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ABSTRACT 

Robert H. Lampe: Distinct strategies by bloom-forming diatoms to frequently-encountered shifts in their 
environment 

(Under the direction of Adrian Marchetti) 

 

 In the world’s oceans, diatoms perform approximately 40% of the total primary production and are 

the most prominent group of eukaryotic phytoplankton. Recent advances in diatom genomics are 

revealing numerous insights into diatoms’ unique evolution and metabolic adaptations that contribute to 

their ecological success. Here I present two studies that explore some of these distinct strategies within 

bloom-forming diatoms in their natural environment by combining environmental transcriptomics with 

additional measures of diatom physiology. First, the response to upward vertical transport during coastal 

upwelling events was examined. Diatoms display a distinct transcriptional response that includes 

frontloading nitrogen-related genes in order to outcompete other groups. Laboratory-based simulations of 

upwelling show that this diatom response occurs over relatively short time scales. Secondly, iron storage 

mechanisms were investigated with iron addition and removal incubations from varying iron 

environments. We show that a specific storage mechanism, the protein ferritin, may provide a competitive 

advantage for ferritin-utilizing diatoms in areas of the world’s oceans that undergo prolonged iron 

limitation with pulsed iron inputs. Together, these studies provide insight into the fundamental ecological 

question of why diatoms are highly successful in response to frequently-encountered abiotic changes. 
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CHAPTER 1: DIVERGENT GENE EXPRESSION AMONG PHYTOPLANKTON TAXA IN RESPONSE 

TO UPWELLING 
 
Introduction 

Wind-driven coastal upwelling associated with eastern boundary currents delivers rich supplies of 

nutrients to illuminated surface waters. This phenomenon provides ideal conditions for blooms of 

phytoplankton that render coastal upwelling regimes centers of new production even though their relative 

ocean area is small (Capone and Hutchins 2013). Typically dominated by large chain-forming diatoms, 

phytoplankton blooms in upwelling zones rapidly sequester carbon dioxide and are the base of short, 

efficient food chains that comprise a significant percentage of the global fish catch (Estrada and Blasco 

1985, Lachkar and Gruber 2013, Lassiter et al 2006, Ryther 1969).  

The phytoplankton community in upwelling zones is postulated to undergo a ‘conveyer belt cycle’ 

in which viable cells are upwelled into sunlit waters to seed a surface bloom. The community is then 

advected away from the upwelled source, and some cells eventually sink out of the photic zone. Surviving 

cells at depth and positioned in future upwelled waters are able to act as seed stock once winds are 

favorable for upwelling (Wilkerson and Dugdale 1987, Wilkerson and Dugdale 2008). This continuity 

between a subsurface population and surface bloom during an upwelling event has been observed through 

a combination of glider and remote sensing techniques (Seegers et al 2015). 

The physiological response of phytoplankton to being vertically transported into a higher light and 

nutrient-rich environment, commonly referred to as shift-up, includes rapid growth rates and strong 

increases in nitrate uptake and assimilation (MacIsaac et al 1985, Wilkerson and Dugdale 1987). This 

nitrate-related activity has been repeatedly observed in simulated upwelling mesocosm experiments 

(Dugdale and Wilkerson 1989, Fawcett and Ward 2011) and in a laboratory experiment on the diatom 

Skeletonema costatum (Smith et al 1992). Shift-up, as expressed through rapid nitrate assimilation, is 

hypothesized to be linked to the success of diatoms in upwelling regions; it is believed that diatoms respond 

quickest to available nitrate once conditions are optimal (Fawcett and Ward 2011). Characterization of this 
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physiological response at a molecular level, however, is lacking. Only upregulation of the nitrogen 

assimilation gene, nitrate reductase, has been observed in Skeletonema costatum under lab-simulated 

upwelling conditions, indicating that there is a molecular basis for the shift-up response (Smith et al 1992). 

Metatranscriptomics is increasingly being applied to eukaryotic phytoplankton communities to 

provide a deeper understanding of molecular responses among resident phytoplankton groups (Caron et 

al 2017). With the growing availability of reference transcriptomes and genomes of eukaryotic 

phytoplankton, unprecedented levels and confidence in gene annotation are being obtained from 

environmental sequences (Alexander et al 2015, Keeling et al 2014). Here we apply comparative 

metatranscriptomics to a simulated upwelling event in a shipboard incubation experiment to characterize 

the phytoplankton community’s response and investigate the molecular basis for shift-up. Our results 

indicate that phytoplankton functional groups exhibit highly distinct transcriptional responses to being 

upwelled in which diatoms constitutively express genes involved in nitrogen assimilation. This strategy 

possibly allows diatoms to outcompete other groups for available nitrogen once physical conditions are 

optimal for growth. 

 

Materials and Methods 

Sample Collection 

On 17 July 2014, upwelling conditions were not present at a site within the California Upwelling 

Zone (35° 56.071’ N, 121° 44.022’ W; Figures A.1, A.2). At 05:00 PDT (12:00 GMT) at the same location, 

viable phytoplankton cells were detected via imaging flow cytometry (FlowCAM, Fluid Imaging 

Technologies Inc., Scarborough, ME, USA) at 96 m which corresponded to the 10°C isotherm (Figure A.3). 

Seawater from this depth was processed immediately for the initial time point. To simulate upwelling, 

additional seawater from the same depth was filled into a large acid-rinsed HDPE barrel for homogenization, 

dispensed to triplicate 10 L Cubitainer® (Hedwin Corporation, Newark, DE, USA), and incubated in an on-

deck plexiglass incubator with flow-through seawater at 33% incident irradiance. Seawater collection and 

incubations followed trace metal clean techniques as they were conducted as part of a larger study to 

examine diatom responses to iron addition or removal (Chapter 2) although for the purposes of this study, 

only the unamended control incubations are considered. Temperature and on deck irradiance values 
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throughout the incubation are provided in Figure A.4.  

Based on macronutrient drawdown, triplicate cubitainer were harvested following 72 hours and 120 

hours of incubation. Subsamples from each cubitainer were preserved or measured for chlorophyll a, 

species composition (by microscopy and FlowCAM), biogenic silica, Fv:Fm, domoic acid, nutrients, 

particulate carbon and nitrogen, carbon and nitrogen uptake, and RNA. Chlorophyll a, particulate carbon 

and nitrogen, and nitrate uptake rates were size fractionated using a series filter cascade. Carbon uptake 

rates were size fractionated using a mesh spacer. Additional methods are described in Appendix A. 

 

Chlorophyll 

Four hundred mL of seawater was gravity-filtered through a 5 µm polycarbonate filter (47 mm) 

followed by a GF/F filter (25 mm) under gentle vacuum pressure (<100 mm Hg). Filters were rinsed with 

0.45 µm filtered seawater and immediately frozen at -80°C until analysis. Chlorophyll a extraction was 

performed using 90% acetone at -20°C for 24 h and measured via in vitro fluorometry on a 10-AU 

fluorometer (Turner Designs, San Jose, CA, USA) using the acidification method (Parsons et al 1984). 

 

Biogenic Silica 

Biogenic silica was determined via filtration of 335 mL onto 1.2 µm polycarbonate filters (45 mm). 

Concentrations were measuring using a NaOH digestion in teflon tubes (Krause et al 2009) and a 

colorimetric ammonium molybdate method (Brzezinski and Nelson 1995). 

 

Particulate Carbon, Particulate Nitrogen, and Nitrate Uptake 

Particulate nitrogen (PN), carbon (PC) and nitrate (NO3-) uptake was obtained by spiking 618 mL 

of seawater with 15N-NaNO3 at no more than 10% of ambient nitrate concentration and incubating for 8 

hours in the flow-through plexiglass incubator. Following incubation, seawater filtration commenced 

immediately and was performed by gravity through a 5 µm polycarbonate filter (47 mm), and with an in-line 

vacuum (<100 mm Hg) onto a precombusted (450°C for 5 h) GF/F filter (25 mm). Cells on the 5 µm 

polycarbonate filter were then rinsed onto an additional precombusted GF/F filter (25 mm) using an artificial 

saline solution. Filters were then stored at -20°C. Prior to analysis, filters were dried at 50°C for 24 hours, 
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wrapped in tin capsules, and pelletized in preparation for analysis of the atom % 15N, PN, and PC using an 

elemental analyzer paired with an isotope ratio mass spectrometer (EA-IRMS). Absolute uptake rates (ρ, 

NO3 taken up per unit time) were calculated using a constant transport model (Eq. (3) from Dugdale and 

Wilkerson (1986)). Biomass-specific NO3 uptake rates (V, NO3 taken up per unit PN per unit time) were 

also calculated according to the constant specific uptake model (Eq. (6) Dugdale and Wilkerson (1986)).  

15NO3 uptake rates were not corrected for possible losses of 15N in the form of dissolved organic nitrogen 

(Bronk et al 1994); therefore, the reported values are considered conservative estimates or net uptake. 

 

Dissolved Inorganic Carbon Uptake 

Sixty mL samples from each cubitainer were distributed into light and dark bottles cleaned with 1.2 

mol L-1 HCl. For each bottle, 1.2 µCi of NaH14CO3 was added and mixed. A 1 mL subsample was taken 

and added to vials containing 6 mol L-1 NaOH to trap and validate the initial inorganic H14CO3 quantities. 

The light and dark bottles were incubated on-deck for 6.5-8 hours. Samples were filtered onto stacked 

polycarbonate filters (5 µm and 1 µm) separated with a mesh spacer. Blank control bottles also containing 

1.2 µCi of NaH14CO3 were filtered onto a GF/F filter after 5 minutes and had counts similar to dark bottles. 

Filters were vacuumed dried, placed in scintillation vials with 0.5 Ml of 6 mol L-1 HCl, permitted to degas for 

24 hours, and counted using a Beckman Coulter LS 6500 scintillation counter. Reported values are light 

bottles minus dark bottles. Biomass-specific dissolved inorganic carbon (DIC) uptake rates (VDIC) were 

calculated by normalizing DIC uptake to PC. 

 

RNA Extraction and Sequencing 

Seawater was filtered onto 0.8 µm Pall Supor® filters (142 mm) using a peristaltic pump then 

immediately flash frozen in liquid nitrogen. RNA was extracted using the ToTALLY RNA Total RNA Isolation 

Kit and treated with DNase 1 (Life Technologies, Grand Island, NY, USA). The extraction procedure was 

followed according to the manufacturer’s instructions with additional first step of glass bead addition to 

assist with organic matter disruption. RNA quantity and purity was assessed prior to sequencing on an 

Agilent Bioanalyzer 2100. Total RNA from the triplicate samples for the initial time point (T0) and the first 

time point (T72) were pooled into one sample due to low RNA yields. Triplicate samples were maintained 
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for the second time point (T120). Library prep was conducted with the Illumina TruSeq Stranded mRNA 

Library Preparation Kit and HiSeq v4 reagents. Sequencing of barcoded samples was performed on an 

Illumina HiSeq 2000 (125bp, paired-end).  

 

Metatranscriptome Assembly, Annotation, and Read Quantification 

Reads were trimmed for quality and adapter removal using Trimmomatic v0.32 (paired-end mode, 

adaptive quality trim with 40 bp target length and strictness of 0.6, minimum length of 36 bp; Bolger et al 

2014). Trimmed paired reads that overlap were merged into single reads with BBMerge v8.0. Merged pairs 

and non-overlapping paired-end reads were then used to assemble contigs using AbySS v1.5.2 with varied 

k-mer sizes (Birol et al 2009). Assemblies were merged using Trans-AbySS v1.5.3 to remove redundant 

contigs (Robertson et al 2010), and those shorter than 125 bp were discarded. Read counts were obtained 

by mapping raw reads to contigs with Bowtie2 v2.2.6 (Langmead and Salzberg 2012) and filtered by 

mapping quality with SAMtools v1.2 (Li et al 2009). Mapping percentages are provided in Table A.1. 

Annotation was assigned by best homology (lowest E-value) to protein databases using BLASTX 

v2.2.31 (E-value ≤ 10-5). For taxonomic identification, MarineRefII, a custom reference database was used. 

MarineRefII contains predicted protein sequences of marine microbial eukaryotes and prokaroytes 

including all sequenced transcriptomes from the Marine Microbial Eukaryote Transcriptome Sequencing 

Project (Keeling et al 2014). MarineRefII was supplemented with transcriptomes of isolated phytoplankton 

from these incubations adding increased confidence in the taxonomic annotation of some contigs (Table 

A.2). To assign gene function to contigs, the same methodology with the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; Release 75) was used (Kanehisa et al 2017). The best hit with a KEGG Ortholog (KO) 

number from the top 10 hits was chosen. Similarly, analysis of module annotations (MO) was conducted by 

selecting the top BLASTX hit with a KEGG MO number from the top 10 hits. A summary of annotation 

results is provided in Table A.3. 

 

Differential Expression Analysis 

Differential expression was assessed by summing read counts of contigs within a taxonomic group 

(phylum-based or genus for only the diatoms, Chaetoceros and Pseudo-nitzschia) by KEGG Gene 
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Definition or KEGG Orthology (KO) annotation. EdgeR v3.12.0 was used to calculate normalized fold 

change and counts-per-million (CPM) from pairwise comparisons within each taxonomic group using the 

exactTest function (Robinson and Smyth 2008, Robinson et al 2010). Significance (P-value < 0.05) was 

calculated by using edgeR’s estimate of tagwise dispersions utilizing the available replication of all 

treatments from the second time point (T120; Figure A.5; Chen et al 2014). ExactTest output in combination 

with the taxonomic distributions per gene were plotted using a custom plotting function available at 

https://github.com/marchettilab/mantaPlot. 

 Shared expression of gene was considered when a gene was detected in at least one of the 

libraries under comparison for each taxonomic group. For binning of genes displayed in heatmaps, a 

positive or negative fold change, variance greater than the number of taxonomic groups, and fold change 

greater than or less than all other groups were used. Genes with a log2 fold change greater than 2 or less 

than -2 but had a variance less than the number of taxonomic groups were considered similarly 

overrepresented by all groups. Otherwise, the expression level was considered similar on the basis of fold 

change. These data were visualized with pheatmap v1.0.8. 

 

Data Deposition 

The data reported in this paper have been deposited in the National Center for Biotechnology 

(NCBI) sequence read archive under the accession no. SRP074302 (BioProject accession no. 

PRJNA320398). Assembled contigs, read counts, and annotations are available at 

https://marchettilab.web.unc.edu/data/. Isolate 18S sequences, transcriptome raw reads, assemblies, and 

predicted peptide sequences are deposited in Cyverse (http://www.cyverse.org) under the project name 

unc_phyto_isolates (Appendix A). Isolate 18S sequences are also deposited in Genbank (accession nos. 

KX229684-KX229691). 
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Figure 1.1 - Measurements from the initial upwelled water and incubations at 72 and 120 hours: >5 
µm (red) and <5 µm (blue). (A) Chlorophyll a (closed circles), particulate nitrogen (open circles), and 
biogenic silica (green). (B) Primary productivity expressed as inorganic carbon uptake (µmol C L-1 d-1). (C) 
Absolute nitrate (NO3-) uptake rates (ρ, NO3- taken up per unit time). (D) Ratios of particulate carbon to 
particulate nitrogen. (E) Biomass-specific dissolved inorganic carbon uptake rates (VDIC), i.e. inorganic 
carbon uptake normalized to biomass as particulate carbon (µmol C L-1 d-1 / µmol C L-1 or d-1) (F) 
Biomass-specific nitrate uptake rates (VNO3), i.e. nitrate uptake rates normalized to biomass as particulate 
nitrogen (µmol N L-1 d-1 / µmol N L-1 or d-1). Error bars indicate standard deviation of the mean (n = 3). 
 

Results and Discussion 

Experimental Overview and Physiological Observations 

Results from the simulated upwelling experiment indicate that a bloom of large phytoplankton (>5 

µm) was induced with observations of shift-up in terms of growth, primary production, and nitrate uptake 

within these large cells. Macronutrient concentrations in the upwelled waters remained high throughout the 

incubations; however, significant growth in the large (>5 µm) phytoplankton community was observed 

(Figure 1.1a and Figure A.6a). The initial dissolved iron concentration was approximately 1.28 nmol L-1 

which is marginally higher than the normal values (<1 nmol L-1) observed in the region. For complete 

drawdown of nitrate, an iron to nitrate ratio of 8 nmol L-1:20 µmol L-1 is typically required (Bruland et al 

2001). The initial ratio of 1.28 nmol L-1:21.86 µmol L-1 in the incubations therefore indicates that iron had 

the potential to be a limiting nutrient which resulted in 15 µmol L-1 of unused nitrate after 120 hours.  

In addition to chlorophyll a, the upwelling simulation produced notable increases in biogenic silica 

suggesting that the phytoplankton growth may be attributed to diatoms (Figure 1.1a). The presence of 
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domoic acid also suggests a considerable presence of the diatom genus Pseudo-nitzschia (Lelong et al 

2012). Concentrations were below the detection limit until 120 hours when the average concentration was 

1.34 µg L-1 (Figure A.6b). Although this concentration is lower than peak concentrations observed during 

blooms in California coastal waters (Schnetzer et al 2013), it nevertheless indicates that Pseudo-nitzschia 

spp. were abundant within the incubations by 120 hours. 

