aperture window is labeled after considering all the pixels in it. The resulting label is associated

with the center pixel of the aperture window. These labels are used as hints for the subsequent

learning task.

Each Pentomino has two different types of transformations, including rotation by four different

angles and scaling with two factors, yielding eight different possible transformations. In my

experiments, the scaling factor is changed to {3, 4} to ensure the aperture used for the pixel labeling

model does not cover a whole Pentomino. This increase in Pentomino and block size was done so

that the pixel-level labeling task would only be able to see part of any Pentomino within its aperture.

5.2.2.2 Original Model Architecture

Gülçehre and Bengio (2016) proposed a network architecture with a different learning process

to evaluate the value of an intermediate hint layer. The architecture of the network is separated into

two parts as illustrated in Figure 5.3. The first part, Part 1 Neural Network (P1NN), has shared

weights and local connectivity. The input of P1NN is the patch of the image, and the output of it

is a vector with 11 labels (10 types of Pentomino and empty) per patch. The expected output of

P1NN is a 11-label output vector per block indicating the Pentomino class for every block. The

task for P1NN is to recognize the Pentomino type, and locate each Pentomino block in the image.
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(a)

(b)

Figure 5.3: (a) Structured MLP architecture with hints (SMLP-Hints) (Gülçehre and Bengio, 2016).
P1NN are bottom two layers and top two layers are P2NN. P1NN and P2NN are trained separately,
not jointly. In SMLP-Hints, P1NN is trained on each 8×8 patch extracted from the image and the
softmax output probabilities of all 64 patches are concatenated into a 64×11 vector that forms
the input of P2NN. (b) Structured MLP architecture without hints (SMLP-Nohints) (Gülçehre and
Bengio, 2016). It is the same architecture as SMLP-Hints but with P1NN and P2NN trained jointly
in terms of the final classification task. 51



Figure 5.4: SMLP architecture using pixel labeling hints. Bottom two layers are pixel labeling
layers, while middle two and top two layers are P1NN and P2NN, respectively. Pixel labeling
layer is trained on 5×5 patch extracted from the image and outputs probabilities for each of the 11
possible Pentomino at every pixel in the image.

The second part, P2NN, is a fully connected layer, taking the concatenated output of P1NN over all

patches as the input, and determining whether all Pentominoes in the image are the same or not.

To test the hypothesis, they conducted two experiments using this architecture with two different

training approaches. The main difference between the two approaches was whether P1NN and

P2NN were trained separately or jointly. The first one is called SMLP-Hints as shown in Figure

5.3(a), which exploits a hint about the types of Pentomino, indicating a semantics for the outputs of

P1NN. P1NN is trained with the intermediate target; therefore, P1NN and P2NN in this model are

trained separately. The other one is SMLP-Nohints as shown in Figure 5.3(b), where P1NN and

P2NN are trained jointly and the model does not use the intermediate target to specify the types of

Pentomino.
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5.2.2.3 Pixel Labeling Layer

Based on the two models (with hints/without hints), I replaced the Pentomino classification

layers with pixel labeling layers below P1NN and came up with two similar models. In my

experiments, the architecture consists of three subnetworks as shown in Figure 5.4. The first

two layers are the pixel labeling layer predicting the probability vector for every pixel within an

aperture window, where the probability vector contains the probabilities of 11 possible Pentomino

labels. Pixel labeling layer is trained on 5×5 patch extracted from the image and outputs 11-label

probabilities vector for the center pixel of the patch. The output of the pixel labeling layer then

forms the input block of P1NN of size 16×16×11. In layers three to six, the architectures are

identical to P1NN and P2NN in the original architecture. In summary, the pixel labeling layer is

trained to learn the hints of possible Pentomino types at the pixel level. P1NN learns to specify the

type of Pentomino present at 16 blocks of the image. Finally, P2NN predicts the results indicating

whether three Pentominoes in an image are of the same or different types.

The pixel labeling layer is a standard CNN with one convolutional layer (11 kernels with filter

size of 3×3), followed by two fully-connected layers. To make sure that the input image patch

for the pixel labeling layer does not cover the whole Pentomino, I chose a patch size of 5 for the

experiment. Hyperparameter values were optimized by random search. I randomly selected the

number of hidden units from [50, 100, 200, 300, 500, 1024, 2048] and randomly selected the

learning rates within the interval of [0.001, 0.5]. Two fully-connected hidden layers with 1024 and

300 hidden units are chosen for the experiments. The dataset composes 20,000 patches in total,

partitioned into six equal sized subsamples, including validation and testing dataset each using a

partition, and training data using the remaining four.

In the pixel labeling, the model classifies the center pixel given a patch window of context.

Since the shapes of Pentomino are monodrome, the pattern of one patch can be part of many

different Pentomino types. Therefore, for a given image patch, I formed a target vector reflecting

the frequency of particular patch pattern appearing in 11 labels (10 types of Pentomino and empty).

To obtain the frequency of patch pattern appearing in 11 labels, I used a sliding window of size 5
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Figure 5.5: (a) Examples of background patch pattern. (b) An example of patch pattern that is
unique to Pentomino 2. (c) An example of patch pattern that is not unique to any one Pentomino.
Both Pentomino 4 and 9 could have such pattern, leading to ambiguity while labeling the pixels.

traversing every pixel in the Pentomino block. If such patch pattern shows five times in Pentomino

1 and ten times in all Pentominoes, for example, the value of Pentomino 1 in the target vector for

this particular patch will be 0.5.

Figure 5.5 illustrates some examples of the patch patterns. Figure 5.5(a) shows the pattern

examples of the background. It is noteworthy that the background pattern is not always all black.

If the center pixel of the patch pattern is not within a Pentomino, the patch is identified as the

background, because the target the model tries to classify is the center pixel of the patch, and

the surrounding pixels are only provided as the context as shown in Figure 5.5(a). Figure 5.5(b)

illustrates a patch pattern that is unique to Pentomino 2. Thus, the target vector for this patch

will be all 0 except 1.0 for Pentomino 2. There are also many patterns like Figure 5.5(c) that

appear in many Pentominoes. An exhaustive list of all possible patch patterns that appear in the

ten Pentominoes, includes only 284 distinct patterns in a 5×5 window size. Of these 24 are unique

to a single Pentomino, and 76 are common to every Pentomino. This suggests that most of the

patterns are shared among many Pentominoes, making our labeling task harder and the task more

challenging.

Lastly, the goal for the pixel labeling layer is to provide hints for P1NN to identify the type of

the Pentomino. As a result, the model learns the parameters by minimizing the difference between
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the predicted and target frequency distributions and output a probability distribution over 11 labels

for each pixel.

5.2.3 Experiment Results

In this section, I show the improvements to the P1NN and P2NN results after applying pixel

labeling layer to the model, where the binary image of the P1NN input is replaced by a probability

vector for each pixel. In addition, the sensitivity analysis of the pixel labeling layer is also presented.

The results prove that the pixel labeling is a practical and robust source of hints.

5.2.3.1 Pixel Labeling Hints

Recall that the Pentomino problem infers a binary classification task, where Gülçehre and

Bengio (2016) tested several machine learning algorithms on the Pentomino dataset, most had very

poor performance, generally no better than the results of a coin-flip. The best results of the model

learned without hints can only reach 64% accuracy in a dataset with 40,000 test examples, but the

accuracy significantly increases to around 97% when layers 1-3 were pretrained using hints.

Before setting off to learn a pixel labeling model, I first examined how the original model would

perform if it was provided the exact Pentomino probability at every pixel. Would this information

beneficial to P1NN for identifying the Pentomino for the block, or, even more, is it useful to P2NN

for classifying whether the Pentominoes in the image were the same type or not? To validate this

hypothesis, I conducted a simple experiment. As described in 5.2.2.3, if I set a small aperture

window of size 5×5 traversing all 10 Pentominoes, I obtained 284 distinct patterns. Recall the

images are binary, and the 284 are a subset of the 225 possible patterns. The target vector is obtained

by examining whether the particular patch pattern appears in a given Pentomino type. For example,

if a patch pattern appears in Pentomino 2 and 3, the target vector for such patch pattern will be

0.5 on Pentomino 2 and 3. I calculated the probabilities for each 11 Pentomino labels for each

individual pattern and assigned the likely Pentomino probabilities to every pixel in P1NN input.

The accuracy of the identification task in P1NN was increased to 98.182%, and the performance for
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Figure 5.6: Confusion matrix of the pixel labeling on all transformations of Pentominoes. Columns
are the predicted results of the pixel labeling model, and rows are the ground truth of ten Pentominoes
with eight transformations plus background (10), where the numbers represent ten Pentomino
type (0-9) and the letters indicate the eight transformations (a-d, A-D). Lowercase (a-d) are small
Pentominoes (scale 3) rotated by four angles and uppercase (A-D) are four rotated large Pentominoes
(scale 4). The values in the confusion matrix are the normalized predicted probabilities of each
transform Pentomino being particular Pentomino type, where white means low probability and
black illustrates high probability.
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Table 5.1: Image classification results of two SMLP learning processes in 20k dataset compared
with applying pixel hints or not.

Without Pixel Hints With Pixel Hints
SMLP-NoHints 53.836% 73.02%
SMLP-Hints 67.323% 73.44%

final P2NN task increased to 91.516% accuracy. This simple experiment demonstrates that pixel

labeling can be used as prior knowledge, guiding the model learning in the right direction.

I then attempted to learn a pixel labeling model with a standard CNN architecture, and applied

it to P1NN on the modified Pentomino dataset. Using the original SMLP architecture, I got 79.533%

accuracy on P1NN intermediate task, block Pentomino identification, in 20k dataset. After applying

the pixel labeling to SMLP, the performance improves to 87.189%.

Figure 5.6 shows the confusion matrix of the pixel labeling results on P1NN task. The rows

in the confusion matrix are the normalized predicted probabilities of each Pentomino type given

a Pentomino orientation and scale, where white means low probability and black illustrates high

probability. Half of the Pentomino shapes are the mirror images of the other half. For example,

Pentomino 5 is the mirror image of Pentomino 0, Pentomino 1 and 6 are mirror-image pair, and etc.

