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ABSTRACT

JUN JIA: Krylov Deferred Correction Methods For Differential Equations With
Algebraic Constraints

(Under the direction of Professor Jingfang Huang)

In this dissertation, we introduce a new class of spectral time stepping methods for

efficient and accurate solutions of ordinary differential equations (ODEs), differential

algebraic equations (DAEs), and partial differential equations (PDEs). The methods

are based on applying spectral deferred correction techniques as preconditioners to Pi-

card integral collocation formulations, least squares based orthogonal polynomial ap-

proximations are computed using Gaussian type quadratures, and spectral integration is

used instead of numerically unstable differentiation. For ODE problems, the resulting

Krylov deferred correction (KDC) methods solve the preconditioned nonlinear system us-

ing Newton-Krylov schemes such as Newton-GMRES method. For PDE systems, method

of lines transpose (MoLT ) couples the KDC techniques with fast elliptic equation solvers

based on integral equation formulations and fast algorithms. Preliminary numerical re-

sults show that the new methods are of arbitrary order of accuracy, extremely stable, and

very competitive with existing techniques, particularly when high precision is desired.
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Chapter 1

Introduction

In this dissertation, a new spectral time stepping strategy is developed for accurate

and efficient solutions of ordinary and partial differential equations with algebraic con-

straints. It couples spectral deferred correction (SDC) ideas, Newton-Krylov methods,

and integral equation formulation based fast elliptic equation solvers. Preliminary nu-

merical experiments show that the resulting numerical methods, including the Krylov

deferred correction methods for ordinary differential equations (ODEs) and differential

algebraic equations (DAEs), and the method of lines transpose (MoLT ) for partial differ-

ential equations (PDEs), can achieve an arbitrary order of accuracy and are competitive

with existing schemes.

This research is inspired by the following observations.

1.1 Stable and High Order Initial Value ODE and

DAE Solvers

In many respects, the construction of efficient and stable methods for solving initial

value problems governed by systems of ODEs and DAEs is considered a mature subject

[3, 13, 14, 25, 35, 36, 37, 48, 62]. Existing methods for such problems include the backward

differentiation formulas (BDF) based package DASSL developed by Petzold et al., which

is applicable to ODEs as well as DAEs of index 0 and 1 [13, 62]; and the Runge-Kutta



based RADAU developed by Hairer et al. which can be applied to ODEs and DAE

problems of index up to 3 [35, 37]. Detailed discussions of these available solvers as well

as a test set can be found in [1] and the references therein.

Although great progress has been made in the last century, the disadvantages of these

existing schemes are also becoming obvious. These include (a) the step-sizes of the solvers

are often constrained by the stability properties, in particular, for ODE systems derived

by discretizing PDEs using the method of lines (MoL) approach, unacceptably small

time steps may have to be used due to the Courant-Friedrichs-Lewy (CFL) condition or

stability issues; and (b) higher order (> 10) versions of existing ODE solvers either lack

desired stability properties or may experience efficiency problems.

Recently, Dutt et al.[21] proposed higher order and stable numerical schemes for ODE

initial value problems, which couple the Picard integral equation formulation, Gauss

quadrature, and deferred correction ideas. Numerical results show that the resulting

spectral deferred correction (SDC) methods can achieve very high order of accuracy

(> 40) and are very competitive with existing schemes for ODE initial value problems.

Instead of giving the details of the SDC strategy, which will be discussed in later chapters,

we note that although successful, numerical experiments also reveal that when the SDC

methods are applied to stiff ODE systems, order reduction is observed[51]; and when the

SDC ideas are extended to DAE problems, the methods may no longer converge.

One purpose of this dissertation is to study the mechanism for order reduction and

divergence, and search for possible remedies in order to develop stable, higher order and

efficient ODE and DAE initial value problem solvers.

1.2 Spectral Methods and Initial Value Problems

Spectral methods have been shown to be advantageous for many problems compared

with other techniques including the finite difference and finite element methods, especially

2



when higher order accuracy is required and the solution is “smooth.” Also, by using the

orthogonal “optimal” basis, much less computer storage is required [76, 72, 26, 56, 24, 12].

However, spectral methods are mainly developed for boundary value problems. In

particular, for time dependent PDE problems, there exist a class of methods in which

spectral techniques are only applied to the spatial direction, while the temporal direction

is solved by low-order time stepping schemes. There are certain circumstances under

which the solutions can be resolved by low-order methods in time but require higher

order approximations in space. For most problems, however, it may be beneficial to

apply spectral approximations in both directions. Unfortunately, as far as we know, no

spectral or pseudo-spectral methods have been implemented for initial value problems.

Spectral formulations for initial value problems do exist. In [34], it was shown that

when Gaussian nodes are used in the collocation formulation (which is also a Runge-

Kutta method), the method is super convergent (when p nodes are used, the method is

order 2p), symplectic (area preserving), symmetric (structure preserving), A-stable and

B-stable. Also, for fixed time step sizes, the numerical error decays exponentially fast as

a function of the number of terms p in the approximation, and hence “pseudo-spectral.”

Previous research shows that direct solution of such collocation formulations is extremely

inefficient for large p, and existing numerical implementations are limited to order less

than 10 or so.

In this dissertation, we couple the SDC ideas with Newton Krylov methods to improve

the efficiency when solving “pseudo-spectral” formulations. This strategy leads to a new

class of spectral methods for initial value problems.

3



1.3 Fast Elliptic Solvers, Method of Lines and Rothe’s

Method

Accurate and efficient numerical schemes for boundary value elliptic equations are an

active area of research. In the last twenty years, great progress has been made for ODE

boundary value problems and constant coefficient elliptic PDEs using integral equation

formulations and fast algorithms. In particular, robust, adaptive and extremely efficient

solvers exist for two-point boundary value ODEs of the form

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x)

as presented in 1997 by Greengard and Lee [52]; and fast multipole methods have been

developed for constant coefficient elliptic equations (see, e.g., [28, 18, 23, 29]). The details

of these methods will be discussed in the following chapters.

As for time dependent PDEs, two different sequential approximation approaches co-

exist for a long time in the numerical analysis community. The first approach is the

well-known method of lines (MoL) [68] which discretizes the spatial direction first using

finite difference, finite element or spectral methods, and the resulting system of ODEs

for the temporal direction is solved by well developed ODE initial value problem solvers.

The second approach, on the other hand, first discretizes the temporal direction, leading

to coupled elliptic equations at different time steps, which can be solved using stan-

dard finite element or finite volume techniques. The second strategy is less known and

sometimes referred to as Rothe’s method [65, 10, 49].

We want to mention that although the resulting algebraic systems may be identical

for both discretization strategies, especially when fixed time step sizes and time indepen-

dent spatial grids are used, yet their efficiency, accuracy, adaptive implementation (in

both time and space), and ease of programming are different. The MoL approach has

4



traditionally been the preferred method due to available adaptive and optimized ODE

initial value problem solvers. However, as pointed out in [10], adaptive mesh generation

(or regridding) is in general difficult in MoL. Also, as the PDE structure in space is

ignored by the ODE system, efficient elliptic equation solvers can not be easily adapted.

Rothe’s method, on the other hand, easily allows for adaptive grids when coupled with

finite element or finite volume type solvers. For an extended discussion of the MoL and

Rothe approach (for reaction-diffusion type equations) the interested reader is referred

to [20]. However, as the resulting equations after temporal discretization are coupled

at different time steps, the method might be very inefficient, especially in higher order

versions.

In this thesis, we study how Rothe’s method can be accelerated using KDC techniques.

In our scheme, we first discretize the temporal direction, and then apply the KDC ideas to

the coupled elliptic equation system so that each time step only requires the solution of a

decoupled elliptic boundary value problem. Finally and most importantly, instead of the

finite element/volume methods commonly used in Rothe’s method, the elliptic equations

are solved efficiently using integral equation methods accelerated by fast algorithms. This

new approach will be fully adaptive, high-order, and efficient. We refer to this technique

as method of lines transpose (MoLT ). As most problems of current interests have multiple

scales in both temporal and spatial directions. We believe the proposed MoLT can also

yield efficient and accurate solutions to multiscale problems.

1.4 Outline of Dissertation

This dissertation is organized as follows. In Chapter 2, several mathematical and

numerical preliminaries, including spectral deferred correction methods, Newton-Krylov

schemes, and fast elliptic equation solvers, are presented. These are the fundamental

building blocks for the construction of the new time stepping strategies. In Chapter 3,

5



we analyze the original spectral deferred correction methods using results from numerical

linear algebra and matrix theory, and show that the original SDC strategy is equivalent to

a Neumann series expansion for a special preconditioned system. We then briefly discuss

how Krylov subspace methods can be introduced to accelerate SDC methods for ODE

problems. Preliminary numerical results are presented to show the efficiency and accuracy

of the new methods for ODE problems. In Chapter 4, the new techniques are extended

to general DAE problems by introducing the details of the Krylov deferred correction

(KDC) methods. We show analytically and numerically that with the Krylov subspace

acceleration methods, the original SDC methods become convergent for DAE problems

and order reduction can be removed. The KDC technique is further extended in Chapter

5 for PDE problems; the resulting MoLTcouples existing fast elliptic equation solvers

with KDC technique. Numerical results show that MoLT is of arbitrary order in both

temporal and spatial directions. Finally, a brief summary of results and recommendations

are discussed in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, necessary building blocks are introduced to construct the Krylov

Deferred Correction (KDC) methods for ODE and DAE problems, and the method of

lines transpose (MoLT ) for time dependent PDE systems.

2.1 Spectral Deferred Correction Methods

The first building block we consider is the spectral deferred correction (SDC) tech-

nique first introduced by Dutt et. al. in 2000 [21]. It is designed for accurate and efficient

solutions of ordinary differential equation (ODE) initial value problems of the form

ϕ′(t) = F (t, ϕ(t)) t ∈ [0, T ] (2.1)

ϕ(0) = ϕ0 , (2.2)

where ϕ0, ϕ(t) ∈
�

N and F : � ×
�

N →
�

N .

The construction of efficient and stable methods for solving ODE initial value prob-

lems has been considered a mature subject and great progress has been made in the last

century. Existing methods include the backward differentiation formulas (BDF) based

package DASSL and the Runge-Kutta based RADAU. Detailed discussions of these avail-

able solvers as well as a test set can be found in [1] and the references therein. However

although successful, the disadvantages of existing schemes are also becoming obvious as



mentioned in Chapter 1. These include (a) the step-sizes of the solvers are often con-

strained by stability properties; and (b) higher order (> 10) versions of existing ODE

solvers either lack desired stability properties or are extremely complicated to solve, in

particular, as far as we know, no spectral or pseudo-spectral implementations are avail-

able for initial value problems.

In order to improve the accuracy and stability of existing time stepping schemes, in

2000 [21], by coupling (a) the classical defect and deferred correction methods [60, 80, 81];

(b) the Picard integral equation formulations; and (c) orthogonal polynomials and the

corresponding Gaussian quadratures, Dutt et al. [21] introduced the spectral deferred

correction (SDC) strategy for the construction of stable explicit and implicit methods

with extremely high order of accuracy. As this technique is not widely known, in the

following, we first summarize the basic ideas of the SDC technique, and then describe

the technical details in subsequent sections.

As with classical deferred and defect correction methods, a single time step of an

SDC method begins by first dividing the time step [tn, tn+1] into a set of intermediate

sub-steps defined by the points ~t = [t0, t1, · · · , tp] with tn = t0 < t1 < · · · < tp ≤ tn+1.

For simplicity, we assume tn = t0 = 0 in the following discussions. Next, a provisional ap-

proximation ~ϕ[0] = [ϕ[0](t0), ϕ
[0](t1), · · · , ϕ[0](tp)] is computed at the intermediate points

using a standard numerical method, e.g. the explicit Euler method for non-stiff problems

or the implicit Euler method for stiff problems [21]. Applying standard approximation

or interpolation theory, the continuous counterpart of ~ϕ[0] can be constructed and is rep-

resented as ϕ[0](t). Using ϕ[0](t), an equation for the error δ(t) = ϕ(t) − ϕ[0](t) is then

constructed. This correction equation for δ(t) can be approximated using a similar low

order method, and an improved numerical solution is constructed. This procedure can

then be repeated resulting in a sequence of approximate solutions.

To construct the correction equation, the classical deferred and defect correction

methods rely on differentiation of ϕ[0](t) to form an ODE for δ(t), where ϕ[0](t) is the

8



interpolating polynomial of ~ϕ[0]. On the other hand, SDC methods utilize the Picard

integral equation formulation of the ODE

ϕ(t) = ϕ0 +

∫ t

0

F (τ, ϕ(τ))dτ (2.3)

to construct a corresponding integral equation for δ(t). Specifically

δ(t) =

∫ t

0

[F (τ, ϕ[0](τ) + δ(τ)) − F (τ, ϕ[0](τ))] dτ + ε(t) (2.4)

where

ε(t) = ϕ0 +

∫ t

0

F (τ, ϕ[0](τ))dτ − ϕ[0](t). (2.5)

The discretizaton of these equations will be discussed in more detail in the following

section, but for now note that the discretization of ε(t) is simply a numerical integration.

It is for this reason that the points ~t which define the sub-steps in SDC methods are chosen

to be Gaussian quadrature nodes so the numerically stable spectral integration technique

can be applied [27]. The integral equation formulation for δ(t) in Eq. (2.4) coupled with

spectral integration rules allows SDC methods to overcome the loss of stability of classical

deferred/defect correction methods as the order of the method increases. For a detailed

discussion of the different choices of quadrature nodes see [51].

Deferred correction methods based on the Picard integral formulation and spectral

integration are of interest for several reasons, most notably because of the relative ease

with which one can theoretically construct methods with arbitrarily high order of ac-

curacy. Preliminary numerical tests presented in [21] suggest that SDC methods are

competitive with the best existing ODE initial value problem solvers, especially for stiff

problems or where high accuracy is required. Furthermore the stability regions of the

implicit methods are close to optimal and do not degrade with increased orders of ac-

curacy [51]. Semi-implicit and multi-implicit variations of SDC methods have also been

9



presented, which enable the construction of very high-order methods for equations with

both stiff and non-stiff components [11, 58, 59]. Also noted in these papers, however, is

the fact that when SDC methods are applied to very stiff equations, the effective order of

accuracy of the method is reduced for values of the time step above a certain threshold.

This type of order reduction, which is also present in many popular types of Runge-

Kutta methods [15, 19, 67], means that, although the methods are stable for larger time

steps, one must use a very small time step for the method to converge with full order.

To understand the order reduction and accelerate the convergence, in the following, we

present the technical details of the SDC methods.

2.1.1 Picard Integral Equation and Error Equation

Consider the Picard integral equation representation of the ODE initial value problem

given in Eq. (2.3). Suppose an approximate solution ϕ[0](t) to Eqs.(2.1-2.2) is given, and

define the error δ(t) as

δ(t) = ϕ(t) − ϕ[0](t). (2.6)

Substituting (2.6) into (2.3) yields

ϕ[0](t) + δ(t) = ϕ0 +

∫ t

0

F (τ, ϕ[0](τ) + δ(τ))dτ. (2.7)

To reduce notational clutter here and in the following the time dependence of the second

argument of F will be implicitly assumed, e.g. F (t, ϕ[0](t)) is written simply as F (t, ϕ[0]).

Now consider the residual function

ε(t) = ϕ0 +

∫ t

0

F (τ, ϕ[0])dτ − ϕ[0](t), (2.8)
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which simply gives the error in the Picard equation (2.3). Rearranging Eq. (2.7) and

using Eq. (2.8) gives a Picard-type integral equation for the error

δ(t) =

∫ t

0

[F (τ, ϕ[0] + δ) − F (τ, ϕ[0])] dτ + ε(t). (2.9)

Note that unlike the classical deferred or defect correction methods in [60, 80, 81], the

equation for δ(t) is not written here as an ODE.

2.1.2 Euler’s Methods on Gaussian Quadrature Nodes

Deferred correction methods proceed by iteratively solving the error equation (2.9)

using a low order method to improve the provisional solution ~ϕ[0]. To describe the time

stepping procedure, suppose as before that the time step interval [tn, tn+1] has been

subdivided using the points t0, t1, t2, · · · , tp such that

tn = t0 < t1 < t2 · · · < tp ≤ tn+1. (2.10)

Note that Eq. (2.9) gives the identity

δ(tm+1) = δ(tm) +

∫ tm+1

tm

[F (τ, ϕ[0] + δ) − F (τ, ϕ[0])] dτ + ε(tm+1) − ε(tm). (2.11)

Letting δm denote the numerical approximation to δ(tm) (and likewise for ϕ
[0]
m and εm), a

simple discretization of Eq. (2.11) similar to the explicit Euler (forward Euler) method

for ODEs is

δm+1 = δm + ∆tm
(
F (tm, ϕ

[0]
m + δm) − F (tm, ϕ

[0]
m )
)

+ εm+1 − εm, (2.12)
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where ∆tm = tm+1 − tm. Similarly, an implicit scheme for the solution based on the

backward Euler method is

δm+1 = δm + ∆tm

(
F (tm+1, ϕ

[0]
m+1 + δm+1) − F (tm+1, ϕ

[0]
m+1)

)
+ εm+1 − εm. (2.13)

Denoting the “low order” approximation of δ(t) by ~δ[1] = [δ1, δ2, · · · , δp], a refined solution

is given by ~ϕ[1] = ~ϕ[0] +~δ[1]. In order to complete the discretization, we must specify how

the terms εm are computed.