This success of large phytoplankton is consistent with previous studies showing phytoplankton from 

large size fractions as the significant contributors to growth and new production during upwelling. Large 

phytoplankton consistently have greater increases in biomass and outcompete small cells for nutrients 

during a bloom (Fawcett and Ward 2011, Wilkerson et al 2000). These large phytoplankton are commonly 

characterized as chain-forming colonial diatoms such as Chaetoceros spp. but include Pseudo-nitzschia 

spp. (Estrada and Blasco 1985, Lassiter et al 2006). 

The large phytoplankton community also exhibited clear physiological responses to being upwelled. 

Maximum photochemical yields (Fv:Fm) of the whole community increased from 0.25 to 0.51 within the first 

72 hours (Figure A.6c). Dissolved inorganic carbon and nitrate uptake in the large cells increased 

throughout the experiment and was significantly higher than the small cells (Figures 1.1b, 1.1c). The 

particulate carbon-to-nitrogen ratio (C:N) was initially 31.5:1 in the >5 µm size fraction but decreased to 

approach the expected elemental composition of 6.6:1 (Redfield et al 1963), while C:N values remained 

fairly constant and above the Redfield ratio for the small size fraction (Figure 1.1d). This return to Redfield 

stoichiometry for the larger community was coupled with increasing biomass-specific NO3- uptake rates 

(VNO3) that were approximately double that of biomass-specific carbon uptake rates (VDIC) (Figures 1.1e, 

1.1f). 

These data are also a clear indication of a positive response from light limitation, or potentially a 

resting stage, to high growth for the larger phytoplankton. The initial low Fv:Fm signifies that the community 

was stressed but quickly able to return to higher photosynthetic efficiencies. A high initial C:N ratio that 

approaches the Redfield-predicted value has also been observed in similar mesocosm experiments 

(Fawcett and Ward 2011, Kudela and Dugdale 2000). These studies suggest that the initial high C:N ratio 

indicates severe N limitation which likely occurred as the phytoplankton cells in aged upwelling water began 

to sink to depth. Once released from light limitation, the community is able to stabilize with large 
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phytoplankton controlling the total C:N as time progresses. It is also possible that there was C-rich detrital 

material elevating the initial measurement (Fawcett and Ward 2011), but acceleration of nitrate uptake, 

especially in relation to carbon uptake, to drive the community toward the Redfield-predicated ratio is clear. 

The larger cells are able to take advantage of nitrate as conditions become optimal and dominate the 

community since they uptake nitrate at higher rates than the smaller cells. 

 

 

Figure 1.2 - Average taxonomic distribution by mapped reads from each time point. (A) Percentage 
of reads from the whole community. (B) Percentage of reads for diatom genera within all reads assigned 
as diatoms. 
 

Taxonomic Composition 

Metatranscriptome assembly resulted in 3.1 million contigs with levels of annotation similar to 

previous studies utilizing KEGG and reference transcriptomes from the Marine Microbial Eukaryote 

Transcriptome Sequencing Project (MMETSP; Table A.3; Alexander et al 2015, Cohen et al 2017, Keeling 

et al 2014). Obtaining taxonomically-annotated mRNA read counts allows for inference of relative 

taxonomic composition which is supported by microscopic cell counts and observations from an imaging 

flow cytometer (FlowCAM; Figure 1.2a and Table A.4). The initial community biomass and cell abundance 

were relatively low but quite diverse (Figure 1.1a and Table A.4). Relative abundances of transcripts 
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suggests that dinoflagellates were the dominant phytoplankton group although microscopic cell counts 

suggest chlorophytes may have been more abundant. Satellite-derived sea surface temperature and ship-

board wind data indicate that upwelling-favorable conditions were not present for 13 days before the 

incubations (Figures A.1, A.2). Although multiple factors contribute to the residence time of cells at depth, 

these data suggest an upper limit of 13 days prior to sampling. By 72 and 120 hours following incubation, 

there was an overwhelming increase in the abundance of mRNA reads attributable to diatoms (Figure 1.2a) 

consistent with the bulk measurements, FlowCAM, and previous studies (Estrada and Blasco 1985): 

diatoms were unequivocally the dominant group within the simulated upwelling event. 

 The taxonomic composition of diatoms followed a similar trend as the whole community with an 

initially more diverse diatom community that transitioned into one dominated by just two genera: 

Chaetoceros and Pseudo-nitzschia (Figure 1.2b). Chaetoceros appeared to make rapid early gains but the 

community became mostly Pseudo-nitzschia by 120 hours. These two genera were also dominant within a 

previous mesocosm experiment examining shift-up at a nearby coastal California site (Kudela and Dugdale 

2000). Chaetoceros spp. were found as resting spores and may quickly germinate following upwelling to 

make early gains in cell abundance (Pitcher 1990). Although a resting stage for Pseudo-nitzschia spp. is 

not known (Lelong et al 2012), they are significant members of the phytoplankton community throughout 

the upwelling cycle and dominated after 120 hours consistent with a peak in the Pseudo-nitzschia produced 

toxin, domoic acid (Figure A.6b). The presence of Pseudo-nitzschia is unsurprising considering the reports 

that members of this genus often dominate subsurface chlorophyll maxima (Ryan et al 2005), thin layers 

(McManus et al 2008, Rines et al 2002), and upwelled communities (Seegers et al 2015) that often result 

in harmful algal blooms in this region. 

 

Comparative Gene Expression of Phytoplankton Groups 

Examining shifts in the total transcript pool provides a broad depiction of the responsiveness of 

different groups. By comparing expression levels at 0 and 72 hours, these shifts reveal the initial whole 

transcriptome responses to simulated upwelling by the main detected groups of phytoplankton (Figure 

1.3a). Diatoms had a high proportion of overrepresented genes after upwelling compared to other groups, 

over 950 (20%) of which were significantly overrepresented (P-value < 0.05). Dinoflagellates showed an 
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opposite pattern with gene expression skewed towards overrepresentation in the pre-upwelled condition 

while haptophytes had an even distribution of overrepresented genes in both phases. Interestingly, 

chlorophytes also had a higher number of significantly overrepresented genes post-upwelling, and they 

were able to maintain their relative proportion of the overall transcript pool unlike the dinoflagellates and 

haptophytes. 

 

Figure 1.3 - KEGG Ortholog (KO) gene expression comparison among the four main detected 
phytoplankton groups: diatoms (blue), dinoflagellates (red), chlorophytes (green), and haptophytes 
(orange). (A) Histograms of KO counts binned by log2 fold change intervals of 1 for 0 and 72 hours. 
Dashed vertical lines indicate a log2 fold change of -1 or 1. The number and percentage of only the 
significantly (P-value < 0.05) overrepresented genes at 0 hours (pre-upwelling; left) and 72 hours (post-
upwelling; right) are annotated on each plot. (B) Venn diagram of expressed KOs at 72 and 0 hours for 
each group. (C) Heatmap for the 1,476 commonly expressed KOs at 0 and 72 hours. Each row indicates 
an expressed KO with darker red (positive fold change) indicating overrepresentation at 72 hours and 
darker blue (negative fold change) indicating overrepresentation at 0 hours.  
 

Smaller changes across all four groups were observed when examining shifts from 72 to 120 hours 

(Figure A.7). Relatively minor changes in the whole transcript pool and a less pronounced taxonomic shift 

from 72 to 120 hours indicates that most of the activity in relation to diatom dominance likely occurred in 
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the first 72 hours. This timing and slowing of response also corresponds to field observations that predict a 

5-7 day window for cells to achieve balanced growth and transition from shift-up to a low nutrient shift-down 

(Dugdale and Wilkerson 1989, Wilkerson et al 2006). It has been speculated that these shifts, or variable 

transcript allocation, are a reflection of r- and K-type growth strategies (Alexander et al 2015). Our 

observations appear to follow this paradigm with diatoms exhibiting r-type growth and the highest transcript 

reallocation in terms of gene count.  

Analysis of the expression of genes with shared KEGG Orthology (KO) annotation allows for direct 

comparisons between taxonomic groups as orthologs normally retain the same function throughout 

evolutionary history. Similar or different expression of a gene among groups may signify correspondingly 

similar or different investments in cellular processes at given time points. We detected 1,476 orthologous 

genes expressed by all four taxonomic groups at 0 or 72 hours (Figures 1.3b, 1.3c). Only 18 genes were 

binned as highly overrepresented at 72 hours by all four phytoplankton groups, of which many were related 

to chlorophyll synthesis. Over 550 genes had low absolute fold change values, many of them positive, 

across all four groups. These included more photosynthesis-related genes such as photosystem II 

constituents, photosynthesis electron transport proteins, light-harvesting chlorophyll protein complex 

proteins, and most of the genes associated with the Calvin cycle. The shared expression of these genes 

across groups is unsurprising considering the community is transitioning from a deep and dark environment 

to a sunlit environment, and would benefit from investing in photosynthetic machinery. Other genes that 

were highly expressed but showed little change in expression across all four groups were associated with 

other predictable cellular functions such as ribosomal proteins, translation initiation factors, and all 

constituents of the citric acid cycle. 

Of particular interest is the clear overrepresentation at 72 hours of approximately 200 genes per 

taxonomic group that show little or negative fold change in the other three groups (Figure 1.3c). It is 

important to note that although differences in shifts in the total transcript pool were observed (Figure 1.3a), 

all groups are still responding and highly increasing their expression of a distinct set of genes compared to 

the other groups. This pattern continues to hold when examining the genes that were shared between 

diatoms and just one or two of the other groups (Figure A.8). The genes highly expressed by each group 

appear to be of diverse function as they do not cluster into certain categories or modules but can be broadly 
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interpreted as investments in different metabolic processes (Figure A.9). These unique responses may 

reflect fundamental differences in life strategies and ecological traits among functional groups.  

To further explain the dominance of diatoms in these systems, expression of diatom annotated 

genes was investigated. 1,132 KOs were found solely in diatoms, likely due to the abundance of diatoms 

in our samples resulting in an improved metatranscriptome assembly for that group (Figure 1.3b). However, 

only 173 of these KOs were significantly overrepresented at either 0 or 72 h. It is difficult to determine the 

importance of the remaining genes that were expressed in low abundances. 

 Diatom taxa, however, were not found to respond equivalently to being upwelled; clear differences 

were noted between Chaetoceros, Pseudo-nitzschia, and other diatoms (Figure 1.4a). Expression of 2,807 

orthologs was detected in the genera Chaetoceros, Pseudo-nitzschia, and all other diatom genera 

combined mostly consisting of Thalassiosira. Similar to what was observed for major taxonomic groups, 

there was large overrepresentation of distinct sets of genes, particularly in Chaetoceros spp., also 

potentially reflecting transcriptional investments in different processes at different times.  

Eighty-five genes showed significantly opposite fold-changes in Chaetoceros and Pseudo-nitzschia 

when compared to other diatoms. This highlights that gene expression may not be as accurately assessed 

by combining genes at high level taxonomic groupings as done in previous metatranscriptomics studies 

(Alexander et al 2015, Bertrand et al 2015). The high expression of a gene at one time point or treatment 

by one group may be cancelled out by another group with opposing expression leading to the incorrect 

conclusion for the group as a whole. Additionally, one genus could be driving expression of many genes 

rather than being distributed across the entire group. 

 

Molecular Characterization of the Nitrogen Assimilation Response 

Gene expression was assessed among specific diatom genera and other phytoplankton groups to 

investigate nitrogen assimilation and utilization. Querying nitrogen-related genes for these groups and 

partitioning by k-means clustering revealed differences in gene expression for the diatoms compared to 

other phytoplankton (Figures 1.4b, A.10). The genes that clustered as highly expressed both pre- and post-

simulated upwelling, referred to here as frontloaded, were almost all from diatoms and related to nitrogen 

assimilation: nitrate transporter, nitrate reductase, nitrite reductase, and ammonium transporter (Figure 
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1.4c). The only constitutively and highly expressed nitrogen-related gene by other groups was glutamine 

synthetase within dinoflagellates and haptophytes. Within diatoms, the nitrate assimilation genes all had a 

positive fold change suggesting slightly greater abundance of these genes post-upwelling when compared 

to pre-upwelling matching our observations of increased nitrate uptake at 72 and 120 hours (Figures 1.1c, 

1.1f). The change in expression in nitrate reductase was very low which contrasts a simulated upwelling 

experiment with a Skeletonema species (Smith et al 1992). Skeletonema, however, was not found to be an 

abundant genus within this study, and this variation further highlights potential genera-specific differences 

in the upwelling response.  

The urea cycle is believed to facilitate recovery from prolonged nitrogen limitation for diatoms (Allen 

et al 2011), but may also be important for the shift-up response. The urea cycle genes carbamoyl-phosphate 

synthetase and argininosuccinate synthase were also frontloaded by diatoms (Figures 1.4b, 1.4c, and 

A.10). Several others were significantly overrepresented post-upwelling including ornithine 

carbamoyltransferase, arginosuccinate lyase, and urease. The exception in diatoms was arginase, the final 

enzyme in the urea cycle which was significantly overrepresented pre-upwelling by diatoms not including 

Chaetoceros (Figure A.10). Low expression of arginase post-upwelling is similar to the diatom response to 

iron enrichment (Marchetti et al 2012) and may suggest that in both of these scenarios, there are alternative 

fates for urea cycle intermediates such as nitrogen storage or silica precipitation (Kröger et al 2001, Llácer 

et al 2008).  

High relative expression of almost all of these nitrogen-related genes in diatoms compared to most 

of the other phytoplankton groups at both 0 and 72 hours suggests that investing in nitrogen assimilation 

and utilization is a priority even when conditions are not optimal for growth. Constitutively high expression 

of the primary genes for nitrate assimilation such as nitrate transporters and nitrate reductase pre-upwelling 

may contribute to the rapid response of diatoms as part of their shift-up process. By maintaining elevated 

pools of nitrogen-related gene transcripts or expressed proteins, upwelled cells are set up to rapidly 

assimilate available nitrogen whereas other phytoplankton groups appear to wait to upregulate these genes 

once upwelled into the euphotic zone. These results further support the hypothesis that one reason diatoms 

dominate upwelling regions is because they have the ability to take up and assimilate nitrate more quickly 

than other phytoplankton groups (Fawcett and Ward 2011). 
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Figure 1.4 - Diatom gene expression. (A) Heatmap for the 2,807 commonly expressed KOs at 0 and 72 
hours for Chaetoceros, Pseudo-nitzschia, and all other diatoms. Each row indicates an expressed KO 
with darker red (positive fold change) indicating overrepresentation at 72 hours and darker blue (negative 
fold change) indicating overrepresentation at 0 hours. (B) MA plot of nitrogen-related genes for the four 
main detected phytoplankton groups: diatoms (blue), dinoflagellates (red), chlorophytes (green), and 
haptophytes (orange). Genes are grouped into clusters using k-means clustering with confidence ellipses 
at the 90% level. Select genes are labelled within clusters that represent the most highly frontloaded 
genes (black ellipse) and additional frontloaded genes (medium gray ellipse). These are labelled as 
follows: NRT, nitrate transporter; GLNA, glutamine synthetase; NR, nitrate reductase; AMT, ammonium 
transporter; NIRA, nitrite reductase (ferredoxin); ASSY, arginosuccinate synthase; CPS, carbamoyl-
phosphate synthetase; OTC, ornithine carbamoyltransferase; ASL, argininosuccinate lysase; URE, 
urease, ARG, arginase. (C) Cell schematic depicting frontloading of genes associated with nitrogen 
assimilation and utilization for diatoms. The model is based on Alexander et al. (2015a) and utilizes the 
same KO numbers. Color indicates the average abundance of the genes (log2 CPM) minus the absolute 
value of the log2 fold change to highlight the most abundant, lowest change (i.e., frontloaded) genes. 
Labels are as indicated in Figure 1.4b and as follows: GLT1, glutamate synthase (NADP/NADH); GLT2, 
glutamate synthase (ferredoxin); GLTD, glutamate synthase; small chain. (D) Differential transcript 
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abundance between 0 and 72 hours for Chaetoceros (red) and Pseudo-nitzschia (blue) for expressed 
KEGG Orthologs (KO). Each pie represents a KO and increases in size with absolute values of its 
coordinates to optimize visibility. Gene circles that are shaded and have grey borders are not significantly 
represented in either library (P-value ≥ 0.05). Select gene names discussed in the text are labeled as 
follows: CHSY, chondroitin sulfate synthase; FTN, ferritin; GUCY1B, guanylate cyclase soluble subunit 
beta; HERC1, ubiquitin-protein ligase; MRT4; mRNA turnover protein, POT1, protection of telomeres 
protein 1; PRKG1, cGMP-dependent protein kinase 1; SOD, superoxide dismutases. 
 

This transcriptionally proactive approach to abiotic changes, termed ‘frontloading’, has been 

characterized with environmental stress response genes in coral and yeast (Barshis et al 2013, Berry and 

Gasch 2008). It is also similar to what has been observed in diatoms within a previous metatranscriptomics 

study in relation to iron stress. Iron-enrichment experiments in the northeastern Pacific Ocean 

demonstrated oceanic diatoms continued expressing genes encoding for iron-free photosynthetic proteins 

rather than substituting genes encoding for iron-containing functionally equivalent proteins which was in 

contrast to other phytoplankton groups (Cohen et al 2017, Marchetti et al 2012). This strategy is speculated 

to provide oceanic diatoms with the ability to rapidly acclimate to the inevitable return to iron-limited 

conditions just as our observations show a strategy that provides certain diatoms with the ability to rapidly 

take up nitrogen following upwelling. Constitutive frontloading is suggested to provide organisms with 

resilience to such stressors (Barshis et al 2013). Along similar lines, bloom-forming diatoms such as 

Chaetoceros and Pseudo-nitzschia may have evolved to frontload transcripts of particular genes depending 

on frequently encountered environmental fluctuations such as conditions associated with the upwelling 

conveyor belt cycle rather than simply reactively responding to these changes.   