Because the feature representations of those Pentomino mirror-image pairs are similar, this often

lead to confusion between mirror versions. The transformed Pentomino are correctly identified

in the vast majority of examples, achieving 72.84% accuracy. It is obvious that, with the pixel

labeling hints, P1NN can easily classify the type of Pentomino, even the Pentomino is in different

transformations.

Table 5.1 shows the results of SMLP-Nohints and SMLP-Hints with and without adding the

pixel labeling hints on the meta task, whether the types of Pentominoes in the image are the same

or not, in 20k dataset. When the model learns without any hints, the learning procedure appears

to search the parameter space blindly not knowing what to look for, and seems to fall into local

minimum that leads to an accuracy indistinguishable from random guessing. However, with a

simple hint like the one proposed in (Gülçehre and Bengio, 2016), the meta-task accuracy improves.
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Table 5.2: Sensitivity analysis of pixel labeling hints and P1NN hints on image classification task.
Columns represent the corruption rates applied to the pixel labeling results.

0% 10% 20%
Corrupted pixel labeling hints 73.44% 72.56% 70.20%
Corrupted P1NN hints 73.44% 73.44% 71.80%

Moreover, applying the pixel hints to SMLP-Nohints architecture increases the performance by

an additional 19.184% and by 6.117% in SMLP-Hints architecture. This suggests that if the

model can learn with an appropriate guidance, it will learn better and reduce classification errors

as well. Although I expected that including the pixel labeling hints in SMLP-Hints architecture

would improve the performance even more, the best result I achieved was 73.44%. Because of

the ambiguity of Pentomino patterns when viewed through an aperture the hints provided by the

pixel labeling have limitations to give P1NN exact answers of which Pentomino type it identifies.

But overall, from the experiments on P1NN and P2NN tasks, they both demonstrate that the

pixel labeling hints provide beneficial information to all the downstream tasks and improve the

performance significantly.

In the original paper, SMLP-Hints had 69.3% accuracy in 20k dataset and 96.9% in 40k dataset.

When I compared my results with SMLP-Hints in 20k dataset, the pixel labeling hints improved

their Pentomino-discrimination hints by around 5%, but does not outperform their hints in 40k

dataset. Although they claim that adding more training examples did not help for both training

and test error, my experiments do not support the assumption using SMLP-Hints. Moreover, their

model relies on each Pentomino falling within predefined image regions which is hard to achieve for

real classification problems without applying a segmentation or object detection task beforehand;

in contrast, the pixel labeling hints do not require objects to be segmented in advance. The hints

provided by the pixel labeling classifier is therefore more feasible and practical in a general setting.
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5.2.3.2 Sensitivity Analysis on Pixel Labeling Classifier

My previous results on the histology images suggest that image classification does not require

a perfect pixel labeling. To test if this still holds for the Pentomino toy problem, I conducted

the experiments with various corruptions applied to the pixel labels and P1NN hints as shown

in Table 5.2. I corrupted the results of the pixel labeling by replacing the label vectors with

neutral probabilities at the random locations. Similarly, P1NN results were corrupted with neutral

probabilities at the random block locations. Table 5.2 shows that the results were not significantly

impacted, when the corruption rate of the pixel labeling increases. This supports my claim that the

pixel labeling is a practical hint which is robust and is somewhat immune to the noise.

5.3 Brodatz Texture Dataset

In the previous section, I showed that classification tasks that take pixel labels as inputs are

robust to pixel-labeling errors, and pixel labels provide useful hints to the subsequent tasks. It

also suggested that the pixel labeling layer can be generalized to other problems. However, the

Pentomino dataset misses an important characteristic that I believe is crucial for classifying histology

images. The identification task lacks variation of textures. The Pentomino dataset is monochrome,

with no texture information to suggest a Pentomino type. Furthermore, in Pentomino dataset, the

aperture window is often only weakly informative of a Pentomino’s type. It is less likely that I

can find a relationship between the features learned from a window and the identification for a

Pentomino type. However, in the histology dataset, I believe that a substantial amount of information

is encoded in the context, which can be interpreted as texture in computer vision.

Texture is widely recognized as an the important characteristic used for identifying objects in

the images (Haralick et al., 1973). Different techniques have been proposed to solve the grayscale

texture problems (Haralick et al., 1973; He and Wang, 1990; Laine and Fan, 1993; Bovik et al.,

1990; Huang et al., 2009; Voisin et al., 2013).
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Figure 5.7: Examples of 112 texture images from Brodatz Album.

The Brodatz Album (Brodatz, 1966) has become the standard for evaluating the texture al-

gorithms and been widely used as a validation dataset (Liu and Fieguth, 2012; Yang et al., 2012;

Dı́az-Pernas et al., 2009). It is composed of 112 images representing a variety of natural textures

with different background intensities as shown in Figure 5.7. However, some of the texture images

could be discriminated using only the mean intensity and variations without texture information.

Thus, I chose the Normalized Brodatz Texture (NBT) database, which eliminates the grayscale

background effect. I manipulated this dataset to create a toy problem, which is equally hard to learn

and can be benefit from pixel labeling.

5.3.1 Problem Definition

Figure 5.7 illustrates the 112 texture images in the Brodatz Album. Based on these 112 texture

images, I created another toy dataset, where two textures are selected with replacement and assigned

as either the foreground or background texture in an image. The ultimate goal of this task was

to determine whether the foreground texture is different from the background texture. To make
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(a)

(b)

Figure 5.8: (a) Examples from the generated dataset, where their foreground and background
textures are from the same texture images. (b) Examples with different foreground and background
textures that are hard to distinguish. Foreground and background textures are randomly selected
with replacement and the shape within the image is also randomly chosen from circle, pentagon,
square, triangle and quarter. Two textures are mixed with roughly the same area for each one.
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sure the dataset is not biased, the numbers of examples with the same and different foreground

and background textures were equal. Figure 5.8(a) shows the examples where the foreground and

background are from the same texture, and Figure 5.8(b) shows the different.

5.3.2 Experiment Setup

To make the toy problem more similar to histology image dataset, I introduced several variable

factors, including rotations, mask shapes as well as different locations, to the dataset. This section

presents the process of how I generated new texture images based on Brodatz Album, as well as the

size and parameter settings included in the process.

The model architecture used in the experiments is also presented in the section. I provided

the hints for a region, instead of serving the labeling hints at the pixel level, since we know that

generally the labels are coherent within a region. It would not be necessary to keep all pixel labels

if most of them are the same. Finally, the labeling hints are provided to the subsequent task to

determine whether the background and foreground textures in the image are the same or not.

5.3.2.1 New Texture Image Generation

This process aims to create a texture dataset which is equally hard to learn as the original

histology problem and depends on the detailed information, such as identifying a texture, for an

accurate classification. To increase overall complexity and difficulty for the classification, I added

three variations to the image generation process, including selecting a random patch from each

texture, rotation by one of four different angles, as well as five different foreground/background

shapes. Moreover, to make it harder, the textures with similar background effects are grouped

together as a set prior to the generating process, and the chances for the textures with similar

background intensity are more likely to be paired as the foreground and background textures as

shown in Figure 5.8(b).

First, a texture is randomly picked with replacement from Brodatz Album, and the other

texture is randomly drawn from a corresponding texture set, which has been grouped based on the
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Figure 5.9: The generation process of the new texture dataset. First, two textures are randomly
picked from Brodatz Album and assigned as the foreground or background texture. The 128 square
regions are then cropped from the resized 160 square area at random locations. The two texture
images are rotated by four choices of angles. Finally, the two textures are mixed with roughly the
same pixels in a random shape.

background effect in advance. Each of them is assigned as the foreground or background texture

for the new image. Then, 128×128 regions are cropped from the resized 160×160 square area at

random locations. After that, the two texture images are rotated by four choices of angles. Then,

one shape is designated from five different choices, including circle, pentagon, square, triangle, and

quarter. Finally, the two textures are mixed with roughly the same pixels in each one. The numbers

of samples of the same and different foreground and background textures were set equal to ensure

the dataset is not biased. Figure 5.9 illustrates the generating process of the new texture dataset.

Variable factors, such as different locations, rotations, and mask shapes, introduced to the

dataset are designed on purpose. I intend to confuse the model with these variations and make

it clueless of what representations are important and what to predict during the learning process.

Unless some specific guidance is provided to tell the model what should learn the features of textures
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Figure 5.10: Model architecture for region labeling.

first for example, the model might spend time learning the features of irrelevant details embedded

in the image.

To evaluate the model, 20,000 examples are generated, 13,280 examples for training and 3,320

examples for testing and validation. Four different rotations and five distinct shapes are equally

represented in the dataset.

5.3.2.2 Region Labeling Hints

The overall architecture for the region labeling is illustrated in Figure 5.10. I used a standard

CNN with four convolutional layers and one fully-connected layer to solve the texture problem.

The input of the architecture is the 128×128 images I generated, and the output of the model is a

binary answer of yes or no. One layer in the architecture is picked and served as the intermediate

layer for the region labeling. In this toy problem, I decided to label regions at a lower resolution in

the labeling layer instead of every pixel of an original image because the labels are usually coherent.

It would be not necessary to keep all pixel labels if they are the same. Region labeling could save

both time and space computing this layer.
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Figure 5.11: Model architecture for supervised region labeling model.

Therefore, I took a window size of 4×4 block across kernels and flatten them to be one vector

of the softmax layer’s input. The process collects 27×27 blocks with the window size of 4×4

pixels across 50 kernels, and all these 27×27 vectors finally are consolidated to be the input of the

softmax layer. The output of the softmax layer, which is then fed to the classification model, is the

probabilities of labels for the corresponding block. The classification model uses those hints learned

from the labeling model and determines whether the image has same or different textures.