2.1.3 Spectral Integration Matrix

First notice that there are various ways to choose the points t0, t1, t2, · · · , tp to de-

fine the sub-steps in the SDC method. When Gaussian quadrature nodes are used,

{t1, · · · , tp} are interior points in [tn, tn+1] and the endpoints are not used. On the other

hand the Radau Ia quadrature nodes t0, t1, t2, · · · , tp use the left end point while the

Radau IIa nodes t1, t2, · · · , tp have tp = tn+1. Finally, the Lobatto quadrature rule re-

quires the use of both end points.

Using the Gaussian nodes as an example, suppose we are given the scalar function

values ~ϕ = {ϕ1, ϕ2, · · · , ϕp} at the nodes, then the Legendre polynomial expansion

Lp(~ϕ, t) =

p−1∑

k=0

ckLk(t)

can be constructed to approximate ~ϕ where the coefficients are computed using Gaussian

quadrature rules. This gives a numerically stable and efficient way to find the equivalent

interpolating polynomial of degree p− 1. Integrating this interpolating polynomial ana-

lytically from t0 to tm, a linear mapping Q is derived, which maps the function values ~ϕ
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to the integral of the interpolating polynomial

[~ϕ]m =

∫ tm

t0

Lp(~ϕ, τ)dτ.

This can be written in matrix form

Q~ϕ = ∆tS~ϕ, (2.14)

where S will be referred to as the integration matrix, and is independent of ∆t. Note

that in the more general case where ϕ(t) ∈
�

N , Eq. (2.14) must be interpreted as being

applied component-wise to ~ϕ, i.e. ~ϕ is a vector of length Np and

Q~ϕ = ∆t(Ip ⊗ S)~ϕ, (2.15)

where Ip is the identity matrix of size p×p. In the following, we use script font to denote

this tensor product, i.e. S denotes the Np × Np block diagonal matrix Ip ⊗ S. The

matrix S can be precomputed using Mathematica to any specified accuracy.

2.1.4 The Spectral Deferred Correction Algorithm

For traditional deferred/defect correction methods, there are two factors that prevent

the use of extremely high order methods: The first problem relates to the instability

of interpolation at equispaced nodes where the Runge phenomenon can be observed

when the number of interpolation points p is large. The second problem is that numeri-

cal differentiation of the original ODE formulation (Eqs. 2.1-2.2) introduces instabilities

[77]. Spectral deferred correction methods avoid both of these difficulties by introducing

Gaussian-type nodes and using the Picard integral equation. The procedure is explained

next.

Given an approximate solution ~ϕ[0] = [ϕ
[0]
1 , · · · , ϕ

[0]
p ], consider the error equation given
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by (2.9). Discretizing the integral in (2.8) using the spectral integration matrix yields

~ε = ~ϕ0 + ∆tS ~F − ~ϕ[0], (2.16)

where ~ε = [ε(t1), · · · , ε(tp)] is the residual at the intermediate points. Once the residual

is calculated, an approximation ~δ[1] to the error equation (2.9) is computed using p steps

of the Eq. (2.12) for non-stiff problems or Eq. (2.13) for stiff problems. The provisional

solution is then updated with ~ϕ[1] = ~ϕ[0] + ~δ[1], and this procedure can be repeated. The

algorithm for SDC is given by the following:

Pseudo-code: Spectral Deferred Correction Method

Comment [Compute initial approximation]

For non-stiff/stiff problems, use the forward/backward Euler method to

compute an approximate solution ϕ
[0]
m ≈ ϕ(tm) at the sub-steps

t1, . . . , tp on the interval [tn, tn+1].

Comment [Compute successive corrections.]

do j = 1,. . . ,J

1) Compute the approximate residual function ~ε using ~ϕ[j−1] and Eq. (2.16).

2a) For non-stiff problems, compute ~δ[j] using p steps of Eq. (2.12).

2b) For stiff problems, compute ~δ[j] using p steps of Eq. (2.13).

3) Update the approximate solution ~ϕ[j] = ~ϕ[j−1] + ~δ[j].

end do
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It can be shown that each correction procedure in this algorithm can improve the

order of the method by one, as long as such improvement has not gone beyond the

degree of the underlying interpolating polynomial and the quadrature rules [32, 39, 38].

For linear ODE problems, a proof will be provided in Sec. 3.2 utilizing the Neumann

series expansion.

2.2 Newton-Krylov Methods

In this section, we discuss the Newton-Krylov (inexact Newton) methods for the

efficient solutions of linear and nonlinear algebraic equations. This is the second building

block of the KDC and MoLTmethods.

2.2.1 Krylov Subspace Methods

Given a matrix A and a vector b, the Krylov subspace is defined as

Km(A, b) = span{b, Ab, · · · , Amb}.

Define rm = b−Axm, with x0 = 0, the generalized minimal residual (GMRES) algorithm

works by searching for the “best” solution of the equation Ax = b in the Krylov subspace

that either makes rm ⊥ Km or minimizes rm in L2 norm. In general, the convergence

rate of the algorithm depends on the eigenvalue distribution of the matrix A as well as

the initial guess x0. We cite the following pseudo-code from [66].

The Generalized Minimal Residual Method

Comment [Compute initial approximation]

Choose initial guess x0 and compute r0 = b − Ax0 and v1 = r0/‖r0‖.

Comment [Arnoldi’s method: Iterative Orthogonalization]
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do j = 1,. . . ,k

1) hi,j = (Avj , vi), i=1,2, . . . , j

2) v̂j+1 = Avj −
∑j

i=1 hi,jvi

3) hj+1,j = ‖v̂j+1‖

4) vj+1 = v̂j+1/hj+1,j

enddo

comment [Form the approximate solution]

Choose the approximate solution xk using Hessenberg matrix [hi,j] and the basis {vi}.

Note that the memory required by the GMRES method increases linearly with the

iteration number k, and the number of multiplications scales like 1
2
k2n where n is the

number of unknowns and the size of the matrix A is n × n. When k is chosen to be n,

a full orthogonalization cycle is implemented and in theory b − Axn should be close to

machine precision. Although accurate, this procedure is expensive and requires excessive

memory storage. For practical reasons, instead of a full orthogonalization procedure,

GMRES can be restarted every k0 steps where k0 < n is some fixed integer parameter.

The restarted version is often denoted as GMRES(k0). Interested readers are referred to

the original paper [66] for further discussions.

Because of the excessive work and storage requirements of GMRES, alternative Krylov

subspace methods have also been developed in the last century. Specifically, we want

to mention the biconjugate gradients stabilized (BiCGStab) method and transpose-free

quasi-minimal residual (TFQMR) algorithm for non-symmetric linear systems (See [7] for

a summary of existing Newton-Krylov methods). The storage required in both methods is
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independent of iteration number k, and the number of multiplications grows only linearly

as a function of k.

2.2.2 Newton-Krylov Methods

Consider a general nonlinear algebraic system M(x) = 0 with N equations and un-

knowns. Suppose an approximate solution x0 is known. Newton’s method can be used

to iteratively compute a sequence of quadratically convergent approximations (assuming

the Jacobian matrix JM is nonsingular at the solution)

xn+1 = xn − δx,

where δx is the solution of the linear equation

JM(xn)δx = b (2.17)

with b = M(xn) and JM(xn) the Jacobian matrix of M(x) at xn. As the matrix JM is

in general a dense matrix, computing the solution of this linear equation with Gaussian

elimination requires O(N 3) operations. Instead, the Krylov subspace methods can be

applied. Note that the iterations in Newton’s method and the Krylov subspace methods

can be intertwined, and the resulting methods are usually referred to as the Newton-

Krylov methods or the inexact Newton methods. The readers are referred to [46, 45, 66]

for detailed discussions.

Notice that for a general M(x) = 0, the number of Krylov subspace iterations may

be large and hence direct application of the Newton-Krylov methods may be inefficient.

However, it is noticed that for many special systems, the amount of work required by

the Krylov subspace methods to find the solution of Eq. (2.17) can be greatly reduced.

17



Consider the case

JM(xn) = ±I − C,

where most of the eigenvalues of C are clustered close to 0. Because of the rapid decay

of most eigenmodes in Cqb, the Krylov subspace methods converge extremely efficiently.

In summary, an efficient numerical implementation of a Newton-Krylov method de-

pends on two things:

(a) A formulation of the problem M(x) = 0 such that JM is close to the identity matrix

±I.

(b) An efficient procedure for computing the matrix vector product Cb (or equivalently

JMb).

For (a), the preconditioning strategy is generally applied and for (b) the forward difference

approximation, which will be briefly discussed next.

2.2.3 Preconditioning and Forward Difference Approximation

One common technique to improve the convergence of the Krylov subspace methods

is to apply a “preconditioner” to the original system so that the Jacobian matrix of

the new system is closer to the identity matrix. Traditionally, such preconditioners are

chosen as sparse matrices close to J−1
M [17]. Dense integral operators have also been used

as preconditioners (see e.g. [47]), which are efficiently applied to an arbitrary vector

using fast convolution algorithms such as the fast multipole method (FMM) [28]. One

of the main themes of this dissertation is that the SDC procedure in which lower-order

methods are used to produce a higher-order solution, is equivalent to using a lower-order

approximation process of a particular equation as a preconditioner for a higher-order

method. This presents a different way to understand the deferred correction methods

discussed in Sec. 2.1, and allows one to easily adapt existing Newton-Krylov methods to

accelerate the convergence of the SDC method as will be discussed later.
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In regards to the computation of the matrix vector product JMb, as the Jacobian

JM is not always easy to derive, a general forward difference approximation technique

can be adapted as in most Newton-Krylov solvers where for any vector v, JM(x)v is

approximated by

DhM(x : v) = (M(x + hv) −M(x)) /h

for some properly chosen parameter h (h may be complex). This difference approximation

technique as well as the choice of h have been carefully studied previously and the readers

are referred to [46] for details.

2.3 Fast Elliptic Equation Solvers

Accurate and efficient numerical schemes for boundary value elliptic equations are an

active area of research. One motivation behind the thrust of this research stems from the

recent success of integral equation methods (IEM) for ODE boundary value problems

and constant coefficient elliptic PDEs, and related matrix compression based fast direct

solvers. In the following, we discuss these fast solvers as our last building block. This

fundamental building block may be considered as the driving force for developing the

novel time stepping scheme for PDE problems where the fast integral equation methods

are applied to the elliptic equation systems in space.

2.3.1 ODE Two-Point Boundary Value Problems

We first consider the two-point boundary value ODEs of the form

u′′(x) + p(x)u′(x) + q(x)u(x) = f(x),

for which a robust, adaptive, and extremely efficient algorithm was presented in 1997 by

Greengard and Lee [52]. In their algorithm, the solution is first represented as u(x) =

19



uh(x) + ui(x) where ui is a simple linear function and uh satisfies the homogeneous

boundary conditions. More specifically, uh solves the equation

u′′h(x) + p(x)u′h(x) + q(x)uh(x) = f̃(x), (2.18)

where

f̃(x) ≡ f(x) − (u′′i (x) + p(x)u′i(x) + q(x)ui(x)).

Notice that the Green’s function for the operator on the left of Eq. (2.18) is not readily

available, therefore, we consider the Green’s function G0(x, t) for a simpler problem

φ′′(x) + q0(x)φ(x) = 0 (2.19)

for some given q0, and represent uh as the convolution of G0(x, t) with an unknown

density function σ(x) as

u(x) =

∫ c

a

G0(x, t) · σ(t)dt. (2.20)

A well-conditioned second kind integral equation is then derived for σ(x)

σ(x) + p̃(x)

∫ c

a

G1(x, t)σ(t)dt+ q̃(x)

∫ c

a

(12)G0(x, t)σ(t)dt = f̃(x), (2.21)

where p̃(x) = p(x), q̃(x) = q(x) − q0(x), and

G1(x, t) =
d

dx
G0(x, t). (2.22)

We want to mention that for general q0(x), the Green’s function usually takes the

form

G0(x, t) =





gl(x)gr(t)/s, if x ≤ t;

gl(t)gr(x)/s, if x ≥ t,
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where s is given by s = gl(x)g
′
r(x) − g′l(x)gr(x). In practice, we can easily construct the

Green’s functions for q0 = 0 or q0 = −1.

To facilitate the discussion, next we introduce the operator P : L2[a, c] → L2[a, c] as

Pη(x) = η(x) + p̃(x)

∫ c

a

G1(x, t)η(t)dt+ q̃(x)

∫ c

a

G0(x, t)η(t)dt. (2.23)

= η(x) + ψl(x)

∫ x

a

gl(t)η(t)dt+ ψr(x)

∫ c

x

gr(t)η(t)dt, (2.24)

where

ψl(x) = (p̃(x)g′r(x) + q(̃x)gr(x))/s, (2.25)

ψr(x) = (p̃(x)g′(x) + q(̃x)gl(x))/s. (2.26)

Thus, Eq. (2.18) becomes

Pσ = f̃ . (2.27)

As the linear system from the discretization of P is dense, finding σ(x) = P−1f̃(x)

directly is computationally unattractive. Instead, by studying the “restricted” operator

of P in the subinterval B = [bl, br] of [a, c], a divide and conquer strategy can be applied.

Note that when bl = a (or br = c), br(or bl) divides [a, c] into 2 subintervals. We denote

the restriction of η to B by ηB and the restriction of P to B by PB : L2(B) → L2(B).

More specifically, for x ∈ B,

PBηB(x) = ηB(x) + p̃(x)

∫ br

bl

G1(x, t)ηB(t)dt+ q̃(x)

∫ br

bl

G0(x, t)ηB(t)dt (2.28)

= ηB(x) + ψl(x)

∫ x

bl

gl(t)ηB(t)dt + ψr(x)

∫ br

x

gr(t)ηB(t)dt. (2.29)

Note that for x ∈ B, we also have

Pσ(x) = PBσB(x) − ψl(x)µ
B
l − ψr(x)µ

B
r = f̃(x), (2.30)
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where µB
l and µB

r are given by

µB
l = −

∫ bl

a

gl(t)σ(t)dt, (2.31)

µB
r = −

∫ c

br

gr(t)σ(t)dt. (2.32)

Rearrange the terms we have

σB(x) = P−1
B f̃(x) + µB

l P
−1
B ψl(x) + µB

r P
−1
B ψr(x). (2.33)

The computational cost of P−1
B is much less expensive compared to solving Eq. (2.27)

directly. We can therefore construct an efficient solver by dividing [a, c] into a large

number of subintervals B1, B2, . . . , BM and applying P−1
BM

locally to each subinterval.

We still need to figure out the coefficients µBi

l and µBi

r for each Bi, which can be done

by utilizing the following theorem.

Theorem 2.1 Suppose the subinterval B is subdivided into a left and a right subinterval,

denoted by D and E. Then the coefficients µD
l , µ

D
r , µ

D, µE
l , µ

E
r and µE of

PBηB = µB
l ψl + µB

r ψr + µB f̃ , (2.34)

PDηD = µD
l ψl + µD

r ψr + µDf̃ , (2.35)

PEηE = µE
l ψl + µE

r ψr + µE f̃ , (2.36)
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satisfy

µD = µE = µB

µD
l = µB

l

µE
r = UB

r




µD
r

µE
r


 =




1 αE
r

βD
r 1




−1


µB
r (1 − βE

r ) − µBδE
r

µB
l (1 − αD

l ) − µBδD
l


 ,

(2.37)

and

αB
l =

(1 − αE
l )(αD

l − βD
l α

E
r )

∆
+ αE

l ,

αB
r =

(1 − βD
r )(αE

r − αD
l α

E
r )

∆
+ αD

r ,

βB
l =

(1 − βE
r )(βD

l − βD
l α

E
l )

∆
+ βE

l ,

βB
r =

(1 − βD
r )(βE

r − βD
l α

E
r )

∆
+ βD

r ,

δB
l =

1 − αE
l

∆
δD
l + δE

l +
(αE

l − 1)αD
l

∆
δE
r ,

δB
r =

1 − βD
r

∆
δE
r + δD

r +
(βD

r − 1)αE
r

∆
δD
l ,

(2.38)

where ∆ = 1 − αE
r β

D
l and

αX
l ≡

∫

X

gl(t)P
−1
X ψl(t)dt, αX

r ≡

∫

X

gr(t)P
−1
X ψl(t)dt,

βX
l ≡

∫

X

gl(t)P
−1
X ψr(t)dt, βX

r ≡

∫

X

gr(t)P
−1
X ψr(t)dt,

δX
l ≡

∫

X

gl(t)P
−1
X f̃(t)dt, δX

r ≡

∫

X

gr(t)P
−1
X f̃(t)dt,

(2.39)

and X denote a subinterval of [a, c].