 

Chaetoceros and Pseudo-nitzschia Expressed Genes  

Analyzing genes assigned to two of the most dominant diatom genera, Chaetoceros and Pseudo-

nitzschia, provides further insight into the molecular mechanisms these genera use at depth and as part of 

their shift-up response. From KOs with module annotations, it is evident that the significantly 

overrepresented genes at both time points fall into a diverse set of functional categories even at a high-

level grouping (Figure A.9). To obtain finer resolution, gene expression among all KOs for these genera 

was examined. 

 Many genes overrepresented in the pre-upwelling condition, such as those involved in proteolysis, 

stabilization of DNA or RNA, defense against reactive oxygen species (superoxide dismutases)(Fridovich 
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1998), and TEP production, suggest that diatoms are responding to stress (Figure 1.4d; Appendix A). 

Pseudo-nitzchia in particular expressed a set of distinctive genes as part of its shift-up response. Ferritin 

was highly expressed post-upwelling, possibly providing a method of storing the essential micronutrient 

iron. As iron availability in the California upwelling regime can be sporadic and potentially growth limiting, 

ferritin may provide an advantage to Pseudo-nitzschia by concentrating iron for longer-term storage 

(Bruland et al 2001, Marchetti et al 2009) although it may also be used for iron homeostasis (Pfaffen et al 

2015).  

At 72 hours, Pseudo-nitzschia also highly expressed a subunit of soluble guanylate cyclase 

(GUCY1B, sGC, Figure 1.4d). sGC is the only proven receptor of nitric oxide (Denninger and Marletta 1999) 

and synthesizes cyclic guanosine monophosphate (cGMP), a second messenger related to many 

physiological responses (Delledonne 2005). cGMP activates protein kinase G (PRKG1) which was also 

significantly expressed (Figure 1.4d). Although nitric oxide has been hypothesized to be an infochemical 

for intercellular signaling and monitoring of stress in diatoms (Amin et al 2012, Vardi 2008), Pseudo-

nitzschia are generally not believed to have a nitric oxide synthase gene as a putative sequence was 

detected in only one species, P. multistriata (Di Dato et al 2015). Pseudo-nitzschia may be using sGC to 

monitor exhibition of stress from other genera which could allow them to rapidly adapt to changing 

conditions or respond to sexual cues (Basu et al 2017). Nitric oxide is also produced by activation of nitrate 

reductase (Sakihama et al 2002). As increased nitrate reductase activity occurs as part of the shift-up 

response, sGC may be used to monitor the continuation of that response and promote certain cellular 

functions such as gliding of pennates or binary fission (Thompson et al 2008). Inhibition of sGC prevents 

the germination of Leptocyclindrus danicus resting spores suggesting that it may be involved in transitioning 

from a resting stage in certain diatoms (Shikata et al 2011). Examination of this gene in our reference 

database reveals that it is highly conserved among Pseudo-nitzschia spp. but not ubiquitously present 

among diatoms (Figure A.11). The high expression of sGC as part of the upwelling response, evolutionary 

conservation of this gene, and potential to act as an important signaling device among Pseudo-nitzschia 

spp. may play a role in their success. 
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Conclusions 

Our simulated upwelling experiment in the California Upwelling Zone is consistent with previous 

physiological observations of the shift-up response in upwelled phytoplankton: growth of large chain-

forming diatoms and increased nitrate assimilation rates. The application of metatranscriptomics to the 

entire phytoplankton community highlights the divergent transcriptional response of major phytoplankton 

groups and diatom genera, potentially reflecting variations in their life history strategies. By frontloading, 

diatoms exhibit the potential for abundant nitrogen-related genes in their enzyme pool allowing them to 

respond to available nitrate more rapidly than other phytoplankton. This trait is not unlike the response of 

oceanic diatoms to iron enrichment and may indicate that diatoms have evolved to frontload transcripts in 

response to frequently encountered changes in their environment. Although the response to upwelling has 

largely been focused on nitrogen-related pathways, it is likely that other uncharacterized genes and 

pathways are also important to diatom success. 
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CHAPTER 2: DIFFERENT IRON STORAGE STRATEGIES AMONG BLOOM-FORMING DIATOMS 

Introduction 

 In wide-ranging areas of the world’s oceans, phytoplankton growth is frequently limited by the 

availability of the micronutrient iron (Martin and Fitzwater 1988, Moore et al 2001). Inputs of iron via 

atmospheric dust deposition or resuspension of continental shelf sediment during upwelling are spatially 

and temporally variable, leading to gradients or sporadic episodes of increased iron concentrations 

(Bruland et al 2001, Mahowald et al 2005). From the tropics to the poles, the introduction of iron to iron-

limited surface waters is known to stimulate phytoplankton growth usually dominated by large diatoms 

(Boyd et al 2007). One cosmopolitan genus of pennate diatoms in particular, Pseudo-nitzschia, 

consistently thrives when iron is added (de Baar et al 2005). Consequently, certain bloom-forming 

diatoms have evolved to possess a number of mechanisms that allow them to persist under chronically 

low iron and rapidly divide when it is reintroduced (Armbrust 2009, Marchetti and Maldonado 2016). One 

such mechanism is the ability to store iron; however, methods for storage are not universal among all 

diatoms, which in turn may affect iron storage capacities. Two iron storage strategies in diatoms have 

been previously described: within the protein ferritin and vacuoles (Marchetti and Maldonado 2016). 

 Diatom ferritins are unlike those from other eukaryotes as the gene was acquired via lateral gene 

transfer from cyanobacteria, some of which use ferritin for long-term storage (Groussman et al 2015, 

Keren et al 2004). Although ferritin is present across all four diatom lineages, it appears to be mostly 

absent in many centric diatoms such as several Thalassiosira species (Cohen et al 2018, Groussman et 

al 2015). Furthermore, evidence suggests that diatom ferritins do not all serve the same functional role. In 

addition to long-term storage, ferritin may play a role in iron homeostasis. Free intracellular iron is toxic to 

cells, and some microalgae express ferritin to buffer iron released from degrading proteins (Botebol et al 

2015, Liochev and Fridovich 1999, Long et al 2008). In the green algae, Ostreococcus, ferritin that serves 

this buffering role was regulated by the circadian clock rather than iron availability (Botebol et al 2015). 
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Similarly in some FTN-containing diatoms, gene expression changes are comparatively subdued between 

different iron states suggesting a role other than long-term storage (Cohen et al 2018). 

 In contrast, Pseudo-nitzschia ferritins are highly conserved, and when acclimated to varied iron 

concentrations, Pseudo-nitzschia substantially increase FTN expression with dissolved iron 

concentrations (Marchetti et al 2009, Marchetti et al 2017). Additionally, the oceanic species Pseudo-

nitzschia granii was also able to perform significantly more cell divisions than a diatom without ferritin, 

Thalassiosira oceanica, when transitioned from high to low iron conditions (Marchetti et al 2009). As a 

result, ferritin in Pseudo-nitzschia provides an explanation for their unusually high iron storage capacities 

(Cohen et al 2018, Marchetti et al 2009); however, biochemical examination of Pseudo-nitzschia ferritin 

shows that iron remineralization is slow, suggesting a role in buffering (Pfaffen et al 2015). Beyond 

speculation over its true function, the ecological importance of ferritin also remains in question; it has 

been suggested that competitive strength for diatoms in iron-limited regions lies primarily in using iron-

free proteins rather than iron storage (Mock and Medlin 2012).  

 In the non-ferritin containing species of the genus Thalassiosira, evidence supports an 

intracellular vacuole mechanism for iron storage. Thalassiosira pseudonana possesses a divalent 

transporter belonging to the natural resistance associated macrophage protein (NRAMP) family (Kustka 

et al 2007), and some NRAMP proteins are used in other eukaryotes to transport iron out of vacuoles 

(Lanquar et al 2005, Portnoy et al 2000). Observed up-regulation of this gene under low dissolved iron 

concentrations suggests that NRAMP could be used to mobilize iron out of a vacuole although a role in 

cell-surface uptake has not been ruled out (Kustka et al 2007). Anomalously high intracellular regions of 

iron with stoichiometries consistent with polyphosphate-bound iron in T. pseudonana and Thalassiosira 

weissflogii also support a vacuolar storage mechanism for these diatoms (Nuester et al 2012). 

 Advances in analytical capabilities have improved the ability to study the relationship between 

iron and phytoplankton in natural communities. Reference genomic data for marine organisms allows for 

annotation of environmental RNA, or metatranscriptomes, including accurate taxonomic annotation for 

well-represented genera (Caron et al 2017). Synchrotron X-ray fluorescence (SXRF) enables quantitative 

elemental analysis, including that of iron, for individual cells (Twining et al 2003). Here we combine 

metatranscriptomics and SXRF to examine iron storage dynamics in natural eukaryotic phytoplankton 



25 
  

communities. Using shipboard incubations, iron was added to or removed from phytoplankton with 

varying initial iron states. We show that iron storage ability can be exceptionally high, and ferritin 

expression is unique in Pseudo-nitzschia while other non-ferritin utilizing diatoms likely employ vacuolar 

storage. This ferritin-linked storage ability may provide an advantage to ferritin-utilizing diatoms such as 

Pseudo-nitzschia under prolonged periods of iron limitation. 

 

Materials and Methods 

Experimental Design  

Incubation experiments were conducted at five sites within the California Upwelling Zone (CUZ, 

July 2014) onboard the R/V Melville or along the Line P transect in the subarctic NE Pacific (June 2015) 

onboard the CCGS John P. Tully (Figure 2.1 and Table 2.1). Experimental procedures are described in 

(Cohen et al 2017b) for all sites except C-Low2, which is described in Chapter 1. In summary, near-

surface water (Table B.1) was collected using trace-metal clean techniques and distributed into acid-

cleaned 10L Cubitainers® (Hedwin Corporation, Newark, DE, USA) except C-Low2 for which water was 

collected from 96 m. Cubitainers were incubated on-deck at near-ambient surface water temperature and 

screened at approximately one-third surface irradiance. Treatments included an unamended control (C), 

addition of iron with 5 nmol L-1 FeCl3 (Fe), removal of iron with 200 nmol L-1 of the fungal siderophore 

desferroxamine B (DFB), and iron addition at t = 0 followed by iron removal at the first time point (FeDFB) 

to mimic a short-lived iron pulse. At site P-Low, DFB was added to a control and Fe treatment at 48 hours 

for the DFB and FeDFB treatment sampled at 96 hours. At site P-High, 10 µmol L-1 of NO3 was added to 

all incubations to support growth since initial NO3 concentrations were low (1.49 µmol L-1). Timing of 

incubation sampling for each experiment is described in Table B.1. At dawn of each time point, triplicate 

cubitainers of each treatment were harvested and subsamples were collected for the following 

measurements: dissolved inorganic nutrients, chlorophyll a, biogenic silica, Fv:Fm, RNA, and SXRF. 

Methods for analyzing chlorophyll a, biogenic silica, and Fv:Fm are described in Cohen et al (2017b). 

Additional methods are described in Appendix B. 
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Figure 2.1 - Map of field incubation locations with interpolated statistical means of nitrate 
concentrations (µmol L-1) on a 1° grid of all decades from World Ocean Atlas 2013. 
 
 
 
 
 

 

 

 

Table 2.1. Incubation site identifiers, location, and initial iron conditions. At site P-High, 10 µmol L-1 of 
NO3 was added.  

 

RNA-Seq Overview 

The initial RNA extraction, sequencing, assemblies, and annotations are described in Cohen et al 

(2017b) and Chapter 1. Briefly, seawater was filtered onto 0.8 µm filters then immediately flash frozen. 

RNA was extracted using the ToTALLY RNA Total RNA Isolation Kit and treated with DNase 1 (Life 

Name Latitude & 
Longitude 

Fe:NO3 
(nM:µM) 

Initial [Fe]  
(nM) 

C-High 38.7° N, 123.7° W 0.26 3.57 
C-Low1 42.7° N, 125.0° W 0.06 1.05 
C-Low2 35.9° N, 121.7° W 0.06 1.28 
P-High 48.7° N, 126.7° W 0.42 0.64 
P-Low 50.0° N, 145.0° W 0.01 0.05 
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Technologies, Grand Island, NY, USA). Library preparation was conducted with the Illumina TruSeq 

Stranded mRNA Library Preparation Kit and HiSeq v4 reagents. Sequencing of barcoded samples was 

performed on an Illumina HiSeq 2000 (125bp, paired-end). All samples were sequenced in triplicate 

except samples for treatments with low yields (all t = 0 and Line-P samples) where triplicate extractions 

were pooled into one sample. Reads were trimmed for quality and removal of adapters using 

Trimmomatic v0.32 (Bolger et al 2014). Trimmed paired reads that overlap were merged into single reads 

with BBMerge v8.0. Merged pairs and non-overlapping paired-end reads were used to assemble contigs 

using ABySS v1.5.2 with varied k-mer sizes (Birol et al 2009) then the assemblies were merged using 

Trans-ABySS v1.5.3 to remove redundant contigs (Robertson et al 2010). Contigs shorter than 120 bp 

were discarded. 

Annotation was assigned by best homology (lowest E-value) to protein databases using BLASTX 

v2.2.31 (E-value ≤ 10-3). For taxonomic identification, MarineRefII, a custom reference database (Moran 

Lab, University of Georgia) was used. MarineRefII contains predicted protein sequences of marine 

microbial eukaryotes and prokaroytes including all sequenced transcriptomes from the Marine Microbial 

Eukaryote Transcriptome Sequencing Project (Keeling et al 2014). To assign gene function to contigs, the 

same methodology with the Kyoto Encyclopedia of Genes and Genomes (KEGG; Release 75) was used 

(Kanehisa et al 2017). The best hit with a KEGG Ortholog (KO) number from the top 10 hits was chosen. 

For this analysis, assemblies from all sites were then merged again with Trans-ABySS and duplicate 

contig removal verified with GenomeTools v1.5.1 (Gremme et al 2013). Read counts were estimated from 

this combined assembly using the quasi-mapping method implemented in Salmon v0.73 (Patro et al 

2017). The Pseudo-nitzschia Iron Limitation Index (ILI) was calculated using our annotations and un-

normalized counts for ferritin and iron starved induced protein 2A (ISIP2A) according to the formula 

presented in Marchetti et al (2017). In all other instances, normalization, gene expression, and differential 

expression were assessed within each taxonomic group using DESeq2 v1.12.4 (Love et al 2014). 

Significance was determined by genes with Benjamini & Hochberg adjusted P-values ≤ 0.05 (Benjamini 

and Hochberg 1995). As diatom iron starvation induced protein (ISIP) genes are not included in the 

KEGG Orthology database, they were manually annotated based on top BLAST hits to genes described 

in Morrissey et al (2015) with verification from the KEGG SSDB database (Kanehisa et al 2017). 
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Synchrotron X-ray Fluorescence (SXRF) Preparation and Analysis  

Samples were collected and analyzed following Twining et al (2003, 2011). Briefly, cells from 500 

mL of sample were gently preconcentrated approximately ten-fold over 2 μm pore-size polycarbonate 

membranes via gravity filtration. The remaining 40 mL was transferred to a centrifuge tube, preserved 

with 0.25% trace-metal clean electron-microscopy grade buffered glutaraldehyde, and centrifuged onto 

C/formvar-coated Au TEM grids. After centrifugation, grids were briefly rinsed with Milli-Q water and dried 

in a darkened Class-100 hood. Grids were then mounted onto custom-machined Al holders for storage 

and analysis. Light and chlorophyll fluorescence images were collected for target cells using a shipboard 

microscope. SXRF analyses was performed at the 2-ID-E microprobe beamline at the Advanced Photon 

Source (Argonne National Laboratory). The incident beam energy was tuned to 10 keV to allow for the 

stimulation of K-line emissions for all elements ranging in atomic number from Si through Zn. Each target 

cell was scanned in a 2-D raster fashion by the focused X-ray beam and the entire X-ray fluorescence 

spectrum recorded at each pixel. The spectra from the pixels covering the cell were summed to generate 

a single spectrum corrected with a background region. Element concentrations were calculated by 

comparison to certified reference standards (Nunez-Milland et al 2010, Twining et al 2003), and cellular C 

was calculated from cell volume (Twining et al 2004). 

 

Data Deposition 

The data reported in this paper have been deposited in the National Center for Biotechnology 

(NCBI) sequence read archive under the accession nos. SRP074302 (BioProject no. PRJNA320398) and 

SRP108216 (BioProject no. PRJNA388329). 

 

Results and Discussion 

Iron States within the Initial Phytoplankton Communities and Incubations 

 The iron addition and removal experiments were conducted at four coastal sites and one oceanic 

site (Figure 2.1 and Table 2.1). Three of the coastal sites are located in the California Upwelling Zone 

(CUZ): C-High, C-Low1, and C-Low2. In the CUZ, iron delivery is primarily dependent on upwelling-driven 

resuspension of continental shelf sediments creating a mosaic of iron-limited regions that is largely 
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dependent on shelf width (Figure B.1)(Bruland et al 2001, Hutchins et al 1998). The other experiments 

were conducted along the Line-P transect, a well-characterized iron gradient extending into the high-

nutrient low-chlorophyll (HNLC) region of the Northeast Pacific Ocean (Harrison 2002). Specifically, the 

sites correspond to the coastal station, P4 (P-High), and an oceanic site, Ocean Station Papa or P26 (P-

Low). 