The architecture exploits a hint about the texture class, and provides semantic information for

the region labeling layer. Region labeling is trained with the intermediate target, specifying the

texture class for each region. A hyperbolic tangent nonlinearity was used for the activations in the

model, since using tanh(·) nonlinearity function makes the optimization more tractable compared

to others (Heaton, 2017). The learning rate for the region labeling model was 0.1 with 200 epochs

training. I have experimented several different adaptive learning rate algorithms, and found that

using noisy gradient descent (Neelakantan et al., 2015) converges faster to local minimum and helps

the optimization problem escape from the saddle points. In addition, an early stopping scheme was

used to avoid overfitting while training.

5.3.3 Experiment Results

To learn the intermediate layer hint in this toy dataset, I first independently trained a region

labeling model. While the input images are different, the architecture of the region labeling is
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Table 5.3: Classification results on generated texture dataset with different levels hints provision.

Model Accuracy
(a) CNN without hints / initialized weights 51.386%
(b) CNN without hints + fixed initialized weights 54.096%
(c) CNN without hints + fine-tuned initialized weights 79.699%
(d) CNN with Pixel labeling hints (learned with two different targets) 85.030%

identical as shown in Figure 5.11. The architecture for this experiment uses the images from Brodatz

Album, applying rotations and translations but with no shape masks to ensure similar complexity

to the generated texture dataset. Using the Brodatz dataset, I know the answer of every pixel of

the input image, and the target value for every region in an image would have the same texture

label. The model is expected to learn the features for the corresponding textures, and every region

in an image should be labeled the same. This is an easy to learn problem that the model can easily

identify the textures with around 97% accuracy.

To learn the binary image classification model, whether two features are different or the same,

the input of the model is the generated two-texture dataset. When no intermediate hints were applied

to the model, I got an accuracy no better than a coin-flip as shown in Table 5.3(a).

Glorot and Bengio (2010) shows that initializing parameters in a deep neural network can have

a big impact on the learning and generalization. Erhan et al. (2010) also points out that initialization

of parameters worked with pretraining process can guide the learning towards effective local minima

with better generalization. Accordingly, I utilized the hints learned from the pretrained supervised

region labeling introduced previously by initializing the weights of the region labeling model with

the weights learned from Brodatz input without fine-tunning, the model have around 55% accuracy

as shown in Table 5.3(b).

However, deep neural networks like CNNs involve a huge number of parameters. In practice, it

is common to fine-tune the weights of the pretrained CNNs by continuing the backpropagagtion.

Provided that the dataset contains the same context to the original one, the pretrained model already

has learned the features that are relevant to the classification problem. Therefore, I initialized
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the weights as the first stage and let the model learn from there, the model can have around 80%

accuracy as shown in Table 5.3(c) on determining the same or different textures in an image.

5.3.4 Optimize Two Problems with Joint Objective Functions

I further trained the image classification with the region labeling hints by jointly optimizing the

loss for the labeling hints Clabeling and for the meta-task Cclassification together as a joint loss:

minimize
θ

whClabeling + (1− wh)Cclassification (5.1)

where θ represents the set of all parameters and wh ∈ [0, 1] is the guided ratio, which is set to 1 at the

beginning of the training and linearly decreased to 0.1 in 10,000 updates. If wh = 0, the objective is

equivalent to Cclassification, and equals to Clabeling as wh = 1. I found that jointly trained on the hint

model and the classification model can improve the ultimate classification results significantly.

The optimization process concentrates on different objectives according to the weight wh.

Early in the process it focuses on getting the labeling model correct, and as the process goes on, it

emphasizes the accuracy of the classification model. I gathered two datasets for both models and let

two models learn jointly, and the results can attain higher than 85% accuracy as shown in Table

5.3(d).

Figure 5.12 presents some samples from the generated Brodatz dataset and their corresponding

false-color results indicating the label with the highest probability at each pixel. Figure 5.12(a)

are the examples with the same foreground and background textures. From the observation of the

false-color images, although the model has been misled by some distinct features represented in

the same image which results in identifying two different labels, the model is able to recognize

different textures for most samples. On the other hand, Figure 5.12(b) shows the examples with

different textures for the foreground and background. The labeling model generally can identify

different textures and the borders between the textures in some examples are clearly discovered.
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(a)

(b)

Figure 5.12: (a) Samples from generated dataset with the same foreground and background textures
and their false-color images indicating the label with the highest probability at each pixel. (b)
Samples and their false-color images with different foreground and background textures.
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As a result, the experiments presented in this section suggest that a hard to learn problem can be

made simple if we can guide the model to learn in the right direction through curriculum learning.

It also shows that a labeling model can be generalized to different dataset.

5.4 Conclusion

In this chapter, I applied my proposed labeling model to two different datasets, a classic

Pentomino dataset and a new Brodatz texture dataset, to demonstrate the generalization of the

labeling model I have developed. In the Pentomino toy problem, the experiments show that my

labeling model can provide meaningful hints to different subsequent tasks, P1NN and P2NN,

and improve the performance significantly. Although the pixel labeling hints are not as good as

SMLP-Hints in 40k dataset, they still proved to be useful and a more practical classifier in the real

world. Also, the sensitivity experiments prove that the pixel labeling classifier is robust and not

susceptible to the noise.

In addition, I presented a new toy problem based on Brodatz texture Album, which, I believe, is

more similar to the histology image scenario. The experiments imply that the labeling model can

provide valuable hints for the ultimate classification goal. Even if the model is not directly learned

with hints but initialized with the weights learned from the supervised labeling model, the accuracy

can still be increased by 30%. Furthermore, optimizing the model by jointly learning the labeling

hints and the meta-task improves the performance even more significantly.

In conclusion, I evaluated the labeling approach on two toy problems, the experiments suggest

that the advantages of a pixel labeling classifier are threefold. First, it generalizes to other related

vision tasks. The experiments in two toy problems show that the classification performance is

improved with the labeling hints. Second, it is robust and not susceptible to pixel label noise. The

labeling approach serves as an intermediate hint for the meta task. Image classification does not

require extremely accurate pixel labeling. Third, it is beneficial for classifying a texture-like dataset.

The labeling model uses a small aperture window to analyze the elements composed in an object.
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The low-level texture information might be lost while training goes deeper in the hierarchy, but the

labeling model captures them and converts them to valuable hints.
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CHAPTER 6: UNSUPERVISED PIXEL LABELING LAYER

6.1 Introduction

In Chapter 4, pixel/region labeling proved to be useful and practical as an intermediate hint,

and I also showed that it generalizes to different problems in Chapter 5. Still, one might argue that

the need for an extra training dataset for the pixel labeling model makes the hint augmented training

less appealing. This observation motivates the question of whether is there a way to construct a

labeling model with the benefits of the hint layer, but without explicitly providing hints.

An unsupervised labeling model might make this additional training process unnecessary. First,

because no ground-truth labels are required during training process, no extensive prior knowledge

is required. Second, the hint labels are generated purely based on the data, and therefore they are

not subjective to visual interpretation (Bengio, 2012; Berg-Kirkpatrick et al., 2010; Xie et al., 2016;

Dizaji et al., 2017).

However, optimizing an unsupervised deep learning model is challenging. The model has to

learn underlying feature representations and assign clusters simultaneously. Without additional

labeled training data, the model has to iteratively refine the label assignments with an auxiliary

learning objectives for shaping the output distribution to gradually improve the labeling results as

well as refine the feature representations (Bengio, 2012; Xie et al., 2016).

In this chapter, I propose an approach which extends the architecture introduced in Chapter

4. The classification task is divided into two subtasks, a low-level labeling and an image-level

classification. The labeling model is trained by a CNN, whose output is a probability of labels.

The output of the labeling model serves as an intermediate hint and is used as the input of image

classifier for further training.
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I aim to investigate the potential for an unsupervised learning objective which includes three

regularization terms. The terms are inspired by the observations of the supervised labeling results,

and are designed to constrain the shape of the output distribution. They implicitly aid the unsu-

pervised model in learning feature representations and ultimately output cluster-like labels for the

downstream learning task.

6.2 Approach

In this section, I introduce three penalization terms to the output of the labeling model based

on the desired property of its probability distribution. The approach is studied and evaluated on

Brodatz texture dataset introduced in Section 5.3. Section 6.2.1 examines the importance of the

probability distribution of the pixel labeling output to the unsupervised loss function. In addition,

inspired by an approach proposed by Kilinc and Uysal (2017), I present three regularization terms,

uncertainty, sparsity, and distinction, to form the learning objective for the unsupervised labeling

model. These terms enforce or penalize correlation relationships between label distributions

throughout the unsupervised learning, which is described in Section 6.2.2. Finally, the details of

three regularization terms along with the relationships to other measures are detailed in Section

6.2.3.

6.2.1 Probability Distribution

The improvements on the Brodatz toy problem with supervised intermediate hints, which was

introduced in Section 5.3.3, motivates the question of what characteristics does the supervised

labeling model have that leads to this progress, and what information does it indicate.

I examined the probability distribution of softmax output in the labeling model over all pixels

in a region as illustrated in Figure 6.1. The false-color image in Figure 6.1 is a softmax output in the

labeling model with same foreground and background textures indicating the label with the highest

probability at each pixel. Each pixel outputs a corresponding probability vector over all texture

labels. A cumulated probability distribution illustrated in Figure 6.1 is a distribution consolidating
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Figure 6.1: An example of cumulated probability distribution over 729 (27×27) pixels in the region.
The x-axis represents 112 labels. The y-axis is the probability sum over all pixels in the region,
where 729 is the maximum value when the probabilities of all pixels are 1.

the probability of each texture label over all pixels. The x-axis represents 112 texture labels, and the

y-axis is the probability sum over all pixels in the region, and it reaches 729 when the probabilities

of all pixels are 1.

Three important attributes arise from this examination of models learned via supervised-learning.

First, identifying how many significant textures are found in each region? Second, how certain

is the model’s prediction of the pixel labels? Third, does the model accurately identify the right

textures? I find that once a model is learned, the two measures tend to exhibit profiles that are highly

predictive of whether the foreground and background textures are the same. Figure 6.2(e) and (f)

show cumulative probability distributions of the examples with same and different foreground and

background textures, respectively. Figure 6.2(e) shows the maximum value on label 22, indicating

that the model perfectly recognizes all pixels the same texture and is very confident about the

predictions for all pixels. On the other hand, Figure 6.2(f) has two peaks on label 21 and 53,
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Figure 6.2: (a)(c) are the examples of same and different foreground and background textures,
respectively, in the generated texture dataset. (b)(d) are the false-color images indicating the label
with the highest probability at each pixel. (e)(f) are the cumulated probability distribution over all
pixels in the region.

respectively, showing that the model is certain that there are two different textures appearing in the

image.