For completeness, the algorithm is briefly described as follows:

Pseudo-code: Direct Adaptive ODE Boundary Value Problem Solver
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Comment [Step 1: Generate subinterval binary tree]

Starting from the root interval [a, c], subdivide each interval into two subintervals

recursively until each leaf node is small enough for the restricted integral

equation to be computed directly and inexpensively. We refer to each

subinterval on the finest level as a leaf node.

Comment [Step 2: Solve the restricted integral equations on leaf nodes]

For each leaf node Bi, compute P−1
Bi
ψl, P

−1
Bi
ψr and P−1

Bi
f̃ , and generate α, β and δ

by definition (2.39).

Comment [Step 3: Compute α, β and δ]

α, β and δ are needed to compute µ. On the leaf nodes, these numbers are

available from step 2. For other levels, they are generated by (2.38).

Comment [Step 4: Compute µ]

Note that µ for the root interval is essentially µB
l = µB

r = 0 and µB = 1. Once

we have all the α, β and δ for each node available, we can generate µ for all

intervals from formula (2.37).

Comment [Step 5: Construct global solution]

Now that µ’s are available for all the leaf nodes, we can construct the global solution

by equation (2.33) and results from step 2.

We leave the implementation details of this method to [52], and conclude this section

by listing several remarkable features of the solver: (a) The method is direct and very

robust. The adaptive strategy requires no a priori information of the solution, and the

solution is resolved to a specified accuracy; (b) The method is extremely efficient. WithN

grid points in a given mesh structure, the number of operations is asymptotically optimal
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O(N) with a small prefactor; and more remarkably, (c) the adaptive code requires at most

about twice as much work as a non-adaptive code that is simply given the final resolved

mesh structure as input.

2.3.2 New Version Fast Multipole Methods

The algorithm in [52] has been extremely successful for ODE (1D) problems. However

in higher dimensions, although the local solutions can be obtained easily using integral

equation ideas, they can not be patched together as efficiently as in the ODE case.

In the last twenty years, alternative approaches in d (> 1) dimensions using IEM and

fast algorithms have been a hot research topic and great progress has been made. In

particular, we want to mention the new version of FMM accelerated fast IEM solver for

∇2u(x) − β2u(x) = f(x)

developed by Cheng et al. in 2006 [18]. This equation is often referred to as the Yukawa

equation, which comes from the fact that the free space Green’s function for this equation

is the Yukawa or screened Coloumb potential. β is often referred to as the screening

parameter and its inverse the electron Debye length. This PDE is important in steady

state physics and biochemistry.

For simplicity, assume that Dirichlet boundary conditions g(x) are imposed on the

boundary ∂Ω (Neumann or Robin boundary conditions are also possible). Similar to the

ODE case in [52], the solution is first decomposed into u = ũ+ ψ where ũ satisfies

∇2ũ(x) − β2ũ(x) = f(x) for x ∈ Ω, ũ(x) = g̃(x) for x ∈ ∂Ω,

and ψ(x) satisfies the homogeneous Yukawa equation

∇2ψ(x) − β2ψ(x) = 0 for x ∈ Ω, ψ(x) = g(x) − g̃(x) for x ∈ ∂Ω.
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The IEM strategy is to compute ũ through the convolution of f with the free space

Yukawa Green’s function G(x,y)

ũ(x) =

∫

Ω

G(x,y)f(y)dy.

Clearly ũ satisfies the original Yukawa equation, however since the free space Green’s

function is used in the convolution, the boundary values of ũ(x) will not be g(x) but rather

some function g̃(x). Next the equation for ψ is solved through the classical potential

theory approach. Namely

ψ(x) =

∫

∂Ω

∂G(x,y)

∂n̂y

σ(y)dy.

The boundary potential σ(y) is not known a priori, but satisfies the Fredholm integral

equation of second kind

1

2
σ(x) +

∫

∂Ω

∂G(x,y)

∂n̂
σ(y)dy = g(x) − g̃(x).

As this equation is well conditioned, it can be solved after a few iterations using Krylov

subspace based iterative methods such as GMRES.

Notice that the above solution process requires the explicit evaluation of a volume

convolution integral, and a solution of a well conditioned integral equation by iteration

in which the explicit evaluation of a boundary convolution integral is required. These

can be done efficiently using the new version of FMM, which has O(N) complexity with

an optimized prefactor as discussed in [18].

There are several attractive features of the fast algorithms accelerated IEM meth-

ods. First, integration based methods are almost trivially spatially adaptive, and using

higher-order quadrature rules does not significantly effect the complexity or efficiency of

the method unlike in finite difference methods where large stencils result. Second, the
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condition number of the boundary integral equation does not depend significantly on the

grid spacing, and the error in the numerical solution can be strictly controlled since it

depends on the error in the integration of the right-hand side. Hence extremely accurate

results are possible, even when the right-hand side is not smooth. Third, the complexity

of the boundary has only a small effect on the efficiency or accuracy of the method.

Fourth, since a large part of the computational work in the IEM is spatially local, the

IEM is highly parallelizable. In fairness, there are some disadvantages to this approach as

well, and the most significant is perhaps the complexity of the algorithms, which makes

it extremely difficult to implement, especially in three dimensions. Nevertheless, as the

following example shows, the efficiency and accuracy of this approach is impressive when

compared with a FFT-based solver in two dimensions. The integral equation solver uti-

lizes adaptive mesh refinement, as opposed to the uniform grid FFT solvers, so the total

time as well as the time per grid point for each method are reported. In Table 2.1, the

N Thwscrt E2 Rate
2562 = 65, 536 0.17 9.4 10−4 3.8 105

5122 = 262, 144 0.78 2.4 10−4 3.4 105

10242 = 1, 048, 576 4.0 5.9 10−5 2.6 105

20482 = 4, 194, 304 19.4 1.5 10−5 2.2 105

Table 2.1: Timing results for HWSCRT.

averaged results for the FFT based second-order HWSCRT [74, 73] are listed. Here, N

denotes the number of grid points, Thwscrt denotes the required solution time in seconds,

E2 denotes the relative L2 error of the computed solution, and Rate denotes the number

of grid points “processed” per second (N/Thwscrt). The analytical solution is given by

ψ(x) =
∑3

i=1 e
−α|x−xi|

2
where x1 = (.1, .1), x2 = (0, 0), x3 = (−.15, .1), and α = 250.

We choose β = 0.1, and the right hand side is found accordingly. The timing results

for the 4th order Yukawa equation solver are given in Table 2.2. Here, εFMM denotes

the requested precision from far-field interactions within the FMM, εRHS denotes the

requested relative precision in discretizing the right-hand side. Compared with Table
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N Tfmm εFMM εRHS E2 Rate
11,488 0.14 10−3 10−3 9.7 10−4 7.7 104

96,592 1.08 10−3 10−6 1.0 10−3 8.9 104

96,592 1.82 10−6 10−6 7.5 10−7 5.3 104

821,824 11.26 10−6 10−9 7.0 10−7 7.3 104

821,824 16.77 10−9 10−9 7.8 10−10 4.9 104

Table 2.2: Timing results for the 4th order fast Yukawa solver

2.1, the FMM solvers only require about 3 ∼ 6 times more CPU time per point than the

FFT based methods. More significantly, due to the grid adaptivity, the increase in cost

is more than made up for by an increase in accuracy, i.e. the FMM method provides

much greater accuracy for a comparable computational cost.

2.3.3 Fast Iterative and Direct Solvers

In recent years, the new version of FMM accelerated fast IEM solvers have been

developed for many linear constant coefficient elliptic equations, including the Laplace,

Poisson, Yukawa, Helmholtz, Stokes, and biharmonic equations. For variable coefficient

problems, however, results are still limited. In the following, we discuss recent progress

along this direction using iterative techniques and fast direct methods.

For iterative techniques, the fundamental idea is to use an integral equation operator

based on a given Green’s function to precondition the variable coefficient problem. In

1994, Strain proposed such a scheme for general elliptic equations with periodic boundary

conditions, in which the solution is represented as

u(x) =

∫

Ω

K(x,y)µ(y)dy

for some known Green’s function K(x,y) and unknown potential µ(y). Once µ is known,

u can be efficiently computed, hence the original problem of computing u(x) is changed

to that of computing µ(x). In [71], K is chosen to be the Green’s function for the
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“averaged” constant coefficient elliptic equation, and the procedure is performed in the

frequency domain. Analytical results show that the new equation system is Fredholm

second kind (as the Green’s function captures the analytical information of a “nearby”

problem), which can be solved by the Krylov iterative methods. However, as noted in our

numerical experiments, when the variable coefficients have different scales in space, the

(bounded) number of iterations in the Krylov subspace methods may be extremely large

and hence the resulting numerical approach is inefficient. Recently in [44], the integral

equation idea is coupled with domain decomposition schemes, in which the domain is

decomposed into regions on which the coefficients vary only marginally. In each region,

the solution can then be computed efficiently by the integral equation strategy similar

to [71]. To “glue” individual solutions, a strategy similar to the imposition of boundary

conditions using potential theory can be applied. The iterative methods have shown

great promise but are still being studied.

The second class of methods tries to directly solve the linear equations resulting

from the discretization of the integral equation formulation for the variable coefficient

problems, by utilizing the special structure of the matrices. The fundamental observation

is that many blocks in the matrix are “low separation rank,” hence the matrix can be

compressed and inverted recursively. This idea has already been successfully applied to

the boundary integral equations in 2005 by Martinsson and Rokhlin [55], and the resulting

algorithm is asymptotically O(N) where N is the number of nodes in the discretization.

Because the method is direct, it can be applied to relatively ill-conditioned systems. Once

the inversion is constructed, its application to multiple right hand sides, which often arise

in optimization problems, is extremely efficient.

Both iterative and direct methods are promising methods for variable coefficient

problems. As a preliminary comparison, numerical experiments in [55] show that in

two-dimensional space, a single FMM matrix vector multiply is about 15–20 times faster

than the direct matrix inversion. Thus, an iterative method is more efficient if it requires
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less than 15–20 iterations. However in the fast direct method, once the inversion is con-

structed, it can be applied to an additional right hand side in about one tenth of the

time required for a single FMM accelerated matrix vector multiply.
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Chapter 3

Understanding Spectral Deferred
Correction Methods

In this chapter1, by introducing numerical linear algebra and matrix theory, we study

the convergence mechanism of the SDC methods for ODE initial value problems, and try

to explain the order reduction phenomenon which happens when the SDC methods are

applied to stiff ODE initial value problems.

This chapter is organized as follows. In Sec. 3.1, we study the limit of the SDC meth-

ods. In Sec. 3.2, we rewrite the SDC methods in matrix form, and show that for linear

problems, the original SDC is equivalent to the preconditioned Neumann series expan-

sion. In Sec. 3.3, we describe how the convergence of the original SDC methods can be

easily accelerated for both linear and non-linear problems by introducing Krylov subspace

methods. In Sec. 3.4, we present the stability and accuracy analyses for the accelerated

SDC methods, and finally in Sec. 3.5, we numerically demonstrate the improved accuracy

and stability of the accelerated methods using several linear and nonlinear examples.

1Parts of this chapter are reprinted from Journal of Computational Physics, Volume 214, Issue 2, Jing-
fang Huang, Jun Jia and Michael Minion, “Accelerating the convergence of spectral deferred correction
methods”, Pages 633-656, Copyright 2006, with permission from Elsevier



3.1 Collocation Formulation: Limit of Iterations

The original spectral deferred correction (SDC) method described in previous chapter

can be considered as an iterative scheme. In this section, we consider the limit of the

SDC iterations.

For a fixed time step of size ∆t = tn+1 − tn, observe that if the correction iteration in

the SDC method converges, then

ε(t) = ϕ0 +

∫ t

0

F (τ, ϕ[0](τ))dτ − ϕ[0](t)

will approach zero at the Gaussian nodes ~t ∈ [tn, tn+1]. Hence the resulting limit solution

will satisfy the collocation (or pseudo-spectral) approximation of the Picard equation

ϕ(t) = ϕ0 +

∫ t

0

F (τ, ϕ(τ))dτ

given by

~ϕ = ~ϕ0 + ∆tS ~F , (3.1)

where

~F = [F (t0, ϕ(t0)), F (t1, ϕ(t1)), . . . F (tp, ϕ(tp))]
T ,

~ϕ0 is a vector of initial conditions

~ϕ0 = [ϕ(t0), ϕ(t0), . . . , ϕ(t0))]
T ,

and S is the spectral integration matrix [26, 27] corresponding to the Gaussian nodes ~t

discussed in section 2.1.3. Conditions specifying when the SDC method converges to this

limit for linear systems will be presented in section 3.2.

Since Eq. (3.1) couples the solution values at each of the sub-steps defined by ~t,

for ϕ(t) ∈
�

N and assuming p interior points are used in each time step, the total
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number of unknowns in the collocation formula is M = pN . Therefore a direct solution

of this equation using Newton’s method requires inverting a matrix of size M ×M at

each Newton iteration step. In contrast, each correction iteration of the SDC method

requires solving p linear or nonlinear systems with N unknowns. When the number of

iterative corrections is small, the SDC methods will be more efficient compared with

the direct Newton’s method approach, especially when the order p is high. Historically,

direct Newton’s method (or simplified Newton’s method) for the collocation formulation

in Eq. (3.1) has been limited to p < 10 or so in existing implementations.

3.2 Spectral Deferred Corrections in Matrix Form

To better understand the SDC methods, in this section, we consider the linear ODE

system given by

φ′(t) = F (t, ϕ(t)) = Lϕ(t) + f(t), (3.2)

where L is a constant matrix. Given an approximate solution ϕ[0](t), the discretized

collocation formulation for the error equation in (2.9) becomes

~δ − ∆tSL~δ = ~ϕ0 + ∆tS ~F − ~ϕ[0],

where L = Ip ⊗ L (see section 2.1.3). Denoting the right hand side by ~ε, the SDC

procedure iteratively approximates the solution of

(I − ∆tSL)~δ = ~ε (3.3)

using combination of the low order approximations ~δ[j] for j = 1, 2, · · · . The goal of

this section is to rewrite SDC methods in a matrix form and show that the original

SDC technique is equivalent to solving Eq. (3.3) using a preconditioned Neumann series
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expansion, i.e., ~δ =
∑∞

j=1
~δ[j] where ~δ[j+1] = C~δ[j] for an explicit matrix C. This analysis

proves the convergence of the SDC methods for linear problems, and also reveals how

the order reduction can happen for stiff ODE systems.

3.2.1 Euler’s Methods in Matrix Form

First, consider the forward Euler method in Eq. (2.12) which is appropriate for non-

stiff problems. For the linear correction Eq. (3.3), a sub-step is given by

δm+1 = δm + ∆tmLδm + (εm+1 − εm). (3.4)

Summing successive values of δ and using the fact that both the error δ(t) and the residual

ε(t) are zero at t0, some manipulation gives

δm+1 =
m∑

i=1

∆tiLδi + εm+1. (3.5)

Notice that
∑m

i=1 ∆tiLδi is the composite rectangular rule approximation (where the left

end point is used) of the integral

∫ ti+1

0

Lδ(s)ds.

Therefore, in matrix form, the forward Euler method is equivalent to solving

(
I − ∆tS̃L

)
~δ[1] = ~ε, (3.6)
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where ~δ[1] = [δ1, δ2, · · · δp]
T , ~ε = [ε1, ε2, · · · , εp]

T , and

∆tS̃ =




0 0 · · · 0 0

∆t1 0 · · · 0 0

∆t1 ∆t2 · · · 0 0

∆t1 ∆t2 · · · 0 0

· · · · · 0 0

∆t1 ∆t2 · · · ∆tp−1 0




. (3.7)

Notice that S̃ is a strictly lower triangular approximation of the spectral integration

matrix S. Similarly, for the implicit Euler method, the matrix S̃ takes the form

∆tS̃ =




∆t0 0 · · · 0 0

∆t0 ∆t1 · · · 0 0

∆t0 ∆t1 · · · 0 0

· · · · · 0 0

∆t0 ∆t1 · · · ∆tp−2 0

∆t0 ∆t1 · · · ∆tp−2 ∆tp−1




. (3.8)

This lower triangular matrix is also an approximation of the spectral integration matrix,

with non-zero diagonal entries.

To summarize, each correction in the SDC method may be considered as solving an

approximation of the collocation formulation of the correction equation (3.3), where the

spectral integration matrix is approximated by a lower triangular matrix. Clearly, the

solution given by

~δ[1] =
(
I − ∆tS̃L

)−1

~ε (3.9)

is a low order approximation of ~δ in Eq. (3.3).
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3.2.2 Neumann Series

Suppose after k corrections, we have a provisional approximation ~ϕ[k], the new residual

is then defined as

~ε = ~ϕ0 + ∆tSL~ϕ[k] − ~ϕ[k].