Herein named based on their initial iron states (high or low), these locations provided varying 

initial phytoplankton biomass, macronutrient, and iron concentrations that were then further manipulated 

by the addition of iron (Fe) or the removal of bioavailable iron through addition of the strong iron chelator 

desferrioxamine B (DFB)(Figure 2.2 and Table 2.1). Short-lived pulse additions were also simulated by an 

initial addition of iron, then followed by addition of DFB at the first time point (FeDFB treatments). Iron 

status was assessed based on oceanographic context (Appendix B), differences in the chemical and 

biological properties of the water1 (Table B.2), and a combination of gene expression-based molecular 

indicators that evaluate iron stress or limitation for distinct diatom genera (Figure B.2).  

 Low iron sites displayed comparatively lower Fe:NO3 ratios (Table B.1). Further substantiating 

their initial status, significant differences between the Fe and control incubations were always observed in 

photosynthetic efficiency (Fv:Fm) and commonly found for chlorophyll, biogenic silica, nitrate drawdown, 

and the molecular indicators of iron stress (Table B.3). C-High phytoplankton dynamics were largely 

unaffected by the addition of iron compared to controls as shown by a lack of significant differences, and 

those at P-High were driven more by macronutrient availability rather than iron.  

 At all sites, significant differences were observed between the Fe and DFB treatments, indicating 

that low and high iron scenarios were created at each site, regardless of the initial iron status. At C-High, 

only nitrate was significantly reduced by iron addition out of the macronutrient, chlorophyll, and biogenic 

silica concentrations; however, the molecular indicators validate that the diatom community’s physiology 

was influenced by the addition of DFB, creating a low iron contrast. The remaining sites show significant 

differences between the Fe and DFB treatments in nitrate drawdown, chlorophyll, and biogenic silica, 

although these differences are also not entirely universal, which may be a result of the dissimilar initial 

                                                        
1nitrate drawdown, chlorophyll a, biogenic silica, and photosynthetic efficiency (Fv:Fm) 
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conditions. Fv:Fm, however, was consistently reduced by DFB addition as were the molecular indicators of 

iron stress in diatoms at all sites. 
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Figure 2.2 - Macronutrient (µmol L-1), size-fractionated chlorophyll a (µg L-1), and biogenic silica 
(µmol L-1) concentrations and maximum photochemical yields of photosystem II (Fv:Fm) from the 
initial collected seawater (t = 0) and incubations at various time points. Incubations are labelled as 
follows: control (C), iron addition (Fe), iron removal (DFB), iron addition followed by removal (FeDFB) and 
denoted as the first or second time point (T1 or T2) where applicable. California Upwelling Zone (CUZ) 
sites and Line-P sites are grouped separately as two of the x-axis scales are different. 
 
 
Taxonomic Distributions  

Relative taxonomic distributions based on transcript proportions were assessed within the whole 

community for phylum-based groupings and among diatom genera (Figure 2.3 and Figure B.3). Although 

transcript proportions may not always relate to cell abundance, they are indicative of the relative activity 

among groups and within this study, are consistent with inferred cell abundances. Diatoms consistently 

comprised higher relative abundances in the Fe treatments compared to the DFB treatments at the low 

iron sites while the opposite was found by the final time points at both high iron sites (Figure 2.3a). 

Although these higher relative transcript proportions at the low iron sites appear minor (<10%), they may 

still have translated to a large absolute abundance of certain diatoms. These higher relative abundances 

were coupled to increases in chlorophyll (>5 µm) and biogenic silica concentrations indicating that the 

absolute cellular abundance of diatoms was greater following iron addition rather than simply a shift in 

proportions (Figure 2.2).  

 This increase in diatom transcript abundance and presumed cellular abundance when iron was 

added aligns with diatoms’ known ability to respond positively when transitioning from low iron to high iron 

(Boyd et al 2007). Diatoms were also favored when the environment transitioned from high to low iron as 

shown by higher relative abundance in the DFB treatments compared to the Fe treatments by the last 

time points at the high iron sites (Figure 2.3a). Regardless of the situation (high iron to low iron or vice 

versa), diatoms were ultimately able to increase in relative abundance aligning with their responsiveness 

to iron availability (Cohen et al 2017b, Marchetti et al 2012). In the transition from high to low iron, iron 

storage may play a role in allowing diatoms to continue to divide as growth rates in other taxa slow.  

The dominant diatom genera within these experiments were Chaetoceros, Pseudo-nitzschia, and 

Thalassiosira, which are also among the most common in the open ocean (Figure B.3)(Malviya et al 

2016). When iron was added, Thalassiosira generally comprised higher transcript proportions of the 

diatom community, while inconsistent differences for Chaetoceros were observed (Figure 2.3b). 
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Chaetoceros appeared to be favored by iron addition in the coastal low iron sites while having slightly 

higher proportions with DFB in the high iron sites. Interestingly, Pseudo-nitzschia consistently had higher 

transcript proportions in the control and DFB treatments compared to when iron was added. As 

anticipated from Pseudo-nitzschia species’ high iron storage capacities, their ability to store iron may play 

a role in these shifts. As iron is removed, Pseudo-nitzschia can use stored iron to maintain a higher 

growth rate while others may not (Marchetti et al 2009).  

The exception was the oceanic site, P-Low, where Pseudo-nitzschia transcripts greatly increased 

in the Fe treatment compared to the control and DFB treatments, consistent with previous observations of 

iron enrichment in HNLC regions (Figure B.3)(de Baar et al 2005). Here, Chaetoceros proportions 

remained relatively low, but similar to the other sites, Thalassiosira rose in percentage when iron was 

added. Also as observed at the other sites in the DFB treatments, Pseudo-nitzschia still rose to become 

the most prevalent genus showing that it persisted compared to the other genera although iron was 

depleted. 

 

 

Figure 2.3 - Differences in relative proportions of taxonomically annotated transcripts between the 
iron addition and control (Fe-C), control and iron removal (C-DFB), and iron addition and iron 
removal (Fe-DFB) at each site for (a) diatom reads within the total library (Fe-C, black; C-DFB, white; 
Fe-DFB, gray) and (b) Pseudo-nitzschia (blue), Chaetoceros (red), and Thalassiosira (green) within the 
diatom reads. Chaetoceros were a small percentage of the diatom population at P-Low and Fragilariopsis 
(purple) are shown instead. Plots are grouped by initial iron state (high or low). 
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Iron Quotas among Diatom Genera 

Cellular iron contents, or quotas, were quantified in individual Chaetoceros and Pseudo-nitzschia 

cells from within the incubations using synchrotron X-ray fluorescence (SXRF) microscopy (Figure 2.4a 

and Figure B.4)(Twining et al 2003). Both coastal and oceanic Pseudo-nitzschia species are known to 

have exceptionally high iron storage capacities, (Cohen et al 2018, Marchetti and Maldonado 2016) which 

was observed in these experiments (Figure 2.4a). At C-High, where in situ iron concentrations were 

highest (Table 2.1), Pseudo-nitzschia had significantly higher quotas in the high iron treatments (control 

and Fe) compared to Chaetoceros and at the other sites.  

 

 

Figure 2.4 - (a) Cellular iron quotas (µmol Fe:mol C) in Chaetoceros and Pseudo-nitzschia from 
incubations. Bars are geometric means ± standard error. (b) Time course for site C-Low1 of 
chlorophyll a (> 5µm size-fraction only), biogenic silica, diatom relative transcript proportions, and relative 
transcript proportions of Pseudo-nitzschia and Chaetoceros within diatoms. The treatments shown are 
control (green), iron addition (Fe; red), iron removal (DFB; blue). Plots are grouped by initial iron state 
(high or low). 
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In many cases, the quotas in Pseudo-nitzchia and Chaetoceros were similar. For instance, there 

are no significant differences in the quotas achieved between the genera at P-High and both increased 

their quotas when Fe was added at C-Low1 (Figure 2.4a). At P-High, although phytoplankton growth was 

induced by the addition of nitrate (primarily haptophytes), diatoms declined in relative transcript proportions 

from 24 to 48 hours as silicate concentrations decreased to < 1 µmol L-1, which likely became limiting to 

diatom growth (Figure 2.2 and Figure B.3). With silicate depletion preventing cell division, cells likely 

accumulated iron in the Fe and control treatments (30) and transitioned toward their minimum quotas in the 

DFB treatment, where iron was bound to DFB (Figure 2.4a).  

At P-Low, Pseudo-nitzschia showed extraordinary ability to maintain a substantial Fe:C quota of 

58.02 (+11.95, -9.90) µmol:mol in the control treatment even though the initial dissolved iron 

concentrations were 0.05 nmol L-1 and markers of iron stress were high (Figure B.2). The abundance of 

Chaetoceros cells was too low to quantify iron quotas at this site. Overall, these results align with 

previous studies showing overlap in iron quotas for diatoms, including Thalassiosira under moderate iron 

conditions, although Pseudo-nitzschia species appear to have higher iron maximum quotas and therefore 

a greater iron storage capacity (Cohen et al 2018, Marchetti and Maldonado 2016).  

A closer examination of the results at C-Low1 suggests that maintenance of stored iron between 

the two diatom genera is not the same. At this site, Pseudo-nitzschia appeared to be able to use iron 

storage to continue to divide and outcompete Chaetoceros. As iron concentrations decreased in the 

control incubations and indicators of iron stress were exhibited (Figure B.2), Pseudo-nitzschia were able 

to maintain iron quotas (25.7 +8.06,-6.13 µmol Fe:mol C) while those in Chaetoceros declined (6.21 

+2.67,-1.86 µmol Fe:mol C) from 48 hours to 72 hours. Meanwhile, chlorophyll, biogenic silica, diatom 

transcript proportions, and transcript proportions of Chaetoceros and Pseudo-nitzschia all increased 

between the same two time points (Figure 2.4b). Notably, Pseudo-nitzschia increased from 26% to 39% 

of diatom transcripts while Chaetoceros remained lower.  

In the DFB treatments, Chaetoceros quotas at both time points were similar to the control, 

suggesting that Chaetoceros cells reached their minimum quota quickly as iron was depleted. Although 

the quotas at 72 hours in the DFB treatment were similar in both Chaetoceros and Pseudo-nitzschia, the 

reduction in quota for Pseudo-nitzschia can be attributed to their proportions approximately doubling over 



35 
  

the time frame of the incubations to 40% of diatom transcripts while Chaetoceros proportions steadily 

declined to 4% (Figure 2.4b). Meanwhile, diatom transcript proportions increased over time from 15% to 

21% as did chlorophyll in the large size fraction from 0.70 to 1.93 µg L-1. Pseudo-nitzschia were likely able 

to use their stored iron at 48 hours to continue to divide and become a larger proportion matching the 

control treatment by 72 hours despite iron removal by addition of DFB. Taken together, iron storage at 

this low iron site likely allowed Pseudo-nitzschia to maintain a higher growth rate while Chaetoceros 

growth slowed, consistent with what has been previously observed in laboratory experiments between 

Pseudo-nitzschia granii and Thalassiosira oceanica (Marchetti et al 2009). 

 

Ferritin Expression in Pseudo-nitzschia and Other Diatoms 

Ferritin expression in Pseudo-nitzschia was detected at all sites and at comparatively high levels 

in several incubations, being undetected only in the extreme low iron scenarios at P-Low and the initial 

community at C-Low2 that was severely light-limited and relatively low in diatom abundance (Figure 2.5a 

and Figure B.5). Phylogenetic analysis of environmental sequences indicates that these FTN sequences 

belong to both diatom ferritin groups (Groussman et al 2015), and are derived from multiple Pseudo-

nitzschia species (Figure B.6 and Figure B.7). A previous iron and B-vitamin enrichment experiment at 

Ocean Station Papa (P-Low) also detected FTN expression in Pseudo-nitzschia (Cohen et al 2017a); 

thus, the abundance of FTN transcripts across these sites and experiments indicates that ferritin 

utilization is a widespread strategy employed by Pseudo-nitzschia spp. 

 Beyond detection, Pseudo-nitzschia FTN expression appears to be regulated by their initial iron 

status. At high iron sites, comparatively less variation in FTN expression was observed even though iron 

was either added or removed (Fe vs DFB, Figure 2.5a). Where replication was available (C-High), these 

differences were not statistically significant. Conversely, the low iron sites showed greater variation in 

FTN expression, with the most extreme case being the oceanic site, P-Low. Here, Pseudo-nitzschia FTN 

was undetected in the ambient, severely iron-limited community and then became highly expressed 

following iron addition (Figure 2.5a). Certainly, if the primary role of ferritin is for long-term iron storage, it 

would favor Pseudo-nitzschia to minimize synthesis of ferritin unless iron is available. Pseudo-nitzschia 

strains within environments where iron is low may be adapted to vary their expression of FTN to 
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accommodate these ephemeral inputs of iron, whereas Pseudo-nitzschia in high iron environments 

appear to constitutively express FTN to accommodate the more frequent iron inputs and higher supply. 

 

 

Figure 2.5 - Pseudo-nitzschia normalized ferritin (FTN) expression for all initial conditions and 
incubations. ND = no transcripts detected. Points are colored according to high (red) or low (blue) iron 
sites. (a) Box plots of FTN counts at each site. (b) Averaged FTN counts as a function of dissolved iron 
concentrations. In the DFB treatments or where iron was less than 0.05 nmol L-1, FTN counts are plotted 
to the left of the gray vertical dashed line. (c) FTN counts as a function of cellular iron content (quota) 
expressed as Fe:C (µmol:mol) and fitted with a semilog line. 
 
 
 In general, FTN expression in Pseudo-nitzschia declined under low iron concentrations and 

reached a maximal level of expression at dissolved Fe concentrations over 1 nmol L-1 (Figure 2.5b). This 

expression pattern matches previous laboratory experiments that used iron chelators to control iron 

availability (Marchetti et al 2009, Marchetti et al 2017) and is unlike expression in Ostreococcus where 

ferritin serves a role in recycling intracellular iron (Botebol et al 2015). Although not tested to higher 

concentrations here, these data support that Pseudo-nitzschia utilize FTN for long-term storage, as FTN 

is likely expressed to maintain storage needed for their maximum quotas. Further substantiating this role, 

there is a significant positive correlation (Pearson) between FTN expression and iron quotas (Figure 2.5c) 

as well as the changes in FTN expression and iron quotas (Figure B.8). This concordance in Pseudo-

nitzschia indicates that FTN expression and iron quotas vary synchronously, and that Pseudo-nitzschia 

are likely able to store more iron as FTN abundance increases. 

 Comparisons between the Fe and DFB treatments at each site display these changes in 

expression in greater detail (Figure 2.6). FTN expression was always higher when iron was added and 

lower when removed except at the second time point of P-High, which was likely influenced by 

macronutrient depletion (Cohen et al 2018). FTN was highly expressed in the low iron sites following iron 
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addition, consistent with Pseudo-nitzschia increasing FTN expression in response to increased iron 

concentrations (Marchetti et al 2009, Marchetti et al 2017). Responses varied when comparing the first to 

second time points in the Fe treatments, from a significant decrease in transcript abundance at C-Low1 to 

little change at C-Low2 (Figure 2.6). The strong difference at C-Low1 is largely driven by unusually high 

FTN expression at the first time point, being much higher than any other level of FTN expression even at 

high dissolved iron concentrations (Figure 2.5b). This result may be an artifact of earlier timing of 

sampling. As noted in a previous laboratory study, maximal expression of FTN quickly followed iron 

resupply to iron-limited Pseudo-nitzschia multiseries and then returned to steady-state levels (Marchetti et 

al 2009). This difference over time could also be affected by macronutrient depletion at the second time 

point (Figure 2.2; Cohen et al 2018). 

 As expected, low fold changes were observed where only DFB was added from the first to 

second time points as the low iron status of the incubation remained constant. In the cases where DFB 

was added after Fe (FeDFB), FTN expression decreased following the addition of DFB at the low iron 

sites and matched expression within the DFB-only treatments. The exception was at P-Low where 

expression of FTN remained high and only marginally lower than the Fe treatment although DFB had 

been added for 48 hours, suggesting that these oceanic diatoms display a delayed response to iron 

removal. Once more, these gene expression patterns are consistent with what has been observed for 

Pseudo-nitzschia in the laboratory (Marchetti et al 2009, Marchetti et al 2017), substantiating that 

members of this genus use ferritin for long-term storage of iron. Pseudo-nitzschia are responsive with 

their FTN expression to fluctuations in iron availability, and a positive relationship between FTN 

expression and iron quotas is apparent. 

To examine the prevalence of ferritin-utilization in other dominant diatoms, FTN expression was 

examined in Chaetoceros and Thalassiosira (Figure 2.6). FTN was virtually undetected in Chaetoceros 

with only two assigned contigs from the assembly with low read counts. Phylogenetic analysis shows that 

these contigs are similar to the reference FTN sequence from Chaetoceros dichaeta (Figure B.9). As few 

reference Chaetoceros transcriptomes have shown FTN sequences, this result was anticipated (Cohen et 

al 2018). Although many Thalassiosira species do not possess FTN, some species do; however, FTN 

was only detected in low abundances in Thalassiosira (Figure B.5 and B.10) and there were no significant 
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changes in expression (Figure 2.6). Previous studies have also observed minute changes in 

Thalassiosira FTN expression as a function of iron status apart from one FTN homolog in T. rotula that 

had higher expression under iron-limited conditions suggesting a role other than iron storage in this 

diatom (Cohen et al 2018). Among these predominant diatom genera, Pseudo-nitzschia appears to be the 

distinct utilizer of FTN for long-term iron storage in their natural environment, whereas the other diatoms 

are potentially using other mechanisms to store iron. 