From this observation, it is possible to learn if the sample has the same foreground and

background texture, the corresponding cumulative probability distribution will have one peak, and

two peaks otherwise. Accordingly, to construct the unsupervised loss function for the labeling

model, I assume that a good labeling output should have following constraints.

1. The label at each pixel should be as unambiguous as possible.

2. There are relatively few different textures within a window.

3. All textures are represented uniformly within a randomized mini-batch.

First, the model ideally predicts only one label for every pixel; that is, for every pixel in one

sample, it should be assigned to one texture with high probability, while remaining textures have
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very low probabilities. Second, there should be relatively few labels appeared within a window. For

example, within a given 5×5 window, it is unlikely that 25 different textures appear in it; instead,

the number of the labels should relatively small because the labels in the nearby pixels are generally

coherent. Lastly, these two properties alone are not sufficient to discover distinct texture labels.

The first two properties can fulfill the requirements of one peak for same textures and two peaks

otherwise, but they can not guarantee that peaks map to different labels.

Here, I use a common training mechanism for learning deep models, mini-batch gradient descent

(Li et al., 2014), to learn a solution. Mini-batch gradient descent is a variation of the gradient

descent algorithm that is widely used in deep learning model. It splits the training dataset into small

mini-batches which are then used to calculate the model error and update model coefficients. I

assume that within a mini-batch textures are represented uniformly. This constraint helps the model

associate different peaks to different textures.

In conclusion, my goal for the unsupervised labeling model is to construct a cumulative

probability distribution which can satisfy all three of these constraints. If they are all satisfied,

the labeling model at the pixel level can be sure in one texture, predict as few textures as possible

locally within a window, and distinguish different textures within a mini-batch.

6.2.2 Correlation Relationships

A correlation is an analysis that measures the strength of relationship between two variables

and the direction of the relationships. The value of correlation coefficient is between -1 and +1 in

terms of the degree of the relationship. When the value of correlation lies around +1, it is said that

two variables are positively correlated, meaning two variables increase or decrease together. On the

other hand, when the correlation coefficient is negative, it indicates the extent to which one variable

increases as the other decreases. As the correlation coefficient value goes towards 0, the relationship

between the two variables becomes weaker.

Geometrically, correlation is related to the cosine of the angle between two high-dimensional

feature vectors. A dot product, which is a common component of correlation, calculates the cosine
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of the angle between two vectors multiplied by their magnitudes:

< x · y >= cosθ‖x‖‖y‖ (6.1)

To find the relationship between correlation and cosine, I first recall that the covariance is calculated

as follows:

Cov[X, Y ] = E[XY ]− E[X]E[Y ], (6.2)

and correlation is defined as

Corr[X, Y ] =
Cov[X, Y ]

σ[X]σ[Y ]
(6.3)

If one of the random variable has expected value of 0, Cov[X, Y ] = E[XY ] is the dot product of

X and Y . The standard deviation of the variable is the length of itself. The correlation is then the

cosine of the angle between two vectors. Accordingly, a positive correlation shows an acute angle.

The negative correlation means an obtuse angle, and uncorrelated is orthogonal, which correlation

coefficient is 0.

Based on this, if there are two variables uncorrelated, namely correlation coefficient is 0, the dot

product of two vectors should be 0 correspondingly. Therefore, I propose to apply regularizations

during the unsupervised task in order to make sure that the dot product of two vectors is minimized

if two vectors are not correlated.

6.2.3 Loss Function Definition

In this section, I introduce three regularization terms, uncertainty, sparsity, and distinction, to

form the loss function for the unsupervised labeling model. Each of them is designed to constrain

the predicted output to preserve three desired properties listed in Section 6.2.1. The details of three

regularization terms along with the relationships to other measures are detailed in the following

sections. Lastly, a scheme of scheduling weights is exploited. It controls the importance between

the loss functions of the labeling model and the meta classification model during the training time.
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More details on how this approach engages in the joint learning process of two models is described

in the last part of this section.

6.2.3.1 Uncertainty

Constraint 1: Assuring that the label at each pixel is unambiguous. Ideally, every pixel in a sample

would be assigned to one texture with the probability of 1, while the remaining textures would have

0 probability.

To ensure that the output of the trained labeling model satisfies the constraint 1, I designed a

penalty which can be used to regularize the model’s training objective. Suppose that after training,

the predicted matrix of labeling model P is obtained, where P is a m × n matrix with m pixels

within a window and n texture labels. Pij is the probability of the i sample belonging to j label. I

assume that if the label at one pixel is not ambiguous, the probability vector for one texture label

should be as uncorrelated to the other as possible. Based on the correlation relationships introduced

in Section 6.2.2, the dot product of two probabilities vectors should go 0 if they are uncorrelated.

Therefore, I derived the matrix C, a surrogate of true correlation matrix, by taking the predicted

output matrix P dot product by itself:

C = P TP =



m∑
Pi1Pi1

m∑
Pi1Pi2 . . .

m∑
Pi1Pin

m∑
Pi2Pi1

m∑
Pi2Pi2 . . .

m∑
Pi2Pin

...
... . . . ...

m∑
PinPi1

m∑
PinPi2 . . .

m∑
PinPin


, (6.4)

and C is a n× n symmetric matrix, where Cij denotes the correlation between two labels. For this

regularization term, I force the matrix C to become a diagonal matrix, where 0 for the correlation

coefficient of two different labels and positive values on the diagonal. It is noteworthy that Pi is
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the probability vector of label i over all pixels, and thus Cii represents the sum of the square of

probabilities for label i over all pixels.

Inspired by the work presented in Kilinc and Uysal (2017), I exploited a regularization term,

uncertainty, to penalize the non-zero off-diagonal entries of C to constrain C to be a diagonal

matrix. The term is defined as

uncertainty(P ) =

n∑
i 6=j

Cij

(n− 1)
n∑
i=1

Cii

(6.5)

The uncertainty score approaches 0 in an ideal classified block. Normalization in uncertainty score

is done to bring different regularization terms within the same range for optimization, and ultimately

simplify hyperparameter adjustment. During the optimization, uncertainty score is expected to be

minimized to ensure that the constraint holds true.

In the following I give three examples to make the idea more concrete. Let P be the predicted

softmax output matrix of labeling model, with five pixels and three texture labels. In the examples

shown below, row vectors are pixel samples, and columns are the texture labels. The values in each

row sum to 1. If the probabilities are uniformly distributed, indicating that the three textures are

equally likely, then the uncertainty score is high.

uncertainty(


0.34 0.33 0.33

0.33 0.34 0.33

0.33 0.33 0.34

0.33 0.33 0.34

0.34 0.33 0.33

) = 0.9997, C =

0.56 0.55 0.55

0.55 0.55 0.55

0.56 0.55 0.56



However, if the predict model tends to show a preference for a specific texture, as indicated by

a higher probability on those textures, the uncertainty score starts dropping.
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uncertainty(


0 0.1 0.9

1 0 0

0.2 0.8 0

0.3 0 0.7

0 0.7 0.3

) = 0.1831, C =

1.13 0.16 0.21

0.16 1.14 0.30

0.21 0.30 1.39



And lastly, if all pixels have the probability 1 is for the certain textures and 0 for the rest, the

uncertainty score would be 0. Note that if we reach this extreme case, the diagonal of N is the

number of pixels been predicted as the corresponding texture.

uncertainty(


0 1 0

0 0 1

1 0 0

1 0 0

0 0 1

) = 0, C =

2 0 0

0 1 0

0 0 2



From the observation, the lower uncertainty score it gets, the higher probabilities the prediction

model gives to the certain labels. As a result, if I minimize the uncertainty score during the learning

process, the model can ultimately fulfill the constraint 1. Uncertainty is minimized when every

pixel is certain of its label.

6.2.3.2 Sparsity

Constraint 2: There are relatively few different textures within a window.

Recall that C is a n×n symmetric matrix, such that C = P TP , which represents the correlation

relationships among labels from the labeling predicted output P . The diagonal entry Cii is the

sum square of probabilities for label i over all pixels. Because of that, I can tell how many labels

have significantly high probabilities from interpreting the diagonal entries of C, which implies the

number of distinct labels been identified within a window. For constraint 2, I expect the labeling

model to identify fewer distinct textures within a window, because generally the neighbors have
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the same texture within a region. Thus, the correlation matrix C should not only be forced to be a

diagonal matrix, but also have as few distinct high values on the diagonal as possible.

Here, I apply the same trick used for regularizing constraint 1 to correlation matrix C. Let v be

a 1× n vector representing the diagonal entries of C such that v = [C11 C22 . . . Cnn], and let V

be a n× n symmetric matrix such that

V = vTv

=


C11C11 C11C22 . . . C11Cnn
C22C11 C22C22 . . . C22Cnn

...
... . . . ...

CnnC11 CnnC22 . . . CnnCnn



=



m∑
P 2
i1

m∑
P 2
i1

m∑
P 2
i1

m∑
P 2
i2 . . .

m∑
P 2
i1

m∑
P 2
in

m∑
P 2
i2

m∑
P 2
i1

m∑
P 2
i2

m∑
P 2
i2 . . .

m∑
P 2
i2

m∑
P 2
in

...
... . . . ...

m∑
P 2
in

m∑
P 2
i1

m∑
P 2
in

m∑
P 2
i2 . . .

m∑
P 2
in

m∑
P 2
in



(6.6)

It is obvious that if the value of Cii is small, all of the off-diagonal entries in V which are

multiplied by Cii will Conversely, if I compel the off-diagonal entries in V which are multiplied by

Cii to be small, the value of Cii or Cjj would correspondingly get smaller. When more diagonal

entries in C get smaller, it would be highly likely that the number of labels with significant high

probabilities becomes fewer. Therefore, a regularization term, sparsity, is then proposed to penalize

the non-zero off-diagonal entries of V :

sparsity(P ) =

n∑
i 6=j

Vij

(n− 1)
n∑
i=1

Vii

(6.7)
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Sparsity score falls between 0 and 1, where 0 represents the case that off-diagonal entries in

V are all 0 and only one value is not 0 on the diagonal entries of C. Therefore, the unsupervised

labeling model should learn to minimize the sparsity score during the optimization.