Applying Euler’s method (which is equivalent to Eq. (3.9)) and denoting the solution by

~δ[k+1], the relationship between ~ϕ[k+1] and ~ϕ[k] is

~ϕ[k+1] = ~ϕ[k] + ~δ[k+1]

= ~ϕ[k] +
(
I − ∆tS̃L

)−1

~ε

= ~ϕ[k] +
(
I − ∆tS̃L

)−1 (
~ϕ0 − (I − ∆tS̃L)~ϕ[k] + ∆t(S − S̃)L~ϕ[k]

)

=
(
I − ∆tS̃L

)−1

~ϕ0 + C~ϕ[k], (3.10)

where we define

C =
(
I − ∆tS̃L

)−1

∆t(S − S̃)L. (3.11)

It is also straightforward to derive the recursive relationship between ~δ[k+1] and ~δ[k]. First

note that

~ϕ[k+1] =
(
I − ∆tS̃L

)−1

~ϕ0 + C~ϕ[k],

and

~ϕ[k] =
(
I − ∆tS̃L

)−1

~ϕ0 + C~ϕ[k−1].

Subtracting the two identities yields

~δ[k+1] = C~δ[k]. (3.12)
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Assuming our initial provisional approximation is given by ~ϕ[0], then from the recursive

relation (3.12), the solution after k corrections is given by the Neumann series expansion:

~ϕ[k] = ~ϕ[0] +

k∑

m=1

Cm−1~δ[1]. (3.13)

We can also derive the Neumann series expansion by solving the error equation (3.3).

Multiplying both sides by
(
I − ∆tS̃L

)−1

, we have the preconditioned linear system

(
I − ∆tS̃L

)−1

(I − ∆tSL)~δ =
(
I − ∆tS̃L

)−1

~ε. (3.14)

Notice that the right hand side of (3.14) is ~δ[1] and the operator on the left is

(
I − ∆tS̃L

)−1

(I − ∆tSL) = (I − C) , (3.15)

where C is defined in Eq. (3.11). Hence, the preconditioned error equation is given by

the linear system

(I − C)~δ = ~δ[1].

As S̃ is an approximation of the matrix S, when ∆t is small, we expect the norm of

C to be small. If so, the solution to the linear system is given by the Neumann series

expansion

~δ = ~δ[1] + C~δ[1] + C2~δ[1] + · · · . (3.16)

This is clearly equivalent to Eq. (3.13).

There are two immediate consequences of the Neumann series expansion:

Corollary 3.1 For linear problems, given a sufficiently small fixed time-step ∆t, the

correction iteration in the SDC method using either of the first order correction procedures

described by Eq.(2.12) or (2.13) is convergent.

Corollary 3.2 For linear problems, given a sufficiently small fixed time-step ∆t, each
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iteration of the correction equation in the SDC method using either of the first order

correction procedures described by Eq.(2.12) or (2.13) increases the formal order of the

method by one order of ∆t, provided the order is not greater than that of the underlying

quadrature rule.

The proof of both corollaries follows directly from Eq. (3.16) and the fact that C in

Eq. (3.11) is O(∆t).

3.3 Accelerating SDC Methods

In previous section, we showed that for linear problems, an SDC method may be

considered as an iteration scheme for solving the collocation formulation (3.3) using a

preconditioned Neumann series expansion. In this section, we show how this fact can be

used to accelerate the convergence of the original SDC method.

3.3.1 GMRES Acceleration for Linear Problems

For linear problems, consider the preconditioned linear system in Eq. (3.14). The

original SDC approximates this equation using a Neumann series expansion in the matrix

C defined in Eq. (3.11) . Since the matrix C contains a factor of ∆t, if ∆t is sufficiently

small (and hence the expansion is convergent), each additional term in the expansion

produces an additional order of accuracy in the approximation. Note however that when

the norm of any eigenvalue of C is greater than 1, the series expansion is divergent. Also,

if the norm is smaller but close to 1, the series expansion will still converge, but will do

so slowly. The latter case is the cause of order reduction for stiff problems which will be

further analyzed numerically in Sec. 3.5.1.

It is straightforward to apply Krylov subspace methods such as GMRES or GMRES(k0)

to the linear system in Eq. (3.14) and to hence find the optimal solution in the Krylov

subspace. Using the GMRES as an example, note that each GMRES iteration requires a
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matrix vector product be computed. In the present context, this requires the evaluation

of
(
I − ∆tS̃L

)−1

(I − ∆tSL)~x0

for any given ~x0. However, applying this operator is equivalent to time marching with

either the forward or backward Euler method for the correction equation. The full algo-

rithm is as follows:

Pseudo-code: Matrix Vector Product Algorithm

Comment [Suppose input ~x0 is given.]

1) Calculate ~ε = (I − ∆tSL)~x0.

2a) Use the forward Euler method and solve
(
I − ∆tS̃L

)
~y = ~ε

where ∆tS̃ is defined in Eq. (3.7).

2b) Use the backward Euler method and solve
(
I − ∆tS̃L

)
~y = ~ε

where ∆tS̃ is defined in Eq. (3.8).

3) Output ~y.

In this algorithm, the first step is equivalent to evaluating the residual function, and

the second step is equivalent to time-stepping the correction equation. Therefore, the

amount of work for each matrix vector product in the GMRES accelerated SDC methods

is the same as one correction in the original SDC method. However, depending on k0,

GMRES accelerated SDC requires additional work to search the optimal solution in

the Krylov subspace. Notice that no additional function evaluations are required

in this searching process, and so we are expecting minimal efficiency loss due to the

use of GMRES. Additional storage is necessary, however, and this could prove to be
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prohibitive when applying the GMRES acceleration to PDE problems, and alternative

Krylov subspace methods may have to be used as will be discussed in later chapters.

3.3.2 Nonlinear Problems

The GMRES accelerated SDC methods can be applied to nonlinear problems as

well. This requires the coupling of Newton iterations with the GMRES accelerated SDC

technique for linear problems. In our following discussion in this chapter, we use a

“linearly implicit” formulation as described in [21]. In this formulation, notice that for

small δ(t), the error equation (2.9) can be approximated by

δ(t) =

∫ t

a

Jϕ[0](s, ϕ[0])δ(s) ds+ ε(t) +O(||δ||2), (3.17)

where Jϕ[0] is the Jacobian matrix of the function F (t, ϕ[0]) defined as

Jϕ[0](t, ϕ[0]) =
∂F (t, ϕ[0])

∂ϕ
.

Discretizing Eq. (3.17) yields the linear system

(I − ∆tSJ )~δ = ~ε, (3.18)

where J is the tensor form of J~ϕ[0] which represents the Jacobian matrix at each Gaussian

node. Since this equation is of the same type as Eq. (3.9), it can be solved using the

GMRES accelerated SDC methods for linear problems discussed in the previous section.

The Jacobian matrix J is updated after the linear problem is solved to a prescribed

precision tolG, as described by the following:

Pseudo-code: Nonlinear GMRES accelerated SDC Method

Comment [Compute initial approximation]
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Use the Euler method to compute an approximate solution ~ϕ[0].

Comment [Compute successive corrections.]

while residual ‖~ε‖ > tol do

1) Compute the Jacobian matrix J~ϕ[0] .

2) Use GMRES accelerated SDC for linear problems to solve Eq. (3.18) to tolerance tolG.

3) Update the approximate solution ~ϕ[0] = ~ϕ[0] + ~δ.

end do

Note that a generalization to this linear implicit algorithm (which couples Newton

iterations with GMRES accelerated SDC) is to implement the method under the “inexact

Newton Methods” framework [46]. This will be discussed in the more general case of

differential algebraic equations in next chapter.

3.4 Stability and Accuracy Analysis

Consider the model problem

ϕ′(t) = λ · ϕ(t) t ∈ [0, 1]

ϕ(0) = 1 , (3.19)

following the terminology in [21], the amplification factor, Am(λ), for λ ∈
�

is defined

by the formula

Am(λ) = ϕ̃(1) (3.20)
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where ϕ̃(1) is the numerical solution at t = 1 using ∆t = 1. If, for a given value of λ,

| Am(λ) |≤ 1, (3.21)

then the numerical method is said to be stable for that value of λ. When a numerical

method is applied to the model problem, the stability region is defined to be the subset

of the complex plane consisting of all λ such that the amplification factor defined in

Eq. (3.20) satisfies |Am(λ)| ≤ 1.

The most interesting stability diagrams are generated by the GMRES accelerated

SDC schemes based on the forward (explicit) Euler method. In figure 3.1, we show the

stability regions for the restarted GMRES(k0) using 4 Radau IIa nodes. For k0 = 0,

this gives the original SDC, and when k0 = 4, GMRES(k0) is equivalent to the full

GMRES which solves the collocation formulation. It can be seen that the stability

region of the GMRES accelerated SDC method is much larger than that of the original

SDC method. This is not surprising if one considers the preconditioned system (3.14):

Even though the explicit Euler method is a bad preconditioner for λ with large negative

real part, the GMRES procedure can still converge to the collocation solution as long

as the preconditioning process does not produce numerical overflow. This suggests the

possibility of using explicit GMRES accelerated SDC methods for mildly stiff problems.

However, we want to mention that when more substeps are used, the explicit Euler based

preconditioner is more likely to encounter overflow problems. Hence the stability region

will be much smaller. This can be seen in figure 3.2 where 10 Radau IIa nodes are used.

For implicit GMRES accelerated SDC methods (using the backward Euler scheme)

where the preconditioner is well conditioned, when the full GMRES is performed, the

stability regions can be considered the same as those of the corresponding collocation

method. A-stability of these methods can be proven in some cases (all collocation meth-

ods using the Gaussian points are A-stable), and appears to be true for many others
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Figure 3.1: Stability region of GMRES(k0), 4 Radau IIa nodes
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Figure 3.2: Stability region of GMRES(k0), 10 Radau IIa nodes
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based on numerical results [8]. Our numerical results also show that all the implicit

GMRES accelerated SDC methods using Radau IIa nodes (up to machine precision) are

A-stable. Further stability and convergence analysis for the GMRES accelerated SDC

methods are still being pursued, including the B-stability and B-convergence.

For the original SDC methods, recently, Hagstrom and Zhou showed that when p

Gauss nodes are used, after 2p corrections, the order of the method is 2p [32]. This result

can be generalized to the GMRES accelerated SDC methods which solve the collocation

formulation as shown by the following theorem. Notice that when GMRES is applied, at

most p corrections are necessary for linear scalar problems, compared with 2p in [32].

Theorem 3.1 Using p Gauss nodes, the collocation method which solves Eq. (3.1) has

order 2p.

Proof: The proof follows closely that of Thm. 1.5 in [34]. Notice that the collocation

solution to Eq. (3.1) at tn+1 is derived by spectral integration, which is equivalent to

evaluating at tn+1 the degree p polynomial P (t) obtained by integrating the degree p− 1

interpolating polynomial Lp(~F , τ) where ~F = [F (t1, ϕ1), . . . F (tp, ϕp)]
T , i.e.,

P (t) = ϕ0 +

∫ t

t0

Lp(~F , τ)dτ.

For this polynomial P (t) it is straightforward to show:

1. P (t0) = ϕ0.

2. P ′(ti) = F (ti, ϕi) at all Gauss nodes (by the definition of P (t)).

3. P (ti) = ϕi for i = 1, · · · , p (from the collocation formulation).

Therefore, for tn < t < tn+1, the polynomial P (t) satisfies

P ′(t) = F (t, P (t)) + σ(t),
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where σ(t) = P ′(t) − F (t, P (t)) and satisfies σ(ti) = 0 at the Gauss nodes. The error

P (t) − ϕ(t) then satisfies

P ′(t) − ϕ′(t) = F (t, P (t)) − F (t, ϕ(t)) + σ(t).

Constructing the Taylor expansion of F (t, P (t)) at F (t, ϕ(t)) yields

P ′(t) − ϕ′(t) =
∂F

∂ϕ
(t, ϕ(t)) (P (t) − ϕ(t)) + σ(t) +O(‖P (t)− ϕ(t)‖2).

As P (t0)− ϕ(t0) = 0, the solution to this equation is given by the variation of constants

formula (see [36])

P (tn+1) − ϕ(tn+1) =

∫ tn+1

t0

R(tn+1, τ)
(
σ(τ) +O(‖P (τ) − ϕ(τ)‖2)

)
dτ,

where R(t, τ) is the Green’s function of the corresponding homogeneous differential equa-

tion and is smooth for τ < t. Applying the theorem that the local truncation error

P (t) − ϕ(t) is at least O (∆tp+1) (see e.g., page 29 in [34]), we can neglect the term

O(‖P (t) − ϕ(t)‖2) which is at least O (∆t2p+2) and derive

P (tn+1) − ϕ(tn+1) =

∫ tn+1

t0

R(tn+1, τ)σ(τ)dτ +O
(
∆t2p+2

)
.

Since Gauss quadrature is applied to the integral and σ(ti) = 0 at the Gauss nodes,

the collocation solution P (t) has the same order as the underlying quadrature formula.

When Gauss-Legendre nodes are used, the order of the local truncation error is therefore

2p+1. The same proof can be applied to show that when Radau IIa nodes are used, the

local truncation error is O(∆t2p).
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3.5 Numerical Experiments

In this section, we show some preliminary numerical results for both linear and non-

linear problems. Depending on the stiffness of the problem, we present results for both

the explicit and implicit GMRES accelerated SDC methods.

3.5.1 The Cosine Problem

For the first numerical example, define p(t) = cos(t) and consider

ϕ′(t) = p′(t) −
1

ε
(ϕ(t) − p(t)), t ∈ [0, tfinal],

ϕ(0) = p(0).

The exact solution is clearly ϕ(t) = p(t). Notice that when ε is small, this problem is

stiff, however, the solution itself is smooth and independent of ε.

For the first example, we set ε = 0.02 and ∆t = 1. For each time step, we use 12

Radau IIa nodes. For the time-stepping we use the explicit Euler method in Eq. (2.12).

In Table 3.1, we show the numerical error after one step (∆t = tfinal = 1) for different

GMRES(k0). For k0 = 0, the method is the original SDC. Also, for each step, we fix the

number of explicit Euler corrections to 12. The total number of function evaluations is

therefore fixed to 12 × 12.

k0 0 1 2 3 4 6 12
error 4.2e+57 4.6e-1 3.8e-3 2.1e-3 9.2e-4 1.7e-4 3.6e-13

Table 3.1: Errors versus k0 for the Cosine Problem for the explicit GMRES accelerated
SDC method.

These results are consistent with the stability analysis in Sec. 3.4. Clearly, the GM-

RES accelerated SDC methods give better numerical results even though the original

SDC method is unstable. Also, for the restarted GMRES(k0), keeping more data in
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memory (larger k0) reduces the error. The full orthogonalization process (k0 = 12, the

same as the number of unknowns) returns converged numerical results but loses a few

digits in accuracy due to the fact that the forward Euler predictor is actually unstable

here (see also Fig. 3.3).

Next, consider the case ε = 10−6. As the problem is very stiff, the implicit GMRES

accelerated SDC method is used. Note that for this example, the original SDC method

is stable. As in the explicit examples, the results shown in Table 3.2 demonstrate that

increasing k0 reduces the error and residual (defined as b−Ax when solving Ax = b) and

that both go to machine precision with the full GMRES.

k0 0 1 2 3 4 6 12
error 1.4e-4 3.6e-4 1.6e-4 5.5e-5 3.3e-5 1.2e-5 4.4e-16

residual 2.3e-4 2.9e-4 1.6e-4 8.1e-5 4.8e-5 1.6e-5 2.8e-16

Table 3.2: Errors and residuals versus k0 for the Cosine Problem for the implicit GMRES
accelerated SDC method.

Note that in both the explicit and implicit examples, the error first decays slowly as

a function of k0, and then suddenly decreases to close to machine precision once k0 is

the same as the number of nodes p. The convergence of the GMRES procedure depends

in general on the distribution of the eigenvalues of the matrix being considered. In the

present context, the eigenvalues of the matrix C defined in Eq. (3.11) are of interest, and

these in turn depend on the matrix S − S̃. The eigenvalues of C for both the explicit

and implicit cases above are shown in Fig. 3.3. The eigenvalues in the implicit case are

smaller by about four orders of magnitude than in the explicit case, but in neither case

are the eigenvalues clustered about a single point.

Order Reduction

In [51], when the original SDC method is applied to stiff problems and the number

of corrections for each step is fixed, the effective order of accuracy is reduced for values
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Figure 3.3: Eigenvalue distribution of C for both the implicit and explicit method. Note that
the axis in the right panel are scaled by 104.
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Figure 3.4: Order reduction: the original SDC and the GMRES accelerated SDC.

of the time step size in a certain range. This type of order reduction is also present

in many popular types of Runge-Kutta methods [15, 19, 67]. The implication of order

reduction is that, although the methods are stable for larger time steps, one must use

a very small time step, or increase the number of SDC corrections for the method to

converge with full order. However, with the GMRES accelerated SDC methods, when full

orthogonalization is used, order reduction is no longer observed. In Fig. 3.4, convergence

results are presented for both the original SDC and the new implicit GMRES accelerated

SDC methods for different ε and step size selections. In the calculation, 10 Radau IIa

nodes are used, and 10 iterations are performed. The order reduction phenomenon can

be easily observed when ε is small (curves on the left). The plots also indicate the

benefit in terms of computational cost the GMRES acceleration provides. For example,

when ε = 10−5, in order to have 13 digits of accuracy, the original SDC requires a

step size of approximately 10−5. For the GMRES accelerated SDC method with full

orthogonalization, the necessary step size is approximately 0.1, or 4 orders of magnitude

greater.
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3.5.2 The Linear Multiple Mode Problem

As mentioned above, the convergence of a GMRES accelerated SDC method will

depend on the eigenvalues of the matrix C in Eq. (3.11), which depend also on the

eigenvalues of the linear operator L. Hence in our second set of tests, we study an ODE

system similar to the cosine problem in which we can specify the distribution of the

eigenvalues. When GMRES is applied to the original SDC, it is usually expensive to

use the full orthogonalization process since it would require k0 = pN iterations for a

system of N ODEs using p nodes. This increases both the memory required and the

amount of work performed. Therefore a natural question is, given some information on

the distribution of the eigenvalues, can we determine the “optimal” number k0? The

following numerical experiments are intended to provide some basic guidelines.