 

 

Figure 2.6 - Heatmap of log2 fold change values for ferritin (FTN), natural resistance-associated 
macrophage protein (NRAMP), and ZIP1 expression in Pseudo-nitzschia (P), Chaetoceros (C), and 
Thalassiosira (T). Comparisons are separated into five groups in order from top to bottom: iron addition 
(Fe) vs iron removal (DFB), T2 Fe vs T1 Fe, T2 DFB vs T1 DFB, iron addition then removal (FeDFB) vs Fe, 
and FeDFB vs DFB. Dark gray indicates that the gene was not detected in both samples being compared. 
Significance in differential expression is shown within each cell where applicable (displayed numerically, 
P ≤ 0.1; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001; (-), not applicable).  

 



39 
  

Vacuolar-associated Gene Expression 

Expression of NRAMP was investigated as it may be related to vacuolar storage of iron. This 

relationship is based on evidence that some NRAMP orthologs in other eukaryotes may be involved in 

vacuolar storage (Lanquar et al 2005, Portnoy et al 2000). Thalassiosira NRAMP has also been found to 

be upregulated under low iron quotas and iron concentrations (Kustka et al 2007). As NRAMP is a 

nonspecific divalent metal transporter and Fe uptake in Thalassiosira was not inhibited by other divalent 

metals, NRAMP may not be a surface transporter and rather one for transporting iron out of vacuoles 

(Kustka et al 2007). The presence of iron contained within vacuoles is also supported by spatial elemental 

analysis of certain non-ferritin containing Thalassiosira species (Nuester et al 2012).   

Thalassiosira was the genus with highest and most significant differential expression of NRAMP 

(Figure 2.6 and Figure B.5). Expression in the other two genera was usually low, not significantly 

different, and inconsistent between treatments, indicating that the use of NRAMP may be distinct to 

Thalassiosira among the three diatom genera, much like FTN in Pseudo-nitzschia. Interestingly, Pseudo-

nitzschia only showed higher expression at P-Low, albeit with low differential expression between 

treatments (Figure B.5). It is possible that these subarctic oceanic Pseudo-nitzschia spp. constitutively 

express NRAMP as a low affinity metal permease on the cell surface. For these diatoms, this function 

would be advantageous at this site as iron is extremely limiting, Fe(II) oxidation rates are slower in colder 

waters, and Fe(II) may account for a significant amount of the total dissolved iron (Roy et al 2008). High 

expression of NRAMP in the low iron treatments at this site was also observed in the closely related 

genus Fragilariopsis indicating it may serve a similar role (Figure B.11). 

Thalassiosira consistently demonstrated higher NRAMP transcript abundance in the DFB 

treatments with some significant differential expression (Figure 2.6). Expression was consistent when 

comparing across time in the Fe or DFB treatments. In the iron addition then removal treatment (FeDFB), 

expression was significantly higher compared to the Fe treatment. Low differences in expression were 

observed between the FeDFB treatment and the DFB treatment. These results are consistent with the 

laboratory studies showing higher NRAMP expression under low iron concentrations and significant 

down-regulation following iron resupply in T. pseudonana (Kustka et al 2007); thus, they are consistent 

with what we may expect from the role of NRAMP in transporting iron out of a vacuole. In particular, the 
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high expression in the FeDFB treatment suggests that Thalassiosira store iron in vacuoles and then 

highly express this transporter to shuttle iron out of the vacuole once it is no longer externally available. 

Given the rapid responsiveness to iron availability observed in the lab (Kustka et al 2007) and the 

differential expression observed here, it appears likely that NRAMP expression is regulated by external 

iron availability rather than cellular iron quota. 

Although this expression supports common use of this vacuolar strategy in Thalassiosira, the role 

of NRAMP in diatoms remains rather elusive and may be different between genera as evident from its 

expression in ferritin-utilizing, oceanic Pseudo-nitzschia (Figure 2.6) Phylogenetic analysis of diatom 

NRAMP genes shows that they appear conserved to some degree among diatoms, distinct from NRAMPs 

in other organisms, and to have originated from their red algal ancestor (Figure B.12). The gene, 

however, is not universal to all diatoms given that an ortholog was not detected in the Phaeodactylum 

tricornutum genome. 

Overall, Chaetoceros displayed little FTN or NRAMP expression in these incubations, but iron 

quotas were similar to that of Pseudo-nitzschia within most treatments, particularly at C-Low1 and P-High 

(Figure 2.4, Figure 2.6, and Figure B.5). From these quotas, it is apparent that Chaetoceros is able to 

store iron at relative quantities similar to that of Pseudo-nitzschia within these time frames; however, their 

iron storage mechanism remains unknown. High expression of NRAMP in Chaetoceros was found in the 

FeDFB treatments at C-Low2, but not at C-Low1. The difference appears to be pronounced at P-High, but 

this result is an artifact of no detection in the Fe treatment (Figure 2.6 and Figure B.5). It is possible that 

there was some NRAMP-utilization by Chaetoceros at certain sites, but this response was not always 

found. 

Expression of other iron-related genes that show similar patterns to FTN and NRAMP were 

queried. In addition to NRAMP, diatoms possess divalent metal transporters belonging to the ZIP family 

(Allen et al 2008). Like NRAMP, these may also be localized to the plasma or vacuolar membrane for 

passive transport including that of Fe(II) (Eide 2005). Expression of two ZIP orthologs (ZIP1 and ZIP7) 

was detected by all three dominant genera in the metatranscriptomes. ZIP7 was expressed most by 

Pseudo-nitzschia but not differentially expressed among treatments (Figure B.13). Unlike FTN and 

NRAMP, expression of ZIP1 was expressed at similar levels on average among the three genera; 
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however, Chaetoceros was the only predominant diatom to significantly modify expression of the gene in 

relation to their Fe status (Figure 2.6). Furthermore, this expression pattern is similar to that of NRAMP 

where increased transcript abundance is observed when DFB is added, particularly when transitioning 

from high to low iron as in the high iron sites and the FeDFB treatments. As a result, we speculate that 

Chaetoceros may also use a vacuolar storage mechanism but potentially utilizes a different transporter 

protein, ZIP1, for transport out of the vacuole. This gene appears to be similar to that present in some 

other heterokonts and green algae suggesting different evolutionary origins from NRAMP or FTN (Figure 

B.14). 

Furthermore, the mechanism of iron import into the vacuole is unknown. Diatoms possess a 

homolog of the vacuolar iron transporter, VIT1 or CCC1, used for this purpose in Arabidopsis thaliana and 

Saccharomyces cerevisiae, respectively (Brembu et al 2011, Kim et al 2006). Expression of these genes 

was found to be low and inconsistent among treatments in our incubations. Previous experiments show 

that one of the homologs in P. tricornutum was significantly regulated by cadmium; therefore, it is possible 

that VIT1 is not related to iron transport in diatoms (Brembu et al 2011). 

 

Biogeochemical and Ecological Implications 

The expression of FTN in Pseudo-nitzschia and NRAMP in Thalassiosira in these natural 

communities is consistent with previous laboratory studies substantiating these distinct iron storage 

strategies—ferritin and vacuolar storage—in ecologically important diatom genera. Out of the three main 

diatom genera in this study, Pseudo-nitzschia was the unique utilizer of FTN whereas NRAMP was the 

most highly expressed and regulated in Thalassiosira. Transcripts for neither of these genes were 

abundant in Chaetoceros although Chaetoceros often had iron quotas similar to those in Pseudo-

nitzschia leading to speculation that Chaetoceros utilizes a different divalent metal transporter, ZIP1, for 

vacuolar iron storage. Interestingly, the presence of these three genes in diatoms also appears to have 

different evolutionary origins: lateral gene transfer (FTN), the red algal ancestor (NRAMP), or the green 

algal ancestor (ZIP1). Since ferritin appears to have originated from a lateral gene transfer event from 

cyanobacteria, but it is present in all four diatom classes (Groussman et al 2015, Marchetti et al 2009), we 

hypothesize that it was inherited by a diatom ancestor before the first divergence of these lineages, 
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approximately 56 million years ago (Armbrust 2009). Contributing to diatom diversification, many centric 

diatoms may have maintained a vacuolar storage mechanism whereas ancestral diatoms to Pseudo-

nitzschia and Fragilariopsis switched to using ferritin for long-term storage and have conserved the gene. 

As other diatoms maintained a vacuolar storage mechanism, ferritin genes may be absent as a result of 

gene loss events or present for functions other than long-term storage (Cohen et al 2018). 

Ferritin is believed to serve the same function as Pseudo-nitzschia in the closely related pennate 

diatom, Fragilariopsis (Marchetti et al 2009). In laboratory studies, ferritin was found to increase in 

expression under iron-replete conditions in F. cylindrus and F. kerguelensis (Marchetti et al 2017, Mock et 

al 2017), while Fragilariopsis ferritin expression in the experiments described here was relatively low and 

sporadic (Figure B.11). Other metatranscriptomes show conflicting results ranging from absent in one 

from the Southern Ocean (Mock et al 2017), to very low abundances in another at P-Low (Cohen et al 

2017a), to abundant but not differentially expressed in another Southern Ocean metatranscriptome 

(Bertrand et al 2015). These discrepancies suggest that the putative role of ferritin as a long-term iron 

storage mechanism in Fragilariopsis requires further analysis. 

Ferritin used for long-term storage provides one explanation for the dominance of Pseudo-

nitzschia and Fragilariopsis in iron-enrichment experiments in the Northeast Pacific and Southern Oceans 

(de Baar et al 2005, Marchetti et al 2009). As the low iron sites and treatments tended to favor Pseudo-

nitzschia, we speculate that these differences in storage strategies may have effects on the diatom 

community composition provided that there is more prolonged iron limitation than what was artificially 

induced within our incubations. Fragilariopsis is known to be abundant in the Southern Ocean, particularly 

in the open ocean regions where iron delivery is more sporadic and pulsed (Abelmann et al 2006). Closer 

to the sea ice edge, Chaetoceros can be more prevalent. Ferritin may enable facilitated and more uniform 

distribution of stored iron as the protein may be more easily transferred to daughter cells compared to a 

vacuole. We speculate that the advantage of iron storage through ferritin versus vacuolar storage applies 

to regions of ephemeral iron inputs where a high storage capacity can be achieved upon a pulsed input 

and then passed on to progeny. Over longer time scales without bioavailable iron, ferritin-utilizing diatoms 

may be able to maintain higher growth rates for a larger and longer-lasting seed population until the next 
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iron deposition event as observed here at sites C-Low1 and P-Low and in the laboratory (Marchetti et al 

2009). 

Iron limitation is anticipated to expand as a result of ocean acidification, reduced dust input, and 

intensified upwelling with increases in upwelled nitrate uncoupled from shelf-derived iron inputs (Capone 

and Hutchins 2013, Mahowald et al 2005, McQuaid et al 2018, Shi et al 2010). If prolonged iron limitation 

occurs with greater frequency, a shift towards a system like that observed at P-Low where increases in 

ferritin-utilizing diatoms such as Pseudo-nitzschia in these areas or potentially Fragilariopsis in the 

Southern Ocean are anticipated from gaining longer-lasting seed populations due to their ability to store 

iron. Pseudo-nitzschia in coastal regions are also known for their synthesis of the neurotoxin domoic acid 

(DA), potentially favoring a system more conducive to its production and leading to an increase in 

frequency and intensity of harmful algal blooms (Lelong et al 2012). DA was detected in all CUZ 

incubations with concentrations up to 3.00 ng mL-1 (Figure B.15; Cohen et al 2017b). Furthermore, 

Fragilariopsis can contribute to high biogenic opal burial in the Southern Ocean suggesting an 

enhancement in the silica pump (Abelmann et al 2006, Assmy et al 2013). Beyond simply the impact that 

iron limitation has on primary productivity, these long-term community shifts towards ferritin-utilizing 

diatoms would further influence the marine food web structure and associated biogeochemical cycles.  
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APPENDIX A: CHAPTER 1 SUPPLEMENTARY INFORMATION 

Supplementary Materials and Methods 

Trace Metal Clean Techniques 

Seawater collection was performed using a trace metal clean sampling system consisting of an 

air-driven PTFE (polytetrafluoroethylene) deck pump (Wilden, Grand Terrace, CA, USA) fitted with PTFE 

tubing. The pump and tubing were cleaned by pumping 1% trace metal grade HCl overnight followed by 

an overnight rinse with ultrapure water. 

 Incubations followed techniques as described by Marchetti et al (2012). Briefly, cleaning the 

cubitainers included soaking the inside walls in 1.2 mol L-1 hydrochloric acid (reagent grade) for 3 d 

followed by three rinses with Milli-Q H2O, soaking in 1.2 mol L-1 hydrochloric acid (trace metal grade) for 1 

week followed by three rinses with Milli-Q H2O, and soaking in 0.1 mol L-1 acetic acid (trace-metal grade). 

Prior to filling the cubitainers with seawater, the dilute acetic acid was removed and the cubitainers were 

rinsed thoroughly three times with ambient seawater. 

 

CTD, Satellite, and Meteorological Data 

Potential temperature, density, and photosynthetically active radiation were obtained from 

sensors mounted on a 24-bottle rosette onboard the R/V Melville (Seabird 911+ conductivity-temperature 

depth sensor). Satellite-derived sea surface temperature data is from the NOAA POES AVHRR satellite 

courtesy of the NOAA / NESDIS Center for Satellite Applications Research. These data were downloaded 

from the NOAA CoastWatch Browser (http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowser.jsp). Data 

are plotted using Interactive Data Language® (Exelis Visual Information Solutions Inc., Boulder, CO, 

USA). Wind speed and direction was obtained from the shipboard meteorological system (MetAcq) on the 

R/V Melville. 

 

Microscopy and imaging flow cytometry (FlowCAM) 

The viability of cells collected from 96 m was confirmed through imaging flow cytometry using a 

Flow Cytometer and Microscope (FlowCAM, Fluid Imaging Technologies Inc., Scarborough, ME, USA) 

which was operated in trigger mode. In this mode, image acquisition by a CCD camera is triggered by 
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chlorophyll or phycoerythrin fluorescence. Cells with detectable fluorescence were observed, although the 

initial phytoplankton populations were small (~75 cells mL-1 were found). 

 Phytoplankton cell abundances and species composition were determined by microscopic 

examination and by examining images of live cells captured using an imaging flow cytometer. For 

microscopic counts, 50 mL samples were preserved in 2% Lugol’s Iodine and settled for >24 hours in 

Utermöhl chambers (Utermöhl 1958). Counts were performed at 100x, 200x, and 400x using a Leica 

DMIL inverted microscope on a minimum of 400 total cells in at least five fields of view. For data collection 

using FlowCAM, 50 mL samples were drawn from the well-mixed cubitainers into 50 mL Falcon tubes and 

stored at 4oC in the dark pending processing (typically within 3 hours of collection). Using FlowCAM’s 

Visual Spreadsheets v3.1 software, a CCD camera captures images of individual cells with a sufficiently 

large fluorescence signal corresponding to chlorophyll a and/or phycoerythrin fluorescence. At least 5 mL 

of sample was filtered through 300 µm nitex mesh and passed through the system at a flow rate of 0.2-

0.3 mL min-1 using a syringe pump equipped with a 5 mL glass syringe. A 100 µm flow cell was used in all 

sample runs. A digital size filter was applied so that only cells >5 µm were captured in images. The flow 

cell and tubing were well flushed with Milli-Q water and 70% ethanol between each sample run to avoid 

cross-contamination. 

 

Fv:Fm 

Maximum photochemical yield of Photosystem II (Fv:Fm) was measured using fast repetition rate 

fluorometry and a custom built fluorescence-induction and relaxation system (Gorbunov and Falkowski 

2005, Kolber et al 1998). Samples were acclimated to low light for 20 min prior to measuring the minimum 

(Fo) and maximum (Fm) fluorescence yields. Data were blank corrected using 0.2 µm filtered seawater. 

The resulting Fv:Fm was derived from the induction profile using a saturating pulse (20,000 µmol photons 

m2 s1) for a duration of 100-200 µs. The average of 100 iterations was obtained. 

 

Domoic acid 

250 mL of seawater was filtered onto a GF/F filter (25 mm) via gentle vacuum pressure (<100 

mm Hg) and frozen at -80°C. Filters were extracted with 10 mL of 20% methanol (MeOH) in water in a 15 
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mL centrifuge tube, sonicated (2 min, 30-40 W) in an ice bath with a Sonicator 3000 equipped with 

microtip (Misonix, Framingdale, NY, USA), and then centrifuged (10 min, 1399 x g). The supernatant was 

collected and passed through a 0.22 µm syringe filter into a clean 15 mL centrifuge tube to remove 

remaining particles. Samples were stored at -20°C until analysis. Concentrations with a detection limit of 

0.01 µg L-1 were obtained using an enzyme-linked immunosorbent assay (Abraxis, Warminster, PA, USA) 

following the manufacturer’s protocol including running each sample in duplicate at several dilutions. Final 

concentrations (pg DA mL extract-1) were calculated using the manufacturer supplied analysis 

spreadsheet. 