Here, I present the examples in different cases for better understanding. P are the probabilities

of different labels of the labeling model with ten pixels and three texture labels, and C is the

correlation matrix for the probabilities of labels in P . V is the new defined matrix, which is the dot

product results of diagonal entries in C.

The first example shows an predicted output with eight different textures almost uniformly

distributed, meaning the pixels within this window are almost equally among these eight textures.

In this case, the sum of off-diagonal entries in V would be large, and hence its sparsity score would

be very high.

sparsity(



0.832 0.024 0.024 0.024 0.024 0.024 0.024 0.024

0.012 0.916 0.012 0.012 0.012 0.012 0.012 0.012

0.9 0.9 0.937 0.9 0.9 0.9 0.9 0.9

0.6 0.6 0.6 0.958 0.6 0.6 0.6 0.6

0.024 0.024 0.024 0.024 0.832 0.024 0.024 0.024

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.024 0.024 0.024 0.024 0.024 0.024 0.832 0.024

0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.790

0.811 0.027 0.027 0.027 0.027 0.027 0.027 0.027

0.024 0.832 0.024 0.024 0.024 0.024 0.024 0.024



) = 0.90

If the predict model recognizes fewer distinct textures, some 0s will start showing up on the

diagonal of the matrix C. Accordingly, there will be some 0s showing in the off-diagonal of V , and

hence the sparsity score becomes lower.
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sparsity(



0.9 0 0 0 0 0 0 0.1

0 0.8 0.2 0 0 0 0 0

0.1 0 0 0 0.9 0 0 0

0 0 0 0.2 0 0 0.8 0

0 0 0.9 0 0 0.1 0 0

0 0 0.6 0 0 0.4 0 0

0 0 0 0 0.75 0 0 0.25

0 0.8 0 0.2 0 0 0 0

0 0 0.9 0.1 0 0 0 0

0 0.25 0 0 0 0.75 0 0

0 0 0 0 0.2 0.8 0 0



) = 0.65

sparsity(



1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

1 0 0

0 1 0

0 1 0

0 1 0



) = 0.5

sparsity(



0.9 0 0 0 0 0 0 0.1

0 0.8 0.2 0 0 0 0 0.0

0.1 0.9 0 0 0 0 0 0.0

0 0.8 0 0.2 0 0 0 0.0

0 0.9 0 0 0 0.1 0 0.0

0 0 0 0 0.8 0.2 0 0.0

0.75 0 0 0 0 0 0 0.25

0.8 0 0 0.2 0 0 0 0.0

0.9 0 0 0.1 0 0 0 0.0

0 0.75 0 0 0 0.25 0 0.0

0.8 0 0 0 0.2 0 0 0.0]



) = 0.22

Finally, if all pixels are identified as same texture, there would be only one value on the

diagonal of V , and it would get 0 for the sparsity score.
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sparsity(



1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0



) = 0

For this constraint, the value of probabilities in the output matrix P is not our focus; instead,

the number of distinct textures being identified is the crucial indicator impacting the sparsity score

most. The lower sparsity score it gets, the fewer distinct textures it will be represented in the matrix

C. In conclusion, for constraint 2, the unsupervised labeling model should attempt to minimize the

sparsity score during the optimization process.

6.2.3.3 Relationship Between Uncertainty and Sparsity

As mentioned, the uncertainty score is used to estimate how certain the labeling model predicts

the labels for a pixel. The predicted probability distribution of labels plays an important role in the

uncertainty score. In contrast, the sparsity score is influenced more by the number of significant

textures within a window than the probability distribution of labels.

To see how uncertainty and sparsity are related, I conducted an experiment on 320 samples

with eight pixels and eight labels within a window, assigning each label with probability from 0.16

to 1.0, where 0.125 would be exactly uniform distribution. 320 samples are divided to eight groups,

where the first group has one significant texture label, the second one has two labels, and so on.

Following matrices illustrate the examples of the first three groups.
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P1 =



0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.58 0.06 0.06 0.06 0.06 0.06 0.06 0.06



P2 =



0.79 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.03 0.79 0.03 0.03 0.03 0.03 0.03 0.03

0.79 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.03 0.79 0.03 0.03 0.03 0.03 0.03 0.03

0.79 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.03 0.79 0.03 0.03 0.03 0.03 0.03 0.03

0.79 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.03 0.79 0.03 0.03 0.03 0.03 0.03 0.03

0.79 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.03 0.79 0.03 0.03 0.03 0.03 0.03 0.03



P3 =



0.832 0.024 0.024 0.024 0.024 0.024 0.024 0.024

0.024 0.832 0.024 0.024 0.024 0.024 0.024 0.024

0.024 0.024 0.832 0.024 0.024 0.024 0.024 0.024

0.832 0.024 0.024 0.024 0.024 0.024 0.024 0.024

0.024 0.832 0.024 0.024 0.024 0.024 0.024 0.024

0.024 0.024 0.832 0.024 0.024 0.024 0.024 0.024

0.832 0.024 0.024 0.024 0.024 0.024 0.024 0.024

0.024 0.832 0.024 0.024 0.024 0.024 0.024 0.024

0.024 0.024 0.832 0.024 0.024 0.024 0.024 0.024

0.832 0.024 0.024 0.024 0.024 0.024 0.024 0.024


The results of the uncertainty and sparsity score for these samples are shown in Figure 6.3.

Since the probability of texture starts from 0.16, it is almost identical to a uniform distribution.

Its uncertainty score is correspondingly high. The uncertainty score finally decreases to 0 when

the probability of the significant texture reaches 1. It is noteworthy that when the probability of

significant texture is larger than around 0.4, the uncertainty score decreases below 0.5, which is

shown as the red line in Figure 6.3.
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Figure 6.3: Comparison between the uncertainty and sparsity score with 320 examples. Each
example contains 10 pixels within a window, showing eight significant textures appearing within a
window. The x-axis represents the sparsity score while the y-axis shows the uncertainty score. The
red line indicates uncertainty = 0.5. Three examples, P1, P2, and P3 are marked as red crosses in
the image. Different colors and glyphs represent various numbers of textures appeared in a window.
When the uncertainty scores are less than 0.5, samples with different numbers of significant textures
appeared in a window can be clearly identified by their sparsity scores. For example, if the samples
have only one significant texture appeared in a window, the sparsity scores fall between 0 and 0.15,
samples with two significant textures have the sparsity scores between 0.15 and 0.28, and etc.

On the other hand, Figure 6.3 suggests that the sparsity score can clearly identify the range

for different numbers of significant textures appeared in a window, if their uncertainty scores

are less than 0.5. For those samples whose sparsity score are overlapped and shown above

the red line are the ones with less that 0.4 probability for the significant textures. It is under-

standable that they are overlapped, because the texture with probability less than 0.4 technically

cannot be considered significant. For example, if the probability distribution of first pixel is
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like [0.16, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12] and [0.12, 0.16, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12]

for the second pixel, we might regard them as two significant textures, but the fact they are more

like a uniform distribution, and should be considered as eight significant textures. In this case, the

sparsity score will therefore become higher. Generally, a well learned model with uncertainty score

less than 0.5 can effortlessly identify the numbers of significant textures within a window by using

a sparsity score.

Regarding to the Brodatz texture dataset, I expect that the model is certain about the predictions,

which should have low uncertainty score less than 0.5. In addition, it is reasonable that the model

identifies one to three distinct textures within a window, where the sparsity score would fall between

0 and 0.4. Both the distinction and sparsity scores are important to the model training. To keep

the scores balance, the coefficients for different scores are introduced to the model, more details

discussed in Section 6.2.3.6.

6.2.3.4 Distinction

Aim 3: All textures are assumed to be represented uniformly within a randomized mini-batch.

By minimizing the uncertainty and sparsity scores, the unsupervised labeling model is able to

constrain the predicted output to have unambiguous labels at one pixel, and few labels within a

window. However, only these two constraints are not sufficient to help model distinguish different

texture labels. The first two constraints can restrict the shape of the output distribution, but they

can not guarantee distinct peaks for different labels. The third assumption is therefore proposed

to regularize different output distribution for distinct textures. Although this is the most arguable

assumption, it is required to prevent the model from predicting the same output distributions for

different textures.

Here, I utilize mini-batch gradient descent, which is a common training mechanism applied

widely in deep learning process, to help solve the problem. Mini-batch gradient descent is a variation
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of stochastic gradient descent, and it takes more than one training example to make each estimate

of the gradient (Li et al., 2014). The training dataset is split into small mini-batches, and each of

them is then used to calculate the error and update the model coefficients. I constraint that if n

textures are equally represented in a mini-batch and the model will be forced to output n distinct

labels within a mini-batch, thus allowing it to learn distinct features for n labels. Even if the batches

textures are requested non-uniformly, across multiple mini-batches, using a small step size might

achieve the same effect.

Recall that the sparsity score was designed to minimize the number of texture labels showing

significant probabilities in the prediction matrix. However, within a randomized batch of samples I

expect all textures to be equally likely.

Therefore, I adapted the approach used for sparsity score to a new regularization term, called

distinction, and try to maximize it within a mini-batch while minimizing sparsity of each example. I

do this by summing up the output predicted matrix over all samples in a mini-batch, normalize it,

and obtain a new probability matrix B, where B is a b×n matrix with b samples within a mini-batch

and n texture labels. I then derive a correlation matrix Cb by taking the batch matrix B dot product

by itself, and get Cb = BTB. Let vb be a 1× n vector representing the diagonal entries of Cb such

that vb = [Cb11 Cb11 . . . Cbnn ]. Vb is then defined as a n× n symmetric matrix, such that

Vb = vTb vb

=


Cb11Cb11 Cb11Cb22 . . . Cb11Cbnn

Cb22Cb11 Cb22Cb22 . . . Cb22Cbnn

...
... . . . ...