The problem studied in this example is

ȳ′(t) = p̄′(t) − B(ȳ(t) − p̄(t))

ȳ(0) = p̄(0)

where ȳ(t) and p̄(t) are vectors of dimension N . The exact solution is again ȳ(t) = p̄(t).

The matrix B is constructed by

B = UT ΛU,

where U is a randomly generated orthogonal matrix, and Λ is a diagonal matrix whose

diagonal entries {λi}N
i=1 are all positive. For p̄(t), we choose the ith component as cos(t+

αi) with phase parameter αi = 2πi/N .

In our first experiment, we set the dimension of the system to 10, and use 10 Radau

IIa nodes in the simulation. We use ∆t = 0.1 and study one time step (i.e. tfinal = ∆t).

In the left of Fig. 3.5, we set λ1 = 107, and all other λi to 1. It can be seen that when

k0 ≈ 12, the residual converges to machine precision in about 25 iterations. Notice that
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Figure 3.5: Comparison of errors for different k0

10 Radau IIa nodes resolve the solution to 14 digits, therefore the residual is equivalent

to the error (up to a constant factor). In the right panel, results are shown for the case

when two eigenvalues are 107, two are 104, and the rest are 1. In this case, more iterations

are required to reduce the residual to machine precision, and it requires a slightly higher

k0 of approximately 15 to yield the best convergence results (i.e. results for k0 = 15, are

almost identical to those using larger k0). However, these values of k0 are much smaller

compared with the full GMRES which requires k0 = 100. Since the original SDC method

would require ten iterations of the correction equation, in this case, there is a factor of 4

increase in the number of iterations for GMRES accelerated SDC method, however, this

results in a reduction in the error of approximately 10 orders of magnitude.

In our second experiment, we consider the case where N = 100 and the log10 of the

eigenvalues are uniformly distributed on [0, 7]. For 10 Radau IIa nodes, numerical results

for different k0 are shown in Fig. 3.6. In this example, convergence profiles for k0 > 10

are very similar. Notice that the full GMRES requires k0 = 1000, hence only a small

fraction of the full method is required for machine precision. At present, the optimal

strategy for picking k0 for a given problem is not completely understood, although these

experiments suggest that a successful strategy must depend on the time step, the size
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Figure 3.6: Comparison of errors for different k0

of the system, the distribution of the eigenvalues, and of course any memory restrictions

based on the problem size. We are currently investigating strategies for choosing k0 in

the broader context of step size selection.

3.5.3 The Van der Pol Oscillator

In our third example, we consider the nonlinear ODE initial value problem which

describes the behavior of vacuum tube circuits. It was proposed by B. Van der Pol in

the 1920’s, and is often referred to as the Van der Pol oscillator. As a first order ODE

system, the problem takes the form





y′1(t) = y2(t),

y′2(t) = (1 − y2
1(t)y2(t) − y1(t)) /ε

(3.22)

where the initial values are given by [y(0), y′(0)] = [2,−0.6666654321121172]. This is

a stiff system when ε is small. For this nonlinear problem, we use the “linear implicit”

GMRES accelerated SDC methods discussed in Sec. 3.3, and choose the following strategy

in the implementation: GMRES(k0) is applied to the linearized system until the residual

b − Ax is reduced by a factor of tolG; once this is done, we update the Jacobian matrix
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Figure 3.7: Comparison of different k0 for the Van der Pol problem, explicit method

and restart GMRES(k0).

As our first experiment, we set ε = 10−3, and use ∆t = 0.001. We apply the explicit

GMRES accelerated SDC method, and in Fig. 3.7, we show how the residual decays

(as the analytical solution is not readily available) for different k0 when tolG = 0.01

(left) and tolG = 0.1 (right). Here, the residual is defined as the error ‖b − Ax‖ for the

linearized system in Eq. (3.18). It can be seen that the GMRES accelerated SDC method

converges quickly to the solution of the collocation formulation. This is consistent with

the stability analysis in Sec. 3.4 and the linear cosine test problems in Sec. 3.5.1. Notice

that for this problem, the original SDC method is divergent (not shown on plot), and

GMRES(1) converges very slowly.

Because of the nonlinearity of the problem, the convergence behavior of the GMRES

accelerated SDC method also depends on tolG. The two panels in Fig. 3.7 compare

convergence for tolG = 0.01 and tolG = 0.1. In the left panel, it appears that using

k0 = 10 is sufficient for achieving the best convergence results since the convergence for

k0 = 15 is nearly identical. In the right panel, convergence for k0 = 5 is the same as

for k0 = 10 and k0 = 15, although the overall number of iterations required to achieve

a specified error tolerance increases slightly compared to tolG = 0.01. Determining the
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Figure 3.8: Comparison of different k0 for the very stiff Van der Pol problem with implicit
method.

“optimal” choice of tolG or an adaptive strategy for choosing tolG is an open issue.

Next we apply the implicit GMRES accelerated SDC method to the very stiff case

with ε = 10−8 and ∆t = 0.5. The results are shown in Fig. 3.8 for different choices of

k0 and tolG = 0.1. In all cases, the GMRES accelerated SDC methods converge more

rapidly to the collocation solution than the original SDC method.

It is possible to apply a different numerical method for the time marching of the cor-

rection equation. In the above examples, either the explicit or implicit Euler method is

used for the correction equation. It is reasonable to expect that the use of a higher-order

numerical method for the time marching of the correction equation would result in a

method which requires fewer iterations of the correction equation to converge to a speci-

fied tolerance. In the linear case, this is equivalent to choosing a different preconditioner

for the Neumann series expansion. We investigate this idea by repeating the above nu-

merical example using the trapezoid rule. The results are compared with those from the

implicit Euler method in Fig. 3.9 for k0 = 1, 2 and 10. From this figure, we can see that

using larger k0 again improves the numerical convergence in both cases. However, when

k0 = 10, the trapezoid rule results are not significantly better than those computed with

the first-order method. Hence, at least for this limited experiment, using a higher-order
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marching method does not seem to have a significant effect on the convergence when the

GMRES acceleration procedure is used. (See also [38].)

3.5.4 The Nonlinear Multi-mode Problem

In this example, we study a nonlinear generalization of the multi-mode example in

Sec. 3.5.2. The problem is given by a system of N nonlinear equations





y′i(t) = p′i(t) − λiyi+1(t)(yi(t) − pi(t)) 1 < i < N − 1,

y′N(t) = p′N(t) − λi(yi(t) − pi(t)) i = N.

The analytical solution is again ȳ(t) = p̄(t) where the ith component of p̄(t) is given by

pi(t) = 2 + cos(t+αi) with phase parameter αi = 2πi/N . In our first experiment, we set

N = 7 and the eigenvalues are chosen as [108, 108, 1, 1, 1, 1, 1]. In the left of Fig. 3.10, as

in the first linear multi-mode test, we show how the residual decays in one time step for

different k0 where tolG = 10−1. In the simulation, we use the implicit GMRES accelerated

SDC method with p = 10 Radau IIa nodes and ∆t is chosen to be 0.3. It can be seen that

the linear implicit GMRES accelerated SDC greatly improves the convergence of the SDC

procedure. Also, when k0 > p, the convergence of the method is very satisfactory. In our
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Figure 3.10: Nonlinear multi-mode convergence

second experiment, we choose the eigenvalues as [108, 108, 105, 105, 1, 1, 1] so that there are

two eigenvalue cluster points away from 1 as in the second linear multi-mode example.

The right panel of Fig. 3.10 shows that somewhat more corrections are required for

convergence in this case; however, the minimum k0 required for reasonable performance

does not increase over the case with only one cluster. In both cases, k0 = 5 now gives

convergence behavior very similar to using larger k0.

3.5.5 The Ring Modulator Problem

In our last example, we consider a stiff nonlinear ODE system of 15 equations. The

problem originates from electrical circuit analysis. Specifically, it describes the behavior

of the ring modulator [1], and takes the form

d~y

dt
= ~f(t, ~y), ~y = ~y0,

with

~y ∈ � 15, 0 ≤ t ≤ 10−5.
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In this equation, the function ~f is defined by

~f(t, ~y) =




C−1(y8 − 0.5y10 + 0.5y11 + y14 −R−1y1)

C−1(y9 − 0.5y12 + 0.5y13 + y15 −R−1y2)

C−1
s (y10 − q(UD1) + q(UD4))

−C−1
s (y11 − q(UD2) + q(UD3))

C−1
s (y12 + q(UD1) − q(UD3))

−C−1
s (y13 + q(UD2) − q(UD4))

C−1
p (−R−1

p y7 + q(UD1) + q(UD2) − q(UD3) − q(UD4))

−L−1
h y1

−L−1
h y2

L−1
s2 (0.5y1 − y3 − Rg2y10)

−L−1
s3 (0.5y1 − y4 +Rg3y11)

L−1
s2 (0.5y2 − y5 − Rg2y12)

−L−1
s3 (0.5y2 − y6 +Rg3y13)

L−1
s1 (−y1 + Uin1(t) − (Ri +Rg4)y14)

L−1
s1 (−y2 − (Rc +Rg1)y15)




.

The auxiliary functions UD1, UD2, UD3, UD4, q, Uin1 and Uin2 are given by

UD1 = y3 − y5 − y7 − Uin2(t),

UD2 = −y4 + y6 − y7 − Uin2(t),

UD3 = y4 + y5 − y7 + Uin2(t),

UD4 = −y3 − y6 + y7 + Uin2(t),

q(U) = γ(eδU − 1),

Uin1(t) = 0.5 sin(2000πt),

Uin2(t) = 2 sin(2000πt).

The values of the parameters are
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C = 1.6 · 10−8

Cs = 2 · 10−12

Cp = 10−8

Lh = 4.45

Ls1 = 0.002

Ls2 = 5 · 10−4

Ls3 = 5 · 10−4

γ = 40.67286402 · 10−9

R = 25000

Ri = 50

Rp = 50

Lc = 600

Rg1 = 36.3

Rg2 = 17.3

Rg3 = 17.3

δ = 17.7493332

and the initial value ~y0 is given by

~y0 = ~0.

In the simulation, we use the implicit GMRES accelerated SDC method with p = 7

Radau IIa nodes. We set tolG = 0.1, k0 = p + 1, and tfinal = 10−5. Our uniform step

GMRES accelerated SDC method is then compared with available adaptive ODE pack-

ages described in [1] and the results are shown in table 3.3. In the table, the parameters

rtol, atol and h0 for each method are chosen experimentally to produce a numerical so-

lution with at least 9 significant digits, which has the fewest possible number of function

evaluations.

G-SDC DASSL GAMD MEBDFI PSIDE RADAU VODE
rtol 1e-8 1e-12 1e-10 1e-9 1e-10 1e-9 1e-11
atol * 1e-12 1e-10 1e-11 1e-11 1e-10 1e-14
h0 2.5e-6 * 1e-10 1e-10 * 1e-10 *
rerr 3.0e-9 1.1e-9 3.1e-9 2.9e-9 2.1e-9 2.1e-9 1.3e-9
F 1134 2104 4057 2284 3417 2172 2961

steps 4 1591 76 669 154 47 2277

Table 3.3: A comparison, *- not needed, rtol- relative tolerance, atol- absolute tolerance,
h0- initial step-size, rerr- maximum relative error, F - number of function evaluations,
steps- number of steps taken.
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Figure 3.11: Step-sizes selected by RADAU and MEBDFI.

Our results suggest that the new GMRES accelerated SDC method is a very compet-

itive alternative to existing ODE solvers. However, in order to perform more extensive

(and convincing) tests, an automatic step-size selection strategy is required for the GM-

RES accelerated SDC method. In Fig. 3.11, we show the step-sizes used by the adaptive

solvers MEBDFI and RADAU. Currently, we are studying strategies for step-size selec-

tions along with strategies for computing better initial provisional solutions, for adap-

tively choosing the parameters k0 and tolG, and for adaptively varying the order of the

SDC method.

Finally for this section, we want to mention that we have also studied several other

problems from the Test Set for IVP solvers [1]. In all cases, the convergence of the original

SDC methods is greatly improved by the GMRES accelerated SDC procedure.
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Chapter 4

Krylov Deferred Correction
Methods for Differential Algebraic

Equations

Ordinary differential equations can be considered as a special class of differential al-

gebraic equations (ODEs are index 0 DAEs). In this chapter1, we extend results for

ODE problems from previous chapter to efficient solutions of general differential alge-

braic equation initial value problems. We refer to the new methods as Krylov deferred

correction (KDC) methods.

This chapter is organized as follows. In Sec. 4.1, we introduce the differential algebraic

equations. In particular, we discuss the index of a differential algebraic equation and give

several examples. In Sec. 4.2, we construct the Krylov deferred correction methods for

DAE problems. In Sec. 4.3, a discussion of issues related to the index of an DAE system

is presented, including the convergence analysis of the methods. In Sec. 4.4, we present

several preliminary numerical results to show the accuracy and efficiency of the new KDC

methods for DAE problems.

1Parts of this chapter are reprinted from Journal of Computational Physics, In Press, Jingfang Huang,
Jun Jia and Michael Minion, “Arbitrary order Krylov deferred correction methods for differential alge-
braic equations”, Copyright 2006, with permission from Elsevier



4.1 Differential Algebraic Equations

In this chapter, we generalize the GMRES accelerated SDC methods to the efficient

solution of differential algebraic equation (DAE) systems of the form

F (y(t), y′(t), t) = 0. (4.1)

DAEs arise naturally in many applications, for example, the discretization of partial

differential equations (PDEs) or model reduction and singular perturbations [13]. Com-

pared with ordinary differential equations (ODEs), the numerical solution of DAEs is,

in general, a more challenging subject since the algebraic part of the DAE can often

be expressed as the infinite stiffness limit of a singular perturbation problem, and such

stiffness typically poses difficulty to traditional numerical ODE methods.

An important concept for DAE systems is the index of a differential algebraic equa-

tion. There exist several equivalent definitions for this concept, in this thesis, we introduce

the definition in [3] defined as follows:

Definition 4.1 For general DAE systems (4.1), the index along a solution y(t) is the

minimum number of differentiations of the system which would be required to solve for y ′

uniquely in terms of y and t (i.e., to define an ODE for y). Thus, the index is defined

in terms of the over-determined system

F (y, y′, t) = 0 (4.2)

d

dt
F (y, y′, y′′, t) = 0 (4.3)

· · · = 0 (4.4)

dp

dtp
F (y, y′, · · · , y(p+1), t) = 0 (4.5)

to be the smallest integer p so that y′ in Eq. (4.5) can be solved for in terms of y and t.
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We will refer to an ODE system as an index 0 DAE system. In the following we

present several examples of more general DAE systems.

(Systems of Index 1) The simplest nontrivial DAE system is of the form

y′ = f(y, z) (4.6)

0 = g(y, z) (4.7)

where f and g are sufficiently differentiable functions and gz has a bounded inverse. Note

that in this case only one differentiation of g is required to yield z ′, and hence the system

is referred to as an index 1 DAE system.

(Systems of Index 2) The system

y′ = f(y, z) (4.8)

0 = g(y) (4.9)

is an index 2 DAE system under the assumption that gyfz has a bounded inverse. Note

that in this case, two differentiations are required in order to derive z ′.

As we will show in the following sections, the index plays an important role in finding

appropriate numerical schemes for a specific DAE system.

4.2 Krylov Deferred Corrections for DAEs

Existing DAE solvers include the backward differentiation formulas (BDF) based

package DASSL developed by Petzold et al. which is applicable to DAE problems of

index 0 and 1 [13, 62]; and the Runge-Kutta based RADAU by Hairer et al. which can

be applied to DAE problems of index up to 3 [35, 37]. Detailed discussions of these

available solvers as well as a test set can be found in [1], and the readers are referred to

the references therein.
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In this section, we generalize the GMRES accelerated SDC methods for ODE prob-

lems to general DAE systems, and construct arbitrary order and stable Krylov deferred

correction (KDC) methods. Specifically, the Picard integral formulation and collocation

discretization, error equation and deferred correction method, and the use of Newton-

Krylov acceleration for DAEs are discussed in order.