 

Nutrient Analyses 

Dissolved nitrate + nitrite (NO3- + NO2-), phosphate (PO43-), and silicic acid (H4SiO4) 

concentrations were measured using a Lachat Quick Chem 8000 Flow Injection Analysis system 

(Parsons et al 1984). Particles were removed by filtering the sample through a GF/F filter using a syringe 

prior to analysis. Reference materials for nutrients in seawater (Lots BY and CA, KANSO Technos, 

Osaka, Japan) were run alongside samples for quality control. 

 

Dissolved Iron 

Samples for dissolved iron (Fe) analysis were filtered through a 0.4 µm polycarbonate filter (47 

mm) held in PTFE filter towers (Savillex Corporation, Eden Praire, MN, USA) into LDPE bottles that had 

been cleaned as per the GEOTRACES cookbook (http://www.geotraces.org/science/intercalibration/222-

sampling-and-sample-handling-protocols-for-geotraces-cruises). Samples were acidified at sea with the 

equivalent of 4 mL 6 N quartz-distilled HCl per liter of seawater (to pH 1.7-1.8). Iron samples were 

analyzed with an adaptation of Biller and Bruland (2012) as described in Parker et al (2016). Briefly, this 

method involves preconcentrating the Fe on columns of Nobias chelate PA1 resin and analyzing the 

eluent on the Thermo-Element high resolution XR ICP-MS. Samples are buffered to pH 6.0 with NH4Ac 

immediately before loading sit buffered for about 40 minutes while loading. The samples are eluted from 

the columns with ~1 mL of 1N quartz-distilled HNO3, resulting in a concentration factor of roughly 24. 
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Calibration is performed using a spiked standard curve made in low-metal seawater that is 

preconcentrated in the same manner as the samples.  

 

Phytoplankton isolation and identification 

To complement existing reference sequence databases of phytoplankton isolates, eight species 

of phytoplankton were isolated from the California Upwelling Zone during the cruise period and their 

transcriptomes were sequenced. Isolations were performed using an Olympus CKX41 inverted 

microscope by single cell isolation with a micropipette. Isolates were maintained at 14°C and grown under 

iron-replete conditions in Aquil culture medium (Price et al 1989). Identification of most species was 

performed by morphological characterization and 18S rRNA gene sequencing. DNA was extracted with 

the DNeasy Plant Mini Kit according to the manufacturer’s protocols (Qiagen, Hilden, Germany). 

Amplification of the nuclear 18S rDNA region was conducted with standard PCR protocols using 

eukaryotic-specific, universal 18S forward and reverse primers. Sequences of primers used are as 

follows: 18AF 5’- AACCTGGTTGATCCTGCCAGT -3’ and 18BR 5’- TGATCCTTCTGCAGGTTCACCTAC 

-3’. The length of the region amplified is approximately 1600 base pairs. Pseudo-nitzschia species were 

identified through sequencing of the 18S-ITS1-5.8S regions. Amplification of this region was performed 

with 18ST-euk and 5.8SR-euk primers according to Hubbard et al (2008). PCR products were purified 

using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and sequenced by Sanger DNA 

sequencing (Genewiz, Morrisville, NC, USA). Species identity was determined on the basis of sequence 

homology (BLASTN) against the NCBI non-redundant nucleotide collection with a cutoff identity of 99%. 

 

Isolate transcriptomes 

Isolate cultures were grown to late exponential/early stationary phase and filtered onto 3.0 µm 

polycarbonate filters (25 mm). Filters were stored at -80°C. Total RNA was extracted using the 

RNAqueous-4PCR Total RNA Isolation Kit (Ambion, Foster City, CA, USA) according to the 

manufacturer’s protocol with an initial bead beating step to disrupt cells. Trace DNA contamination was 

removed by DNase 1 (Ambion, Foster City, CA, USA) digestion at 37°C for 45 min.  
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Libraries were created with the Illumina TruSeq Stranded mRNA Library Preparation Kit. Ten 

samples were barcoded and pooled on a single lane and sequenced on an Illumina MiSeq (300 bp, 

paired end). Reads were trimmed for quality and to remove adapters using Trimmomatic v0.32 (paired-

end mode, adaptive quality trim with 40bp target length and strictness of 0.6, minimum length of 36bp; 

Bolger et al 2014). The resulting trimmed reads were assembled de novo using Trinity v2.0.6 with default 

parameters for paired reads (Grabherr et al 2011). Proteins were predicted from assembled contigs with 

GeneMark S-T (Tang et al 2015). A summary of transcriptome sequencing, assembly, and gene 

prediction is provided in Table S4. 

 

Module-Based Differential Expression and Microarray Study Sources 

For KEGG module-based differential expression, quantitative metabolic fingerprinting was used 

(Alexander et al 2015a). Briefly, read counts annotated for each KEGG Module category were summed 

and then normalized by the total number of reads for the time point per functional grouping. These data 

were also visualized with pheatmap v1.0.8. Gene expression ratios for microarray studies and 

orthologous genes were obtained from The Diatom Portal (Ashworth et al 2016). 

 

Phylogenetic Trees 

Reference sequences from Oryzias latipes Hd-rR (accession number NW_004089490.1) and 

Pseudo-nitzschia multiseries CLN-47 (protein ID 146448, Joint Genome Institute database) for soluble 

guanylate cyclase (GUCY1B) were used to query MarineRefII (BLASTP v2.5.0). For nitrate reductase 

(NR), a reference sequence from Thalassiosira pseudonana CCMP 1335 (protein ID 25299, Joint 

Genome Institute database) was used. Sequences were aligned using MUSCLE (Edgar 2004) in 

Geneious v5.6.4, and then used to create a maximum likelihood phylogenetic tree with RAxML v8.2.9 

(PROTGAMMALG model, 100 bootstraps) (Stamatakis 2014).  For NR, contigs with greater than 100 total 

reads for 0 and 72 hours were placed on the reference tree with pplacer v1.1.alpha18-2-gcb55169 

(Matsen et al 2010). Trees were visualized and edited using Archeopteryx v0.9916 (Han and Zmasek 

2009). 
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Supplementary Text 

Metatranscriptome Sequencing, Assembly, and Annotation Results 

Sequencing of total mRNA from the eukaryotic phytoplankton community yielded over 340 million 

reads (Table A.1). Metatranscriptome assembly of these reads generated over 3.1 million contigs. 

Functional assignment of contigs was the most limiting factor with only 37.3% that have an annotation 

from KEGG (Table A.3). Approximately sixty percent of contigs had a taxonomic annotation and mapped 

reads (Table A.3). Annotation was validated by conducting phylogenetic analysis of high read abundance 

contigs for soluble guanylate cyclase (GUCY1B) and nitrate reductase in Pseudo-nitzschia and 

Chaetoceros (Figures A.11, A.12). Altogether, this level of annotation is similar to previous 

metatranscriptomic studies utilizing KEGG and reference transcriptomes from the Marine Microbial 

Eukaryote Transcriptome Sequencing Project (MMETSP; Alexander et al 2015b, Cohen et al 2017, Gong 

et al 2017, Keeling et al 2014). 

In supplementing the MMETSP transcriptomes with those of isolates from the California 

Upwelling Zone, the level of taxonomic annotation was improved by an additional 19,604 contigs (0.6%). 

This result could be expected considering four out of the eight added species already had representation 

in the MMETSP database (Table A.2). Out of the four isolate species not previously included, three were 

Chaetoceros spp. and the other was Pseudo-nitzschia americana; thus, there was little representation 

added considering such low diversity in the new transcriptomes. Seven percent of contigs, however, 

changed taxonomic annotation (lower E-value) from one of the MMETSP strains to the isolates we 

collected which could be due to more accurate assignment of Chaetoceros originating contigs or strain-

specific differences between species. This improved homology represents an increase in confidence that 

these transcripts in our environmental transcriptome belonged to the genera that were isolated.  

 

Expression on Different Levels of Annotation 

Although KEGG Orthologs (KOs) can be grouped into tighter functional groups, or modules 

(Kanehisa et al 2012), the amount of annotation on this level is highly limiting. Only 8.8% of contigs met 

the annotation requirements for analysis on the module level compared to 21.8% with KO annotation 

(Table A.3). It was often the case that KEGG modules or module classes are not fully represented by 
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their constituent KOs. This low level of annotation and lack of completeness makes any confident 

inference from examining module expression such as quantitative metabolic fingerprinting (Alexander et 

al 2015a) difficult (Figure A.13). 

Analysis on the KEGG Ortholog level provides additional limitations as it does not account for all 

annotated genes. By removing annotated contigs without a KEGG Ortholog assignment, the reduction in 

annotation is from 37.3% to 21.8% of all contigs (Table A.3), many of which are taxonomically assigned to 

diatoms. These genes are lacking KEGG Orthology annotation because in most cases, their function is 

unknown; therefore, they are simply annotated as a hypothetical protein. These are derived from the two 

complete diatom genomes integrated into KEGG: T. pseudonana and P. tricornutum.   

 Of the genes that are annotated and significantly overrepresented in the light, 17 were genes 

encoding fucoxanthin chlorophyll binding proteins. This result matches our observation of 

overrepresentation of chlorophyll synthesis genes as well as expression in previous studies when diatoms 

are growing exponentially (Ashworth et al 2013) or exposed to light after prolonged darkness (Leblanc et 

al 1999). 

 Although function of these genes is unknown, expression can be compared to T. pseudonana 

that has been grown exponentially for three days (matching our 72 hour time point) (Ashworth et al 2013). 

Over 350 unknown genes without KO annotation that were significantly overrepresented at 72 hours in 

our study were also found to have positive fold changes at the exponential growth phase at 72 hours in T. 

pseudonana. Another study examined P. tricornutum’s response to re-illumination after prolonged 

darkness (Nymark et al 2013). Almost 450 genes without KO annotation were significantly 

overrepresented at 72 hours had positive fold changes 24 hours after re-illumination. Seventeen of these 

genes were found to be orthologous between T. pseudonana and P. tricornutum suggesting they serve 

the same function across these diatom species. These unknown genes may be important to the growth 

and light response of diatoms providing basis for future investigations.  

 

Chaetoceros and Pseudo-nitzschia Genes at Depth 

Several genes from Chaetoceros and Pseudo-nitzschia highly expressed in the pre-upwelled 

condition promote proteasome and ubiquitin activity suggesting that the cells are degrading unneeded or 
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damaged proteins. RNA turnover was likely also increased with high expression of exosome-related 

transcripts, while expression of protection of telomeres protein promoted stabilization of DNA (Miyoshi et 

al 2008) (Figure 1.4b). One highly expressed gene was chondroitin sulfate synthase which is potentially 

related to transparent exopolymer particle (TEP) production. TEP is found to be generated by 

Chaetoceros within the stationary phase which may have contributed to the aggregation and sinking of 

these cells as well as the high particulate carbon-to-nitrogen ratios observed in the initial community 

(Figure 1.d) (Passow 2002a, Passow 2002b). 

 

Soluble guanylate cyclase 

The beta subunit of soluble guanylate cyclase was not detected in two Pseudo-nitzschia 

transcriptomes from P. americana and P. granii, but was found in the Pseudo-nitzschia multiseries 

genome. It may not have been detected in those two species due to lack of sequencing depth for those 

transcriptomes. The two contigs from our environmental transcriptome with almost all of the read counts 

for this diatom gene appear to be highly phylogenetically related to the Pseudo-nitzschia genes in our 

reference database further supporting that the taxonomic annotation of this gene is accurate. 

Interestingly, it is not found in the Thalassiosira pseudonana or Phaeodactylum tricornutum genomes 

(Armbrust et al 2004, Bowler et al 2008). 
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Figure A.1 - Satellite-derived sea surface temperature prior to the incubations. The + indicates the 
location of seawater collection. (A) Three day average from 02 July 2014 to 04 July 2014. (B) 16 July 
2014, one day before the incubations. Data is from the NOAA POES AVHRR satellite courtesy of the 
NOAA / NESDIS Center for Satellite Applications Research, downloaded from the NOAA CoastWatch 
Browser, and are plotted using Interactive Data Language v8.6 (Exelis Visual Information Solutions, Inc., 
Boulder, CO, USA). 
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Figure A.2 - Wind speed (m s-1) and direction from the R/V Melville for the 48 hours prior to 
starting the incubations. Spokes display the frequency of winds blowing from particular directions with 
color-coded bands showing wind speed ranges. 
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Figure A.3 - CTD (conductivity-temperature-depth) measurements: (A) potential temperature (°C), 
density (σt; kg m-3), (B) fluorescence (raw fluorescence units), and photosynthetically active radiation 
(PAR; µmol photons m-2 s-1) on 16 July, 2014 (PDT), the afternoon prior to the start of incubations. 
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Figure A.4 - Temperature and on-deck photosynthetically active radiation (PAR) during the 
incubations. Values for every 15 minutes from a HOBO Data Logger (Onset, Cape Code, MA, USA) are 
plotted. 
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Figure A.5 - Biological coefficient of variation (square root of dispersion) for diatom genes. The 
biological coefficient of variation is the coefficient of variation with which the true abundance of a gene 
varies between replicate samples (Chen et al 2014). The tagwise dispersion based on the trended 
dispersion was used to assess significance in differential expression. 
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Figure A.6 - Additional measurements from the simulated upwelling incubation experiment: (A) 
Dissolved macronutrient concentrations: nitrate + nitrite (NO3- + NO2-), silicic acid (H4SiO4), phosphate 
(PO43-), and iron (Fe). All concentrations are in μmol L-1 except Fe which is in nmol L-1. (B) Particulate 
domoic acid concentrations. (C) Maximum photochemical yield of photosystem II (Fv:Fm). (D) Particulate 
carbon (PC). PC is the only parameter displayed in this figure with size fractionation: >5 µm (red) and <5 
µm (blue). Error bars indicate standard deviation of the mean (n = 3). 
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Figure A.7 - Histograms of KEGG Ortholog (KO) gene expression between 72 and 120 hours for 
the four main phytoplankton groups detected in the study. The four main phytoplankton groups are 
colored as follows: diatoms (blue), dinoflagellates (red), chlorophytes (green), and haptophytes (orange). 
KO counts are binned by log2 fold change intervals of 1 for 72 and 120 hours. Dashed vertical lines 
indicate a log2 fold change (120 / 72) of -1 or 1. The number and percentage of significantly 
overrepresented genes at 120 hours (right) and at 72 hours (left) are annotated on each plot. 
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Figure A.8 - Heatmaps for expressed KOs at 72 and 0 hours: (A) the 1,070 expressed KOs where the 
gene was not detected in one group other than diatoms. Black bars indicate that the gene was not 
detected. (B) The 1,170 expressed KOs where the gene was detected in diatoms and only one other 
group.  
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Figure A.9 - Counts and proportions of significantly overrepresented KEGG orthologs within 
KEGG module class level two groups at 0 and 72 hours: (A) Pseudo-nitzschia, (B) Chaetoceros, and 
(C) other diatoms. None refers to no module annotation.  
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Figure A.10 - Heatmap of nitrogen related genes for Chaetoceros, Pseudo-nitzschia, other 
diatoms, dinoflagellates, chlorophytes, and haptophytes at 0 and 72 hours. The color of each box 
signifies log2 fold change while the numbers in each box denotes the average log2 counts-per-million of 
the gene for that group. Darker red (positive fold change) indicates overrepresentation at 72 hours and 
darker blue (negative fold change) indicates overrepresentation at 0 hours. Rows are sorted by average 
abundance among the diatoms. 
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Figure A.11 - Phylogenetic tree of guanylate cyclase soluble subunit beta (GUCY1B). The blue 
branches, k78.1621874 and k78.943480, denote two full length contigs from our metatranscriptome 
assembly. Bootstrap values ≥ 50 are indicated at the branch points.  
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Figure A.12 - Phylogenetic tree of nitrate reductase (NR) in diatoms. Contig IDs are colored 
according to their taxonomic annotation: Pseudo-nitzschia (blue) and Chaetoceros (red). Branches 
exclusively ending in Pseudo-nitzschia and Chaetoceros on the reference tree are also colored 
correspondingly.  
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Figure A.13 - Quantitative Metabolic Fingerprint (QMF) depicting relative expression of KEGG 
modules for each of the four major phytoplankton groups at each time point.  
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Table A.1 - Summary of environmental RNA sequencing with Illumina HiSeq 2000. Samples with (*) 
denotes samples used in differential expression analysis. All listed samples were used for assembly and 
estimating dispersions. PE reads and average length in bases were quantified after trimming adapters 
and for quality from the original 125 base pair reads. Mapped reads are the number and percentage that 
have a MAPQ score >= 10 from the total number of paired-end (PE) reads 

 

 

 

 

 

 

 

 

 

 

 

Sample ID PE Reads Avg. Length Mapped Reads 
T0* 18,385,014 88 4,713,891 25.6% 
T72-C* 15,386,368 91 7,647,470 49.7% 
T72-Fe 25,308,470 92 12,342,903 48.8% 
T72-DFB 22,789,994 87 11,359,979 49.8% 
T120-C-A* 26,820,370 89 13,733,582 51.2% 
T120-C-B* 19,108,460 91 8,410,083 44.0% 
T120-C-C* 16,894,382 90 7,490,886 44.3% 
T120-Fe-A 24,207,430 89 11,988,696 49.5% 
T120-Fe-B 18,695,494 93 9,252,888 49.5% 
T120-Fe-C 20,158,896 92 9,713,759 48.2% 
T120-DFB-A 19,130,054 90 9,398,412 49.1% 
T120-DFB-B 25,039,482 93 12,054,040 48.1% 
T120-DFB-C 27,654,248 87 13,344,671 48.3% 
T120-FeDFB-A 18,974,632 91 9,085,579 47.9% 
T120-FeDFB-B 17,082,512 89 8,315,221 48.7% 
T120-FeDFB-C 27,046,622 85 13,764,934 50.9% 

Total: 342,682,428  157,903,103  
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Table A.2 - Summary of transcriptome sequencing, assembly, and gene prediction for isolates 
from the California Upwelling Zone. Paired-end (PE) reads are the total number of reads after 
sequencing on an Illumina MiSeq. Average read length given in bases is after trimming the adapters and 
low quality portions from the original 300 base pair reads. The number of contigs and N50 was generated 
after assembly with Trinity. Predicted proteins and average protein length in amino acids are derived from 
GeneMark S-T. 18S sequences, raw sequencing files, assemblies, and predicted peptide sequences are 
deposited in Cyverse (http://cyverse.org) under the project name unc_phyto_isolates. Genbank accession 
numbers for 18S sequences are provided in the table. 