CbnnCb11 CbnnCb22 . . . CbnnCbnn



=



b∑
B2
i1

b∑
B2
i1

b∑
B2
i1

b∑
B2
i2 . . .

b∑
B2
i1

b∑
B2
in

b∑
B2
i2

b∑
B2
i1

b∑
B2
i2

b∑
B2
i2 . . .

b∑
B2
i2

b∑
B2
in

...
... . . . ...

b∑
B2
in

b∑
B2
i1

b∑
B2
in

b∑
B2
i2 . . .

b∑
B2
in

b∑
B2
in



(6.8)
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To obtain an equally represented textures in the batch output matrix, I define the distinction

score as

distinction(B) = 1−

n∑
i 6=j

Vbij

(n− 1)
n∑
i=1

Vbii

=

n−1∑
i=1

n∑
j=i+1

(Cbii − Cbjj)2

(n− 1)
n∑
i=1

C2
bii

=

n−1∑
i=1

n∑
j=i+1

( b∑
k=1

BkiBki −
b∑

k=1

BkjBkj

)2
(n− 1)

n∑
i=1

b∑
k=1

(BkiBki)
2

(6.9)

Equation 6.9 suggests that if the diagonal entries of Cb are equal to each other, the distinction

score becomes 0. It also implies that if I want the model to predict equal numbers of textures

represented within the mini-batch, the model needs to force the matrix Cb becoming a scaled identity

matrix by equaling the value of the diagonal entries. Thus, for this constraint, the learning model

should minimize the distinction score while training.

Following examples illustrate three different cases how distinction score constrains the number

of significant textures representing in the matrix Cb. If there is only one major texture been

recognized in the mini-batch, namely only one value arising on the diagonal of Cb, the distinction

score is high.
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distinction(



1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0


) = 1

Nevertheless, the distinction score decreases when more and more distinct textures are

represented in a given mini-batch.

distinction(



0.9 0 0 0 0 0 0 0.1

0 0.8 0.2 0 0 0 0 0

0.1 0.9 0 0 0 0 0 0

0 0 0.8 0.2 0 0 0 0

0 0 0 0.2 0 0 0.8 0

0.8 0 0 0 0 0 0 0.2

0.9 0 0 0 0 0 0 0.1

0 0 0.9 0.1 0 0 0 0

0 0.9 0 0.1 0 0 0 0

0 0.75 0 0 0 0.25 0 0

0.8 0 0 0 0.2 0 0 0



) = 0.65

distinction(



0.9 0 0 0 0 0 0 0.1

0 0.8 0.2 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0.5 0.5 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0.8 0.2

0.9 0 0 0 0 0 0 0.1

0 0 0 0.1 0 0.9 0 0

0 0.9 0 0.1 0 0 0 0

0 0.6 0 0 0 0.4 0 0

0 0 0.8 0 0.2 0 0 0



) = 0.35
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distinction(



0.9 0 0 0 0 0 0 0.1

0 0.8 0.2 0 0 0 0 0

0 0 0 0 0 0.6 0.4 0

0 0 0 0.8 0.2 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0.8 0.2

0.9 0 0 0 0 0 0 0.1

0 0 0 0.1 0 0.9 0 0

0 0.6 0 0.4 0 0 0 0

0 0.75 0 0 0 0.25 0 0

0 0 0.8 0 0.2 0 0 0



) = 0.22

At last, the distinction score becomes zero when all textures are represented equally.

distinction(



0 1 0

0 0 1

1 0 0

1 0 0

0 1 0

0 1 0

1 0 0

0 0 1

0 0 1


) = 0

Thus, to accomplish the constraint 3, the model is trained to minimize the distinction score over

a mini-batch. This constraint is an important factor for the unsupervised labeling model, because

it enables the predicted model to recognize different textures. Although it is not able to help the

model predict a specific texture label (as is accomplished in the supervised setting), it still informs

the meta-task, since the meta-task does not care about any specific texture label, only that distinct

textures map to different labels.

6.2.3.5 Relationships of Distinction and Sparsity to Other Correlation Measures

In the classification setting, there are several common error measures for estimating the proposed

partition, such as misclassification rate, negative log-likelihood loss, entropy, cross-entropy, etc.
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Here, I explore the relationships between distinction and sparsity score to entropy since they

are conceptually similar. Because distinction and sparsity are complementary, I only discuss the

relationship between entropy and sparsity, and the relationship between entropy and distinction can

be inferred from that.

In information theory, entropy is a measure of predictability of a state. The entropy is defined as

H(x) = −
∑
x

p(x) log2 p(x), (6.10)

where x is a random variable with distribution p. The maximum entropy is generated when x is

uniformly distributed, and its minimum happens when the distribution of x has all its mass on one

state. Intuitively, the concept of scoring an event based on its probability distribution is very similar

to the definition of the sparsity score.

Therefore, I conducted a simple experiment with 100 examples, and each of them has 100

pixels with four different textures. I assigned a label with probability of 0.9 representing the

significant texture in this experiment. The first 25 examples have four significant textures, next

25 examples have three, and so on. Following four matrices are the examples illustrating four

respective cases.

count = 4 count = 3

P1 =



0.9 0.1 0 0
...

...
...

...
0 0.9 0.1 0
...

...
...

...
0 0 0.9 0.1
...

...
...

...
0.1 0 0 0.9


P2 =



0.9 0.1 0 0
...

...
...

...
0 0.9 0.1 0
...

...
...

...
0 0 0.9 0.1
...

...
...

...
0.9 0.1 0 0


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count = 2 count = 1

P3 =



0.9 0.1 0 0
...

...
...

...
0 0.9 0.1 0
...

...
...

...
0.9 0.1 0 0

...
...

...
...

0 0.9 0.1 0


P4 =



0.9 0.1 0 0
...

...
...

...
0.9 0.1 0 0

...
...

...
...

0.9 0.1 0 0
...

...
...

...
0.9 0.1 0 0


Since the probabilities of significant textures have been assigned to the same value, entropy

undoubtedly has same value for all examples. Nonetheless, the sparsity score can discover different

number of significant textures among 100 examples even if the probabilities for significant textures

are the same.

I then varied the probabilities for the significant textures, and assign them from 0.75 to 1.0.

Figure 6.4 shows the comparison between the entropy and the sparsity score for this experiment. It

is obvious that with varied probabilities, entropy still cannot distinguish the number of significant

textures that appear in the examples, but the sparsity score can separate them. Although the sparsity

score is not perfectly monotonic allowing different numbers of significant textures to result in the

same range of the sparsity score, overall the score works as expected.

In conclusion, these two experiments demonstrate that it is hard to accomplish the constraints 2

and 3 by using entropy alone as the regularization term, since it cannot help us identify the counts,

which matters in these constraints. Also, uncertainty and sparsity scores share many common terms

(dot products of covariance matrix), making it more efficient to compute both.

6.2.3.6 Final Loss Function

Given the input X , the unsupervised labeling model builds a predictive function for regularizing

the output matrix based on three terms introduced in the previous sections. The uncertainty and

sparsity scores are calculated for every sample and the distinction score is calculated over mini-

batches, so I combined the three terms into a single objective by taking the weighted average of
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Figure 6.4: Comparison between entropy and the sparsity score with 100 examples. Each example
contains 100 pixels within a window, including 4 cases of different number of significant textures
appeared within a window. The x-axis represents the sparsity score while the y-axis shows entropy. If
the probabilities for all pixels are varied, different number of significant textures can be distinguished
by using the sparsity score nevertheless entropy cannot.

uncertainty and sparsity scores over all samples in a mini-batch. Finally, the loss function for the

unsupervised labeling model becomes

Clabeling(θ,X) = avg(cαuncertainty(P ) + cβsparsity(P )) + cγdistinction(B), (6.11)

where cα, cβ , cγ are the coefficients controlling the balance among these regularizing terms.

For the meta classification task, I train the parameters by minimizing the negative log-likelihood

on target Z:

Cclassification(θ,X) = −
|X|∑
i=0

logP (Z = z(i)|x(i), θ), (6.12)

where θ is the set of all parameters in the learning model.
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Finally, the training objective for the whole model is defined as

minimize
θ

whClabeling(X) + (1− wh)Cclassification(X), (6.13)

where wh ∈ [0, 1] is the guided ratio. If wh = 0, the objective is equivalent to Cclassification, and equals

to Clabeling as wh = 1. The optimization process can learn different targets by gradually changing the

guided ratio. Early in the process the model is trained to learn objective of unsupervised labeling

model, and as the process goes on, it starts transiting to train on the target of classification model.

Choosing an appropriate guided ratio is essential to my model.

6.3 Experimental Results

I evaluated the proposed approach on Brodatz texture dataset described in Section 5.3. The

setup for the experiments is identical to the one that used in Section 5.3.2. In this section, I show

the labeling results with different weighting coefficients for the regularizers. Also, the comparison

between the sparsity and distinction scores with and without supervision is discussed in this section.

6.3.1 Evaluation on Regularization Terms

Experiments were performed using two different settings to demonstrate the effect of the

regularization terms on the output distribution. Searching an appropriate coefficient set is easier if

all coefficients sum to 1, decreasing the dimensions of coefficient space down to two. Moreover,

this simplified the experiments by controlling the coefficients of the uncertainty and sparsity scores

and experimenting on the coefficient of the distinction score cγ , because I assume that the ability to

distinguish different textures, distinction, is the most important constraint of the three.

I emphasized the importance of mini-batch distinguish by giving cγ the highest weight (cα =

1, cβ = 1, cγ = 10), driving the textures representing within a mini-batch more uniformly. Figure

6.5 visualizes the cumulative probability distribution over all samples within a mini-batch with

higher coefficient for the distinction score. The flat distribution shown in Figure 6.5 corroborates
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that exploiting the distinction regularization term can help the model recognize more textures shown

within a mini-batch.