4.2.1 Picard Equation and Collocation Formulation for DAEs

In the original SDC method for ODEs, the Picard integral equation (2.3) is used

to form the similar integral equation (2.4) for the correction. This formulation has the

benefit that it avoids the ill-conditioned differentiation operator. However, it is not

immediately clear how to generalize this technique to DAEs since a Picard equation form

of the DAE is not readily available.

Toward this end, instead of solving for y(t) in Eq. (4.1) directly, our new formulation

uses y′(t) as the unknown variable, which will be denoted by Y (t) in the following dis-

cussions. Expressing y(t) as the integral of Y (t), the DAE system F (y(t), y ′(t), t) = 0

becomes

F (y0 +

∫ t

0

Y (τ)dτ, Y (t), t) = 0.

As in Section 3.1, this Picard type equation can be directly discretized using the

spectral integration matrix S to yield

~F (~y0 + ∆tS ⊗ Y,Y, t) = 0, (4.10)

where Y = [Y1,Y2, · · · ,Yp]T is the desired solution which approximates Y (t) = y′(t)

at the Gaussian nodes. The solution y = [y1, y2, · · · , yp]
T is then recovered using the

spectral integration matrix

y = ~y0 + ∆tS ⊗ Y.
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Eq. (4.10) is the analog of the collocation formulation for ODEs given in Eq. (3.1), and

in the following discussions we write Eq. (4.10) symbolically as H(Y) = 0.

As for the initial values, note that when Gaussian or Radau IIa nodes are used, only

y(0) = y0 is required in the collocation formulation. However, when Radau Ia or Lobatto

nodes are applied, Y (0) is also required when calculating ∆tS⊗Y, which can be derived

by solving the equation F (y(0), Y (0), 0) = 0.

4.2.2 Error Equation and Modified SDC

Following the procedure in SDC methods for ODEs, given an approximation or pro-

visional solution Ỹ = [Ỹ1, Ỹ2, · · · , Ỹp]
T to the DAE system at the Gaussian nodes t, one

can define an equation for the error δ(t) = Y (t) − Ỹ (t) by

F

(
y0 +

∫ t

0

(
Ỹ (τ) + δ(τ)

)
dτ, Ỹ (t) + δ(t), t

)
= 0 (4.11)

where Ỹ (t) is the polynomial interpolation of Ỹ.

As in the original SDC, we wish to use a low-order method to approximate the error

equation (4.11) and improve the provisional solution Ỹ (t). Note that Eq. (4.11) gives the

identity

F

(
y0 +

∫ tm+1

0

Ỹ (τ)dτ +

(∫ tm

0

+

∫ tm+1

tm

)
δ(τ)dτ, Ỹ (tm+1) + δ(tm+1), tm+1

)
= 0.

(4.12)

A simple time-marching discretization of this equation similar to the explicit (forward)

Euler method for ODEs gives a low-order solution δ̃ = [δ̃1, δ̃2, · · · , δ̃p]T by solving

F

(
y0 + [∆tS ⊗ Ỹ]m+1 +

m+1∑

l=1

∆tlδ̃l−1, Ỹm+1 + δ̃m+1, tm+1

)
= 0 (4.13)

where ∆tl+1 = tl+1 − tl, t0 and δ0 are set to 0. Note that this updating formula is in
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general implicit since no explicit formula for δ̃m+1 exists. Similarly, a time-marching

scheme based on backward Euler method analogous to Eq. (2.13) is given by

F

(
y0 + [∆tS ⊗ Ỹ]m+1 +

m+1∑

l=1

∆tlδ̃l, Ỹm+1 + δ̃m+1, tm+1

)
= 0. (4.14)

These two methods differ only in the way how the time integral of δ(t) is approximated.

Eq (4.13) is equivalent to the rectangle rule using the left endpoint while Eq (4.14) is the

rectangle rule using the right endpoint. A discussion of the advantages of one over the

other is presented in the next section.

The two time-stepping methods can be written in matrix form as

~F (~y0 + ∆tS ⊗ Ỹ + ∆tS̃ ⊗ δ̃, Ỹ + δ̃, t) = 0, (4.15)

where ∆tS̃ is the lower triangular representation of the rectangle rule approximation of

the spectral integration operator S as discussed in Section 3.2. As in the ODE case,

the order of accuracy of Ỹ is increased by iteratively using Eq. (4.15) to approximate

the error, and if Ỹ converges, it converges to the solution of the collocation equation

(4.10). Therefore the accuracy of the current methods can be broken down into two

separate convergence issues: the convergence of the deferred correction iterations to the

collocation solution (as δ̃ → 0), and the convergence of the solution of the collocation

equation to the exact solution (i.e. as ∆t → 0 or p → ∞). The focus here concerns the

acceleration of the first iteration, and we assume the problem is resolved to desired error

tolerance by the collocation formulation. We defer further order and accuracy discussions

of the collocation methods to Section 4.3.1.
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4.2.3 Acceleration using Newton-Krylov Methods

In previous chapter, it is observed that the original SDC method for ODE initial value

problems can be considered as a Neumann series expansion for solving the preconditioned

system (3.14), where the preconditioner is the spectral deferred correction process. Also

in that chapter, a linearly implicit method is applied to general nonlinear ODE problems.

In this section, we generalize this idea to DAEs, and explain how Newton-Krylov methods

can be directly applied to the preconditioned system instead of using the linearly implicit

formulation.

From the discussion in previous section, a low-order method can be considered as a

tool for deriving the approximate error δ̃ as a function of the given provisional solution

Ỹ from the “implicit” function in (4.15). In the following, we use

δ̃ = H̃(Ỹ)

to represent the explicit form of this implicit function. As a reminder, evaluation of

H̃ is nothing more than one iteration of the deferred correction procedure. Notice that

when δ̃ = 0, the solution to Eq. (4.15) is identical to Eq. (4.10). Therefore, solving

the collocation formulation H(Y) = 0 is equivalent to finding the zero of the implicit

equation

H̃(Y) = 0.

Because the low-order method solves an approximation of the collocation formulation,

it is not surprising that the explicit function H̃(Y) = 0 is better conditioned compared

with the original collocation formulation in (4.10) as shown by the following analysis.
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Applying the implicit function theorem, the Jacobian matrix JH̃ of H̃ is given by

JH̃ =
∂δ̃

∂Y
= −

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS̃

)−1(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS

)

= −I +

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS̃

)−1(
∂ ~F

∂y
∆t(S̃ − S)

)
. (4.16)

When ∂ ~F
∂Y

is non-singular (e.g. ∂ ~F
∂Y

= I for ODE systems), since S̃ is an approximation

of S, when ∆t is small, JH̃ is close to −I. This was the first requirement for the efficient

application of Newton-Krylov methods discussed in Section 2.2.2. For comparison, the

Jacobian matrix of H = 0 is given by

JH =
∂H

∂Y
=

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS

)
.

For higher index DAE problems in which ∂ ~F
∂Y

is singular, the KDC techniques can be

applied to some of the unknowns as will be discussed in next section. Using the implicit

function theorem, it can be shown for this case as well that the resulting Jacobian matrix

is again closer to the identity matrix compared with JH. Also, when any eigenvalue λ of

the matrix

C = JH̃ + I =

(
∂ ~F

∂Y
+
∂ ~F

∂y
∆tS̃

)−1(
∂ ~F

∂y
∆t(S̃ − S)

)
(4.17)

satisfies ‖λ‖ ≥ 1 (this may happen to higher index DAE systems independent of the choice

of ∆t), the original SDC methods (consider the Neumann series for linear problems)

become divergent, on the other hand, the Newton-Krylov methods converge efficiently

as long as the number of such eigenvalues is small.

Finally, we recall that the second requirement for the efficient application of Newton-

Krylov methods discussed in Section 2.2.2 is an efficient procedure for computing the

function H̃ used by the forward difference approximation. As noted earlier, this is simply

a deferred correction iteration described succinctly in Eq. (4.15).
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4.3 Convergence, Index, and Implementations

Unlike the construction of numerical techniques for ODE initial value problems, which

is considered a mature subject in many respects, the efficient and accurate solutions of

DAE systems are more challenging in both theory and implementation, especially for

higher index systems. The purpose of this section is to present preliminary results on

the analytical and numerical properties of the KDC methods, including the convergence

analysis and essential techniques describing how a DAE system, depending on its index,

can be discretized so that the new KDC methods are more efficient and accurate.

4.3.1 Convergence Analysis

In the KDC methods, the Newton-Krylov schemes are applied to the preconditioned

collocation formulations. Therefore the convergence of the methods is determined by (a)

the convergence of the collocation formulation and (b) the convergence of the Newton-

Krylov methods. Each of these topics has been extensively studied previously and we

summarize several results from existing literature in the following. These results, when

coupled together, show the convergence of the KDC methods.

(Convergence and Orders of Collocation Formulations) In [35, 34], it was shown

that the collocation formulations are equivalent to the Runge-Kutta methods (see p.27

in [34]), and their convergence and orders are determined by the collocation points and

the DAE problems to be solved, in particular, the index of the DAE system (see p.18 in

[35]). As a general guidance, the collocation formulation for ODE systems (index 0 DAE

systems) using p Gaussian points is order 2p, A-stable and L-stable, symplectic and sym-

metric, and hence the ”optimal” choice. For higher index DAE systems, order reductions

can be observed and in general, Radau IIa nodes outperform other choices of collocation

points. Interested readers are referred to [35] for further details on the convergence (as

well as divergence) of collocation formulations for different DAE problems.
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(Convergence of Newton-Krylov Methods) It is well-known that under rather stan-

dard assumptions, the original Newton’s method converges quadratically when the initial

guess is “close” to the real solution. However, in the Newton-Krylov methods (inexact

Newton methods), each linear correction equation is only solved approximately and the

local convergence order is no longer quadratic (but still convergent). It can be shown

that super-linear local convergence can be obtained for specially chosen parameters in the

Newton-Krylov schemes (see Theorem 6.1.2 in [45]). As for arbitrary initial approxima-

tion, continuation/homotopy methods are necessary to accomplish global convergence.

Interested readers are referred to [46, 45] for further discussions.

Finally we want to mention that the efficiency of the KDC methods can be sig-

nificantly affected by the different choice of deferred correction based preconditioning

strategies including the low order semi-implicit schemes to be discussed in Section 4.3.4.

In general, the effective choice of preconditioner requires deep insight into the structure

of the DAE system and hence problem dependent. Interested readers are referred to [7]

and the references therein for a discussion of general preconditioning techniques.

4.3.2 Differential and Algebraic Components

One implicit assumption here is that the error equation (4.13) or (4.14) for δ̃ is more

efficient to solve compared with a direct solution of the collocation formulation (4.10)

or the original DAE system (4.1). Although this assumption is generally true for ODE

problems, due to the existence of algebraic equations, it may not be the case for at least

some of the unknowns in DAE systems as explained by the following examples.

(Purely Algebraic Equation Systems) For the purpose of intuitive insight, consider

first the purely algebraic system

F (y, t) = 0.
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As the derivative never appears in this system (hence y is referred to as an algebraic

component), introducing the error equation and spectral integration can neither improve

the efficiency nor accuracy. In fact, as spectral integration couples solutions at different

node points, simply using Newton’s method for the algebraic system at required nodes

will in this case be more efficient than using the KDC approach.

(Index 1 Problems) Next consider the index 1 DAE problem





y′ = f(y, z)

0 = g(y, z)

where f and g are sufficiently differentiable and the inverse of ∂g
∂z

is bounded. In this

case, as the derivative of z never appears in the system (hence z is called the algebraic

component), it is more efficient to apply spectral integration only to the differential

component y by making {Y, z} the unknowns. The corresponding discretized collocation

formulation becomes 



Y = f̃(ỹ0 + ∆tS ⊗ Y, z̃),

0 = ~g(~y0 + ∆tS ⊗ Y, z̃),

and the error equation is given by





Ỹ + δ̃ = ~f(~y0 + ∆tS ⊗ Ỹ + ∆tS̃ ⊗ δ̃, ~z),

0 = ~g(~y0 + ∆tS ⊗ Ỹ + ∆tS̃ ⊗ δ̃, ~z).

The Newton-Krylov procedure is then only applied to δ̃ corresponding to the Y -component,

and the preconditioned system is denoted by δ̃ = H̃(Y).

An immediate advantage of this modified formulation is that the number of unknowns

is reduced in H̃(Y) = 0 which reduces the cost of the Newton-Krylov solver.

(Higher Index Problems) For higher index problems, we recommend that the differ-

ential components and the algebraic ones be treated differently. As a general rule, the
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spectral integration technique and the Krylov subspace methods should only be applied

to the differential components.

Our preliminary numerical experiments show that due to the reduced number of

unknowns in the KDC methods, the modified formulation is more efficient compared

with the original formulation introduced in Section 4.2 where KDC strategies are applied

to both components, however the accuracy of the solutions are similar for all problems

we tested. Rigorous analyses for both formulations as well as implementation details are

currently being pursued.

4.3.3 Scaled Newton’s Method and the Index

When KDC methods are applied to DAE systems, each marching step (from Gaussian

node tm to tm+1) in one SDC sweep requires the solution of a nonlinear system. When

Newton’s method is used, unlike the ODE cases, special numerical treatments are required

for higher index DAE systems, including the correct scaling when the Jacobian matrix

is poorly scaled, e.g.,

J =



O(1) O(1)

O(h) O(h)


 ;

and different error control strategies as the convergence behavior for different components

in the solution may not be the same. These techniques are generally problem (index)

dependent, and our experience has shown that these techniques are necessary for the KDC

methods to converge efficiently as well. As these techniques are already well-documented

in the context of the BDF and Runge-Kutta based methods (See, e.g. Sec. 7 in [35] and

Sec. 5.2 in [13]), we neglect the details here.
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4.3.4 Semi-implicit KDC Schemes as Preconditioners

Comparing Eqs. (4.13) and (4.14), one may wonder if and when the explicit Euler

method is useful since both forms require the solution of a nonlinear system for the

unknowns. There are many cases that applying an explicit scheme to some of the equa-

tions in the DAE system may improve the efficiency of the numerical method. One such

case is the well-known non-stiff ODE systems. A more relevant example is the index 1

DAE system discussed in Section 4.3.2. When an explicit method can be applied to the

first equation, z then becomes the only unknown at next time step, and hence Newton’s

method becomes more efficient. It is also possible to use a “semi-implicit” discretiza-

tion analogous to the ODE case [58] where some terms in the DAE system are treated

with using Eq. (4.13) and some with (4.14). In the KDC methods framework, these

techniques can be considered as different preconditioning strategies and we recommend

explicit treatment of the non-stiff equations in the system whenever possible.

4.4 Preliminary Numerical Results

In this section, we show some preliminary numerical results for linear and nonlinear

DAE problems with different index. The new methods are currently implemented in

matlab, and Radau IIa nodes are used in spectral integration.

4.4.1 A Linear DAE System

For the first example, we consider a simple linear DAE system of index 2 (see p. 267

in [3] where α is set to 10)




y′1(t)

y′2(t)

0




=




10 − 1
2−t

0 10(2 − t)

9
2−t

−1 9

t + 2 t2 − 4 0







y1(t)

y2(t)

y3(t)




+




3−t
2−t

et

2et

et(2 − t− t2)




(4.18)

72



whose analytical solution is given by y(t) = (et, et,−et/(2 − t)).

We first demonstrate the convergence behavior of the KDC methods by computing

the solution from t0 = 0 to tfinal = 1 using Radau IIa points with p = 3, 4, and 5. The

full GMRES orthogonalization procedure is applied to the resulting preconditioned linear

collocation formulations. The convergence of the error at t = 1 versus the time step for

the KDC methods is shown in Fig. 4.1 for y1(t) (left) and y3(t) (right), respectively. The

data in Fig. 4.1 confirms that the KDC method using p Radau IIa nodes is converging

with approximate order 2p− 1.
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Figure 4.1: Convergence test of KDC methods with full GMRES and Radau IIa points

As a comparison with BDF based methods of orders 2, 3, and 4 (see [3], p268, Fig.

10.2) where a step-size smaller than 10−3 is required for 10 digits of accuracy in y1, the

new KDC methods using p = 5 only requires a step-size of approximately 10−0.9 for 14

digits accuracy, with 440 function evaluations.

When the GMRES method is applied to the N×N linear system Ax = b, the memory

required increases linearly with the iteration number k, and the number of multiplications

scales like 1
2
k2N . Hence, for large k, the restarted version GMRES(k0) should be applied.

We next study the effect of using GMRES(k0) on the efficiency of KDC methods.

For the linear system above, we use 16 Radau IIa nodes and set ∆t = tfinal = 1.
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Figure 4.2: Convergence of GMRES(k0) for different k0 for a KDC method applied to the
linear system as a function of (a) GMRES steps and (b) number of function evaluations.

The total number of unknowns is N = 16 × 3, and hence k0 = 48 is equivalent to the

full GMRES procedure. In Fig. 4.2, we study the convergence of the KDC method using

different k0 applied to the preconditioned collocation formulation of Eq. (4.18). Numerical

results show that keeping more data in storage (larger k0) gives better convergence results.