 

Strain ID Genus species 
Genbank 

Accession 
Number 

PE Reads Contigs N50 Predicted 
Proteins 

Avg.  
Protein 
Length 

UNC1412 Pseudo-nitzschia 
americana 

KX229689 4,475,928 25,917 537 12,753 143 

UNC1413 Pseudo-nitzschia 
fraudulenta 

KX229690 3,204,430 33,051 798 21,000 169 

UNC1414 Chaetoceros 
sp. 

KX229686 3,479,758 18,534 409 7,571 136 

UNC1415 Chaetoceros 
sp. 

KX229687 2,823,336 12,969 422 3,476 136 

UNC1416 Chaetoceros 
decipiens 

KX229685 3,440,568 23,461 458 11,657 142 

UNC1417 Thalassiosira 
delicatula 

KX229691 
 

7,322,972 50,937 962 32,974 187 

UNC1418 Alexandrium 
tamarense 

KX229684 5,453,530 104,969 530 58,173 149 

UNC1419 Emiliania 
huxleyi 

KX229688 5,419,689 47,189 589 22,765 150 

Total:   35,620,211   170,369  
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Table A.3 - Summary of functional and taxonomic annotation for the environmental RNA 
assembly. Functional annotation is from the Kyoto Encyclopedia of Genes and Genomes (KEGG), and 
taxonomic annotation is from MarineRefII (MRII) supplemented with isolate transcriptomes from the 
California Upwelling Zone. A definition is assigned when a contig has an acceptable BLASTX hit to the 
database. Ortholog and module annotation is assigned when a contig has a KEGG ortholog or module 
annotation from one of the top 10 acceptable BLASTX hits. The top group details contigs with 
annotations, and the second group details contigs with annotations and reads. Percentages are out of the 
total number of contigs from assembly: 3,151,426. 

 

Annotation KEGG MRII + Isolates Combined 
Definition 1,175,963 37.3% 1,879,961 59.7% 1,155,939 36.7% 
Orthology (KO) 686,418 21.8% - - 668,275 21.2% 
Module (MO) 278,126 8.8% - - 274,544 8.7% 
       
Definitions & Reads 1,153,941 36.6% 1,844,730 58.5% 1,124,655 35.7% 
KO & Reads 672,698 21.3% - - 654,814 20.8% 
MO & Reads 271,909 8.6% - - 268,393 8.5% 
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Table A.4 - Cell abundances from microscopic counts (103 x cells L-1 ± 1 standard deviation of the 
mean of triplicate samples) of four different phytoplankton groups (diatoms, Bacillariophyceae; 
dinoflagellates, Dinophyceae; green algae, Chlorophyceae; and haptophytes, Haptophyceae) at the initial 
timpoint and following 72, and 120 hours of incubation. Diatom abundances are shown for the total 
diatom assemblage (Total), and for members of the genera Chaetoceros and Pseudo-nitzschia. bd = 
below detection limit. 

 

Class T0 T72 T120 
Bacillariophyceae Total 5.8 ± 2.5 250 ± 55 2500 ± 170 
 Chaetoceros spp. 0.44 ± 0.63 89 ± 38 980 ± 760 
 Pseudo-nitzschia spp. 0.5 ± 0.71 66 ± 55 1200 ± 710 
     
Dinophyceae  6.1 ± 3.8 9.7 ± 4.6 17 ± 24 
     
Chlorophyceae  40 ± 13 250 ± 45 310 ± 85 
     
Haptophyceae  0.90 ± 0.14 bd bd 
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APPENDIX B: CHAPTER 2 SUPPLEMENTARY INFORMATION 

Supporting Materials and Methods 

Macronutrient Analyses 

For the California Upwelling Zone (CUZ) sites, dissolved nitrate + nitrite (NO3- + NO2-), phosphate 

(PO43-), and silicic acid (H4SiO4) concentrations were measured using a Lachat Quick Chem 8000 Flow 

Injection Analysis system (Parsons et al 1984) whereas for Line P sites, an Astoria Analyzer was used 

(Barwell-Clarke and Whitney 1996). Particles were removed by filtering the sample through a GF/F filter 

using a 60 mL syringe. CUZ samples were analyzed onboard the ship whereas Line P samples were 

stored in acid-rinsed polypropylene tubes and frozen at -20°C prior to analysis onshore. Reference 

materials for nutrients in seawater were run alongside samples for quality control. For examining historical 

data (Figure 2.1), interpolated statistical means of nitrate data on a 1° grid for all decades from World 

Ocean Atlas 2013 (Garcia 2014) was plotted using matplotlib (Hunter 2007) for Python v2.7. 

 

Dissolved Iron  

For the CUZ incubations, seawater was acidified at sea with 4 mL 6 N quartz-distilled HCl per L of 

seawater (pH ~1.7) and stored in acid-cleaned LDPE bottles for at least two months prior to analysis. Iron 

was preconcentrated from buffered (pH 6.0) seawater on Nobias-chelate PA1 resin and eluted with 1 N 

quartz-distilled HNO3 following Biller and Bruland (2012) and Parker et al (2016). The eluent was 

analyzed with a Thermo-Element XR™ ICP-MS in counting mode. Line-P dissolved Fe samples were 

stored in acid-cleaned LDPE bottles, acidified post-cruise with 1 mL 12 N Optima-grade HCl per L of 

seawater, and stored for at least three months prior to analysis. These samples were also 

preconcentrated on resin and measured with an ICP-MS following Milne et al (2010). 

 

Statistical Analyses 

One- and two-way ANOVAs followed by Tukey’s multiple comparison test were performed on the 

biological and chemical properties of the seawater in Graphpad PRISM v7.03. Statistical methods for 

gene expression data are described under RNA-Seq assembly, annotation, analysis. 
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Phylogenetic Analysis 

Internal Transcribed Spacer 1 (ITS1) sequences for known Pseudo-nitzschia species (Luisa et al 

2004) were compiled from Hubbard, et al.  (2008, 2014), and Marchetti et al (2008). Reference ITS1 

sequences were checked for duplicates with GenomeTools v.1.5.1 (Gremme et al 2013) then compared 

with contigs using BLAST v2.5.0 with a 98% similarity cutoff. Contigs were then merged based on 98% 

similarity favoring longer contigs. Reference ferritin (FTN) sequences were derived from Chapter 1, 

Cohen et al (in press), and Moreno et al (2017), and contigs were selected by their annotation as 

described in Chapter 2. NRAMP and ZIP1 sequences were retrieved from the JGI Genome Portal for 

diatoms and UniProt for all other organisms. For all trees, sequences were aligned with MUSCLE (Edgar 

2004) in Geneious Pro v10.2.2. Maximum likelihood phylogenetic trees of the reference sequences were 

created with RAxML v8.2.9 (ITS1, GTRGAMMA model; all others, PROTGAMMALG model) with 100 

bootstraps (Stamatakis 2014). Contigs were placed on the tree with pplacer v1.1.alpha18-2-gcb55169 

(Matsen et al 2010), and the final trees were visualized with Archaeopteryx v0.9916 (Han and Zmasek 

2009). 

 

Supporting Text 

Evaluation of iron status 

 Iron status of diatoms was assessed based on oceanographic context, differences in the 

chemical and biological properties of the seawater, and a combination of gene expression-based 

molecular indicators that evaluate iron stress or limitation for distinct diatom genera. For molecular 

analysis in Pseudo-nitzschia, the Pseudo-nitzschia Iron Limitation Index was used (Figure B.2; Marchetti 

et al 2017). In Thalassiosira, flavodoxin (FLDA1) and iron-starvation induced protein 3 (ISIP3) expression 

were quantified, as these genes have been shown to be indicators of iron limitation in T. oceanica 

(Chappell et al 2015). The concept of using ISIP3 expression to assess iron limitation was extended to 

members of the genus Chaetoceros as they are also centric diatoms and possess the gene (Figure B.2). 

 Sites C-Low1, C-Low2, and P-Low displayed low iron concentrations and Fe:NO3 ratios, which 

were anticipated from their locations (Table 2.1). Although C-Low1 was near a moderate shelf-width area 

(Figure B.1), relatively low dissolved iron and high micronutrients were still observed (Table 2.1 and 
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Figure 2.2). This site is offshore the 200 m isobath, and therefore, it is beyond the observed natural 

boundary for iron-replete high productivity waters (Kudela et al 2006). C-Low2 is located over a narrow 

shelf region (Figure B.1) explaining the reduced iron. Both of these sites had lower initial dissolved Fe 

concentrations and Fe:NO3 ratios well below the theoretical 8 nM:20 µM ratio for near-complete 

drawdown of nitrate (Bruland et al 2001). 

 At these low iron sites, significant differences among treatments in many of the bulk community 

measurements were observed, but these differences were not universal except for Fv:Fm (Figure 2.2 and 

Table B.1). When comparing the iron and control incubations, significant increases in the iron treatment 

were observed in chlorophyll for all sites although this was only in the large size fraction at C-Low2 and 

the small size fraction at P-Low. C-Low1 had strongly significant differences in biogenic silica and nitrate 

drawdown not observed at the other sites. It is likely given the availability of nutrients and delayed 

increase in phytoplankton abundance at C-Low2 that more significant differences would have been 

observed had there been additional samples later in time. The result at P-Low can be attributed to the 

dominance of small phytoplankton initially present at this oceanic site. Biomass still remained quite low, 

but significant increases in biogenic silica were observed in the Fe incubations over time and relative to 

the DFB treatment suggesting enhanced diatom growth when Fe was added.  

 The Pseudo-nitzschia Iron Limitation Index transitioned to near positive values in the control 

incubations at C-Low1 and C-Low2 implying that these communities have the potential to naturally 

become iron limited (Figure B.2). It was strongly positive at P-Low indicating substantial iron stress. 

Indicators for the centric diatoms were also significantly different between the iron and control incubations 

(Figure B.2 and Table B.2). Overall, these pronounced differences in the chemical parameters and 

molecular indicators between the iron and control incubations substantiate that a change in iron status 

was induced by the addition of iron.  

C-High already showed high in situ biomass and dissolved iron from being located in a wide-shelf 

area with strong upwelling (Figure B.1 and B.15). As a result, no significant differences in nitrate, 

chlorophyll, or biogenic silica between the Fe addition and control incubations were observed supporting 

that iron availability was not limiting. The molecular indicators also display similar values between the iron 

and control treatments supporting the lack of an iron affect (Figure B.2 and Table B.2). 
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 P-High showed significant differences between the Fe and control incubations for nitrate 

drawdown and Fv:Fm similar to that of the low iron sites. Additionally, the molecular indicators suggest that 

there may have been iron stress in the control incubations, and dissolved iron concentrations were initially 

less than those of the CUZ sites. These results are indicative of a low iron scenario; however, productivity 

at this station is known to be dependent on the delivery of macronutrients from seasonal upwelling 

instead of just iron (Whitney et al 2005). The initial conditions are consistent with this dependence as 

macronutrients were fairly depleted and iron still remained (Figure 2.2 and Table 2.1). After the addition of 

nitrate to these incubations (Chapter 2 Materials and Methods), significant increases in chlorophyll (p < 

0.0001) were observed indicating that nitrate availability was primarily limiting. Although significant 

differences in nitrate drawdown between the iron and the control incubations were observed by the 

second time point, chlorophyll concentrations were not different, pointing to the potentially depressed iron 

effect at this site. It is possible that other macronutrients (phosphate and silicate) may have become 

limiting in the iron treatment preventing greater contrast. Altogether, these results suggest iron had an 

effect at this site, although macronutrient availability was most likely driving productivity leading to 

classification as a high iron site, especially relative to its NE Pacific counterpart, P-Low. 
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Figure B.1 - Bathymetry of the California Upwelling Zone. California-based incubation sites are 
labeled with the 200 m isobath denoted in red. Data are derived from the General Bathymetric Chart of 
the Oceans (GEBCO) 2014 grid model (www.gebco.net) and were viewed in Ocean Data View 4.  

 
  

http://www.gebco.net/
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Figure B.2 - Molecular indicators of iron stress or limitation in diatoms as described by Marchetti et 
al (2017) and Chappell et al (2015). From left to right, the Pseudo-nitzschia Iron Limitation Index (Ps-n 
ILI) and flavadoxin (FLDA1) and iron starvation induced protein 3 (ISIP3) normalized counts for 
Thalassiosira (Thal.) and Chaetoceros (Chae.). A positive Ps-n ILI value indicates iron stress or limitation. 
Incubations are labelled as follows: control (C), iron addition (Fe), iron removal (DFB), iron addition then 
removal (FeDFB) and denoted as the first or second time point (T1 or T2) where applicable. An ‘X’ 
indicates that the value was unable to be calculated. White asterisks (*) denote that the value extends 
beyond the axis limits. 
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Figure B.3 - Average taxonomic distribution by mapped reads for the whole community (phylum-
based) and diatom genera within all diatom assigned reads. Incubations are labelled as follows: 
control (C), iron addition (Fe), iron removal (DFB), iron addition then removal (FeDFB) and denoted as the 
first or second time point (T1 or T2) where applicable. 
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Figure B.4 - Light and synchrotron X-ray fluorescence micrographs of Chaetoceros and Pseudo-
nitzschia cells from the control and iron (+Fe) incubations at 48 hours at C-Low1.  
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Figure B.5 - Normalized transcript abundances for ferritin (FTN), natural resistance-associated 
macrophage protein (NRAMP), and ZIP1 in Pseudo-nitzschia (P), Chaetoceros (C), and 
Thalassiosira (T). Dark gray indicates that the gene was not detected. 
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Figure B.6 - Phylogenetic tree of Pseudo-nitzschia internal transcribed spacer 1 (ITS1) sequences 
with environmental sequences from the metatranscriptome (blue). Bootstrap values ≥ 50 from the 
reference sequences are shown. Detection of reads mapping for each site is indicated in blue in the table.  
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Figure B.7 - Phylogenetic tree of Pseudo-nitzschia ferritin sequences with environmental 
sequences from the metatranscriptome (blue). Bootstrap values ≥ 50 from the reference tree are 
shown. Detection of reads mapping for each site is indicated in blue in the table. 
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Figure B.8 - Fold changes in Pseudo-nitzschia FTN expression (x-axis) versus fold changes in iron 
quotas (µmol Fe:mol C; y-axis) for the Fe or DFB treatments compared to the control treatment. 
The P-High DFB vs C comparison (red point) was excluded as an outlier as silicate depletion likely 
uncoupled the relationship between FTN and iron quotas. A Pearson correlation indicates a significantly 
positive relationship (ρ  = 0.7551, P = 0.0186). 
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Figure B.9 - Midpoint-rooted phylogenetic tree of diatom ferritins. Branches that do not contain 
Chaetoceros sequences were collapsed with the number of sequences shown. Chaetoceros-assigned 
contigs are highlighted in red. Bootstrap values ≥ 50 are shown. 
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Figure B.10 - Midpoint-rooted phylogenetic tree of diatom ferritins. Branches that do not contain 
Thalassiosira sequences were collapsed with the number of sequence shown. Thalassiosira-assigned 
contigs are highlighted in red. Bootstrap values ≥ 50 are shown. 
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Figure B.11 - Normalized transcript abundances for ferritin (FTN) and natural resistance-
associated macrophage protein (NRAMP) in Fragilariopsis. Dark gray indicates that the gene was not 
detected. 
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Figure B.12 - Phylogenetic tree of natural resistance-associated macrophage protein (NRAMP) 
homologous genes. Diatom genes (blue) are labeled as Fracy 172829, Psemu 325037, and Thaps 9840 
from Fragilariopsis cylindrus, Pseudo-nitzschia multiseries, and Thalassiosira pseudonana with 
corresponding JGI gene IDs. The red algae, Cyanidioschyzon merole and Galdieria sulphuraria, are 
presented with gene IDs corresponding to entries in Uniprot. Remaining sequences are those presented 
by Thomine et al (2000) from Arabidopsis thaliana (At), Oryza sativa (Os), Saccharomyces cerevisiae 
(SMF), Mus musculus (Mm), Deinococcus radidurans (Dr), Escherirchia coli (Ec), Pseudomonas 
aeruginosa (Pa), and Salmonella typhimurium (St). 
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Figure B.13 - Normalized transcript abundances for ZIP7 in Pseudo-nitzschia (P), Chaetoceros (C), 
and Thalassiosira (T). Dark gray indicates that the gene was not detected. 
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Figure B.14 - Midpoint-rooted phylogenetic tree of ZIP1 homologous genes. Bootstrap values ≥ 50 
are shown. 
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Figure B.15 - Domoic acid (DA) concentrations from C-Low2. Domoic acid was measured for all 
California Upwelling Zone (CUZ) incubations with the remaining data reported in Cohen et al (2017). 
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Figure B.16 - Three day average of satellite derived sea surface temperature from 03 June 2014 to 
05 June 2014, the day of sampling for C-High (38.7° N, 123.7° W). Data is from the NOAA POES 
AVHRR satellite courtesy of the NOAA / NESDIS Center for Satellite Applications Research and viewed 
from the NOAA CoastWatch Browser. 
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Table B.1 - Time points and initial collection depths for each incubation site. 