Figure 6.5: A cumulative probability distribution over all samples within a mini-batch with high
coefficient for the distinction score.

I then examined the cumulative probability distribution over all pixels within a window to

evaluate the other two scores. Figure 6.6 shows the samples of same texture and different textures

for foreground and background in left and right, respectively. With high cγ , it is surprised that the

model has difficulty in reducing the number of texture labels within a window, which is restrained

by the sparsity score. The sparsity score is computed on a single image basis, while distinction is

calculated over all images within a mini-batch. The model is supposed to be able to minimize both

of them at the same time.

In a second study, lowered cγ in an effort to allow the sparsity score (cβ) to dominate the loss

function (cα = 1, cβ = 20, cγ = 7). The number of texture labels within a window decreases, and in

Figure 6.7 the probability distribution shows one peak for same texture and two peaks for different,

which is perfectly satisfied to the constraint 2. However, the cumulative probability distribution
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Figure 6.6: Examples of the same and different textures for foreground and background with high
coefficient on the distinction score. When the coefficient of the distinction score sets high, the
cumulative probability distribution shows that most of the textures have been recognized within a
mini-batch and the false-color images also reflect the effects.

Figure 6.7: Examples of same and different textures for foreground and background with high
coefficient on the sparsity score. From the cumulative probability distribution, the number of the
textures been recognized within a mini-batch decreases to one significant peak for the same texture
and two significant peaks for different, when the sparsity score sets high. There are also fewer
colors dominating in the false-color images.
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Figure 6.8: A cumulative probability distribution over all samples within a mini-batch with lower
coefficient for the distinction score.

over all samples within a mini-batch forms two peaks as well, meaning that the constraint 3 is not

achieved and the model fails to minimize the distinction score.

The results of these two contrastive examples indicate that the model is very sensitive to the

weighting assigned to sparsity and distinction scores. This motivated me to examine further the

relationship between the sparsity and distinction scores as discussed in the following section.

6.3.2 Comparison Between Sparsity and Distinction

Considering the effect of training the sparsity and distinction scores with different weighting

coefficients, the results is illustrated in Figure 6.9. From the observation, these two scores tend to

show reciprocal relationships between each other. It shows that when cγ sets high, it gets lower

distinction score but high sparsity score, meaning that many textures not only show within a mini-

batch but also in every window. On the other hand, when cβ becomes higher, the sparsity score starts

dropping with increasing distinction score. In this case, the model is able to control the number

of textures shown in a window but unfortunately also only few textures are recognized within a
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Figure 6.9: Comparison between the distinction and sparsity score with different coefficient settings.
Note that the x-axis is the mean sparsity score over all samples within a mini-batch.

mini-batch. It implies that when the distinction score is low, showing uniformly represented textures

within a mini-batch, the model does not learn to distribute different textures to every single sample;

instead, all textures appear in every sample. The ideal case is to have lower values on both sparsity

and distinction scores, which is shown in red in Figure 6.9, saying that all textures are evenly

represented within a mini-batch and every particular texture is evenly distributed to each sample

within the mini-patch, leading to few textures showing in every sample. The results initialized by

supervised settings are shown in the teal cluster in the left side of the Figure 6.9, with low sparsity

score and middle distinction score.

The objective of our unsupervised pixel labeling model is to approximate the performance of

the supervised setting. The observation raises the following questions that is there a way that can
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lead the model to learn from the extreme case to the supervised one? The results suggest that the

three regularization terms are necessary but not sufficient for solving the meta-task. If I predict the

model initialized by a supervised pretraining using a small subset of samples with known labels,

can it lead the model to achieve as good as our supervised model? Moreover, the model trained for

the experiments is based on the assumption that a fixed optimal coefficient set exists across different

guided ratios over training time. However, might it be possible that the optimal solution shifts in

the coefficient space across different guided ratios during training time, rather than sticks to a fixed

point? To discover a better solution, these are potential directions for future exploration.

6.4 Conclusion and Discussion

In this chapter, I extended the labeling model to learn in an unsupervised fashion. Inferred by the

predicted output of the labeling model, I introduced an unsupervised learning objective considering

the correlation relationships and distinction patterns among the samples. Three regularization terms,

uncertainty, sparsity, and distinction, are designed to refine the label assignments by iteratively

constructing an expected output distribution during the unsupervised labeling training. No additional

labeled dataset is required for training. The labeling predictions are updated only based on the

regularizers.

Experiments demonstrate that the constraints can be satisfied by minimizing the defined

regularization terms. However, setting weights for the three constraint terms is challenging. The

model is trained on the basis of an assumption that the optimal coefficient set for three terms is fixed

across different guided ratios over training time. But there is a possibility that the optimal coefficient

set is changed over different guided ratios. Also, it might be possible that the three regularization

terms are necessary but not sufficient to solve the problem. In this case, semi-supervised training

with initialized learning parameters might be able to tackle the problem. With a small subset of

samples with known labels, semi-supervised approach should be able to guide the model to the right

direction. The pixel labeling model is demonstrated to provide semantic hints to the subsequent

tasks. Achieving useful pixel labels in an unsupervised setting is still a topic for future research.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

In this dissertation, I presented two deep learning architectures to assist in histology image anal-

ysis. Throughout the work, the guiding principle was to capture important feature representations

that provide valuable and useful hints for a subsequent classification task. I have also demonstrated

how the proposed deep learning approaches generalize to a variety of texture-oriented problems. In

the sections below, I summarize my results and propose possible avenues for future research.

7.1 Extensions to Combine Features Across Scales

In Chapter 3, I proposed a learning architecture which can extract appropriate features, visualize

the features learned by the model, and classify the images based on the features learned. The novel

deep learning architecture adds an intermediate layer, called a hyperlayer, to capture features learned

from different convolutional layers. With a hyperlayer, the learning network is able to combine

representations from different levels of abstraction and scales of an image, and thus provide a more

complete description for the classification process.

The proposed architecture was evaluated on a histology image dataset. The results show that

the proposed approach outperforms the canonical methods and has captured and learned important

features and details at lower layers which are critical in the dataset. The improvements due to the

hyperlayer suggest that the introduction of this intermediate layer to the learning model makes the

classification task easier and enables it to learn faster.

Although the proposed architecture improves classification accuracy, it is limited in its ability to

scale. One reason is that the hyperlayer relies on learned representations from all of the convolutional

layers below it. The output for all convolutional layers in a very deep architecture might be

overwhelming, leading to long training times and large memory requirements. One simple solution

100



might combine the representations from selected convolutional layers, instead of taking all of them,

to the hyperlayer. This solution not only addresses the scalability issue but might also filter out

insignificant representations.

In addition, since the proposed architecture utilizes autoencoders for intermediate levels of

unsupervised feature learning, the proposed approach inherits the limitations of autoencoders.

One of the limitations is that the features learned from the autoencoder might not be meaningful

semantics or useful representations for the desired classification task. The autoencoder is optimized

by minimizing the difference between the input and the reconstructed output rather than its sensitivity

to a given task.

An alternate approach, which more closely mimics a traditional histology analysis pipeline,

attempts to label the tissues and cell types prior to overall classifications. One solution might capture

the cell-type representations as a supervised objectives, rather than expecting the autoencoder to

capture them automatically. If the image representations are forced to a finite set of labels of

meaningful cell/tissue types, it also makes the dataset more consistent. Looking at a region of labels

would provide an overall picture of the state of a given tissue, and aid the pathologists to determine

whether the tissue is normal or abnormal. A more comprehensive introduction of combining pixel

labeling to capture semantic information to the learning process is detailed in Chapter 4.

7.2 Extension to Supervised Pixel/Region Labeling

In Chapter 4, I extended the model by introducing a specific intermediate learning objective,

which is a per pixel labeling to provide semantic hints to subsequent classification layers, in the

spirit of curriculum learning. Instead of directly classifying the images, the model first learns a label

for the center pixel given the context of its neighbors. The image classifier then uses these labels to

classify the images. The main contributions of this work are a novel deep learning architecture for

image classification that propagates specific domain knowledge from the pixel level to the image

level.
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My experiments suggest that image classification does not require an extremely accurate pixel

labeling. Furthermore, the pixel labeling layer can be regarded as a vector of label probabilities,

that are provided as hints for subsequent image classification. Extensive experiments show that my

architecture outperforms other traditional deep learning approaches. The experiments demonstrated

that the pixel labeling not only can provide robust and meaningful semantic representations to the

subsequent task but also lead to more accurate and efficient learning.

However, one might think that an image labeling might be too specific to histology datasets.

The improved performance is achieved by the efforts of the people in the domain coming up with

well-designed set of labels, allowing the pixel labeling model learn more easily. An extension

to explore whether a pixel labeling layer can generalize to different learning problems beyond

histology images was introduced in Chapter 5.

In Chapter 5, the proposed supervised labeling model was applied to two toy problems, a

Pentomino problem and a texture-oriented problem, to demonstrate the general utility of my

labeling model. My work has demonstrated that the labeling approach generalizes to other vision

tasks, and is robust to noise. In addition, this work demonstrates that the labeling model is beneficial

for classifying texture datasets. It is able to capture low-level information in particular and converts

it to valuable hints.

Although the pixel labeling proves to be generalizable, it has a disadvantage that it relies on

a set of well-designed, domain specific, labels. Currently, the selection of the meaningful labels

and the dataset for the pixel labeling layer are manually selected by the domain experts. Since

the labels are domain specific, not task specific, the predefined labels need to be redesigned if the

classification problem changes. For example, if we try to classify the traffic scene, the predefined

labels could be modified to include vehicles, buildings, sky, road, sidewalks, pedestrians, etc.

Granularity and the number of the predefined labels are also important factors when selecting

labels. These two factors are reciprocal; if the granularity is larger, the hierarchy of the label design

would be shallower, and thus the number of the predefined labels would be fewer. In contrast,

when the granularity is small, the hierarchy of labels might become big and deep, leading to a large
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amount of labels. Some evidence based on limited testing shows that it is not necessary to set the

granularity very small. Unless the features for individual label are specific and unique, adding more

labels might result in worse prediction performance.