However, k0 = 20 results in similar convergence to k0 = 48. In the figure, we plot how the

residual decays, as the true error is not readily available from the GMRES subroutine. For

this problem, 16 points resolve the solution to 14 significant digits so up to a constant

factor, the residual is almost identical to the true error. Also, because Eq. (4.18) is

linear, each GMRES iteration (SDC sweep) needs exactly p = 16 function evaluations.

This explains why the two plots are identical (except for a factor 16 in x-axis).

Finally for this example, note that the KDC method using 9 Radau IIa nodes allows

a step-size of 1 (one time step from 0 to 1) for 12 digits of accuracy in y1 and y2, with

a total number of 162 function evaluations (compared to more than 1000 for the BDF

methods in [3]).
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4.4.2 The Transistor Amplifier Problem

In our second example, we consider the transistor amplifier problem in [1] which is a

stiff DAE system of index 1 consisting of 8 equations given by

M
dy

dt
= f(y), y(0) = y0, y′(0) = y′0,

with y ∈ � 8 and 0 ≤ t ≤ 0.2. The matrix M is of rank 5 and is given by

M =




−C1 C1 0 0 0 0 0 0

C1 −C1 0 0 0 0 0 0

0 0 −C2 0 0 0 0 0

0 0 0 −C3 C3 0 0 0

0 0 0 C3 −C3 0 0 0

0 0 0 0 0 −C4 0 0

0 0 0 0 0 0 −C5 C5

0 0 0 0 0 0 C5 −C5




.

The function f is defined as

f(y) =




−Ue(t)
R0

+ y1

R0

−Ub

R2
+ y2(

1
R1

+ 1
R2

) − (α− 1)g(y2 − y3)

−g(y2 − y3) + y3

R3

−Ub

R4
+ y4

R4
+ αg(y2 − y3)

−Ub

R6
+ y5(

1
R5

+ 1
R6

) − (α− 1)g(y5 − y6)

−g(y5 − y6) + y6

R7

−Ub

R8
+ y7

R8
+ αg(y5 − y6)

y8

R9



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where g and Ue are auxiliary functions given by

g(x) = β(e
x

UF − 1) and Ue(t) = 0.1 sin(200πt).

As in Fig. 4.2 for the linear case, we first consider the effect of using different

GMRES(k0). For this nonlinear system, we use the Newton-GMRES method in which

GMRES(k0) is applied in each Newton iteration to reduce the residual by a factor of η

(see Sec. 2.2.2). In the experiment, 16 Radau IIa nodes are used, the step-size is 0.0025

which resolves the solution to 8 digits of accuracy, and η is set to 0.3. In (a) of Fig. 4.3,

the residual after each GMRES step (one SDC sweep) is presented for different choices

of k0 and in (b) the residual versus number of function evaluations. It can be seen that

k0 = 10 provides results similar to the full GMRES procedure which requires k0 = 128.

This is similar to the linear case shown in Fig. 4.2.

For general DAE problems, it is not known how to choose the “optimal” k0 since the

choice depends on the number of Gaussian type nodes and the eigenvalue distribution

of the underlying problem. For the remainder of this chapter, we use a simple scheme

which selects k0 to be the smaller of {c1, p + N + c2} where p is the number of node

points, N is the number of equations, c1 is a large constant determined by the computer

memory constraints and efficiency considerations, and c2 is a small constant currently

chosen as 5. However this strategy is by no means optimal and better schemes are still

being pursued (see the discussion below).

We next provide a comparison of the performance of KDC methods with the MEBDFI

and RADAU packages (see [1] for discussions of the two methods). For this problem,

adaptive step-size and scheme order selections are essential for optimal efficiency as

demonstrated in Fig. 4.4, where for 11 digits of accuracy, the step-sizes used by MEBDFI

vary from 10−4 to 10−14 and those by RADAU from 10−3 to 10−10. Nevertheless, we

compare the performance of the MEBDFI and RADAU packages with the KDC methods
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Figure 4.3: Convergence of GMRES(k0) for different k0 for a KDC method applied to the
nonlinear system as a function of (a) GMRES steps and (b) number of function evaluations.

using uniform time steps. We solve the transistor problem from t = 0.1 to t = 0.2 to

avoid the initial sharp step-size transition region. Fig. 4.5 shows a comparison of the

RADAU and MEBDFI packages with KDC methods with p = 5, 10, and 20 and a range

of fixed time steps.

To give an indication of the disadvantage of using a fixed time step for this example,

for the numerical solution using 20 Radau IIa nodes and 200 uniform steps, we compute

at each step the Legendre polynomial approximation to the solution (see Section 2.1). We

set the error tolerance to 10−14 in the Newton-Krylov iterations and hence the solution

error mainly comes from the discretization in the collocation formulation (4.10). In the

left panel of Fig. 4.6, we plot the magnitude of the coefficient c10 for each step and in

right panel c19. It can be seen that for most steps, 11 terms in the expansion resolves the

solution to 12 digits, however 20 Radau IIa points must be used to resolve the solution

to 12 digits in all steps. This indicates that adaptive selection of the number of nodes

(or alternatively the size of the time step) would significantly increase the efficiency of

the KDC methods for this example.

We are currently studying the issue of adaptively choosing the step-size and scheme
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Figure 4.5: Efficiency comparison of the fixed order uniform step KDC method with adaptive
RADAU and MEBDFI.

order for KDC methods. This effort must also consider other parameters related to the

Newton-Krylov methods (e.g. k0 and η above). Further possibilites include increasing

the number of node points (reflecting the degree of the approximating polynomial) during

the Newton-Krylov procedure, and even using different numbers of nodes for different

components of the solution vector.
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Figure 4.6: Legendre coefficients c10 and c19.

4.4.3 The Andrews’ Squeezing Mechanism

Andrews’ squeezing mechanism describes the motion of 7 rigid bodies connected by

joints without friction, which is modeled by a non-stiff second order DAE system of index

3, consisting of 21 differential and 6 algebraic equations, as given by

K
dy

dt
= Φ(y), , y(0) = y0, y′(0) = y′0

where

y =




q

q̇

q̈

λ




, K =




I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0




, Φ(y) =




q̇

q̈

M(q)q̈ − f(q, q̇) +GT (q)λ

g(q)




.

The index of the unknowns q, q̇, q̈ and λ in y is 1, 2, 3, and 3, respectively. We refer

interested readers to [1] for explicit forms of functions mentioned above.

As explained in [43], when the original SDC methods are applied to ODE problems,

for sufficiently small time step-size ∆t, each correction procedure can reduce the residual
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by a factor of ∆t unless machine precision is reached. However, for most DAE systems

we tested, especially for higher index DAE problems, numerical experiments show that

the residual from the original SDC methods may no longer converge to zero. In Fig. 4.7,

for Andrews’ squeezing problem, we use 10 Radau IIa nodes and plot how the residual

changes after each original spectral deferred correction in one marching step. Different

step-sizes (∆t = 10−3, 10−4, 10−5, and 10−6) are tested and it can be seen that the

residual starts increasing after a few iterations no matter how small the step-size is.

In Fig. 4.8, as a comparison, we use similar settings and show the residual after each

accelerated Krylov deferred correction, in which the Krylov subspace methods are only

applied to the differential components. We notice that for all step-sizes, the residual

quickly converges to machine precision.
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Figure 4.7: Residual in the original SDC method increases after first few corrections.

The convergence of the KDC methods and the divergence of the original SDC tech-

niques can be explained by studying Eq. (4.17). In [43], it was shown that the original

SDC methods are equivalent to a Neumann series expansion for the preconditioned sys-

tem. For ODE problems, as ∂ ~F
∂Y

= I, the matrix C in Eq. (4.17) is of order O(∆t) as long
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Figure 4.8: Residual in the KDC methods converges to machine precision.

as ∆t is sufficiently small. In this case, the residual always converges to zero and each

spectral deferred correction increases the residual order by ∆t. For DAE problems, due to

the existence of algebraic equations, ∂ ~F
∂Y

may be singular, and some eigenvalues in C may

be greater than 1 in magnitude, which explains the increasing residual for the original

SDC methods. When Krylov subspace methods are applied, however, the existence of

such eigenvalues is no longer a problem. Therefore, considering the deferred/defect cor-

rection procedures as preconditioners for the collocation formulation and introducing the

Newton-Krylov techniques analytically guarantee the local convergence and significantly

improve the convergence rate for DAE problems.

Finally for this problem, we want to mention that in the KDC methods, the residuals

may increase during iterations as shown in Fig. 4.8. This is due to the inaccuracy in the

forward difference approximations in the Newton-Krylov methods and the nonlinearity

of the system. Currently we are adapting the Newton-Krylov methods to improve the

accuracy of the forward difference approximations. An immediate advantage is that

(almost) decreasing residuals will provide better error control strategies.
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4.4.4 The Wheelset Problem

In our last example, we consider the wheelset problem described by a DAE system of

dimension 17 (also referred to as an implicit differential equation (IDE) system)

dp

dt
= v, (4.19)

M(p)




dv
dt

dβ
dt


 =




f(u) − (∂g1(p, q)/∂p)
TCλ

d(u)


 , (4.20)

0 = g1(p, q), (4.21)

0 = g2(p, q), (4.22)

where u = (p, v, β, q, λ)T ∈ � 17, p, v ∈ � 5, β ∈ � , q ∈ � 4, λ ∈ � 2 and C is a scalar

constant. Furthermore, M : � 5 → � 6 × � 6, f : � 17 → � 5, d : � 17 → � , g1 : � 9 → � 2

and g2 : � 9 → � 4. This problem shows some typical properties of simulation problems

in contact mechanics, i.e., friction, contact conditions, stiffness, etc.. It is an index 3

IDE system but can be reduced to index 2. Interested readers are referred to [1] for

the initial conditions, the function forms of M , f , d, g1 and g2, as well as more detailed

discussions of the problem. In the following, similar to [1], we present test results based

on the index-2 formulation where Eq. (4.21) is replaced by

0 = (∂g1(p, q)/∂p)v.

For this test, we march with uniform time-step from t0 = 0 to tfinal = 0.002 (a region

in which relative uniform step-sizes are used by the compared methods). A comparison of

the performance of KDC methods using 4 and 8 nodes and various fixed time steps with

the DASSL, MEBDFI and PSIDE codes is shown in Fig. 4.9. Our numerical experiments

show that the MEBDFI method requires 159 function evaluations for 5 digits of accuracy

and 581 for 12 digits. On the other hand, the new KDC method with 4 Radau IIa nodes
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Figure 4.9: Efficiency comparison of the uniform step KDC method with adaptive DASSL,
MEBDFI and PSIDE.

requires 40 function evaluations for 5 digits and 348 for 12 digits. The KDC method with

8 nodes uses 152 function evaluations for 12 digits.

Finally, because of the excessive storage requirements of GMRES(k0), we present here

a comparison of alternative Krylov subspace methods applied to the wheelset problem.

Specifically, we consider the biconjugate gradients stabilized (BiCGStab) method and

transpose-free quasi-minimal residual (TFQMR) algorithm (See [7] for a summary of

existing Newton-Krylov methods). The storage required in both methods is independent

of iteration number k, and the number of multiplications grows only linearly as a function

of k. In Fig. 4.10, for the wheelset problem, we compare the convergence of the full

GMRES procedure with BiCGStab and TFQMR in terms of (a) number of iterations

and (b) number of function evaluations. In the simulation, we use p = 4 Radau IIa

nodes and set ∆t = tfinal. It can be seen that both BiCGStab and TFQMR converge to

the prescribed accuracy after numbers of iterations fewer than full GMRES, with similar

numbers of function evaluations. Similar numerical results for p = 8 are shown in Fig.

4.11. Comparisons of different Krylov subspace methods as well as the optimal choices

of different parameters (step-size, k0, η, etc.) are being studied.
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Krylov methods
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Chapter 5

Method of Lines Transpose for
Partial Differential Equations

In this chapter, we generalize the results from previous chapters and discuss how time

dependent PDEs (in particular, parabolic type PDEs) can be efficiently solved by coupling

Krylov deferred correction methods and fast elliptic equation solvers in conjunction with

method of lines transpose (MoLT ).

This chapter is organized as follows. In Sec. 5.1, we introduce parabolic type partial

differential equation problems. MoLT is then implemented in Sec. 5.2, and analyses of

the method are briefly discussed in Sec. 5.3. In Sec. 5.4, preliminary numerical results

are presented.

5.1 Time Dependent Initial Value PDEs

Efficient and accurate solutions of time dependent initial value partial differential

equations are required in simulations of many science and engineering systems. In this

chapter, we consider a general parabolic type partial differential equation (PDE) initial

value problem of the form

L (ut, u, ux, uxx) = 0 (5.1)



where u = u(x, t), x ∈ [a, b], t ∈ [0, T ], with proper initial and boundary conditions.

Specific examples include the well-known diffusion (heat) equation

ut = Duxx + f(x, t),

where D is the diffusion coefficient; the diffusion-reaction equation

ut = Duxx + f(u),

which models many biological and chemical reaction processes; the nonlinear Schrödinger

equation (NLS)

iεut +
ε2

2
uxx − V u− f(‖u‖2)u− ετarg(u)u = 0

in solid state physics; and the Richards’ equation

[c(u) + SsSa(u)]ut = [Kx(u)(ux + 1)]x

which simulates fluid flow and species transport in subsurface systems. In Eq. (5.1),

u may be a vector of unknowns and hence L = 0 contains a system of equations. To

simplify the discussions and focus on the ideas, we describe our algorithms and numerical

results in 1 + 1 dimensions. However, generalization of the analyses and algorithms to

higher dimensions is straightforward.

As introduced in Chapter 1, there are typically two discretization strategies for time

dependent PDEs. Perhaps due to the popularity and success of numerical methods

for solving initial value problems governed by systems of ordinary differential equations

(ODEs) and differential algebraic equations (DAEs), the more common practice is method

of lines (MoL) technique. To recap, MoL first “discretize” the PDEs in the spatial

direction using finite difference, finite element, or spectral methods, and each entry in the
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solution vector represents the approximate solution at a specific location (or frequency)

for all times. Then available solvers are applied to the resulting ODE/DAE systems.

As discussed in Chapter 1, the major drawbacks of this type of schemes are expensive

spatial adaptivity and that after the spatial discretization, the equations are no longer

“elliptic”, hence existing fast elliptic equation solvers can not be easily applied. For all

these reasons, we prefer the alternative approach, Rothe’s method, which discretizes in

time first, leading to an elliptic system to be solved, and marches.

By introducing ideas from Rothe’s method and fast integral equation methods for el-

liptic equations, the purpose of this chapter is to generalize the Krylov deferred correction

methods for DAE problems to efficient solutions of Eq. (5.1). In addition to parabolic

type problems, hyperbolic type equations could also be considered. Unfortunately, as

discontinuity may appear in forms of shocks in hyperbolic systems and the solutions lose

smoothness, higher order and spectral methods may no longer be advantageous compared

with existing low order schemes.

5.2 Method of Lines Transpose

In this section, we discuss our implementation of MoLT . For simplicity of discussion,

we focus on the 1 + 1 dimensional parabolic PDEs described by Eq. (5.1).

5.2.1 Spectral Integration and Collocation Formulation

To march the evolutionary PDE (5.1) from t = 0 to ∆t, similar to KDC and Rothe’s

methods, the MoLTfirst discretizes the PDE in the temporal direction (the transpose

direction of traditional MoL) using p nodes t = [t1, t2, · · · , tp]T . Instead of uniform node

points on which higher order interpolations are unstable, the MoLTuses Gaussian type

nodes (including Gaussian, Radau, and Lobatto quadrature nodes) and the Legendre

polynomial interpolation. On each node point, to avoid numerically unstable differenti-

87



ation operator, we define Ui(x) = U(x, ti) = ut(x, ti) as the new unknowns, and recover

ui(x) = u(x, ti) by integrating the interpolating Legendre polynomial (the coefficients

are computed using corresponding quadrature rules). The linear mapping from functions

{Ui(x), i = 1, · · · , p} to {ui(x), i = 1, · · · , p} is also referred to as the “spectral integra-

tion” operator, and the corresponding matrix denoted by S is the spectral integration

matrix (see [27] and previous chapters). The discretized equation becomes

L

(
U,u0 + ∆tS ⊗ U,

d

dx
(u0 + ∆tS ⊗ U) ,

d2

dx2
(u0 + ∆tS ⊗ U)

)
= 0 (5.2)

where U = [U1(x), U2(x), · · · , Up(x)]
T is the desired approximation of U(x, t) at different

node points and u0 = [u(x, 0), u(x, 0), · · · , u(x, 0)]T is the initial condition. As Gaussian

type nodes are used in the MoLT , this collocation formulation can be spectrally accurate

for non-degenerating parabolic equations. Also note that this discretization preserves the

elliptic properties in the spatial direction.