  

Name Time points 
(hours) 

Collection 
Depth (m) 

C-High T1 = 24 2 
C-Low1 T1 = 48, T2 = 72 15 
C-Low2 T1 = 72, T2 = 120 96 
P-High T1 = 24, T2 = 48 3.5 
P-Low T1 = 96 11 
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Table B.2 - Significance (Tukey) test results for differences in site parameters. Significance is 
shown as follows: ns, not significant; displayed numerically; P ≤ 0.1; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 
0.001; ****, P ≤ 0.0001; or   (-), not applicable. 

 

  C-High P-High C-Low1 C-Low2 P-Low 
NO3       
  T1-Fe   T1-C ns ns ns ns ns 
  T1-Fe   T1-DFB ** ns ns ns ns 
       
  T2-Fe   T2-C - **** **** ns - 
  T2-Fe   T2-DFB - **** **** ns - 
       
Chl a > 5 µm      
  T1-Fe   T1-C ns ns ns ns 0.05 
  T1-Fe   T1-DFB ns ns * ns * 
       
  T2-Fe   T2-C - ns **** ** - 
  T2-Fe   T2-DFB - **** **** **** - 
       
  T1-Fe   t = 0 ns ns *** ns 0.06 
  T2-Fe   t = 0 - **** **** **** - 
       
Chl a < 5  µm      
  T1-Fe   T1-C ns ns ns ns ** 
  T1-Fe   T1-DFB ns ns ** 

 
ns **** 

  T2-Fe   T2-C - ns **** ns - 
  T2-Fe   T2-DFB - ns **** ns - 
       
  T1-Fe   t = 0 ns ns **** ns *** 
  T2-Fe   t = 0 - ns **** ns - 
 
bSi 

     

  T1-Fe   T1-C ns ns ns ns ns 
  T1-Fe   T1-DFB ns ns ns ns ** 
       
  T2-Fe   T2-C - ns **** ns - 
  T2-Fe   T2-DFB - ns **** ns - 
       
  T1-Fe   t = 0 ns ns - - *** 
  T2-Fe   t = 0 - ns - - - 
       
Fv:Fm      
  T1-Fe   T1-C ns *** ** ** **** 
  T1-Fe   T1-DFB ns **** **** **** **** 
       
  T2-Fe   T2-C - **** ** ** - 
  T2-Fe   T2-DFB - **** **** **** - 
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Table B.3 - Significance in differential expression of FLDA1 and ISIP3 expression for Thalassiosira 
and Chaetoceros determined by DESeq2 and shown in Figure B.3. Significance is shown as follows: 
ns, not significant; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001; or   (-), not applicable. 
 
 

  C-High C-Low1 C-Low2 
Thalassiosira FLDA1    
  C vs Fe   T1 ns **** - 
     T2 - **** ns 
  Fe vs DFB   T1 **** **** - 
   T2 - ** ns 
     
Thalassiosira ISIP3    
  C vs Fe   T1 ns **** - 
     T2 - **** *** 
  Fe vs DFB   T1 **** **** - 
   T2 - **** **** 
     
Chaetoceros ISIP3    
  C vs Fe   T1 ns **** - 
     T2 - **** *** 
  Fe vs DFB   T1 **** **** - 
   T2 - **** **** 
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APPENDIX C: CHANGES IN GROWTH AND ELEMENTAL COMPOSITON OF A DIATOM AND 
HAPTOPHYTE THROUGHOUT A SIMULATED UPWELLING CONVEYER BELT CYCLE 

 
Introduction 

 Phytoplankton communities in coastal upwelling regions contribute to a significant level of global 

primary production and serve as the base of highly productive food chains (Capone and Hutchins 2013). 

Within these environments, phytoplankton undergo a cycle in which subsurface populations are 

transported upwards with upwelled water masses to seed surface blooms and return to depth as 

upwelling subsides and nutrients are depleted (Wilkerson and Dugdale 2008). Surviving cells at depth 

may act as seed stocks when upwelling returns. Herein this loop is referred to as the upwelling conveyer 

belt cycle (UCBC; Figure C.1a).  

 Diatoms are known to dominate phytoplankton blooms during upwelling (Estrada and Blasco 

1985), and respond positively to the shift-up (upwelling) portion of the UCBC. As part of shift-up, it is 

believed that diatoms respond more quickly to available nitrate compared to other phytoplankton groups 

(Fawcett and Ward 2011). This response can be explained by frontloading of nitrogen-related genes 

before the upwelling event occurs (Chapter 1). Coupled to this rapid nitrate uptake, diatoms in natural 

communities have been observed to transition from relatively high carbon-to-nitrogen (C:N) ratios to those 

that approach the Redfield-predicted value (Fawcett and Ward 2011, Kudela and Dugdale 2000)(Chapter 

1).  

 As phytoplankton transition throughout the light and nutrient conditions within the UCBC, they 

likely undergo a number of physiological changes. Importantly, phytoplankton are known to alter their 

elemental composition based on physiological status (Moore et al 2013) as observed during shift-up. The 

previously observed high C:N ratios (Fawcett and Ward 2011, Kudela and Dugdale 2000, Chapter 1)  

imply that the cells faced nitrogen limitation as the upwelled waters aged, and then the cells sank to 

depth. As these observations are derived from field-based sampling, it is plausible that there was also C-

rich detrital material elevating the initial carbon measurement. Moreover, these studies show this rapid 

change occurring from 0 to 24 hours, but are without observations from within the first day of the shift-up 

response. 

 The physiological status of phytoplankton within the UCBC is also likely influenced by the 

availability of the micronutrient iron. In the California Upwelling Zone for example, iron delivery is primarily 
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dependent on riverine input and upwelling-driven resuspension of continental shelf sediments (Bruland et 

al 2001, Hutchins et al 1998). In areas with steep continental shelfs, reduced interaction between 

upwelled waters and the sediment can result in iron limitation which is expected to expand. As upwelling 

is anticipated to intensify from climate change (Bakun 1990), upwelled nitrate has increased potential to 

be unmatched by upwelled iron. Furthermore, ongoing changes in ocean chemistry may result in reduced 

availability of iron to phytoplankton (McQuaid et al 2018, Shi et al 2010) 

 To examine the physiological responses and resolve changes in elemental composition, lab-

based UCBC simulations were conducted with a diatom and haptophyte isolated from the California 

Upwelling Zone. Samples within 12 hours of returning to light and high nutrients were collected to 

examine the rapid responsiveness of phytoplankton to shift-up. UCBC simulations were also conducted 

under low iron conditions to examine the effect of increasing iron stress. We show that the diatom can 

rapidly respond to the shift-up scenario compared to the haptophyte, and that these responses are 

impacted by iron stress. 

 

Materials and Methods 

Experimental set-up 

Two cultures of phytoplankton species from the California Upwelling Zone were used: a diatom, 

Chaetoceros decipiens (UNC1416), and a haptophyte, Emiliania huxleyi (UNC1418). Species isolation 

and identification is described in Appendix A. Cultures were grown in artificial Aquil medium following 

trace metal clean (TMC) techniques (Marchetti et al 2015, Price et al 1989) at 12°C and 115 µmol 

photons m-2 s-1. Macronutrients were added such that silicate would not become limiting for diatom growth 

(50 µmol L-1 NO3, 10 µmol L-1 PO4, 200 µmol L-1 H4SiO4). Aquil was chelexed in a TMC room, microwave 

sterilized, allowed to cool, and then supplemented with filter-sterilized (0.2 µm Acrodisc®) EDTA-trace 

metals (minus iron) and vitamins (B12, thiamine, and biotin). Premixed Fe-EDTA (1:1) was added 

separately at a total concentration of 1370 nmol L-1 for the high iron treatments or 3.1 nmol L-1 for the low 

iron treatments. The resulting iron not complexed to EDTA (Fe’) concentrations were 2730 pmol L-1 (high 

iron) and 6 pmol L-1 (low iron)(Sunda et al 2005). Media were allowed to equilibrate overnight before use. 
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Cultures were acclimated to medium using the semi-continuous batch culture technique (Brand 

1985) at the two iron concentrations in acid-cleaned 28 mL polycarbonate centrifuge tubes with stable 

growth rates. Cultures were then grown in a 1 L polycarbonate bottle, and when in exponential phase, 5 

mL (high iron) or 20 mL (low iron) of each culture was then transferred to triplicate clean 2 L 

polycarbonate bottles with Teflon tubing. Seawater was stirred continuously at approximately 100 rpm 

and gently bubbled with clean air. Although sterile techniques were used for all culture work to minimize 

bacterial contamination, cultures were not considered axenic.  

To simulate the upwelling conveyer belt cycle (UCBC), cultures were grown until they reached 

stationary phase for 3 days to simulate blooming then reaching nutrient limited growth (Figure C.1, Table 

C.1). At this point bubbling and stirring stopped, and then bottles were moved to a dark (0 µmol photons 

m-2 s-1) section of the incubator to simulate sinking out of the euphotic zone. After 10 days, 500 mL were 

transferred into 1.5 L of new medium and returned to the light with stirring and bubbling resumed. The 10 

day time frame was selected based on satellite observations of timing between upwelling (Chapter 1) and 

as a point at which significant differences in lag time to return to exponential growth could be observed. 

Cultures were grown until stationary growth was measured for two days, thus completing the loop. 

Sampling was performed by first dispensing into acid-washed and Milli-Q rinsed bottles in a laminar flow 

hood in the TMC room, then aliquoting for this new container. Relative abundance and growth was 

assessed by regular measurements of blank-corrected raw fluorescence units (RFUs) with a Turner 10-

AU fluorometer.  

 

Fv:Fm 

Maximum photochemical yield of Photosystem II (Fv:Fm) was measured using a Satlantic FIRe 

(Gorbunov and Falkowski 2005, Kolber et al 1998). Samples were acclimated to low light for 20 min prior 

to measuring the minimum (Fo) and maximum (Fm) fluorescence yields. Data were blank corrected using 

microwave-sterilized Aquil medium. The resulting Fv:Fm was derived from the induction profile using a 

saturating pulse (20,000 µmol photons m2 s-1) for a duration of 100 µs. The average of 50 iterations was 

obtained. 
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Figure C.1 – Conceptual model of the upwelling conveyer belt cycle. (a) Reproduced from Wilkerson 
and Dugdale (1987). (b) Modeled growth measurements (raw fluorescence units, RFUs) for a laboratory-
based UCBC simulation over the course of 26 days. Green squares indicate sampling time points 
throughout the experiment (Table C.1).  
 
 
 
 

 

 

 

 

Table C.1 – Description of sampling time points throughout the UCBC simulations. 

Time point Description Light or Dark 
1 Exponential growth 1 Light 
2 4 days in stationary phase (1 day in dark) Dark 
3 13 days in stationary phase (10 days in dark) Dark 
4 12 hours after time point 3 Light 
5 Exponential growth 2 Light 
6 2 days in stationary phase Light 
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Particulate carbon and nitrogen 

 Particulate carbon (PC) and nitrogen (PN) were obtained by gentle vacuum filtration of 50 mL of 

water onto a pre-combusted (450° for 5 hours) GF/F filter. Filters were immediately stored in petri dishes 

at -20°C. Prior to analysis, filters were dried at 65°C for 24 hours then wrapped in tin capsules. Total 

nitrogen and carbon were quantified with a Costech 1040 CHNOS Elemental Combustion system 

according to U.S. Environmental Protection Agency Method 440.0 (Zimmermann et al 1997). 

 

Statistical Analyses 

One- and two-way ANOVAs followed by Tukey’s multiple comparison test were performed on the 

biological and chemical properties of the seawater in Graphpad PRISM v7.04. 

 

Results and Discussion 

Physiological changes throughout the UCBC under iron-replete conditions 

 Both C. decipiens and E. huxleyi showed clear physiological changes to the different conditions in 

the UCBC when iron was replete (Figure C.2). First, they displayed reductions in photosynthetic efficiency 

(Fv:Fm) between the first exponential growth measurement and stationary phase time points. For C. 

decipiens, these declines were statistically significant (P < 0.001) between the first time point and the two 

time points in the dark. An even greater decrease from 0.376 ± 0.052 to 0.309 ± 0.061 was observed 12 

hours after the return to light which is likely a result of non-photochemical quenching. In both species, 

Fv:Fm values were able to return to higher levels once the cells returned to exponential growth. 

 Modifications to the C:N ratios are apparent as well. Both species were growing at near-Redfield 

values during the initial exponential growth phase and showed increases in the C:N ratio during stationary 

phase. Again in C. decipiens, these differences were strongly significant (P < 0.0001). These results 

support that both the stationary phase cells while still in the light and deeper seed communities have 

altered C:N ratios well above Redfield values, and that the matching field observations (Fawcett and 

Ward 2011, Kudela and Dugdale 2000, Chapter 1) can be attributed to changes in cells rather than simply 

C-rich detritus. 
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 Of particular interest is the shift-up response as shown by comparing the samples from 10 days in 

the dark (T3) with after returning to the light for 12 hours (T4) and reaching exponential growth (T5). C. 

decipiens appeared to return to exponential growth within 24 hours of returning to light and nutrients 

whereas E. huxleyi did not for approximately 48 hours (Figure C.3). Concurrently, the C:N ratio rapidly 

declined from 20.18 ± 2.13 to 11.89 ± 0.70 within the first 12 hours of returning to light (Figure C.2). By 36 

hours after returning to the light as the cells were in exponential growth, their ratio returned to Redfield. 

Interestingly, E. huxleyi maintained a high C:N ratio after the 12 hour return to light, but the ratio 

dramatically declined to 1.80 ± 0.40 when the cells reached exponential growth (Figure C.2). These 

results align with the comparatively rapid shift-up response of diatoms to upwelling compared to other 

phytoplankton groups, and that nitrate uptake rates are likely rapidly increasing to result in this change.  

 

 

Figure C.2 – Fv:Fm  and C:N ratios for C. decipiens and E. huxleyi throughout the UCBC 
simulations under iron-replete (black bars) and iron-stressed (gray bars) conditions. In the C:N 
plots, the Redfield ratio is displayed with a dashed line. For the low iron treatment in E. huxleyi, Fv:Fm are 
only shown for the replicate that completed all 6 time points (Figure C.3), and C and N values were below 
the detection limit at T1 and T5 for low iron.  
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Figure C.3 – Raw fluorescence units (RFUs) of each sample of C. decipiens and E. huxleyi 
throughout the UCBC experiments under high and low iron. The first panel in each set is the initial 
exponential growth and stationary phase in the light, the middle panel is 10 days in stationary/dark phase, 
and the last is the return to exponential growth and stationary phase in the light. 
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Effects of iron stress throughout the UCBC 

Within the first phase of exponential growth, C. decipiens showed significant reductions in growth 

rate (0.86 d-1 to 0.33 d-1). The reduction in growth rates was comparatively smaller for E. huxleyi (0.73 d-1 

to 0.64 d-1), but the iron stressed cells were unable to grow upon returning to light in two out of three 

replicates (Figure C.3). Importantly, reductions in Fv:Fm were also observed in both showing that the cells 

exhibited iron stress in the low iron treatments. With Fv:Fm already impacted by iron stress, the variation 

as a result of light and/or other nutrient stress was comparatively less to when iron was replete.  

C:N ratios in C. decipiens followed a similar pattern when comparing the iron-limited to iron-

stressed conditions (Figure C.2). In early stationary phase (T2 and T6), C:N ratios were significantly 

lower, but reached similar values after 10 days in the dark. Importantly, C:N ratios still quickly approached 

Redfield upon returning to the light (T4) indicating that the nitrogen-related shift-up response may not be 

significantly impacted by low iron conditions. In E. huxleyi, C and N values were below the detection limit 

during exponential growth preventing a comparison for those time points. Similar to the iron-replete 

conditions, ratios remained high in stationary phase and did not quickly change within the first 12 hours of 

return to light. 

 

Conclusions 

 Phytoplankton clearly undergo physiological changes as they transition throughout the different 

stages of the upwelling conveyer belt cycle. Importantly, these results indicate that previous field 

observations of high C:N ratios in deeper seed populations (Fawcett and Ward 2011, Kudela and 

Dugdale 2000, Chapter 1) can be attributed to change in physiological status rather than simply C-rich 

detrital material affecting results. Furthermore, it is apparent that the diatom shift-up response occurs 

relatively rapidly with strong differences noted within 12 hours of upwelling. Iron stress did not seem to 

severely impact the diatom’s ability to respond, but did for the haptophyte. Further molecular analysis of 

these or similar experiments may reveal the underpinnings of these responses in greater detail. 
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