In addition to the label selection, one might also argue that the proposed pixel labeling model

is less appealing in due its need for an extra dataset for training the labeling model. Although my

proposed pixel labeling approach did not require dense labels it did require expert curation, which

involved the hand-selection of many thousands of representative label examples. The limitations of

this labeling model might be solved by making the pixel labeling model learn in an unsupervised

setting. If the model can learn the labels by using statistical information of the data, and let the

data itself suggest the labels for the intermediate layer, the process of designing a set of labels and

collecting an extra training dataset for the labeling model can be eliminated. An unsupervised pixel

labeling model, which is introduced in Chapter 6, is then proposed to address the issues.

In Chapter 6, the labeling model is further extended to an unsupervised setting. Inferred by

the predicted output of the labeling model, three regularization terms, uncertainty, sparsity, and

distinction, are designed to refine the label assignments by gradually shaping the expected output

distribution during the unsupervised labeling training. Without additional labeled dataset involved

in the learning process, the experiment results demonstrate that the constraints can be satisfied by

minimizing the defined regularization terms.

However, selecting appropriate weights for all three terms in order to simultaneously satisfy all

of the desired constraints of the output distribution is challenging. Based on limited testing, it is

hard to conclude that the optimal coefficient set lies at a fixed point in the parameter space over the

training time. It could be a possibility that the optimal coefficient set must be changed over time to

achieve an effective ratio. One future direction for the work would be to explore an efficient way for

searching an optimal coefficient set for the three regularizers.

Another future direction for the work is to apply the unsupervised settings to the histology

images dataset. Currently, the unsupervised labeling model is a proof of concept realized on a toy

103



problem. More experimentation is required to demonstrate that applying an unsupervised labeling

model can improve the classification in real-world images.

Another challenge might emerge when the unsupervised labeling model I proposed is applied

to a histology dataset. A strong assumption is made in my toy problem with regard to the distinction

score. It assumes that all labels are present uniformly within a randomized mini-batch, which might

be not easy to satisfy. A tubule image might compose several labels, and even more, the same stages

of the tubule might include different amount of labels. To relax this assumption on the distinction

score, one solution might be to collect the statistics of the numbers of labels that appear in different

stages and arrange the training data within a mini-batch based on the statistics. Although it cannot

guarantee the labels are uniformly represented in the mini-batch, the ratio among respective labels

can be calculated, and the distinction score can be tuned correspondingly to achieve the ratio.

Regarding to the applications of pixel labeling, other than the classification task, pixel labeling

can facilitate quantitative assessment of variation for the number of tubule cross sections and the

number of tubules with defects. Pixel labeling can be used to infer the fraction of the total cross

section area for cell types of interest, providing valuable information for the overall histology

image analysis. However, the quantitative assessment, unlike the classification task in our pipeline,

requires higher pixel labeling accuracy. One possible way to boost the pixel labeling accuracy is

to incorporate feedback from domain experts and continue to refine the predictions or reshape the

probability distribution of labels iteratively based on the immediate feedback. This is contrast to

the common learning paradigm in which the model is learned only from the static training dataset.

One of the major problems with today’s machine learning methods is that they are too dependent

upon their training data. In traditional machine learning pipeline, the model is learned only once,

and thus is unable to adapt to either technical variants, such as changes in sample preparation, or

systemic changes, such as an evolution of scoring criteria. An online learning framework for pixel

labeling might be a research area worthwhile to explore in the future.
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7.3 Conclusion

In conclusion, I set out to improve the classification in histology images in deep learning

framework by introducing intermediate learning objectives. I have shown two different types of

intermediate learning objectives, which dramatically improve over generic deep learning models

used in computer vision. One is combined autoencoder and hyperlayer to do completely unsuper-

vised learning of things in different scales. The advantage of this method is that it does not need

additional training dataset. The problem of the hyperlayer is that there is no guarantee that the

features learned to reconstruct the images are semantically meaningful.

Another solution which uses semantics as hints, called pixel labeling, is then proposed. I have

demonstrated how to incorporate this common technique that people used in histology image, to

deep learning framework. Illustrated by doing that, I can get much improved performance. The

pixel labeling shows to be a very powerful intermediate objective handling hard to learn problem

and is demonstrated that it can be generalized to more than just histology images.

The downside of that is it requires a new training dataset, thus increasing the amount of upfront

work needed to be done. Therefore, I still would like to continue to develop unsupervised approaches

like my hyperlayer approach. Doing that, it must be possible to capture important features of pixel

labeling without explicitly doing so, and have a system that will find the pixel labels like features as

intuitive as the autoencoder with unsupervised setting. In an ideal world, there would be a system

that basically takes the input images and clusters the pixels to several different classes.
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Svensson, C.-M., Hübler, R., and Figge, M. T. (2015). Automated classification of circulating tumor
cells and the impact of interobsever variability on classifier training and performance. Journal
of Immunology Research, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9.

112



Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research, 11(Dec):3371–3408.

Voisin, A., Krylov, V. A., Moser, G., Serpico, S. B., and Zerubia, J. (2013). Classification of very
high resolution sar images of urban areas using copulas and texture in a hierarchical markov
random field model. IEEE Geoscience and Remote Sensing Letters, 10(1):96–100.

Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Tomaszewski,
J., Gonzalez, F., and Madabhushi, A. (2014a). Cascaded ensemble of convolutional neural
networks and handcrafted features for mitosis detection. In SPIE Medical Imaging, volume
9041, pages 90410B–90410B. International Society for Optics and Photonics.

Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Tomaszewski,
J., Gonzalez, F., and Madabhushi, A. (2014b). Mitosis detection in breast cancer pathology
images by combining handcrafted and convolutional neural network features. Journal of
Medical Imaging, 1(3):034003–034003.

Wei, N., You, J., Friehs, K., Flaschel, E., and Nattkemper, T. W. (2007). An in situ probe for on-line
monitoring of cell density and viability on the basis of dark field microscopy in conjunction
with image processing and supervised machine learning. Biotechnology and Bioengineering,
97(6):1489–1500.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. Technical report, STANFORD
UNIV CA STANFORD ELECTRONICS LABS.

World Health Organization et al. (2010). Who laboratory manual for the examination and processing
of human semen.

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis.
In International Conference on Machine Learning, pages 478–487.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations
for deep neural networks. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 5987–5995. IEEE.

Xu, J., Luo, X., Wang, G., Gilmore, H., and Madabhushi, A. (2016a). A deep convolutional neural
network for segmenting and classifying epithelial and stromal regions in histopathological
images. Neurocomputing, 191:214–223.

Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., and Madabhushi, A. (2016b). Stacked
sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images. IEEE
Transactions on Medical Imaging, 35(1):119–130.

Yang, J., Zhuang, Y., and Wu, F. (2012). Esvc-based extraction and segmentation of texture features.
Computers & Geosciences, 49:238–247.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. arXiv preprint
arXiv:1605.07146.

113



Zeiler, M. D., Taylor, G. W., and Fergus, R. (2011). Adaptive deconvolutional networks for mid
and high level feature learning. In IEEE International Conference on Computer Vision, pages
2018–2025. IEEE.

Zhong, C., Han, J., Borowsky, A., Parvin, B., Wang, Y., and Chang, H. (2017). When machine
vision meets histology: A comparative evaluation of model architecture for classification of
histology sections. Medical Image Analysis, 35:530 – 543.

Zohra, B. F. and Mohamed, B. (2009). Automated diagnosis of retinal images using the support
vector machine (svm). Faculte des Science, Department of Informatique, USTO, Algerie.

114


	TITLE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Thesis Statement
	Outline of Contributions

	Background and Related Work
	Introduction
	Classical Neural Networks
	Deep Learning
	Convolutional Neural Networks (CNN)
	Autoencoder
	Curriculum Learning

	Automated Histology Image Systems
	Deep Learning on Automated Histology Image Systems

	Using a Hyperlayer to Combine Features Across Scales
	Introduction
	Approach
	Feature Learning via Stacked Convolutional Autoencoder
	Hyperlayer construction
	Automated Classification via Softmax Classifier
	Image Representation via Deconvolutional Networks

	Experimental Setup
	Histology Image Dataset
	Building the Classifier
	Classification Performance and Comparison

	Experimental Results
	Automatic Classification Performance
	Image Reconstruction with Deconvolutional Networks

	Conclusion

	Pixel Labeling as an Intermediate Learning Objective
	Introduction
	Approach
	Pixel Labeling Layer
	Supervised Pixel Labels
	Window Selection
	Data Normalization
	Pixel Labeling Model

	Image Reference
	Image Classification

	Experiment Setup
	Histology Image Dataset
	Pixel Labeling Layer
	Image Classification Layer

	Experiment Results
	Pixel Labeling Results
	Sensitivity Analysis of Pixel Labeling Classifier
	Classification Results

	Conclusion and Discussion

	Generalizing Pixel Labeling Approach
	Introduction
	Pentomino Dataset
	Problem Definition
	Experiment Setup
	Block Size Selection
	Original Model Architecture
	Pixel Labeling Layer

	Experiment Results
	Pixel Labeling Hints
	Sensitivity Analysis on Pixel Labeling Classifier


	Brodatz Texture Dataset
	Problem Definition
	Experiment Setup
	New Texture Image Generation
	Region Labeling Hints

	Experiment Results
	Optimize Two Problems with Joint Objective Functions

	Conclusion

	Unsupervised Pixel Labeling Layer
	Introduction
	Approach
	Probability Distribution
	Correlation Relationships
	Loss Function Definition
	Uncertainty
	Sparsity
	Relationship Between Uncertainty and Sparsity
	Distinction
	Relationships of Distinction and Sparsity to Other Correlation Measures
	Final Loss Function


	Experimental Results
	Evaluation on Regularization Terms
	Comparison Between Sparsity and Distinction

	Conclusion and Discussion

	Conclusions and Future Work
	Extensions to Combine Features Across Scales
	Extension to Supervised Pixel/Region Labeling
	Conclusion

	BIBLIOGRAPHY