5.2.2 Error Equation and Spectral Deferred Correction

The discretized collocation formulation in Eq. (5.2) consists of a group of elliptic

equations coupled by the dense spectral integration matrix S. Its direct solution is

in general computationally inefficient. Instead, similar to KDC methods, we assume

a provisional solution Ũ = [Ũ1(x), Ũ2(x), · · · , Ũp(x)]
T is given, and define the error as

δ = U − Ũ = [δ1, δ2, · · · , δp]
T . The continuous counterparts of δ and Ũ derived by

polynomial interpolation in time are denoted as δ(x, t) and Ũ(x, t), respectively. A simple

substitution yields the error equation for δ(x, t)

L


Ũ + δ, u0 +

∫ t

0

(Ũ + δ)dτ,
d
(
u0 +

∫ t

0
(Ũ + δ)dτ

)

dx
,
d2
(
u0 +

∫ t

0
(Ũ + δ)dτ

)

dx2


 = 0

(5.3)
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where u0 = u(x, 0), and the variables in Ũ(x, t) and δ(x, t) are omitted in the notation.

Applying spectral integration to the integrals in this equation, the discretized “error

equation” is then given by

L(Ũ+δ,u0+∆tS⊗(Ũ+δ),
d

dx
(u0+∆tS⊗(Ũ+δ)),

d2

dx2
(u0+∆tS⊗(Ũ+δ))) = 0, (5.4)

where ∆tS is a higher order approximation of the operator
∫ t

0
.

Notice that
∫ t

0
can also be approximated by lower order integration rules as in KDC

methods, such as the rectangular rule using left end point (explicit Euler method), and

the rectangular rule using right end point (implicit Euler method). We re-apply a lower

order integration S̃ to the unknown δ. A lower order approximation δ̄ of δ can then be

obtained by solving the equation system

L(Ũ+δ̄,u0+∆tS⊗Ũ+∆tS̃⊗δ̄,
d

dx
(u0+∆tS⊗Ũ+∆tS̃⊗δ̄),

d2

dx2
(u0+∆tS⊗Ũ+∆tS̃⊗δ̄)) = 0. (5.5)

Notice that the equations for δ̄ are now decoupled at different times and the elliptic

equation at each node ti can be solved efficiently using available elliptic equation solvers,

which are discussed in Sec. 2.3 for linear problems and in Sec. 5.2.4 for nonlinear cases.

5.2.3 Newton-Krylov Methods and MoLT

Eq.(5.5) can be considered as an “implicit function” where Ũ is the input variable

and δ̄ is the output function value. Similar to the DAE case, we symbolically denote the

explicit form of this function as

δ̄ = H̃(Ũ). (5.6)

When Ũ solves the collocation formulation in Eq. (5.2), we have δ̄ = 0. Therefore,

solving the collocation formulation is equivalent to finding the zero of Eq. (5.6) and we
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call (5.7) the “preconditioned” formulation.

δ̄ = H̃(Ũ). (5.7)

Compared with the original collocation formulation, the “preconditioned” formulation

in (5.7) is better conditioned. It is straightforward to show that the Jacobian matrix of

the function H̃(Ũ) is closer to I and we neglect the details. Hence the Newton-Krylov

methods can be efficiently applied to find the zero of H̃(Ũ) = 0. As for the second

requirement for the efficient implementation of Newton-Krylov methods, when forward

difference approximation is applied, each function evaluation is simply one spectral de-

ferred correction in which fast elliptic equation solvers can be applied.

As a summary, the new scheme consists of the following building blocks: (a) Newton-

Krylov methods are applied to the preconditioned formulation in Eq. (5.7); (b) each

function evaluation is simply one spectral deferred correction in which the elliptic equa-

tions are decoupled; and (c) the decoupled elliptic equations are solved efficiently using

available fast IEM solvers as discussed in next section.

5.2.4 Fast Nonlinear Two Point Boundary Value ODE Solver

In Chapter 2, we discussed existing fast linear elliptic equation solvers based on inte-

gral equation formulations. For nonlinear elliptic equations in the MoLTdiscretization,

Newton’s method can be coupled with the fast linear equation solvers as described by

the following formulas.

Suppose the boundary value elliptic problem has the form

N (x, u(x), ux(x), uxx(x)) = 0. (5.8)
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Define

F (x) =N (x, v(x), vx(x), vxx(x)),

H(x) =DvN (x, v(x), vx(x), vxx(x)),

J(x) =Dvx
N (x, v(x), vx(x), vxx(x)),

K(x) =Dvxx
N (x, v(x), vx(x), vxx(x)),

(5.9)

where v(x) is an initial approximation of u(x). Then one step of the Newton’s method

requires the solution of the linearized equation for the Newton correction e(x):

K(x)exx(x) + J(x)ex(x) +H(x)e(x) + F (x) = 0. (5.10)

Note that F,H, J and K are v-dependent. This linear equation is then solved by the

linear solver introduced in Chapter 2 and the provisional solution v(x) is updated by

vnew(x) = v(x) + e(x). This Newton iteration repeats until e(x) or F (x) is sufficiently

small or a maximal number of iterations is reached (in which case global convergence can

not be achieved and a smaller time step has to be used in the marching scheme), and the

final converged v(x) solves Eq. (5.8).

5.3 Algorithm Analysis

As a new approach for time dependent PDEs, many theoretical aspects of MoLThave

not been studied. Some analyses have been done for Rothe’s method, and please refer to

[10, 49, 65] and the references therein.

In this section, we discuss several available results concerning the accuracy, stability,

and efficiency of the method.

The accuracy of the MoLT is determined by (a) the accuracy of the collocation formu-

lation in Eq. (5.2); (b) the accuracy of the Newton-Krylov methods, and (c) the accuracy
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of the fast elliptic equation solvers used. For (a), as the Gaussian type nodes are used,

it is not hard to see that the resulting formulation is spectrally accurate. Also, when p

Gaussian nodes are used and the elliptic equation system is solved exactly, the resulting

scheme has order 2p in time for the diffusion equation. When Radau nodes are used, the

collocation formulation has order 2p− 1. We want to mention that for PDEs with alge-

braic constraints, order reduction may be observed and we refer the readers to [35, 34] for

details. The convergence and accuracy of the Newton-Krylov methods in (b) have also

been widely studied previously. It can be shown that super-linear local convergence can

be obtained for specially chosen parameters in the Newton-Krylov schemes (see Theorem

6.1.2 in [45]). For arbitrary initial approximations, continuation/homotopy methods are

necessary to accomplish global convergence. Interested readers are referred to [46, 45]

for further discussions. For (c), instead of the “order of convergence” concept commonly

used in the finite difference and finite element methods, most recently developed fast IEM

solvers generate numerical results with prescribed accurate digits, therefore the accuracy

in (c) is guaranteed.

In [34], it was shown that for ODE problems, the collocation formulation is equivalent

to certain Runge-Kutta methods (see p.27 in [34]). When Gaussian points are used in

the temporal discretization, the method is A-stable, B-stable, and L-stable. Based on

these existing results and assume the spatial elliptic equations are solved exactly, we

conclude that the MoLT is unconditionally stable. Also, as shown in next section, no

CFL constraints have been observed in the numerical experiments. Finally, the efficiency

of the MoLT is determined by the number of iterations in the Newton-Krylov procedure,

which depends on the structure of the problem, the low order preconditioner (Euler,

trapezoidal rule, splitting methods, etc.), and the Krylov method (GMRES, BiCGStab,

TFQMR, etc.).
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5.4 Numerical Experiments

In this section, we show some preliminary numerical results. The new methods are

currently implemented in Matlab and Fortran, and Radau IIa nodes are used in the spec-

tral integration for the temporal direction. We utilize available Newton Krylov method

packages. For Matlab code, we use the codes from C.T.Kelly [45] while for Fortran we

use the NITSOL package by Pernice and Walker [61].

5.4.1 The Diffusion Equation

For the first example, we consider the simplest parabolic type equation

∂ψ

∂t
=
∂2ψ

∂x2
+ f(x, t),

which is often referred to as the heat or diffusion equation. We assume zero initial

condition and time varying boundary conditions, and choose the real solution as ψ =

t exp(kx − t), where x ∈ [−1, 1]. The heat source f(x, t) = (1 − t − k2t) exp(kx − t)

is determined accordingly. For this example, we apply the spatial solver mentioned

earlier in sections 5.2.4 and 2.3.1. and request the solution in the spatial domain to be

fully resolved by setting the error tolerances in the boundary value problem solver and

the Newton-Krylov solver to machine precision. The dominant error is hence from the

temporal discretization only. The code is written in Fortran.

The numerical tests run from t = 0 to t = 10. As shown in Fig. 5.1, the method shows

desired order 2 · p − 1 when p Radau IIa points are used in the KDC integrator. We

also compare the number of iterations required by the original SDC and the new KDC

methods. The results are shown for one time step of the method using step size ∆t = 10

in Fig. 5.2, and ∆t = 0.1 in Fig. 5.3, respectively. Clearly, the KDC methods reduce the

number of iterations dramatically compared with the original SDC techniques.
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Figure 5.1: Convergence test, p Radau IIa nodes
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Figure 5.2: Comparison of number of iterations, p = 20 Radau IIa nodes
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Figure 5.3: Comparison of number of iterations, p = 5 Radau IIa nodes

5.4.2 A Variable Coefficient Parabolic Equation

For the second example, we consider a variable coefficient parabolic system defined

on x ∈ [0, 1], t ∈ [0, T ] of the form

M(x)
∂ψ

∂t
= N(x)

∂2ψ

∂x2
+ f(x, t).

We assume periodic boundary conditions and the initial value ψ0(x) = ecos(2πx) at t = 0.

The analytical solution is given by

ψ(x, t) = ecos(2π(x+t2))−kt,

and M(x) and N(x) are defined as

M(x) = 2 + cos(2πx),

N(x) = 2 + cos(4πx).
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Figure 5.4: Comparison of different Krylov subspace methods, p = 32 Radau IIa nodes

f(x, t) is determined accordingly.

Since all the functions are periodic in space, we discretize the spatial domain using

equi-spaced grids and approximate the solution using Fourier series expansion whose

coefficients are computed using the spectrally accurate trapezoidal rule. The numerical

code is implemented in Matlab.

We run the tests from t = 0 to t = 0.5 for one time step with 32 Radau IIa nodes,

and the spatial direction is fully resolved by a truncated Fourier series expansion with

64 terms. Numerical experiments reveal that the MoLT converges more efficiently than

the unaccelerated SDC methods for this problem. As the results are very similar to

the diffusion equation case, we neglect the details. Instead, as GMRES may require

prohibitive storage for PDE problems, in this example, we compare the results using

different Krylov subspace methods. As shown in Fig. 5.4, compared with GMRES,

alternative BiCGStab and TFQMR methods also provide satisfactory convergence results

using less storage.
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5.4.3 A Nonlinear Parabolic Equation

Our third example is a nonlinear parabolic problem given by

∂ψ

∂t
= (ψ3/2 + 1)

∂2ψ

∂x2
+ 2ψ

∂ψ

∂x
(
∂ψ

∂x
+ 1) + f(x, t). (5.11)

It is designed to mimic the Richards’ equation to be discussed in next section. We

choose the analytical solution as ψ = t exp(kx− t) for x ∈ [−1, 1] to avoid the numerical

difficulties related with the sharp fronts in the Richards’ equation in this example (the

sharp fronts will be discussed in next section). The corresponding initial condition,

boundary conditions, and f(x, t) are set accordingly.

For this example, we test the convergence of the methods for nonlinear system. The

solution is obtained from t = 0 to t = 10. As shown in Fig. 5.5, very similar behaviors

can be observed as in the linear case. We want to mention that the solution is resolved

to machine precision in the spatial domain and solved by the direct method introduced

in Sec. 5.2.4.
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5.4.4 Richards’ Equation

The Richards’ Equation (RE) is a highly nonlinear time dependent parabolic sys-

tem describing flows in porous media [54, 41]. While a standard and frequently used

model, the highly nonlinear nature of this equation when solved by typical closure rela-

tions and common numerical approximation methods can lead to a series of difficulties,

including the loss of mass conservation, poorly resolved fronts, and failure for nonlin-

ear or iterative linear solvers. Although these problems can be resolved by introducing

a mass-conservative formulation, finer discretization in space and time, and carefully

implemented robust linear and nonlinear equation solvers, these approaches are often

computationally expensive, especially when the solution involves sharp fronts in space

and time. The efficient and accurate solution of the RE has been a very challenging

numerical topic. The RE can be posed in different forms, in the following, we focus on

the pressure-head form given by

A
∂ψ

∂t
=

∂

∂z

[
ρ̂K

(
∂ψ

∂z
+ ρ̂

)]
in Ω × t ∈ [0, T ] (5.12)

A = θ
∂ρ̂

∂ψ
+ ρ̂

∂θ

∂ψ
(5.13)

ψ =
p

ρ0g
(5.14)

K = krKs (5.15)

Ks =
ρ0gk

µ
(5.16)

ρ = ρ0e
β(p−p0) (5.17)

ρ̂ =
ρ

ρ0

(5.18)

Se =
θ − θr

θs − θr
(5.19)
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and

Se(ψ) =





(1+ | ανψ |nν)−mν for ψ < 0

1, for ψ ≥ 0
(5.20)

kr =





S
1/2
e [1 − (1 − S

1/mν

e )mnu]2, for ψ < 0

1, for ψ ≥ 0
(5.21)

with initial and boundary conditions

ψ = ψ0
in Ω, t = 0

ψ = ψb
on ΓD, t ∈ [0, T ]

q = qb
on ΓN , t ∈ [0, T ]

(5.22)

where ψ0 is the given initial value; ψb is a first-kind boundary condition on boundary ΓD;

the specific discharge q is given by qb on second-kind boundary ΓN ; and Γ = ΓD ∪ ΓN .

Several numerical schemes have been successfully implemented for this equation, in

particular, we want to mention recent work by Miller et al. [57], in which the Richards’

equation is solved using adaptive strategies based on traditional spatial discretizations

(finite difference and finite element methods) and existing ODE/DAE initial value prob-

lem solvers. More specifically, the spatial adaption utilizes a coarse grid solve and a

gradient error indicator with the finite difference or discontinuous Galerkin approxima-

tion, and the temporal adaption is accomplished using variable order, variable step size

approximations based upon the backward difference formulas (BDF) based DAE solvers

of orders up to 5.

In this example, we apply the MoLT to the Richards’ equation, using the simulation

parameter profile of “problem I” described in [57]. In Fig. 5.6, numerical result at a

specific time is presented by plotting the solutions on the adaptive spatial grid points

used by the fast adaptive elliptic solver. In Fig. 5.7, the solution profiles are presented
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Figure 5.6: Automatic spatial adaption

for different times and it can be seen that the sharp moving front is captured properly.

However, we want to mention that the current code is very primitive. Our preliminary

numerical results show that although very promising, the non-optimized code still can

not compete with existing state-of-the-art solvers. Currently, we are implementing a

fully spatial and temporal adaptive code, and improving the performance by adapting

and optimizing existing Newton-Krylov solvers, by generating better initial guess for

Newton’s methods, and by selecting optimal time stepping and order control strategies.

These will be discussed briefly in Chapter 6.
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Chapter 6

Summary and Recommendations

In this dissertation, a new framework for the efficient and accurate solution of differ-

ential equations with algebraic constraints is presented. For ODE and DAE problems, the

KDC methods utilize existing spectral deferred correction methods as preconditioners,

and apply Newton-Krylov methods to the preconditioned system for optimal efficiency.

For PDEs, the MoLT technique first discretizes the temporal direction, and couples KDC

methods with the highly efficient and fast IEM solvers for elliptic equations. Due to

the use of the Gaussian type nodes, Picard-type integral equation, and spectral integra-

tion, the new methods are unconditionally stable and can be spectrally accurate in the

temporal direction.

However, further analyses and code optimization are required in order to fully explore

the efficiency and accuracy of the new methods. These include more detailed stability and

convergence analyses; optimized strategies for adaptive mesh refinements and selection

of the orders in time and space; better initial guesses for Newton iterations (especially for

highly nonlinear systems such as Richards’ equation); proper treatments of differential

and algebraic components in an equation; and the optimal choice of different parameters.



BIBLIOGRAPHY

[1] See http://pitagora.dm.uniba.it/testset/.

[2] B. K. Alpert and V. Rokhlin. A fast algorithm for the evaluation of legendre expan-
sions. SIAM J. on Sci. and Stat. Computing, 12:1:158–179, 1991.

[3] M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

[4] K. Atkinson. An Introduction to Advanced Numerical Analysis. John Wiley, 2nd
edition edition, 1989.

[5] W. Auzinger, H. Hofstatter, W. Kreuzer, and E. Weinmuller. Modified defect cor-
rection algorithms for odes. part i: General theory. Numer. Algorithms, 36:135–156,
2004.

[6] W. Bao, S. Jin, and P. A. Markowich. On time-splitting spectral approximations
for the schrodinger equation in the semiclassical regime. Journal of Computational
Physics, 175(2):487–524, Jan. 2002.

[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods. Philadalphia: Soci-
ety for Industrial and Applied Mathematics. Also available as postscript file on
http://www.netlib.orgtemplatesTemplates.html, 1994.

[8] R. Barrio. On the a-stability of runge-kutta collocation methods based on orthogonal
polynomials. SIAM Journal on Numerical Analysis, 36(4):1291–1303, may 1999.
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